
 
 

DISSERTATION 
 

 
 
 
 

ASSESSING PLANT DIVERSITY TO ENABLE 
 

CONTINENTAL-SCALE MONITORING AND FORECASTING 
 
 
 

 
 
 

Submitted by 
  

David T. Barnett 
 

Graduate Degree Program in Ecology 
 
 
 
 
 

 
In partial fulfillment of the requirements 

  
For the Degree of Doctor of Philosophy 

  
Colorado State University  

 
Fort Collins, Colorado  

 
Summer 2017 

 
 
 
Doctoral Committee: 
  

Advisor: Thomas Stohlgren 
 
Paul Evangelista 
Patrick Martin 
Jeffery Morisette 

  

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by David T. Barnett 2017 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

ABSTRACT 
 
 
 

ASSESSING PLANT DIVERSITY TO ENABLE 
 

CONTINENTAL-SCALE MONITORING AND FORECASTING 
 
 
 

The Earth System is dynamic. It influences and is influenced by physical, chemical, and geological 

processes, but it may be the least understood of these systems. The biosphere interacts with the 

physical Earth System on diurnal and seasonal scales, and over decades and centuries. The living system 

interacts with itself and other systems at a variety of scales. At large, continental scales, exchange 

between biotic elements and the atmosphere and surface water control climate, hydrology, and 

productivity. At small scales plants interact with each other and exchange energy and matter with the 

atmosphere and soil. Understanding the Earth System requires comparable methods and analysis across 

scales and over decades. This is particularly true given that the Earth System is increasingly facing 

changes in climate and disturbances, the redistribution of species, and land-use change. 

The National Ecological Observatory Network (NEON) is a platform designed to enable an 

understanding of the causes and consequences of change on ecology. By simultaneously measuring the 

drivers of change and ecological responses – organisms, atmosphere, and soil – it will enable the 

ecological community to better understand the nature of interactions and support forecasts of future 

states. This work describes questions, analysis, and testing for the development of the plant diversity 

observations to be made by NEON.  

Models and forecasts require information from each of the sites that comprise NEON. The study 

design that directs spatial distribution of plots for sampling diversity relies on a random design that is 

stratified by land cover with replication intended to detect differences in trends between sites over 

thirty years. A classic power analysis that relied on prototype data and satellite imagery to parameterize 
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temporal and spatial variability indicated that a sample size of 30 plots per site would sufficiently 

differentiate trends across sites. Results from multiple sites collecting data according to the design 

demonstrated that patterns of spatial variation were higher than expected and that a larger sample size 

would be required to satisfy the specified test.   

Plant diversity data collected according to the design also must be comparable within and across 

sites. Variations in level of effort challenge the statistical comparison of plant species richness data. 

Comparing richness where the coverage - as defined by slope of the species accumulation curve – 

provides a statistically rigorous and biologically meaningful point of comparison. To sample such that 

species accumulation curves terminated at a slope of seven, plots were allocated proportional to the 

square-root of the strata area within each site. When comparing plant species richness data collected 

according to the proposed allocation from six it was found that only 30% of the within-site species 

accumulation curves terminated at a slope of seven, and only 33% of the species accumulation curves at 

the scale of the site terminated at a slope of seven.  

Ensuring the creation of a design that generates data capable of describing extant status and 

future states will require iteration and continued evaluation. A method for ensuring plots are located 

such that change will be detected was evaluated by generating species distribution models of two 

invasive plant species, Pennisetum clandestinum and Holcus lanatus as predicted by topography and 

extant and future climate data. The models suggested that suitable habitat for Pennisetum clandestinum 

may decrease in extent while suitable habitat for Holcus lanatus may expand at the site over time. To 

adequately document and improve understanding of the causes and consequence of habitat expansion, 

additional sampling plots could be placed in areas vulnerable to by Holcus lanatus in the future. 

Similarly, any resources available for the control of plant species invasion may be better expended on 

Holcus lanatus. This is one example of the many uses of NEON data to assist land managers. 
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TOOLS AND INSIGHTS FOR UNDERSTANDING LONG-TERM PATTERNS OF PLANT DIVERSITY 
 
 
 

Introduction 

The challenges of a changing world require investigations across space-time scales to trace the 

origination of causes and the consequences for ecological systems (Schimel and Keller 2015). That 

understanding requires the implicit study of cross-scale interactions (Peters et al. 2008), a focus on 

mechanistic studies that cross a variety of extents (Heffernan et al. 2014), synthesizing existing data, 

linking spatially distributed observation and sensor-based networks and experiments, and creating and 

maintaining “big data” programs that span continents (Soranno and Schimel 2014). The National 

Ecological Observatory Network (NEON), designed to facilitate a community-driven understanding of the 

causes and consequences of ecological change, is one such big data platform (Keller et al. 2008). This 

body of work describes the science-based approach – the theoretical development and testing – applied 

to design the plant diversity component of the NEON program.  

Coordinated, long-term observations of plant diversity across the continental United States will 

provide insight to links between pattern and process at multiple spatial and temporal scales, and 

facilitate forecasting of patterns and ecosystem function into the future (Keller et al. 2008). Quantifying 

patterns with methods comparable at multiple spatial scales, across regions and continents, and 

through time allows an assessment of how plant diversity responds to a diversity of conditions and 

drivers of change. By targeting a diversity of environmental conditions, observations are likely to capture 

a greater diversity of species and species-environment assemblages. The iterative integration of these 

data with models will allow validation of space-time predictions and efficiently direct subsequent 

observations to areas vulnerable to change (Stohlgren 2007). This process is capable of informing an 

evolving understanding of how species-environment relationships respond to drivers of change and 

impact the functioning and dynamics of ecosystems (Schimel et al. 2011).  
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Observations of plant diversity have played a central role in the development of the theory and 

practice of ecology. Charles Darwin documented the distribution of plant species assemblages in his 

backyard (Magurran and McGill 2010) prior to defining theories that described species interactions and 

species-environment relationships during his subsequent global exploration (Darwin 1859). The science 

has evolved, furthering the understanding of the processes that govern the interactions of species and 

species-environment relationships (Vellend 2010). Investigation of these processes and resulting 

patterns drive contemporary ecology. Understanding species distribution, fecundity, and persistence 

dominate population ecology (Clark et al. 2004). Community ecology focuses on the interactions of two 

or more species and the resulting impact on species composition in time and space. Other approaches 

to studying plant diversity focus on the importance of regional species pools, and the relationship 

between environmental factors and the distribution, occurrence, and abundance of species (Stohlgren 

2007).  

Plant species comprise much of the structure of ecosystems and are an important strata for 

processes such as the cycling of water, carbon, nitrogen, and phosphorous (Hooper and Vitousek 1998, 

Diaz et al. 2003). Common and unique species (e.g., nitrogen fixers, invasive species) dominate 

ecosystem function. The traits – phenotypic characteristics that influence species performance and/or 

ecosystem function (Grime 1973, Weiher 1999) - associated with these species, such as leaf nitrogen 

content and canopy height, contribute to the functioning of ecosystems by controlling photosynthesis, 

respiration and other processes. The contribution of subdominant species in a system was thought to be 

minimal until field-based experiments and observations recognized that systems simultaneously carry 

out multiple functions (Hooper et al. 2005, Cardinale et al. 2011). Evidence of the importance of species 

richness to functional diversity and ecosystem multifunctionality has increased with coordinated 

investigation across continental scales (Maestre et al. 2012).  
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Plant diversity is sensitive to change; changes in climate (Ibanez et al. 2006, Magurran and 

Dornelas 2010), species invasion (Vitousek 1996, Mack et al. 2000) land use change, and disturbance 

(Dornelas 2010). Paleo records demonstrate the influence of shifting climate on species distributions 

(Wagner and Lyons 2010). Since natural selection is influenced by natural and anthropogenic-induced 

climate change, species not suited to emerging conditions will be forced to adapt or track change 

through a combination of dispersal and adaptation to novel conditions and interactions (Clark et al. 

2012). Even without directional changes in climate, plant species composition will change as species 

migrate and adapt, alter resource availability, interact with other species (e.g., herbivores, soil biota), 

and respond to disturbance(Stohlgren 2007). Land use may drive the most pronounced changes. 

Disturbance to the structure of soil and species, changing disturbance regimes, and inputs to systems 

have direct and indirect impacts on plant diversity (Pickett and White 1985, Pickett et al. 1989). 

Collectively, many factors influence the direction and magnitude of changes in plant diversity including 

changes in genetic diversity, species composition and abundance, and distribution and interactions of 

other species in a complex environment.  

Quantifying Patterns to Understand Change 

What design considerations assure observations of plant diversity will describe long-term 

trends? How can plant diversity sampling adequately describe local landscapes while enabling 

comparison across sites? How can monitoring data be efficiently describe change and guide 

management? These questions will be explored through a series of related papers that: (1) defines a 

sampling strategy that directs the collection of data capable of detecting space-time trends and is 

suitable for integrating resulting observations of plant diversity and other taxonomic groups and soil 

with drivers of change, (2) describes and tests a framework that accounts for site-scale differences in 

plant species richness and observation effort with species-accumulation curves to make observations 

comparable across sites, and (3) presents tools for leveraging observations of plant species-environment 
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relationships iteratively position monitoring to better detect change and contribute long-term 

management strategies. 

A sampling system to detect trends 

A continental observatory for monitoring plant diversity and a variety of other terrestrial 

organisms and soil requires a system for directing the distribution and intensity of sampling within sites 

such that resulting data is capable of detecting and comparing trends across space and through time. 

The paper “The terrestrial organism and biogeochemistry spatial sampling design for the National 

Ecological Observatory Network” for a special edition of Ecosphere describes the sample design that is 

the foundation of the data collection effort. The primary goal was a design that supported the NEON 

mission (Schimel et al. 2011); it was, and will remain, necessary to ensure that decades of funding will 

result in insightful information. The design must enable the detection and comparision of trends and the 

integration of plant diversity data a variety of other data streams: soil, organisms, climate, atmosphere, 

and remote sensing imagery.  

Sample design typically requires a specific question and analyses. This requirement presented a 

challenge as high-level NEON questions are broad and the ecological community will work with NEON 

data to answer numerous questions with a diversity of analytical approaches. Several design factors 

were incorporated to address these unknowns. Samples were distributed randomly within sites to both 

ensure unbiased characterizations, but to also provide data suitable to a variety of analyses. Samples 

were stratified to increase efficiency and to focus observations landscape characteristics characterized 

by other NEON data collection platorms such as the tower-based sensors that collect describe many of 

the factors likely to drive, and be influenced by, changes in plant diversity (e.g., temperature, 

precipitation, net ecosystem exchange). This guiding principle of observing plant diversity with the same 

design and methods at sites subjected to divergent trends in these forcing factors resulted in a question 

capable of parameterizing a power analyis for sample sizes. Is there a difference in temporal trends in 



5 
 

plant diversity between two sites? A model appropriate to this question proivded a framework for the 

analysis that was parameterized with existing data. Early NEON data collected according to the desing 

provide the chance to assess capacity of the design to detect and differentiate trends and point towards 

opportunities for design iteration and optimization.   

Comparability to facilitate understanding  

A comprehensive and general understanding of how plant species diversity is changing in 

response to a variety of forcing factors requires comparable observations. A paper titled “Strategies for 

comparing plant diversity in a national network of sites” for Ecological Applications, develops a 

framework for describing how prescribed sample sizes might be distributed within sites or optimized 

after initial collection by comparing plant diversity across large spatial scales. Drawing comparisons 

between status and trends in plant diversity, coupled with ancillary data capable of describing the 

drivers of these changes, may facilitate the comprehensive understanding of large-scale trends and the 

factors that govern patterns at local and continental scales. However, comparability is challenged by 

disparities in sampling effort, the abundance of species at local scales, and the density of individuals 

observed.  

The information returned from observations of plant diversity might become comparable by 

standardizing effort with respect to plant diversity. Species accumulation curves describe the rate at 

which new species are added to a sampling effort (Gotelli and Colwell 2001). In the context of plot-

based sampling, each plot captures a list of species. The sample-based species accumulation curve 

describes the rate at which unique species are added to the total pool of observed species with 

successive plot sampling (Barnett and Stohlgren 2003, Gotelli and Colwell 2011). Curves start steep, 

when few plots are included in the random sample, the probability that successive plots add new 

species to the total number recorded is high. The slope of the curve typically becomes less steep as 

continued plot sampling captures fewer new species. The inflection point of the species accumulation 
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curve – that point where many of the species captured in each plot were previously documented – may 

provide an attainable target for standardization. The number of species (y-axis) and the number of plots 

(x-axis) required to reach this point is descriptive of the landscape and should provide a diversity-based 

standard for comparison that can be achieved across sites. Plot-based plant diversity data collected from 

six NEON sites tested and evaluated comparability and differences across the continental U.S.  

Integrating data and models to sample change  

Random sample designs that guide plot-based plant diversity sampling efforts have the potential 

to miss ecological dynamics that are essential to the NEON goal of understanding changing ecological 

pattern and process. Rare plant species are unlikely to be detected and new invasive species can be 

missed when random sampling locations miss areas vulnerable to invasion such as disturbed areas or 

riparian corridors (Barnett et al. 2007). A paper titled “Planning for climate change when designing 

invasive plant species studies” for Bioscience will examine how integrating initial data collections with 

climate data to generate forecasts of potential change may become an essential tool for iterating 

sample designs. Invasive species – as both drivers and result of change - are central to the NEON mission 

and can constitute a significant component of plant diversity. Estimates of species distributions in space 

describe areas vulnerable to invasion and the natural resources that might be threatened. Independent 

variables relevant to forecasting models such as measures of landscape, land use, and climate, can 

provide important insight into the drivers of invasion. As these explanatory factors change through time, 

landscape patterns of invasion will also change. Incorporating estimates of future climatic and land use 

condition allows models to describe future patterns of potential plant species invasions. These estimates 

of future condition facilitate proactive sampling strategy such that plots that measure incidence of 

invasion and enable an understanding of impacts to native flora can be placed in parts of a site 

vulnerable to invasion based on model results.  
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Plot-based and species mapping data that informed NEON methods were collected at the 

Hakalau Forest National Wildlife Refuge in Hawaii that is immediately adjacent to a site initially targeted 

for inclusion in the NEON collection of sites. The resulting data focused on modeling distributions of two 

invasive plant species and the creation of an approach that could be incorporated into the design 

iteration component the NEON study design; a tool to augment the design to ensure change is detected. 

In addition to offering insight into changing species distributions and potential new plot locations, these 

data and models should also have direct implications for management strategies. Those species most 

likely to undergo rapid expansion can be aggressively controlled and efficient monitoring systems can be 

developed that evaluate control, and iteratively improve models.  

Conclusion 

This collection of papers will describe insights and techniques for understanding plant diversity 

at local to continental scales. The goal is to provide a platform capable of quantifying patterns and 

change. The design described herein directs the collection of the data from sites that will contribute to 

NEON’s continental scaling objectives and inform the space-time models to forecast these changes 

(Figure 1.1). The data from these approaches are capable of integration with other steams of 

information to inform the causes and consequence of change; they are tools needed for responding to 

and managing change. The approaches and results will not represent perfection, and they will 

undoubtedly evolve over time. There are caveats associated with the modeling techniques and 

assumptions of the investigation - the number needed reach the asymptote of the species-accumulation 

curve for example. Each approach is designed to be iterative, almost like a hypothesis statement 

needing to be refined with the targeted and ongoing collection of more information. By improving 

techniques and adaptively sampling to capture the change, the goal is to improve the ability science and 

management to efficiently quantify and understand dynamic patterns of plant diversity and the 

ramifications for ecosystems. 
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Figure 1.1. The foundation of the NEON design and the effort come from data collected at individual 
sites. These plant diversity data are collected according to a statistically robust sample design that 
produces data comparable within and across sites, and is easily adjusted and optimized (a). These data 
will support the NEON effort to scale patterns and understanding to regions and the continent (b), and 
provide the point-sampling data needed for space-time models that will forecast future ecological states 
(c).  
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THE TERRESTRIAL ORGANISM AND BIOGEOCHEMISTRY SPATIAL SAMPLING DESIGN FOR  
 

THE NATIONAL ECOLOGICAL OBSERVATORY NETWORK1 
 
 
 

Introduction 

The National Ecological Observatory Network (NEON) is designed to improve understanding and 

forecasting of ecological change at continental scales over decades (Schimel et al. 2011). Insight into 

ecological cause and effect will result from integrating systematic observations of the drivers of change 

and ecological response at as many as 47 terrestrial sites throughout the continental United States and 

Alaska, Hawaii, and Puerto Rico for thirty years (Vitousek 1997, Keller et al. 2008, Luo et al. 2011). Sites 

encompass wildlands and cross a variety of gradients (e.g., land-use, species invasion, nitrogen 

deposition) to address regional and continental-scale ecological questions. Within sites, measurements 

of atmosphere, soil, water, select organisms and disease, and airborne observations yield freely 

available data to enable a new paradigm in ecological science with insights for education and direction 

for policy. 

Automated sensors and observations will describe the ecological status and future trends NEON 

is designed to detect with a suite of measurements that span spatial and temporal scales. Fixed-wing 

aircraft census vegetation at landscape scales (~400km2) with high-resolution remote sensing at annual 

time steps and tower-based sensors capture temporally continuous fluxes over smaller spatial extents 

(~0.5km2). However, neither a census nor temporally continuous measurements are appropriate for 

understanding patterns of terrestrial biogeochemistry and organisms at the scale of a NEON site (~5-

60km2). A complete census of organisms and biogeochemistry is biologically and financially impractical –  

                                                           
1Additional authors: Paul A. Duffy, David S. Schimel, Rachel E. Krauss, Elena I. Azuaje, Kathi M. Irvine, 
Frank W. Davis, Alan E. Gelfand, Andrea S. Thorpe, David Gudex-Cross, Michael Patterson, Jalynda M. 
McKay, Joel T. McCorkel, and Courtney L. Meier 
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microbes are ubiquitous and birds are mobile. Likewise, measurement of these ecological responses at 

sensor-like temporal frequencies is impossible, and even frequent observations at local scales would 

likely provide redundant information or, due to financial constraints, be limited in spatial extent. Hence, 

terrestrial organisms and soil will be collected in the field by crews trained in standardized protocols 

measured at discrete temporal and spatial units by people making field-based observations (Kao et al. 

2012, Thorpe et al. 2015).  

The diversity of biogeochemistry and organismal measurements that will be made by the NEON 

Terrestrial Observation System (Thorpe et al. 2016) presents a formidable challenge to the coordinated 

collection of data for the Observatory. Measurements include biodiversity, phenology, biomass, 

stoichiometry, prevalence of disease, and genomics of soil and organisms with a range of life histories 

and phylogenetic traits (Keller et al. 2008, Schimel et al. 2011, Kao et al. 2012, Thorpe et al. 2015). 

Components of each will be targeted for observation with a sample design that directs the spatial 

location at which populations and states of interest shall be sampled (Thompson 2012). The design must 

collect data that capture spatial variability, facilitate the integration of observations, enable analysis 

with a diversity of analytical approaches, and contribute to ecological insight at large spatio-temporal 

scales. The strategy is described herein: guided by NEON principles and requirements, the Terrestrial 

Observation System sampling design provides a data collection framework that is statistically rigorous, 

operationally efficient, flexible, and readily facilitates integration with other data to advance the 

understanding of the drivers of and responses to ecological change. It should be noted that while this 

document provides the rationale and details of the NEON sample design for terrestrial organisms and 

soil, the description, justification and study design specifics for the taxonomic groups and soil sampled 

are described elsewhere (Barnett et al. in prep, Hinckley et al. 2015, Hoekman et al. in prep(a), Hoekman 

et al. in prep(b), Meier et al. in prep, Springer et al. 2015, Thibault et al. in prep, Thorpe et al. 2016).  
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Design Criteria 

NEON will enable understanding and forecasting of the impacts of climate change, land-use 

change and invasive species on continental-scale ecology by providing infrastructure and consistent 

methodologies to support research and education (Keller et al. 2008). The traceable links between this 

high-level NEON mission statement and the data the Observatory produces provide a framework for the 

NEON design. The scope of the NEON mission is generally defined by the Grand Challenges in 

environmental science identified by the National Research Council (2001). High-level requirements 

synthesize the mission, Grand Challenges, and theoretical basis for measurements into formalized 

statements that describe the fundamental aspects and guiding architecture of the NEON strategy 

((Schimel et al. 2011); Table 2.1). The sample design for organisms and soil is part of this requirements-

driven hierarchical structure; high-level requirements “upstream” requirements and “downstream” data 

products provide context and constraints under which sample design specific requirements and details 

were developed.  

The sample design for observations at local, site-specific scales must deliver data that optimally 

informs continental-scale ecology. Adopting the requirements framework allows traceability to 

elements of the continental sampling strategy and the high-level requirements that constrain the spatial 

observation at discrete landscapes across the continent (Table 2.1). A set of lower-level requirements 

specific to the sample design captures these objectives and provides a direct link to the high-level NEON 

requirements (Table 2.1).  

 Table 2.1. Connections between NEON high-level requirements and the requirements that guide the 
local, site-specific sample design for the terrestrial organism and soil observations. 

NEON mission and high-level requirements from the NEON 
Science Strategy 

Guiding principles and requirements 
of the Terrestrial Sampling Design 

· NEON shall address ecological processes at the continental 
scale and the integration of local behavior to the continent, 
and shall observe transport processes that couple ecosystems 
across continental scales (i.e. continental-scale ecology). 
 
· NEON will allow extrapolation from the observatory’s local 
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sites to the nation. NEON will integrate continental-scale data 
with site-based observations to facilitate extrapolation from 
the local measurements to the national observatory. 
 
· NEON’s spatial observing design will systematically sample 
national variability in ecological characteristics, using an a 
priori division of the nation to allow extrapolation from limited 
intensive sampling of core wildland sites back to the 
continental scale.  
  

 Direct the collection of the 
raw material for continental 
ecology 

· NEON’s goal is to improve understanding and forecasting of 
ecological change at continental scales. 
 
· NEON shall detect and quantify ecological responses to and 
interactions between climate, land use, and biological 
invasion, which play out over decades. 
 
· NEON observing strategies will be designed to support new 
and ongoing ecological forecasting programs, including 
requirements for state and parameter data, and a timely and 
regular data delivery schedule. 
 

1.  
 
 
 
 

 Efficiently capture landscape-
scale pattern and trend 

· NEON shall observe the causes and consequences of 
environmental change in order to establish the link between 
ecological cause and effect. 
 
· NEON’s measurement strategy will include coordinated and 
co-located measurements of drivers of environmental change 
and biological responses.  
 

 
 Provide infrastructure that 

co-locates terrestrial 
measurements and links 
observations to other NEON 
data streams 

· NEON shall provide infrastructure to scientific and education 
communities, by supplying long-term, continental-scale 
information for research and education, and by supplying 
resources so that additional sensors, measurements, 
experiments, and learning opportunities can be deployed by 
the community. 
 
· The NEON infrastructure shall support experiments that 
accelerate changes toward anticipated future conditions. 
 
· NEON will enable experiments that accelerate drivers of 
ecological change toward anticipated future physical, 
chemical, biological, or other conditions to enable 
parameterization and testing of ecological forecast models, 
and to deepen understanding of ecological change. 
 

 
 
 
 
 
 
 

 Facilitate spatial integration 
of NEON data with 
community-driven 
investigation 

· The NEON data system will be open to enable free and open 
exchange of scientific information. Data products will be 
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designed to maximize the usability of the data. The NEON sites 
will be designed to be as amenable to new measurements and 
experiments as possible in order to effectively provide NEON 
infrastructure to scientists, educators, and citizens.  

 Anticipate the need for 
design flexibility 

· NEON infrastructure and observing system signal-to-noise 
characteristics will be designed to observe decadal-scale 
changes against a background of seasonal-to-interannual 
variability over a 30-year lifetime.  

 Optimize the design through 
iterative observation and 
evaluation of spatial and 
temporal variability 

 

A more detailed explanation of the requirements associated with the terrestrial sample design provides 

further guidance for the design: 

 Direct the collection of the raw material for continental ecology. Site-specific observations 

provide the foundation of the continental observatory (Urquhart et al. 1998). The 

deployment of an unbiased and consistent sample design will provide comparable ecological 

response metrics across sites and domains (Olsen et al. 1999, Lindenmayer and Likens 

2010). Efforts to scale patterns to larger areas will be aided, for example, by optimizing of 

the links to NEON remote sensing observations, adequately characterizing landscape 

features that dominate at regional scales, and by sampling with methods comparable to 

other network, agency, and other science and monitoring efforts. 

 Efficiently capture landscape-scale pattern and trend. Organisms and soil should be 

measured with intensity sufficient to detect the presence of a trend over the life of the 

Observatory (Legg and Nagy 2006, Lindenmayer and Likens 2009). The design must 

contribute to accurate, precise, and unbiased descriptions of local landscapes. Sample 

number and location will be directed by the sample design (Urquhart et al. 1998, Thompson 

2012) while trend detection will depend on a diversity of community-derived analytical 

approaches applied to the data. Given the variety of approaches likely to be employed and 

the diversity of questions to be addressed with NEON data products, the sample design 

framework must be applicable to classical, contemporary, and future statistical approaches 



18 
 

that characterize patterns in space and through time (Cressie et al. 2009, Cressie and Wickle 

2011). 

 Provide infrastructure that co-locates terrestrial measurements and links observations to 

other NEON data streams. The terrestrial measurements must be co-located to provide a 

more complete picture of processes associated with targeted observations and trends 

across the groups to be sampled (Fancy et al. 2009). Point-based observations must also be 

readily integrated with the spatially continuous NEON remote sensing platform and 

temporally continuous sensor measurements (Sacks et al. 2007, Sun et al. 2010). The 

evaluation of correlative relationships through the iterative combination of models and data 

(Luo et al. 2011) will provide insight into mechanistic links between the cause and response 

of ecological change. These relationships can then be further explored and tested with 

rigorous experiments by the ecological community (Keller et al. 2008, Lindenmayer and 

Likens 2010).  

 Facilitate spatial integration of NEON data with community-driven investigation. The 

terrestrial sampling design must provide a framework that encourages the scientific 

community to conduct experiments and other observations that integrate with NEON data 

to synergistically and efficiently deepen understanding of ecological processes (Lindenmayer 

and Likens 2010). 

 Anticipate the need for design flexibility. The sample design must accommodate changes as 

NEON responds to unexpected and/or emerging patterns and contribute to questions 

contemporary ecology has not yet considered (Overton and Stehman 1996).  

 Optimize the design through iterative observation and evaluation of spatial and temporal 

trends and variability. The number and spatial-temporal distribution of samples reflects 

assumptions about variability of response, landscape characteristics, and budget 
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constraints. Early data will serve to evaluate these assumptions and provide guidance for 

the reallocation of sampling to better address NEON questions (Hooten et al. 2009, 

Lindenmayer and Likens 2009). Additionally, the unprecedented characterization of NEON 

sites by the airborne observation platform will allow the identification of gradients, 

disturbance, and/or other landscape features that might be measured to better understand 

spatial-temporal patterns over the life of the Observatory.  

The high-level NEON requirements capture the essence of the NEON mission and Grand Challenge, 

creating direction and context for actionable design of Observatory components. The sample design 

requirements outlined above stem from high-level design elements and provide further direction and 

constraints in the face of specific design needs: how observations should be distributed in space at the 

scale of NEON sites.  

Sampling Design for the Terrestrial Observation System 

Two principles guide the site-scale terrestrial organismal sampling design: randomization and 

robustness. Randomizing sample locations is possible in – and facilites comparability of data across – a 

diversity of biomes (Carpenter 2008), guards against the collection of data that are not representative of 

the populations of interest (Thompson 2012), and yields data suitable to a diversity of analytical 

approaches (Cressie et al. 2009). The design must be robust in the sense that it is capable of performing 

under a diversity of conditions, and accomodating a variety of data types and questions (Olsen et al. 

1999).  

Terrestrial observations range from microbes to long-lived trees. NEON science questions will be 

addressed with hundreds of data products. The ecological community will ask untold additional 

questions and tease answers from data with a range of analytical techniques. And, these techniques will 

evovle over decades (Cressie and Wickle 2011). Intended to detect patterns across a diversity of sptial 

conditions (Carpenter 2008) and elucidate temporal trends by meeting the demands of contemporary 
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and future ecological paradigms (Cressie et al. 2009) in support of a long-term observatory, the sample 

design for terresterial organisms and biogeochemistry includes the following elements:  

 The sample frame is the area from which observations are made (Reynolds 2012). 

 Random sampling allows an unbiased description of the landscape (Thompson 2012), 

facilitates integration with other data, supports design-based inference (Sarndal 1978), and 

provides data that can be assimilated into numerous model-based approaches to inference 

and understanding.  

 Stratification increases efficiency (Cochran 1977) and provides a framework for describing 

the variability of landscape characteristics targeted by the NEON design.  

 Sample size determination ensures that NEON will contribute to ecology over the life of the 

Observatory by providing sufficient data to support key questions (Thompson 2012, page 

30). 

 Sample allocation allows a distribution of sampling effort appropriate to particular 

observations and NEON questions. 

 Data analysis with variance estimators provides a solution for analysis of data with design-

based inference (Stehman 2000). 

 Iteration allows optimization of the sample design (Di Zio et al. 2004).  

Furthering the understanding of ecological change requires an emphasis on integration and 

collocation of observations with a design not optimized for any particular taxonomic group. The spatial 

and temporal resolution and extent at which the design resolves ecological patterns will vary across 

responses and is ultimately constrained by scientific feasibility within an envelope of logistics and 

funding. Hence, the proposed design represents a multitude of compromises from competing priorities 

and a primary focus on implementing continental-scale ecology at local scales.  
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Sampling frame 

The sampling frame defines the area from which observations are made to characterize 

variables of interest (Reynolds 2012). At the scale of NEON sites, the sampling frame depends on the 

type of plot (see Thorpe et al. 2015) and taxonomic group of interest. In the case of many of the 

vegetation and soil observations (Thorpe et al. 2015), the frame typically corresponds to an associated 

management or ownership boundary (Figure 2.1). This typically includes the location of the tower-based 

sensor measurements and the aquatic measurements at some sites (Thorpe et al. 2015). Design 

constraints limit the spatial extent of some observations. Mosquito sampling occurs within 45 m of 

roads, and small mammal sampling occurs within 300 m of roads due to the frequency of visit and 

equipement required for sampling.  

The size of the sampling frames is variable, from small landscapes (e.g., an agricultural site in 

Sterling, Colorado < 5 km2) to larger wildland sites (e.g., part of Oak Ridge National Lab 67 km2). At 

several sites, the area available for sampling is too large to be sampled given budget and travel 

constraints or some sections of the site are not available for sampling (e.g., Oak Ridge National Lab). In 

these cases, a subset of the areas is targeted for sampling based on discussions with site hosts, local 

scientists, and logistical constraints. These truncated sites generally result in a 15 – 80 km2 sampling 

frame.  

NEON’s tower-based sensors measure physical and chemical properties of atmosphere-related 

processes such as solar radiation, ozone, and net ecosystem exchange. Tower Plots (Thorpe et al. 2015) 

sample that part of the landscape reflected in the sensor data to allow calibration and comparison of 

temporal trends. That sample space – the airsheds and in some cases the landscape in-between – 

constitutes the sample frame for those observations (Figure 2.1). 

 



22 
 

 

Figure 2.1. NEON’s Domain1 is located in the south-east United States. The site at the Ordway-Swisher 
Biological Station in central Florida is managed as a research station by the University of Florida and 
includes a diversity of pine on sandy soils, broadleaf forests on wetter soils, and wet marshes. The site 
boundary encompasses a 34 km2 area. The NEON tower (in white) supports sensors that measure fluxes 
from primary and secondary airsheds (in yellow). Airsheds, or in some cases, the complete 360-degree 
area defined by the primary airshed radius, define the sample frame for vegetation and soil designed to 
help inform flux observations.  
 
Randomization 

The unbiased sample associated with randomization (Cochran 1977, Thompson 2012) is the 

foundation of the NEON sample design. Randomly sampling from the frame eliminates potential bias 

associated with subjective sampling and affords the assumption that the statistical bias, the difference 

between the sample mean and true mean, is zero (Cochran 1977, Gitzen and Millspaugh 2012).  

This unbiased sampling of target response variables is essential to a probabilistic sample design. 

Probability sampling mandates that each randomly selected sample location have a known, non-zero 

chance of being selected for observation (Thompson 2012). The principles of randomization allow the 

design-based inference of population parameters from points to the unsampled landscape by 

integrating data and inclusion probabilities – the chance of each sample location being selected for 

observation - with design-based estimators (Sarndal 1978, Stehman 2000). Appropriate estimators can 

be determined by structure of the data and particular sample design (Stevens and Olsen 2004).  

Contemporary ecology relies on a variety of alternative sampling approaches. For example, 

systematic sampling locates observations according to a uniform grid (Cochran 1977, Thompson 2012). 
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By forcing sampling effort across the landsape, systematic sampling minimizes spatial autocorrelation 

and can capture landscape heterogeneity (Fortin et al. 1989, Theobald et al. 2007). However, the 

uniform distribution of sampling limits the opportunity to capture spatial patterns that might exist in the 

data (Fortin et al. 1989). Systematic designs that incorporate an element of randomization (e.g. spatially 

balanced designs) vary the spatial distance between sample locations, allowing the design to better 

describe the impact of spatial patterns associated with underlying processes. Other designs include 

stratified (Cochran 1977, Overton and Stehman 1996), spatially balanced sampling (Stevens and Olsen 

2004), cluster sampling (Cochran 1977, Stehman 2009), variable density designs (Stevens 1997), and 

two-stage designs (McDonald 2012). Not all designs support design-based inference. Sampling areas 

thought to be representative of a site – subjective sampling - assumes a near-perfect a priori 

understanding of the landscape (Stoddard et al. 1998, McDonald 2012) and does not allow for the 

detection of unexpected patterns across a landscape (Lindenmayer et al. 2010). The lack of fundamental 

randomization results in a sample that is not unbiased and is incompatible with design-based inference 

to the unsampled population (McDonald 2012).  

Model-based sample designs (Albert et al. 2010, Smith et al. 2012) are becoming increasingly 

popular for specific research and monitoring questions, but they are not sufficiently general with respect 

to the design requirements for the variety of organisms, soil, and questions NEON hopes to address. 

Relying on models, instead of design-based inference for the description of unsampled landscapes and 

populations, frees the sample design from constraints of randomization imposed by a probability-based 

design (Sarndal 1978). Statistically-rigorous modeling techniques allow for the distillation of patterns 

from a sample. Basic approaches explain variability in the response variable with traditional frequentist 

statistical models, typically linear statistical analyses with corresponding necessary and sufficient 

conditions. More complex techniques focus on the spatial structure of data, rely on machine-learning 

algorithms to understand non-linear relationships between multiple variables (Elith et al. 2010), allow 
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parameters to be defined as probabilities (Wikle and Royle 1999, Fuentes et al. 2007), or describe 

patterns from data measured through time and across space (Cressie and Wickle 2011). These model-

based approaches to inference can be optimized by specific sampling efforts. Data can be collected 

according to a stratified, non-random design that targets the spatial structure of a population (ver Hoff 

2002), captures the complete dynamic range of particular variables (Di Zio et al. 2004), or focuses on 

particular gradients and patterns (Chao and Thompson 2001). However, a sample design optimized for a 

specific question or parameter fails the test of generality required to sample many organisms and 

address a diversity of ecological questions (Bradford et al. 2010).  

By relying on randomization, the NEON sample design will produce data suitable to a variety of 

analytical techniques, from design-based inference to model-based approaches (Cressie et al. 2009). 

This process of teasing patterns and understanding from data is crucial to the success of NEON. 

Facilitating the integration of disparate data and identifying the mechanisms that underlie observed 

patterns (Levin 1992) is key to understanding the causes and consequences of change over the life of 

the Observatory.  

Randomization at NEON sites 

The design requirements collectively provide a strong case for explicit emphasis on the 

characterization of spatial patterns. Despite the benefits provided by the randomization of a simple 

random sample, these benefits can be tempered by a lack of spatial coverage. The NEON design satisfies 

these constraints by sampling with a spatially-balanced sampling framework that also provides 

randomization. Spatially-balanced sampling results in a probability-based study design, with low to 

moderate variance, and is both simple and flexible (Stevens and Olsen 2004). The Reversed Random 

Quadrat-Recursive Raster (RRQRR; Theobald et al. 2007) approach is similar to the Generalized Random 

Tessellation Stratified (GRTS) algorithm implemented by several existing long-term ecological monitoring 

efforts (Larsen et al. 2008, Fancy et al. 2009). The principle difference is that RRQRR achieves spatial 
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balance in a Geographic Information System (GIS) environment and produces a complete sample instead 

of a defined sample size. Implementation in GIS facilitates the incorporation of site boundaries, 

identifies barriers to sampling (e.g., roads, lakes), allows visualization of the study design, and provides 

design flexibility and redundancy to assign alternative locations should a plot be unsuitable for sampling 

(Theobald et al. 2007).  

The complete sample associated with the RRQRR algorithm allows design flexibility that is 

critical to logistical efficiency and scientific success. Every sample unit (a 30 x 30 m pixel in the case of 

the NEON design) receives a potential plot location that is numbered in a spatially-balanced framework, 

addressed – assigned a named location, randomized, and ordered such that sampling according to a 

one-dimensional list provides a random, spatially-balanced design allocation across the site (Theobald et 

al. 2007). Should a particular plot be unsuitable for sampling, the next unassigned, sequential plot on 

the list can be included in the sample. Other reasons to add plot locations may arise. Results from initial 

sampling will provide data to direct iterative observations that might require different sample size and 

distribution. Additionally, independent Principal Investigator-driven science may more efficiently 

address questions beyond the scope of the NEON design by leveraging the NEON data stream and 

utilizing sample locations specified by this design approach. The availability of sampling locations from 

the NEON terrestrial study design will facilitate this integration.  

Generation of the spatially-balanced design is accomplished with the RRQRR function that maps 

2-dimensional space into 1-dimensional space. RRQRR employs Morton ordering (Theobald et al. 2007), 

a hierarchical quadrant-recursive ordering. Morton ordering creates a recursive, space-filling address by 

generating “N” shaped patterns of 2x2 quads that are composed of lower-left, upper-left, lower-right, 

and upper-right cells numbered and nested at hierarchical scales (Figure 2.2). The pattern maximizes 2-

dimensional proximal relationships when converting to 1-dimensional space such that 1-dimensional 

ordered addresses are close together in 2-dimensional space (Theobald et al. 2007). 
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The NEON sampling design as a random sample 

The spatially balanced, random sampling locations generated by the RRQRR algorithm provide 

the sample design with flexibility. While the NEON design does optimze sampling according to a 

stratified-random design (see below) by selecting a subset of availible points from particular strata, a 

subset of the data can be treated as a random sample. The initial generation of sample locations in the 

random, spatially balanced and ordered list conforms to assumptions (Theobald et al. 2007) that allow a 

subset of the sample locations and resulting data to function as a random sample. This number of 

sample locations and the fraction of the total sampling effort that can be considered random depends 

on site size, heterogeneity, and in the eveness of selected strata. All of the sample locations can be 

considered random at homogenous sites, while those sites represented by a variety of strata result in a 

relatively smaller sample size available to any analysis and assumptions dependent on a random sample 

(Table 2.2). A list of plots that can be used in the context of a random design by site will be available 

throught the NEON data portal. These alternatives to sampling make the data more broadly available to 

a variety of NEON data consumers, ecological questions, and statistical applications. Tradeoffs and 

preferences abound in the ecological community.  
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Figure 2.2. The spatially balanced RRQRR design for locating sample plots across NEON sites. RRQRR 
assigned Morton addresses to a very large number of cells in a raster. The steps to create a spatially 
balanced list based on the RRQRR design include (a) the recursive order formation of the Morton 
Address on a two dimensional frame of coordinates into quadrant levels, thenumbers in red represent 
one quadrant level and numbers in black represent another quadrant level; (b), the Morton addresses 
representing the recursive order; (c) an assigned sequential Morton Order; (d) the Morton Address is 
reversed to create a uniform systematic pattern; (e) a new systematic Morton Order pattern is created; 
(f) and randomization is generated at each quadrant level. After Theobald et al. (2007). 
 
Stratification 

Stratification divides the landscape of interest into non-overlapping subareas from which sample 

locations are identified (Cochran 1977, Johnson 2012). The approach provides value when the ecological 
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measurements of interest are more similar within a stratum than among strata (Johnson 2012). 

Specifically, from the perspective of design-based inference, stratification aims to reduce the variance 

(Nusser et al. 1998, Scott 1998) of parameter estimates under the condition that the average variation 

of an estimator within a stratum is less than the average variation among strata (Michaelsen et al. 

1994). The increase in precision typically results in greater efficiency; fewer observations describe the 

within-stratum variability of parameter estiamtes and patterns of interest across the entire sampling 

frame (Cochran 1977). 

The NEON terrestrial sample design stratifies by land cover type in a manner consistent with the 

guiding principles of the domain delineation, to facilitate comparison within and across NEON sites, and 

to ensure the design captures a variety of environmental gradients at each site. Stratification according 

to the National Land Cover Database (Fry et al. 2011) provides a continuous land cover classification 

across the United States including Puerto Rico, Alaska, and Hawaii, allowing consistent and comparable 

stratificaiton across the diversity of NEON sampling frames. This stratification satisfies multiple design 

requirements and objectives.  

First, stratification is an integral part of the NEON design at multiple scales, and when applied to 

the terrestrial sample design, stratification provides consistency and ensures observations describe local 

landscape characteristics essential to the continental-scale observatory. NEON domains – essentially a 

stratification of the continent – were derived from eco-climatic factors (Hargrove and Hoffman 2004) 

that contribute to large-scale patterns of vegetation (Figure 2.3). Within each domain, NEON sites are 

selected to represent the dominant vegetation type (Schimel et al. 2011). At each NEON site, tower-

based sensors were positioned to measure these dominant vegetation types. The sensors measure 

ecosystem properties that drive ecological response (Chapin et al. 2012, Clark et al. 2012, Sala et al. 

2012). Observing terrestrial biogeochemistry and organisms in this dominant vegetation type at each  
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Table 2.2. A subset of Distributed Plots can be used as a random sample. Three example sites, Konza 
Prairie Biological Station (KONZ), Talladega National Forest (TALL), and the Jornada (JORN) suggest that 
a greater number of samples function as part of a random sample at sites with fewer strata. Greater 
within-site heterogeneity with respect to number and relative size of strata results in a smaller number 
of plots that can be considered part of a random sample. 

Site Subtype Stratified-random plots Number of 
random plots  NLCD cover type Area (km2) Number of plots 

KONZ Base plot Grassland/herbaceous 
Deciduous forest 
 

29.8 
3.3 

 

23 
7 

Total: 30 

19 

KONZ Mosquito point Grassland/herbaceous 
Deciduous forest 
 

4.9 
0.3 

9 
1 

Total: 10 

10 

KONZ Mammal grid Grassland/herbaceous 
Deciduous forest 
 

28.2 
3.1 

6 
2 

Total: 8 

5 

KONZ Tick plot Grassland/herbaceous 
Deciduous forest 
 

29.8 
3.3 

 

4 
2 

Total: 6 

3 

KONZ Bird grid Grassland/herbaceous 
Deciduous forest 
 

29.8 
3.3 

 

9 
3 

Total: 12 

7 

TALL Base plot Deciduous forest 
Evergreen forest 
Mixed forest 

16.6 
18.2 
13.8 

10 
11 
9 

Total: 30 

10 

TALL Mosquito point Deciduous forest 
Evergreen forest 
Mixed forest 

1.8 
3.1 
1.6 

3 
4 
3 

Total: 10 

1 

TALL Mammal grid Deciduous forest 
Evergreen forest 
Mixed forest 

15.4 
15.9 
12.4 

3 
3 
2 

Total: 8 

3 

TALL Tick plot Deciduous forest 
Evergreen forest 
Mixed forest 

16.6 
18.2 
13.8 

2 
2 
2 

Total: 6 

5 

TALL Bird grid Deciduous forest 
Evergreen forest 
Mixed forest 

16.6 
18.2 
13.8 

5 
5 
5 

Total: 6 

4 

JORN Base plot Shrub/scrub 45.7 30 30 

JORN Mosquito point Shrub/scrub  10 10 

JORN Mammal grid Shrub/scrub  6 6 

JORN Tick plot Shrub/scrub 45.7 6 6 

JORN Bird grid Shrub/scrub 45.7 10 7 
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NEON site will quantify the relationship between state factors – variables that control characteristics of 

soil and ecosystems (Chapin et al. 2012) – and ecological response. Through time these observations will 

provide insight into the causes and consequences of change at NEON sites which, due to the scalable 

design, will further understanding at larger spatial scales.  

 

Figure 2.3. NEON domains layered on top of land cover types as described by the National Land Cover 
Database.  
 

Second, stratification by land cover allows differential allocation of resources and sampling 

effort across cover types. In addition to facilitating a focus on the dominant vegetation type as described 

above, stratification provides a means to facilitate comparison. Sampling with an initial allocation that 

makes assumptions about patterns of the variablility associated with an ecological response across the 

landscape allows for a distribution of observations that will stabilize variance of estimators among 

strata. Appoximately equal patterns of variability facilitates comparison of ecological response across 

vegetation types within a site and, crucial to the success of a the continental Observatory, comparasion 

among NEON sites as well.  

Caveats associated with stratification by cover type merit recognition, and alternative schemes 

exist. Vegetation will change over time (Scott 1998). NEON hopes to capture this change, but the choice 

of a dynamic strata will complicate design-based inference (Fancy et al. 2009). As such, NEON will 
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develop adjustments to design-based estimators and the inclusion probability of each sampling stratum 

(Stevens and Olsen 2004). Other long-term monitoring units either do not stratify, or select immutable 

strata (Reynolds 2012). Elevation might be suitable at sites where vegetation changes reflect significant 

topography and relief (Li et al. 2009); however much of the biological variability across the continent 

responds to other factors. Soil type is less likely to change in a meaningful way over the life of the 

observatory and continental-scale maps exist across the continent. However, many soil maps were 

created according to inconsistent standards at the county level, are not highly accurate, and 

interpolation between dispersed sampling reflects vegetation captured by aerial photography. These 

and other unchanging strata might be appropriate for a local study or to optimize for a particular 

question or taxanomic group (Fancy and Bennetts 2012). Stratification by vegetation represents a 

compromise that emphasizes a consitent approach to continental-scale ecology that can be 

implemented in a consistent way across all domains.  

Stratification at NEON sites 

The land cover vegetation strata were described by the National Land Cover Database (Fry et al. 

2011). The NLCD is created through a partnership that includes the US Geological Survey, the 

Environmental Protection Agency and other federal partners. The categories are general and describe 

high-level and coarse descriptions of landcover (Figure 2.4). In the context of the RRQRR sample design, 

stratification is achieved by iteratively intersecting points from the sample list with each land cover type 

by assigning an inclusion probability of one to areas associated with the target vegetation type and zero 

for non-target types. In other words, the one-dimensional list developed by the RRQRR remains 

unchanged; selecting points within a particular land cover type filters that list. The result is a random, 

spatially-balanced sample design that is stratified by vegetation (Figure 2.4).  
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Figure 2.4. Stratification by the National Land Cover Database at the Ordway-Swisher Biological Station 
(a). Blue dots represent potential sampling locations from the spatially balanced and randomized 
sample, and red points indicate hypothetical sample locations selected from the complete sample (b).  
 

Minimum sample size 

An overarching requirement of the design is that minimally sufficient data be collected within 

each stratum where samples are allocated. This ensures that the NEON effort will provide tangible 

contributions to conceptual models of the interactions between species and environmental drivers over 

the life of the observatory. Simply put, if data will be collected in a given vegetation class, it is necessary 

to ensure that after thirty years, these data are sufficient to understand local patterns and, ultimately, 

inform the NEON Grand Challenges (Legg and Nagy 2006). Much like the need for a generalized sample 

design that is robust to observations of biogeochemistry and multiple biological groups, the sample sizes 
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must be sufficient to answer an array of questions (Gitzen and Millspaugh 2012) across a number of 

disparate ecological response variables. 

Quantitative sample size calculations are most often performed against the backdrop of a 

classical hypothesis test and corresponding power analysis. These analyses are constrained by a number 

of factors including: a question of interest, a corresponding hypothesis test regarding a parameter of 

interest in a statistical model, assumptions regarding the error tolerances (i.e., power) and estimates of 

parameter values for the population of interest (Hoenig and Heisey 2001). In order to characterize 

minimally sufficient sample sizes for the design, several key questions that are derived from the design 

requirements are considered. 

As an initial case, a question representative of the large-scale, long-term science NEON will 

enable was considered to provide context for the analysis of sample size: is there a difference in 

temporal trends of a given response of interest between two populations of interest? Examples of 

specific questions enabled by NEON data might include:  

 Are trends in tree canopy height in the deciduous forest cover type different between a 

wildland site and a site managed for timber harvest in Domain 5?  

 How do trends in invasive plant species richness differ between a wildland site and a site 

managed for cattle grazing in Domain 12?  

 How do temporal patterns of plant diversity vary three across sites distributed across an 

elevation gradient in Domain 17?  

The described sample size analysis considered a test of the difference in the magnitude of trends 

between any two NEON sites. One way to account for the diverse range of ecological response that will 

be sampled is to characterize the range of variability (across these disparate populations of responses) 

in parameters that need to be specified in order to constrain the sample size. This approach does not 

provide a unique solution; rather it provides a range of minimal sample sizes that correspond to the 
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range of parameter values that are considered. In this way, the differences in minimal sample size as a 

function of the populations considered can be accounted for when utilizing this information to constrain 

the overall sample design. The result of this design constraint provides a guideline for sample size rather 

than a definitive threshold. The analysis incorporated the capability to assess the impact of varying 

parameters that must be specified a priori. Once several years of data are collected, the design can be 

reassessed, and iteratively optimized with alternative methods using data from the initial sampling 

results. 

A classical power analysis (Hoenig and Heisey 2001, Thompson 2012) guided the estimation of 

sample size. A linear mixed effects model with repeated measures was used to represent differences in 

trends between two sites. These analyses can be applied to any test of a difference between the slopes, 

which respectively quantify change through time at each site where repeat measurements are taken on 

the same sampling units within each group. In general, the sampling units correspond to the spatial 

extent across which the response of interest is measured. In this context, the sampling units are the 

pixels (i.e., units) within the RRQRR grid at each site. Values for the parameters in the statistical model 

that have relevance to these sample size calculations – within site spatial variability of the response 

variable, temporal variability of the response variable, and temporal correlation structures of the 

response variable - must be informed by evidence from previous studies or prototype data. The model 

accommodates both compound symmetric and first order autoregressive temporal correlation 

structures for the repeated measures component of the variance calculations. In practice, the values 

associated with the parameters will vary across each of the response variables and across sites.  

Initial sample size calculation 

In addition to the sample variance, the magnitude of the correlation associated with the 

repeated measures, and the temporal correlation structure, sample size calculations that utilize a power 

constraint require specification of acceptable error tolerances for each of the two types of decision 
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error, minimum detectable difference associated with the type II error, and estimates of relevant 

parameters for (co)variance (Thompson 2012). This specific application also requires the number of 

repeat measurements – initially assumed one annually - within the course of the study. The notation 

presented here generally follows Searle (Searle 1971) and utilizes the approach of Yi and Panzarella (Yi 

and Panzarella 2002) to specify the relationship between the specified significant difference in slopes 

through time (i.e., the location in the alternative parameter space where the power of the test is 

constrained), as well as the treatment of the variance associated with the slopes depicting changes in 

trends through time at sites to be compared. Hence, consider the following repeated measures model 

with mixed effects: 

𝑌𝑖 = 𝜇0 + 𝜇0𝑖 + 𝛼1 ∗ 𝑡𝑖𝑚𝑒 + 𝛽1𝑖 ∗ 𝑡𝑖𝑚𝑒 + 𝛼2 ∗ 𝑠𝑖𝑡𝑒 + 𝛽𝑖𝑛𝑡 ∗ (𝑠𝑖𝑡𝑒 ∗ 𝑡𝑖𝑚𝑒) + 𝜀𝑖  [1] 

where the following symbolic definitions hold: 

 𝑌𝑖  is a vector representing observations through time t (i.e. the number of repeat 

measurements) at the ith sampling location, 

 with respect to measurement i, 𝜇0𝑖 is a random intercept, 𝛽1𝑖 is a random slope of time for 

the ith sampling location, 

 𝛼1is the mean trend for 𝑌𝑖, 

 𝛼2 is the difference between the overall means from the groups of observations taken from 

the two different sites or sampling frames, 

 𝛽𝑖𝑛𝑡 is the difference in trends through time between the groups of observations taken from 

two different sites or sampling frames. It is a hypothesis test regarding this parameter that 

constrains the sample size calculations presented here. 

 𝜀𝑖  is a vector representing errors through time t (i.e. the number of repeat measurements) 

at the ith sampling location. 
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The parameters (Equation 1) can be grouped according to their consideration as representing either 

random or fixed effects. The random effect parameters were denoted as, 𝜆𝑖 = (𝜇0𝑖  , 𝛽1𝑖) and the fixed 

effect parameters were denoted 𝜏 = (𝜇0 , 𝛼1 , 𝛼2 , 𝛽𝑖𝑛𝑡). Using this grouping of the parameters, the 

equation 1 can be re-written as, 

𝑌𝑖 = 𝑋𝑖𝜏 + 𝑀𝑖𝜆𝑖 + 𝜀𝑖   [2] 

Where, 𝑋𝑖  is a design matrix with t rows and p columns, and 𝑀𝑖 is a matrix with t rows and q columns. 

Here q ≤ p and the columns of 𝑀𝑖 are also columns of 𝑋𝑖. 

This formulation (Equation 2) is convenient for the expression of the sampling distribution of the 

parameter of interest, 𝛽𝑖𝑛𝑡. Using both the Wald test and an appeal to the asymptotic normality of 𝛽𝑖𝑛𝑡 

allows for the following approximation of the test statistic of interest (Yi and Panzarella, 2002). 

�̂�𝑖𝑛𝑡

√𝑉𝑎𝑟(�̂�𝑖𝑛𝑡)

~𝑁(0 , 1)  [3] 

Under the assumption that the sample sizes between populations are equal, we can use 

equation 3 to arrive at the following formula for sample sizes, 

𝑛 =
(𝑍

(1−
𝛼
2

)
+𝑍𝛽)∗(𝑋1

𝑇𝑉−1𝑋1+𝑋2
𝑇𝑉−1𝑋2)

−1

𝛽𝑖𝑛𝑡
2   [4] 

 

where,  

 Z represents the quantile from the standard normal distribution corresponding to the 

desired error rate for the type I and type II errors, 

 𝑋1 is the design matrix corresponding to samples of one population of interest, 

 𝑋2 is the design matrix corresponding to the samples of the other population of interest, 

 V is the covariance matrix for the observed data Y. 
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Initial minimum sample size at NEON sites 

Ranges for the relevant parameter values in the sample size calculations were considered since 

the nature of the exact response across sites and variables of interest is unknown. Population variance 

was estimated across the groups of organisms to be sampled by NEON from a review of literature 

(Knapp and Smith 2001, Eisen et al. 2008, Cardenas and Buddle 2009) that included LTER publications 

and data archives (Cedar Creek, Hubbard Brook, Jornada, Sevilleta, USGS NAWQA Program) and from 

initial data collection at NEON sites. Ultimately, four levels of population variance were assessed (Table 

2.3).  

In the absence of time series data, temporal parameters were estimated with ten years of 

MODIS-derived Normalized Difference Vegetation Index (NDVI) that was assumed to be an adequate 

high-level descriptor of ecosystem variability. These data provide nine observations for the lag-1 

interannual correlation of this signal, which integrates across space (i.e. the core site footprint) and time 

as constrained to NDVI peak greenness (Figure 2.5). Correlations of these NDVI data informed the range 

of temporal correlations initially specified in the sample size calculations (Figure 2.5, Table 2.3). The 

form of the temporal correlation structure was also characterized with these NDVI data. The analyses 

across the twenty core sites suggested that a compound symmetric correlation structure was 

appropriate for the 20 sites tested, but sample calculations are included for the first order 

autoregressive process as it is likely some of the other 17 sites will actually display trends more closely 

aligned with an autoregressive framework.  

Type I error tolerance was assessed for levels of 0.05 and 0.10. In order to impose a constraint 

on the power curve for this test, it is necessary to specify the significant difference between slopes at 

which the power is set to 0.80. For these analyses, a significant difference was determined to exist if the 

slopes were great than 20% different from one another. 



38 
 

In the case of the compound-symmetric temporal specification there was a monotonic, yet non-

linear relationship between the number of samples, the temporal correlation, the population variance, 

and collection of data through time (Figure 2.6). The impact of changing the type I error rate from 0.1 to 

0.05 was less than the range of values corresponding to changes in correlation and population variance. 

 

Figure 2.5. Annual temporal correlations from 2000 - 2010 of normalized difference vegetation index 
(NDVI) at Harvard Forest (a), Ordway-Swisher Biological Station (b), University of Notre Dame 
Environmental Research Center (c), and Oak Ridge National Lab (d). The lack of a consistent decay in 
temporal correlation at these sites through time over any consecutive number of years suggests that a 
compound symmetric form is an appropriate correlation structure of the sample size results.  
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After thirty years, the minimum number of samples needed across the range of values considered in 

both the compound symmetric and auto-regressive case was 10-189, with the lower number 

corresponding to the high correlation, low variability case, and the larger number of samples needed for 

the low correlation, high variability case (Table 2.3). The magnitude of the correlation associated with 

the autoregressive process demonstrated a lack of monotonicity between the number of samples and 

both the number of years data are collected (Figure 2.6).  

An important assumption that was made but not assessed quantitatively in the context of the 

sensitivity of the results was that of equal sample allocation between sites. The calculations presented 

here are likely to be robust with respect to minor deviations from this assumption of equal allocation. 

For this work, the assumption that the sample sizes are equal between sites was made for the sake of 

simplicity. This interpretation could be relaxed to accommodate different sample sizes should that be 

necessary given the variability in size and heterogeneity across all NEON sites.  

Another assumption was the specification of the significant difference at which the power 

constraint is imposed. The parameter in the statistical model that was used to build the test for the 

sample size calculations considered the slope of the interaction between site and time. In order to 

impose a constraint on the power curve for this test, it was necessary to specify the significant 

difference between slopes at which the power is set to 0.80. For these analyses, a significant difference 

was determined to exist if the slopes were greater than 20% different from one another.  
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Figure 2.6. Minimum sample size as a function of years and temporal correlation for the compound 
symmetric correlation structure (a) and the autoregressive structure (b) with the type I error set at 0.1.  
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Table 2.3. Minimum sample sizes associated with the compound symmetric form of the 

repeated measures, mixed model for a range of correlation (), population variance (2), and 
years. 

Type I error is fixed at 0.10 Type I error is fixed at 0.05 

2 = 1.00 2 = 1.00 

Year =0.25  =0.50  =0.75 Year =0.25  =0.50  =0.75 

10 40 28 16 10 51 35 20 

20 24 17 10 20 30 21 13 

30 17 13 8 30 22 16 10 

2 = 2.00 2 = 2.00 

10 76 52 28 10 97 66 35 

20 44 30 17 20 56 39 21 

30 30 22 13 30 40 28 16 

2 = 3.00 2 = 3.00 

10 113 76 40 10 143 97 51 

20 64 44 24 20 81 56 30 

30 45 31 17 30 57 40 22 

2 = 4.00 2 = 4.00 

10 149 101 52 10 189 128 66 

20 84 57 30 20 107 73 39 

30 59 41 22 30 75 51 28 

 

Sample allocation 

The distribution of sampling effort - the sample allocation - must balance logistical constraints 

and science goals. Constraining the sample to dominant landscape characteristics reduces cost and 

focuses sampling on continental ecology. An allocation that standardizes effort across landscape 

variability will facilitate comparison within and across sites throughout the observatory (Olsen et al. 

1999). 

Initial sampling will largely be limited to dominant cover types (greater than 5% coverage of the 

sampling frame) within each site boundary. This extends the guiding principle that if an ecological 

response is to be measured, the data must be meaningful in the context of NEON objectives. NEON 

sites, and the tower-based sensors, were selected to represent dominant vegetation types across the 
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NEON domains. Plant diversity and other co-located terrestrial measurements will focus on quantifying 

variability of these types in an effort to better understand relationships between pattern and process at 

local scales, as well as to contribute to the description of biological patterns at larger scales (Urquhart et 

al. 1998). The design examined the implications of constraining sampling to cover types greater than 

both five and ten percent of aerial coverage. Given a fixed sampling effort, there is a trade-off in 

selecting the level for inclusion of vegetation classes between five and ten percent; sampling vegetation 

types less than ten percent (but greater than five percent) pulls samples away from the more 

representative vegetation classes. 

Excluding rare vegetation is not without tradeoffs. Disproportionate numbers of species may be 

endemic to rare vegetation types (Stohlgren et al. 1998), and rare vegetation types might be 

differentially susceptible to environmental change (Stohlgren 2007, Suding et al. 2008). These rare 

types, riparian corridors or ecotones for example, may be targeted in iterative sampling efforts or by 

efforts organized by members of the ecological community.  

Landscapes are patchy, and land cover provides one metric to describe that site-scale variability. 

Increasing the sample size in strata with greater variability standardizes the sampling effort and 

facilitates comparison. It also increases total sample size, which is costly. Science goals must be balanced 

by the expense of field-based observations. In the case of plant biodiversity, a design optimized for 

comparability across cover types and sites would standardize according to measured variance, or better 

yet, would standardize effort with respect to diversity as indicated by the inflection of the species 

accumulation curve. In the absence of data from many sites, it was assumed that area can serve as a 

proxy for variability. Placing a larger number of plots in cover types with a larger area, but relatively 

more in smaller cover types across the landscape was a means to that end. Samples of other taxa and 

biogeochemistry were distributed proportionally to the NLCD land cover. 
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Data analysis with variance estimators 

A goal is to collect data according to a design robust to a variety of design estimation and 

modeling techniques (Sarndal 1978, Cressie et al. 2009). As discussed, design-based inference requires 

data collected according to a probabilistic design (Reynolds 2012). Various modeling approaches might 

benefit from the collection of data according to specific stratification, but most can also ingest data 

based on principles of randomization.  

Under the assumption of a stratified-random design, the appropriate design-based estimator 

(Stevens and Olsen 2004, Thompson 2012) was identified to ensure rigor of the sample design 

(Lindenmayer and Likens 2009). A spatially-balanced design stratified by vegetation type is equivalent to 

a stratified-random sample (i.e., within each strata each sample of a given size has an equal probability 

of selection). Estimators have been developed for the computation of the stratified sample mean and 

variance when data are collected according to a stratified random sample design (Thompson 2012). The 

estimator of the sample mean is given by, 

�̅�𝑠𝑡𝑟𝑎𝑡 =
1

𝑁
∑ 𝑁𝑖

𝑆
𝑖=1 �̅�𝑖   [5] 

where, 

 �̅�𝑖  = is the sample mean from the ith stratum 

 𝑁𝑖  = the number of units in the ith stratum 

 𝑁 = the number of units across all strata 

 S = the number of strata 
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An unbiased estimator of the variance for this estimator is given by, 

𝑉𝑎�̂�(�̅�𝑠𝑡𝑟𝑎𝑡) = ∑ (
𝑁𝑖

𝑁
)

2
(

𝑁𝑖−𝑛𝑖

𝑁𝑖
)𝑆

𝑖=1
𝑠𝑖

2

𝑛𝑖
  [6] 

where, 

 𝑠𝑖
2 = the sample variance from the ith stratum 

 𝑛𝑖 = the number of units in the sample from the ith stratum 

The area is computed using the 30m2 spatial resolution that corresponds to the NLCD 

delineation within the footprint of the site. These pixels are considered the sampling units in these 

calculations. In situations where the sample sizes within strata are sufficiently large (allowing for more 

comfortable assumption of normality via the central limit theorem), approximate confidence intervals 

can be formed using the following 

�̅�𝑠𝑡𝑟𝑎𝑡 ±  𝑍(𝛼
2⁄ ) ∗ (𝑉𝑎�̂�(�̅�𝑠𝑡𝑟𝑎𝑡))

1/2
  [7] 

where, 

 𝑍(𝛼
2⁄ ) = is the value from normal distribution corresponding to a 100(1-

interval. 

Few of the sites in the initial implementation will have strata with sufficiently large samples that 

allow this approximation (Equation 7). For strata with sample sizes smaller than 30, Thompson (1992) 

suggests using a t-distribution with degrees of freedom approximated using Satterthwaite’s method 

 

𝑑 =  
(∑ 𝑎𝑖𝑠𝑖

2𝑆
𝑖=1 )

2

[
∑ (𝑎𝑖𝑠𝑖

2)
2𝑆

𝑖=1
(𝑛𝑖 − 1)

⁄ ]
⁄

  [8] 

and, 

𝑎𝑖 = 𝑁𝑖(𝑁𝑖 − 𝑛𝑖)/𝑛𝑖  [9] 
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Testing the study design: plant diversity 

The described study design has been deployed across the NEON network, directing initial 

sampling efforts of multiple taxonomic groups and soil at more than thirty sites. The data from the 

design provided the opportunity to evaluate temporal assumptions and sample size required to enable 

comparison of trends in plant diversity at sites across the United States. For the purposes of evaluating 

the design, plant diversity data – available from the NEON portal - from were evaluated from four NEON 

sites: Harvard Forest, Ordway-Swisher Biological Station, the University of Notre Dame Environmental 

Research Center, and Oak Ridge National Lab. Two aggregations of data can be evaluated with NEON’s 

plot-based approach to sampling plant diversity: the observed species richness across plots within a site 

which must be compared with species accumulation curves where sampling effort or coverage are equal 

(Barnett et al. in prep, Gotelli and Colwell 2001, Chao et. al 2014), or the mean number of species per 

plot (Stohlgren 2007). To incorporate a test of the design-based estimators, which are not appropriate 

for lists of species accumulated across plots, this evaluation assessed the ability of the design to detect 

cross-site differences in trends in the mean plant species richness per plot.  

Methods 

As described, determining sample size requires specification of parameters that influence the 

capacity to differentiate trends: spatial and temporal variability. Because the Observatory is young and 

data were available from a single time step only, the critical component of the design that could be 

evaluated against the expectation was the observed sample variance (s2) as an estimate of the 

population variance (2). Preliminary plot sampling efforts in 2011 at three NEON sites – Harvard Forest 

(s2= 2.02), Ordway-Swisher Biological Station (s2= 4.09), and Yellowstone National Park (s2= 3.12) - were 

relied on for initial estimates (Table 2.3). Temporal variation was estimated from the mean correlation 

of the NDVI values during peak greenness at each site (Figure 2.5, Table 2.4). With these parameters, 

and assuming a Type I error fixed at 0.10, it was assumed that a sample size of 30 would sufficiently 
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contribute to test in question after 20 years of the 30 year Observatory; 22 plots would be needed if the 

requirement was minimally sufficient data after 30 years. With the same Type I error, 57 plots would be 

required at after 20 years at Ordway-Swisher Biological Station while 41 plots would be sufficient after 

30 years of sampling. Given funding constraints and with the preliminary statistical constraint of equal 

sample size across sites 30 plots were targeted for sampling. Sample locations were defined by 

implementation of the described design at each site, and the sample was allocated proportional to 

square-root of the area (Barnett et al. in prep) of all NLCD classes that occupied more than 5% of the 

site. 

Data were collected in the summer of 2014 from four sites: Harvard Forest in Massachusetts, 

the University of Notre Dame Environmental Research Center in Michigan, and Oak Ridge National Lab 

in Tennessee. At each sample location, plant species richness and abundance were observed in multi-

scale, 400-m2 square plots. The incidence and cover of species were recorded in eight 1m2 subplots, and 

the species were documented in eight 10m2 and four 100m2 subplots (Peet et al. 1998, Barnett et al in 

prep.). The data considered reflects the total number of species recorded across each 400-m2 plot.  

Results 

At the scale of the site – data from all plots and strata – there was no significant difference in 

the species richness per plot (Table 2.4). The sample variance (s2) ranged from 4.10 at Harvard Forest to 

8.42 at Ordway-Swisher Biological Station (Table 2.4). When matrixed with estimates of temporal 

correlation () within and across years (Figures 2.5 and 2.6, Tables 2.3 and 2.4), it becomes clear that the 

patters of spatial variation were larger than anticipated based on preliminary data. For example, at 

Harvard Forest the sample variance (s2 = 4.10, Table 2.4) coincided with the largest projected population 

variance (Table 2.3) and the NDVI-estimated temporal correlation (= 0.48, Table 2.4, Figure 2.5) 

indicate that a larger sample size – an estimate of 41-51 plots depending on the Type 1 error – would be 

required to contribute to a robust differentiation in trends of plant species richness per plot even after 
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30 years. Similarly, temporal correlation as described by NDVI was expected to be higher (less variability 

through time) at Oak Ridge National Lab (= 0.71) but the spatial variation – larger than was estimated 

in sample size calculations based on preliminary data – suggested that more plots would be needed at 

the site to contribute data capable of differentiating differences in trend between sites over 30 years. 

Discussion 

Ensuring the sample design is capable of differentiating trends in plant diversity will require 

further testing and design modification. It is possible that continued collection of plant diversity data will 

indicate that NDVI values, typically considered an indicator of vegetation greenness (Carlson and Ripley 

1997, Kerr and Ostrovsky 2003) and not necessarily reflective of plant species richness, demonstrate 

greater variation in variability than temporal patterns of plant species richness. This is likely to be 

particularly true in systems dominated by large-stature, long-living plant species where individuals and 

species are less likely to respond to intra- and inter-annual variations in factors that control vegetation 

greenness over the nine to ten years these data were collected (Scanlon et al. 2005, Liu et al. 2011). 

However, if this is not the case, and it is determined that the described test is essential to meeting NEON 

requirements and high-level science objectives, more plots must be added either by securing additional 

funds or reallocating resources from other components of the design as part of the design iteration.  

Table 2.4. Results from the plot-based plant diversity data collected at four NEON sites that provide 
critical information about the capacity of the NEON sampling design to compare trends at different sites 
through time including mean species per plot, the sample variance, and the mean NDVI correlation 
between two time steps during peak greenness. 

Site Mean 
species per 

plot  

Sample variance 
(s2) 

NDVI peak 
greenness  

Mean and standard 
deviation NDVI correlation 

() 

Harvard Forest 37 4.10 Jun 13 – Oct 19 0.48 (0.12) 

Ordway-Swisher 
Biological Station 

36 8.42 
Jan 7 – Dec 9 

0.52 (0.04) 

University of 
Notre Dame 
Environmental 
Research Center 

34 7.93 

Jun 13 – Oct 13 

0.53 (0.06) 

Oak Ridge 
National Lab 

44 6.03 
May 15 – Oct 19 

0.71 (0.04) 
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Iterating and optimizing the study design 

The first several years of NEON will provide data to inform the design. Those data will test 

design assumptions, evaluate the ability of the design to detect spatial and temporal trends within and 

across NEON sites, and direct adjustments to the design (Wikle and Royle 1999).  

Prior to optimization, the distribution and number of plots associated with each NEON site may 

require adjustment as a result of logistic contraints, alterations or advancements of scientific methods 

and information, and an improved understanding of site-specific population variability. Some of the 

proposed plot locations may be unavilable for NEON sampling for reasons such as: 

 The host institution or landowner may reject the a proposed plot due to ecological concerns 

(presence of endangered species or other long-term research) or other logistical reasons 

(road construction).  

 Plots may intersect buildings, roads, or other developments or natural features such as rock 

formations that are not suitable for NEON sampling.  

 The location may be inaccessible due to steep slopes or other natural features that pose 

danger to field technicians. 

 The time to travel to remote locations may make the observation too costly. NEON is 

committed to a design that can allow inference to the target study area, but a design with 

travel time that exceeds allocated funding may require alterations that reduce the number 

of locations or alters the sampling frame.  

 NLCD calssification error will result in plot locations that do not land in the target vegetation 

type.  

Linking continuous surfaces with ground-based point measurements will provide new ways to 

measure ecological pattern and trend (Ollinger et al. 2008). Where remote-sensing proxies for ground 

measurements are robust, or there is a 1:1 comparison between a ground measurement and a 
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remotely-sensed measurement, the airborne data approximates a complete census of variables of 

interest at a given point in time (Asner et al. 2008). This information changes the notion of, and in some 

instances the need for, a ground-based sampling approach. In the case of the many variables that 

cannot be directly measured with a remote approach (e.g., disease, microbial functional groups, insects, 

small mammals), the airborne imagery will provide information (e.g., the structure of small mammal 

habitat) that might direct a reallocation of sampling effort. 

NEON is designed to provide data sufficient to understand relationships between forcing drivers 

of change and ecological response at multiple scales (Schimel et al. 2011). For many processes, NEON 

will not be able to determine if the study design and associated observations are able to detect the 

nature of the functional relationships between drivers and ecological response until more is known 

about trends, temporal variability, and uncertainty associated with measurements (Chao and Thompson 

2001, Fuentes et al. 2007). Data collected over the first several years of observations will define the 

measurement accuracy and precision, and sampling intensity and frequency needed to detect trends (Di 

Zio et al. 2004). The site-specific study design will likely require alterations to sufficiently inform local-

scale allocation. 

Conclusion 

As a continental-scale observatory, NEON will provide comprehensive data that will allow 

scientists to address the impacts of change on ecological patterns and processes. Detecting change, or 

ecological trends, at regional and continental scales requires specific long-term observation at local 

scales. The sample design provides a scientifically rigorous framework that directs the spatial location of 

local observations. It is an integral component of the larger NEON strategy which is guided by the 

assimilation of science questions, guiding principles and requirements, multiple observing platforms 

with specific protocols, products, analyses, and mechanisms for sharing the results. This sample design is 

a fundamental component of the ecological observatory.  
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Specification of a sample design suitable to a long-term, continental-scale ecological observatory 

faces several general challenges which must subsequently be translated into specific design constraints. 

The design must be appropriate for sampling multiple taxonomic groups and processes, and also be 

capable of sampling such that cohesive integration of drivers and response can be achieved. Resulting 

data will be public and confronted by ecological community with very different methods for addressing 

untold ecological questions. The sample design must accommodate these different analytical paradigms. 

Finally, the design must provide sufficient information for the detection and quantification of 

continental-scale trends in ecological responses. These conditions collectively constrained the 

development of the site-scale sample design. The design is randomized and stratified by vegetation. 

Guidelines for minimum sample size, analysis of data, and optimization are considered. These design 

efforts will provide an unbiased data product that can be assimilated into design and model-based 

approaches to inference for the efficient detection of trends that are scalable within the context of the 

NEON design. 
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STRATEGIES FOR COMPARING PLANT DIVERSITY IN A NATIONAL NETWORK OF SITES2 
 
 
 

Introduction 

Plant species richness is a simple metric, applicable to theory (Darwin 1859, MacArthur and 

Wilson 1967, Hubbell 2001, Maestre et al. 2012) and practical for planning (Ahern 2013) and assessing 

causes and consequences of global change (Sala et al. 2000, Chapin III et al. 2000, Stohlgren et al. 2011). 

Species represent an intuitive unit of organization (Gotelli, Nicholas J.; Colwell 2011) defined by 

reproductive capacity resulting in distinct genetic organisms that interact with the environment in 

similar ways (Mauer and McGill 2011). While the collective co-occurrence of different species reflects 

the environmental constraints and process of a particular system(Case 1983, Kraft et al. 2015), 

environmental constraints on species are unique (Gleason 1939); species divergent historical responses 

to past climate variability and species-specific functional characteristics that mediate interactions (Diaz 

and Cabido 1997, Cardinale et al. 2006). As a result, changes in climate or other environmental 

parameters or processes such as disturbance regimes and land use have the capacity to differentially 

impact species and patterns of species richness. 

As these drivers and constraints change, plant diversity changes (Vitousek et al. 1997, Hooper 

and Vitousek 1997, Chapin III et al. 2000). Documenting and understanding this change requires a 

consistent commitment to comparable observations (Stohlgren 2007, Mauer and McGill 2011). Through 

time observations provide insights to changing relative abundance, species composition, and plant 

species invasion (Magurran 2011). Measurement across space facilitates insights into species turnover, 

range shifts, and impacts of invasion (Stohlgren 2007). Integrating observations of plant diversity across  

space – at the scale of the United States - and time – over decades – with the range of directional 

forcing factors that persist at these large scales should facilitate the untangling of complex pattern-

                                                           
2
 Additional authors: David S. Schimel, Thomas J. Stohlgren, and Paul A. Duffy 
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process relationships (Peters et al. 2014, Soranno and Schimel 2014, Collins 2016) and enable 

forecasting of future conditions (Keller et al. 2008).  

However, plant diversity is an elusive (May 1988) and statistically complex quantity to measure 

(Gotelli and Colwell 2001). In most every system few species are common and many species are rare 

(Rozenweig 1995) and samples represent a downward biased estimate – not all species will be detected 

– of the true species richness at the scale of interest (Gotelli, Nicholas J.; Colwell 2011). As a result, 

comparing plant diversity across space and time presents challenges due to:  

 Differences in underlying species richness (Chao and Jost 2012) 

 Differences in species abundance and richness that may also reflect sampling effort or 

observation conditions (Gotelli and Colwell 2001, Stohlgren 2007, Mauer and McGill 2011) 

 Differences in effective area sampled (Gotelli and Colwell 2001, Stohlgren 2007, Gotelli, 

Nicholas J.; Colwell 2011)  

 The spatial arrangement of the samples (Stohlgren 2007, Gotelli, Nicholas J.; Colwell 2011)  

 Differences in shape of the relative abundance distribution (McGill 2011) 

 Differences in number of individuals collected or counted that reflect biologically 

meaningful patters of resource availability or growth conditions (Gotelli and Colwell 2001) 

This paper explores methods that circumvent these challenges by incorporating extant understanding of 

plant species distributions and leveraging techniques for standardized sampling to facilitate robust 

comparisons of plant diversity data.  

Raw estimates of plant species richness can only be compared when all of the species in a 

defined space have been detected. This level of completeness is rare when sampling plant species 

diversity in natural ecological systems (Gotelli, Nicholas J.; Colwell 2011). Alternatively, species 

accumulation curves provide a valid way to compare species richness from sampling two different 

assemblages (Sanders 1968, Hurlbert 1971, Gotelli and Colwell 2001, Chao and Jost 2012). Species 
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accumulation curves describe the increase in total number of species recorded (y-axis) as more plots (x-

axis) are sampled. The probability of detecting new species with each successive sample depends on the 

number of species in the assemblage and their relative abundance. Systems more rich and with even 

abundance distributions result in a steeper curve compared to less rich assemblages characterized by 

uneven species abundance distributions (Gotelli, Nicholas J.; Colwell 2011). In all cases, the curves 

decrease monotonically with decreasing slope. The smoothed average represents the statistical 

expectation of the species accumulation curve, the variation between different orderings describes the 

variation in the number of species detected at any number of plots conditioned on the particular sample 

(Gotelli, Nicholas J.; Colwell 2011).  

In addition to describing the composition and richness of a site or species assemblage, species 

accumulation curves allow statistically rigorous comparisons of species richness and diversity. To control 

for sampling effort comparisons are most frequently made where sample sizes are equal (Colwell and 

Coddington 1994, Gotelli and Colwell 2001, Chao et al. 2009, Chao and Jost 2012). In cases where a 

different number of samples were taken from each site or assemblage, the data can be rarefied – 

moving down the smoothed rarefaction curve – to the smaller sample size. Alternatively data from the 

site with the smaller sample size can be extrapolated to estimate species richness at a larger sample size 

(Colwell et al. 2012). However, comparison at a fixed sample size may not sufficiently characterize the 

richness of a particular assemblage (Chao and Jost 2012), biasing the degree of differences between the 

richness being considered. Because richness estimates based on fixed numbers compress the ratio of 

richness, comparison based on sample size are exposed to the risk of drawing conclusion more reflective 

of the sample size than the diversity characteristics of the community (Chao and Jost 2012, Colwell et al. 

2012, Chao et al. 2014a, Hsieh et al. 2016a).   

As an alternative, Chao et al. (Chao and Jost 2012, Chao et al. 2014b) demonstrated that species 

richness can also be compared when two or more sets of samples record the same proportion of the 
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total number of species represented in each assemblage (Chao and Jost 2012, Chao et al. 2015). This 

total number of species is unknown but approximated by the number of singletons and doubletons 

represented in the sample (Chao and Jost 2012, Chao et al. 2014b). ‘Coverage’ and corresponding plant 

species richness can be calculated for any sample size. The sampled species richness, expressed as a 

function of coverage, can be compared when coverage values across samples are equal, and, like 

comparisons standardized by effort, equivalent coverage and corresponding richness can be estimated 

by rarefaction and extrapolation as needed (Gotelli and Colwell 2001, Gotelli, Nicholas J.; Colwell 2011). 

The concept of coverage is not new. Ecologists frequently evaluate sample completeness by the 

terminal slope of traditional species accumulation curves (Colwell and Coddington 1994). The slope 

represents the expected increase in species when one plot is added to the sample; a steep slope 

suggests the presence of many undetected species, while a horizontal asymptote indicates that nearly 

all species in a constrained assemblage have been detected. Chao et al. (Chao and Jost 2012) prove that 

sampling such that the slopes of the species accumulation curves are equal is equivalent to a point 

where coverage is equal and supportive of a statistically robust standard for comparison of plant species 

richness. 

The objective of this effort is to generate a framework that allows for the cost-effective 

comparison of plant diversity across unique sites and across habitat types within and across sites in the 

context of an ecological observatory. Sampling with sufficient intensity to reach the inflection point of 

the species accumulation curve as defined at a particular slope creates a diversity-based standardization 

that also protects against inefficient oversampling and prevents a small sample size incapable of 

differentiating assemblages. At small sample sizes, species richness tends to converge at small sample 

sizes and comparisons tend to reflect numbers of plots more than species richness (Colwell and 

Coddington 1994), and within assemblage variation can be large (Gotelli and Colwell 2001, Colwell et al. 

2012). Conversely, sampling beyond the inflection point of the species accumulation curve results in 
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inefficient use of resources as few new species are detected with the addition of each new plot, and, 

particularly as the curve approaches an asymptote, further sampling does not increase the power to 

detect patterns and trends.  

These goals and science considerations combined with logistical constraints for design and 

deployment of a top-down network of sites capable of delivering comparable plant species richness 

data. An inflection point only provides rigorous opportunities for comparison when defined by a 

particular target slope. A target slope of seven was selected as a point between the range of initial steep 

slopes (20 – 34 in many cases) and a slope of zero that would indicate all species in the assemblage were 

captured in the sample. At the scale of the site, samples numbers were allocated evenly. Environmental 

variation across sites may provide a wider diversity of habits to support a more diverse flora (Stein et al. 

2014) that could benefit from more plots at some sites, but in the absence of data and to ease 

programmatic allocation of funds an initial equitable distribution of 30 plots were sampled in each site. 

Gotelli and Colwell (Gotelli, Nicholas J.; Colwell 2011) suggest a minimum of 20 plots, but recognize the 

numerous factors that make sites and sample size requirements unique. Within sites, plots were 

distributed according to a spatially balanced and stratified- random design (Stevens and Olsen 2004, 

Theobald et al. 2007). The National Land Cover Database (NLCD) served to stratify the sites to efficiently 

sample site-specific heterogeneity (Thompson 2012). To reach that inflection point at a slope seven on 

the species accumulation curve, more plots were placed in larger cover types to quantify the higher 

levels of species richness associated with the heterogeneity associated with more space (Arrhenius 

1921, Preston 1962, Rozenweig 1995). Plots were allocated according to proportion of the square-root 

of the strata area, directing more plots to larger areas but creating a non-linear relationship to account 

for the disproportionate diversity that often persists in some rare cover types across landscapes 

(Stohlgren et al. 1997, 2003). Sampling would be best be informed by measured plant species richness 
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and variance, but in the absence of this data, the design provides a standard that targets the comparison 

and efficiency that can then be optimized towards a diversity-based sampling intensity.  

This effort evaluates the following specific objectives and assumptions of the design: 

1. To facilitate comparisons of plant species richness across sites, the 30 samples within each 

site will result in site-scale species accumulation curves that terminate at a slope of seven. 

2. To sample such that cover types within a site are comparable, plots distributed according to 

the proportion of the square-root of the area of each strata by site result in species 

accumulation curves that terminate at a slope of seven. 

Sampling plant diversity according to this plot allocation at sites across the continental United States as 

part of the National Ecological Observatory Network (Keller et al. 2008) provides the opportunity to test 

these assertions. The results will provide direction to further refine the design and improve the ability to 

compare plant species richness across sites and improve the understanding of the causes and 

consequences of changes in plant species richness. 

Methods 

Study sites 

Six sites were selected for testing the capacity of the sample size and allocation to generate 

comparable plant species richness data (Table 3.1). The sites represent a diversity of biomes across the 

United States and varying degrees of within-site heterogeneity (Table 3.1), support common NLCD 

classes that can be compared across sites, and the data from early collection efforts is available from the 

National Ecological Observatory Network data portal (http://data.neonscience.org/home). 

 

 

 

 

http://data.neonscience.org/home
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Table 3.1. Metrics of site characterization, heterogeneity, and sample size at six sites tested species 
accumulation curve-base comparisons of plant species richness. 

Site 

Site size 

(km2) 

Elevation 

(m) NLCD types sampled 

NLCD size 

(km2) 

Number 

of plots 

Harvard Forest/Quabbin 

Reservation, MA 

39.8 176 - 330 Deciduous forest 

Mixed forest 

Evergreen forest 

Woody wetlands 

16.2 

7.1 

11.1 

2.2 

10 

7 

9 

4 

Oak Ridge National Lab, 

TN 

67.1 258 - 362 Deciduous forest 

Evergreen forest 

Pasture/hay 

43.0 

5.1 

2.5 

15 

7 

5 

Ordway-Swisher 

Biological Station, FL 

36.9 32 - 35 Evergreen forest 

Woody wetlands 

Emergent herbaceous 

wetlands 

11.9 

6.2 

 

3.4 

11 

10 

 

7 

Smithsonian 

Conservation Biology 

Institute, VA 

7.4 238 - 454 Deciduous forest 

Pasture/hay 

7.4 

2.7 

18 

12 

University of Notre 

Dame Environmental 

Research Center, WI 

29.5 503 - 520 Deciduous forest 

Deciduous forest 

Mixed forest 

Woody wetlands 

6.3 

6.3 

2.5 

13.4 

9 

10 

6 

13 

Woodworth/Chase Lake 

National Wildlife Refuge, 

ND 

10.6 5720 - 589 Emergent herbaceous 

wetlands 

Grassland/herbaceous 

 

1.5 

6.6 

 

10 

20 

 

Field collection of data 

The spatial sampling design that directs the sampling within each site and the method for 

observing plant species richness at each of these locations are both critical to enabling comparisons of 

species richness with species accumulation curves (Stohlgren 2007). The emphasis on generating 

comparable data requires that the spatial sampling design satisfy assumptions of the analysis and the 

field method be appropriate for the diversity of sites across the network at which data will be collected.  

Spatial sampling design. A primary requirement of comparing species accumulation curves is 

that data be collected randomly. An unbiased sample resulting from spatially balanced and random 

(Theobald et al. 2007) plot locations (Cochran 1977, Thompson 2012) is the foundation of the sample 
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design. The design eliminates the potential for bias and meets the assumptions of the species 

accumulation framework (Chao et al. 2015). The capacity of observations to describe plant species 

richness depends on the local patterns of heterogeneity and richness as well as logistical and financial 

constraints that govern sample sizes. Previous studies (Stohlgren 2007) and early input from the 

ecological community resulted in initial baseline funding for a sample size of 30 plots that will be 

distributed across each site.  

To efficiently sample the landscape at each site and to be sure dominant cover types were 

adequately sampled by a network also focused on ecosystem ecology (Keller et al. 2008, Schimel et al. 

2011), plots were stratified by landscape cover types within each site (Cochran 1977, Johnson 2012). The 

National Land Cover Database (Fry et al. 2011) provides cover classifications well suited to stratification 

for a national network, providing a continuous land cover classification across the United States 

including Puerto Rico, Alaska, and Hawaii. Sampling excluded the rarest NLCD cover types (< 5%) within 

each site to increase the likelihood of adequately characterizing plant diversity in each type sampled. 

However, by excluding rare cover types, species and trends associated with a component of native and 

non-native flora will go undetected (Stohlgren et al. 1999). A biodiversity-specific effort designed to 

record all cover types and all or nearly all of the species at each site and more rigorously track the 

species at continental scales would have required many more plots and sites.  

Plot design  

Plant species richness was recorded with a multi-scale plot design that borrows from techniques 

pioneered by Whittaker (Smida 1984), shares commonalities with modifications of his initial approach 

(Stohlgren et al. 1995, Stohlgren 2007), but more closely emulates techniques developed by the Carolina 

Vegetation Survey (Peet et al. 1998). Plant species will be documented with a 20 x 20m square plot 

comprised of four 10 x 10m subplots with nested subplots (Figure 3.1). Specifically, the following 

observations were made:  
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 The identity of each species according to naming conventions maintained by the US 

Department of Agriculture, Natural Resources Conservation Service PLANTS database 

(USDA, NRCS 2016) will be recorded in each subplot – ten 1-m2, ten 10-m2, four 100-m2.  

 Estimates of abundance are made with ocular estimates of cover within the 1-m2 subplots.  

The large, multi-scale plot design is modified from a method Whittaker (Smida 1984) developed with the 

origination of gradient analysis and ordination techniques (Whittaker 1960). These multiscale plots 

generate comparable data through time (Damschen et al. 2010) and across multiple US states (Stohlgren 

et al. 1998a, 1998b, 1999) to further general understanding of patterns and plant species diversity and 

species-environment relationships.  

 

Figure 3.1. The multi-scale plot for recording observations of plant diversity at multiple sites.  
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Models and Analyses 

Plant species richness within and across sites were compared with incidence-based – samples 

reflect the total number of species in each plot sampling plot or sampling unit - species accumulation 

curves (Gotelli and Colwell 2001). Species accumulation curves were generated in Program R (R Core 

Team, 2016) with the iNext package (Chao et al. 2015, Hsieh et al. 2016a). Several assumptions must be 

met to ensure statistical validity of tests associated with species accumulation curves:  

 Samples must be randomly drawn from an assemblage (Colwell and Coddington 1994). 

 The same method of observation must be implemented across assemblages (Chao and Jost 

2012, Chao et al. 2014a). 

 The community is closed (Gotelli and Colwell 2001). 

 The total number of species and species abundance distributions must be stationary(Gotelli, 

Nicholas J.; Colwell 2011). 

 Sampling must be with replacement or remain unchanged by removals (Gotelli, Nicholas J.; 

Colwell 2011). 

The sampling design accounted for randomization and plot sampling method was deployed universally 

across sites. The dynamic nature of natural communities renders assumptions about closed 

communities and stationary species abundance distributions untenable. However immobile plant 

species were unlikely to change at time scales required for plot sampling, and these assumptions can be 

considered reasonable with the understanding that data and comparisons reflect patterns of plant 

species richness at the time of observation. This plant diversity observational sampling is not destructive 

and effectively satisfies the ‘with replacement’ assumption. 

The order in which plots were observed is immaterial to the structure and patterns of diversity. 

The resulting species accumulation curves were generated by repeated random ordering that results in a 

smoothed (Gotelli, Nicholas J.; Colwell 2011, Colwell et al. 2012, Hsieh et al. 2016a) ‘rarefaction’ curves 



70 
 

diagnostic of extant patterns of plant diversity. These successive runs allow 95% confidence intervals 

associated with each curve capable of statistically rigorous assessments of slope and comparisons of 

species richness. Estimates of the unconditional variance – the true variation in species richness at any 

given sample size for the assemblage – is represented by the mean of numerous smoothed species 

accumulation curves and can be estimated from a single sample (Colwell et al. 2012, Chao et al. 2014a, 

Hsieh et al. 2016b). This allows for the estimation of variation through the extent of the species 

accumulation curve as opposed to variance conditioned on a particular sample that must, by definition, 

reduce to zero at the termination of the curve when all plots are included.  

Evaluating the capacity to generate comparable data at a slope of seven was assessed in 

multiple ways: 

 Site-specific species accumulation curves were evaluated against a decrease in the slope to 

seven. 

 To evaluate the within-site NLCD allocation, the prescribed sample size was compared to a 

confidence interval created by the sample size where the slope of the upper and lower 

confidence curves were equal to seven.  

 To further assess the assumption that larger cover classes would require a larger sample size 

to reach a slope of seven, the square root of the area was compared to the species richness 

where the slope of the line was equal to seven. 

Cover classes within sites, common cover classes across sites, and sites were compared with species 

accumulation curves and associated confidence intervals. A multiple linear regression tested the 

hypothesis that larger, more heterogeneous sites at lower latitudes would be more diverse.  
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Results 

Tests of species accumulation curve slope 

The slope of most species accumulation curves decreased to a slope of seven or less. At the 

scale of sites, where the number of plots was intended to be equal (but was not quite equal, due to 

logistical challenges, Table 3.2), five of the six (83%) species accumulation curves described by all the 

plots decreased to a slope of seven or less. Extrapolation of one plot was required to reduce the slope of 

the curve at Harvard Forest to seven (Table 3.2). Within sites, where plots were allocated according to 

the proportion of the square root of the area of target NLCD cover classes, 82% of the NLCD species 

accumulation curves decreased to a slope of seven or less. The species accumulation curve describing 

the cover types that did not decrease to seven was extrapolated (two plots at emergent herbaceous 

wetland at Ordway-Swisher Biological Reserve, one plot at the pasture hay at Oak Ridge National Lab, 

and two plots at the woody wetlands at Harvard Forest) to facilitate comparison of species richness at 

this targeted slope (Table 3.2).   

An assessment of species-accumulation curves terminating at a slope of seven – not over or 

under sampling – compared the number of sampled plots to the range of plots corresponding to the 

confidence interval curves were equal to seven. For example, at the woody wetlands cover type at 

Ordway-Swisher Biological Reserve, the ten plots sampled were significantly greater than the number of 

plots needed (4 + 1) to reduce the slope of the species accumulation curve to seven (Figure 3.2). Two 

(12%) of the NLCD cover classes – the woody wetlands at Harvard Forest and the pasture/hay at Oak 

Ridge National Lab - were sampled with an insufficient number of plots, the sample size resulted in a 

slope within the confidence interval at five (30%) NLCD classes, and more plots than were required for a 

slope of seven were sampled at ten (59%) of the NLCD classes (Figure 3.3a). This oversampling was more 

pronounced at the site scale where four of six sites (67%) where the 28 to 30 plots sampled were 

significantly more than required to reach a slope of seven, and the number of plots fell within the range 
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associated with confidence-intervals that correspond to a slope of seven only at Harvard Forest and 

Ordway-Swisher Biological Station (Figure 3.3b). These results suggest that sampling intensity at most of 

the sites (83%) was greater than needed to decrease the slope to seven and the within-site allocation 

did not successfully result in a slope of seven at most (75%) sites.  

 

Figure 3.2. A confidence interval associated with the number of plots required for the slope of the 
species accumulation curve at the woody wetlands cover type at Ordway-Swisher Biological Reserve to 
decrease to a slope of seven. The confidence interval is described by the number of plots that 
correspond to a slope of seven for the lower (4 plots) and upper (6 plots) confidence interval curves. 
Sampling at the Ordway-Swisher Biological Reserve exceeded this confidence interval (ten plots at the 
terminus of the species accumulation curve). 
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Figure 3.3. The number of plots and the confidence interval at which the slope of the curve was equal to 
seven at each NLCD class can be described with a boxplot. Overlaying the total number of plots sampled 
enables a visual portrayal of the statistically rigorous assessment of the prescribed sample size to 
sample to – but not beyond – a slope of seven at each NLCD class (a.) and within each of the six sites 
(b.).  

 

The assumption was made that more plots would be required in larger NLCD classes to reach a 

slope of seven. To better understand why the results were not particularly robust to this allocation, the 

relationship between the area and the number of species detected when the slope of the species 

b. 
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accumulation curve was equal (for an equitable comparison of effort) to seven was evaluated. A line 

fitted to the data was neither positive nor significantly different from zero, suggesting that the larger 

NLCD sampled do no support greater species richness.  

Comparisons of species richness  

Comparisons of total species richness observed across sites, indicated that Harvard Forest, 

where extrapolation of one plot was required to reduce the species accumulation curve to a slope of 

seven, supported the greatest number of species. There was no significant difference between Oak 

Ridge National Laboratory, Ordway-Swisher Biological Station, and the University of Notre Dame 

Environmental Research Center, fewer species were observed at the Smithsonian Conservation 

Biological Institute, and still fewer species observed at Woodworth Station (Figure 3.4).  

Comparisons of species richness within a single NLCD class across different sites, and across 

different NLCD classes within sites were also made with species accumulation curves. Cross-site 

comparisons of common - present at more than one site – NLCD classes, which required species 

accumulation extrapolation of one plot in the woody wetland at Harvard Forest, indicated that the 

woody wetland at Harvard Forest was significantly more species rich than the woody wetland NLCD class 

at both the University of Notre Dame Environmental Research Center and the Ordway-Swisher Biological 

Station (Figure 3.5). The deciduous forest at the Smithsonian Conservation Biological Institute supported 

a larger number of species than the same forest type at the University of Notre Dame Environmental 

Research Center and Oak Ridge National Lab which were both more species rich than the deciduous 

forest at Harvard Forest (Figure 3.5). Within sites, the greatest numbers of species were most frequently 

detected in the NLCD evergreen forest and woody wetland NLCD classes (Figure 3.6).  



76 
 

 

Figure 3.4. Comparisons of species richness across six sites where the slope of the species accumulation 
curve is equal to seven. 

Harvard Forest:
474 ±20

Woodworth National Wildlife Refuge:
95 ±4

Smithsonian Conservation 
Biological Institute:
280 ±10

Oak Ridge National Lab:
318 ±16

Ordway-Swisher 
Biological Station:
333 ±15

Univ. Notre Dame
Env. Research Ctr:
344 ±17
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Figure 3.5. Species accumulation curves of two NLCD cover types common to three or more sites. 
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Figure 3.6. Species accumulation curves of NLCD cover classes within targeted sites. 
 

Discussion  

The design for comparing spatial and temporal patterns of plant diversity is based on 

assumptions informed by science and constrained by logistics. Implementing the design at multiple sites 
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across the United States enabled an opportunity to test assumptions, evaluate patterns of plant 

diversity, and acquire data capable of informing data-driven iterations for optimizing the network.  

Testing assumptions of the design 

The design enables a robust comparison at a slope of seven on the species accumulation curve 

in three ways: 1) by interpolation in cases where the slope was less than seven, 2) where the species-

accumulation curve terminated at a slope not significantly different than seven, and 3) in fewer cases, 

where the terminal slope was greater than seven by extrapolation. That sampling to a slope greater or 

equal to seven required extrapolation equivalent to two or fewer plots at one site and three NLCD types 

suggests the prescribed sample allocation adequately characterized species accumulation curves for 

comparison of plant species richness at a slope of seven. More frequently (five of six sites and ten of 17 

NLCD classes, Figures 3.5 and 3.7) sample sizes resulted in slopes less than seven (Table 3.2) and the 

number of sampled plots exceeded the number of plots that correspond to the upper and lower 

confidence interval at a slope of seven (Figure 3.3). Additionally, there was no positive and significant 

relationship between the size of the site and the number of species at a slope of seven or between the 

size of NLCD class and species richness at a slope of seven within sites (data not shown); there were not 

more species in larger sites or cover types.  

Numerous explanations could account for the initial allocation at and within sites not resulting 

in an exact slope of seven. The allocation was motivated by general patterns. Larger areas tend to 

encompass more heterogeneity (Hastings 1990, Collins 1992). Expressed as micro habitats, small-scale 

disturbance, and gradients in resources and structural complexity, this variation tends to result in 

greater niche portioning and species richness in larger areas (Hutchinson 1959, Rozenweig 1995, Stein et 

al. 2014). Consistent with the data presented here, the generality of the relationship is not absolute, and 

uncertainty regarding the interactions of heterogeneity, space, and species richness persist. 

Implementing comparable methods across sites in the Mountain West and Plains of the United States, 
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Stohlgren (2007) found that rare habitat types tended to support more plant species due to greater 

resource availability. Factors such as dispersal and available energy (Currie 1991) have also been shown 

to obscure positive heterogeneity-species richness relationships (Lundholm 2009). Furthermore, the 

general classifications that make the NLCD amenable to a continental stratification may complicate the 

assumptions and associated approach to sample allocation. The NLCD types describe broad functional 

groups (e.g. evergreen forest, deciduous forest, woody wetlands) that, because it is impossible to train 

algorithms locally due to the broad scale, suffer from registration error (Thogmartin et al. 2004) and may 

not capture all gradients relevant to understory and subdominant species.  

Unsampled components of environmental heterogeneity within NLCD cover classes may 

compromise the ability to make comparisons at a particular slope or coverage. Coverage-based 

comparisons (Chao and Jost 2012) of species richness rely on a proxy for estimating the total species 

richness – the asymptote of the species accumulation curve - in each assemblage compared. 

Comparisons at a specific slope of species accumulation curves as proposed here don’t explicitly rely on 

estimates of total species richness, but generating these curves through repeated reordering of samples 

and comparing species at a particular slope is an analogous procedure. The slope of the species 

accumulation curve represents the expected number of species that would be added with sampling 

another plot (Gotelli, Nicholas J.; Colwell 2011). A steep slope early in the curve trajectory suggests that 

the addition of each new plot is likely to result in many new species. At slope of seven the addition of a 

new plot is likely to add seven new species (Chao et al. 2009, Gotelli, Nicholas J.; Colwell 2011). A 

species accumulation curve approaching nadir is unlikely to add new species to the sample. However, 

when heterogeneity or area is large relative to the sample a species accumulation curve will not reach 

an asymptote (Chao et al. 2016). As samples cross environmental gradients and add new species to the 

total sampled, the slope of the curve would remain steep until the area sampled approaches the entire 

realm being sampled (Gotelli, Nicholas J.; Colwell 2011). An asymptotic curve can only be expected 
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where sample sizes are sufficient to make sampling issues more important than species turnover due to 

heterogeneous environments and habitat mosaics (Cam et al. 2002, Gotelli, Nicholas J.; Colwell 2011). 

As a result, asymptotic extrapolation in diverse systems is statistically difficult. The sample must be 

sufficiently large to be representative of the entire species assemblage and reliably estimate the form of 

the species accumulation curve, the asymptote, and to rarefy and extrapolate estimates of richness, 

slope and coverage (Chao and Jost 2012, Chao et al. 2014a, 2016). In the case of this investigation, the 

number of plots sampled, particularly in the more diverse types, may not be sufficient to adequately 

describe species accumulation curves associated with the NLCD cover classes given the area, 

heterogeneity, and species richness. Further sampling may cross unsampled within-type gradients, or 

encounter micro habitats that result in the detection of new species and result in modifications to the 

trajectory of the associated species accumulation curve. This sampling problem could be evaluated by 

adding more plots that target unsampled gradients (Thompson 2012) or avoided by comparing richness 

across types where the sample size is equal (Gotelli and Colwell 2001, Colwell et al. 2012). Rarefaction 

enables comparison of plant species richness at the smallest sample size collected at any site or NLCD 

class (Figures 3.5 and 3.7). Comparisons across sites of equal sample size (n = 26) resulted in different 

conclusions from comparisons at equal slope. Like comparisons at a slope of seven, at 26 plots Harvard 

Forest and Woodworth National Wildlife Refuge were the most and least species rich sites respectively, 

but unlike the comparison of equal slope the species accumulation curves of the other sites converged 

at 26 plots. There was no difference at the equal and larger sample size (Figure 3.4). Sample size is 

important for adequate characterization of species accumulation curves (Gotelli and Colwell 2001). Ten 

plots sampled at each site would have been incapable of differentiating Harvard Forest, Oak Ridge 

National Lab, and Smithsonian Biological Institute that were otherwise apparent at a larger sample size 

or at equal slope (Figure 4). Both standards for comparison suggest insufficient sampling can result in 
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mischaracterization of species accumulation curves and demonstrate the need for a standard at which 

data can be compared. 

The sample allocations were put forward as an initial sampling strategy. Guided by logistical 

constraints and ecological theory, hypotheses about the comparable patterns of species accumulations 

patterns were put forward with the expectation that some curves would terminate at a slope of seven. 

Anticipation that some curves might miss a slope of seven accompanied the understanding that 

sufficient data would be collected to allow comparisons (with reasonable interpolation or extrapolation 

if needed) and to test and adjust the design towards sampling objectives. The rationale for sampling to 

an inflection point of the species accumulation curve – adequately parameterizing the species 

accumulation curve without oversampling - and the persistent need to efficiently acquire information 

suggests that optimizing the design toward the inflection point while also enabling comparison at an 

equal sample size with extrapolation and interpolation. In most cases, a species accumulation curve 

slope of seven could be obtained with fewer plots. For example, rarefaction suggests that a slope of 

seven would require only five plots in the grassland/herbaceous NLCD type at Woodworth National 

Wildlife Refuge (Figure 3.6). The sample size could be reduced at most of the cover types at Harvard 

Forest, but some of the effort – about two plots – would require reallocation to the woody wetland type 

(Figure 3.6). However, there was a disconnect across scales. The curve for all plots at Harvard Forest 

required extrapolation to a slope of seven and suggests that sampling should not be reduced. Data from 

other sites indicated that sample size could be reduced, but there was no consistency in number of plots 

to be eliminated across scales. This difference between patterns at different scales is prevalent in 

ecology (Wiens 1989, Levin 1992) and emphasizes the challenge of developing a framework for rigorous 

comparisons of species richness across time and space (Legg and Nagy 2006, Stohlgren 2007, Gitzen and 

Millspaugh 2012). Optimization and understanding will require testing and iteration over the first 

several years of observation (Carlson and Schmiegelow 2002, Kendall and Moore, Clinton 2012).  
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Comparisons across sites and strata 

Species accumulation curves provide a standard for comparison of sites, of NLCD classes across 

and within sites. The standard – either at a particular slope of the species accumulation curve or at equal 

effort – handles differences in sampling effort that would otherwise complicate obfuscate conclusions 

about differences in species richness, and associated understanding of the factors that control patterns 

of diversity and differentially drive change through time. However, a complete understanding of the 

factors controlling plant diversity require careful experimentation, and are beyond the scope of this 

research. 

Applications 

The influx of non-native plant species (Hejda et al. 2009, Powell et al. 2011), land use change 

(Newbold et al. 2015), and changing environmental conditions (Tilman and Lehman 2001, Pauli et al. 

2012) alter species composition, abundance, and diversity. Statistically rigorous techniques for 

comparing plant diversity across space and time are needed to accurately detect these changes at a 

variety of scales (Magurran and McGill 2011). The diversity-based framework for comparing data across 

space and through time presented here provides a cost-effective framework for ensuring adequate 

descriptions of species richness and facilitates multiple standards for comparison that result in robust 

insights from across disparate sites and at large spatial extents.  

Ecologists increasingly seek to understand change at large spatial and temporal scales to extract 

more robust understanding of trends and to provide managers and policy makers with information at 

space-time scales that is relevant to long-term management of states, nations and continents (Keller et 

al. 2008, Schimel and Keller 2015). This ‘Big Data’ (Collins 2016) approach to ecology typically requires 

the combination of disparate datasets that originate from independent investigation, database 

repositories, and ecological networks (Soranno and Schimel 2014) that require manipulation and 

amalgamation, and – most of all – they must be comparable (LUO et al. 2011). As described previously, 
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comparisons of species richness are particularly difficult (Gotelli and Colwell 2001, Magurran 2011) and 

ecologists might do well to focus comparisons with species accumulation curves, either at equivalent 

slopes, coverage (Chao and Jost 2012, Chao et al. 2014a), or sampling effort (Gotelli and Colwell 2001). 

Integrating this comparable plant diversity data with other ecological data streams allows for an 

understanding of the causes and consequences of change and can enable prediction of future change 

(Keller et al. 2008, Oliver and Roy 2015). Understanding of relationships enables predictive models that, 

with the continued collection and assimilation of data can be evaluated and updated through time (Niu 

et al. 2014, Mouquet et al. 2015) to fine-tune understanding of trends across space and time.  

Future directions 

Collecting data according to a sampling design provides the opportunity to assess the 

performance of the design by testing assumptions and understanding extant characteristics of 

landscapes in question. In this case, where the intent is to repeatedly collect data to understand 

patterns in time there is an opportunity to further refine the collection effort and address the following 

questions: 

What causes the differences in species accumulation curves at different scales? And, which scale 

should be the focus of design optimization? Subsetting data and testing different plot allocations within 

sites could provide insight. Regardless of the drivers of the difference, the question of the scale at which 

the design should focus likely depends on the question asked of the data.  

How will variation through time impact the shape of species accumulation curves? Will a sample 

size appropriate for sampling to a slope of seven be appropriate in future years? This will simply require 

time and risk might be buffered by keeping more plots than the design might initially require.  

How does a sample size optimized to allow for comparison impact the ability to detect trends in 

richness through space and time? The ability to detect trends will require depend on specific questions 

but would be best addressed with a data model framework focused on trend detection that 
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incorporates estimates of variation in space and time that can be updated with annual data collection 

efforts. 

Some of these questions can be informed by the successive collection of data. Most will require 

supplemental data and testing to best understand how to collect data for trend detection at scales of 

the continent in addition to effectively describing changing patterns of plant species richness at time 

and space scales that are only just becoming possible.  
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TOOLS PLANNING FOR CLIMATE CHANGE WHEN DESIGNING INVASIVE PLANT SPECIES STUDIES33 
 
 
 
Introduction 

Understanding global change requires an appreciation of the connectivity of ecological systems 

and interactions of pattern and process (Peters et al. 2008). Anthropogenic impacts to the biosphere 

become clearer with new observations and data, especially when integrated with predictive models 

(Barnosky et al. 2012). Alterations to hydrological and biogeochemical cycles impact global climate 

trajectories (Marshall et al. 2008). Intensive land-use disturbs systems. Trade and transportation 

facilitate the spread of harmful invasive species (Hobbs and Huenneke 1992) and disease (Crowl et al. 

2008). When combined, these forcing factors can disrupt ecosystem function, processes, and the 

supported biodiversity. Understanding the causes and consequence of such change is essential for 

successful stewardship of the environment, and will ultimately be measured against our ability to 

accurately forecast and prepare for ecological changes to the systems that support life (Pejchar and 

Mooney 2009). 

Historically, a true understanding of cause and effect relationships was limited to small-scale 

experiments in controlled environments (Collins et al. 1995, Gruner 2017). Experiments at large scales 

were impractical or overwhelmed by the many drivers of ecological variability. The coordinated 

collection of data on drivers and long-term observations of ecological patterns will elucidate an 

understanding of species-environment relationships and possibly advance theory as predictions in space 

and time are validated with future observations. An iterative process of predictions confronted with 

field validation over years and decades will iteratively improve spatio-temporal hypotheses in ecology.  

The integration of species observations with predictive models can be applied at any scale. To 

show how specific ecological questions pertinent to local landscapes lead to hypotheses that can be 

                                                           
3
 Additional author: Thomas Stohlgren 
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tested in temporal and spatial contexts, we provide an example with two invasive plant species. The 

spread of invasive species in Hawaii provides a stark reminder of the connectivity of even remote 

locations. The impact of invasion on native species and ecosystem processes is significant (Vitousek et 

al. 1987, Mack and D'Antonio 1998), relevant to the development of ecological theory (MacArthur and 

Wilson 1967, Mack and Lonsdale 2002), and provides a suite of management and policy challenges.   

Local questions and baseline data relevant to invasive plant species management 

Management of invasive plant species at local scales, such as the Hakalau Forest National 

Wildlife Refuge and the Lapahoehoe Experimental Forest Unit on the island of Hawaii, is fraught with 

questions that could benefit from projections of the influence of environmental change: 

 Which invasive species pose the greatest risks to the environment, economy, and human 

health? 

 Where are these high priority species now?  

 Where are they likely to spread given the future change in climate, land use, and other 

anthropogenic drivers? 

 Where should resources for monitoring, mitigation, and containment take place (i.e., which 

species to manage in which areas) in space and time? 

These sites are part of the largest remaining native-plant dominated forest in Hawaii, but non-native 

plant species exist, are a topic of research (DeWalt 2006), and are the subject of long-term monitoring 

as part of the Hawaii Permanent Plot Network (www.hippnet.hawaii.edu) and efforts to restore native 

species at Hakalau Forest National Wildlife Refuge. This analysis was informed by an assessment of 

native and non-native vegetation collected at the Hakalau Forest National Wildlife Refuge in 2007.  

Stratified random sampling that integrates vegetation and environmental gradients captures 

biotic responses to climate change, land use change, and invasive plant species (Stohlgren 2007, Crowl 

et al. 2008). A vegetation map of Hawaii (Jacobi 1989) provided the strata for a stratified-random design. 

http://www.hippnet.hawaii.edu/
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We measured vegetation in circular, multi-scale vegetation plots (Barnett et al. 2007) to capture 

gradients of elevation and soil within each vegetation type. Plant species incidence and cover was 

observed in three 1-m2 subplots and the presence of all species was recorded in the 168-m2 area in the 

76 plots sampled (Figure 4.1). The plot is comparable to multiple-scale plot designs used in many 

monitoring efforts (Frayer and Furnival 1999, Stohlgren 2007). The documentation of both native and 

non-native plant species provides a system to track invasion and interactions between native and non-

native species (Stohlgren 2007).  

The enormity of the plant species invasion in Hawaii paired with fiscal constraints mandates a 

triage approach to monitoring and control (Parker et al. 1999, Lawler 2009). Records of invasive species 

in the plot-based assessment were integrated with models that describe single species distributions. 

Modeling individual species allows the species-specific response to environmental drivers (Higgins et al. 

2001, McMahon et al. 2009). Models provide a chance to better understand the processes associated 

with observed patterns of vegetation (Kerr et al. 2007, McMahon et al. 2009). Modeling tools and 

regional coordination can guide priorities for the prevention, early detection, and control of invasive 

species (Hulme 2003). Organizations like the Hawaii Ecosystem at Risk (HEAR; www.hear.org) and weed 

management association rank species virulence for specific areas. HEAR ranks both kikuyugrass 

(Pennisetum clandestinum) and common velvetgrass (Holcus lanatus) as 'high risk' species (Daehler et al. 

2004), and both are of special concern at the Hakalau Forest National Wildlife Refuge. The combination 

of regional and local concern qualified these species for management and long-term monitoring at both 

sites and makes these species suitable targets for understanding distributions through spatio-temporal 

modeling. 

 

http://www.hear.org/
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Figure 4.1. Multi-scale vegetation plots were sampled at the Hakalau Forest National Wildlife Refuge. A 
proposed long-term monitoring design where plant species could be monitored through time was 
proposed for the Laupahoehoe Experimental Forest, but these plots were not sampled as part of the 
described study. 
 
An iterative framework for evaluating spatial and temporal hypotheses 

 Treating spatial and temporal model results of species distributions hypotheses creates a 

framework for understanding systems and interactions to be tested, verified, and refined. Like small-

scale experiments, these hypotheses are best evaluated when compared to independent data (Hijmans 

2012). Obtaining that data in this case require time, even decades. Repeated forecasts and data 

collection that validates models and targets new gradients will refine both the models and sample 

design to iteratively improve understanding through time. We propose a simple conceptual framework 

that will iteratively evaluate predictions through space and time to allow proactive management of 
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species, and furthers the understanding of the drivers of invasion (Figure 4.2). The research questions 

above can be combined with the data from the Hakalau Forest National Wildlife Refuge and the 

Laupahoehoe study design to formulate hypotheses.  

 

Figure 4.2. An iterative process of testing spatial hypotheses will identify areas of uncertainty for further 
study thereby refining models that define the interactions of pattern and process over extended time 
periods. In many cases, the preliminary habitat suitability model may not be as accurate as needed for 
specific management purposes. Some of the steps needed to address uncertainty are shown. Because 
predictive layers change over time (e.g., climate, vegetation, disturbance layers, changes in threats), and 
because species-environment relations may change due to species adaptations and changing 
interactions among species (e.g., disease, predation), habitat suitability modeling must be an iterative 
process. New data will always contribute to a better understanding of the system. 
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Hypothesis 1: Species distributions and potential habitat suitability change predictably in space 

Habitat suitability models attempt to determine the environmental conditions in which a species 

can persist and can be applied to project that relationship across a defined space (Elith et al. 2006, Elith 

et al. 2009). The accuracy of habitat suitability models depends on the number and distribution of 

observed species locations, the completeness of the species surveys, and the resolution and relatedness 

of predictor layers in the models (e.g., climate, geology and soils, vegetation, and remote sensing layers; 

Elith and Leathwick 2009). Once a habitat suitability map is generated, it can be validated by withholding 

some of the occurrence data for testing, or with new surveys (Hijmans 2012). These models do not 

explicitly reflect intricacies of species interactions, dispersal, and other community assembly filters, but 

they do provide a baseline approximation of the potential range and distribution of the species (Lawler 

2009). In this example, we modeled the two plant species’ (Pennisetum clandestinum observed in 50 

plots, and Holcus lanatus detected in 28 plot) distributions with Maxent (Phillips et al. 2006) which 

compared favorably to many other techniques (Elith et al. 2006, Ortega-Huerta and Peterson 2008). 

Maxent employs a machine learning method based on principals of maximum entropy to 

probabilistically describe locations (cells) with conditions conducive to species occurrence based on 

individual environmental variables. Environmental variables included 19 bioclimatic variables (Hijmans 

et al. 2005) and five topographic characterizations and (Table 4.1). We acquired climate data for the 

2007 model from Daymet (www.daymet.org) and future climate predictions from the Canadian Centre 

for Climate Modeling and Analysis (CCCMA) A2a predictions (www.worldclim.org). Both of the climate 

scenarios were scaled from 1-km resolution to 30 meters (Wood et al. 2004) using a bilinear 

transformation (Environmental Systems Research Institute (ESRI), Redlands, CA). Despite the coarse 

resolution of the climate projections, the species information intersected a diversity of cells (kikuyugrass 

with 49 locations in 28 different 1-km2 grid cells, and velvet grass with 28 locations in 18 different 1-km2 

grid cells). Cross-correlated environmental variables were removed (r > 0.8) and those layers retained 
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were selected based on those likely to have biological relevance to the controlling plant species (Table 

1). We report the Maxent test area under the curve (AUC) values generated from 25 iterations with 15% 

the data withheld for training and testing purposes.  

Measures of climate provide a reasonable starting point for evaluating current and future 

patterns of plant species distribution because climate provides the context within which other drivers 

exist (Carpenter 2008). These models suggest that climate and physical landscape characteristics may 

control current and future species distributions (Table 4.1). Climate and other broad-scale drivers (e.g. 

topography) interact with processes and patterns at finer scales that tend to influence pattern at finer 

scales than that of this study (Peters et al. 2008). Measures of topography seemed to have minimal 

influence in this study (Table 4.1), which may be a result of the high degree of correlation (or a direct 

mathematical dependency depending on how the climate data were interpolated) with other predictor 

variables such as temperature and precipitation. Furthermore, model predictions can be highly 

dependent on the variables selected (Dormann et al. 2008). Evaluation of the models with existing data 

indicates that they are not particularly robust (Figures 4.2 and 4.3); Swets (1988) suggests that AUC 

values ranging from 0.7-0.9 are characteristic of models useful for some purposes. Generalist species 

(Evangelista et al. 2008) and the inclusion of coarse-scaled environmental data (Wood et al. 2004) likely 

challenged the accuracy of both models (Evangelista et al. 2008) and result in a tentative acceptance of 

the hypothesis on how the predictor layers relate to the species distributions in time and space. These 

models should be viewed as first approximations (Stohlgren and Schnase 2006) that could be improved 

with the integration of fine-scale remote sensing and climate data. True model validation will be 

possible with the implementation of the collection of NEON organism data at the Laupahoehoe 

Experimental Forest.  

Validation evaluates models, and, especially as part of an iterative process, improves 

anticipatory capabilities (Currie et al. 2004, Morin and Thuiller 2009). Many models incorporate testing 
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and validation, but true testing of generality requires evaluation against new data, at new places, and at 

new time steps (Thuiller et al. 2005, Heikkinen et al. 2006). The importance of unique site characteristics 

(land-use, management, disturbance, other invasive species, different environmental extremes) 

challenges the applicability of such efforts (Araujo et al. 2005), and comparison of our projections to 

independent observation from new studies or from ongoing monitoring by at Hakalau Forest National 

Wildlife Refuge and the Laupahoehoe Experimental Forest. Models become a learning tool in the 

context of long-term observation (Clark 2001, McMahon et al. 2009). The disparity between prediction 

and observation will highlight uncertainty that can be addressed with alterations to study design and 

targeted observations, the acquisition of improved environmental metrics, and experiments aimed at a 

better understanding of the underlying ecological processes. Integrating this new information into 

subsequent model runs and iteratively comparing drivers and spatial description to the next observation 

provides opportunities to better understand interactions of invasion, environment, and climate.  

Hypothesis 2: Species distributions and potential habitat suitability change predictably in time 

 Species distributions respond to climate, land-use, disturbance, soil, and landcover and are 

further mediated by interactions with other species (Chapin et al. 2011). As these forcing factors 

undergo change, there is increasing evidence species distributions and diversity also changing in 

response (Parmesan 2006, Lenoir et al. 2008, Bremer and Farley 2010, Chen et al. 2011). Suitable habitat 

shifts as climate changes. Climate model projections suggest that climate in the part of Hawaii occupied 

by these study sites is likely to change in future decades, and the distribution of suitable habitat for 

kikuyugrass and common velvetgrass will likely change as well. This temporal hypothesis – based on 

extant species-environment relationships - suggests that the prevalence of kikuyugrass across this 

landscape is likely decrease with reductions in suitable habitat (Figure 4.3). With time the leading edge 

of suitable habitat for common velvetgrass, however, will extend through the area with time, increasing 

the probability or increases in vevetgrass throughout the study site (Figure 4.4).  
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Table 4.1. Environmental and topographic variables and the percent contribution 
to the model of each species on the island of Hawaii, HI. 

Environmental variable Percent contribution 

 Kikuyugrass Common velvetgrass 

Minimum temperature of coldest month  39.9 a 

Precipitation of wettest month  20.5 a 

Maximum temperature of warmest month  15.3 a 

Mean annual precipitation  5.5 a 

Precipitation seasonality  5.5 a 

Distance from stream 4.7 3.5 

Aspect, degrees from north 4.6 1.9 

Aspect, degrees from east 2.0 3.6 

Isothermality 1.5  

Annual mean temperature  0.2 2.0 

Slope 0.2 1.3 

Precipitation of warmest quarter  a 46.9 

Precipitation of driest month  a 29.3 

Mean diurnal range in temperature  a 8.8 

Temperature annual range  a 2.9 

Mean temperature of warmest quarter  a a 

Mean temperature of coldest quarter  a a 

Precipitation of wettest quarter  a a 

Precipitation of driest quarter  a a 

Precipitation of coldest quarter  a a 

Temperature seasonality  a a 

Mean temperature of wettest quarter  a a 

Mean temperature of driest quarter  a a 

Elevation a a 

  a Cross-correlated variable removed from model. 

As temporal hypotheses these models cannot be formally accepted and should be continually 

challenged, but they do imply we may anticipate different futures for each of these species. The 

iterative hypothesis process supports real-world decisions on how to manage for change. In the context 

of limited budgets and numerous priorities, anticipating invasion with a data-driven approach allows a 

cost-effective for prioritizing monitoring and control (McGeoch et al. 2015). Priority should focus on 

those species poised to impact native species and challenge management goals (Blossey 1999, Ficetola 
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et al. 2007) such as restoring native forest cover and increasing habitat for endangered fauna (Camp et 

al. 2010). Managers could prioritize strategies to control and monitor common velvetgrass, and reduce 

efforts to contain kikuyugrass that is likely to be locally challenged by reductions in suitable habitat.  

 

Figure 4.3. The estimated current and anticipated future distribution of kikuyugrass at Hakalau Forest 
National Wildlife Refuge and the Laupahoehoe Experimental Forest.  
 



105 
 

 

 

Figure 4.4. The estimated current and anticipated future distribution of common velvetgrass at Hakalau 
Forest National Wildlife Refuge and at the Laupahoehoe Experimental Forest.  
 
Hypothesis 3: Spatial and temporal trends in invasion are best measured with a sampling design that 

captures biotic and abiotic gradients 

The study design is responsible for directing observation that results in an unbiased description 

of current and future conditions. A definitive evaluation of this hypothesis depends on future collection 

of the complete suite of abiotic and biotic data elements. However, these projections of species 

distributions provide a chance to test the ability of a proposed long-term plot design to capture current 

and future biological heterogeneity at the Laupahoehoe Experimental Forest (Figure 4.1). Sample sites 

must be positioned to capture the diversity of distribution characteristics to accurately calibrate the 

species-environment relationships if drivers of invasion are to be understood (Ibanez et al. 2009). The 

study site is dominated by habitat of medium or marginal suitability for common velvetgrass, and these 
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areas should be sufficiently represented by the study design (Table 4.2). Even those small parts of the 

site that are projected to have a greater likelihood of supporting the species seem to be well 

represented by the study design (Table 4.2). While more data and further analyses are needed, at least 

for common velvetgrass, we can currently accept the hypothesis that this design captures the abiotic 

and biotic gradients responsible for the distribution of this species across space and time. 

Table 4.2. The number of plots in a proposed long-term monitoring design in classes of 
probabilistically described habitat suitability for common velvetgrass (Holcus lanatus) at the 
Laupahoehoe Experimental Forest. 

Probability of occurrence 2007 2020 2050 

 % area 
Number of 

sample sites % area 
Number of 

sample sites % area 
Number of 

sample sites 

0 - 0.2 88 27 72 19 41 10 

0.2 - 0.4 9 5 13 4 27 13 

0.4 - 0.6 2 3 13 9 32 11 

0.6 - 0.8 < 0.01 0 2 3 0.41 1 

0.8 - 1.0 0 0 < 0.01 0 0 0 

 

If projections of invasion change, new sample sites can be added to provide monitoring 

infrastructure that will capture the front edge of invasion (Regniere et al. 2009). Preemptive sampling in 

projected hotspots of invasion provides early detection and catalogues conditions prior to invasion to 

better describe interspecific interactions after the arrival of target species (Lee et al. 2008). Budget 

constraints will limit the number of sample sites dedicated to capturing the leading edge of common 

velvetgrass dispersal. In addition to plots that measure all species, further documentation and validation 

of common velvetgrass can be achieved with rapid assessment mapping techniques that provide a cost-

effective and efficient way to increase sample size and improve model predictions (Barnett et al. 2007).   

Caveats 

 Habitat suitability models have drawbacks (Jarnevich et al. 2015). Unlike mechanistic models 

they do not account for specific factors that likely contribute to patterns of diversity such as interspecific 

interactions, dispersal, and propagule pressure (Davis et al. 1998, Kearney and Porter 2009). Process 
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models that include these variables may more quickly provide information about the impact drivers 

have on patterns of diversity, but they are difficult to parameterize, especially at large scales with many 

interacting species and processes (Kerr et al. 2007, Lawler et al. 2009, Morin and Thuiller 2009). Simple 

models can often capture the essence of a system in ways that proves to be elusive to models that rely 

heavily on assumptions and estimations (McMahon et al. 2009). 

 Unforeseen changes and deficiencies in data may compromise predictions of future states: 

 Climate may not change as predicted in the climate models used in this analysis (Millar et al. 

2007).  

 Coarse-scale climate models, even when downscaled with precision, may not be sufficient to 

model fine-scale species distributions (Jarnevich and Stohlgren 2008, Ashcroft et al. 2009, 

Jarnevich and Stohlgren 2009).  

 Disparate sources of climate data might add uncertainty to predicted distributions. The models 

were parameterized, in part, with historic climate conditions from Daymet (daymet.ornl.gov) 

but forecasts were derived with climate projections from the Canadian Center of Climate. The 

different methods, assumptions and source in the climate data could explain some of the 

observed patters or uncertainty in the model that was not calculated (Mika et al. 2008).  

 Species assemblages may decouple. Groups of species that typically interact may react 

differently to a changing climate, and to the degree that interspecific interactions control 

diversity, future patterns of diversity may also be more different than a correlative habitat 

suitability model can anticipate (Pearman et al. 2008).  

 Species may encounter a variety of thresholds that change dispersal and establishment at future 

suitable sites or affinity for habitat where they currently exist (Pearman et al. 2008). 

We may not have captured the existing environmental envelope. The Hakalau Forest National 

Wildlife Refuge study may have failed to capture individuals that would have changed the perceived 
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species-environment relationship which would compromise our capacity to predict the extent of future 

distributions (Thuiller et al. 2006, Ibanez et al. 2009). Our inventory captured a snapshot in time of two 

invasive species likely in the midst of invading all suitable sites or niches.  

Additionally, there are a variety of reasons kikuyugrass may not recede as rapidly nor as 

completely as described by the temporal hypothesis (Figure 4.4). Areas that currently support the 

species but are probabilistically described by the this hypothesis as less likely to be of suitable habitat in 

the future, are referred to as the receding edge, or extinction zones (Thuiller et al. 2008). However, 

receding edges are frequently overestimated with habitat suitability models (Lawler et al. 2009, Randin 

et al. 2009). Large-scale data, and climate data downscaled from coarse grain, may miss relict 

microclimates that might allow isolated pockets of suitable habitat and associated species to survive 

(Thomas et al. 2006, Ashcroft et al. 2009). Even when exposed to complete spatial shifts of suitable 

habitat many species demonstrate plasticity that allows them to persist or even adapt (Thuiller et al. 

2008) to conditions outside bounds of typical environmental envelopes (Davis et al. 2005). They may not 

thrive at these locations, but they may persist, even if only as sink populations reliant on continued 

invasion to sustain the population (Davis et al. 1998).  

Improvements   

This exercise demonstrates the benefits of testing spatial and temporal hypotheses iteratively 

with long-term observations, but the approach is portable to landscape, regional, and continental scale 

monitoring programs. The modeling techniques applied can be improved and augmented. Maxent 

provides a good description of anticipated ecological states subjected to a changing climate, but others 

have demonstrated that ensemble or model averaging techniques that combine output of competing 

habitat suitability models might improve predictions (Stohlgren et al. 2010, Morisette et al. 2013). 

Several methods have also demonstrated the power of integrating mechanistic models to further 

constrain habitat suitability distributions and explicitly define relationships between pattern and process 
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(Broennimann et al. 2006, Kearney and Porter 2009). Regardless of the technique, iterative comparison 

of prediction against observation will pinpoint uncertainty that can be assessed with observation or 

targeted experimental investigation. This process repeated across time scales rarely seen in ecological 

investigation will provide new insight and predictive power. 

Measures of land use and land cover often have significant predictive power of species 

distributions at small scales (Broennimann et al. 2006, Ficetola et al. 2007, Ashcroft et al. 2009), but they 

can be difficult to quantify. Historic land-use records often exist, but rarely in a spatial form. Where 

historic landcover maps exist, they can be compared and digitized, but disparity in techniques and 

classification often requires fine-scale resolution data. Most importantly, it is difficult to predict how 

these features will change in the future and what impact they will have on species distributions 

(Heikkinen et al. 2006). 

Data on species distributions and predictive layers are expected to improve with time. The 

repeated natural experiments will direct new observation and experiments to areas and process that 

reduce model uncertainty. Projections of climate change will likely improve with new techniques and 

understanding and likely become available at smaller resolution (Ashcroft et al. 2009). Remote sensing 

data from satellites is improving, and fixed-wing packages with high-resolution hyperspectral and LiDAR 

capabilities are becoming increasingly available (Kampe 2010, Asner et al. 2012). These data will provide 

a better understanding of the causes and consequences of change to enable proactive management and 

improved preparation for resulting impacts to ecosystems and the services they provide.   
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CONCLUSIONS ABOUT THE NEON SAMPLE DESIGN FOR PLANT DIVERSITY 
 
 
 
Introduction 

The goal of this effort was to design and test methods that will enable the National Ecological 

Observatory Network to understanding the causes of and consequences of change on plant diversity. 

What follows is a summary of each chapter and a summary of some of the challenges and future 

directions.  

The terrestrial organism and biogeochemistry spatial sampling design for the National Ecological 

Observatory Network  

The need to support the high-level objectives of NEON constrained the development of the 

sampling design for plant diversity – all terrestrial organisms and soil – at sites across the United States 

and Puerto Rico. The foundation of the design is the random sample that provides unbiased descriptions 

and functions with many analytical approaches. Stratification aims to increase efficiency and 

characterization of dominant cover types measured by the tower-based sensor data streams. Design 

redundancy and flexibility allows distinct sample sizes and allocation across strata within a site, while 

allowing collocation of taxonomic groups. To ensure that plant diversity design was capable of detecting 

and differentiating trends, power analyses were tested with real NEON data. Results suggested that the 

proposed sample size of 30 was not generally sufficient to detect and differentiate site trends after 

decades. If observed patterns of spatial variability persist and estimates of temporal variation (made by 

NDVI in the absence of time series data) are accurate, more sites might be necessary to detect trends, 

particularly if conclusive and actionable data are needed before 20-30 years.  

These findings present both challenges and opportunities. It is unlikely that the National Science 

Foundation will provide additional funding to increase the sample size for plant diversity sampling. Given 
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this zero-sum game, if it is determined that this relatively stringent test (Yi and Panzerelli 2002, 

Thompson 2012) should still guide data collection efforts, several options exist: 

 Reallocate sampling effort across sites. This analysis demonstrated variability in patterns of 

spatial and temporal variability across sites. Further analysis might demonstrate that smaller 

sites or homogenous sites (e.g., agricultural sites) are characterized by less variation in space, 

time, or both; sampling effort could be moved from these sites to more complex sites. The 

assumption of equal sample size would need to be relaxed and that could change analysis 

projections (Yi and Panzarella 2002).  

 Time and funding could be pulled from a different NEON sampling activity. Analysis might show 

that some taxonomic groups are oversampled given objectives, or that sample that is 

determined to be oversampled given objectives.   

 Filling in gaps could be left to the ecological community who could sample with comparable 

methods from additional plots from the NEON sampling design. This option might be less 

popular given the demands of the NEON Operations funding on resources available to the entire 

ecological community. 

 The diversity of NLCD cover types within a site could be reduced. By focusing on dominant types 

at each site that are also measured by tower-based sensors at each site, variability would 

effectively be reduced, likely reducing the number of plots required to sample each site with 

sufficient intensity as described by the test. 

There are other challenges associated with the design. The stratified-random approach adds 

complexity to the end users’ efforts with NEON data given the need to determine the first couple of 

moments with the design-based estimators. A simple random sample would obviate this need an avoid 

data processing errors. The subset of plots that can be treated as a random sample will be available 

through the NEON portal for those that would prefer the simplicity of a random design. A slightly 
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different approach would be to allocate plots directly proportional to the strata sampled. In this special 

case, the data become a ‘self-weighting sample’ that allows the resulting data to be treated as a simple 

random sample (Thompson 2012). Slight modifications could be made to the allocation to achieve this 

design for the sake of simplicity, particularly if the hypothesis associated with the allocation proportional 

the square-root of strata area are not validated. Ongoing data collection and analysis and engagement 

with the community of users will provide direction for future design iterations.    

Strategies for comparing plant diversity in a national network of sites  

The data were able to generate meaningful comparisons of sampled plant species richness 

across sites and strata within sites. Assuming the sample is sufficient relative to the heterogeneity of the 

site in question, comparison appears to be a robust and possibly more descriptive and insightful 

standard for comparison of richness. The hypothesis that sampling according to the proportion of the 

square-root of the area to reach the inflection point of the species-accumulation curve did not hold in 

most strata (30%), nor at most sites (33%). In most cases, the sample size of 30, set by the constraints of 

the sample design manuscript, exceeded the inflection point. The cause does not appear to be purely 

related to sample size. Assuming the relative difference that the strata-specific sampling exceeds the 

inflection point were to hold with a reduced sample size, allocating samples proportional to the square-

root of the area – at least at the sites tested, does lot effectively capture the proposed efficiency and 

information content proposed. 

Challenges to the design present opportunities. The design does provide information – 

particularly with insights from interpolation and extrapolation - about how to optimize the design. 

Insights from interpolation and extrapolation suggest that sampling to the inflection point would be 

most effective by  simply adjusting the strata- or site-specific sample size by ‘sliding’ along the species 

accumulation curve to the inflection point. Similarly, the degree to which the inflection point 

comparison is robust could be evaluated at each site by simply adding test plots in targeted strata. 
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These could be random or they could be targeted to environmental gradients that seem to be missed by 

the sample as described by NEON’s remote sensing platform (Kampe et al. 2010, Stohlgren et al. 2010). 

Alternatively, the principal components of the hyperspectral data can be treated as a surrogate of plant 

diversity data. Simulations that compare ‘species’ accumulation curves of these reflectance values based 

on NEON plot locations could be compared to the impact of additional samples from the realm, 

unsampled by the sample design for plot sampling. Asking, and answering, ‘what did we miss?’ further 

evaluates assumptions and hypotheses and provides direction for cost-effective design optimization.      

Planning for climate change when designing invasive plant species studies  

The results suggest that species vary predictably in space and possibly through time. In the case 

of this investigation, the range one invasive grass species is expected to expand while the other will 

likely undergo a reduction in suitable habitat in the study area. These patterns enable action. Plots could 

be place strategically for model validation and for a monitoring system designed to detect change. This 

preemptive sampling will have a higher chance of detecting change with a network of plots capable of 

sampling a very small part of each site. Managers focused on control of invasive species and habitat 

restoration might also leverage these models to focus control efforts on the species likely to expand, 

and continuing to evaluate the expected trend of the species expected to under a reduction in suitable 

habitat.   

This model-informed sampling approach is not currently in the scope of the NEON design for 

plant-diversity. The funding is not available for plot-based sampling, but perhaps managers or owners of 

the site or members of the ecological community would pursue such an approach. NEON has set aside 

some funding for ‘gradient plots’ designed to record unsampled landscape features (Thorpe et al. 2016), 

but efforts that validate the airborne platform (e.g., vegetation structure, leaf area index, foliar 

chemistry) or to better link the flow of energy and matter from the atmosphere to aquatic systems with 

targeted biogeochemistry observations (Hinkley et al. 2015).  
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Notes and recommendations for the next 30 years of NEON monitoring 

A tension between designs 

The results of the three manuscripts that make the body of this work describe the logic and 

implementation of the NEON plant diversity design and provide insights and test assumptions of the 

design. Conspicuously, the testing results in conclusions that seem to provide contrasting paths for 

optimizing the design to support NEON goals.   

The first manuscript that lays out the study design, sample size and allocation implemented a 

simplistic constraint – both for logistics and sample size calculation – that all sites are sampled with the 

same intensity. However, the paper focused on generating valid comparisons by sampling to the 

inflection point of the species accumulation curve suggests that a design prioritizing comparison would 

reduce sample size at some sites, possibly reallocating effort to more diverse strata and sites. Logistical 

simplicity, the capacity to compare richness by rarefaction – moving down a species accumulation curve 

– and the need to ensure capacity to detect trends means that initially NEON will continue to sample the 

same sample size across sites.  

Also related to sample size, the single season of plant diversity sampling that informs spatial 

sample variance parameters and the NDVI estimate of temporal variation suggests that a sample size of 

30 plots per site is marginally sufficient and even insufficient for detecting and differentiating trends in 

plant species richness per plot across sites. However, as indicated, results from the comparison paper 

might suggest a reduction in sample size would be feasible for many strata and sites. The need to ensure 

the capacity to detect trends means that there will not be a reduction in the sample size as NEON as part 

of the initial sample design.   

The notion of preemptive sampling to increase the probability of detecting change would result 

in the placement and inclusion of plant diversity plots placed subjectively or according to a model-based 

design. However, the random component is central to the design. Some analytical techniques are 
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agnostic with respect to sample design, capable of assimilating data collected in numerous ways 

(Evangelista 2008). However, design-based inference (Thompson 2012) and the calculation of basic 

statistics from plots collected from a stratified-random design must be calculated with specific 

estimators (Thompson 2012). Serving plant diversity data collected from two different designs to the 

ecological community by the NEON data portal is likely to be confusing and prone to errors. With this 

complexity and the demand from other protocols on gradient plots, the initial plant diversity design will, 

at least initially, rely on plots sampled according to the stratified-random design. 

These contra indicators suggest divergent paths. The struggle they engender and the 

compromise they mandate occur in the context of the plant diversity design is a microcosm of similar 

challenges across the many protocols associated with terrestrial organisms and soil (the Terrestrial 

Observation System), the aquatic observations (Aquatic Observation System) and sensors (Aquatic 

Instrument System) and the system for sensing fluxes of soil and atmosphere and measuring climate 

(Terrestrial Instrument System). Resolution and a path forward in the form of a design is found in 

reliance on hierarchical requirements that connect decisions to the high-level NEON mission and in 

consultation with the ecological community who will work with the data to derive understanding of the 

impacts of change.   

Additional considerations 

The design and launch of the NEON project was riddled with difficult decisions and tradeoffs. In 

many cases there was no single, correct answer. Outcomes reflected previous efforts, data, and testing, 

but also input from ecologists from outside NEON that generously donated countless hours to shape the 

Observatory, as well as bias and history of the NEON staff. Ultimately the persistent and driving goal was 

to adhere to a requirements framework that ensured each decision reflected guiding constraints that 

link to the NEON mission (Keller et al. 2008, Schimel and Keller 2015). Some of the considerations 

theoretical gymnastics include the following: 
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 The data and the science NEON enables must justify the cost. The design and creation of NEON 

was funded by the NSF Major Research Equipment and Facilities Construction (MREFC) which is 

responsible for scientific infrastructure. However, operating NEON is likely to be funded by the 

NSF Biology program. That NEON will pull substantial capital from the same budgets that fund 

principal investigator research means two things:  

1. The data must be useful. NEON data must provide plant diversity data that the ecology 

community needs to answer questions and solve problems at the scale of the continent 

and over decades. It must serve as a backbone for ecological understanding developed 

by the next generation of ecologists. If records indicate that the plant diversity data is 

not popular with those downloading data, changes to the design and collection strategy 

should be considered. 

2. The data must be informative. After 30 years of data collection it would be unacceptable 

to indicate that, “we need more data” to provide information about causes of change on 

ecology. 

 There needs to be quality control and assurance of the data. The best design and copious 

funding could be wasted with the collection of data that inflates uncertainty. NEON is currently 

developing QA/QC plan, but is has been estimated that approximately 20% of a budget should 

be dedicated to evaluating data quality (Stohlgren 2007). In addition to testing the accuracy of 

species identification, rates of species detection and estimates of cover should be evaluated for 

inclusion in statistical models (Clark 2003, Cressie et al. 2009). Quality-assured data will enable 

the NEON mission. Erroneous data can obscure any signal, but also point to the need for 

adjustments such as better training or the need to alter timing of sampling such that more 

species possess diagnostic parts. 
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 The design must be tested and optimized. Data will provide information about the design. While 

this information can guide efforts to optimize the design, these iterations should not be 

prolonged over many years. Temporal continuity will be critical to describing trends and 

incessant design alterations would challenge NEON objectives.  

 Despite a significant dedication of funds, it is simply impossible to get everything desired. It 

would have been optimal to expand the definition of plant diversity to include a suite of 

functional traits such or an expanded focus on mapping invasive plant species. Field work and 

the maintenance of systems to evaluate and serve the data are expensive and have left little in 

the way of money to expand the NEON scope.  

Ultimately the goal of the Observatory is to enable transformative science. Perhaps the best analogy is 

high-level or pooled funding for super collider science. The physics and astronomy community placed a 

premium on scientific infrastructure no independent investigator could fund or maintain that had the 

potential to push the boundaries of scientific knowledge (Eichten et al. 1984). It is hoped that NEON, 

combined with technology and evolving statistical approaches capable of handling big data, will do the 

same for ecology and understanding environmental change during the Anthropocene.   
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APPENDIX 1. SAMPLE SIZE CALCULATIONS 
 
 
 

The following is R code developed for the initial estimation of sample size calculations: 
 
### Sample size calculation for the test of differences in the slope 
### between two independent sets of samples in a repeated measures model 
### with both fixed and random effects  
### see [Q. Yi, T. Panzarella/Controlled Clinical Trials 23 (2002) 481–496] 
 
# t is the number of repeated measurements, not necessarily the number of years 
# samp.freq is the number of samples per year 
# sigsq is the estimate of the common population variance 
# corr is the parameter for correlation in either compound symmetric or 
# first order autoregressive model 
# AR is a flag to determine whether CS or AR correlation structure should be used 
# alpha is the acceptable type I error level 
# beta is the acceptable type II error level specified as defined below 
# slopes.random is a logical indicating whether slopes should be considered random 
 
rep.meas.lmm<-function(t = 5, sigsq = 1, corr = 0.5, AR = F, alpha = 0.05, beta = 0.8, slopes.random=T, 
samp.freq = 1) 
{ 
 
require(ramps) 
require(MASS) 
# beta.int is related to a one-unit change of time and the length of one unit 
# of time varies with the number of measurements, it requires a corresponding adjustment for 
# the number of repeated measurements within the fixed duration. This is also the case for the 
# variance of random slopes. hence beta.int=0.5/(t-1), and var(beta.int) = 0.05*4/(t-1)^2 
# This keeps the magnitude of the difference in slopes between the two groups and random variation 
# constant within a fixed duration. (Yi and Panzarella 2002) 
s<-samp.freq 
b.int<-.5/(seq(1:t)-1) 
# fix t=0 in the denominator 
b.int[1]<-0 
 
d.mat <- data.frame(time=c(0:(t-1)))  
X<-model.matrix(~time,d.mat) 
# main effects design matrix for core site 
X1<-cbind(X,X) 
# main effects design matrix for relocatable to be compared to core site 
X2<-cbind(X,matrix(rep(0,t*2),nrow=t)) 
# random effects matrix 
Z<-X[,c(1,2)] 
 
# comp symm correlation matrix 
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cor.CompSymm<-corCompSymm(corr) 
cor.Symm.init<-Initialize(cor.CompSymm,data=X1) 
R<-corMatrix(cor.Symm.init) 
 
# R for AR(1) 
if(AR==T){ 
coef<-seq(1:t) 
for(i in 2:t){ 
coef<-rbind(coef,c(rev(seq(1,i)),seq(2,t))[1:t]) 
} 
coef <- (coef - 1)/s 
R <- matrix(corr, nrow = t, ncol=t) 
diag(R) <- 1 
R <- R^coef 
} 
 
# Not considering the variance of b.int as nonzero 
# specifying the variance of b.int 
var.b1.i<-0 
 
# Power constraint from Yi and Panzarella (2002) 
# page 458, results 1 paragraph, last sentence. 
# Their constraint corresponds to a power of 80% at a difference  
# between slopes (at the core site and relocatable) of roughly 11% 
# run (0.05/(5-1))/sqrt(0.05*4/(5-1)^2) to check this 
# if(slopes.random==T){var.b1.i<-0.05*(4/((t-1)^2))} 
 
# The next line specifies the power at a difference of 
# slopes of roughly 20% 
# run (0.05/(5-1))/sqrt(0.05*1.25/(5-1)^2) to check this 
 if(slopes.random==T){var.b1.i<-0.05*(1.25/((t-1)^2))} 
 
D<-matrix(c(0,0,0,var.b1.i),ncol=2, byrow=T) 
 
V<-Z%*%D%*%t(Z)+sigsq*R 
v.inv<-solve(V) 
z.alp<-qnorm(1-(alpha/2)) 
z.bet<-qnorm(beta) 
 
t1<- (z.alp+z.bet)^2 
t2<- solve(t(X1)%*%v.inv %*% X1 + t(X2)%*%v.inv %*% X2)  
t3<- 0.5/(t-1) 
return(ceiling(((t1*t2)/(t3^2))[4,4])) 
} 
 
#####################################################################################
############# 
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#####################################################################################
############# 
#####################################################################################
############# 
 
# specifying the parameters of interest for the generation of tables 
corrs<- c(0.25 ,0.50, 0.75) 
sigsqs<- c(0.25 ,0.50, 0.75, 1.00) 
years<- c(10, 20, 30) 
 
# code for table  
samp.vec<-NA 
for(i in 1:3){ 
for(j in 1:4){ 
for(k in 1:3){ 
samp.vec<-c(samp.vec,rep.meas.lmm(t = years[k], sigsq = sigsqs[j], corr = corrs[i], AR = F, alpha = 0.1, 
beta = 0.8)) 
} 
} 
} 
matrix(samp.vec[-1],ncol=3) 
 
 
# code for table  
samp.vec<-NA 
for(i in 1:3){ 
for(j in 1:4){ 
for(k in 1:3){ 
samp.vec<-c(samp.vec,rep.meas.lmm(t = years[k], sigsq = sigsqs[j], corr = corrs[i], AR = F, alpha = 0.05, 
beta = 0.8)) 
} 
} 
} 
matrix(samp.vec[-1],ncol=3) 
 
# code for figure  
corrs<- seq(0.05,0.95,0.1) 
years<- c(3:30) 
 
samp.vec<-NA 
for(i in 1:length(corrs)){ 
for(k in 1:length(years)){ 
samp.vec<-c(samp.vec,rep.meas.lmm(t = years[k], sigsq = 0.50, corr = corrs[i], AR = F, alpha = 0.1, beta = 
0.8)) 
} 
} 
 
fig1.df<-data.frame(z = samp.vec[-1]) 
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fig1.df$x<-rep(years,length(corrs)) 
fig1.df$y<-rep(corrs,each=length(years)) 
require(lattice) 
wireframe(z ~ x * y, fig1.df, 
drape = TRUE,zoom=0.875, 
  xlab=list(c("Years"),rot=10,cex=1.1), 
  ylab=list(c("Correlation"),rot=0,cex=1.1), 
  zlab=list(c("Number of Samples"),rot=90,cex=1.1), 
 aspect = c(0.75, .85), 
 light.source = c(10,10,10), 
col.regions = rev(rainbow(length(corrs)*length(years),start=0.825,end=0.35)), 
add.legend=T, 
 screen = list(z = -110, x = -70, y = -20), 
  scales = list(arrows = F) 
) 
 
# code for figure  
corrs<- seq(0.025,0.975,0.05) 
years<- c(3:30) 
 
samp.vec<-NA 
for(i in 1:length(corrs)){ 
for(k in 1:length(years)){ 
samp.vec<-c(samp.vec,rep.meas.lmm(t = years[k], sigsq = 0.50, corr = corrs[i], AR = T, alpha = 0.1, beta = 
0.8)) 
} 
} 
 
fig1.df<-data.frame(z = samp.vec[-1]) 
fig1.df$x<-rep(years,length(corrs)) 
fig1.df$y<-rep(corrs,each=length(years)) 
 
wireframe(z ~ x * y, fig1.df, 
drape = TRUE,zoom=0.875, 
  xlab=list(c("Years"),rot=0,cex=1.1), 
  ylab=list(c("Correlation"),rot=-35,cex=1.1), 
  zlab=list(c("Number of Samples"),rot=-65,cex=1.1), 
 aspect = c(0.75, .85), 
 light.source = c(10,10,10), 
col.regions = rev(rainbow(length(corrs)*length(years),start=0.825,end=0.35)), 
add.legend=T, 
 screen = list(z = -130, x = -30, y = -10), 
  scales = list(arrows = F) 
) 
 
 
#####################################################################################
############# 
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#####################################################################################
############# 
#####################################################################################
############# 
# Sample code to confirm the bottom half of table 1 in Yi and Panzaralla (2002) p. 485 
# before running this, reset the power constraint to that which they used by 
# uncommenting the following line 
# if(slopes.random==T){var.b1.i<-0.05*(4/((t-1)^2))} 
 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.2, AR = F, alpha = 0.05, beta = 0.8) 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.5, AR = F, alpha = 0.05, beta = 0.8) 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.8, AR = F, alpha = 0.05, beta = 0.8) 
 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.2, AR = T, alpha = 0.05, beta = 0.8) 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.5, AR = T, alpha = 0.05, beta = 0.8) 
rep.meas.lmm(t = 5, sigsq = 1, corr = 0.8, AR = T, alpha = 0.05, beta = 0.8) 
 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.2, AR = F, alpha = 0.05, beta = 0.8,samp.freq = 2) 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.5, AR = F, alpha = 0.05, beta = 0.8,samp.freq = 2) 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.8, AR = F, alpha = 0.05, beta = 0.8,samp.freq = 2) 
 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.2, AR = T, alpha = 0.05, beta = 0.8,samp.freq = 2) 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.5, AR = T, alpha = 0.05, beta = 0.8,samp.freq = 2) 
rep.meas.lmm(t = 9, sigsq = 1, corr = 0.8, AR = T, alpha = 0.05, beta = 0.8,samp.freq = 2) 
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APPENDIX 2: SAMPLE MEAN AND SAMPLE VARIANCE WITH DESIGN-BASED ESTIMATORS 
 
 
 

--- 
title: "Mean and Variance" 
author: "dBarnett" 
date: "June 8, 2016" 
output: word_document 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
 
rm(list=ls()) 
library(dplyr) 
library(stringr) 
 
#Set working directory 
setwd('C:/evalSampleSize') 
``` 
 
```{import files and organize: sample size} 
 
#pull sample size and area by plot type and NLCD class 
sampleSize3<-read.csv(file = "data/sampleSize3.csv",  
      head=TRUE, sep=",", stringsAsFactors = FALSE) 
sampleSize3$siteID<-sampleSize3$site 
sampleSize3$nlcdClass<-sampleSize3$NLCD 
sampleSize3$Ni<-sampleSize3$areakm2 
 
limitSampSize<-select(sampleSize3, siteID, nlcdClass, Ni) 
``` 
 
```{import files: mass data} 
 
#bring in mass data (available on NEON portal) 
 
osbs<-read.csv(file = "data/osbs.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
ornl<-read.csv(file = "data/ornl.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
onaq<-read.csv(file = "data/onaq.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
#combine data 
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rawData<-rbind(harv,osbs,ornl,tall,wood,onaq) 
 
#distributed plots (tower plots not distributed according to sample design) 
rawDataDis<-rawData[which(rawData$plotType == "distributed"),] 
 
#reduce number of fields 
rawDataDisLimit<-select(rawDataDis, siteID, plotID, dryMass) 
 
#sum across samples within a plot 
massPlot<-ddply(rawDataDisLimit, 'plotID', function(x) c(count=nrow(x), sumPlot=sum(x$dryMass))) 
``` 
 
```{import files: nlcd data} 
 
#bring in boutData for nlcdClass (available from NEON portal) 
 
osbsBout<-read.csv(file = "data/osbsBout.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
ornlBout<-read.csv(file = "data/ornlBout.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
onaqBout<-read.csv(file = "data/onaqBout.csv", 
     head=TRUE, sep=",", stringsAsFactors = FALSE) 
 
#combine bout data 
rawDataBout<-rbind(harvBout,osbsBout,ornlBout,tallBout,woodBout,onaqBout) 
 
#select variables want from bout 
varsDataBout<-select(rawDataBout, siteID, plotID, nlcdClass) 
 
#remove duplicates 
limitVarsDataBout<-unique(varsDataBout) 
``` 
```{import files: combine and calculate} 
 
#combine mass data with bout data to add nlcdClass  
massNlcd<-full_join(massPlot, limitVarsDataBout) 
 
#calculate mean and sample variance by nlcdClass 
meanStrat<-ddply(massNlcd, c('siteID', 'nlcdClass'), function(x) c(ni=nrow(x), yi=mean(x$sumPlot), 
si2=var(x$sumPlot))) 
  
#add strat to frame 
meanStratArea<-merge(meanStrat, limitSampSize, by = c("siteID", "nlcdClass"), type = "left", match = 
"all" ) 
 
#limit to records of strata that were sampled 
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meanStratAreaValues<-filter(meanStratArea, yi != 'NA') 
 
#remove duplicates 
meanStratAreaNoDups<-unique(meanStratAreaValues) 
 
#calculateMean 
meanStratAreaNoDups$yiNi<-meanStratAreaNoDups$yi*meanStratAreaNoDups$Ni 
 
mean<-ddply(meanStratAreaNoDups, 'siteID', function(x) c(count=nrow(x), Es=sum(x$yiNi), 
N=sum(x$Ni))) 
 
mean$Ybar<-mean$Es/mean$N 
 
#calculateVariance 
addArea<-merge(meanStratAreaNoDups, mean, by = c("siteID"), type = "left", match = "all") 
addArea$byStrat<-((addArea$Ni/addArea$N)^2)*((addArea$Ni-
addArea$ni)/addArea$Ni)*(addArea$si2/addArea$ni) 
 
varHat<-ddply(addArea, 'siteID', function(x) c(count=nrow(x), varHat=sum(x$byStrat))) 
``` 
 

 

 

 

 

 

 

 


