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ABSTRACT 

 

 

PATTERNS OF ASSOCIATION IN A CO-INTRODUCED INSECT HERBIVORE AND  

 

PARASITOID WASP 

 

 

 

Species within trophic networks that experience a range expansion can lead to populations of 

coevolved species re-associating in some areas, not associating in others, or creating novel associations 

with native species at one or more trophic level(s).  Although most studies have focused predominantly 

on coevolved interactions between pairs of species, a growing number of studies investigate interactions 

within a broader community context across geographically widespread areas. By tracing the invasion 

routes of co-introduced species that share a close evolutionary history in their native range, I address the 

relative importance of long-term historical associations versus ecological fitting in community assembly. 

In the context of invasion ecology, ecological fitting refers to the process whereby exotic species form 

novel associations with native species that lack a shared coevolutionary relationship. 

 In Chapter 1 of my dissertation, I review the literature that has taken a population ecology 

approach to understanding community assembly of introduced coevolved species. Collectively, these 

studies suggest that multiple factors ranging from local adaptation and ecological fitting are important in 

shaping multi-species associations in the introduced range and can occur simultaneously in one system. 

For example, coevolution can be an important factor in the re-association of many exotic plant-herbivore 

species, but ecological fitting also readily occurs as evidenced by the prevalence of native species host 

switching to exotics, and vice-versa.  

 For the remainder of my dissertation, I used molecular methods to determine the invasion routes 

of the herbivorous parsnip webworm (Depressaria pastinacella; Lepidoptera: Depressariidae), and its 

primary parasitoid, Copidosoma sosares (Hymenoptera: Encyrtidae) to address the importance of shared 

population history and ecological fitting in shaping species interactions in introduced ranges. The 
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coevolved reciprocal interaction between wild parsnip, parsnip webworm, and C. sosares has been well 

documented. Throughout its native range in Europe and much of its introduced range in North America, 

the parsnip webworm attacks wild parsnip (Pastinaca sativa; Apiaceae). Wild parsnips produce 

furanocoumarins, allelochemicals that are broadly biocidal because they intercalate DNA and interfere 

with transcription. Selection for chemically-based resistance occurs in plant populations by increasing 

concentrations of three furanocoumarins: xanthotoxin, bergapten, and sphondin. Genetic variation also 

exists in webworm populations in the rate at which these furanocoumarins are metabolized indicating that 

plant chemistry can act as a selective force on insect physiology.  

  The wild parsnip was introduced to the United States (U.S.) as a food crop in the 17th century, 

where it escaped cultivation and spread throughout the U.S. By the 1860s, parsnip webworm was 

accidentally introduced to the U.S. and has re-associated with its coevolved wild parsnip plant, and 

formed novel associations with cow parsnip (Heracleum maximum; Apiaceae), a plant native to the U.S. 

Copidosoma sosares is also found in the U.S., but its arrival date is unclear. Copidosoma sosares attacks 

webworms on both wild parsnip and cow parsnip, but its distribution is patchy compared to parsnip 

webworms; with rare exception, C. sosares populations are restricted to the western U.S.  

 In Chapter 2, I used a mitochondrial molecular marker to determine: 1) the source population(s) 

of U.S. and New Zealand parsnip webworms, and 2) whether parsnip webworm populations in the U.S. or 

Europe are locally adapted to the host plant species they attack. I found that parsnip webworms 

experienced a genetic bottleneck during introduction to the U.S. and New Zealand. U.S. parsnip 

webworm populations were founded by a single (or a few) population(s) of parsnip webworms from the 

British Isles. British Isles populations of parsnip webworm are themselves genetically isolated from 

continental European parsnip webworm populations. The introduction pattern of webworms stands in 

contrast to that of its host plant, wild parsnip, in the introduced ranges of the U.S. and New Zealand. The 

acquisition of the non-coevolved cow parsnip by webworms in the U.S has led to genetic divergence from 

webworms feeding on their coevolved plant species. In contrast, European webworm populations are not 

restricted to the host plant species on which they feed. 
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 In Chapter 3, I describe the development of novel microsatellite markers for tracing the routes of 

C. sosares within the introduced range of the U.S. Thirty-four candidate loci were identified, 12 of which 

were ultimately chosen for detailed screening. Seven of the 12 loci were polymorphic, but only 5 of the 7 

were successfully amplified across samples and ranges. Of these 5 polymorphic loci, there were 3 - 9 

alleles per locus. Inbreeding coefficients and the null allele frequency ranged from -0.04 to 0.74 and 0 to 

0.73, respectively. After Bonferroni correction, only one locus (Csos 4) significantly deviated from 

Hardy-Weinberg Equilibrium (HWE, P < 0.05) across all populations sampled. When the data were 

partitioned by location (European and U.S. populations), loci Csos 2, Csos 3, and Csos 4 in European 

populations conformed to HWE (P > 0.05), whereas loci Csos 1, Csos 2, and Csos 3 in the U.S. 

conformed to HWE (P>0.05). No pairs of loci demonstrated linkage disequilibrium, neither across all 

populations, nor when the data was partitioned into European and U.S populations (P > 0.05). These 

results indicate the developed microsatellite markers for C. sosares are well suited for use as genetic 

markers for elucidating the population structure of C. sosares. 

 In Chapter 4, I used the microsatellite markers developed in Chapter 3 and an additional 

mitochondrial marker to test three hypotheses: 1) C. sosares populations in the U.S. came from the same 

European location as their webworm hosts in Europe (Host-Pursuit Hypothesis), 2) once in the U.S., C. 

sosares followed a similar host plant switch onto cow parsnip as parsnip webworms (Continued Host-

Pursuit Hypothesis), and 3) C. sosares populations will have limited geneflow between sites that are 

geographically farther apart, and differ in elevation (isolation by distance and elevation). The molecular 

data indicate the Netherlands and several other European sites served as sources for U.S. C. sosares 

populations, following the predictions from the Host-Shift Hypothesis. European C. sosares populations 

from hogweed have directly established on U.S. cow parsnip, and U.S. C. sosares populations on wild 

parsnip have host plant switched to cow parsnip. However, C. sosares geneflow is not restricted to either 

host plant species in the U.S., contrary to our findings with U.S. webworms. Overall, the factors that can 

influence the establishment of an herbivore (i.e., host plant species, concentrations of plant toxins) in an 

introduced area, may not be important for its primary parasitoid.    
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CHAPTER 1: THE INFLUENCE OF SHARED POPULATION HISTORY ON INTRODUCED 

MULTI-TROPHIC SPECIES ASSEMBLY 

 

 

Introduction 

How members of terrestrial communities assemble in geographically widespread environments 

has been a major question in population biology and community ecology (Morin 2011; Mittlebach 2012).  

Studies of introduced species that examine the underlying processes and mechanisms of community 

assembly have steadily increased since the early-20th century when such cases were first labelled as 

‘experiment[s] in nature’ by Joseph Grinnell in 1919.  Many subsequent studies have focused on a single 

invasive organism, often a plant or herbivorous insect, and how it interacts with the native community 

(Godfray et al. 1995; Schönrogge et al. 1996; Girardoz et al. 2006; Grabenweger et al. 2010).  For 

example, Vitousek et al. (1987) showed that a single introduced plant species, Myrica faya (Myricaceae), 

can alter nutrient availability and disturbance regimes in Hawaii by significantly increasing the amount of 

nitrogen in volcanic sites and the overall biologically available nitrogen. The accumulation of native 

herbivores on introduced economically important crop cultivars has been well documented (Strong 1974, 

1979; Wastie 1975; Strong et al. 1977, 1984; Rey et al. 1981; Pimentel 1986; Simberloff 1988; Wilson et 

al. 1990; Pearse et al. 2013). The myriad of studies documenting introduced herbivores switching to novel 

native host plants has underscored the importance and prevalence of ecological fitting in community 

assembly (Janzen 1985; Thomas et al. 2001; Shapiro 2002). In the context of invasion ecology, ecological 

fitting refers to the process whereby exotic species form novel associations with native species that lack a 

shared coevolutionary relationship. 

 Studies on exotic plants and insects have generally been restricted to pairwise interactions 

between plants and their herbivores (Torchin et al. 2003; Verhoeven et al. 2009).  Recently, studies have 

included interactions between exotic plants, herbivores, and their natural enemies (e.g., predators and 

parasitoids) because of the significant role that higher trophic levels play in affecting the structure and 

function of terrestrial communities (Hairston et al. 1960; Price et al. 1980; Hunter and Price 1992; Harvey 
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et al. 2003; Hunter 2003; Gröbler and Lewis 2008; Wang et al. 2009; Fortuna et al. 2012; Mooney et al. 

2012; Wang et al. 2013).  This multitrophic perspective on co-introduced (from the same ancestral range) 

plant-herbivore-natural enemy systems will greatly increase our understanding of the relative importance 

of long-term historical association versus ecological fitting in shaping species associations in an 

introduced range.  

Typically, invasive species do not move in isolation; rather, they can facilitate the introduction of 

other trophic levels that have a shared association in their area of origin. This accidental co-introduction is 

a common feature of community development involving invading hosts (Dunn 2009). One such example 

is the tri-trophic system consisting of wild parsnip Pastinaca sativa (Apiaceae), the parsnip webworm 

Depressaria pastinacella (Lepidoptera: Depressariidae), and its parasitoid Copidosoma sosares 

(Hymenoptera: Encyrtidae), which is the focus of Chapters 2 - 4 of this dissertation.  All three species are 

native to Europe, where their coevolutionary relationship has been well documented (Berenbaum and 

Zangerl 1992; Berenbaum and Zangerl 1998; Berenbaum et al. 1993; Lampert et al. 2008; Zangerl and 

Berenbaum 2003; Zangerl et al. 2008).  The parsnip plant was likely intentionally introduced to North 

America in the early 17th century (Nuttall 1818) as a food crop, while parsnip webworm was accidentally 

introduced in the mid-19th century (Bethune 1869; Riley 1889).  The predominant parasitoid wasp of 

parsnip webworm, C. sosares is also found in the United States, although the date of its arrival is 

unknown (Carroll et al. 2007; Ode et al. 2004; Lampert et al. 2008).  Across the United States, parsnip 

webworms have re-associated with wild parsnip, but have also formed novel associations with the native 

cow parsnip, Heracleum maximum (Apiaceae).  In turn, C. sosares has re-associated with webworm 

populations feeding on both cow parsnip and wild parsnip, but its distribution is mainly restricted to the 

western United States. 

Alternatively, co-introduced plant-herbivore systems can re-associate in areas where their 

coevolved parasitoid has failed to follow.  In such cases, herbivores have escaped selective pressure from 

coevolved higher trophic levels (enemy-free space) but they may acquire novel associations with native 

parasitoids. The latter scenario has occurred within the oak-cynipid gall wasp system within Europe. The 
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Turkey oak (Quercus cerris) and the pedunculate oak (Q. robur) were historically restricted to the Iberian 

peninsula, northern Italy, and the Balkans (Huntley & Birks 1983). In these regions, both oak species are 

attacked by a cynipid gall wasp, Andricus quercuscalicis, which, in turn, was parasitized by a suite of 

generalist and specialist parasitoid species (Stone and Sunnucks 1993; Stone et al. 1995). Intentional 

plantings of both oak species have led to their range expansion into northern and western Europe (Jalas & 

Suominen 1987; Huntley & Birks 1983) and the co-introduction of the cynipid gall wasp, which has re-

associated with its ancestral host plant species.  However, extensive sampling of parasitoid communities 

attacking cynipid gall wasps in Britain have shown that no parasitoids from the ancestral range of the gall 

wasp have followed its host into the introduced range.  Rather, several local parasitoids now attack the 

invasive cynipid gall wasp, forming novel herbivore-parasitoid associations (Stone et al. 1995).  

In another example, the plant Pyracantha coccinea (Rosaceae), which has been planted across 

Europe in gardens from its ancestral range in the Caucasus, has facilitated the introduction of its ancestral 

herbivore, the leaf mining moth, Phyloonorycter leucographella (Gröbler and Lewis 2008). In the 

southern United Kingdom, the leaf mining moth has re-associated with its ancestral host plant but has also 

formed a novel association with a local plant (Crataegus monogyna: Rosaceae), allowing its distribution 

to expand northwards into Scotland (Emmet 1989; Bland 2002; Sefrova 2003). The recruitment of local 

parasitoids on the exotic leaf mining moth has occurred rapidly in the United Kingdom on both invasive 

and native plants (Urbaneja et al. 2000; Amalin et al. 2002), but no ancestral parasitoids of the leaf 

mining moth have been found in the United Kingdom.  

These examples illustrate the range of possible associations that occur when two (or more) 

species with shared population histories move into a new area. Three questions are of interest: 1) how will 

exotic species respond to each other in the novel environment (by re-associating or not), 2) how will 

exotic species respond to native species (e.g., exotic herbivores host-switch onto native plants), and 3) 

how will native species respond to exotic species (e.g., native parasitoids host-switch onto exotic 

herbivores).  
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To better predict the likelihood of each of these associations, which are illustrated in Figure 1.1, 

we need to first understand the population histories of the invaders from their native range and compare 

them with their population structure in the introduced range (Estoup and Guillemaud 2010).  This will 

reveal the relative importance of shared population histories, local adaptation, and/or ecological fitting in 

shaping plant-herbivore-parasitoid systems in novel ranges. With the advancement of inexpensive 

molecular marker development and new statistical analyses, there has been an increase in the number of 

invasive biology studies that determine the sources and routes of invasions, and the genetic make-up of 

the founding populations (Girardoz et al. 2006; Grobler and Lewis 2008; Lozier et al. 2009; Grabenweger 

et al. 2010; Nicholls et al. 2010; Morrison and Hay 2011; Auger-Rozenberg et al. 2012; Stone et al. 2012; 

Wang et al. 2013; Allen et al. 2015).  Although the aim of these studies has ranged from studying 

community ecology, biodiversity, or trophic links in food webs, their findings can shed light on the 

relative importance of shared population histories, local adaptation, and/or ecological fitting in shaping 

trophic associations in novel ranges. 

The aims of this paper are to: 1) present current theoretical predictions and hypotheses on 

introduced plant, herbivore, and parasitoid systems; 2) present empirical evidence on plant-herbivore-

parasitoid introductions and how they fit theory; and 3) discuss the future implications of research into co-

introduced multitrophic systems.  There are numerous reviews on species interactions in the introduced 

range within the context of biological control programs (weed biological control, Hinz et al. 2014; 

arthropod biological control, González-Chang et al. 2016; Hajek et al. 2016), and therefore we excluded 

these systems in our empirical evidence section. However, the insights gained from biological control 

programs have aided in the development and refinement of hypotheses regarding introduced species 

assembly, and therefore, we cite this research in the theoretical predictions and future implications 

section.  Rather, this review focuses on terrestrial plant-herbivore-parasitoid systems that have undergone 

range expansions, undirected by humans. Multitrophic systems chosen for the empirical evidence section 

additionally contained population history data from at least two of the trophic levels.   
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Theoretical Predictions 

 As illustrated in Figure 1.1, there are a range of possible interactions that can occur when a plant, 

an herbivore, and a parasitoid are introduced to a new area. We grouped these interactions by asking three 

questions; 1) what enables co-introduced species to re-associate (Fig 1.1 A, B, O), 2) what prevents co-

introduced species from re-associating (Fig. 1.1 D, F, Q), and 3) what allows for novel associations in the 

introduced range (Fig. 1.1 C, H, I, M, P)? To answer each of these questions, we explored the hypotheses 

and predictions specific to each interaction in the following sections.  

What enables co-introduced species to re-associate? 

 Many plant and insect interactions have been used as examples supporting the theory of 

coevolution (Ehrlich and Raven 1964; Fox and Morrow 1981; Jermy 1984; Bernays and Graham 1988; 

Janz et al. 2001). Between plant-herbivore interactions, the plant evolves defenses that repel or deter 

herbivore attack and the herbivore evolves counter adaptations to overcome plant defenses, creating an 

evolutionary arms race (Thompson 1988). Overtime, this arms race is predicted to lead to specialization 

in herbivore diet, leading to intimate associations between plants with phylogenetically conserved 

chemical defenses and certain herbivore lineages (Feeny 1976). In the family Pieridae, many species of 

butterfly larvae feed only on plants in one order, Brassicales, that produce the secondary defensive 

compounds glucosinolates (Gols et al. 2008; Hopkins et al. 2009). If the plant and herbivore species 

within these coevolved associations are introduced to a different area, in tandem, their re-association 

could be pre-determined (Fig. 1.1A). 

 The phylogenetically conserved chemical defenses plants evolve in response to coevolved 

herbivores, may also benefit the plant in the introduced range. Native herbivores, when faced with exotic 

plant defensive chemicals in which they have not evolved counter adaptations, may not be able to 

establish or feed on these exotic plants (Fig. 1.1 G). There are a variety of physiological mechanisms 

herbivores use against plant chemical defenses (Harvey et al. 2010) which might prove ineffective against 

novel phytotoxins. Collectively, this could explain why exotic plants are attacked less than related natives 
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in some systems (Cappuccino and Arnason 2006), or why native herbivores fail to host plant switch on 

exotic plants entirely (Fig. 1.1 G). 

 As with some plant-herbivore interactions, parasitoids can inflict significant fitness costs on their 

herbivorous hosts (Godfray and Shimada 1999). Parasitoids are insects that lay their eggs on or in the 

bodies of other insects, and upon hatching, the larvae consume the host, either immediately, or as the host 

continues to feed and develop (Godfray and Shimada 1999). Given their major impact on host fitness, 

host traits that help avoid or reduce parasitism should therefore be under strong selection (Abrams 2000). 

Research has documented the evolution of several host traits, including behavioral defenses to avoid 

parasitism (Gross 1993; Le Ralec et al. 2010), and physiological defenses to prevent parasitoid 

development after oviposition (i.e., encapsulation (Hochberg 1997), host immunity (Griffiths 1960; Li et 

al. 2002; Poirie and Coustau 2011)). Populations of hosts attacked by parasitoids therefore tend to exhibit 

substantial genetic variation for resistance to parasitoids in a variety of host taxa (Henter 1995; Henter 

and Via 1995; Kraaijeveld and Godfray 1999; Ferrari et al. 2001; von Burg et al. 2008; Vorburger et al 

.2009). For example, aphids have evolved a number of behavioral defenses such as kicking or dropping 

off the plant to avoid parasitism (Gross 1993; Le Ralec et al. 2010).  

 As with plant defenses leading to the evolution of herbivore counter adaptations, herbivorous host 

defensive traits impose selection for parasitoid counter adaptations (Thompson 1994). In general, these 

counter adaptations increase the virulence of parasitoids (i.e., ability of eggs and larvae to survive within 

the host body). For example, the aphid parasitoid, Lysiphlebus fabarum has evolved counter adaptations 

to aphid hosts harboring defensive endosymbionts (Rouchet and Vorburger 2014). The exact counter 

adaptation(s) in this system are unknown (Rouchet and Vorburger 2014). However, leading theories 

based on observational data suggest female parasitoid wasps may lay multiple eggs in a single aphid host 

to increase their success (Oliver et al. 2012), female parasitoids avoid aphids infected with toxin-

producing endosymbionts (Lukasik et al. 2013), or there is an increase tolerance of the parasitoid egg or 

larva to the toxins produced by aphid endosymbionts (Oliver et al. 2009). 
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In another example, there is a positive correlation between Drosophila flies and parasitoids in the 

genera Asobara and Leptopilina between the virulence of the parasitoid and resistance of the host 

(Kraaijeveld and Godfray 1999). The primary mechanism of host resistance is through encapsulation of 

parasitoid eggs (Kraaijeveld and van Alphen 1994; Russo et al. 1996). In response, textural changes to the 

chorion of parasitoid eggs enables them to become embedded in host tissue, and avoid encapsulation by 

the host’s blood cells (Kraaijeveld and van Alphen 1994). Collectively, this indicates selective 

interactions and reciprocal genetic changes (i.e., coevolution) between herbivorous hosts and their 

parasitoids readily occur (Price 1980; Thompson 1982). Therefore, the re-association between 

herbivorous hosts and their parasitoids in the introduced range could be a product of their long 

evolutionary history (Fig. 1.1 B, O).  

As outlined above, coevolution has been documented between species in multitrophic 

interactions, but this strong reciprocal interaction can also vary geographically, among populations, 

referred to as local adaptation (Lively and Dybdahl 2000; Gandon 2002; Kawecki and Ebert 2004). When 

herbivores are locally adapted to their host plants, their performance is expected to be higher than that 

achieved by allopatric herbivore populations (Kawecki and Ebert 2004). When host plants are locally 

adapted to their herbivores, they are expected to experience lower amounts of damage, and higher levels 

of resistance, than when consumed by allopatric herbivore populations (Garrido et al. 2011). Further, 

locally adapted plant-herbivore interactions can experience geographic mosaics of coevolution 

(Thompson 1988, 1994, 1999). This local adaptation leads to “hot spots”, where the plant-herbivore 

interaction is tightly coevolved, whereas “cold spots” occur when plant traits and herbivore traits are 

mismatched and not tightly coevolved (Thompson 1988, 1994, 1999; Agrawal et al. 2006). Studies on the 

wild parsnip, and its primary herbivore, the parsnip webworm, as discussed in the Introduction, has 

demonstrated that wild parsnip defensive phenotypes matches the detoxification abilities in some 

webworm populations, but mis-matches occurred in populations where the alternate host plant species, 

cow parsnip, was present (Zangerl and Berenbaum 2003).  
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Within herbivorous hosts and parasitoid systems, defensive traits and counter adaptations have 

also been shown to vary within and among populations, but evidence for local adaptation within these 

populations is lacking (Dupas et al. 2009; Kraaijeveld and Godfray 2009; Branca et al. 2011; Ndemah et 

al. 2012; Calatayud et al. 2011; van Nouhuys et al. 2012). However, the majority of this work is confined 

to host-parasitoid systems attacking three hosts; pea aphids (Acyrthosiphon pisum; Henter 1995; Henter 

and Via 1995; Hufbauer and Via 1999; Hufbauer 2001), Drosophila species (Kraaijeveld and van Alphen 

1994; Pannebakker et al. 2008; Dupas et al. 2003; Dupas et al. 2009), and tropical stem boring moths 

(Calatayud et al. 2011; Catherine et al. 2010). Therefore, we cannot rule out the possibility of local 

adaptation in shaping herbivore and parasitoid associations in the introduced range. Overall, this could 

further explain why some coevolved species are able to re-associate in the introduced range; they are 

derived from populations that were locally adapted in the ancestral range (Fig. 1.1. A, B, O). 

What prevents co-introduced species from re-associating? 

 The success of an exotic plant species has been attributed to the fact that they leave behind their 

coevolved natural enemies (e.g., herbivores and pathogens) (Maron and Vila 2001; Keane and Crawley 

2002; Wolfe 2002; Mitchell and Power 2003; Reinhart et al. 2003; Stastny et al. 2005; Liu and Stiling 

2006; Castells et al. 2013), as predicted by the enemy-release hypothesis (Elton 1958; Keane and Crawley 

2002). However, the enemy-release hypothesis relies on the assumption that specialist enemies of the 

exotic species are absent from the introduced region, and host-switching by specialist local enemies to the 

exotic species will be rare (Keane and Crawley 2002). However, as we have noted in this review, there 

are several examples of co-introduced plants and herbivores, and their co-introduced parasitoids.  

Therefore, the lack of association between co-introduced, coevolved species could be a 

consequence of three factors; 1) one of the species in the trophic level cannot establish in the 

environmentally different range, 2) the introduced populations are derived from populations in the 

ancestral range that were not locally adapted to one another, or 3) native species in the introduced range 

host switch to the exotic species, disrupting associations between the coevolved species. Each of these 

factors are discussed in detail in the following sections. 
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 Environmental Mis-Matches (Fig. 1.1 F, D, N, Q): The climate in the introduced range is rarely 

the same as that in the native range, therefore, introduced species may not be able to establish in habitats 

with different environmental traits such as climate, soil type, or topography (Day and McAndrew 2003; 

Goolsby et al 2006; Fig. 1.1F, D, N, Q). Most of the insights into the effects of environment on 

introduced herbivores and parasitoids have come from biological control research (Van Lenteren et al. 

2006). More specifically, the environmental conditions that influence the establishment of herbivore or 

parasitoid agents in the introduced range.  Many weed biological control programs now choose potential 

herbivore agents based on climate-matching approaches to increase the establishment and success of 

intentionally introduced herbivores on exotic plants (Wapshere 1974, 1983, 1993; Dennill and Gordon 

1990; Kleinjan and Scott 1996; Adair and Scott 1997; Goolsby et al. 2004; Lawson et al. 2010). For 

example, the tortoise beetle, Gratiana spadicea (Coleoptera: Chrysomelidae) was released as a biological 

control agent for the invasive weed, Solanum sisymbriifolium (Solanaceae) in parts of South Africa (Hill 

and Hulley 1995; Olckers et al. 1999), but its establishment has been variable (Bryne et al. 2002). 

Research revealed the beetle failed to establish in some areas because the winters dropped below the 

lower lethal humidity levels for the beetle eggs (Bryne et al. 2002). 

There are also many examples of parasitoids not pursuing their herbivorous hosts into the 

introduced range (Schönrogge and Crawley 2000; Torchin et al. 2003; Yang et al. 2010), which could be 

due to suboptimal environmental conditions in the introduced range (Torchin et al. 2002; Fig. 1.1D, Q). In 

the debate over introducing specialized or generalist parasitoids to suppress exotic pest species (in 

classical biological control programs; Chang and Kareiva 1999; Symondson et al. 2002; Van Lenteren 

2012), specialists may have decreased non-target effects (Stiling and Corneliseen 2005), but they have 

been shown to be more vulnerable to ecological conditions in their introduced range (Wang et al. 2009).  

In a review of parasitoids used as biological control agents, the main abiotic factor affecting the 

establishment of intentionally introduced parasitoid species was temperature (Van Lenteren et al. 2006). 

More specifically, parasitoids were unable to establish in areas with winters that reached temperatures 
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below their “developmental threshold” (Van Lenteren et al. 2006). The development threshold is the 

temperature below which there is no development of an arthropod (Hart et al. 2002).  

Population Mis-Matches (Fig. 1.1 F, D, Q):  Populations of plants can vary in their concentration 

and suite of defensive chemicals (Zangerl and Berenbaum 1997; Berenbaum and Zangerl 2006). As 

mentioned earlier, studies on wild parsnip, and its primary herbivore, the parsnip webworm, documented 

the occurrence of matched populations, in terms of wild parsnip chemical profiles and the detoxification 

abilities of webworms (Zangerl and Berenbaum 2003). However, studies have also documented mis-

matches between wild parsnip and webworm populations (Zangerl and Berenbaum 2003; Carroll and 

Berenbaum 2006), in some cases, created by the presence of an alternate host plant species, cow parsnip 

(Zangerl and Berenbaum 2003). If introduced plants and herbivores came from source populations with 

mis-matched chemical profiles and detoxification abilities, the herbivore might be unable to re-associate 

with its host plant in the introduced range (Fig. 1.1 F).  

The performance of parasitoid wasps is also affected by population-related differences in plant 

chemistry (Ode et al. 2004; Harvey 2005; Ode 2006; Gols and Harvey 2009). In studies on multitrophic 

systems within their ancestral ranges, parasitoids that are less well-adapted compared to their hosts on 

plants with increased defenses have been shown to perform worse (Harvey et al. 2003, 2005; Ode 2006; 

Gols et al. 2008). If the founding population of exotic plants and herbivores came from a population with 

matched plant chemical profiles and herbivore metabolism capability, they could re-associate (Fig. 1.1 

A). However, if founding populations of parasitoids are derived from plant and herbivore populations in 

which they have no shared population history in the ancestral range, the parasitoid might fail to establish 

on hosts in the introduced range (Fig. 1.1 D, Q).  

These scenarios further illustrate how local adaptation between plants, herbivores, and parasitoids 

in the ancestral range can determine their association, or lack thereof, in the introduced range. 

 Native Species Disrupt Coevolved Associations (Fig. 1.1 Q): Parasitoids may be able to exploit 

the same introduction pathways as their herbivorous host, but their establishment may be dependent on 

traits specific to the host plant species (Fig. 1.1 Q). In several systems, parasitoids rely on host plant 
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structure and morphology to locate, and subsequently accept, herbivorous hosts (Turlings and Wackers 

2004; Wang et al. 2009). If exotic herbivores host plant switch to native plants in the introduced range, 

the introduced parasitoid may be unable to establish on herbivores attacking the novel host plant (Fig. 

1.1Q). Chemical cues that are used to locate suitable plants may differ between exotic and native plant 

species with which they are usually associated (Harvey et al. 2010). Because of this, parasitoids may not 

initially respond to novel odors associated with exotic plants, at least during the initial creation of these 

interactions (Vet and Dicke 1992). In this situation, the herbivore escapes from their parasitoid natural 

enemies (e.g., enemy-release hypothesis; Berdegue et al. 1996; Jeffries and Lawton 1984; Futuyma and 

Moreno 1988), by host plant switching. 

What allows novel associations in the introduced range? 

The multitude of studies documenting host-switching between exotic and native species in the 

introduced range that lack any evolutionary history (herbivores host plant switching reviewed in Keane 

and Crawley 2002; parasitoids host switching reviewed in Roy et al. 2011) suggests species can have a 

discrete set of phenotypes that predisposes them to utilize novel species, a concept referred to as 

ecological fitting (Janzen 1985). Ecological fitting was originally formulated to describe plant-herbivore 

interactions that were not the result of any coevolutionary history (Agosta 2006; Agosta et al. 2010). 

Species interactions within an ecological fit framework are potentially more plastic, and not conserved 

over time (Verhoeven et al. 2009; Harvey et al. 2010). In the following sections, we discuss each possible 

set of novel species interactions that can occur in the introduced range. 

Exotic Herbivores Host-Switch to Native Plants (Fig. 1.1 M): Introduced insect herbivores can 

interact with both novel plants (lower trophic level) and parasitoids (higher trophic level), creating a 

variety of novel species associations in their invaded range (Godfray et al. 1995; Schönrogge et al. 1996; 

Girardoz et al 2006; Grobler and Lewis 2008; Grabenweger et al 2010). Many intentionally introduced 

coevolved herbivores of exotic plants have been used in biological control efforts, but have instead 

formed novel associations with native plants (non-target effects; Louda et al. 1997; Pearson and Callaway 

2003), suggesting native plants are an ‘ecological fit’ for some introduced herbivores.  
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Further, exotic plants and their herbivores can both be accidentally co-introduced, but the exotic 

herbivore starts attacking native plants (Fig. 1.1 M), sometimes at greater rates than their coevolved 

introduced plant species (Lambert et al. 2007; Lambert and Casagrande 2007; Park and Blossey 2008; 

Allen et al. 2015; Cronin et al. 2015). This has emerged has a common phenomenon across multiple 

species and guilds of introduced herbivores, creating an invasional meltdown (Simberloff and Von Holle 

1999). During an invasional meltdown multiple invasive species facilitate one another’s spread or 

exacerbate their impact on native species. Returning to our plant-herbivore example, introduced 

herbivores can indirectly facilitate the growth and spread of invasive plant species by preferentially 

feeding on their native competitors (Parker et al. 2006; Relva et al. 2010), although these studies have 

been limited to introduced generalists herbivores.  

Native Parasitoids Host-Switch to Exotic Herbivores (Fig. 1.1 C, P): In addition to exotic 

herbivores forming novel associations with native plants, native parasitoids can host-switch to exotic 

herbivores (reviewed by Roy et al. 2011). The oak and exotic gall wasp system in Britain has been well 

studied and has revealed that a diverse and abundant native parasitoid species complex can host-switch to 

an exotic herbivore in a span of 30 years (Collins et al. 1983; Hails et al. 1990; Hails and Crawley 1992; 

Schönrogge et al. 1998). However, the process of native parasitoids host-switching to exotic herbivores is 

highly variable (Cornell and Hawkins 1993). In an analysis of 87 exotic herbivorous insects, between less 

than 10 years to more than 140 years elapsed before native parasitoid complexes were as rich or richer on 

the exotic herbivore than parasitoid complexes on the herbivore in its native range (Cornell and Hawkins 

1993). 

Native parasitoid species may also show a high level of plasticity in its ability to exploit an exotic 

host on a wide range of host plant species (Fig. 1.1 C). In another example, the U.S. native parasitoid, 

Habrobracon gelechiae) has established on the light brown apple moth (Epiphyas postvittana), an 

introduced herbivore in the U.S. (Brown et al. 2010), which feeds on a range of host plant species 

(Suckling and Brockerhoff 2010; Brockerhoff et al. 2011). The parasitoid could locate the host larvae on 
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all plants equally well, and the fitness correlates examined in the parasitoid did not differ based on the 

host plant species with which the light brown apple moth fed (Wang et al. 2013).  

Native Herbivores Host-Switch to Exotic Plants (Fig. 1.1 H): There are many studies that 

document novel interactions between exotic plants that have become established in new habitats with 

native herbivores (Agrawal et al. 1999; Agrawal and Kotanen 2003; Louda et al. 2005; Siemann et al. 

2006; Lankau and Strauss 2007). These novel interactions with exotic plants can have either positive or 

negative effects on the behavior and development of non-coevolved herbivores (Keeler and Chew 2008). 

Exotic plants may be toxic for non-adapted insect herbivores and prevent host switching onto exotic 

plants (Fig. 1.1 G), but ecological ‘fits’ can also occur by chance without the need for any evolutionary 

precedent (Harvey et al. 2010; Fig. 1.1 H).  

The biotic resistance hypothesis (Elton 1958; Parker and Hay 2005) predicts that herbivores in 

the introduced range cause greater mortality to invasive plant species than their herbivores in the ancestral 

range (Agrawal and Kotanen 2003; Chun et al. 2010; Morrison and Hay 2011; Fan et al. 2013). This 

phenomenon is often attributed to the invasive plant lacking effective defenses to resist attack by 

herbivores with which they do not share an evolutionary history (Morrison and Hay 2011; Fig. 1.1H). 

Although the biotic resistance hypothesis assumes no ancestral herbivores are co-introduced with the 

plant, the biotic resistance hypothesis can explain why native herbivores are able to host switch onto 

exotic plants, regardless of the presence or absence of the coevolved, co-introduced exotic herbivore.  In 

contrast to situations where exotic plants experience herbivore-free space because native herbivores have 

not evolved counter adaptations to exotic plant defenses, this mis-matching between plant defensive traits 

and native herbivore counter adaptations could benefit the native herbivore (Hokkanen and Pimental 

1989; Colautti et al. 2004; Morrison and Hay 2011). As a result, native herbivores can successfully 

establish on exotic herbivores (Fig. 1.1 H). For example, in a field experiment of 30 plant species, in 

which 15 plant pairs were used (14 congeneric pairs and 1 confamilial pair) between a plant species 

native to North America and an exotic species of Eurasian origin, Agrawal and Kotanen (2003) found 

exotic plants suffer levels of leaf herbivory damage equal to or greater than levels suffered by their paired 
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native plant species. Additionally, the exotic plant species were no more resistant to herbivores than the 

native congeners (Agrawal and Kotanen 2003).  

The hypotheses discussed thus far have mainly focused on the pair-wise interactions between 

plants and herbivores, or between herbivores and parasitoids.  The original intent of these hypotheses was 

not to address interactions across three trophic levels.  However, the tightly-linked interactions between 

some plant–herbivore–parasitoid systems are well-suited to investigate whether these hypotheses can be 

applied across multiple trophic levels. In addition, the extent to which each of the possible interactions 

outlined in Fig. 1.1 occurs in the field is unclear. In the following sections, we will take the empirical 

studies that have been conducted on introduced plant-herbivore-parasitoid systems with known source 

population data to assess the importance of each hypothesis in introduced species assembly. 

Empirical Evidence 

Cedars and seeding-feeding chalcids  

If an introduced plant and herbivore do not re-associate in the new range, but rather the 

introduced herbivore host-switches to a native plant (Fig. 1.1 M), the parasitoid may not be able to follow 

its insect host (Fig. 1.1 Q).  This is especially true if the parasitoid uses host plant cues to locate its host, 

such as the parasitoid of the seed feeding chalcid wasp in the following example. In Europe, the seed 

feeding chalcid, Megastigmus schimitscheki, has a native range throughout the eastern Mediterranean 

region, where it develops on two species of Cedrus trees.  In Turkey, Syria, and Lebanon it develops on 

C. libani, and in Cyprus, on C. brevifolia (Fabre et al. 2004).  In 1995, the chalcid was detected on cedar 

seeds in southern France, and has progressively invaded most of the planted C. atlantica stands (Fabre et 

al. 2004; Roques et al. 2008).  C. atlantica invaded France when its seeds were imported from North 

Africa in the 1860s for reforestation of the Mediterranean zone (Auger-Rozenberg et al. 2012).  Although 

it is obvious that the seed chalcid shifted host plants, it was unclear from which region and host plant 

species it originated.  Genetic data revealed that French invasive seed chalcid populations originated from 

C. brevifolia populations in Cyprus, where C. atlantica does not occur (Auger-Rozenberg et al. 2012).  

However, as predicted by ecological fitting, natural crosses between C. atlantica and C. brevifolia 
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produces fertile hybrids (Fady et al. 2003), suggesting phylogenetic proximity. In France, C. atlantica 

represents a directly exploitable resource for the seed chalcid, even outcompeting the native seed-feeder 

(Boivin et al. 2008), although they did not coevolve.  No specialist natural enemies of the seed chalcid 

known in the native area have been detected in the introduced range of southeastern France, suggesting 

the host plant switching of an introduced herbivore created an enemy-free space from coevolved 

parasitoids (Auger-Rozenberg et al. 2012).  

Oaks, oak gall wasps, and their parasitoids 

Oak gall wasps are prevalent throughout Europe, and many studies have explored the genetic 

history of gall wasps and their parasitoids to aid in control measures (Stone and Sunnucks 1993; Stone et 

al. 1995; Nicholls et al. 2010; Stone et al. 2012). As mentioned earlier in the introduction, oak gall wasps 

in the genus Andricus can have an obligate relationship with more than one oak species during their 

asexual and sexual generations.  The cynipid oak gall wasp, Andricus kollari, has a native range in two 

distinct locations which geographically divides the oak species on which they develop. In Eastern Europe 

and Turkey, the gall wasp sexually develops on Turkey oak (Q. cerris), but the parthenogenetic 

generation develops on section Quercus oaks (Q. robur, Q. petraea, and Q. pubescens).  In the Iberian 

Peninsula and northern Africa, the sexual generation develops on the cork oak (Q. suber), and its 

parthenogenetic generation develops on oaks in the section Quercus, but not on Turkey oak, which does 

not naturally occur in Iberia. The Turkey oak has been planted intentionally throughout Europe over the 

last 500 years and expanded its range northward and westward, now overlapping with northern Iberian 

populations of cork oak (Stone and Sunnucks 1993). Not surprisingly, the oak gall wasp has also been 

found on these planted Turkey oaks (Stone et al. 2001, 2002), and genetic data reveal all invading oak 

gall wasps reaching northern continental Europe are derived from populations native to Italy and the 

Balkans, with a long evolutionary history of exploiting Turkey oaks (Stone et al. 2001, Fig. 1.1 A). Even 

though Turkey oaks and cork oaks now overlap in the Iberian peninsula, oak gall wasps from the Iberian 

region have not host-switched onto Turkey oaks to expand their range northwards, even though this 

species can develop on Turkey oaks elsewhere.   
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Studies on oaks and the cynipid oak gall wasp (A. kollari) were later extended to examine the 

roles of coevolution, ecological fitting, and anthropogenic disturbance among the natural enemy of the 

invasive gall wasp, the parasitoid, Megastigmus stigmatizans (Nicholls et al. 2010).  Genetic data from 

European M. stigmatizans populations collected from Turkey oaks revealed some populations had Balkan 

origins just as their gall wasp hosts, but others have an Iberian origin.  This latter result was surprising, 

because Iberian gall wasps are confined to cork oak and do not occur on Turkey oaks. Although Iberian 

gall wasps can’t host plant switch to Turkey oaks, its parasitoid, Iberian M. stigmatizans, can successfully 

colonize gall wasps that utilize different host plant species.  Overall, this system indicates that a long 

evolutionary history can be important between one trophic link (oak and gall wasp), but not the other 

trophic link (gall wasp-parasitoid).  

Chestnut trees, the horse chestnut leaf-mining moth, and its parasitoid  

The horse chestnut leaf-mining moth, Cameraria ohridella, is a pest of horse chestnut trees and 

has experienced a rapid range expansion from its native area in the southern Balkans (Valade et al. 2009; 

Lees et al. 2011), to almost all of Europe within the last 25 years (Augustin et al. 2010).  The generalist 

parasitoid, Pediobius saulius, is the dominant parasitoid species on C. ohridella in the native range of the 

Balkans (Grabenweger et al. 2010), while in the introduced ranges of central and western Europe, P. 

saulius is a common parasitoid of other leaf miners (Noyes 2002; Girardoz et al. 2007) and rarely attacks 

C. ohridella (Freise et al. 2002; Stojanovic and Markovic 2004; Grabenweger et al. 2005; Lupi 2005; 

Volter and Kenis 2006; Girardoz et al. 2007; Grabenweger et al. 2010).  Genetic data revealed central and 

northern European populations of P. saulius do not come from the Balkans, but rather consist of P. 

saulius lineages that were already present in most of Europe prior to the time of C. ohridella’s invasion 

(Hernandez-Lopez et al. 2012).  This suggests that when C. ohridella spread from the Balkans to Austria 

in 1989 and then to central and western Europe this was probably made without its associate Balkan P. 

saulius haplotypes (Fig. 1.1 Q).  However, the researchers of this study have noted Austrian P. saulius 

parasitism rates on C. ohridella has gradually increased since 1996 (Fig. 1.1 O). This system suggests the 

strength of some herbivore-parasitoid associations vary by geographical location, with Balkan C. 
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ohridella and P. saulius populations locally adapted to each other. When Balkan C. ohridella expanded 

its range into Europe, it experienced escape from its natural enemy in two ways. First, the locally adapted 

Balkan parasitoid P. saulius did not pursue C. ohridella, and second, European P. saulius populations 

were unable to parasitize C. ohridella. Nevertheless, C. ohridella release from natural enemies appears to 

have been temporary. Whether the population origin of P. saulius that attacks C. ohridella in Europe is 

Balkans or European (that have formed associations with allopatric C. ohridella populations) is unknown 

at this time. 

A parasitoid species that does attack C. ohridella throughout Europe is the generalist 

ectoparasitoid, Pnigalio mediterraneus (Hymenoptera: Eulophidae), even though it was previously 

restricted to southern Europe (Freise et al. 2002; Grabenweger & Lethmayer 1999; Fig 1J).  In fact, prior 

to C. ohridella’s invasion from the Balkans into the rest of Europe, the preferred host of P. mediterraneus 

was B. oleae, an invasive fly, originally from the Mediterranean.  Therefore, P. mediterraneus has 

become the primary parasitoid of two invaders that colonized Europe thousands of years apart.  Genetic 

data revealed the natural host of P. mediterraneus in the Mediterranean-Balkan region was B. oleae.  

Then, over the past 25 years, some haplotypes of P. mediterraneus switched to C. ohridella (Gebiola et 

al. 2013).  When C. ohridella expanded its range from the southern Balkans, some of these haplotypes 

then tracked C. ohridella all over Europe.  Hence, herbivore host-switching (a form of ecological fitting) 

occurred first by the parasitoid, followed by herbivore host pursuit into new ranges.  

A single host species, the horse chestnut leaf miner, can be parasitized by multiple species of 

parasitoids.  However, these various parasitoid species will respond differently when its host undergoes a 

range expansion.  In the case of P. saulius, it could not follow its host into central and western Europe 

from its shared area of origin in the Balkans.  However, P. mediterraneus could follow its host into 

central and western Europe after only forming an association with it in the Mediterranean/Balkan region 

in the past 25 years.  It is unclear, in this system, how a parasitoid with a long evolutionary history with 

its host cannot pursue it across landscapes, but a parasitoid with a relatively short history can.   
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Responses of native parasitoids to exotic herbivores 

Thus far, we have considered how parasitoids, or communities of parasitoids, adapt to the range 

expansion of their hosts.  However, we also need to consider how native parasitoids respond to the arrival 

of a novel exotic host, whether it’s the same host species (but from an allopatric population), or an 

entirely new species of host (no evidence of a historical evolutionary relationship from any region). After 

the invasion, the invader might interact with native species through local processes, such as competition, 

predation, or relevant to the focus of this review, host-switching (Simberloff 1999, Williamson 1996).  

Studying the impacts of invading plant-herbivore-parasitoid species on native communities can reveal the 

relative importance of both regional/historical and local/contemporary processes.  

Do parasitoids locally adapt both behaviorally and physiologically to the arrival of a novel host 

by shifting hosts?  Few studies have focused on whether and how parasitoids adapt to the arrival of a new 

potential host at the invasion front (Klug et al. 2008).  Therefore, the mechanisms in such adaptive 

processes are poorly understood.  For instance, what are the adaptations that allow a parasitoid to switch 

to a new host and what are the adaptations that take place after the host switch?  As discussed previously 

with P. saulius, a parasitoid of the horse chestnut leaf miner, local central and western European P. 

saulius populations were not parasitizing the invasive Balkan horse chestnut leaf miner even though P. 

saulius is the primary parasitoid of horse chestnut leaf miners in the Balkans.  In this system, local 

parasitoid populations did not host-switch to the invading host, even though the invading host was a 

species that has been attacked by the same parasitoid species in other regions.  Different examples 

however, show that after a certain time, native parasitoids can exploit introduced host species (Roy et al. 

2011). Cornell and Hawkins (1993), after investigating many host-parasitoid systems, conclude that the 

accumulation of native parasitoids on introduced herbivores reaches an asymptote within 100 years.  Over 

the past 25 years, Britain has seen the introduction of eight herbivorous gall wasps (Hymenoptera: 

Cynipinae), but there is no evidence of pursuit by natural enemies from the continental Europe 

(Schönrogge et al. 2012).  Instead, exotic gall wasps have recruited native British parasitoids in the short 

time since their arrival.  After its arrival in Korea from its native China, Dryocosmus kuriphilus 
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(Hymenoptera, Cynipidae) recruited a parasitoid assemblage of 17 chalcid species over a period of only 

several decades (Ko, 1971; Yasumatsu & Kamijo, 1979; Kamijo, 1981, 1982; Murakami et al., 1985, 

1994, 1995; Otake, 1989; Otake et al. 1982; Kim, 1998). 

However, local parasitoids that host switch have also been demonstrated to play only a limited 

role in the regulation of the population dynamics of the invader (Stojanovic & Markovic, 2005; Vercher 

et al. 2005).  Cornell & Hawkins (1993) compared the structure and diversity of 87 parasitoid complexes 

on introduced herbivores, and native herbivores.  Parasitoid attack rates are generally lower on introduced 

hosts and contain more generalist parasitoids when compared to their native herbivorous hosts.  It seems 

to achieve the high parasitism rates that a host experienced in its native range, a specialized parasitoid 

species needs to follow the invader, as evidenced by Phyllonorycter platani in England (Godfray et al. 

1995). 

Conclusions and Future Directions  

Understanding the genetic structure of a natural enemy in its native range may provide important 

information for biological control practitioners by aiding in the identification of populations that exhibit 

local adaptations to environmental conditions or organisms with which they interact.  It has generally 

been assumed that natural enemy populations from a pest’s region of origin, once identified, should be 

favored for biological control (Mackauer 1976; Hoelmer and Kirk 2005; Hufbauer and Roderick 2005).  

The foundation of this assumption is that such natural enemies are more likely to possess genetic variation 

that is most compatible with the climate or host genotypes in areas from which invasive pest populations 

are derived (Messenger and van den Bosch, 1971).  However, other strategies, such as introductions from 

the most genetically diverse sources or from multiple ecologically and genetically distinct populations 

have also been proposed (Remington 1968; Mackauer 1976).  Unfortunately, the utility of these various 

approaches is still largely untested in biocontrol programs because both the intraspecific lineages of the 

various geographic areas of the parasitoid species must be determined, and then common garden 

experiments with the various lineages has to be conducted to reveal whether local adaptations favors the 

establishment of certain lineages.   



20 
 

The research presented in this review has tackled both issues by distinguishing distinct 

intraspecific lineages of host-parasitoid systems that have re-ordered themselves in introduced areas. 

Overall, these studies suggest that multiple factors encompassing both coevolution and ecological fitting 

are important when an introduced parasitoid associates with a host, and can occur simultaneously in one 

system. For example, the data on the origins of M. stigmatizans, P. saulius, and P. mediterraneus 

associated with exotic herbivores suggest that the invading natural enemy populations were derived from 

numerous sources; allopatric, sympatric and/or a novel host species. Coevolution can be an important 

factor in an exotic plant-herbivore association (e.g., Balkan Turkey oaks and Andricus kollari gall wasps), 

but ecological fitting readily occurs when local parasitoid species are recruited on exotic herbivores, as 

documented in the previous section. However, their impact on exotic herbivore population levels may be 

lower. This highlights the diversity of mechanisms that must be considered when trying to predict the 

outcome of community-level modifications, including the intentional release of biocontrol agents.   

Although there are numerous studies that have documented the co-introduction of plants and 

herbivores fewer studies have incorporated co-introduced natural enemies, and the resulting tri-trophic 

associations in the introduced range. However, such co-introduced multitrophic studies are needed to 

understand the importance of shared population histories on species interactions in the native range and 

the introduced range. With the advent of cheaper molecular markers for non-model organisms, 

discovering the population origins and spread of multiple exotic species is more feasible. Once population 

histories are known for each trophic level, experimental assays need to be conducted to corroborate the 

species associations of plants, herbivores and parasitoids seen in the field.  Also, studies are needed to 

address whether parasitoid populations that have host-switched onto novel host species can persist.  



21 
 

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

native 

native 

exotic 

native exotic 

exotic 

A 

B 

C D E 

F 

Introduced Range  

exotic 

exotic 

exotic 

Coevolution 

Local Adaptation 

Coevolution 

Local Adaptation 

Mis-Matches        

- Environmental  

- Population 

Mis-Matches 

Environmental, Population 

native exotic 

G 

H 

native 

I J K L 

Ecological Fitting 

Ecological 

Fitting 
Ecological 

Fitting 
Non-

coevolved 

Host Plant 

Coevolved 

Host 
Non- 

coevolved 

Host 

Biotic Resistance 

Non-

coevolved 

Host Plant 

Non- coevolved 

Host 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Trophic interactions that could occur between a native or exotic plant with exotic or native herbivores and parasitoids. Exotic refers to 
the introduced species and are colored blue. Native refers to the species already present in the introduced area and are colored green. Trophic 
associates that share the same color share the same population origin. Species with a red circle and line through them indicate no association with 
the lower trophic level The text boxes overlaying each arrow are the hypotheses or theories that may have shaped each interaction and are 
discussed in the text, with the letters next to each species used as reference. 
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CHAPTER 2: THE RAPID ESTABLISHMENT AND SPREAD OF THE INTRODUCED PARSNIP 

WEBWORM (DEPRESSARIA PASTINACELLA, LEPIDOPTERA: DEPRESSARIDAE) DESPITE A 

GENETIC BOTTLENECK 

 

 

Introduction 

How biological communities assemble across space and time has been a major question in 

ecology (Weiher and Keddy 1999). Given the dramatic increase in the number of invasive and introduced 

organisms around the world (Sala et al. 2000; Nentwig 2009; Simberloff et al. 2013), this question has 

never been more important. Although studies on invasion biology have historically focused on single 

exotic species of concern and how it impacts native communities (Elton 1958; Lodge 1993a, b; 

Simberloff 1996; Wilcove et al. 1998), numerous studies now document the occurrence of species within 

multitrophic interactions being introduced to novel ranges, simultaneously or gradually, over time 

(Gröbler and Lewis 2008; Nicholls et al. 2010; Stone et al. 2012; Wang et al. 2013). Tracing the invasion 

routes of co-introduced species that share a close evolutionary history in their native range can address 

many questions regarding community re-assembly. For example, what is the relative importance of long-

term historical associations between species in the ancestral range to shaping interactions in the 

introduced range? Alternatively, are these coevolved, co-introduced species less likely to re-associate, 

particularly if alternate, ecologically similar local species are available?  

Within terrestrial ecosystems, there are numerous examples of exotic plants and their natural 

enemies moving in tandem, particularly plants and their insect herbivores (O’Dowd et al. 2003; Grosholz 

2005; Green et al. 2011). These co-introductions have been a result of both intentional human 

introduction of the plant (e.g., cultivation) and insect (e.g., biological control) or accidental, assisted by 

human trade or travel. Although much theoretical and empirical data have been collected on plant-

herbivore community assembly, few studies have incorporated population history into models of 

multispecies interactions (Hober and Brooks 2008; Smith et al. 2011; Whiteman et al. 2007) because of 

the lack of detailed knowledge of the coevolutionary relationships between species in multitrophic 
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systems. One interaction whose reciprocal selective impacts have been well documented is that of the 

wild parsnip (Pastinaca sativa L.) (Apiaceae) and its primary herbivore, parsnip webworm (Depressaria 

pastinacella; Lepidoptera: Depressariidae) (Berenbaum and Zangerl 1992; Berenbaum and Zangerl 1998; 

Zangerl and Berenbaum 2003). Wild parsnip and parsnip webworm have both been introduced to North 

America and New Zealand, allowing us to investigate the relative importance of historical, shared 

population histories on plant-herbivore species assembly in two different habitats.  

Parsnips are native to Eurasia and have been cultivated for more than five centuries (Cain et al. 

2010). The current global distribution and invasive status of wild parsnip in temperate climates may have 

been linked originally to its cultivation as a food crop (Cain et al. 2010). The relationship between wild 

and cultivated parsnips is unclear, but recent evidence using molecular markers indicates they are 

genetically similar (Jogesh et al. 2015). Parsnips were introduced in eastern North America in the early 

17th century (Sturtevant 1890), and have since spread throughout the United States, becoming widely 

naturalized. In addition to being introduced into North America, wild parsnip also occurs as an invasive 

species in southern South America, South Africa, China, Australia, and New Zealand (Jogesh et al. 2015). 

In New Zealand, the first written record of wild parsnip in North America dates to 1867 (Webb 1978).  

The parsnip webworm has followed its host plant into these new ranges. Webworm larvae 

construct webs around part of the umbel and feed primarily on buds, flowers, and developing fruits 

(Berenbaum et al. 1993; Nitao and Berenbaum 1988), causing substantial reductions to host plant fitness.  

Wild parsnips produce furanocoumarins, allelochemicals that are broadly biocidal because they 

intercalate DNA and interfere with transcription (Berenbaum 1990). Selection for chemically-based 

resistance occurs in plant populations by increasing concentrations of three furanocoumarins: 

xanthotoxin, bergapten, and sphondin (Berenbaum et al. 1986; Zangerl and Berenbaum 1993).  Genetic 

variation also exists in webworm populations in the rate at which these furanocoumarins are metabolized 

(Berenbaum and Zangerl 1992) indicating that plant chemistry can act as a selective force on insect 

physiology.  
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In the United States (U.S.), the arrival of parsnip webworm occurred in the mid-nineteenth 

century (Bethune 1869; Riley 1889), approximately 200 years after the arrival of parsnips. In New 

Zealand, parsnip webworms were first reported in 2004, more than 125 years after the arrival of parsnip 

plants (Zangerl et al. 2008).  In both the U.S. and New Zealand, the parsnip webworm has re-associated 

with wild parsnips, but within the U.S., webworms have also formed novel associations with the native 

cow parsnip (Heracleum maximum, Apiaceae).  

Cow parsnip is a monocarpic species common in shady, moist habitats and is found throughout 

North America (Hendrix 1984; Berenbaum and Zangerl 1991). Although, parsnip webworm attacks 

another species of Heracleum in Europe, the common hogweed H. sphondylium, which is chemically and 

phylogenetically closely related to wild parsnips (Batten et al. 1982, Downie et al. 2000), webworms have 

not previously interacted with cow parsnip prior to its arrival in the U.S. 

The overall aim of this study was to investigate the structure of webworm populations within 

Europe, the U.S., and New Zealand. We tested two hypotheses. First, we wanted to test the hypothesis 

that parsnip webworms in the introduced ranges of the U.S. and New Zealand have a level of genetic 

diversity comparable to that found in parsnip webworm populations in the native range of Europe. 

Second, we hypothesize that parsnip webworm populations will have a high degree of population 

structure based on the furanocoumarin profiles of the host plant species on which they attack.  

Specific to our first hypothesis, we asked, “How are webworms able to establish in ranges 

ecologically dissimilar from their native range?” In western Europe, webworms have been found at 

elevations slightly below sea level up to 100m and within 6° of latitude (Ode et al. 2004; Berenbaum and 

Zangerl 2006). In contrast, since their introduction to the U.S., webworms have established widely in 

North America, ranging in the north from Nova Scotia to British Columbia, in the south to Washington 

DC, and westward to Arizona (Riley 1889; Hodges 1974; Berenbaum and Zangerl 1991; McKenna and 

Berenbaum 2003). In some of these areas, webworms have been collected at elevations up to 2600m 

above sea level (Ode et al. 2004). In addition to these varying environmental conditions, webworms in the 

introduced ranges are also establishing on host plant species with varying phenologies. 
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In Europe, adult webworms oviposit on host plants, prior to plant bolting (Berenbaum and 

Zangerl 2006). Upon hatching, webworm larvae feed initially on meristems and eventually move to infest 

floral structures (Nitao and Berenbaum 1988; Berenbaum et al. 1993). Larvae ready to pupate leave the 

flowering parts and burrow into the hollow stem (Nitao and Berenbaum 1988; Berenbaum et al. 1993). 

Parsnip webworms are univoltine, and adults emerge in late summer, enter reproductive diapause in 

autumn, overwinter, and become active again in early spring (Nitao and Berenbaum 1988; Berenbaum et 

al. 1993). Although host plant species in the western U.S. follow a similar phenology to European host 

plant species, this is not the case in the midwestern U.S. nor in New Zealand. 

In the midwestern U.S., host plant phenology is shifted to earlier in the season, with wild parsnips 

bolting in early May, flowering in June, and setting seed in mid-late July 1993). In mid-April, prior to 

host plant bolting, parsnip webworm adults oviposit on rosette leaves (Gorder and Mertins 1984; Nitao 

and Berenbaum 1988). Although webworms in the midwest feed on wild parsnip and cow parsnip, 

phenological differences do exist between them (Zangerl et al. 2002). The perennial cow parsnip tends to 

flower several weeks earlier even at the same sites where the biennial wild parsnip is found (Berenbaum, 

pers. obs.).  

Aside from being in the Southern Hemisphere, which causes New Zealand parsnip rosettes to bolt 

in late November, flower throughout December and set seed in mid-late January; webworms oviposit in 

early December, after the plants have already bolted (Jogesh et al. 2014).  

The ability of a species to respond to different ecological conditions in the introduced range has 

been attributed to increased levels of genetic variation, created by either multiple introductions or a single 

introduction event with a genetically diverse founding individuals (Ellstrand and Schierenbeck 2000; 

Kolar and Lodge 2001). Although numerous studies have reported reduced levels of genetic variation in 

introduced populations (Barett and Kohn 1991; Tsutsui et al. 2000; Havill et al. 2006; Puillandre et al. 

2007; Schmid-Hempel et al. 2007; Dlugosch and Parker 2008), others have found genetic diversity in the 

introduced range was the same as or higher than that in the native range (Bossdorf et al. 2005; Genton et 

al. 2005; reviewed in aquatic invasions by Roman and Darling, 2007).    
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Previous population genetics studies on wild parsnip introductions also provides support to our 

hypothesis that introduced parsnip webworm populations have at least similar levels of genetic diversity 

to European populations. Wild parsnip populations in the introduced ranges of the U.S. and New Zealand 

had high genetic diversity in both regions, suggesting multiple introductions (Jogesh et al. 2015). These 

same routes of introduction could have been exploited by the parsnip webworm, potentially creating 

multiple introduction events. Multiple introduction events increase the levels of genetic diversity by 

bringing together unusually large amounts of variation and novel genetic combinations, and can be 

common in invasions (Ellstrand and Schierenbeck 2000; Bossdorf et al. 2005; Novak and Mack 2005). 

Specific to our second hypothesis, we asked, “What is the amount of gene flow between 

webworm populations attacking different host plant species?” Plant furanocoumarin chemistry can act as 

a selective agent on webworm metabolism (Zangerl and Berenbaum 1993) and webworms can act as a 

selective agent on plant chemistry (Berenbaum et al. 1986). Phenotype matching between plant defense 

and webworm detoxification profiles have been documented in European (Berenbaum and Zangerl 2006) 

and midwestern U.S. populations (Zangerl and Berenbaum 2003), and the level of matching varies 

geographically within regions (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003). However, it 

is unclear the amount of geneflow occurring between these geographically widespread regions of 

webworm populations, as no studies to date have investigated the population genetics of webworms.  

As outlined in Figure 2.1, Berenbaum and Zangerl (2006) characterized the level of phenotype 

matching in three plant-webworm associations in Europe. First, populations of European wild parsnip 

without webworms had lower levels of xanthotoxin and bergapten (Fig. 2.1A). Second, wild parsnip 

populations with webworms had overall higher concentrations of furanocoumarins, and these webworms 

had increased detoxification capability to match wild parsnip (Fig. 2.1B). Lastly, hogweed populations 

had overall lower concentrations of furanocoumarins and increased rates of infestation by webworms that 

had decreased detoxification capabilities compared to webworms on wild parsnip (Fig 2.1C). In these 

instances, webworms are found attacking hogweed in greater numbers than wild parsnip, even though 

they suffer greater rates of attack by its primary parasitoid, Copidosoma sosares (Hymenoptera: 
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Encyrtidae), most likely due to the overall lower furanocoumarin concentrations of hogweed (Ode et al. 

2004).  Does the degree of phenotype matching influence the level of gene flow between webworms 

attacking hogweed and webworms attacking wild parsnip within Europe? If so, we expect to see a high 

degree of genetic isolation based on the host plant species on which European webworms occur. 

Phenotype matching between plant defenses and insect detoxification profiles also exist in the 

introduced range of the U.S. (Fig 2.1 D-K). In areas of the midwestern U.S. where webworms have only 

wild parsnip available, webworms with higher detoxification capacities matching the chemistry of wild 

parsnip had higher levels of survivorship in 60% of the populations examined (Berenbaum and Zangerl 

1998; Zangerl and Berenbaum 2003; Fig. 2.1E). In the remaining 40% of populations in which 

webworms were mismatched with wild parsnip populations, wild parsnips had significantly higher 

xanthotoxin, imperatorin, and sphondin concentrations (Zangerl and Berenbaum 2003), and webworms 

suffered reduced growth (Zangerl and Berenbaum 1993; Fig. 2.1F). Webworms appear to use cow parsnip 

preferentially as a host plant where it is available in central Illinois (Zangerl et al. 2002) even though it 

suffers higher rates of predation by birds while pupating in cow parsnip stems and the higher 

concentrations of imperatorin and sphondin in cow parsnip (Zangerl and Berenbaum 2003) results in 

reduced webworm growth (Berenbaum and Zangerl 1991; Fig. 2.1G).  

In the western U.S., where cow parsnip is the more abundant host plant species, the majority of 

webworm populations examined were found to have high levels of metabolic detoxification capabilities 

(Carroll and Berenbaum 2006; Fig. 2.1H-K). This was the case irrespective of the level of 

furanocoumarin concentrations, which differed based on the presence of the European introduced primary 

parasitoid of webworms, C. sosares (Fig. 2.1I, K). Does the degree of phenotype matching influence the 

level of gene flow between webworms attacking wild parsnip and webworms attacking cow parsnip 

within the U.S.? If so, we expect to see a high degree of genetic isolation based on the host plant species 

on which U.S. webworms occur. 

Specific to the U.S, we can also ask, “Are U.S. webworm populations derived from European 

webworm populations attacking wild parsnip (high levels of furanocoumarins) or hogweed (low levels of 
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furanocoumarins)?” The various detoxification capacities documented in U.S. webworm populations that 

feed on wild parsnip and cowparsnip populations (Fig. 2.1E-K) suggests multiple European webworm 

populations from both European host plant species were introduced to the U.S. However, within the U.S., 

not all webworm populations are phenotypically matched to the furanocoumarin concentrations of their 

host plant species (Fig. 2.1F, G, I, K), suggesting two possibilities. First, webworm gene flow could be 

restricted within the U.S. leading to isolated populations of webworms feeding on the only available host 

plant. Second, contrary to our first hypothesis, there could be little genetic variation within introduced 

webworm populations. Zangerl et al. (2002) suggested the persistent use of cow parsnip by webworms 

even though they suffer higher predation and higher levels of furanocoumarins could be due to a loss of 

host plant discrimination because of reduced genetic variation during introduction.  

Within New Zealand, webworm populations are only found on wild parsnip populations. The lack 

of an alternate host plant species in New Zealand does not allow us to test whether webworm populations 

are structured by the furanocoumarin concentrations of their host plant species. However, by identifying 

the source populations of New Zealand webworms, we can address the potential detoxification 

capabilities of the introduced webworms. New Zealand wild parsnips differ substantially in chemical 

composition from those of European and U.S. parsnips (Zangerl et al. 2007). Almost all of New Zealand 

populations examined fell into a furanocoumarin phenotype cluster distinct from the phenotypes of 

Europe and the U.S., characterized by lower levels of imperatorin, bergapten, and isopimpinellin and 

slightly above-average levels of xanthotoxin (Zangerl et al. 2007). If multiple populations of European (or 

U.S.) webworms were introduced to New Zealand, there would exist the genetic variation in webworm 

detoxification capabilities to establish on New Zealand wild parsnips with these strikingly different 

furanocoumarin profiles. 

A mitochondrial marker with population level variability was used to test these hypotheses. 

Mitochondrial DNA (mtDNA) is widely used in phylogeographic studies, due to its low or absent 

recombination, uniparental inheritance, conserved structure and relatively high evolutionary rate (Moritz 

et al. 1987; Harrison 1989; Avise 2000). The analysis of intraspecific mtDNA variation can reveal 
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information about the interconnectivity of populations and past demographic events such as genetic 

bottlenecks after introduction.  

Materials and Methods 

Samples 

Larvae and pupae of parsnip webworms were collected from wild parsnip, cow parsnip, or 

common hogweed plants from 23 sites in the United States between 2004-2013, 19 sites in Europe 

between 2004-2012, and 9 sites in New Zealand in 2012. GPS coordinates, elevation, and host plant 

species were recorded for each sample (Table 2.1). Webworms were collected from a variety of public 

lands, roadways, and rights of way. For those sites within National Forest Service lands, collection 

permits from the U.S Department of Agriculture-Forest Service were obtained, none of the collected 

specimens are protected organisms.  New Zealand parsnip webworm larvae were collected and 

immediately placed in 100% ethanol until further processing. Eastern U.S. webworms were collected as 

pupae, immediately frozen, and stored in a -80°C ultralow freezer until further processing. European and 

western U.S. parsnip webworm were collected as either larvae or pupae. To check for the presence of the 

egg-larval parasitoid, C. sosares, within field collected larvae, individuals were maintained in 30mL solo 

cups and fed seeds from their respective host plants until pupation (not parasitized). Upon pupation, 

webworms were moved to glass vials until adult emergence. Both field-collected pupae and those larval 

samples that pupated after collection were maintained in a 27ºC with a LD 16:8 h incubator until adult 

emergence.  Adults were immediately frozen and stored in a -80°C ultralow freezer until further 

processing. 

DNA extraction, amplification and sequencing 

Genomic DNA was extracted using a Genomic DNA-Tissue MiniPrep Kit (Zymo Research) in 

accordance with the manufacturer’s instructions for solid tissue.  Webworm tissue was ground in a 1.5 

mL centrifuge tube using a Kontes pestle (Kimble) and incubated for 2 hours at 56°C.  Since pupae, 

larvae, and adults were collected, the type of tissue varied with life stage.  Legs of adult webworms were 
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used, while the posterior three segments of larval and pupal samples were used.  Isolated DNA was 

checked for quantity and purity using the BioTek Epoch Take3 plate reader.      

Several mitochondrial genes were amplified to screen for intraspecific variable markers, 

including the cytochrome oxidase subunit 1 (COI), cytochrome b, and NADH dehydrogenase subunits 4 

and 5 using primers described in Table 2.2. Ultimately, one mtDNA gene, ND 5, was chosen for 

phylogenetic analyses based on its higher variability within and between collections.  Polymerase chain 

reaction (PCR) was performed on either an Eppendorf Mastercycler gradient or Thermo Scientific PCR 

machine.  PCR reactions were performed in a 20 µL reaction volume containing 2.5 µL of 10X PCR 

Buffer (100mM Tris-HCl, 500mM KCl, 15 mM MgCl2), 2.5 mM of each dNTP, 5 pmol of each primer, 

0.625 U of TaKaRa Taq HotStart Version polymerase (Clontech), 2.5 µL of genomic DNA template, and 

up to 20 µL of sterile distilled water. The thermal profile consisted of an initial denaturation for 2 minutes 

at 94°C, followed by 40 cycles of 30 seconds at 94°C, 30 seconds at 59°C, and 30 seconds at 65°C, with a 

subsequent final 5 minute extension at 70°C.  Successfully amplified samples were sent to the University 

of Arizona Genetics Core for clean-up, quantification, and DNA sequencing on an ABI 3730 DNA 

Analyzer (Applied Biosystems).  Each sample was sequenced in both directions using PCR primers.  

Sequence data were manually checked using CHROMASLITE and reverse sequences were used to resolve 

ambiguous base calls in the forward sequence.  The sequencing region was checked for an open reading 

frame using EXPASY online translation tool using the invertebrate mitochondrial codon table.  Sequences 

were aligned using CLUSTAL W (Thompson et al. 1994). No insertions, deletions, or stop codons were 

observed. The sequence dataset of the mitochondrial ND 5 was truncated to the same length (703bp) and 

translated to amino acid sequences to check for nuclear mitochondrial pseudogenes (numts). The 

haplotype sequence matrix for ND 5 was used for all subsequent phylogenetic analyses.  

Phylogenetic Analysis 

Standard molecular diversity indices were calculated using DNASP v5 (Librado and Rozas 2009; 

http://www.ub.edu/dnasp/). Diversity calculations included the number of haplotypes, the number of 

segregating (polymorphic) sites, the nucleotide diversity, the mutation rate within codon position, and 
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haplotype diversity of all variable nucleotide sites. The DNA polymorphism using the sliding window 

method was estimated for the determination of the number of segregating sites (S) across each portion of 

the mtDNA sequences, set with a window length=100 and a step size = 25 (Librado and Rozas, 2009).  

A phylogenetic tree was constructed using the maximum-likelihood method in the program 

package MEGA version 7 (Kumar et al 2016). The tree was rooted using Endrosis sarcitrella 

(Lepidoptera: Oecophoridae) as an outgroup (GenBank Accession #KJ508037.1). 

Population structure 

 Genetic diversity within populations was estimated by computing haplotype diversity (H) and 

nucleotide diversity (π). Haplotype diversity (also known as gene diversity) represents the probability that 

two randomly sampled alleles are different, while nucleotide diversity is defined as the average number of 

nucleotide differences per site in pairwise comparisons among DNA sequences. Partitioning of genetic 

variation within and among populations was calculated using analysis of molecular variance (AMOVA; 

Excoffier et al 1992), by computation of conventional F-statistics from haplotypes with 10000 

permutations as implemented in the program ARLEQUIN v. 3.5 (Excoffier and Lischer 2010). More 

specifically, genetic variation was calculated within Europe (native range), within the U.S (introduced 

range) and within New Zealand (introduced range) to test whether introduced U.S. and New Zealand 

webworm populations had similar levels of genetic variation to European populations (hypothesis 1). 

Additionally, because of the large geographical distance between parsnip webworms in the midwestern 

U.S. (Illinois and Wisconsin) and the western U.S. sites, we performed an AMOVA between eastern and 

western U.S. parsnip webworms to test whether these two regions are genetically distinct. 

We constructed 3 models that reflect different genetic structures across the landscape: 1) linear 

geographical distance, 2) elevational differences, and 3) clustering of sites into groups based on host plant 

species (hypothesis 2). To test these models, we employed several grouping schemes. For the first model, 

we calculated linear distances between sites from GPS coordinates for the collected specimens. We 

clustered sites within 50 linear km of each other to assess isolation by distance. We constructed the 

second model based on the extreme elevational differences between European and western U.S. sites and 
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between western and midwestern U.S. sites. Elevation (m) data was recorded from each site during 

collection and we clustered sites within 50 linear km of each other and with less than 50 m elevation 

difference. The difference in elevation between clusters was used to assess isolation by elevation. Both 

models were assessed with the Mantel test (Mantel 1967) with 10,000 permutations, using Slatkin’s 

linearized FST (Slatkin 1995). New Zealand samples were excluded from analyses testing genetic isolation 

due to the lack of genetic diversity occurring among the sites. 

We constructed the third model to test our second hypothesis that webworms will assemble based 

on host plant species, because of the documented reciprocal co-evolution occurring between webworms 

and parsnip plants. Since some sites and regions contained webworms collected from more than one host 

plant species, we clustered webworms within each site and region based on the host plant species on 

which they were collected. We used this clustering method in model 3 to perform two AMOVA analyses 

within the U.S. and within Europe; 1) among European individuals collected from wild parsnip or 

hogweed, and 2) among U.S. individuals collected from cow parsnip or wild parsnip. New Zealand 

webworms were excluded from this analysis since they were only collected from one host plant species, 

wild parsnip. Additionally, we performed a series of eight AMOVA analyses between webworms from 

the U.S., New Zealand, and Europe collected from different host plant species to assess whether 

webworms assembled differently between the introduced ranges and the native range: 1) among European 

individuals collected from wild parsnip and U.S. individuals collected from wild parsnip, 2) among 

European individuals collected from wild parsnip and U.S. individuals collected from cow parsnip, 3) 

among European individuals collected from hogweed and U.S. individuals collected from cow parsnip, 4) 

among European individuals collected from hogweed and U.S individuals collected from wild parsnip, 5) 

among European individuals collected from hogweed and New Zealand individuals (all are from wild 

parsnip), 6) among European individuals collected from wild parsnip and New Zealand individuals, 7) 

among U.S individuals collected from wild parsnip and New Zealand individuals, and 8) among U.S. 

individuals collected from cow parsnip and New Zealand individuals.  
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To determine the potential source populations of U.S. and New Zealand webworm populations 

pairwise linearized FST values (Slatkin 1995) were estimated as implemented in ARLEQUIN v. 3.5. by 

haplotype frequencies. Very low and non-significant FST values between populations indicate a close 

relationship, whereas high and significant FST values between populations indicate no or very distant 

relationship.  

Results 

Phylogenetic analyses 

A total of 722 webworm individuals, all sequenced at a 703bp length of the ND 5 gene were used 

in analyses. Overall there were 11 polymorphic (segregating) sites leading to the definition of 13 

haplotypes (Fig 2.2, 2.4). There were 149.33 synonymous sites and 549.67 nonsynonymous sites, due to 

the high frequency of A-T nucleotide bases over the entire sequence (0.818). The majority of individuals 

fell within two haplotypes; Hap1 (0.165) and Hap2 (0.791). Haplotype 2 has a global distribution, 

representing webworms collected in Europe, the U.S., and New Zealand (Fig. 2.4, Table 2.3). 

Additionally, Hap2 represents webworms collected from all host plant species; wild parsnip, cow parsnip, 

and common hogweed. Five haplotypes were unique to Europe (Hap 3, 4, 6, 8, 9), and six haplotypes 

were unique to the U.S. (Hap 5, 7, 10, 11, 12, 13; Fig. 2.5).  Haplotype 1 is mostly confined to European 

populations, except for 2 individual webworms collected from a site in Illinois (midwestern U.S.). All 

New Zealand samples were Hap2. Eight of the 13 haplotypes were singletons, in which a single 

individual contained that particular sequence. Excluding the singletons, Hap4 is the only haplotype 

confined to a single collection site (Netherlands M). Overall, across all collection sites, the haplotype 

diversity was 0.347, and the mutation rates of the different codon positions were 0.5162, 0.9588, and 

1.5268 for 1st, 2nd, and 3rd positions, respectively. The high mutation rate at the second codon position is 

unusual, and may be attributed to the high frequency of A-T nucleotide bases at the second codon position 

(proportion AT = 0.718), which increases the number of transversions at this position.  



35 
 

Introduced webworm populations underwent a severe bottleneck 

The molecular diversity indices within each region (Europe, the U.S., and New Zealand) revealed 

a high level of haplotype diversity in Europe (𝜃𝜋 = 0.67 ± 0.57), very little haplotype diversity in the U.S. 

(𝜃𝜋 = 0.04 ± 0.12), and no haplotype diversity in New Zealand (𝜃𝜋 = 0.00 ± 0.00; Table 2.3). This is 

further supported by the AMOVA analyses within and between European, U.S., and New Zealand 

populations. Variation among the four European collection sites differed significantly (P < 0.001), with 

the highest percentage of variation occurring within the European sites (65.83%, Table 2.4). On the other 

hand, there were no significant differences among the 10 sites in the U.S. (P = 0.18; Table 2.4), including 

no significant differences between western and midwestern U.S. sites (P = 0.08).  

The low genetic diversity of U.S. webworm populations is additionally supported by the pairwise 

linearized FST values (Table 2.7). Sites within the U.S. did not have significantly high pairwise FST 

values, indicating that U.S. webworm populations are all genetically similar. Within Europe, Denmark 

and the Netherlands significantly differed between the rest of the European collections (Germany, United 

Kingdom, Ireland); whereas Germany, the United Kingdom, and Ireland were similar (Fig 2.4). Overall 

this indicates European webworm populations are highly structured, with the most distinct populations 

occurring between Denmark and the Netherlands (Fig 2.4B, Table 2.7).   

Source Populations of U.S. and New Zealand Webworms 

Between the U.S. and European sites, the highest pairwise linearized FST Slatkin’s values were 

found between all U.S. sites and Denmark (FST values ranged from 4.77 to 13.68; P < 0.001 in all 

comparisons; Table 2.7) and the Netherlands (FST values ranged from 0.62 to 1.16; P < 0.001 in all 

comparisons). The lowest values were found between Ireland and all of the U.S. sites (FST values ranged 

from 0 to 0.06; P > 0.05 in all comparisons), between the United Kingdom and six U.S. sites (Montana, 

FST = 0; Black Hills, FST= 0.03; the Wasatch Mountains, FST = 0.02; Medicine Bow Mountains, FST = 

0.02; Wisconsin, FST = 0.02; Illinois, FST = 0.03; P > 0.05 for all comparisons), and between Germany 

and Montana (FST = 0.01; P > 0.05), the Wasatch Mountains (FST = 0.09, P > 0.05), and the Medicine 

Bow Mountains (FST = 0.09; P > 0.05). The Slatkin’s FST values for the New Zealand sites and European 
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sites were all significantly high (FST = 0.07 - 13.45; P < 0.001), except for Ireland (FST = 0; P > 0.05), 

while the values were all significantly low for New Zealand and the U.S. (FST = 0 – 0.23; P > 0.05). The 

similarity between Ireland, United Kingdom, and Germany webworm populations to U.S. webworm 

populations indicate the British Isles and Germany are likely source populations (Fig. 2.3). Additionally, 

the U.S., and not Europe, is a likely source for New Zealand populations based on the significantly low 

Slatkin’s FST values between the U.S and New Zealand. 

 The low levels of genetic diversity in the introduced range of the U.S and New Zealand leads us 

to reject our hypothesis that U.S. webworms were multiply introduced from genetically diverse source 

populations or underwent a single introduction event with many founders from genetically diverse 

sources (hypothesis 1). 

U.S. webworm populations are structured by host plant species 

The AMOVA analyses based on host plant species within Europe revealed parsnip webworms 

collected from hogweed sites did not significantly differ from those webworms collected from wild 

parsnip sites (P = 0.292; Table 2.5), even though furanocoumarin levels have been shown to be 

significantly different (Berenbaum and Zangerl 2006). Within the U.S., webworms from wild parsnip 

sites slightly differed from those webworms collected from cow parsnip sites (P = 0.078; Table 2.5). 

Additionally, 3 unique haplotypes occurred only in webworms feeding on cow parsnip (Hap 5, 7, 11; 

Table 2.3), and 3 unique haplotypes occurred only in wild parsnip-feeding webworms (Hap 10, 12, 13; 

Table 2.3). Collectively, these results follow previous findings that wild parsnip and cow parsnip have 

different furanocoumarin profiles in the U.S. (Zangerl et al. 2002; Zangerl and Berenbaum 2003; Carroll 

and Berenbaum 2006).  

To determine whether a webworm population feeding on a specific host plant species in Europe 

served as the founding webworm population in the introduced ranges, we did a series of AMOVAs 

between each possible host plant species interactions across the three ranges (Europe, New Zealand, and 

the U.S.). European webworms from wild parsnip sites and U.S. webworms from wild parsnips were 

different, albeit slightly (P = 0.058; Table 2.6). European webworms from hogweed and U.S webworms 
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from wild parsnip (P = 0.168) were not significantly different. This matches our earlier finding that 

British Isles webworms served as the founding population of U.S. webworms, because all British Isles 

webworms were collected from hogweed. Not surprisingly, U.S. webworms from cow parsnips are 

significantly different from all European webworms, regardless of host plant species (between European 

wild parsnip, P < 0.05; between European hogweed, P < 0.05). Combined with our earlier finding that 

webworms feeding on cow parsnip are genetically diverged from U.S. wild parsnip-feeding webworms; 

our results indicate European webworm populations feeding on hogweed were introduced to the U.S., 

established on U.S. wild parsnip, then host-switched to cow parsnip. 

New Zealand webworm populations were only collected from wild parsnip, and these populations 

were not significantly different from any of the webworm populations in the U.S. nor Europe, regardless 

of host plant species (P > 0.05; Table 2.6). Due to the universal presence of Hap2 in New Zealand 

webworms and the lack of an alternate host plant species in New Zealand, our mtDNA marker, which 

reveals historical levels of geneflow, was not able to recover any significant signal in these recently 

introduced populations. 

Isolation by distance (IBD) 

Within the United States, the correlation analysis revealed the lack of a significant association 

between genetic distance and 1) geographic distance (Mantel test, P = 0.28; Fig. 2.5B), or 2) elevational 

differences (Mantel test, P= 0.53; Fig. 2.6B). Within Europe, geographic distance revealed a significant 

positive association (Mantel test, P < 0.05, Fig. 2.5A) while elevational difference did not (Mantel test, P 

= 0.21; Fig. 2.6A). Overall, within Europe, differing furanocoumarin profiles of the two different host 

plant species are not hindering geneflow between webworm populations, rather sites are isolated by 

distance alone.     

Discussion 

There is ample evidence documenting the co-introduction of plants and their herbivorous insects 

into novel habitats (Gröbler and Lewis 2008; Nicholls et al. 2010; Stone et al. 2012; Wang et al. 2013). 

Once introduced, herbivores may re-associate with their host plant species of shared origin, switch host 
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plants, or instead attack novel species that lack a shared history. Within the parsnip-webworm system, 

webworms have re-associated with their coevolved host plants (U.S., New Zealand), and have host plant 

switched to a novel species (onto cow parsnip in the U.S.). Using a molecular marker, we determined the 

British Isles served as the main source of U.S. webworm populations, but these introductions were either 

few in number, or consisted of large numbers of founders with very little genetic variation. This is further 

supported by the genetic similarity between U.S. webworms feeding on wild parsnip and European 

webworms feeding on hogweed (P = 0.168; Table 2.6), because all British Isles webworm samples were 

collected from hogweed populations (Table 2.1).  

The loss of genetic variability of webworms in the introduced range of New Zealand is even more 

drastic, as indicated by the presence of only a single haplotype (Hap2). This could be due to a single 

introduction compounded by its very recent introduction to New Zealand less than 20 years ago. Although 

our results indicate U.S. webworm populations are more likely to serve as the source population for New 

Zealand than Europe, the global distribution of Hap2 does not allow us to say this with certainty. The 

high proportion of webworms in the U.S. that have Hap2 (0.982) compared to Europe (0.505) does 

increase the probability of a webworm with Hap2 coming from the U.S., but we lack any further 

molecular indices to test this conclusion. The low genetic variation of parsnip webworms in the 

introduced range could have resulted either from a single introduction, selection after introduction to the 

new environment, or fixation because of genetic drift. The loss of genetic variation in introduced 

populations relative to source populations has occurred in several different taxa ((Barett and Kohn 1991; 

Tsutsui et al. 2000; Havill et al. 2006; Puillandre et al. 2007; Schmid-Hempel et al. 2007; Dlugosch and 

Parker 2008). 

Our molecular data also allowed us to test the amount of geneflow within European and within 

U.S. webworm populations. Phenotype matching between host plant furanocoumarin concentrations and 

webworm detoxification profiles has been documented in European (Berenbaum and Zangerl 2006) and 

midwestern U.S. populations (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003). Based on 

these studies, we hypothesized that webworm populations would be locally adapted to their respective 



39 
 

host plant species, with little to no gene flow occurring between wild parsnip and hogweed in Europe, and 

between wild parsnip and cow parsnip in the U.S.  

Within Europe, our molecular data revealed that webworms from the Netherlands and Denmark 

are genetically isolated from each other, and from webworms in the British Isles and Germany, yet this 

genetic isolation is not correlated with host plant species, rather with geographic distance alone. The 

majority of genetic variation does not occur among European webworms feeding on wild parsnip and 

hogweed (4.068%, Table 2.5), rather among European webworm populations feeding on wild parsnip and 

among European webworm populations feeding on hogweed (36.887%, Table 2.5), and further still, 

within these individual populations (59.044%, Table 2.5). We formed our hypothesis based on studies 

examining furanocoumarin levels and webworm detoxification profiles in Europe, where wild parsnip 

populations, on average, have higher furanocoumarin concentrations and hogweed populations have 

overall lower furanocoumarin levels (Ode et al. 2004; Berenbaum and Zangerl 2006). As a result, 

webworms on wild parsnip have higher furanocoumarin-detoxification capacities, whereas webworms 

feeding on cow parsnip have reduced detoxification capacities (Ode et al. 2004; Berenbaum and Zangerl 

2006). However, these studies were restricted to Netherlands populations, where webworms are most 

abundant (Ode et al. 2004).  To date, no studies have examined the furanocoumarin content of host plants 

in other European host plant populations, nor the metabolic capacity of other European webworms. Yet, 

our molecular data indicates that, at least in the Netherlands, geneflow is not hindered between 

webworms with high metabolic capacities feeding on wild parsnip and webworms with low metabolic 

capacities feeding on cow parsnip.  

As mentioned earlier, geographic distance alone is significantly correlated with the amount of 

gene flow between European webworm collection sites. There was a significant genetic dissimilarity 

between webworm populations on the British Isles and webworms in the Netherlands, Belgium, and 

Denmark, but a genetic similarity with German webworms (Fig. 2.4B; Table 2.7). This indicates a lack of 

mixing between webworms in the British Isles and continental Europe, with the English Channel acting 

as a likely barrier to gene flow. The initial introduction of webworms to the British Isles likely occurred 
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from Germany, based on the nonsignificant FST values between Germany and the British Isles (United 

Kingdom, P = 0.182; Ireland, P = 0.119; Table 2.7), and significant values between the British Isles 

populations and all other European sites (P < 0.001; Table 2.7). Although Germany is geographically 

farther from the British Isles than either Belgium or the Netherlands, the German webworms used in this 

study were collected from the North Sea coast of Germany, close to Jade Bay (site C) and Dollart Bay 

(site A) and the northern peninsula of Germany (site D), indicating a close geographic proximity 

increased the likelihood of German webworm populations reaching the British Isles. 

Within the U.S., despite the low level of genetic diversity in webworms, we were still able to 

recover a slight signal that webworms feeding on cow parsnip are different than webworms feeding on 

wild parsnip (P = 0.078). This signal is most likely caused by the fact that three webworm haplotypes are 

unique to cow parsnip populations (Hap 5, 7, 11; Table 2.3), and three haplotypes unique only to wild 

parsnip populations (Hap 10, 12, 13; Table 2.3). This result follows previous findings on webworm 

metabolic capacities and the level of matching to wild parsnip and cow parsnip furanocoumarin profiles 

(Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003; Carroll and Berenbaum 2006). The 

majority of our U.S. webworm samples collected on wild parsnip came from midwestern sites, whose 

furanocoumarin metabolism rates have been shown to vary across wild parsnip populations with varying 

levels of furanocoumarins (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003; Fig. 2.1E-F). 

For the majority (60%) of these populations examined webworms were phenotypically matched with wild 

parsnip chemotypes. The remaining 40% of webworm populations were phenotypically mis-matched due 

to the presence of the alternate host plant species, cow parsnip (Zangerl and Berenbaum 2003; Fig. 2.1G). 

In the western U.S., furanocoumarin metabolism rates did not vary among webworm populations (Carroll 

and Berenbaum 2006), instead western webworms displayed metabolism rates near the maximum rates 

reported for webworms in the midwest (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003). 

Additionally, there were significant mis-matches between metabolic capacities and host plant 

furanocoumarins, even though only one host plant species was present (Carroll and Berenbaum 2006).  

Our results indicate host plant-switching by webworms has led to genetic divergence from webworms that 
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feed on U.S. wild parsnip, and coupled with findings from previous studies (Berenbaum and Zangerl 

1998; Zangerl and Berenbaum 2003; Carroll and Berenbaum 2006), this genetic difference coincides with 

the fact that only webworms with high metabolic capacities are establishing on cow parsnip populations 

(Carroll and Berenbaum 2006). Not surprisingly, we also found European webworms feeding on both 

host plant species are genetically divergent from U.S webworms feeding on cow parsnip (European wild 

parsnip P = 0.0147; European hogweed, P = 0.035; Table 2.6)  

Although theory suggests genetic bottlenecks lead to lost opportunities for adaptive evolutionary 

change and can decreases a species’ success, there is evidence to the contrary (Brooks and Endler 2001a, 

b; Gilchrist et al. 2001; Koskenen et al. 2002a, b; Frankham 2005; Lindholm et al. 2005). For example, 

the European bumblebee, Bombus terrestris, is a highly invasive species in Tasmania, but genetic data 

revealed the initial founding population contained a very small number of individuals, potentially as few 

as two (Schmid-Hempel et al. 2007). The potato tuber moth, Tecia solanivora, has also successfully 

invaded South America and the Canary Islands in less than 20 years despite a genetic bottleneck 

(Puillandre et al. 2007). North American herbarium collections of wild parsnips spanning the 152 years 

pre- and post-introduction of webworms suggest introduced webworms had high adaptive potential 

despite a genetic bottleneck.  Before and shortly after webworms were introduced to the U.S. (1850-1889) 

wild parsnips were lower in furanocoumarins than all plants collected post-introduction and lower than 

European plant samples collected before 1889 (Zangerl and Berenbaum 2005). Within 60 years after the 

introduction of webworms, wild parsnip furanocoumarin levels started to increase (Zangerl and 

Berenbaum 2005). Consistent with increased plant defenses, between 1930 and 1969 webworm 

infestation rates began to decline (Zangerl and Berenbaum 2005). After 1969, webworm infestation levels 

started to increase, indicating evolution of webworm resistance to increased levels of plant 

furanocoumarins (Zangerl and Berenbaum 2005).  

Overlaying our results with data from herbarium specimens, the initial founding population of 

webworms into the U.S in the late 19th century came from the British Isles. These founding populations 

did not contain high levels of genetic variation. However, the wild parsnip plants available at the time of 
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their arrival had low levels of furanocoumarins, providing no resistance against webworm attack. Over 

time, the lack of genetic variation and potential lack of variation in metabolic capacities would have 

reasonably slowed the establishment of webworms on wild parsnip with increased furanocoumarin levels. 

However, in a matter of 40 years, webworms were able to adapt to wild parsnip increased defenses.  

In addition to U.S. wild parsnip populations having low plant defenses during the initial 

introduction of webworms, the lack of webworm natural enemies could have aided in the successful 

establishment of webworms despite a genetic bottleneck. The parsnip webworm suffers high rates of 

parasitism by its primary parasitoid, C. sosares, in its native range, with attack rates often exceeding 80% 

(Ode et al. 2004). Although C. sosares has also followed parsnip webworm in the U.S, its distribution is 

patchier, resulting in areas of enemy-free space (Ode et al. 2004). In fact, populations of parsnip 

webworm in eastern and midwestern North America are largely free from any significant natural enemy 

pressure (Ode et al. 2004).  The loss of natural enemies at the start of an introduction could have allowed 

parsnip webworms to quickly spread and establish in the U.S. and New Zealand, but additional studies are 

needed to assess the introduction history of C. sosares (see chapter 4).       

As mentioned earlier, Hap2 has a global distribution, occurring in European, U.S. and New 

Zealand webworms and indeed this haplotype is found on all three host plant species. Although Jogesh et 

al. (2015) found high levels of genetic diversity within wild parsnip populations across ranges, the 

majority of plants (79%) also shared a single haplotype (in the internal transcribed spacer (ITS) region). 

The prevalence of a single, global haplotype shared by the majority of populations across ranges is not 

unique to this plant-webworm system, but has also been documented in other species (Tsutsui et al. 2001; 

Downie 2002; Havill et al. 2006). The position of Hap2 in the phylogenetic tree indicates this haplotype is 

more recent than the other haplotypes. Both Europe and the U.S. contain webworms exhibiting 7 unique 

haplotypes, but the occurrence of singletons was higher in the U.S, with 6 of the 7 haplotypes only 

collected from one webworm individual. Although western and midwestern U.S. sites did not 

significantly differ between haplotype frequency, it is interesting to note that midwestern sites had a 
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higher number of unique haplotypes, only found in the midwest (Hap 10, 11, 12, 13), than all sites 

combined in the western U.S. (Hap 5, 7).  

This study provides evidence that parsnip webworms harbor high genetic diversity in their native 

range of Europe, but a significantly lower level in the introduced ranges of the U.S. and New Zealand, 

indicating a genetic bottleneck. Yet, webworms were able to establish and rapidly spread throughout their 

introduced ranges despite low genetic diversity. This could be due to two possible reasons; 1) wild 

parsnip populations in the U.S. had low levels of plant defenses during the initial introduction of 

webworms, and 2) no natural enemies followed webworms into the U.S, initially, and none have been 

documented in New Zealand.  One possible consequence of low genetic diversity within the U.S., is 

phenotype mis-matching between the novel cow parsnip and webworm detoxification profiles. The 

acquisition of the non-coevolved cow parsnip by webworms in the U.S has also led to genetic divergence 

from webworms feeding on their coevolved plant species. In contrast, European webworm populations 

are not restricted to the host plant species on which they feed, and webworm populations from both host 

plant species are genetically similar. Parsnip webworms were sampled extensively in the native and 

introduced ranges, suggesting that the reduction of genetic diversity was not a result of sampling bias and 

our molecular data are an accurate representation of genetic diversity. Future studies documenting the 

furanocoumarin content and webworm detoxification capabilities from additional sites in Europe, the 

U.S., and New Zealand will provide further support to our findings. 
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Western United States (introduced range) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: Illustration of host plant species and webworm interactions documented within Europe, the midwestern U.S., and the western U.S. 

Next to each host plant is the furanocoumarin content that has been reported for each interaction. Next to each webworm is the level of infestation, 

if reported, and their overall level of detoxification capability when compared to webworms feeding on the same host plant species. Above the 

larval webworm is the primary parasitoid of webworms, Copidosoma sosares. Next to C. sosares is the rates of parasitism, if known. Illustrations 

with a red cross through them indicate the species is not present within the interaction. Colored boxes labelled as “Matched” and “Mis-Matched” 

refer to whether plant furanocoumarin profiles and webworm detoxification capabilities are matched or mis-matched. Letters across the top are 

used as a reference within the text. 

  

Wild Parsnip 

↑ overall 

[furanocoumarin] 

↑ detoxification 

capability 

H J 

Cow Parsnip Wild Parsnip 

↓ overall 

[furanocoumarin] 

↑ detoxification 

capability 

I 

↑ overall 

[furanocoumarin] 

↑ detoxification 

capability 

Cow Parsnip 

↓ overall 

[furanocoumarin] 

↑ detoxification 

capability 

K MIS-MATCHED MIS-MATCHED MATCHED MATCHED 



46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Phylogenetic tree of haplotype sequence data using maximum likelihood method based on the 

JTT matrix-based model (Jones et al. 1992). The tree with the highest log likelihood (-938.3542) is 

shown. Bootstrap values > 50 are shown at the branches, values < 50 were collapsed. Haplotypes with the 

greatest proportion of webworm individuals have an increased font size. A discrete Gamma distribution 

was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4631)). The 

tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis 

involved 14 amino acid sequences and a total of 232 positions in the final dataset. Evolutionary analyses 

were conducted in MEGA7 (Kumar et al. 2016).   
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Figure 2.3: Neighbor-joining tree was constructed in POPTREE2 (Takezaki et al. 2010) using linearized 

Slatkin’s pairwise FST values for European webworm populations and all U.S. populations. U.S. 

populations were collapsed together and New Zealand populations were excluded from analysis because 

of the lack of haplotype diversity. Bootstrap was run for 10000 replications, bootstrap values > 50 are 

listed at the branches, values < 50 are collapsed and not show
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Figure 2.4: Proportion of parsnip webworm individuals with each ND 5 haplotype at each collection site (A: United States, B: Europe). The size of 

each pie chart represents the number of samples at each site (≥ 30, or < 30 samples) 
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Figure 2.5: The correlation between genetic distance (linearized Slatkin’s FST) and geographic distance 

(km) in the mtDNA region, ND 5, of parsnip webworm sites within Europe (A) and within the U.S. (B). 
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Figure 2.6: The correlation between genetic distance (linearized Slatkin’s FST) and elevational differences 

(m) in the mtDNA region, ND 5, of parsnip webworm sites within Europe (A) and within the U.S. (B).  
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Tables 

Table 2.1: Locality information (country/region, latitude, longitude), the host plant species parsnip 

webworms were collected from, and the number of individual parsnip webworms used in analysis (n). 

Collection Latitude Longitude Plant species n 

Europe (native range) 

Netherlands-E N 52° 28' 6.84" E 6° 6' 51.42" H. sphondylium 8 

Netherlands-G N 51° 59' 11.60" E 5° 40' 20.63" H. sphondylium 7 

Netherlands-H N 51° 56' 49.38" E 5° 45' 21.78" H. sphondylium 53 

Netherlands-I N 52° 3' 42.78" E 5° 11' 45.24" P. sativa 11 

Netherlands-K N 52° 29' 31.2" E 4° 54' 4.26" H. sphondylium 13 

Netherlands-M N 53° 5' 30.84" E 5° 22' 36.78" P. sativa 27 

Netherlands-N N 50° 52' 52.44" E 5° 54' 22.86" H. sphondylium 3 

Belgium-A N 50° 57' 24.9" E 5° 41' 38.22" H. sphondylium 5 

Denmark-B N 55° 49' 4.38" E 9° 47' 20.46" H. sphondylium 13 

Denmark-C N 55° 53' 0.42" E 9° 49' 33.84" P. sativa 1 

Denmark-D N 56° 5' 47.04" E 10° 3' 9" P. sativa 18 

Denmark-E N 55° 18' 33.06" E 9° 29' 56.58" H. sphondylium 5 

Germany-A N 53° 11' 30.84" E 7° 23' 26.34" H. sphondylium 23 

Germany-C N 53° 22' 54.78" E 8° 16' 15.06" P. sativa 2 

Germany-D N 54° 11' 37.74" E 9° 38' 39.06" H. sphondylium 9 

Ireland-1 N 52° 13' 19.14" W 7° 21' 24.48" H. sphondylium 15 

Ireland-2 N 53° 24' 53.7" W 6° 48' 28.68" H. sphondylium 4 

United Kingdom N 50° 35' 29.46" W 2° 2' 15.96" H. sphondylium 69 

United States (introduced range) 

San Juans-AE N 36˚59'30" W 106˚46'52.8" P. sativa 6 

San Juans-H N 38˚11'0.84" W 107˚03'13.98" H. maximum 41 

San Juans-T N 36˚50'36.06" W 106˚34'13.38" P. sativa 12 

San Juans-S N 37˚13'58.08" W 106˚46'29.46" H. maximum 22 

Montana-Z N 44° 51' 55.56" W 111° 33' 18.78" H. maximum 8 

Sangre de Cristo-J N 35˚46'19.92" W 105˚42'5.58" H. maximum 51 

Wasatch-K N 39° 55' 48.84" W 111° 38' 27.72" H. maximum 16 

Elk Mountains-F N 39˚22'11.52" W 106˚40'51.96" H. maximum 3 

Bighorns-C N 44˚11'17.04" W 105˚51'34.92" H. maximum 11 

Medicine Bow-AC N 40˚24'25.62" W 106˚48'23.94" P. sativa 15 

Black Hills-B N 44˚04'35.7" W 103˚38'20.76" H. maximum 5 

Black Hills-P N 44˚25'17.1" W 103˚52'54.6" H. maximum 3 

Illinois-W N 40° 5' 0.708" W 88° 13' 34.4958" P. sativa 7 

Illinois-PT N 40° 7' 51.4956" W 88° 13' 34.4958" P. sativa 9 

Illinois-C/P N 40° 6' 24.4548" W 88° 27' 46.8966" P. sativa 8 

Illinois-100E N 40° 6' 25.0236" W 88° 27' 33.3144" P. sativa 13 

Illinois-Rt10 N 40° 6' 22.9356" W 88° 28' 21.5796" P. sativa 9 

Illinois-106 N 40° 6' 24.0336" W 88° 27' 47.7396" P. sativa 3 

Wisconsin-Jayco N 43° 32' 54.5712" W 90° 48' 57.549" P. sativa 8 
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Wisconsin-KHS N 43° 29' 22.56" W 90° 49' 45.915" P. sativa 4 

Wisconsin-Wayside N 43° 28' 36.8868" W 90° 49' 45.915" H. maximum 12 

Wisconsin N 43° 31' 23.7894" W 90° 42' 53.3982" 
H. maximum 12 

P. sativa 12 

Wisconsin-DC N 43° 25' 13.6128" W 90° 46' 11.1894" H. maximum 7 

New Zealand (introduced range) 

New Zealand-Crimp S 45° 54' 0.1044" E 170° 26' 24.0324" P. sativa 2 

New Zealand-Kane S 45° 53' 59.622" E 170° 26' 28.8198" P. sativa 3 

New Zealand-Lumber S 45° 53' 59.0856" E 170° 26' 33.6114" P. sativa 7 

New Zealand-Townley S 45° 53' 32.6832" E 170° 27' 28.605" P. sativa 4 

New Zealand-Ocean S 45° 42' 3.441" E 170° 36' 9.8562" P. sativa 7 

New Zealand-Cottage S 45° 40' 44.1192" E 170° 37' 29.424" P. sativa 8 

New Zealand-Rock S 45° 39' 21.312" E 170° 38' 28.5936" P. sativa 8 

New Zealand-Bush S 45° 28' 16.359" E 170° 46' 24.4452" P. sativa 2 

New Zealand-Moeraki S 45° 21' 48.9774" E 170° 50' 55.7406" P. sativa 5 
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Table 2.2: Primers to amplify segments of Depressaria pastinacella mitochondrial DNA (mtDNA). Ta 

(°C), annealing temperature used during PCR.  

Gene/ 

Region 

 

Primer Name Sequence (5’-3’) 
Ta 

(°C) 
Reference 

COI 
LepF1 F: ATTCAACCAATCATAAAGATATTGG 

60° Hebert et al. 2004 
LepR1 R: TAAACTTCTGGATGTCCAAAAAATCA 

COI 
K698 F: TACAATTTATCGCCTAAACTTCAGCC 

55° Simmons and Weller 2001 
PAT2K837 R: TCCATTACATATAATCTGCCATATTAG 

Cyt b 
CYTBF_PS F: CCGAAAAACTCACCCAATTT 

60° 
developed from Park et al 

2014* CYTBR_PS R: CCCGTTTGCATGGATAGTTC 

Cyt b 
REVCB2H F: TGAGGACAAATATCATTTGAGGT 

59° Simmons and Weller 2001 
REVCBJ R: ACTGGTCGAGCTCCAATTCATGT 

ND4 
LF02-S01-F1 F: TTATAATACCHCCAATWAC 

54° Kim et al 2014 
LF02-S01-R1 R: GGTTTAATTTTATTAAGAATTTG 

ND5 
LF01-S09-F1 F: AWAHTTCTCTTCAACCYAWATC 

46.7° Kim et al 2014 
LF01-S09-R2 R: GCTTTATCWACTTTAAGWCA 

*Park et al (2014) sequenced the entire mitochondrial genome of Promalactis suzukiella (Lepidoptera: 

Oecophoridae), which is the closest phylogenetic species to parsnip webworm that had a complete mitochondrial 

genome sequenced, at the time of this study. Primers were developed flanking the cytochrome b gene in Promalactis 

suzukiella.  
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Table 2.3: Molecular diversity indices within populations of Europe, the United States, and New Zealand 

ND 5 haplotypes. Numbers of individuals (N), number of haplotypes (Nh), and haplotype diversity (𝜃𝜋  ±

𝑠. 𝑑)  

Collection N Nh Haplotypes 𝜃𝜋  ± 𝑠. 𝑑 

Europe 287 7 Hap 1, 2, 3, 4, 6, 8, 9,  0.67 ± 0.57  

  Denmark 37 2 Hap 1, 2 0.15 ± 0.24 

  Netherlands 128 5 Hap 1, 2, 3, 4, 6 0.78 ± 0.63 

  Germany 34 3 Hap 1, 2, 3 0.45 ± 0.46 

  United Kingdom 69 4 Hap 1, 2, 8, 9 0.28 ± 0.36 

  Ireland 19 1 Hap 2 0.00 ± 0.00 

United States 380 7 Hap 2, 5, 7, 10, 11, 12, 13 0.04 ± 0.12 

  San Juan Mtns. 1 40 1 Hap 2 0.00 ± 0.00 

  San Juan Mtns. 2 41 1 Hap 2 0.00 ± 0.00 

  Montana 11 2 Hap 2, 5 0.18 ± 0.29 

  Sangre de Cristo Mtns. 51 1 Hap 2 0.00 ± 0.00 

  Elk Mountains 88 2 Hap 2, 7 0.02 ± 0.09 

  Black Hills 19 1 Hap 2 0.00 ± 0.00 

  Wasatch Mtns. 16 1 Hap 2 0.00 ± 0.00 

  Medicine Bows 15 1 Hap 2 0.00 ± 0.00 

  Wisconsin 56 4 Hap 2, 10, 11, 13 0.14 ± 0.23 

  Illinois 43 3 Hap 1, 2, 12 0.09 ± 0.18 

  New Zealand 53 1 Hap 2 0.00 ± 0.00 
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Table 2.4: Analysis of molecular variance (AMOVA) (Excoffier et al. 1992) for parsnip webworm 

collections, using ND 5 haplotype frequencies. Significance levels; *P < 0.05, **P < 0.001, ***P < 

0.0001. 

 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European populations  4 26.83 0.13 34.17 0.000*** 

Within European populations 282 69.07 0.24 65.83  

Total 286 95.90 0.37   
      

Among U.S. populations 9 0.24 0.00 0.76 0.179 

Within U.S. populations 370 7.73 0.02 99.24  

Total 379 7.97 0.02   
      

Among Europe and U.S. 1 30.25 0.08 33.05 0.0167* 

Among populations within Europe 

and U.S. 
13 27.07 0.05 19.39 0.000*** 

Within populations 652 76.81 0.12 47.56 0.000*** 

Total 666 134.12 0.25   
      

Among Europe and New Zealand 1 8.28 0.01 2.21 0.334 

Among populations within Europe 

and New Zealand 
4 26.83 0.13 37.37 

0.000*** 

Within populations 334 69.07 0.21 60.42 0.000*** 

Total 339 104.18 0.34   
      

Among U.S. and New Zealand 1 0 0 -1.6 0.442 

Among populations within U.S. and 

New Zealand 
9 0.24 0 1.26 0.182 

Within populations 422 7.73 0.02 100.35 0.170 

Total 432 7.98 0.02   
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Table 2.5: Analysis of molecular variance (AMOVA) (Excoffier et al 1992) between host plant species 

parsnip webworms were collected, within the native range (Europe) and the introduced range (U.S.), 

using ND 5 haplotype frequencies. Significance levels; *P < 0.05, **P < 0.001, ***P < 0.0001 

 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and 

hogweed  

1 6.935 0.015 4.068 0.292 

Among populations within European 

wild parsnip and hogweed 

5 27.371 0.137 36.887 0.000*** 

Within populations 280 61.597 0.220 59.044 0.000*** 

Total 286 95.902 0.373   
      

Among U.S. wild parsnip and cow 

parsnip 
1 0.047 0.000 0.764 0.078 

Among populations within U.S. wild 

parsnip and cow parsnip 
11 0.252 0.000 0.360 0.351 

Within populations 368 7.674 0.021 98.876 0.239 

Total 380 7.974 0.021   
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Table 2.6: Analysis of molecular variance (AMOVA) (Excoffier et al 1992) between host plant species 

parsnip webworms were collected, between native range (Europe) host plants species and introduced 

range (U.S. and New Zealand) host plant species, using ND 5 haplotype frequencies. Significance levels; 

*P < 0.05, **P < 0.001, ***P < 0.0001. 

 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and U.S 

wild parsnip  
1 17.355 0.204 48.38 0.058 

Among populations within European 

wild parsnip and U.S wild parsnip 
4 6.967 0.065 15.38 0.000*** 

Within populations 154 23.516 0.153 36.25 0.000*** 

Total 159 47.837 0.421   
      

Among European wild parsnip and U.S 

cow parsnip 
1 22.681 0.223 69.83 0.0147* 

Among populations within European 

wild parsnip and U.S cow parsnip 
9 6.992 0.025 7.72 0.000*** 

Within populations 328 23.536 0.072 22.46 0.000*** 

Total 338 53.209 0.319   

Among European hogweed and U.S cow 

parsnip 
1 17.961 0.060 29.59 0.035* 

Among populations within European 

hogweed and U.S cow parsnip 
12 20.656 0.050 24.54 

0.000*** 

Within populations 494 45.755 0.092 45.87 0.000*** 

Total 507 84.372 0.202   

Among European hogweed and U.S wild 

parsnip 
1 10.011 0.046 17.02 0.168 

Among populations within European 

hogweed and U.S wild parsnip 
7 20.631 0.083 30.60 

0.000*** 

Within populations 320 45.735 0.143 52.39 0.000*** 

Total 328 76.377 0.273   

Among European hogweed and New 

Zealand wild parsnip 
1 6.144 0.000 -3.01 0.492 

Among populations within European 

hogweed and New Zealand wild 

parsnip 

4 20.517 0.121 45.66 

0.000*** 

Within populations 275 41.908 0.152 57.35 0.000*** 

Total 280  0.266   

Among European wild parsnip and New 

Zealand wild parsnip 
1 12.993 0.039 8.43 0.679 

Among populations within European 

wild parsnip and New Zealand parsnip 
1 6.853 0.247 52.86 

0.000*** 

Within populations 109 19.689 0.181 38.71 0.000*** 

Total 111 39.536 0.467   

Among U.S wild parsnip and New 

Zealand wild parsnip 
1 0.020 0.000 -1.59 0.605 

Among populations within U.S wild 

parsnip and New Zealand parsnip 
3 0.114 0.000 1.99 

0.439 

Within populations 149 3.827 0.026 99.59 0.155 
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Total 153 3.961 0.026   

Among U.S cow parsnip and New 

Zealand wild parsnip 
1 0.002 0.000 -1.84 

0.398 

Among populations within U.S cow 

parsnip and New Zealand parsnip 
8 0.139 0.000 1.58 

0.294 

Within populations 323 3.847 0.012 100.26 0.220 

Total 332 3.988 0.012   
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Table 2.7: Estimates of parsnip webworm subpopulation differentiation from Slatkin’s linearized pairwise FST values between and within 

collection sites in Europe, the United States, and New Zealand using ND 5 haplotypes. Significant comparisons indicate the pairs are significantly 

different and are marked with an asterisk(s) based on significance level; P < 0.05*, P < 0.001** 
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Netherlands 0.17** 

Germany 2.19** 0.41** 

United Kingdom 3.45** 0.66** 0.08 

Ireland 8.23** 0.80** 0.11 0.03 

U
n

it
ed

 S
ta

te
s 

San Juan Mtns. 1 11.46** 0.94** 0.18** 0.06* 0 

San Juan Mtns. 2 11.61** 0.94** 0.18** 0.06* 0 0 

Montana 4.77** 0.62** 0.01 0 0.06 0.17 0.17 

Sangre de Cristo Mtns. 13.15** 1.00** 0.22** 0.07* 0 0 0 0.22 

Elk Mtns. 13.68** 1.16** 0.26** 0.08** 0 0 0 0.14 0 

Black Hills 8.23** 0.80** 0.11* 0.03 0 0 0 0.06 0 0 

Wasatch Mtns. 7.77** 0.78** 0.09 0.02 0 0 0 0.04 0 0 0 

Medicine Bow Mtns. 7.61** 0.77** 0.09 0.02 0 0 0 0.03 0 0 0 0 

Wisconsin 6.40** 0.87** 0.10** 0.02 0 0.01 0.01 0 0.02 0.01 0 0 0 

Illinois 6.70** 0.84** 0.10** 0.03 0 0.02 0.02 0 0.03 0.02 0 0 0 0 

 New Zealand 13.45** 1.013** 0.22** 0.07** 0 0 0 0.23 0 0 0 0 0 0.02 0.03 
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CHAPTER 3: DEVELOPMENT OF NOVEL MICROSATELLITE MARKERS FOR THE 

POLYEMBRYONIC PARASITOID WASP, COPIDOSOMA SOSARES (HYMENOPTERA: 

ENCYRTIDAE) 

 
 
Introduction 

Copidosoma sosares (Walker) (Hymenoptera: Encyrtidae) is a specialized polyembryonic 

parasitoid wasp whose sole known host is the parsnip webworm, Depressaria pastinacella (Duponchel) 

(Lepidoptera: Depressariidae), a specialist herbivore that feeds exclusively on the reproductive tissues of 

apiaceous plants within the genera Pastinaca, Heracleum, and Angelica (Apiaceae) (Hardy 1996; Ode et 

al. 2004). In its native range in Europe, C. sosares attacks D. pastinacella feeding on wild parsnip, P. 

sativa (L.) and the common hogweed, H. sphondylium (L.). In its introduced range within the United 

States, C. sosares attacks parsnip webworm populations that feed on both the introduced wild parsnip and 

the cow parsnip (H. maximum Bartram), a plant native to North America. Like all copidosomatine 

encyrtids, C. sosares is a polyembryonic egg-larval parasitoid.  Female C. sosares adults oviposit in the 

egg stage of their webworm host and progeny complete development in the host’s final (sixth) instar.  

Development time from egg to adult wasp is approximately 30 days.  C. sosares produces all-male and 

all-female broods by laying single male or female eggs, and mixed-sex broods by laying one male and 

one female egg per host (Lampert et al. 2008).  During host development, C. sosares egg(s) proliferate 

clonally, producing clutch sizes ranging from 100 to 300 genetically-identical offspring per host (Ode et 

al. 2004; Lampert et al. 2008).  Like its webworm host, C. sosares is univoltine.  Males and females 

immediately mate after emergence in late summer; females must overwinter as adults before maturing 

eggs the following late spring to early summer.  

The population genetics of this species has yet to be examined, as no genetic markers have been 

developed to date.  Polymorphic microsatellites are well suited to investigating a variety of phenomena in 

C. sosares including paternity analysis, analysis of mating populations, patterns of introduction and 
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spread across ranges, and population level associations with their host.  Here we describe the 

development and characterization of nine variable microsatellite loci in C. sosares. 

Materials and Methods 

Samples 

Copidosoma sosares broods were collected from the western United States (U.S.) during the 

summer of 2004 from parasitized parsnip webworms feeding on wild parsnip or cow parsnip. These 

individuals were used for microsatellite library construction. Additional C. sosares broods collected from 

7 western United States and 4 European sites between 2004 and 2012 were used for microsatellite loci 

characterization across variable populations (Table 3.1).  Within Europe, parasitized parsnip webworms 

are also found feeding on the common hogweed plant, H. sphondylium and were also collected for this 

study. In total, 296 individuals were used; 117 females and 81 males from the U.S., and 69 females and 

29 males from Europe.  Genomic DNA was extracted using the DNeasy Tissue Kit (Qiagen) in 

accordance with the manufacturer’s instructions for solid tissue.  A single adult female from all-female 

and mixed-sex broods, and a single adult male from all-male broods were ground using a Kontes pestle 

(Kimble) in the extraction mixture and incubated for 3 hours at 56°C. Isolated DNA was checked for 

quantity and purity using the BioTek Epoch Take3 plate reader.     

Isolation and characterization of microsatellite loci 

Adult C. sosares individuals were sent to the Life Sciences Core Laboratories Center at Cornell 

University for microsatellite library construction. Library construction followed modified protocols from 

Hamilton et al. (1999). CODONCODE ALIGNER software (version 2.0.3) was used to trim vector and linker 

sequences and to determine which sequences formed contigs.  Contigs were assembled from scratch and 

“slip ends” and “trim vector” options were enabled in the preprocess step.  Sequences were aligned with 

built-in assembly algorithm.  Sequences that met the minimum criteria for repeat length and amount of 

flanking sequence were exported as fasta files.  From these sequences primers were designed, tested, and 

genotyped.  The software PRIMER 3 (Rozen and Skaletsky 2000) was used to design primers between 18 

and 35 bases long with annealing temperatures between 50°-70°C.   
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Polymerase chain reaction (PCR) 

PCR reactions were performed on either an Eppendorf Mastercycler gradient thermal cycler 

(www.eppendorfna.com) or a Thermo Scientific Arktik thermal cycler (www.thermoscientific.com).  A 

twelve-degree Celsius annealing temperature gradient was run for each primer pair. PCR was performed 

in a 25 µL reaction volume containing 2.5 µL of 10X PCR Buffer (100 mM Tris-HCl, 500 mM KCl, 15 

mM MgCl2), 2.5 mM of each dNTP, 5 pmol of each primer, 0.625 U of TaKaRa Taq HotStart Version 

polymerase (Clontech), 2.5 µL of genomic DNA template extracted from a single adult, and up to 25 µL 

of sterile distilled water.  The thermal profile consisted of 2 min at 94°C followed by 40 cycles of 94°C 

for 30 s, the optimal annealing temperature for 30 s (Table 3.2), and for 65°C for 30 s with a final 

extension of 70°C for 5 min.  Loci exhibiting discrete bands on an agarose gel had one primer re-

synthesized with a fluorescent phosphoramidite dye (6-FAM, HEX).  The PCR products and Genescan 

size standard ROX 500 were genotyped at the University of Arizona Genetics Core on a ABI 3730 DNA 

Analyzer (Applied Biosystems) and the resulting genotype data were analyzed using ABI GeneMapper 

software (version 4).  Loci that were polymorphic and had reduced allelic stutter were deemed appropriate 

for use in C. sosares populations.  The heterozygosities, expected (HE) and observed (HO), null allele 

frequencies (r), and inbreeding coefficient (FIS) were analyzed for each population using GENEPOP (ver. 

4.1.4; Rousset 2008). Additionally, because our dataset included populations from the ancestral range of 

C. sosares in Europe as well as introduced populations of C. sosares (U.S.), we investigated whether null 

allele frequencies differed at each locus from each of these two ranges. Since our microsatellite library 

was constructed from individuals collected in the U.S., null allele frequencies in Europe might be higher 

due to divergence of introduced populations compared to ancestral European populations. This 

information will be important for future studies seeking to investigate the population structure within 

Europe (see chapter 4). Because of the haplodiploid nature of inheritance, only diploid, female data were 

included in analyses of observed and expected heterozygosity, and haploid, male data were excluded.  
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Results and discussion 

Microsatellite library construction identified 34 candidate loci, of which 12 were ultimately 

chosen for detailed screening based on amplification success and levels of polymorphism. Seven of the 12 

loci were polymorphic with 3-9 alleles per locus (Table 3.2), but only 5 of the 7 were consistently 

amplified across all samples and regions. Inbreeding coefficients and the null allele frequency ranged 

from -0.04 to 0.74 and 0 to 0.73, respectively (Table 3.3). After Bonferroni correction, only one locus 

(Csos 4) significantly deviated from Hardy-Weinberg Equilibrium (HWE, P < 0.05) across all 

populations sampled. When the data was partitioned by location (European and U.S populations), loci 

Csos 2, Csos 3, and Csos 4 in European populations conformed to HWE (P > 0.05), whereas loci Csos 1, 

Csos 2, and Csos 3 in the U.S. conformed to HWE (P > 0.05). No pairs of loci demonstrated linkage 

disequilibrium neither across all populations nor when the data was partitioned into European and U.S 

populations (P > 0.05). Heterozygosity for locus Csos 3 was lower than expected and had the highest null 

allele frequency across all loci in European populations tested (avg. = 0.442), but not in U.S populations 

(avg. = 0.185) suggesting segregating null alleles are a common occurrence within locus Csos 3 in 

Europe. Locus Csos 5 had significantly reduced amplification success in all but the Netherlands samples, 

suggesting the flanking regions of the microsatellite repeat motif in the other ten populations no longer 

bind the designed primers.  In males, null allele frequencies ranged from 0.134 - 0.350. The null allele 

frequencies were inferred by the number of “unamplified samples” as males are haploid. However, it is 

possible that the null allele frequencies were overestimated as absence of amplification could be attributed 

to other factors. 

The main aim of this study was to develop molecular markers for C. sosares for use in studies of 

parasitoid biology and evolutionary ecology. The congener of C. sosares, C. floridanum, has been used in 

studies on kinship (Ode and Strand 1995; Giron et al. 2004; Giron and Strand 2004), competition (Strand 

et al. 1990; Harvey et al. 2000; Utsunomiya and Iwabuchi 2002; Uka et al. 2006; Bowker et al. 2015), 

developmental biology (Baehrecke and Strand 1990; Strand and Ode 1990; Baehrecke et al. 1992; Grbic 

et al. 1996; Corley et al. 2005; Donnell et al. 2006; Gordon and Strand 2009), and social biology (Grbic et 
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al. 1997; Giron et al. 2007; Segoli et al. 2009) owing to its unique polyembryonic development and 

evolution of a larval caste system inside its host caterpillar. C. sosares exhibits many of these same 

features, but has rarely been studied, mainly due to the difficulties associated with maintaining C. sosares 

lab cultures. As a result, most experimental work on C. sosares is conducted on field populations, making 

the development and use of molecular markers for C. sosares necessary. The reciprocal selection between 

parsnip webworms and its hostplant, wild parsnip, have been studied extensively (Berenbaum and 

Zangerl 1992; Berenbaum and Zangerl 1998; Berenbaum et al. 1993; Zangerl and Berenbaum 2003; 

Zangerl et al. 2008). Recently, this relationship has been extended to include C. sosares to better 

understand tritrophic dynamics (Ode et al. 2004; Lampert et al. 2008; Lampert et al. 2011). These results 

indicate microsatellite markers for C. sosares are well suited for use as genetic markers for elucidating the 

population structure of C. sosares. 
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Tables 

Table 3.1: Collection sites of C. sosares, the number of broods collected from each site, the host plant 

species from which parasitized parsnip webworm hosts were collected, and the number of individuals 

from each site subsequently used in microsatellite characterization. 

 

 Collection Sites Hostplant n 

United States   Female Male Total 

Black Hills  N 44°14' 9.34" W 103°28' 57.79" H. maximum 32 19 51 

Bighorns N 44˚11'17.04" W 105˚51'34.92" H. maximum 32 17 49 

Elk Mountains  N 39˚22'48.96" W 107˚04'42.24" 
H. maximum 6 18 24 

P. sativa 4 4 8 

San Juan Mtns. N 38˚11'0.84" W 107˚03'13.98" 
H. maximum  12 6 18 

P. sativa 8 3 11 

Sangre de Cristo Mtns. N 35˚46'19.92" W 105˚42'5.58" H. maximum  9 7 16 

Wasatch Range N 39°55' 48.84" W 111°38'27.72" H. maximum 6 5 11 

Montana N 46°42'19.872" W 114°32'14.53" H. maximum 8 2 10 

Europe      

Denmark N 55° 49' 4.38" E 9° 47' 20.46" 
P. sativa 1 2 3 

H. sphondylium 3 4 7 

Belgium N 50° 57' 24.9" E 5° 41' 38.22" H. sphondylium 4 0 4 

Germany N 53° 22' 54.78" E 8° 16' 15.06" P. sativa 17 5 22 

Netherlands N 52° 9' 22.62" E 4° 28' 48" P. sativa 44 18 62 
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Table 3.2: Characteristics of 12 microsatellite loci, tested on samples of C. sosares from populations in 

Europe and the United States, including repeat motif, primer sequences, number of detected alleles (A), 

size range (bp), annealing temperature (Ta) and significant deviation from Hardy-Weinberg equilibrium 

(P < 0.05 for European populations (*) and U.S populations (**). 

 

 

Locus 
Repeat 

Motif 

Primer Sequences (5’-3’) 

(F = forward, R = reverse) 
A 

Fragment 

size (bp) 

Ta 

(°C) 

Csos 1* (CAGA)5-9 
F:GGCAAACAGCTCACTCCGGCA 

R:TCCTTTTCCGTTTCGGGCCGT 
5 463-479 58 

Csos 2 (AG)0-17 
F:GCCGCGTTGCTGGCGTTTTT 

R:AGGAGAGCGCACGAGGGGAG 
9 236-270 50 

Csos 3 (TG)2-4 
F:CGTCGATCCCCGCAGTCACG 

R:TCGAGCTGGACCTCTCGGGC 
3 299-303 50 

Csos 4** (ACAG)5-10  
F:TCCTCTGCAGAAGCGTGGGT 

R:GGCATCCCGAAAGCGCGTTACA 
5 414-534 59.7 

Csos 5 (CAT)4-37 
F:AGGTGGTGGTGGTGTATCATCT 

R:GTTTCGAGTAATCAGTGCGTTGGGAG 
6 261-361 55 

Csos 6 (GTT)21 
F:TTCAATATTCTCGCACTCACG 

R:AGACAAGAAAACGGGGGACT 
1 235 50 

Csos 7 (GTT)6 
F:GGACGGAGACCGAGGAGGGG 

R:CGGCTCCTCTAAGCGCGCAA 
2 254-256 50 

Csos 8 (AC)14 
F:ACCCACTCTTTGATTTTTGCTC 

R:GTTTGATTGTTTAATGGCGGTGGC 
1 302 

55 

 

Csos 9 (AC)10 
F:AGAAGCAGCAACACCCATAG 

R:GTTTGGAAACACAAAGAAAGTCATCC 
1 268 55 

Csos 10 (GT) 
F:GGCTGTCCCCCATTGT 

R:GTTTATCCACCCCGTCATTTCCA 
4 312-320 55 

Csos 11 (GAT)5 
F:CGCGTTTTATATTCACTCGTTCACAC 

R:GTTTCCGGTGCGTCGTTGTCAT 
1 323 55 

Csos 12 (GAT)63 
F:CAATATGTTAATGTCGGTCCAAA 

R:CAACCGCTTCTGCTTGTTTA 
1 298 55 
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Table 3.3: Analysis of 5 polymorphic loci in C. sosares at 11 collection sites using GENEPOP (ver. 4.1.4; 

Rousset 2008) The number of female individuals used in the analysis for each loci (n), the number of 

alleles at each loci (NA), expected heterozygosity (HE), observed heterozygosity (HO), inbreeding 

coefficient (FIS), and null allele frequencies (r).  
Population Loci n NA HE HO FIS r 

Black Hills 

Csos 1 32 3 18.56 9 0.52 0.26 

Csos 2 33 6 22.46 14 0.38 0.13 

Csos 3 32 2 13.12 6 0.55 - 

Csos 4 32 5 21.46 17 0.21 0.16 

Csos 5 2 2 1.00 1 0.000 - 

Montana 

Csos 1 8 3 3.93 3 0.25 0.10 

Csos 2 8 4 4.80 3 0.39 0.13 

Csos 3 8 2 2.60 5 -0.17 - 

Csos 4 6 2 1.71 2 -0.20 - 

Csos 5 NA - - - - - 

Bighorn Mountains 

Csos 1 34 4 17.01 10 0.42 0.19 

Csos 2 34 4 17.35 18 -0.04 0.01 

Csos 3 31 3 15.61 12 0.23 0.12 

Csos 4 32 5 21.84 17 0.22 0.28 

Csos 5 3 2 1 1 0.00 - 

Elk Mountains 

Csos 1 15 1 - - - - 

Csos 2 14 3 8.70 8 0.08 0.01 

Csos 3 14 2 5.93 4 0.33 - 

Csos 4 13 5 9.88 9 0.09 0.23 

Csos 5 NA - - - - - 

Sangre de Cristo 

Mountains 

Csos 1 9 2 1.00 2 0.00 - 

Csos 2 8 2 3.67 1 0.74 - 

Csos 3 8 4 2.67 3 -0.14 0.00 

Csos 4 8 3 5.33 4 0.26 0.33 

Csos 5 2 2 1 1 0.00 - 

Wasatch Range 

Csos 1 4 1 0 0 - - 

Csos 2 4 3 1.86 2 -0.09 0.00 

Csos 3 4 2 1.71 2 -0.20 - 

Csos 4 4 4 3.29 3 0.10 0.21 

Csos 5 1 1 0.00 0 - - 

San Juan Mountains 

Csos 1 26 2 10.43 6 0.43 - 

Csos 2 25 4 15.00 5 0.67 0.26 

Csos 3 23 3 10.02 9 0.10 0.25 

Csos 4 25 5 17.82 16 0.10 0.25 

Csos 5 NA - - - - - 

Denmark 

Csos 1 4 1 0.00 0 - - 

Csos 2 3 3 2.20 2 0.11 0.00 

Csos 3 4 3 2.86 0 1.00 0.73 

Csos 4 4 1 - - - - 

Csos 5 NA - - - -  

Belgium 

Csos 1 4 2 1.71 2 -0.20 - 

Csos 2 4 3 2.71 2 0.29 0.05 

Csos 3 4 2 2.14 1 0.57 - 

Csos 4 4 1 0.00 0 - - 

Csos 5 NA - - - - - 

Germany 

Csos 1 16 5 12.68 8 0.38 0.22 

Csos 2 14 4 9.74 10 -0.03 0.00 

Csos 3 13 3 6.92 3 0.58 0.33 

Csos 4 16 5 11.81 11 0.07 0.01 



69 
 

Csos 5 1 1 - - -  

Netherlands 

Csos 1 43 5 33.32 14 0.58 0.34 

Csos 2 42 7 31.02 23 0.26 0.18 

Csos 3 40 3 23.41 20 0.15 0.26 

Csos 4 42 5 28.25 21 0.26 0.21 

Csos 5 23 4 9.98 8 0.20 0.02 
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CHAPTER 4: THE INTRODUCED PARASITOID WASP, COPIDOSOMA SOSARES 

(HYMENOPTERA: ENCYRTIDAE), EXPLOITS MULTIPLE ROUTES OF INVASION IN PURSUIT 

OF ITS HERBIVOROUS INSECT HOST 

 

 

Introduction 

Species within coevolved trophic networks that experience a range expansion can either re-

associate with populations of the same species in the original coevolved trophic network (Schönrogge et 

al. 1996; Grobler and Lewis 2008), fail to re-associate with one or more species in the original trophic 

network (Allen et al. 2015), or they may create new interactions with novel species at one or more trophic 

level(s) (Godfray et al. 1995; Schönrogge et al. 1996; Thomas et al. 2001; Girardoz et al. 2006: Grobler 

and Lewis 2008; Grabenweger et al. 2010; Harvey and Gols 2011; Fortuna et al. 2012; Fortuna et al. 

2013). For example, the effectiveness of some classical biological control programs has relied on the 

intentionally introduced coevolved enemy re-associating with the exotic pest species in the introduced 

range (Cullen et al. 1982; Cullen and Moore 1983; Giblin-Davis et al. 2001; Evans et al. 2005; Mills 

1994, 2000, 2001). Conversely, the ineffectiveness of some biocontrol agents has been due to their lack of 

re-association with the exotic pest species in the introduced range (Mills 2000; Palmer and Witt 2006).  

In addition, coevolved introduced multitrophic systems have re-ordered themselves without 

human assistance. The invasion of the horse chestnut leaf miner Cameraria ohridella (Lepidoptera: 

Gracillariidae) throughout the European continent serves as an example for the occurrence of new 

interactions with novel species at one or more trophic level(s). In all the invaded areas, C. ohridella is 

attacked by a large number of native European predators and parasitoids (Hellrigl 2001; Grabenweger et 

al. 2005). In some cases, a single multitrophic system can form a variety of interactions in the introduced 

range. For example, the leaf mining moth Phyllonorycter leucographella (Lepidoptera: Gracillariidae) has 

invaded the southern United Kingdom and has re-associated with its ancestral host plant Pyracantha 

coccinea (Rosaceae), which is widely cultivated in the UK (Emmet 1989; Sefrova 2003; Grobler and 



71 
 

Lewis 2008). Additionally, the moth has spread northwards into central Scotland (Bland 2002) and has 

formed a novel association with the UK native plant, Crataegus monogyna (Grobler and Lewis 2008).  

 Although these studies have contributed to the understanding of invasive species ecology and 

more broadly, community assembly, these and other empirical and theoretical studies on coevolved 

interactions have, historically, been concentrated on interactions between pairs of species (Cronin and 

Haynes 2004; Harvey et al. 2010; Harvey and Gols 2011; Stenberg 2012), most notably between plants 

and herbivores (Louda et al. 1997; Keane and Crawley 2002; Parker et al. 2006). Recently, there is a 

growing number of studies that investigate multispecies interactions within a broader community context 

across geographically widespread areas (Grobler and Lewis 2008; Nicholls et al. 2010; Harvey and Gols 

2011). The species-rich communities of plants, insect herbivores, and their natural enemies have been the 

focus of this recent research on the assembly of geographically widespread species, due in part to their 

pervasiveness in terrestrial communities and their crucial role in ecosystem services such as pollination 

and biological control (Nicholls et al. 2010; Fortuna et al. 2012; Stone et al. 2012; Quacchia et al. 2013; 

Wang et al. 2013).   

Studies documenting the associations between multispecies interactions within introduced ranges 

are difficult because detailed knowledge of the coevolutionary relationships between species and the 

population history of each species in the ancestral and introduced ranges is needed (Hoberg and Brooks 

2008; Smith et al. 2011; Whiteman et al. 2007).  One multitrophic system whose interactions have been 

well documented, and population history data exists for two of the species, is that of the wild parsnip 

(Pastinaca sativa L; Apiaceae), its primary herbivore, parsnip webworm (Depressaria pastinacella; 

Lepidoptera: Depressariidae) (Berenbaum and Zangerl 1992; Berenbaum and Zangerl 1998; Zangerl and 

Berenbaum 2003), and its parasitoid, Copidosoma sosares (Hymenoptera: Encyrtidae) (Ode et al. 2004; 

Lampert et al. 2008).  

The interaction between wild parsnips and webworms has been discussed in detail in Chapter 2. 

Briefly, webworms are the primary herbivore of wild parsnips, in which the larvae construct webs around 

part of the wild parsnip umbel and feed primarily on buds, flowers, and developing fruits (Berenbaum et 
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al. 1993; Nitao and Berenbaum 1988), causing substantial reductions to host plant fitness.  Wild parsnips 

produce furanocoumarins, allelochemicals that are broadly biocidal because they intercalate DNA and 

interfere with transcription (Berenbaum 1990). Selection for chemically-based resistance occurs in plant 

populations by increasing concentrations of three furanocoumarins: xanthotoxin, bergapten, and sphondin 

(Berenbaum et al. 1986; Zangerl and Berenbaum 1993).  Genetic variation also exists in webworm 

populations in the rate at which these furanocoumarins are metabolized (Berenbaum and Zangerl 1992) 

indicating that plant chemistry can act as a selective force on insect physiology.  

Like all copidosomatine encyrtids (Strand et al. 1991), C. sosares is a polyembryonic egg-larval 

parasitoid, in which females oviposit in the egg stage of their webworm host and progeny complete 

development in the host’s final (sixth) instar (Hardy 1996; Ode et al. 2004).  As the webworm continues 

development, C. sosares embryos clonally divide resulting in 100 to 400 genetically identical offspring 

(Ode et al. 2004). Owing to the development of C. sosares within the hemolymph of webworm larvae, 

immature C. sosares encounter unmetabolized furanocoumarins (McGovern et al. 2006). Additionally, C. 

sosares larvae lack the ability to metabolize these furanocoumarins (McGovern et al. 2006; Lampert et al. 

2008). Field studies showed that two furanocoumarins; isopimpinellin and xanthotoxin, were negatively 

associated with C. sosares fitness correlates (Ode et al. 2004). The likelihood of C. sosares parasitism 

was negatively correlated with host plant isopimpinellin content, while xanthotoxin decreased within-

brood survivorship and clutch size (Ode et al. 2004).  Successful development of C. sosares embryos and 

larvae likely depends in part on the ability of the webworm to detoxify furanocoumarins as well as the 

furanocoumarin content of the host plant tissues consumed by the webworm (Ode et al 2004; McGovern 

et al. 2006; Lampert et al. 2008). 

Introduction Histories of Wild Parsnip and Parsnip Webworm 

Wild parsnip was first introduced to the United States (U.S.) as a food crop in the 17th century 

(Sturtevant 1890), where it escaped cultivation and spread throughout the U.S. Population genetics 

studies on wild parsnip in the U.S indicate wild parsnips have high levels of genetic diversity, comparable 

to their ancestral European populations (Jogesh et al. 2015). This indicates either one large population 
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containing genetically diverse wild parsnips were introduced or multiple introductions of wild parsnips 

from Europe have occurred.  

By the 1860s, parsnip webworm had been accidentally introduced to the U.S. (Bethune 1869; 

Riley 1889) and has not only re-associated with its coevolved wild parsnip plant, but has also formed 

novel associations with cow parsnip (Heracleum maximum; Apiaceae), a plant native to the U.S. 

(Berenbaum and Zangerl 1991). Although parsnip webworm attacks other species of Heracleum, such as 

the common hogweed (H. sphondylium), which are chemically and phylogenetically closely related to 

wild parsnip (Batten et al. 1982; Downie et al. 2000) as hosts in Europe, its association with cow parsnip 

apparently dates back only to its arrival in the U.S. (Berenbaum and Zangerl 2006). Genetic data revealed 

that introduced U.S webworm populations are derived from a single (or few) webworm populations in the 

British Isles (Chapter 2). The webworm populations in the British Isles were themselves derived from 

parsnip webworm populations in Germany. Although it is unclear when parsnip webworms arrived in the 

British Isles, their populations have become genetically isolated from continental Europe based on 

significant correlations in pairwise FST values and geographic distance (Chapter 2).  

Copidosoma sosares is also found in the U.S., but its arrival date is unclear. C. sosares attacks 

webworms on both wild parsnip and cow parsnip, but its distribution is patchy compared to parsnip 

webworms. Aside from a single site in the midwestern U.S. (Wisconsin), which was reported to have C. 

sosares in the summer of 2015 (Berenbaum, pers. obs.), C. sosares populations are restricted to the 

western U.S. 

In this study, we formed our hypotheses from a set of factors which earlier work indicated might 

be important in structuring plant-webworm-C. sosares communities. These factors included webworm 

furanocoumarin-detoxification capabilities, host plant furanocoumarin concentrations, and the 

geographical locations of samples sites (i.e. distance and elevational differences between sites). We 

developed three hypotheses incorporating each factor. First, we hypothesized C. sosares populations in 

the U.S. came from the same European location as their webworm hosts in Europe (Host-Pursuit 

Hypothesis, Fig 4.1A). Second, once in the U.S., C. sosares followed a similar host plant switch onto cow 
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parsnip as parsnip webworms (Continued Host-Pursuit Hypothesis). Third, C. sosares populations will 

have limited geneflow between sites that are geographically farther apart, and differ in elevation (isolation 

by distance and elevation). 

 Specific to our first hypothesis, we asked, “From which European C. sosares populations are U.S 

populations derived?” As noted previously, all the webworm populations in the U.S. are derived from 

British Isles webworm populations (Chapter 2). Under the Host-Pursuit Hypothesis, species are predicted 

to disperse together from a shared origin, such that biotic associations that occurred in the ancestral range 

(and hence, potentially, coevolution) are maintained at the population level in the exotic range (Nicholls 

et al. 2010). A biotic association that is important between webworms and C. sosares is that of the 

furanocoumarin content of host plant tissue, and in turn, the furanocoumarin-metabolizing capacity of 

webworms. Webworms from different geographical regions vary in their metabolic capacities 

(Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003; Berenbaum and Zangerl 2006; Carroll and 

Berenbaum 2006). Similarly, plant populations vary considerably in terms of the furanocoumarin profiles 

produced, both within a species (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003) and 

among species (Zangerl and Berenbaum 2003; Ode et al. 2004; Carroll and Berenbaum 2006). 

If C. sosares populations are locally adapted to the detoxification profiles of webworms in the 

British Isles, then we would expect only C. sosares from the British Isles to have successfully established 

on U.S. webworms (Fig. 4.1A). The alternative to the Host-Pursuit Hypothesis is that of the Host-Shift 

Hypothesis (Nicholls et al. 2010), which predicts species may have dis-concordant dispersal pathways, 

and any re-association in the new range is independent of prior population history in the ancestral range. 

If we find U.S. C. sosares populations are derived from multiple European populations (Fig. 4.1A), this 

indicates webworms and C. sosares are not locally adapted and webworm detoxification capability is not 

structuring C. sosares populations in the introduced range. The Host-Shift Hypothesis does not preclude 

the predictions under the Host-Pursuit Hypothesis; C. sosares populations from the British Isles pursued 

parsnip webworm populations from the British Isles, but rather predicts additional European populations 

of C. sosares to be introduced, and associate with parsnip webworm populations in the U.S. 
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Specific to our second hypothesis we asked, “From which populations does C. sosares attacking 

webworms on cow parsnip in the U.S. come from?”  Genetic analysis of U.S. webworm populations 

indicated webworm populations attacking cow parsnip did not come directly from European webworm 

populations (Chapter 2). Rather European webworm populations became established on U.S wild parsnip 

populations, then these webworm populations host plant switched onto cow parsnip (Chapter 2). The 

ability for parsnip webworm to form a novel association with cow parsnip has been discussed in Chapter 

2. Briefly, in the midwest, the use of cow parsnip by webworms, even though they suffer higher predation 

and higher levels of furanocoumarins, could be due to a loss of host plant discrimination because of the 

reduced genetic variation during introduction. In the western U.S., webworm populations exhibited high 

levels of detoxification capabilities, regardless of the furanocoumarin content of the ingested host plant. 

Therefore, in the western U.S., those webworm populations on wild parsnip with high detoxification 

capabilities could host plant switch to cow parsnip. If C. sosares followed the same introduction pathways 

as webworms (hypothesis 1; Fig. 4.1A), including following webworms from wild parsnip onto cow 

parsnip, this would constitute a continued host pursuit by U.S. C. sosares, post-introduction (Fig. 4.1B). 

Collectively, this would indicate a sustained reciprocal association between webworms and C. sosares 

within the introduced range. 

Conversely, U.S. C. sosares on cow parsnip may not be derived from U.S. C. sosares on wild 

parsnip, rather they could be directly derived from European C. sosares, on any host plant species (Fig. 

4.1B). This could indicate one of two things. First, C. sosares can establish on webworm hosts they are 

not locally adapted to, and second, introduced C. sosares populations are able to readily switch host plant 

species. In an earlier study the furanocoumarin chemistry of western cow parsnip populations with C. 

sosares were found to have lower concentrations of all furanocoumarins except sphondin, when compared 

to cow parsnip populations attacked by webworms, but where C. sosares was absent (Carroll and 

Berenbaum 2006). In addition, western webworm populations did not differ significantly in their 

furanocoumarin-metabolizing capabilities (Carroll and Berenbaum 2006). Rather, western webworm 

populations had detoxification capabilities nearing the maximum of any levels found in midwestern 
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webworm populations (Berenbaum and Zangerl 1998; Zangerl and Berenbaum 2003; Carroll and 

Berenbaum 2006). The authors, Carroll and Berenbaum (2006), speculate that the lower furanocoumarin 

chemistry of cow parsnip in the western U.S. is more conducive to the survival of C. sosares than 

webworm detoxification capabilities and would indicate the host plant switch onto cow parsnip by C. 

sosares. 

Our first and second hypotheses investigates the relative importance of webworms and the 

furanocoumarin content of host plant species in structuring C. sosares populations.  Our third hypothesis 

investigates the influence of two geographical factors on the geneflow of C. sosares within the U.S: 

distance and elevation. As indicated in Fig. 4.4 and Table 4.1, C. sosares has been collected throughout 

the U.S., at elevations ranging from sea level to 2500 m (Carroll et al. 2007; pers. obs.) and distances 

spanning 145 km between the closest sites, with about 2410 km between the most distant edges of the C. 

sosares U.S. distribution. These vast distances, marked by geographical features such as mountain ranges 

and rivers, may create the most significant barrier impeding dispersal between C. sosares populations, 

and not features associated with their parsnip webworm hosts or host plant species. 

Our approach is to use a combination of mitochondrial sequence and nuclear microsatellite data 

to identify genetic variation within and between C. sosares populations from introduced and ancestral 

ranges relevant to our hypotheses. First, we will determine the degree of genetic variation within 

European (native range) and U.S. (introduced range) C. sosares populations, and the source locations for 

U.S. C. sosares populations. If C. sosares underwent a genetic bottleneck in the U.S. and are most 

genetically similar to C. sosares collected from the British Isles, the Host-Pursuit Hypothesis is 

supported. On the other hand, a comparable level of genetic variation in the introduced range would 

indicate multiple introduction events, a result that would be further supported by finding high levels of 

genetic similarity between U.S. C. sosares populations and multiple populations in Europe, supporting the 

Host-Shift Hypothesis. Second, we will determine the source populations of C. sosares populations on 

cow parsnip. If C. sosares populations on cow parsnip are derived from C. sosares populations on U.S. 

wild parsnip, then C. sosares has continued to pursue its webworm hosts within the introduced range 



77 
 

(Continued Host-Pursuit Hypothesis). Lastly, we will determine the migration/immigration rates between 

C. sosares sites in the U.S., and whether distance and/or elevation is correlated with the genetic distance 

between sites.  

Methods 

Insect sampling and DNA extraction 

Copidosoma sosares samples were obtained by collecting larvae of parsnip webworms in the 

native and introduced ranges between 2004 and 2013. In Europe, parsnip webworm larvae were collected 

at four sites feeding on wild parsnip and from 12 sites feeding on hogweed. In the U.S., parsnip webworm 

larvae were collected on five sites feeding on wild parsnip and from 14 sites feeding on cow parsnip.  

Parsnip webworm larvae that weren’t readily identified as being parasitized (the parasitoids had not begun 

pupation) were brought back to the laboratory and reared in a 27ºC, LD 16:8 h incubator until either the 

webworms pupated (not parasitized) or became a mummy (parasitized).  After emerging. each C. sosares 

brood was sexed and immediately frozen in an -80°C freezer.  In total, 401 broods of C. sosares were 

collected; 123 from Europe and 278 from the U.S. (Table 4.1).     

Genomic DNA was extracted using the DNeasy Tissue Kit (Qiagen) in accordance with the 

manufacturer’s instructions for solid tissue.  A single, adult C. sosares wasp from each brood was ground 

using a Kontes pestle (Kimble) and incubated in the extraction mixture for 3 hours at 56°C. Isolated DNA 

was checked for quantity and purity using the BioTek Epoch Take3 plate reader.     

Mitochondrial haplotypes  

A variety of mitochondrial genes were amplified to screen for intraspecific variable markers, 

including the cytochrome oxidase subunit 1 (COI), tRNA-Leucine, cytochrome b, NADH dehydrogenase 

subunit 1, the large ribosomal subunit (16S), and the small ribosomal subunit (12S) using primers 

described in Table 4.2. Ultimately one mtDNA gene, cytochrome b (cyt b), was chosen for phylogenetic 

analyses based on its high amplification success and high variability within and between collections.  

Polymerase chain reactions (PCR) were performed on either an Eppendorf Mastercycler gradient thermal 

cycler (www.eppendorfna.com) or a Thermo Scientific Arktik thermal cycler 
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(www.thermoscientific.com).  PCR reactions were performed in a 20 µL reaction volume containing 2.5 

µL of 10X PCR Buffer (100mM Tris-HCl, 500mM KCl, 15 mM MgCl2), 2.5 mM of each dNTP, 5 pmol 

of each primer, 0.625 U of TaKaRa Taq HotStart Version polymerase (Clontech), 2.5 µL of genomic 

DNA template, and up to 20 µL of sterile distilled water. The thermal profile consisted of an initial 

denaturation for 2 minutes at 94°C, followed by 40 cycles of 30 seconds at 94°C, 30 seconds at 48-55°C, 

and 30 seconds at 65°C, with a subsequent final 5-minute extension at 70°C.  Successfully amplified 

samples were sent to the University of Arizona Genetics Core for clean-up, quantification, and DNA 

sequencing on an ABI 3730 DNA Analyzer (Applied Biosystems).  Each sample was sequenced in both 

directions using PCR primers.  Sequence data were manually checked using CHROMASLITE and reverse 

sequences were used to resolve ambiguous base calls in the forward sequence.  The sequencing region 

was checked for an open reading frame using EXPASY online translation tool using the invertebrate 

mitochondrial codon table.  Sequences were aligned using CLUSTAL W (Thompson et al. 1994). No 

insertions, deletions, or stop codons were observed. Sequences of the mitochondrial cyt b region were 

truncated to the same length (387bp) and translated to amino acid sequences to check for nuclear 

mitochondrial pseudogenes (numts). The haplotype sequence matrix for cyt b was used for all subsequent 

phylogenetic analyses.  

Microsatellite genotyping 

 To increase the resolution of genetic structure and to corroborate the independent evolutionary 

status of mitochondrial lineages (Edwards 2009), we genotyped 354 (214 females, 140 males) of the 404 

individuals for 4 nuclear microsatellite loci (Csos 1, 2, 3, and 4) following protocols described in chapter 

3. PCR fragments were sized on an ABI 3730 DNA Analyzer (Applied Biosystems) using capillary 

electrophoresis and scored using the software GENEMAPPER v4.0 (Applied Biosystems).  

Phylogenetic inference from mtDNA 

Standard molecular diversity indices were calculated using DNASP v5 (Librado and Rozas 2009; 

http://www.ub.edu/dnasp/). Diversity calculations included the number of haplotypes, the number of 

segregating (polymorphic) sites, the nucleotide diversity, the mutation rates within codon position, and 
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haplotype diversity of all variable nucleotide sites. The DNA polymorphism using the sliding window 

method was estimated for the determination of the number of segregating sites (S) across each portion of 

the mtDNA sequences, set with a window length=100 and a step size = 25 (Librado and Rozas, 2009).  

A phylogenetic tree was constructed using the maximum-likelihood method in the program 

package MEGA version 7 (Kumar et al. 2016). The tree was rooted using the congener C. floridanum 

obtained from a laboratory colony maintained at Colorado State University. 

Analyses of mtDNA 

 Genetic diversity within populations was estimated by computing haplotype diversity (H) and 

nucleotide diversity (π). Haplotype diversity (also known as gene diversity) represents the probability that 

two randomly sampled alleles are different, while nucleotide diversity is defined as the average number of 

nucleotide differences per site in pairwise comparisons among DNA sequences. Partitioning of genetic 

variation within and among populations was calculated using analysis of molecular variance (AMOVA; 

Excoffier et al. 1992), by computation of conventional F-statistics from haplotypes with 10,000 

permutations as implemented in the program ARLEQUIN v. 3.5 (Excoffier and Lischer 2010). More 

specifically, genetic variation was calculated within Europe (native range), and within the U.S (introduced 

range) to test whether introduced U.S C. sosares populations had similar levels of genetic variation to 

European populations. To test whether C. sosares populations are structured around host plant species 

within their ranges (introduced or native), another series of AMOVA analyses were conducted: 1) among 

European individuals collected from wild parsnip or hogweed, and 2) among U.S. individuals collected 

from cow parsnip or wild parsnip.  

We tested two hypotheses of genetic isolation: 1) by geographical distance, using linear 

geographic distances and 2) by elevation, using the difference in elevation between collection sites. Both 

hypotheses were assessed with the Mantel test (Mantel 1967) with 10,000 permutations, using Slatkin’s 

linearized FST (Slatkin 1995).  

To determine if U.S. C. sosares populations were derived from the British Isles (Host-Pursuit 

Hypothesis) or from multiple locations in Europe (Host-Shift Hypothesis) pairwise linearized FST (Slatkin 
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1995) were estimated as implemented in ARLEQUIN v. 3.5 by haplotype frequencies. Very low and non-

significant FST values between populations indicate a close relationship, whereas high and significant FST 

values between populations indicate no or very distant relationship. To determine the source population(s) 

of U.S. C. sosares wasps attacking webworms on cow parsnip (hypothesis 2), we conducted a series of 

five AMOVA analyses: 1) between European wasps collected from wild parsnip and U.S. wasps collected 

from cow parsnip, 2) between European wasps collected from hogweed and U.S. wasps collected from 

cow parsnip, 3) between U.S. wasps collected from wild parsnip and U.S. wasps collected from cow 

parsnip, 4) between European individuals collected from hogweed and U.S individuals collected from 

wild parsnip, and 5) between European individuals collected from wild parsnip and U.S. individuals 

collected from wild parsnip. The first three analyses tested the Continued Host Pursuit Hypothesis 

directly, while the last two runs tested the possibility of alternative source populations. 

Analyses of microsatellite data 

 Individuals were screened for 4 loci with 3 to 9 (mean = 5.5) alleles per locus. As wasps are 

haplodiploid, with haploid males and diploid females, only diploid (female) genotypes were initially used 

to assess concordance with the assumptions of further population genetic analyses. Departure from 

Hardy-Weinberg and linkage disequilibrium were tested using ARLEQUIN v. 3.5 within each of the 

sampling regions specified in Table 4.1. Significance levels were adjusted for multiple tests using a 

sequential Bonferroni correction and a table-wide alpha of 0.05. Significant departures were obtained for 

11 of 60 tests of Hardy-Weinberg equilibrium and 9 of 856 tests of linkage equilibrium; however, these 

departures showed no consistency across loci or populations so all data were included in subsequent 

analyses. 

 Phylogeographic structure in the complete microsatellite data was assessed using STRUCTURE v. 

2.3.4 (Pritchard et al. 2000) on European and U.S. wasps to identify the number (K) of discrete population 

clusters in the data, and then mapping the geographic extent of these cluster. Analyses incorporating K 

values of 1-18 were run for 100,000 generations with a burn-in of 1,000 generations, with convergence in 

estimated parameter values checked over 20 independent runs for each K. The K values having the 
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highest levels of convergence were re-run (K=1-9) for 750,000 generations with a burn-in of 500,000 

generations, with convergence in estimated parameter values checked over 20 independent runs for each 

K. The ΔK method (Evanno et al. 2005) estimated the most likely value of K.  An admixture model was 

used, allowing individuals to have ancestry from multiple populations, with population allele frequencies 

assumed to be correlated among populations. STRUCTURE also quantifies the likelihood that each wasp 

belongs to each of the K clusters and assigns wasps to a cluster based upon this information. The program 

DISTRUCT (Rosenberg 2004) was used to display membership likelihood coefficients. Cluster membership 

was represented as different colors, and individual wasps were depicted as vertical bars partitioned into 

segments that correspond to membership coefficients in each of the nine collection sites in the U.S. A 

neighbor-joining tree (Saitou and Nei 1987) was constructed using FST distance measures (Latter 1972) in 

the program POPTREE2 (Takezaki et al. 2010). Node support was assessed from 10,000 bootstrap 

replicates (Felsenstein 1985).  

 The migration rate and population size were estimated in MIGRATE 3.0.3 (Beerli 2009) using 

coalescent and maximum likelihood inference (Beerli 1998; Beerli and Felsenstein 1999, 2001). The 

single step model for microsatellite data was used, and missing data was excluded from the analyses. The 

Markov chain settings were as follows; 50,000 short chain trees sampled, 500 recorded; 500,000 long 

chain trees sampled, 5,000 recorded; burn-in per chain = 1,000,000. The effective migration rate 4Nem 

was calculated between a donor and recipient population as M (generated from an FST calculation) 

multiplied by the recipient population θ (generated from an FST calculation).  

If M = 1, the rate that new alleles enter a population through immigration is equal to the rate new 

alleles arise by mutation. A 4Nem < 1 suggests that immigration is insufficient to offset the effects of 

genetic drift so that populations diverge in allele frequencies. A 4Nem > 1 suggests that there is sufficient 

immigration to offset the effects of genetic drift to maintain homogeneity among populations. We 

compared each pairwise 4Nem value for all collection sites to determine the direction and rate of gene 

flow between the collections.  
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Results 

Phylogenetic analyses 

A total of 401 C. sosares individuals, all sequenced at a 387 bp length of the cyt b gene were used 

in analyses. Overall there were 50 polymorphic (segregating) sites leading to the definition of 61 

haplotypes (Figs. 4.2, 4.3, 4.4). There were 81 synonymous sites and 305 nonsynonymous sites, owing to 

the increased frequency of A-T nucleotide bases across the entire sequence (0.788). The majority of 

individuals fell within Hap1 (n=313) and there was at least one individual from each collection site with 

the Hap1 sequence. Therefore, Hap1 represents C. sosares individuals collected in the native range, the 

introduced range, and from all host plant species; wild parsnip, cow parsnip, and hogweed (Fig. 4.4). 

Eight haplotypes were shared between Europe and the U.S (Hap1, Hap8, Hap5, Hap11, Hap12, Hap13, 

Hap 26, Hap46), whereas 29 haplotypes were unique to the U.S and 24 haplotypes were unique to Europe 

(Fig. 4.4).  Overall, across all collection sites, the haplotype diversity was 0.399, and the mutation rates of 

the different codon positions were 0.5226, 0.445, and 2.0323 for 1st, 2nd, and 3rd positions, respectively.  

A total of 214 female individuals were analyzed across four microsatellite loci. The average 

number of alleles per locus was 3.75 across all sites. The average observed heterozygosity across all loci 

and sites was 0.348 ± 0.148.  A total of 142 U.S. and 72 European female individuals were analyzed, and 

the ΔK method identified four genetic groups in the U.S and Europe. 

Genetic diversity within introduced C. sosares populations 

The molecular diversity indices within Europe and U.S revealed a high level of haplotype 

diversity in Europe (𝜃𝜋 = 1.29 ± 0.90), and a lower level in the United States (𝜃𝜋 = 0.65 ± 0.56). This is 

further supported by the cyt b AMOVA analyses within and between European and U.S. populations. 

There was a significant difference between European collections sites (P < 0.05), with the highest percent 

of variation occurring within each site (92.85%, Table 4.4A). On the other hand, there was no significant 

differences among sites in the U.S. (P = 0.22). The low genetic diversity of U.S. C. sosares populations is 

additionally supported by the cyt b pairwise linearized FST values. Within the U.S the only significantly 
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high pairwise Slatkin’s values was that between the Elk Mountains and all other U.S C. sosares 

populations, whereas all other U.S. sites were similar (Table 4.7).  

Source populations of U.S. C. sosares populations 

The origins of U.S. C. sosares populations were assumed to be European, and our AMOVA 

(Table 4.4A) and FST values using the cyt b dataset confirms this assumption (Fig. 4.3). Overall, there was 

no significant difference between all European and all U.S. C. sosares sites (AMOVA P = 0.12), which is 

further corroborated by several pairwise associations between continental sites that were genetically 

similar. For example, pairwise FST values indicate three sites in the U.S. (Medicine Bow Mountains, Elk 

Mountains, Oregon) shared genetic similarity with all European sites, and one site (Black Hills) was 

similar to all European sites, except Denmark.  Additionally, all U.S. sites were genetically similar to the 

Netherlands and the British Isles. The only European sites genetically different from the majority of U.S. 

sites were those of Denmark (FST = 0.34 - 0.44) and Germany (FST = 0.13 - 0.47; Table 4.7). 

Contrary to the cyt b findings, which traces historic rates of geneflow, our microsatellite dataset 

indicates an overall significant genetic difference between all European and all U.S. C. sosares 

populations (AMOVA P < 0.05; Table 4.4B). This difference could be attributed to two things. First, 

microsatellite markers trace more current rates of geneflow compared to mitochondrial markers. Second, 

genetic drift after the initial introduction of C. sosares into the U.S. could have occurred, which might not 

be recovered from our mtDNA, but rather from our microsatellite data. Additionally, the high degree of 

genetic similarity between numerous pairwise FST values between U.S and European sites in our cyt b 

dataset was not fully recovered in our microsatellite dataset (Table 4.8). Rather, only four U.S. sites 

shared a genetic similarity with any European sites (P > 0.05): Wasatch Mountains and British Isles sites, 

Oregon and the Netherlands and Denmark, Montana and the Netherlands, and Wisconsin and Germany 

and Belgium.  The neighbor-joining tree constructed from FST values of our microsatellite dataset 

positioned all U.S. sites except Wisconsin into the same clade, with Netherlands and British Isles samples 

posterior to this U.S. clade (Fig. 4.3B).  Collectively, this indicates that the British Isles and Netherlands 

served as a likely source of C. sosares to the U.S. (as indicated by the strong cyt b haplotype signal), with 
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subsequent introductions from European countries to a few sites in the U.S. (as indicated by microsatellite 

pairwise FST values), fitting predictions under the Host-Shift Hypothesis.  

U.S. C. sosares on cow parsnip are derived from European hogweed and U.S. wild parsnip populations 

The AMOVA analyses within European and within U.S. populations based on host plant species 

were not significant for either cyt b (P > 0.05; Table 4.5A) or the microsatellite dataset (P > 0.05; Table 

4.5B). Within Europe, hogweed sites did not significantly differ from those C. sosares collected from 

wild parsnip sites (cyt b, P = 0.10; microsatellite, P = 0.39; Table 4.5). Within the U.S, wild parsnip sites 

did not significantly differ from those C. sosares collected from cow parsnip sites (cyt b, P = 0.71; 

microsatellite, P = 0.71). In tests comparing host plant species associations between continents, European 

C. sosares from wild parsnip sites and U.S. C. sosares from wild parsnips were not significantly different 

(cyt b, P = 0.06; microsatellite, P = 0.51; Table 4.6). European C. sosares from hogweed sites and U.S. C. 

sosares from wild parsnips were not significantly different (cyt b, P =0.56 microsatellite, P =0.65; Table 

4.6).  However, European C. sosares from wild parsnip and U.S. C. sosares from cow parsnip were 

significantly different (cyt b, P < 0.05; microsatellite, P < 0.0001; Table 4.6). Between European C. 

sosares hogweed and U.S. C. sosares cow parsnip populations we obtained contradictory results from our 

two datasets. There was no significant difference according to our cyt b dataset (P = 0.20; Table 4.6A), 

but there was with our microsatellite dataset (P < 0.0001; Table 4.6B). This indicates European C. 

sosares collected from either host plant species (hogweed or wild parsnip) are genetically similar to U.S 

C. sosares collected from wild parsnip. However, this relationship does not hold true for U.S. cow 

parsnip. Rather European C. sosares collected from wild parsnip is significantly different from U.S. C. 

sosares collected from cow parsnip plants. Overall, this suggests C. sosares populations on wild parsnip 

in the U.S. are derived from European C. sosares populations on both host plant species (hogweed and 

wild parsnip). Some of these U.S. C. sosares populations on wild parsnip then switched to attacking 

webworms on cow parsnip plants, following the pattern of host plant switching by parsnip webworms 

(Chapter 2; Continued Host-Pursuit). However, European C. sosares populations on hogweed are 
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genetically similar, indicating these populations in Europe could directly establish on U.S. cow parsnip, 

which do not support our predictions under the Continued Host-Pursuit Hypothesis. 

Migration patterns among U.S. C. sosares populations 

Rates and directions of gene flow among U.S. collections were estimated for all microsatellite 

loci using the program MIGRATE and Table 4.9 lists the average 4Nem among U.S. collections. Our results 

indicate a high degree of bidirectional geneflow between the majority of sites in the U.S., a pattern 

supported by the genetic similarity between most of the U.S. sites found with our FST analysis. Montana 

and the Bighorn Mountains receive, on average, the most reproductive immigrant individuals per 

generation (Montana, 4Nem = 7.47; Bighorn Mountains, 4Nem = 6.63) and have the most reproductive 

migrant individuals going to other sites in the U.S. (Montana, 4Nem = 4.16; Bighorn Mountains, 4Nem = 

3.53). Sangre de Cristo Mountains, on average, has the least number of immigrants (4Nem = 1.83) and 

migrants (4Nem = 1.75). There is bi-directional geneflow between Wisconsin and the Sangre de Cristo 

Mountains (migrant 4Nem = 3.03, immigrant 4Nem = 2.89) and Montana (migrant 4Nem = 9.89, immigrant 

4Nem = 12.87). Additionally, Wisconsin receives 2.39 to 6.29 reproductive immigrant individuals from 

multiple other U.S. sites (Black Hills, Bighorn Mountains, Elk Mountains, Wasatch Mountains, San Juan 

Mountains), but very few migrants from Wisconsin go to these same sites (4Nem = 0.23 – 1.35), 

indicating the prevalence of nonequilibrium geneflow at the Wisconsin site.  

The Wisconsin site was also genetically dissimilar from the majority of U.S. sites (San Juan 

Mountains, Elk Mountains, Wasatch Mountains, Bighorn Mountains, and the Black Hills) according to 

our FST analysis at a highly significant level, P < 0.001. Sangre de Cristo Mountains and Montana were 

also genetically dissimilar from Wisconsin, contradicting our MIGRATE analysis. However, Montana was 

only slightly significantly different from Wisconsin (P = 0.03). Although the Oregon site is 

geographically far from other U.S. sites in our study, there is a high amount of geneflow between Oregon 

and the Bighorn Mountains (migrant 4Nem = 7.41, immigrant 4Nem = 10.57), the Wasatch Mountains 

(migrant 4Nem = 4.50, immigrant 4Nem = 3.36), the San Juan Mountains (migrant 4Nem = 5.85, 

immigrant 4Nem = 4.60), and Montana (migrant 4Nem = 4.05), which are the four sites closest to Oregon.  
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Collectively, this indicates that a high degree of bi-directional geneflow occurs between the 

majority of U.S. sites. The one exception is the Sangre de Cristo Mountains on the southern edge of our 

collecting range that experiences low levels of geneflow, from either migrants or immigrants to the site. 

Wisconsin, on the eastern edge of our collecting range, experiences high levels of geneflow, but the 

majority of reproductive individuals per generation are immigrants into Wisconsin, and only a couple of 

sites (Sangre de Cristo Mountains and Montana) receive migrants from Wisconsin. 

Our correlation analysis revealed the lack of a significant association between genetic and 

geographic distance (Mantel test, U.S. P=0.12; Europe, P = 0.30; Fig. 4.3), and elevational differences 

(Mantel test, U.S., P = 0.27; Europe, P = 0.72; Fig. 4.4) within the U.S or Europe. Therefore, the genetic 

isolation of the Sangre de Cristo Mountains compared to the other U.S. sites is not caused by geographic 

distance nor elevational differences.  

Discussion 

 Our molecular data show that C. sosares introductions and associations in the U.S. have followed 

the predictions from the Host-Shift Hypothesis. Although the British Isles was a source population for 

U.S. C. sosares populations, as for parsnip webworms (supporting the Host-Pursuit Hypothesis); the 

Netherlands and several other European sites served as sources for C. sosares. Our finding of multiple 

source populations was supported by pairwise FST comparisons with both the cyt b and microsatellite 

markers, and further by the clustering of all C. sosares samples into just four genetic clusters across the 

introduced and native ranges. A similar pattern was reported for other co-introduced herbivore-parasitoid 

systems, including the parasitoid Megastigmus stigmatizans on the invasive gall wasp in Europe (Nicolls 

et al. 2010), and the parasitoids Pediobius saulius and Pnigalio mediterraneus on the invasive chestnut 

leaf-mining moth (Valade et al. 2009; Lees et al. 2011; Hernandez-Lopez et al. 2012, Gebiola et al. 2013), 

in which the invading natural enemy populations were derived from numerous sources: allopatric, 

sympatric and/or a novel host species. 

Although introduced C. sosares populations had lower genetic diversity compared to their native 

range in Europe, this was not a significant difference. This finding runs contrary to the parsnip webworm, 
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which had a single (or few) introductions to the U.S. from the British Isles, resulting in a genetic 

bottleneck. The accidental introduction of parsnip webworm and C. sosares into the U.S. was thought to 

be a direct result of the intentional introduction of wild parsnip. However, C. sosares could exploit 

different introduction routes than parsnip webworm, becoming established on U.S. webworms that lacked 

a shared population history with C. sosares in Europe. 

 The variability of C. sosares distribution in the U.S., and the lack of C. sosares in the eastern 

U.S., has been attributed to the variation in the ability of parsnip webworms to metabolize host plant 

toxins (Fig. 2.1; Berenbaum and Zangerl 1992; Ode et al. 2004 Lampert et al. 2008; Carroll and 

Berenbaum 2006; Carroll et al. 2007). Webworm populations in the midwestern U.S have been 

documented attacking cow parsnip and wild parsnip populations with high levels of furanocoumarins. 

Yet, these webworm populations are mis-matched to the host plant chemical profiles, in terms of 

exhibiting less efficient furanocoumarin-metabolizing capabilities (Fig 2.1F, G). In the western U.S., 

webworms on both wild parsnip and cow parsnip have high levels of detoxification capability, reaching 

the maximum levels seen in midwestern and European webworm populations (Carroll and Berenbaum 

2006). The lack of C. sosares populations in some U.S. sites could be due to an inability of C. sosares to 

parasitize webworms with different metabolism capabilities. As a result, eastern U.S. webworm 

populations may be poorer hosts for C. sosares in terms of reduced host survivorship or body size if these 

webworms contain higher levels of furanocoumarins in their hemolymph where they would be 

encountered by developing parasitoids. However, the multiple European sites serving as introduction 

sources, the high levels of geneflow between sites with varying host plant species, and elevations, suggest 

C. sosares can establish on different host plant species and parasitize webworms with various metabolism 

capabilities. 

Considering these findings, the spread of C. sosares into Wisconsin, which is the farthest east in the 

U.S. C. sosares has ever been documented, could be attributed to random chance alone. Geographically 

speaking, the most likely source populations could be from the Black Hills in western South Dakota, 

because it is geographically closer to Wisconsin than any other C. sosares site, albeit still 1,030 km away. 
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Although migrants from the Black Hills have arrived in Wisconsin, the genetic structure of Wisconsin C. 

sosares individuals indicates a more complex history. Our mtDNA haplotype and microsatellite data 

indicate C. sosares Wisconsin individuals are genetically more similar to Germany and Belgium then C. 

sosares individuals from other U.S sites based on FST values. However, our microsatellite MIGRATE 

analysis indicate geneflow coming into Wisconsin from multiple U.S. sites, including the Black Hills 

(4Nem = 3.24), the Bighorn Mountains (4Nem = 4.66), Elk Mountains (4Nem = 2.39), Sangre de Cristo 

Mountains (4Nem = 2.89), Wasatch Mountains (4Nem = 6.29), San Juan Mountains (4Nem = 4.02), and 

Montana (4Nem = 12.87). Of these sites however, the Black Hills and Elk Mountains share mtDNA 

haplotype similarity with Germany and Belgium (P > 0.05), while the Bighorn Mountains, Sangre de 

Cristo Mountains, San Juan Mountains share mtDNA haplotype similarity with Belgium (P > 0.05). 

Therefore, U.S C. sosares individuals derived from Belgium and/or Germany are migrating to Wisconsin, 

but the highest number of migrants into Wisconsin are those U.S. C. sosares with no genetic similarity 

between Belgium and Germany (Montana and Wasatch Mountains). As a result, Wisconsin could share a 

high genetic similarity with Germany and Belgium indirectly (from U.S. C. sosares individuals derived 

from Belgium and Germany migrating to Wisconsin), or directly from C. sosares migrants from Germany 

(supported by mtDNA haplotype and microsatellite genotype similarity) and Belgium (supported by 

microsatellite genotype similarity).  

Additionally, we hypothesized C. sosares attacking webworms on cow parsnip in the U.S. 

followed the same pattern of host plant switching as their parsnip webworm hosts (Continued Host-

Pursuit Hypothesis). We based this hypothesis on the idea that webworms and C. sosares are locally 

adapted to one another, with their interactions are shaped by the furanocoumarin content present in a host 

plant species tissue. Our results indicate U.S. C. sosares collected from wild parsnip are derived from 

European C. sosares collected on both wild parsnip and hogweed plants. Cow parsnip populations 

harboring C. sosares in the U.S. were different, genetically, then European C. sosares found on wild 

parsnip plants. Cow parsnip is native to the U.S. and does not occur in Europe, therefore all introduced 

parsnip webworms and C. sosares that host-switched to cow parsnip were derived from either European 
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wild parsnip and/or hogweed. Genetic analysis of parsnip webworms (Chapter 2) indicated European 

webworms from hogweed populations were introduced and established on U.S. wild parsnip plants. At 

some point, these introduced webworms then host plant switched to cow parsnip. There was a lack of 

genetic similarity between European webworms and U.S webworms on cow parsnip, indicating 

webworms on cow parsnip populations started to diverge genetically from webworms in their native 

range. Our genetic analysis of C. sosares on cow parsnip populations reveal a more complex pattern of 

host plant switching. European C. sosares from webworm populations attacking both wild parsnip and 

hogweed populations followed webworms onto U.S. wild parsnip plant populations. At some point, U.S. 

C. sosares started attacking webworms that had host plant switched onto cow parsnip. Yet, unlike 

webworms, C. sosares on cow parsnip is still genetically similar to C. sosares on wild parsnip. The 

association between European C. sosares on hogweed and U.S. C. sosares on cow parsnip is unclear due 

to the contradictory results from our two molecular markers. According to our cyt b analysis there 

remains a genetic similarity between C. sosares on cow parsnip and European C. sosares on hogweed 

plants. However, our microsatellite analysis indicates the opposite; there is no similarity between C. 

sosares on cow parsnip and European C. sosares on hogweed plants. In general, mitochondrial markers 

trace historical patterns of geneflow, whereas microsatellite markers trace more recent patterns of 

geneflow. Accordingly, our data indicates European C. sosares populations on hogweed directly 

established on U.S. cow parsnip plants, but this has not occurred recently. The ability of C. sosares 

hogweed populations to establish on cow parsnip plants fits ecologically, given hogweed shares 

phylogenetic proximity to U.S. cow parsnip.  

Conclusion 

 Within the multitrophic system consisting of wild parsnip, parsnip webworm, and C. sosares, the 

introduction history and introduction pathways have been different for each trophic level. The wild 

parsnip has been introduced to the U.S. multiple times, most likely due to its cultivation as a food crop 

(Jogesh et al. 2015). This initial introduction of wild parsnip runs contrary to both parsnip webworm and 

C. sosares that have been accidentally introduced to the U.S. Accidental introduction by anthropogenic 
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causes (e.g., trade, travel) can create vary different introduction patterns between co-evolved species, 

resulting in seemingly contradictory patterns of introduction. For the parsnip webworm, its introduction 

into the U.S. has been rather restrictive, consisting of only British Isles populations of parsnip webworm 

(Chapter 2). On the other hand, C. sosares has exploited multiple routes of introduction, from multiple 

sources in Europe to re-associate with sympatric populations of parsnip webworms derived from the 

British Isles; also allopatric populations of C. sosares have associated with these same British Isles-

derived parsnip webworms. Both parsnip webworm and C. sosares have established populations on the 

novel, native host plant species, cow parsnip. Although host plant species is driving webworm population 

structure in the U.S. (Chapter 2), this is not the case for C. sosares. Instead, European C. sosares 

populations from hogweed have directly established on U.S. cow parsnip. Additionally, U.S. C. sosares 

populations on wild parsnip have host plant switched to cow parsnip, but C. sosares geneflow is not 

restricted to either host plant species, contrary to our findings with U.S. webworms (Chapter 2).  

 Overall, the factors that can influence the establishment of an herbivore (i.e., host plant species, 

concentrations of plant toxins) in an introduced area, may not be significant for its primary parasitoid. 

Similarly, in a study between introduced oaks, cynipid oak gall wasps (Andricus kollari), and its 

parasitoid (Megastigmus stigmatizans), Nicholls et al (2010), found differences in the factors driving the 

establishment between oak gall wasps and M. stigmatizans. In their study, the authors set out to examine 

the roles of coevolution, ecological fitting, and anthropogenic disturbance in the establishment of M. 

stigmatizans in Europe (Nicholls et al. 2010), building upon earlier research on the cynipid oak gall wasp 

(Stone and Sunnucks 1993; Stone et al. 2001, 2002).  Genetic data from European M. stigmatizans 

populations collected from Turkey oaks revealed some populations had Balkan origins just as their gall 

wasp hosts, but others had an Iberian origin.  This latter result was surprising, because Iberian gall wasps 

are confined to cork oak and do not occur on Turkey oaks. Although Iberian gall wasps can’t host plant 

switch to Turkey oaks, its parasitoid, Iberian M. stigmatizans, can successfully colonize gall wasps that 

utilize different host plant species.  Overall, this system indicates that a long evolutionary history can be 
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important between one trophic link (oak and gall wasp), but not the other trophic link (gall wasp and 

parasitoid).  

 More studies on the co-introduction of multitrophic systems can reveal the relative importance of 

coevolutionary relationships in the ancestral range in forming associations in the introduced range. 

Ultimately, these studies can help predict the consequences of other biological invasions and inform 

biological control of these invasive organisms.  
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Figure 4.1: Illustration of the introduction history, and dispersal patterns of C. sosares populations as predicted under the Host-Pursuit, Host-Shift, 

and Continued Host-Pursuit Hypotheses in the U.S. (introduced range) and Europe (native range). A: Webworms and C. sosares that are locally 

adapted to each other are the same color. Interactions in the U.S. where the two species do not share population histories are not the same color. 
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Figure 4.2: Phylogenetic tree of haplotype sequence data using maximum likelihood method based on the 

JTT matrix-based model (Jones et al. 1992). The tree with the highest log likelihood (-938.3542) is 

shown. Bootstrap values > 30 are shown at the branches, values < 30 were collapsed and not shown. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories 

(+G, parameter = 0.4631)). The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016).   
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Figure 4.3: Neighbor-joining trees for European and U.S. C. sosares populations using mtDNA (A) and 

microsatellite (B) data. The U.S populations were collapsed together in the mtDNA dataset because of the 

lack of haplotype diversity. Construction of the neighbor-joining tree (Saitou and Nei 1987) and 

calculation of the distance matrix (FST, Latter 1972), was performed in PopTree2 (Takezaki et al. 2010), 

with 10,000 bootstrap (Felsenstein 1985) replications. Bootstrap values >50 are listed at the branches, 

values <50 are collapsed and not shown.   
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Figure 4.4: Proportion of individuals with each cyt b haplotype at each collection site (A: United States, B: Europe). The size of each pie chart 

represents the number of samples at each site (≥ 30, or < 30 samples). Haplotypes that were shared with more than one individual were assigned a 

color. Haplotypes that were singletons (only one individual with that haplotype) are white. 
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Figure 4.5: DISTRUCT plot and neighbor-joining tree created from STRUCTURE output. Cluster membership is represented as different colors, and 

individual wasps were depicted as vertical bars partitioned into segment that correspond to membership coefficients in each of the nine collection 

sites in the U.S. The number of genetic clusters (K=4) of wasps was determined based on their 4 microsatellite loci. The tree was computed by 

applying the neighbor joining algorithm (Saitou and Nei 1987) to the matrix of allele-frequency divergence among clusters (net nucleotide 

distance). The plot was produced using DRAWTREE as part of the PHYLIP phylogeny package (Felsenstein 2005). 
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Figure 4.6: The correlation between genetic distance (linearized Slatkin’s FST) and geographic distance 

(km) in the mtDNA region, cyt b, of C. sosares sites within Europe (A) and within the U.S. (B). 
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Figure 4.7: The correlation between genetic distance (linearized Slatkin’s FST) and elevational differences 

(m) in the mtDNA region, cyt b, of C. sosares sites within Europe (A) and within the U.S. (B). 
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Tables 

Table 4.1: Locality information (Latitude, Longitude) from collection sites of C. sosares in the native 

range (Europe) and the introduced range (US). The table includes information on the host plant species 

wasp hosts were collected and the number of individuals (n). 

Collection Latitude Longitude Plant species n 

Europe (native range) 

Netherlands-A N 52° 9' 22.62" E 4° 28' 48" H. sphondylium 3 

Netherlands-B N 52° 8' 59.28" E 4° 29' 1.92" H. sphondylium 5 

Netherlands-E N 52° 28' 6.84" E 6° 6' 51.42" H. sphondylium 19 

Netherlands-G N 51° 59' 11.60" E 5° 40' 20.63" H. sphondylium 44 

Netherlands-H N 51° 56' 49.38" E 5° 45' 21.78" H. sphondylium 14 

Belgium-A N 50° 57' 24.9" E 5° 41' 38.22" H. sphondylium 3 

Belgium-C N 51° 7' 10.14" E 4° 27' 1.44" P. sativa 1 

Belgium-D N 51° 7' 11.76" E 4° 28' 9.42" H. sphondylium 2 

Denmark-B N 55° 49' 4.38" E 9° 47' 20.46" H. sphondylium 4 

Denmark-C N 55° 53' 0.42" E 9° 49' 33.84" P. sativa 1 

Denmark-D N 56° 5' 47.04" E 10° 3' 9" P. sativa 1 

Denmark-E N 55° 18' 33.06" E 9° 29' 56.58" H. sphondylium 9 

Germany-A N 53° 11' 30.84" E 7° 23' 26.34" H. sphondylium 7 

Germany-C N 53° 22' 54.78" E 8° 16' 15.06" P. sativa 1 

Ireland-2 N 53° 24' 53.7" W 6° 48' 28.68" H. sphondylium 4 

United Kingdom-1 N 50° 35' 29.46" W 2° 2' 15.96" H. sphondylium 5 

United States (introduced range) 

San Juans-AE N 36˚59'30" W 106˚46'52.8" P. sativa 6 

San Juans-H N 38˚11'0.84" W 107˚03'13.98" H. maximum 4 

San Juans-T N 36˚50'36.06" W 106˚34'13.38" 
P. sativa 25 

H. maximum 2 

San Juans-S N 37˚13'58.08" W 106˚46'29.46" H. maximum 21 

Montana-4 N 46° 42' 14.22" W 114° 32' 14.4" H. maximum 7 

Montana-5 N 44° 51' 55.56" W 111° 33' 18.78" H. maximum 12 

Montana-Y N 46° 42' 19.87" W 114° 32' 14.53" H. maximum 4 

Sangre de Cristo-J N 35˚46'19.92" W 105˚42'5.58" H. maximum 19 

Wasatch-K N 39° 55' 48.84" W 111° 38' 27.72" H. maximum 14 

Elk Mountains-F N 39˚22'11.52" W 106˚40'51.96" H. maximum 17 

Elk Mountains-G N 39˚22'48.96" W 107˚04'42.24" 
P. sativa 8 

H. maximum 7 

Bighorns-C N 44˚11'17.04" W 105˚51'34.92" H. maximum 70 

Medicine Bow-AC N 40˚24'25.62" W 106˚48'23.94" P. sativa 4 

Black Hills-B N 44˚04'35.7" W 103˚38'20.76" H. maximum 33 

Black Hills-P N 44˚25'17.1" W 103˚52'54.6" H. maximum 13 

Oregon-X N 44° 22' 57.36" W 120° 31' 12.24" H. maximum 2 

Wisconsin N 43° 32' 54.57" W 90° 48' 57.54" P. sativa 10 
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Table 4.2: Primers to amplify segments of C. sosares mitochondrial DNA (mtDNA). Ta (°C), annealing 

temperature used during PCR.  

Gene/ Region Primer Name Sequence (5’-3’) 
Ta 

(°C) 
Reference 

cyt b 
CB-J-10933 F: TATGTACTACCATGAGGACAAATATC 

48 Crozier & Crozier 1992 
CB-N-11367 R: ATTACACCTCCTAATTTATTAGGAAT 

COI 
C1-J-1751 F: GGATCACCTGATATAGCATTCCC 

50 Simon et al. (1994)* 
C1-N-2191 R: CCAGGTAAAATTAAAATATAAACTTC 

16s rRNA 
LR-J-13017 F: TTACGCTGTTATCCTAA 

50 
Kambhampati & Smith 

(1995) LR-N-13398 R; CACCTGTTTAACAAAAACAT 

12S 
SR-J-14233 F: GAAATTGACGGGCGATTTGT 

50 Kocher et al. 1989 
SR-N-14588 R: AAACTAGGATTAGATACCCTACTAT 

*primer sequence derived from Apis mellifera 
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Table 4.3: Molecular diversity indices within European and U.S. populations of mtDNA C. sosares. 

Numbers of individuals (N), number of haplotypes (Nh), and haplotype diversity (𝜃𝜋  ± 𝑠. 𝑑)  

Collection N Nh Haplotypes 𝜃𝜋  ± 𝑠. 𝑑 

Europe 123 32  1.29 ± 0.90 

  Denmark 15 11 
Hap 1, 5, 12, 23, 28, 29, 30, 32, 34, 58, 

59   
2.63 ± 1.67 

  Germany 8 5 Hap 1, 12, 26, 31, 33 2.02 ± 1.44 

  Netherlands 85 18 
Hap 1, 7, 8, 9, 11, 12, 16, 17, 18, 20, 

25, 26, 35, 47, 48, 57,60, 61 
1.08 ± 0.79 

  Belgium 6 4 Hap 1, 8, 13, 27 1.34 ± 1.11 

  British Isles 9 2 Hap 1, 46 0.22 ± 0.33 

United States 278 37  0.65 ± 0.56 

Black Hills 46 8 Hap 1, 2, 3, 5, 11, 14, 15, 19 0.61 ± 0.54 

San Juan Mtns. 58 9 Hap 1, 5, 12, 21, 24, 26, 39, 41, 45 0.45 ± 0.45 

Medicine Bows 4 3 Hap 1, 12, 26 1.00 ± 0.99 

Sangre de Cristo Mtns. 19 3 Hap 1, 42, 50 0.42 ± 0.45 

Elk Mtns. 32 13 
Hap 1, 6, 8, 10, 12, 13, 41, 43, 49, 51, 

52, 53, 56 
1.18 ± 0.87 

Montana 23 3 Hap 1, 8, 38 0.35 ± 0.40 

Bighorn Mtns. 70 13 
Hap 1, 4, 8, 21, 36, 37, 40, 41, 42, 44, 

46, 54, 55 
0.94 ± 0.73 

Wasatch Mtns. 14 1 Hap 1 0.00 ± 0.00 

Oregon 2 2 Hap 1, 22 1.00 ± 1.42 

Wisconsin 10 1 Hap 1 0.00 ± 0.00 
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Table 4.4: Analysis of molecular variance (AMOVA) (Excoffier et al. 1992) for C. sosares collections 

using the A) cyt b and B) microsatellite datasets. Significance levels; *P < 0.05, **P < 0.001, ***P < 

0.0001 

 

A: Cyt b 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European populations  4 5.04 0.05 7.15 P =0.049* 

Within European populations 118 73.41 0.62 92.85  

Total 122 78.45 0.67   
      

Among U.S. populations 11 4.10 0.00 0.72 P = 0.217 

Within U.S. populations 266 85.59 0.32 99.28  

Total 277 89.69 0.32   
      

Among Europe and U.S 1 1.03 0.00 0.02 P = 0.117 

Among populations within Europe and 

U.S 
15 9.14 0.01 2.35 P = 0.065 

Within populations 384 159.00 0.41 97.62 P = 0.040* 

Total 400 169.17 0.42   
      

 

B: Microsatellite 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European populations  4 17.54 0.12 15.93 0.000*** 

Within individuals within European 

populations 

67 74.30 0.26 25.21 0.000*** 

Within individuals 72 43.00 0.60 58.86 0.000*** 

Total 143 134.83 1.01   
      

Among U.S. populations 8 30.30 0.098 12.93 0.000*** 

Among individuals within U.S. 

populations 

133 117.73 0.223 29.24 0.000*** 

Within individuals 142 62.50 0.440 57.83 0.000*** 

Total 283 210.53 0.761   
      

Among Europe and U.S 1 16.15 0.045 5.05 0.022* 

Among populations within Europe 

and U.S 
12 47.84 0.115 12.93 0.000*** 

Among individuals within 

populations 

200 192.02 0.234 26.36 0.000*** 

Within individuals 214 105.50 0.493 55.65 0.000*** 

Total 427 361.51 0.886   
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Table 4.5: Analysis of molecular variance (AMOVA) (Excoffier et al. 1992) between host plant species 

C. sosares were collected, within the native range (Europe) and the introduced range (U.S.) using the A) 

cyt b and B) microsatellite datasets. Significance levels; *P < 0.05, **P < 0.001, ***P < 0.0001 

 

A: Cyt b  

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and 

hogweed  

1 1.26 0.06 8.00 0.105 

Among populations within European 

wild parsnip and hogweed 

3 3.78 0.04 5.50 0.013* 

Within populations 118 73.41 0.62 86.50 0.061 

Total 122 78.45 0.72   
      

Among U.S wild parsnip and cow 

parsnip 
1 0.30 0.00 0.00 0.707 

Among populations within U.S wild 

parsnip and cow parsnip 
9 3.06 0.00 0.47 0.192 

Within populations 259 79.59 0.31 99.75 0.278 

Total 269 82.94 0.31   
      

 

B: Microsatellite 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and 

hogweed  

1 1.69 0.00 -.012 0.394 

Among populations within European 

wild parsnip and hogweed 

13 32.42 0.16 17.09 0.000*** 

Among individuals within wild parsnip 

and hogweed populations 

57 57.72 0.21 21.43 0.000*** 

Within individuals 72 43.00 0.60 61.60 0.000*** 

Total  134.83 0.97   
      

Among U.S wild parsnip and cow 

parsnip 
1 4.33 0.02 2.31 0.134 

Among populations within U.S wild 

parsnip and cow parsnip 
14 29.01 0.07 9.73 0.000*** 

Among individuals within wild parsnip 

and cow parsnip populations 
126 114.71 0.24 31.25 0.000*** 

Within individuals 142 61.50 0.433 56.71 0.000*** 

Total 283 209.55 0.76   
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Table 4.6: Analysis of molecular variance (AMOVA) (Excoffier et al. 1992) between host plant species 

C. sosares were collected, between native range (Europe) host plants species and introduced range (U.S.) 

host plant species using the A) cyt b and B) microsatellite datasets. Significance levels; *P < 0.05, **P < 

0.001, ***P < 0.0001. 

 

A: Cyt b  

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and U.S 

wild parsnip  
1 1.34 0.12 30.14 0.061 

Among populations within European 

wild parsnip and U.S wild parsnip 
4 2.45 0.04 10.87 0.029* 

Within populations 51 12.40 0.24 58.99 0.017* 

Total 56 16.19 0.41   
      

Among European wild parsnip and U.S 

cow parsnip 
1 1.44 0.14 27.43 0.022* 

Among populations within European 

wild parsnip and U.S cow parsnip 
8 3.87 0.01 1.15 0.248 

Within populations 219 77.19 0.35 71.42 0.055 

Total 228 82.49 0.49   

Among European hogweed and U.S cow 

parsnip 
1 0.85 0.00 0.13 0.196 

Among populations within European 

hogweed and U.S cow parsnip 
9 5.15 0.01 1.16 0.054 

Within populations 333 146.60 0.44 98.71 0.054 

Total 343 152.59 0.45   

Among European hogweed and U.S wild 

parsnip 
1 0.58 0.00 -1.37 0.559 

Among populations within European 

hogweed and U.S wild parsnip 
5 3.73 0.01 3.16 0.014* 

Within populations 165 81.81 0.49 98.20 0.067 

Total 171 86.13 0.50   

 

B: Microsatellite 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F (prob) 

Among European wild parsnip and U.S 

wild parsnip  
1 2.18 -0.07 -7.09 0.509 

Among populations within European 

wild parsnip and U.S wild parsnip 
5 20.81 0.42 41.24 0.000*** 

Among individuals within European 

wild parsnip and U.S wild parsnip 

populations 

24 23.64 0.32 32.15 0.000*** 

Within individuals 31 10.50 0.34 33.70 0.000*** 

Total 61 57.13 1.00   
      

Among European wild parsnip and U.S 

cow parsnip 
1 5.04 0.26 27.38 0.000*** 
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Among populations within European 

wild parsnip and U.S cow parsnip 
13 19.89 0.05 5.01 0.000*** 

Among individuals within European 

wild parsnip and U.S cow parsnip 

populations 

104 87.18 0.20 21.28 0.000*** 

Within individuals 119 52.00 0.44 46.34 0.000*** 

Total 237 164.11 0.94   

Among European hogweed and U.S cow 

parsnip 
1 14.75 0.07 7.77 0.000*** 

Among populations within European 

hogweed and U.S cow parsnip 
22 41.96 0.07 8.27 0.000*** 

Among individuals within European 

hogweed and U.S cow parsnip 

populations 

159 149.65 0.21 24.67 0.000*** 

Within individuals 183 94.00 0.51 59.29 0.000*** 

Total 365 300.36 0.87   

Among European hogweed and U.S wild 

parsnip 
1 3.11 -0.03 -3.37 0.648 

Among populations within European 

hogweed and U.S wild parsnip 
14 44.98 0.21 21.68 0.000*** 

Among individuals within European 

hogweed and U.S wild parsnip 

populations 

79 81.86 0.24 24.86 0.000*** 

Within individuals 95 52.50 0.55 56.83 0.000*** 

Total 189 182.45 0.97  0.000*** 
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Table 4.7: Estimates of C. sosares subpopulation differentiation from Slatkin’s linearized pairwise FST values between and within collection sites 

in Europe and the U.S. using cyt b haplotype data. Significant comparisons indicate the pairs are significantly different and are marked with an 

asterisk(s) based on significance level; P < 0.05*, P < 0.001** 
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San Juans               

Sangre de Cristo 0              

Elk Mtns 0.06* 0.07*             

Montana 0 0 0.09*            

Wasatch Mtns. 0.02 0.01 0.14** 0           

Oregon 0.29 0.56 0 0.76 3.21          

Bighorn Mtns 0 0 0.04** 0 0.03 0.21         

Wisconsin 0 0 0.11* 0 0 2.20 0.01        

Black Hills 0 0 0.07* 0 0.01 0.36 0 0       

Medicine Bow 0.17 0.33 0 0.45 1.04 0 0.16 0.73 0.26      

E
u

ro
p

e 

British Isles 0 0 0.03 0 0.05 0.36 0 0.01 0 0.19     

Netherlands 0 0.01 0.02 0.01 0.04 0.11 0 0.03 0 0.07 0    

Denmark 0.37** 0.38** 0.07 0.46** 0.55** 0 0.34** 0.44** 0.41** 0 0.25** 0.25**   

Germany 0.15* 0.22** 0 0.29* 0.47* 0 0.13* 0.34 0.19 0 0.11 0.07 0  

Belgium 0.18 0.26 0 0.32* 0.63* 0 0.13 0.45* 0.22 0 0.14 0.06 0 0 
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Table 4.8: Estimates of C. sosares subpopulation differentiation from Slatkin’s linearized pairwise FST values between and within collection sites 

in Europe and the U.S using microsatellite data. Significant comparisons indicate the pairs are significantly different and are marked with an 

asterisk(s) based on significance level; P < 0.05*, P < 0.001** 

  

S
an

 J
u

an
s 

S
an

g
re

 d
e 

C
ri

st
o

 

E
lk

 M
tn

s.
 

M
o

n
ta

n
a 

W
as

at
ch

 M
tn

. 

O
re

g
o

n
 

B
ig

h
o

rn
 M

tn
s.

 

W
is

co
n

si
n

 

B
la

ck
 H

il
ls

 

B
ri

ti
sh

 I
sl

e
s 

N
et

h
er

la
n

d
s 

D
en

m
ar

k
 

G
er

m
an

y
 

U
n

it
ed

 S
ta

te
s 

              

San Juans              

Sangre de 

Cristo 
0.05             

Elk Mtns 0.11* -0.00            

Montana -0.02 0.04 0.11*           

Wasatch Mtns. 0.05 0.04 0.06 0.03          

Oregon -0.07 -0.18 -0.05 -0.11 0.01         

Bighorn Mtns 0.02 0.09* 0.14** -0.02 0.04 -0.03        

Wisconsin 0.26** 0.34* 0.38** 0.17* 0.30** 0.16 0.21**       

Black Hills 0.038 0.07 0.12** 0.00 0.12 -0.07 0.06** 0.19**      

E
u

ro
p

e 

British Isles 0.50** 0.75* 0.71** 0.50** 0.77 0.72* 0.45** 0.46** 0.41*     

Netherlands 0.08** 0.15** 0.19** 0.04 0.16* -0.00 0.08** 0.07* 0.04* 0.34**    

Denmark 0.46** 0.69* 0.67** 0.42** 0.70* 0.61 0.41** 0.25* 0.31** 0.78* 0.22**   

Germany 0.18** 0.33** 0.36** 0.14* 0.30** 0.18* 0.17** 0.06 0.14** 0.39** 0.03 0.32**  

Belgium 0.39** 0.55** 0.58** 0.32** 0.51* 0.37* 0.33** 0.03 0.29** 0.60* 0.13* 0.39* 0.15* 
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Table 4.9 Pairwise 4Nem of immigrants and migrants among U.S. collections sites. The first value in the cell is the 4Nem of migrants, the second 

value in the cell is the 4Nem of immigrants between each pair of collection sites. For example, the first cell is read as; 4.88 reproductive migrants 

per generation from Bighorn Mountains into Black Hills, and 4.70 reproductive immigrants per generation into the Bighorn Mountains from Black 

Hills. A 4Nem < 1 suggests that immigration is insufficient to offset the effects of genetic drift so that populations diverge in allele frequencies. A 

4Nem > 1 suggests that there is sufficient immigration to offset the effects of genetic drift to maintain homogeneity among populations. 

 
 

Black Hills Bighorns 
Elk 

Mountains 

Sangre de 

Cristo 

Mtns. 

Wasatch 
San Juan 

Mountains 
Montana Oregon Wisconsin 

Black Hills -         

Bighorns 4.88, 4.70 -        

Elk Mountains 1.34, 6.32 2.83, 9.40 -       

Sangre de Cristo 1.67, 0.36 1.39, 0.35 2.52, 0.82 -      

Wasatch 

Mountains 

3.10, 3.11 1.33, 3.03 5.71, 0.93 1.62, 4.08 -     

San Juan 

Mountains 

2.80, 6.92 5.12, 2.48 2.96, 0.42 2.01, 2.02 5.22, 2.48 -    

Montana 6.68, 8.42 4.83, 17.88 4.87, 8.30 0.30, 3.31 1.80, 7.00 0.82, 1.13 -   

Oregon 1.95, 1.26 7.41, 10.57 1.40, 2.39 1.45, 0.79 4.50, 3.36 5.85, 4.60 4.05, 0.88 -  

Wisconsin 0.46, 3.24 0.44, 4.66 1.35, 2.39 3.03, 2.89 0.23, 6.29 0.81, 4.02 9.89, 12.87 0.10, 1.94 - 

Averages 2.86, 4.29 3.53, 6.63 2.87, 3.87 1.75, 1.83 2.94, 3.79 3.20, 3.01 4.16, 7.47 3.34, 3.22 2.04, 4.79 
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