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ABSTRACT

COUNTING ARTIN-SCHREIER CURVES OVER FINITE FIELDS

Several authors have considered the weighted sum of various types of curves of a certain

genus g over a finite field k := Fq of characteristic p where p is a prime and q = pm for some

positive integer m. These include elliptic curves (Howe), hyperelliptic curves (Brock and

Granville), supersingular curves when p = 2 and g = 2 (Van der Geer and Van der Vlught),

and hyperelliptic curves of low genus when p = 2 (Cardona, Nart, Pujolàs, Sadornil). We

denote this weighted sum

∑

[C]

1

|Autk(C)|
,

where the sum is over k-isomorphism classes of the curves and Autk(C) is the automorphism

group of C over k.

Many of these curves mentioned above are Artin-Schreier curves, so we focus on these in

this dissertation. We consider Artin-Schreier curves C of genus g = d(p− 1)/2 for 1 ≤ d ≤ 5

over finite fields k of any characteristic p. We also determine a weighted sum for an arbitrary

genus g in one-, two-, three-, and four-branch point cases. In our cases, we must consider a

related weighted sum

∑

[C]

1

|CentAutk(C)〈ι〉|
,

where CentAutk(C)〈ι〉 is the centralizer of 〈ι〉 in Autk(C). We discuss our methods of counting,

our results, applications, as well as geometric connections to the moduli space of Artin-

Schreier covers.
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CHAPTER 1

Introduction

Let k = Fq be a finite field of characteristic p, where p is a prime and q = pm for some

positive integer m. An Artin-Schreier curve is a curve C for which there exists a degree p

Galois cover π : C → P
1. The cover π corresponds to an extension of function fields

k(x) →֒ k(x)[y]

(yp − y − u(x))
,

where u(x) is a rational function. A generator of the Galois group is ι := (x, y) 7→ (x, y+1),

which has order p. The curve C has an associated rational equation yp− y = u(x), although

this equation is not uniquely determined. The genus of an Artin-Schreier curve is a multiple

of (p− 1)/2. Let Autk(C) be automorphism group of C over k and |Autk(C)| be the order

of the group.

Several authors have considered the weighted sum of curves of a given genus.

First, Everett Howe considered the genus one case [5, Corollary 2.2]. He proved that

∑

[C]

1

|Autk(C)|
= q for g = 1,

where the sum is over all k-isomorphism classes of elliptic curves. Note when p = 2, then

the elliptic curves are Artin-Schreier curves.

Bradley Brock and Andrew Granville considered hyperelliptic curves of genus g for odd

primes p [1, Proposition 7.1], and the weighted sum is

∑

[C]

1

|Autk(C)|
= q2g−1 for odd p, genus g.
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Gerard van der Geer and Marcel van der Vlugt looked at supersingular curves of genus

two [3, Corollary 5.3]. Their result is that

∑

[C]

1

|Autk(C)|
= q for p = 2, g = 2.

Gabriel Cardona, Enric Nart, and Jordi Pujolàs examined all Artin-Schreier curves of

genus two over a finite field of characteristic two [2, Theorem 18]. They found the weighted

sum for various subcases, including the supersingular case, which, when combined, gave the

result that

∑

[C]

1

|Autk(C)|
= q3 for p = 2, g = 2.

Later, Enric Nart and Daniel Sadornil extended these results for Artin-Schreier curves of

genus three over a finite field of characteristic two [10, Theorem 8]. The weighted sum here

is

∑

[C]

1

|Autk(C)|
= q5 for p = 2, g = 3.

In all of these results, the authors have explicit formulas for subcases indexed by ramifi-

cation data of π.

Following [2] and [10], we consider the weighted sum of Artin-Schreier curves of given

genus g over a finite field of characteristic p. It turns out that the p = 2 case is easier because

〈ι〉 is in the center of Autk(C) when p = 2, but this is not always true for odd p [4]. Thus,

instead of weighting the count by the size of Autk(C), we consider a weighted count by the

size of the centralizer of 〈ι〉 in Autk(C) in all cases. We denote this by CentAutk(C)〈ι〉.

Specifically, our main results are the weighted sum for the cases in which the genus is

g = d(p − 1)/2 for 1 ≤ d ≤ 5 for arbitrary p. We have also found the weighted sum for an

arbitrarily large genus g when the number of branch points is at most four, and the number

2



of branch points is the number of poles in the rational equation u(x). Details of the results

are found in Chapter 3.

We use similar methods as in [2] and [10]. First, we start by dividing the situation

into cases indexed by discrete information about the ramification divisor of π. We find the

appropriate structure for the rational equations in each case. We count the total number

of rational equations and then describe the conditions for two covers to be k-isomorphic.

Next, we determine the size of the centralizer of 〈ι〉 for each case by examining possible

automorphisms γ of P1, which fix the discrete information about the ramification divisor.

These automorphisms are contained in PGL2(k), the projective general linear group, so we

can view them as fractional linear transformations. These fractional linear transformations

act on our rational equations u(x). In addition, the generator ι of the Galois group of π also

acts on the rational equations.

Finally, we add up the counts appropriately to get a weighted sum. We find that the

one-, two-, and three-branch point cases are similar to each other, whereas the four-branch

point cases are more complicated because they involve more complicated orbits of PGL2(k)

on four-sets of P1(k). For these sets of four branch points, we use Burnside’s Lemma to

count the orbits.

In our cases, we also determine explicit formulas for the weighted counts of the Artin-

Schreier curves.
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For p = 3, g = d(p− 1)/2, we have Theorem 4.2.4:

∑

[C]

1

|CentAutk(C)〈ι〉|
=











































































1 if g = 1

q − 1 if g = 2

q2 if g = 3

2q3 − q2 if g = 4

q4 if g = 5

and for p ≥ 5, g = d(p− 1)/2, we have Theorem 4.2.6:

∑

[C]

1

|CentAutk(C)〈ι〉|
=















































































































1 if g = 1(p− 1)/2

2q − 1 if g = 2(p− 1)/2

2q2 − q if g = 3(p− 1)/2

3q3 − 3q2 if g = 4(p− 1)/2, p = 5

4q3 − 3q2 if g = 4(p− 1)/2, p ≥ 7

3q4 − 3q3 + q2 if g = 5(p− 1)/2, p = 5

4q4 − 4q3 + q2 if g = 5(p− 1)/2, p ≥ 7

Our main counting theorems are found in Section 2.5.

Furthermore, we discuss the connection between our weighted sums and geometry in

Section 4.2.1. It turns out that the coefficients from the weighted sums give information

about the irreducible components of the moduli space for Artin-Schreier curves. In fact,

the leading coefficient of the weighted sums corresponds to the number of components, and

4



the exponent of the leading term is the dimension. This explains the difference between the

p = 5 and p ≥ 7 cases.
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CHAPTER 2

Weighted Number of Artin-Schreier Curves

2.1. Background

Let k = Fq be a finite field of characteristic p, where p is a prime and q = pm for some

positive integer m. Let k̄ be an algebraic closure of k. We consider C, a smooth, projective,

geometrically irreducible curve defined over k.

The following is a summary of Artin-Schreier covers from [12]. An Artin-Schreier curve

C is a curve for which there is a degree p Galois cover π : C → P
1. C has an associated

rational equation yp − y = u(x) ∈ k(x). In this case, the cover corresponds to an extension

of function fields,

k(x) →֒ k(x)[y]

(yp − y − u(x))
,

which is a cyclic extension of degree p. A generator of the Galois group is ι := (x, y) 7→

(x, y + 1), which has order p.

Theorem 2.1.1. [9, Proposition 3.4.12] The fixed points of ι are the ramification points

of the degree p map π : C → P
1.

The hyperelliptic covers of [2] and [10] are in the case when p = 2, and this ι is the

hyperelliptic involution mentioned in their papers.

Let Autk(C) denote the automorphism group of C over k. We consider the weighted sum

∑

[C]

1

|Autk(C)|

where [C] ranges over the k-isomorphism classes of C. If we want to consider the entire

automorphism group of C over k though, we find that it is elusive in some exceptional cases:

6



Theorem 2.1.2. [4, 11.93]

(1) If p = 2, then 〈ι〉 is in the center of Autk(C).

(2) If p is odd, then 〈ι〉 is normal in Autk(C) except in these cases with the following

rational equations:

(a) yp − y = a/(xp − x) for a ∈ k,

(b) y3 − y = b/x(x− 1) with b2 = 2, or

(c) yp − y = 1/xc with c | (p+ 1).

This means that to include all primes p for our results, we will use the centralizer of 〈ι〉

in the automorphism group of C instead of the automorphism group itself. We denote the

centralizer as CentAutk(C)〈ι〉. This allows us to finish the case for genus g = d(p − 1)/2 for

1 ≤ d ≤ 5.

To count Artin-Schreier curves, we first divide our various cases into subcases. Given

a genus g, we look at the structure of the ramification divisor and the splitting behavior,

which entails determining the possible structures of the fields of definitions of the poles in

our rational equation yp − y = u(x). We can then fix a subcase and choose the locations of

the poles. This allows us to write down a rational equation and count the number of rational

equations. Finally, we find possible changes of variables for yp − y = u(x) and determine

which subgroups of PGL2(k), the projective general linear group, act on the representative

equations for the Artin-Schreier covers.

2.2. Ramification Data and Splitting Behavior

2.2.1. Ramification Data. To count Artin-Schreier curves over finite fields of char-

acteristic p up to k-isomorphism, we consider the rational equation for each cover defined

over k based on the possible ramification divisors. We denote the ramification divisor of

7



π as Diff(C/P1). The ramification divisor is associated to the different of the extension of

function fields mentioned above. We can consider the branch divisors W of P1, which are

the push-forward of the ramification divisors of the Artin-Schreier covers. The set of multi-

plicities of the points in the branch divisor is a discrete invariant. The orders of the pole of

u(x) at a point is one less than the multiplicity of the point.

We only need to consider rational equations with no poles of order congruent to zero

modulo p when working with a field of characteristic p because we can apply a change of

coordinates replacing y by y+ c to modify u(x) such that p does not divide the order of any

pole.

Now define the Artin-Schreier group as follows:

AS(k(x)) := {u(x)p − u(x) | u(x) ∈ k(x)}.

Given u(x) ∈ k(x), a cover C with equation yp − y = u(x) is irreducible if and only if

u(x) /∈ AS(k(x)).

Theorem 2.2.2. [12, Proposition 3.7.8] Let u(x) ∈ k(x)−AS(k(x)) be a rational function

with no poles of order of a multiple of p. Let C = Cu(x) be the Artin-Schreier cover defined

over k, with equation yp − y = u(x), and let P ∈ C(k̄). Then

Diff(C/P1) =
∑

Q∈P1(k̄)

(

∑

P 7→Q

(ǫQ + 1)P

)

where

ǫQ =











−1 if ordQ(u(x)) ≥ 0

m if ordQ(u(x)) = −m < 0

8



Here, we have that

deg(Diff(C/P1)) =
∑

Q∈β

(ǫQ + 1)(p− 1)

where β = {Qi} is the branch locus. Furthermore,

k(C) ∩ k̄ = k ⇔ u(x) 6∈ k +AS(k(x)) ⇔ Diff(C/P1) 6= 0.

When this condition is satisfied, deg(Diff(C/P1)) = 2g+2(p− 1), where g is the genus of C.

Here, the genus means the dimension of the vector space of regular 1-forms.

In essence, given a genus g and a prime p, we have a number that is deg(Diff(C/P1)). To

determine the ramification possibilities, we consider the partitions of deg(Diff(C/P1))/(p−1)

into numbers not congruent to 1 mod p. For instance, if g = 2(p − 1) and p is any prime

greater than 5, then deg(Diff(C/P1))/(p− 1) = 6, so possible partitions are (6), (4,2), (3,3),

and (2,2,2).

2.2.3. Splitting Behavior. For the different ramification types, there are different

possibilities of whether the poles of u(x) are defined over k or over a larger field Fqm . These

give various splitting types. For the cases that we consider in which we have one to four

branch points, we call these the split, split+quadratic, quadratic, cubic, and quartic cases,

indicating that the branch points are all defined over k, that two are defined over Fq2\Fq,

that two pairs are defined over Fq2\Fq, that three are defined over Fq3\Fq, or that four are

defined over Fq4\Fq2 .

The associated rational equation yp − y = u(x) must be defined over k, but the poles of

u(x) do not have to be in k necessarily. We can write a partial fraction decomposition of

u(x) over k.

9



First, we introduce the Frobenius endomorphism, Fr : Fqm → Fqm , where Fr(α) = αq. In

other words, this is the qth power map.

Lemma 2.2.4. Let u(x) ∈ Fq(x) be such that div∞(u(x)) = ǫb, where b is an Fq-point of

degree m and ǫ ∈ N. Let Fr be the Frobenius endomorphism. Then there exist c0 ∈ Fq and

v(x) ∈ Fqm(x) such that div∞(v(x)) = ǫb1 for some Fqm-point b1 of degree one and

u(x) =
m−1
∑

j=1

Frj(v(x)) + c0.

Proof. Let u(x) ∈ Fq(x) be such that div∞(u(x)) = ǫb. The Fq-point b is an orbit

{θ1, θ2, · · · , θm} of Fqm-points θi under the Frobenius map. If we consider the partial fraction

decomposition of u(x) ∈ Fqm(x), then

u(x) =
m−1
∑

j=0

vj(x)

(x− θj)ǫ
+ c0

where vj(x) ∈ Fqm [x] is a polynomial of degree ǫ− 1 with nonzero constant term. Apply the

Frobenius map to both sides to obtain

Fr(u(x)) =
m−1
∑

j=0

Fr(vj(x))

(x− θj+1)ǫ
+ Fr(c0)

where θm = θ0. Since Fr(u(x)) = u(x), vj(x) = Fr(vj−1(x)), and Fr(c0) = c0, then

u(x) =
m−1
∑

j=0

Frj
(

v1(x)

(x− θ1)ǫ

)

+ c0.

�
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In other words, if the branch points are not defined over k, the condition that u(x) ∈ k(x)

places constraints on the partial fraction decomposition. In particular, terms in the partial

fraction decomposition must respect the action of the Frobenius map.

Explicitly, for a given ramification type and splitting type that corresponds to having

four branch points θ1, θ2, θ3, and θ4 defined over k of orders ǫ1, ǫ2, ǫ3, and ǫ4, respectively, the

partial fraction decomposition of u(x) looks like:

yp − y =
c1,1x

ǫ1−1 + · · ·+ c1,ix
ǫ1−i + · · ·+ c1,ǫ1

(x− θ1)ǫ1
+
c2,1x

ǫ2−1 + · · ·+ c2,jx
ǫ2−j + · · ·+ c2,ǫ2

(x− θ2)ǫ2

+
c3,1x

ǫ3−1 + · · ·+ c3,lx
ǫ3−l + · · ·+ c3,ǫ3

(x− θ3)ǫ3
+
c4,1x

ǫ4−1 + · · ·+ c4,nx
ǫ4−n + · · ·+ c4,ǫ4

(x− θ4)ǫ4
+ c0

where 1 < i < ǫ1, 1 < j < ǫ2, 1 < l < ǫ3, and 1 < n < ǫ4.

2.3. Rational Equations

Now we can fix a subcase and choose the locations of the poles for our rational equation.

To count Artin-Schreier curves over k for a fixed genus g, we first choose the number of

branch points. From here, we can choose the splitting type and then the branch divisor W .

Since the divisor W is defined over k, then supposing we have four branch points, we could

have the following possibilities:

11



Table 2.1. Fields of Definitions for Poles

Splitting Type Poles Field of Definition

Split ∞, 0, 1, t for t ∈ k\{0, 1} k

Split + Quadratic ∞, 0, θ, θ′ ∞, 0 ∈ k; θ, θ′ ∈ Fq2\Fq

Quadratic θ, θ′, τ, τ ′ Fq2\Fq

Cubic ∞, θ, θ′, θ′′ ∞ ∈ k; θ, θ′, θ′′ ∈ Fq2\Fq

Quartic θ, θ′, θ′′, θ′′′ θ, θ′, θ′′, θ′′′ ∈ Fq4\Fq2

When we have fewer branch points, we have a subset of these various splitting types.

We can count the coefficients for each term in the partial fraction decomposition as

follows:

Lemma 2.3.1. (1) Consider the set

S = {u(x) ∈ xFqr [x] | deg u(x) = ǫ}

where u(x) has no exponents of degree 0 mod p. The cardinality of S is (qr−1)qr(ǫ−1−⌊ ǫ
p
⌋).

(2) Let P be a point defined over Fqr in which div∞(u(x)) = ǫP . Then, the number of

representative equations up to Artin-Schreier equivalence is (qr − 1)qr(ǫ−1−⌊ ǫ
p
⌋).

Proof. (1) First, we can write u(x) as

u(x) =
ǫ
∑

j=0

cjx
j
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where cj are coefficients in Fqr . Since u(x) must be of degree ǫ, there are qr − 1 choices

for cǫ and qr choices for the rest of the coefficients. There are only terms in which

j 6= 0 mod p, so there are ǫ− 1− ⌊ ǫ
p
⌋ such choices.

(2) If P is the point at infinity, then let x be as is from part (1). If P is θr ∈ Fqr , then let

x = 1/(x− θr), and the statement follows from part (1).

�

In addition, for the rational equation of an Artin-Schreier cover, we have a constant term

c0 ∈ k. For any u(x) and u′(x), the Artin-Schreier covers Cu(x) and Cu′(x) are k-isomorphic

if there exists γ ∈ PGL2(k) such that u′(x) ≡ γ(u(x)) mod AS(k(x)).

Lemma 2.3.2. Let AS(k) = {rp − r | r ∈ k} ⊂ k. There are q/p elements in AS(k).

Proof. Take the map ϕ : k → k defined by r 7→ rp − r. This is a homomorphism of

additive groups because for r1, r2 ∈ k,

ϕ(r1 + r2) = (r1 + r2)
p − (r1 + r2)

= rp1 + rp2 − r1 − r2

= (rp1 − r1) + (rp2 − r2)

= ϕ(r1) + ϕ(r2).

Consider the kernel of ϕ:

ker(ϕ) = {r ∈ k | rp − r = 0}

= {r ∈ k | rp = r}

= {r | r ∈ Fp}

13



indicating that | ker(ϕ)| = p.

In addition, the image of ϕ is AS(k). There are q elements in k, so

|AS(k)| = |Im(ϕ)| = q/p.

�

Corollary 2.3.3. For a fixed v(x) ∈ k(x) and for c0 ∈ k, let Cc0 : yp − y = v(x) + c0.

The number of isomorphism classes of {Cc0 | c0 ∈ k} is p.

Proof. Two such covers Cc0 and Cc′
0
are isomorphic if and only if c0 − c′0 = rp − r for

some r ∈ k, in other words, they are isomorphic if and only if c0 − c′0 = AS(k). The number

of isomorphism classes equals the number of cosets of AS(k) in k, which is p. �

Thus, the number of choices for the constant term of our rational equation is p.

2.4. Group Actions

Before we prove our main counting theorem, we first introduce some notation:

Symbol Denotes

R ramification type

S splitting type

W branch divisor

N = NR,S {yp − y = u(x) | div∞(u(x)) is of type R, S}

NW {yp − y = u(x) ∈ N | u(x) has branch divisor W}

ΓW {γ ∈ PGL2(k) | γ(W ) = W}

Γu(x) {γ ∈ ΓW | u(x) = u(γ(x))}
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Note that in the split case with four branch points, N , NW , ΓW , and Γu(x) depend on

the choice of a fourth branch point t ∈ k\{0, 1}, so we will denote these with an additional

subscript t. Furthermore, if there are more than three branch points, say n, we have:

Symbol Denotes

θ set of orbits of n-sets in P
1(k) under PGL2(k)

θH set of orbits of n-sets in which ΓW is conjugate to H for H ⊂ Sn

There is the problem that the same cover can be written down with different rational

equations, so we need to know when two covers are isomorphic. Let γ ∈ PGL2(k) be the

possible automorphisms of P1 and ΓW := {γ | γ ∈ PGL2(k), γ(W ) = W}. In other words,

ΓW is the stabilizer of the branch locus.

Note that elements γ ∈ PGL2(k) can be seen as fractional linear transformations

γ(x) =
ax+ b

cx+ d
.(1)

We will use this rational equation to describe ΓW in more detail for each case of our results.

We can also view these mappings as 2× 2 matrices







a b

c d







with nonzero determinant for a, b, c, d ∈ k. Two matrices M and M ′ are equivalent if

M ′ = λM for λ ∈ k.

Along with the aforementioned γ ∈ PGL2(k), there is ι from Section 2.1, which is an

automorphism written as ι : (x, y) 7→ (x, y + 1) in affine coordinates.
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Definition 2.4.1. Let π1 : C1 → P
1 and π2 : C2 → P

1 be two Artin-Schreier covers. We

say that an isomorphism of covers ϕ : C1 → C2 exists if and only if there exists γ ∈ Aut(P1)

such that the following diagram commutes:

C1
ϕ−−−→ C2





y

π





y

π

P
1 γ−−−→ P

1

Equivalently, if C1 is associated to yp − y = u1(x) and C2 is associated to yp − y =

u2(x), then the two covers are isomorphic if and only if there exists γ ∈ Aut(P1) such that

γ(u1(x)) = u2(x).

Note that if two covers are k-isomorphic, then they have the same ramification type R

and splitting type S. Furthermore, the size of the stabilizer ΓW is the same.

Now that we know when two covers are isomorphic, we can count the number of covers.

Note that ΓW acts on the set of representatives NW for the rational functions u(x) ∈ k(x),

which we determine by counting the coefficients for a typical rational function given the

ramification type. The number of isomorphism classes is the number of orbits.

Theorem 2.4.2. Suppose ϕ is an element of CentAutk(C)〈ι〉.

(1) There exists a mapping γ : P1 → P
1 such that π ◦ ϕ = γ ◦ π, where π : C → P

1.

(2) The map CentAutk(C)〈ι〉 → AutkP
1 is a homomorphism and there is an exact sequence

of groups:

1 → 〈ι〉 I→ CentAutk(C)〈ι〉 ψ→ Aut(P1).

(3) Furthermore, Im(ψ) = Γu(x).

Proof. Given a point x ∈ P
1 and a y ∈ C such that π(y) = x, we define γ(x) = π(ϕ(y)).
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We show that this is well-defined. Suppose that π(y1) = π(y2) = x for y1, y2 ∈ C. Then

y2 = ιe(y1)

for some power e of ι. Applying ϕ, we get

ϕ(y2) = ϕ(ιe(y1))

= ιe(ϕ(y1))

Both ϕ(y1) and ϕ(y2) are in CentAutk(C)〈ι〉, so they are in the same orbit under 〈ι〉. Thus,

the fibers of π are these orbits, and

π(ϕ(y1)) = π(ϕ(y2)).

To show that γ is an automorphism, we note that γ is bijective because ϕ is bijective.

Next, consider the following diagram:

C
ϕ1−−−→ C

ϕ2−−−→ C




y

π





y

π





y

π

P
1 γ1−−−→ P

1 γ2−−−→ P
1

Note that

(γ2 ◦ γ1)(x) = π(ϕ2(ϕ1(x)))

= π(ϕ2(y)) ◦ π(ϕ1(y))

= γ2 ◦ γ1

17



In addition, we show that the sequence is exact. We show that the kernel ker(ψ) = 〈ι〉.

Let ψ(ι) = ῑ, then we have

ῑ(x) = ψ(ι(y1))

= ψ(y2)

= x

for some y1 and y2 which are in the same orbit under 〈ι〉. Thus, ῑ is the identity map and

〈ι〉 ⊆ ker(π).

On the other hand, suppose ϕ ∈ ker(ψ). The corresponding function field is

k(x) →֒ k(x)[y]

(yp − y − u(x))
,

so ϕ ∈ ker(ψ) implies that ϕ(x) = x, meaning that ϕ(u(x)) = u(x). Just consider ϕ(yp − y)

then, which is ϕ(y) = y + e for some number e, or that ϕ(y) = ιe. Thus, ker(ψ) ⊆ 〈ι〉, and

ker(ψ) = 〈ι〉, meaning that the sequence is exact.

Lastly, we show that the image of ψ is equal to Γu(x). Suppose γ ∈ Im(ψ). This means

that there exists a γ : Cu(x) → Cu(x) in which u(γ(x)) = u(x), so Im(ψ) ⊂ Γu(x). Now if

γ ∈ Γu(x), we can use this γ to define a γ : C → C in which (x, y) 7→ (γ(x), y). Since

γ ∈ CentAutk(C)〈ι〉, then γ = ψ(γ) so Γu(x) ⊂ Im(ψ). �

From the short exact sequence in Theorem 2.4.2, we get that

|CentAutk(C)〈ι〉| = p|Γu(x)|.
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In addition, since ΓW acts on NW , then an application of the Orbit-Stabilizer theorem results

in

|OrbΓW
(u(x))||Γu(x)| = |ΓW |.

2.5. Main Theorems

We consider the weighted count that was originally studied by Gerard Van der Geer and

Marcel Van der Vlugt in [3, Corollary 5.3].

Theorem 2.5.1. Consider the branch divisor W and the set NW = {yp − y = u(x)}

where u(x) is a rational function with poles at W . We fix the ramification type R and the

splitting type S of u(x). Let ΓW be the set of γ ∈ PGL2(k) in which γ(W ) = W . For three or

fewer branch points, as [C] ranges over the k-isomorphism classes of Artin-Schreier covers

C of genus g, then

∑

[C]

1

|CentAutk(C)〈ι〉|
=

|NW |
p|ΓW | .

Proof. We have

∑

[C]

1

|CentAutk(C)〈ι〉|
=
∑

u(x)

1

|OrbΓW
(u(x))| · p|Γu(x)|

by changing the sum to be over all possible u(x) and by the short exact sequence in Theorem

2.4.2. We divide by |OrbΓW
(u(x))| since the original sum was over k-isomorphism classes,

and now we consider all u(x), some of which represent the same isomorphism class. This

equals

∑

u(x)

1

p|ΓW |
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by the Orbit-Stabilizer Theorem. Finally, this equals

|NW |
p|ΓW |

since summing up 1 over all possible u(x) is precisely the size of NW . �

Theorem 2.5.2. Consider the branch divisor W and the set NW = {yp − y = u(x)}

where u(x) is a rational function with poles at W . We fix the ramification type R and the

splitting type S of u(x). For n ≥ 4 branch points, as [C] ranges over the k-isomorphism

classes of Artin-Schreier covers C of genus g defined over k, then

∑

[C]

1

|CentAutk(C)〈ι〉|
=

|NW |
p

∑

H

|θH |
|H|

where H ranges over conjugacy classes of subgroups of Sn, and θH is the set of orbits for the

branch locus W in which ΓW is conjugate to H.

Proof. Let θ be the set of orbits of n-sets W in P
1(k) under PGL2(k). We have

∑

[C]

1

|CentAutk(C)〈ι〉|
=
∑

W∈θ

∑

u(x)

1

|OrbΓW
(u(x))| · p|Γu(x)|

by changing the sum to be over all possible u(x) and by the short exact sequence in Theorem

2.4.2. We divide by |OrbΓW
(u(x))| since the original sum was over k-isomorphism classes,

and now we consider all u(x), some of which represent the same isomorphism class. This

double sum equals

1

p

∑

W∈θ

∑

u(x)

1

|ΓW |
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by the Orbit-Stabilizer Theorem. We rearrange the sums to be over the sets of orbits of

n-sets in which ΓW is conjugate to H for H ⊂ Sn, and we obtain

1

p

∑

H

∑

θH

1

|H|
∑

u(x)

1.

Since summing 1 over all possible u(x) results in the size of NW , then we have

1

p

∑

H

∑

θH

|NW |
|H| .

Lastly, we pull |NW | outside of the sum and have

|NW |
p

∑

H

∑

θH

1

|H| =
|NW |
p

∑

H

|θH |
|H|

since the sum of 1 over θH is just |θH |.

�
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CHAPTER 3

Results on Weighted Sums

Let p be an arbitrary prime. Given the ramification divisor ~ǫ := (ǫ1, ǫ2, · · · , ǫr), let

E := E(~ǫ) =
∑

i≥1

(

ǫi − 1−
⌊

ǫi
p

⌋)

where p does not divide any ǫi.

3.1. Arbitrary Prime p, One, Two, and Three Branch Points

Proposition 3.1.1. The following gives the weighted number of Artin-Schreier covers

up to k-isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=

Ramification Divisor Weighted Number of Covers

(ǫ) qE−1

(ǫ1, ǫ2) split (q − 1)qE/s where s =



















1 if ǫ1 6= ǫ2

2 if ǫ1 = ǫ2

(ǫ, ǫ) quadratic (q − 1)qE/2

(ǫ1, ǫ2, ǫ3) split (q − 1)3qE/s where s =



































1 if ǫ1, ǫ2, ǫ3 distinct

2 if ǫ1 6= ǫ2 = ǫ3

6 if ǫ1 = ǫ2 = ǫ3

(ǫ1, ǫ2, ǫ2) quadratic (q − 1)(q2 − 1)qE/2 if ǫ1 6= ǫ2 or ǫ1 = ǫ2

(ǫ, ǫ, ǫ) cubic (q3 − 1)qE/3
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Proof. The proofs for the one-, two-, and three-branch point cases are similar. Since

the action of PGL2(k) is triply transitive, we can fix the branch locus depending on the

ramification divisor. Using Theorem 2.5.1, the weighted sum equals

|NW |
p|ΓW |

where |NW | is the number of rational functions u(x) branched at W having poles of orders

~ǫ, and ΓW is the subset of PGL2(k) fixing W . The results follow once we verify the following

table.

Table 3.1. |NW | and |ΓW | for 1-,2-,3-Branch Point Cases

Case |NW | |ΓW |

(ǫ) p(q − 1)qE(ǫ) q(q − 1)

(ǫ1, ǫ2) split p(q − 1)2qE(ǫ1,ǫ2) q − 1

(ǫ, ǫ) split p(q − 1)2qE(ǫ,ǫ) 2(q − 1)

(ǫ, ǫ) quadratic p(q2 − 1)qE(ǫ,ǫ) 2(q + 1)

(ǫ1, ǫ2, ǫ3) split p(q − 1)3qE(ǫ1,ǫ2,ǫ3) 1

(ǫ1, ǫ2, ǫ2) split p(q − 1)3qE(ǫ1,ǫ2,ǫ2) 2

(ǫ, ǫ, ǫ) split p(q − 1)3qE(ǫ,ǫ,ǫ) 6

(ǫ1, ǫ2, ǫ2) or (ǫ, ǫ, ǫ) quadratic p(q − 1)(q2 − 1)qE(ǫ1,ǫ2,ǫ2) 2

(ǫ, ǫ, ǫ) cubic p(q3 − 1)qE(ǫ,ǫ,ǫ) 3

We can find |NW | by using Lemma 2.3.1, which allows us to write a partial fraction

decomposition of u(x) and count coefficients, and Corollary 2.3.3, which gives the number

of choices for the constant term.
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Details for determining |ΓW | follow below. In the split cases, we choose our branch points

W to be a subset of {∞, 0, 1}, and we have:

Table 3.2. ΓW for 1-,2-,3-Branch Point Cases

Case Conditions ΓW

(ǫ) γ(∞) = ∞ {x 7→ ax+ b | a ∈ k∗, b ∈ k}

(ǫ1, ǫ2), ǫ1 6= ǫ2 γ(∞) = ∞, γ(0) = 0 {x 7→ ax | a ∈ k∗}

(ǫ, ǫ) γ(∞) = ∞, γ(0) = 0 {x 7→ ax | a ∈ k∗}, or

γ(∞) = 0, γ(0) = ∞ {x 7→ 1/cx | c ∈ k∗}

(ǫ1, ǫ2, ǫ3), ǫ1, ǫ2, ǫ3 distinct γ(∞) = ∞, γ(0) = 0, γ(1) = 1, {x 7→ x}

(ǫ1, ǫ2, ǫ2), ǫ1 6= ǫ2 γ(∞) = ∞, γ(0) = 0, γ(1) = 1, {x 7→ x}, or

γ(∞) = 0, γ(0) = ∞, γ(1) = 1 {x 7→ 1/x}

(ǫ, ǫ, ǫ) {∞, 0, 1} 7→ {∞, 0, 1} ∼= S3

In the non-split cases, note that PGL2(k) acts transitively on the sets of degree two and

degree three points, and |PGL2(k)| = q(q + 1)(q − 1).

For the (ǫ, ǫ) quadratic case, we choose W = {θ, θ′}. There are (q2 − q)/2 such pairs, so

by the Orbit-Stabilizer Theorem,

|ΓW | = |PGL2(k)|
(q2 − q)/2

= 2(q + 1).

For the (ǫ1, ǫ2, ǫ2) quadratic case in which ǫ1 6= ǫ2 or (ǫ, ǫ, ǫ) quadratic case, we choose

W = {∞, θ, θ′}. Consider γ ∈ ΓW which are of the form in Equation 1. We must have

γ(∞) = ∞, which implies c = 0. For θ and θ′, we consider maps of the pair to another pair.
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We still have maps of the form

γ(x) =
ax+ b

d
.

We see that a cannot be 0, and there q − 1 choices for a. There are a total of q2 − q choices

for b and d together. Then, we divide by q − 1 for γ to be an element of PGL2(k). Since

there are (q2 − q)/2 pairs of elements of Fq2\Fq, then

|ΓW | = (q2 − q)

(q2 − q)/2
= 2.

For the (ǫ, ǫ, ǫ) cubic case, we choose W = {θ, θ′, θ′′}. Consider γ ∈ ΓW which are of

the form in Equation 1. We map triples of θ, θ′, and θ′′ to some other triple of elements of

Fq3\Fq. There are (q3 − q)/3 triples in Fq3\Fq, so the total number of such γ is

|ΓW | = |PGL2(k)|
(q3 − q)/3

= 3.

�

3.2. Arbitrary Prime p, Four Branch Points

In general, the four-branch point case is more complicated. The non-split cases are more

intricate than the split cases, so we consider them separately.
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3.2.1. Split Cases.

Proposition 3.2.2. Consider the ramification divisor (ǫ1, ǫ2, ǫ3, ǫ4) split.

For p = 2, the following gives the weighted sum of Artin-Schreier covers up to k-

isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=

Ramification Divisor Weighted Number of Covers

q ≡ 1 mod 3 q ≡ −1 mod 3

(ǫ1, ǫ2, ǫ3, ǫ4) (q − 1)4qE(q + 2)/6 (q − 1)4qE(q − 2)/6

(ǫ1, ǫ2, ǫ3, ǫ3) (q − 1)4qE(q + 2)/6 (q − 1)4qE(q − 2)/6

(ǫ1, ǫ2, ǫ2, ǫ2) (q − 1)4qE(q − 2)/6 (q − 1)4qE(q − 2)/6

(ǫ1, ǫ1, ǫ2, ǫ2) (q − 1)4qE(q + 2)/12 (q − 1)4qE(q − 2)/12

(ǫ, ǫ, ǫ, ǫ) (q − 1)4qE(q − 2)/24 (q − 1)4qE(q − 2)/24

For p = 3, the following gives the weighted sum of Artin-Schreier covers up to k-

isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=

Ramification Divisor Weighted Number of Covers

(ǫ1, ǫ2, ǫ3, ǫ4) (q − 1)4qE(q + 3)/6

(ǫ1, ǫ2, ǫ3, ǫ3) (q − 1)4qE+1/6

(ǫ1, ǫ2, ǫ2, ǫ2) (q − 1)4qE(q − 2)/6

(ǫ1, ǫ1, ǫ2, ǫ2) (q − 1)4qE+1/12

(ǫ, ǫ, ǫ, ǫ) (q − 1)4qE(q − 2)/24
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For p ≥ 5, the following gives the weighted sum of Artin-Schreier covers up to k-

isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=

Ramification Divisor Weighted Number of Covers

q ≡ 1 mod 3 q ≡ −1 mod 3

(ǫ1, ǫ2, ǫ3, ǫ4) (q − 1)4qE(q + 5)/6 (q − 1)4qE(q + 1)/6

(ǫ1, ǫ2, ǫ3, ǫ3) (q − 1)4qE(q + 2)/6 (q − 1)4qE(q − 2)/6

(ǫ1, ǫ2, ǫ2, ǫ2) (q − 1)4qE(q − 4)/6 (q − 1)4qE(q − 4)/6

(ǫ1, ǫ1, ǫ2, ǫ2) (q − 1)4qE(q + 2)/12 (q − 1)4qE(q − 2)/12

(ǫ, ǫ, ǫ, ǫ) (q − 1)4qE(q − 6)/24 (q − 1)4qE(q − 2)/24

Proof. We can choose W = {∞, 0, 1, t} because the action of PGL2(k) is triply transi-

tive [13], which implies that there is always an element t in an orbit with {∞, 0, 1}. Using

Theorem 2.5.2, the weighted sum equals

|NW,t|
p

∑

H

|θH |
|H|

where |NW,t| is the number of rational functions u(x) branched atW including the point t and

having poles of order ~ǫ. By Lemma 2.3.1 and Corollary 2.3.3, |NW,t| = p(q − 1)4qE(ǫ1,ǫ2,ǫ3,ǫ4).

H is a subgroup of S4, and θH is the set of orbits of t for which H = ΓW,t, the subset of

PGL2(k) which fixes W . Note that we only need to compute

∑

H

|θH |
|H| .
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We can find |H| based on some conditions of what t must be. Finally, we combine the

terms according to Theorem 2.5.2.

Table 3.3. |H| for 4-Branch Point Split Cases in which p = 2

Case Conditions |H|

(ǫ1, ǫ2, ǫ3, ǫ4) none 1

(ǫ1, ǫ2, ǫ3, ǫ3) none 1

(ǫ1, ǫ2, ǫ2, ǫ2) t = ζ3, ζ
2
3 , q ≡ 1 mod 3 3

other t 1

(ǫ1, ǫ1, ǫ2, ǫ2) none 2

(ǫ, ǫ, ǫ, ǫ) t = ζ3, ζ
2
3 , q ≡ 1 mod 3 12

t 6= ζ3, ζ
2
3 , q ≡ 1 mod 3 4

q ≡ −1 mod 3 4
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Table 3.4. |H| for 4-Branch Point Split Cases in which p is Odd

Case Conditions |H|

(ǫ1, ǫ2, ǫ3, ǫ4) none 1

(ǫ1, ǫ2, ǫ3, ǫ3) t = −1 2

t 6= −1 1

(ǫ1, ǫ2, ǫ2, ǫ2) t = −1, 1/2 6

t = ζ3, ζ
2
3 3

other t 1

(ǫ1, ǫ1, ǫ2, ǫ2) t = −1 4

t 6= −1 2

(ǫ, ǫ, ǫ, ǫ) p = 3, t = 2 24

p = 3, t 6= 2 4

p ≥ 5, t = ζ6, ζ
2
6 , ζ

4
6 , ζ

5
6 12

p ≥ 5, t = 1/2, 2,−1 8

p ≥ 5, other t 4

Notice that some of these cases depend on the choice of t, and we can determine |ΓW,t| by

explicit computation. We consider the mappings of {∞, 0, 1}, which are the six fractional

linear transformations:

x 7→ {x, 1− x, 1/x, x/(x− 1), 1/(1− x), (x− 1)/x}
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where choices of t ∈ k\{0, 1} fix the set of branch points under the mapping. In any of these

cases, if the orders of two branch points are different, then the two points cannot be mapped

to one another.

In particular, the (ǫ1, ǫ2, ǫ3, ǫ4) case only has the identity, the (ǫ1, ǫ2, ǫ3, ǫ3) has mappings

which ∞ and 0 can switch, and the (ǫ1, ǫ2, ǫ2, ǫ2) can have all six mappings with an appro-

priate choice of t. All of these cases have H ⊆ S3.

The (ǫ1, ǫ1, ǫ2, ǫ2) can have mappings in which ∞ and 0 switch or 1 and t switch, so H is

C2 × C2.

On the other hand, the (ǫ, ǫ, ǫ, ǫ) case is the most complicated, and H = (C2 × C2)⋊ Γ′

for Γ′ in Lemma 3.2.3.
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Table 3.5. H for 4-Branch Point Split Cases

Mapping Points Conditions

Function From To p = 2 p = 3 p = 5 p ≥ 7

γ : x 7→ x 0 0 None None None None

1 1

∞ ∞
t t

γ : x 7→ 1− x 0 1 does not occur t = −1 t = 1/2 t = 1/2

order 2 1 0

∞ ∞
t t

γ : x 7→ 1/x 0 ∞ does not occur t = −1 t = −1 t = −1

order 2 1 1

∞ 0

t t

γ : x 7→ x/(x− 1) 0 0 does not occur t = −1 t = 2 t = 2

order 2 1 ∞
∞ 1

t t

γ : x 7→ 1/(1− x) 0 1 t = ζ3, ζ
2
3 t = −1 t = ζ i6 t = ζ i6

order 3 1 ∞ i = 1, 2, 4, 5 i = 1, 2, 4, 5

∞ 0

t t

γ : x 7→ (x− 1)/x 0 ∞ t = ζ3, ζ
2
3 t = −1 t = ζ i6 t = ζ i6

order 3 1 0 i = 1, 2, 4, 5 i = 1, 2, 4, 5

∞ 1

t t

�

Lemma 3.2.3. In the (ǫ, ǫ, ǫ, ǫ) case, C2×C2 is always a subset of ΓW,t for any t ∈ k\{0, 1}.

Proof. Given a t ∈ k\{0, 1}, define the following:

γ1 =







0 t

1 0






and γ2 =







1 −t

1 −1







31



as matrix representations elements of PGL2(k).

Note that

γ1 =







0 t

1 0













x

1






=







t

x






or that γ1 : x 7→ t

x
,

so γ1(∞) = 0, γ1(0) = ∞, γ1(1) = t, and γ1(t) = 1. Similarly,

γ2 =







1 −t

1 −1













x

1






=







x− t

x− 1






or that γ1 : x 7→ x− t

x− 1
,

so γ1(∞) = 1, γ1(1) = ∞, γ1(0) = t, and γ1(t) = 0.

We check the orders of γ1 and γ2:

γ1 =







0 t

1 0













0 t

1 0






=







t 0

0 t







and

γ2 =







1 −t

1 −1













1 −t

1 −1






=







1− t 0

0 1− t






.

Since γ1, γ2 ∈ PGL2(k), then the order of each is 2.

In addition, note that

γ1 ◦ γ2 =







0 t

1 0













1 −t

1 −1






=







t −t

1 −t






=







1 −t

1 −1













0 t

1 0






= γ2 ◦ γ1 := γ3.

So the group generated by γ1 and γ2 is C2 × C2. Furthermore, γ3 is the mapping in which

γ3 : x 7→ tx− t

x− t
,

meaning γ3(0) = 1, γ3(1) = 0, γ3(∞) = t, and γ3(t) = ∞. �
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Proof. By explicit computation and because of Lemma 3.2.3, H = (C2×C2)⋊Γ′ where

Γ′ is:

Table 3.6. H for 4-Branch Point (ǫ, ǫ, ǫ, ǫ) Split Cases

Prime Condition Γ′

p = 2 t = ζ3, ζ
2
3 {x, 1/(1− x), (1− x)/x}

other t {x}

p = 3 t = 2 = −1 ∼= S3

t 6= 2 {x}

p ≥ 5 t = ζ6, ζ
2
6 , ζ

4
6 , ζ

5
6 {x, 1/(1− x), (1− x)/x}

t = 1/2, 2 or −1 C2

all other t {x}

�

The number of orbits is dependent on t as well as p and q.
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Lemma 3.2.4. [8, Theorem C] The numbers of orbits of 4-sets of P1(k) under PGL2(k)

are:

Table 3.7. Number of Orbits of P1(k) Under PGL2(k)

Prime Condition Orbits

p = 2 q ≡ 1 mod 3 (q + 2)/6

q ≡ −1 mod 3 (q − 2)/6

p = 3 any q (q + 3)/6

p ≥ 5 q ≡ 1 mod 3 (q + 5)/6

q ≡ −1 mod 3 (q + 1)/6

Also, we have the following cases that appear in our choices for t: t is a 3rd root of unity,

t is a 6th root of unity, or t = 1/2, 2, or −1. For such cases, we use the following:

Lemma 3.2.5. Given t ∈ k\{0, 1}.

(1) If p = 2, then t = ζ3 and t = ζ23 are in the same orbit under PGL2(k).

(2) If p ≥ 5, then we have two orbits of sixth roots not equal to ±1 under PGL2(k): t = ζ6

and t = ζ56 as well as t = ζ26 and t = ζ46 .

(3) If p ≥ 5, t = 1/2, 2, and −1 are in the same orbit under PGL2(k).

Proof. The cross-ratio is preserved by fractional linear transformations, which are the

elements of PGL2(k). Thus, we just have to show that one value of t is mapped to another

under some γ ∈ PGL2(k).

(1) Note that γ(x) = 1/x takes t = ζ3 to t = ζ23 .

(2) Similarly, γ(x) = 1/x takes t = ζ6 to t = ζ56 and t = ζ26 to t = ζ46 .
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(3) For t = 1/2, 2, or −1, we have the following:

γ(x) = 1/x takes 2 7→ 1/2

γ(x) = 1− x takes 2 7→ −1

�

Two explicit applications of Theorem 2.5.2 are below.

Proof. (ǫ1, ǫ2, ǫ3, ǫ3) with p = 3:

Recall that |NW,t| = p(q− 1)4qE(ǫ1,ǫ2,ǫ3,ǫ3). The sizes of the orbits are different depending

on our choice of t. In particular, if t = −1, then |H| = 2 whereas if t 6= −1, then |H| = 1.

There is one orbit with t = −1 and (q+3)/6− 1 orbits in which t 6= −1. The total weighted

sum of covers is:

p(q − 1)4qE(ǫ1,ǫ2,ǫ3,ǫ3)

p

(

1

2
+
q + 3

6
− 1

)

=
(q − 1)4qE(ǫ1,ǫ2,ǫ3,ǫ3)+1

6
.

�

Proof. (ǫ, ǫ, ǫ, ǫ) with odd p ≥ 5 and q ≡ 1 mod 3:

As with the previous example, |NW,t| = p(q−1)4qE(ǫ,ǫ,ǫ,ǫ). If t is a 6th root, then |H| = 12.

If t = 1/2, 2,−1, then |H| = 8. Otherwise, the |H| = 4. There are two orbits with the 6th

roots, one with t = 1/2, 2,−1 and (q+5)/6− 3 orbits otherwise. The total weighted sum of

covers is:

p(q − 1)4qE(ǫ,ǫ,ǫ,ǫ)

p

(

2

12
+

1

8
+

1

4

(

q + 5

6
− 3

))

=
(q − 1)4qE(ǫ,ǫ,ǫ,ǫ)(q − 6)

24
.

�
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3.2.6. Number of Orbits for Non-Split Cases. We begin by describing the num-

ber of orbits for 4-sets under PGL2(k).

Lemma 3.2.7. [10, Proposition 2.3] The numbers of orbits of our 4-sets under PGL2(k)

are:

Table 3.8. Subcases for the Number of Orbits of P1(k) Under PGL2(k) for p = 2

Case Orbits

Split (q − 2)/6 +
[

2
3

]

meven

Split + Quadratic q/2

Quadratic q/2− 1

Cubic (q + 1)/3 +
[

4
3

]

meven

Quartic q/2

Note that the total number of orbits is 2q+1 if q ≡ 1 mod 3 and 2q− 1 if q ≡ −1 mod 3.

Theorem 3.2.8. [7, Theorem 2.2] The numbers of orbits of 4-sets of P1(k) under PGL2(k)

are:

Table 3.9. Number of Orbits of P1(k) Under PGL2(k)

Prime Condition Orbits

p = 3 q ≡ 1 mod 4 2q + 2

q ≡ −1 mod 4 2q + 1

p ≥ 5 q ≡ 1 mod 3 2q + 3

q ≡ −1 mod 3 2q + 1

We summarize the number of orbits for each case:

Theorem 3.2.9. The number of orbits of 4-sets of P1(k) under PGL2(k) are:

36



Table 3.10. Subcases for the Number of Orbits of P1(k) Under PGL2(k) for
Odd p

Prime Condition Split Split+Quad Quadratic Cubic Quartic

3 q ≡ 1 mod 4 (q + 3)/6 (q + 1)/2 (q − 1)/2 (q + 3)/3 (q + 1)/2

q ≡ −1 mod 4 (q + 3)/6 (q + 1)/2 (q − 1)/2 (q + 3)/3 (q − 1)/2

≥ 5 q ≡ 1 mod 3 (q + 5)/6 (q + 1)/2 (q − 1)/2 (q + 5)/3 (q + 1)/2

q ≡ −1 mod 3 (q + 1)/6 (q + 1)/2 (q − 1)/2 (q + 1)/3 (q + 1)/2

We use Burnside’s Lemma to determine the number of orbits. Let Γ be a group acting

on a set I. Let |I/Γ| denote the number of orbits of I under Γ, and |Fixγ| denote the number

of elements of I fixed by γ ∈ Γ. Then

|I/Γ| = 1

|Γ|
∑

γ∈Γ

|Fixγ|.

3.2.9.1. Split+Quadratic Case: We choose W = {∞, 0, θ, θ′} where θ, θ′ ∈ Fq2\Fq are the

roots of an irreducible monic quadratic polynomial f(x) ∈ k[x].

Case: (ǫ1, ǫ2, ǫ3, ǫ3) or (ǫ1, ǫ2, ǫ2, ǫ2)

We must have 0 7→ 0,∞ 7→ ∞, meaning our possible γ ∈ ΓW is γ : x 7→ ax. So,

|ΓW | = q − 1 here.

• Case 1: I = {f(x) = x2 − A | A ∈ k is not a square}. The number of such f(x) is

(q − 1)/2.

f(ax)

a2
=
a2x2 − A

a2
= x2 − A

a2
set
= x2 − A
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Thus, a = ±1 and each one of these γ fixes all (q − 1)/2 elements, so

|I/ΓW | = 1

q − 1

(

q − 1

2
+
q − 1

2

)

= 1.

• Case 2: I = {f(x) = x2 + Ax + B | A,B ∈ k,A 6= 0 and f(x) is irreducible}. The

number of such f(x) is

q2 − q

2
− q − 1

2
=

(q − 1)2

2
,

which we determine by subtracting Case 1 from the total number of irreducible degree

two polynomials.

f(ax)

a2
= x2 +

Ax

a
+
B

a2
set
= x2 + Ax+B

so a = 1 must be true, and the identity element fixes everything. This implies that the

total number of orbits is

|I/ΓW | = 1

q − 1

(

(q − 1)2

2

)

=
q − 1

2
.

Hence, the number of orbits for the case is

1 +
q − 1

2
=
q + 1

2
.

Case: (ǫ1, ǫ1, ǫ2, ǫ2) or (ǫ, ǫ, ǫ, ǫ)

Note that we could either have 0 7→ 0,∞ 7→ ∞ or 0 7→ ∞,∞ 7→ 0 if the orders of the

two are the same, meaning our possible γ ∈ Γ are γ1 : x 7→ ax or γ2 : x 7→ b/x for a, b ∈ k.

So, |ΓW | = 2(q − 1) here.
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• Case 1: I = {f(x) = A0x
2 − A | A0, A ∈ k∗, f(x) is irreducible}. Note that if we look

for the roots, we get the equations A0x
2 − A = 0 ⇒ x2 = A/A0. Thus, two elements

f(x) = A0x
2 −A and g(x) = B0x

2 −B are equivalent if A/A0 = B/B0. The number of

such f(x) is (q − 1)/2.

f(ax)

a2
= A0x

2 − A

a2
set
= 0

which implies x2 = A/(A0a
2). To have any elements fixed, we must have A/(A0a

2) =

A/A0 or a = ±1. Each one of these elements fixes all (q − 1)/2 elements.

We also have

x2f

(

b

x

)

A0b
2 − Ax2

set
= 0

which implies x2 = A0b
2/A. If any element of I is fixed, then we have A0b

2/A = A/A0

or that b = ±A/A0.

If −1 is a square in k, then A/A0 is a square if and only if −A/A0 is also a square.

There are (q − 1)/2 such choices of squares for b, and there are two elements fixed for

each of these choices of b. If −1 is not a square in k, then A/A0 is a square exactly

when −A/A0 is not, so we have q − 1 choices of b that fix one element each.

The total number of orbits is

|I/ΓW | = 1

2(q − 1)

(

q − 1

2
(2) + (q − 1)(1)

)

= 1.
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• Case 2: I = {f(x) = x2 + Ax + B | A,B ∈ k and f(x) is irreducible}. The number of

such f(x) is

(q − 1)2

2
.

f(ax)

a2
= x2 +

Ax

a
+
B

a2
set
= x2 + Ax+B

so a = 1 must be true, and this fixes all elements.

We also have:

x2f

(

b

x

)

= Bx2 + Abx+ b2
set

0 x2 + Ax+B

so B = 1 and b = 1 must be true, and this also fixes all elements. Thus,

|I/ΓW | = 1

2(q − 1)

(

(q − 1)2

2
+

(q − 1)2

2

)

=
q − 1

2
.

Hence, the number of orbits is 1 + (q − 1)/2 = (q + 1)/2.

3.2.9.2. Quadratic Case: This includes both the (ǫ1, ǫ1, ǫ2, ǫ2) case and the (ǫ, ǫ, ǫ, ǫ) case.

We choose W = {θ, θ′, τ, τ ′} where θ, θ′, τ, τ ′ ∈ Fq2\Fq. Note that {θ, θ′} and {τ, τ ′} are the

pairs of roots for irreducible monic quadratic polynomials, which we call f1(x) and f2(x).

Consider f(x) = f1(x)f2(x) over Fq = k. Every orbit under PGL2(k) contains one such f(x)

with f1(x) = x2 − s with roots ±√
s where s is not a square in k.
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We first consider γ which fix f1. We compute

(cx+ d)2f1

(

ax+ b

cx+ d

)

= (a2x2 + 2abx+ b2)− x(c2x2 + 2cdx+ d2)

= x2(a2 − sc2) + x(2ab− 2cds) + b2 − sd2

set
= x2 − s

which we simplify by using the relation x2−s = 0 or x2 = s. This implies that 2ab−2cds = 0

or ab = cds and b2 − sd2 + sa2 − s2c2 = 0.

If a = 0, then cds = 0. Since c 6= 0 and s 6= 0, then d = 0 must be true. So we have

b2 − s2c2 = 0 or b = ±sc.

Note that if a 6= 0, then b = cds/a and

c2d2s2 − sa2d2 + sa4 − s2c2a2 = 0

s(a2 − sc2)(a2 − d2) = 0

Since s 6= 0 and a2 − sc2 6= 0 since s is not a square in k, then a2 − d2 = 0 or a = ±d.

Thus, the only possibilities for mappings to fix f1 are:

γ1 =







a cs

c a






and γ2 =







a −cs

c −a







for a, c ∈ k not both equal to 0.

Note that γ1 fixes
√
s and −√

s, and γ2 swaps the two roots. Also, the size of the

equivalence classes in PGL2(k) for each γi is (q
2 − 1)/(q − 1) = q + 1.

Now we apply γ1 and γ2 to f2 = x2 + Ax+B for A,B ∈ k.
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For γ1, we compute:

(cx+ a)2f2

(

ax+ cs

cx+ a

)

= x2(a2 + Aac+Bc2) + x(2acs+ Aa2 + Ac2s+ 2Bac)

+c2s2 + Aacs+Ba2

set
= λ(x2 + Ax+B)

for some scaling factor λ ∈ k∗.

Equating the coefficients for the leading terms, we get a2 + Aac + Bc2 = λ. This gives

the following two equations from the linear and constant terms:

A2ac+ ABc2 − 2acs− Ac2s− 2Bac = 0

ABac+B2c2 − c2s2 − Aacs = 0

• Case 1: c = 0 yields the identity map, so γ1 fixes all possible (q+ 1)(q− 2)/2 quadratic

polynomials for f2.

• Case 2: If c 6= 0, then we can divide by c and get the conditions

Ac(B − s)− 2a(B + s) + A2a = 0

c(B2 − s2) + Aa(B − s) = 0

– Suppose a = 0. Without loss of generality, let c = 1. We get the conditions:

A(B − s) = 0

B2 − s2 = 0
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which imply that B = ±s. If B = −s, then A = 0, but then f2 = x2 − s = f1, so

this is impossible. Thus, B = s must be true and f2 = x2 + Ax+ s. We count the

number of such quadratic polynomials which are irreducible, which is dependent

on when A2 − 4s is not a square. Alternatively, we can count the number N of

(A/2)2 − s which are not a square. First, we consider N = q −M where

M = #{A ∈ k | A2 − 4s = t2 ∈ k}

= #{A ∈ k | A2 − s = t2 ∈ k}

where A = A/2.

Note that if t = 0, then A2 = s, but this is impossible since s cannot be a square.

We can therefore count the set

M ′ = #{(A, t) | A2 − t2 = s},

and notice that if (A, t) ∈M ′, then so is (A,−t), so M ′ = 2M .
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Let A2 = z and t2 = w where z, w ∈ k. We can rewrite M ′ as

M ′ =
∑

z−w=s

(

1 +

(

z

q

))(

1 +

(

w

q

))

=
∑

z−w=s

(

1 +

(

z

q

)

+

(

w

q

)

+

(

z

q

)(

w

q

))

=
∑

z−w=s

1 +
∑

z−w=s

(

z

q

)

+
∑

z−w=s

(

w

q

)

+
∑

z−w=s

(

z

q

)(

w

q

)

= q + 0 + 0 +
∑

z−w=s

(

zw

q

)

= q +
∑

z−w=s,w 6=0

(

z/w

q

)

= q +
∑

z 6=s

(

z/(z − s)

q

)

Now let y = z/(z − s). Solving for z, we get z = sy/(y − 1). So we have:

M ′ = q +
∑

y 6=1

(

y

q

)

= q −
(

1

q

)

= q − 1

Thus, M = (q − 1)/2, and N = q − (q − 1)/2 = (q + 1)/2.

– Suppose a 6= 0. There are q − 1 choices for such automorphisms. Without loss of

generality, let a = 1. Suppose B 6= s. Then our second equation becomes

c(B + s) + A = 0 ⇒ A = −c(B + s)
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which we can substitute into the first equation to get

−c(B + s)/c(B − s)− 2(B + s) + (−c(B + s))2 = 0

2(B + s)(c2s− 1) = 0

If c2s − 1 = 0, then s = (1/c)2, but s cannot be a square, so this is not possible.

Thus, B + s = 0 must be true, or B = −s, but then f2 = x2 − s = f1. Therefore,

this case does not occur.

Suppose B = s. Then we get the condition:

A2c− 4Bc = 0

= c(A2 − 4B)

meaning that A = ±2
√
B. Thus, f2 = x2 + 2

√
B + B = (x +

√
B)2 or f2 =

x2− 2
√
B+B = (x−

√
B)2. Either way, f2 is not irreducible, so this case does not

occur.

To apply Burnside’s Lemma, notice that since every orbit contains an element of the

form (x2 − s)f2, then

I = {f2(x) = x2 + Ax+B | f2(x) irreducible, f2 6= x2 − s}.

There are (q2 − q)/2− 1 = (q+1)(q− 2)/2 choices for f2, and there are q+1 choices for γ1.

So we have

|I/〈γ1〉| =
1

q + 1

(

(q + 1)(q − 2)

2
+
q + 1

2

)

=
q − 1

2
.
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Now we consider the action of x 7→ −x on the orbits. Note that this is the γ2 case when

c = 0. We want to check if f2(γ1(x)) = −1 · f2(x) for some (a, c), or that x2 + Ax + B and

x2 −Ax+B are in the same orbit under 〈γ1〉. If so, then γ2 does not change the number of

orbits for the quadratic case that was computed above for γ1, implying that the number of

orbits under {γ1, γ2} would be the same as the number of orbits under {γ1}.

f2

(

ax+ cs

cx+ a

)

= x2(a2 + Aac+Bc2) + x(2acs+ Aa2 + Ac2s+ 2Bac)

+(c2s2 + Aacs+Ba2)

⇒ x2 + x

(

2acs+ Aa2 + Ac2s+ 2Bac

a2 + Aac+Bc2

)

+
c2s2 + Aacs+Ba2

a2 + Aac+Bc2

set
= x2 − Ax+B

so then

B =
c2s2 + Aacs+Ba2

a2 + Aac+Bc2

Ba2 + ABac+B2c2 = c2s2 + Aacs+Ba2

0 = B2c2 +BAac− Aacs− c2s2

which is the same condition as mentioned earlier for the constant term.
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For the linear term, we have:

−A =
2acs+ Aa2 + Ac2s+ 2Bac

a2 + Aac+Bc2

−Aa2 − A2ac− ABc2 = 2acs+ Aa2 + Ac2s+ 2Bac

0 = a2(2A) + a(2cs+ 2Bc+ A2c) + Ac2s+ ABc2

We can solve for a using the quadratic formula, and we want

(2cs+ 2Bc+ A2c)2 − 4(2A)(Ac2s+ ABc2) = c2((A2 + 2(B + s))2 − 8A2(B + s))

to be a square. In other words, we want

(A2 + 2(B + s))2 − 8A2(B + s) = (A2 − 2(B + s))2

to be a square, which is clear. Hence, given A and B, we can find an a which works, and

x2 +Ax+B and x2 −Ax+B are in the same orbit under 〈γ1〉. Therefore, the total number

of orbits of the quadratic case under PGL2(k) is exactly (q − 1)/2.

3.2.9.3. Cubic Case: This includes both the (ǫ1, ǫ2, ǫ2, ǫ2) case and the (ǫ, ǫ, ǫ, ǫ) case. We

choose W = {∞, θ, θ′, θ′′} where θ, θ′, θ′′ ∈ Fq3\Fq and are the roots of an irreducible monic

cubic polynomial f(x) ∈ k[x].

Note that if γ ∈ ΓW , then ∞ must be fixed, so possible γ ∈ ΓW are of the form γ : x →

ax+ b for a ∈ k∗, b ∈ k, and |ΓW | = q(q − 1).

Let f(x) = x3 + Ax2 +Bx+ C ∈ k[x]. Then

I = {f(x) = x3 + Ax2 +Bx+ C | A,B,C ∈ k, f(x) irreducible}.
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Case: p 6= 3

f(ax+ b)

a3
=

a3x3 + 3a2bx2 + 3ab2x+ b3 + Aa2x2 + 2Aabx+ Ab2 +Bax+Bb+ C

a3

= x3 + x2
(

3b+ A

a

)

+ x

(

3b2 + 2Ab+B

a2

)

+
b3 + Ab2 +Bb+ C

a3

set
= x3 + Ax2 +Bx+ C

Equating coefficients, if f(x) ∈ Fixγ, then:

A =
3b+ A

a

B =
3b2 + 2Ab+B

a2

C =
b3 + Ab2 +Bb+ C

a3

Now consider the subcases:

• Case 1: a = 1, b = 0. This means γ : x 7→ x and we have the identity map, so

|Fixγ| = (q3 − q)/3 or the number of cubic monic irreducible polynomials.

• Case 2: a = 1, b 6= 0. This means γ : x 7→ x + b. Immediately, we have the equation

3b+ A = A⇒ b = 0, which is a contradiction. This case does not occur.

• Case 3: a3 6= 1, a 6= −1. Solving for A,B, and C, we get:

A =
3b+ A

a

Aa = 3b+ A

A(a− 1) = 3b

A =
3b

a− 1
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B =
3b2 + 2 (3b/(a− 1)) b+B

a2

Ba2 − B = 3b2 +
6b2

a− 1

B(a2 − 1) = 3b2 +
6b2

a− 1

B =
3b2

a2 − 1
+

6b2

(a− 1)(a2 − 1)

=
3ab2 − 3b2 + 6b2

(a− 1)2(a+ 1)

=
3b2(a+ 1)

(a− 1)2(a+ 1)

=
3b2

(a− 1)2

C =
b3 + 3b3/(a− 1) + 3b2/(a− 1)2 + C

a3

Ca3 − C = b3 +
3b3

a− 1
+

3b3

(a− 1)2

C(a3 − 1) = b3 +
3b3

a− 1
+

3b3

(a− 1)2

C =
b3

a3 − 1
+

3b3

(a− 1)(a3 − 1)
+

3b3

(a− 1)2(a3 − 1)

=
b3(a2 − 2a+ 1) + 3ab3 − 3b3 + 3b3

(a− 1)2(a3 − 1)

=
a2b3 − 2ab3 + b3 + 3ab3

(a− 1)2(a2 + a+ 1)

=
b3(a2 + a+ 1)

(a− 1)2(a2 + a+ 1)

=
b3

(a− 1)3
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These computations show that a 6= −1 and a3 6= 1 must be true if a 6= 1. Now we

depress the cubic with the substitution x = y − A/3 to get

f(y) = y3 + C +
2A3

27
− AB

3

= y3 + C +
2(27)b3

27(a− 1)3
− 3b

3(a− 1)

(

3b2

(a− 1)2

)

= y3 + C +
2b3 − 3b3

(a− 1)3

= y3 +
b3

(a− 1)3
− b3

(a− 1)3

= y3

which is clearly not irreducible, so this case does not occur for these values of a.

• Case 4: If a = −1, then we have γ(x) = −x + b. Notice that γ2 = x, so the mapping

is of order 2, but this is impossible for the cubic case since W contains θ, θ′, θ′′ and γ

cannot fix only one of these points.

If a3 = 1, then we have

A =
3b

a− 1

B =
3b2

(a− 1)2

and there is no condition on C, so we have

f(x) = x3 +
3b

a− 1
x2 +

3b2

(a− 1)2
x+ C.
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Depressing the cubic, we get

f(y) = y3 + C −
(

b

a− 1

)3

,

so we only need to count the number of possibilities for the constant term to be a non-

cube. If q ≡ 1 mod 3, there are 2(q − 1)/3 choices. If q ≡ −1 mod 3, there are no

possibilities for non-cubes. Since there are two choices for a in which a 6= 1 and q choices

for b, then we have a total of 4q(q − 1)/3 fixed elements when q ≡ 1 mod 3.

Hence, the total number of orbits is

|I/ΓW | =















1

q(q − 1)

(

q3 − q

3
+

4q(q − 1)

3

)

=
q + 5

3
q ≡ 1 mod 3

1

q(q − 1)

(

q3 − q

3

)

=
q + 1

3
q ≡ −1 mod 3

Case: p = 3

f(ax+ b)

a3
=

a3x3 + 3a2bx2 + 3ab2x+ b3 + Aa2x2 + 2Aabx+ Ab2 +Bax+Bb+ C

a3

= x3 + x2
(

A

a

)

+ x

(

2Ab+B

a2

)

+
b3 + Ab2 +Bb+ C

a3
set
= x3 + Ax2 +Bx+ C

Equating coefficients, if f(x) ∈ Fixγ, then:

A =
A

a

B =
2Ab+B

a2

C =
b3 + Ab2 +Bb+ C

a3

• Case 1: a = 1, b = 0. We have I = {f(x) = x3 + Ax2 + Bx + C | f(x) is irreducible},

so |I| = (q3 − q)/3, and the identity fixes all of these elements.
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• Case 2: a = 1, b 6= 0. We have 2Ab+B = B ⇒ 2Ab = 0 ⇒ A = 0. Also, b3 +Bb+C =

C ⇒ b(b2 +B) = 0 ⇒ b2 +B = 0 ⇒ B = −b2.

Thus, we are considering I = {f(x) = x3 − b2x+C | f(x) is irreducible}. Note that

there are q − 1 choices of C. By Theorem 2 in [14], this is equivalent to considering

{f(x) = x3 − b2x+C | tr(C/b3) 6= 0}. Consider S = {C | tr(C/b3) = 0}. We show that

S is a subgroup of index 3 in k.

First, let C1, C2 ∈ S. Then since

tr(C1/b
3) + tr(C2/b

3) = tr((C1 + C2)/b
3)

tr(C1/b
3) + tr(−C1/b

3) = tr(0) = 0,

S is a subgroup of k.

Now consider C ∈ k. We can write C = κ3 in which κ = Frob−1(C) or Frob(κ) = C.

Then

tr(C/b3) = tr(κ3/b3)

= tr(Frob(κ/b))

= tr(κ/b)

since the trace is Frob-invariant. Thus, we can pick κ such that tr(κ/b) 6= 0, and the

trace mapping is surjective. Because S is a subgroup of index 3 in k, then |S| = q/3 and

the remaining 2q/3 elements have nonzero trace. This means |{f(x) = x3 − b2x + C |

tr(C/b3) 6= 0}| = 2q/3.
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We can now count the total number of orbits for the cubic case in which p = 3:

|I/Γ| = 1

q(q − 1)

(

q + 1

3
+ (q − 1)

(

2q

3

))

=
q + 3

3
.

3.2.9.4. Quartic Case: This occurs only for the (ǫ, ǫ, ǫ, ǫ) case. We chooseW = {θ, θ′, θ′′, θ′′′}

where θ, θ′, θ′′, θ′′′ ∈ Fq4\Fq2 are roots of the irreducible quartic polynomial f(x) ∈ k[x]. From

[7, Theorem 2.2] and the above results, the number of orbits is completely determined here.

3.2.10. Weighted Sums for Nonsplit Cases.

Proposition 3.2.11. For p = 2, the following gives the weighted number of Artin-

Schreier covers up to k-isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=

Ramification Divisor Weighted Number of Covers

(ǫ1, ǫ2, ǫ3, ǫ3) split+quad (q − 1)2(q2 − 1)qE+1/4

(ǫ1, ǫ1, ǫ2, ǫ2) quadratic (q2 − 1)2qE(q − 2)/4

(ǫ1, ǫ2, ǫ2, ǫ2) cubic (q − 1)(q3 − 1)qE(q + 1)/3

(ǫ, ǫ, ǫ, ǫ) quartic (q4 − 1)qE+1/4

For odd p, the following gives the weighted number of Artin-Schreier covers up to k-

isomorphism:

∑

[C]

1

|CentAutk(C)〈ι〉|
=
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Ramification Divisor Weighted Number of Covers

(ǫ1, ǫ2, ǫ3, ǫ3) split+quad (q − 1)2(q2 − 1)qE+1/2 if ǫ1 6= ǫ2

(q − 1)2(q2 − 1)qE+1/4 if ǫ1 = ǫ2

(ǫ1, ǫ2, ǫ2, ǫ2) cubic (q − 1)(q3 − 1)(q + 1)qE/3 if p 6= 3, q ≡ 1 mod 3

(q − 1)(q3 − 1)(q + 1)qE/3 if p 6= 3, q ≡ −1 mod 3

(q − 1)(q3 − 1)(q + 3)qE/3 if p = 3

Proof. We fix the number n of branch points, the orders of the branch points, and the

splitting behavior S to determine an appropriate rational equation. We choose the branch

points, and we determine |NW | with Lemma 2.3.1. Next, we find the number of orbits for

which ΓW = H for each H ⊆ Sn by explicitly computing γ ∈ Γ of the form from Equation

1, given the restrictions imposed upon γ by the chosen branch points. Finally, we combine

the terms according to Theorem 2.5.2.
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Table 3.11. H and Number of Orbits for p = 2 Non-Split Cases

Case H Number of Orbits

(ǫ1, ǫ2, ǫ3, ǫ3) split+quadratic C2 q/2

(ǫ1, ǫ1, ǫ2, ǫ2) quadratic C2 × C2 q/2− 1

(ǫ1, ǫ2, ǫ2, ǫ2) cubic µ3 if t = ∞ when q ≡ 1 mod 3 1

µ3 if t = 0 when q ≡ 1 mod 3 1

{1} (q + 1)/3

(ǫ, ǫ, ǫ, ǫ) quartic C2 q/2

This table follows from [10, Section 3.1].

Table 3.12. H and Number of Orbits for Odd p Non-Split Cases

Case H Number of Orbits

(ǫ1, ǫ2, ǫ3, ǫ3) split+quadratic {x,−x} when θ′ = −θ 1

ǫ2 = ǫ3 or ǫ2 6= ǫ3 {x} (q − 1)/2

(ǫ1, ǫ1, ǫ2, ǫ2) split+quadratic {x,−x, θθ′/x,−θθ′/x} when θ′ = −θ 1

ǫ1 = ǫ2 or ǫ1 6= ǫ2 {x, θθ′/x} (q − 1)/2

(ǫ1, ǫ2, ǫ2, ǫ2) cubic p 6= 3 {x, ζ3x, ζ23x} when q ≡ 1 mod 3 2

ǫ1 = ǫ2 or ǫ1 6= ǫ2 {x} when q ≡ 1 mod 3 (q − 1)/3

{x} when q ≡ −1 mod 3 (q + 1)/3

(ǫ1, ǫ2, ǫ2, ǫ2) cubic p = 3 {x} (q + 3)/3

ǫ1 = ǫ2 or ǫ1 6= ǫ2

�

Two explicit applications of Theorem 2.5.2 are below.

Proof. (ǫ1, ǫ1, ǫ2, ǫ2) split+quadratic with odd p:
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Recall that |NW | = p(q − 1)2(q2 − 1)qE(ǫ1,ǫ1,ǫ2,ǫ2). The sizes of the orbits are different de-

pending on our choice of θ and θ′. In particular, if θ′ = −θ, then H = {x,−x, θθ′/x,−θθ′/x}

and |H| = 4. In this case, the quadratic polynomial whose roots are θ and θ′ must be of the

form f(x) = x2+B for B ∈ k∗ and γ(x) = ax for a ∈ k∗, which means f(γ(x)) = x2+B/a2.

The number of irreducible polynomials of this type is equal to the number (q − 1)/2 of

choices for different constant terms, so there is one orbit in which θ′ = −θ. Otherwise,

H = {x, θθ′/x} and |H| = 2. There are (q− 1)/2 other such orbits. The total weighted sum

of covers is:

p(q − 1)2(q2 − 1)qE(ǫ1,ǫ1,ǫ2,ǫ2)

p

(

1

4
+
q − 1

2

(

1

2

))

=
(q − 1)2(q2 − 1)qE(ǫ1,ǫ1,ǫ2,ǫ2)+1

4
.

�

Proof. (ǫ1, ǫ2, ǫ2, ǫ2) cubic with odd p 6= 3 and q ≡ 1 mod 3:

Recall that |NW | = p(q − 1)(q3 − 1)qE(ǫ1,ǫ2,ǫ2,ǫ2). The sizes of the orbits are different

depending on our choice of θ, θ′ and θ′′. In particular, if our polynomial is f(x) = x3 + C

for C ∈ k∗, then f(x) is fixed by γ(x) = ζ3x, and there are 2(q − 1)/3 such irreducible

polynomials. To determine how many of these are in the same orbit, note that if γ(f(x)) =

x3 + D for D ∈ k∗, then γ(x) = ax for a ∈ k∗, so γ(f(x)) = x3 + C/a3, meaning C can

change by a cube. There are (q − 1)/3 cubes, so by the Orbit-Stabilizer Theorem, there are

two orbits in which |H| = 3. Otherwise, there are (q + 5)/3 − 2 orbits in which H = {x}

and |H| = 1. The total weighted sum of covers is:

p(q − 1)(q3 − 1)qE(ǫ1,ǫ2,ǫ2,ǫ2)

p

(

2

3
+

(

q + 5

3
− 2

))

=
(q − 1)(q3 − 1)(q + 1)qE(ǫ1,ǫ2,ǫ2,ǫ2)

3
.

�
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CHAPTER 4

Applications

4.1. Previous Results: p = 2

Howe looked at the case in which p = 2 for genus g = 1.

Theorem 4.1.1. [5, Corollary 2.2] As [C] ranges over the k-isomorphism classes of

Artin-Schreier covers C of genus 1, then the weighted count is

∑

[C]

1

|Autk(C)|
= q.

In addition, [2] and [10] considered the cases in which p = 2 for genus g = 2 and genus

g = 3. The results are summarized below for g = 2:

Theorem 4.1.2. [2, Theorem 18] For p = 2 and g = 2, as [C] ranges over the k-

isomorphism classes of Artin-Schreier covers C of genus 2 defined over k, then

∑

[C]

1

|Autk(C)|
= q3.

Ramification Divisor Weighted Number of Covers

(1, 1, 1) split (q − 1)3/6

(1, 1, 1) quadratic (q − 1)(q2 − 1)/2

(1, 1, 1) cubic (q3 − 1)/3

(1, 3) q(q − 1)

(5) q

For the genus 3 case, [2] and [10] also have a table of weighted sums:
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Theorem 4.1.3. [10, Theorem 8] For p = 2 and g = 3, as [C] ranges over the k-

isomorphism classes of Artin-Schreier covers C of genus 3, then

∑

[C]

1

|Autk(C)|
= q5.

Ramification Divisor Weighted Number of Covers

(1, 1, 1, 1) split (q − 2)(q − 1)4/24

(1, 1, 1, 1) split + quadratic q(q + 1)(q − 1)3/4

(1, 1, 1, 1) quadratic (q2 − 1)2(q − 2)/8

(1, 1, 1, 1) cubic (q + 1)(q − 1)2(q2 + q + 1)/3

(1, 1, 1, 1) quartic q(q4 − 1)/4

(1, 1, 3) split q(q − 1)3/2

(1, 1, 3) quadratic q(q + 1)(q − 1)2/2

(3, 3) split q2(q − 1)/2

(3, 3) quadratic q2(q − 1)/2

(1, 5) q2(q − 1)

(7) q2

4.2. Results for Odd p

4.2.1. Dimension. We note that the results of Pries and Zhu are applicable to the

moduli space for these Artin-Schreier covers of genus d(p− 1)/2 for 1 ≤ d ≤ 5 [11]. In fact,

the coefficients from the weighted counts give us information about the dimensions of the

irreducible components of the moduli space for Artin-Schreier covers.

First, we state the results from Pries and Zhu:
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Theorem 4.2.2. [11, Theorem 1.1] Let ASg,s denote the moduli space of Artin-Schreier

covers of genus g and p-rank s, where g = d(p− 1)/2 for d ≥ 1 and s = r(p− 1) for r ≥ 0.

(1) The set of irreducible components of ASg,s is in bijection with the set of partition

{e1, e2, · · · , er+1} of d+ 2 into r + 1 positive integers such that each ej 6≡ 1 mod p.

(2) The irreducible components of ASg,s for the partition {e1, e2, · · · , er+1} has dimension

d− 1−
r+1
∑

j=1

⌊(ej − 1)/p⌋.

Note that using the notation from earlier, ǫj = ej − 1 here.

For arbitrary p and g = d(p− 1)/2, it is known that the weighted sum of Artin-Schreier

covers C of genus g defined over k. The leading coefficient of the weighted sum corresponds

to the number of components, and the exponent of the leading term is the dimension of the

components.

4.2.3. Case p = 3. We give the results for p = 3.

Theorem 4.2.4. As [C] ranges over the k-isomorphism classes of Artin-Schreier covers

C of genus g, then the weighted count is

∑

[C]

1

|CentAutk(C)〈ι〉|
=











































































1 if g = 1

q − 1 if g = 2

q2 if g = 3

2q3 − q2 if g = 4

q4 if g = 5

Details are found in the following table:
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Genus Case Dimension Count

1 (2) 0 1

2 (1,1) 1 q − 1

3 (1,2) 2 q2 − q

(4) 1 q

4 (1,1,1) 3 q3 − q2

(2,2) 3 q3 − q2

(5) 2 q2

5 (1,1,2) 4 q4 − 2q3 + q2

(1,4) 3 q3 − q2

(6) 2 q2

Proof. The proof for each of these cases follows from Propositions 3.1.1, 3.2.2, and

3.2.11. �

4.2.5. Cases p ≥ 5. In general, for odd p ≥ 5 and g = d(p−1)/2 for 1 ≤ d ≤ 5, we have

the following:
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Theorem 4.2.6. As [C] ranges over the k-isomorphism classes of Artin-Schreier covers

C of genus g, then the weighted count is

∑

[C]

1

|CentAutk(C)〈ι〉|
=















































































































1 if g = 1(p− 1)/2

2q − 1 if g = 2(p− 1)/2

2q2 − q if g = 3(p− 1)/2

3q3 − 3q2 if g = 4(p− 1)/2, p = 5

4q3 − 3q2 if g = 4(p− 1)/2, p ≥ 7

3q4 − 3q3 + q2 if g = 5(p− 1)/2, p = 5

4q4 − 4q3 + q2 if g = 5(p− 1)/2, p ≥ 7
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Genus Case Dimension Count

1(p− 1)/2 (2) 0 1

2(p− 1)/2 (1,1) 1 q − 1

(3) 1 q

3(p− 1)/2 (1,2) 2 q2 − q

(4) 2 q2

4(p− 1)/2 (1,1,1) 3 q3 − q2

(1,3) 3 q3 − q2

(2,2) 3 q3 − q2

(5) 3 q3 if p ≥ 7

5(p− 1)/2 (1,1,2) 4 q4 − 2q3 + q2

(1,4) 4 q4 − q3

(2,3) 4 q4 − q3

(6) 3 q3 if p = 5

4 q4 if p ≥ 7

Proof. The proof for each of these cases follows from Propositions 3.1.1, 3.2.2, and

3.2.11. �
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CHAPTER 5

Future Work

We have yet to determine θH and H for the Quadratic and Quartic four-branch point

cases, which would extend the results to g = 6(p− 1)/2. Specifically, we want to find the W

for which ΓW 6= {id}. This entails fixing H ⊂ S4 and finding the number of orbits of W for

which ΓW is conjugate to H under PGL2(k).

Similar methods used for the Split, Split+Quadratic, and Cubic cases may be insufficient

for the Quadratic and Quartic cases. Some progress towards this is found below.

5.1. Quadratic Case

Recall from Section 3.2.9.2 that W = {θ, θ′, τ, τ ′} where θ, θ′, τ, τ ′ ∈ Fq2\Fq. {θ, θ′} and

{τ, τ ′} are the pairs of roots for irreducible monic quadratic polynomials f1(x) and f2(x).

Consider f(x) = f1(x)f2(x) over Fq = k. We had determined that the only possibilities for

mappings to fix f1 are:

γ1 =







a cs

c a






and γ2 =







a −cs

c −a







for a, c ∈ k not both equal to 0. We attempt to understand the orbits better by closely

examining γ2.

In addition, there are also γ which swap f1 and f2, some of which could be order 2 or

order 4.

In all of these cases, we find

{f(x) = (x2 − s)f2 | γ fixes f(x)}
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or the complete set of polynomials f(x) with nontrivial stabilizer.

5.1.1. Elements of the Form γ2. We compute:

(cx− a)2f2

(

ax− cs

cx− a

)

= x2(a2 + Aac+Bc2)− x(2acs+ Aa2 + Ac2s+ 2Bac)

+c2s2 + Aacs+Ba2

set
= λ(x2 + Ax+B)

for some scaling factor λ ∈ k∗.

Equating the coefficients for the leading terms, we get a2 + Aac + Bc2 = λ. This gives

the following two equations from the linear and constant terms:

2Aa2 + 2acs+ Ac2s+ 2Bac+ A2ac+ ABc2 = 0

ABac+B2c2 − c2s2 − Aacs = 0

• c = 0 means γ2(x) = −x. Thus, f2 = x2 + B where B 6= −s and B 6= 0. The number

of choices is (q − 1)/2− 1 = (q − 3)/2.

• Suppose c 6= 0. Without loss of generality, let c = 1, and we have the conditions:

(2a+ A)(Aa+B + s) = 0

(B − s)(Aa+B + s) = 0

– Suppose Aa + B + s 6= 0. Then B = s and A = −2a, so f2 = x2 − 2ax + s. We

need 4a2 − 4s to be a nonsquare in k for this quadratic to be irreducible in k, or
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a2 − s to be a nonsquare. Let

N = #{a | a2 − s is not a square in k}.

We consider N = q −M where

M = #{a | a2 − s = t2 ∈ k}

and

M ′ = #{(a, t) | a2 − t2 = s}.

Note that when (a, t) ∈ M ′, then so is (a,−t), so M ′ = 2M . Also, if t = 0, then

a2 = s but s cannot be a square, so t 6= 0. Let a2 = z and t2 = w. The exact

same Gauss sum computation from Case 2 yields M ′ = q − 1, which implies that

M = (q − 1)/2, so N = (q + 1)/2.

– Suppose Aa + B + s = 0. Then B = −(Aa + s), so f2 = x2 + Ax− (Aa + s). We

want to count the number N of pairs (A, a) for A, a ∈ k where A2 + 4Aa + 4s is

not a square in k. We introduce a change of variables and let D = A + 2a and

d = 2a. Note there is a bijection between the pairs (A, a) and (D, d). Completing

the square, we now want D2 − d2 + 4s to not be a square in k. Thus, N is q2 −M

where

M = #{(D, d) | D2 − d2 + 4s a square in k}

and

M ′ = #{(D, d, t) | D2 − d2 + 4s = t2 ∈ k}.
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Suppose t = 0. Then we count

T = #{(D, d, 0) | D2 − d2 = −4s ∈ k}.

Let D2 = z and d2 = w in k. We have

T =
∑

z−w=−4s

(

1 +

(

z

q

))(

1 +

(

w

q

))

=
∑

z−w=−4s

(

1 +

(

z

q

)

+

(

w

q

)

+

(

z

q

)(

w

q

))

=
∑

z−w=−4s

1 +
∑

z−w=−4s

(

z

q

)

+
∑

z−w=−4s

(

w

q

)

+
∑

z−w=4s

(

z

q

)(

w

q

)

= q + 0 + 0 +
∑

z−w=−4s

(

zw

q

)

= q +
∑

z−w=−4s,w 6=0

(

z/w

q

)

= q +
∑

z 6=−4s

(

z/(z + 4s)

q

)

Now let y = z/(z + 4s). Solving for z, we get z = −4sy/(y − 1). So we have:

T = q +
∑

y 6=1

(

y

q

)

= q −
(

1

q

)

= q − 1

Note that the map from (D, d, t) to (D, d) is two-to-one except when t = 0, so

M ′ = 2(M − T ) + T = 2M − T .
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Now we considerM ′ with a generalized Gauss sum by letting D2 = z, d2 = w, t2 = u

in k:

M ′ =
∑

z−w−u=−4s

(

1 +

(

z

q

))(

1 +

(

w

q

))(

1 +

(

u

q

))

=
∑

z−w−u=−4s

(

1 +

(

z

q

)

+

(

w

q

)

+

(

u

q

)

+

(

wz

q

)

+

(

wu

q

)

+

(

zu

q

)

+

(

zwu

q

))

= q2 +
∑

z−w−u=−4s

(

zwu

q

)

= q2 + χ1χ2χ3(−4s)χ(1)χ(−1)χ(−1)J(χ1, χ2, χ3) [6, Theorem 8.7.5]

= q2 + χ(−1)χ(4)χ(s)(−1)(q−1)/2(−1)(q−1)/2J(χ, χ, χ)

= q2 + (−1)(q−1)/2(−1)(−1)q−1J(χ, χ, χ)

= q2 + (−1)(q+1)/2J(χ, χ, χ)

= q2 + (−1)(3q−1)/2χ(−1)q [6, Proposition 8.6.1]

= q2 + (−1)(2q−1)q

= q2 − q

where χ are all quadratic characters, and J is a Jacobi sum. Therefore, M =

(q2 − 1)/2, and N = (q2 + 1)/2.

5.1.2. Order 2 Elements. We also consider γ which swap f1 and f2, some of which

could be order 2.

Consider

γ23 =







a b

c d







2

=







a2 + bc ab+ bd

ac+ cd bc+ d2






.
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Since this is of order 2, then ac + cd = ab + bd = 0, which implies that a = −d. Note that

the case in which b = c = 0 can be avoided because this is a subcase of the elements of type

γ2.

• Suppose a = 0. Without loss of generality, let c = 1, so

γ3 =







0 b

1 0







or x 7→ b/x for b 6= s,−s, 0. There are q − 3 such γ3. We compute

(−x2/s)f1(γ3) = x2 − b2/s

set
= x2 + Ax+B

which implies that A = 0 and B = −b2/s. So f2 = x2−b2/s, which is irreducible. There

are q − 3 such choices.

• Suppose a 6= 0. Without loss of generality, let a = 1. Then

γ3 =







1 b

c −1






.

The determinant must be nonzero, so −1 − bc 6= 0, or bc 6= −1. In addition, since γ3

cannot be of the type γ2, then b 6= −cs. There are no overlaps in these two conditions,

so the number of possible γ3 is q2 − q − (q − 1). We compute

(cx− 1)2/(1− sc2)f1(γ3) = x2 + x

(

2b+ 2sc

1− sc2

)

+
b2 − s

1− sc2

set
= x2 + Ax+B
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so

f2 = x2 + x

(

2b+ 2sc

1− sc2

)

+
b2 − s

1− sc2

for 1− sc2 6= 0.

Altogether, there are q2 − q− 2 = (q + 1)(q− 2) possible γ3 with fixed set of size 1 each.

5.1.3. Order 4 Elements. Other γ which swap f1 and f2 could be of order 4.

γ4 must have the property that γ24 is equivalent to γ1 or γ2 since the square of γ4 must

fix f1(x) = x2 − s.

• Suppose γ24 is of type γ1. Then a
2 + bc = d2 + bc must be true, and b = sc. These imply

that a = ±d and b = sc. If a = d, then γ4 already fixes f1, which means it is not of

order 4. Thus, a = −d must be true. In addition, since the determinant is nonzero,

then a2 + sc2 6= 0. If c = 0, then the matrix is of type γ2, which already fixes f1, so

c 6= 0. This is equivalent to

γ4 =







a s

1 −a







which has nonzero determinant, so a2 6= −s, which eliminates two choices of a when

q ≡ 1 mod 4. Thus, we have the following number of choices for γ4:











q − 2 q ≡ 1 mod 4

q q ≡ −1 mod 4

We compute:

(x− a)2/(a2 − s)f1(γ4) = x2 + x

(

4as

a2 − s

)

+
s2 − as

a2 − s

set
= x2 + Ax+B
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so

f2 = x2 + x

(

4as

a2 − s

)

− s

for a2 − s 6= 0.

• Suppose γ24 is of type γ2. Then a2 + bc = −bc − d2 and sc = −b or a2 + d2 = 2sc2

and b = −sc. Suppose c = 0, then a 6= −d, otherwise γ4 would not be of order 4.

Thus, a = d, and there are q − 1 such automorphisms. Suppose c 6= 0. Without loss of

generality, let c = 1, so

γ4 =







a −s

1 d







which has nonzero determinant. This implies a2 + d2 = 2s. We can count the number

of such possibilities P with a Gauss sum. Let a2 = z and d2 = w. We count

P =
∑

z+w=2s

(

1 +

(

z

q

))(

1 +

(

w

q

))

= q +
∑

z+w=2s,w 6=0

(

z/w

q

)

= q +
∑

z 6=2s

(

z/(2s− z)

q

)

Let y = z/(2s− z). Solving for z, we get z = 2sy/(y + 1), so our sum is now

P =
∑

y 6=−1

(

y

q

)

= q −
(−1

q

)

= q − (−1)(q+1)/2
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or










q − 1 q ≡ 1 mod 4

q + 1 q ≡ −1 mod 4

We compute:

(x+ d)2/(a2 + s)f1(γ4) = x2 + x

(−2a+ 2ds

a2 + s

)

+
s2 + sd2

a2 + s

set
= x2 + Ax+B

so

f2 = x2 + x

(−2a+ 2ds

a2 + s

)

+
s2 + sd2

a2 + s

for a2 + s 6= 0.

5.2. Quartic Case

Let W = {θ, θ′, θ′′, θ′′′} where θ, θ′, θ′′, θ′′′ ∈ Fq4\Fq2 . γ for which γ(W ) = W can be of

order 2 or 4.

5.2.1. Order 2 Elements. Suppose

γ2 =







a b

c d







2

=







a2 + bc ab+ bd

ac+ cd bc+ d2






.

Since this is of order 2, then ac+ cd = ab+ bd = 0, which implies that a = −d, so

γ =







a b

c −a






.

We consider a generic monic quartic polynomial and simplify by depressing the quartic

to f(x) = x4 +Bx2 + Cx+D for B,C,D ∈ k.
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• Case 1: a = 0. We compute

x4

D
· f(γ(x)) = x4 +

Cb

Dc
x3 +

Bb2

Dc2
x2 +

b4

Dc4

set
= x4 +Bx2 + Cx+D

which yields the conditions

b4

Dc4
= D

Bb2

Dc2
= B

Cb

Dc
= 0

• Case 2: a 6= 0. Without loss of generality, let a = 1. We have

(cx− 1)4 · f(γ(x)) = x4(1 + Bc2 + Cc3 +Dc4)

+x3(4b+ 2Bbc2 − 2Bc+ Cbc3 − 3Cc2 − 4Dc3)

+x2(6b2 +Bb2c2 − 4Bbc+B − 3Cbc2 + 3Cc+ 6Dc2)

+x(4b3 − 2Bb2c+ 2Bb+ 3Cbc− C − 4Dc) + b4 +Bb2 − Cb+D

set
= x4 +Bx2 + Cx+D

which leads to some complicated conditions when we equate coefficients.

5.2.2. Order 4 Elements. Suppose

γ2 =







a b

c d







2

=







a2 + bc ab+ bd

ac+ cd bc+ d2






.
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Since this is of order 4, then the square must be an order 2 matrix, so a2 + bc = −(bc+ d2),

which implies that a2 + 2bc + d2 = 0. However, it is unclear how best to use this condition

using similar approaches for the other cases.
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characteristic, Mathematische Zeitschrift 250 (2005), no. 1, 177–201.

3. Gerard van der Geer and Marcel van der Vlugt, Supersingular curves of genus 2 over

finite fields of characteristic 2, Mathematische Nachrichten 159 (1992), 73–81.

4. J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field,

Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ,

2008.

5. Everett W. Howe, On the group orders of elliptic curves over finite fields, Compositio

Math. 85 (1993), no. 2, 229–247.

6. Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory,

second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990.
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