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ABSTRACT

DISTRIBUTED WIRELESS NETWORKING WITH AN ENHANCED PHYSICAL-LINK

LAYER INTERFACE

This thesis focuses on the cross-layer design of physical and data link layers to support efficient

distributed wireless networking. At the physical layer, distributed coding theorems are proposed to

prepare each transmitter with an ensemble of channel codes. In a time slot, a transmitter chooses

a code to encode its messages and such a choice is not shared with other transmitters or with the

receiver. The receiver guarantees either reliable message decoding or reliable collision report de-

pending on whether a pre-determined reliability threshold can be met. Under the assumption that

the codeword length can be taken to infinity, the distributed capacity of a discrete-time memoryless

multiple access channel is derived and is shown to coincide with the classical Shannon capacity

region of the same channel. An achievable error performance bound is also presented for the case

when codeword length is finite. With the new coding theorems, link layer users can be equipped

with multiple transmission options corresponding to the physical layer code ensemble. This en-

ables link layer users to exploit advanced wireless capabilities such as rate and power adaptation,

which is not supported in the current network architecture. To gain understandings on how link

layer users should efficiently exploit these new capabilities, the corresponding link layer problem

is investigated from two different perspectives.

Under the assumption that each user is provided with multiple transmission options, the link

layer problem is first formulated using a game theoretic model where each user adapts its trans-

mission scheme to maximize a utility function. The condition under which the medium access

control game has a unique Nash equilibrium is obtained. Simulation results show that, when mul-

tiple transmission options are provided, users in a distributed network tend to converge to channel

sharing schemes that are consistent with the well-known information theoretic understandings.
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A stochastic approximation framework is adopted to further study the link layer problem for the

case when each user has a single transmission option as well as the case when each user has mul-

tiple transmission options. Assume that each user is backlogged with a saturated message queue.

With a generally-modeled channel, a distributed medium access control framework is proposed to

adapt the transmission scheme of each user to maximize an arbitrarily chosen symmetric network

utility. The proposed framework suggests that the receiver should measure the success probabil-

ity of a carefully designed virtual packet or a set of virtual packets, and feed such information

back to the transmitters. Given channel feedback from the receiver, each transmitter should obtain

a user number estimate by comparing the measured success probability with the corresponding

theoretical value, and then adapt its transmission scheme accordingly. Conditions under which

the proposed algorithm should converge to a designed unique equilibrium are characterized. Sim-

ulation results are provided to demonstrate the optimality and the convergence properties of the

proposed algorithm.
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Chapter 1

Introduction

1.1 Motivation

Classical channel coding theory assumes that users in a communication party should jointly

optimize their channel codes and transmit encoded messages to the receiver over a long time du-

ration to guarantee reliable message recovery [7] [8] [9]. Overhead of achieving the required

user coordination is often ignored due to the fundamental assumption that coordinated message

transmission should dominate the communication process. However, this core assumption is in-

creasingly challenged by the growing popularity of distributed communication scenarios, where

each user should be able to adjust its communication parameters such as rate and power without

sharing it with other users including the targeted receiver. In distributed communication, users

often have short and bursty messages that must be disseminated in a timely manner. Coordinat-

ing all users in such an environment could be infeasible or expensive in terms of overhead cost.

Without full user coordination, reliable message transmissions cannot always be guaranteed, and

therefore packet collisions are often unavoidable. When a packet collision happens, one needs

to understand how users should efficiently adapt their transmission schemes in response to chan-

nel feedback. Despite the fact that a significant proportion of the messages in current wireless

networks are transmitted using distributed communication protocols, a theoretical foundation that

supports efficient distributed communication still does not exist.

Classical physical-link layer interface assumes that a link layer user can only determine whether

a packet should be transmitted or not [10]. Other communication details should be handled at the

physical layer. In distributed communication when physical layer does not have full capability of

joint channel coding optimization, data link layer has to get involved into communication adap-

tations. A simple example is the collision resolution protocol such as the exponential backoff-

based DCF protocol in IEEE 802.11 [11]. However, with each link layer user only having binary
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transmission/idling options, when a packet collision happens, the only option for users to control

contention is to adapt their transmission probabilities. Advanced wireless capabilities such as rate,

power and antenna beam adaptations all become irrelevant at the data link layer. This can lead to a

quite significant efficiency reduction in the throughput performance of a wireless system.

For example, let us consider a multiple access system with K homogenous users and a single

receiver. Assume a unit channel gain from each user to the receiver, and additive Gaussian noise

with zero mean and variance N0. Assume that each user has a transmission power of P . From

classical channel coding theory [7], we know that, if each user encodes its own messages at a rate

of 1
2
log2

(
1 + P

N0

)
bits/symbol, then reliable message recovery is only possible if users transmit

sequentially. Sum rate of the system is therefore upper bounded by the single user channel ca-

pacity of C1 = 1
2
log2

(
1 + P

N0

)
bits/symbol, irrespective of the user number K. Alternatively, if

users transmit in parallel with an individual rate of 1
2K

log2

(
1 + KP

N0

)
, then sum rate of the sys-

tem can approach the sum channel capacity of CK = 1
2
log2

(
1 + KP

N0

)
bits/symbol, which grows

unboundedly in K. A similar conclusion applies to the same system with a distributed commu-

nication model as well. Assume that each user has bursty short messages and cannot afford the

overhead of joint coding optimization. If messages of all users are encoded at a rate only slightly

less than C1
1, then sum rate of the system is upper bounded by C1 bits/symbol. Alternatively, if

messages arrive with a statistics such that on average K̃ users should have messages to transmit

at any moment, from the perspective of throughput optimization, then it is generally beneficial for

each user to encode its messages at a rate close to 1
2K̃

log2

(
1 + K̃P

N0

)
to support parallel transmis-

sions of up to K̃ users. However, because traffic statistics is unknown at the design stage of a

protocol and may also vary in time, in the case of distributed communication, maintaining a high

throughput efficiency requires users have reasonable flexibility of adapting their communication

parameters, such as communication rate, at the data link layer. Unfortunately, such a capability is

not supported by the physical-link layer interface in the current network architecture.

1Note that the rate needs to be smaller than C1 in order to support reliable decoding with a finite codeword

length [12].
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1.2 An Enhanced Physical-Link Layer Interface

Distributed communication is often featured with short bursty messages and opportunistic

channel access. The nature of distributed communication implies that communication parame-

ters cannot be jointly and fully optimized at the physical layer. However, system traffic at the data

link layer may still be more or less stationary. To improve communication efficiency, a data link

layer should exploit advanced wireless capabilities to adapt its transmission scheme accordingly,

and this needs to be done under the constraint of maintaining a layered (or modularized) network

architecture.

To achieve such an objective, we propose an enhancement to the classical physical-link layer

interface [5]. The enhanced interface should prepare each physical layer transmitter with an en-

semble of channel codes as opposed to one code in a classical architecture. At the data link layer,

each user can then be equipped with multiple transmission options corresponding to the available

channel codes at the physical layer. Different transmission options may correspond to different

communication settings such as different power, rate and antenna beam combinations. There-

fore, link layer users can exploit advanced communication adaptation such as rate adaptation to

further improve communication efficiency. To maintain the layered architecture, under the dis-

tributed communication model, we assume that a link layer protocol should inform the physical

layer whether a message needs to be transmitted, and if so, which transmission option should be

used. Such decisions are not controlled or optimized at the physical layer. According to the link

layer protocol, a physical layer transmitter then chooses the corresponding code to encode its mes-

sage and sends its codeword through the channel. The receiver should decode the messages only

if a pre-determined error probability threshold can be met [5] [10]. Otherwise the receiver should

report collision. At the data link layer, we assume that a user can only choose from the list of

provided transmission options, as opposed to being able to adapt the communication parameters

arbitrarily.
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1.3 Contribution

While the interface enhancement appears to be minor, it involves key research questions whose

answers cannot be found in the classical frameworks. At the physical layer, due to possible lack

of user coordination, reliable message delivery cannot always be guaranteed. However, it is a

fundamental requirement in the layered architecture that any message forwarded to the data link

layer must be reliable [10]. Furthermore, because transmission decisions are made at the data link

layer, i.e., they are not controlled by a physical layer protocol, any assumption of such a control,

such as communication rate optimization, may not be valid in physical layer channel coding. With

these constraints, one needs to understand whether the notion of fundamental limit still exists

for a distributed communication system. It will be shown in Chapter 2 that not only the notion

of channel capacity still exists for a distributed system, it also coincides with classical Shannon

capacity region of the same channel without the convex hull operation. Meanwhile, at the data

link layer when a user is equipped with multiple transmission options, one needs to understand

how packet transmission schemes should be adapted in response to the events of transmission

success and packet collision. In existing link layer protocols, when only a single transmission

option (plus an idling option) is available, a common practice in response to packet collision is

to reduce the packet transmission probability of each user [10] [11] [13]. From classical channel

coding theory, we know that a more efficient approach for sum throughput optimization could

be adapting the communication rate of each user [7]. However, while transmission options with

different power and rate combinations may be available at the data link layer, there is no guarantee

that the ideal option should be on the list. Furthermore, different link layer networks may also

have different utility optimization objectives. Whether a general link layer distributed medium

access control framework exists to optimize transmission schemes under these constraints is an

important question that needs to be answered. In Chapter 3 and Chapter 4, a game theoretic model

and a stochastic approximation framework are presented to investigate the corresponding link layer

problem, respectively. The rest of the thesis is organized as follows.
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Chapter 2 presents the distributed channel coding theorems, which establish the distributed

channel capacity of a multiple access system when the codeword length can be taken to infinity.

An upper bound for the worst case error event probability is also derived for the case of finite

codeword length. The new coding theory provides theoretical support to enhance the classical

physical-link layer interface in the sense that it enables the option of equipping each link layer user

with multiple transmission options. When given multiple transmission options, each user has a

transmission probability vector to describe its transmission scheme, with each entry of the vector

denoting the probability of using different transmission options. In Chapter 3, under the assump-

tion that users are backlogged with messages, we model the medium access control problem as

a non-cooperative game where each user adapts its transmission probability vector to maximize

an individual utility function. It is shown that existing understandings on stability and through-

put of random access communication over collision and multi-packet reception channels can be

exploited to design utility functions in the new system. Conditions under which the distributed

medium access control game has a unique Nash equilibrium are obtained. Computer simulations

show that, in a multiple access environment with a large number of users each being equipped with

multiple transmission options, the game theoretic medium access control algorithm does favor low

rate and parallel channel access options over high rate and exclusive channel access options. This

is consistent with the well-known understandings in information theory. In Chapter 4, we present

a stochastic approximation framework for a class of distributed MAC algorithms with guaranteed

convergence to a unique system equilibrium. While the results are more or less standard in the

stochastic approximation literature, they characterize the key conditions for convergence. Within

the framework, the research problem becomes how one should design the system to place the

unique equilibrium at the desired point that maximizes a chosen network utility and to make sure

the conditions for convergence are satisfied. In Section 4.2 and 4.3, the case of single transmis-

sion option is discussed, under which the transmission scheme of each user is specified by a scalar

transmission probability parameter. A distributed MAC algorithm is proposed to adapt the trans-

mission probability of each user according to a channel contention measure defined as the success
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probability of a virtual packet. The MAC algorithm is then extended in Section 4.4 and 4.5 to

the case when users have multiple transmission options. Simulation results are also included to

demonstrate both the optimality and the convergence properties of the proposed MAC algorithms.
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Chapter 2

Distributed Channel Coding Theorems

In a wireless network such as a Wi-Fi system, an increasing amount of messages are transmitted

using distributed protocols, which are often featured with short bursty messages and opportunistic

channel access. In distributed communication, users make their communication decisions indi-

vidually and such decisions are not shared with other users or with the receiver. Due to lack of

full user coordination, packet collisions happen occasionally. Such a communication model does

not fall into the classical channel coding framework, which generally assumes joint coding opti-

mization and long message transmission at the physical layer to achieve reliable message recovery.

Therefore, fundamental limits of a distributed communication system cannot be understood with-

out extending the classical channel coding tools.

Distributed channel coding theory, proposed in [4] [5] [14], assumes that each transmitter

should be equipped with an ensemble of channel codes as opposed to one code assumed in classical

channel coding theory. Code ensembles are shared off-line with the receiver, e.g., by specifying

codebook generation algorithms in the physical layer protocol. Different codes can correspond to

different communication settings such as different rate and power combinations. During online

communication, possibly depending on a data link layer decision, each transmitter individually

chooses a code to encode its messages. Without knowing the coding choices of the users, a re-

ceiver either decodes the messages of interest if a pre-determined decoding reliability requirement

can be met, or reports collision otherwise. An achievable region is defined in [4] [5] as the set

of code index vectors that support asymptotic reliable message recovery, and is shown to coin-

cide with the Shannon information rate region in a sense explained in [4] [5]. Error performance

bounds in the case of finite codeword length were obtained in [5] [14]. While fundamental under-

standings about distributed communication are greatly needed for packet-based wireless networks,

coding theorems developed in [4] [5] [14] have not been attracting much attention in the research

community so far.
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In this Chapter, we will further extend the distributed channel coding theorems obtained in [4]

[5] [14]. First, in [4] [5], achievable regions were defined not only as a function of the communi-

cation channel, but also as a function of the code ensembles selected by the users. We revise the

definition to the one that only depends on the communication channel. Such a revision enables the

definition of the distributed channel capacity, which is supported by the existing achievability proof

and a new but quite straightforward converse proof. Second, error probability in a communication

system is often dominated by a small number of error event types. In a distributed communication

system, different error event types may or may not correspond to different code index vectors of

the users. In [5, Theorem 3], the obtained achievable error performance bound contains a term that

equals the probability of the worst case error event type multiplies the number of code index vec-

tors outside the operation region. If the latter parameter takes a large value, the corresponding error

performance bound can be very loose. We revise the definition to obtain a performance bound that

essentially replaces the particular term with a summation of error probabilities each corresponding

to one code index vector. The new error performance bound is tighter than the one obtained in [5]

because the new bound is unlikely to scale in the number of code index vectors.

Throughout the Chapter, we only present results for channels with finite input and output al-

phabets. The results can be easily extended to channels with continuous input and output alphabets

using the same approach for similar extensions in classical channel coding theory [8].

2.1 Distributed Multiple Access with Single User Decoding

Consider a multiple access system with K transmitters (users) and one receiver. Time is slotted

with each time slot equaling the length of N channel symbols, and this is also the length of one

codeword. Throughout Chapter 2, we assume that channel coding should be applied only within

each time slot. Let the bold font variable represent a vector whose entries are the corresponding

variables of all users. The discrete-time memoryless channel is modeled by a conditional distri-

bution PY |X , where X = [X1, . . . , XK ] ∈ X is the channel input symbol vector with X being

the vector of finite input alphabets of all users, and Y ∈ Y is the channel output symbol with Y

8



being the finite output alphabets. We assume that channel input alphabet of user k, denoted by

Xk, should be known at user k, for k = 1, . . . , K, and the conditional distribution PY |X should be

known at the receiver. Whether the conditional distribution PY |X is known to the transmitters or

not doesn’t affect the coding theorems to be proposed.

Each transmitter, say user k, is equipped with an ensemble of M channel codes, denoted

by G(N)
k = {gk1, . . . , gkM}. Let G(N) denote the vector of code ensembles of all users. Let

g = [g1, . . . , gK ] be a code index vector. Define g ∈ G
(N) if gk ∈ G(N)

k for all 1 ≤ k ≤ K.

For each user k, code index gk ∈ G(N)
k represents a random block code described as follows.

Let Lgk =
{
Cgkθk : θk ∈ Θ

(N)
k

}
be a library of codebooks, indexed by a set Θ

(N)
k . Each code-

book contains ⌊eNrgk ⌋ codewords of length N symbols, where rgk is a pre-determined parameter

termed the “communication rate” (in nats/symbol) of code gk. Let [Cgkθk(wk)]j denote the jth

symbol of the codeword corresponding to message wk in codebook Cgkθk . At the beginning of

each time slot, a codebook index θk is generated randomly according to a distribution γ
(N)
k . The

distribution γ
(N)
k and the codebooks Cgkθk , ∀gk ∈ G(N)

k , are chosen such that random variables

Xgkwkj : θk → [Cgkθk(wk)]j , ∀j, w and ∀gk, are i.i.d. according to a pre-determined input distribu-

tion PgkXk
. Assume that code library Lgk and the value of θk are both known at the receiver. That

is, the receiver knows the randomly generated codebook of gk, and this is true for all codes and for

all users. Note that this can be achieved by sharing the random codebook generation algorithms

with the receiver. In the above description, we can see that a random block code gk is characterized

by its communication rate rgk and its input distribution PgkXk
. With an abuse of the notation, we

regard gk = (rgk , PgkXk
) as a variable representing a rate and distribution pair of user k, which is

not a function of the codeword length N . Similarly, we regard g = (rg,P gX) as a vector variable

representing the rate and distribution pairs of all users. We will use “code space” to refer to the

space of g, which is also the space of rate vector and distribution vector pairs. We use G, i.e.,

without superscription (N), to represent a code ensemble in the code space where each g ∈ G

represents a point in the code space.

9



At the beginning of each time slot, we assume that each user, say user k, arbitrarily chooses

a code gk ∈ G(N)
k , maps its message wk to a codeword X

(N)
gk (wk), and then sends the codeword

through the channel. Here “arbitrary” refers to the assumption that the coding choice is made

according to a data link layer protocol and is not controlled by, and even its statistical information

may not be known to, the physical layer transmitter. Assume (w, g) is the actual message vector

and code index vector chosen by the transmitters. Let X(N)
g (w) be the vector of codewords. Note

that neither g nor w is known at the receiver.

We assume that the receiver is only interested in decoding the messages of user 1, but can

choose to decode the messages of some other users if necessary. Because users choose their codes

arbitrarily, reliable message decoding is not always possible. Upon receiving the channel output

symbol sequence Y (N) = [Y1, Y2, . . . , YN ], the receiver either outputs an estimated message and

code index pair (ŵ1, ĝ1) for user 1, or reports collision for user 1. We assume that the receiver

should choose an “operation region” R1 in the code space. Without knowing the actual message

vector and code index vector pair (w, g), the receiver intends to decode the message of user 1 if

g ∈ R1, and intends to report collision for user 1 if g 6∈ R1. Given the operation region R1 and

conditioned on g being the actual code index vector, communication error probability as a function

of g for codeword length N is defined as follows.

P (N)
e (g) =





maxw Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w, g)}, ∀g ∈ R1

maxw 1− Pr





“collision” or

(ŵ1, ĝ1) = (w1, g1)

∣∣∣∣∣∣∣
(w, g)





, ∀g 6∈ R1

(2.1)

Note that in the above error probability definition, for g 6∈ R1, both correct message decoding and

collision report are regarded as acceptable channel outcomes. In other words, collision report is

not strictly enforced for g 6∈ R1. A more general error probability definition will be discussed in

Section 2.3.

Definition 1. We say that an operation region R1 is asymptotically achievable for a multiple access

channel PY |X for user 1, if for all finite M and all code ensemble vectors G with each entry of
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code ensemble having a cardinality of M , decoding algorithms can be designed for the sequence

of random code ensembles G(N) to achieve limN→∞ P
(N)
e (g) = 0, ∀g ∈ G.

Compared with the achievable region definition given in [5, Section III], the achievable region

defined in Definition 1 is only a function of the multiple access channel. It does not depend on the

particular code ensembles G chosen by the users. The following theorem is directly implied by the

achievable region definition and the error probability definition given in (2.1).

Theorem 1. For a discrete-time memoryless multiple access channel PY |X with finite input and

output alphabets, if an operation region R1 is asymptotically achievable for user 1, then any subset

R̃1 ⊆ R1 is also asymptotically achievable for user 1.

The following theorem characterizes the maximum achievable region of multiple access chan-

nel PY |X for user 1.

Theorem 2. For a discrete memoryless multiple access channel PY |X with finite input and output

alphabets, the following region Cd1 in the code space is asymptotically achievable for user 1.

Cd1 =




g

∣∣∣∣∣∣∣∣∣∣

g = (rg,P gX), ∀S ⊆ {1, . . . , K}, 1 ∈ S,

∃S̃ ⊆ S, 1 ∈ S̃, such that,

∑
k∈S̃ rgk < Ig(X S̃;Y |X S̄)





, (2.2)

where S̄ is the compliment set of S, X S̄ is a vector of channel input symbols of users not in S, and

Ig(X S̃;Y |X S̄) denotes the mutual information between X S̃ and Y given X S̄ with respect to joint

distribution PXY = PY |X

∏K
k=1 PgkXk

.

The achievable region Cd1 is maximum in the sense that for any region R1 that is asymptoti-

cally achievable for user 1, we must have R1 ⊆ Cc
d1, where Cc

d1 is the closure of Cd1.

The proof of Theorem 2 is given in [1, Appendix A].

Theorem 2 can be extended from decoding for a single user to decoding for a user subset.

11



Definition 2. Let S0 ⊆ {1, . . . , K} be a user subset. We say that an operation region RS0 is

asymptotically achievable for multiple access channel PY |X for user subset S0, if ∀k ∈ S0, RS0 is

asymptotically achievable for user k.

Corollary 1. For a discrete memoryless multiple access channel PY |X with finite input and output

alphabets, let Cdk be the maximum achievable region for user k. The expression of Cdk can be

obtained from (2.2) by replacing user index 1 with user index k. Let S0 ⊆ {1, . . . , K} be a user

subset. The maximum achievable region for user subset S0 is given by

CdS0 =
⋂

k∈S0

Cdk =




g

∣∣∣∣∣∣∣∣∣∣

g = (rg,P gX), ∀S ⊆ {1, . . . , K},

S ∩ S0 6= φ, ∃S̃, S ∩ S0 ⊆ S̃ ⊆ S,

such that,
∑

k∈S̃ rgk < Ig(X S̃;Y |X S̄)





, (2.3)

where φ is the empty set.

Corollary 1 can be obtained by following the proof of [4, Theorem 4].

Note that, according to [5, Theorem 5], Theorem 2 and Corollary 1 still hold even if we strictly

enforce collision report for g 6∈ R1, by changing the error probability definition to the following.

P (N)
e (g) =





maxw Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w, g)}, ∀g ∈ R1

maxw 1− Pr {“collision”| (w, g)} , ∀g 6∈ R1

(2.4)

However, Theorem 1 does depend on error probability definition in (2.1), where we regard correct

message decoding as an acceptable outcome for g 6∈ R1. Because the receiver does not always

decode the messages of users other than user 1, and the receiver may not be able to correctly

detect the part of the code index vector g corresponding to the un-decoded users. Therefore, the

receiver may not be able to tell whether the actual code index vector g satisfies g ∈ R1 or not.

With the error probability definition (2.1), correct detection of the full code index vector is not

required. That is, so long as the receiver does not output an erroneous message for user 1, whether

the receiver guarantees collision report for g 6∈ R1 or not is not a concern to the system design.

12



Alternatively, suppose we only accept collision report for g 6∈ R1 and change the the error

probability definition to (2.4). The receiver will have to detect whether g ∈ R1 or g 6∈ R1.

Depending on the feasibility of such a detection task, Theorem 1 may no longer hold. That is, even

if a region R1 is asymptotically achievable for user 1, there may exist a subset R̃1 ⊆ R1 that is

not asymptotically achievable for user 1. A simple example of such a situation is illustrated below.

Example 2.1: Consider a distributed multiple access system with two users. Let X1, X2 be the

channel input symbols of the two users, and let Y be the channel output symbol, all having finite

alphabets. Assume that input symbols of user 2 have no impact on the channel output. That is, the

channel model satisfies P (Y |X1, X2) = P (Y |X1). With the error probability definition of (2.4),

according to Theorem 2, the region R1 =




g =




g1

g2




∣∣∣∣∣∣∣
rg1 < Ig1(X1;Y )





is asymptotically

achievable for user 1. However, a subset R̃1 =




g =




g1

g2




∣∣∣∣∣∣∣
rg1 < Ig1(X1;Y ), rg2 < 0.5





with

R̃1 ⊆ R1 is not asymptotically achievable for user 1. This is because the receiver has no capability

of detecting the communication rate of user 2, and therefore cannot tell whether rg2 < 0.5 is true

or false (or equivalently, whether or not g ∈ R̃1).

Let us come back to the error probability definition of (2.1). With the support of Theorem 2 and

Corollary 1, we define Cd1 as the “distributed capacity” for user 1, and CdS0 as the “distributed ca-

pacity” for user subset S0, of multiple access channel PY |X . Interestingly, the distributed capacity

can indeed be regarded as an extension to the classical Shannon capacity in the following sense.

Let Cd be the distributed capacity of the multiple access channel when the receiver is interested

in decoding the messages of all users. According to Corollary 1, Cd is given by

Cd =

{
g

∣∣∣∣∣g = (rg,P gX), ∀S ⊆ {1, . . . , K},
∑

k∈S

rgk < Ig(XS;Y |X S̄)

}
. (2.5)

It is well known that Shannon capacity of the multiple access channel [7], denoted by C, is given

by
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C = convex hull

({
r

∣∣∣∣∣∃PX , ∀S ⊆ {1, . . . , K},
∑

k∈S

rk ≤ I(XS;Y |X S̄)

})
, (2.6)

where I(XS;Y |X S̄) is calculated with respect to joint distribution PXY = PY |X

∏K
k=1 PXk

. From

(2.5) and (2.6), we can see that the two capacity terms satisfy

Cc = convex hull ({r|∃g ∈ Cc
d, rg = r}) . (2.7)

However, the same capacity region has different meanings under different communication models.

In coordinated communication, Shannon capacity region suggests that users should jointly choose

a rate vector within the capacity region to guarantee reliable message delivery. In distributed

communication, on the other hand, users choose their rates individually and the chosen rate vector

could lie inside or outside the capacity region. If the rate vector happens to locate inside the

capacity region, the receiver can detect it and decode the messages reliably. If the rate vector

happens to locate outside the capacity region, the receiver can reliably detect it and report collision.

Similar to classical channel coding theory, Theorem 2 and Corollary 1 hold even if input and

output alphabets of the channel are continuous. One can also pose a constraint in the code space

to limit the coding choices of the users, and to define the constrained distributed channel capacity

accordingly.

Example 2.2: Consider a K-user multiple access system over a discrete-time memoryless

channel with additive Gaussian noise. The channel is modeled by

Y =
K∑

k=1

Xk + V, (2.8)

where V is the Gaussian noise with zero mean and variance N0. Assume that each user k can only

choose random block codes with Gaussian input distribution of zero mean and variance Pk. With

the input distributions being fixed, and if the receiver is only associated to user 1, then according

to Theorem 2, the maximum achievable region for user 1 is given by
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Cd1 =




rg

∣∣∣∣∣∣∣

∀S ⊆ {1, . . . , K}, 1 ∈ S, ∃S̃ ⊆ S, 1 ∈ S̃,

such that,
∑

k∈S̃ rgk < 1
2
log
(
1 +

∑
k∈S̃

Pk∑
k∈S\S̃ Pk+N0

)





. (2.9)

Similarly, one can also use Theorem 2 and Corollary 1 to obtain the maximum achievable region

for any other user and for any user group. If the receiver is interested in decoding messages of

all users, closures of the constrained distributed channel capacity and the Shannon capacity both

equal the following rate region.

Cc
d = Cc =

{
rg

∣∣∣∣∣∀S ⊆ {1, . . . , K},
∑

k∈S

rgk ≤ 1

2
log

(
1 +

∑
k∈S Pk

N0

)}
. (2.10)

When K = 2 and P1 = P2 = 5N0, the maximum achievable region for user 1 and the

maximum achievable region for user 2 are illustrated respectively in Figure 2.1, and the capacity

region is a pentagon illustrated in Figure 2.2. The rates in both figures are measured in nats/symbol.

It can be seen that intersection of the two regions equals the constrained channel capacity, i.e. the

pentagon region, as illustrated in Figure 2.2.
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Figure 2.1: Maximum achievable regions for each individual user of a two user Gaussian channel.
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Figure 2.2: Distributed capacity of a two user Gaussian channel.

2.2 Interfering User and Compound Channel

In this section, we extend the coding theorems presented in Section 2.1 to the case when the sys-

tem has an “interfering user”. As explained in [5], an interfering user can be a remote user whose

codebook is unknown to the receiver, and hence its messages are not decodable at the receiver. A

“virtual” interfering user can also be used to model a compound channel whose realization affects

the conditional channel distribution experienced by the users, but it is “virtual” in the sense of

having no messages to be decoded at the receiver [5].

Assume that, in addition to the K regular users indexed by {1, . . . , K}, there is an interfering

user indexed as user 0. Assume that the interfering user is equipped with M communication

options, denoted by G0 = {g01, . . . , g0M}. For convenience, we still use G0 and g0 ∈ G0 to represent

a code ensemble and a code index of user 0, respectively. With the existence of the interfering

user, the multiple access channel is now modeled by a conditional distribution PY |X(g0), which

is a function of the “coding” choice of the interfering user. Note that channel function PY |X(g0)

can be defined for a domain of g0 that is beyond the ensemble G0. At the beginning of each time

slot, assume that the interfering user should arbitrarily choose a “code” g0, and this determines

the multiple access channel PY |X(g0) to be experienced by the regular users. The receiver knows

the channel functions PY |X(g0) for all g0 ∈ G0, but does not know the value g0 chosen by the
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interfering user. Let vectors g and G now contain the entries of the regular users and the interfering

user, while vectors w and X still only contain the entries of the regular users.

As in Section 2.1, assume that the receiver is only interested in decoding the messages of user

1. Let (w, g) be the actual message vector and code index vector pair, unknown to the receiver.

The receiver should choose an operation region R1 in the space of g. The receiver intends to

decode the message of user 1 if g ∈ R1, and intends to report collision for user 1 if g 6∈ R1.

Theorem 3. For a discrete-time memoryless multiple access channel PY |X(g0) with finite input and

output alphabets and with g0 being the code index of an interfering user, conclusions of Theorems

1, 2, and Corollaries 1 still hold, if the following extensions are applied to the statements in the

theorems, corollaries and in their proofs.

1. Channel input vectors X , rate vectors rg, input distribution vectors P gX should only

contain entries corresponding to the regular users 1, . . . , K.

2. Code index vectors g = (rg,P gX , g0) as well as code ensemble vector G should contain

one more entry corresponding to the code index of the interfering user.

3. Given code index vector g, mutual information function Ig(), entropy function Hg(), and

probability function pg() should all be computed with respect to joint distribution given by

PXY = PY |X(g0)
K∏

k=1

PgkXk
, (2.11)

i.e., with a channel function of PY |X(g0).

4. User subsets S ⊆ {1, . . . , K} should only contain the regular users. The complement set S̄

should be defined as S̄ = {1, . . . , K} \ S, i.e., excluding the interfering user.

5. The maximum number of possible code index vectors should be upper bounded by MK+1.

With the above extensions, if error probability is defined in (2.1), then any subset of an achiev-

able region should also be achievable. Cd1 given in (2.2) is the maximum asymptotically achievable

region for user 1, and CdS0 given in (2.3) is the maximum asymptotically achievable region for user

subset S0 ⊆ {1, . . . , K}.
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The proof of Theorem 3 is skipped.

Example 2.3: Consider a single user communication system over a discrete-time memoryless

channel with an unknown channel gain and additive Gaussian noise. The channel is modeled by

Y = hX + V, (2.12)

where h ≥ 0 is the unknown channel gain and V is the Gaussian noise with zero mean and variance

N0.

Let us pose the constraint that input distributions of all coding options must be zero mean

with variance P . We can formulate the problem by constructing a system with two users. User 1

is the regular user whose coding options G1 = {r1, . . . , rM1} represent an ensemble of Gaussian

random block codes with the same input distribution but with different rates. User 0 is a interfering

(or virtual) user whose communication options G1 = {h1, . . . , hM0} represent the ensemble of

compound gains that can possibly be taken by the channel. Consequently, distributed capacity

region of the system is simply a region in the space of rate and channel gain pairs given by

Cd1 =

{
(rg1 , h)

∣∣∣∣rg1 <
1

2
log

(
1 +

h2P

N0

)}
, (2.13)

where the rate is measured in nats/symbol. The capacity region is illustrated in Figure 2.3 for

P = 5N0.

2.3 Performance with A Finite Codeword Length

While performance bounds on tradeoffs among decoding error probability, communication

rate, and codeword length have been extensively investigated in classical channel coding the-

ory [12] [15] [16] [17] [18] [19] [20], the distributed communication model introduced in Section

2.1 and 2.2 brought several new challenges that must be carefully considered. First, because data

packets in distributed communication are relatively short in length, validity of the obtained tradeoff

bounds should not require a large codeword length. Second, each user in a distributed communica-

18



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

h

1g
r

÷÷
ø

ö
çç
è

æ
+=

0

2

1log
2

1
1 N

Ph
rg

1dC

(n
at
s/
sy
m
b
o
l)

Figure 2.3: Distributed capacity region of a single user system over a Gaussian channel with an unknown

channel gain.

tion system can choose its code from the ensemble arbitrarily. Different coding choices may lead

to different types of error events such as decoding error and collision detection error. Therefore,

when analyzing error probability performance of a distributed communication system, one may

want to assign different weights to the probabilities of different error events. Faced with these

challenges, in this section, we present the non-asymptotic analysis when the codeword length is

finite and could be small in value. Throughout the section, codeword length N is assumed to be

fixed at a constant.

As explained in [5], we will first need to consider an auxilliary decoder called the (D,RD)

decoder. Let D ⊆ {1, . . . , K} be a subset of regular users with 1 ∈ D. Assume that the receiver

chooses an operation region RD and an operation margin R̂D both defined in the code space with

RD ∩ R̂D = φ. A (D,RD) decoder intends to decode the messages of all users in D by regarding

messages from all other users as interference. Let (w, g) be the actual message vector and code

index vector pair. For g ∈ RD, the decoder intends to decode the messages of users in D. For

g ∈ R̂D, the decoder intends to either decode the messages or to report collision for users in D.

For g 6∈ RD ∪ R̂D, the decoder intends to enforce collision report for users in D. Let (ŵD, ĝD)

be the estimated message vector and code index vector for users in D. Given g, conditional error

probability as a function of g is given by
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Pe(g) =





maxwD
Pr{(ŵD, ĝD) 6= (wD, gD)|(wD, g)}, ∀g ∈ RD

maxwD
1− Pr





“collision” or

(ŵD, ĝD) = (wD, gD)

∣∣∣∣∣∣∣
(wD, g)





, ∀g ∈ R̂D

maxwD
1− Pr {“collision”|(wD, g)} , ∀g 6∈ RD ∪ R̂D

(2.14)

Let {αg} be a set of pre-determined weight parameters each being assigned to a code index

vector g ∈ G, such that

{
αg

∣∣∣∣∣αg ≥ 0, ∀g ∈ G,
∑

g

e−Nαg = 1

}
. (2.15)

We define the “generalized error performance” of the (D,RD) decoder as

GEPD =
∑

g

Pe(g)e
−Nαg . (2.16)

Let us use Pgk(Xk) to denote the probability of channel input symbol Xk under coding op-

tion gk, and use P (Y |XD, gD̄) to denote the conditional probability of channel output symbol Y

given input symbol vector XD for users in D, and code index vector gD̄ for users not in D. The

following theorem gives an achievable bound, improved from the corresponding bound presented

in [5, Theorem 3], for the generalized error performance of the (D,RD) decoder.

Theorem 4. Consider the distributed multiple access system described above. There exists a de-

coding algorithm such that GEPD is upper bounded by

GEPD ≤
∑

g∈RD




∑

S⊂D


 ∑

g̃∈RD,g̃S=gS

exp(−NEmD(g, g̃, S))

+2
∑

g̃ 6∈RD,g̃S=gS

exp(−NEiD(g, g̃, S))

]
+2

∑

g̃ 6∈RD∪R̂D,g̃D=gD

exp(−NEiD(g, g̃, D))



 ,

(2.17)
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where EmD(g, g̃, S), EiD(g, g̃, S) for S ⊂ D and EiD(g, g̃, D) in the above equation are given by

EmD(g, g̃, S) = max
0<ρ≤1

−ρ
∑

k∈D\S

rg̃k + max
0≤s≤1

− log
∑

Y

∑

XS

∏

k∈S

Pgk(Xk)

×


∑

XD\S

[
P (Y |XD, gD̄)e

−αg
]1−s

∏

k∈D\S

Pgk(Xk)




×


∑

XD\S

[
P (Y |XD, g̃D̄)e

−αg̃
] s

ρ

∏

k∈D\S

Pg̃k(Xk)




ρ

,

EiD(g, g̃, S) = max
0<ρ≤1

−ρ
∑

k∈D\S

rgk + max
0≤s≤1−ρ

− log
∑

Y

∑

XS

∏

k∈S

Pgk(Xk)×


∑

XD\S

[
P (Y |XD, gD̄)e

−αg
] s

s+ρ

∏

k∈D\S

Pgk(Xk)




s+ρ

×


∑

XD\S

P (Y |XD, g̃D̄)e
−αg̃

∏

k∈D\S

Pg̃k(Xk)




1−s

.

EiD(g, g̃, D) = max
0≤s≤1

− log
∑

Y

∑

XD

∏

k∈D

Pgk(Xk)

[
P (Y |XD, gD̄)e

−αg
]s [

P (Y |XD, g̃D̄)e
−αg̃
]1−s

. (2.18)

The proof of Theorem 4 is given in [1, Appendix B]. Compared with the bound presented

in [5, Equation (7)], besides other minor improvements, the second and the third terms on the right

hand side of (2.17) lead to a tighter bound because, if the summations are dominated by only a

small number of terms, then the summations should not scale in the number of code index vectors

satisfying g̃ 6∈ RD.

Let us now consider the case when the receiver is only interested in decoding the message

of user 1 but can choose to decode the messages of other users if necessary. Assume that the

receiver should choose an operation region R1 and an operation margin R̂1 in the code space with

R1 ∩ R̂1 = φ. Let g be the actual code index vector. The receiver intends to decode the message

of user 1 for g ∈ R1, to either decode the messages of user 1 or to report collision for user 1 for

g ∈ R̂1, and to report collision for user 1 for g 6∈ R1 ∪ R̂1.
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Let (ŵ1, ĝ1) be the message and code index estimate of user 1. Let (w, g) be the actual message

vector and code index vector pair, conditional error probability of the system as a function of g is

defined as

Pe(g) =





maxw1 Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w1, g)}, ∀g ∈ R1

maxw1 1− Pr





“collision” or

(ŵ1, ĝ1) = (w1, g1)|(w1, g)

∣∣∣∣∣∣∣
(w1, g)





, ∀g ∈ R̂1

maxw1 1− Pr {“collision”|(w1, g)} , ∀g 6∈ R1 ∪ R̂1

(2.19)

Let {αg} be a set of pre-determined weight parameters each being assigned to a code index vector

g ∈ G and satisfying constraint (2.15). We define the “generalized error performance” of the

system as

GEP =
∑

g

Pe(g)e
−Nαg . (2.20)

According to [5, Theorem 4], an achievable bound on the generalized error performance of the

system is given in the following theorem.

Theorem 5. Consider the distributed multiple access system described above. Assume that the

receiver is only interested in decoding the message of user 1. Let R1 be the operation region, R̂1

be the operation margin, and {αg} be the set of weight parameters. Let σ be a partition of the

operation region R1, as described below

R1 =
⋃

D,D⊆{1,...,K},1∈D

RD, RD′ ∩RD = φ,

∀D,D′ ⊆ {1, . . . , K}, D′ 6= D, 1 ∈ D,D′. (2.21)

There exists a decoding algorithm such that the generalized error performance defined in (2.20) is

upper bounded by

GEP ≤ min
σ

∑

D,D⊆{1,...,K},1∈D

GEPD, (2.22)
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where GEPD represents the generalized error probability of the (D,RD) decoder with receiver

decoding the messages of all and only the users in D, with the operation region being RD and the

operation margin being R̂D = R1 ∪ R̂1 \RD.

The proof of Theorem 5 is provided in [1, Appendix B].

Note that Theorem 5 did not provide an explicit algorithm to calculate the partition that mini-

mizes either
∑

D,D⊆{1,...,K},1∈D GEPD or its upper bound obtained from (2.17). To find the optimal

partition, one may need to compute every single term on the right hand sides of (2.17), (2.18) and

(2.22) for all code index vectors and for all user subsets. Complexity of such calculations is beyond

the scope of this thesis.
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Chapter 3

Medium Access Control Game

Classical medium access control (MAC) protocols assume that a link-layer user (transmitter)

should choose either to idle in a time slot or to transmit a packet with pre-determined communica-

tion parameters. Under this assumption, when users in a distributed wireless network experience

packet collisions, the only approach to control contention is to reduce and randomize their trans-

mission activities [10]. While such a model and its derived contention control approaches are

widely adopted in distributed MAC protocols such as the DCF protocol in 802.11, they do not

permit exploitation at the link layer of the well known information theoretic result that parallel

transmission with carefully controlled rates achieves the optimal sum throughput of a multiple

access system.

The extended channel coding theorems introduced in Chapter 2 enhances the classical physical-

link layer interface in the sense of giving a link layer user multiple transmission options corre-

sponding to different communication settings such as different rates and power. It also enables the

derivation and analysis of link layer channel model and medium access control performance using

physical layer channel properties. Consequently, link layer users can now exploit advanced com-

munication adaption approaches, such as rate adaptation, to improve channel sharing efficiency in

a distributed networking. Understanding the impact of the enhanced physical-link layer interface

on the strategy of link layer communication adaptation and contention control therefore becomes

an important topic. Note that, while navigating through the provided transmission options enables

the capability of advanced communication adaptation, due to the layering architecture (or more

precisely, the modularity requirement), a link layer user is bounded with the provided transmission

options and can only construct its transmission scheme within this constraint to optimize a chosen

network utility.

For a wide range of distributed networks, game theoretic problem formulations and analyses

have proven to provide new insights to reverse/forward engineering of existing MAC protocols
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for improved fairness and higher throughput, and for decoupling contention control from handling

failed packets [21] [22]. The key idea of a game theoretic MAC algorithm is to control con-

tention by distributively adapting transmission probabilities of the users to optimize their individ-

ual utilities, each being carefully chosen as a function of the transmission cost and the experienced

contention level of the corresponding user. Utility function design often requires a good under-

standing on the expected contention level and the desired transmission probability, derived from

performance objectives of the users. While contention control in a distributed wireless network has

been rigorously investigated under the classical link layer model, extending the understandings to

the case when each link layer user has multiple transmission options is a new research direction

that deserves careful and extensive exploration. In Chapter 3 and Chapter 4, the problem of dis-

tributed MAC in a wireless network with and without an enhanced physical-link layer interface

will be investigated from two different perspectives. In this Chapter, we model the distributed

MAC as a non-cooperative game, where each user should adapt its transmission scheme to maxi-

mize an individual utility function according to the available channel feedback. The discussion of

a stochastic approximation framework based MAC algorithm will be postponed to Chapter 4.

3.1 Game Theoretic Problem Formulation

Consider a wireless network with K users. Each user is equipped with M +1 transmission op-

tions corresponding to a set of M+1 channel coding options, denoted by Gk = {gk0, gk1, · · · , gkM}.

Each element gkm, m = 0, · · · ,M , represents a particular transmission option of user k that in-

cludes the specifications of transmission power, communication rate, etc. We assume that the first

element gk0 always corresponds to the “idling" option. Time is slotted with each slot equalling the

length of a fixed number of channel symbols, and this is also the length of a codeword. In each

time slot, user k chooses one of the transmission options and sends a packet with encoded message

to its receiver. The choice of transmission option of a user is shared neither with other users nor

with the receiver. Assume that the communication channel is memoryless and static. Depending

on whether reliable message decoding is supported by the channel or not, a transmitted packet is
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either received successfully or experiencing a collision. In the latter case, collision report is fed

back to the transmitter. Note that, the link layer model degrades to a classical one if each Gk only

contains two elements corresponding to idling/transmission options, respectively.

We assume that users are backlogged with messages. In each time slot, user k randomly

chooses a transmission option according to an M -length vector pk = [pk1, · · · , pkM ]T termed

the “transmission probability vector" of user k. Here pkm ≥ 0, m = 1, · · · ,M , denotes the

probability that user k chooses option gkm, and 1 −∑M
m=1 pkm ≥ 0 is the probability that user k

idles. Let P = [pT
1 ,p

T
2 , · · · ,pT

K ]
T denote the transmission probability vectors of all users, and

P−k = [pT
1 , · · · ,pT

k−1,p
T
k+1, · · · ,pT

K ]
T the transmission probability vectors of all users but user

k. Conditioned on user k transmitting with option gkm, let 0 ≤ qkm ≤ 1 be the probability that

the message (or packet) is successfully received, for k = 1, · · · , K and m = 1, · · · ,M . Define

qk = [qk1, · · · , qkM ]T as the “conditional success probability vector" of user k. Clearly, given the

communication channel, qk is a function of P−k.

We model the medium access control as a non-cooperative game where users distributively

adapt their transmission probability vectors to maximize individual utility functions. The utility

function of user k is denoted by Uk(pk, qk), which is a function of the transmission probability

vector pk and the conditional success probability vector qk. Given P−k and consequently qk, the

utility maximization problem of user k is represented by

max
pk

Uk(pk, qk), s.t. pk ≥ 0,pT
k 1 ≤ 1, (3.1)

where 0 and 1 are vectors of all zeros and all ones, respectively.

We say P is a Nash equilibrium of the medium access control game if for all k = 1, · · · , K,

pk maximizes Uk(pk, qk) given P−k. The following theorem gives a sufficient condition for the

existence of a Nash equilibrium.

Theorem 6. The medium access control game admits at least one Nash equilibrium if, for all

k = 1, · · · , K, utility function Uk(pk, qk) is concave in pk.
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Theorem 6 is implied by [23, Theorem 1].

Given P , define Gkl(P ) as the second order partial derivative of Uk(pk, qk) with respect to pk

and pl,

Gkl(P ) =
∂2Uk(pk, qk)

∂pk∂pl

. (3.2)

The following theorem gives a sufficient condition under which Nash equilibrium of the medium

access control game is unique.

Theorem 7. Assume that the medium access control game has at least one Nash equilibrium. Let

P (1) and P (2) be two Nash equilibria. For any 0 ≤ θ ≤ 1, let P = θP (1) + (1 − θ)P (2). If

P (1) 6= P (2) implies

K∑

k=1

K∑

l=1

(p
(1)
k − p

(2)
k )TGkl(P )(p

(1)
l − p

(2)
l ) < 0, (3.3)

then Nash equilibrium of the medium access control game must be unique.

Theorem 7 is implied by [23, Theorems 2, 6].

3.2 Utility Design with A Classical Physical-Link Layer Inter-

face

To help explaining the utility function design with a relatively simple notation, in this section,

we will first consider wireless networks with the classical physical-link layer interface where each

user only has binary transmission/idling options. We choose to skip subscripts of the variables if

this causes no confusion.

Consider a multiple access system with a symmetric channel and homogeneous users. Each

user only has two transmission options, G = {g0, g1}, where g0 is the idling option. According to

the achievable region result in Chapter 2, if multiple users transmit in parallel, the packets should be

received successfully so long as the code index vector of the users lies inside an achievable region.

Assume that packet transmissions should be successful in a time slot if and only if no more than N
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users transmit in parallel, and the value of N is known to all users. Assume that K ≫ N ≥ 1 and

users want to maximize the symmetric throughput. With binary transmission/idling options, the

system described is a random multiple access system over a multi-packet reception channel [24]

[25]. Optimal sum throughput of the system is approached when each user transmits at probability

x∗/K where x∗ is the solution of the following maximization problem [25].

x∗ = argmax
x

e−x

N∑

i=1

xi

(i− 1)!
. (3.4)

When all users set their transmission probabilities at x∗/K, conditional success probability expe-

rienced by each user can be approximated by

q∗ = e−x∗
N−1∑

i=0

x∗i

i!
. (3.5)

Assume that a user estimates the total number of users to be K̃. According to the above

understanding, in the medium access control game, we design the utility function of each user as

follows.

U(p, q) =
p

x∗
t(q)− h

p

x∗
log

p

ex∗/K̃
. (3.6)

The utility function contains two parts. The first part p
x∗ t(q) is a linear function in p that intends

to control the conditional success probability q above its desired value shown in (3.5). We require

that t(q), which is a function of q, should satisfy
dt(q)
dq

≥ 0. We say that function t(q) is unbiased if

t(q∗) = 0. Note that, with an unbiased t(q) function, the p
x∗ t(q) term alone tells a user to increase p

when q < q∗ and to decrease p when q > q∗2. The second part h p
x∗ log

p

ex∗/K̃
in the utility function,

with h being a scaling parameter, is a convex function in p that intends to keep the transmission

probability p around its targeted value x∗/K̃. Note that h p
x∗ log

p

ex∗/K̃
is minimized at p = x∗/K̃.

2For various reasons, users may prefer a biased t(q) function over an unbiased one. Discussions on this issue are

skipped.
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According to Theorem 8, if parameter h is chosen appropriately, the non-cooperative medium

access control game should have a unique Nash equilibrium. Furthermore, if K̃ = K ≫ 1, and

function t(q) is unbiased, then the Nash equilibrium is represented by p = x∗/K for all users since

∂U(p, q)

∂p

∣∣∣∣
p=x∗/K,q=q∗

=
t(q∗)

x∗
− h

x∗

[
log

1

e
+ 1

]
= 0. (3.7)

To understand the idea behind the utility function design of (3.6), we can think about the dis-

tributed channel sharing game as a social event. Let us regard transmission probability p and

conditional success probability q as the “behavior" and the measured “feedback" of a user. To

participate in the social event, each user chooses a behavior target x∗/K̃ and a feedback target q∗,

which are calculated via utility maximization in an envisioned network. In the above discussion

for example, the targets are computed via sum throughput optimization in a random multiple ac-

cess network with homogeneous users. Once the targets are obtained, each user chooses a utility

function that specifies how the user should try to keep his behavior around the behavior target, and

how the user should respond to the social force if the measured feedback differs from the feedback

target.

3.3 Utility Design with An Enhanced Physical-Link Layer In-

terface

Let us now consider the same system investigated in Section 3.2, but with each user having

M ≥ 2 transmission options. Assume that, each user, say user k, keeps an estimated total user

number, denoted by K̃k. For each user and each non-idling transmission option, say option gkm,

user k chooses two parameters: a targeted conditional success probability q∗km and a targeted trans-

mission probability x∗
km/K̃k, for m = 1, · · · ,M . Given these parameters, utility function of user

k is designed as the summations of two parts each being the summation of M items corresponding

to the M non-idling transmission options.
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Uk(pk, qk) =
M∑

m=1

pkm
x∗
km

dkmtkm(qkm)− hk

M∑

m=1

pkm
x∗
km

log
pkm

skmex∗
km/K̃k

. (3.8)

The first part
∑M

m=1
pkm
x∗
km

dkmtkm(qkm) is a linear function in pk that intends to control the condi-

tional success probability vector qk above the desired values. We require that
dtkm(q)

dq
≥ 0. Differ-

erent from the case of binary transmission/idling options, we introduce a “steering vector" dk =

[dk1, dk2, · · · , dkM ]T , with dk ≥ 0,dT
k 1 ≤ 1, to allow user k to assign different weights to terms

corresponding to different transmission options. The second part hk

∑M
m=1

pkm
x∗
km

log pkm
skmex∗

km
/K̃k

is a convex function in pk that intends to keep the transmission probability vector pk around

a targeted value p∗
k. We introduce another “steering vector" sk = [sk1, sk2, · · · , skM ]T , with

sk ≥ 0, sTk 1 ≤ 1, and construct the targeted transmission probability vector p∗
k as follows.

p∗
k = [sk1x

∗
k1/K̃k, sk2x

∗
k2/K̃k, · · · , skMx∗

kM/K̃k]
T . (3.9)

Without specifying how the q∗km and x∗
km/K̃k parameters are determined, our key result is

presented in the following theorem, which shows that if the scaling parameters hk are chosen ap-

propriately, then the non-cooperative medium access control game has a unique Nash equilibrium.

Theorem 8. Given the steering vectors dk, sk, k = 1, · · · , K, the medium access control game

has a unique Nash equilibrium if the following inequality is satisfied for all k = 1, · · · , K and

m = 1, · · · ,M
K̃k

K

hk

x∗2
km

e
−

t
(max)
km
hk ≥ max





(
t′
(max)
km

x∗
km

)2

, 1



 , (3.10)

where t
(max)
km = maxq tkm(q) and t′

(max)
km = maxq

dtkm(q)
dq

.

The proof of Theorem 8 is given in Appendix A.1.

To understand the utility function design and the significance of Theorem 8, we can again think

about the distributed channel access game as a social event, and use pk, qk to represent the “be-

havior" and the measured “feedback" of user k. We assume that user k should choose a targeted

transmission probability x∗
km/K̃k and a targeted conditional success probability q∗km for each of the
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non-idling transmission options. Since a user now has M non-idling options, the behavior target p∗
k

is constructed using a steering vector sk as p∗
k = [sk1x

∗
k1/K̃k, sk2x

∗
k2/K̃k, · · · , skMx∗

kM/K̃k]
T . The

term hk

∑M
m=1

pkm
x∗
km

log pkm
skmex∗

km
/K̃k

in the utility function, which is referred as the “self-behavior

preference" term, intends to keep the behavior of user k around the targeted behavior p∗
k. On

the other hand, we construct the feedback target q∗
k as q∗

k = [q∗k1, q
∗
k2, · · · , q∗kM ]T . The term

∑M
m=1

pkm
x∗
km

dkmtkm(qkm) in the utility function, which is referred as the “social-behavior prefer-

ence" term, specifies how user k should adapt his behavior according to the social forces repre-

sented by the measured feedback. Here the steering vector dk is introduced to allow user k to

emphasize or ignore social forces corresponding to different transmission options. Online adapta-

tions of the steering vectors dk and sk will be illustrated using an example in Section 3.4. Note

that, if the the scaling parameters hk, for k = 1, · · · ,M , are large enough, then the self-behavior

preference term will dominate the utility function of each user. Consequently, users will keep their

behaviors around their pre-determined targets, and this can easily lead to a unique Nash equilib-

rium for the distributed channel access game. Theorem 8 shows that, to achieve such an effect, so

long as the estimated total number of users K̃k is not too far from the true value K, the values of hk

do not need to scale in the total number of users K or the total number of non-idling transmission

options M .

3.4 Simulation Results

In this section, we use computer simulations to show that, once multiple transmission options

are provided for each user, a distributed network often prefers low rate and parallel channel access

options over high rate and exclusive channel access options. Such a property, being consistent with

the well-known information theoretic understanding, can demonstrate the potential impact of the

enhanced physical-link layer interface on the design of medium access control algorithms.

Example 3.1: Consider a multiple access system where K = 100 users stay on a circle cen-

tered around the receiver. The multiple access channel is memoryless with additive Gaussian noise

of zero mean and variance N0. The channel gains from all the users to the receiver are assumed
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to be unit-valued. Each user has three non-idling transmission options, denoted by g1, g2, and

g3. The three non-idling options all correspond to random Gaussian block channel codes at the

physical layer with the same transmission power P , but with different rates r1 =
1
14
log
(
1 + 7P

N0

)
,

r2 = 1
6
log
(
1 + 3P

N0

)
and r3 = 1

2
log
(
1 + P

N0

)
, respectively. We set P/N0 = 10. Assume that

the total number of users is known, i.e., K̃ = 100. For every transmission option gi, i = 1, 2, 3,

targeted conditional success probability q∗i and transmission probability x∗
i /100 are chosen to max-

imize the sum throughput of a classical system with each user having binary transmission options

of {g0, gi}. In other words, (q∗1, x
∗
1), (q

∗
2, x

∗
2), (q

∗
3, x

∗
3) are determined using (3.5) and (3.4) by

setting N at 7, 3, 1, respectively. We choose ti(qi) = x∗
i diriqi, which is a biased function since

ti(q
∗
i ) 6= 0. We also set the scaling parameter h at the minimum value satisfying (3.10).

We initialize the transmission probability vectors of all users at p = [1/4, 1/4, 1/4]T , and their

steering vectors at d = s = [1/3, 1/3, 1/3]T . During the distributed channel sharing game, each

user first uses 200 time slots to measure the conditional success probability vector q. If during

this time interval a user does not have a sufficient number of transmission attempts using a par-

ticular option gi, then qi is set to a small but none-zero value. After measuring the conditional

success probability vector q, each user then updates its transmission probability vector p in the

gradient direction that maximizes the utility function. Steering vector s is updated in the gradient

direction that minimizes the term
∑M

m=1
pm
x∗
m
log pm

smex∗
m/K̃

. Steering vector d is updated to increase

the weights of feedback terms with larger values of ti(qi). The procedure iterates till transmission

probability vectors of all users converge. Figure 3.1 illustrates the sum throughput of the system

in bits/symbol in each iteration (one iteration takes 200 time slots). The three dashed-red lines

respectively correspond to the targeted sum throughput of the systems where each user only has

binary transmission options of {g0, g1}, {g0, g2}, {g0, g3}. In this example, transmission probabil-

ity vectors of all users converge quickly to p = [0.0507, 0, 0]T . In other words, users will only

use the low rate option to share the multiple access channel. Note that the resulting sum through-

put is slightly higher than the top dashed-red line because the targeted probability x∗
1/K is only

approximately optimal for a finite K.
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Figure 3.1: Convergence of the sum throughput in bits/symbol. P/N0 = 10. One iteration takes 200 time

slots.

In this example, we update steering vector s to minimize the “self-behavior preference" term.

Let us define the following region of the transmission probability vector,

Rp =
{
p|∃s̃, s̃ ≥ 0, s̃T1 = 1, such that p = [s̃1x

∗
1/K̃, s̃2x

∗
2/K̃, · · · , s̃Mx∗

M/K̃]T
}
.

(3.11)

Note that, if we take the adaptation of s into consideration, the self-behavior preference term

mins,s≥0,sT 1≤1

∑M
m=1

pm
x∗
m
log pm

smex∗
m/K̃

achieves the same minimum value of −K̃ at any p ∈ Rp.

Therefore, with the help of the steering vector adaptation, the self-behavior preference term only

intends to keep the behavior p of a user around region Rp. It however does not provide any

preference on which transmission option should be more favorable to the user. On the other hand,

the “social-behavior preference" term intends to help a user to find the best transmission option

based on feedback received from the system. If we fix steering vector d at d = [1/3, 1/3, 1/3]T ,

then each user will assign positive probabilities to all entries of the transmission probability vector.

Adaptation of steering vector d helps a user to favor the transmission option with the best feedback,

which maximizes ti(qi).
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Chapter 4

Utility Optimization in A Distributed Multiple

Access System

In this Chapter, we will discuss the support of the interface enhancement at the data link layer

from a different perspective. The enhanced interface equips each link layer user with multiple

transmission options as opposed to binary transmission/idling options in a classical interface, and

therefore enables advanced wireless capabilities such as rate and power adaptation. As in Chapter

3, we still seek the answer to the question that, for data link layer users in a distributed network,

whether there exists a general framework to efficiently exploit an arbitrary and often limited set of

provided transmission options to optimize a chosen network utility.

Distributed adaptive medium access control (MAC) protocols can be categorized into splitting

algorithms [26] [27] [28] [29] [30] [31] [32] and back-off approaches [11] [13] [33] [34] [35]. In

splitting algorithms such as the FCFS algorithm [26], under the assumption that noiseless channel

feedback is instantly available, users maintain a common virtual interval of their random iden-

tity values. The interval is partitioned and ordered, which determines the transmission schedule

of the users, according to a sequence of channel feedback messages. While splitting algorithms

can often achieve a relatively high system throughput, their function depends on the assumptions

of instant availability of channel feedback and correct reception of feedback sequences. Both of

the two conditions, unfortunately, can be violated in a wireless environment. Theoretical analysis

of a splitting algorithm, taking into account the wireless-related factors such as channel fading,

measurement noise, feedback error and transmission delay, can be extremely challenging. Analy-

sis of the back-off algorithms, on the other hand, has proven to be more trackable [11] [13] [36].

In back-off algorithms such as the 802.11 DCF protocol [11], conditioned on packet availability,

each user should transmit with a particular probability. In most cases [13] [35], a user should de-

crease its transmission probability in response to packet collision (or a transmission failure) event,
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and increase its transmission probability in response to a transmission success event. Distributed

probability adaptation in a back-off algorithm often falls into the framework of stochastic approx-

imation [13] [36], whose theoretical analysis enjoys a rigorous set of mathematical and statistical

tools developed in the literature [37] [38] [39] [40] [41]. Practical back-off algorithms can also

be analyzed using Markov models [11]. Most of the existing analyses of the splitting and the

back-off algorithms either assume a throughput optimization objective and/or a simple collision

channel model. While there has been no analytical framework that can deal with the optimization

of an arbitrary network utility with a general channel model, the interesting topic of how collision

resolution algorithms should be revised to work with wireless-related physical layer properties,

such as capture effect and multipacket reception, has attracted significant research efforts in the

literature [24] [25] [35] [42] [43] [44].

In this Chapter, a distributed MAC framework abstracted from the back-off algorithms will be

introduced. In order to maintain a relatively simple and trackable investigation, we focus on dis-

tributed link-layer multiple access networking with an unknown number of homogeneous users,

and also assume that all users should have saturated message queues. Motivations of such a focus

are explained as follows. First, the assumption of saturated message queues is introduced to avoid

the complication of random message arrivals. While bursty message arrival is rather an important

character of distributed network systems [10] [45], it is known to create coupling between trans-

mission activities of the users [46] [47], and such coupling often leads to open research problems

in throughput and stability analysis [48] [49] [50] [51] of systems with a relatively small num-

ber of users [52] [53]. Results obtained under the assumption of saturated message queues can

often serve as achievable bounds to the corresponding results for systems with random message

arrivals [36] [51]. Second, because each user only interacts with the receiver, the assumption of

multiple access networking with homogeneous users mainly represents the communication envi-

ronment envisioned by each link layer user3. In other words, without further knowledge about the

3Note that the assumption of user symmetry is also reflected in many existing channel models such as the collision

channel model [10] and the multipacket reception channel model [24] [25].
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actual networking environment, a link layer protocol should be designed to help a user to get a fair

share of the multiple access channel under the assumption of user homogeneity. Early research

investigation aims at achieving such a design objective in the assumed networking environment.

Understanding the behavior of the link layer algorithm in a general networking environment is a

future research task that is beyond the scope of this thesis. Finally, because users in a distributed

network often access the channel opportunistically, it is difficult to know how many users are ac-

tually active [36]. Suppose that the homogeneous users in a distributed multiple access network

should be able to calculate their optimal transmission schemes if the user number is known, but it

is desired to develop distributed algorithms to lead the system to a desired operation point without

the knowledge of the actual user number4. Note that, rather than developing a practical MAC pro-

tocol, the primary objective is to obtain useful insights about distributed medium access control

through the analysis of systems with/without the enhanced physical-link layer interface.

4.1 A Stochastic Approximation Framework

Consider a time-slotted distributed multiple access network with a memoryless channel and

K homogeneous users. The length of each time slot equals the transmission duration of one

packet. The user number K is assumed to be known neither to the users nor to the receiver.

Each user, say user k, is equipped with M transmission options plus an idling option, denoted by

Gk = {gk0, gk1, . . . , gkM} with gk0 being the idling option. These options correspond to the code

ensemble Gk prepared by the physical layer transmitter of user k, as explained in Chapter 2. We

assume that all users are backlogged with saturated message queues. At the beginning of each time

slot t, according to an associated probability vector, each user either idles or randomly chooses a

transmission option to send its message. Transmission decisions of the users are made individually

in the sense that the decisions are not shared among the users or with the receiver. The M -length

probability vector associated with user k in time slot t can be written as pk(t) = pk(t)dk(t), where

4In back-off algorithms, the necessity of probability adaptation generally implies the assumption that the number

of active users is unknown to the system.
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pk(t) is termed the “transmission probability” of user k, and dk(t), termed the “transmission direc-

tion” vector of user k, is an M -length probability vector whose entries dkm(t), for 1 ≤ m ≤ M ,

satisfy dkm(t) ≥ 0 and
∑M

m=1 dkm(t) = 1.

At the end of each time slot t, based upon available channel feedback, each user, say user k,

calculates a target probability vector p̃k(t) = p̃k(t)d̃k(t). User k then updates its transmission

probability vector by

pk(t+ 1) = (1− α(t))pk(t) + α(t)p̃k(t) = pk(t) + α(t)(p̃k(t)− pk(t)), (4.1)

where α(t) > 0 is a step size parameter of time slot t. Let P (t) = [pT
1 (t),p

T
2 (t), . . . ,p

T
K(t)]

T be a

vector of length MK that consists of the transmission probability vectors of all users in time slot

t. Let P̃ (t) = [p̃T
1 (t), p̃

T
2 (t), . . . , p̃

T
K(t)]

T be the corresponding target vector. P (t) is updated by

P (t+ 1) = P (t) + α(t)(P̃ (t)− P (t)). (4.2)

Note that (4.2) falls into the framework of stochastic approximation algorithms [37] [38] [39],

where the actual target transmission probability vector P̃ (t) is often calculated based upon noisy

estimates of certain system variables.

Define P̂ (t) = [p̂T
1 (t), p̂

T
2 (t), . . . , p̂

T
K(t)]

T as the “theoretical value” of P̃ (t) when there is

no measurement noise and no feedback error in time slot t, with p̂k(t) being the corresponding

theoretical value of p̃k(t), for 1 ≤ k ≤ K. Let Et[P̃ (t)] be the expectation of P̃ (t) conditioned on

system state at the beginning of time slot t. Write Et[P̃ (t)] as follows

Et[P̃ (t)] = P̂ (t) +G(t) = P̂ (P (t)) +G(P (t)), (4.3)

where G(t) = Et[P̃ (t)]− P̂ (t) is defined as the bias term in the target probability vector calcula-

tion. Given the communication channel, both P̂ (t) and G(t) are functions of P (t), which consists

of transmission probability vectors of all users in time slot t.
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Next, two conditions are presented, which are typically required for the convergence of a

stochastic approximation algorithm [37] [38] [39].

Condition 1. (Mean and Bias) There exists a constant Km > 0 and a bounding sequence 0 ≤

β(t) ≤ 1, such that

‖G(P (t))‖ ≤ Kmβ(t). (4.4)

Furthermore, we assume that β(t) should be controllable in the sense that one can design protocols

to ensure β(t) ≤ ǫ for any chosen ǫ > 0 and for large enough t.

Condition 2. (Lipschitz Continuity) There exists a constant Kl > 0, such that

‖P̂ (P a)− P̂ (P b)‖ ≤ Kl‖P a − P b‖, for all P a,P b. (4.5)

Under these conditions, according to stochastic approximation theory [39] [40] [41], if the step

size sequence α(t) and the bounding sequence β(t) are small enough, trajectory of the transmission

probability vector P (t) under distributed adaptation given in (4.2) can be approximated by the

following associated ordinary differential equation (ODE),

dP (t)

dt
= −[P (t)− P̂ (t)], (4.6)

where, with an abuse of notation, we also used t to denote the continuous time variable. Because

all entries of P (t) and P̂ (t) stay in the range of [0, 1], any equilibrium P of the associated ODE

given in (4.6) must satisfy

P = P̂ (P ). (4.7)

Suppose that the solution to (4.7), which is also the equilibrium of (4.6), is unique at P ∗ =

[p∗T
1 , . . . ,p∗T

K ]T . According to stochastic approximation theory, if the step size sequence α(t) and

the bounding sequence β(t) are small in value, convergence results are stated as follows.

Theorem 9. For distributed transmission probability vector adaptation given in (4.2), assume that

the associated ODE given in (4.6) has a unique stable equilibrium at P ∗. Suppose that α(t) and
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β(t) satisfy the following conditions

∞∑

t=0

α(t) = ∞,
∞∑

t=0

α(t)2 < ∞,
∞∑

t=0

α(t)β(t) < ∞. (4.8)

Under Conditions 1 and 2, P (t) converges to P ∗ with probability one.

Theorem 9 is implied by [40, Theorem 4.3].

Theorem 10. For distributed transmission probability vector adaptation given in (4.2), assume

that the associated ODE given in (4.6) has a unique stable equilibrium at P ∗. Let Conditions 1 and

2 be true. Then for any ǫ > 0, there exists a constant Kw > 0, such that, for any 0 < α < α < 1

satisfying the following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√
α, ∀t ≥ T0, (4.9)

P (t) converges to P ∗ in the following sense

lim sup
t→∞

Pr {‖P (t)− P ∗‖ ≥ ǫ} < Kwα. (4.10)

Theorem 10 can be obtained by following the proof of [41, Theorem 2.3] with minor revisions.

Note that, for simplicity, the above discussion assumes the same step size sequence α(t) and

the same bounding sequence β(t) for all users. It is also assumed that all users should update

their transmission probability vectors (synchronously) in each time slot. However, by following

the literature of stochastic approximation theory [39] [40], it is easy to show that different users

can use different step sizes and bounding sequences, and can also adapt their probability vectors

asynchronously. So long as the step sizes and bounding sequences of all users satisfy the same con-

straints given in (4.8) and (4.9), and the users update their probability vectors frequently enough,

then convergence results stated in Theorems 9 and 10 remain valid.

With convergence of the probability vectors guaranteed by Theorems 9 and 10, the key objec-

tive of the system design is to develop distributed MAC algorithms to satisfy Conditions 1 and 2

39



and to place the unique equilibrium of the associated ODE at the desired point. Unfortunately,

achieving such an objective is not always easy especially when the enhanced physical-link layer

interface is considered. Because users are homogeneous, due to symmetry, if an equilibrium of the

system is unique, transmission probability vectors of the users at the equilibrium must be identical.

Such a property is enforced by guaranteeing that all users should obtain the same target transmis-

sion probability vector in each time slot. The corresponding part of the system design is introduced

below.

In each time slot, assume that there is a set of V virtual packets being transmitted through the

channel. The virtual packet set remains the same over different time slots. Each virtual packet

in the set is an assumed packet whose coding parameters are known to the users and to the re-

ceiver, but it is not physically transmitted in the system, i.e., the packet is “virtual”. Assume that,

without knowing the transmission status of the users, the receiver can detect whether the recep-

tion of each virtual packet should be regarded as successful or not, and therefore can estimate the

success probability of each virtual packet. For example, suppose that the link layer channel is a

collision channel, and a virtual packet has the same coding parameters as those of a real packet.

Then, the virtual packet reception should be regarded as successful if and only if no real packet is

transmitted in the given time slot. Success probability of the virtual packet in this case equals the

idling probability of the collision channel. For another example, if all packets including the virtual

packets are encoded using random block codes, given the physical layer channel model, reception

of each virtual packet corresponds to a detection task of determining whether or not the code index

vector of the real users should belong to a specific operation region. Such detection tasks and their

performance bounds have been discussed in Chapter 2.

Let qv(t) be a V -length vector whose entry qvi(t), for 1 ≤ i ≤ V , is the success probability

of the ith virtual packet in time slot t. We assume that the receiver should measure and feed

the estimated qv(t) back to all users (transmitters). Upon receiving the estimated qv(t), each

user should calculate the M -length target transmission probability vector as the same function

of the qv(t) estimate. Denote the theoretical target probability vector by p̂(qv(t)). The target
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transmission probability vectors of all users are given by P̂ (t) = 1 ⊗ p̂(qv(t)), where 1 denotes

a K-length vector of all 1’s and ⊗ represents the Kronecker product. Consequently, according to

(4.6), if P ∗ is an equilibrium of the system, we must have P ∗ = 1⊗ p∗. Because qv is a function

of the transmission probability vectors, we must have P ∗ = 1 ⊗ p∗ = 1 ⊗ p̂(p∗), where p̂(p∗)

denotes the theoretical target probability vector of the users given that all users have the same

transmission probability vector p∗.

Note that the introduction of virtual packets and the assumption of feeding back qv(t) to the

transmitters are rather rare both in the literature of MAC algorithms and in practical MAC pro-

tocols. The key purpose of such a system design is to feed back a measure that is common to

all users. This enables users to calculate the same target transmission probability vector and con-

sequently guarantees that transmission probability vectors of all users at any system equilibrium

must be identical. As what will be shown in the following sections, such a property can signifi-

cantly simplify the design and analysis of the distributed MAC algorithm. If a user only knows the

success/failure status of its own packets on the other hand, as commonly assumed in existing MAC

algorithms, then guaranteeing identical transmission probability vector at the equilibrium under

our problem formulation can become a challenging task.

In a practical system, the measurement of qv(t) is likely to experience measurement noise and

feedback error. Assume that, if users keep P at a constant vector for a duration of Q time slots, and

qv is measured over these time slots, then the measurement should converge to its true value with

probability one as Q is taken to infinity. Other than this assumption, system noise is not involved

in the discussion of the design objectives, i.e., to meet Conditions 1 and 2 and to place the unique

equilibrium of the associated ODE at the desired point. Therefore, in the following sections, the

assumption that qv(t) can be measured precisely at the receiver and be fed back to the users will

be adopted. This leads to P̃ (t) = P̂ (t) = 1⊗ p̂(t). To simplify the notation, time index t will be

skipped in the rest of the discussions.
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4.2 Single Option with Actual Channel Contention Measure

Let us first consider the simple case of classical physical-link layer interface, where each user

only has a single transmission option plus an idling option. Each user, say user k, should maintain

a scalar transmission probability parameter pk to specify the probability at which user k transmits

a packet in a time slot. Transmission probabilities of all users are listed in a K-length vector p.

In this section, it will be shown that, with a general channel model and without knowing the user

number K, a distributed MAC algorithm can be designed to lead the system to converge to a unique

equilibrium that is not far from optimal with respect to a chosen symmetric network utility.

Given the physical layer channel and the provided transmission options, the link layer multiple

access channel is modeled using two sets of channel parameters. Define {Crj} for j ≥ 0 as the

“real channel parameter set”, where Crj is the conditional success probability of a real packet

should it be transmitted in parallel with j other real packets. Assume that there is a single virtual

packet being transmitted in each time slot. Virtual packets transmitted in different time slots are

identical. Given coding parameters of the virtual packet, let {Cvj} for j ≥ 0 be the “virtual channel

parameter set”, where Cvj is the success probability of the virtual packet should it be transmitted in

parallel with j real packets. Assume Cvj ≥ Cv(j+1) for all j ≥ 0, which means that, if the number

of parallel real packet transmissions increases, the virtual packet should have a non-increasing

chance of getting through the channel. Let ǫv > 0 be a pre-determined small constant. Define Jǫv

as the minimum integer such that CvJǫv is strictly larger than Cv(Jǫv+1) + ǫv, i.e.,

Jǫv = argmin
j

Cvj > Cv(j+1) + ǫv. (4.11)

Assume that both the real and the virtual channel parameter sets should be known at the users and

at the receiver. Note that, while {Crj} has nothing to do with the virtual packet, {Cvj} is dependent

on the coding parameters of the virtual packet.

We assume that users intend to maximize an arbitrarily chosen symmetric network utility, de-

noted by U(K, p, {Crj}). Under the assumption that all users should transmit with the same prob-

42



ability, i.e., p = p1, system utility is a function of the unknown user number K, the common

transmission probability p, and the real channel parameter set {Crj}. For example, if we choose

sum throughput of the system as the utility function, U(K, p, {Crj}) should be given by

U(K, p, {Crj}) = K
K−1∑

j=0

(
K − 1

j

)
pj+1(1− p)K−1−jCrj. (4.12)

For most of the utility functions of interest, such as the sum throughput function given above,

an asymptotically optimal solution should roughly keep the expected load of the channel at a

constant [24] [25]. Therefore, if p∗K is the optimum transmission probability for user number K,

we should have limK→∞ Kp∗K = x∗, where x∗ > 0 is obtained from the following asymptotic

utility optimization.

x∗ = argmax
x

lim
K→∞

U
(
K,

x

K
, {Crj}

)
. (4.13)

Note that virtual packet is not involved in the calculation of x∗.

Without knowing the actual user number K, we will show next that it is possible to set the

system equilibrium at p∗ = min{pmax,
x∗

K+b
}1, where b ≥ 1 is a pre-determined design parameter,

and pmax is defined as

pmax = min

{
1,

x∗

Jǫv + b

}
. (4.14)

It will be shown later that, when the optimum transmission probability satisfies limK→∞ Kp∗K =

x∗, setting the equilibrium at p∗ = min{pmax,
x∗

K+b
}1 is often not far from the optimal even when

the user number is small.

We intend to design a distributed MAC algorithm to maximize U(K, p, {Crj}) by maintaining

channel contention at a desired level. Let qv denote the success probability of the virtual packet,

measured at the receiver. Term qv the “channel contention measure” because it is a measurement

of the contention level of the system. Note that qv(p, K) is a function of user number K and trans-

mission probabilities of all users listed in the vector p. Because qv(p, K) equals the summation of

a finite number of polynomial terms, qv(p, K) should be Lipschitz continuous in p for any finite

K. When the transmission probabilities of all users are equal, i.e., p = p1, success probability of
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the virtual packet can be written as

qv(p,K) =
K∑

j=0

(
K

j

)
pj(1− p)K−jCvj, (4.15)

where {Cvj} is the set of virtual channel parameters. Assume that, upon obtaining qv from the

receiver, each user should first obtain a user number estimate, denoted by K̂, and then set the

corresponding transmission probability target at p̃ = p̂ = min
{
pmax,

x∗

K̂+b

}
, where x∗ > 0 is

obtained from (4.13). It will be shown that, for any x∗ > 0, without knowing K, one can always

choose an appropriate b and design a distributed MAC algorithm to ensure system convergence to

the desired equilibrium of p∗ = min{pmax,
x∗

K+b
}1.

Convergence of the MAC algorithm to be introduced depends on two key monotonicity prop-

erties presented below. First, the following theorem shows that, given user number K, qv(p,K) is

non-increasing in p.

Theorem 11. Under the assumption that Cvj ≥ Cv(j+1) for all j ≥ 0, qv(p,K) given in (4.15)

satisfies
∂qv(p,K)

∂p
≤ 0. Furthermore,

∂qv(p,K)
∂p

< 0 holds with strict inequality for K > Jǫv and

p ∈ (0, 1).

The proof of Theorem 11 is given in Appendix B.1.

Given that p̂ = x∗

K̂+b
. Let N = ⌊K̂⌋ be the largest integer below K̂. Define a continuous

function q∗v(p̂), which can also be viewed as a function of K̂, as follows

q∗v(p̂) =
p̂− pN+1

pN − pN+1

qN(p̂) +
pN − p̂

pN − pN+1

qN+1(p̂), (4.16)

where pN = min
{
pmax,

x∗

N+b

}
, pN+1 = min

{
pmax,

x∗

N+1+b

}
, and

qN(p) =
N∑

j=0

(
N

j

)
pj(1− p)N−jCvj,

qN+1(p) =
N+1∑

j=0

(
N + 1

j

)
pj(1− p)N+1−jCvj. (4.17)
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Term q∗v(p̂) the “theoretical channel contention measure” because it serves as a reference to the

theoretical contention level of the system in the following sense. If user number of the system

indeed equals K = K̂ with K̂ ≥ Jǫv , then q∗v(p̂) defined in (4.16) equals the actual channel

contention measure at the desired equilibrium p∗ = x∗

K+b
1 = x∗

K̂+b
1 when all users transmit with

the same probability p̂ = x∗

K̂+b
.

The following theorem gives the second monotonicity property, which shows that, given an

arbitrary x∗ > 0, with an appropriate choice of b, q∗v(p̂) is non-decreasing in p̂.

Theorem 12. Let x∗ > 0. Let b ≥ max{1, x∗ − γǫv}, with γǫv being defined as

γǫv = min
N,N≥Jǫv ,N≥x∗−b

∑N
j=0 j

(
N
j

) ( pN+1

1−pN+1

)j
(Cvj − Cv(j+1))

∑N
j=0

(
N
j

) ( pN+1

1−pN+1

)j
(Cvj − Cv(j+1))

. (4.18)

Then q∗v(p̂) defined in (4.16) is non-decreasing in p̂. Furthermore, if b > max{1, x∗ − γǫv} holds

with strict inequality, then q∗v(p̂) is strictly increasing in p̂ for p̂ ∈ (0, pmax).

The proof of Theorem 12 is given in Appendix B.2.

Note that, if ǫv is small enough to satisfy Cvj = Cv(j+1) for all j < Jǫv , then it should hold that

γǫv = Jǫv . Otherwise, γǫv ≤ Jǫv is generally true.

With the two key monotonicity properties, the distributed MAC algorithm is presented in the

following.

Distributed MAC algorithm:

1) Initialize the transmission probabilities of all users. Let the transmission probability of user

k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q time slots, the receiver

measures the success probability of a virtual packet, denoted by qv, and feeds qv back to all

transmitters.
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3) Upon receiving qv, each user (transmitter) derives a transmission probability target p̂ by

solving the following equation

q∗v(p̂) = qv. (4.19)

If a p̂ ∈ [0, pmax] satisfying (4.19) cannot be found, each user sets p̂ at p̂ = pmax when

qv > q∗v(pmax), or at p̂ = 0 when qv < q∗v(0).

4) Each user, say user k, then updates its transmission probability by

pk = (1− α)pk + αp̂, (4.20)

where α > 0 is the step size parameter.

5) The process is repeated from Step 2 till probabilities of all users converge.

Convergence of the proposed MAC algorithm is stated in the following theorem.

Theorem 13. Consider the K-user distributed multiple access network presented in this section.

Given x∗ > 0 and ǫv > 0. Suppose that b is chosen to satisfy b > max{1, x∗ − γǫv} where γǫv

is defined in (4.18). With the proposed MAC algorithm, associated ODE of the system given in

(4.6) has a unique equilibrium at p∗ = min{pmax,
x∗

K+b
}1. Furthermore, probability target p̂(p)

as a function of the transmission probability vector p satisfies Conditions 1 and 2. Consequently,

the distributed probability adaptation converges to the equilibrium p∗ in the sense specified in

Theorems 9 and 10.

The proof of Theorem 13 is given in Appendix B.3.

In the above analysis, there is no design constraint on the coding parameters of the virtual

packet. Convergence of the distributed MAC algorithm is guaranteed so long as parameter b is

chosen to satisfy b > max{1, x∗ − γǫv}, where γǫv = Jǫv if ǫv is small enough. However, one

should note that optimality of the MAC algorithm can be affected by the value of b and Jǫv . Both b

and Jǫv are determined by the virtual channel parameter set {Cvj} which is dependent on the virtual
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packet design. Assume that setting the transmission probabilities of all users at p = min
{
1, x

∗

K

}

is an ideal choice for optimizing the chosen utility, which is indeed the case for sum throughput

optimization over a collision channel [24] [36]. Because the proposed MAC algorithm sets the

system equilibrium at p∗ = min{pmax,
x∗

K+b
}1, there are two optimality concerns. On one hand,

for a large user number K, it is a general preference that one should design the virtual packet to

allow a relatively small value of b, which implies that γǫv and Jǫv should not be much smaller than

x∗. On the other hand, for a small user number K, one should also design the virtual packet to

support a Jǫv value not much larger than x∗, so that pmax = min{1, x∗

Jǫv+b
} can be as close to 1 as

possible. Considering both optimality concerns, a general guideline is to design coding parameters

of the virtual packets such that Jǫv (and γǫv ) should be slightly smaller than x∗, and b should be

close to 1.

Example 4.1: Consider distributed multiple access networking over a multi-packet reception

channel. Assume that all packets should be received successfully if the number of users transmit-

ting in parallel is no more than M̂ = 5. Otherwise, the receiver should report collision to all users.

The real channel parameter set {Crj} in this case is given by Crj = 1 for j < 5 and Crj = 0

for j ≥ 5. Assume that users intend to optimize the symmetric throughput of the system. Con-

sequently, if the user number equals K and all users transmit with an identical probability of p,

system utility U(K, p, {Crj}) is given by

U(K, p, {Crj}) =
min{K−1,4}∑

j=0

K

(
K − 1

j

)
pj+1(1− p)K−1−j. (4.21)

Let Uopt(K) be the optimal sum throughput of the system under the assumption that K is known.

Uopt(K) = max
p

U(K, p, {Crj}). (4.22)

From the asymptotic utility optimization given in (4.13), we obtain x∗ = 3.64. According to

the design guideline presented above, we assume that a virtual packet should be equivalent to the

combination of 2 real packets. Consequently, the virtual channel parameter set {Cvj} is given by
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Cvj = 1 for j < 4 and Cvj = 0 for j ≥ 4. Choose ǫv = 0.01, which implies γǫv = Jǫv = 3,

and hence we can set b = 1.01 > max{1, x∗ − γǫv}. We use U∗(K) to denote the sum throughput

of the system when transmission probabilities of all users are set at p = min{pmax,
x∗

K+b
}, where

pmax = min{1, x∗

Jǫv+b
}.
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Figure 4.1: Sum throughput of the system as functions of the user number.

Figure 4.1 illustrates the two utility values, Uopt(K) and U∗(K), as functions of user number

K. It can be seen that U∗(K) is reasonably close to Uopt(K) when user number K is not close to

M̂ . Note that Uopt(K) is not necessarily achievable since user number K is unknown to the system.

Example 4.2: In this example, we consider distributed multiple access networking over a

simple fading channel. Assume that the system has K = 8 users and one receiver. In each time

slot, with a probability of 0.3, the channel can support no more than M̂1 = 4 parallel real packet

transmissions, and with a probability of 0.7, the channel can support no more than M̂2 = 6 parallel

real packet transmissions5. The real channel parameter set {Crj} in this case is given by Crj = 1

for j < 4, Crj = 0.7 for 4 ≤ j < 6, and Crj = 0 for j ≥ 6. Assume that users intend to optimize

the symmetric system throughput weighted by a transmission energy cost of E = 0.3. If user

number equals K and all users transmit with a probability of p, system utility U(K, p, {Crj}) is

5Such a channel can appear if there is an interfering user that transmits a packet with a probability of 0.3 in each

time slot. One packet from the interfering user is equivalent to the combination of two packets from a regular user.
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given by

U(K, p, {Crj}) =
K−1∑

j=0

K

(
K − 1

j

)
pj+1(1− p)K−1−jCrj − EKp. (4.23)

Consequently, x∗ can be obtained from the asymptotic utility optimization (4.13) as x∗ = 3.29.

Assume that a virtual packet should have the same coding parameters as those of a real packet.

Consequently, the virtual channel parameter set {Cvj} is identical to the real channel parameter

set, i.e., Cvj = Crj for all j ≥ 0. With ǫv = 0.01, we have γǫv = Jǫv = 3 and hence we can set

b = 1.01 > max{1, x∗ − γǫv}.

We initialize the transmission probabilities of all users at 0. In each time slot, a channel state

flag is randomly generated to indicate whether the channel can support the parallel transmissions

of no more than M̂1 = 4 packets or M̂2 = 6 packets. Each user also randomly determines

whether a packet should be transmitted according to its own transmission probability parameter.

Consequently, whether a real packet and the virtual packet can go through the channel successfully

or not is determined using the corresponding channel model. We use the following exponential

moving average approach to measure qv
6, which is the success probability of the virtual packet.

qv is initialized at qv = 1. In each time slot, if the virtual packet can be received successfully, an

indicator variable Iv is set at Iv = 1. If the virtual packet reception fails, we set Iv = 0. Success

probability of the virtual packet is then updated by qv = (1 − 1
300

)qv + 1
300

Iv. The rest of the

probability updates proceeds according to the distributed MAC algorithm introduced previously

with a constant step size of α = 0.05. Convergence behavior in system utility is illustrated in

Figure 4.2, where system utility is measured using the same exponential moving average approach

as the measurement of qv except that initial value of the utility is set at 0. Two reference values

are shown in the figure. Uopt(K) is the optimal utility as defined in (4.22), while U∗(K) is the

theoretical utility at the designed equilibrium.

6While this approach is different from the one proposed in the distributed MAC algorithm, simulations show that

an exponential averaging measurement of qv can often lead the system to converge to the designed equilibrium in a

relatively smaller number of time slots.
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Figure 4.2: Convergence in sum utility of a K = 8 user multiple access network over a simple fading

channel.

4.3 Single Transmission Option with Interpreted Channel Con-

tention Measure

Classical MAC protocols often assume that a user should get feedback from the receiver on

whether its own packet is successfully received or not. This enables each user, say user k, to

measure the conditional success probability of its own packet transmissions, denoted by qk. In

this section, we consider the case when qk is the only feedback available to user k. We also

assume that a virtual packet should have the same communication parameters as those of a real

packet. In order to apply the MAC algorithm proposed in section 4.2, user k needs to interpret the

success probability of the virtual packet based on the measurement of qk. Because transmission

activities of the users are mutually independent, qk equals the success probability of the virtual

packet conditioned on that user k decides to idle. Consequently, user k can calculate the success

probability of the virtual packet according to

qv = (1− pk)qk + pkdk, (4.24)
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where pk is the transmission probability of user k, and dk is the success probability of the virtual

packet given that user k transmits a packet7. Note that dk can be easily calculated in special cases.

For example, under a collision channel model, we have dk = 0. In this case, qv = (1 − pk)qk is

the actual success probability of the virtual packet. However, for a general channel, dk may not be

available at the transmitters unless additional feedback information is provided.

When dk is not available, we propose a two-step approach for user k to interpret dk and hence

the success probability of the virtual packet qv. Based on the interpreted qv, each user then updates

its transmission probability accordingly.

To explain the detail of the two-step approach, we need to define two auxiliary functions. More

specifically, for an arbitrary user number estimate K̆, let N̆ = ⌊K̆⌋ denote the largest integer no

more than K̆. Let p̆ = x∗

K̆+b
, pN̆ = x∗

N̆+b
and pN̆+1 = x∗

N̆+1+b
, where b is a constant satisfying

b > max{1, x∗ − γǫv}. We define auxiliary functions q∗(p̆) and d∗(p̆) as follows

q∗(p̆) =
p̆− pN̆+1

pN̆ − pN̆+1

N̆−1∑

j=0

(
N̆ − 1

j

)
p̆j(1− p̆)N̆−1−jCvj

+
pN̆ − p̆

pN̆ − pN̆+1

N̆∑

j=0

(
N̆

j

)
p̆j(1− p̆)N̆−jCvj,

d∗(p̆) =
p̆− pN̆+1

pN̆ − pN̆+1

N̆−1∑

j=0

(
N̆ − 1

j

)
p̆j(1− p̆)N̆−1−jCv(j+1)

+
pN̆ − p̆

pN̆ − pN̆+1

N̆∑

j=0

(
N̆

j

)
p̆j(1− p̆)N̆−jCv(j+1). (4.25)

The two-step approach is described below.

Step 1: Over an interval of Q ≥ 1 time slots, each user, say user k, measures its own

conditional success probability qk. User k then obtains an intermediate transmission probability p̆

by solving the following equation

q∗(p̆) = qk. (4.26)

7Extensions can be made to the case when a virtual packet is equivalent to the combination of R real packets by

decomposing qk in a similar way as shown in (4.24).
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If a p̆ ∈ [0, pmax] satisfying (4.26) cannot be found, user k sets p̆ at p̆ = pmax when qk > q∗(pmax),

or at p̆ = 0 when qk < q∗(0) .

Step 2: In the second step, user k interprets channel contention measure qv as

qv = (1− pk)qk + pkd
∗(p̆). (4.27)

An updated transmission probability target p̂ for user k is then determined by solving equation

(4.19). As before, if a p̂ ∈ [0, pmax] satisfying (4.19) cannot be found, user k sets p̂ at p̂ = pmax

when qv > q∗v(pmax), or at p̂ = 0 when qv < q∗v(0).

Note that with p̂ being obtained by the two-step approach, a convergence proof of the MAC

algorithm is no longer available. Because one cannot guarantee that the transmission probability

target p̂ derived by different users should always be identical, and therefore the assumption of

all users taking the same transmission probability at any system equilibrium is no longer valid.

Nevertheless, in the following theorem, we show that the two-step approach is equivalent to a

simplified one-step approach where user k directly uses p̆ obtained in (4.26) as its transmission

probability target.

Theorem 14. Suppose for each user, say user k, first obtains an intermediate transmission prob-

ability p̆ and then determines its transmission probability target p̂ by following the two-step ap-

proach. Then p̆ ≥ pk implies p̂ ≥ pk, while p̆ ≤ pk implies p̂ ≤ pk.

The proof of Theorem 14 is given in Appendix B.4.

Note that q∗(p̆) is non-decreasing in p̆ if b > max{1, x∗ − γǫv}, whose proof follows that of

Theorem 12. Theorem 14 implies that the two-step approach and the simplified one-step approach

are equivalent in the sense of giving the same directional information on whether the transmission

probability should be increased or decreased. In the case when the two-step approach does lead the

system to the desired equilibrium, Theorem 14 suggests a simple probability adaptation principle.

That is, user k can compare its own conditional success probability qk with q∗(pk) to determine

whether pk should be increased or decreased.
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Example 4.3: In this example, we study the convergence property of the algorithm proposed

in Section 4.3 by assuming that each user only gets feedback from the receiver on whether its

own packet is successfully received or not. Due to the equivalence of the two-step and one-step

approach shown in Theorem 14, one-step approach will be used to update each user’s transmission

probability.

Consider a distributed multiple access network with K = 7 users over a multi-packet reception

channel. The channel can support the parallel transmissions of up to M = 4 users. The real

channel parameter set {Crj} is then given by Crj = 1 for j ≤ 3, Crj = 0 otherwise. Assume that

users intend to optimize the symmetric system throughput, and x∗ is calculated from

x∗ = argmax
x

xe−x

M−1∑

j=0

xj

j!
≈ 2.95. (4.28)

Assume that a virtual packet should have the same coding parameters as those of a real packet.

Consequently, the virtual channel parameter set {Cvj} is identical to the real channel parameter

set, i.e., Cvj = Crj for all j ≥ 0. This implies that γǫv = Jǫv = 3 with ǫv = 0.01 and we can

therefore choose b = 1.01 to guarantee convergence.

Similarly, we initialize the transmission probabilities of all users at 0. In a time slot, each user

randomly determines either to transmit a packet or to idle according to its own transmission prob-

ability parameter. In this example, we assume that each user only has access to the success/failure

status of its own packet transmissions. This enables each user, say user k, to measure the con-

ditional success probability of its own packet transmissions, denoted by qk. We use the similar

exponential moving average approach for user k to measure qk, and qk is initialized at qk = 1 for

all k. In each time slot, qk is updated by qk = (1− 1
300

)qk+
1

300
Ik, where Ik ∈ {0, 1} is an indicator

of the success/failure status of packet transmission of user k in the current time slot. User k then

obtains the transmission probability target p̆ from (4.26), and sets p̂ = p̆. The rest of the probability

updates proceeds according to the distributed MAC algorithm introduced before with a constant

step size of α(t) = 0.05. Convergence of the sum utility of the system is illustrated in Figure 4.3,
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where system utility is also measured using the same exponential moving average approach with

initial value of the utility being set at 0. The dash-dotted line represents the sum throughput of

the system if all users transmit with the desired probability p∗ = x∗

K+b
= 0.37. In this example,

sum system throughput at the desired equilibrium is about 5% below the optimum value, which is

illustrated by the dotted line. After 4000 time slots, the vector of transmission probabilities of all

users is given by [0.37, 0.37, 0.36, 0.35, 0.36, 0.36, 0.36]T .
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Figure 4.3: Convergence in sum system throughput of a K = 7 users multiple access network over a

multi-packet reception channel.

4.4 Multiple Transmission Options, Single Virtual Packet

In this section, we consider the case when each user is equipped with M ≥ 2 transmission

options plus an idling option. Each user, say user k, should maintain an M -length transmission

probability vector pk = pkdk, where pk is the transmission probability and dk is the transmission

direction vector of user k. Transmission probability vectors of all users are listed in an MK-length

vector P = [pT
1 , . . . ,p

T
K ]

T . As in the previous section, with a general channel model and without

knowing the user number K, the objective is to design a distributed MAC algorithm to lead the

system to a unique equilibrium that maximizes a chosen symmetric network utility.
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Given the physical layer channel and the transmission options, the link layer multiple access

channel is specified using two sets of channel parameter functions. Assume that all users have

the same transmission direction vector d. Define {Crij(d)} for 1 ≤ i ≤ M and j ≥ 0 as the

“real channel parameter function set”, where Crij(d) is the conditional success probability of the

ith real packet, should it be transmitted in parallel with other j real packets. Because each packet

can be generated from a randomly chosen transmission option, Crij(d) is a function of d. In this

section, ssume that there is a single virtual packet being transmitted in each time slot. Virtual

packets being transmitted in different time slots are identical. Given coding parameters of the

virtual packet, under the assumption that all users should have the same transmission probability

vector p = pd, define {Cvj(d)} as the “virtual channel parameter function set”, where Cvj(d) is

the success probability of the virtual packet should it be transmitted in parallel with j real packets.

Assume that Cvj(d) ≥ Cv(j+1)(d) should hold for all j ≥ 0 and for any d. That is, under the

same transmission direction vector d, if the number of parallel real packet transmissions increases,

the chance of a virtual packet getting through the channel should not increase. Let ǫv > 0 be a

pre-determined small constant. We define Jǫv(d) as the minimum integer such that CvJǫv (d) is ǫv

larger than Cv(Jǫv+1)(d), i.e.,

Jǫv(d) = argmin
j

Cvj(d) > Cv(j+1)(d) + ǫv. (4.29)

Both the real and the virtual channel parameter function sets are assumed to be known at the

transmitters and at the receiver.

Assume that users intend to maximize a symmetric network utility U(K, pd, {Crij(d)}). Under

the assumption that all users should have the same transmission probability vector p, system utility

is a function of the unknown user number K, the common transmission probability vector p = pd,

and the real channel parameter function set {Crij(d)}. For example, if the ith real packet has a

communication rate of ri (in units/time slot), and we choose sum throughput of the system as the

utility function, then U(K,p, {Crij(d)}) should be given by
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U(K,p, {Crij(d)}) = K

M∑

i=1

diri

K−1∑

j=0

(
K − 1

j

)
pj+1(1− p)K−1−jCrij(d). (4.30)

We intend to design a distributed MAC algorithm to maximize U(K,p, {Crij(d)}) by main-

taining channel contention at a desired level. Let qv denote the success probability of the virtual

packet. As before, we term qv the “channel contention measure” because it is used to measure the

contention level of the system. qv(P , K) is a function of the user number K and the MK-length

transmission probability vector P consisting of transmission probability vectors of all users. Be-

cause qv(P , K) equals the summation of a finite number of polynomial terms, it should be Lip-

schitz continuous in P for any finite K. When all users have the same transmission probability

vector p = pd, we also write qv as

qv(p, K) =
K∑

j=0

(
K

j

)
pj(1− p)K−jCvj(d). (4.31)

Upon obtaining qv from the receiver, we assume that each user should first derive a user number

estimate K̂ by comparing qv with a “theoretical channel contention measure” q∗v(K̂), which is

defined as a continuous function of K̂. A user should then set its transmission probability vector

target p̂ according to a designed theoretical vector parameter function p(K̂). To understand key

properties that the p(K̂) function should possess, let us first take a look at the following example.

Example 4.4: Consider a distributed multiple access network with K homogeneous users.

Assume that each user has two transmission options plus an idling option. The two transmission

options are labeled as the “high rate” option and the “low rate” option, respectively. If users

transmit with the low rate option only, then the channel can support the parallel transmissions of

no more than 12 packets. Assume that a high rate packet is equivalent to the combination of 4

low rate packets. Therefore, if nl low rate packets and nh high rate packets are transmitted in

parallel, the packets can be received successfully if and only if nl + 4nh ≤ 12. Assume that

users intend to optimize the sum throughput of the network, and transmission probability vectors

of the users should be identical at the equilibrium. When all users have the same probability vector
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p = [ph, pl]
T , system utility, denoted by U(K,p) as a function of K and p, is given by

U(K,p) =

∑

nh ≥ 0, nl ≥ 0,

nh + nl ≤ K − 1,

4(nh + 1) + nl ≤ 12

4K

(
K − 1

nh, nl

)
pnh+1
h pnl

l (1− ph − pl)
K−1−nh−nl

+
∑

nh ≥ 0, nl ≥ 0,

nh + nl ≤ K − 1,

4nh + nl + 1 ≤ 12

K

(
K − 1

nh, nl

)
pnh

h pnl+1
l (1− ph − pl)

K−1−nh−nl .

(4.32)

Given user number K, let p∗ = argmaxp U(K,p) be the optimal transmission probability vector.

p∗h and p∗l as functions of user number K are illustrated in Figure 4.4. We can see that, if we write
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Figure 4.4: Optimal transmission probabilities of a K-user multiple access system with each user having

two transmission options.

p∗ = p∗d∗, then we have d∗ = [1, 0]T for K ≤ 4, and d∗ = [0, 1]T for K ≥ 10. d∗ transits from

[1, 0]T to [0, 1]T in the region of 4 ≤ K ≤ 10.
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According to the above observation, we assume that the vector parameter function p(K̂) to be

designed should possess the following property termed the “Head and Tail Condition”.

Condition 3. (Head and Tail) Let ǫv > 0 be a pre-determined constant. Let Jǫv be defined in

(4.29). There exist two integer-valued constants 0 < K ≤ K, such that,

1) d(K̂) = d(K), for all K̂ ≤ K, K ≥ Jǫv(d(K)).

2) d(K̂) = d(K), for all K̂ ≥ K, K > Jǫv(d(K)).

Condition 3 indicates that, when K̂ ≤ K is small enough or when K̂ ≥ K is large enough,

d(K̂) should stop changing in K̂. In these two regimes, the system with multiple transmission

options becomes equivalent to a system with a single transmission option. The virtual channel

parameter set of the equivalent system is given by {Cvj} = {Cvj(d)}. Calculation of the real

channel parameter set of the equivalent system, on the other hand, depends on the chosen utility

function. If the utility function is the sum throughput given in (4.30) for example, the equivalent

real channel parameter set {Crj} should be obtained by Crj =
∑M

i=1 diriCrij(d), for j ≥ 0. We

assume that core parameter functions of the MAC algorithm, i.e., the theoretical channel contention

measure q∗v(K̂) and the probability target function p(K̂), should be designed according to the

guideline given in Section 4.2 for K̂ ≤ K and K̂ ≥ K. The corresponding details are not repeated

in this section.

Let us temporarily assume that the vector parameter function p(K̂) has been determined com-

pletely, not just for K̂ ≤ K and K̂ ≥ K, but also for K < K̂ < K. To present the distributed

MAC algorithm, we need to define the theoretical channel contention measure q∗v(K̂) as follows.

Let N = ⌊K̂⌋ be the largest integer below K̂. For K̂ ≤ K and K̂ ≥ K, q∗v(K̂) is defined by

q∗v(K̂) =
p(K̂)− p(N + 1)

p(N)− p(N + 1)
qv(p(K̂), N) +

p(N)− p(K̂)

p(N)− p(N + 1)
qv(p(K̂), N + 1), (4.33)

which is consistent with (4.16). For K ≤ K̂ ≤ K, q∗v(K̂) is defined by

q∗v(K̂) = (N + 1− K̂)qv(p(K̂), N) + (K̂ −N)qv(p(K̂), N + 1). (4.34)
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In other words, if K̂ is integer-valued, q∗v(K̂) = qv(p(K̂), K̂) equals the channel contention mea-

sure when all users have the same transmission probability vector p(K̂) and the user number

equals K = K̂. If K̂ is not integer-valued, on the other hand, q∗v(K̂) is a linear interpolation

between qv(p(K̂), ⌊K̂⌋) and qv(p(K̂), ⌊K̂⌋ + 1). Note that the interpolation approach used for

K̂ ≤ K and K̂ ≥ K is different from the one used for K ≤ K̂ ≤ K.

Next, we present the distributed MAC algorithm below.

Distributed MAC algorithm:

1) Initialize the transmission probability vectors of all users. Let the transmission probability

vector of user k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q time slots, the receiver

measures (or estimates) the success probability of the virtual packet, denoted by qv, and

feeds qv back to all transmitters.

3) Upon receiving qv, each user (transmitter) derives a user number estimate K̂ by solving the

following equation

q∗v(K̂) = qv. (4.35)

If a K̂ satisfying (4.35) cannot be found, user k sets K̂ = Jǫv(d(K)) if qv > q∗v(Jǫv(d(K))),

or sets K̂ = ∞ otherwise.

4) Each user, say user k, then updates its transmission probability vector by

pk = (1− α)pk + αp(K̂), (4.36)

where α > 0 is the step size parameter.

5) The process is repeated from Step 2 till transmission probability vectors of all users converge.

We intend to design the distributed MAC algorithm with the following convergence prop-

erty. Note that user number K is assumed to be unknown to all users and to the receiver. If
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K ≥ Jǫv(d(K)), we intend to have K̂ = K at the equilibrium, while if K < Jǫv(d(K)), we

intend to have K̂ = Jǫv(d(K)) at the equilibrium. In order to ensure convergence of the proposed

MAC algorithm, we require that the vector parameter function p(K̂) and the corresponding theo-

retical channel contention measure q∗v(K̂) should satisfy the following “Monotonicty and Gradient

Condition” for K ≤ K̂ ≤ K.

Condition 4. (Monotonicity and Gradient) For K ≤ K̂ ≤ K,

1) p(K̂) = p(K̂)d(K̂) should be Lipschitz continuous in K̂, i.e., there exists a constant Kg >

0, such that for all K̂a, K̂b ∈ [K,K], we have

‖p(K̂a)− p(K̂b)‖ ≤ Kg|K̂a − K̂b|. (4.37)

2) q∗v(K̂) should be continuous and be strictly decreasing in K̂. There exists a positive constant

ǫq > 0, such that for all K̂a, K̂b ∈ [K,K], we have

|q∗v(K̂a)− q∗v(K̂b)| ≥ ǫq|K̂a − K̂b|. (4.38)

3) There exists a constant ǫv > 0, such that K̂ > Jǫv(d(K̂)) should be satisfied for all K̂ ∈

[K,K].

4) There exist constants 0 < p < p < 1, such that p ≤ p(K̂) ≤ p should be satisfied for all

K̂ ∈ [K,K].

As a special case, it can be verified that, in terms of designing function p(K̂) = p(K̂)d(K̂), if

one fixes d(K̂) = d(K) = d(K) and sets p(K̂) according to the guideline given in Section 4.2,

the resulting p(K̂) and q∗v(K̂) functions do satisfy the Monotonicity and Gradient Condition for

K ≤ K̂ ≤ K.

Convergence of the distributed MAC algorithm is stated in the following theorem.
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Theorem 15. Consider a multiple access system with K users adopting the proposed distributed

MAC algorithm to update their transmission probability vectors. Under Condition 3, let p(K̂) and

q∗v(K̂) be designed for K̂ ≤ K and K̂ ≥ K according to the guideline given in Section 4.2. Let

p(K̂) and q∗v(K̂) be designed to satisfy Condition 4 for K ≤ K̂ ≤ K. Then the associated ODE

of the system given in (4.6) has a unique equilibrium at P ∗ = 1 ⊗ p(K). The probability vector

target p̂(P ) as a function of the transmission probability vector P satisfies Conditions 1 and 2.

Consequently, the distributed probability vector adaptation converges to the unique equilibrium

P ∗ in the sense explained in Theorems 9 and 10.

Theorem 15 is implied by Theorem 17.

Note that, in the Monotonicity and Gradient Condition 4, while we still require q∗v(K̂) be

strictly decreasing in K̂, being different from the single transmission option case, we no longer

require qv(p(K̂), K) be strictly increasing in K̂ for a given K. Also being different from the

single transmission option case where the p(K̂) function is completely specified in a closed form,

Condition 4 does not explain how p(K̂) should be designed to satisfy the conditions.

Next, we will show that, so long as one can manually design p(K̂) for a set of chosen points

with integer-valued K̂ to satisfy a set of “Pinpoints Condition”, then there is a simple approach to

complete the p(K̂) function for K ≤ K̂ ≤ K to satisfy Condition 4.

Condition 5. (Pinpoints) Let K = K̂0 < K̂1 < · · · < K̂L = K be a collection of integer-valued

points. For i = 1, . . . , L, and 0 ≤ λ < 1, define

K̂iλ = (1− λ)K̂i−1 + λK̂i

diλ = (1− λ)d(K̂i−1) + λd(K̂i)

q∗viλ = (1− λ)q∗v(K̂i−1) + λq∗v(K̂i). (4.39)

We have the following conditions.

1) There exists a positive constant ǫq > 0, such that, for all i = 1, . . . , L, q∗v(K̂i−1)− q∗v(K̂i) ≥

ǫq.
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2) There exists a constant ǫv > 0, such that for all i = 1, . . . , L and 0 ≤ λ < 1, K̂iλ > Jǫv(diλ),

where Jǫv(diλ) is defined in (4.29).

3) There exist 0 < p < p < 1, such that p ≤ p(K̂i) ≤ p should be satisfied for all i = 1, . . . , L.

3) Extend the definition of qv(p, K̂) to non-integer-valued K̂ as

qv(p, K̂) = (⌊K̂⌋+ 1− K̂)qv(p, ⌊K̂⌋) + (K̂ − ⌊K̂⌋)qv(p, ⌊K̂⌋+ 1). (4.40)

The following inequality should be satisfied for all i = 1, . . . , L and for all 0 ≤ λ < 1.

qv

(
pdiλ, K̂iλ

)
≤ q∗viλ ≤ qv

(
pdiλ, K̂iλ

)
. (4.41)

The next “Interpolation Approach” shows that, so long as p(K̂) is designed for the pinpoints,

it is easy to complete the whole p(K̂) function for K ≤ K̂ ≤ K.

Interpolation Approach: Assume that p(K̂) is designed for a given set of pinpoints {K̂i},

i = 0, . . . , L, with K̂0 = K < K̂1, < · · · < K̂L = K, to satisfy Condition 5. For i = 1, . . . , L

and 0 ≤ λ < 1, let K̂iλ, diλ and q∗viλ be defined in (4.39). Let qv(p, K̂) be defined in (4.40). We

choose p(K̂iλ) to satisfy

qv(p(K̂iλ)d(K̂iλ), K̂iλ) = q∗viλ. (4.42)

Consequently, p(K̂iλ) is designed as p(K̂iλ) = p(K̂iλ)diλ.

Note that according to (4.41), a solution of p ≤ p(K̂iλ) ≤ p satisfying (4.42) must exist.

Effectiveness of the Interpolation Approach is stated in the following theorem.

Theorem 16. Assume that p(K̂) is designed for a set of L+ 1 pinpoints {K̂i}, i = 0, . . . , L, with

K̂0 = K < K̂1, < · · · < K̂L = K, to satisfy Condition 5. After completing the function using the

Interpolation Approach, we have p(K̂) and q∗v(K̂) functions satisfy the Monotonicity and Gradient

Condition 4 for K ≤ K̂ ≤ K.

Theorem 16 is implied by Theorem 18.
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Note that, in the single transmission option case discussed in Section 4.2, p(K̂) is specified in a

closed form with a small number of design parameters. Monotonicity property of q∗v(K̂) is proven

theoretically. With multiple transmission options, however, such a direct-design approach faces a

key challenge. Due to generality of the system model, when d(K̂) changes in K̂ and consequently

affects the channel parameters, it is often difficult to theoretically characterize its impact on the

q∗v(K̂) function. Alternatively, we switch to a search-assisted approach to first manually design

p(K̂) for a set of pinpoints to satisfy Condition 5, and then to use the Interpolation Approach to

complete the p(K̂) function. Note that the Interpolation Approach only ensures convergence of

the proposed MAC algorithm. It pays no attention to the optimality, in terms of the utility value,

of the design outcome. Therefore, one often needs to carefully adjust the design of the pinpoints

to direct the p(K̂) function toward a near optimal solution.

Example 4.5: Let us use the system introduced in Example 4.4 to illustrate the design proce-

dure of the p(K̂) function. First, we consider the “Head” and the “Tail” regimes when K̂ is either

small or large in value. We will add subscript “H” to parameters of the “Head” regime, and add

subscript “T” to parameters of the “Tail” regime. Without specifying the values of K and K, we

first determine the optimal transmission directions dH = [1, 0]T and dT = [0, 1]T for the “Head”

regime and “Tail” regime, respectively. In other words, users should only use the high rate option

in the “Head” regime and only use the low rate option in the “Tail” regime. In the “Head” regime,

the channel can support the parallel transmissions of no more than 3 high rate packets. The real

channel parameter set for the equivalent single option system is given by {Crj}H with Crj = 1

for j ≤ 2 and Crj = 0 otherwise. By following the single option system design guideline, we get

x∗
H = argmaxx(x+x2+ x3

2
)e−x = 2.27. We design the virtual packet to be equivalent to a real high

rate packet. Consequently, virtual channel parameter set for the equivalent single option system is

given by {Cvj}H = {Crj}H . With ǫv = 0.01, we get γǫvH = JǫvH = 2, and bH = 1.01. In the

“Tail” regime, on the other hand, the channel can support the parallel transmissions of no more than

12 low rate packets. The real channel parameter set for the equivalent system is given by {Crj}T
with Crj = 1 for j ≤ 11 and Crj = 0 otherwise. This yields x∗

T = argmaxx
∑11

i=0
xi+1

i!
e−x = 8.82.
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Because we already chose the virtual packet to be equivalent to a high rate real packet, virtual chan-

nel parameter set in this case is given by {Cvj}T with Cvj = 1 for j ≤ 8 and Cvj = 0 otherwise.

Therefore, with ǫv = 0.01, we have γǫvT = JǫvT = 8, and luckily, this supports bT = 1.01.

To determine the values of K and K, we compare the following two schemes. In the first “high

rate option only” scheme, we fix d(K̂) at [1, 0]T for all K̂, and set p(K̂) = min
{
pmaxH ,

x∗
H

K̂+bH

}
,

where pmaxH =
x∗
H

JǫvH+bH
. In the second “low rate option only” scheme, we fix d(K̂) at [0, 1]T for

all K̂, and set p(K̂) = min
{
pmaxT ,

x∗
T

K̂+bT

}
, where pmaxT =

x∗
T

JǫvT+bT
. By comparing the utility

values and the theoretical channel contention measures of the two schemes, we choose K = 4 and

K = 10.

Now consider the design conditions for K ≤ K̂ ≤ K. For transmission direction d with

d1 > 0, we generally have Jǫv = 2. Therefore, so long as d(K̂) does not transit too quickly to

[0, 1]T , the condition of K̂ > Jǫv(d(K̂)) should hold. Consequently, only two other key conditions

need to be satisfied. The first condition is that q∗v(K̂) of the selected pinpoints must be strictly

decreasing in K̂. The second condition is that p(K̂) found in the Interpolation Approach should

be bounded away from 0 and 1. From the optimal scheme, we can see that d(K̂) should transit

toward [0, 1]T faster than a linearly transition from K to K.

With these considerations, we choose the following 4 pinpoints. At the edge of the “Head”

and the “Tail” regimes, we have K̂0 = K = 4 with p(4) =
x∗
H

K+bH
[1, 0]T and K̂3 = K = 10

with p(10) =
x∗
T

K+bT
[0, 1]T . For the other two pinpoints, K̂1 = 5 and K̂2 = 6, we set their

transmission directions at the corresponding optimal transmission direction vectors, i.e., direction

vectors extracted from the optimal p vectors that maximize the sum throughput at K = 5 and

K = 6, respectively. Transmission probabilities of these two pinpoints are chosen such that the

resulting q∗v(K̂) equals K−K̂
K−K

q∗v(K) + K̂−K

K−K
q∗v(K). The purpose of including K̂1 = 5 and K̂2 = 6

in the pinpoint set is to force d(K̂) to transit quickly toward [0, 1]T . The rest of the p(K̂) function

is completed using the Interpolation Approach. Theoretical channel contention measure q∗v(K̂) of

the designed system is illustrated in Figure 4.5 as a function of the user number.
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Figure 4.5: Theoretical channel contention measure q∗v as a function of the user number.

In the following figure (Figure 4.6), we illustrate the theoretical sum system throughput as a

function of user number K for the following four different scenarios: optimum p(K), designed

p(K), p(K) from the high rate option only scheme, and p(K) from the low rate option only

scheme. Assume that the high rate option only scheme should be reasonably good in the “Head”

regime while the low rate option only scheme should be reasonably good in the “Tail” only regime.

It can be seen that the designed p(K̂) function can help to bridge the two simple schemes and

to efficiently exploit the benefit of the two transmission options. Note that the optimal utility

illustrated in Figure 4.6 is not necessarily achievable without the knowledge of user number K.
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Figure 4.6: Sum throughput of the system as functions of the user number.
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Example 4.6: Following Example 4.4, we assume that the system has 8 users initially. Each

user has a transmission probability vector p = [ph, pl]
T to describe its transmission strategy, with

ph and pl denoting the probability of transmitting with high rate option and low rate option, re-

spectively. Transmission probability vectors of the users are initialized at [0, 0]T . In each time slot,

according to its own transmission probability vector, each user randomly determines whether to

transmit a packet or not, and if the answer is positive, which option should be used. The receiver

uses the following exponential moving average approach to measure qv. qv is initialized at qv = 1.

In each time slot, an indicator variable Iv ∈ {0, 1} is used to represent the success/failure status of

the virtual packet reception. qv is then updated as qv = (1− 1
300

)qv +
1

300
Iv, and is fed back to the

transmitters at the end of each time slot. Each user then adapts its transmission probability vector

according to the proposed MAC algorithm with a constant step size of α = 0.05.

We assume that the system experiences three stages. At the beginning of Stage one, the sys-

tem has 8 users. The system enters Stage two at the 3001th time slot, when 6 more users enter

the system with their transmission probability vectors initialized at [0, 0]T . Then at the 6001th

time slot, the system enters Stage three when 8 users exit the system. Convergence behavior in

sum throughput of the system is illustrated in Figure 4.7, together with the corresponding optimal

throughput and the theoretical throughput at the equilibrium being provided as references. In Fig-
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Figure 4.7: Convergence in sum throughput of the system. User number changes from 8 to 14 and then to

6 in three stages.
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ure 4.8, we also illustrates entries of the transmission probability vector target calculated by the

users together with the corresponding theoretical values being provided as references. Note that

the simulated probability values presented in the figure are calculated using the same exponential

averaging approach explained above.
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Figure 4.8: Entries of the transmission probability vector taget and their corresponding theoretical values.

Figures 4.7 and 4.8 demonstrated that, with the proposed MAC algorithm and the designed

p(K̂), q∗v(K̂) functions, users have the capability to quickly adapt to the changes of stages and to

adjust their transmission probability vectors to the new equilibrium.

According to the Head and Tail Condition 3, the system degrades to an equivalent single option

system when K ≤ K or K ≥ K. In Example 4.4, while d(K) 6= d(K), we found a virtual packet

design that supports bH = 1.01 in the “Head” regime and bT = 1.01 in the “Tail” regime. One

may think that such a lucky result should not always happen for a general system. Surprisingly,

according to our observations, in most of the problems of interest, even if one may not be able to

get the ideal result of bH = bT ≈ 1, a single virtual packet can often be designed to support close

to ideal performance in both the “Head” and the “Tail” regimes.
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4.5 Multiple Transmission Options, Multiple Virtual Packets

Following the system model introduced in Section 4.4, in this section, we assume that there

is a set of V virtual packets being transmitted in each time slot. We present such a model exten-

sion not only because it enables extra flexibility in system design, but also because obtaining the

corresponding technical results is nontrivial.

We assume that the virtual packet set being transmitted in different time slots should be iden-

tical. The link layer multiple access channel is still specified using two sets of channel parameter

functions. Definition of the “real channel parameter function set” {Crij(d)} remains the same as

that in Section 4.4. Given coding parameters of the virtual packets, under the assumption that all

users should have the same transmission direction vector d, we define {Cvij(d)} as the “virtual

channel parameter function set”, where Cvij(d) is the success probability of the ith virtual packet

should it be transmitted in parallel with j real packets. We assume that, given any direction vector

d, Cvij(d) ≥ Cvi(j+1)(d) should hold for all 1 ≤ i ≤ V and for all j ≥ 0. Both the real and

the virtual channel parameter function sets are assumed to be known at the transmitters and at the

receiver.

Let qv be the vector of success probabilities of the set of V virtual packets. We term qv(P , K)

the “channel contention measure vector”, which is a function of the user number K and the MK-

length transmission probability vector P . Because qv(P , K) equals the summation of a finite

number of polynomial terms, it should be Lipschitz continuous in P for any finite K. When all

users have the same transmission probability vector p = pd, success probability of the ith virtual

packet, denoted by qvi for 1 ≤ i ≤ V , is also written as

qvi(p, K) =
K∑

j=0

(
K

j

)
pj(1− p)K−jCvij(d). (4.43)

Let us introduce a new design parameter w, termed the “observation vector”. w is a V -length

vector whose entries satisfy wi ≥ 0 for all 1 ≤ i ≤ V and
∑V

i=1 wi = 1. Upon receiving qv from

the receiver, users calculate the “channel contention measure” qv as qv = wTqv. Note that, given
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observation vector w and the common transmission direction vector d, the system is equivalent

to one with a single transmission option. Calculation of the equivalent real channel parameter set

{Crj}, which is dependent on the chosen system utility U(K, pd, {Crij(d)}), remains the same

as that explained in Section 4.4. The equivalent virtual channel parameter set {Cvj} is given by

Cvj =
∑V

i=1 wiCvij(d). Let ǫv > 0 be a pre-determined small constant. We define Jǫv(w,d) as

the minimum integer such that CvJǫv is ǫv larger than Cv(Jǫv+1), i.e.,

Jǫv(w,d) = argmin
j

V∑

i=1

wiCvij(d) >
V∑

i=1

wiCvi(j+1)(d) + ǫv. (4.44)

We intend to design two vector parameter functions w(K̂) and p(K̂), both functions of the user

number estimate K̂. As will be explained later, upon receiving qv, a user will use w(K̂) and qv

to jointly determine a user number estimate K̂, and then to set the transmission probability vector

target at p̂ = p(K̂). As in Section 4.4, we assume that the vector parameter functions w(K̂) and

p(K̂) to be designed should satisfy the following “Head and Tail Condition”.

Condition 6. (Head and Tail) Let ǫv > 0 be a pre-determined constant. Let Jǫv be defined in

(4.44). There exist two integer-valued constants 0 < K ≤ K, such that,

1) d(K̂) = d(K) and w(K̂) = w(K), for all K̂ ≤ K with K ≥ Jǫv(w(K),d(K)).

2) d(K̂) = d(K) and w(K̂) = w(K) for all K̂ ≥ K with K > Jǫv(w(K),d(K)).

Condition 6 indicates that, when K̂ ≤ K or K̂ ≥ K, w(K̂) and d(K̂) should stop changing in

K̂. As explained in Section 4.4, in these two regimes, the system with multiple transmission op-

tions becomes equivalent to one with a single transmission option. We assume that core parameter

functions of the MAC algorithm, i.e., the theoretical channel contention measure q∗v(K̂) and the

probability target function p(K̂), should be designed according to the guideline given in Section

4.2.

Let us temporarily assume that the vector parameter functions w(K̂) and p(K̂) have been

completely determined for all K̂ values. To present the distributed MAC algorithm, we need to
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define the theoretical channel contention measure q∗v(K̂) as follows. Let N = ⌊K̂⌋ be the largest

integer below K̂. For K̂ ≤ K and K̂ ≥ K, q∗v(K̂) is defined by

q∗v(K̂) =
p(K̂)− p(N + 1)

p(N)− p(N + 1)
w(K̂)Tqv(p(K̂), N)

+
p(N)− p(K̂)

p(N)− p(N + 1)
w(K̂)Tqv(p(K̂), N + 1), (4.45)

which is consistent with (4.16). For K ≤ K̂ ≤ K, q∗v(K̂) is defined by

q∗v(K̂) = (N + 1− K̂)w(K̂)Tqv(p(K̂), N) + (K̂ −N)w(K̂)Tqv(p(K̂), N + 1).

(4.46)

Next, we present the distributed MAC algorithm below.

Distributed MAC algorithm:

1) Initialize the transmission probability vectors of all users. Let the transmission probability

vector of user k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q time slots, the receiver

measures (or estimates) the success probabilities of all virtual packets, denoted by qv, and

feeds qv back to all transmitters.

3) Upon receiving qv, each user (transmitter) derives a user number estimate K̂ by solving the

following equation

q∗v(K̂) = w(K̂)Tqv. (4.47)

If a K̂ satisfying (4.47) cannot be found, then each user should set K̂ = Jǫv(w(K),d(K))

if w(K)Tqv > q∗v(Jǫv(w(K),d(K))), or set K̂ = ∞ otherwise.

4) Each user, say user k, then updates its transmission probability vector by

pk = (1− α)pk + αp(K̂), (4.48)
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where α > 0 is the step size parameter.

5) The process is repeated from Step 2 till transmission probability vectors of all users converge.

We intend to design the distributed MAC algorithm to possess a unique equilibrium at P ∗ =

1⊗ p(K̂) with K̂ = max{K, Jǫv(w(K),d(K))}. In order to ensure convergence, we require the

virtual packet design, the vector parameter function w(K̂) and the q∗v(K̂) function should satisfy

the following “Majorization Condition”.

Condition 7. (Majorization)

1) Channel contention measure vector qv should satisfy qvi ≤ qvj for all i < j. This condi-

tion can be met, for example, by assuming that all virtual packets should be encoded using

random block codes with the same input distribution, but with rate parameters satisfying

rvi ≥ rvj for all 1 ≤ i < j ≤ V .

2) Observation vector function w(K̂) should be Lipschitz continuous in K̂. There exists a con-

stant ǫw > 0, such that w(K̂) and q∗v(K̂) should satisfy the following majorization constraint

V∑

i=j

wi(K̂1)−
V∑

i=j

wi(K̂2)

≤ (1− ǫw)[q
∗
v(K̂1)− q∗v(K̂2)], ∀j ≤ V, and ∀K̂1 ≤ K̂2. (4.49)

Note that, because we generally require q∗v(K̂) be monotonically decreasing in K̂, (4.49) can

be replaced by the following stronger condition

V∑

i=j

wi(K̂1) ≤
V∑

i=j

wi(K̂2), ∀j ≤ V, and ∀K̂1 ≤ K̂2, (4.50)

which does not involve the evaluation of q∗v(K̂).

Furthermore, we also require that the vector parameter functions p(K̂), w(K̂), and the corre-

sponding theoretical channel contention measure q∗v(K̂) should satisfy the following “Monotonicty

and Gradient Condition” for K ≤ K̂ ≤ K.
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Condition 8. (Monotonicity and Gradient) For K ≤ K̂ ≤ K,

1) p(K̂) = p(K̂)d(K̂) should be Lipschitz continuous in K̂, i.e., there exists a constant Kg > 0

to satisfy (4.37).

2) q∗v(K̂) should be continuous and be strictly decreasing in K̂. There exists a positive constant

ǫq > 0 to satisfy (4.38).

3) There exists a constant ǫv > 0, such that K̂ > Jǫv(w(K̂),d(K̂)) should be satisfied for all

K̂ ∈ [K,K].

4) There exist constants 0 < p < p < 1, such that p ≤ p(K̂) ≤ p should be satisfied for all

K̂ ∈ [K,K].

Convergence of the distributed MAC algorithm is stated in the following theorem.

Theorem 17. Consider a multiple access system with K users adopting the proposed distributed

MAC algorithm to update their transmission probability vectors. Under Condition 6, let p(K̂) and

q∗v(K̂) be designed for K̂ ≤ K and K̂ ≥ K according to the guideline given in Section 4.2. Let

virtual packets, w(K̂), p(K̂), and q∗v(K̂) be designed to satisfy Conditions 7 and 8. Then, the

associated ODE of the system given in (4.6) has a unique equilibrium at P ∗ = 1 ⊗ p(K). The

target probability vector p̂(P ) as a function of P satisfies Conditions 1 and 2. Consequently, the

distributed probability vector adaptation converges to the equilibrium P ∗ in the sense specified in

Theorems 9 and 10.

The proof of Theorem 17 is given in [1, Appendix C]..

Next, we will show that, so long as one can manually design w(K̂) and p(K̂) for a set of

chosen points with integer-valued K̂ to satisfy the following “Pinpoints Condition”, then p(K̂)

can be completed using the “Interpolation Approach” to satisfy Condition 8.
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Condition 9. (Pinpoints) Let K = K̂0 < K̂1 < · · · < K̂L = K be a set of integer-valued points.

For i = 1, . . . , L, and 0 ≤ λ < 1, define

K̂iλ = (1− λ)K̂i−1 + λK̂i

wiλ = (1− λ)w(K̂i−1) + λw(K̂i)

diλ = (1− λ)d(K̂i−1) + λd(K̂i)

q∗viλ = (1− λ)q∗v(K̂i−1) + λq∗v(K̂i). (4.51)

We have the following conditions.

1) There exists a positive constant ǫq > 0, such that, for all i = 1, . . . , L, q∗v(K̂i−1)− q∗v(K̂i) ≥

ǫq.

2) There exists a constant ǫv > 0, such that for all i = 1, . . . , L and 0 ≤ λ < 1, K̂iλ >

Jǫv(wiλ,diλ), where Jǫv(wiλ,diλ) is defined in (4.44).

3) There exist 0 < p < p < 1, such that p ≤ p(K̂i) ≤ p should be satisfied for all i = 1, . . . , L.

3) Extend the definition of qv(p, K̂) to non-integer-valued K̂ as

qv(p, K̂) = (⌊K̂⌋+ 1− K̂)qv(p, ⌊K̂⌋) + (K̂ − ⌊K̂⌋)qv(p, ⌊K̂⌋+ 1). (4.52)

The following inequality should be satisfied for all i = 1, . . . , L and for all 0 ≤ λ < 1.

wT
iλqv

(
pdiλ, K̂iλ

)
≤ q∗viλ ≤ wT

iλqv

(
pdiλ, K̂iλ

)
. (4.53)

Interpolation Approach: Assume that p(K̂) is designed for a given set of pinpoints {K̂i},

i = 0, . . . , L, with K̂0 = K < K̂1, < · · · < K̂L = K, to satisfy Conditions 7 and 9. For

i = 1, . . . , L and 0 ≤ λ < 1, let K̂iλ, wiλ, diλ and q∗viλ be defined in (4.51). Let qv(p, K̂) be
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defined in (4.52). We choose p(K̂iλ) to satisfy

wT
iλqv(p(K̂iλ)d(K̂iλ), K̂iλ) = q∗viλ. (4.54)

Consequently, p(K̂iλ) is designed as p(K̂iλ) = p(K̂iλ)diλ.

Note that the existence of a solution with p ≤ p(K̂iλ) ≤ p to (4.54) is guaranteed by (4.53).

The following theorem shows that, combined with the Interpolation Approach, the Majorization

Condition 7 and the Pinpoints Condition 9 imply the Monotonicity and Gradient Condition 8.

Theorem 18. Assume that w(K̂) and p(K̂) are designed for a set of L + 1 pinpoints {K̂i}, for

i = 0, . . . , L, with K̂0 = K < K̂1, < · · · < K̂L = K. Let Conditions 7 and 9 be met for

the pinpoints. After completing the function using the Interpolation Approach, w(K̂), p(K̂), and

q∗v(K̂) functions satisfy both the Majorization Condition 7 and the Monotonicity and Gradient

Condition 8 for K ≤ K̂ ≤ K.

The proof of Theorem 18 is given in [1, Appendix C].

Let us consider the case when all virtual packets are encoded using random block codes with

the same input distribution but with their rate parameters satisfying rv1 > rv2 > · · · > rvV . The

Majorization Condition enables the system to shift observation weights, as K̂ increases, either

toward the low rate virtual packets (by using the simplified condition given in (4.50)) or toward

the high rate virtual packets (by using (4.49)). Such flexibility can help to move the system equi-

librium closer to its optimal value. Nevertheless, according to our observations, for most of the

cases of interest, performance gain obtained by varying the observation vector in K̂ is often minor

compared with a carefully optimized system design either using a single virtual packet or using

multiple virtual packets but with a constant observation vector.
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Chapter 5

Conclusion

This thesis focuses on the cross-layer design of physical layer and data link layer to enhance

the interface between these two layers while preserving the system modularity. At the physical

layer, distributed coding theorems for a multiple access environment were proposed in Chapter 2.

The coding theorems equipped each physical layer transmitter with an ensemble of channel codes,

each corresponding to a specific communication setting. According to a data link layer protocol

and when message is available, a transmitter should choose a coding option to encode its message

and then send the codeword through the multiple access channel. Such a choice is not shared with

other users or with the receiver. Since users are not coordinated, reliable message transmissions

cannot always be supported by the channel. The receiver, on the other hand, guarantees either

reliable decoding or reliable collision report depending on whether a pre-determined reliability

threshold can be met. Under the assumption of infinite codeword length, the capacity of such a

communication model was established, which coincides with the classical Shannon capacity region

of the same channel. In the case of finite codeword length, error exponents were derived to charac-

terize how fast the upper bound for the worst case error probability should decrease exponentially

in the codeword length.

The new coding theorems provided a physical layer theoretical foundation to support an en-

hancement to the classical physical-link layer interface. Compared with the classical interface,

which gives a link layer user binary transmission/idling options and only allows transmission prob-

ability adaptation in response to a packet transmission success/failure event, the enhanced interface

essentially equipped each link layer user with multiple transmission options corresponding to the

available coding options at the physical layer. Different transmission options correspond to differ-

ent communication settings, such as different rates and power. Consequently, link layer users can

exploit advanced wireless capabilities such as rate and power adaptation. To preserve the layered

architecture, we assume link layer users can only construct their transmission schemes constraint
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to the provided transmission options as opposed to adapting the communication parameters arbi-

trarily. Link layer problems were then investigated to understand how users should adapt their

transmission schemes efficiently in response to channel feedback.

In Chapter 3, the link layer problem was formulated as a non-cooperative game where each

user adapts its transmission probability vector to maximize a carefully designed utility function.

The condition under which the medium access control game should have a unique equilibrium was

derived. Simulation results showed that from the perspective of throughput optimization, when

provided with multiple transmission options, users in a multiple access system tend to use the low

rate option to share the channel. This is consistent with the well known information theoretical

result that parallel transmission achieves higher sum system throughput when the rates of the users

are carefully chosen.

In Chapter 4, we proposed a distributed MAC framework that is capable of serving a general

channel model as well as a wide range of network utilities. It has been shown that the distributed

probability vector update of the users falls into the classical stochastic approximation framework

with guaranteed convergence when the success probability of a virtual packet can be fed back

to all users. Under the proposed MAC algorithm, rate adaptation was supported as opposed to

simply adapting transmission probability in a classical system. Simulation results showed that the

proposed MAC algorithm is able to lead all users’ transmission probability vectors to converge to

a point that is near-optimal with respect to an arbitrarily chosen network utility.
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Appendix A

Proofs of Theorems in Chapter 3

A.1 Proof of Theorem 8

According to Theorem 6, the medium access control game has at least one Nash equilibrium.

We will use Theorem 7 to prove that the Nash equilibrium must be unique.

Assume that P (1) and P (2) are two different equilibria of the medium access control game. Let

0 ≤ θ ≤ 1. Define P = θP (1) + (1 − θ)P (2). Because P (1) is a Nash equilibrium, the following

inequality holds for all k = 1, · · · , K and m = 1, · · · ,M ,

dkmtkm(q
(1)
km)− hk

(
log

p
(1)
km

skmx∗
km/K̃k

)
≥ 0, (A.1)

where q
(1)
km is the conditional success probability corresponding to equilibrium P (1). Because

dkm ≤ 1, we get from (A.1) that p
(1)
km ≤ skmx∗

km

K̃k
e

t
(max)
km
hk . Since P (2) is also a Nash equilibrium

and therefore has to satisfy a similar inequality, from P = θP (1) + (1− θ)P (2), we get

pkm ≤ skmx
∗
km

K̃k

e
t
(max)
km
hk . (A.2)

Let Gkl(P ) be defined in (3.2). We first obtain the following inequality according to (A.2).

K∑

k=1

[p
(1)
k − p

(2)
k ]TGkk(P )[p

(1)
k − p

(2)
k ] = −

K∑

k=1

M∑

m=1

(p
(1)
km − p

(2)
km)

2 hk

x∗
kmpkm

≤ −
K∑

k=1

M∑

m=1

(p
(1)
km − p

(2)
km)

2 K̃khk

skmx∗2
km

e
−

t
(max)
km
hk

≤ −
K∑

k=1




M∑

m=1

|p(1)km − p
(2)
km|

√
K̃khk

x∗2
km

e
−

t
(max)
km
hk


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2

≤ −




K∑

k=1

M∑

m=1

|p(1)km − p
(2)
km|

√
K̃k

K

hk

x∗2
km

e
−

t
(max)
km
hk




2

(A.3)
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Next, we show that, for any k, l = 1, · · · , K, l 6= k, and for any m,n = 1, · · · ,M , we

have −1 ≤ ∂qkm
∂pln

≤ 0. Define ξ(k)(P |gkm, gln) as the probability that the packet from user k

is received successfully conditioned on that user k chooses transmission option gkm and user l

chooses transmission option gln. Define ξ(k)(P |gkm, gl0) as the probability that the packet from

user k is received successfully conditioned on that user k chooses transmission option gkm and

user l idles. Because idling causes no more interference than transmitting a packet, we have

ξ(k)(P |gkm, gl0) ≥ ξ(k)(P |gkm, gln). Note that

∂qkm
∂pln

=
∂
[
plnξ(k)(P |gkm, gln)

]

∂pln
+

∂
[(

1−∑M
i=1 pli

)
ξ(k)(P |gkm, gl0)

]

∂pln

= ξ(k)(P |gkm, gln)− ξ(k)(P |gkm, gl0) ∈ [−1, 0]. (A.4)

From (A.4), we get

K∑

k=1

K∑

l=1,l 6=k

[p
(1)
k − p

(2)
k ]TGkl(P )[p

(1)
l − p

(2)
l ]

≤
K∑

k=1

[
M∑

m=1

dkm
x∗
km

t′
(max)
km |p(1)km − p

(2)
km|
]
×
[

K∑

l=1,l 6=k

M∑

m=1

|p(1)lm − p
(2)
lm |
]

<

[
K∑

k=1

M∑

m=1

max

{
t′
(max)
km

x∗
km

, 1

}
|p(1)km − p

(2)
km|
]2

. (A.5)

Combining (A.3), (A.5) and assumption (3.10), we obtain

K∑

k=1

K∑

l=1

(p
(1)
k − p

(2)
k )TGkl(P )(p

(1)
l − p

(2)
l ) < 0. (A.6)

According to Theorem 7, the Nash equilibrium must be unique.
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Appendix B

Proofs of Theorems in Chapter 4

B.1 Proof of Theorem 11

The partial derivative of qv(p,K) with respect to p is given by

∂qv(p,K)

∂p
=

K∑

j=0

(
K

j

)
jpj−1(1− p)K−jCvj −

K∑

j=0

(
K

j

)
pj(K − j)(1− p)K−j−1Cvj

= −
K−1∑

j=0

K

(
K − 1

j

)
pj(1− p)K−1−j(Cvj − Cv(j+1))

≤ 0, (B.1)

where the last inequality is due to the assumption that Cvj ≥ Cv(j+1) for all j ≥ 0. Note that (B.1)

holds with strict inequality if K > Jǫv and p(1− p) 6= 0, where Jǫv = argminj Cvj > Cv(j+1)+ ǫv

for some ǫv > 0.

B.2 Proof of Theorem 12

Let us first consider the situation when x∗

N+b
≤ pmax.

According to the definition of q∗v(p̂) in (4.16), we have

dq∗v(p̂)

dp̂
=

qN(p̂)− qN+1(p̂)

pN − pN+1

+
p̂− pN+1

pN − pN+1

dqN(p̂)

dp̂
+

pN − p̂

pN − pN+1

dqN+1(p̂)

dp̂
. (B.2)

Write K̂ = N + 1− λ with λ ∈ (0, 1]. We have

p̂− pN+1 =
x∗

K̂ + b
− x∗

N + 1 + b
=

λ

N + 1 + b
p̂, (B.3)

and

pN − p̂ =
x∗

N + b
− x∗

K̂ + b
=

1− λ

N + b
p̂. (B.4)
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Meanwhile, because function qN+1(p̂) can be decomposed as

qN+1(p̂) =
N+1∑

j=0

(
N + 1

j

)
p̂j(1− p̂)N+1−jCvj

= p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−jCv(j+1) + (1− p̂)

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−jCvj, (B.5)

we have

qN − qN+1 = p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j(Cvj − Cv(j+1)). (B.6)

Furthermore, the derivatives of qN(p̂) and qN+1(p̂) are given by

dqN(p̂)

dp̂
= −

N∑

j=0

(N − j)

(
N

j

)
p̂j(1− p̂)N−j−1(Cvj − Cv(j+1)), (B.7)

and

dqN+1(p̂)

dp̂
= −

N∑

j=0

(N + 1)

(
N

j

)
p̂j(1− p̂)N−j(Cvj − Cv(j+1)). (B.8)

Substituting the above results into (B.2), we get
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(pN − pN+1)
dq∗v(p̂)

p̂
= p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j(Cvj − Cv(j+1))

− λ

N + 1 + b
p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j−1(N − j)(Cvj − Cv(j+1))

− 1− λ

N + b
p̂

N∑

j=0

(N + 1)

(
N

j

)
p̂j(1− p̂)N−j(Cvj − Cv(j+1))

= p̂
N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j−1(Cvj − Cv(j+1))

×
(
1− p̂− λ(N − j)

N + 1 + b
− (1− λ)(1− p̂)(N + 1)

N + b

)

= p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j−1(Cvj − Cv(j+1))

×
(
λ((1− p̂)(N + 1 + b)−N + j)

N + 1 + b
+

(1− λ)(1− p̂)(b− 1)

N + b

)
.

(B.9)

Note that, for all j ≥ 0, we have

λ((1− p̂)(N + 1 + b)−N + j)

N + 1 + b
≥ λ((1− pN)(N + 1 + b)−N + j)

N + 1 + b

≥ λ(b− x∗ + j)

N + 1 + b
. (B.10)

Therefore,
dq∗v(p̂)
dp̂

≥ 0 if b ≥ 1 and the following inequality is satisfied.

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j−1(Cvj − Cv(j+1))(b− x∗ + j) ≥ 0. (B.11)

It is easy to see that (B.11) holds if b ≥ x∗ − γǫv , with γǫv being defined in (4.18).

Furthermore, if we have both b > 1 and b > x∗ − Jǫv hold with strict inequality, and Cvj >

Cv(j+1) for at least one j ≤ N , then
dq∗v(p̂)
dp̂

> 0 should also hold with strict inequality for p̂ ∈

(0, pmax).
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Next, consider the case when x∗

N+b
≥ pmax. It is easy to see that

dq∗v(p̂)
dp̂

= 0 if x∗

K̂+b
≥ pmax. If

x∗

K̂+b
< pmax but x∗

N+b
≥ pmax on the other hand, we can write K̂ = N + 1 − λ with 0 < λ ≤

N + 1 + b− x∗

pmax
. Consequently, (B.2) and (B.3) still hold. But (B.4) should be changed to

pN − p̂ = pmax −
x∗

K̂ + b
≤ 1− λ

N + b
p̂. (B.12)

As a result, (B.9) becomes

(pN − pN+1)
dq∗v(p̂

p̂
≥ p̂

N∑

j=0

(
N

j

)
p̂j(1− p̂)N−j−1(Cvj − Cv(j+1))

×
(
λ((1− p̂)(N + 1 + b)−N + j)

N + 1 + b
+

(1− λ)(1− p̂)(b− 1)

N + b

)
. (B.13)

By following the rest of the derivations, it can be seen that conclusion of the theorem still holds.

B.3 Proof of Theorem 13

First, because b > max{1, x∗ − Jǫv} holds with strict inequality, the theoretical channel

contention measure q∗v(p̂) is strictly increasing in p̂ for p̂ ∈ (0, pmax). Given user number K,

qv(p̂, K) is non-increasing in p̂. Therefore, if K ≥ Jǫv , then p̂ = p∗ = x∗

K+b
is the only solu-

tion to qv(p̂, K) = q∗v(p̂). When K < Jǫv on the other hand, we have qv(p̂, K) > q∗v(p̂) for all

p̂ ∈ [0, pmax). This implies that p∗ = min{pmax,
x∗

K+b
}1 is the only equilibrium of the system.

Second, we show that there exists a constant ǫ > 0, such that
dq∗v(p̂)
dp̂

≥ ǫ > 0 for all p̂ < pmax.

Note that p̂ < pmax implies K̂ > Jǫv . From (B.9) and (B.10), we get

dq∗v(p̂)

p̂
≥ p̂

pN − pN+1

(
N

Jǫv

)
p̂Jǫv (1− p̂)N−Jǫv−1(CvJǫv − Cv(Jǫv+1))

×
(
λ(b− x∗ + Jǫv)

N + 1 + b
+

(1− λ)(1− p̂)(b− 1)

N + b

)
. (B.14)

Because the right hand side of (B.14) has a positive limit when p̂ → 0, we can find two small

positive constants ǫ0, ǫ1 > 0, such that
dq∗v(p̂)

p̂
≥ ǫ0 for all p̂ ≤ ǫ1. On the other hand, when
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ǫ1 ≤ p̂ < pmax, because b > max{1, x∗ − γǫv} holds with strict inequality, we can find a small

positive constant ǫ2 > 0, such that the right hand side of (B.14) is no less than ǫ2. Therefore, by

choosing ǫ = min{ǫ0, ǫ2}, we have

dq∗v(p̂)

dp̂
≥ ǫ > 0, for all p̂ < pmax. (B.15)

Third, let q∗v
−1(.) be the inverse function of q∗v(p). For any given transmission probability vector

p, transmission probability target p̂ is obtained by

p̂ = q∗v
−1(qv) = q∗v

−1(qv(p, K)). (B.16)

Because
dq∗v(p̂)
dp̂

≥ ǫ > 0, we can find a constant Kl1 > 0 such that

|p̂1 − p̂2| ≤ Kl1|qv1 − qv2|, (B.17)

for all p̂1 = q∗v
−1(qv1) and p̂2 = q∗v

−1(qv2). In the meantime, since qv = qv(p, K) is Lipschitz

continuous in p for any given K, there must exist a constant Kl2 > 0 to satisfy

|qv1 − qv2| ≤ Kl2‖p1 − p2‖, (B.18)

for all qv1 = qv(p1, K) and qv2 = qv(p2, K). Consequently, by combining (B.17) and (B.18), we

have

|p̂1 − p̂2| ≤ Kl1Kl2‖p1 − p2‖, (B.19)

for all p̂1 = q∗v
−1(qv(p1, K)) and p̂2 = q∗v

−1(qv(p2, K)). This implies that the probability target

function given in (B.16) satisfies the Lipschitz Condition 2.

Finally, when the system is noisy, the receiver can choose to measure qv over an extended

number of time slots, namely increasing the value of Q introduced in Step 2 of the proposed MAC

algorithm. If users maintain their transmission probabilities during the Q times slots, it is often the
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case that the potential measurement bias in the system can be reduced arbitrarily close to zero with

a large enough Q. Therefore, the Mean and Bias Condition 1 is also satisfied.

Consequently, convergence of the distributed probability adaptation is supported by Theorems

9 and 10.

B.4 Proof of Theorem 14

According to the two-step approach, qv is interpreted by qv = (1 − pk)qk + pkd
∗(p̆). When

p̆ ≥ pk and p̆ is the solution to qk = q∗(p̆), we have

qv = (1− pk)q
∗(p̆) + pkd

∗(p̆) = q∗(p̆)− pk(q
∗(p̆)− d∗(p̆))

≥ q∗(p̆)− p̆(q∗(p̆)− d∗(p̆)) = q∗v(p̆), (B.20)

where the inequality is due to the fact that q∗(p̆)− d∗(p̆) ≥ 0 for all j ≥ 0. By the monotonicity of

q∗v(.), when p̆ ≥ pk, we have

q∗v(p̂) = qv ≥ q∗v(p̆) ≥ q∗v(pk). (B.21)

This implies that we must have p̂ ≥ pk when p̆ ≥ pk. Similarly, when p̆ ≤ pk and p̆ is the solution

to qk = q∗(p̆), the two-step approach will yield p̂ ≤ pk.

In the case when qk < q∗(0), we have p̆ = 0. Hence the interpreted qv satisfies

qv = (1− pk)qk + pkd
∗(0) < (1− pk)q

∗(0) + pkd
∗(0) ≤ q∗(0) = q∗v(0). (B.22)

This implies that we have p̂ = 0 when p̆ = 0. Similarly, we have p̂ = pmax when p̆ = pmax.
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