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ABSTRACT 

INNOVATIVE HYDROGEN STATION OPERATION STRATEGIES TO INCREASE 

AVAILABILITY AND DECREASE COST 

Major industry, government, and academic teams have recently published visions and 

objectives for widespread use of hydrogen in order to enable international energy sector goals 

such as sustainability, affordability, reliability, and security. Many of these visions emphasize the 

important and highly-scalable use of hydrogen in fuel cell electric cars, trucks, and buses, 

supported by public hydrogen stations. The hydrogen station is a complicated system composed 

of various storage, compression, and dispensing sub-systems, with the hydrogen either being 

delivered via truck or produced on-site. 

As the number of fuel cell electric vehicles (FCEVs) on roads in the U.S. have increased 

quickly, the number of hydrogen stations, the amount of hydrogen dispensed, and the importance 

of their reliability and availability to FCEV drivers has also increased. For example, in 

California, U.S., the number of public, retail hydrogen stations increased from zero to more than 

30 in less than 2 years, and the annual hydrogen dispensed increased from 27,400 kg in 2015 to 

nearly 105,000 kg in 2016, and more than 913,000 kg in 2018, an increase of nearly 9 times in 2 

years for retail stations. So, although government, industry, and academia have studied many 

aspects of hydrogen infrastructure, much of the published literature does not address hydrogen 

station operational and system innovations even though FCEV and hydrogen stations have some 

documented problems with reliability, costs, and maintenance in this early commercialization 
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phase. In general, hydrogen station research and development has lagged behind the intensive 

development effort that has been allocated to hydrogen FCEVs. 

Based on this understanding of the field, this research aims to identify whether 

integrating reliability engineering analysis methods with extensive hydrogen station operation 

and maintenance datasets can address the key challenge of station reliability and availability. The 

research includes the investigation and modeling of real-world hydrogen station operation and 

maintenance.  

This research first documents and analyzes an extensive dataset of hydrogen station 

operations to discover the state-of-the-art of current hydrogen station capabilities, and to identify 

performance gaps with key criteria like cost, reliability, and safety. Secondly, this research 

presents a method for predicting future hydrogen demand in order to understand the impact of 

the proposed station operation strategies on data-driven decision-making for low-impact 

maintenance scheduling, and optimized control strategies. Finally, based on an analysis 

indicating the need for improved hydrogen station reliability, the research applies reliability 

engineering principles to the hydrogen station application through development and evaluation 

of a prognostic health management system.  
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about but do it in a way that will lead others to join you.”  

  



   

 

 vii 

AUTOBIOGRAPHY 

Jennifer Kurtz leads the Hydrogen and Fuel Cell Systems Engineering group at the 

National Renewable Energy Laboratory, which includes hydrogen and fuel cell activities in 

technology validation, safety, codes and standards, market transformation, hydrogen 

infrastructure, grid integration, analysis, and renewable hydrogen production. My team is 

approximately 25 staff with research portfolio covering system efficiency, lowering cost, and 

improving reliability of systems through analysis, experiments, and industry/agency partnerships. 

In this research portfolio, NREL also has a fully integrated research station, the Hydrogen 

Infrastructure Testing and Research Facility (HITRF), that includes all operational aspects from 

renewable hydrogen production to end use. NREL’s HITRF serves as a test platform for 

innovative hydrogen infrastructure and integrated systems research. 

As a principle research engineer for the National Fuel Cell Technology Evaluation 

Center, I process, analyze, and report on real-world data of fuel cell and hydrogen projects that 

span many markets such as vehicles, forklifts, hydrogen stations, and backup power. Prior to 

joining NREL, I worked at UTC Power primarily in fuel cell system design and components. I 

received my master’s degree in mechanical engineering from Georgia Tech and my bachelor’s 

degree in physics from Wartburg College.  



   

 

 viii 

DEDICATION 

For my husband Eric and son, Andre. 

“Do you know when you wonder, you are learning?” -Mr. Rogers 

  



   

 

 ix 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................................. ii 
ACKNOWLEDGEMENTS ........................................................................................................................... iv 

PREFACE ................................................................................................................................................... vi 
AUTOBIOGRAPHY ................................................................................................................................... vii 
DEDICATION ............................................................................................................................................ viii 
LIST OF TABLES ....................................................................................................................................... xi 
LIST OF FIGURES ..................................................................................................................................... xii 
Chapter 1 – Introduction to Transportation Hydrogen Infrastructure Performance and Reliability .. 1 

1. Introduction to Hydrogen Infrastructure ........................................................................................... 1 

1.1. Hydrogen Infrastructure for Transportation .................................................................................. 4 

1.1.1 Hydrogen Production Pathways ....................................................................................... 6 

1.1.2 Hydrogen Station Types ................................................................................................... 8 

1.1.3 Hydrogen Station Deployment ......................................................................................... 9 

1.1.4 Hydrogen Station Capital Costs ...................................................................................... 11 

1.2. Conclusion ................................................................................................................................... 13 

Chapter 2 – Research Questions and Methods ..................................................................................... 16 

2. Research Questions .......................................................................................................................... 16 

2.1. Research Question 1 – What is the measured operational performance of current, consumer-

oriented, retail hydrogen stations? ............................................................................................. 16 

2.2. Research Question 2 – What are the sources of potential for station controls and operations 

optimization to improve the economics and effectiveness of hydrogen stations? .................... 17 

2.3. Research Question 3 – What strategies for active hydrogen station health monitoring are 

actionable and effective at improving hydrogen station reliability? ......................................... 18 

Chapter 3 - Review of Hydrogen station operation, Maintenance, and demand ................................ 21 

3. Introduction to Hydrogen Station Performance .............................................................................. 21 

3.1. Current Hydrogen Station Performance Status ............................................................................ 21 

3.1.1 FCEV Demand ................................................................................................................ 22 

3.1.2 Hydrogen Station Dispensing and Utilization ................................................................ 25 

3.1.3 Hydrogen Station Operation Costs ................................................................................. 27 

3.1.4 Hydrogen Station Safety ................................................................................................. 29 

3.1.5 Hydrogen Station Reliability .......................................................................................... 30 

3.2. Addressing Station Operation Challenges with Reliability Improvements ................................. 32 

3.2.1 Reliability as a Primary Research and Development Challenge .................................... 33 

3.2.2 Reliability Engineering for Hydrogen Stations .............................................................. 34 

3.3. Conclusions .................................................................................................................................. 36 

Chapter 4 – Retail Hydrogen Station Reliability Status and Advances ............................................... 40 

4. Introduction to Hydrogen Station Reliability ................................................................................... 40 

4.1. The System of a Hydrogen Station .............................................................................................. 41 

4.2. Hydrogen Station Datasets and Analysis Methods ...................................................................... 45 

4.2.1 NFCTEC Datasets and Methods ..................................................................................... 45 

4.2.2 Reliability Analysis Methods ......................................................................................... 47 

4.3. Current Status of Hydrogen Station Reliability ........................................................................... 49 

4.3.1 Analysis of Hydrogen Station Maintenance Data .......................................................... 49 

4.3.2 Hydrogen Station Reliability .......................................................................................... 54 

4.4. Using Maintenance Data to Improve Hydrogen Station Reliability ............................................ 60 

4.4.1 Failure Condition Data Experiments .............................................................................. 61 

4.4.2 Data to Drive Failure Investigation and Reliability Improvement Efforts ..................... 63 



   

 

 x 

4.5. Conclusions .................................................................................................................................. 64 

Chapter 5 – Predicting Demand for Hydrogen Station Fueling ........................................................... 66 

5. Introduction to Hydrogen Demand ................................................................................................... 66 

5.1. Hydrogen Station Utilization ....................................................................................................... 67 

5.2. Demand Analysis Methods .......................................................................................................... 71 

5.2.1 Step 1: User Input ........................................................................................................... 73 

5.2.2 Step 2: Data Generation .................................................................................................. 74 

5.2.3 Step 3: Training .............................................................................................................. 76 

5.2.4 Step 4: Prediction ............................................................................................................ 81 

5.3. Predictive Demand Model Results .............................................................................................. 83 

5.3.1 Sample Week Simulation, All Station Types ................................................................. 83 

5.3.2 Mean Fill Estimates, Urban Medium Station Type ........................................................ 84 

5.3.3 Fill Count Probability, Urban Medium Station Type ..................................................... 86 

5.3.4 Transition Matrix—Result Urban Medium Station Type ............................................... 86 

5.3.5 Fill Profile, Urban Medium Station Type ....................................................................... 90 

5.4. Applying the Predictive Hydrogen Demand Model .................................................................... 92 

5.4.1 Fueling Stations for Light-Duty Vehicles ....................................................................... 92 

5.4.2 Application for Other Technologies Such as Buses and Trucks .................................... 93 

5.5. Conclusion ................................................................................................................................... 94 

Chapter 6 – Hydrogen Station prognostics Health management Model ............................................. 96 

6. Introduction to the Hydrogen Station PHM ..................................................................................... 96 

6.1. Hydrogen Station Status .............................................................................................................. 97 

6.2. Review of a Hydrogen Station and Reliability ............................................................................ 99 

6.2.1 Hydrogen Station Overview ........................................................................................... 99 

6.2.2 Reliability Engineering and PHM Overview ................................................................ 100 

6.3. Hydrogen Station PHM Model Methods ................................................................................... 102 

6.3.1 Step 1: Identify Data ..................................................................................................... 104 

6.3.2 Step 2: Observe Operation ............................................................................................ 106 

6.3.3 Step 3:  Analyze Condition ........................................................................................... 108 

6.3.4 Step 4:  Decide Action .................................................................................................. 112 

6.4. Hydrogen Station PHM Model Results ..................................................................................... 113 

6.4.1 Step 1:  Identify Data .................................................................................................... 115 

6.4.2 Step 2:  Observe Operation ........................................................................................... 115 

6.4.3 Step 3:  Analyze Condition ........................................................................................... 116 

6.4.4 Step 4:  Decide Action .................................................................................................. 119 

6.5. Discussion .................................................................................................................................. 122 

6.6. Conclusion ................................................................................................................................. 125 

Chapter 7 – Conclusions ....................................................................................................................... 127 

7. Summary .......................................................................................................................................... 127 

7.1. Research Question Summary ..................................................................................................... 128 

7.1.1 Research Question 1 – What is the measured operational performance of current, 

consumer-oriented, retail hydrogen stations? ............................................................ 128 

7.1.2 Research Question 2 – What are the sources of potential for station controls and 

operations optimization to improve the economics and effectiveness of hydrogen 

stations? ........................................................................................................................ 129 

7.1.3 Research Question 3 – What strategies for active hydrogen station health monitoring 

are actionable and effective at improving hydrogen station reliability? ................... 130 

7.2. Future work ................................................................................................................................ 133 

References .............................................................................................................................................. 136 

 



   

 

 xi 

LIST OF TABLES 

Table 1. Quantified Google Scholar search results, 2008–2018 ................................................................... 3 

Table 2. Systems engineering stages of U.S. based hydrogen infrastructure .............................................. 14 

Table 3. Current Status against DOE 2020 Targets ..................................................................................... 24 

Table 4. Summary of safety reports and station count by year ................................................................... 30 

Table 5. Sample NFCTEC maintenance data template ............................................................................... 47 

Table 6. Hydrogen Station Classification Scheme ...................................................................................... 74 

Table 7. Example Station Transition Matrix and Limiting Distribution, Three Station Types ................... 89 

Table 8. Fill Profile Example, Friday 1600 Hours, Urban Medium ............................................................ 90 

Table 9. Preferred measurements by hydrogen station part for purposes of the H2S PHM ..................... 106 

Table 10. Retail hydrogen station sample fill data .................................................................................... 107 

Table 11. Retail hydrogen station sample maintenance data ..................................................................... 107 

Table 12. HITRF station sample fill data .................................................................................................. 108 

Table 13. Example subsystem and component RUL estimates (not real data) ......................................... 117 

 
  



   

 

 xii 

LIST OF FIGURES 

Figure 1. H2@Scale energy system illustration (not comprehensive) .......................................................... 1 

Figure 2. General hydrogen pathways ........................................................................................................... 7 

Figure 3. General hydrogen infrastructure for vehicle fueling ...................................................................... 8 

Figure 4. General hydrogen station subsystems diagram .............................................................................. 9 

Figure 5. Hydrogen stations in California, U.S., from the Alternative Fuels Data Center Alternative 
Fueling Station Locator (stations shown with blue circle points) .......................................... 10 

Figure 6. Station capital cost by daily capacity for CEC-funded stations ................................................... 13 

Figure 7. Hydrogen dispensed by month and by station for NFCTEC stations .......................................... 27 

Figure 8. Hydrogen price over 2016 and 2017 ............................................................................................ 28 

Figure 9. MFBF by equipment category ..................................................................................................... 32 

Figure 10. Conceptual cost reduction pathway due to reliability improvements and technological 
innovations .............................................................................................................................. 34 

Figure 11. Generic hydrogen station block diagram (color code corresponds to subsystems in Figure 12)
 ................................................................................................................................................ 44 

Figure 12. Maintenance events and maintenance hours by equipment type for NFCTEC retail stations ... 50 

Figure 13. Failure modes for four key maintenance categories, percentage of total events does not sum to 
100% because of allocation of events to other (ungraphed) maintenance categories. ........... 51 

Figure 14. Dispenser maintenance cause and effects—entire ..................................................................... 53 

Figure 15. Dispenser maintenance cause and effect—nozzle ..................................................................... 53 

Figure 16. Station MFBF by cumulative fills .............................................................................................. 55 

Figure 17. Retail station reliability growth .................................................................................................. 56 

Figure 18. Historical failure rate by fills for retail hydrogen stations ......................................................... 57 

Figure 19. Maintenance cost per kg dispensed over time ............................................................................ 60 

Figure 20. Dispenser reliability test setup ................................................................................................... 63 

Figure 21. Predictive demand model development and validation flow diagram ....................................... 73 

Figure 22. Fill time of day based on retail station data ............................................................................... 76 

Figure 23. Hydrogen station fueling amounts per NFCTEC data ............................................................... 79 

Figure 24. Hydrogen station fueling rates within the NFCTEC dataset, with comparisons to the 
Department of Energy Fuel Cell Technology Office targets .................................................. 80 

Figure 25. State transition diagram for states A, B, and C .......................................................................... 82 

Figure 26. Modeled fill count for each station class over a 7-day time period, Sunday through Saturday . 84 

Figure 27. Mean rate (λ), fill amount, and rate estimates by hour for Friday,  Urban Medium Station Type
 ................................................................................................................................................ 85 

Figure 28. Fill cumulative probability map for a Friday, Urban Medium Station Type ............................. 86 

Figure 29. Weekly fill profile (fill amount is left y-axis and cumulative hydrogen dispensed is right y-
axis) for Urban Medium Station Type .................................................................................... 91 

Figure 30. Fuel cell electric bus fueling at a hydrogen station (photo credit: NREL) .............................. 100 

Figure 31. Summary of PHM methods and options .................................................................................. 102 

Figure 32. General H2S PHM model segments ........................................................................................ 104 

Figure 33. Simplified station (gaseous) P&ID diagram ............................................................................ 105 

Figure 34. Placeholder for example survival function estimate (excludes infant mortality failures) ....... 111 

Figure 35. H2S PHM state model .............................................................................................................. 115 

Figure 36. Sample RUL estimate for a dispenser valve ............................................................................ 119 

Figure 37. Time-series RUL example with variable repair schedules ...................................................... 121 

 



   

 

 1 

CHAPTER 1 – INTRODUCTION TO TRANSPORTATION HYDROGEN 
INFRASTRUCTURE PERFORMANCE AND RELIABILITY 

1. Introduction to Hydrogen Infrastructure  

Hydrogen infrastructure is a broad system of systems that are required for a hydrogen 

market. One way to illustrate a high-level hydrogen infrastructure is shown in Figure 1 from the 

vision of Hydrogen at Scale (H2@Scale) [1]. An example path through this hydrogen 

infrastructure is hydrogen production via electrolysis interfaced with the grid to produce for an 

end use like transportation, upgrading biomass, ammonia production, and metals refining. 

Details of each of these transitions, such as the dynamic grid control interface and hydrogen 

delivery, must also include the concept and function of hydrogen infrastructure. There are many 

active areas of research in hydrogen infrastructure, from the holistic systems-level integrations 

that are proposed in H2@Scale, to hydrogen material compatibility.  

 

Figure 1. H2@Scale energy system illustration (not comprehensive) 
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This research focuses in on a critical and highly visible (i.e., directly interfacing with general 

consumers) subsystem of the hydrogen infrastructure system needed for transportation, 

specifically the hydrogen station for fueling fuel cell vehicles. This chapter reviews hydrogen 

infrastructure for transportation. The results of this review identify hydrogen station reliability as 

a key driver of hydrogen system operating expense. 

Transportation is a major contributor to the productivity of the U.S. economy, but the 

pollution costs and economic costs of a petroleum-fueled transportation system are high. 

Transportation produced 57% of total nitrogen oxide emissions, 52% of carbon monoxide 

emissions, and 21% of total volatile organic compound emissions in the U.S. in 2016 [2]. 

Aggressive federal and state goals aim to reduce transportation emissions through regulation, 

improvements in existing technologies, and alternative transportation technologies. Three main 

objectives can be generalized from some U.S. transportation policies: 1) reduce greenhouse gas 

(GHG) emissions in the transportation sector, 2) diversify transportation energy sources to 

reduce petroleum consumption and promote U.S. energy security, and 3) reduce human health 

and environmental impacts from air pollution. Achieving these targets requires more than just 

improving the existing petroleum-fueled technologies. Alternative technologies such as battery, 

hydrogen, and biofuel vehicle technologies are understood to be required to realize deep 

emissions reductions within the transportation sector [3], [4].  

Hydrogen-fueled vehicles, along with their associated hydrogen infrastructure, are a key 

component of an “all-of-the-above” strategy for reducing the environmental impacts of 

transportation. Hydrogen-fueled vehicles can be powered by either hydrogen internal combustion 

engine vehicle powertrains or fuel cell electric vehicle (FCEV) powertrains. FCEVs are the only 

hydrogen-fueled vehicles currently in production. In general, FCEVs are able to meet many of 
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the environmental, policy, and consumer acceptability requirements of transportation. They are 

“zero-emission vehicles” [5] with low life-cycle GHG emissions [6], [7], long range and fast 

fueling [8], competitive market price (with lease and purchase options) [9], [10], [11], and 

durability [12]. As is widely understood, the beneficial characteristics of hydrogen-fueled 

vehicles are dependent on the lifecycle characteristics and function of their fueling infrastructure.  

For example, the life cycle environmental impacts of hydrogen-fueled vehicles are highly 

dependent on the pathway by which the hydrogen is generated, transmitted, and delivered. 

Today, 95% of hydrogen produced in the U.S. is derived from natural gas via steam methane 

reforming. This is the most common and the most cost-effective method for hydrogen 

production. While producing hydrogen from natural gas is not aligned with long-term emissions 

reduction strategies, the current hydrogen pathway does reduce lifecycle emissions relative to 

conventional hydrocarbon fuels [13], [14], [15], [16]. In the long term, hydrogen production 

from water via electrolysis using renewable electricity has the potential to even further improve 

the economics and impacts of hydrogen-fueled transportation. 

To introduce the technologies, systems, and economic characteristics of the hydrogen 

infrastructure that will enable FCEV technologies, this section reviews the state of the art in the 

U.S. for hydrogen infrastructure technologies, station roll-out, performance, and reliability. The 

emphasis is on developments in the past 10 years, although these developments are placed within 

historical context. However, the hydrogen infrastructure literature is relatively limited, as shown 

in Table 1. Research literature on fuel cells far exceeds the amount of research literature related 

to hydrogen infrastructure.   

Table 1. Quantified Google Scholar search results, 2008–2018 

Search Criteria (“allintitle”) Results Count 

Fuel cell(s) >23,000 



   

 

 4 

Fuel cell vehicle(s) >2,000 

Hydrogen infrastructure (or station or stations) ~800 

Hydrogen station(s) data <10 

Hydrogen station reliability <5 

Hydrogen station operation ~15 

Hydrogen station costs ~15 

 

This review of the state of the art of hydrogen infrastructure demonstration, performance, 

and commercialization is to propose an infrastructure operation-centric research agenda for 

increasing hydrogen infrastructure reliability and availability and reducing near-term costs. 

1.1. Hydrogen Infrastructure for Transportation 

Hydrogen is an energy carrier that can be produced from a variety of sources and can be 

converted into useful work via a variety of mechanisms. Hydrogen is a mass-produced industrial 

gas most commonly used in petroleum refining, ammonia production, and paper processing. The 

U.S. produces approximately 10 million metric tons of hydrogen a year, which would be enough 

hydrogen for approximately 50 million vehicles [17]. The steps necessary to supply hydrogen to 

the vehicle include production and delivery to the station (or production at the station), storage, 

compression, and dispensing. The systems that perform these functions are collectively referred 

to as transportation hydrogen infrastructure for the purpose of this review.  

To generate useful motive power from stored hydrogen, hydrogen must be converted to 

mechanical work through either thermodynamic (e.g., internal combustion engine) or 

electrochemical/electromechanical means (e.g., FCEV and electric drivetrain). At present, 

FCEVs are the highest efficiency [18] and most production-ready hydrogen-to-energy 

technology available [19], and they will be the baseline vehicle technology considered for the 

remainder of this dissertation. Fuel cells consume hydrogen in an electrochemical reaction with 

oxygen to produce electricity, water, and heat. The most common hydrogen-fueled fuel cell 
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system is a polymer electrolyte membrane (PEM) system, which includes subsystems for thermal 

management, hydrogen storage, electric powertrain, power electronics, and safety [20]. The fuel 

economy of an FCEV is typically 2–3 times higher than that of an internal combustion engine 

(e.g., 50–68 miles per gallon of gasoline equivalent compared with the EPA 24.7 miles per 

gallon model year 2016 average [21], [22]), and an FCEV has many of the same attributes 

(fueling time, range, mass, and size) as conventionally-fueled vehicles today. Effective FCEV 

applications are those that require these attributes, and fuel cells can enable many of the more 

general benefits of an electric-drive vehicle such as zero harmful tailpipe emissions (emitting 

mostly water, a small amount of hydrogen, and passing through nitrogen from the air), high 

performance, and quiet operation.  

Some of the mobility applications available for fuel cells today include forklifts, airport 

ground support equipment, light- and heavy-duty vehicles, and public transit [23], [24]. Different 

vehicle types require different types of hydrogen infrastructure. Hydrogen is dispensed to 

vehicles at two different pressures: 35 MPa and 70 MPa. Light-duty passenger vehicles store 

gaseous hydrogen on-board with carbon-fiber-wrapped tanks that typically hold 4 to 6 kg of 

hydrogen at 70 MPa. The higher pressure is necessary to provide the light duty vehicles with a 

desirable range without sacrificing useable vehicle space (e.g., trunk and passenger areas). Other 

fuel cell vehicles, like buses, forklifts, and trucks, typically store hydrogen at 35 MPa. Light-duty 

FCEVs for personal and fleet applications have been in limited production since the early 2000s. 

Some FCEV manufacturers (Toyota, Hyundai, and Honda) are now selling commercial 

production vehicles [25], [26], [27]. Other manufacturers have been leasing pre-commercial 

FCEVs (Mercedes-Benz), have FCEVs in various development phases (GM and Nissan), or are 

in partnerships to develop commercial FCEVs.  
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In general, these long-term industrial investments in FCEV technologies have outpaced 

comparable types of investments in hydrogen infrastructure technologies. Hydrogen 

infrastructure, energy infrastructure, and FCEVs rely on one another for successful deployment, 

and many of the technological, consumer, and societal challenges with FCEVs involve the 

availability, reliability, and cost of hydrogen infrastructure. 

1.1.1 Hydrogen Production Pathways  

Hydrogen fuel pathways (Figure 2) are classified by hydrogen source (e.g., reformed 

methane, electrolyzed water). The pathways can also be categorized by the distribution 

mechanism (on-site generation or delivered). Various studies performed at universities, 

consultancies, and governments have considered the costs and benefits of different combinations 

of these pathways. The most relevant hydrogen pathways have been the subject of detailed 

analysis for their energy use and GHG emissions. Of the 10s of hydrogen pathways that might be 

considered scalable and relevant, hydrogen produced by central renewable electrolysis and 

delivered by pipeline is consistently found to have the lowest well-to-wheel GHG emissions [3], 

[28], [29], [30]. These studies also find that improvements in vehicle efficiency and fuel-path 

efficiency must both be realized to achieve long-term environmental and economic targets for 

hydrogen-fueled vehicles. These vehicle efficiency improvements will include mass reduction, 

aerodynamic improvements, and auxiliary load reductions. The hydrogen source must also be 

considered for an accurate understanding of the carbon intensity. Many researchers have 

published comparisons of hydrogen pathways to other vehicle and fuel pathways [6], [7], [14], 

[31], [32]. These studies show varying GHG emissions according to the various pathways and 

vehicle powertrain configurations, but in general, hydrogen-fueled FCEV GHG lifecycle 
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emissions (g CO2e/mi) are demonstrated to be 20%–70% lower than those of conventional 

petroleum-fueled vehicles. 

 

Figure 2. General hydrogen pathways 

Hydrogen infrastructure for fueling FCEVs can be simplified into functions like source, 

make, store, move, use, and decision (as shown in Figure 3). The source function covers the 

beginning of the hydrogen production pathway and the make function covers the different 

production methods. Store and move network functions have similar attributes like hydrogen 

pressure and phase, but the difference is that the move function is dynamic, transporting 

hydrogen from one location to another. The decision function has a direct relationship to the 

other blocks because the attributes include safety, monitoring, and analysis. The use function is 

for the hydrogen fueling station, where a fill is completed with the transfer of gas happens from 

the station to the customer.  
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Figure 3. General hydrogen infrastructure for vehicle fueling 

1.1.2 Hydrogen Station Types 

There are many types of hydrogen stations that will be or have been deployed. The 

majority of current stations use delivered gaseous hydrogen from steam methane reforming [33]. 

This configuration is a result of commonality in station design and supply and minimizes costs at 

the scale of interest (see Figure 4 for the subsystems of a hydrogen station). The two leading 

categories of stations are 1) delivered hydrogen from steam methane reforming and 2) on-site 

hydrogen production via water electrolysis [33]. Delivered liquid hydrogen is likely to be a 

preferred hydrogen station storage option for a high throughput (i.e., kg/day) station and/or 

where space is limited. Other hydrogen pathway options utilized in low numbers today include 

delivered hydrogen produced from renewable sources and hydrogen delivery via pipeline [34], 

[35].  
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Figure 4. General hydrogen station subsystems diagram 

1.1.3 Hydrogen Station Deployment  

Because of the high costs of hydrogen infrastructure, planning and optimizing the 

hydrogen fueling system roll-out has been a key component of the community’s research agenda 

[36]. Under the assumption that the quantity of hydrogen infrastructure may limit the adoption of 

hydrogen vehicle technologies in the near term, many studies have focused on comparisons to 

the history of gasoline station deployments [37] and on determining the optimal locations or 

timing of infrastructure roll-out to minimize costs or maximize the number of vehicles that can 

be served [38], [39], [40], [41], [42], [43], [44], [45], [46]. These studies have debated the costs 

and benefits of highway-centric infrastructure rollout plans, and or more concentrated 
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infrastructure rollout plans, but in general, the rollout of hydrogen infrastructure in the US has 

incorporated aspects of both philosophies, as illustrated in Figure 3.   

As of 2017, there are 35 public hydrogen stations in the U.S., with 34 stations in 

California [47] (Figure 5) supporting approximately 6,000 FCEVs. If private stations are 

included, there are 62 stations in the U.S. with another 26 stations planned. Hydrogen 

infrastructure is also expanding in the U.S. [48] and internationally, with 180 active stations 

outside of the U.S. [49], [50]. The State of California has established a near-term target of 

approximately 100 hydrogen stations in California, which is estimated to be a minimum 

hydrogen infrastructure network to support a near-term goal of 25,000–40,000 FCEVs in the 

state [51]. The California Fuel Cell Partnership has identified three priorities in order to realize 

1,000 hydrogen stations and up to 1,000,000 vehicles by 2030: enable, establish, and expand the 

market [52].    

 

Figure 5. Hydrogen stations in California, U.S., from the Alternative Fuels Data Center Alternative 

Fueling Station Locator (stations shown with blue circle points) 
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The process to build a hydrogen station from start to finish includes design, permitting, 

construction, and commissioning. These general steps can vary significantly in duration based on 

factors like site-specific challenges and local/multiple jurisdiction requirements [53]. Out of 

seven station construction timelines studied in NREL’s National Fuel Cell Technology 

Evaluation Center (NFCTEC) in 2015, the permitting process for one station lasted 90 days, 

while for another it lasted 255 days. These long delays to a station’s construction timeline can 

result in increased costs and risk. Decreasing the time for a station to go from design to retail 

fueling is being addressed through a number of activities such as the California Governor’s 

Office of Business and Economic Development permit assistance, Hydrogen Station Permitting 

Guidebook [54], a collection of safety, codes, and standards guides [55], [56], [57], and the 

Hydrogen Station Equipment Performance Device [58]. In general, these efforts are working to 

disseminate information to builders and investors about hydrogen station construction, codes, 

and best practices.  

1.1.4 Hydrogen Station Capital Costs 

Hydrogen station capital costs are a challenge to the commercialization of hydrogen 

infrastructure. The primary source of data for understanding hydrogen station costs is the data 

collected for documentation of the California Energy Commission’s (CEC’s) cost sharing of 

station installation costs [59]. All CEC-funded stations (46 as of the end of 2015) record and 

publish their budgeted costs and actual costs (for stations that are either in operation or in 

development). Cost data collected from the CEC awards provide the low-volume basis for the 

economic evaluation of current stations (i.e., stations with capacity to dispense hundreds of 

kilograms per day instead of thousands of kilograms per day). At present, the lowest station cost 

is $0.91 million and the highest station cost is $4.6 million. The average station cost (from 46 
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stations) is $2.2 million, and the average breakdown of this cost is 5% for general/administration, 

4% for data reporting (quarterly reporting on performance, operation, and maintenance to CEC 

and NFCTEC), 7% for commissioning, and 84% for the station itself, which includes equipment, 

engineering, fabrication, procurement, site preparation, construction, and installation. Another 

review of station installed costs, compares conventional station configurations with modular 

configurations [60], showing the authors expect to see more modular configurations in the future 

to reduce cost and station footprint.  

As shown in Figure 6, the stations that have a common design and capacity have similar 

costs. The lowest-cost stations rely on delivered compressed gas with a minimum cost just under 

$1 million. The highest-cost stations have either relatively high daily capacity (e.g., 350 kg per 

day and station costs greater than $2.5 million) or on-site production (e.g., 100 kg per day and 

station costs greater than $3 million). The low-cost delivered gas stations and higher capacity 

liquid stations have capital costs of around $5,000 per daily capacity kilogram. This is a 

significant decrease from station capital costs in 2009, which exceeded $20,000 per daily 

capacity kilogram [61].  
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Figure 6. Station capital cost by daily capacity for CEC-funded stations 

1.2. Conclusion 

The development cycle of hydrogen station technologies has progressed to the point 

where there exist more than 30 retail hydrogen stations in the California. It is now possible, in 

limited geographic regions like Southern California, to simply drive up to a local hydrogen 

station, pay, get fuel, and drive away. In the context of system engineering life cycle stages, 

nearly all of the hydrogen station systems are in the post-development stage. This post 

development stage for hydrogen stations includes constructing, deploying, operating, and 

maintaining phases. Table 2 provides a brief look back on hydrogen station development stages 

and looks at what the next stages will likely include. 
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Table 2. Systems engineering stages of U.S. based hydrogen infrastructure 

Phase Past hydrogen station development 
Current and future hydrogen station 

development 

Concept 

Development 

<2006 

• Need for hydrogen infrastructure driven 

by emissions reductions, domestic 

sourcing, and a vision of renewable 

generation 

• Station concepts include hydrogen 

production/delivery, compression, 

storage, and dispensing 

2018 (current timing) - ~2020 

• Next iteration of need for hydrogen 

stations grows in demand, location, 

variety, renewable requirements, and 

future transit solutions 

• New concepts in development 

Engineering 

Development 

2006 – 2015  

• Hydrogen stations designed, built, and 

deployed through a DOE Learning 

Demonstration project 

• Station evaluation on-going for 

performance, safety, and maintenance, 

providing input to the next iteration of 

hydrogen station development in the 

concept stage 

• Primarily for light duty vehicles, some 

buses 

~2020 - ~2025 

• Advanced system and component 

design  

• System boundary may increase to 

include hydrogen sourcing, integration 

with other sectors (e.g., grid), station-

to-X communications, autonomous 

operations 

• Multiple applications (e.g., cars, trucks, 

buses, and forklifts) 

Post 

Development 

2015 – 2017 (current timing) 

• Retail hydrogen sale starting around 2015 

• Operation focused on availability and 

cost, providing input to the next iteration 

of hydrogen station development in the 

concept stage 

~2030 

• Construction and deployment of 

hydrogen stations and hydrogen 

dispensing at least an order of 

magnitude more than current levels 

 

Based on these high-level observations, there exists a gap in the understanding of 

transportation hydrogen infrastructure and what is needed for a commercial market. We know 

that this infrastructure is small compared to those of other fuels, yet it is growing in both amount 

and the number of hydrogen fueling stations. However, based on this data, we do not know how 
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these stations meet consumer expectations and requirements for expectations such as availability, 

reliability and cost.   

Hydrogen station reliability directly impacts station availability and is one area where 

more research and information are needed to understand the topic. Reliability is important to our 

understanding of infrastructure because reliability influences consumer acceptance, costs, safety, 

and commercial success. Understanding station reliability requires data analysis on failures, 

maintenance, and demand for hydrogen fueling. Analysis of the performance of current hydrogen 

stations will identify existing reliability challenges and will set the research agenda for 

improving the economics and performance of hydrogen stations as the infrastructure and demand 

for hydrogen grows in the future.   
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CHAPTER 2 – RESEARCH QUESTIONS AND METHODS 

2. Research Questions  

Because hydrogen infrastructure for transportation has only recently advanced from the 

engineering development stage to an early commercialization phase, there is little published 

research literature on hydrogen station operation strategies and reliability, with the bulk of 

hydrogen station research literature focused on deployment strategies and long-term market 

scenario analyses. Based on this and technical research challenges outlined in Chapter 1, a 

primary research question can be posed: 

Primary Research Question: Can a data-rich model of a hydrogen station system 

support the integration of predictive reliability engineering to address key technical challenges 

of availability and cost? 

The primary research question is broken down into three research questions of smaller 

scope and the work required to answer each research question is broken down into tasks. Each 

task provides outputs which contribute to answering the primary research question and to 

accomplishing subsequent tasks.  

 
2.1. Research Question 1 – What is the measured operational performance of current, 

consumer-oriented, retail hydrogen stations? 

Previous research questions about hydrogen infrastructure sought to answer whether the 

technology would work under normative conditions, whether it was possible to do more than 

limited demonstration-type operation, and where and when stations should be deployed. Those 

questions have been answered through analysis and real-world evaluations primarily from the 
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DOE’s technology validation program [62]. For this research, we can use current hydrogen 

station data to answer additional questions based on retail (instead of demonstration) operation. 

For example, 1) what are the gaps between actual performance with what was projected, 2) what 

are the gaps between actual performance and the station performance that would be required to 

meet future demand, 3) what is the current system readiness level, and 4) how can past data on 

performance successes and failures inform future designs and operational strategies. These 

questions are important to inform industry-specific stakeholders, measure progress, and educate 

a general audience about why hydrogen infrastructure technologies are relevant contributors to a 

sustainable mobility solution.  

The first task for this research question is to complete an objective baseline assessment of 

FCEV and hydrogen infrastructure status and progress. This analysis relies on data from NREL’s 

NFCTEC, where real-world data from both FCEVs and hydrogen infrastructure are stored, 

processed, and analyzed. These data include confidential and commercially sensitive data, which 

must be considered to enable an accurate technology evaluation. The second task is a gap 

analysis to understand the status of current hydrogen stations against their performance 

requirements. The gap analysis will look at near-term and long-term hydrogen station 

requirements such as cost and demand.   

2.2. Research Question 2 – What are the sources of potential for station controls and 

operations optimization to improve the economics and effectiveness of hydrogen stations? 

Real-world data on the operation and demand experienced by hydrogen stations has 

increased over the last decade and is at a point where data on real behaviors can drive optimized, 

data-based operation and maintenance (O&M) decisions. Time-varying demand for hydrogen 

impacts station availability and operation costs because demand can be variable and difficult to 
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predict. This research question asserts that a station operation strategy that allows for the 

prediction of fueling demand can 1) schedule high cost operation (e.g., compression) at specific 

times to lower operating costs and not negatively impact customers, 2) participate in alternative 

revenue generating conditions (e.g., grid services), 3) optimize station component sizing, and 4) 

schedule downtime when there is the lowest risk of lost revenue and dissatisfied customers. The 

expected net effect of these improvements to hydrogen station operation will be an improvement 

in station economics (as measured by $/kg) and effectiveness (as measured by availability and 

reliability) that can be quantified explicitly.   

The first task for this research question is to construct a dataset of driving and fueling 

behaviors from both FCEVs and hydrogen stations. These data will be mined for driving day, 

time, and distance as well as fueling day, time, and amount, to serve as the learning dataset for a 

near-term fueling demand scenario. Future demand scenarios will be constructed based on 

available data and forecasts. The second task is to build and verify a predictive fueling demand 

model from the fueling behavior database. The task requires the model to be flexible and capable 

of modeling under many different input variables. Scenarios will seek to model the number of 

FCEVs, other fuel cell vehicle types, and number of hydrogen stations deployed. Real-world 

station data provides the learning dataset for the model.  

2.3. Research Question 3 – What strategies for active hydrogen station health monitoring 

are actionable and effective at improving hydrogen station reliability? 

Hydrogen station availability and reliability is a leading concern because of its direct 

impact on FCEV drivers’ satisfaction. Low station reliability results in dissatisfied customers, 

high costs, and unnecessary system complexity (e.g., redundancy, spare parts, and technician 

support), ultimately creating a station availability problem that can decrease consumer 
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confidence. At present, the reliability of hydrogen stations is expected to not be high enough to 

meet the requirements of FCEV drivers. In 2018, the industry median “mean number of fills 

between failures” is less than 500, which results in frequent unscheduled maintenance activities. 

Another way to describe is this is in terms of technology readiness level [63], where the 

hydrogen system must be at a level of 9, a proven system, reliable in real-world operation.   

There are many possible reasons for hydrogen stations’ low reliability. One reason is 

from one-off failures that simply need a solution identified and implanted so those failures aren’t 

seen again. Another reason is that hydrogen is a challenging fuel to manage in a consumer-

oriented station system. Hydrogen’s embrittlement properties and thermal/pressure operating 

conditions require complex systems to ensure user safety. Another reason is that the field of 

hydrogen station operation is early in a deployment/development cycle, and not enough of the 

reliability engineering best practices have been integrated into station O&M. The hypothesis 

associated with this research question is that the application of advanced reliability engineering 

methods like prognostic health management (PHM) for hydrogen station O&M will minimize 

unscheduled failures, thus increasing station availability. 

The first task for this research question is the development of new metrics, datasets, and 

diagnostics to improve the reliability of hydrogen stations in practice. To date, hydrogen station 

evaluation projects have analyzed past events to study and report on station maintenance and 

reliability. This task will add to the existing research, with a framework that can be implemented 

and validated at hydrogen stations. The second task is to estimate the remaining useful life 

(RUL) for key subsystem and components. In addition, this task will estimate the benefits 

expected, specifically that the station O&M costs will decrease because 1) preventative 

maintenance will be informed by both best practices and current health estimates, 2) preventative 
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maintenance will be scheduled to minimize impact hydrogen sale revenues, and 3) predictive 

fueling demand will enable controlled operation for additional revenue options like grid services. 
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CHAPTER 3 - REVIEW OF HYDROGEN STATION OPERATION, MAINTENANCE, AND 
DEMAND 

3. Introduction to Hydrogen Station Performance 

Quantifying the operational performance of current, consumer-oriented, retail hydrogen 

stations is the aim of the first research question. In order to answer this research question, an 

objective baseline assessment of fuel cell vehicle and hydrogen infrastructure was completed to 

provide the foundation of status and a benchmark for measuring gaps and progress. A gap 

analysis was also performed to understand the status against specific technical and economic 

criteria for successful hydrogen station operation. The gap analysis informs critical research 

needs that are necessary for the projected deployment of fuel cell vehicles and successful 

hydrogen station market.  

This chapter reviews the engineering and practice of modern hydrogen infrastructure 

including the costs, benefits, operations (including safety, reliability, availability), and challenges 

to the scale-up of hydrogen infrastructure. The results of this review identify hydrogen station 

reliability as a key driver of hydrogen system operating expense. This chapter places hydrogen 

station reliability and its pathway forward within the context of the larger reliability engineering 

field.  

3.1. Current Hydrogen Station Performance Status 

The broad set of options for different hydrogen station designs, sources, and costs have 

largely converged to realize the retail hydrogen stations being installed today. At present, the 

state-of-the-art retail hydrogen station uses is functional and capable of meeting the relatively 

low demand of the current FCEV fleet. Numerous successful station demonstrations and their 
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associated data sets have shown that disruptive advancements in the basic technology of 

hydrogen infrastructure are not needed for successful near-term hydrogen-fueled transportation, 

but that the operation of hydrogen stations must be improved to be able to move toward mass 

market hydrogen-fueled vehicles.    

Because much of the hydrogen infrastructure that has been developed in the U.S. has 

been subsidized with public funding and is therefore subject to extensive data reporting [64], 

there is a relatively rich data set available for understanding the construction, operation, and 

economics of hydrogen fueling systems. Universities and national laboratories have published 

the operational characteristics of their single on-campus hydrogen stations [65], [66], [67]. Other 

relevant data sets document operating costs, operational uptime, and more [68], [69], [70]. The 

most extensive data set available to date that includes multiple stations and operators is at 

NREL’s NFCTEC. The NFCTEC project collects hydrogen infrastructure operation, 

maintenance, and safety data for fuel cell systems and infrastructure [34], [71] from more than 

10 project partners to a centralized site. The set of NFCTEC-reporting stations are the primary 

source of data for the operations-centric portion of this review.  

3.1.1 FCEV Demand 

With many thousands of FCEVs on the road, primarily in California in the hands of early 

technology adopters, the expectations of hydrogen infrastructure and the demand for hydrogen 

fueling can vary significantly as a function of time, and geography. New generations of FCEV 

technology have improved the vehicle’s range while emphasizing the performance benefits. A 

decade long study of FCEV driving, fuel cell performance and durability, and vehicle range and 

fuel economy documented the significant progress in the technology ( 
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Table 3). A recent FCEV evaluation included 42 vehicles with more than 2.3 million 

miles traveled and more than 72,000 fuel cell operation hours.  

Table 3 summarizes the primary DOE targets and analysis results for four evaluation 

phases. The FCEV-specific data in Table 3 provides an insight into how the drivers fill their 

vehicles and their driving behavior between fills.  
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Table 3. Current Status against DOE 2020 Targets 

Vehicle Performance 

Metrics 

DOE 

Target  

(Year 

2020)a 

LD3b LD2+c LD2c LD1c 

Durability 

Max fuel cell durability 

projection (hours) 
5,000 4,130  -- 2,521 1,807 

Average fuel cell durability 

projection (hours) 
  2,442 1,748 1,062 821 

Max fuel cell operation (hours)   5,648 1,582 1,261 2,375 

Efficiency 

Adjusted dyno range (miles) 

(window sticker)  
  200–320 -- 196–254 103–190 

Median on-road distance 

between fuelings (miles) 
  122 miles 98 81 56 

Fuel economy (mi/kg) 

(window sticker)  
  52 (median) -- 43–58 42–57 

Fuel cell efficiency at ¼ power 60% 
57% 

(average) 
-- 

53%–59% 

(max) 
51%–58% 

Fuel cell efficiency at full 

power 
  

43% 

(average) 
-- 42%–53% 30%–54% 

Specs 

Specific power (W/kg) 650 240–563 -- 306–406 183–323 

Power density (W/L) 850 278–619 -- 300–400 300–400 

Storage 

System gravimetric capacity  

(kg H2/kg system) 
5.5% 2.5%–3.7% -- -- 2.5%–4.4% 

System volumetric capacity  

(kg H2/L system) 
0.04 0.018–0.054 -- -- 

0.017–

0.025 

a Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan [1] 

b Current results are available online [3] (updated May 2017) from Learning Demonstration 3 (LD3) 
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c National Fuel Cell Vehicle Learning Demonstration (LD) Final Report [2] which included two more phases Learning 

Demonstration 2 (LD2) and Learning Demonstration 2+ (LD2+) that had different generation vehicles and number of 

participating OEMs 

3.1.2 Hydrogen Station Dispensing and Utilization 

The quantity of hydrogen dispensed has increased significantly as hydrogen stations have 

moved from demonstration to retail and as FCEVs have moved from prototypes to commercial 

products.1 As an example, among the stations in NFCTEC, less than 2,000 kg hydrogen was 

dispensed in all of 2009 while nearly 105,000 kg was dispensed from retail stations in 2016, and 

more than 913,000 kg was dispensed in 2018. Typical hydrogen stations being installed today are 

capable of dispensing 100–400 kg per day with typically one to two dispensers per station. 

Assuming typical values of 4 kg per fill and approximately 10 min per fill (includes time to 

connect, fuel, and drive away), a current station (capable of 200 kg per day, 90% availability) 

could complete fills for approximately 45 FCEVs spanning less than 8 hours of fueling per day. 

The fill time is an important metric of station operation to understand the value 

proposition of hydrogen infrastructure and FCEVs relative to other technologies. A fill time of 

<5 minutes compares favorably with the fueling time of current gasoline technologies, or fast 

charge electric vehicle technologies. Hydrogen station dispensing pressure was increased to 70 

MPa for light-duty vehicles around 2009 [8], and fueling protocols [72] for this higher pressure 

were developed at that time. From NFCTEC analysis of more than 35,000 fills, the average fill 

 

 

1 All referenced NFCTEC data figures are available on NREL’s website: 

https://www.nrel.gov/hydrogen/infrastructure-cdps-all.html 
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time for the most modern retail stations is 3.6 min, with an average fill amount of 2.9 kg. For just 

the 70 MPa fills, the average fill rate is 0.84 kg/min and the average fill amount is 3.1 kg per fill.  

Daily hydrogen station utilization is defined as the ratio of daily hydrogen dispensed to 

the daily station nameplate capacity (which includes estimates of throughput and maintenance). 

Actual daily usage may exceed a station’s nameplate capacity, as that capacity is not necessarily 

a physical limit and is not defined uniformly across all stations. High hydrogen station utilization 

is an important indicator of the economic viability of the hydrogen stations, and lower utilization 

indicates the capacity to serve more vehicles. Early hydrogen stations were deployed so as to 

achieve geospatial coverage of a region, as opposed to high utilization [52]. There has been a 

large variation in fills from quarter to quarter and station to station, as well as times with low 

utilization, which indicates a capacity for more fills. The average daily utilization of the average 

individual hydrogen station is currently ~35%, which is lower than what would be required for to 

maximize the economic return on investment. Hydrogen station utilization is expected to 

increase as more FCEVs are deployed. Overall the utilization trend is increasing and some 

stations have seen a large increase in utilization rate (which is proportional to dispensing rate, see 

Figure 7), averaging 50–100 kg/day or 10–30 fills/day.   
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Figure 7. Hydrogen dispensed by month and by station for NFCTEC stations 

3.1.3 Hydrogen Station Operation Costs 

To maximize revenue from hydrogen sales, the capital costs along with O&M costs must 

be minimized. At present, current prices (Figure 8) at the pump for 70 MPa hydrogen are 

between $10/gge (gasoline gallon equivalent, where the energy of one kilogram of hydrogen is 

approximately equivalent to the energy of one gallon of gasoline) and $16/gge [73], [74]. This is 

significantly higher than the price that is required for cost competitiveness with conventional 

fuels ($3/gge to $5/gge).  
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Figure 8. Hydrogen price over 2016 and 2017 

Numerous studies have concluded that cost competitive hydrogen is possible today using 

low-cost production methods and high station utilization [75], [76], [77], [78], [79], [80], [81]. 

These studies indicate that the primary driver for low-cost hydrogen is the economies of scale 

that are available to achieve lower capital costs with large stations operating at a high hydrogen 

dispensing rate. At an average throughput of 750–1,000 kg of hydrogen per day, the costs of 

delivered hydrogen can be cost competitive because the capital cost of the hydrogen 

infrastructure can be reduced per kilogram of hydrogen delivered. This rate is much higher than 

the dispensing rate (<400 kg/day capability and <100 kg/day in practice [34]) of current stations. 

Uncertain demand can also present hydrogen stations with cost challenges. An example of this 

can be found in a study of hydrogen station deployment in New Jersey, which does not have a 

strong demand already in place [82]. The researchers studied the hydrogen station supply chain 
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based on size, location, and demand scenarios, including the process from hydrogen production 

to dispensing. The results provided recommended type, size, and location for stations (e.g., steam 

methane reformed hydrogen supporting three stations in the first 5–10 years) to minimize the 

economic risk due to uncertainty in hydrogen demand. 

3.1.4 Hydrogen Station Safety 

Safe operation is essential for successful deployment and operation of hydrogen stations. 

A guiding safety code is the National Fire Protection Association (NFPA) 2 Hydrogen 

Technologies Code. The NFPA 2 code “provides fundamental safeguards for the generation, 

installation, storage, piping, use, and handling of hydrogen in compressed gas form or cryogenic 

liquid form” [83]. A quantitative risk assessment informs hydrogen station permitting and can be 

useful for evaluating compliance with code requirements [84]. Traditional fault and events trees 

[85] and Bayesian Networks have been studied for hydrogen station risk modeling. Risk analysis 

and hazard identification are critical steps to inform the codes and safety requirements in a 

reliable and cost-effective manner for many different hydrogen station scenarios. For example, a 

hazard analysis for a hybrid gasoline-hydrogen fueling station in Japan identified 314 scenarios 

(e.g., leaks and collisions) that should be mitigated for this particular system with its unique 

considerations [86].     

During station operation, the safety is monitored through tracking alarm data sets and 

safety-related records in the station maintenance logs. These safety reports, per the NFCTEC 

data (Table 4), are classified by a severity category: minor hydrogen leak, near-miss, or incident. 

A “near-miss” is an event that could have become an incident and an “incident” is an event that 

results in injury, damage, or impact to the public or environment. To date, the hydrogen station 

safety record is excellent. As might be expected, minor hydrogen leaks correlate with the 
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commissioning of new stations; no single subsystem dominates these incidents; and the hydrogen 

leaks are generally minor, without accumulation.  

Table 4. Summary of safety reports and station count by year 

Safety Reports 2012 2013 2014 2015 2016 2017 

Station Count 3 4 5 11 30 36 

Incidents 0 0 0 0 0 1 

Near Miss 1 1 1 1 3 6 

Minor Hydrogen Leak 16 7 16 4 19 7 

 

3.1.5 Hydrogen Station Reliability 

Hydrogen station availability and reliability is a leading concern raised from the 

perspective of the FCEV manufacturers because of its direct impact on the FCEV customer 

experience. Low station reliability results in high maintenance costs, lowered revenues, system 

complexity, low availability, and dissatisfied customers. NFCTEC publishes the only regular 

studies of the reliability of retail hydrogen stations based on maintenance data supplied from 

station operators. These data include date, system, type, labor time, cost, and description. The 

NFCTEC analysis is separated into maintenance analysis and reliability analysis. The 

maintenance results focus on the categorization of maintenance events, and aggregated 

maintenance statistics, such as percentage of maintenance events that were unscheduled. The 

reliability analyses focus on characterizing those maintenance events against time, such as mean 

fills between failures (MFBF). The four most common equipment categories for maintenance 

events are compressors, dispensers, entire system, and chiller systems. These subsystems and 

their interfaces may be particularly amenable to reliability improvement strategies. 

The hydrogen stations reliability data are also categorized into scheduled issues, and 

unscheduled issues. Maintenance data is collected from operational stations via maintenance logs 

and submitted to NFCTEC, which is used to analyze station reliability. NFCTEC maintenance 
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data for retail hydrogen stations includes more than 5,600 maintenance events, and more than 

14,700 hours of labor, with 69% of those events being unscheduled maintenance. The leading 

equipment categories for maintenance are dispenser and compressor. For an analysis of the 

MFBF, the station is separated into sub-systems. The sub-systems are the:  

• Air management 

• Thermal management  

• Electrical 

• Safety  

• Gas management panel (used for mechanical control) 

• Storage 

• Chiller 

• Dispenser 

• Compressor 

There are three other categories (entire, station other, and summary) which are specified 

by the data providers for events that are not easily categorized by either the sub-system.  
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Figure 9. MFBF by equipment category 

Limiting the analysis to only the latest retail stations so as to remove aging stations, there 

are five different subsystems that have an MFBF of approximately 500 fills or less. These 

categories include compressors and dispensers, the two leading maintenance equipment 

categories. In 2017, the dispenser category had an MFBF of less than 250, which leads to high 

levels of unscheduled maintenance activities (Figure 9). It appears that the reliability of hydrogen 

stations is not high enough to meet the requirements of FCEV customers since a station MFBF 

will not be better than the poorest subsystem MFBF and many subsystems have a MFBF of less 

than 500.  

3.2. Addressing Station Operation Challenges with Reliability Improvements 

This review of publicly available data has identified a set of near-term challenges, 

specifically reliability, throughput, and O&M cost. Low reliability presents a barrier to 

economically viable hydrogen infrastructure because it not only increases the maintenance cost 
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contribution to the pump price but also decreases availability and the amount of hydrogen 

dispensed. By addressing reliability issues, the industry should enable improvements to 

throughput and lower maintenance costs, and thereby to the cost to dispense retail hydrogen. 

3.2.1 Reliability as a Primary Research and Development Challenge 

The station O&M data show that reliability and throughput are significant contributors to 

the price of hydrogen per kilogram, which is currently about 4 times the gasoline price. O&M 

cost contributions represents periodic costs (e.g., initial failures, end-of-life failures, and learning 

failures) as well as costs due to a persistent reliability issue. On average, stations have less than 

500 fills between failures for critical subsystems like compressors, dispensers, safety, and 

chillers, and more than 50% of all recorded maintenance hours are for unscheduled events. 

Although station monthly availability values may be greater than 90%, the unsteady nature of 

station demand means that the station may be unavailable (due to unscheduled maintenance) 

during periods of high demand and high potential revenue.  

Figure 10 illustrates a possible cost reduction pathway based on improving reliability. 

Benefits of improving reliability are:  

• Decreased cost to maintain the station,  

• Increased revenues due to increasing the time that the station is available because of 

proactive instead of unscheduled maintenance practices  

• Mitigated failures improve next-generation component and subsystem technologies.   
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Figure 10. Conceptual cost reduction pathway due to reliability improvements and technological 

innovations 

3.2.2 Reliability Engineering for Hydrogen Stations 

Generally speaking, availability and reliability are closely related. For example, if a 

station is unable to complete a successful fill when requested, unscheduled maintenance will 

likely be triggered resulting in station downtime and lower availability. This section presents a 

high-level definition of availability and reliability in the context of hydrogen stations.   

Hydrogen station availability is defined as the fraction of the time over which the station 

is able to fuel a vehicle when requested. The station operational availability (Equation 1) is 

defined as 

𝐴" = $%&'()
*%)+,&'"-	/)+'"0      (1) 

The operation period is daily hours and weekdays that the retail station is open for fueling 

and station uptime is the collection of time the station is online [87]. The operation period for a 

station excludes preventative maintenance time. For example, a station that is capable of 24/7 

operations, and had 14 hours of downtime to repair an unscheduled compressor failure in May, 

has an availability of 98% in that month. Even with a relatively high monthly availability of 



   

 

 35 

98%, the costs associated with 98% unavailability may be high, as the unavailable times may 

occur during a high use time of the month. Connecting station availability with station operation 

strategies becomes important, because there will be periods of time when the economic impact of 

an unavailable station is higher than other times.  

One measure of reliability is if the station can complete a full fill that is requested. The 

station reliability (Equation 2) is defined as 

𝑅 = 	1 − $-4566)44758	9'884
:&&)(%&)0	9'884      (2) 

For example, a station with 5 unsuccessful fills over a period when 100 fills where 

attempted has a reliability of 95%. An unsuccessful fill is defined as any attempted fill that did 

not end with over 95% of the storage capacity.  

Reliability is a focus for the remainder of the research because there is an opportunity to 

apply best reliability engineering practices to improve station reliability, which in turn should 

improve both station operation cost and availability.  

The reliability engineering literature describes a number of ways to improve the 

reliability and ultimately the availability of complicated systems, many of which have not been 

applied to hydrogen system infrastructure. One way to systematically improve the system is to 

improve the reliability of the subsystem or component with the poorest reliability. This method 

involves developing a reliability engineering project or program for individual component(s) or 

subsystem(s). The U.S. Army Material Systems Analysis Activity published an AMSAA 

Reliability Growth Guide [88] that summarized the benefits of reliability growth management to 

be finding unforeseen deficiencies, designing improvements, reducing risk, and increasing the 

probability of meeting objectives. These methods, aimed at improving reliability and decreasing 

unforeseen failures, have been developed and are applied in many different industries and 
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include considerations for cost [89]. Rotating equipment is a common application for reliability 

engineering [90], [91], and the wind industry is applying diagnostics and prognostics to improve 

wind farm reliability [92], [93]. Application of these methods with retail hydrogen stations is 

new and there are little to no published results on using advanced reliability engineering tools to 

improve hydrogen station availability.  

In addition to reliability improvement programs, conducting system-level active 

monitoring and diagnostics to determine station health, as well as prognostics may have the 

potential to improve hydrogen infrastructure reliability. This assertion is based on best practices 

from other industries that have made reliability improvements from implementation of 

prognostics and health management (PHM) [94], as well as the application to new technologies 

like unmanned aerial vehicles [95]. PHM allows for the dynamic processing of information to 

predict failures before the failures happen, which can be used to drive optimal O&M strategies. 

The potential to actively integrate maintenance operations into times of the day or times of the 

week that experience low-demand for fueling services could improve the cost and availability of 

hydrogen infrastructure.   

3.3. Conclusions 

Hydrogen infrastructure for fueling light-duty passenger vehicles has moved beyond an 

idea to a reality and is operating in a conventional retail manner, with simple access and sale. 

Hydrogen stations are operating in a 24-hour, 7 day a week retail environment, satisfying the 

basic consumer needs of dispensing hydrogen quickly and safely. Through analysis of the current 

station performance of hydrogen stations in California, this chapter has demonstrated that FCEV 

drivers can fill with much of the same ease and convenience of a gasoline vehicle, although there 

exists some market limitations such as higher fueling costs, low numbers of hydrogen stations in 
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California, and problems with station availability and reliability. As an example of the infant 

market stage there are approximately 6,000 FCEVs in California, which has millions of gasoline 

vehicles. California has 35 hydrogen stations and over 8,000 gasoline stations. Hydrogen 

dispensed prices range from $12-$16/kg, which exceeds the typical gasoline price of $3-

$5/gallon. A hydrogen station dispenses approximately 100 kg per day on average, which is 

significantly smaller than the daily average gasoline dispensed amounts of around 4,200 gallons.  

FCEV customers rely on the hydrogen infrastructure now to meet their transportation 

needs, and they require hydrogen stations with low cost, high reliability, and high availability. 

Only by meeting these metrics of customer satisfaction and commercial viability will hydrogen 

infrastructure be able to grow to meet the economic and sustainability goals of hydrogen-fueled 

transportation. 

Various stakeholders have been studying retail hydrogen station development, renewable 

hydrogen production, and innovative hydrogen station components and operation strategies 

through both analysis and hardware experiments to enable commercial viability for hydrogen-

fueled transportation. Industry (e.g., industrial gas suppliers, oil and gas companies, and small 

station operation businesses), agencies like the CEC and California Air Resources Board, and 

research organizations have supported hydrogen station advances as evident in the rapidly 

increasing station utilization and demand in the 2 years. This has revealed other technical 

challenges like include how to accommodate increasing demand while decreasing costs and 

improving station availability and reliability.    

Based on this analysis, the hydrogen station system has not yet achieved preferred 

operation capability in all key areas, especially cost and reliability where maintenance costs 

along exceed the price per kilogram dispensed hydrogen. Overall four gaps (capital costs, 
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reliability, multi-use (e.g., truck fills), and cost-effective renewable hydrogen) were observed as 

challenges for economically viable hydrogen stations. Reliability is a specific technical gap that 

is largely unaddressed by the active hydrogen research community and is identified in this 

analysis as an area where improvements can realize significant economic and consumer 

acceptability benefits.  

A systems engineering approach to improve hydrogen station reliability points some of 

the tools of reliability engineering that could be applied to hydrogen stations for economic 

benefits and improved reliability. For instance, the application of PHM, is used by many 

industries because of its proven ability to improve operation strategies, reliability, and costs. 

While there is an abundance of published literature on PHM, there is little to no research and 

published results on hydrogen stations implementing PHM. Based on the PHM literature and 

realizing that this is may be an ideal application to hydrogen stations, the application of PHM to 

hydrogen stations should improve (i.e., decrease) the operating and maintenance costs by 

predicting the health of the system and its components so that costly (parts, labor, and lost 

fueling revenue) unscheduled failures will be minimized.  

This review indicates that a comprehensive PHM could be a key component of improving 

the commercial potential of hydrogen fueling stations, especially when demand is factored into 

the O&M strategies. Improved hydrogen station O&M is expected through a continuous, real-

time assessment of subsystems and components so that maintenance can be planned for optimal 

times and to identify the highest priority components that need dedicated reliability 

improvements based on frequency, severity, and cost for repair/replacement. More detail is 

needed on the status of hydrogen station to develop and integrate a PHM with hydrogen station 
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operation. Therefore the next chapter of this work studies hydrogen station reliability and 

proposed methods to evaluate the benefit for station O&M.  
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CHAPTER 4 – RETAIL HYDROGEN STATION RELIABILITY STATUS AND ADVANCES 

4. Introduction to Hydrogen Station Reliability 

Hydrogen station component reliability varies station-to-station and subsystem-to-

subsystem, as observed in Chapter 3. All hydrogen stations generally have the same basic 

functions of storage, compression, and dispensing managed with system controls and safety. 

However, the details of the hardware and software to achieve those functions can vary 

significantly between stations, which can account for some variation in reliability. For example, 

the hydrogen source may be delivered gas, delivered liquid, pipeline, on-site generation via 

electrolysis, or on-site generation via reformation. Additional station design and operation 

variety includes component selection and sizing, station capacity, fueling positions, and fill 

method. These station configuration differences, along with different station operators and 

station ages, present a challenge in interpreting and utilizing the maintenance data as has been 

published to date. This study seeks to further characterize the relevant reliability information that 

can be gathered from an analysis of real-world station O&M data, leveraging the basic functions 

and protocols that are shared for all stations.  

This study uses extensive datasets of the operation, safety, and maintenance of both 

hydrogen stations and fuel cell electric vehicles. The reliability analysis, described in this 

chapter, quantifies the current state and the challenge of hydrogen station reliability. In 2018, the 

industry median “mean number of fills between failures” (MFBF) was less than 500, with 

correspondingly high levels of unscheduled maintenance activities. By connecting the records of 

these failures with those of over 5,000 maintenance events, this work presents the categories and 
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maintenance reasonings that are the prerequisites to a deeper understanding of system failures 

and industry-wide data-driven reliability improvement plans.   

4.1. The System of a Hydrogen Station 

Hydrogen can be a key enabler for U.S. energy goals such as affordability, reliability, 

sustainability, and security as described in the U.S. Department of Energy’s (DOE) Hydrogen at 

Scale (H2@Scale) research [1]. Embedded in the H2@Scale system of systems concept is the 

infrastructure to enable robust connections between the generation and consumption of 

hydrogen. Hydrogen infrastructure is presently used to support many applications such as fuel 

cell transportation (like forklifts, cars, buses, and trucks), stationary power (e.g., baseload 

distributed heat and power, peak shaving, and backup power), and industrial processes (e.g., 

ammonia, petroleum refining, and paper processing). To meet these needs, the United States 

produces approximately 10 million metric tons of hydrogen a year [17]. For the purpose of this 

dissertation, the focus is on a key and growing subset of the H2@Scale vision hydrogen stations 

for light-duty passenger fuel cell electric vehicles (FCEVs).  

An FCEV has many of the same consumer-preference attributes (fast fueling time, range, 

mass, and size) as today’s conventionally fueled vehicles. The infrastructure necessary to supply 

hydrogen to the FCEV provides production and delivery to the station (or production at the 

station), storage, compression, and dispensing. These systems are collectively referred to as a 

hydrogen station for the purposes of this paper. Hydrogen stations must have many of the same 

consumer-preference attributes as conventional (gasoline) fueling stations (e.g., location, 24/7 

operation, and accessibility). Technically, the goal of a station is to safely transfer hydrogen fuel 

into a vehicle’s storage system while meeting time, pressure, and temperature requirements. 

These activities must be performed with high reliability, while minimizing maintenance costs. 
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The numbers of hydrogen stations are growing as their importance in supporting public 

FCEV fleets increases. There are currently 35 retail hydrogen stations operational in California, 

the region with the highest U.S. deployment of hydrogen stations and FCEVs [47]. More than 

6,000 FCEVs, which have been bought or leased through automobile dealers, are on US roads. 

Hyundai, Toyota, and Honda all offer FCEVs for purchase and/or lease [22]. In their early 

demonstration stages (prior to 2015) most hydrogen stations were private stations, not for retail, 

and had restrictions on users, training, and hours of operation. There were fewer than 10 U.S. 

retail hydrogen stations prior to 2016 [34], and in less than 2 years the number of retail hydrogen 

stations has climbed to 392. The majority of stations have hydrogen delivered to the station, and 

fewer than 5 have on-site hydrogen production. In California alone, the number of hydrogen 

stations is expected to exceed 60 within 2 years [96]. The California Fuel Cell Partnership 

released a vision for 1,000 hydrogen stations supporting 1,000,000 FCEVs in California by 2030 

[97]. This vision addresses near-term deployment strategies that are focused on coverage and 

high-density urban areas, then moving towards a self-sustained market for hydrogen stations and 

FCEVs. In a report reviewing deployment options for the Northeast US [98], 50 hydrogen 

stations are projected to be operational in the region by 2022. Another future deployment study 

considered two scenarios for hydrogen station deployment [99]. One scenario with only limited 

FCEV adoption in populated urban areas and the second scenario with widespread FCEV 

adoption across the U.S. The urban area analysis, used to understand requirements and not to 

 

 

2 Refer to the Alternative Fuels Data Center (afdc.energy.org) for the latest station count (and planned stations) as 

the number of stations changes frequently  
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project FCEV deployment, suggests a need for 105 stations in 2020 and over 700 stations in 

2030 dispensing approximately 300 kg/day and 550 kg/day respectively.   

In order to safely dispense hydrogen to a FCEV, a hydrogen station typically has those 

major subsystems identified in Figure 11 [100]. The hydrogen source identifies where the 

hydrogen comes from for the station. For example, delivered hydrogen (either gas or liquid) is 

produced away from the station and brought to the station via truck or pipeline. The source, 

along with how the hydrogen will be dispensed and estimated capacity, determines the size and 

type of station storage. Dispensed hydrogen gas is compressed by the compression subsystem to 

either 35 MPa or 70 MPa, depending on the vehicle type. Hydrogen station dispensing pressure 

was increased to 70 MPa from 35 MPa for light-duty vehicles around 2009 [8], and fueling 

protocols [72] for this higher pressure were developed at that time. The 70 MPa fueling protocol 

require a hydrogen dispensing temperature of -40oC to enable safe and fast fueling without 

overheat the on-board vehicle storage tank(s). The chiller subsystem performs fuel cooling 

immediately before dispensing to the vehicle. The user interface, and station-to-vehicle interface 

are typically contained within the dispenser subsystem. An overall management subsystem and 

safety subsystem interface with all aspects of the station equipment and control.  
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Figure 11. Generic hydrogen station block diagram (color code corresponds to subsystems in 

Figure 12) 

With over 6,000 FCEVs on the road, the demand for hydrogen is high enough that some 

current stations have a high utilization percentage (>80%)  [101]. Projections [96], [48], [102], 

[68], [103] indicate that the number of FCEVs is expected to continue to increase, with more and 

bigger hydrogen stations needed to fuel the FCEVs as well as trucks and buses [104], [105]. One 

anecdotal concern for FCEV drivers, as detailed in a consumer survey [106], is hydrogen station 
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availability, which is directly connected with station reliability. In order to more completely 

characterize reliability, this chapter describes an analysis of hydrogen station maintenance data, 

and a reliability growth analysis using field data from hydrogen stations and an understanding of 

the hydrogen fueling market.   

This chapter is organized as follows. The overview of the data and reliability analysis 

methods is covered in Section 2. The reliability of current hydrogen stations is provided in 

Section 3. Section 4 reviews on-going research into the failures of hydrogen dispenser 

components that can improve hydrogen station reliability with conclusions covered in Section 5. 

This work is novel in that it uses a consistent reliability analysis method to provide a status of 

hydrogen station reliability as a benchmark to track progress and needed improvements. This 

research originates from a unique dataset of multiple hydrogen stations operating under real-

world conditions. This work also connects the current reliability status, where dispensers are the 

leading subsystem requiring maintenance, with dispenser component failure research that is 

expected to improve station reliability. 

4.2. Hydrogen Station Datasets and Analysis Methods 

4.2.1 NFCTEC Datasets and Methods 

Researchers at NREL’s NFCTEC, supported by DOE’s Fuel Cell Technologies Office, 

have studied the operation, maintenance, and safety of hydrogen stations and FCEVs for nearly 

15 years [34], [8], [107]. In order to understand the current status and gaps for hydrogen station 

reliability, this study mines the NFCTEC datasets that are communicated from the hydrogen 

stations and their operators. The NFCTEC collects hydrogen infrastructure data from more than 

10 project partners to a centralized site. Project partners report operation, performance, 

maintenance, station cost, and safety data for fuel cell system(s) and infrastructure. This data is 
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received at least quarterly and is then processed, stored, analyzed, and aggregated. An internal 

analysis of all available data is completed quarterly and a set of technical composite data 

products (CDPs) is published every 6–12 months.  

To inform stakeholders, data-driven results are uploaded to NREL’s technology 

validation website [107] and presented at industry-relevant conferences. The CDPs present 

aggregated analysis results across multiple systems, sites, and teams in order to protect 

proprietary data and summarize the performance of hundreds of fuel cell systems and thousands 

of data records. A review cycle is completed with the data partners before the CDPs are 

published. This review cycle includes providing detailed data products of individual system- and 

site-performance results to the specific data provider. Detailed data products also identify the 

individual contribution to the CDPs. Analyses are created for general performance studies as 

well as for application- or technology-specific studies. By working closely with the data 

providers, the quality and validity of the dataset can be continuously assessed and improved.   

The hydrogen station operators report to NFCTEC using data templates (the maintenance 

data template is shown in Table 5). All of the NFCTEC maintenance and reliaiblity analyses use 

data from the maintenance template, which includes one row entry for each maintenance event. 

The date, component, subsystem, action, cause, effect, downtime, category, labor time, and costs 

are recorded and reported. For this study, we use both the NFCTEC maintenance log from each 

station, and the NFCTEC log of hydrogen filling events data that includes fill date/time and fill 

amount. Both of these data sources are available for every station. The data is analyzed and 

aggregated to benchmark station performance and maintenance events and to inform research 

needs to improve the reliability of hydrogen station subsystems and components.  
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Table 5. Sample NFCTEC maintenance data template 

Maintenance Template Example Entry 

Site Station A 

Date of Repair/Replacement 10/5/16 

Component Name Dispenser Nozzle 

Subsystem Dispenser 

Component Nozzle 

Action Replace 

Cause Material Fatigue 

Effect Functionality Lost 

Station Unavailable (hours) 8 

If still available, station 

performance affected (hours) 
0 

 

The NFCTEC maintenance data is then parsed into categories of maintenance data and 

reliability data. The maintenance data focus on maintenance categories and aggregated statistics, 

such as percentage of maintenance events that were unscheduled. Tracking of hydrogen leaks is 

included in the maintenance dataset because it has proven relevant to investigations into 

hydrogen leak frequency and quantitative risk assessment tools such as the Hydrogen Risk 

Assessment Model [84]. The reliability data focuses on characterizing maintenance and failure 

events as a function time, including metrics such as MFBF. The fill event data includes over 

183,000 fills from 29 stations with over 4,600 maintenance events from 2015 to 2017.  

4.2.2 Reliability Analysis Methods 

This study presents a reliability analysis based first on an analysis and categorization of 

the types of failure modes and maintenance events that were recorded in the NFCTEC datasets. 

Each type of failure and maintenance event is allocated to a subsystem, cause, effect, operation 

mode, and more. These analysis results are presented to communicate the types of failures that 
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these hydrogen stations encounter, their frequencies and subsystems that are particularly failure 

prone.  

The second set of results use the Crow-AMSAA reliability growth model [108], [109], 

[110] to more quantitatively understand the dynamics of hydrogen station system failure. 

Although other methods of analysis were considered (e.g., Weibull [111], [112], [113], [114], 

failure modes and effects [115], physics of failure, and fault tree analyses), for a few reasons, the 

fundamental Crow-AMSAA model was found to be most effective and applicable for analysis of 

the NFCTEC dataset. First, the NFCTEC data can be characterized as dirty data in that it is not 

specifically controlled for reliability analysis and it may be incomplete with mixed failure 

modes. Second, this analysis considers each hydrogen station to be a repairable/maintainable 

system [116], so that the Crow-AMSAA modeling can be used to track reliability growth and 

predict failure modes and forecasting of future failures. Finally, the Crow-AMSAA model can 

also be used to evaluate the success of a reliability improvement plan by studying the rate of 

failures before and after improvements.  

The instantaneous failure rate Crow-AMSAA equation is: 

𝜌(𝑡) = 𝜆𝛽𝑡ABC      (3) 

where 𝜌(𝑡) is the rate of occurrence, 𝜆 is the scale parameter, 𝛽 is the shape parameter, 

and 𝑡 is the aging parameter (often time but it may be fills or dispensed hydrogen amount for 

candidate hydrogen station reliability models). A shape parameter that is greater than one 

indicates an increasing failure rate and less than one indicates a decreasing failure rate. This 

instantaneous failure rate is the first derivative of cumulative events: 

𝑛(𝑡) = 𝜆𝑡A       (4) 
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where 𝑛(𝑡) is the cumulative failure events. The reciprocal of the instantaneous failure 

rate is the mean time between failure (MTBF): 

𝑀𝑇𝐵𝐹 = C
I(&)       (5) 

This type of Crow-AMSAA model is applied to each station, subsystem, and key 

component for all available NFCTEC datasets.    

4.3. Current Status of Hydrogen Station Reliability 

Results of the categorization of each of the failures and maintenance events in the 

NFCTEC dataset is presented in this section. No differentiation among the stations is made for 

these results.   

4.3.1 Analysis of Hydrogen Station Maintenance Data 

Each of the hydrogen station maintenance events are allocated to categories (allocation to 

systems, subsystems, etc.), and maintenance types (scheduled or unscheduled). The analyzed 

maintenance data through 2017 included 4,663 maintenance events, 69% of which were 

unscheduled. Maintenance events for the major station subsystem and component categories 

(dispenser, compressor, and chiller) account for 78% of the events (Figure 12). A miscellaneous 

category captures 14% of the maintenance events and includes subsystems such as feedwater, 

electrolyzer, thermal management, storage, safety, gas management, air, electrical, and other. 

The events are categorized based on the station operator-supplied categories and are aggregated 

among all the stations providing data.  

The results of this categorization are shown in Figure 12. The largest fraction (46%) of 

maintenance events (planned and unplanned) and maintenance hours are associated with the 

dispenser subsystem. This subsystem includes various components that have relatively high rates 

of failure including the flexible hoses, dispensing valves, and user interfaces. On the other hand, 
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unclassified station events make up a disproportionate fraction of the maintenance hours, and 

therefore maintenance costs. Several failures (~930) were recorded as allocated to the station as a 

whole (identified as “Station System”), which are primarily scheduled maintenance events like 

preventative maintenance, and upgrades. The “Station System” or “Entire” category is for any 

feature or detail that station operators and technicians categorize as encompassing multiple 

subsystems such as overall station controls and interfaces. There is also large number of 

maintenance hours allocated to this system’s repair in the “Station Other Subsystems” category. 

This is representative of maintenance events that may require more time to identify and fix. The 

“station other” category represents general station electrical, gas management, storage, on-site 

production, and thermal management systems which can be high hour maintenance events. This 

breakdown of events and maintenance hours provides a benchmark to inform hydrogen station 

stakeholders of the leading maintenance categories.  

 

Figure 12. Maintenance events and maintenance hours by equipment type for NFCTEC retail 

stations 

Expanding on the results of this benchmark, we studied unscheduled maintenance events 

associated with particular failure modes, as shown in Figure 13. In the case of the dispenser 

subsystem, the failure modes can be categorized as either communication-related, undetermined, 
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miscellaneous, or scheduled. Of the recorded dispenser maintenance events, 18% are scheduled 

maintenance and more than 75% are the undetermined/miscellaneous failure mode, indicating 

that many of the failure modes are failures, leading to unplanned maintenance. As comparison, 

the compressor subsystem has significantly less frequent maintenance events than the dispenser 

category does, but it has a higher fraction of undetermined or miscellaneous (i.e. unplanned) 

maintenance events.  

 

Figure 13. Failure modes for four key maintenance categories, percentage of total events does not 

sum to 100% because of allocation of events to other (ungraphed) maintenance categories.   

As a final means to gain insight into the maintenance of hydrogen stations, we studied 

correlations among maintenance cause and effects. For this example, we consider the hydrogen 

dispenser subsystem and dispenser nozzle. For each maintenance event, the station operator, or 

maintenance technician, completes the data template and the data is categorized, aggregated, and 

reported through NFCTEC. The NFCTEC researchers interpret the narrative that is input to the 

database to categorize the types of causes and effects, and to allocate them to components and 

subsystems. Figure 14, presents the data subset where maintenance was performed on the 

dispenser subsystem and the failed component is classified as “entire”, which means that either a 

dispenser component was not identified and entered, or the maintenance events were for the 

entire dispenser subsystem. As illustrated in Figure 14, the majority of causes were categorized 
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as “undetermined”, and the majority of effects were categorized as either “undetermined”, 

“hydrogen leaks”, and “alarms”. This example illustrates that when considering maintenance 

logs for complicated components (such as the entire dispenser subsystem), the probability of 

having failures for which the root component cause is not known can be high.   

In Figure 15, we consider the dispenser nozzle (a subset of the dispenser subsystem) as 

the subsystem. As illustrated in Figure 15, although undetermined failure effects due to 

undetermined failure causes was still a large fraction of the maintenance events, this system is 

small or simple enough that the technician is more easily able to determine and record failure 

causes and effects. For dispenser nozzles, failures that are root caused by part failures, 

communication errors, and design flaws are significant sources of unplanned maintenance 

events.  

These examples illustrate that additional data, analysis, and experiments are often needed 

at subsystem and component level because the undetermined or miscellaneous failure mode is so 

common when failures are described at system level. In the case when many of the maintenance 

events are categorized as undetermined, further investigation is needed to evaluate why 

undetermined was selected. If the cause of failure is unknown and of high priority, root cause 

analysis should be completed.   
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Figure 14. Dispenser maintenance cause and effects—entire 

 

Figure 15. Dispenser maintenance cause and effect—nozzle 
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4.3.2 Hydrogen Station Reliability 

The unscheduled maintenance event data can also be used to quantify station reliability. 

This section presents the failure rates and reliability growth as a function of the number of fills 

and by station for 29 stations. For this analysis, the aging variable, t, is fill count. Fill count was 

chosen instead of time (days) or kilograms dispensed (kg) because fill count represents a 

convenient unit of thermal/pressure cycling, user operation, and control system operation for a 

hydrogen station. A time-based aging equation may be a more representative station aging 

variable in a phase of the station lifeycle with higher demand and higher station technology 

maturity.    

Using fill count as the aging parameter for station reliability, the reliability results as a 

function of fills are presented in Figure 16, which shows the MFBF for the 29 stations by station 

cumulative fill count. All stations except for one have an MFBF of approximately 500 or less. To 

provide context with calendar time, the average monthly fill count was just under 600 fills at the 

end of 2017. Figure 16 also provides insight into the distribution of total fill counts relative to the 

stations. There are a few high-fill-count stations, but most are grouped on the first half of the x-

axis3. One failure and unscheduled maintenance visit per month is not adequate to meet retail 

customers’ expectations, as an unscheduled maintenance event may indicate the station is 

unavailable for fueling. This implies that station reliability is a major problem for current 

hydrogen stations, yet it does not provide insight into whether failure rates are changing over 

time.       

 

 

3 Note that the x-axis tick numbers were intentionally left off Figure 16 to obfuscate a secure data set 
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Figure 16. Station MFBF by cumulative fills 

Figure 17 illustrates the instantaneous station failure rate at various stages of station life. 

The station on the far left is the station with the lowest fill count and the station on the far right is 

the station with the highest fill count. (This sorting may not directly correlate with how long a 

station has been operational.) Three metrics are shown for each station: the shape parameter for 

the early failure event history, entire failure event history, and latest 20% of failure events. Shape 

parameters that are greater than 1 indicate a failure rate that is decreasing as a function of fills.  

Shape parameters that are less than 1 indicate a failure rate that is increasing as a function of 

fills. The shape parameter for all failure data and for each station is shown in the blue bar. Out of 

29 stations that supplied detailed enough maintenance records, 24 stations have seen a decrease 

in failure rate, meaning that the number of fills between failures is increasing as the station 

operates. The early history shape parameter is shown by the red star markers, 15 stations had a 

shape parameter of greater than 1 meaning that their failure rate was increasing early in their 

operation lifetime. The early history and last 20% of events (yellow) bar are specified in the 

figure because reliability growth and the instantaneous failure rate (Equation 3) can vary 

significantly over the aging parameter. For instance, station #7 has a shape parameter value of 

approximately half its initial value. The instantaneous failure rate improved for 20 stations in the 



   

 

 56 

last 20% of failures per station, while the four stations with the highest total fill count (stations 

#26–29) saw an increase in failure rate.  

 

Figure 17. Retail station reliability growth 

Comparing station failure rates can be a challenge because the stations are at different 

operation phases (such as a newly commissioned station), utilization, technology generations, 

and dispensing capabilities. All station and historical failure rate data were plotted to study how 

the data fits the trend of a reliability bathtub curve (Figure 18). Individual station operation data 

like fill count and early (identified by the star) and current failure (identified by the yellow bar) 

history are shown with various features in Figure 18. Each failure event and accompanying fill 

count is plotted for all the stations, shown in the blue dot. The x- and y-axes have been limited 

because only a small percentage of the data exceeds a failure rate of 0.4 and fill count greater 

than 10. The green line represents a least-squares fit of the scatter data, with a similarity to the 

left side of the bathtub curve, with the following equation: 

𝜌(𝑡) = 1.3 ∗ 0.62 ∗ 𝐹𝑖𝑙𝑙R.STBC     (6) 
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The heel of the curve is approximately around 1,000 fills, where the MFBF is 17 (the 

inverse of 𝜌(𝑡)). This is an indication that failures seen today are likely either early or random 

failures. Fatigue or gaining failures are not in evidence in this dataset yet. One significant caveat 

is that this is for all stations and all failures, so there is the potential for individual stations to be 

exhibiting failure behavior that is not captured in this bulk analysis. 

 

Figure 18. Historical failure rate by fills for retail hydrogen stations 

The hydrogen station reliability growth analysis shows that: 

• Failure rates are decreasing: most stations have a decreasing rate of failure, which 

demonstrates positive progress by station operators and equipment suppliers. 

• Reliability of most stations has improved compared to their early operation history: about 

30% of stations had frequent failures early in the operating period yet approximately 65% 

of the stations (including all of the stations with an increasing failure rate in the early 

history) have decreased the rate of failure compared to the early history. 
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• High fill count may lead to potential failures: the oldest four stations have an increasing 

failure rate for the last 20% of events, which may indicate failures due to a higher cycle 

count. 

• Failure rates are still too high to achieve mass market acceptance: even with most stations 

having a decreasing failure rate.  

One assumption made in this hydrogen station reliability study is that the reliability has to 

be as good as a traditional gasoline station. There is limited public information on gasoline 

station reliability. One study of 41 gas stations and 577 dispensers aimed to decreased frequency 

of corrective maintenance by optimizing preventative maintenance activities [117]. In this study, 

three categories were created for high, medium, and low failure stations. The medium failure 

station category (17 stations and 248 dispensers) had a failure rate of 0.001935 

failure/hour/dispenser, which is a mean time between corrective maintenance (MTBCM) 

activities of 516 hours or 21.5 days. The low failure station category (17 stations and 196 

dispensers) had a MTBCM activities of 820 hours or 34 days. 

In order to correlate this gasoline MTBCM data with the hydrogen station data, it is 

necessary to look at the frequency of fills against calendar time. The latest data shows an average 

of approximately 1,000 fills per month for the studied stations [101]. Station MFBF, shown in 

Figure 16, shows that the majority of hydrogen stations in this dataset have a MFBF of less than 

500, which can be translated to approximately 15 days. This is less than the MTBCM of the 

medium failure gasoline station category, however this is not to say that this comparison is done 

with similar data or method so future study could be completed to benchmark hydrogen station 

reliability against gasoline station or another alternative fueling infrastructure. One additional 

challenge to meeting the same reliability as a gasoline station is there are significantly fewer 
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hydrogen dispensers than gasoline dispensers. When one hydrogen dispenser is unavailable, it is 

more likely that there would be a significant impact on the FCEV drivers who may have to drive 

to another station for hydrogen than for gasoline vehicle drivers. This can be especially 

problematic as the demand for hydrogen stations increases.  

The amount of hydrogen dispensed in 2017 was 4 times what was dispensed in 2016, and 

at the end of 2017, two stations had a utilization of greater than 80% (based on a daily capacity). 

These two details indicate that hydrogen demand is changing rapidly, and this has an impact on 

station maintenance and reliability. For instance, maintenance cost per kilogram is decreasing 

(Figure 19). This decreasing trend is primarily due to an increase in the amount of hydrogen 

dispensed. The demand for hydrogen is expected to increase, along with demand for additional 

hydrogen stations [51]. There are few other inferences from maintenance cost data in that some 

maintenance is becoming routine and doesn’t require in-depth failure investigation or advanced 

training. The cost of some replacement parts may also be decreasing with more online stations 

and bulk purchases [118].  
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Figure 19. Maintenance cost per kg dispensed over time 

4.4. Using Maintenance Data to Improve Hydrogen Station Reliability  

Much of the reliability growth analysis presented here has been focused on 

commonalities and straightforward reviews of station maintenance, which includes both 

preventative maintenance and unscheduled maintenance due to failures and alarms. One gap in 

the data for this analysis is that the condition of components at failure is not known, nor is the 

reason for failure. Condition and cause of failure identification is needed for the development of 

corrective actions that will improve station reliability. This section covers on-going research for 

dispensers, a subsystem with the highest count of unscheduled maintenance events (46%) of all 

stations analyzed.   

This in-progress research aims to supply data component condition at failure from 

laboratory-controlled experiments. Controlled failure condition data like this will help 

researchers and operators answer questions about how differently a component fails based on the 



   

 

 61 

field operating conditions. These additional scientific findings combined with the maintenance 

and reliability benchmarking completed so far provide researchers and operators valuable 

information about early failures that are due to new stations coming on line, how experience 

gathered during station O&M can improve reliability, and how station failures change as a 

station ages in both cumulative fill counts and time. 

4.4.1 Failure Condition Data Experiments 

Recurring failures, especially those which are experienced at high utilization, are ideal 

failures to focus on for additional research. In the past, the compressor system was the leading 

maintenance category, but compressor research and development has contributed to an improved 

compressor system MFBF. For example, NREL researchers studied compressor reliability and 

provided data on physics of failure of compressor seals. This research identified metal fragments 

as a major contributor to seal failure. Also, lubricants used on elastomer seals were found 

downstream of compressor systems, which identified a need to use hydrogen-compatible 

lubricants [119]. In addition, the project showed that seal failures are the main driver for 

compressor downtime, that typical failures take more than 2 hours to repair with multiple people, 

and that downtime can be avoided with real-time monitoring of the compressor leak detection 

circuit [120]. 

The results of this research show that dispensers are a leading category for unscheduled 

maintenance. In response, NREL has developed a set of active controlled experiments on 

dispenser subsystem reliability. During a fill, the dispenser system components experience a 

rapid change in both pressure (ambient to 70 MPa) and temperature (ambient to -40°C). These 

rapid pressure and temperature changes are thought to be a primary contributor to dispenser 

component failures. Benchmark data along with hardware experiments to improve dispenser 
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reliability provide performance data back to manufacturers on how their components perform 

under controlled, retail-like conditions, with particular attention given to operating conditions 

that should generate valuable failure data. Extreme operating conditions and the external 

interfaces, which include both the driver and the vehicle, make for an interesting and challenging 

dispenser system and a top priority for reliable and safe operation.  

Therefore, NREL’s hydrogen dispenser reliability research is focused on critical 

dispenser components. The hose reliability project is an ongoing effort at NREL’s Hydrogen 

Infrastructure Testing and Research Facility (HITRF). The project utilizes a six-axis robot to 

mimic the mechanical bending and twisting of a person fueling their vehicle. The system 

performs a fill like what would be experienced in the field. Current results, from over 5,000 fill 

cycles, show that leaks tend to happen at the metal crimp-to-hose connection [121]. This project 

was initiated during a period of low station utilization and was first focused on completing a high 

fill count. With this data as a baseline for accelerated hose reliability, additional features are 

planned that include additional hose stresses such as varying interface angles and other thermal 

and mechanical conditions. 

Benchmark data from the field lacks the design of experiments that are best able to 

identify failure conditions and causes. Another active NREL research project is the dispenser 

reliability project [122], which measures the mean fills and kilograms dispensed between failures 

of hydrogen components subjected to pressures, ramp rates, and flow rates similar to light-duty 

FCEV fueling. The project is exploring three different required cooling levels, at -40°C, -20°C, 

and 0°C, with -40°C being the current standard for light-duty vehicle fueling. The experiment 

(Figure 20) consists of flowing hydrogen through eight “dispenser like” systems simultaneously. 

The flow rates and ramp rates are in the range of a typical SAE J2601 fill. The components are 
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ramped at ~17.5 MPa/min at a flow rate of ~0.5 kg/min through each component. The systems 

are packaged with two dispenser sets in series and four sets in parallel to complete the full 

system. The flow rate, ramp rate, and gas temperature are controlled on the front end with a 

research dispenser. The back end has a flow controller as well as a recycle loop to accelerate 

system recovery time at NREL’s HITRF.  

 

Figure 20. Dispenser reliability test setup 

4.4.2 Data to Drive Failure Investigation and Reliability Improvement Efforts 

Reliability improvement efforts are most effective when the improvements are informed 

by data, both from real-world operation and controlled reliability experiments. The retail 

hydrogen station maintenance data studied to date has many instances of undetermined failure 

modes. The combination of a lack of failure condition data with the maintenance benchmarking 

is guiding NREL’s hardware research. More specifically, it is guiding what systems and 

operating conditions are studied. A basic objective of this research is to provide controlled data 

that can accurately and consistently identify failure conditions. Data from these experiments is 

expected to guide failure analysis only on the highest-priority components, which should 

generate meaningful feedback to equipment manufacturers for product improvements. This is a 

methodical process, driven by both field and lab data, to identify failures and improvements with 

more complicated and expensive diagnostic studies and instrumentation. For example, results 
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from the dispenser reliability project will inform experimental setup and test plans based on the 

highest-frequency component failures and the accompanying conditions that generated failures. 

The future experiments will dissect the components to identify failure root cause with various 

mechanical, thermal, and humidity stresses and material investigations.  

4.5. Conclusions 

Hydrogen stations play a critical role in the supply of hydrogen to fuel cell technologies 

like cars, trucks, and buses. An exponential increase in hydrogen demand in California has 

pushed stations to be able to reliably dispense hydrogen whenever the FCEV driver pulls up to 

the station. Yet the station reliability is lower than what the customers expect, as identified by the 

results presented here, and when compared with traditional gasoline station reliability. There are 

some concessions that can be made in this comparison because gasoline and hydrogen stations 

are at different commercialization phases and data processing may not have been similar 

between the gasoline and hydrogen station analyses. The maintenance benchmarking results 

presented here by category, frequency, labor time, and failure cause/effect create a trackable 

status of station maintenance and reliability. The reliability analysis has identified the two 

leading maintenance categories as dispensers and compressors, which represent 67% of the retail 

station maintenance events. Crow-AMSAA was the analysis method of maintenance data from 

hydrogen stations, where the majority of hydrogen stations have a MFBF of less than 500 fills, 

which can roughly translate to every 15 days. This is lower than the MTBCM of 21.5 days for 

the medium failure gasoline station group.  

Results to date show improvements in MFBF and changes in the leading maintenance category 

as a function of time. There have been target component reliability improvements, for example 

with compressors, and lessons learned from the initial station deployments that make some 
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failures only a one-time event. A couple of years ago, compressors were the leading maintenance 

category, but compressors have improved with updated technologies, preventative maintenance 

strategies, control strategies, new designs, and increased station utilization. A reliability 

improvement program is expected to also include changes in components and operation that is 

informed from laboratory findings to reduce failures.  

There remains a gap in the understanding of leading causes for failures in the hydrogen 

station highlighting the need for systematic experiments investigating root causes of failures, 

especially for high priority subsystems like dispenser. The dispenser system reliability 

experiments, currently in progress, are expected to support root cause failure investigation. The 

controlled operating conditions of these accelerated reliability experiments will be the basis for 

future experiments to quickly replicate failures that can be deconstructed to identify the failure 

cause and lead to potential improvements for equipment manufacturers. This should present 

options to improve hydrogen stations, which in turn supports a critical pathway of H2@Scale, 

enabling hydrogen mobility solutions. The next chapter continues the research through a study 

on the FCEV demand and how predictive future demand supports station O&M strategies.  
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CHAPTER 5 – PREDICTING DEMAND FOR HYDROGEN STATION FUELING 

5. Introduction to Hydrogen Demand 

A hydrogen station serves the purpose of fueling a FCEV and the station controls provide 

the basic function of safely dispensing hydrogen from the station to the vehicle. These same 

controls also have the potential to improve the effectiveness of hydrogen station O&M. It is 

expected that a station control strategy that integrates a prediction of future fueling demand can 

identify ideal times for maintenance and provide data to inform decisions driven by economic 

trade-offs. This study describes the development and value of a model that simulates stochastic 

future demand at a hydrogen filling station. The predictive hydrogen demand model described in 

this chapter is trained from mathematical models constructed from actual hydrogen fill count, 

amount, and frequency data. This is a first-of-its kind, study on predicting future hydrogen 

demand by the time of day (e.g., hour-by-hour intervals) and day of week. This study can be 

used for developing hydrogen station requirements and O&M strategies and to assess the impact 

of demand variations and scenarios.  

This chapter presents the current status of hydrogen demand and hydrogen station 

utilization based on real-world station operation data, as well as the model development methods 

and a set of sample results. Discussion and conclusions concentrate on the value and use of the 

proposed model for improved station economics and effectiveness. 
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5.1. Hydrogen Station Utilization 

Between 2017-2018, the customer demand for hydrogen for fuel cell electric vehicles 

(FCEVs) increased more than 2 times, to more than 913,000 kilograms4. The FCEV market is 

driving this growth in the United States, with an estimated 6,000 FCEVs on the road and a 

network of 39 operational, retail hydrogen stations (24 more planned stations) supporting these 

vehicles [22], [47]. This hydrogen infrastructure serves public and private fleets of light-duty 

passenger cars, trucks, buses, forklifts, and ground-support equipment. These mobility-focused 

FCEV applications have demonstrated benefits in terms of vehicle performance (e.g., fueling 

time, range) and economics (e.g., total cost of ownership) [123], but the long-term success of the 

hydrogen vehicles and infrastructure is far from assured. This emerging market is eager for more 

stations, at a higher throughput and an economically viable price point. The development cycle 

for new hydrogen stations is being compressed to meet the requirements of a growing market. 

This compressed development cycle supports acceleration of new vehicles entering the 

marketplace but may also increase the risk of stranded infrastructure, where even modern 

hydrogen stations may be too costly, too slow, and not flexible enough to meet future needs. One 

way to manage some of this risk is through an understanding of how the hydrogen demand, or 

fill profile, will change over the operational life of the station.  

Even considering its recent growth, demand for hydrogen for vehicles is still low 

compared to demand for gasoline for vehicles. For example, there are approximately 60 

operational and planned hydrogen stations (concentrated in California, United States). In 

 

 

4 a kilogram of hydrogen has approximately the same energy content as a gallon of gasoline 
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comparison, there are more than 8,000 gasoline stations in California, and more than 120,000 

convenience stores selling gasoline in the United States, with 765,000 dispensers and 

approximately 1.4 million fueling nozzles [124]. Approximately 39 million gasoline fills take 

place in the United States every day, corresponding to 26 cars per fueling nozzle per day or 325 

gas-powered vehicles per day for a station with 12 gasoline fueling nozzles. Hydrogen-fueled 

FCEVs and their infrastructure must grow in function and scale to rival gasoline vehicles and 

infrastructure if they are to become a mass-market transportation solution that can realize 

economic, sustainability, and consumer preference benefits [125].   

Many factors influence and determine the success of hydrogen infrastructure, and this 

infrastructure is a prerequisite to marketing and acceptance of FCEV technologies. The 

deployment of hydrogen stations has increased (primarily in California in the US) [33] and more 

fuel cell technologies are also commercially available (e.g., forklifts and buses), or have been 

developed/introduced to the market (e.g., trucks and ground-support equipment). One important 

influencing factor is the ease of use, accessibility and availability of hydrogen stations. A 

hydrogen station has many of the external features of a gasoline station, such as a dispenser and a 

user interface for the transaction details and payment. It also has storage and the needed 

equipment, controls, and safety to supply the hydrogen quickly. Analysis of real-world use for 

fuel cell light-duty vehicles and hydrogen stations has shown behavioral trends similar to 

gasoline fills and driving, including time of trips, time of fills, range, and fill time [33], [8], 

[126]. Finally, and perhaps most importantly, cost of hydrogen is an important factor for 

hydrogen station market success.  

Consider that a basic objective of a hydrogen or gasoline station is to safely and 

economically provide a fuel to the consumer. An understanding of consumer demand is then 
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necessary to support the development, deployment, and operation of the hydrogen station. Yet, 

there is little research in the scientific literature regarding modeling or measuring hydrogen 

station demand or utilization. Demand uncertainty is shown to result in uncertainty in 

deployment and supply analyses [127]. Our literature search (completed in March 2019) for 

journal articles with keywords “hydrogen station demand or utilization” resulted in only three 

results [128], [129], [130]. These studies view hydrogen demand from a regional perspective to 

understand implications on locations and cost, but these studies do not have information or 

models of the day-by-day or hour-by-hour changes in demand. Much of the scientific literature 

regarding hydrogen infrastructure and stations deals with deployment topics, seeking to optimize 

region, location, and size [96], [48], [102], [68], [103]. These analyses make general assumptions 

about the number of on-road light-duty fuel cell vehicles, which create bulk hydrogen demand 

scenarios. Bulk demand scenarios generally are based on region and total fleet size. They don’t 

include change in demand over time, either hour-to-hour or day-to-day [131], [132]. Expanding 

the search of scientific literature to include terms such as “operation” (18 results), the literature 

focuses on strategies for existing, small-scale stations or bespoke future options. The results of 

this literature review show that there is a significant gap in the literature published to date on 

predicting the hourly demand for hydrogen fueling for vehicles. This gap is primarily due to the 

fact that operations data is limited and not easily attained, especially for datasets that can be 

extended across multiple hydrogen stations and operators. In addition, hydrogen demand is 

constantly changing as the technologies and markets change. For example, fast fill technologies, 

renewables-integrated electrolyzer-based stations, and long-haul fuel cell trucks have all changed 

the dynamics of hydrogen station operation and hydrogen demand.   
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The authors are in a unique position to develop a predictive hydrogen demand model 

having gathered proprietary hydrogen station operation data with collaborative research 

partnerships, the design, development, operation, and the maintenance of a hydrogen 

infrastructure research facility. The hypothesis is that existing data from hydrogen and gasoline 

fills can be used to build a predictive demand model that will improve hydrogen station O&M by 

factoring in future fills with a current understanding of the station state. Neither the current 

hydrogen or limited gasoline fill data are sufficient for predicting future demand because the 

number of vehicles, number of stations, and station availability change frequently. Future 

demand has the potential to be many orders of magnitude higher than what is seen currently at 

hydrogen stations. These two gaps create a need for a model that can connect a path between 

current and future hydrogen demand conditions, with the ability to correct and change along the 

way.  

By predicting demand—that is, when and how much hydrogen is needed for a fill and at 

what frequency—this study seeks to mitigate the risk of investing and operating to build a lasting 

business case for hydrogen stations. Funding, designing, and building a station when the market 

for hydrogen is changing rapidly is a challenge, and station operators must identify ways to 

rapidly be economically stable while handling a demand that is expected to increase steadily. 

The demand model has the potential to be a tool used by station developers and operators to 

make informed decisions on equipment specifications and size, and O&M strategies. Many 

station operators and policy makers are rightly focused on the near-term challenges of enabling 

and growing a market. Fine-tuning stations based on a predictive demand model does not likely 

make sense at this stage. Yet, in the past few years the hydrogen station market has moved from 

a precommercial phase to an emerging-market phase. This new market phase requires higher 
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reliability, improved customer service, and a more refined approach to understanding and 

managing hourly, daily, and weekly consumer demand. Therefore, the creation of a predictive 

demand model capable of adapting to demand changes will support hydrogen station operation in 

the near-future, working in parallel with technological and operation advancements to support a 

successful hydrogen fueling market.  

This article is organized as follows. Section 5.2 describes the methods to estimate the 

station types, fill frequency, fill amount, fill rate, time between fills, and the station state (i.e., 

filling, in standby ready to fill). With multiple types expected for future hydrogen stations, we 

present the predictive demand model results for an Urban Medium station type (5,000 kg/week) 

in Section 5.3. Predicting demand can be implemented for various sizing, operation, and 

maintenance strategies as discussed in Section 5.4. Lastly, Section 5.5 presents the conclusions. 

5.2. Demand Analysis Methods 

The model is built on a framework that can project future fueling conditions, but can 

adapt based on available, real-world data. Previous hydrogen demand models assume constant 

demand as a function of yearly or daily time scales [133], [38], [96], [134], [103], [135]. This 

assumption of constant demand can be justified early in the commercialization phase of the 

stations when demand is low, and the station may be underutilized, or for analyses studying a 

wide region and/or time period. Alternatively, a purely data-driven approach, where time 

histories of fills can be replayed to populate demand profiles could be effective, but these 

methods can be stymied by the low data availability for hydrogen stations, and the need for 

broad extrapolations to model hydrogen station utilization as demand changes in the future.   

This study seeks to construct a modeling framework that is based on fitting distributions 

to broad operational datasets. These distributions are then sampled to construct synthetic 
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operational data specific to a particular station type, bulk hydrogen demand, week day, and time 

of day. The proposed analysis utilizes real-world fill data for training and validation. The real-

world data are from the NFCTEC which includes data from more than 465,000 fills from 30 

hydrogen stations. The analysis will be able to adapt to future changes in vehicle deployment and 

station use as more real-world data becomes available. Uncertainty is inherently included in this 

probabilistic model, enabling stochastic future demand predictions. 

The model is composed of four building blocks, as illustrated in Figure 21. The input 

block (Step 1) interfaces with the user and accepts the following parameters: time period, time 

interval, weekly demand target, probability limit (used for prediction), fill type (e.g., light-duty 

or heavy-duty), and max fill amount (used for data processing). The data generation block uses 

the variables defined in Step 1 to determine which measured datasets can be used for training 

(e.g., NFCTEC aggregated fill data). Step 2 creates a representative fill data set for the training 

step, Step 3. The training block fits filling distributions (frequency, rate, amount, and time) used 

for the prediction step, Step 4. The prediction block evaluates the probability that a station is in 

either a fill state or a standby state, based on probability interpretation and fill sequencing for 

each time interval. The prediction output translates the station state into a time history of station 

fill frequency and quantity as a function of time. 
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Figure 21. Predictive demand model development and validation flow diagram 

5.2.1 Step 1: User Input 

The user inputs determine the conditions under which the hydrogen demand will be 

simulated. The user inputs the relevant simulation time span, and the type of hydrogen station 

that will be simulated.   

Hydrogen demand is not the same for all station types or locations, so the model must 

distinguish between station type and location to provide useful data for making informed design- 

and operation-related decisions. This study begins by classifying hydrogen stations according to 

their location and usage characteristics. These classifications are based on analogous 

classifications of gasoline stations, as presented in Table 6. The location of the station is 

classified as either an urban station, or a community/rural/connector station under the assertion 

that these locations have different usage characteristics. An urban station may be a street corner 

station, at a major intersection, or collocated with a “big box” store. A connector station is a 

2. Generate Data

Scale: Int

Process (filter:actual)

Filter: Int

Data Source: Real/Simulate

Simulate (source:simulate)

3. Train

Frequency: Count

Fill Estimate ()

Rate: kilograms/minute

Amount: kilograms

Station Operation Data (Actual)

Fill Date: Date

Fill Time: Hour, Minute

4. Predict

Max Possible Fill Count: Int

Probability Analysis ()

Sequencing ()

1. User Input1. User Input

Time Period: Days

Max Fill Amount: kilograms

Fill Type: Vehicle Type

Probability Limit: Percentage

Weekly Demand: kilograms

Time Interval: Minutes

Fill Data ()

Time: Hour, Minute

Fill Amount: Kilograms

Fill Rate: Kilograms/minute

Station Identifier: Int

Intreprete ()

Output ()
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rural/suburban station with on-off access to major highways but may not be close to large 

population areas. The scale of the station is classified by its weekly fill amount. Current 

hydrogen stations are classified as either small or large (indicating the highest used hydrogen 

stations deployed to date). In the future, the scale of hydrogen stations is expected to converge to 

the scale of current gasoline stations. We classify future hydrogen stations as small, medium and 

large scale, by analogy to current currently deployed gasoline fueling stations, yet the future 

large hydrogen station is still small compared with modern high-use gasoline stations.  

Table 6. Hydrogen Station Classification Scheme 

Type 
Weekly Fill 

Amount 
Weekly Fill Count 

Current—Small1 250 kg/week 187 fills/week 

Current—Large1 750 kg/week 337 fills/week 

Urban—Small2 2,000 kg/week 645 fills/week 

Urban—Medium2 5,000 kg/week 1,612 fills/week 

Urban—Large2 10,000 kg/week 3,387 fills/week 

Community/Rural/Connector—

Average Medium2 
1,000 kg/week 322 fills/week 

1. Based on current hydrogen station demand NFCTEC data. 

2. Based on future estimates for hydrogen station demand from the gasoline 

fueling trend, using a consistent fill amount (3.1 kg/fill) to provide a general 

sense on the number of fills and amounts per day. 

5.2.2 Step 2: Data Generation 

We have utilized two primary data sets for training the predictive demand model. One 

source is the hydrogen station fueling data analyzed through the NFCTEC. The data used for the 

NFCTEC analysis is supplied to NFCTEC every 1 to 3 months by station operators. The data is 

processed, analyzed, aggregated, and published typically every 6 months. The published results 
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are assembled in a manner that does not reveal individual proprietary information while 

providing data on technical capabilities, safety, cost, and trends. The NFCTEC collects, analyzes, 

and reports on hydrogen infrastructure operation, maintenance, and safety data for fuel cell 

systems and infrastructure from more than 10 project partners [72].  

The other data source is a study of hydrogen delivery options [135] which includes data 

on gasoline fueling data trends provided by Chevron. These data were used to determine an 

hourly fuel-demand profile grouped by day of the week and are based on an average Chevron 

station daily dispensing amount of 4,400 gallons. The profile was published with a percentage of 

the daily transactions, so it can scale with different station capabilities and weekly dispensing 

amounts. A challenge in using this gasoline data is that it represents the demand for fuel in a 

fully-realized gasoline market. It may or may not represent fueling trends for hydrogen FCEVs, 

in either the near or far term. Figure 22 shows aggregated data from all NFCTEC hydrogen fills, 

presented as a function of the time of day. The maximum that a station is dispensing is 

approximately 750 kg/week (> 90 kg/day Monday through Friday) and the average of all stations 

dispensing is approximately 250 kg/week (~30 kg/day Monday through Friday). A statistical 

comparison of the hydrogen and gasoline distributions (two-sample Kolmogorov-Smirnov test, 

p=0.8), indicate that the distributions are similar. Therefore, this study uses both the hydrogen 

and gasoline hourly distributions of fueling events to represent current and future fueling trends.  
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Figure 22. Fill time of day based on retail station data 

5.2.3 Step 3: Training 

The objective of this study is to predict the rate at which hydrogen will be demanded 

from present and future hydrogen stations. This work uses a probability model to predict the rate 

of arrival of vehicles at the hydrogen station, and another probability model to predict the fill 

quantity for each vehicle.   

To determine the fill probability, a fill is considered a discrete event in this analysis and a 

mean event rate is determined for each time interval over each time period of interest based on a 

Poisson process. The Poisson process, a common counting process, is used in this analysis 

because the time at which each hydrogen fill is demanded is assumed random and independent of 

the timing of the previous fill. The number and time of fills is not constant throughout the day 

(e.g., there are typically more fills in the afternoon than in the morning), so the arrival of vehicles 

to a station is modeled as a nonhomogeneous Poisson process, thus we use the Poisson 

distribution to estimate the mean rate of arrivals per a discrete time interval.  
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The probability of a certain fill count within a given time interval is defined by the 

probability density function (Equation 7). Let Y represent the number of events (i.e., fills) in a 

given period, and let λ be the mean rate of arrivals, then for some y we have, 

P(Y = y) = 	p(𝑦; 𝜆) = ]𝑒B_`
a
a! 	0
𝑓𝑜𝑟	𝑦	𝜖	{0,1,2, … }𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (7) 

and, 

𝑃(𝑌	 ≤ 𝑦) = 𝐹(𝑦; 𝜆) = 	∑ )q`_r
'!

s'tR      (8) 

The probability of the number of events in the time interval is repeated for the total 

number of time intervals of interest (e.g., 15-minutes intervals for a 1-week time period). The 

maximum likelihood estimator is used for the Poisson distribution, 𝜆u, for each time interval 

based on the user input. The fill probability is used in the predictive model to determine the fill 

count for each time interval within the period specified.  

To estimate the fill amount and rate, the model must be able to estimate the amount and 

dispensing rate (kilograms/minute) based on statistics of past fills. Amount of hydrogen and rate 

per fill depend on the vehicle’s on-board storage volume, its state of charge, and the station’s 

ability to complete a full fill. Therefore, both dispensing rates and amounts are random variables 

and thus can be modeled by fitted distributions.  

The fill amount and dispensing rate distributions are fit using current hydrogen station 

data. The current distribution of fill amount for NFCTEC stations is shown in Figure 23, 

showing that the average is 3.1 kg per fill. Because of the heavy negative skew and large 

kurtosis, a transformation to make the fill amounts normal was not viable, so a kernel density 

estimation for the probability distribution function (Equation 9) of amount of fuel per fill was 
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used. The kernel density estimation was generated for the training data, where X is a random 

variable representing the fill amount (in kg), 

𝑝-w(𝑥) = 	 C-y∑ 𝐾 {|rB}y ~-'tC      (9) 

where K(·) is the normal kernel (Equation 10), 

𝐾(𝑥) = 	 C
√T� 𝑒

q��
�       (10) 

and where h > 0 is the bandwidth (i.e., smoothing parameter) for sample amount values Xi. Here, 

h is fit based on the training data to ensure that neither over-smoothing or under-smoothing 

occurs. Equations 9 and 10 define the fitted distribution of hydrogen fill amount for present and 

future stations, enabled us to generate a random sample of simulated fill amounts by the inverse 

transform sampling method. A statistical comparison of the amounts and distribution fit (two-

sample Kolmogorov-Smirnov test, p=0.6), indicate that the distributions are similar. 
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Figure 23. Hydrogen station fueling amounts per NFCTEC data 

Hydrogen fill rates are defined by the protocol for light-duty vehicle fueling [72], with 

minor variations possible due to the station capabilities. The distribution of fill rate (averaged 

over each fueling event) for all NFCTEC data is shown in Figure 24, with an event-averaged rate 

of 0.9 kg/min. The normal distribution is used to model the fill rates and to create estimates of 

fill rates per specific time intervals needed for the predictive demand model. A statistical 

comparison of the rates and distribution fit (two-sample Kolmogorov-Smirnov test, p=0.8), 

indicate that the distributions are similar.  

Let Z be a normally distributed random variable (Equation 11) representing fill rate. Then 

for mean μ and variance σ, 

𝑃(𝑧|𝜇, 𝜎T) = C
√T��� 𝑒B

(�q�)�
���      (11) 
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Figure 24. Hydrogen station fueling rates within the NFCTEC dataset, with comparisons to the 

Department of Energy Fuel Cell Technology Office targets 

The estimate for the arrival time (within time interval i) of a fill event, Ti, is based on the 

waiting time between arrivals, 𝑊i. Waiting times are randomly generated according to an 

exponential distribution with mean fill event rate λi. Therefore, the probability that the waiting 

time W is less than or equal to a specified wait time (w) is shown in Equation 12. 

𝑃(𝑊 ≤ 𝑤) = 	𝜆𝑒B_�        (12) 

Arrivals to the station occur according to a Poisson distribution (Equation 7). Each 

vehicle’s fueling time is calculated as its random fueling amount (x) divided by its associated 

random filling rate (z). Therefore, arrivals occur according to a Poisson process where the wait 

time between arrivals is exponential, arrivals occur at the end of a waiting time, and the amount 

of time a vehicle remains at the station is subject to fueling amount and filling rate. The 
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estimated wait time W is used to determine time dependent predictions like the fill start time 

within a time interval—which occurs at the end of a waiting time.  

5.2.4 Step 4: Prediction 

In Step 4, the model integrates the various data estimated from Step 3 to generate a 

cohesive prediction of the time history of fill count, fill amount, and fill rate. The prediction 

model utilizes the fill statistics from Step 3 and estimates future station fill states based on fill 

probabilities for each time interval. 

From the perspective of the hydrogen station, each vehicle fill is modeled as a random 

independent, event, where each vehicle’s fueling characteristics (e.g., arrival time, fill rate, fuel 

mass) are uncorrelated to the characteristics of the previous vehicle. A continuous-time Markov 

process was selected to model the probability of each state per time interval, due to its stochastic 

nature where the events are independent. A hydrogen station Markov system (Figure 25) is 

defined with three states: state A is available but not fueling, state B is available and fueling, and 

state C is unavailable due to maintenance. Fill times are dependent on fill amount (kg) and rate 

(kg/min). Fill times corresponds to the length of time the station is in state B and waiting times 

corresponds to the length of time the station is in state A. The current model, as described in the 

remainder of this article, focuses on states A and B. The inclusion of a probability estimates for 

station unavailability is suggested for future work.  
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Figure 25. State transition diagram for states A, B, and C 

Let N(t) be a stochastic process where t is time (Equation 13). Then, N(t) is a Markov 

process for every n and t1 < t2 … < tn  

𝑃(𝑁(𝑡-) ≤ 𝑁-	|	𝑁�𝑡-BC, … , 𝑁(𝑡C)� = 𝑃(𝑁(𝑡-) 	≤ 𝑁-	|	𝑁(𝑡-BC)) (13) 

Each iteration, n, has an associated state vector for the probability of transitioning from 

each state, which is based only on transitioning from the previous state to a future state. That is, 

the probability of the station transitioning into a future state depends only on the current state of 

the station (Markov property, Equation 13). All states are recurrent, as the station can return to 

the same state as the previous state (e.g., a back-to-back fill which has a wait time of 0 minutes). 

Ques are not considered and could be included in a future iteration. The transition matrix, P, 

chain (Equation 14) is also aperiodic and irreducible. The matrix is of the following form where 

for all 𝑚	 ∈ [0,∞) and for all states 𝑖, 𝑗	 ∈ 𝑆 for the state space 𝑆 = {𝑆𝑡𝑎𝑡𝑒	𝐴, 𝑆𝑡𝑎𝑡𝑒	𝐵}, 
    P�� = 𝑃(𝑋(�C = 𝑗	|𝑋( = 𝑖)	    (14) 

The model predicts the probability of the state the station state based on the distribution 

for arrivals and time intervals and time in the state, which is independent of the station’s most 

previous state. To look at long-term system behavior, the limiting distribution was computed for 

each transition matrix. The limiting distribution gives the proportion of time the chain is 
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expected to be in each state for a time interval and time period in the future. The limiting 

distribution is equal to the unique stationary distribution which exists when a Markov chain is 

irreducible and aperiodic. The limiting distribution is found by solving Equations 15 and 16. 

𝝅𝑷 = 	π        (15)  

 ∑ 𝜋' = 1'∈�       (16)  

where π is a row vector consisting of the proportion of time that the chain is in each state.  

The model output can take two forms. One output form is the Markov system with the 

probabilities of each state and the transition in each iteration. This output format could be most 

useful for evaluating scenarios and assigning an acceptable risk and reward for design and 

operation strategies (e.g., preventative maintenance scheduling, participation in utility services). 

The other output form is a time domain demand profile that estimates the number of fills, 

amounts, rates, and arrival times at each interval in simulation time. This output format could be 

most useful for sensitivity studies conducted on station capabilities and impact on station 

economics.  

5.3. Predictive Demand Model Results 

Each of these types of outputs are presented here as sample results from the hydrogen 

station predictive demand model.   

5.3.1 Sample Week Simulation, All Station Types 

Figure 26 shows a sample modeled fill count as a function of the day of the week and 

hour for each of the station classes. As is characteristic of the random processes used to model 

hydrogen demand, each simulation results in a unique hydrogen demand profile. The fill count 

for the larger scale hydrogen stations is larger than the fill count for the smaller stations. There is 

some weekly periodicity, but each day of week has a similar trend in that the lowest use times 
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are in the early and late hours of the day. Based on the real-world data for hydrogen fills, the fill 

distributions on Saturday and Sunday do not have the same underlying distribution as the 

weekdays, with lower mean fill counts per hour over the day compared to the weekdays. The 

gasoline filling trend does not show this same weekend difference to the weekdays; therefore, it 

is expected that hydrogen fills will approach the same daily distribution as gasoline as the 

demand increases. Each of these trends probabilistically models the effects that are evident in the 

large-scale measured datasets derived from NFCTEC data.   

 

Figure 26. Modeled fill count for each station class over a 7-day time period, Sunday through 

Saturday 

5.3.2 Mean Fill Estimates, Urban Medium Station Type 

Statistical estimators are used to represent the hydrogen demand prediction. For example, 

Figure 27 illustrates estimates of the mean of key hydrogen demand parameters as a function of 
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an hour of a particular day. The simulation data is filtered and binned based on day of the week 

and hour, as defined by the time period and interval selected as a user input. The maximum 

likelihood estimates are generated for each data segment and are based on a Poisson distribution 

for fill count, an exponential distribution for waiting times between fills, a normal distribution 

for fill rate, and the kernel density estimator for amount. Figure 27 provides examples from a 

Friday for the mean count, rate, and amounts by hour. Friday serves as a good example as it is 

normally a high-use day (as seen in Figure 26). The model has the capability to adapt and adjust 

these trained values as new data becomes available. New data, such as the number of FCEVs and 

the station count, availability, capacity, and configuration, is needed to keep this model segment 

relevant as the hydrogen market and technologies change.   

 

Figure 27. Mean rate (λ), fill amount, and rate estimates by hour for Friday,  

Urban Medium Station Type 
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5.3.3 Fill Count Probability, Urban Medium Station Type 

The probability cumulative density function of fills, as described in Section 2.3, is shown 

in Figure 28. The probability is shown for 0 to 24 hours on a Friday, and for 0 to 28 fills in each 

hour-long time interval. A 50% cumulative probability limit (specified as a user input) is applied 

to estimate the number of fills in the time interval (Section 3.4). For instance, the model predicts 

16 fills with a 50% cumualtive probability in the interval from 4 p.m. to 5 p.m. (1600 to 1700 

hours). 

 

Figure 28. Fill cumulative probability map for a Friday, Urban Medium Station Type 

5.3.4 Transition Matrix—Result Urban Medium Station Type 

The transition matrix, with a discrete state space and time, varies for each observation 

period, 𝑛, which for this example is 1-hour intervals over 1-week period. This interval creates 

168 transition matrices (one for each observation period). The probability of a fill changes based 

on the time of day and day of the week, so this is the basis for each transition matrix per 



   

 

 87 

observation period. The transition vector is square, using state A (available and standby) or state 

B (available and fueling). The wait time and filling times define the probability of the station 

state transitioning to either state A or B. Fills occur randomly following a Poisson process with 

filling times dependent on the two random variables, rates and amounts, over each 1-hour 

interval, which is further broken down by timesteps to estimate waiting times. Based on the 

timesteps, fills that elapse over the timestep is a transition from B-to-B. Likewise, a waiting time 

that elapses over the timestep is considered to be a transition from A-to-A. At any other point 

within each timestep, transitions will either be from A-to-B or B-to-A. A sequence is generated 

based on the simulated data and from that sequence of events, the probabilities of each transition 

is determined. At a minimum, the station state will switch to state A (available, standby) once the 

fill is completed, unless there is another fill immediately following. The transition matrix 

(Equation 17) is of the form, 

𝑷(𝒏) = ¡𝑃:,:(𝑛) 𝑃:,¢(𝑛)𝑃¢,:(𝑛) 𝑃¢,¢(𝑛)£     (17) 

Where the first element represents the probability of a transition from state A back to 

state A, the second element (PA,B(n)) represents the probability of a transition from state A to 

state B, and so on. The probability of a back-to-back fill is PB,B(n). Each row must sum to 1 and 

each state is discrete, that is, the station will not be available and fueling and also in standby 

simultaneously. The model assumes that the station has sufficient fueling positions to handle the 

demand. (The addition of fueling positions and queueing is expected to be important to the 

model for high-throughput demand scenarios.) Each observation period, n, has an associated 

probability vector (Equation 18) of the form,  

𝝅(𝒏) =	 [𝜋: 𝜋¢]	     (18) 
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We begin with an initial probability vector (Equation 19) that assumes the station is 

available and ready for fueling in (state A).  

𝝅(𝟎) =	 [1 0]     (19) 

The limiting distribution for an hour interval, 𝜋(-), is computed by solving Equation 20, 

𝜋¦ =	 lim-→«𝑃(𝑋- = 𝑗	|	𝑋R = 𝑖), ∀	𝑖, 𝑗	 ∈ 𝑆   (20) 

This is completed for the time period specified by the user (e.g., 7 days).   

The procedure to create the fill demand results for 1-hour intervals over a week are as 

follows. The fill count is found based on the Y with at least 50% cumulative probability. Fill 

amounts and rates were randomly generated, as described in Section 2.4, and provided as an 

example Section 3.4. Table 7 is a subset of the station state estimation for two periods on a 

Friday, from 6 a.m. to 8 a.m. (0600 to 0800 hours) and from 2 p.m. to 8 p.m. (1400 to 2000 

hours). These two periods were selected to provide a comparison between morning and 

afternoon, as well as using the busiest fueling period (Friday afternoon). The Urban Medium 

Station Type, the example type used in Section 5.3, is the middle column. Two other station 

types are provided to show how the transition states vary for different station classifications. For 

each 1-hour time interval, the transition matrices were generated as well as the limiting 

distribution which are represented in the table as the transpose of π (i.e. the first element is the 

proportion of time the station will spend in standby, the second element is the proportion of time 

spent fueling). 
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Table 7. Example Station Transition Matrix and Limiting Distribution, Three Station Types 

 

As is illustrated in Table 7, most of the time is spent in state A, standby, for the Max 

Current Station type whereas the majority of time is spent in state B, fueling, for the Urban Large 

Station type. In the scenario when the station is consistently in state B, the addition of multiple 

fueling positions and application of queueing theory is particularly relevant and needed. The 

Urban Medium station is in state B more than half of the time, observed in the limiting 

distribution for a Friday between 1600 and 1700, with an estimated 31 minutes spent fueling. 

Higher demands, with more time in state B, suggests a future addition could be model for 

individual nozzles and queuing. The model currently allows for up to 4 fueling positions without 

assigning individual states per nozzle.  

A B A B A B

Counter Day, Hour

Lim. 

Dist.

Lim. 

Dist.

Lim. 

Dist.

125 A 1 0 1.00 0.48 0.52 0.53 0.47 0.53 0.53

B 1 0 0.00 0.6 0.4 0.47 0.59 0.41 0.47

126 A 0.49 0.51 0.54 0.46 0.54 0.53 0.35 0.65 0.55

B 0.59 0.41 0.46 0.59 0.41 0.47 0.78 0.22 0.45

127 A 0.49 0.51 0.53 0.45 0.55 0.51 0.4 0.6 0.50

B 0.59 0.41 0.47 0.58 0.42 0.49 0.59 0.41 0.50

133 A 0.47 0.53 0.53 0.36 0.64 0.48 0.28 0.72 0.45

B 0.59 0.41 0.47 0.59 0.41 0.52 0.6 0.4 0.55

134 A 0.48 0.52 0.53 0.31 0.69 0.50 0.26 0.74 0.45

B 0.59 0.41 0.47 0.68 0.32 0.51 0.59 0.41 0.55

135 A 0.48 0.52 0.53 0.35 0.65 0.47 0.25 0.75 0.45

B 0.59 0.41 0.47 0.58 0.42 0.53 0.61 0.39 0.55

136 A 0.37 0.63 0.59 0.3 0.7 0.49 0.24 0.76 0.44

B 0.9 0.1 0.41 0.67 0.33 0.51 0.58 0.42 0.56

137 A 0.48 0.52 0.53 0.36 0.64 0.48 0.25 0.75 0.44

B 0.59 0.41 0.47 0.58 0.42 0.52 0.58 0.42 0.56

138 A 0.48 0.52 0.53 0.35 0.65 0.48 0.25 0.75 0.44

B 0.59 0.41 0.47 0.6 0.4 0.52 0.59 0.41 0.56

139 A 0.48 0.52 0.53 0.36 0.64 0.48 0.26 0.74 0.44

B 0.59 0.41 0.47 0.59 0.41 0.52 0.59 0.41 0.56
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5.3.5 Fill Profile, Urban Medium Station Type  

A demand profile can be general with probabilities for the different variables and time 

intervals, or the demand profile can be more specific, including estimated arrival times of 

vehicles for fueling. A time interval of 1 hour over 1 week could provide the right amount of 

visibility to determine storage needs and delivery schedules. Whereas a time interval of 5 

minutes in 1 day could provide better insight into operating strategies and component sizing, 

especially when a station operator is balancing the performance and economics of a peak demand 

versus a base demand. The fill amounts and rates are randomly generated based on the mean and 

standard deviation of the training data set. The wait times, or time between fills, are used to 

generate fill start times to create a demand profile matrix (Table 8). The predicted fill profile for 

one week is shown in Figure 29.

Table 8. Fill Profile Example, Friday 1600 Hours, Urban Medium 

Day ID 
Fill Start,  

Hr 
Fill Start, 

Min 
Amount, 

kg 
Rate, 

kg/min 

6 16 0 3.5 1.0 

6 16 1 3.2 0.8 

6 16 2 4.1 0.9 

6 16 6 3.2 0.9 

6 16 7 3.0 1.0 

6 16 9 2.0 1.2 

6 16 12 1.8 1.1 

6 16 14 2.3 1.2 

6 16 17 2.2 1.2 

6 16 19 3.1 0.8 

6 16 21 3.4 1.1 

6 16 29 3.2 1.3 

6 16 29 3.1 0.9 

6 16 29 3.6 0.7 

6 16 30 3.7 0.8 

6 16 31 3.4 0.8 
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Figure 29. Weekly fill profile (fill amount is left y-axis and cumulative hydrogen dispensed is right 

y-axis) for Urban Medium Station Type 
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5.4. Applying the Predictive Hydrogen Demand Model 

Hydrogen station design and operation is typically based on manufacturer models, 

economics, policy, and best practices learned from past stations. All of these inputs provide 

valuable insight and have been successful in the early demonstration and market phases. The fuel 

cell mobility market is evolving quickly, however, with more vehicles leased and sold, new 

deployment regions, and even new technologies (such as trucks) with drastically different fueling 

conditions and requirements. Changes like these indicate there is opportunity for improvements 

to improve station flexibility, performance and economics when implementing an adaptive, 

predictive hydrogen demand model.  

5.4.1 Fueling Stations for Light-Duty Vehicles 

A primary challenge for hydrogen infrastructure success is cost, including capital cost, 

hydrogen supply costs, supply chain costs, and O&M costs [133]. The costs challenge is 

magnified when a station has a low utilization. To be profitable, a hydrogen station operator 

requires high utilization so that operating costs can be spread across more hydrogen sales [34]. 

Although controlling demand is not feasible, there are a few ideas about how to lessen the impact 

of low utilization, especially in the early stage of commercialization [136]. 

An option that is enabled by this work is to integrate an adaptive hydrogen demand 

model into the station planning, controls, and operation processes. The proposed hydrogen model 

must evolve over time as conditions change (such as the number of FCEVs, station age, and 

availability) to improve station economics [137], [138], [139] without sacrificing performance 

for the station customers (e.g., FCEV drivers), but key ways that the hydrogen demand 

prediction model developed for this study could benefit the industry would be through: 
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• Station and equipment sizing: The size of station components influences station capital 

costs and capability, with the expectation that the station can sufficiently handle demand 

on both day 1 and in year 5. Predicting demand based on actual fill data and future 

predictions for FCEV deployment provides a tool for sensitivity studies on the impact of 

economics and capabilities when ensuring base- or peak-demand scenarios. Decisions 

made by the station operators on when, how, and what to upgrade also can be informed 

by a predictive demand model. 

• Maintenance strategies: The reliability of hydrogen stations is a current challenge with 

regard to both frequency and cost [33]. By adding the station state of “unavailable” into 

the model, the station transition matrices and the reliability engineering best practices 

should enable business-based decisions that evaluate the economic impacts of when and 

what to maintain versus staying available for the high-value fueling.  

• Operation strategies: Selling hydrogen is the primary function of a hydrogen station and 

the method of doing so ultimately dictates the consumer price. Station operation 

conditions such as when to compress, deliver, and chill, all impact the cost of dispensing 

hydrogen to vehicles and therefore station operation economics. The utilization of a 

predictive demand model can enable station operators to evaluate the impact of new 

operation strategies based on individual business models.  

5.4.2 Application for Other Technologies Such as Buses and Trucks 

Our demand model has been built using data derived from light-duty, passenger FCEV 

fueling. Many other technologies (for both fuel cells and batteries) that show promise, and the 

need for an alternative infrastructure for fuel other than gasoline also can benefit from this 

model. As new data becomes available, this model can be adapted for new station types such as a 
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truck-stop type station, multi-use commercial station, and a hub such as an airport or marine port. 

The biggest hurdle to adapting the model to other demands is data availability. Currently 

underway are projects (e.g., DOT and California funded hydrogen stations, fuel cell bus, and fuel 

cell truck demonstrations) that have the potential to generate valuable training and validation 

data for the adaptation of the hydrogen, light-duty demand model to an alternative infrastructure 

demand model.  

5.5. Conclusion 

Gasoline stations and the required infrastructure are well established in the United States, 

with decades of legacy data to inform and optimize performance and economics. As hydrogen 

fueling stations grow to comparable size and capability of gasoline infrastructure, there is a need 

to understand the demand for hydrogen fueling for an informed and optimal scale-up process. 

Informed by a broad dataset of hydrogen fueling events, this study proposes a statistical model to 

predict the hour-by-hour demand for hydrogen fueling, as a function of variables such as 

hydrogen station type, size, location, time of day, and more. By comparing hydrogen to gasoline 

fueling datasets, his study demonstrates that the infrastructure supporting new mobility 

technologies can utilize gasoline fueling trends to inform decisions. The predictive hydrogen 

demand model that was developed for this study demonstrates the ability to model the station 

state (fueling or standby), estimates of fill count, amount, rate, arrival times, and time between 

fills. These results are valuable as inputs to station builders and operators who can make more 

informed decisions on requirements, future needs, operation, and maintenance strategies that 

directly impact the future and economics of hydrogen infrastructure.   

The fueling demand model was trained with real-world station data, estimating the 

probability for future fill time, amount, frequency, and times, starting from the assumption that 
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station fueling can be based on legacy hydrogen filling data and gasoline fill trends. A station 

operator will be able to customize station sizing and capability, as well as estimate ideal times 

(i.e., times during low use or low risk) for station maintenance or even to assess and incentivize 

fueling during particular times. An example is an assessment of station capability for current 

demand versus future demand, or the risk of expensive capital equipment versus future fueling 

revenue. When the station operator integrates the station capability with operating economics, 

maintenance decisions are driven by data so that revenue generation has minimal interruptions. 

Researchers are also able to utilize the predictive demand model for future scenario studies like 

integration of a hydrogen station with grid services, where future demand and station state of 

charge dictates whether the station is available for grid services.  

Based on these expected benefits, the predictive demand model can improve economics 

of hydrogen station operation. Many factors influence the benefits of predicting demand, such as 

the deployment timeline for FCEVs and station availability. Therefore, benefits will be 

quantified with individual station operators and stations where implementation of the predicting 

demand model can be customized to an individual station’s current output, capability, and 

projected FCEV deployment.  
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CHAPTER 6 – HYDROGEN STATION PROGNOSTICS HEALTH MANAGEMENT 
MODEL 

6. Introduction to the Hydrogen Station PHM 

Research Question 3 aims to identify an active hydrogen station health monitoring system 

that is actionable and effective at improving hydrogen station availability. Based on widely used 

reliability engineering methods and the low reliability of current stations, this research advances 

the hypothesis that a hydrogen station PHM could increase station availability by proactively 

managing maintenance in order to minimize unscheduled failures. Individual station operators 

are growing their experience and have specific strategies in development, yet there little to no 

published information on the application of reliability methods for station operation. A gap in 

available information and an observed challenge with station reliability, make this an ideal 

application to study a system-level PHM for hydrogen stations.  

The observed reliability challenge can be seen in a high frequency of component failures 

[101]. The MFBF for the leading maintenance category (dispenser system) is less than 500. And 

a high number of failures results in high O&M costs, over $10,000 per station per calendar 

quarter, which is seen by hydrogen prices that are currently 4 to 5 times higher than parity with 

gasoline prices at the pump. Demand is expected to grow [96], which is likely to exacerbate the 

reliability challenge.   

There is renewed momentum with supplier involvement [140], holistic hydrogen system 

solutions [1], [118], and commercially available and planned fuel cell vehicles [25], [26], [27], 

[105]. All this activity is pushing progress in lowering hydrogen production costs with 

aggressive targets for supply chain, utilization, and deployment. However, there is a gap in 
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publicly available information addressing a near-term challenge of hydrogen station reliability. 

Hydrogen station reliability directly influences consumer acceptance of hydrogen technologies 

and can also be improved through the application of reliability engineering.  

6.1. Hydrogen Station Status 

Publicly available hydrogen fueling stations are essential for mass adoption of hydrogen 

fuel cell electric vehicles (FCEVs). Hydrogen-powered vehicles exhibit numerous benefits 

relative to conventional vehicles and other zero-emission vehicles [5], specifically related to their 

low life-cycle greenhouse gas emissions [6], [7], long range and fast fueling [8], competitive 

market price (with lease and purchase options) [9], [10], [11], and durability [12]. As the demand 

for hydrogen-fueled vehicles has increased with advancements in fuel cell vehicle technologies, 

the number and variety of hydrogen stations has increased accordingly [96].   

The hydrogen fueling station capital investment costs, and the O&M costs make up a 

significant fraction of the cost of hydrogen delivered to vehicles. For instance, in the fourth 

quarter of 2018, the average maintenance cost per kilogram hydrogen dispensed was $1.30 [101], 

which is likely too high to meet the gasoline price parity target of less than $4 per kilogram. This 

estimate is based on the assumption that maintenance costs directly contribute to the dispensed 

hydrogen fuel price, but in many ways the non-monetized costs of hydrogen station 

maintenance—particularly unscheduled failures—are higher than the monetized cost of 

maintaining the fueling station.   

When a hydrogen fueling station fails in its function to deliver hydrogen, this can have a 

detrimental effect on vehicle users’ acceptance of hydrogen technology. For example, FCEV 

drivers fill up their vehicles when their tanks are 30% full on average [141]. This fueling 

behavior can be attributed in part to the range anxiety of electric vehicle drivers, which is 
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different than gasoline vehicle fueling behavior [21], and is due in part to consumers’ concern 

that the hydrogen station may not be available due to breakdown or unplanned maintenance 

[106]. Hydrogen station availability is so essential for consumers that both industry and 

government have developed software for real-time station availability status [87], [142]. At 

present, station operators are servicing hydrogen stations with dueling objectives. On one hand, 

they must service the system quickly to maintain the availability of the hydrogen station to meet 

consumers’ reliability demands. On the other hand, they must take time to investigate the root 

cause of the failure to avoid future failures. The current frequency of hydrogen station 

component failures is too high—the MFBF for the leading maintenance category (dispenser 

system) is less than 500 [101]. This is approximately one failure every 15 days, based on current 

fueling trends, and is lower than the mean time between corrective maintenance activities of 21.5 

days for gasoline stations in a “medium failure station” category [117]. 

Based on this understanding, there is a significant need to understand and improve the 

reliability of hydrogen fueling stations. This study seeks to apply reliability engineering concepts 

to hydrogen station O&M so as to reduce the cost of O&M and thereby reduce delivered 

hydrogen costs. This study presents the development of a hydrogen station prognostics health 

monitoring (H2S PHM) model. The H2S PHM model includes steps to identify the needed data, 

observe operation, analyze the condition, and decide on actions, if any. This modeling should 

enable a station operator to perform preventative maintenance instead of reactive maintenance to 

system failures, with real-time processing of information to predict failures and realize lower 

cost than conventional maintenance plans [143]. A primary value of PHM is that it can inform 

O&M strategies that balance technical function and economic business decisions. In order to do 
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that, PHM estimates RUL to determine future component functionality and to economically 

evaluate a course of action [144].   

6.2. Review of a Hydrogen Station and Reliability 

6.2.1 Hydrogen Station Overview 

A hydrogen station is a complicated system with numerous mechanical, electrical, 

chemical, safety, and structural subsystems. A hydrogen station must seamlessly and safely 

manage the delivery of high-pressure, nearly-cryogenic hydrogen across varying ambient and 

throughput conditions and provide a user interface that is safe for the general public (see Figure 

30). There are numerous suppliers for hydrogen stations and their components, across the 

engineering specialties such as rotating equipment, cooling, pressure vessels and piping, safety, 

and electrical. Not all of the components are hydrogen-specific designs because the supply hasn’t 

justified the development of hydrogen-specific subsystems. To date, hydrogen station evaluation 

projects [34], [69], [65], [123] have analyzed past events to study and report on station 

performance, economics, maintenance, and reliability. Through these projects, data is available 

to benchmark the challenge of reliability, along with targeted component reliability efforts [122], 

[120].  
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Figure 30. Fuel cell electric bus fueling at a hydrogen station (photo credit: NREL) 

6.2.2 Reliability Engineering and PHM Overview 

At present, the individual operators of hydrogen stations are improving the reliability of 

hydrogen station operation through station operation and repairing failures. The published 

literature does not reveal any comprehensive research on hydrogen station system-level 

reliability engineering, although there is demonstrated potential to improve station reliability and 

availability, based on existing reliability engineering literature and an assessment of the current 

hydrogen station reliability [145].  

Reliability Engineering methods aimed at improving reliability, decreasing unforeseen 

failures, and lowering operational costs have been in development and are applied in many 

different industries [89]. For example, the U.S. Army Material Systems Analysis Activity 

(AMSAA) published an AMSAA Reliability Growth Guide [88] that summarized benefits of 

reliability growth management to be finding unforeseen deficiencies, designing improvements, 

reducing risk, and increasing probability of meeting objectives. Reliability engineering is 

commonly applied to rotating equipment [90], [91], and the wind industry is applying 

diagnostics and prognostics to improve wind farm reliability [92], [93], [146]. PHM, specifically, 

is also regularly applied to equipment and complicated systems to predict failure, as evident by 
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many scholarly articles reviewing, researching, and applying prognostics and health management 

to engineering systems. Just a few examples of these systems include rotating equipment [147], 

wind turbines [144], fuel cells [143], batteries [148], and development of monitoring systems 

[149]. Sun et al. summarizes the benefits of PHM for system design, reliability prediction, 

logistics design, safety, quality control, extending service life, and cost [150].  

Although there is no strong consensus on what the best methods for PHM modeling 

might be, or what metrics define success [151], there are some common classifications of 

methods (Figure 31), which are applicable to a hydrogen station. Generally, a PHM method is 

based on either a data-based, physics-based, or hybrid approach [152], [153]. Options for a data-

driven model are historical failure data and empirical operation lifetime data. The data-driven 

model is typically a statistical model or an artificial intelligence model. Options for a physics-

driven model are theoretical or empirical models, with numerous model options that are specific 

to the equipment function and operation being modeled. The hybrid model combines historical 

data, available component models, and future loading conditions with the intent of a more 

accurate model than an either-or model [154]. Section 6.3 will present PHM methods and 

propose options for application to hydrogen stations.  
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Figure 31. Summary of PHM methods and options 

6.3. Hydrogen Station PHM Model Methods 

With the overarching objective of improving the reliability costs of hydrogen stations, 

this section presents the methods for developing the H2S PHM, where stations have attributes 

that complicate the selection of PHM approaches to operational improvement. For instance, 

complicated systems, like a hydrogen station, can be difficult to operate and maintain especially 

when one small component can have a large impact on system operation and function. Another 

challenge is that there are mixed failure modes and the real-world failure data is noisy and 

uncontrolled for identification of failure modes. Understanding the interconnections within 

complicated systems requires sophisticated models capable of handling multiple data inputs, 

technical/human decision making, and an understanding of uncertainties [155]. These high-

fidelity, validation-rich models do not yet exist for many of the equipment and systems in 

hydrogen stations. For example, hydrogen embrittlement is a well-known issue [156] and an 

active area for research to find low-cost materials and designs that are safe for hydrogen use. 

Material failures, such as crack growth, may be accelerated in a hydrogen environment 

especially in high-fatigue operating conditions. Therefore, a hybrid method is not yet feasible for 
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the H2S PHM because there are not existing models of hydrogen balance of plant components 

based on the current operating conditions that includes hydrogen embrittlement issues, at high 

pressure (70 MPa) and cold gas temperatures (-40oC).  

The decision for which PHM method to use is based on what inputs are available. In this 

case, hydrogen station operation data is more readily available than physics-based hydrogen 

equipment models. In fact, we are in a unique situation because 30 stations operational in the 

U.S. regularly report O&M data that includes historical failure data and operation lifetime data. 

Therefore, a data-driven method is recommended for the H2S PHM at this initial stage, framed 

by a statistical regression model. The proposed Weibull statistical model (a well-established 

lifetime data analysis method) was selected instead of an artificial intelligence model because 

there was not enough, consistent data for the artificial intelligence inputs.      

The proposed, data-driven, H2S PHM model has four main segments. The initial segment 

(“identify data”) is added to the 3-part framework of Jouin et al., and includes development of 

instrumentation data, historical maintenance data, and data from model(s) [149]. The “observe” 

model segment includes data acquisition, data processing, and faults. The “model/analyze” 

segment includes condition assessment, diagnostics, and the calculation of prognostic metrics 

such as RUL. The final segment, termed “decide”, includes decision support and human-machine 

interface that relies on technical expertise and understanding of the system. This architecture was 

used to break down the inputs and outputs of the H2S PHM model and defines means for 

implementation with hydrogen station operation to improve reliability. Each segment of the H2S 

PHM (shown in Figure 32) feeds information to other segments, including feeding new lessons 

back to the segments for improvements as more operation data and physics of failure modeling 

becomes available.    
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Figure 32. General H2S PHM model segments  

6.3.1 Step 1: Identify Data  

Datasets to inform the H2S PHM are available from the instrumentation used to control 

every hydrogen station. The subsystems with instrumentation are the hydrogen source (on-site 

production or delivery), compression, storage, dispensing (which includes chilling), and safety 

monitoring. These instruments are shown in the generic gaseous hydrogen station process and 

instrumentation diagram (P&ID), shown in Figure 33. This P&ID is simplified to show typical 

instrumentation on hydrogen stations without extensive details on the multiples of components 

like valves and storage [100].  

Step 1:  Identify Data

• Instrumentation

Step 2:  Observe Operation

• Data acquisition

Step 3:  Analyze Condition

• Condition, Diagnose, Predict

Step 4:  Decide Action

• Wait, Prevent, React
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Figure 33. Simplified station (gaseous) P&ID diagram 

The most common instrumentation in hydrogen stations measures gas pressure and 

temperature. Pressure is monitored upstream and downstream of compression and dispensing, as 

well as at the storage system. Temperature is monitored at the chiller and dispenser. Other 

measurements include cycle counts on the storage system (e.g., depletion/fill), valves, and 

dispenser (e.g., fill count). On-board vehicle storage tank temperature, pressure, and volume are 

also recorded during every fill with communication between the station and the FCEV. Table 9 

lists component and subsystem measurements.  

The frequency of data acquisition varies by signal and purpose. For instance, ambient 

temperature conditions and general station state information such as the quantity of stored 

hydrogen may be collected only once or twice a day. Other instrumentation could be stored every 

second while that subsystem is operating (e.g., high-pressure compression) or during a fill (e.g., 

dispenser gas temperature). Instrumentation for data acquisition contributes to capital and O&M 
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costs, so not all instrumentation will be available for PHM purposes, especially given the capital 

and O&M cost challenges of hydrogen infrastructure that were discussed in Chapter 1. A clear 

benefit must be demonstrated in order to justify additional costs for system instrumentation. 

Table 9. Preferred measurements by hydrogen station part for purposes of the H2S PHM 

Part Function/Tag Measurement(s) 

Valves Open/close valves 
Open/close cycles, temperature (fluid and ambient), 

pressure, MFBF, valve position  

Control valves Control flow 
Adjustment cycles, temperature (fluid and ambient), 

pressure, MFBF, valve position 

Compressors 
Compress to storage tanks (up to 

~87 MPa) 

Operation time, pressure (inlet/outlet), vibration, 

MFBF, ambient temperature, variable speed 

Chiller Cool hydrogen prior to fill 
Operation time, pressure, MFBF, ambient temperature, 

operation set point, solar gain 

Storage Low-, medium-, and high-

pressure hydrogen storage 

State of charge, discharge cycle, discharge amount, 

ambient temperature, MFBF 

Sensors Temperature, pressure, leak Operation time, ambient temperature, measurement 

output (sensor dependent), MFBF  

 

6.3.2 Step 2: Observe Operation 

The station observation data stream for this study is based on two different sources of 

data: real-world hydrogen station data supplied by 34 stations across the U.S. to NREL’s 

NFCTEC, and research data collected at NREL’s HITRF.  

This first data stream, real-world station data, includes data collected at every fill, at 
every maintenance event, and at every time when the station transitions from available to 

unavailable for fill (and vice versa). At every fill, the stations report date, time, amount, rate, 
vehicle starting pressure, and vehicle ending pressure (example shown in Table 10). At every scheduled and 
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unscheduled maintenance event, maintenance data for is collected and tracked by component, subsystem, date, type, 
and action (example shown in  

Table 11). At every available/not available transition, the stations report time, date and 

available/not available status through a Station Operating Status [87]. A limitation of this dataset 

is that it typically does not include second-by-second data for temperatures, pressures, and 

storage state of charge, or root-cause failure findings. Ideally for PHM purposes, assignment of 

all known component conditions prior to, or at, failure would be known and tracked for all 

maintenance events and equipment. In addition, typical parameters that contribute to failures are 

thermal, mechanical, chemical, physical, and electrical [157] should, ideally, be tracked. 

Table 10. Retail hydrogen station sample fill data 

Date Amount 

(kg) 

Rate 

(kg/min) 

Starting Pressure 

(MPa) 

Ending Pressure 

(MPa) 

1/4/2018 9:03 am 3.1 0.83 28 70 

1/4/2018 9:42 am 2 0.85 35 71 

1/4/2018 10:39 am 3.7 0.83 21 70 

1/4/2018 10:57 am 3.2 0.83 17 70 

 

Table 11. Retail hydrogen station sample maintenance data 

Date Category 

(system, 
subsystem) 

Action Duration 

(hours) 
Cause/Effect Mode 

2/3/2018 4:43 pm Compression, 

Compressor 
Replace 8 Pressure loss, warning 

high 
Failed part 

3/28/2018 9:00 am Dispense, Valve Replace 1 Failed part, hydrogen 

leak 
Failed part 

3/28/2018 9:00 am Dispense, 
Dispenser 

Upgrade 1 NA, NA Upgrade 

4/9/2018 1:00 pm Compression, 
Compressor 

Repair 2 Communication error, 
lost functionality 

Adjustment 

 

The second data stream, research data, is from NREL’s HITRF, an exemplar, highly 

instrumented hydrogen station on campus at NREL. HITRF has the level of data acquisition that 



   

 

108 

could support more detailed causal analysis (Table 12), but it is operated for experimental 

purposes that often do not match the operational conditions of retail hydrogen stations.  

By using both of these datasets together, we can understand the potential for 

improvement of hydrogen station PHM through the proposed methods.    

Table 12. HITRF station sample fill data 

Date Amount 
(kg) 

Rate 
(kg/min) 

Starting 
Pressure 
(MPa) 

Ending 
Pressure (MPa) 

Dispensing 
Temperature 

(°C) 

Dispensing 
Pressure 
(MPa) 

1/4/2018 9:03:26 am 3.9 0.83 28 70   

1/4/2018 9:42:16 am Fill in 
progress 

Fill in 
progress 

35 Fill in progress -10 35 

1/4/2018 9:42:17 am Fill in 
progress 

Fill in 
progress 

35 Fill in progress -12 35.3 

1/4/2018 9:42:18 am Fill in 
progress 

Fill in 
progress 

35 Fill in progress -15 35.6 

 

6.3.3 Step 3:  Analyze Condition 

The goal of PHM development is to move from reactive maintenance (i.e., unscheduled) 

after a failure occurs to preventative maintenance (i.e., condition-based), scheduled to not 

negatively impact customers who want to fuel their vehicle. Condition-based maintenance 

doesn’t wait until a component fails for repair or replacement. The component is proactively 

replaced during a preventative maintenance event when the specified component condition (e.g., 

cycle count) is reached and before the component fails [158]. Condition-based maintenance, in 

the context of hydrogen stations, may be the practice of a repair/replace event at a certain fill 

count or time in operation. An issue this with this limited practice is that it doesn’t factor in the 

probability of failure so O&M costs may increase if the repair/replace event is completed too 

early. It is expected that this proposed analysis will improve condition-based maintenance 
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strategy with enhanced data-detail regarding the survival rates by subsystem/component and 

expected RUL, using a statistical model from real-world data.  

This recommended statistical analysis method assumes that the subsystem/component 

combination is the smallest model block for assessment and the aging parameter is the fill count 

and not the number of operation hours or days. There are many common parts (e.g., valves) 

across the subsystems yet each subsystem has significantly different operating conditions that are 

expected to influence the current condition and estimation for RUL (e.g., gas temperature at the 

storage system is approximately equal to the ambient temperature and gas temperature at the 

dispensing system is approximately -40°C). The fill count was chosen as the aging parameter 

because it has not yet been determined that station subsystems/components deteriorate simply 

based on time. The system is basically a closed system, except for possible small hydrogen leaks 

to the environment, and operation is almost entirely controlled by the request to fill.    

Fill data by subsystem/component is required for this method and this data is generally 

two types: complete run-to-failure data or incomplete failure data from field systems. The 

complete run-to-failure data is preferred because it is controlled and thorough. This is not yet 

publicly available for the hydrogen station subsystems and components included in this study. 

Run-to-failure for hydrogen equipment is an active area of research however, with more data 

expected in the next 1–2 years [122]. Over time this will become valuable data to include into the 

analysis; in the meantime, the most extensive data available is incomplete failure data from retail 

hydrogen stations. Until then, the H2S PHM analysis data input is this incomplete failure data 

from real-world station O&M. The incomplete failure data will be analyzed with a traditional 

lifetime data analysis, or Weibull [108], [159] method. The traditional, three-parameter Weibull 

distribution function is shown in Equation 21.  
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𝐹(𝑡) = 1 − exp ¯−{&B°± ~
A² , 𝑡 ≥ 𝜏     (21) 

where 𝛼 is the scale parameter, 𝛽 is the shape parameter, 𝜏 is the location parameter, and 𝑡 is the 

aging parameter. A combination of 𝛼 and 𝛽 is sometimes represented as a combined parameter, 

𝜆 = 𝛼BA. The Weibull distribution probability density function is shown in Equation 22.  

𝑓(𝑡) = 𝛽𝛼BA(𝑡 − 𝜏)ABC exp ¯− {&B°± ~
A² , 𝑡 ≥ 𝜏    (22) 

The available failure data will allow the model to extract key features (𝛼, 𝛽, and	𝜏) to 

assign the component condition and predict RUL. With the key features, the Weibull survival 

function, or reliability function (Equation 23), provides the probability that the component will 

successfully operate at time 𝑡. 
𝑅(𝑡) = 1 − 𝐹(𝑡) = exp ¯−{&B°± ~

A² , 𝑡 ≥ 𝜏    (23) 

The conditional survival function is shown in Equation 24, where the survival is 

calculated at time 𝑡 based on the successful accumulation of operation time 𝑇. The component 

will be assessed (green, yellow, red) based on the conditional survival function (Equation 24), as 

shown in the sample diagram (Figure 34). The model will assign an approximate condition that is 

simply a basic assessment of the component survival probability to complete the next fill, while 

acknowledging that the component has survived through 𝑇 [160]. 

𝑅�(𝑡|𝑇)� = ¹(º�&)
¹(º) = exp ¯− »{º�&B°± ~A −{ºB°± ~

A¼²    (24) 
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Figure 34. Placeholder for example survival function estimate (excludes infant mortality failures) 

Weibull distribution data can be plotted against 𝑡, especially for complete run-to-failure 

data. In the scenario of incomplete failure data from retail hydrogen stations, the Weibull hazard 

rate (or failure rate in Equation 25) is recommended with the Weibull distribution data plotted 

against the cumulated hazard rate (Equation 26). 

ℎ(𝑡) = 7(&)
½(&) = A

± {&B°± ~
ABC

     (25) 

𝐻(𝑡) = −log	 R(𝑡) = {&B°± ~
A

     (26) 

The last step is to estimate RUL (Equation 27).  

𝑅𝑈𝐿 = 𝑇)"8 − 𝑇     (27) 

where 𝑇)"8 (depicted in Figure 34 as “predicted failure fill count”), or the end-of-life, is 

the fill count at 10% survival probability, which is considered the failure point for the purpose of 

this analysis and 𝑇 is the current fill count, or a potential failure point. Another way to look at 

this is as a health indicator (i.e., survival probability), tracking the delta between the failure and 
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the latest observation [161]. Note, the predicted failure fill count is a subjective threshold that 

should be updated with additional failure data, root-cause failure results, and physics-based 

models to inform the precursors to component failure.  

There are a few limitations with this analysis method, as described. For instance, 

catastrophic (or sudden) failures are not expected be predicted in this analysis. The method is 

only as good as the available data, which is varied in source, frequency, and fidelity. The 

proposed method does not include physics-based failure models as thresholds and times to wear-

out failures are not yet known. The model uncertainty is not yet understood and should be 

included in future work with the comparison predicted with actual time to failure should consider 

not only the aging parameters but also the operating conditions. This proposed model sets the 

statistical framework which can be adapted and learn from additional data and include operating 

conditions or factors leading to failure as more root-cause failure data and physics-based models 

are available. 

6.3.4 Step 4:  Decide Action 

The last step in the model is the presentation of information so that the station operator 

can make a data-driven decision (technical and economical) regarding O&M decisions and 

strategies. This step assumes that the conditional survival function and RUL will inform the 

operator, not automatically trigger an action, because at this early phase in commercial hydrogen 

station deployment, there is too much uncertainty in the statistical model. Implementing the H2S 

PHM model at this early stage is advantageous though because the model can be validated and 

iterated on in parallel to the station technology development and deployment, allowing for a 

validated model ready in future commercialization phases.  
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Along with the H2S PHM outputs, the station operator will rely on other inputs such as 

technician availability and economic impact, to determine the preferred actions, or no action at 

all. There is some guidance in the literature on assigning economic value to the decision to 

maintain or wait [144]. For example, the economic trade-off includes cost avoidance 

(replace/repair costs of preventative and reactive maintenance as well as downtime penalty costs) 

and generated revenue. Cost avoidance is the difference between the cost of an unscheduled 

(failed) maintenance event and the cost of preventative maintenance per the recommendation of 

the H2S PHM or prior to a failure. There is value in a “wait-to-maintain” option and this value is 

dynamic, as both the predicted and actual end-of-life will change due to operation (or other aging 

parameters like calendar time), discrete maintenance intervals based on the logistics (scheduling 

maintenance technicians and part availability), risk tolerance, and model uncertainties.  

An optimizer for the value of completing maintenance, with the input and decision power 

of trained/skilled hydrogen station operators, could be developed in future work to evaluate the 

real impact on the day-to-day hydrogen station O&M costs. In addition, preventative 

maintenance planning based on a reliability centered maintenance method [162] can be improved 

with additional logic like whether an overhaul is possible or a repair is needed and if a function 

test is needed for further diagnostics.  

6.4. Hydrogen Station PHM Model Results 

The proposed H2S PHM model is an initial framework based on currently available data, 

with the intention that the model will adapt with future data and technology advances. This is 

important because leading categories for station maintenance may change as reliability 

improvements are implemented at stations, new technologies are introduced, and early system 

development failures are designed out with experience and lessons learned. To demonstrate the 
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initial framework and the iterations, Figure 35, shows a general H2S PHM state diagram with the 

station O&M states (shown in black outline) integrated with the H2S PHM model steps (shown 

in green outline).  

As a starting point, the station is initiated in a ready position and then is able or 

unavailable to fill. If the station is available to fill, then the station state will move to the “Fill” 

state when requested. The fill is either successful, with data sent to the H2S PHM “Observe 

Operation” state, or unsuccessful, in which case the station moves into an “Unscheduled 

Maintenance” state. This state also supplies data to the H2S PHM “Observe Operation” state and 

the station may be unavailable for a period of time, depending on the issue. Another O&M state 

is “Preventative Maintenance,” where the station may or may not be ready and able to fill, 

depending on the specific preventative maintenance event. This state is scheduled and also 

provides data to the H2S PHM model. The “Identify Data” state (described in Section 6.3.1) 

identifies what data signals are needed. The “Observe Operation” state (described in Section 

6.3.2) uses all data inputs to inform the “Analyze Operation” state (described in Section 6.3.3). 

The last state in the model is the “Decide Action” state (described in Section 6.3.4).  
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Figure 35. H2S PHM state model 

6.4.1 Step 1:  Identify Data 

Available data for retail hydrogen stations is based on the NFCTEC O&M data template 

[34]. The NFCTEC data includes logs of hydrogen production, delivery, dispensing, costs, and 

second-by-second fueling data and maintenance/safety events. Heavily instrumented hydrogen 

stations (i.e., NREL’s HITRF or Cal State Los Angeles’s Hydrogen Research and Fueling 

Facility) can serve as a test bed for new hydrogen infrastructure instrumentation and precursors 

of component failures. This is expected for future study on the need and justification of 

additional instrumentation for an accurate and consistent set of failure data.  

6.4.2 Step 2:  Observe Operation 

The primary data source is the retail hydrogen station data, with more than 465,000 

hydrogen fills from more than 30 stations. Station operators typically supply new data every 1-3 
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months for NFCTEC analysis and reporting so this data could be used to update the H2S PHM 

regularly. The NFCTEC hydrogen station maintenance analysis shows that the dispenser, 

compressor, and chiller account for 90% of over 5,600 maintenance events. Therefore, these 

subsystems are the top priority for observation. Fittings and valves are common failure points 

within these subsystems, where failures often result in lost functionality and warning alarms. 

This highlights a challenge with the data-driven PHM approach, where failure root cause and 

operation conditions are not often found in the station maintenance records because the goal is 

generally to get the station fixed as quickly as possible, and the effects (e.g., a hydrogen leak or 

an alarm warning) do not often point to a failure cause (e.g., vibration, installation error, or 

material degradation).  

The observation continues, with the knowledge of this data gap, and correlates the 

number of fills to each maintenance event, assuming that a component is considered new up until 

the first time it is maintained. The condition after that maintenance event is then dependent on 

the specific action like inspect, repair, or replace. Individual component tag numbers are not in 

the current data, so the components are grouped by function (Table 9) and subsystem. Other gaps 

in the existing data include individual component identification, gas pressure and temperature 

cycles, and ambient temperature cycles. These data are captured in the research dataset from 

HITRF and indicate that there are possible trends that could signal an impending failure. This is 

another area for future study.   

6.4.3 Step 3:  Analyze Condition 

The training data is from all relevant retail hydrogen station data at NFCTEC, which 

introduces a problem of mixing different station configurations and failure modes. This data is 

the best available however, so all data is categorized by subsystem and components. Stations do 
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have various suppliers, operating conditions, designs, and utilization rates yet all have similar 

functional subsystems and components (like a dispenser with valves and nozzles). Ideally failure 

modes and individual stations will be separated as more data is available and as the market 

continues to develop. Data from all stations are aggregated in this initial version to generate a 

shape and scale parameter for each subsystem/component category because of this common 

functionality. An expected advantage of using the H2S PHM at this early stage is that the 

aggregated statistics are a basis for comparison and iteration for station technology development, 

when there is insufficient data for the ideal scenario.  

With the aggregated reliability analysis of all applicable maintenance data (i.e., 

unscheduled maintenance), the parameters are found by fitting the maintenance data in the H2S 

PHM Step 2, as described Section 6.3.3. An example of these parameters from fitting the 

aggregated and categorized maintenance data, using a 2-parameter Weibull distribution 

(assuming 𝜏 = 0) is shown in Table 13.  

Table 13. Example subsystem and component RUL estimates (not real data) 

Subsystem Component 
Shape 

Parameter 

Scale 

Parameters 

Dispenser Valve 0.58 32.8 

Dispenser Nozzle 0.66 830.8 

Dispenser Fitting 0.85 2851.0 

Dispenser Dispenser 0.62 2218.8 

Compressor Compressor 0.55 2414.6 

Compressor Valve 0.57 1362.5 

Chiller Chiller 0.43 1299.1 

Chiller Heat Exchanger 0.73 1361.6 

  

The shape and scale parameter are determined from the aggregated maintenance data, but 

the RUL estimate is completed for an individual subsystem/component at a specific time for a 
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station. Let us use the hypothetical example of a dispenser valve completing 𝑇 = 92 fills without 

a failure. The H2S PHM model first calculates the conditional survivability function, which 

estimates the probability that the component will continue operating without a failure, with the 

benefit of knowing that the component has already completed 𝑇 fills. Figure 36 has both the 

survival function and the conditional survival function for comparison in this hypothetical 

example. The difference in the blue and orange lines show the increase in probability for a 

component that has completed 92 fills (blue line) instead of a component that has not completed 

any fills (orange line).  

The initial end-of-life criteria is a survivability probability of 10%. As noted earlier, this 

criterion should be updated based learnings comparing the actual failures with predicted failures, 

the economic trade-off of wait-to-maintain and the acceptable level of risk from individual 

station operators. In this hypothetical example, the 𝑇)"8 = 403 fills and the RUL is 193 fills, 

based on the shape and scale parameters in Table 13.   



   

 

119 

 

Figure 36. Sample RUL estimate for a dispenser valve 

6.4.4 Step 4:  Decide Action 

When requested by the station operator, the H2S PHM estimates a RUL for each of the 

priority subsystem/components based on their real-time condition. Combining the RUL with 

other decision factors like technician availability, part availability, predicted future fueling 

demand, and economics trade-offs, supports the O&M decisions like when to perform 

maintenance, order parts, or continue active monitoring.  

Continuing with the hypothetical dispenser valve example, let us consider a longer period 

of approximately 1 month, or 3,200 fills for a station averaging 2,500 kg/week. The RUL 

changes as fills are completed until failure or pro-active repair/replacement of the component. 

Figure 37 shows an example of how the RUL estimate changes over fill counts for the dispenser 
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valve. This simple example has two scenarios for the same component. One scenario does not 

have a PHM (black dashed lines) and the other scenario with the H2S PHM (blue lines).  

In the scenario without PHM, the dispenser valve fails and is replaced with an assumed 

station downtime of 3 times the median labor repair hours [101]. This multiplier captures the 

time margin that would be necessary for maintenance logistics like notification, part availability, 

and technician availability. The downtime (assumed constant for each reactive maintenance 

event and is captured when RUL = 0) is translated to the number of fills based on the predicted 

demand so that the number of fills varies based on the failure day and time of day. Note in this 

example the valve fails and is repaired at exactly the same fill count each time (identified by the 

black circle). This is used for illustrative purposes only and is not intended to state that the 

failure is known and repeated exactly.  

In the scenario with the H2S PHM, the dispenser valve is replaced at different intervals 

(identified by the blue *). These illustrative replacement intervals show one possible path of 

utilizing the H2S PHM with different repair criteria as more is learned and uncertainty is reduced 

in predicting the RUL. For example, at the cumulative fill count of 1,346, the valve is on its third 

replacement cycle, with 382 fills on the current valve. At this point of maintenance, the RUL 

estimate is 54 fills, so the replacement may have been too early, but the next replacement cycle is 

completed with a RUL less than 50 fills. This simplified example assumes the H2S PHM model 

shape and scale parameters are consistent therefore the RUL estimate is repeated with each repair 

cycle. In an actual implementation, the parameters may be updated regularly in order to 

incorporate learning and comparisons from the actual failures and predicted failures.  

Over the cumulative fills in this example, the H2S PHM value estimate is trending higher 

than the No PHM scenario, showing the potential that the H2S PHM is economically 
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advantageous compared with the status quo maintenance method. This is primarily due to 

decreasing the station downtime and lower maintenance costs, however it does not take into 

account all the costs and influencing factors. Note that this is an overly simplified example meant 

to illustrate the factors influencing the decision step and what actions are taken. Future research 

is needed for an assessment on the return of investment of the H2S PHM and economic 

optimization that considers a full range of avoided O&M costs, revenue gain, and the PHM 

investment [163]. In its initial iteration, the H2S PHM may provide the most value in providing 

one more data source for the station operator’s goal of high station availability but it is not yet 

ready for the full economic analysis as more data is needed for key variables like downtime per 

maintenance event and subsystem/category.  

 

Figure 37. Time-series RUL example with variable repair schedules 

An economic study of hydrogen fueling revenue, cost avoidance, and H2S PHM return 

on investment is suggested for future study. For example, the cost of unscheduled maintenance 

for today’s hydrogen station is $1.30/kg [101] on average. The cost of PHM maintenance could 

be 30% of the unscheduled maintenance costs, based on an engineering estimate informed by 

other industry estimates [164], [165]. The maintenance cost in the H2S PHM scenario is lower 

because maintenance can be scheduled, and the station is unavailable for less time than the base 
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scenario. Once the RUL is less than a low limit specific to the station operator, then the cost of 

preventative maintenance could be assumed to be the same as the cost for unscheduled 

maintenance and the cost avoidance is zero. A critical data stream for this economic study is 

station maintenance costs by subsystem/component for both planned and unscheduled 

maintenance.  

6.5. Discussion 

The H2S PHM model presented here is a proposed framework meant to avoid frequent, 

unscheduled maintenance events that are costly and negatively impact the customer trust in 

receiving hydrogen when it is needed. This model is entirely data-driven because physics-based 

models are not yet available for the components and subsystems operating in a hydrogen 

environment, which can have unique influences on failures like crack growth for steels, 

especially under stress [156].  

The statistical model is constructed from incomplete failure data, without individual 

component identification (like a tag number) because the data supplied to NFCTEC doesn’t 

include that level of detail. Implementation of the H2S PHM may be most effective with 

individual station operators because details like the component tag numbers and specific 

configuration would be available. In this case, the individual components can be tracked by tag 

numbers, failure frequency, repair times, and costs that should enable a more meaningful 

interpretation of the Weibull distribution parameters and maintenance economics than with the 

generic parameters used for this study. For the purpose of illustrating how a station operator may 

use the H2S PHM model, two hypothetical examples are provided below.  

1. Valve replacement scheduling: a dispenser valve has a condition assignment of “yellow” 

indicating that this valve is close to the lower threshold for survival probability. The 
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yellow status highlights that the operator should monitor this closely and be prepared for 

maintenance. The station operator reviews this with the predicted fill demand over the 

RUL estimate. The operator also factors in logistical items like technician and part 

availability. The station operator then determines the best time for replacement based on 

all these considerations, ultimately minimizing the negative impact on the customers. If 

the valve replacement is scheduled, the total station downtime may be short because the 

station is only unavailable while the technician is actively working on the replacement. If 

the valve fails, the station may be down for longer because a technician needs to arrive to 

the site and make an assessment on the action required, and the action may not be 

possible if the part(s) are not readily available. The RUL estimate is valuable because it 

helps to balance the best time to do the repair/replace so that costs aren’t incurred 

repairing a fully functional part and that a revenue is not lost due to an unscheduled 

failure.  

2. Major equipment overhaul: Let us assume that a compressor overhaul would require the 

entire station to be unavailable for at least a full day. This is expensive and labor 

intensive, so it does not make economic sense to complete this maintenance too early in 

the operation life. The RUL estimate can be used to decide on the optimal time to 

complete the overhaul. This will also allow the station operator to mitigate any revenue 

or customer relationship risk with forewarning and other methods like pushing the station 

storage state of charge to 100% before the overhaul. The primary difference with this 

scenario and a basic maintenance practice is that the RUL estimate informs the timing 

decision. A major component like a compressor is also an ideal candidate for integrating 
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early warning signs (e.g., operation pressures), the statistical survival prediction, and a 

physics-based failure model.  

In both of these hypothetical examples, uncertainty may limit the H2S PHM model’s 

usefulness. In an early market phase, infant mortality failures may be difficult to predict and 

therefore the operator may not be confident in the RUL estimate. Any action initiated from the 

H2S PHM model outputs will also be influenced by uncertainty in the predicted fill demand and 

economic value. Another factor influencing uncertainty is whether the failures are systemic or 

simply because the market is new. For instance, a particular component failure may only be an 

issue because the component has not been customized for the hydrogen environment; when the 

supply chain is more established than currently, the component will be replaced with a 

customized with fewer failures and different failure modes.  

As expected, when proposing a new method, there are a number of opportunities for 

improvements. Another future consideration is to study the assumption of a continuous failure 

model. If the behavior is discrete instead of continuous, the observations from the continuous 

model may be inaccurate [113]. Information from field data and continued study of the modeling 

will support the assessment of the data type and failures like burn-in or wear-out. If the 

continued study of the hazard rates shows variations in the traditional bathtub curve, the model 

should be adapted [112], [114], [166], [167]. The model may be also be customized as failure 

mechanisms are identified and used to inform the component condition as not all components 

may follow the typical aging phases as the traditional bathtub curve [168]. 

The number of variations and influences on the uncertainty are an indication that the H2S 

PHM is not be ready to be the prime source for O&M strategies. However, implementing the 

H2S PHM at this early stage can be beneficial because the model can have time for validation, 
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additional training data, as well as develop in parallel to the understanding of failure modes, and 

station operator insight. From over 465,000 fills, the data is the most extensive data available 

from multiple station operators, configurations, and operating conditions. There is tremendous 

opportunity is mine these data, even with the limitations, for advancing next generation systems.  

6.6. Conclusion 

Currently, hydrogen station O&M is primarily reactive, which is reasonable in this early 

stage of commercial productive development. Reliability is lower than needed for general 

consumer acceptance based on a comparison with gasoline station reliability, so reliability was 

identified as an ideal area for research and development. Data collected from retail hydrogen 

stations is incomplete and still a valuable source to explore methods for improving reliability. A 

promising option is a data-driven H2S PHM. The H2S PHM framework serves as the initial 

building block to develop a way to increase station availability and improve O&M costs. The 

H2S PHM could be adapted for an individual station or a network of stations, integrating a 

reliability survival analysis with economic trade-off of cost avoidance and revenue. 

In order to be adopted by a station operator a clear operational benefit must be identified 

and model limitations addressed. The introduction of this model allows for validation and 

iteration as the throughput of hydrogen stations increases and more data is available. Other 

limitations of the data-driven H2S PHM can be mitigated with addition of more data, and 

possible advances in physics-based models and physics of failure findings. Recommended future 

research includes adding physics-based failure models, as well as iterating on the statistical 

models to decrease the prediction uncertainty. An analysis identifying the primary contributors to 

the uncertainty will highlight the priority areas for model improvements. A future economic 
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optimization study will also identify the priority economic assumptions for use in the decision 

for deferred maintenance actions versus failure risk costs.  

Looking toward the future requirements for a low cost of hydrogen per kilogram (and the 

exponential increase in hydrogen demand for multiple technologies), the H2S PHM model is 

expected to decrease maintenance-related cost contribution to the cost per kilogram. A decrease 

in cost is especially possible when the H2S PHM model is implemented in parallel with other 

developmental efforts like a component reliability improvement plan, specifically designed 

hydrogen components, and low-cost, high-volume manufacturing. Another impact that is not 

easily quantified is how an increase in station availability, driven in part because of the H2S 

PHM, could result in higher customer acceptance, thus improving the bottom line with both 

increased utilization and reduced O&M costs. Ultimately improved station availability with the 

H2S PHM increases confidence of FCEV drivers that the station will dispense hydrogen when 

requested, a needed step for continued market acceptance of FCEVs. Therefore, we can conclude 

that the application of traditional reliability engineering methods to a new field (hydrogen station 

operation) is one method that can address a leading challenge for hydrogen stations.  
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CHAPTER 7 – CONCLUSIONS 

7. Summary  

Hydrogen infrastructure to fuel light-duty passenger vehicles has moved from an idea to a 

reality. These hydrogen stations are fueling commercially available FCEVs, in the limited 

geographic regions where the stations are located. A review was completed in order to assess the 

hydrogen station technology status and improvements needed for the future hydrogen stations, 

both in California and for the national roll-out of hydrogen infrastructure and FCEVs.  

While there are many research and development opportunities for hydrogen 

infrastructure, this research focused on a set of high priority technical challenges, station 

availability and dispensed hydrogen cost. This focus was selected because the review of station 

performance status identified because hydrogen station reliability is lower than the incumbent 

gasoline technology and the dispensed price of hydrogen is higher than the incumbent gasoline 

technology. In addition, these challenges were ideally suited to utilize a systems engineering 

process to identify possible solutions because the interrelationship of subsystems also influences 

reliability, cost, and the ability to successfully meet the consumer needs in a real-world setting 

Hydrogen station reliability is directly related to availability and dispensed price, because 

unscheduled downtime reduces availability and adds cost due to maintenance. Both of these 

topics also have a direct relationship to consumer acceptance, which is necessary for successful 

commercialization of the hydrogen stations. Therefore, this research aimed to investigate 

systems level innovations that could improve availability and decrease cost by improvements to 

station reliability by reducing downtime and maintenance costs. I proposed that innovations like 
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predicting the future fueling demand integrated with PHM would support O&M strategies 

needed to improve the commercial potential of hydrogen fueling stations.  

7.1. Research Question Summary 

The research set out to answer how can a measured and modeled hydrogen infrastructure 

system based on real-world operation be used to understand the benefit of integrating a new 

predictive reliability model to address key technical challenges of availability and cost. To 

answer this question, this research established the methods and framework for operational 

analysis and predicting demand and failures for a hydrogen station, through three smaller scope 

research questions, summarized as follows.    

7.1.1 Research Question 1 – What is the measured operational performance of current, 

consumer-oriented, retail hydrogen stations? 

The operation performance of current, consumer-oriented, retail hydrogen stations is 

safely filling FCEVs, with over 913,000 kilograms dispensed in 2018, having moved from a pre-

commercial phase (prior to 2016) to an early commercial, retail phase. The number of retail (i.e., 

24/7 publicly available) hydrogen stations is 39 in the U.S. supporting over 6,000 FCEVs. Safety 

is fully integration into station monitoring and control, with minor hydrogen leaks as the top 

category for safety reports. Hydrogen station capital costs of stations are approximately $5,000 

per daily capacity (kg), which is much lower cost than the early demonstration stations in 2009 

which had costs of approximately $20,000 per daily capacity. And new stations are being 

designed today that are expected to have lower costs. The hydrogen price at the pump is 

approximately 4 times the price of a gallon of gas. And a low MFBF negatively impacts station 

availability – a key consumer requirement – with unscheduled maintenance events and station 

downtime. This review of U.S. retail stations included deployment, safety, cost, fueling trends, 
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and maintenance trends. The analysis identified four gaps (capital costs, reliability, multi-use 

(e.g., truck fills), and cost-effective renewable hydrogen) were observed as challenges for 

economically viable hydrogen stations.  

Hydrogen station reliability has demonstrated improvements like lower maintenance 

costs and higher MFBF than the pre-commercial hydrogen demonstration stations. However, the 

station reliability is not as good as the incumbent gasoline fueling stations and station availability 

is a reported concern for FCEV owners. Hydrogen station reliability is a key influencer of 

hydrogen station market success. Cost and reliability gaps were the research motivation, focusing 

on how this research could improve reliability with hydrogen station system innovations that will 

increase availability and decrease cost. 

7.1.2 Research Question 2 – What are the sources of potential for station controls and 

operations optimization to improve the economics and effectiveness of hydrogen 

stations? 

The primary function of a hydrogen station is to safely and effectively transfer gas from 

the station to a FCEV. The hydrogen station has no control or insight of the FCEV demand, 

however. The FCEV driver is influenced by factors like accessibility to a station, FCEV tank 

level, hydrogen sourcing, and confidence in station availability. The industry has seen drastic 

changes in hydrogen fueling demand over the past 2-3 years with more FCEVs on the road and 

other applications like buses and trucks gain interest of fleet operators. Given the variability of 

hydrogen fueling demand in the future and critical demand is to the success of a hydrogen 

station, predicting future hydrogen demand has the potential to improve the economics and 

effectiveness of hydrogen stations. The predictions of fill trends (amount, frequency, and arrival 

time) by hour, day, and week guide station development and O&M strategies.  
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A hydrogen station design, permit, construction, and commission timeline can take more 

than a year according to the assessment of stations. This same assessment has also shown there 

are significant increases in demand in this same time frame of 1-2 years. A predictive hydrogen 

demand model allows a station operator to evaluate how well station configurations can dispense 

hydrogen for both near-term and future fueling demand. This can be accomplished by integrated 

the future demand with other station capability models (e.g., like a hydrogen capacity model 

[169] and hydrogen station equipment cost model [133]).  

An unavailable station influences consumer confidence in hydrogen fueling as observed 

from fueling behavior trends and FCEV driver surveys. As consumer confidence is a factor in 

station demand, it is important for a station to maintain high consumer confidence. The 

predictive demand model allows for strategic station O&M decisions, like scheduling 

preventative maintenance at low use times and ensuring station storage state of charge is 100% 

prior to high use times.   

7.1.3 Research Question 3 – What strategies for active hydrogen station health monitoring 

are actionable and effective at improving hydrogen station reliability? 

There are multiple options for improving station reliability such as individual component 

reliability improvement programs and next-generation technologies. More holistically, this 

research proposes a framework for a hydrogen station prognostics health monitoring (H2S PHM) 

model that can minimize unexpected downtime by predicting the RUL for primary components. 

This H2S PHM is complementary to other reliability improvement efforts as it is implemented at 

the hydrogen station system level and can continue assessing when with multiple equipment 

generations and capabilities.  
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The H2S PHM model is a data-driven statistical model, based on O&M data collected 

from 34 hydrogen stations and more than 1,470,000 dispensed kilograms and 465,000 fills. The 

highest priority subsystems (determined by the most frequent maintenance activity) studied are 

the dispenser, compressor, and chiller. The RUL estimates are used to decide whether 

maintenance should be completed or not based on the prediction and expected future station use. 

The H2S PHM model is initially built on incomplete, real-world failures for a statistical model. 

This data is available for multiple stations as part of NFCTEC but is also tracked at each 

individual station, thus the statistics that are used to estimate the RUL for key components can be 

customized.  

Answers from these three research questions have shown that hydrogen station system 

innovations such as predicting hydrogen demand and failures has the potential to improve station 

reliability. This is accomplished by proactive management of station downtime, economical 

preventative maintenance, and decreasing the number and frequency of unscheduled failures. As 

hydrogen station subsystems and components are still in an early commercialization phase so 

there is little publicly available research on component level physics-based failures so real-world 

O&M data is essential to the predictions.  

This research is novel in part because of the combination of field hydrogen station 

performance benchmarking, reliability growth, predictive demand, and survival predictive 

analyses. A summary of the primary research contributions is:  

• A survey of existing hydrogen station operation literature,  

• A gap analysis to inform station requirements and operations to enable consumer 

acceptability, reliability, and reduction in the cost of delivered hydrogen,  
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• An analysis of a unique set of station O&M data from over 30 retail hydrogen 

stations in the U.S. There is no other published research that includes the amount 

and variety of real-world station data along with a focus on technical aspects of 

station O&M,  

• A quantification of the reliability, consumer acceptability, and cost trade-offs 

associated with optimization of hydrogen station operations,  

• A predictive fueling demand model, based on statistics of current hydrogen and 

incumbent gasoline fueling trends. The model is novel in that is the first to predict 

hydrogen fueling demand hour-by-hour and day-by-day,  

• A H2S PHM model, based on statistics of hydrogen station maintenance events, 

particularly unscheduled failures. The model is built from over 465,000 fills and 

5,600 maintenance records. An important model output is the estimate of RUL for 

high priority (based on current failures or impact) subsystems and components. 

This model is novel because it applies reliability engineering methods to reduce a 

hydrogen station’s unscheduled failures and resulting downtime, and 

demonstrates the economic value of PHM in this new application,  

• A set of peer-reviewed research material that provides new tools and methods to 

improve two leading challenges (availability and cost) for economically viable 

hydrogen station operations. A manuscript has been published in the International 

Journal of Hydrogen reviewing the operational performance of current, consumer-

oriented, retail hydrogen stations, based on the first research question [145]. A 

manuscript covering the reliability analysis and real-world station status, is in the 
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final review stage. A manuscript covering the method and results of a predictive 

fueling demand model is in the review stage.   

7.2. Future work 

The suggested future work aims to address challenges with the proposed innovations and 

to build on the initial modeling framework with iteration, validation, and re-assessment. An 

example of a challenge is that the data the models are built on is from a variety of hydrogen 

stations in an early commercialization phase. The proposed innovations are only as good as the 

input data used to build the models, so additional data is needed. Therefore, one area for future 

work is continued model iterations with new and updated training data inputs from both real-

world station O&M data, as well as laboratory benchmarking data.  

Another area for future work is the addition of physics-based failure models that provide 

insight into the modes and indications for failure. A hybrid of both statistical data and physics-

based models should improve the accuracy of predicting the RUL. The last recommendation for 

future work is to include more real-world economic values for component and system 

maintenance so that an optimization can be completed for the cost trade-offs waiting-to-

maintain, preventative maintenance, and lost revenue due to unscheduled failures.   

There are many hydrogen infrastructure variables that are rapidly changing, which 

challenges the assumptions and targets for hydrogen station reliability. The subsystem and 

component suppliers are improving designs and pushing the performance capabilities within a 

high-pressure hydrogen system so end-of-life criteria is not constant. New applications, such as 

heavy-duty fuel cell trucks, demand at least an order of magnitude increase in both fill amount 

and rate. New station operators are entering the market, which means that one-time errors that 

are avoided based on experience will likely be repeated. Reliability improvement programs that 
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are adaptable and based on data and physics-based modeling are needed to ensure safe operation 

with this rapidly changing station configurations, capabilities, and requirements. Longer term 

future hydrogen station reliability engineering will have to include a more robust structure for 

spares, warranties, and technicians. This structure needs to be informed by the statistical models 

proposed here as well as reliability testing. The reliability testing should include failure root 

cause investigation and quality control features for critical subsystems and components, with 

run-to-failure data and accelerated failure benchmarking. The testing will also investigate and 

identify failure contributions due to mechanical, thermal, and humidity stresses, along with 

informed study on material capabilities when exposed to hydrogen. All the data from reliability 

modeling and testing will be used to direct customized hydrogen station designs for high 

reliability.   

The extent of future reliability modeling and testing data that is expected will be an 

indicator of hydrogen stations commercialization and the required supply chain. With more 

reliability-based contributions from industry, government, and academics, the hydrogen station 

product will begin to model the function and reliability of other established gas infrastructures. 

Much of the reliability work proposed assumes continuity with current hydrogen station 

functions and operating requirements. Disrupting the status quo for hydrogen station function, 

design, and operating requirements is another compelling area for future work. Examples of 

future disruptive hydrogen station designs include high-pressure electrolyzer output (reducing or 

removing the need for compression), low-cost and safe bulk hydrogen storage in liquid and gas 

form. Research pushing the boundary of hydrogen stations component design and integration 

with other aspects of the energy systems (e.g., energy production, natural gas, industrial gas 

applications, cyber-security, and resiliency) should also include options to increase renewables 
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on the grid, improve controls for optimal operation for reliability, and economically viable 

hydrogen infrastructure.  
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