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ABSTRACT OF DISSERTATION
MATHEMATICAL MODELING OF RESPONSE FROM SMALL WATERSHED

The physical quantities which describe the major watershed response
to the precipitation are the water yield, the sediment yield, and the
resultant stream morphology. This study provides the theoretical back-
ground and numerical methods.for modeling physical processes governing
the watershed response.

A method of nonlinear kinematic wave approximation for flow
routing has been developed to route water and sediment over land and in
channels. The numerical scheme developed in this study is uncondition-
ally stable and may be used with a wide range of time increment to space
increment ratio without loss of significant accuracy. From theoretical
considerations, it has been found that the flow discharge is the better
selection for the unknown in numerical computations than the depth or
area. The applicability of the numerical method has been tested in
various cases - overland flow, natural channel, and small drainage sys-
tem and has been:found satisfactory for modeling of watershed response.
As the applications of this flow routing procedure, a rainfall-runoff
model for simulating hydrographs from small watersheds and a rainfall-
erosion model for calculating time-dependent erosion rates from overland
flow areas have been developed.

The rainfall-runoff model simulates hydrographs on the single storm
basis. The model includes the water balance simulation for land surface

hydrologic cycle and the water routing features for both overland flow
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and channel systems. Unlike the conventional approach to parametric
modeling of watershed response, this model contains much more informa-
tion on fhe physics of flow and requires much less assistance from
optimization schemes than any existing water models known to the writer.
For the tested basin the simulated hydrographs agree reasonably well
with the measured hydrographs. The sensitivity analysis indicates that
soil data are very sensitive‘to the computed hydrograph. Flow resis-
tance parameters and vegetation data are less sensitive to the simu-
lated results. In addition, this physically oriented model has the
capability to predict watershed treatment effects on water yields.

The rainfall-erosion model simulates both water flow and sediment
flow routing in overland flow areas and produces time-dependent erosion
rates comparable with the available experimental data from a soil plot.
The model can generate time-dependent land forms, and the generated
land form tends to be concave in shape which frequently appears in
nature. It was also found that the soil erosion rate was very sensitive
to the bed slope and shape. The general practice of assuming a uniform
shape may result in serious errors.

The mathematical models in this study may provide the short-term
and the long-term responses. Theoretical interpretation of the long-
term response was also made. The equations describing the basic physi-

cal processes in small watershed channels sculptured in noncohesive
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alluvial materials have been employed to derive the hydraulic geometry
equations. Both downstream and at-a-station relations were developed.
This work provides information on stream morphology response to the

modified amount of precipitation or to watershed treatment effects.

Ruh-Ming Li

Department of Civil Engineering
Colorado State University

Fort Collins, Colorado 80523
August 1974
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Chapter I

INTRODUCTION

1.1. General

The increasing interest in land and water resource plannings has
stimulated the development of particular and general watershed response
models. The models, whether physical or conceptual, are used to esti-
mate physical quantities which describe the major watershed response to
precipitation such as water yield, sediment yield, and resultant stream
morphology. Methods to estimate water and sediment yield and changes
in the watershed geometry are urgently needed for analyzing the economic
feasibility of any proposed water resources or land use development and
for predicting possible adverse environmental effects associated with
the proposed development.

The physical processes governing watershed response are very
complicated. Many past studies have utilized a statistical interpreta-
tion of observed response data. The unit hydrograph method for water
routing, the universal soil loss equation for soil erosion, and the
hydraulic geometry equations for stream morphology are examples of
these types of studies. It is difficult to predict the response of a
watershed to various watershed developments or treatments using these
methods. Because they are based on the assumption of homogeneity in
time and space. Numerical modeling using the governing physical pro-
cess is a viable way to estimate the time-dependent response of water-
sheds to precipitation with varying vegetative covers and land use.

The purpose of this study is to provide the theoretical background

and numerical methods for modeling physical processes governing



watershed behavior. The objectives are: (1) To establish a simple
flow routing procedure which can be applied to both overland flows and
channel flows; (2) to develop a rainfall-runoff simulation model using
the physical processes involved; (3) to present a mathematical simula-
tion model for soil erosion using the physical processes which govern
the mechanics of soil erosion by overland flow; and (4) to theoreti-
cally derive both downstream and at-a-station hydraulic geometry equa-

tions which describe the stream morphology response to precipitation.

1.2. Review of Related Literature
1.2.1. Water yield and flow routing

There are two approaches to water yield modeling. One is the
" lumped parameter approach, also called the 'black box'" model. Examples
are those which have been developed by Sherman (1932), Wu (1963), Singh
(1964), Prasad (1967), and others, The second is the distributed
parameter approach or the physical process simulation model. Examples
of this approach are Crawford and Linsley (1966), Schaake, Jr. (1971),
and Dawdy et al. (1972).

In a lumped parameter model, the watershed is conceptually
considered as a '"black box" system. The input is the rainfall function;
the output is the runoff. The 'black box" represents the aggregation
of the parameters chosen to give the correct output for a given input.
The parameters may or may not be physically significant. Lumped models
can be further subdivided into two types: (1) the transfer function
model, (for example, Sherman, 1932, Wu, 1963, and Singh, 1964) and
(2) the analytical conceptual model (for example, Prasad, 1967).

The most familiar transfer function model is the unit hydrograph,

first developed by Sherman (1932). Its popularity lies mainly in its



simplicity of application. The unit hydrograph is assumed to be repre-
sentative of the particular watershed. The disadvantage of this
approach is that a particular unit hydrograph is dependent on the dura-
tion of the storm used to synthesize it. This weakness has led to the
development of the instantaneous unit hydrograph which is based on
effective rainfall of an infinitesimally small duration. A direct run-
off hydrograph can be synthesized from the instantaneous unit hydrograph
and rainfall excess through the use of the linear convolution integral
(see Chow, 1964). In attempts to improve the unit hydrograph approach,
some investigators (for example, Singh, 1964) have explored the possi-
bilities of developiné nonlinear models within the transfer function
framework.

The basis of the analytical conceptual models is the assumption of
a single mathematical relation between rainfall and runoff. The
unknown parameters are determined by calibration using an optimization
scheme (for example, Labadie and Dracup, 1969). As the model is concep-
tual, the form of the mathematical frame work is subjective.

Use of digital computers makes it possible to employ many
mathematical approximations of the complicated physical processes
describing the precipitation-runoff relation, Crawford and Linsley
(1966) were the first investigators to develop a simulation water-yield
model, and their efforts led to the well-known Stanford Watershed Model.
Many similar models have been develop%d, and the more popular models
are the Stanford Watershed Model IV (Crawford and Linsley, 1966), the
USGS Rainfall-Runoff Simulation Model (Dawdy et al., 1972), and the

Schaake Model (1971). These models are based on bulk-parameter



approximation to the physical laws governing surface runoff and are
calibrated with optimization schemes.

The.Stanford Watershed Model IV can be used to predict stream
flow resulting from rainstorm or snowmelt. The required data are:
(1) hourly rainfall data and 15-minute rainstorm data; (2) daily
potential evapotranspiration data; (3) topography and watershed geom-
etry data; (4) data requirea to describe initial conditions; and
(5) mean daily stream flow data for model calibration. If snowfall is
significant, two additional data are needed: (1) observed incoming
daily short-wave radiation; and (2) daily maximum and minimum tempera-
ture. This model is both a water yield and water routing model. In
the model, precipitation is stored in snowpack or in three soil mois-
ture storage areas. These areas are the upper and lower zone storage
areas, and the groundwater storage area. The three storage zones
represent variable soil moisture profiles and groundwater conditions. .
The upper and lower storage zones control overland flow, infiltration,
and interflow to the groundwater storage. The upper zone simulates the
initial watershed response to rainfall and is of major importance for
smaller storms, and for the first few hours of larger storms. The lower
zone controls watershed response to major storms by controlling longer-
term infiltration rates. Groundwater storage supplies base flow to
stream channels. Evaporation and transpiration processes may be sup-
plied with water from all of these three storage areas. The total chan-
nel inflow from overland flow, interflow, and groundwater enters the
channel system and emerges as synthesized stream flow. The routing
component in this model is divided into the overland flow part and

channel flow part. The kinematic-wave approximation is used for



overland flow routing and a modified form of Clark's (1945) instantaneous
unit hydrograph method is used for channel flow routing. The Stanford
Watershed Model has been used for many watershed conditions.

The USGS Rainfall-Runoff Simulation Model can be used to predict
stream flow from rainstorms. The number of parameters involved in this
model are fewer than those needed for the Stanford Watershed Model.

The required data in the USGS Model are: (1) daily rainfall data and
15-minute rainstorm data; (2) daily pan evaporation data; (3) topog-
raphy and watershed geometry data; (4) data describing the initial
conditions, and (5) daily stream flow data for model adjustment. This
model deals with three components; antecedent moisture, infiltration,
and surface runoff of the hydrologic cycle. The antecedent moisture
accounting component is a more sophisticated version of the antecedent
precipitation index, which is designed to determine the initial infil-
tration rate for a storm. The infiltration component uses the Philip
equation. The surface runoff routing is based on Clark's (1945)
instantaneous unit hydrograph method. Dawdy et al. (1972) reported
that the accuracy of their model was within #20 percent. ‘

The Schaake Model is the simplest of the three and can be used to
predict runoff from small drainage areas only. This model is more
suitable for analyzing urban drainage areas than natural watersheds.
The required data are: (1) minute rainfall data; (2) constants to
describe the infiltration equation; (3) topography and drainage area
geometry data; and (4) runoff data for model adjustment. This model
computes the rainfall excess and then routes the surface runoff using
the linear kinematic-wave approximation. /

The flow routing component is essentially the weak link of the

existing physical process simulation models. This weakness prevents



the coupling of existing water routing models with a sediment routing
model. Although a number of numerical methods are available for solving
unsteady gradually varied flow problems, (Morgali and Linsley, 1965,
Brakensiek et al., 1966, Schaake, Jr., 1965, Liggett and Woolhiser,
1967, and Chen, 1973), there is difficulty of applying these available
techniques in modeling watershed response because of one or a combina-
tion of the following reasons.

(1) The linearized numerical scheme is sometimes unstable,
especially for the case of supercritical flow which
frequently occurs in overland flows or steep channel
flows.

(2) There are insufficient boundary conditions for the
numerical scheme. Many schemes require downstream
boundary conditions which are usually not available.

(3) Many numerical schemes are too complicated to apply for
large-scale modeling,

A simple but practical numerical method which can be applied in a
wide variety of both overland flows and channel flows is needed to cope
with these difficulties.

1.2.2. Soil erosion

For a complex problem such as the estimation of soil erosion from
uplands, the regression technique is a quick and effective way to
analyze data. Thus many soil-loss regression equations have been
developed (for example, Zingg, 1940, Musgrave, 1947, Wischmeier and
Smith, 1965, Meyer and Kramer, 1968, Young and Mutchler, 1969, and

Kilinc and Richardson, 1973). However, regression equations are



restricted to the conditons of the experimental data. Therefore, it

is difficult to transfer the knowledge to other areas. The general
form of regression equations is a power function, which assumes

that the soil erosion is the result of multiplicative contributions of
the governing factors. The important governing factors have been iden-
tified as the rainfall characteristics, the soil erodibility, the

slope length, the percent slope, the cropping-management factor, and
the conservation practice factor.

The exponents in the soil loss equations were originally determined
by regression analysis. More recently, Li, Shen, and Simons (1973)
demonstrated that those exponengts can be derived from the equations
governing the physical process of overland flow.

1.2.3. Stream morphology

Stream morphology has been studied by many investigators (Leopold
and Maddock, 1953, Wolman, 1955, Brush, 1961, Leopold and Langbein,
1962, Simons and Albertson, 1960, and Henderson, 1963).

Leopold and Maddock (1953) defined the power functions relating
the width, depth, slope and velocity to water discharge as the hydrau-
lic geometry equations of the channel. Most of the other studies have
involved the statistical interpretation of these power relations. Very
limited theoretical work has been done to explain the mechanistic
development processes of stream forms. In 1962, Leopold and Langbein
offered the concept of entropy in landscape evolution but the analogy
between entropy in thermodynamic systems and processes in stream chan-
nels is not apparent. In 1963, Henderson applied the theory of the
""threshold" stable channel to natural channels in coarse alluvium and

concluded that some remarkable similarities existed between "threshold"



theory and the Lacey 'regime'' theory which was developed from canal
data in India. A further theoretical interpretation of river channel
shapes is needed as a step toward better understanding of stream

morphology.

1.3. Scope of Present Study

The first part of this dissertation is devoted to the development
of a nonlinear kinematic-wave routing procedure. This simple procedure
is used to compute both overland and channel flows. The routing is
accomplished by a combination of a second order nonlinear and a linear
scheme. A linear numerical scheme is employed to obtain a first approx-
imation of flow conditions which are then refined by the nonlinear
scheme. The nonlinear portion of the method ensures convergence and
the linear portion guarantees a rapid convergence to the correct numer-
ical answer. Instead of admitting computational errors in linear
approximations to the full flow equation, this method minimizes numeri-
cal computation errors, but admits errors resulting from the limitations
of the kinematic-wave approximation.

In the second part of the dissertation, a rainfall-runoff model is
presented. This model simulates the land surface hydrologic cycle and
consists of two parts. The first is the water balance component, the
second part is the water routing componeng¢t. The water balance

component of the model determines the rainfall excess from consider-
ations of processes which govern interception, evaporation and infil-
tration. The water routing component routes the water as overland
flows and then as channel flow. Emphasis is on the mechanics of water

routing and the model is set up for single storm hydrograph computations.



No attempt has been made to simulate the long-term water balance in the
watershed.

The third part of the dissertation deals with the estimation of
soil erosion by overland flow. A mathematical model is proposed. This
model couples sediment routing with the water routing procedure and is
able to simulate the sediment hydrograph and the changing land forms.
The soil-erosion model presented in this study is the first step toward
sediment yield simulation,

The last part of the dissertation is an extension of the work on
stable channel design by Lane, Lin and Liu (1959). The basic equations
describing threshold channel shape are employed to derive the hydrau-
lic geometry equations of a stream channel in coarse alluvium. Both
downstream and at-a-station relations are developed. This work
provides useful information on stream morphology response to modified

amounts of precipitation or to watershed treatment effects.



Chapter II

NONLINEAR KINEMATIC-WAVE APPROXIMATION FOR FLOW ROUTING

2.1. Governing Equations

Runoff from a catchment may be described by the equation of continuity,
the equation of motion, and equations describing the law of resistance.
The governing equations empioyed in the nonlinear routing scheme are
described below.
2.1.1. Continuity equation

The equation of continuity for water flow can be expressed as

9Q , BA _ (2.1)

ox ot g

in which Q is the discharge, x is the downslope distance, A is the
cross-sectional area of flow, t is the time and q, is lateral inflow
rate per unit length of channel.
2.1.2. Momentum equation

If the gradients due to local and convective accelerations are
assumed to be negligible, and if the water surface slope is assumed

equal to the bed slope the momentum equation is

Q2
S =8.=f¢f 3 (2.2)
8gRA

in which S, is the bed slope, Sf is the friction slope, f is the
Darcy-Weisbach friction factor, g is the gravitational acceleration,
and R is the hydraulic radius. Equation 2.2 is called the kinematic

wave representation of runoff movement. By definition

(2.3)

=
"
| >

10
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in which P is the wetted perimeter. Usually the wetted perimeter can

be expressed as a power function of flow area; i.e.,

5

P =aA (2.4)

where ay and b1 are constants.

If Manning's equation is used, the momentum equation is
2
Q

2.21R 372

S (2.5)

in which n is Manning's roughness coefficient.
2.1.3. Resistance equations

The Darcy-Weisbach friction factor f for open channel or over-
land flow on rigid boundaries is a function of the roughness of the
boundary, the depth of flow, the rainfall intensity and the flow

Reynolds numbers. By definition, the flow Reynolds number, Nr’ is

N, = %% (2.6)

in which v 1is the kinematic viscosity of the fluid.

The friction factor--Reynolds number--relative roughness relation
is presented in many fluid mechanics textbooks (for example, Daily and
Harleman, 1966, p. 274). The Darcy-Wei;bach friction factor is
expressed in equation form only for certain ranges of Reynolds number.

The effect of rainfall on flow resistance is a major factor in
shallow water routing. For shallow flows, the impact of raindrops in
the flow causes energy losses in addition to those caused by the
rigid boundary. Shen and Li (1973) have experimentally determined
equations for Darcy-Weisbach friction factors for flow with rainfall

impact. The general form of the equations is
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a
f = : (2.7)

in which a, and b2 are functions of the rainfall intensity, the

boundary roughness, and the flow Reynolds number.

For Nr < 900,

Kook o+ krio'“
=5 = v (2.8)
T T

f

in which k. is a parameter which varies with rainfall intensity, k0

1
is a constant representing the Darcy-Weisbach friction factor without
rainfall, i is the rainfall intensity in inches per hour, and kr is
a number dependent on the raindrop velocity. Shen and Li (1973) have
determined that 1<.r is equal to 27 for a raindrop fall of 8 ft.

For Nr > 2000 Shen and Li (1973) found that the friction factor

was not affected by rainfall. The friction factor then may be

approximated by the Blasius form of the resistance equation which is

Fimesg® : (2.9)

in which k2 is a constant.

In the transition range, 900 < Nr < 2000, an estimation of fric-
tion factor is made by a linear interpolation. Interpolating from the

end points of Eq. 2.8 and Eq. 2.9 one obtains the expression,

%

K, gopil-25 In 7.14)

Ky
y (125 0 == - 6.14)

T k2

(2.10)
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The effect of flow Reynolds number on the friction factor
decreases as the flow Reynolds number increases. For moderate-sized

boundary roughness, the exponent, b, in Eq. 2.7 approaches zero for

2
Reynolds number about 105, and the friction factor is independent of
flow Reynolds number.

Additional resistance equations to describe the resistance to flow
in natural watersheds in the form of Darcy-Weisbach friction equation
are given in Chapter III., Those resistance equations for natural
watersheds cover a much wider range of flow Reynolds number and include
form resistance due to bed deformation and ground cover.

Manning's equation is frequently used by hydraulic engineers to
describe flow in open channels. The Manning's roughness coefficient

is usually determined by measurement. It can be expressed as a power

function of flow discharge; i.e.,
n= aSQ (2.11)

in which a3 and b3 are constants.

2.1.4. Discharge and flow area relation

In general, the flow cross-sectional area can be expressed as

a power function of discharge or

B

A = aQ (2.12)

in which o and B are coefficients whose values depend on the shape
and roughness of the channel.
If the Darcy-Weisbach friction factor is used, the values of «

and B can be determined by first substituting Eqs. 2.3, 2.4, 2.6, and
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2.7 into Eq. 2.2 and then comparing with Eq. 2.12. The solutions are

1

b (1+b.) ()
a,v 2a1 & S'bl"blbz
a = 825, (2.13)
and
2-b2
B = ———— (2.14)
3—b1—b1b2

For overland flows or for very wide channel flow, the wetted perimeter
2-b
2

is constant so that b1=0 and B = —5 As b2

than zero, the value of B is less than 2/3. For Nr< 900, the value

is generally greater

of B8 1is 1/3.
If Manning's equation is applied, the corresponding a« and B8

are determined by using Eqs. 2.4, 2.5 and 2.11. The values are

flon e
” 4/33 2 10-4b1

o | 3
e\ZAE, 2:15)
0
and
3-—3b3
g = E:EE; (2.16)

The value of B for rivers is usually less than 1.0, and the
average value of B for stable channels as deduced by Simons and

Albertson (1960) is 0.87.
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2.2. Numerical Scheme

The analytical solutions of Eq. 2.1 and Eq. 2.12 are avail-
able for the case of constant rainfall and constant channel roughness
factor. At the present time, numerical solutions are necessary for
the case of time-variant inflows. Herein, a nonlinear scheme with
an iterative procedure is used to obtain solutions to the more
complex cases of time-variant inflows and varying roughness. A
linear scheme is also used to obtain the initial estimatec for the
nonlinear scheme.
2.2.1. Nonlinear scheme

The finite-difference forms of Eq. 2.1 can be represented as

(see Fig. 2.1)

n+1 n+1 n+l
i+l I | | jel . 3+l j+l
AxX At 2

(2.17)

in which Q? is the quantity Q at grid point x = jAx, t = nAt and
Ax is the space increment and At is the time increment.

The unknowns in Eq. 2.17 are Q?:i and A?Ii, but the discharge
bears definite relation with flow area as indicated in Eq. 2.12. With
two equations, the two unknowns can be obtained.

Either Q or A can be selected as the independent variable in
the numerical procedure. According to the custom in backwater computa-
tions, the depth of flow (equivalent to A above) is chosen as the

independent variable (see Henderson, 1966 for example); but Q is a

better choice for the following reason. By taking the logarithm of
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both sides of Eq. 2.12, one obtains
2nA = fna + B &n Q (2.18)

The corresponding differential equation is

(2.19)

>1g:
]
™

ADU%

As mentioned previously, B 1is generally less than 1.0 and has
a value of one-third for Rcynolds number less than 900. Consequently,
if one computes discharge incorrectly, the relative error in the flow
area is smaller than the relative error in the discharge. On the other
hand, the error in the discharge estimation is magnified if the
numerical computations were performed on the flow area. Therefore,
the discharge is the better selection for the unknown in numerical
computations. F?om the physical viewpoint, it is more appropriate to
consider routing unit volumes of water rather than areas of flow.

From Eq. 2.12

n+l _ n+l,B

Aj+1 = u(Qj+1) (2.20)
and

n n B

Aj+1 = a(Qj+1) (2.21)

Equations 2.20 and 2.21 are substituted in Eq. 2.17 and rearranged to

yield
qn+1 & qn
At n+l n+l. 8 _ At .n+l n B 2j+1 2j+1
'ﬁ_}ij‘*l G(Qj"'l) . ax Qj + u(QJ“‘lJ . + ﬂt 2

(2:32)
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The right side of Eq. 2.22 contains known quantities and is denoted by

Q, i.e.{
n+1 n
- sl - ol
_ At n+l n B £3+1  Lj+1
= ﬂx QJ + a(QJ"'l) + At 2

Q (2.23)

Let r' = Q?:} and A = %ﬁ- so that the left side of Eq. 2.22 can be
expressed as
f(r') = Ar' + ar'B (2.24)

The solution to Eq. 2.22 is therefore the solution, r*, which
satisfies the condition

£(r*) = Ar* + ar*® = @ (2.25)

Equation 2.25 is nonlinear in r*. An approximate solution to
this nonlinear equation is easily obtained by the following iterative
scheme.

Let rk be the value of r' at k-th iteration. The Taylor Series

expansion of the function f(r) around rk is
k
) = £ + @-reE") L @b
1
eI LT eL (2.26)

in which f'(rk) and f”(rk) are values of the first and second de-
rivatives of the function at rk.
Dropping the terms higher than third order, one obtains
£ = £ + o) 2160+ L@ e o
The purpose of iteration is to force f(rk+1) to approach the

value of Q, or

a ey + oL 8 ek . %‘(rk+1_rk)2 e 25y

(2.28)
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The solution of Eq. 2.28 is

kel ko f-(r:) \ (f'(r:))z_ Z(f(rt)—n) —
ey Y™/ e
in which
£t = et + e P (2.30)
e’y w &+ o] (2.31)
and
f"(rk) = aB(B-I)(rk)B_Z (2.32)

There are two solutions to Eq. 2.29. It is advisable to choose
+
the solution which gives the smaller value of If(rk 1] - Q|. The above
iteration is continued until the absolute error ]f(rk+1) - ﬁ| is less

than a preassigned tolerance ¢€; i.e., the termination criterion is
+
ey “al < | (2.33)

An appropriate value for e is 0.012. However, it may be changed
according to the purpose of individual problems,.

The initial guess, ro, is the key to the speed of convergence to
the correct numerical solution. The best way of determing r’ is
to use a linear scheme.
2.2.2. Linear scheme

The term %%— in Eq. 2.1 can be expressed as

3A 9

t

3Q
= (2.34)

2l
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Also, from Eq. 2.12

A _ . B-1
5q = 28 (2.35)

The substitution of Eqs. 2.35 and 2.34 into Eq. 2.1 yields

it g aBQB : —g-- q,

X (2.36)
The finite-difference forms of Eq. 2.36 is given by the
expression

n+l n+1 n n+1\B-1 n+l n

Qj+1 B Qj ok Qj+1 * Qj ) Qi+1-Qj+l _

Ax 2 At -
Z @i+ ah ) (2.37)
Lj+1 2j+1 ’

n+l n
Qn Qn+1 g-1 9, *q,
n+1 XQ? b BQ J+12 + at\ 3 18
=Q_ =
I+l Qv+1 + Q?+1 B-1

[

2
(2.38)
Equation 2.38 provides the best initial estimate, ro, for the
nonlinear scheme. However, Eq. 2.38 is not applicable if both QP
and Q?+1 are zero. When both Q?+1 and Q?+1 are zero, use B =1 in

Eq. 2.25 and then

(2.39)

2,2.3. Stability

Suppose n*(x,t) and £*(x,t) are the values of the error in

j+l

Q(x,t) and A(x,t) which occur at some time t in the computation.

Then
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n*(x,t) = Q*(x,t) - Q(x,t) (2.40)

and

E*(x,t) = A*(x,t) - A(x,t) (2.41)
in which Q* and A* represent the true values of the discharge and
flow area, respectively.
From Eq. 2.12
A*(x,t) = a[Q*(x,t)]" (2.42)
If A and Q are in error by the values of the error functions

n*(x,t) and E*(x,t), then

A*(x,t) - E*(x,t) = oa[Q*(x,t) - n*(x,t)]®

" * B n*(x,t),8
= G[Q (x)t)] [1 . Q*(X,t)] (2'43)
*
Assuming that 8;%%4%%-<< 1, the power series expansion of
*
[1 - é%%%f%%]s is approximately 1- B %;%%f%% . This substitution

into Eq. 2.43 results in the expression
A*(x,1) - E*(x,1) = a[Q*(x,)]® - aB[Q* (x, )1 In¥ (x, 1)
(2.44)
When Eq. 2.44 is subtracted from Eq. 2.42, the result is
E*(x,t) = uB[Q*(X,t)]B"I n*(x,t) = én*(x,t) (2.45)

81, 1% at @ given

in which 8§ is the crror-free factor aB[Q*(x,t)]
time, tn, in the calculations, A? and Q? are in error by the value
of error functions E? and n?, respectively, then A?+1 and Q?+1
will be in error by amounts E?+1 and n?+1, respectively. When

written for this case Eq. 2.17 becomes
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n+1 n+1 n+1 n+1l n+l n+1 n n
13 ST et ) B 5 T Sl 5 Sl 5
Ax At
n+l n
Q. . v %,
. j+1 . j+1 (2.46)
When Eq. 2.17 is subtracted from Eq. 2.46, the result is
n+l n+1 n+l n o _
k(nj+1 - nj ) + £j+1 - Ej+1 =0 (2.47)
By substituting Eq. 2.45 into Eq. 2.47, then
n+l n+l n+l n _
A3y = mg ) ¢ 85y - ng) = 0 (2.48)

When decomposed x-wise into the Fourier series, the function

n*(x,t) takes the form

i2mmx/L

n*(x,t) = % a(m,t) e (2.49)

in which a(m,t) is the error-component amplitude, L is the length of
the reach being computed, and i is V-1. Substitution of Eq. 2.49
into Eq. 2.48 and examination of each Fourier component separately

shows that

iZwm(xj+Ax)/L ianxj/L

J\a(m,tn Je - Aa(m,tn+1)e

+1

iZwm(xj+bx)/L iZﬂm(xj+ﬂx)/L _

+ Ga(m,tn*l)e - Ga(m,tn)e 0
(2.50)
Following division by exp(inmxj/L) and denoting ¥ = 2mmAx/L,

Eq. 2.50 reduces to

iy iy
Aa(m,tn e - la(m,tn+l) + 5a(m,tn+1)e

+1

- sa(m,t Je'" = 0 (2.51)
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Then

’ a(m,tn+1) ) 1 1

a(m,tn) 1 + i a - e'll'P) 1 + %‘ - "%COS‘P-Pi—%Sin‘? pf 1

(2.52)
That is, the amplitude of the error decreases with succeeding time
increment. Therefore the scheme represented by Eq. 2.17 is un-
conditionally stable.
2.2.4. Convergence

In order to test the convergence of this numerical scheme com-
parisons of numerical results with analytical solutions for a
hypothetical case are made. In the hypothetical case, the bed slope
is 0.005, the rainfall intensity is 3 in./hr, the rainfall duration is
5 min, and the Darcy-Weisbach friction factor is 0.07 and constant.

The numerical results (At = 0.1 min and %§-= 60 sec/ft) are compared
with the analytical solution in Fig. 2.2. The agreement is excellent.
The analytical solution is given by Streeter, 1966, p. 643.

In assessing the agreement, it is important to note three types of
errors. These are the error in total volume, the error in shape of the
hydrograph, and the error in the peak of hydrograph. The effect of
the ratio of time increment to space increment, (At/Ax), on these
errors is described as follows.

The error in total volume is defined as

N
Zl Q, (t)At

B t=
E, =100 [1-8L (2.53)
I Q(t)at
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N
in which Z Qo(t)ﬂt is the volume of the outflow hydrograph and
t=1

N
X Qi(t)&t is the volume of the inflow hydrograph being routed. The
t=1

value Qi(t] is replaced by the rainfall input for overland flows. N
is the number of time increments extending from the beginning to the

end of the runoff event. The errors were computed for various values

of %% for the hypotheticaf case described above. As shown in

Fig. 2.3, the errors in total volume are generally less than 1.0

percent for a wide range of %% -

The error in the shape of hydrograph may be represented by the
mean absolute error; i.e.,

= 1
E = =
a N -

nr~12

. lQ, () - Q (1) (2.54)

in which Qa{tJ and Qo(t) are the analytical and numerical solution
of the outflow discharge respectively. The variations of E; with
At/Ax  for the hypothetical case are given in Fig. 2.4. For a fixed

At, Ea decreases as Ax decreases, and for a fixed Ax, E; decreases
as At decreases. Thus, in general, E; decreases as At and Ax
decrease. This is the desired nature of convergence. The mean
absolute error in shape for the tested range of At and Ax 1is less
than 0.3 in./hr or one-tenth of the maximum flow rate of 3 in./hr.
Therefore, a wide range of At/Ax may be used without introducing
large errors in the shape of the outflow hydrograph.

The error in the peak flow is defined as

Q
E = 100(1 - =2&) (2.55)
P %p
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Here Qap is the peak discharge determined by the analytical solution -
to the hypothetical case and QOp is the peak discharge computed by
the numerical scheme. It is found that the errors in the peak flow

are very small (generally less than *0.5 percent) for the tested range

At
f —.
o &

The foregoing examinations show that the convergence of the
numerical scheme is ensured. This ensurance is due to the fact that
the convergence criterion is always satisfied by the nonlinear scheme

for each computation grid-point.

2.3. Applications

The applicability of the proposed model is examined by the
comparison of computed hydrographs with measured hydrographs. These
measured data include.experimental data from test plots for overland
flow, a measured hydrograph from a parking lot and a flood event in a
natural river.
2.3.1. Overland flow plots

An overland flow hydrograph with small flow Reynolds number is
shown in Fig. 2.5. This hydrograph was obtained by Izzard (1946) in
his experimental work. In his experiment, the bed slope was 0.005,
the slope length, L, was 72 ft, the rainfall intensities were 1.89 to
3.78 in./hr, and the maximum flow Reynolds number was approximately
630. The flow resistance parameters are estimated as ko = 24
(smooth boundary) and kr = 10 (raindrop fall of 3 ft). The friction
factor is considered a function of time and space.

The comparison of the numerical solution and the measured hydro-
graph is shown in Fig. 2.5. In the numerical solution At = 0.2 min

and %§-= 12 sec/ft. The numerical solution agrees very well with the
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measured results. The interesting phenomena of '"pip" and 'dip"
which occur at the ceasing or starting of high rainfall intensity on
shallow flows are also successfully reproduced by the numerical method.
These phenomena are due to the sudden changes of flow resistance and
are explained herein. Equation 2.8 shows that the friction factor
f suddenly decreases as rainfall ceases or if the rainfall intensity
decreases abruptly. A sudden decrease in friction factor results in
an instantaneous increase in flow rate. On the other hand, the fric-
tion factor f suddenly increases if the rainfall intensity increases
abruptly which causes the sudden retardation of flow rate. The re-
sults in abrupt changes in flow are the '"pip'" and "dip" in the
hydrograph.

Yu and McNown (1964) reported the measured hydrographs shown in
Fig. 2.6. In their overland flow experiment, the flow Reynolds
number was much greater than in Izzard's experiment. The bed slope was
0.02, the slope length was 500 ft, the rainfall intensity was 7.44
in./hr, and the maximum flow Reynolds number was approximately 8600.
The estimated flow resistance parameters are k_ = 30 (concrete paved

()
surface), kr = 10 (raindrop fall of 3 ft assumed), and k, = 0.4

2
(concrete paved surface). In this case the friction factor, f, changes
from the low Reynolds number zone through the transition zone and to
the higher Reynolds number zone. As shown in Fig. 2.6, there is
excellent agreement between the hydrograph produced by the numerical
model (At = 0.2 min, and %& = 12 sec/ft) and measured results for both

the flow discharge at the outlet and the flow depth at 33 ft upstream

from the outlet. Also, the "pip" phenomenon is not detectable. This
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can be explained by the aid of Eq. 2.9 which shows the flow resistance
is not affected by the changing of rainfall intensity if the flow
Reynolds number is large.
2.3.2. Natural channel
A flood hydrograph in the Rio Amana in Venezuela was used to test
the applicability of the numerical method of flood routing in a
natural channel. Both inflow and outflow hydrographs were measured in
1969 in the reach of river between El Tejero and the crossing of the
Maturin-Tembledor Road (See Simons et al., 1971a). As described by
Simons et al. (1971b), the reach is 47.1 mile long and has an average
slope of 0.00146. The bankfull top width at the downstream station
is approximately 70 ft. The measured o and B values in A versus
Q relation are available at the downstream station. The values are
o =1.1 and B=0.9. For the reach, it has been assumed that B re-
mains constant and a changes linearly with distance. The estimated
value of o at the upstream station is 2.5, and the lateral outflow
rate was approximately 0.26 cfs/mile. The estimated upstream c-value is
much larger than the downstrcam value because of larger flow re-
sistance and larger wetted perimeters for the same flow area
in the upstream reach than in the downstream reach. The estima-
tion of the upstream a-value and the lateral outflow rate was made
by the multi-dimensional calibration technique described in Appendix B.
In Fig. 2.7, the numerical solutions (At = 2 hr, and %ﬁ-= 0.58
sec/ft) agree reasonably with the measured results. The proposed
numerical method is applicable in natural channels with steep gradients

because the kinematic-wave approximation is applicable for such channels.
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2.3.3. Confined catchment

The numerical model presented herein is valid for channel flows
as well as overland flows. A catchment system is formulated by
routing the overland flows to channels, and then routing the flows
through the channels. The numerical solutions for hydrographs from
small catchments agree very well with the measured runoff. A compar-
ison of computed and measured hydrographs at the outlet of SPL1
parking lot at Johns Hopkins University is shown in Fig. 2.8. The
storm used in this analysis is 13SPL1, which was reported by Schaake
(1965). The area of the parking lot was 0.39 acres. The catchment
area consisted of the overland flow area and V-shaped channels. The
lengths of overland flow paths varied from 20 ft to 36 ft and the
overland slopes varied from 0.0167 to 0.019. The side slopes of
V-shaped channels were 1:113. The lengths of these channels varied
from 50 ft to 165 ft and the channel slopes ranged from 0.0148 to
0.0213. The resistance parameters are estimated as follows:
ky = 35 (asphalt surface); k; = 27 (assuming an 8 ft fall to give the

terminal velocity for raindrops); and k2 = 0.4 (asphalt surface). In

the numerical computations At = 1 min and 7.3 5_%%-5_30 sec/ft.
The agreement between computed and observed hydrographs shown in
Fig. 2.8 indicates the applicability of the proposed numerical model

for time-variant inflows and watershed modeling.

2.4 Summary

A numerical model consisting of a second order nonlinear scheme
combined with a linear scheme has been developed to route water over-
land and in channels. This numerical scheme has the advantages of

both nonlinear and linear schemes. The nonlinear scheme ensures
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convergence and the linear portion of the scheme provides rapid compu-
tations. The numerical scheme is unconditionally stable and may be
used witﬁ wide range of %ﬁ- without loss of accuracy. The limitation
of this method is inherited from the restriction on the kinematic-wave
approximation.

It has been found that the discharge Q is the better selection
for the unknown in numerical‘computations than the depth or area. The
term B in the relation A = aQB is generally less than 1.0. If the
flow discharge is computed incorrectly, the flow depth estimation is
influenced only to a small degree.

The model employs resistance equations which include the effect of
raindrop impact on resistance. Consequently, the area versus dis-
charge relations are time and space dependent. The interesting phe-
nomena of "pip" and "dip'" in overland flow hydrographs are success-
fully simulated. These phenomena are the results of sudden changes of
flow resistance due to ceasing or starting of rainfall over shallow,
low Reynolds number flows.

The applicability of the numerical model has been tested in
various cases. The tests illustrate that this simple routing pro-
cedure simulates hydrographs which agree very well with measured
overland flow hydrographs, natural channel hydrographs, and hydro-
graphs from drainage systems. It is concluded that this model is a

promising model for a large-scale modeling of watershed response.



Chapter III

RAINFALL-RUNOFF MODEL FOR NATURAL WATERSHEDS

3.1. Model Structure

The rainfall-runoff model developed herein is a physical process
simulation model, which is divided into an overland flow part and a
channel system part. The overland flow part simulates the processes
of interception, evaporation, infiltration, and overland flow routing
to the nearest channel. The channel system part routes water contrib-
uted by overland flow through the channel system.

The main components of the rainfall-runoff model are shown in

Fig. 3.1.

3.2. Segmentation of a Watershed

Because most watersheds are very nonhomogeneous in topography,
it is necessary to segment the watershed into smaller units for math-
ematical analysis. In this study, the watershed is decomposed into
overland flow units and channel flow units. The sequence in segmenting
the watershed into units is as follows:

(1) A rectangular grid system is superimposed on the topo-
graphic map of the watershed, The size of the grid is
chosen so that the watershed boundaries and channels can
be approximated by grid segments. The overland flow
units are the grid units inside the watershed boundary
and the channel units are segments between grid inter-
section points.

(2) The principal flow direction is determined for each over-

land flow unit. The principal flow direction is

37



38

VEGETATION FLOW RESISTANCE
DATA PARAMETERS
INITIAL ANTECEDENT
INTERCEPTION MOISTURE
STORAGE CONTENT

GEOMETRY soIL
DATA DATA
BASIN
CHARACTERISTICS
DATA
RAINFALL MEAN
RECORD EVAPORATION
RATE
STORM
=1 CHARACTERISTICS
INTERCEPTION
STORAGE
SOIL MOISTURE INFILTRATION
STORAGE AND
SOIL MOISTURE
LEGEND

1@ E

Fig. 3.1

ROUTING

CHANNEL
FLOW
ROUTING

RUNOFF
HYDROGRAPH

GROUND WATER
STORAGE

Rainfall-runoff model flow

chart



39

identified by the magnitude and azimuth of the bed s pe
(or land slope). The azimuth is normal to the elevation
contours and is in the direction of decreasing elevation.
The bed slope is estimated along the azimuth.

(3) It is assumed that the water flows in the direction of
the bed slope azimuth to the next overland flow unit
or to the adjacent channel. Thus water cascades from
overland flow unit to overland flow unit and then into
the channel system.

If the bed slopes of the overland flow units in cascade
are nearly the same, these overland flow units are com-
bined into a larger overland flow unit. The represen-
tative slope length for the larger unit is the ratio of
total area of the cascade to the width of the over-
land flow unit where it joins the channel. The bed
slope is an average value of the bed slopes of all the
small units.

(4) The computational sequence for the flow network is
established. The method employed is simply to follow
the logics of the gravity flow and the flow continuity.

A plan view of a typical segmented watershed is shown in Fig. 3.2.
In this watershed there are overland flow units and channel segment

units.

3.3. Water Balance
In this study, the water budget for an overland flow unit is
simulated to determine the rainfall excess resulting from an individual

storm. Due to the different nature of water balance under a canopy as
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compared to an area without trees, the rainfall excess determination is
carried out for a point under the canopy and for another point in the
area without trees. A weighting procedure based on canopy cover densi-
tyhis used to obtain a mean rainfall excess rate. (See Section 3.3.3.).
The canopy cover density is defined as the ratio of the area covered by
trees to the total area. Either under a canopy or in an area without
trees, the water balance computation may be subdivided into the net

rainfall determination and the ground response to the net rainfall.

| 3.3.1. Net rainfall

Net rainfall is defined as the quantity of rainfall which actually
reaches the ground, the sum of the throughfall and stemflow.

(Zinke, 1965). The rate of net rainfall for different interception
conditions is as follows.

Let i or i(t) be the rainfall rate (or intensity) at time t
and refer to Fig. 3.3.a, the control volume for a tree canopy. If the
rain falls onto trees a portion is stored in the canopy and the re-
mainder io passes through the trees. Let ic or ic(t) be the rate
at which rain is being stored in the canopy at time t. Then, under
trees, the rainfall rate is reduced to the throughfall rate (stemflow
rate is neglected).

£, w1l - ic . (3.1)

The area under the trees can consist of a bare portion and a
portion with ground cover (litter, tree mulch, rocks, shrubs, grass,
etc.)

Refer to Fig. 3.3.b and let ig or ig(t) be the rate at which
rain is being stored in the ground cover at time t. Then under the

tree, the rate at which rain reaches the ground (net rainfall rate) is
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i =i -i =1i-41i_ -1 (3.2)

io=i =i-i (3.3)

where there is no ground cover.

The area without trees (see Fig. 3.3c) can also consist of a bare
portion and a portion with ground cover. Where there are no trees, but
there is ground cover, the net rainfall rate is

i =i-i (3.4)

i =i (3.5)

A summary of rainfall rate reaching the ground for different

interception conditions is given in Table 3.1.

Table 3.1. Rain Reaching the Ground

Area Condition Net Rainfall Rate in
Under trees, ground cover i- ic - ig
canopy trees, no ground cover i- iC
Without no trees, ground cover i- ig
trees no trees, no ground cover i

Let AE be the total area covered by trees in an overland flow

. c : g3
unit. Also let Ag be the area with ground cover within area A:'

Then the average net rainfall rate under a canopy is
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=e¢ .1 s s y c . c _,C
7¢.L {(1 i - i) AS ¢ (- 1) (g Ag)}
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t
Cc
A
=i-i --& (3.6}
c o g
At

is

I0wds ;cg; i (3.7)
T

in which A: is the total area without trees in an overland flow unit,
and A° is the area with ground cover within area Az.

Assume the ground cover has the same density over the entire area
of an overland flow unit either under canopy or over the area without

trees. One then obtains

(3.8)

Jbbhmzh
1
ﬂ?bqub
1
o

in which Dg is the ground cover density, which is the ratio of the
area covered with ground cover to the total area in an overland flow
unit.

The substitution of Eq. 3.8 into Eqs. 3.6 and 3.7 yields

e e e -
To=1-1 -0 (3.9)

for areas under canopy and

O i i
I Dglg (3.10)

for areas without trees.
According to Horton (1919), total interception equals leaf

storage capacity plus evaporation loss during the storm. Zinke (1965)
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indicated that '"usually for a storm, there is an initial period during
which the vegetation cover is wetted and a so-called interception
storage capacity is satisfied. This is followed by loss from this
storage, and the loss is dependent upon the evaporation opportunity
during the remainder of the storm.'" The foregoing statements sug-

gested that

1

i (t) =i(t) if t;;1 i(t) ot < (1-1)V, (3.11)
t

i (t) =ES_ if t2;1 i(t') at > (1 - 1))V, (3.12)

and

- - . t

1,(6) =i(e) if t’z=1 it st < (1-1JV, (3.13)

. . t -

1g(t) = E sg if t-z=1 i(t') at > (1 - 1) vg (3.14)

in which Vc is the interception storage capacity of a tree canopy
per unit area, Vg is the interception storage capacity of the ground
cover per unit area, E is the mean evaporation rate from the inter-
ception storages, SC and Sg are respectively the ratios of the
evaporating surface to the horizontal projected area for a tree canopy
and for a typical ground cover and I5 is the initial interception
storage content which is defined as the ratio of the initial storage

capacity to the total interception storage capacity.

Let r be the ratio of V_ to V , or
v c g

V =1V (3.15)

S =18 (3.16)
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The average net rainfall rate under canopy at time t can be

determined by combining Eqs. 3.9, 3.11, 3.12, 3.13, 3.14, 3.15 and

5:16:5 1.0
t
=— = . 5 _
i (1) =0 if tl{ﬂ i(t') ot < (xr, + Dg) (1-1) vg
(3.17)
and
t
“i'ﬁ (t) = i(t) - E (r, + D) S, if t‘z=1 i(t') At >
(x, ng) 1-1) vg (3.18)

Similarly, the average net rainfall rate for the area without

trees is
i (1) =0 if t‘z=1 i(t') At < (1 -1) ngg (3.19)
and
— 0 . t
i () =i(t) - E Dgsg if tﬁ{l i(t")at >
- 3.20
(1 - 1)) DV, (3.20)

3.3.2. Ground response to net rainfall ;

Because this study concerns the water yield on the single storm
basis, the transpiration from soil through vegetation and evaporation
from the soil are small and therefore neglected, The net rainfall which
reaches the ground either infiltrates into the soil, or is stored in
surface puddles as 'depression storage'" or becomes surface runoff

(see Fig. 3.4). The infiltrated water into the soil will increase the
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soil moisture storage in the upper soil profile and may change the
ground water storage (see Fig. 3.5).

When rainfall intensity exceeds the infiltration capacity, the
rainfall excess begins to fill surface depressions. Each depression
has its own capacity and, when filled, further inflow is balanced by
outflow plus infiltration. Depressions of various sizes are both
superimposed and interconnected. Soon after the beginning of rainfall
excess, the smallest depressions become filled and overland flow begins.
Most of this water in turn fills larger depressions, but portions of
the excess follow unobstructed paths to the stream channel. This chain
of events continues with beginning successively larger portions of over-
land flow. Very little is known concerning the magnitude of depression
storage. Defining depression storage in itself is difficult and
meaningful observations cannot be easily obtained. Thus, the depression
storage is usually combined with interception and treated as initial
loss with respect to storm runoff (Linsley, et al., 1958). For simplic-
ity, the depression storage is neglected in this study, but implicitly
is included in the interception storage capacity described in section
Sk

Referring to Fig. 3.4 and neglecting depression storage the water

balance equation is
i =1i_ - f. (3.21)

in which ie is the rainfall excess rate and fi is the infiltration
rate.
The average rainfall excess rate under canopy and in the area

without trees are respectively,
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=C . € _ ¢

i (t) = i (t) f.1 (t) (3.22)
for areas under canopy and

-0 _ 0 -

i (t) = i (t) fi (t) (3.25)

for areas without trees in which ?E (t) and ?g (t) are respectively
the average infiltration rates for areas under canopy and for areas
without trees.
3.3.2.1. Infiltration

Darcy's Law for flow through porous medium (Daily and Harleman,

1966, p. 181) is

3(-P_ - h - n") A(P_ +h +n")
v = -k - = k g

n s an' s on'

(3.24)

in which Lo is the hypothetical infiltration velocity defined as the
local flow rate averaged over a finite area of the porous medium, ks
is the saturated hydraulic conductivity (coefficient of permeability),
Pc is the magnitude of the capillary potential head, h is the magni-
tude of the ponded water head at the surface and n' 1is the magnitude
of the gravitational potential head of the wetted front in the soil
column.

Assuming one-dimensional flow and neglecting h, Eq. 3.24 becomes

d(P_ + n")
v =k — € -
n s dn'

or

i 1
Vndn ks d(Pc + ') (3.25)
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Integration of Eq. 3.25 yields
n I
t =
/ vin' =k (P + ) (3.26)
0
in which 7n and ﬁ; are respectively the magnitudes of the gravita-
tional potential head and the capillary potential head of the wetted

front at a particular time.

Let ?5 denote the average value of Vo SO that
/ vndn' =vn (3.27)

From Eqs. 3.26 and 3.27, one obtains

T o= £
vosk (+ ?1') (3.28)

In a natural watershed, the infiltration rate is not homogeneous
in space. A reaéonable assumption is that the infiltration rate is
uniformly distributed between values of zero and a maximum rate
fm(t) for the area under canopy and the area without trees. This
maximum infiltration rate is time-dependent and is different for
the area under canopy and the area without trees. For convenience in
deriving the infiltration equation, let fm(t) be the maximum infiltra-
tion rate for both areas temporarily.

Assume £ (t) to be 5; in Eq. 3.28, i.e.,

P_(t)

n(t)

£(t) =k, (1+ ) (3.29)

in which ﬁé(t) and n(t) are respectively ﬁé and n at the time t.
The soil moisture profile in the upper soil zone (zone of aeration)
at time t - At 1is represented in Fig. 3.6a (after Hewlett and

Nutter, 1969, p. 57). When infiltration occurs, a wetting front moves
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through the upper soil zone and the moisture profile at time t is
shown in Fig. 3.6.b. In this study, the soil moisture profile at

time t is represented by the simple mathematical functions shown in
Fig. 3.6c. Then, the gravitational potential head of the wetted front
at time t 1is

fm(t) At

;1- (t) = W (3.30)

in which m is the moisture content at satuation and mo(t] is the
current moisture content of the zone of aeration at time t , the ad-
justment of moisture content is given later in section 3.3.2.2.

The magnitude of the capillary potential head or the moisture
tension head of the wetted front ﬁg(t) is a function of soil moisture
content (Zahner, 1965). A typical representation of soil moisture
depletion curve is given in Fig. 3.7. From Fig. 3.7, the capillary
potential head at time t «can be approximated by a linear interpolation
as follows

_ m _-m_(t-At)
P (t) =[-§-r-nfm—J P, (3.31)

S W

in which m, 1s the soil moisture content at wilting point, or defined
as the moisture content at which permanent wilting of plants occurs,
and Pw is the capillary potential head at wilting pdint.

The substitution of Eqs. 3.30 and 3.31 into Eq. 3.29 yields

[ms—mo(t—ﬁt)]2
G -n )T (t)ot } (3.32)

£ (t) = ks{ 1+
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fm(t) can be obtained by solving the quadratic equation of Eq. 3.32,

2
K { oy 4P [m-m (t-8t)] }
kAt (m_-m ) (3.33)

The current moisture contents for areas under canopy and for areas
without trees are different due to different rate of water supply to
the ground. Thus, the values of fm(t) are different for the area

under canopy and the area without trees. They are

£S(t) = Eé.{ 1 + 1+ 4P"[m5-mg(t-at)]2 } (3.34)

m 2 ksat[ms—mw) '
for areas under canopy and

. kg 4 [m_-n0 (t-at)]*

£(t) = 5 { § o P % KA ) (3.35)

for areas without trees in wﬁich mz(t) and mg(t) are respectively
the moisture contents for the area under canopy and the area without
trees.

As stated earlier in this study the spatial distribution of
infiltration rate is assumed uniform between values of zero and fm(t)
for both the area under canopy and the area without trees. The
cumulative distribution function of the infiltration rate is shown in
Fig. 3.8. Then the average infiltration rates for area under canopy

and area without trees are as follows

F (1) =5 fo(r)  Af I0(1) > £O (1) (3.36)
and

- L Em?r .

fl (t) = 1n(t) - im if in(t) < fm(t} (3.37)
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for areas under canopy and

) = %—f;(t) if I0(t) > £2(1) (3.38)
and
- 2
[i°(t)]
B = - %‘f‘o—m if () < £ (3.39)
m

for areas without trees.
3.3.2.2. Soil moisture adjustment
After certain amounts of water infiltrate into the soil, the
soil moisture is adjusted. For simplicity, the soil moisture is
assumed to be adjusted uniformly through the zone of aeration.
Referring to Fig. 3.5, the control volume below the ground, and
neglecting movement of ground water flow and subsurface flow, the water
balance can be expressed as follows.

AMS ﬁGs
e P (3.40)

in which AMS is the change in soil moisture storage, and aGS is
the change in ground water storage.

It is assumed that before the upper soil profile is saturated, no
water enters the ground water storage, and after the upper soil profile
is saturated all infiltrated water enters the ground water storage.

The moisture content prior to the saturation of. upper soil profile
is determined by the following equations.

°

. At
i

a

mg (t + At) = mg (t) + (3.41)
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for areas under canopy and

!

At
) _ .0 i
mo (t + 8t) = m (t) + W (3.42)

for areas without trees in which n, is the depth of the zone of
aeration.
After the moisture content reaches the state of saturation, all

content is equal to the moisture content at saturation, i.e.,

c . c
mg (t + At) = m, if n (t + At) > m, (3.43)
and
mC (t + At) =m_ if mC (t + At) > m (3.44)
[ ! o s ’

For simplicity, the starting moisture contents for areas under canopy

and for areas without trees are assumed to be the same, i.e.,
me (0) =m> (0) =m_ (0) 3.45
0 =M =M (345

in which mo(O) is the antecedent moisture content.
3.3.3. Mean rainfall excess rate
From Eqs. 3.22, 3.36 and 3.37, one can determine that the average

rainfall excess rate for areas under canopy is

=9 -2 @ ifIm > L0 (3.46)
and
. 2
[IS(t)]
- 1 n .. TC c
() = o if IS(t) < £5(t) (3.47)

m
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Similarly, the average rainfall excess rate for arecas without

trees can be determined by Eqs. 3.23, 3.38 and 3.39. The equations

are
0w =120 - 720 if T2 2 £201) (3.48)
and
- 2
[12(1)] _
) = %-——E————— if IO < £0(0) (3.49)

0
£9 ()
It is not practical to route water in the area under canopy and
in the area without trees separately because these two types of areas
are interconnected. A weighting procedure may be used to obtain an

overall mean rainfall excess as follows:

T, (t) =D_Tg(t) + (1 - D) ow (3.50)

in which Dc is the canopy cover density. This overall mean rainfall

excess Té(t} is the quantity of lateral inflow rate q, in B 241.

3.4. Flow Routing in Natural Watersheds

The nonlinear kinematic-wave routing procedure, which was
presented in Chapter II, is applied to natural watersheds. The same
numerical method is used, but a modified relation between discharge and
flow area is needed to account for the complexity of a natural water-
shed system. The major modifications are: (1) the.relation between
the wetted perimeter and the flow area, and (2) the resistance

equations.
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3.4.1, Relation between wetted perimeter and flow area for natural
channels
In a natural channel, a single relation between the wetted
perimeter P and the flow area A 1is usually not satisfactory to
describe the relation when overbank flow occurs; another set of P-A
relations is needed in this case. For example, in Fig. 3.9 two sets of

P-A relation are shown exist.

The P-A relation for a natural channel is

b1
P =aA for A <A, (3.51)
and
b { ]
P=a'A’ forA>A (3.52)
in which aps bl’ al', and bl' are constants determined from channel

survey data, and Ao is the flow area of bankfull flow.
3.4.2. Resistance equations for natural watersheds

For a natural watershed, the form resistance due to bed forms
(both channel and overland) and ground covers play a very important
role in the resistance to flow. Similar approach as the work by Li
and Shen (1973) may be used to establish the variation of flow
resistance.

Assume that the factors for describing resistance to flow are
independent then, referring to Fig. 3.10, the force balance for uniform

flow over a rectangular area with length L and width W is

Downslope water weight component = Grain resistance
+ Form resistance due to bed forms

+ Form resistance due to ground cover.
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Fig. 3.10 Schematic diagram of resistance to flow
in natural watersheds
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That is,

= e Lo 2o 1 2 1 2
YLWYS = g £0VLW + 2 C;oV°A) + 7 C,oV°A, (3.53)

in which ¥ 1is the specific weight of water, Y is the flow depth, f
is the Darcy-Weisbach friction factor for grain resistance, P 1is the
density of water, V is the mean velocity of water flow, Cd is the
drag coefficient, and Al, Az‘ are respectively the total projected
area perpendicular to the flow direction to describe bed form
resistance and ground cover resistance within the area LW,

The total projected area for drag resisfance due to ground covers
A, 1is proportional to the mean flow depth and to the area of ground

2

cover, or

Ay = DLW (3.54)

X
2
tg
in which 1% is the average length of ground covers in the

direction of flow.

According to the definition of the Darcy-Weisbach equation

VZ
L 4
So = gy (3.55)
in which f' is the overall Darcy-Weisbach friction factor.
From Eqs. 3.51, 3.52 and 3.53, one obtains
A Y
' = M
£ f + 4 Cd EW'+ 4 C Dg ) (3.56)

or by notation

t
£RFEG *E (3.57)
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in which £, and fg are respectively the added friction factors due
to bed from resistance and ground-cover drag resistance.
As stated in Chapter II, £ is a function of flow Reynolds number

Nr (defined in Eq. 2.6). The drag coefficient C, is usually a func-

d

tion of "obstacle'" reynolds number (the cylinder Reynolds number if the
"obstacle'" is a cylinder, for example, see Daily and Harleman, 1966,

p. 380). It is expedient to assume that C, can also be expressed as

d

; rti
a function of flow Reynolds number. - So that similar friction equations

to those in Chapter II may be developed. Because f, fb

functions of flow Reynolds number, then f' is a function of flow

and f are
g

Reynolds number. As shown in Eq. 3,54, fg is also a function of flow
depth.

Based on the above considerations, the Darcy-Weisbach friction
factor may be described for different flow conditions.

The general form of the flow resistance factor was given by

Eq. 2.7.

(3.58)

in which a, and b2 are functions of rainfall intensity, boundary

roughness, bed forms, ground cover, canopy cover, and the flow Reynolds
. T3y, AN
f rs L4/
Aol . ) fle A
a2 plges Jf /,J, A

number.

For Nr < 900, it is more convenient to route water under
different covers (canopy cover, ground cover and no cover) separately,
and an average raindrop-impact effect is introduced. Then,

kll k (1 + v) + krio'“
£re- (3.59)

r NI‘
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and
i=Q - D) (1 - Dg) i (3.60)

in which k' is a constant representing overall resistance factor for
Nr < 900, ¢y is a constant representing the ratio of added friction

factor (fb and fg) to the grain resistance factor without rainfall f,

i.e., ¢y = ——?—& which will be given in detail later, and i is the
effective rainfall intensity for raindrop impact effects.

For 2000 < N_ < 25,000

Ky . ky(1+0)
| T -
£ N 0.258 N 0.25 (261
T r
in which ké and k2 are respectively constants representing the

overall friction factor and grain resistance factor only for the
specified flow Reynolds number range.

For N > 100,000, the friction factor is independent of N, or

= k3(1+¢) (3.62)

in which kg and k3 are respectively constants representing the
overall and grain resistance factor for N, > 100, 000.

In the transition ranges, estimation of friction factor are made
by linear interpolations.

For 900 < Nr < 2000

k ]
1
k' 900 (1-25 In _"z' - 7.14)
f' = e (3.63)
1
y (1.25 ¢n —— - 6.14)

b k2'
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and for 25,000 < Nr < 100,000

kl
0.72 4 2 _ 1.83)
L] i |
s k; 100,000 % GRS
kl
(0.72 n —2— - 1.83)

N, o
3

The constant, ¥, representing the ratio (fb+fg)/f is determined in the
following manner.
For overland flow and overbank portion of channel flow, both

fb and fg are important, then

b=y YD, (3.65)

in which 28 is the bed form resistance descriptor, a constant repre-
senting the ratio for added friction due to bed forms (fb/f), and

is the ground cover resistance descriptor, a constant represent-

Vg

ing the ratio for the added friction factor due to ground cover when
the ground cover density is equal to unity (fg/f).
For channel flow less than bankfull flow, fg is negligible,

and
b=y (3.66)

For overbank flow, both fb

weighting function is assumed, to determine an average resistance

and fg are important. A linear

descriptor

P P
0 0
b= Wyt (-2 (ot D) (3.67)

in which Po is the wetted perimeter of bankfull flow, and P 1is the

total wetted perimeter.
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3.4.3., Flow discharge and flow area relations
The values of o and B in Eq. 2.12 can be determined by

substituting Eqs. 2.6, 3.51, 3.52, and 3.58 into Eq. 2.2. The solutions

are
b2 (1+b2) 1
G2 & (3-b.-b.b.)
@ = i i (3.68)
8gS
o
and
2——b2
R . A— (3.69)
3-b1—b1b2
for A < A, and
b2 ' (1+b2) 1
ay “a :
a [ 55, ] (3-b) by b,) (3.70)
and
2-b2
B (3.71)
3"b1l -b]_' b2

or A > A .
0

3.5. Applications

A computer program based on the mathematical formulations pre-
sented above was developed to simulate water outflow hydrographs of
small watersheds. The listing of the computer program is given in
Appendix C. (PROGRAM WATER).

Four rainfall-runoff events in Carrizal Basin, Venezuela for the
summer of 1972 were used to test the applicability of the proposed

mathematical model. Carrizal Basin is a small drainage catchment with
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an area of 2.8 square kilometers. The four rainfall-runoff events
used in this study are respectively the storms which occurred on July 9,
September 2, September 3, and September 4, 1972.

The required data for model input and for parameter calibration
were obtained from information presented by Berryman (1974). The
required data were rainfall records, streamflow records, soil infil-
tration tests, evaporation studies, and channel surveys.

The details of input data, tested results, and possible applica-
tions to predict watershed treatment effects are given below.

3.5.1. Input data

The two groups of data required are the basin characteristics
data and the storm characteristics data. The basin characteristics
data include geometry, soil data, vegetation data, and flow resistance
parameters. They are assumed to be time-invariant, i.e., they are
independent of storms. The storm characteristics data are mean evapora-
tion rate, antecedent moisture content, interception storage volume at
the start of storm and rainfall records. These characteristics change
from storm to storm.
3.5.1.1. Basin characteristics data

(a) Geometry

The geometric segmentation of the Carrizal Basin is shown in
Fig. 3.11, and a typical P-A relation is given in Fig. 3.9. Table
3.2 provides a summary of the geometry for each segment of the basin.

The computation sequence, which was established by the logics of
gravity flow and flow continuity requirement, is shown in Table 3.3
The computational order (Column 2) is the order for the computation of

flow routing in the segment of Column 1. The numbers in Column 3
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Fig. 3.11 Geometric segmentation of the Carrizal Basin, Venezuela
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Table 3.2. Geometry of Carrizal Basin, Venezuela

Index| Length | Slope Wetted Perimeter-Flow Type
Areca Relations
L S, a; bl al' b,’ A,
(ft) (sq.ft)
1 1436 0.002 0 0 1 0 0 O.E.
2 1026 0.002 0 0 1 0 0 0.F.
3 1044 0.0025| O 0 1 0 0 0.F.
4 703 0.0025| 0 0 1 0 0 O.F.
5 448 0.0025( 0 0 1 0 0 O.F.
6 1562 0.003 0 0 1 0 0 0.F,
7 410 0.003 0 0 1 0 0 0.F.
8 1068 0.0035| 0 0 1 0 0 0.F.
9 951 0.005 0 0 1 0 0 O.F.
10 1540 0.005 0 0 1 0 0 0.F.
11 628 0.004 0 0 1 0 0 0. s
12 698 0.004 0 0 1 0 0 0.F.
13 1256 0.005 0 0 1 0 0 0.F.
14 698 0.005 0 0 1 0 0 0.F.
15 820 0.002 5.297 0.25 0.177 1.25| 30 C.F.
16 3706 0.005 2.655 0.55 0.757 1.25 6 C.F.
17 1689 0.002 4.208 0.35 0.232 1.25]| 25 C.F.
18 1640 0.002 3.750 0.40 0.294 1.25| 20 C:F,
19 1496 0.0025 | 3.342 0.45 0.383 1.25| 15 C.F.
20 578 0.003 2.979 0. 0.530 1.25] 10 )
21 1640 0.004 2.979 0.5 0.626 1.25 8 C.F.
22 2075 0.005 2.655 0.55 1.006 1.25 4 E.F.
23 2411 0.004 2.979 0.5 0.530 1.25| 10 C.E.
24 1808 0.005 2.655 0.55 1.006 1.25 4 C.F.

NOTE: O.F. is overland flow; C.F. is channel flow.
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Computational Sequence

Table 3.3.
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indicate the upstream inflow segments to the segment in Column 1 and
the numbers in Column 4 are the lateral inflow segments. When no
upstreamlinflow segments or lateral inflow segments are involved, a "0"
is indicated.

(b) Soil Data

The saturated hydraulic conductivity kS was estimated from the
saturated infiltration rate determined from the soil infiltration tests
(Berrymen, 1974). The value of kS was 0.3 in./hr,

For a typical soil, the moisture contents at the wilting point m,
and at the saturation m, are approximately 0.1 and 0.5 respectively
(Linsley, et al., 1958, p. 125). These values were used in this study.

The magnitude of the capillary potential at the wilting point Pw
is usually about 15 atmosphere (Linsley, et al., 1958, p. 126), which is
approximately 6100 inches of waterhead. This value was adopted in the
analysis.

It is known that the depth of zone of aeration n, was at least
3 feet (36 inches). This value of 3 feet was employed in the analysis.

(¢) Vegetation

From aerial photos and ground survey data, the canopy cover density
Dc was determined to be 0.4 and the ground cover density Dg was
approximately 0.5.

The mean interception storage capacity of ground cover Dng was
assumed to be 0.05 inch, the value given by Zinke (1965) for shrub or
grass lands. Equivalently, Vg was assumed to be 0.1 inch. According
to Penman (1965), the ratio of evaporating surface to the horizontal
projected area for ground cover Sg was of the order of 10, 11 or 12

for grasses and had a value on the order of 5, 6 or 7 for agricultural
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crops. In this study, S was assumed to be 7.0. The vegetation in
tropical areas usually has larger leaves than that in other areas.

Thus, a high value of r, may be expected. According to Zinke (1965)
the maximum measured interception storage for forest lands was around
0.36 inch and according to Linsley, et al., (1958) the interception
storage for a four feet high cotton was 0.33 inch. In this study r,
was assumed to be 2.5 which implied that the interception storage volume
under canopy was assumed to be 0.3 inch,

(d) Flow Resistance Parameters

The flow resistapce parameters include ko’ kr, kz, k3’ wb and
¢g. These parameters are independent of storms. As mentioned in
Section 3.4.2., wg is a function of flow depth, which is a function of
the size of storm. A large value of wg may be expected for large
storms.

For a natural and plain surface, the resistance can be estimated
by assuming kr = 27 (assuming an 8 ft fall to give the terminal veloc-
ity for raindrops), Ko = 40, k2 = 0.5 (for asphalt surface ko = 35,

k, = 0.4), and k

2 3
tion factor for large Reynolds number flows (Nr > 100,000). The

= 0.04. Recall that ks is the Darcy-Weisbach fric-

discharge coefficient C/QE- can be determined from the value of k3 by,

C s
ow e (3.72)
i s

in which C is the Chezy resistance coefficient.
For k3 of 0.04, the Chezy discharge coefficient as determined by
Eq. 3.72 is 14.1, which is a common value of grain resistance in rivers

(Simons and Richardson, 1966).
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The added resistance due to bed forms and ground cover can be
determined by the measured flow area-discharge (A-Q) relation at
large Reynolds number flows (N_ > 100,000).

From Eqs. 2.2, 2.3, 3.51, 3.62 and 3.66, one obtains that

8gs A1)

¥ —5——;:*—*-ﬂ— -1 (3.73)
Qa)kg
The discharge measurements taken near the outlet of the watershed
(Berryman, 1974) indicated that wb varied from 5.8 to 11.0. Because
wb is a measure of added roughness due to bed deformations only and a
larger value of wb may be due to the inclusion of ground cover resis-
tance. Thus, wb was assumed to be 6.0 in the subsequent analysis.
Velocity measurements in the channel and floodplain were also

reported by Berryman. With the measured data in the overbank portion,

the values wg were estimated using the equation

1 SgSOY
Yy = = -1-9 (3.74)
g Dg(‘v’z k3 b )

in which V is the mean velocity across the entire depth at a specific
location. Equation 3.74 is obtained from Eqs. 3.55, 3.62 and 3.65.
The values of wg varied from 17 to 29. Therefore the range of
wg was assumed to be 16 i,wg < 30. The proper value of wg for each
storm should be estimated by a calibration procedure which will be
presented in Section 3.5.2.
3.5.1.2. Storm characteristics
The storm characteristics data include the rainfall records
i(t) , the mean evaporation rate E , the initial interception storage

content IS and the antecedent moisture content mo(O).
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The rainfall records for the storms used in this study are given
in Table 3.4. The intensities were derived from the accumulation of
precipiﬁation over a five-minute interval.

The evaporation studies in Carrizal Basin (Berryman, 1974)
indicated that the average pan evaporation rate was 0.03 in/hr for a
six-day measurement and was 0.01 in/hr during the storm of June 19, 1972,
It was assumed that the averége evaporation rate was 0.01 in/hr for all
storms in this study.

From the rainfall records for the rainy season (Berryman, 1974)
the amount of rainfall needed to recharge the Basin to produce runoff
was determined, thus the ranges of initial interception storage content
mo(o) could be estimated. Assuming that the initial rainfall for the
storm being considered (the cumulative amount of rainfall before
runoff) all entered the interception storage, it was determined that
the values of I5 were between 0.5 and 1.0. Because the storms used
in this analysis all started with very wet ground condition, it is
estimated that the value of mo(OJ was greater than the field capacity
of the soil (9.4 for clay). The value of mO(O) was assumed to be
0.4 f_mo(O) < 0.5.

The proper values of Is and mo(O) for different storms were
estimated by a calibration procedure given in the following section.
3.5.2. Model calibration

, and mo(O)) must be

The values of the three unknowns (wg, IS

estimated. The ranges of these three unknowns as discussed in the pre-

vious sections are:

16 < ¥, < 30 (3.74)
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Table 3.4. Rainfall Records for Storms Used in Analysis

Local Rainfall Local Rainfall
Time (hr) Intensity(in/hr) Time (hr) Intensity(in/hr)
July 9 September 2
(continucd)
1625 0.14 0945 0.09
1630 3.07 0950 0.05
1635 3.17 0955 0.14
1640 2.60 1000 0.05
1645 1.32 1005 0.05
1650 0.99 1010 0.05
1655 1.56 1015 0.09
1700 1.89 1020 0.05
1705 1.32 1025 0.05
1710 0.85 1030 0.14
1715 0.14 1035 0.33
1720 0.09 1040 0.24
1725 0.14 1045 0.09
1730 0.03 1050 0.05
1735 0.03 1055 0.05
1740 0.03 1100 0.00
1105 0.05
September 2 1110 0.05
0510 0.05 September 3
0515 0.05
0520 0.05 0635 0.38
0525 0.80 0640 0.09
0530 0.99 0645 0.14
0535 0.57 0650 0.05
0540 0.24 0655 0.05
0545 0.61 0700 0.05
n550 0.99 0705 0.07
0555 1.79 0710 0.07 .
0600 0.71 0715 0.05
0605 1.09 0720 0.05
0610 0.24 0725 0.24
0615 0.33 0730 0.14
0620 0.05 0735 0.05
0625 0.05 0740 0.05
0630 0.05 0745 0.07
0635 0.00 0750 0.07
0640 0.24 0755 0.07
0645 0.n9 0800 0.07
0650 0.14 0805 0.09
0655 0.47 0810 0.14
o700 0.14 0815 0.33
0705 0.09 0820 1.32
0710 0.14 0825 1.23
0715 0.94 0830 0.80
0720 0.14 0835 1.09
0725 0.09 0840 1.70
0730 0.09 0845 1.56
0735 0.0S 0850 0.33
0740 0.09 0855 0.14
0745 0.14 0900 0.38
0750 0.47 0905 0.09
0755 N 1.32 0910 0.14
0800 2.03 0915 0.09
0805 3.35 0920 0.14
0810 0.61 0925 0.09
0815 0.n9 0930 0.14
0820 0.09
0825 0.09 September 4
0830 0.14
0835 0.24 1540 ‘ 1.94
0840 0.33 1545 1.65
D845 0.28 1550 0.24
0850 0.33 1555 0.14
0855 0.38 1600 0.00
0900 0.24 1605 0.00
0905 0.47 1610 0.00
0910 0.09 1615 0.00
0915 0.28 1620 0.00
0920 0.24 1625 1.80
0925 n.ns 1630 0.85
0930 0.14 1635 1.18
0935 0.33 1640 0.85

0940 0.24. 1645 0.38
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0.5 <I_<1.0 (3.75)
0.4 <m (0) < 0.5 (3.76)

Estimations for these unknowns can be made by using the multi-
dimensional calibration technique described in Appendix B, but that
technique is very time consuming in computer operations. Herein, based
on the physical significance, an easy and practical way to estimate
these values is presented.
From a physical point of view, the values of IS and mO(O)
control the water balance between the rainfall input and the streamflow
output. The parameter wg determines the time to peak flow and the
shape of the hydrograph. In order to simplify the calibration proce-
dure, separate calibrations for water balance and flow routing should
be made. The steps of calibration are as follows:
(1) Assume a value of IS based on the initial rainfall
and the moisture condition of the basin. Then, the
value of mo(O) can be estimated by adjusting the
estimated volume of rainfall excess to be nearly equal
to the total volume of the measured runoff. This
adjustment can be made by trial and error or by
the one-dimensional calibration technique presented in
Appendix B.

(2) With the values of IS and mo(O) estimated in step 1,
adjust the value of wg to obtain the correct time to
peak flow. Again, this adjustment can be achieved by
either trial and error or by the one-dimensional

calibration technique.
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(3) If the magnitude of the peak flow or the shape of the
hydrograph is not correct, select another value of IS
and repeat steps 1 and 2 until a satisfactory answer is
found.

, and mo(O) are given in Table

The estimated values of wg’ Is

3.5. The estimated ground cover resistance for different magnitudes of
storms is also given in Fig. 3.12. The value of wg increases as the

magnitude of storm increases.

Table 3.5. Estimated Values of wg 3 IS , and mo(O}

Storm ¢g I m, (0)
July 9 20 0.6 0.475
September 2 30 1.0 0.488
September 3 21 1.0 0.500
September 4 18 0.6 0.486

The estimated values of Is are respectively 1.0 for September 2
and September 3 storms and 0.6 for July 19 and September 4 storms.
This is because the September 2 and September 3 storms occurred at
daybreak, while, July 9 and September 4 storms occurred in the late
afternoon. Less water escapes from interception storage for a storm

occurring at daybreak.
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The antecedent moisture content of the July 9 storm is
comparatively lower than for the storms occurring on September 2, 3 and
4.‘ This coincides with the overall rainfall records. Due to the long
recession of the big storm on September 2, the September 3 storm
started with a completely wet condition. The estimated value of mo(O)
was 0.5.

3.5.3. Test results

In the numerical computation for runoff from the Carrizal Basin,
the time increment At was chosen as 5.0 min. and the ratio of time
increment to space increment was in the range of 0.62 5_%&-5_3.66 sec/ft.

The computed maximum infiltration rates fm(t) for the July 9
storm are given in Fig. 3.13. The rates are different for areas under
canopy and areas without trees. The value of fm(t) under the canopy is
uniformly larger than that in areas without trees.

The comparisons of the simulated and the measured hydrographs for
July 9, September 2, September 3, and September 4 storms are given in
Fig. 3.14. The agreement between the measured hydrographs and the com-
puted hydrographs is satisfactory. The accuracy of simulation is
expressed in terms of the percentage error in total volume of runoff
EV, the relative mean absolute error Ea, the percentage error in the

peak flow Ep’ and the percentage error in the time to peak flow Et'

The terms are defined as follows:

N
1 Q (1) At
E, = 100 [1 - =1 ] (3.77)
b3 (t) At
t=1 n
N fQ (£)-Q ()]
E, - 130 y Lo A (3.78)
t=1 Qmp
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Fig. 3.13 Computed maximum infiltration rates for July 9 storm
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Q
100 (1 - Q—°P—) (3.79)

mp

M
"

and

t
100 (1 - ;_-93) (3.80)
mp

tm
n

Here N is the number of time increments extending from the beginning
to the end of the runoff event, Qo(t) and Qm(t) are respectively

the simulated and the measured runoff at time t , Q and(lmp are

op

respectively the simulated and the measured peak flow, and t, and t

P P

are respectively the simulated and the measured time to peak flow.

The values of Ev # ‘B E_ and Et for the four runoff events

a’'’p
are given in Table 3.6. These estimated errors indicate that the

Table 3.6. Summary of Estimated Errors
in Water Hydrograph Simulation

Storm Error (%)
E, E, E, E,
July 9 3.2 4.5 =5.5 3.2
September 2 -5.2 6.0 3.7 -1.4
September 3 | 0.5 2.0 -1.3 1.9
September 4 -10.7 5.4 11.2 0

proposed model can simulate the size, shape and peak of the hydro-

graphs produced by the study basin generally within + 12 percent.
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3.5.4. Sensitivity analysis

Based on the July 9 storm, partial sensitivities of selected
parametefs or data were examined. This sensitivity analysis was
expressed in terms of percentage changes in the total volume, the peak
flow, and the time to peak flow of the computed hydrograph. These
changes were estimated by assigning errors of -30, -20, -10, +10, +20
and +30 percent to the calibrated value of the parameter being examined,
values of the other parameter or data were kept the same as those iden-
tified in the calibration.

Results of the analysis are given in Table 3.7. This analysis
indicates that soil data are very sensitive to the total volume, the
peak flow rate and the time to peak flow. Flow resistance parameters
and vegetation data are less sensitive to the computed results. The
total volume of the computed hydrograph is nearly independent of flow
resistance parameters. However, the results of this analysis are
limited to the physical conditions of the tested basin, different
results may be obtained for a different watersﬁed.

3.5.5. Applications to predict watershed treatment effects

Watershed treatment includes the vegetation treatment and the
mechanical treatment. Some types of vegetation treatment are varia-
tions in planting patterns in the amount and patterns of logging, in
the amount and type of litter or mulch, and in the amount of burning
in forest watersheds. Mechanical treatments include dam building,
road construction and other erosion or flood control measures.

The vegetation treatment effects can be esfimated by changing

the canopy cover density and the ground cover density. The prediction



Table

{a) Sensitivity in total volume

BT

Sensitivity Analysis of the Rainfall-Runoff Model

Percentage Error

in Estimated

Percentage Change in Computed Total Volume (%)

Pata of Pirameters S0il Data Vegetation Data Flow Resistance Parameters
) ks Py P Pw "a ‘oto] Dc Dg vg Sg Ty Is ko kr k2 ks u'I:‘ *_g
-30 11.1 1.4 = 9.3 53.8 -- 7.0 5.0 3.3- 5.9 6.3 -6.0 3.1 0.1 -0.9 0.3 1.2 1.4
-20 6.9 0.9 -- 5.8 34.2 -99.6 4.6 3.2 2.3 3.9 4.2 -4.4 2.3 0.1 -0.5 0.2 0.7 1.1
-10 2.9 0.6 -- 2.4 15.2 -96.8 2% 1.6 -2.7 1.9 1.9 -2.4 0.9 0.1 -0.4 0.1 6.2 0.5
10 -2.9 -0.5 -96.6 -2.3 -12.0 - -3.1 -1.8 1.6 -2.0 =-2.2 1.8 -0.9 0.0 0.4 -0.1 -0.3 -0.5
20 - 54 -1.1 -99.4 -4.4 -21.3 -- -5.5 -3.8 -3.2 -4.0 -4.5 3.3 -1.7 -0.1 0.7 -0.2 -0.7 -1.0
30 -7.2 -1.9 -—- -6.0 -27.8 - -7.8 -5.5 -4.4 -5.8 -6.3 5.5 -2.5 -0.1 1.1 -0.3 -1.1 -1.3

(b) Sensitivity in Pcak Flow

Percentage Error Percentage Change in Computed Peak Flow (%)

in Esti

Dat;norsh'::;:fzrs Soil Data Vegetation Data Flow Resistance Parameters
v) ks n, B P n,  m (0) Dc DR \'2 Sg T, I ko L kz kS v *R
=30 11.6 1.3 -- 9.2 49.1 -- 7.0 13.4 4.0 5.5 6.3 -5.4 2.7 0.3 1.5 12.1 5.4 9.4
-20 7.2 1.1 -- 6.2 32.4 -99.5 4.7 5.8 2.5 3.8 4.4 4.5 3.1 0.3 0.9 7.9 3.4 6.3
-10 2.9 0.6 -- 2.4 14.5 -97.4 Z.1 4.1 1.4 2.0 1.8 -1.6 1.1 0.3 1.0 3.7 1.5 2.9
10 - 2.4 0.1 -97.3 -2.0 -11.9 - -2.8 =~ 3.1 -1.1° -1.3  -1.4 1.7 -0.3 0.3 0.2 -4.0 -0.8 =~2.3
20 -53 -0.6 -99.4 -3.9 -20.6 - -5.4 -7.9 -2.7 -4.0 -4.6 4.0 -1.4 0.0 -0.7 - 6.8 -2.6 -4.9
30 - 7.1 -l1.4 - -5.9 -24.7 -- -7.2 -11.1 -4.5 -5.8 -6.1 6.1 -2.2 -0.3 -0.9 -10.0 -3.8 -6.9

(c) Sensitivity in Time to Peak Flow

Percentage Error Percentage Change in Computed Time to Peak Flow (%)

in Estimated " X

ki ok Pacancisra Soil Data Vegetation Data Flow Resistance Parameters
(%) ks L L F'.‘r n, no[D} Dc Ds \|'lrL Sg X I.s ka kr kz k! Y #'s
=30 3.0 0.0 -- 3.0 12.1 -- 3.0 -6.1 3.0 3.0 3.0 -3.0 -6.1 O -3.0 -6.1 -6.1 -9.1
-20 3.0 0.0 -- 3.0 9.1 136.4 3.0 -3.0 0 3.0 3.0 -3.0 0.0 0 0.0 -3.0 -3.0 =-3.0
-10 0.0 0.0 - 0 6.1 57.6 0.0 -3.0 0 0.0 0.0 0.0 0.0 © 0.0 -3.0 -3.0 -3.0
10 0.0 0.0 54.5 0 - 6.1 -- -3.0 3.0 0 0.0 0.0 0.0 5.0 0 3.0 3.0 3.0 3.0
20 -3.0 0.0 124.2 +3.0 -15.2 -- =+ =3.0 3.0 -3.0 -3.0 -3.0 3.0 3.0 o0 3.0 3.0 3.0 6.1
30 -3.0 0.0 -- -3.0 -27.3 -- -3.0 6.1 -3.0 -3.0 -3.0 3.0 5.0 0 3.0 3.0 6.1 6.1

Neglected due to improper physical conditions

L8
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of mechanical treatment effects can be accomplished by redividing the
response units.,

Based on the July 9 storm, examples of vegetation treatment effects
on the Carrizal Basin have been estimated as follows.

Fig. 3.15 shows that for a constant ground cover density (Dg=0.5)
the total runoff volume and the peak flow are increased as the canopy
cover density is decreased. The increase results because the intercep-
tion is reduced when vegetation is removed. However, Fig. 3.13 also
indicates that the time to peak flow is lengthened as the canopy cover
is decreased. This flow retardation is due to the augmenting of rain-
drop impact resistance by increasing areas of exposure and the attenu-
ation by overbank flows. In this hypothetical case the watershed is
subjected to different amounts of cutting treatment but the forest
floor remains undisturbed.

If the watershed is under clear cutting treatment and the forest
litter, tree mulch, etc. are also removed in different degrees, or if
the ground cover is completely destroyed by a burning treatment, the
associated response can be estimated by changing the ground cover den-
sity in the model. An example is shown in Fig. 3.16. The total runoff
volume and the peak flow rate are increased as the ground cover density
is decreased. The time to peak flow is shortened as the ground cover
density is decreased. The short time to peak flow is due to the
decrease of flow resistance when the ground cover density is decreased.

In the above examples, it was assumed that the initial conditions
and the physical parameters were unchanged for different treatment
conditions. Actually, the initial interception storage content Is’

the antecedent moisture content, mo(O), and the saturated hydraulic
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conductivity of soil, ks may be altered by different treatments. For
example, the hydraulic conductivity may be significantly reduced by a
burning treatment which seals the ground surface. If the proper changes
in these values can be estimated, the proposed model will provide

values for the anticipated responses.

3.6. Summary

A mathematical model for simulating hydrographs from small
watersheds has been developed. This model is designed to simulate the
response of the basin to rainfall. The model includes the water balance
simulation for land surface hydrologic cycle on the single storm basis
and the water routing features for both overland flow and channel sys-
tems. Unlike the conventional approach to parametric modeling of water-
shed response, this model is based on the physical process governing
the mechanics of water flow and requires less assistance from optimiza-
tion schemes than any existing water models known to the writer.

For the Carrizal Basin in Venezuela the simulated hydrographs
agree well with the measured hydrographs. The differences between the
simulated and measured hydrographs indicate that the proposed model is
able to simulate the total volume, the hydrograph shape, the peak flow
and the time to peak flow generally within 12 percent. The sensitivity
analysis shows that soil data are very sensitive to the total volume,
the peak flow and the time to peak flow of the computed hydrograph.
Flow resistance parameters and vegetation data are less sensitive to the
simulated results. In addition, this physically oriented model has the
capability to predict watershed treatment effects on water yields under

the assumed conditions.
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The applicability of the proposed model is limited to the following
conditions: (1) the streams within the watershed are ephemeral, and
the movement of subsurface flow and ground water flow are negligible;
(2) the kinematic-wave approximation for flow routing is valid, i.e.,
the gradients due to local and convective accelerations are negligible,
and the water surface slope is nearly equal to the bed slope; and
(3) the water yield simulation is on the single storm basis. Incorpo-
rating with a water balance model for simulating the water budget
during interstorm periods; this model may estimate the long-term
response of the water yield.

The input requiréd for this simulation model can be summarized as
follows.

(1) Geometry data--slope length, bed slope, wetted perimeter
—flow area relation, and computational order for each
segment.

(2) Soil data--saturated hydraulic conductivity, moisture
contents at the wilting point and at the saturation, mag-
nitude of the capillary potential at the wilting point,
and depth of aeration.

(3) Vegetation data--canopy cover density, ground cover
density, interception storage capacity of ground cover,
ratio of evaporating surface to the horizontal projected
area for ground cover, and ratio of the interception
storage capacity of a tree canopy to the interception
storage capacity of ground cover.

(4) Flow resistance parameters--constants describing grain

resistance for different Reynolds numbers, constant



(5)
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representing added roughness due to raindrop impact, bed
form resistance descriptor and ground cover resistance
descriptor.

Storm characteristics data--rainfall records, mean
evaporation rate, initial interception storage content

and antecedent moisture content.



Chapter IV

MECHANICS OF OVERLAND FLOW SOIL EROSION

4.1. Need for the Study

The estimation of soil erosion by overland flow is an important
factor in the prediction of sediment yield from watersheds. An im-
proved understanding of the'physical process which governs overland
flow erosion is apparently needed. As reviewed in Chapter I, the
existing soil loss equations are mainly dependent on statistical
analyses of observed data in experimental plots or natural watersheds.
Li, Shen and Simons (1973) indicated the possibilities of introducing
the physics of overland flow into soil erosion studies. A model with
physical significance appears to be more useful than those by regres-
sion anélysis in estimating time-depende..t erosion rate. In this
Chapter, an unsteady overland flow soil erosion model is presented.
This model was developed to simulate sediment outflow hydrographs and
land form evolution process in a plain overland flow surface with
sandy soil. Because of the sandy soil used, the soil detaching and
transporting capacity of raindrop impact was ignored. However, the
effect of raindrop impact on flow resistance was included.

Although this study concerns a rather simplified case, it
provides a good understanding of the mechanics of overland flow soil

erosion.

4.2. Sediment Routing Procedure
The water and sediment routing can be accomplished by using the
continuity equations for water and sediment and the momentum equation

for sediment-laden flow (Chang and Richards, 1971 or Chen, 1973).

94



95

These three equations can be solved simutaneously (Cﬁang and Ridhards,
1971) or they can be solved sequentially (Chen, 1973). For simplicity,
it is assumed that the changes in bed slope and bed elevation within a
short time interval are small in comparison with changes in other
variables involved in water and sediment routing. Then, the water and
sediment routing can be accomplished by solving water routing and sedi-
ment routing sequentially (Chen, 1973).

In this study, the solutions of water and sediment routing are
obtained by using a simplified procedure. This procedure includes
solving water routing first and adjusting bed slopes later based on the
sediment continuity equation and a sediment transport equation.

The detail of overland flow water routing on a plain surface was
given in Chapter II. The coupled sediment routing procedure is pre-
sented herein.

4.2.1. Sediment transport equation

Sediment bed material load consists of bed load and suspended

load. According to Shen (1971), for a constant bed material, the bed-

load discharge may fit either of the following two functions
q, = By T (4.1)
or

G 5Bt o o (4.2)
b 1 c £

Here q, is the bed-load transport rate, <t 1is the boundary shear

stress, Te is the critical shear stress, and 82, B B,' and 82'

1* ]

are constants.
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The boundary shear stress as determined by the kinematic-wave

approximation (see Chapter II) is,

T = YYSO (4.3)

in which y 1is determined by the water routing procedure described in
Chapter II. In overland flow, the flow area A per unit width of
overland flow is .

The critical shear stress T. as reported by Gessler (1965) is

T, = 0.047 (s - 1) d, (4.4)

50

size of the sediment on the bed of which 50 percent is finer by weight.

in which S¢ is the specific gravity of sediment, and d is the

The sediment concentration profile as reported by Einstein (1950)

is

{')I(".‘I
(hal

= (.)LZ.E _a._)“"' (4.5)

o € y-a

in which Cg is the sediment concentration at the distance & from the

bed, Co is the known concentration at a distance a above the bed,

y 1is the total depth of flow, and w is a parameter, which is defined

as

o = (4.6)

Here Vs is the settling velocity of the sediment particle and U, is

the shear velocity of flow defined as

T
U, =\/ < (4.7)
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Yoon (1970) measured velocity profiles in sheet flow under
simulated rainfall and found that two separate velocity defect laws
could be used to fit the upper and the lower velocity profiles (di-
vided by the position of maximum velocity which was at approximately
two-third of the depth). Unfortunately, Yoon's results did not pro-
vide enough information for predicting the velocity profile. This is
because the maximum velocity must be measured. A logarithmic velocity
profile is commonly adopted to describe the velocity distribution
in turbulent flows. For simplicity, a logarithmic velocity profile

is assumed in this study. The equation is

=’mg

=B+ 2.5 zn(g—) (4.8)
L
in which uE is the point mean velocity at the distance & from the
bed, B 1is a constant dependent on roughness, and n is the roughness
height.
The integral of suspended load above a distance a can be ob-

tained by combining Eqs. 4.5 and 4.8 or

—. _ S T
= Y { - -
Sq = j.é uC, dg
-fy[B+25£n()]UC )da (4.9)
S
£ _a '
Let r = Y and G = ;- Then one obtains
- y 1 ,1-r%
sq=cou*a m{[B+25£n()]]' (=) dr
(1-G)
1 1-r.%
+ 2.5 IG fnr (=) dr} (4.10)

in which G is defined as depth ratio in this study.



98

According to Einstein (1950), the concentration near the '"bed
layer" CO may be related to the bed-load transport rate 9, » by the

expression
q, = Bz Co Uy 2 (4.11)

in which "a" is now defined as the thickness of the bed layer and
33 is some constant. Einstein (1950) assumed that "a" was equal to
two diameters of the sediment particle. Because the flow depth is very
small in overland flow and because a large turbulent intensity is in-
duced by raindrop impact (Yoon, 1970), the thickness of the bed layer
is defined herein to be one diameter of the median size of particle
(dgq)-

The average flow velocity V is defined by the equation

y
v _fo e

L (4.12)
Uy y
. Io dg

Using Eq. 4.8
V -B+25m () - 2.5 (4.13)
U, Ng

Einstein (1950) defined the two integrals in Eq. 4.10 by
1l 1-rw
= [ G (4.14)

and

J. = jé (1%)“’ fnr dr (4.15)
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The integrals J1 and J2 cannot be integrated in closed form

for most values of w, a numerical integration is necessary. A method
based on power series expansion is developed in this study and is
presented in Appendix A.

The substitution of Eqs. 4.11, 4.13, 4.14 and 4.15 into Eq. 4.10

yields

qb Gw—l

5 B w
1 Pz a-8)

[(—E-+ 2.5) J1 + 2,5

5, (4.16)

2]
in which G, V, U, are determined in the water routing procedure,
J, and J_, are determined by the method presented in Appendix A,

1 2
and q, is computed by either Eq. 4.1 or Eq. 4.2.

Let
_ Gw-l v
G = = [qu + 2.5) J1 + 2.5 Jz] (4.17)
(1-G) %
then, the Eotal sediment transport rate is
Q. =Gy, + S =g, (1 + E;J (4.18)
s b q b by )

The selection of a suitable bed load function and the estimation
of parameters are given in Section 4.3.2.
4.2.2. Degradation and aggradation

The estimation of degradation and aggradation is one facet of
sediment routing. The governing equation for this process is the con-
tinuity equation for sediment. The sediment continuity equation for

overland flow is

3q acy
S S = 92 _
remle o (1 - ¢) 3 - 0 (4.19)




100

in which Cs is sediment concentration in volume, € is the porosity
of the sediment on the bed of the overland flow area, and z is the
bed elevation.

The sediment concentration in volume is defined as

s
Cs ok (4.20)
in which q 1is the unit width discharge. For overland flow, q is

equal to Q in Chapter II.

According to Fig. 2.1, the finite difference formulation for

Eq. 4.19 is
2 g P e - o " n+1
sj+1 S L | s 341 Az.+1
Ax ¥ At *Hoee) =R
(4.21)
or
n+l 1 n+l n+l n
B g ===l K -q. )+ (Cy).
j+l (1-9) sj 5j+1 s” 7+l
+1
- €3] (4.22)
_ At
and A = ix
If Az?:i is positive the bed is aggrading, and if negative the bed is

under degradation.

In an overland flow plot, there are two base points; one at the
upstream boundary and the other at the downstream boundary. The
elevations of these two base points are assumed to be unaltered
during degradation or aggradation processes.

The elevations of the interior points in an overland flow plot can

be estimated by the equation



n+l _ n+l
s g < 1
Ivy It

With the adjusted

be made as follows:

n+1 _

(a) for the
z -
u
n+l
S =
o1 Ax
(b) for the
. 1
g M1 _ 172
e =
J
and (¢c) for the
zn+l
M-L
n+l 2
So =
M
Here =z

number of segments, and

4.3. Applications

is the elevation at the upstream boundary, M
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L ™1 4 a)

> 3 j+1 (4.23)

bed elevations, the adjustment of bed slope can

segment in the upstream boundary

zn+1
1+
(4.24)

interior segments

n+l
i+3
(4.25)

segment in the downstream boundary

(4.26)

is the total

z is the elevation at the downstream boundary.

d

A computer program has been developed to incorporate the sediment

routing procedure described in the previous section with the water

routing procedure presented in Chapter II.

program is given in Appendix C.

A listing of the computer

(PROGRAM SEDIM).

The experimental data by Kilinc and Richardson (1973) were used

to test the applicability of this soil erosion model.

A brief
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description of Kilinc and Richardson's data, the method of parameter
estimation, tested results and discussions are given below.
4.3.1. -Experimcntal data by Kilinc and Richardson

Kilinc and Richardson (1973) made 24 experimental runs of soil
erosion under simulated rainfall. Their test flume was 4 feet high by
5 feet wide by 15 feet long, with an adjustable slope. The flume was
filled with sandy soil haviﬁg median diameter of 0.35 mm and porosity
of 43 percent. The rainfall intensities tested were 1.25, 2.25, 3.65
and 4.60 inches per hour, and bed slopes were 5.7 percent, 10 percent,
15 percent, 20 percent, 30 percent and 40 percent. The infiltration
rate of each run was constant and measured, and the sediment load was
sampled every five to ten minutes during each hour-long run. A
summary of the experimental data is given in Table 4.1.

4.3.2. Estimation of coefficient

Sediment transport equation is an important component of the
sediment routing model. Unfortunately, there is no universally accepted
sediment transport equation, especially for overland flows. As
mentioned in Section 4.2.1., either Eq. 4.1 or Eq. 4.2 may be used
as the equation form for bed-load function. However, the coefficients
in Eqs. 4.1 or 4.2 must be estimated. The coefficients are either
Bl’ 82, and 83 or Bl', 82', and 83.

It is assumed that the bed slope is practically unchanged when
the flow just reaches the equilibrium (around S5 minutes after starting
of rainfall). Then, based on the measurements made at or near 5 min-
utes after starting of rainfall, the estimation of coefficients can

be made by the following method.
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Table 4.1. Summary of Experimental Data by Kilinc and Richardson (1973)

Run Rainfall Infiltration Bed Average Measured
No. Intensity Rate Slope Sediment Discharge
(in./hr) (in./hr) (%) (1b/sec/ft)
1 1.25 0.496 o 0.00010
2 2425 0.314 5.7 0.00030
3 3.65 0.210 S 7 0.00065
4 4.60 0.2-00 5.7 0.00148
5 1.25 0.397 10.0 0.00029
6 225 0.287 10.0 0.00151
7 3.65 0.170 10.0 0.00372
8 4.60 0.130 10.0 0.00588
9 1.25 0.353 15.0 0.00055
10 2.25 0.253 15.0 0.00297
11 3.65 0.134 15.0 0.00714
12 4.60 0.056 15.0 0.01288
13 1.25 0.308 20.0 0.00064
14 2,25 0.249 20.0 0.00569
15 3.65 0.124 20.0 0.01490
16 4.60 0.033 20.0 0.02606
17 1.25 0.281 30.0 0.00092
18 2.25 0.239 30.0 0.01015
19 35.65 0.062 30.0 0.02265
20 4.60 0.010 30.0 0.03752
21 1.25 0.262 40.0 0.00113
22 A 0.230 40.0 0.01310
23 3.65 0.045 40.0 0.03700
24 4.60 0.005 40.0 0.06508
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From Eqs. 4.1, 4.2 and 4.17, the total sediment load can be ex-
pressed as

B -
_ 2 G
qg ™ 81 T a+ E) (4.27)
or
B,' =
2
g, = B (¥ - 1) (1+—G)

5 (4.28)

in which qg was measured at or near 5 minutes after starting of
rainfall.

The values of 1

and G at the end of soil plot were
determined as follows.

The approximate momentum equation (Eq. 2.2) for overland flow can
be rewritten as

2
a® 4
5o = £ 3
8gy

(4.29)

When the flow reaches equilibrium, the unit-width discharge at
the end of soil plot q

is

P

qp = qu (4.30)

Then, the depth of flow at the end of soil plot yp can be

determined by,
LY
= 3
yp (f 8350) (4.31)

and the mean flow velocity at the end of soil plot V_ is

(4.32)
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With the values of %, and VP, the magnitudes of t and G can
be determined by Iiqs. 4.3, 4.7 and 4.17.
The general form of either Eq. 4.27 or Eq. 4.28 can be written

as the following nonlinear regression equation

(0]

Y=a X% Ao (4.33)

in which Y 1is the dependeﬂt variable, X and Z are the independent

variables, and Aps Qo and o, are regression coefficients.

3
The regression coefficients can be estimated by a trial and error
procedure. The steps are as follows:
(1) Assume a value of ag. Then Eq. 4.33 can be regarded as
a simple power function.
(2) Estimate g and a, based on the simple power function
regression technique and determine the correlation
coefficient.

(3) Try another a., value and repeat steps 1 and 2 until the

3
maximum correlation coefficient is found.

The above trial and error procedure was made by using the one
dimensional calibration technique (see Appendix B) coupled with the
least square regression method.

The data at the lowest rainfall intensity (1.25 in./hr) were not
used in developing the sediment transport equation due to possible
errors in measurcment. The regression results using both Eq. 4.1
and Eq. 4.2 arc given in Table 4.2. The results indicated that Eq. 4.2

was the better cquation form for bed-load function in this case, and

was adopted in the subsequent analyses.
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Table 4.2. Summary of Regression Results
for Sediment Transport Equation

Type of Correlation Standard Estimate Coefficients
Bed-Load Coefficient Error of

Function Estimate BI(BI'J 82(821) 83
Eq. 4.1 0.978 0.306 334.0 3.10 12.08
Eq. 4.2 0.983 0.271 65.2 2.47 11.96

The coefficient B, is very close to 3.0 in the Einstein-Brown

2
bed-1load function and the coefficient 82' is also comparable to 2.5
in the Brown-Kalinske bed-load equation. The most interesting result

is that the coefficients B8, for both cases are very close to 11.6

3
as proposed by Einstein (1950).
4.3.3. Mean erosion rate and sediment hydrographs

In the numerical computations At was 1 minute and %& was
equal to 60 sec/ft.

The comparisons between computed and measured results were made

in both the mean erosion rate and the time-dependent erosion rate.

The mean erosion rate a; is defined as

O |
1
2| =

qs(t) (4.34)
1

I~

t

in which N 1is the number of time increments, and qs(t) is the
sediment discharge at the end of soil plot and at time t.

The comparison of mean erosion rate is given in Fig. 4.1. The
agreement between the measured and computed sediment transport rates

is generally good except for those runs with the lowest rainfall
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intensity (1.25 in./hr). The error at the lowest rainfall intensity
may be due to consistently high infiltration rates (21 percent to
40 perceht of rainfall) in these runs. Although the excess rainfall
was used in the analysis, there was still the possibility of errors in
infiltration rates or rainfall intensity measurements. Another source
of error may be due to uneven slope profiles; this source of error is
discussed later.

The time-dependent erosion rates are shown in Figs. 4.2 and 4.3.
In Fig. 4.2, erosion rates for different slopes with constant rainfall
intensity (3.65 in./hr) are presented. The erosion rate decreases as
time increases and increases as bed slope increases. Figure 4.3
gives examples of erosion rates for different rainfall intensity with
the same bed slope (30 percent). The erosion rate increases as
rainfall intensity increases. A survey of the accuracy of simulation
was made in terms of the percentage error in total volume Ev’ and

the relative mean absolute error Ea' These errors are defined as

follows. N
_ZI q,,(3)
= N
Ev = 100 1 N (4.35)
L ag,0)
J=1
and
N 19..0) - q_.0)
g =209 [*so s | (4.36)
a N . q

j=1 sm

in which N is the number of sampling points, qso(j) and qsm(j) are
respectively the simulated and the measured sediment discharge at the
time the jth sample was taken, and ﬁgm is the average value of the

measured sediment discharges.
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Table 4.3 gives the computed errors for the runs in Figs. 4.2
and 4.3. These estimated errors indicate that the proposed model is
able to simulate the time-dependent erosion rates to the order of
+30 percent for the tested cases.

Table 4.3. Summary of Estimated Errors
in Soil Erosion Simulation

(a) For different slopes (Fig. 4.2)

Bed Run Estimated errors (%)

Slope No.

(%) Ev Ea
10 7 -22.2 22,5
15 11 - 4.5 8.8
20 15 - 7.5 7.5
30 19 6.8 6.9
40 23 11.35 11.3

(b) For different rainfall intensities (Fig. 4.3)

Rainfall Run Estimated errors (%)
Intensity No.

(in./hr) EV Ea
2,25 18 30.7 30.7
3.65 19 6.8 6.9
4.60 20 -11.4 10.7
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4.3.4. Land form evolution and effect of slope-shape on erosion rate

The example of land form evolution as generated by the proposed
model is given in Fig. 4.4. The rainfall intensity is 3.65 in./hr
(infiltration rate is 0.17 in./hr). The generated land form is in a
concave shape which frequently appears in nature. This example pro-
vides a physical picture about the degradation and aggradation process
in overland flow. |

The general practice of determining bed slope is to assume a
uniform slope shape for any land form. A quantitative evaluation on
the effect of slope shape on erosion rate was made in this study.

In Fig. 4.5, three different slope shapes (convex, uniform,
and concave) having the same relief are shown. Under 3.65 in./hr
rainfall, and 0.17 in./hr infiltration rate, the time-dependent
erosion rates for different slopes are given in Fig. 4.6. The erosion
rates on the convex slope are nearly five times greater than those on
the uniform slope. The erosion rates on the concave slope are much
less than those on the uniform slope. This example demonstrates that
the erosion rate is very sensitive to the slope shape. The sensitivity
of erosion rate to slope may be one of the reasons for the scatters in
Fig. 4.1. The other interesting point is that the erosion rate on
a concave slope increases as time increases. This behavior is
different from that on a convex slope or on a uniform slope.

The erosion rate is sensitive to the bed slope. The common
assumption that S0 = tan 6' * sin 6' (8' 1is the angle between the
channel bed and the horizontal direction) in open channel flow results

in an error in the computed erosion rate for larger 6'.
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From Eqs. 4.3 and 4.31, one obtains

T« S 2/3 (4.37)
0

and from the estimated results (Section 4.3.2.),

q = T2.47 (4.38)
The substitution of Relation 4.37 into Relation 4.38 yields

1.65

ag S0 (4.39)
or by differentiation

dqs dSo

— = 1.65 — (4.40)

A So

As implied by Relation 4.40 the percentage error in the erosion rate is
approximately 1.65 times of the percentage error in bed slope.

Now, if S0 is 40 percent (or tan & = 0.4), sin 6' is 0.37. The
error involved in using So instead of sin 6' 1is 7 percent, hence the
percentage error in erosion rate estimation is 12 percent. It is
found that if S0 is less than 25 percent, the assumption that
tan 0' = sin 6' will yield a percentage error of less.than 5 percent
in soil erosion estimation, which may be acceptable for practical

purposes.

4.4. Summary

A water and sediment routing model has been developed to simulate
the process of soil erosion by overland flow. The proposed model is
able to simulate the soil erosion process and produces time-dependent
erosion rates comparable with those measured by Kilinc and Richardson

(1973). Other experimental data have not been available for comparison.
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The model also generates a concave land form which frequently appears
in nature.

It was found that the soil erosion rate was very sensitive to
bed slope and shape. The general practice of assuming a uniform
shape and slope may result in serious errors. However, the common
assumption of sin 6 being equal to bed slope S0 is not too serious
when the bed slope is less than 25 percent.

The applicability of the proposed rainfall-erosion model is limited
to the following conditions: (1) the overland flow erosion ié mainly
due to sheet erosion; (2) the kinematic-wave approximation for flow
routing is valid, and the bed slope is less than 25 percent; (3) the
detaching and transporting capacities of raindrop impact are negligible
and the sediment discharge is largely the bed material load. The wash
load is neglected in the present analysis.

The input required for this model can be cataloged as follows.

(1) geometry data--slope length, and bed elevations of the soil
plot.

(2) soil data--porosity of the sediment, and medium diameter of
the sediment.

(3) flow resistance parameters--constants describing grain
resistance for different Reynolds numbers and constant
representing the added roughness due to raindrop impact.

(4) sediment transport parameters--coefficients and exponent
for describing bed material load transport rate.

(5) rainfall characteristics data--rainfall intensities, infil-

tration rates and water viscosity.



Chapter V

STREAM MORPHOLOGY OF SMALL WATERSHEDS

5.1. Governing Physical Process

The form that a channel cross section attains depends on the
physical processes at work within the channel reach. The basic ques-
tion is "What physical processes are most important in sculpturing the
channel shape?'" The choice of processes depends on the length of
time and size of watershed being considered.

When the time frame being considered is limited to one or two
centuries, the large scale geological processes can be eliminated
from consideration. For example, it is possible that streams in the
Upper Mississippi River Basin at the present time are still respond-
ing to the effects of continental glaciers which receded from the
area some 10,000 years ago. In the present century, any response to
the glaciation would be hardly detectable. In a period of one or
two centuries, the geology of a region can be considered, conceptually
at least, as fixed and independent of other processes. Precipitation
alone is sufficient to sculpture the form of an alluvial stream
channel in one or two centuries. However, care must be taken in
limiting the selection of size and type of watershed if precipitation
is to be considered as the only external input to the geomorphic process
in the watershed.

The response of an overland flow area to precipitation is a
resultant land form on the surface of the overland flow area and
water and sediment delivered to nearby channels. These water and
sediment discharges are inputs to the geomorphic processes within the

channels. The cross-sectional shape of the stream channel is the
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result of the process. The integral geomorphic process is a very
complicated problem, in order to simplify the problem involved, it is
assumed that all parts of the watershed have been subject to the same
precipitation series. Under this assumption the watershed area would
have to be less than the intense precipitation core area within a
storm which produces large point rainfall amounts. It follows then
that the watershed must be small. A small watershed is defined as a
drainage system which is small enough to ensure a degree of both
geologic and hydrologic homogeneity in space. In many regions this
definition for a small watershed restricts the area to approximately
10 to 20 sq mi. In order to further simplify the problem, this study
is limited to alluvial streams with noncohesive gravel or boulder
banks and beds.

In a time period of 100 or 200 years, it is assumed that there
have been a sufficient number of large precipitation events and
duration to produce threshold conditions in the stream channels. That
is, the alluvial materials remaining on the bed and banks of the
stream channels in a small watershed have been subjected to flow
conditions just sufficient to initiate movement of these particles.
The channels are called threshold channels and the discharges which
formed the threshold channel shapes are called collectively the
threshold discharge. The surface of the overland flow area and the
boundaries of the channel system in the small watershed will be in
equilibrium until subjected to a precipitation event greater than those

which produced the threshold channel.
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5.2. Theoretical Development
5.2.1. Threshold conditions in the watershed

If the precipitation time series is stationary and if the small
watershed is unaffected by man's influences, the alluvial gravels and
boulders on the surface of the watershed and its stream channels will
have been subjected to the threshold discharge. Bank full discharge
is a good measure of threshold discharge. For discharges less than the
threshold discharge, the particles on the surfaces and boundaries of
the water courses do not move appreciably under the concepts put
forth in Section 5.1. The small watershed morphology does not
change in between periods of extreme precipitation.

The sediment continuity equation for bedload movement in the
overland flow area is

8q
S — 0z _
-é-;_ + (I—E‘.)Ef =0 (5-1)

in which q_ 1is the sediment discharge per unit width of overland flow

S
area, 'x is the downslope distance, € is the porosity of the sediments
in the bed, z 1is the bed elevation and t is the time,.

Under conditions of equilibrium in the overland flow portion of

the watershed, 09z/3t is zero by definition. From Eq. 5.1, it follows

that

= 0 (502)
or after integration with respect to x,

q = C1 (5.3)

in which C1 is a constant dependent on the boundary conditions.
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At the watershed boundary, no flow depth develops. Thus, there is

no shear stress and no sediment transport, i.e.,

&, =D (5.4)

for overland flow at x = 0. From Eqs. 5.3 and 5.4, it is found that
Cl is zero and therefore 9 is zero for all x in the overland flow
area.
The sediment continuity equation for bedload in the channel system
is
BQS

- 9Z _
o= (1-5)_~3-£~ =q (5.5)

S

in which QS is the sediment transport in the channel and the other
terms have been defined previously. For equilibrium conditions in the

channel, 9z/3t is zero for all x. Then

dQs

x - % L:6)
or after integration

QS = q X + C2 (5.7)

in which C2 is a constant dependent on the boundary conditions. It
has been shown previously that the overland sediment transport rate
is zero over the entire overland flow area. Thus q in Eq. (5.7) is

zero for all x. Also at x =0, QS is zero, so

Q =0 (5.8)
for all x.
In summary, if a small watershed is in geomorphic equilibrium, the

entire system must be at the threshold of sediment motion.
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5.2.2. The "threshold" channel section

Channels inside a small watershed in equilibrium form a cross
section according to the maximum threshold discharge which has occurred.
Particles on the periphery of the channel cross section are at the
"threshold" of movement under the corresponding flow conditions.

Many investigators have formulated the shape of threshold channel
in homogeneous coarse alluvium; i.e., Lane (1955), Lane, Lin, and Liu
(1959) and Stebbings (1963). The theory developed at the U.S. Bureau
of Reclamation by Lane (1955) for the shape of the threshold channel is
employed here. In Lane's work the following assumptions were made:

(1) At and above the water surface, the side slope is at the
angle of repose of the alluvial material.

(2) At all points on the periphery of the channel, the particles
are at a condition of incipient motion. The 1ift and drag
forces of the fluid on the particle and the downslope com-
ponent of the gravity force on the particle are balanced by
the friction force developed between particles. The 1lift
and drag forces are directly proportional to the tractive
force.

(3) Where the side slope is zero, the flow-wise tractive force
alone is sufficient to cause incipient motion.

(4) The particles are held against the bed by the component of
the submerged weight of the particle acting normal to the bed.

(5) The tractive force acts in the direction of flow and is
equal to the component of the weight of the water above
the area on which the force acts.
The equation describing the shape of the threshold channel in
coarse noncohesive alluvium is derived as follows.
Under the condition of incipient motion on the periphery of the
channel, the resultant of the drag force Fd and the downslope
component of the submerged weight of the particle Wsin6é are balanced

by the friction force developed between particles. The threshold

channel shape is shown in Fig. 5.1. The angle 6 is the local side
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slope angle and W is the submerged weight of the particle. The
friction force is the product of the normal force and the tangent of
the friction angle ¢. The normal force is (Wcos6 - FE) in which
Wcos® is the normal (to the side slope) component of submerged weight
and F, is the 1ift force on the particle. The balance of forces is

expressed as

Wsin%0 + Fo = (Weos® - F,)°tany’ (5.9)

The friction angle ¢ is the angle of repose of the noncohesive
material.

It is assumed that

F, =01 : (5.10)
and

F, = BF, (5.11)

Here Tt 1is the local bed shear stress or tractive force and ¢ is
a proportionality constant. The term B8 is the ratio of the lift
to drag force.

By substituting Eqs. 5.10 and 5.11 in Eq. 5.9, the expression

12 + (g)zsinze = (g-cose - E%)ztan2¢ (5.12)

is obtained.
At the center of the channel (the point 0, ¥ in Fig. 5.1),

=0 and T =1T_, SO
o}

= & B ftan’s (5.13)
or

_ 1+ ﬁfan¢
~ tan¢ o 18

Q|£
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The tractive force T is the maximum force which occurs at the

centerline of the channel, Accordingly

T, = YyOS0 (5.15)

in which vy 1is the unit weight of water, Y5 is the maximum depth
of flow and S0 is the slope of the channe} bed.

One of the assumptions is that the local tractive force varies
directly as the weight of fluid above the area. At a distance & from
the centerline of the cross section the depth of flow is y. The weight
of fluid in a column of unit area and depth y is yy. This normal

component of this fluid weight is yycos8. Thus the tractive force is
T = szocose (5.16)

which reduces to Eq. 5.15 for & = 0.

If Eqs. 5.14, 5.15, and 5.16 are substituted into Eq. 5.12, and

rearranged,

Y 2 1 + Btan¢.2_ 2  _ 1 + Btang =y .2

(yO) + f‘?}ﬁﬁ?‘“* tan 6 (—*EEHEH—— Byo) tang (5.17)
As tan0 = -dy/dg

4Y42 _ tan? R T S Y

(dE) tan’e [(1 1+1 yo) (1+r yo] ] (5.18)

Here T is defined as Btan¢. Eq. 5.18 can be rewritten as

-d( )
¥ . £
= tan¢ d(-=) (5.19)
. Z Yy LT y2 Yo
1+7 Yy AT ¥

By integrating both sides of Eq. 5.19, one obtains

o JATE sin'l{(l-?)yi +F} =L tang + C (5.20)

0 o #
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The coefficient C3 is determined from the boundary condition

DA 1 when i=0, or
y0 Yo

)
C3=-2 JiF (=-21)

This value of C, 1is substituted into Eq. 5.20 so that

3
y o1  [IT &, 5
A T {cos (tan¢ = yo) T} (5.22)

This relation for the shape of a channel formed in noncohesive material
was given by Lane et al. (1959). The cosine function produces the
shape shown in Fig. 5.1 (8 = 0.85, and ¢ = 35°).
5.2.3 Geometry of the threshold channel

The geometric properties of the threshold channel at threshold
discharge are derived from Eq. 5.22.
5.2.3.1. Top width

Referring to Fig. 5.1, when y =0, & = TO/Z. Then, from Eq. 5.22

T
0 2 /147 =1
Y_ = -EEEE 1—_T- Cos T (5.23)

(o]

or

T
.

Y

]

C, (8,9 (5.24)
O

in which Ct is defined as the width-to-depth coefficient and To
is the top width of the threshold channel. The width-to-depth ratio is
a function of B8 and ¢ only.
5.2.3.2. Cross-sectional area
The cross-sectional area at threshold discharge is

T0/2
A =2f y d&
° 0
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By employing Eqs. 5.22 and 5.23,
A | .
o) {_ ( l-T ) (5.25)

Yol LT cps_L?
That is,
A, N B
Vol =L, = Ca(Bs0) (5.26)

in which Ca is the area coefficient dependent on r only. The area
coefficient is the ratio of the actual cross section to the area of a
rectangular section having the same top width and maximum depth as the
actual cross section and is always less than 1.0.

5.2.3.3. Wetted perimeter

The wetted perimeter is

T /2
P = 2({ o 14 (%)2 de (5.27)

From Eq. 5.22, the derivative dy/df is obtained; then with

Eq. 5.23, the wetted perimeter can be expressed as

2y =z
P =—= | 2 i = Boaina do (5.28)
(1-v)k = _ cosﬂli"'
2
in which
K = a0y (5.29)
\/1 + tan2¢ - T
The wetted perimeter is
P
0 2 =7 ol | w i
— = —— {E(k,%) - E(k, = - cos 1)} (5.30)
)’o (l_er 2 ( 2 )
or
PO _
— = C 531
v p(8,¢) ( )
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Here E(k,a) is the elliptic integral of the second kind with
modulus k. The coefficient Cp(§}¢) is defined as the wetted
perimeter coefficient.
5.2.3.4. Hydraulic depth

The hydraulic depth D, is the ratio of the cross-sectional area

to the top width. From Eqs. 5.24 and 5.26

Ao CayoTo
D = —= (5.32)
o TO Ctyo
or
D0 Ca
e (5.23)
o] t

5.2.3.5. Hydraulic radius
The hydraulic radius R0 is the ratio of the cross-sectional area

to the wetted perimeter. From Eqs. 5.26 and 5.31,

AO CayoTo
Ro = P_ = C y (5-34)
o p o
or
RO Ca
e B (5.35)
o P

The coefficients Ct’ Ca’ and Cp are the three basic dimensionless
quantities describing the geometry of the threshold channel. The
equations for Ct’ Ca’ and CP are complicated in form but are
approximated very well by simple power-form equations. The approximate
solutions depend on the value selected for the lift-to-drag ratio.

In reviewing the work of Torum (1965), Bhowmik (1968) concluded

that an appropriate value for B is 0.85. This value is adopted in

this study.
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With B = 0.85, the expression for T becomes

T = 0.85 tan¢ . (5.36)

By using this value of T in Eqs. 5.23, 5.25, and 5.30 the
values of Ct’ Ca and Cp for various values of ¢ can be computed.
These values are shown as circles in Fig. 5.2. The curves in Fig. 5.2

may be expressed by the simple power equations:

c, = 210 g 1-038 (5.37)
c, = 0.61 ¢%% (5.38)
c, = 168 ¢ =30 (5.39)

The deviations of these power relations from the exact solutions
are very small.

If the effect of the 1ift force is neglected (B = 0), r = 0 and
the coefficients become

m

Ct = tand (5.40)
c = 2 (5.41)
a m
2 — T
C = =E(k,= 5.42
p T (k,3) ( )

Equations 5.40 and 5.42 were given by Lane, Lin and Liu (1959) and
Henderson (1963). The threshold channel width, area, and wetted
perimeter are only slightly dependent on the lift-to-drag ratio.

5.2.4. Hydraulic geometry of the threshold cross section

Leopold and Maddock (1953) defined the power functions relating
the width, depth, slope and velocity to the water discharge as the
hydraulic geometry of the channel. Herein, the exponents of the
hydraulic geometry equations of streams in small watersheds are derived
from theoretical considerations. Both downstream and at-a-station

relations are developed.
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5.2.4.1. Downstream relations
The channel forming discharge is that discharge which sculptures
the threshold channel. If it is assumed that the bed and bank materials

are uniform over the length of the small channel, then the values of

¢ and B are independent of space. According to Fig. 5.2, Ct’ Ca
and Cp are constants for a fixed ¢. From Eqs. 5.23 and 5.33
Do Do To
B e e O K (5.43)
Y T0 78 a |
from Eq. 5.33
TO Ct K
D_ = -C— = 2 (5‘44J
o a
and from Eqs. 5.35 and 5.44
Ro Ro To Ct K
DL ST L. A (5.45)
Do To D0 Cp 3
in which Rl, K2 and K3 are constants.

In small channels with relatively steep slopes, the friction
slope is approximately equal to the bed slope. Manning's equation for

the flow is then

2/3:1/2
Q = 1:486 ) 7S, (5.46)
(0] n o o0
or
Q = 1:486 1 | p2/351/2 (5.47)
(o] n 0O 0O (o]

in which Qo is the threshold discharge.
According to Shield's criterion (see lenderson, 1966, p. 413) for

incipient motion in turbulent flow
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d = vy_S, (5.48)
in which dS is the particle size on the channel boundary and vy is
the unit weight of water. If the relation of 5.48 holds, the sediment
size dS has been assumed constant over a short reach of channel,

yOS0 is also constant over the same reach; i.e.,
y S =K (5.49)
in which K, 1is some constant. From Eqs. 5.43 and 5.49 it follows that
DS =K ‘ (5.50)

in which K5 is a different constant.
Manning's roughness coefficient n 1is related to the particle

size dS by the Stricker formula (see Henderson, 1966, p. 98).

n=Cd (5.51)

s
in which C 1is a constant. As ds is constant, then n is also
constant.

If one substitutes Eqs. 5.44, 5.45, 5.50 and 5.51 into Eq. 5.47,

then
13
q, = D23/6 (5.52)
or
0.46
D, = Q (5.53)
From Eqs. 5.44 and 5.53
0.46
T« Q (5.54)
and from Eqs. 5.50 and 5.53
s « 046 (5.55)

0 0
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Furthermore, the mean velocity for the cross section is

Q Q
. S,
Vo = T (5.56)
0 oo
Using Relation 5.53 and 5.54 with Eq. 5.56
0.08
Vo Qo (5.57)

Relations 5.53, 5.54, 5.55 and 5.57 are the theoretically derived down-
stream hydraulic geometry relations for threshold channels in small
wathersheds.
5.2.4.2. At-a-station relations

In the foregoing section, the threshold channel cross-sectional
shape was derived assuming incipient motion conditions on the noncohesive
channel boundary for the channel forming discharge. Thus, no change in
stream morphology could occur unless discharges greater than the
"threshold" discharge occur. In other words, when the flow is less than
the threshold flow, the particles on the bed and banks are stable. The
channel shape and bed slope remain unaltered for discharges less than
threshold discharge. The channel shape is given by Eq. 5.22. The
hydraulic geometry relations at-a-station are derived in the following
manner.

The hydraulic dimensions of the threshold channel flowing partially
full are defined in Fig. 5.3. The maximum depth of the partially-full

channel is
h=y -y(E=T1/2) (5.58)

in which T 1is the top width of the partially-full channel. With

Eq. 5.22

h_ 1 1T T, -
y— =1 - T= {cos (tan¢g i ?}}_) T} (5.59)
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Fig. 5.3 Geometry for a partially-full threshold channel
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Let
n = .3 (5.60)
Yo
so that from Eq. 5.59, the top width becomes
T . 2 1+1 -1
g * tand -i-:-?— cos G (5.61)
in which
Q=1-n+T7Tn . (5.62)
By using Eq. 5.23 in Eq. 5.61, the relative top width is
T 1%
= Cos (5.63)
.
0O cos T

The corresponding cross-sectional area A for the partially-full

threshold channel can be derived in a similar manner. The expression is

e o

_V1-9" -Qcos "Q (5.64)
— -1—

l-r" -1rcos 1T

A
A
0
and for the wetted perimeter,
-7 =N -1
E(k,EJ - E(k’f - cos Q)

P ,
— = — — . (5.65)
Po E(k,ﬂﬂ - E(k,g-- cos 1r)

The hydraulic depth D for the partially-full threshold channel is

D A , T
b =a /T (200
o 0 0
in which A/Ao and T/T0 are given by Eqs. 5.63 and 5.64 repectively.
Similarly, the hydraulic radius R for a partially-full threshold

channel is
R A P
R__A_,/ 5 (5.67)
o o o

in which A/Ao and P/Po are given by Eqs. 5.64 and 5.65.
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As the bed slope is constant at a particular section and Manning's

is assumed constant, the flow Q in the partially-full threshold is

given by the equation

Q . (AySI5 p (By25 (5.68)
Q A P
0 0 [

The dimensionless ratios T/To, D/D0 and Q/Qo in Eqs. 5.63,
5.66 and 5.68 have been evaluated for ¢ = 35° and B = 0.85. The

values are shown as the circles in Fig. 5.4. The power functions

%; & n0.517 (5.69)
0
él - n0.993 (.570)
o
and
‘QQ" - n2.148 (5.71)
(o)

are approximations to the complex functions described by Eqs. 5.63,
5.66 and 5.68, and are shown as solid lines in Fig. 5.4.

From Eqs. 5.69 and 5.71, it can be shown that

T _ .Q.0.24
ok (5.72)
(o] o
or
T @ QU (5.73)

as Qo and TO are constant at a station. Similarly, from Eqs. 5.70

and 5.71, one concludes that

D aql:46 o

As the bed slope is constant at a station
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Soa QO'00 (5.75)
From Eqs. 5.73 and 5.74, the mean velocity in the partially-full
threshold channel varies according to the expression

V@ gre0 (5.76)

Relations 5.73, 5.74, 5.75 and 5.76 are the theoretically derived
at-a-station hydraulic geometry relations of the threshold channel. The

® are given in

variations of the exponents of Q with B for ¢ = 35
Fig. 5.5. The variations of the exponents with ¢ for B =0.0 and
B = 0.85 are given in Fig. 5.6. The curves in Figs. 5.5 and 5.6
illustrate that the vﬁlues of the exponents in Relations 5.73, 5.74 and

5,76 are not sensitive to variations in ¢ and B. In other words,

these exponents are nearly independent of the particle size.

5.3. Field Observations
5,3,1. Validity of assumptions
In the development of downstream relations for the threshold cross

section, it was assumed that

TO
L=k (5.44)
Do 2
and
DS, = K¢ (5.50)

in which KZ and KS were constants; that is, the ratio TD/D0 and
the product DOS0 were assumed constant in the downstream direction.
It follows then that T0/D0 and DoSo were assumed independent of the

threshold discharge. These two assumptions were tested with the field

observations made by Brush (1961).
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The T0/D0 values obtained by Brush are shown in Fig. 5.7. The
values are independent of drainage area. As the discharge and drainage
area are directly related, it follows from Fig. 5.7 that the ratio
TO/D0 is independent of the threshold discharge in small watersheds.

Brush's data on DOS0 are plotted in Fig. 5.8. From this
information it is concluded that the ratio DOS0 is also independent
of the threshold discharge. . The values of DDS0 are practically the
same for different streams except for McClain Run.

From Brush's field observations, it is concluded that the
assumptions represented by Eqs. 5.44 and 5.50 are valid.

5.3.2. Hydraulic geometry equations

Brush's (1961) data were also employed to obtain field values of
the hydraulic geometry exponents for the downstream relations. The
channels that Brush studied have gravel banks and beds. The average
values of exponents for the five streams with drainage area less than
10 sq mi (Shaver Creek, Globe Run, Weiker Run, McClain Run, and Reeds
Run) are compared with the exponents derived from theory. The compar-
isons, given in Table 5.1, show that the theoretical results are
compatible with field observations.

Judd and Peterson (1969) conducted a field survey on gravel and
boulder streams and also established the at-a-station hydraulic
geometry equations. The average values of the exponents for sites 70
and 71 (Boulder Creek, Colorado) are compared with the theoretical
exponents in Table 5.1. Only sites 70 and 71 were selected because the
measured results of these two sites satisfy the flow continuity require-
ment and these two sites are free of major vegetation effects. Again,
the exponents from the field data compare favorably with the exponents

developed from the threshold theory.
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Table 5.1. Values of the Q Exponent
in the Hydraulic Geometry Equations

Downstream Relations

Source Value of the Q exponent for

To Do so Vo
Theoretical 0.46 0.46 -0.46 0.08
Brush (1961) 0.52 0.43 -0.482 0.05

At-A-Station Relations

Source Value of the Q exponent for

T D S0 \'f
Theoretical 0.24 0.46 0.0 0.30
Judd and Peterson (1969) 0.18 0.51 0.0% 0.31

estimated by the writer

5.4 Summary

A small watershed has been defined as a drainage system which is
small enough to ensure both geological and hydrologic homogeneity in
space and within the time span of one or two centuries. In many re-
gions, this definition of a small watershed would restrict the small
watershed area to approximately 10 to 20 sq mi.

The equations describing the basic physical processes in small
watershed channels sculptured in noncohesive alluvial materials have

been employed in this study to derive the hydraulic geometry
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equations. Both downstream and at-a-station relations were developed.
These theoretical results agree with field observations made by
Brush (1961), and Judd and Peterson (1969).

The angle of repose for the noncohesive materials forming the
banks and bed of the threshold channel is the dominant factor governing
the shape of the threshold cross section. The width-to-depth ratio for
channels in materials haviné a small angle of repose is larger than for
channels in materials having a large angle of repose. Although ratio of
the 1ift force on the particles to the drag force has a smaller effect on
the shape than the angle of repose, the 1lift forces have an influence on
the shaping process and are included in the theoretical analysis. The
theoretical exponents of both downstream and at-a-station hydraulic
geometry equations are practically independent of particle size if the

particle size is constant over the reach of channel.



Chapter VI

CONCLUSIONS

The main conclusions of this study can be summarized as follows:

(1)

The rainfall-runoff model developed in this study is a
physical process simulation model designed to simulate the
response of the basin to rainfall. The model includes the
water balance simulation for land surface hydrologic cycle
on the single storm basis and the water routing features for
both overland flow and channel systems. Unlike the con-
ventional approach to parametric modeling of watershed
response, this model utilizes the physical process of the
flow and requires less assistance from optimization schemes
than any existing water models known to the writer. For
the Carrizal Basin in Venezuela the simulated hydrographs
agree well with the measured hydrographs. The differences
between the simulated and measured hydrographs indicate
that the proposed model is able to simulate the total
volume, the hydrograph shape, the peak flow and the time

to peak flow generally within 12 percent. The sensitivity
analysis indicates that soil data are very sensitive to

the computed hydrograph. Flow resistance parameters and
vegetation data are less sensitive to the simulated results.
In addition, this physically oriented model has the
capability to predict watershed treatment effects on

water yields under the assumed conditions.
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This model may be used to estimate the long-term
response if a water balance model is incorporated to
simulate the water balance during the interstorm periods.
The proposed rainfall-erosion model is able to simulate
the soil erosion process and produces time-dependent erosion
rates from overland flow areas. The computed results are
comparable with the experimental data from a soil plot. The
model also generates a concave land form which frequently
appears in nature. The present model only simulates the bed
material load routing. A future study is recommended to
improve the model by the inclusion of wash load routing.

The hydraulic geometry equations can be theoretically
derived by the equations describing the basic physical
processes of stream morphology in small watersheds. Both
downstream and at-a-station derived relations agree with
field observations. The angle of repose for the noncohesive
materials forming the banks and bed of the threshold channel
is the dominant factor governing the shape of the threshold
cross section. The width-to-depth ratio for channels in
materials having a small angle of repose is larger than for
channels in materials having a large angle of repose.
Although ratio of the 1ift force on the particles to the
drag force has a smaller effect on the shape than the angle
of repose, the 1ift forces have an influence on the shaping
process and are included in the theoretical analysis. The
theoretical exponents of both downstream and at-a-station

hydraulic geometry equations are practically independent
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of particle size if the particle size is constant over the
reach of channel.

The calibration of the rainfall-runoff model can be simpli-
fied by making separate calibrations for water balance

and for flow routing. The calibration results indicated
that the initial interception storage is larger for the
storms occurred at.daybreak than those occurred in the
afternoon and the antecedent moisture content is highly
correlated with the overall rainfall records and the
recession condition of the previous storm. In addition, it
was also found that the ground cover resistance descriptor
wg increases as the size of storm increases.

The vegetation treatment effects can be estimated by
changing the canopy cover density and the ground cover
density for the input to the simulation model.

For a constant ground cover density, the total runoff
volume and the peak flow are increased as the canopy cover
density is decreased. The increase results because the
interception is reduced when vegetation is removed. However,
the time to peak flow is lengthened as the canopy cover is
decreased. This flow retardation is due to the augmenting
of raindrop impact resistance by increasing area of
exposure and the attenuation by overbank flow.

For a constant canopy cover density, the total runoff
volume and the peak flow rate are increased and the time
to peak flow is shortened as the ground cover density is

decreased. These responses are mainly due to the decrease
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of flow resistance when the ground cover density is
decreased.
For the experimental data by Kilinc and Richardson (1973),

the bed-load function which best fits the data is

B 1
L (T-Tc) 8 :

4P = B
It was found that the soil erosion rate was very sensitive

to bed slope and shape. The general practice of assuming

a uniform shape may result in serious errors. However, the
common assumption of sin 6' being equal to bed slope S0

is not too serious when the bed slope is less than 25 percent.
The numerical scheme developed in this study is unconditional
stable and may be used with wide range of %& without loss
of significant accuracy. This numerical scheme has the
advantages of both nonlinear and linear schemes. The
nonlinear scheme ensures convergence and the linear portion
of the scheme provides rapid computations. The applicability
of this numerical scheme has been tested in various cases.
The tests illustrate that this simple routing procedure
simulates hydrographs which agree with measured overland

flow hydrographs, natural channel hydrographs, and hydro-
graphs from drainage systems. It is concluded that this
scheme is promising for large-scale modeling of watershed
response if the kinematic-wave approximation for flow routing
is valid.

It has been found that the discharge Q 1is the better
selection for the unknown in numerical computations than the

depth or area. The term B in the relation A = aQB is
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generally less than 1.0. If the flow discharge is computed
incorrectly, the flow depth estimation is influenced only
to a small degree.

(10) In this study, the flow area versus discharge relations
(A-Q) are formulatéd to be time and space dependent. The
interesting phenomena of "pip" and 'dip" in overland flow
hydrographs are successfully simulated. These phenomena
are the results of sudden changes of flow resistance due
to ceasing or starting of rainfall over shallow, low

Reynolds number flows.
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Appendix A

INTEGRATION OF SUSPENDED SEDIMENT LOAD

A.1. Need For The Method
If a logarithmic velocity profile is assumed for the vertical
velocity distribution, the numerical intergration of JI and J2
integrals (Egs. 4.13_and 4.14) is required for intergrating the sus-

pended scdiment load. The two integrals are
1 1-r.°
1= Jg G (A1)
and
¢l 1-r .
= IG (<) fnr dr (A.2)

The two integrals J1 and J2 cannot be integrated in closed
form for most values of w. The numerical integration is necessary.
Einstein (1950) employed the Simpson formula of numerical integration
in his work. Rana (1971) incorporated the same formula in a computer
program for the Einstein method of computing sediment transport rate
(Einstein, 1950).

Past experiences reveal that the use of Simpson's formula to
evaluate J1 and J2 occupy a major portion of computer time required
in studying unsteady sediment transport problems. A more efficient
method of numerical integration is needed. Chen (1973) used a method
of polynomial approximations based on four reference values of J1 or

J2 with constant values of G and integer values of w and short-
ened the computer time appreciably. However, the validity of Chen's

method is limited to a small range of G and w.
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Herein an efficient and flexible method to evaluate J1 and J2
that requires less computation time than either the Simpson's formula or
Chen's method is presented. This method is based on power series
expansion and has the following advantages over the Simpson's formula.
First, with nearly the same degree of accuracy, the new method requires
only one-tenth of the computer time needed for the Simpson's formula.
Second, the desired degree of accuracy may be changed by the user to
satisfy the purpose of individual problems. Third, the integration

of the power series can be performed to any desired accuracy.

A.2. Power Series Expansion
A.2.1. Derivation

Equation A.1 and Eq. A.2 can be rewritten as

1

J, = IG r 1-r)%r (A.3)
and
J, = jé r %enr (1-1)“dr (A.4)

The power series expansion of the term {l-r)m is

w(w-1) r2 _ w(w-1) (w-2) r3 "

w
(1-1) "= l-wr + X 31

k M(w—l)éT—Z)'{w—k+1) Ko

# (<1) (A.5)

The ratio test shows that this series is absolutely convergent
when r is less than 1.0. By employing Eq. A.5 in Eqs. A.3 and A.4
and by integrating term by term, one obtains the following series

solutions for Jl and J2



158

(1-w) (2-w) (3-w)
e 1-G w(w-1) 1-G
Jl_ 1-w =t 2_m + 2! Zow + .
v (X 8D @-2) fokeny 160
k! k+l-w
(A.6)
in which
1-¢ (k+1-w)
_—k+1—w = - fnG when w=k+1, for }(:0,1,2_“ (A.?]
and
5. c-0) _;  g(-9)p . R L G
2~ 2 1-w -~ 2 2-w
(1-w) (2-w)
. ©v-1) [G(S_w)-l 6B pngq
2! (3-—{1.1)2 % = }
¢ (0K 0o-D (@-2) (u-kel) [G“‘"l‘“)-l )
- (k+1-w)?
(k+1-w)
G InG
k+1-0 _]* (A.8)
in which
glkel-0) 5 g U= g = - L (pngy?
(k+1-0)° k+1-w 2 Ll
when w =k+1 for k =0,1,2,... (A.9)

Theoretically, as k approaches infinity, the above series
solutions for Jl and J2 converge to the exact solutions. However,
the numerical values obtained by the partial sum of the first k+l

terms of the series (defined as k-th order approximations) are



159

satisfactory answers for practical purposes. Therefore, the various
orders of approximation are examined herein.
The sum of the first k+1 terms of the series solutions for Jl

and J2 are respectively

(1-w) (2-w) (3-w)
346 1-G w(w-1) 1-G
J3 (RFL) & o= v S o 3-w
) (k+1-w)
¢ o slenED. ) L

and

G(l—ll..'l)_l G(l-w)znG » [G(Z"w)‘_l

J,(k+1) = -
2 (1~w)2 1-w (2—m)2

G(Z—w)ﬁnG i w(w-l) G(s-m}—l i G(S“m}ﬂﬂﬂ
2-w 2! (3-w)2 3-w e

s (—1)}( w(w-1)-- (w-k+1) [G (k"‘l-—ﬂi)-l ) G(kﬂ-wjﬁnﬁ :|
k! (k+1-m)2 k+l-w

(A.11)

These sums of the first k+1 terms can be written in terms of

the first k terms or

Jl(k+1) Jl(k) + C(k) Bl(k) (A.12)

and

Jz(k+1) Jz(k) + C(k) Bz(k) (A.13)

Here

k) =(-1)kw(m—l)(:12)..(w—k+1): -m{l—miEZ-m)..(k-I«gl

(A.14)
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i G(k+l—m)
Bl(k) T k+l-w
and
5 = G(k+1-m)_1 ) G(k+1_m)ﬂnﬂ
2 (k+1—w)2 k+l-w
Let D(k) = k-w
and
E(k) = D(k) + 1
Then Eq. A.14 becomes
C(k) = C(k'l)kn(k'” for k > 1
Also for E(k) ¥ 0
E (k)
_ 1-6
B, () = —=m
B, (k) E (k)
W _ G InG
B, = - 519 AN
and for E(k) = 0
B, (k) = - £nG
B,(K) = - = (&nG)°

The initial conditions are

I
o

J,(0) =

n
[e]

3,(0)

c(o) =1

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)
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D(0) = - w (A.27)
and

E(0) =1 - w (A.28)

n

From the above recursive relations, any order of approximation
for J1 and J2 integrals can be obtained. A computer subroutine to
carry out the above iteration procedure is given in Appendix C.
(SUBROUTINE POWER). The efficiency of this new method and the
criterion for convergence are presented below.
A.2.2. Comparison between power series expansion and Simpson's formula
As Simpson's formula is widely used and its accuracy has been
considered acceptable (see Einstein, 1950), this formula was chosen
to compare the applicability and efficiency with the new method.

Due to a wide range of values of Jl and J2 the comparison

criterion for accuracy was based on the percentage deviation defined as

P, = 1002 (A.29)

) Y

in which Pd is the percentage deviation of the result by the new

method from that by Simpson's formula, X is the value of J1 or Jz

computed by the new method, and Y is the value of J1 or J2 com-
puted by Simpson's formula.

As mentioned earlier, from the recursive relation for partial sum
of the series (see Eqs. A.12 and A.13), any order of approximation
may be obt.ined by the new method. The speed of convergence (or order
of approximation required to satisfy certain convergence criterion)

depends on values of w and G and the chosen criterion for conver-

gence. For example, if w 1is an integer, the exact solution for any
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value of G will be guaranteed when the order of approximation k is
greater or equal to w+l.

Before deciding on the suitable criterion for convergence, it is
useful to demonstrate some properties of a given order of approximation.
The termination of computer subroutine is based on the chosen order of
approximation.

(1) Variation of percentage deviation with changing w

For a depth ratio, G = 0.5 and an order of approximation, k = 5,
the variation of percentage deviation with changing w from 0 to 5
is given in Fig. A.l1. The maximum percentage deviation occurs around
the middle of two consecutive integer values of w. Therefore it is
practical to determine the convergence criterion based on controlling
the deviation for w being the middle value of two consecutive integers.

(2) Relation between percentage deviation and order of

approximation

From Eq. A.6 and Eq. A.8, one may imagine that for constant
value of w, the higher order terms are more likely to be negligible
for smaller values of G. The accuracy of approximation is more
dependent on the order of approximation for larger values of G than
for smaller values of G.

The variation of percentage deviation for 1st and 10th order of
approximation is given in Fig. A.2. The curves show that a negligible
deviation is obtained by the 1st order approximation for w > 1
and G :_10_2. Also the curves demonstrate that the 10th order
approximation has nearly the equivalent accuracy as Simpson's formula
for most values of w and G. In Fig. A.3 the relation between

percentage deviation and order of approximation for a depth ratio G = 0.9
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is given. This value of G 1is the largest value that would be
encountered in most sediment transport problems. The curves in Fig. A.3
are the numerical proof of the convergence of the series solution.

(3) Comparison of computer time

The computer code for Simpson's formula developed by Rana (1971)
was used to compare the efficiency with the new method. From 720
sample computationson a digital computer of CDC 6400 at Colorado State
University, the average computer time (execution time only) for a
sample computation (include J1 and J2) is given in Fig. A.4. This
shows that 1st order approximation is nearly 14 times faster than the
Simpson formula and 4-time5 faster is gained for 50th order approxima-
tion. These results indicate the potential of the new method.
A.2.3. Criterion for convergence of new method

As mentioned earlier, the k-order approximation necessary to
yield a certain accuracy is dependent on the values of w and G.
A general and practical criterion for‘convergence to this accuracy is
necessary. After a survey of possible criteria, the following

convergence criterion was adopted.

The criterion is that the iteration procedure will be terminated if

"b‘
Jl(k+1) - Jl(k) ..
Jl(k+l)
and e
(A.30)
Jz(k+1) - Jz(k) .
J, (k+1) —
’ J

in which ¢ 1is the limit of convergence.
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From tests for various values of w and G (w = 0.5, 1.5, 2.5,
3.5, 4.5 and 5.5 and 0.0001 < G < 0.9), it was found that the equiva-
lent accuracy as Simpson's formula could be obtained if the convergence
limit € was set to be 10_3. The average order of approximation was
about 7th order and the computer time required was only one-tenth of
that for Simpson's formula. The examples of variation of order of
approximation and percentage deviation with ¢ = 10-3 and for w = 2.5

and 3.5 are given in Fig. A.5. These testing results show the ef-

ficiency of the new method.

A.3. Summary

A new method based on power series expansion is developed to ap-
proximate J, and I integrals for integration of suspended sediment
load. This new method has advantages over other existing methods.
(Einstein, 1950, Rana, 1971 and Chen, 1973). With nearly the same
degree of accuracy, the new method requires only one-tenth of the com-
puter time needed for the evaluation of the integrals by Simpson's
formula. Different accuracies of approximation can be made in the
new method. For obtaining the equivalent accuracy as Simpson's for-

mula, it is recommended that the convergence limit be set at 10-3.
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Appendix B

CALIBRATION TECHNIQUE FOR SYSTEM MODELING

B.1. Need for the Technique

In the mathematical modeling of system response, the identification
of model parameters is often relied on an optimization scheme. The
dependency on the optimization scheme may be reduced if the model is
formulated according to the physical significance. For either a
"'black box" model or a physical simulation model, the calibration of
a model is necessary when the model contains unknown parameters. The
parameters of a '"black box'" model are not physically significant and
hence, they are usually not predictable. While the ranges of parameters
of a physical simulation model are well imposed by physical conditions
or measured data, the exact values of the parameters which produce
correct model response are usually not available. Hence, the model
calibration is generally incvitable for most of the modeling problems.

The simplest calibration technique is the trial and error method.
Except for some models which contain parameters with very narrow
searching ranges, the trial and error proccdure is inefficient for
most of the problems. An cfficient procedure is apparently needed
for the model calibration.

In this study the Powell's unidimensional minimization technique
(Powell, 1964) was used to calibrate the model with only one unknown
parameter. However, certain modifications on this technique have been
made to improve its efficiency. In addition, the Rosenbrock's (1960)

optimization scheme was modified by coupling this modified Powell's
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unidimensional search technique to calibrate the model having multiple
unknown parameters. This modification shortened the computation time

appreciably for the "Rosenbrock Function'" (1960).

B.2. Minimization Problem

The identification of model parameters is a minimization problem.
The problem is to find a set of parameters which produce the model
response as close to the measured response as possible. In other words,
this minimization problem is to select a set of parameters which mini-
mize an objective function based on the desired error criterion within
the constraints imposed by the physics of flow. The constraints in
the parameter identification problem are usually the upper and the
lower bounds of parameters. For example, the initial interception
content must be between 0.0 and 1.0. In this study, the error crite-
rion is based on either the sum of absolute deviations or the sum of
squares of deviations between the simulated and the measured response.

Consider the functional representation; the problem is

Minimize F (Xl,xz,....XNp) (B.1)
XI’XZ""'XN
P
Subject to
e X, <8 forim1,2,....N (B.2)
i —"1 ="k P

in which Np is the number of unknown parameters in a model,

2)"'XN)
X X ;

1’72°° "N
P

parameters, and Xf and XE are respectively the lower and the upper

X;s (i= 1,2,...Np) are the unknown parameters, F (Xl,X

is the objective function which is a function of X

limits of the ith parameter.
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The objective function in the parameter identification problem is
generally not differentiable with respect to the parameters. This is
due to the reason that the function is complicated in mathematical
expressions and usually cannot be represented by a single equation.

As the function is not diffe ontiable, the optimization schemes using
derivatives cannot be applied. An algorithm without using analytical

derivatives is necessary for the calibration of a mathematical model.

B.3. One-Dimensional Calibration Technique

The one-dimensional search technique is a fundamental component
of any multi-dimensional search technique. A good unidimensional
search technique is necessary not only for solving one-dimensional
problems but also for improving multi-dimensional search techniques.

There are various methods for unidimensional searches. For
example, uniform search, dichotomous search, Fibonacci search, Golden
Section search, DSC unidimensional search and Powell's unidimensional
minimization (Himmelblau, 1972). After a survey of these available
methods, the Powell's unidimensional minimization method was selected
in this study.

For the one-dimensional problem, the functional representation is

Minimize F (X)

g (B.3)

Subject to

by = XX (B.4)

in which X 1is the unknown parameter, and XL and Xu are respectively

the lower and the upper limits of this parameter.
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The proposed method is carried out using the first three points
obtained in the direction of search. The X corresponding to the
minimum of the quadratic function is determined, and these quadratic
approximations are continued until the minimum of F (X) is located to
the required precision. The steps of search are as follows; examine
Fig. B.1.

Med

Step 1. From the base vector compute

x(@ - x() | i (B.5)

step 2. Compute F (X)) and F (x(®)
Step 3. Determine the third point required for quadratic
approximation.

When F (X(l)) is greater than F (X(z)) , let

xG) - x4 ooax i x4 oaax <X (B.6)
and
x(3) - X, if x4 o2ax > X, (B.7)

When F (X(I)) is less than or equal to F (X(z)) » let

xG3) o xM _ax i x®) L ax 2 Ry (B.8)
and
(3) _ ey (1) <
M xx, XM ek, (B.9)

Step 4. Compute F (X(S)) a
Step 5. Check the convexity of the quadratic equation, the

optimal coefficient a* can be determined by
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Quadratic
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x“l x{2} X * x(3} X

Fig. B.1 Quadratic approximation for unidimensional search



a* =

175

a M D) (@ B (DG,
(B.10)

_If a* > 0 the function is convex and the search is
continued at step 6.

If a* < 0 the function is concave, let
x_ = Min. {x(1) x(2) x(3)y (B.11)
X, = Max (x(1) x@) x3), (B.12)

then the search is returned to step 3 with the following

information
BX = Xy - X (B.13)
a _
- adb N (B.14)
F x)y = F (X.) (B.15)
x(4) o X, (B.16)
F @) = F ) (B.17)

Step 6. Estimate the value of X at the minimum of F (X). X*.

Compute the other optimal coefficient by

(1) 2, .
« o B (X)) = F (X*7) " e x({1) (2)
b x(l) - x(zJ a* (X + X7 (B.18)

Then, estimate X* by

b*
e e e e g
X Sa¥ (B.19)
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If Xg‘i X* < Xu, the constraints are satisfied and then

the search is continued at step 7.

If X* > Xu or X* < XL’ the constraint is violated,

boundary point is used as optimum value of X, i.e.,

X* = Xu if F (Xa} > F (Xb) (B.20)
and
X* = XR if F (Xa) < F (xb) (B.21)

Step 7. Compute F (X*).

Step 8. Termination of search
Let X° = whichever of {X(l), X(z), X(S)) corresponding
to the smallest F (X). The termination of search is

made if
[F(x*) - F X%)] <e (B.22)
in which € is the convergence limit. If the conver-

gence criterion is not satisfied, the search is re-

peated at step 3 with the following information.

Let
X, = Min. {x%,x*} (B.23)
X, = Max {X°,x*} (B.24)

Then, according to Eqs. B.13, B.14, B.15, B.16, and B.17
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F o)y = F (X,)

(2) _
XM= Xy

Fx®)-F (X,)

A computer program was developed to perform the above procedures.
The listing of the computer ﬁrogram is given in Appendix C. (PROGRAM
UNIMO) .

In Fig. B.2, the path of the search for the minimization of a
sample function by PROGRAM UNIMO is given. The function and the results

are given below.

F X)) =1 - X2)2 + (1 - X)z (B.25)

starting point: X(l) = 2.0, convergence limit: e = 10—5 and initial

step size: AX = 0.5. The results are: X* =1.0, F (X*) =1.71 x 10-10

and the number of function evaluations, NF = 20.

B.4. Multi-Dimensional Calibration Technique

In this study, Rosenbrock's optimization scheme (Rosenbrock,
1960) was modified by coupling the unidimensional search technique
presented in the previous section.

ﬁosenbrock's method is an iterative procedure that small steps
are taken during the search in orthogonal coordinates. Instead of
continually searching the coordinates corresponding to the directions
of the independent variables, an improvement is made after one cycle of
coordinate search by lining the secarch directions up into an orthogonal
system, with the overall step on the previous stage as the first

building block for the new search coordinates. This method locates
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F(X)

Legend
( ) Stage Search

-«—— Search Path

Fig. B.2 Search path for the sample problem
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x(k+1) by successive unidimensional searches from an initial point

X(k) along a set of othonormal directions égk), ggk), ...éék]. For
the initial stage, k = 0, the directions égﬂ), égo), ...ééo) are

P
usually taken to be parallel to the axes of Xl, Xz, ...XN .

P
Let Xik) indicate the point at which F (Xik)) is a minimum in

the direction of Sgk}, for each stage (k) there are Np vectors

&2

ng) and Np optimal values of the objective function F (Xi

ék}, determine optimal step length A;(k) in the direction of

~ * -~
S;k) so that F (Xék) + Al(k) Sik)) is a minimum and let ka]

: ) . _
= Xék) + l;(k) ka). Then from ng), determine lz(k) so that

from X

(k) *(k) (k) L (k) _ y(k) *(k) a(k)
F (x1 + XZ 52 ) is a minimum and let X2 = Xl + Az 82 .
The search pattern is generalized as follows; from Xiﬁi, determine

* ~ * P

A, &) in the direction of §M so that F (x{®) « AT 5§00y 45 4
minimum and let Xik) - Xifi * l;(k} Sgk). The search is repeated
sequentially, always starting from the last immediate point in the

sequence until all Xi, i=1, ...Np are determined. The unidimensional

search technique described in the previous section (Section B.3.) was

*
used to determine optimal step length Ai(k).

After the kth stage has been completed, the vectors for the new

search directions are computed at the point Xék+1) = Xék).

Palmer's
method (Palmer, 1969) for generating new set of direction is used in

this study. His method is as follows.

N ~
alK) o yP %K) S g1 <1 <N (B.26)
B j=1 J Y
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A 1Al 1P - Al 1Al )17

g(k+1) _
i A% 1111 a8 1y a8 122 a2
(B.27)
for 2 <1i <N
== p
in which || || is the norm of the vector
d
= A (K)
S§k+1) 5 %k) (B.28)
1| a0 ]
If Af(k) =0, égk+1) = égk) unless I Af(k) = 0. The search is
i-1 i i-1 i
terminated when
F (xék)) « ¥ (x£k+1)) <e (B.29)

P P

A computer program was developed to carry out the above procedure.
In this program, the vector is normalized so that the ranges of the
vector are within 0.0 and 1.0. The listing of the computer program is
given in Appendix C. (PROGRAM BROSEN).

The number of function evaluations for the Rosenbrock's function
(Rosenbrock, 1960) by the proposed algorithm is 30, which is much less
than 206 function evaluations by the original Rosenbrock's method
(Himmelblau, 1972). A sample problem with three variables is given
herein for illustration.

The function is defined as

2 2

F(X) = (X] - X,)7 + (X, - 2X)° + (X, - 2)

. (B.30)
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This problem is unconstrained and is highly interactive among

variables. The initial vector is

xgﬁ) = [5.0, 2.0, 7.0 ]

7o -5
The convergence limit, € = 10 ~.

The search paths for each stage are given in Table B.l. This
table shows the applicability of the proposed algorithm for the
problem with highly interactive parameters.

Table B.1 Summary of Search Path for Each Stage

Stage Current Vector Current Cumulative No.
X X X UbjecFive Functiop
1 2 3 Function Evaluation
0 5.000 | 2.000 | 7.000 | 0.178 x 10° 0
1 2.000 | 8.000 | 3.600 | 0.392 x 10° 16
2 7.005 | 8.220 | 3.386 0.549 x 101 31
3 8.142 | 7.709 | 3.435 0.295 x 101 46
4 7.871 7.366 | 3.336 0.252 x 101 61
) 5.950 | 5.847 | 2.751 0.694 x 100 76
6 4.213 | 4.278 2.112 0.198 x 10-1 91
7 4.004 | 4.005 2.002 0.628 x 10-5 106
8 4.000  4.000 | 2.000 0.101 x 10_7 117

B.5. Summary

A one-dimensional calibration technique based on Powell's (1964)

unidimensional minimization method is proposed to calibrate one-

dimensional models. This unidimensional method is further applied to

modify the Rosenbrock's (1960) method for the calibration of models
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with multiple parameters. This modification shortened computer time
appreciably for the "Rosenbrock Function'.

Both one-dimensional and multi-dimensional calibration techniques
are formulated to deal with bound constraints (i.e., the upper and
lower bounds). These bound constraints are usually imposed in the

mathematical models by physical conditions or measured data.



Gl

ON0OO0O0O0OO0NNO00NO00ONO0000NO0ONOO000N0000000000

Appendix C

LISTINGS OF COMPUTER PROGRAMS

PROGRAM WATER: Rainfall-Runoff Model

PROGRAM WATER (INPUT»OUTPUT)
PROGRAM WATER (INPUT.OUTPUT)

THIS IS A RAINFALL=RUNOFF MODFL

THIS PROGRAM TS DESIGNED TO SIMULATE WATER HYDROGRAPH FROM SMALL

WATERSHEDS

NOTATIONS FOR THE MODEL INPUT AND OUTPUT

TITLE = ALPHABETICAL OR NUMERICAL IDENTIFICATION OF THE PRCBLEM

NGOV = NUMBER OF OVEHLAND FLOW SEGMENTS

NCH = MUMRER OF CHANNEL FLOW SEGMENTS

NSEG = TOTAL NUVRER OF SEGMENTS

NDX = NUMRER DNF SPACE TMCREMENTS

NSTOM = NUMRFR OF STORM FOR COMPUTATION

NTO = QUTPUT INTERVALS

DT = TIME IMCREMENT FOR NUMERICAL COMPUTATION

SNU = KINEMATIC VISCOSITY OF WATER

AREA = TOTAL APF4 OF THE WATFRSHED ;

SEG = ALPHALRETICAL OR NUMERIC&L IDENTIFICATION OF SEGMENTS

SLEN = LEMGTH OF AN OVERLAND FLOW PLOT OR A& CHANMEL REACH

SLOPE = BED SLOPF

AC+AC+AN»A0sAL = PARAMETERS DESCRIBING P=A RELATIONS

ISFEG = COMPUTATIONAL SEQUEMCE

TUP = '"IPSTRFAM TNFLOW SEGMENT

TLAT LATERAL INFLOW SEGMENT

PFR: - COFFFICIENT CF PERMEARILITY OR HYDRAULIC CONDUCTIVITY

SH = MOISTURE COMTENT AT SATUATION

WP = MOISTURE CONTENT AT WILTING POINT

CPW = CAPILLAPY POTENTIAL nEAD AT WILTING POINT

ETA = DEPTH OF THE ZONE OF AERATION :

FK1+FK23FK3 = CONSTANTS DESCPIRING DASRCY=-WEISBACH FRICTICN FACTOR
DUE TO GRAIN HFSISTANCE ONLY

X1C = BED FORM RESISTANCE DESCFRIPTOR

X10 = GROUND COVER RFESISTANCE DESCRIPTOR

STORM = ALPHARETICAL OR MNUMERICAL IGENTIFICATION OF STORMS

ITHAX = TOTAL NUMBSR OF TIME INCREMENT AT THE END GF A STORM

ITCOM = TOTAL NUMSFR OF TIME INCREMENT FOR COMPUTATION

EVP = MEAN FVAPORATION RATE

GRD = GROUND COVER RESISTANCE DESCRIPTORs XIO
VIN = INTTIAL INTERCEPTION STORAGE CONTENT
AMC = ANTECEDRENT MOISTURE CONTENT

DR = RAINFALL INPUT
SUHRF = AMOUNT OF GIRECT RUMGFF
QCUT = QUTFLOW HYDROGRAPH OF wWATER

DIMENSION ITCOM(10)s GOUT(10+200)s SEG(50)s STORM(10)s TITLE(10)s

1GRD(10)

COMMON /ZINO/ NSEG+NOVeNTOINDX+OToDTSaDTNy ITeEPSyIHAXy ITMAX(10)

WAT
WAT
WAT
WAT
WAT
WaT
WAT
WAT
KAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
wAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT

CWAT

WaT
WAT
WAT
WAT
WAT
WAT
AT
WAT
WAT

COMMON /FLO/ Q(S0)sA(50+1C)«DR(10+200)+ERI200)4EVPILO)4VIN(IO) sAMCRAT

10100

COMMON /SEQ/ TSEG(S0) +TUP(S0+3) s JLAT(S0+2)

wAT
WAT

COMMON /GEO/ SLEN(50) +SLOPE(S0)+8C(50) «BCISO) »AOIS0)+BOIS0) sAL(SOIWAT

COMMON /REF/ PERM«SM WP s CPWETAWCHDsGCODWVOGSRGWVCRWXINX10
COMMON /FRC/ ONsANSSNUWSLPIFKL sFX2+FKI s XTRaALPWBET+CPRIEPR s &RF
IMAX=20

EFS=0.1
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WAT
WAT
WAT
WAT
WAT

10

20

a0

40

50

60

T2

BO

90
100
110
120
130
140
150
160
170
1f0
160
200
210
220
2390
240
11
280
272
280
290
300
310
320
339
340
350
3A0
370
380
390
400
«1C
423
&30
4410
450
4ED
&TO
4RO
450
5C0
510
520
530
540
55¢C
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PROGRAM WATER (TNPUT.QUTPUT)
INPUT AND OUTPUT TITLE

RFAD 170 TITLE
PRINT 180y TITLE

INPUT AND CUTPUT GENERAL [NFORMATION

READ 1904+ NOVINCHoNDA»NSTOMeNTO»DTr»SNULAREA
NSEGSNOV+MCH

PRINT 200+ NSEGsNDXWHSTOMyDTeSNUsAREA

INPUT AND QUTPUT BASIN CHARACTERISTICS DATA
INPUT aAND QUTPUT GEOMETRY DATA

WAT
WaT
WAT
WAT
WAT
WAT
WAT
wWaT
WAT
WAT
WAT
WAT
WAT
WAT

READ 2104 (SEG(I)+SLEM(II »SLOPECT) +AC(T)+BCII) vAQ(I)»A0OLI) o ALIT) o IWAT

1=14NSEG)

WAT

PRINT 220 (SEG(I)+SLEN(LI)+SLOPE(I)wACII) +BC(I)sAQ(L)+BO(I)+AL(TI) «+WAT

1I1=1NSEG)

INPUT AND QUTPUT COMPUTATION SEQUENCE

READ 230 (ISEG(D) 2 (IUPLT+J)»J=1930 0 (ILATII+J)vJ=192) 4 I=14NSEG)
PRINT 240+ (ISEG(INo (IUP(TaJ)eJ=1+3) s (ILAT(Tad)ed=142)sI=1sNSEG)

INPUT AND OUTPUT SOIL DATA

READ 250+ PERMySMaWP1CPWLETA
PRINT 2609 PEFRMySMaWPCPWIETA

INPUT AMD CUTPUT VEGETATION DATA

READ 2%0s CNDoGCDsVOGISRGVOR
PRINT 270« CHDsGCDsVOGsSAGYVOR

INPUT AND OQUTPUT FLOW RESISTANCE PARAMETERS

READ 280+ FK1+FK2+FK3+XIC
PRINT 290¢ FK14FX2,FK34XIC

ESTABLISH SOMFE INVARIANT INFORMATION

TOUT=1SEG(NSEG)
SNU=SNU/100000,

DT=0T/A0,

DTS=NT#3600,
DTN=DTS¢FLOAT (NDX)
FACT=12,23600,/(463560.,%AREA)

INPUT AND QUTPUT STORM CHARACTERISTICS DATA

DO 110 L=1NSTOM

WAT
WAT
WAT
WAT
WAT
dAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
HAT
HAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT

READ 300y STORM{L) o ITHMAX(L) +ITCOMIL) EVP (L) +GADIL) s VIN(L) s AMC (LWAT

1 1

WAT

PRINT 310, STORMIL) o ITMAX(L) +ITCOM(L) +EVP(L) +GRO(L) s VIN(L) ¢ AMC (WAT

1 L)

WAT

560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
T10
720
730
740
750
760
770
780
T90
800
810
820
830
A&D
B59
860
870
RBO
LEL
900
910
920
930
940
950
9h0
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
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o000

o000

110

120
130

140

150

160

170
180
190
200

210
220
230
240
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PROGRAM WATER (TMPUT.OUTPUT)

PRINT 320

IRATN=TTMAX (L)

AEAD 330 (OR(LTIeI=12IRATIN)

PRINT 340 (1eDR(LsI)aI=1+IRATN)
CONTINUE
DO 150 L=1sNSTOM

NCOM=TTCOM(L)

X10=GUD(L)

RATNFALL EXCESS DETERMINATION

CALL RAINEX (LsNCOM)

INITIALIZE ENTIRE WATERSHED

00 130 1=1,NSEG

Qtr)=0,
DO 120 J=1.NDX
AlTs»d)=0,
CONTINUE
CONTIMUE

ROUTING FOR EACH TIME INCREMENT

SUMRF=0,
DO 140 IT=1,NCOM

CALL ROUT (L)
NOUTILIT)I=0(I0UT)
SUMAF=S5UMRF+Q (I0UT)

CONT INMUE

DETERMINE AMOUNT OF DIRECT RUNOFF

SUMRF=SUMKF@DT*FACT
PRINT 350y SUMRF
COMTINUE
PRINT 3560

DO 169

I=1«NSTOM

PRINT 370, STORM(I)

NCOM=[TCOM(I)

PRINT 340+ (JoQOUT(TIwJd) sJ=1aNCOM)
CONTINUE

sSTOP

FORMAT
FORMAT
FORMAT
FORMAT

FNRMAT
FORuUAT
FORMAT
FORMAT

(10a8)
(1H1/7//7/760X410AR)
(SIS+3F10,.3)

WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WaT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT

(/768X 20HHUMBER OF SEGMENTS =4]5/44X,2RHNUMBER OF SPACE INWAT

(2X+2Bs7F10,5)

ITERVALS =+13+/41X+34HNUMBER OF STORMS FOR COMPUTATION =+14/45K,16HNAT
2TIME IMCREMENT =+FT7,398H MINUTES/45Xs21HKINEMATIC VISCOSITY =+F10.WAT
35/46X412HTOTAL AREA =4F10.516H ACRES)

AT
WAT

(/745X 31HGFOMETRY DATA FOR EACH SEGMENTS//(14XsAB«TF12.5))WAT

(6710)
(//50X«20HCOMPUTATION SEQUENCE//(30Xs6119))

WAT
WAT

1110
1120
1130
1140
1150
1160
11710
1130
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1370
1330
1340
1350
1360
1370
13R0
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1500
1590
1600
1610
1620
1630
1640
1650



250 FORMAT
260 FORMAT
270 FORMAT
280 FORMAT
290 FORMAT
300 FORMAT
310 FORMAT

1PERTIOD

AGE CONTENT =+F10,5/40X29HANTECENENT MOISTURE CONTENT =3F10,5)

320 FORMAT
330 FORMAT
340 FORMAT
350 FORMAT
360 FOPMAT
370 FORMAT

END
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PROGRAM WATER (INPUT»OUTPUT)

(5F10,4)

(55X+9HSDIL DATA//22X45F15.5)

(52X 15HVEGETATION DATA//722X25F15.5)

(4F10,5)

(//7B8TX+25HFLOW RESISTANCE PARAMETERS//J0Xs4F15.5)
[2XoAR,2T110448F10,5)

WAT
WAT
WAT
WaAT
WAT
WAT

(/756X AR/ 4AX 1 THRAINFALL DURATION =+T4/4AXs 2Z0HCOMPUTATION WAT
=ol4/64X e 23HMEAN EVAPORATION RATE =4F10,3/3TXy36NGHOUND COVAAT
2ER RESISTANCF DESCRIPTOR =+F10,3/36X«3BHTHITIAL INTERCEPTION STORAWAT

(/753X 13IHRAINFALL DATA)

(16F5.2)

(4RX2T1044X4F10,5)

(/782X 25HAMOUNT OF DIRECT RUNNOFF =,F10,5)
(//745%X+31H HYDROGRAPH AT WATERSHED OUTLET)
(/756X AR)

WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT
WAT

1660
1670
16A0
1590
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
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SURROUTINE ROUTI(L)

SURROUTINE ROUT (L) ROU 10

c . ROU 20
Cc THIS SURRNUTIME ROUTES THE FLOW OCCURRED IN OVERIAND |.OOP AMD ROU 30
o THROUGH CHAMNNEL SYSTEM ROU 40
c ROU 50
COMMON /THNO/ HSEGANOVANTOWMNDX DT «DTSeDTN ITHEPSyIMAXyITMAX (10) ROU 60
COMMON /FLOY/ Q1501 +A 1504101 sDR(10+200)«ERI200)+EVP(10)+VIN({L10) s AMCROU 70

1(10) ROV A0
COMMON /SEQ/ TISEGISO0) s TUPIS0+3) 2 TLATISD2) ROU 90
COMMON /GFO/ SLEN(S50) +SLOPF (S0) +AC(50)+BCIS0)+AD(S50)+RO(SN) yALISO)IROU 100
COMMON /REF/ PERMySMyWPsCPWETAYCHND+GCD s VOGYSRGIVORIXICXTD ROU 110
COMMON /FRC/ ONaANsSNUsSLPvFRL2FR2+FU3 2 XTRWALPBETsCERWEPRyARF ROU 120

c ROU 130
Cc COMPUTE AT TIME IT tT*DT) ROU 140
c DETERMINATION OF RAINFALL INPUT ROU 150
c ROU 160
IF (IT.GTLITMAX(L)) GO TO 110 ROU 170
DRF=DR(L.IT) ROU 1RO

GO TO 120 ROU 190

110 DRF=0. ROU 200

C rOU 210
c DETERMINE RAIMNFALL EXCESS ROU 220
c L ROU 230
120 EFRM=FR(IT) i AOU 240

c ) ROU 250
c DETERMINE EFFECTIVE RAINFALL FOR RAINDROP TMPACT EFFECTS ROU 260
C ROU 270
ARF=DRF® (1,~CND)®(]1,~GCD) ROU 2RO

c ROU 299
c WATER ROUTING FROM THE UPPER MOST SEGMENT TO THE WATERSHED OUTLET ROU 300
c rOU 310
N0 290 T1=11NSEG ' rROU 320
K=ISFG(I) ROV 330
SLP=SLOPE(K) ROU 340
DTX=DTH/SLENIK) ROU 350

oue=1n, ROU 360

QLAT=0. ROU 370

Cc ROU 3RD
[~ DETERMINE THE UPSTHREAM INFLOW RATE ROU 390
c ROU 400
IF (IUP(K+1).EQ,0) GO TO 140 ROU 410

DO 130 J=1+3 ROU 420

IF (TUP(XsJ) 4 EQ.0) GO TO 140 ROU 430

JJ=TUP (K J) ROU 440
QUP=QUP+Q(JN) ROU 450

130 CONTINUE ROU 460

c ROU 470
€ DETERMINE THE LATERAL INFLOW RATE ROU 4RO
c ROU 450
140 IF (K.GT.NOV) GO TO 150 ROU 500
QLAT=0LAT+FFRM/43200, ROU 510

150 IF (ILAT(Ks])1,EQ.0) GO TO 170 ROU 520
DO 160 J=142 ROU S30

IF (ILATI(K«J).EQ.0) GO TO 170 ROU 540

JUSTLAT (KeJ) ROU 550
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SUBROUTINE -ROUT (L)

OLAT=QLAT+0(JJ) ROU 560

160 CONTINUE ROU 570

c ROV 5SRO0
c NONLINEAR SCHEME FOR WATER ROUTING ROU 590
Cc ROU 600
170 ALAT=0QLAT=DTS ROU 610
DO 280 J=1,NDX ROU 620
ASUMZALAT+A (X s ) +DTX=0QUP ROU 630

IF (ASUMLLE.1.0E=7) GO TO 270 ROU 640

c ROU 650
c SET UP A-Q RELATIONMSHIP ROU 660
o ROU 670
QN=ASUM/DTX ROU 680

AN=0,52A5UH1 ROU 690

ROU 700
c DETERMINE THF ADDED FRICTION FACTOR DUE TO FORM RESISTANCE ROU  T10
Cc ROU 720
IF (AN.GT.AL(K))} GO TO 180 ROU T30

CPR=AC (K) ROU 740

EPR=BC(K) ROU 750

X1R=XIC ROU 760

GO To 190 ) ROU 770

180 CPR=A0(K) ROU 780
EPR=RO(K) . G ROU 7930

PCH=CPReAL (K) B 2EPR ) ROU 800
PTO=CPREANSLEPR ROU 810
XIR=(XIC*PCH+ (XIO®GCD+XIC) 2 (PTO=PCH) ) /PTO ROU 820

c ROU 830
C DETERMINE THE COEFFICIENT AND THE EXPONEMT IN A=-0 RELATION ROU B840
c ROU B850
150 CALL FRICT : POQU 860
REM=BET=1, ROU 870

REM=REM-1, ROU 8RO
ALRET=ALP®BET ROU 890

ALBEM=AI P2EET2BEM ROU 900
DTXA=OTX+ALP ROU 910
ERAROR=EPS®ASUM ROU 920

c ROU 930
[ LINEAR SCHEME TO FIND THE FIRST APPROXIMATION ROU 940
[ ROU 950
1TER=0 ROU 960
QPRE=(A(KsJ) /ALP) B8 (], /BET) ROU 970
QAVE=0,52(QUP+QPRE) ROU 980

IF IQAVE.LF.1.0E-7) GO TO 200 ROU 990
DAQ=ALRET®#QAVESeREM ROU 1000
QE=(ALAT+DTX*QUP+DAQ®QPRE) /(DTX+DAQ) ROUL 1010

GO TO 210 ROU 1020

200 QE=ASUM/DTXA ROV 1030

Cc ROU 1040
c NOMLINFAR SCHEME TO REFINE THE SOLUTION ROV 1050
Cc ROU 1060
210 ITER=ITER+1 ROU 1070
AEST=DTXA®GF+ALPRQE=SBET ROU 1080
ADEV=ASUM-AEST ROU 1090

IF (ABRS(ADEV).LE.ERROR) GO TO 260 ROU 1100
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230

240

250

2h0

270
280

290

300
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SURROUTIMNE ROUT (L)

IF (ITER.LTLIMAX) GO TO 220 ROU

PRINT 300y ITaKed ROV

SToP ROU
FDER=DTX+ALBETONE22BEM ROU
SDER=ALNEMeQF ¢4BEN ROU
RA=FDFR/SDER ROU
SC=2.2ADEV/SDER ROU
STEM=1iB¥R}+3C RCU

IF (STEY.GE.0.) GO TO 230 ROU
NE=NE+ADEV/FDER ROU

Gn To 210 ROU
STEM=SORT(STEM} ROU

IF (ADEV.GT.0,) GO TO 250 ROU
ETEM=HBR+STEM ROU
OE=QE~ETEM ROU

IF (QF.GT.0.,) GO TO 210 ROU
ETEM=0,5%FTEM rOU
NE=NE+ETEM RCU

IF (NE.GT,.0.,) GO TO 210 ROU

60 TO 240 ROU
X1=QFE-RB-STEM ROU
X2=NE-AR+5TEM ROV
ADI=ARS(ASUM-DNTX=X]1=-ALPEX]122RET) ROU
ADZ2=ARS (ASUM-DTXeX2=-ALPoX28eBET) X ROU

NE=X] ROV

IF (AD1.GT,AD2) QE=X2 ROU

GO To 210 ROU
AlKeJ) =ALPQF@*BET ROU
QUP=0F ROU

GO TO 2A0 RGU
AlK+J)=0, ROU
cuP=0, ROU
CONTINUE ROV
Q(K)=Qup ROU
CONTINUE ROU
RETURN ROU
ROU

FORMAT (30X+42HD0 NOT CONVERGE FOR THE COMPUTATION POINT +I5+2X«ISROU
lv2Xxs15) ROU
ROV

END ROU

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1250
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
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150
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SUBROUTINE FAINEX (LsNCOM)

- SURRQUTINE RAINEX (L+NCOM)

THIS SUSROUTINE DETERMIMES THE QVERALL MFAN RATNFALL EXCESS RATE
THE RAINFALL EXCESS COMPUTATION IS CARRIEDO OUT FOR A POINT UNDER
CAMNOPY AND FOR ANOTHER POINT IN THE AREA WITHQUT TREES

DIMENSTION RCUM(2)y SINTIZ2)s CH(2)s EFRLD)
COMMDN /INO/ NSEGWNOVINTOWNDXsDT+OTS»DTNGITHEPS IMAX» ITMAX(10)

RAI
RAT
RAL
PAIL
RAT
RAT
RATL
RAIL

COMMON /FLO/ G(S0)2A(50+10)+DR(10+200)+FR(200) 4yEVPIL0)sVIN(1I0) s AMCRAL

1010)

COMMON /REF/ PERMsSMaWPsCPWIETAWCHDyGCDsVOGYSRGaVORWXICHXI0
IF (PERM,EQ.0,) GO TQ 110

CIF=4,2CPW/ (PERM® (SM=WP)2DT)

GO THO 120 !

CIF=0.

DETERMINE THE INITIAL INTERCEPTION STORAGES

SINT(1)=GCD®VOG
STHNT(2)=(VOR+GCD) *VOG
RCUM(1)=VIN(L)*SINT (1)
ROUM(2)=VIN(L)*SINT (2]
CM{1)=AMCIL)
CH(2)=aMC (L)
FTEM=EVP(L)®DT

DD 200 IT=1+NCOM

DETERMINE THE RATES OF RAINFALL INPUT

IF (IT.GT.ITMAX(L)) GO TO 130
DRF=DR(L«1IT)

GO TO 140 ’

DRF=0,

DO 190 I=1s2

DETERMINE THE AVERAGE MET RAINFALL RATE

S=GCD?SRG

IF (I1.EQ.7) S=SeVOR®SRG
RCUM(T)=RCUM(I)+DPFeDT-ETEMES

IF (RCUM(I)LLE.SINT(I)) GO TO 150
RMET=(PCUML)=-SINT(I)} /DT
RCUM(L)=SINT(])

GO TO 160

IF (RCUM(T)WLT.0.) RCUM(I)=0,
RNET=0,

DETERMIME THE AVERAGE INFILTRATION RATE
RIF=0,52PERM2 (1. +SORT (1 ,+CIFo(SM=-CM(]))2®2))
CHFCK THE AVAILABILITY OF MOISTURE SUPPLY FOR INFILTRATION

IF (RNET,GE.RIF) GO TO 170
ERIF=RNET®(1.-0.5°RNET/RIF)

RAL
RAT
RAT
RAT
RAI
RAT
RAT
RAI
RAl
RAI
RAI
RAI
RAI
RAI
RAI
RAI
RAI
RAT
RAI
RAT
RAT
RAI
RAI
RAT
RAT
RAT
RAT
RAT
RAIT
RAT
RAT
RAT
RAI
RAI
RAI
RAI
RAT
RAI
PAT
PAI
RAI
PAI
RAI
RAI
RAI
RAIT

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
2RO
290
300
3lo0
32¢
330
340
350
360
370
38R0
390
400
410
420
430
440
450
460
470
4A0
490
500
510
520
530
540
550
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170

180

190

200

191

SUBROUTINE RAINEX(L+NCOM)

GO TO 180
ERIF=0,5°R[F

DETERMINE THE AVERAGE RAINFALL EXCESS RATE
EFR(I)=RNET-ERIF
ADJUST MOISTUHE CONTENT FOR MEXT TIME STEP
IF (ERIF.EQ.0.) GO TO 190
CHMIT)=(CM(T)SETA+DTPERIF)ZETA
IF (CHM(I),GE.SM) CM(I)}=5SM
CONTINUE
COMPUTE THE OVERALL MEAN RAINFALL EXCESS RaATE
ER(IT)I=(1.,~-CND)®EFR({1)+CND®EFR(2)
CONTINUE
RETURN

END

RAT
RAT
RAT
RAT
RAT
RAT
RAL
RAT
RAT
RAT
RAT
RAT
RAT
RAT
RAT
RAL
RAL
RAT
RAT
RAI
RAI

560
570
580
590
600
610
629
630
640
650
660
670
680
690
700
710
720
T30
740
750
760
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SUBROUTINE FRICT

SURROUTINE FRICT

THIS SURRGUTINE DETERMIMES THE COEFFICIENT AMD THE EXPOMENT IN A-Q

RELATION

COMMON /FRC/ UNaANsSNUWSLOPEsFK] sFX2yFX 3y XTRsALPYBET»CPR1EPRARF

SK1=(1,+XIRICFK]1+2T,16220RF=e0 407
SK2=(1,+XIR)OFK2

SKA=(1,+XTR)F]

RAN=0ON/ (CPREANSSFPRESHU)

JF (AN.GT,900,) GO TO 110

ERF=1.

CRF=5K]1

GO TO 150

IF (RM,GT.2000.) GO TO 120
ERF=1,25234°L1LC6(SK1/5K2)=6,13916
TEM=900,.23 (ERF~1,)

CHRF=SK1*TEM

GO TO 150

IF (RN.GT,.25000.) GO TN 1320
FRF=0,25

CRF=SK?

GO TO 150

IF (RN.GT,100000.) GO TO 140
ERF=0,T21352A.0GI5K2/5K3)~1,.82621
TEHU=100000.,2<ERF

CRF=SKIPTEM

GO TO 150

ERF=0,

CRF=SK1}

AEXP=1,/(3.~-EPR*(1,+ERF))
ALP=(CPR®3 (]| ,+ERF) eCRF *SNUSOERF /(257 .69SL0PE) ) 2oAEXP
BET=(2.~ERF) ®AFEXP

RETURN

END

FRT
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRT
FRI
FRI
FRI
FR1Y
FRI
FRI
FR1
FRI
FRI
FRI
FRI
FRI
FR1
FRI
FRI
FRI
FRI
FRl
FRI
FRI
FRI
FRI
FRI
FRT
FRI

10

20

30

40

50

60

70

n0

99
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
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PROGRAM SEDIM: Rainfall Erosion Model

PROGRAM SEDIM (INPUT,0UTPUT)
PROGRAM SEDIM (INPUT.OUTPUT)

THTS IS A FPATMFALL=EROSION MODEL

THIS PROGRAM ESTIMATES SOIL EROSTON RATE FROM OVERLAND FLOW AREA
HOTATIONS FOR MODEL INPUT AKD QUTPUT

TITLE = ALPHARFTICAL OR NUMEATCAL IDENTIFICATION OF THE PROBLEM
HX = NUMRER GF SPACE ITMCREMENTS

NR = MNUMBER 0OF RAIMFALL EVENTS

NTO = QUTPUT TINTERVALS

TPRINT = IDENTIFICATION FOR QUTPUT CONTROL

IPRINT = 0y === OHLY OUTFLOW HYDROGRAPHS IS DESIRED

IPRINT = ]y ==~ CURARENT ELEVATIONS ARE ALSD BDESIRED

IPRINT = 2y === ROUTING IMFORMATION AND CUSRENT ELEVATIOM ARE
TNCLUDED

OT = TIME INCHEMENT

DX = SPACE IMNCREMENT

PDEM = MEDIAM DIAMETER OF THE SEDIMENT

PORA = POROSTTY OF BED MATENTIAL f

SrL = CONSTAMT REPRESENTING CARCY=WEIS3ACH FRICTION FACTOR OF
GRATIN PESTSTANCE WITHOUT HAINFALL FO2? FLOW REYNOLDS NUMBER
LESS THAN OR EQUAL TO 900

SKT = CONSTANT REPRESENTING DARCY=WEISHACH FRICTION FACTOR OF
GRAIN PESISTAMCE WITHOUT RPAINFALL FOR FLOW REYNOLDS NUMBER
BETWEEN 2000 AND 25000

CTA = CONSTANT DFSCRIBING THE CRITICAL TRACTIVE FORCE

AGR = CNEFFICIENT 1IN PED-LOAD SEGIMENT TRANSPDRT EQUATION

BFX = EXPONEMT 1IN BED-LOAD SEDIMENT TRAMNSPORT EQUATION

SUC = COFFFICTENT DESCRIRPING THE SUSPENMDED LOAD

RAIN = RATNFALL TNTENSITY

TEND = TIME AT THY END OF RAINSTORM
XV KIMEMATIC VISCOSTITY OF MATER
RIF MEAN TNFILTRATION RATE

7 = BED ELEVATION

A = FLOW AREA OR FILLOW DEPTH FOR OVERLAND FLOW
RP = SEDIMENT CONCENTRATION IN VOLUME
DZ = CHAMG IN RED ELEVATION

0 = FLOY DISCHARGE

GP = SEDIMENT THANSPORT RATE

CB = SEDTMENT CONCENTRATION IN WEIGHT

"o

COMMDN /FRC/ ONsSHUsSLOPE+RSK+SKTyALPWBET+CRF+ERF

SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED

DIMENSION A(200)y CA(200)s T(200)s Q(200)y GB(200)s» RAIN(10G) s TEMNSED

101000

DIMEMNSION TITLE(20)s RA(200)s Z(200)s DZ(200)s SKV(200)s RIF{10OO}
IMAX=20

EPS=0,0%

READ 300 TITLE

PRINT 310+ TITLE

IMPUT AND OUTPUT GFNERAL INFORMATION
READ 3204+ NXsNRWNTOs IPRINT

READ 3304 DTHDXeNAM.PORB
PRINT 340¢ NXsNR«DT+DX+DBMsPORB

SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
259
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
4R0
490
500
510
520
530
540
550
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PROGRAM SEDIM (INPUT,OUTPUT)
INPUT AND OQUTPUT MODEL PARAMETERS

READ 3504 SKL+SKT+CTA2AGRIBEXsSOC
PRINT 360¢ SKLeSKT+CTA+AGBIHEX+SGC

ESTABLISH SOME INVARIANT INFORMATION

PTS=DT®60,

DT A=DTS/DX
SLENG=FLOAT(NX) DX
FACTOR=43200./SLENG
DEM=DHM/304,8
SMR=NAM

CGA=CTA*DBM

0o 290 M=1+MR

INPUT RAINFALL AS STEP FUNCTICNS

HREAD 370y RAIN(M)ZTENDIM) s SKVIM) $RIF (M)
PRINT 380y MsRATH(M) s TEND (M) +SKV (M) +RIF (M)

INPUT AMD OUTPUT INITIAL ELEVATIONS

NXP=NX+]
READ 390 (Z(I)sI=LlaNxpP)
PRINT 400y (IsZCD)aTI=1aNXP)

INITIALIZE THE ROUMNDARY COMDITIONS

DO 110 I=1sNX
AlI)=D.
RA(T)=0.

COMTIMUE

TSuM=0,

KOUT=1]

SHU=SKV (M) /100000,

FVR=(SART(35,4220AM0234+36,05NUee2] ~6,85NU) /DBM

EFRATIN=RAIN(M) =RIF (M)
ASK=SKL+PT,1A22EFRATINR20,407
QLAT=FFRAIN/43200,
ALAT=0LATENTS
LEND=TENC (M} /DT+0,1
DO 280 L=1+LEND

TSUM=TSUM+DT

ouP=p,

GHUP=0,

IupP=0,

DO 260 J=1aNX
ATEM=A(J)
RTEM=RB(J)

MONLINEAR SCHEME FOR WATER ROUTING

ASUM=ALAT+A(J) +DTX2QUP
IF (ASUMLLE.1.0E~10) GO TO 220

SED
SED
SED
SED
SED
SED

SED

SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED

560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
750
800
810
820
830
B4
850
860
a70
B8RO
890
900
910
920
930
940
950
960
970
980
950

1060

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100
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PROGRAM SEODIM (INPUT»OUTPUT)

SET UP A=-0 RFELATIONSHIP

o006

ON=ASUM/DTX
SLOPE=(Z(J)=Z(J+1)) /DX
IF (SLOPE,.GT.0.) GO TO 120
PRINT 410
60 TO 290

120 CALL FRICT
REM=PET=-1,
BEN=0EM=1,
ALRET=ALP®RFT
ALREM=ALP*BET*BEM
ERROR=EPS#ASUM
ITER=0

c LINEAR SCHEME TO FIND THE FIRST APPROXIMATION

OPRF=(ATEM/ALP) 28 (1, /BET)
QAVE=0.52 (QUP+OPRF)
IF (QAVE.LE.1.0E~10) GO TO 130
DAO=ALBET#NAVE®eREM
CE=(ALAT+DTX20UP+DANSOPRE) / (DTX+NAQ)
IF (QE,LE,0,) GO TO 130
GO Tn 140

130 QE=ASUM/ (DTX+ALP)

c NONLINEAR SCHEME TO REFINE THE SOLUTION

140 1TER=ITERs1
AEST=DTX4QE+ALP®QESeBET
ADEV=ASUM=AEST
IF (ARS(ADEV).LE.ERROR) GO TO 190
IF (ITER.LT.IMAX) GO TO 150
PRINT 4204 LrJ
GO TO 290

150 FRER=DTX«ALRET®QE®®BEM
SDER=ALNEMeQERRREN
BR=FDER/SDER
SC=2.#ADEV/SDER

5 STEM=RR"RA+SC .
IF (STEM,GE.0.) GO TO 160
QE=0F + ADEV/FDER
GO TN 140

160 STEM=SART (STEM)

IF (ADEV.GT,0,) GO TO 180
ETEM=ER+STEM

QE=QE~ETEM

IF {(CE.GT,04) GO TO 140

170 ETEM=0,5%ETEM
QE=QE+ETEM
IF (RELGT.0,) GO TO 140
GO T0O 170

180 X1=NE-BR~-STEM
XZ2=QE~RB+STEM

SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
12R0
1290
1300
1310
1320
1330
1340
1350
1360
1370
13R0
1390
1400
1410
1420
1430
las0
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
15A0
1570
15R0
1590
1600
1610
1620
1630
1640
1650
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190

200

210

220

230

240

250

260
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PROGRAM SEDIM (INPUT.OUTPUT)

AD1=ARS (ASUN=DTXEX]1=ALPeX]®eRET)
AD2=ABS (ASUM=DTX2X2=-AlPeX2¢e8ET)

QE=X1

IF (AN1.GT.AD2) QE=X2
GO TO 140
DEPTH=AILPSQE®<AET
RN=QF /SNU

BHV=2.5+50RT (RN® *ERF /CRF)
TAO=A2,4°DEPTH®SLOPE
SV=SCRT(TAN/1.9379)

BED MATERIAL LOAD ROUTINMNG

TTEM=TAQO-CGR
IF (TTEMJLE.O0.) GO TO 230

DETERMINATION OF RATIO OF SUSPENDED BED MATERTAL LOCAD

ZR=FVB/(0.455V)
AR=81B/NECTH

IF (ZR.GT.5.5.0R.AR.GT.0.9) GO TO 200

CALL POWER (ZRvAR«FU+SJW1,0E=-3)
P=AR®® (ZR=1,)/(S0C*(]l,~AR)#%2R)
SUSP=P® (BMVEF J+2,525)

IF (SUSP.LT.0,) SUSP=0,

GO Tn 210

susp=0,

DETERMINATION OF FLOW TRANSPORTING CAPACITY OF BED MATERIAL LOAD

GAC=(1.,+SUSP)SAGB2TTEM®®BEX
DETERMINATION dF EROSION OF BED MATERIAL LOAD

RA (U =6AC/QE

EGR=(GRUP-RA(J)PQE) *DTX~-RB(J) *DEPTH+BTEM®ATENM

GO TO 240
NEPTH=0,
RE=0,
RB(JI=0,
EGA=GAUP*DTX+BTEH*ATEM
A(J)=DEPTH
DZ(J)=EGR/(1,~PORB)
IF (J.EQ.1) GO TO 250
Z(JI=2(J)+0,52(ZUP+DZ(J))
QUP=QE
GRUP=RR(J) *NE
ZUP=nZ (J)
CONTINUE
TIL}=TSUM
QIL)Y=QUP*FACTCR
GR(L)=GRUP®]102,.96
RATIO=1650./(QUP+]1.652GRUP)
CBIL)=GRUP®RATIO

IF (IPRINT.F0.0,0R,(L/NTO),NE.KOUT} GO TO 280

SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED
SED

1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
18230
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
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300
310
320
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340
350
360
370
380
390
400
410

420

430
440
A4S0
460
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PROGRAM SEDIM (INPUT,»QUTPUT)

KOUT=KOUT»1 SED
IF (IPRINT.FQ.1) GO TO 270 SED
CPRINT 430 (L sKsA(K)sRA(K) 2DZIN) 9K=1 o NX) SED
PRINT 4404 (K27 (K)sK=14sNXP) SED
CONTINUE SED
SED

CUTFLOW HYDROGRAPH SED
SED

PRINT 450 SED
PRINT 460y (T(T1)sQ(T)+GBI{IN+CAII)+I=14LEND) SED

IF (IPRINT.GT.0) GO TO 290 SED
PRINT 440y (I+Z(I)sI=1sNXP) SED
CONT TMUE SED
STOP SED
SED

FORMAT (20A4) SED
FORMAT (1H1/////730X,20A8) SED
FORMAT (a110) SED
FORMAT (4F10,5) SED
FORMAT (50¥%s 19HGENERAL INFORMATION//30X92I11044F10,5//) SED
FORMAT (6F10.5) SED
FORMAT (52Xs 16HMODEL PARAMETERS,//248Xy6F12,.5//) SED
FORMAT (4F10.5) SED
FORMAT (44Xs 32HRAINFALL INPUT IN STEP FUNCTIONS/(33Xs1644F12.5))1SED
FORMAT (RF10,5) ; SED
FORMAT (50Xs 24HOMTGINAL HEAN ELEVATIONS,//(5(4Xs110+F12,5)1)) SED
FORMAT (/30Xy 61HTHE TIME INCREMENT IS TOO LARGE TO DEVELOP A PROPSED
1ER LAND FORHM) SEN
FORMAT (33Xs A42HDQ NOT CONVERGE FOR THE COMPUTATION POINT »15:2X4ISED
15) SED
FORMAT (/50Xs 19HROUTING IMFORMATIONS//(32X+2110+3F12,5)) SED
FORMAT (50Xs IBHCURRENT ELEVATIONS+/(5(4X+T110,F12,5))) SED
FORMAT (50Xs 18HOUTFLOW HYDROGRAPH) SED
FORMAT (25XyF10,243F20,5) SED
SED

END SED

2210
22290
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
24R0
2490
2500
2510
2520
2530
2540
2550
2560
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110

120

130

140

150
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SUBROUTINE POWER (Z+AsXJ19XJ24,CONV)
SURRQUTINE POWER (ZsAsXJ1aXJ24CONY)

THIS SUSROUTINE EVALUATE J1 AND U2 INTEGRALS
MOTATIONS

XJl = VALUE OF Jl INTEGRAL

XJ2 = VALUE nF J2 IMTEGRAL

N = ORDER OF aPPROXIMATION + 1

CONY = CONVERGENCE CRITERION

N=1

XJ1=0,

XJ2=0,

ALG=ALOG(A)

C=1.

D==~2

E=D+1,

Fh=l.

AEX=ABSPE

GO TO 120

HN=Me1l

C=C#*D/FN

D=E

E=D+1.

FN=FLOAT (N}

AEX=A®9E )

IF (ABSI(E).LE.0,001) GO TO 130
XJ1=XJl+C®(]1,-AEX)/E
XJ2uXJ2+CH{ (AEX=14)/E®92=-AEX2ALG/E)
GO TO 140

XJ1=XJ1=-CeALG
XJ2=XJ2=0,5%C2ALGOE2

TF (M.EQ.Y) GN TO 150
CJU1=ARS(1.~FUl/XxJl)
CJP=ARSI(1.~-FJ?/¥XJy2)

IF (CO1.LELCONV.ANDCJ2.LE.CONV) RETURN
FJal=xa1

Fu2=xJ2

GO TO 110

END

POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POwW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POwW
POW
POW
POW
POW
POW
POW
POW
POW
POW
POW

10

20

30

40

50

60

70

B0

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
2h0
270
280
290
300
310
320
330
340
350
360
370
a0
390
400
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SUBROQUTINE FRICT
SUBROUTINE FRICT
THIé SUBROUTINE DETERMINES A-Q RELATION

COMMON /FRC/ ONsSNUsSLOPEsRSKISKTeALPsBET»CRFERF
RM=QN/SNU

IF {(RN,GT.1000,) GO TO 110

ERF=1,

CRF =RSK

GO 7O 130

IF (RN.GT,.2000.) GO TO 120
FRF=1,442709ALOGIRSK/SKT)~7,22434
CRF=RSK*®1000,.02 (ERF=1,)

GO TO 130

ERF=0,25

CRF=SKT
ALP=(CRF®SNU=*ERF/ (25T .6*SLOPE) )22 ({l./3,)
RET=2./3.-ERF /1. .
RETURN

END

FRI
FRI
FRI
FRI
FRY
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI
FRI

10
20
30
40
50
60
70
B0
90
100
110
120
130
140
150
160
170
180
190
200
210
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C.3. PROGRAM UNIMO: One-Dimensional Calibration Technique

110

120

200

PROGRAM UNTMO(INPUTOUTPUT)
PROGRAM UNTIMO (INPUT,OUTPUT)

THIS PROGRAM SOLVES ONE-DIMENSIONAL CONSTRAINED MINIMIZATIOM
PROBLEM RY SUCCESSIVE QUADRATIC ARPPROXIMATION

THF CONSTRATINTS ARE THE UPPER AND LOWER DOUNDS OF THE VECTOR
THE USER MUST SUPPLY A SUBROUTIME OUJECT FOR EVALUATION OF THE
ORJECTIVE FUNCTIDN

NOTATIONS FOR INPUT AND OUTPUT INFORSATION

TITLE = ALPHABETICAL OR NUMZIRICAL INENTIFICATION OF THE PRORLEM
MST = MAXIMUM LIMIT OF NUMBER OF STAGE SEARCH

IPT = MNUMERTCAL IDENTIFICATION FOR QUTPUT CONTROL

IPT = 0 === ONLY THE FINAL ANSWER IS DESIRED

IPT = 1 === [NTEARMEDIATE VALUES OF EACH STAGE SEARCH IS DESIRED
XA = INITIAL GUESS OF THE VECTOR

DX = INITIAL STEP~SIZE

XupPL = UPPER ROUND
XLOL = LOWER BROQUND
EPS = CONVERGFNCE TOLERANCE BASED ON THE CHANGE OF STEP LENGTH

DIMENSIOMN E(3)y» Y(3)y TITLE(20)
INPUT AND OQUTPUT NECESSARY INFORMATION

READ 280s TITLE

PRINT 290+ TITLE

READ 300y MSTHIPToXAWDXsXUPLXLOLWEPS
PRINT 310» XA+ AUPL»ALOLWEPS

STARTING 0OF STAGE SEARCH

NEF=0

NS=0

CALL OBJECT (VALUE sMEFsXA)
A=VALUE

XR=XA+DX

CALL ORJECT (VALUEWMNEF+XB)
B=VALUE

DETEAMINE THE THIRD POINT REQUIRED FOR APPROXIMATION

IF (A.GT.B) GO TO 140
XC=XA=DX

IF (XC,GE.XLOL) GO TO 120
XC=XLOL

CALL ORJECT (VALUE+NEFs+XC)
C=VALUE

Ytly=xc

Yi2)=4A

Y(3)1=XB

Etl)=cC

Et2)=A

E(3)=8

IF (C.LT.a) GO TO 130
XINF=XA

FINF=A

UNIT
UNI
UNT
UNI
UNT
UNT
UNI
UNI
UNT
UNI
UNT
UNT
UNI
UNT
UNI
UNIT
UNI
UNT
UNI
UNT
UNI
UNI
UNI
UNT
UNT
UNT
UNI
UNT
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNI

10
20
30
40

60
70
80
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

3R0

390

400

410

420

430

440

450

460

470

4R0

490

500

510

520

530

540

550
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130

140

150

160

170

180

190

201

PROGRAM UNIMO(INPUT»OUTPUT)

G0 TO 170

XTHNF=XC

FINF=C

GO TO 170

XC=XA+2,50DX

IF IXCL.LE.XUPL) GO TO 150
xXc=XUPL

CALL ORJECY (VALUE NEFsXC)
C=VALUE

Y(1)=Xa

Y(2)=x8

Y(3)=XC

Etl)=A

E(2)=8

E(3r=C

IF (C.LT.B) GO TO 160
XINF=X3

FINF=R

GO TO 170

XINF=XC

FINF=C

ELIMINATE PREMATURE TERMINATION DUE TO EQUAL VALUES AT TWO END

POINTS IN THE FIRST SEARCH

DEF=EL1)-E(3)

IF (NS.(iT.0,0R.,ABS(DEF)«GT.EPS) GO TOQ 180
DX=0,5°DX

Yt(2)=Y(1)+DX

CALL ORJECT (VALUE+NEFsY(2))
E(2)=VALUE

Y(3)=XINF

F(3)=FINF

DEF=E(1)=E(3)

IF (E(2).GT.FINF) GO TO 180
XINF=Y(2)

FINF=E(2)

CHECK THE CONVEXITY OF THE QUADRATIC FUNCTION

Al=(Y(1)=Y(2))12(Y(2)=Y(3})2(Y(1)=Y(3))
IF (AHS(A1l).E0Q,0.) GO TO 190
AZ=E(L)2(Y(2)=Y(3))+E(2)1R(Y(3)=Y(L))+E(D)2(Y(1)=¥(2))
SA=AZ2/Al

IF (SA.GE.0.) GO TO 200

DX=Y(3)=Y (1)

XA=Y (1)

A=E(])

XR=Y (3)

BR=E(3)

IF (DEF,.GT.0.) GO TO 140

GO TO 110

XSTA=XINF

FSTA=F INF

GO TO 270

UNT
UNI
UNT
UNT
UNI
UNT
UNT
UNT
UNIT
UNI
UNT
UNT
UNT
UNT
UNT
UNT
UNI
UNT
UNIT
UNIT
UNI
UNT
UNT
UNI
UNT
UNIT
UNI
UNT
UNT
UNIT
UNI
UNT
UNT
UNT
UNI
UNIT
UNI
UNT
UNI
UNT
UNT
UNT
UNT
UNI
UNIL
UNT
UNT
UNT
UNI
UNT
UNI
UNT
UNI
UNI
UNI

560
570
S80
590
600
610
620
630
660
650
660
670
600
690
700
710
720
730
T40
750
760
770
780
790
800
810
820
830
840
850
860
870
aso
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1050
1100
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s Xz Xz]

200

210
220

230

240

250

260

270

280

202

PROGRAM UNIMO(INPUT.OUTPUT)

NDETERMINE THE MINIMUM OF THE QUADKATIC FUNCTION

SA=(E(1Y=E(2)) /(Y1) =Y (2))-SA?(Y(1)*Y(2))
KSTA==SB/(2.%5A)

IF (XSTALGEXLOL.ANMDJXSTALLE.XUPL) GO TO 220
IF (DEF.GT,0.) GO TO 210
XSTA=XLOL

GO TO 220

XSTA=XUPL

HS=HNS5+1

CALL OBJECT (VALUE'NEF+XSTA)
FSTA=VALUE

IF (FSTALLELFINF) GO To 230
XTEM=XSTA

XSTA=XINF

XINF=XTEM

FTEM=FSTA

FSTA=F[NF

FINF=FTEM

IF (IPTLEQ.Q) GO TO 240
PRINT 320

PRINT 3304 NS

PRINT 320

PRINT 340+ XSTAWFSTA

CHECK IF THE VALUE IS SATISFIED WITH CONVERGENCE TOLERANCE

IF ((FINF=FSTA).LE.EPS) GO TO 270
DX=ABS(XINF=XSTA)

IF (NS.LT.HMST) GO TO 250
PRINT 320

PRINT 350+ MST

PRINT 340+ XSTA+FSTA

STOP

IF (XSTAL.GT.XINF) GO TO 260
XA=XSTA

A=FSTA

XA=XINF

A=F INF

GO TO 110

XA=XINF

A=F INF

XP=XS5TA

B=FSTA

GO TO 140

A MINIMUM HAS HEEN FOUND
PRINT 320

PHINT 360+ HSWNEF

PRINT 370+« FS5TA+XSTA
SToP

FORMAT (20A4)

UNI
UNT
UNI
UNT
UNI
UNI
UNT
UNTI
UNT
UNI
UNT
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNT
UNT
UNT
UNT
UNI
UNI
UNI
UNT
UNT
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNT
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNI

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
13R0
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
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PROGRAM UNTIMO (INPUT»OUTPUT)

290 FORMAT (1H1///7//740X+20A4) UNI
300 FORMAT (2I10+4F10,5+E10,3) UNT
310 FORMAT (//35X,39HIHE INITIAL VECTOR CHOSEN BY THE USER =+F10,5//51UNIT

1X+27THUPPFR LIMIT OF THE VECTCR =4F10,5//41X+27THLOWER LIMIT 0OF THE UNI

SVECTOR =4F1l0.5//746%+23HCONVERGENCE TOLERANCE =,£E10,3) UNT
320 FORMAT (/404 440H22000004 000000000002 0RI0RRO0RIADOI0000000) UNT
330 FORMAT (//4BXs1AHSTAGE SEARCH -=-=- +15) UNT
340 FORMAT (/745%+20HTHE CURRENT VECTOR =+F10.5//34X+32HTHE CURPENT ORUNI

1JECTIVE FUNCTTON =4E20,.8) UNI
350 FORMAT (/740X 1HHDO NOT CONVERGE INv+1S5+5Xs14HSTAGE SEARCHFS) UNT

360 FORMAT (//4BX+24HA MINIMUM HAS REEN FOUND//Z41X,30HTOTAL HUMBER OF UNI
1STAGE SEARCH =915//39Xs37HTOTAL NUMBER OF FUNCTION EVALUATION =sISUNT

2) UNT
370 FORMAT (//38X,23HOPTIMIZATION FUNCTION =+E20.8//48Xs 14HFINAL VECTOUNT
IR =4F10.5) UNT
UNIT

END UNI

1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
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SUBROUTIME OBJECT (VALUEsNEF +X)
SUEROUTINE OBJECT (VALUENEFX)
THIS FUNCTION EVALUATES THE VALUE OF THE ORJECTIVE FUNCTION
NEF=NEF + 1
VALUE=(le=X)n22e(],~X2X)%n2
RETURN

END

0By
084
oBJ
0By
08J

0By .

08J
08J
0BJ

10
290
30
40
50
60
70
80
90
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PROGRAM BROSEN: Multi-Dimensional Calibration Technique

PROGRAM RAROSEN (INPUT.0UTPUT)
PROGRAM BROSEN (INPUT+OUTPUT)

THIS PROGRAM SOILVES COMSTRAIMED MINIMIZATION PROPBLEM

THE COMSTRATMTS ARE LIMITED TO GOUND CONSTRAINTS. OR UPPER AND
LOWER ROUMND

THF SOLUTIGN TECHNIQUE 1S A MIX APPLICATION OF THE ORIGINAL
ROSENRRCCK METHOD, PONELL MINIMIZATIONs AMD PALMER VERSION OF
GENERATING NEW SEARCH DIRECTIONS

THE USER MUST SUPPLY A SUBROUTINE OBJECT FOR EVALUATION OF THE
ORJECTIVE FUNCTION

NOTATIONS FOR INPUT AND OUTPUT IMFORMATION

TITLE = ALPHAPRETICAL OR MUMER[CAL IDEMTIFICATION OF THE PROALEM
N = NUMBRER OF VARIABLES

MST = MAXTMUM | IMIT OF NUMBER OF STAGE SFARCH

HMCL = MAXIMUM LIMIT OF NUMPER OF CYCLE SFARCH

IPT = NUMERICAL IDEMTIFICATIONM FOR QUTPUT CONTROL

IPT = 0 === OMLY THE FINAL ANSWER IS DESIRED

IPT = 1 === [NTERMEDIATE VALUES OF EACH STAGE SEARCH IS DES(RED
IPT = 2 === [NTERMEDIATE VALUES OF EACH CYCLE SEARCH IS DESTRED
EPS = COMVERGFNCE TOLERANCE BASED ON THE CHANGE OF OBJECTIVE

FUNCTION
EPY¥ = CANVERGENCE TOLERANCE FOR CYCLE SEARCH
V = INITIAL GUESS OF THE YECTOR
VUP = UPPER LIMIT OF THE VFECTOR
VLO = LOWER LIMIT OF THE VECTOR
X = NORMAITZFD [NITIAL GUESS OF THE VECTOR
PO = QPTIMUM YALUE OF THE CRJECTIVE FUNCTION
MEF = NUMFER (OF FUNCTION EVALUATION
NS = MUMBPER 0F STAGE SEARCH

DIMENSION A(10)y B(10)y CC10)y D(10)s Z(10)y TITLE(20)
COMMON DL DXy POy VALUEsHaNEF S (104100 o X(10) oV (10) 4 VUP(L0)»VLOI(1D)
COMMON JUNT/ MCLJEPX

INPUT AND OUTPUT NECESSARY INFORMATION

READ 290 TITLE

PRINT 300+ TITLE

READ 310y NsMSTaMCL+IPTHEPS
EPX=10,"EPS

PRINT 320+ Ns+FPS

READ 330 (V(I)sVUP(T)4VLO(I)+I=14N)
PRINT 240

PRINT 350 (I+VUPIT)+VLO(I)aI=1sN)
PRINT 360

PRINT 370 (IaVII)sI=leN)

NORMALIZE THE VECTORS

DO 110 I=1eN
X(IV=(VII)=VLOLI) Y ZUVUPLT)=VLO(LI))
DII)=0.5

CONTIMUE

SET THE INITIAL SEARCH DIRECTION

RRO
BRO
ARO
BRO
BRO
R0
BRO
BRO
BRO
RRO
BRO
BRO
ORrO
BRO
BRO
RRO
BRO
BRO
BHO
BRO
ARO
RRO
BRO
ARO
BRO
BRO
ARD
BRO
RRO
AR0
BRO
ARO
RRO
ARO
RRO
BRO
BRO
BRO
RRO
BRO
BRO
RRO
RRO
BRO
ARO
AR0O
RRO
BRO
BRO
BRO
BRO
AROD
RRO
BRO
BRRO

19

20

39

40

50

60
-70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
2480
290
300
310
120
330
340
350
360
370
IR0
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
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oonn

120
130

140

150

160

170

180

PROGRAM BROSEN

DO 130 I=1sN
DO 120 J=1.N
S(TsJ)=0,
IF (J.EQ.T) SiTed)=1,
CONTINUE
CONTIMUE

STARTING OF STAGE SEAPCH

MNS=0
NEF=0
CALL OBJECT (1+0.)
PO=VALUE
MS=NSel
NRJ=FPO
IF (IPT.EQ,0) GO TO 150
PRINT 2380
PRINT 390s NS
DO 170 I=1sN
DX=nI1)
CALL UNTIMO (1)
IF (IPT.NF.2) GO TO 160
PRINT 400y I
PRINT 4104+ PO
PRINT 3704 (JaV(J)rJ=1sN)
ZiI11=0L
DI(I)=ABRSI(DL)
CONTINUE

CHFCKX IF THE RESULT IS SATISFIED WITH THE PREASSIGNED CONVERGENCE

TOLERANCE

IF ((0BJ=-PO) ,LE.EPS) GO TO 280

CHECK IF THE NUMRER OF STAGE SEARCH GREATER THAN ASSIGMED LIMIT

IF (NS.LT.M5T) GO TO 180
PRINT 380

PRINT 420, MST

PRINT 4104 PO

PRINT 3T70s (I+VII)sI=1sN)
STop

PRINT 380

PRINT 430+ NEF

PRINT 4104 PO

PRINT 370y (TeVI(I)eI=1sN)

CALCULATE NEW SEARCH DIRECTION FOR NEXT STAGE SEARCH
PALMERS VERSION IS USED TO COMPUTE THE NEW DIRECTION

DO 270 I=1sN
SUMA=0,
DO 200 J=1.N
AlJI=0.

206

(INPUT»OUTPUT)

ARO
BRO
AR0
BRO
BRO
BRO
BRO
ARO
RRO
8RO
BRO
BRO
ARO
BRO
BRO
AaRo
RRO
RRO
BRO
HRO
BRO
BRO
RRO
ERO
BRO
ARO
B8RO
BRO
RRO
BRO
BRO
AROD
BRO
ARO
BRO
BRO
BRO
RRO
RRO
RRO
BRO
BRD
RFO
ARO
ARO
ARO
ARD
RRO
ARO
BRO
BRO
BRO
BRO
BRO
BRO

560
570
S5A0
590
600
610
620
630
640
650
660
670
6A0
690
700
T10
720
730
740
750
760

170 |

780
790
800
810
820
B30
840
B50
B60O
870
BA0
890
900
910
920
930
940
950
960
970
9A0
990
1000
1010
1020
1030
1040
1050
1060
1070
10A0
1090
1100



00

150

200

220

230
240

250
260
270

280

‘290

300
310
320

330
340
350
360
370
3R0
390

PROGRAM HROSEN

DO 150 k=1.N

ALY =A()) +Z (KIS (Ked)

COMT THUE
SUMA=SUMAsA(J) ae2
CONTINUE
AA=SART (SUMA)
IF (AA,EQ.0.) GO TO 140
IF (1.EQ.1) GO TO 220
1F (ABS(Z(I=1)) . ,LE.EPS)
DA=1,/50RT(AR®32=0082)
RA=AB/AA
CA=DA=RA
CR=DA/RA
DO 210 J=1.N
ClJY=S1(1+J)

S(IvJl=A(J)*CA~B(J)=CB

R{J)=AL(J)
CONTINUE
GO TO 260
DO 230 J=1sN
ClJI=StT+J)
S(IsJ)=ATJ)/AA
RiJr=A(d)
CONTINUE
GO TD 260
DO 250 Jd=1sN
CTEM=S(1+J}
S{I+»J)=CtJ)
C(J)=CTEM
BlJY=A(J)
CONTIMNUE
AB=AA
CONTINUE
GO TO 140

A MINIMUM HAS BEEN FOUND

PRINT 3R0

PRINT 440v NSeNEF

PRINT 4504+ PO

PRINT 370y (Ls¥(I)eI=1lsN)
SToP

FORMAT (2Nha4)
FORMAT (IHLI////7760%420A4)
FORMAT (4T10+F10,3)

207

(INPUT«OUTPUT)

GO TO 240

RO
RRD
BRO
AROD
BRO
ARO
BRO
HRO
ARO
RRO
B8RO
RRO
BRO
BRO
BRO
RRO
BRO
nRO
BRO
BRO
BRO
BRO
ARO
aro
BRO
BRO
BRO
ARO
RRO
BRO
BRO
aro
BRO
BRO
RRO
BRO
RO
BRO
BRO
ARO
ARO
BRO
BRO
ARO
BRO
RRO

FORMAT (//4TX+21HNUMBER OF VARIABLES =415//44X+223HCONVERGENCE TOLERRO

LRANCE =+F10,3)

FORMAT (3F10.5)

FORMAT (//44X+33HUPPER AND LOWEP BOUMDS OF VECTORS)

FORMAT (/10%X+4(16+2F12.,5))

FORMAT (//40X40HTHE INITIAL VECTOR CHOSEN BY THE USER IS)

FORMAT (/18BXs5(15:F12.5))

FORMAT (/40X+40H222002000000000000000000080003200000008060)
FORMAT (//4BXy18HSTAGE SEARCH

vI5)

ARO
RRO
BRO
RRO
AROD
BRO
BRO
BRO

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
13190
1400
1410
1420
1430
1440
1450
1460
1470
14R0
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
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PROGRAM BROSEN (INPUT.DUTPUT)

H00 FOPMAT (/760X 4 34HCYCLE SFARCH ALONG DIRECTION =====- +I5) ARO
410 FORMAT (//34X»32HTHE CURRENT 0OBJECTIVE FUNCTION =4E£20.8//50X+21HTHARO

1E CURPENT VECTOR 15) KRO
420 FORMAT (/740X 18HRO MOT CONVERGE IN+IS»5Xe14HSTAGE SEARCHES) BRO

A30 FORMAT (//3AX»43UTHE CURRENT NUMARER OF FUNCTION EVALUATION =,15) HRO
440 FORMAT (//48Xe24HA MINIMUM HAS BEFN FOUND//Z41X,30HTOTAL NUMBER OF RRO
1STAGE SEARCH =+ [5/759X¢37HTOTAL NUMBER GF FUNCTTION EVALUATION =,15%BR0O

2) AROD
450 FORMAT (//3BX,23H0PT{MIZATION FUMCTION =,E20,8//50Xy15HFINAL VECTGARO
1R 1I5) ARD
BRO

END BRO

1660
1670
1€R0
1690
1700
1710
1720
1730
1740
1750
1760
1770
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120

140

150

160

209

SUBROQUTINE UNIMO (IP)

SURROUTINE UNIMO (IP)

UNI
UNIT

THIS SUBROUTIME DETERMINES THE OPTIMAL STEP SIZE ALGNG A DIRECTIONUNI

NIMENSION E(3)y Y(3)

COMMON DL +DXsPO+VALUE sHaMEF S (100100 X (10) sV (10) s VUP(LI0)»VLO(10)

COMMON JUNT/ MCL+EPX
SET UP UPPER AND LOWER LIMITS

XUpPL=1,0E+10

XLOL==1.,0F+10

DO 120 I=1.N
IF (S(IP+1),EQ.0,) GO TO 120
IF (S({IP+I),.LT.0.) GO TO 110
XTEM=(1.0=X(1))/SCIP: I
IF (XATEMLT,XUPL) XUBL=XTEM
XTEM==X(1)/5(1Ps1)
IF (ATEM GT,.XLOL) XLOL=XTEM
GO TO 120
XTEM=(1.0=-X(1))/SCIPsI)
IF (XTEM.GT.XLOL) XLOL=XTEM
XTEM==X(])/S(IP+]1)
IF (XTEM.LT.XUPL) XUPL=XTEM

CONTINUE

NC=0

Xa=0,

A=PO

XB=XA+DX

IF (XB,LE.XUPL) GO TO 130

XB=XUPL

DX=XA

CaLL OBJECT (IP+XB)

B=VALUE ;

DETERMINE THE THIPRD POINT REQUIRED FOR APPROXIMATION

IF (A.GT,B) GO TO 170
XC=XA-DX

IF (XC.GE.XLOL) 60 TO 150
Xc=xLoL

CALL ORJECT (IPWXC)
C=VALUE

Yily=xc

Yi2)=XA

Y(3)=XRp

Etl)=C

E(2)=A

Et(3)=8

IF (C.LT.A) GO TO 160
XINF=XA

FINF=A

GO TO 200

XIMF=XC

FINF=C

UNT
UNI
UNT
UNT
UNI
UNT
UNT
UNT
UNI
UNT
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNT
unl
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNI
UNI
UNT
UNIT
UNT
UNT
UNT
UNT
UNI
UNI
UNI
UNI
UNI
UNI
UNI

10

20

30

40

50

60

70

a0

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
260
250
260
270
280
290
300
310
320
3o
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
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170

180

190

200

210

210

SUBROUTINE UNIMO (IP)

GO TO 200

KC=XA+2,.,°DX%

IF (XC.LE.XUPL) GO TO 180
XC=XUPrPL

CALL OQUJECT (IPsXC)
C=VALUE

Y{1)=XA

Yi2)=XR

Y(3)=XC

E(1)=A

E(2)=R

Et3)=C

IF (C.LT.B) GO TO 190
XINF=XR

FINF=B

GO TO 200

XINF=XC

FIMF=C

ELIMINATE PREMATURE TERMINATION DUE TO EQUAL VALUES AT TwO END
POINTS IN THE FIRST SEARCH

DEF=E(1}-E(3)

IF (NC.GT.0.0R.ARSIDEF) GTLEPX) GO TO 210
DX=0.,5%NX

Y(2)=Y(1)+DX

CALL ORJECT (IPsY{(2))
Et(2)=VALUE

Y{(3)=XINF

E(3)=FINF

DEF=E(1)=E(3)

IF (E(2).GT.FINF) GO TO 210
XINF=Y (2) :

FINF=E (2)

CHECK THE CONVEXITY OF THE QUADRATIC FUNCTION

AL=(Y (1) =Y (2))o(Y(2)=Y(3) )2 (Y (1)=Y(3))
IF (ABS(Al).EQ.0,) GO TO 220
A2=E(1)2(Y(2)=Y(3))+E(2)8(Y(3)=Y (1)) +E(3)e(Y(1)=Y(2))
Sa=pa2/al

IF (SA.GFE.0,) GO To 230

DX=Y(3)=Y(])

XAa=Y(]1)

A=E (1)

XRA=Y(3)

B=E(3)

IF (DEF.GT.0.,) GO TO 170

GO TO 140

XSTA=XINF

FSTA=FINF

G0 TO 290

DETERMINE THE MINIMUM OF THE QUADRATIC FUKCTION

UNT
UNT
UNT
UNI
UNI
UNT
UNI
UNT
UNI
UNI
UNI
UNT
UNT
UNT
UNI
UNT
UNT
UNI
UNT
UNT
UNT
UNT
UNT
UNT
UNIT
UNT
UNI
UNT
UNT
UNT
UNI
UNT
UNT
UNT
UNT
UNT
UNT
UNT
UNT
UNT
UNIT
UNI
UNIT
UNI
UNIT
UNT
UNIT
UNT
UNT
UNI
UNIT
UNIT
UNT
UNT
UNI

560
570
SA0
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
TR0
790
800
810
820
B30
8B40
aso0
660
aTo0
880
890
S00
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100



0o

c

230

240
250

260

270

280

290

300

310
320

211

SUBRQUTINFE UNIMO (1IP)

SR=(E(1)=E(2)) /(Y (1)=Y(2))=SAB(Y(])
XSTA==S3/(2,%SA)

IF (XSTALCE.X OLJANDJXSTALLE.XUPL)
1f (DEF.GT.0,) GO TO 240
XSTA=XLOL

GO TO 250

XSTA=XUPL

NC=HC+1

CALL ORJECT (IP»XSTA)
FSTA=VALUE

IF (FSTALLE,FINF) GO TO 260
XTEM=XSTA

XSTA=XINF

XINF=XTEM

FTEM=FSTA

FSTA=F INF

FINF=FTEM

TF ((FINMF~FSTA).LE.EPX) GO TO 290
DX=ABS (XINF=X5TA)

IF (NC.LT.MCL) GO TO 270
PRINT 310

PRINT 320 MCLsIP

STOP

IF (XSTALGT.XINF) GO TO 280
XA=XSTA

A=FSTA

XA=XINF

R=F I NF

GO TO 140

XA=XINF

A=F [NF

XR=X5TA

A=FSTA

GO TO 170

A MINIMUM HAS BEEN FOUND

DL=XSTA
PO=FSTA
DO 300 I=14N
XK(IV=X(I1)+XSTA®S(IPs])
VII)=VLO(T) «X(I)*(VUP(I)=VLO(I))
COMTINUE
RETURN

FORMAT (/40X +40Ho00 28000000008 00000800000LBRGC0R0CR0RRLRD)
FORMAT (//28%4108HD0O NOT CONVERGE IN+I5+5X+36HCYCLE SEARCHES ALONG

IDIRECTION =-=== v15)
END

Y (2))

GO TO 250

UNT
UNI
UNT
UNT
UNI
UNI
UNT
UNI
UNI
UNI
UNI
UNT
UNT
UNI
UNT
UNI
UNT
UNI
UNI
UNI
UNT
UNI
UNT
UNI
UNI
UNT
UNI
UNT
UNT
UNI
UNT
UNT
UNT
UNT
UNT
UNT
UNT
UNT
UNI
UNI
UNI
UNI
UN1
UNI
UNI
UNI
UNI
UNI
UNI
UNI

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1450
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
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110

212

SUBROUTINE ORJECT(IPZ}
SURRODUTINE OBJECT (IP»2)
THIS SURROUTINE DETERMINES THE VALUE OF OBJECTIVE FUNCTION

DIMENSTION T(10)s Y(10)
COMMON DLDXs20«VALUEsMsNEF»S(1041035X(10)5V(10)sVUPI10)VLOL(10)
NEF=MEF +1
GO 110 I=1eN
T(D) =X(T)+Z2S(TPsT)
YOI)=VLOLI)+T(I)@(VUP(I)=VLO(I))
COMTINUE
VALUE= (Y (1) =Y (2))202+(Y(2)-2.0Y(3))"22+(Y(3)=~2,)2°2
RETURN

END

08J
nBJ
0R.)
LN
08y
oBJ
PN
[HN]
LN
nBJ
oBJ
oBJ
oBJ
0BJ
0BJ

i0
20
3o
&0
50
60
T0
BO
90
100
110
120
130
140
150
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