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Abstract

Large Margin Methods for Partner Specific Prediction of Interfaces in

Protein Complexes

The study of protein interfaces and binding sites is a very important domain of research

in bioinformatics. Information about the interfaces between proteins can be used not only in

understanding protein function but can also be directly employed in drug design and protein

engineering. However, the experimental determination of protein interfaces is cumbersome,

expensive and not possible in some cases with today’s technology. As a consequence, the

computational prediction of protein interfaces from sequence and structure has emerged as

a very active research area. A number of machine learning based techniques have been

proposed for the solution to this problem. However, the prediction accuracy of most such

schemes is very low.

In this dissertation we present large-margin classification approaches that have been

designed to directly model different aspects of protein complex formation as well as the

characteristics of available data. Most existing machine learning techniques for this task

are partner-independent in nature, i.e., they ignore the fact that the binding propensity of

a protein to bind to another protein is dependent upon characteristics of residues in both

proteins. We have developed a pairwise support vector machine classifier called PAIRpred

to predict protein interfaces in a partner-specific fashion. Due to its more detailed model

of the problem, PAIRpred offers state of the art accuracy in predicting both binding sites

at the protein level as well as inter-protein residue contacts at the complex level. PAIRpred

uses sequence and structure conservation, local structural similarity and surface geometry,

residue solvent exposure and template based features derived from the unbound structures
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of proteins forming a protein complex. We have investigated the impact of explicitly mod-

eling the inter-dependencies between residues that are imposed by the overall structure of a

protein during the formation of a protein complex through transductive and semi-supervised

learning models. We also present a novel multiple instance learning scheme called MI-1 that

explicitly models imprecision in sequence-level annotations of binding sites in proteins that

bind calmodulin to achieve state of the art prediction accuracy for this task.
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CHAPTER 1

Introduction

Even though our scientific understanding of life, its origins and its mechanisms is still

far from complete, one of the biggest strides made by man in this quest has been to link

biology with chemistry and physics. We have been constantly trying to understand the

chemical processes and physical phenomenon that make life possible. The discovery of the

cell itself (1665 A.D.), followed by that of the Deoxyribonucleic acid (DNA) (1869 A.D.)

and the establishment of modern protein chemistry (ca. 1820 A.D.) have been the major

milestones in this multidisciplinary view of biology. We now know that DNA is the molecule

of life. It links all biological life in a four-lettered code and is responsible for all the diversity,

beauty and vibrancy that we observe as life. However, the mechanisms through which DNA

does that involve other molecules such as Ribonucleic acid (RNA), proteins, carbohydrates,

lipids, vitamins etc. According to the central dogma of molecular biology [1], DNA is used

as a template to build proteins which then form the functional backbone of innumerable

biologically important processes.

The role proteins play in cellular functions can be appreciated by considering that ap-

proximately 50% of the dry weight of the human body is protein [2]. Another example that

illustrates the importance of proteins is that of human blood which consists of red and white

blood cells. A single protein called hemoglobin constitutes about 92% of the dry weight of

all red blood cells [3]. Hemoglobin gives the blood its distinct red color and is involved in

the transfer of oxygen to cells which is absolutely critical for survival. Other functions of
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proteins include but are not limited to: enzymatic processing, cell signaling, transport, im-

munological responses, muscular contractions, hormonal processes, structural stability, and

gene expression control [1].

As a consequence of the functional importance of proteins, understanding how proteins

work, lies at the heart of comprehending the mechanics of cellular function. Apart from their

biological importance, proteins are also very important in medicine and industries such as

textile and agriculture. Understanding protein function is crucial for understanding disease

mechanisms and developing drugs. This is illustrated by the fact that more than 80% of

current pharmaceutical targets are proteins [1].

The functional diversity of proteins stems from their ability to interact with other macro-

molecules and ligands. Of particular interest are the interactions of proteins with other pro-

teins. Such interactions lie at the core of a huge number of biological processes and disease

mechanisms. For example, hemoglobin is a complex of multiple protein chains and it is only

through the formation of this complex that oxygen can be carried to cells. A single mutation

in the gene that is responsible for creating hemoglobin changes how its individual chains

interact with one another, resulting in Sickle-cell disease [1].

When proteins interact with one another to form protein complexes, components of the

individual proteins physiochemically bind to one another at locations called interaction or

binding sites. This study is aimed at the development of computational methods for predict-

ing binding sites in protein-protein interactions from data about the proteins forming the

complex. Knowledge about the binding sites of a protein can help in identifying its function,

understanding the underlying biochemistry of different diseases and biological processes and

also in drug development.
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Location of the binding sites in a protein complex can be obtained experimentally by

determining the structure of the complex using X-ray crystallography, Nuclear Magnetic

Resonance (NMR) spectroscopy, or electron microscopy [1]. Alternatives to these structure

determination schemes include biochemical assays such as repetitive yeast two-hybrid tech-

niques [4] or mutagenesis experiments [5] which, essentially, search for locations in a protein

where a mutation or change will make the formation of the complex impossible. However,

present day structure determination technologies cannot determine the structure of every

protein and are tedious and expensive to perform. For example, a study aimed at obtaining

protein crystals for X-ray crystallography of all the 1,877 protein targets in the bacterium T.

maritima resulted in a success rate of only 24% [6]. Co-crystallization, i.e., the simultaneous

crystallization of bound proteins in a protein complexes is even more difficult. The average

cost of successfully determining the structure of a protein excluding capital expenditures is

roughly $150,000 [7], with about 60% of the cost being a consequence of failed attempts

at crystallization [8]. Biochemical assays suffer from similar problems. As a consequence,

computational prediction of binding sites has emerged as an important area of research. Pre-

dictions generated by computational techniques can not only be directly used in studying

underlying complex biology, but can also be used to direct experimental studies.

1.1. Research objectives and thesis organization

Prediction of protein interfaces is a difficult problem owing to a variety of challenges. Our

first step is to identify these challenges, as well as the requirements and expectations form a

protein interface predictor (Chapter 2). We have chosen to model the partner-specific nature

of protein binding as a large-margin classification problem. As explained in Chapter 2, most

existing research in this domain does not model this aspect of the problem. Our prediction
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model, presented in Chapter 3, shows that modeling the partner-specific nature of protein

binding can not only provide better accuracy but it can also allow in-silico analyses which are

beyond the power of partner-independent predictors. One of the research objectives of this

work is to identify what kind of features are useful for an interface predictor. We investigate

both sequence and structure based features in this work. Specifically, we have analyzed the

efficacy of features derived from protein sequence alone and in conjunction with structure

based features such as residue exposure and local surface geometry (Chapter 3). We have also

probed the usefulness of local structural alignments, structural conservation, local geometric

similarity and template based features for interface prediction (Chapter 4). Most machine

learning based protein binding prediction schemes do not consider the inter-dependencies

or labeling constraints between residues from the same protein or residue pairs from the

same complex when generating predictions. One of the research goals of this work was to

develop transductive and semi-supervised prediction schemes which explicitly consider such

inter-dependencies (Chapter 5). Another research goal was to develop a prediction scheme

that can model imprecision in binding site annotations or labels for protein sequences that

bind Calmodulin. The resulting model, based on the multiple instance learning framework,

is presented in Chapter 6. The conclusions from this research along with recommendations

and directions for future work are discussed in Chapter 7.

We start off with a brief introduction to proteins and protein interfaces in order to assist

the reader in understanding the rest of the thesis.

1.2. Characteristics of proteins

In this section, we present an overview of concepts related to proteins that are relevant

for understanding the binding or interactions of proteins.
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1.2.1. Sequence and structure. Proteins, like other important biological macro-

molecules, are biopolymers, i.e., they are composed of smaller subunits. In proteins, these

subunits are called amino acids. The number of amino acids found in nature is 20. A pro-

tein can be thought of as an arbitrary-length sequence or chain of these amino acids. The

median length of human proteins is 375 amino acids. Due to the presence of physiochemical

interactions among different amino acid residues in the chain, the chain folds into a three

dimensional structure. All the information required by a protein to fold into its three dimen-

sional structure is encoded in the sequence of its amino acids [9]. The structure of a protein

is determined by a complex interplay of covalent and non-covalent interactions between its

amino acids, the environment in which the protein lies, its binding partners, presence of

water molecules and a number of other factors.

The structure of a protein can be viewed at four different levels: primary, secondary,

tertiary and quaternary (see Figure 1.1). Primary structure is the sequence of amino acids

of the protein. The amino acids are held together by peptide bonds to form the backbone

structure of the protein, and as a consequence a protein is sometimes called a polypeptide.

Backbone atoms from neighboring amino acids in the three dimensional structure of the

protein can interact with one another through hydrogen bonds and give rise to secondary

structures such as α-helices, β-sheets, and loops. Secondary structures in a protein chain

arrange themselves in a configuration called the tertiary structure of the protein. Folding of

the protein into its tertiary structure allows residues that are not neighbors in sequence to

come in spatial proximity, and this fact has important consequences for protein function and

interactions. The ‘branches’ coming out of the backbone structure of the protein in Figure 1.1

are the side chains corresponding to different residues. It is the atomic composition of these

5



Figure 1.1. Primary, secondary and tertiary structure of the protein calmod-
ulin (PDB ID: 1CLL [10]). The primary structure (amino acid sequence) is
shown at the bottom of the figure. α-helices, β-sheets and loops are shown in
red, green and blue, respectively. The ellipse encloses one of the four EF-Hand
calcium binding motifs in calmodulin. Calcium ions bound by the protein are
shown as gray spheres. Image taken from the Protein Data Bank (PDB) [11].
For more information, the interested reader is referred to [12].

side chains which gives different physiochemical properties to different amino acids. The

backbone structure of all amino acids is identical. Proteins are composed of domains which

are units in the protein that can evolve, function and exist independently of the rest of the

protein chain. The protein shown in Figure 1.1 is the calcium sensing protein calmodulin

and it contains a single domain called the EF-hand domain. This domain is also found in

other calcium binding proteins such as LCP1. Proteins that contain the same domain are

said to belong to the same family.
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An important concept related to protein structure is that of structural motifs. Structural

motifs are structurally similar neighborhoods that can occur in many proteins. Unlike do-

mains, structural motifs cannot exist independently. Calmodulin has four EF-hand calcium

binding structural motifs shown in Figure 1.1. A related concept is that of sequence motifs

which are biologically significant amino acid patterns (for proteins) or nucleotide patterns

(for DNA and RNA). For example, the consensus sequence of the EF-hand calcium binding

structural motif is ExxxxxxxxDx[DN]x[SDN]Gx[LVI]x[ESD]xxE where ‘x’ denotes a don’t-

care position and residues in square brackets can substitute one another at the same position.

Multiple protein chains interact with one another to give rise to the quaternary structure

of a protein also called a protein complex. For the quaternary structure of calmodulin in

complex with a small peptide, see Figure 1.2.

1.2.2. Function and evolution of proteins. The structure of a protein determines

its function. For example, the ability of calmodulin to bind calcium stems from calmodulin

having 4 calcium binding EF-hand structural motifs. The sequence-structure-function rela-

tionship lies at the core of structural biology.

Proteins are related to one another through evolution. Evolutionary relationships be-

tween proteins can be established by calculating the degree of sequence or structural similar-

ity between proteins. Proteins that have shared evolutionary ancestry are called homologous

proteins. Protein structure has been observed to be more conserved than both the sequence

and function of proteins. Proteins with different sequences can fold into the same tertiary

structure and perform very similar functions. The surface of a protein is less conserved than

its core as many conserved residues are buried in the core to confer stability to the protein.

A strong correlation has been observed between the fractional burial of a residue and its
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rate of evolution [13]. Residues involved in binding are under functional constraints, and as

a consequence, they evolve more slowly than other surface residues [14]. Such evolutionary

relationships between proteins can help in identifying binding sites, as closely related pro-

teins are likely to exhibit similar interaction patterns. However, the degree of conservation

needs to be very high to infer that two similar proteins would bind to similar targets [15].

1.2.3. Motion. Another interesting behavior of proteins is their motion. Proteins exist

in equilibrium between many different conformations, called sub-states and they continu-

ously move from one state to another (see Figure 1.2 for an illustration of this concept).

Crystallographic structures usually capture the most stable conformation with the lowest

energy. These conformations can also be affected by temperature, solvent properties, and

binding to other ions or molecules. Structural dynamics of a protein in its native, i.e., folded,

structure has implications on the interaction behavior of the protein.

1.3. Formation of protein complexes

Thermodynamically, the formation of protein complexes can be explained by the reduc-

tion in free energy resulting from action of non-covalent interactions between the partici-

pating proteins. An example of this phenomenon is the burial of non-polar residues as a

consequence of the hydrophobic effect which entails a decrease in enthalpy and an increase

in the entropy of the water molecules surrounding the individual proteins before complex

formation. The strength of binding, also known as binding affinity, is measured by the free

energy of binding which is the difference between the free energy of the complex and the

sum of the free energies of the unbound components. This energy is usually very small (-2.5

to -22 kcal/mol, the negative sign indicating favorable energy change) and as a consequence,
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Figure 1.2. Motion and binding associated conformational change in pro-
teins. Shown here, in shades of gray, are two states in the NMR structure
(PDB ID: 2L53) of calmodulin in complex with a small polypeptide ligand
(blue). This gives an idea of the extent of variation between different struc-
tural states of Calmodulin. Also shown is the aligned structure of calmodulin
(PDB ID: 1CLL) colored (green to red) with respect to the b-factor of differ-
ent residues in the protein when it is not bound to the ligand. B-factor is a
measure of the deviation of atoms from their average locations (captured in
the X-ray crystal structure) as a consequence of kinetic vibrations or disor-
der. Note that the unbound conformation is significantly different from the
bound conformations with changes not only in the tertiary structure but also
in secondary structure components.

protein complexes are only marginally stable [1]. For comparison, consider that breaking a

single covalent bond requires 65-175 kcal/mol.

Binding of proteins to other proteins involves the same interactions as in protein folding

and the only significant difference between inter-protein and intra-protein interactions is the

lack of chain connectivity in the former. Typically, some degree of change in the conformation
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or structure of the individual proteins is also associated with complex formation. Figure 1.2

shows the conformation change in Calmodulin when it binds a small protein.

In order to explain the mechanics of molecular recognition in proteins with respect to

their structural and physiochemical properties, a number of models have been proposed. A

thorough understanding of these models is crucial, as they not only explain how the process

of binding takes place, but also capture different aspects of complex formation that are

essential for the effective computational modeling of the problem of predicting binding sites

in protein complexes.

One of the first such models is the lock-and-key model [16] which states that shape com-

plementarity between the protein and the binding molecule is essential for binding to occur.

However, this model does not fully describe protein binding, as shape complementarity,

although playing an important role, is not the sole basis for binding [17].

A more realistic view is provided by the induced-fit model which states that together

with shape complementarity, the binding process is also driven by non-covalent intermolecu-

lar forces such as van der Waals interactions, hydrophobic effects and hydrogen bonding. It

also states that the binding process can cause conformational changes in the protein, leading

to an induced fit of the binding partner to the protein [18]. Thus, along with shape comple-

mentarity, complementarity in the physiochemical properties of the two proteins determines

binding. For example, hydrogen bond donors in a protein occur opposite to hydrogen bond

acceptors in its binding partner, non-polar groups occur opposite to other non-polar groups

and positive charges occur opposite to negative charges and so on.
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A more detailed model for binding is the conformational selection model discussed in [19].

According to this model, a protein molecule exists in equilibrium between different confor-

mations and this equilibrium is shifted to the conformation that exhibits the lowest energy

state for the formation of the protein complex with another protein.

Based on these models, the task of predicting binding sites in proteins translates to

identifying areas in a protein where complementarity in shape and physiochemical properties

between the protein and its binding partner either pre-exists or can result from a binding-

triggered conformational change.

1.4. Defining binding sites and interfaces

In the context of protein interactions, we propose to discriminate between a binding site

and the interface in a complex as follows: the region on a protein that is involved in an

interaction with another protein is called its binding site, whereas the group of interacting

residues in a complex is called the interface of the complex. Note that, given the interface

of a complex, it is trivial to determine the binding region on each protein in the complex.

Given the structure of the protein complex, we can identify two residues as interacting

if their minimum inter-atomic distance is less than a certain threshold (say, 6.0 Å) [12, 20].

Two residues within this distance are not guaranteed to interact, but it is one of the easiest

ways of defining protein interfaces and has been used by a large number of researchers in

the field [20]. Creation of the protein complex entails burial of previously surface exposed

residues of the individual proteins. The degree of surface exposure of a residue, called its

accessible surface area (ASA), can be measured from the structure of a protein. Another

method of finding which residues constitute the binding site for an interaction is to calculate

the change in the ASA of residues upon complex formation.
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1.5. Categorization of protein complexes

In this section we discuss different categories of protein complexes [21] in order to narrow

down our specific area of study. A protein chain can form a complex with other copies of the

same protein chain. Such complexes are called homo-dimers, homo-trimers, homo-tetramers

and so on, depending upon the number of repetitions of the chain in the complex. Protein

complexes composed of different protein chains are called hetero-complexes. In this thesis,

our focus is the interfaces of hetero-complexes only.

Protein complexes can either be obligate or non-obligate [22]. If the proteins in a complex

can exist as independent tertiary structures then such a complex is called non-obligate.

Non-obligate complexes can either be transient or permanent depending upon whether the

complex breaks down after formation in vivo or not. Transient complexes are more difficult to

predict than permanent complexes. This is because proteins forming permanent complexes

exhibit more evolutionary conservation, co-evolution1, co-expression2 and co-localization3 in

the cell and lesser degree of conformation change. Also, the amount of buried surface area

and the amount of decrease in free energy for permanent and obligate complexes is larger than

that for transient interactions [23]. In this study, we focus only on non-obligate transient

complexes. Another categorization of protein complexes springs from their biological or

functional context. Based on this, protein complexes can be divided into a large number of

groups such as enzyme-substrate, antibody-antigen, receptor-hormone, etc. In this work, we

focus on protein complexes in general, regardless of their function.

1Co-evolution is the phenomenon in which a change in one protein triggers a change, through evolution, in
another protein.
2Two proteins are said to be co-expressed when they appear at the same time from DNA.
3Two proteins are said to be co-localized when they appear in the same cellular component.
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1.6. Properties of protein interfaces

Some of the general features that distinguish binding sites from other regions include

structure, physiochemical properties, evolutionary conservation, etc. In this section, simi-

larities and differences between the characteristics of binding vs. non-binding regions are

discussed. Information contained in this section is expected to help explain the choice of

features made in different computational binding site prediction methods presented later.

However, it should also be noted that different proteins can have very different binding site

characteristics.

1.6.1. Sequence properties. The composition and propensity of different residues

has been observed to be different in binding areas in comparison to non-binding areas. Such

differences were employed as features in [24] for protein-protein interaction site prediction.

For example, the propensity of Tryptophan to occur in protein-protein interfaces was found

to be higher than that of Alanine [21]. The characterization of these differences using a

variety of feature representations allows for sequence based prediction of protein binding

sites.

1.6.2. Structural properties. Interfaces between proteins and smaller substrates

(e.g., caffeine) are typically cavities and concave clefts. The surface area of proteins buried

in these types of interactions is usually smaller (up to a few hundred Å2) in comparison to

the flatter, much larger (700-2000 Å2), and more structurally intricate surfaces involved in

protein-protein interactions [25]. Protein interfaces usually exhibit imperfect shape comple-

mentarity which optimizes non-covalent interactions, especially van der Waals forces, be-

tween the partners. Atoms in protein interfaces are also more tightly packed in comparison

to non-binding surface components.
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It should be noted that residues forming a binding site in a protein need not be con-

tiguous in sequence. This holds for most types of protein interactions [12, 26]. In terms

of secondary structure, binding areas on proteins tend to favor β-sheets in comparison to

α-helices. Moreover, loops in binding sites tend to be longer [27].

Most of the time, the residues involved in forming an interaction lie on the surface of

a protein, which suggests the use of structural properties such as solvent accessible surface

area (ASA) [28, 29], protrusion index and depth index [30] for prediction of binding sites.

However, at times, the binding process itself can result in a conformational change in the

protein leading to changes in the degree of solvent exposure of different residues in the

protein [20]. Features based on these conformational changes have been utilized in [30] for

the prediction of hotspot residues (details in section 1.7).

Some of the structural descriptors used in computational methods for binding site predic-

tion are [20]: neighbor list (residues that lie in spatial proximity to the residue in question),

ASA (can be calculated from protein structure using programs like DSSP [31]), relative ASA

(ASA expressed as a fraction of the overall surface of the residues that is exposed to the sol-

vent), residue interface propensity [32], B-factor (approximates the flexibility of a residue in

the crystal structure), secondary structure, etc. The challenge in using unbound structures

for training a binding predictor is that proteins can undergo significant structural changes

upon binding.

1.6.3. Physiochemical properties. In terms of their physiochemical properties, protein-

protein interaction sites are often less polar and more hydrophobic in comparison to the rest

of the protein [33]. Other physiochemical properties that have been employed in binding site

prediction include residue side chain polarity and charge, amphiphilicity index, etc.
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1.6.4. Evolutionary conservation. Evolutionary conservation of an amino acid in

a family of proteins has been used as an indicator of functionally important sites within a

protein. Interface residues tend to be more conserved than other surface residues. However,

the difference in the degrees of conservation of interface residues and those in the interior of

the protein is not large [34, 35]. Evolutionary features used in binding site prediction methods

include sequence profiles, Position Specific Scoring Matrices (PSSMs), residue conservation

scores, conservation of physiochemical properties, etc. A good review of different methods

to score residue conservation is given in [36].

1.7. Anatomy of a protein binding site

Residues in protein interfaces can be divided into two major, at times overlapping, types:

specificity determining residues and affinity determining residues. In vivo, proteins can be

surrounded by many potential binding partners. However, a small set of specific non-covalent

interactions encoded in the structure results in specific binding only to evolutionarily deter-

mined unique partners. The residues responsible for producing these interactions are called

specificity determining residues. The prevailing theory explaining protein binding specificity

introduces the concept of anchor residues [37] (see Figure 1.3). These residues, usually

polar or charged, tether into a binding groove on the other protein in the initial stages of

complex formation. This provides a geometric constraint that helps create a weak initial

encounter complex. It has been observed that side chain conformations of anchor residues

do not change much upon binding. These residues also bury the largest ASA after complex

formation. Once these anchors are docked, flexible, solvent-exposed side chains latch to the

encounter complex in the periphery of the binding pocket to form the final high-affinity

complex. These latch residues are usually hydrophobic (e.g., Tryptophan, Phenylalanine,
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Figure 1.3. Anchor residue, Eglin C : LEU 45, in the α-Chymotrypsin/Eglin
C complex (PDB: 1ACB [38]) shown in yellow space filled representation (en-
circled). 93% of the ASA of this residue is buried upon complex formation
and its contribution to the binding free energy is -8.5kcal/mol. Other residues
that get buried as a consequence of complex formation are shown as wireframe
with the backbone of the rest of the protein in cartoon representation. The
surface of Chymotrypsin is shown with colors indicating charge (red being pos-
itive and blue being negative). The figure was developed using the webserver
ANCHOR [39].

etc.) and undergo a larger change in their side chain orientation on binding in comparison to

anchor residues. Residues that confer binding strength or affinity to the complex are called

affinity determining residues. Some residues, called hot spots [1], contribute significantly

more to the binding affinity than other residues involved in the binding.

Unbound proteins are mostly surrounded by water molecules, and complex formation

usually involves exclusion of water molecules from the interface. However, some water

molecules remain in the interface and are thought to mediate hydrogen bonds between polar

residues [1, 40]. Presence of water molecules in the interface extends the range of interactions

between residues and also adds to the structural flexibility of the complex.
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CHAPTER 2

Problem formulation and literature survey

The computational prediction of protein binding sites from sequence or unbound structure

is a hard problem. This chapter describes the challenges inherent in the problem itself and

those associated with its computational aspects. Details about existing methods, together

with their limitations and shortcomings are also presented. First, an abstract mathematical

formulation of the problem is provided.

Given two proteins A and B, expressed in terms of their structural or sequence con-

stituents (such as residues, surface patches, domains or motifs), the objective of developing

a binding site prediction method is to find a function f (·;θ) that scores the binding propen-

sity of these constructs. The focus of this work is to generate predictions at the residue level

only. Here, θ represents the parameters of the function. This problem comes in two different

flavors (see Figure 2.1):

Partner-independent prediction: Here, the objective is to predict binding site(s)

on a protein without any information about its binding partner(s), i.e., predicting

whether a residue a in a protein A is involved in an interaction with any other

protein. The scoring function for this problem can thus be written as f (a) =

f (φ (a) ;θ). Here, φ (a) represents the information being derived from residue a

on protein A for use in the predictor. An example of a method that produces such

predictions is meta-PPISP [41].

Partner-aware or partner-specific prediction: Unlike partner-independent pre-

dictors, partner-aware methods use information about the specific binding partner

of a protein. The objective of such predictors is to find whether a residue a in protein
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Figure 2.1. Different flavors of the binding site prediction problem; and
different types of possible solutions. The output for each problem formulation
is shown next to its box. The focus of this thesis is highlighted in cyan and
steps in different schemes for partner specific interface prediction are shown.

A interacts with residue b in protein B upon the formation of the complex A− B.

The scoring functions for such predictors generate pairwise binding propensities be-

tween residues in the two proteins forming the complex as: f (a, b) = f (φ (a, b) ;θ),

where φ (a, b) is the feature representation for the pair of residues from the two pro-

teins. PPiPP produces such predictions at the residue level [42]. Moreover, docking

methods such as ZDOCK can also be used to generate such predictions [43].

Thus, partner-independent predictors can only find protein binding sites whereas partner-

specific predictors can provide information about both the interface in a complex and the

binding sites on individual proteins forming the complex.

Depending upon what the objective is, what kinds of data is used, and what the exact

formulation of the predictor is, the feature representation φ in the above formulation can

be modified accordingly. The parameters can be chosen empirically or estimated using
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training data through machine learning techniques. The output of the scoring function can

be class labels (interacting or not), numerical scores indicating the binding propensity or

probabilities.

In the literature, partner-independent binding site prediction is the most well studied

problem. However, the area of machine learning based partner-specific interface prediction

is relatively unexplored and the accuracy of existing methods in this area is very low.

2.1. Challenges in predicting binding sites

The prediction of protein binding sites is made difficult by a number of factors. In this

section, different challenges related to the problem and its solution are discussed [44, 45, 46].

2.1.1. Inherent challenges. Difficulties in the solution to the binding site prediction

problem are introduced by the nature of the protein interactions as discussed below.

Dependence of binding propensity on the binding partner: The propensity of

a residue in one protein to bind to another residue is dependent upon the nature of

both residues (see Figure 2.2). This stems directly from the requirement of having

physiochemical and geometrical complementarity between binding regions on the

two proteins for the formation of a complex (see Section 1.3). Partner-independent

methods ignore this fact while generating their predictions, whereas modeling this

aspect of the problem in partner-specific predictors comes with its own challenges

such as computational resource requirements, amount of available data, etc.

Alternative binding modes: The dependence of binding propensity on the binding

partner allows proteins to use different binding regions to bind to different pro-

teins [48, 49]. However, some proteins can bind to a number of other proteins
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Figure 2.2. Binding propensities for different pairs of residues in complexes
involving different degrees of conformational change in the interface (RB: Rigid
body, Med: Medium difficulty and Hard). The colors of the amino acids on the
labels of the x and y axes indicate their physiochemical properties (Non-polar:
hydrophobic, aromatic and Polar: uncharged, positively charged, negatively
charged). It can be noted that the preference of amino acids to bind to one
another is dependent upon their physiochemical properties. It can also be seen
that the binding propensity of a residue depends on the type of the residue in
the other protein to which it binds. For example, R being positively charged
has been observed to be involved in more interactions with the negatively
charged D than with K which is also positively charged. The binding propen-
sities of hydrophobic amino acids are lower because they are usually buried
in the core of the protein whereas polar residues are exposed on the protein
surface. It is interesting to note that the binding propensities also vary across
complexes with different degrees of conformational change. For example, the
propensities of hydrophobic-hydrophobic interactions are relatively higher in
the Hard category in comparison to rigid body complexes. These propensities
are calculated as the log2 ratio of the frequency of pairs of binding residues
to their expected frequencies based on the docking benchmark dataset (DBD
4.0) [47].
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using the same binding region. A different but related issue is the possibility for

structurally similar proteins to possess generally non-overlapping and significantly

different interfaces even while binding similar partners [50]. However, enumerating

all binding modes4 of a protein or predicting its specific binding modes is challenging.

In this context, partner-specific predictors can provide more informative predictions

than partner-independent ones.

Protein flexibility and motion: Proteins are flexible entities that are in a constant

state of motion. Protein flexibility is known to complicate the process of binding as

it not only correlates with binding related conformational changes but also makes

crystallization of the protein difficult for structural analysis [51]. Proteins that are

very flexible need to be sufficiently stabilized (e.g., through mutations) before their

structure can be determined using X-ray crystallography. Modeling the flexibility of

proteins for binding site prediction is difficult because most of the available structure

data is from X-ray crystallography which gives only a static snapshot of the protein.

Protein flexibility can be studied either by using NMR structures or by predictions

of molecular motion such as those obtained through Normal Mode Analysis [52] or

molecular dynamics simulations, depending upon the time scale of the motion under

investigation. One interesting and still open question is whether the flexibility of a

residue has any direct correlation with its chances to be a part of the interface of a

protein complex [53].

Conformational change: Proteins undergo conformational changes on complex for-

mation. Such changes complicate the prediction of binding sites as complexes with

4A binding mode refers to a specific orientation of the one protein (ligand) relative to the other protein
(receptor) in a complex as well as their conformations when bound to each other in a complex.
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different degrees of conformational change employ different mechanisms for binding

(see Figure 2.2). The prediction accuracy of most predictors decreases significantly

with respect to the degree of conformational change [42]. Marsh and Tiechmann [51]

have hypothesized that complexes with large conformational changes are at least 3

to 4 times more common than can be expected by looking only at the data for pro-

teins which have both the bound and unbound structure available in the PDB. As a

consequence, making accurate predictions for complexes involving large conforma-

tional changes is very important but also hard because of its inherent difficulty and

lack of data.

Effects of long range interactions: A protein residue can interact with a residue

far away from it in the protein sequence due to the folding of the protein chain into

its three dimensional structure. Such long range interactions between residues far

away from each other in sequence but in spatial proximity in the tertiary structure,

make extraction of physiochemical properties difficult. This holds particularly true

for sequence based features as it is easier to model and extract local properties (e.g.,

through sequence windows) than non-local ones [54]. As a consequence, these long

range intra-molecular interactions complicate binding site prediction.

Diversity of protein complexes: The nature of the problem varies with the type

of the protein complex. For example, homodimeric interfaces, on average, are more

hydrophobic and much larger than heterodimeric ones [55]. Similarly, the binding

patterns of obligate and transient complexes are significantly different. Among the

different functional classes of protein complexes, antigen-antibody protein complexes

are much more difficult to handle as antigens have highly variable regions [44, 42].
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Developing a generalized predictor for all these diverse classes of complexes is diffi-

cult.

Discriminatory properties of binding sites: It would be easy to predict binding

sites if binding residues had some clearly distinguishable property or set of properties

in the unbound structure or sequence of the proteins involved in complex. However,

no such set of properties is known to distinguish between binding and non-binding

regions. Moreover, different properties of a residue are not independent of each

other. For example, the flexibility of a residue is related to its depth within the

protein which is also related to its degree of conservation as the core of a protein is

usually more conserved than its surface. As a consequence, using multiple properties

as features in a predictor may not essentially be adding significant information for

the prediction.

Incomplete understanding of binding mechanisms: In the opinion of this au-

thor, the biggest problem in developing a binding site predictor is that not all

aspects of the binding problem are thoroughly understood. For example, some pro-

teins can interact with other proteins in multiple orientations [49, 56]. However,

the exact mechanics of this process are not understood. Similarly, the role of water

molecules in wet interfaces [40], post-translational modifications [57] and the effects

of the environment [58] of a protein are only beginning to be understood and the

amount of data available for such cases is very small.

2.1.2. Data challenges. The problem of binding site prediction is also made difficult

by the amount, type and nature of the data available for solving the problem. Henceforth,

different aspects of the problem with respect to the available data are presented.
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Biases in data: The number of available X-ray protein structures in PDB is currently

around 80,000 and has been increasing exponentially over the years, whereas the

number of non-redundant structural folds5 that are represented in it is only around

1,400 and has been stable for the last six years. Furthermore, the sampling of protein

structures in the PDB is not a complete representation of the protein structural

universe as protein structures cannot be determined for proteins that are flexible or

intrinsically disordered. The structures of such proteins have been systematically

missed [59, 44]. As a consequence, even a perfect structure based predictor of protein

interactions trained or developed using existing PDB data will, at best, be able to

solve only a subset of the problem. Moreover, the majority of proteins that undergo

large conformational changes upon complex formation usually do not have their

bound and unbound structures simultaneously available in the PDB [51]. Another

bias comes from the fact that crystal structures usually record the most stable

conformation of the protein even though the protein can exist in slightly different

conformations in nature prior to binding. Such biases in the training data severely

affect the generalization performance of binding site predictors, especially for cases

which exhibit only a small amount of structural or sequence similarity to known

protein complexes.

Noise in the data: Structural proximity thresholding is often used to define inter-

acting protein residues. However, it is, at best, a proxy for binding as two residues

within a small distance (say, 6.0 Å) of each other may not be truly interacting or

their interaction may not be biochemically meaningful. For example, Gromiha et

5A fold is a certain way of arrangement of secondary structure elements in space which is repeated in a
number of proteins.
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al. [60] have found that, for their data set of 153 non-redundant hetero-dimeric com-

plexes, 5.7% of residues within 6.0 Å of each other have strong repulsive energies

and may not be truly interacting. This shows that there can be significant amount

of noise in the labels used for training prediction methods, and that the interactions

between residues should be defined with care, e.g., by considering the type of the

two residues, their interaction energies, possible bond types and so on. Label noise

can also stem from residue contacts due to crystal packing artifacts which are, for

the most part, indistinguishable from true interactions [61, 55]. Noise can also ex-

ist in the three dimensional protein structures and features derived from it. Poor

resolution structures contain significant amount of noise as well.

Amount of available data: Even though PDB has a large number of structures

available, the amount of data usable in the development of an interaction prediction

scheme is, by comparison, very small and it does not cover the universe of quaternary

protein structures very well [62]. The data used in training binding site predictors

needs to be non-redundant so as not to introduce any bias towards certain types of

complexes, i.e., the set of protein complexes used in the training should cover the

diversity of real protein interfaces. Garma et al. [62] have estimated that the total

number of quaternary structure folds in the universe of protein complexes is around

4000 and the current PDB covers only 42% of them. Completing this coverage will

require about a quarter of a century of experimental effort. Methods for interaction

prediction require that both the unbound and bound structures of the proteins be

available for all complexes in the non-redundant data set. This not only limits

the number of available structures but also biases the data towards complexes with
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small binding associated conformational changes. NMR structures can potentially

provide more information. However, the number of good quality, non-redundant

NMR structures of protein complexes in PDB is currently very small [47].

Selection of data sets and evaluation protocol: Different existing approaches cre-

ate data sets with different parameters. For example, the redundancy thresholds,

functional categorization of protein complexes in the data set, methods for defining

interacting residues, etc., are very different for the training and validation data sets

of different methods and this makes a fair comparison between existing methods

or identifying a set of discriminatory features for classification very difficult. For

example, some methods define patches on protein surfaces and the predictions are

generated at the patch level [63] whereas others generate predictions for surface

residues only [64]. Still others consider all (surface or non-surface) residues in the

evaluation [42].

2.1.3. Modeling challenges. One of the most difficult task in computational predic-

tion of binding sites is modeling of the problem itself. Although, all the information required

for a protein to fold and to bind is contained in its sequence, extracting this information

from sequence is not trivial. As a consequence, the accuracy of sequence-only predictors is

lower than techniques that use structural information. Even with structure of the protein

available, no known set of features, template database, energy function, ranking criterion

or sampling technique is known to produce accurate predictions for a wide variety of pro-

tein complexes. Effective, efficient and accurate modeling of the problem is complicated by

molecular motion, conformational change, long-range intra-protein interactions, shape irreg-

ularities and so on. Moreover, most existing methods make very limiting assumptions about
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protein-protein interactions in order to simplify modeling. For example, some structure

based methods model binding sites as circular patches [24] or sequence windows. However,

this is incorrect because binding sites are mostly irregularly shaped and sequence windows

cannot capture long-range interactions. Similarly, most existing methods do not consider

the possibility of the presence of multiple partner-specific interfaces for a protein as they

make partner independent predictions.

Another related issue is that of scalability. More accurate modeling of the problem

usually increases the computational burden of the problem which limits the scalability and

applicability of the method.

2.2. Existing methods

In this section we present a brief literature survey of existing methods for binding site

prediction.

2.2.1. Partner independent predictors. A number of partner-independent meth-

ods have been proposed ranging from machine learning techniques to template or homology

based approaches. A detailed review of these methods is beyond the scope of this dissertation

as the primary focus of this research is partner-specific prediction. The interested reader is

referred to [65, 44, 20, 66] for excellent reviews on the subject. Here, only a brief overview

of these methods is provided.

Some of the currently best performing structure based partner-independent techniques

that generate predictions at the residue level include meta-PPISP [41], PredUS [67] and

PrISEC [68]. meta-PPISP combines the predictions from three predictors: cons-PPISP [69],

Promate [27] and PINUP [32]. cons-PPISP [69] uses an ensemble neural network classifier

with sequence profile and surface accessibility features. Promate [27] uses an empirical
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scoring scheme based on physio-chemical properties, conservation, B-factors and geometrical

features to predict binding sites. PINUP [32] uses an empirical energy function consisting of a

side-chain energy term, a term proportional to solvent accessible area, and a term accounting

for sequence conservation. These three methods have some complementary information in

their predictions which is exploited by meta-PPISP to result in better prediction accuracy

than the individual methods [41]. PredUS [67] is based on the idea that binding sites are

conserved among a set of structurally similar proteins. The degree of structural similarity of

a residue with a set of proteins with known binding sites is computed using local structural

alignment. These similarity scores are then used to calculate a contact frequency map which,

for each residue in the query protein, indicates the number of interface residues from other

proteins that align to the residue of interest. A support vector machine is then trained to

generate predictions with the contact frequency map and surface accessibility as features.

PrISEC [68] combines local structural similarity and similarity between protein surfaces

of a query protein to similar structural elements from other proteins with known binding sites

to generate prediction scores for each residue in the query protein. Jordan et al. [68] compare

PrISEC with meta-PPISP and PredUS. On a data set of 56 unbound protein structures, the

areas under the receiver operating characteristic curves (AUCs) at the protein level for these

three methods are roughly comparable, with PrISEC performing marginally better than the

others, with AUC ≈ 0.75.

2.2.2. Partner specific interface predictors. It is clearly evident from the dis-

cussion in section 2.1 that partner-specific predictors can be expected to be more accurate

than partner-independent ones as the former present a more complete model of the phenom-

enon of protein binding.
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To summarize, partner-specific predictors offer the following advantages over partner-

independent predictors:

• Only partner-specific interface predictors can tell us what residues in one protein

interact with what residues on the other protein.

• Partner-specific predictors can be used to enumerate the distinct binding modes

of a protein in its interactions with other proteins whereas partner-independent

predictors cannot provide such information.

• If two binding partners of a protein use the same binding site on the protein, then

these binding partners cannot bind to the target protein simultaneously. Such in-

formation can only be predicted using a partner-specific predictor [48].

• Partner-independent predictors ignore the fact the binding propensity of a residue in

a protein is also dependent upon the nature and local neighborhood of the residue

to which it binds whereas partner-specific interface predictors can leverage this

information to generate better predictions.

• Partner-specific predictions can be more readily incorporated in docking schemes

and can result in more accurate docking than partner-independent ones.

Based on these potential advantages of partner-specific predictors, this thesis focuses pri-

marily on these methods. Here, we discuss different categories of methods for generating

partner-specific predictions and also describe specific methods within each category (see

Figure 2.1).

Docking: The objective of macromolecular docking is to predict the three dimen-

sional structure of a macromolecular complex given the unbound structures of its

constituent molecules. Docking solves a more general and more complex problem
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than binding site prediction. However, once the predicted structure of a protein

complex is available from docking, the interface can be easily recovered. Almost

all protein-protein docking techniques incorporate two key elements (see Figure

2.1) [70]: a sampling algorithm and a scoring function.

The objective of the sampling algorithm is to explore the conformational spaces

of the unbound molecules. Most docking methods treat the unbound structures

as rigid and sample a large number of their orientations using a relatively simple

energy function to keep the method computationally feasible. This yields a set of

candidate structures, in which the two partners contact each other without major

steric overlaps and possibly possess desirable properties such as some level of shape,

electrostatic, and chemical complementarity. Docking methods achieve such com-

plementarity through FFT methods (e.g., ZDOCK [71], F 3Dock [72] etc.), Monte

Carlo processing (e.g., RosettaDock [73]) or data-driven energy minimization (e.g.,

HADDOCK [74]).

However, the large number (in thousands depending upon granularity of the sam-

pling) of complex structures produced by the sampling techniques described above

generally exhibit limited accuracy, and the sampling needs to be followed by a

scoring step, aimed at identifying near-native conformations of the complex. An ex-

ample of such a scoring scheme is ZRANK [71] which models the electrostatics and

effects of van der Waals forces to re-rank the initial stage predictions, and results in

significantly more accurate predictions than the sampling procedure alone.

Docking methods are hampered by a lack of complete understanding of the forces

involved in complex formation and by the conformational changes associated with
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binding [44]. As a consequence, docking methods do not fare well in cases with large

conformational change. For example, in a data set of 124 rigid and 52 non-rigid

complexes, ZDOCK was able to find near-native structures in its top 10 predictions

for 33 rigid-body complexes but for only two non-rigid complexes [71]. Docking

methods can benefit from binding site predictions, as the correct identification of

the interface can limit the degrees of conformational freedom for sampling. Some

methods employ partner-independent predictors to accomplish this [75]. However,

partner-specific interface predictions can be expected to play a better role [76].

Template based methods: With the growth in the number of protein complexes

in the Protein Data Bank (PDB), both template-based interface predictors and

template-based docking schemes have attracted attention. In these methods, a pro-

tein complex is modeled using sequence or structural similarity to a known template

protein complex. Template based methods can use either homology derived from

sequence or structure or interfacial similarity.

In homology based techniques, the assumption is that complexes formed with similar

proteins have similar interaction modes. A recent sequence based non-parametric

heuristic approach is PIPE-Sites [77]. PIPE-Sites is able to predict binding sites in

proteins in a partner-specific manner from sequence information alone. PIPE-Sites

does not involve any model learning or training and generates its predictions for a

pair of sequence windows from two proteins in a complex by essentially counting

the number of matches a given pair has in a database of known protein-protein

interactions. A homology based strategy that uses protein structures for determining

the three dimensional structure of protein complexes is presented in [78]. In this
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method, the full structural alignment of proteins in a protein complex to a set of

known protein complexes is used to construct a structure of the query complex.

However, interface based methods outperform full structural alignment techniques.

Interface based methods are based on the assumption that complexes with differ-

ent proteins may have similar interface architectures. Thus, similarity to just the

interface of known complexes, without global sequence or structural similarity, can

be used for finding complex interfaces. Interface based methods generally exhibit

better performance than homology based techniques. Examples of such methods

include PRISM [79] and ISEARCH [80].

There are two important questions to ask in the context of template based methods:

(I) How much sequence or structural similarity to template complexes is required

for effective binding site prediction? and, (II) What extent of coverage of the known

protein-protein interaction universe do template based methods currently provide?

Aloy et al. have suggested that proteins that share more than 30-40% sequence

identity generally exhibit similar interaction modes, especially if the proteins can

be determined to belong to the same family. In terms of structural similarity,

Kundrotas et al. [81] have found that complexes whose proteins have a minimum

structural alignment score (measured using TM-align [82]) of more than 0.4, exhibit

similar binding modes6.

It has been estimated that sequence similarity based protein complex prediction

can account for 15-20 % of known protein interactions [83]. For structure based

techniques, Kundrotas et al. [81] have discovered that structurally similar template

6It is interesting to note that complexes with minimum protein sequence identity more than 40% typically
have a minimum structural alignment score of more than 0.8. This clearly indicates that structural similarity
has a more direct relationship to binding than sequence similarity.
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complexes can be found in PDB for almost all complexes of structurally character-

ized proteins. For example, for a data set of 1296 new complexes deposited in PDB

during 2009-2011, structurally similar templates were found for all but seventeen

complexes in PDB released before 2009. However, only 28% of these were accurate

enough to be used for further template based modeling.

A recent comparison between template based and docking methods shows that both

types of methods have comparable performance and correct predictions of the two

methods do not exhibit a large overlap indicating that these techniques are com-

plimentary to each other [84]. One of the issues with template based techniques

is that, at times, a small set of mutations can prevent binding from occurring and

template based techniques generally fail in such cases.

Machine learning approaches: Direct prediction of interfaces using machine learn-

ing techniques is a relatively unexplored research area and the accuracy of existing

methods in this category is low. Unlike template based methods, machine learning

based techniques, depending upon the features used for the prediction, are also ap-

plicable in cases where template similarity of the query proteins to known interfaces

cannot be established. In this work, we focus primarily on machine learning meth-

ods. One of the first such approaches is InSite [85]. InSite models interactions at

the motif or domain level, and predicts pairs of interacting motifs that best explain

a given protein-protein interaction network. As such, it does not use information

about known interaction sites, and is limited by the richness of the motif library and

its coverage across a given protein. Finally, it is more valuable to obtain binding
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site information at the residue level, as it allows for a more detailed understand-

ing of the interaction. Recently, Ahmad and Mizuguchi investigated the impact of

performing partner-specific versus partner-independent binding site prediction [42].

Their analysis of the binding propensities of residue pairs in protein-protein inter-

faces clearly shows that the binding propensity of a residue is strongly dependent

upon its partner in other proteins. On this basis, they hypothesized that consid-

ering residue pairs in interacting proteins for binding site prediction can improve

performance, and found out that this is in fact the case. Their neural network

ensemble predictor (PPiPP) uses position specific scoring matrix and amino acid

composition features. However, the accuracy of PPiPP is low (AUC of 72.9). The

sequence-based nature of their method allows the method to be applied to proteins

for which only the sequence is known but at the same time it is unable to utilize the

wealth of information contained in protein structures. To the best of the knowledge

of this author, no structure-based partner-specific machine learning method exists

for the solution of this problem.

2.3. Desired characteristics of a binding site predictor

In this section, we identify some of the characteristics expected from a ‘good’ interface

prediction method. Please note that these characteristics are not independent of each other.

These requirements will guide our efforts in model development, and can be useful for eval-

uating binding site prediction methods.

Accuracy: The notion of accuracy is important for any prediction scheme. However,

in the context of binding site prediction, this notion is also dependent upon the in-

tended use of the predictions being generated. Binding site predictors are frequently
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used to identify probable binding site regions on proteins prior to experimental stud-

ies (e.g., mutagenesis experiments) in order to lower the amount of search involved

in locating the true binding site. In this context, it is very important that the num-

ber of true positives in the top predictions should be high. For accuracy assessment

and validation purposes, the degree of fulfillment of this requirement can be quanti-

fied by the rank of the first true positive prediction for complexes in the validation

data set which should be low for a good predictor. The general behavior of a bind-

ing site predictor can be quantified using receiver operating characteristics (ROC)

or precision-recall (PR) curves together with the area under these curves (AUC).

However, these accuracy measures do not directly indicate the degree to which a

predicted binding site can be meaningful in a biological or biochemical sense. For

this purpose, it is often useful to analyze the spatial clustering of the top predictions

along with other properties discussed below.

Spatial clustering: Residues forming the binding site in a protein complex are spa-

tially clustered, i.e., they are usually closer to each other than randomly selected

residues on the protein. For example, in the docking benchmark dataset (DBD 4.0)

which consists of 175 non-redundant hetero-dimeric complexes [47], the average dis-

tance between binding residues (residues within 6.0 Å of the other protein) is 11.4

Å whereas the average distance between randomly selected residues is 20.1 Å. Thus,

it is important that the top predictions generated by a binding site predictor be

spatially clustered so as to define a biologically meaningful binding site.

Smoothness: In order to define meaningful binding sites, it is important that the

predicted propensities should not change abruptly across nearby residues.
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Sparsity: For any given protein, the number of binding residues is usually very small

(typically, less than 10%). Thus the predictions should be sparse. This requirement

is more important for interface prediction methods. This can be appreciated by

the fact that in DBD 4.0, the average number of pairs of residues in two proteins

forming a complex is 67,000 whereas the average number of interacting pairs is only

93.

Coverage, Applicability and usability: It is important that the predictor be able

to handle a large variety of protein complexes with different biological functions,

different degrees of conformational change and different degree of similarity to known

protein interactions.
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CHAPTER 3

PAIRpred: Partner-specific prediction of

interacting residues from sequence and structure

In this chapter, we present our novel partner-specific protein-protein interaction site

prediction method called Partner Aware I nteracting Residue Pred ictor (PAIRpred)7. Unlike

most existing machine learning binding site prediction methods, PAIRpred uses information

from both proteins in a complex to predict pairs of interacting residues. PAIRpred captures

sequence and structure information about residue pairs through pairwise kernels that are

used for training a support vector machine classifier. As a result, PAIRpred presents a more

detailed model of protein binding than partner-independent methods (see section 2.2.2 for

more details). PAIRpred offers state of the art accuracy in predicting binding sites at the

protein level as well as inter-protein residue contacts at the complex level. We demonstrate

PAIRpred’s performance on Docking Benchmark 4.0 and recent CAPRI8 targets. We present

a detailed performance analysis outlining the contribution of different sequence and structure

features, together with a comparison to a variety of existing interface prediction techniques.

We have also studied the impact of binding-associated conformational change on prediction

accuracy and found PAIRpred to be more robust to such structural changes than existing

schemes. As an illustration of potential applications of PAIRpred, we conduct a case study

7Our paper describing PAIRpred has been published in the journal Proteins: Structure, Function and
Bioinformatics (2012 impact factor: 3.337) [86]. This work has also been presented at the Seventh In-
ternational Workshop on Machine Learning in Systems Biology (MLSB) and Structural Bioinformatics and
Computational Biophysics (3DSIG), Berlin, 2013 as well as 11th Annual Rocky Mountain Bioinformatics
Conference, Aspen, Colorado, 2013. The code and evaluation data for PAIRpred is available online at:
http://combi.cs.colostate.edu/supplements/pairpred/.
8CAPRI [87] is the acronym for Critical Assessment of PRediction of Interactions. It is a community wide
experiment on the comparative evaluation of protein-protein docking for structure prediction
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in which PAIRpred is used to analyze the nature and specificity of the interface in the

interaction of the human ISG15 protein with the NS1 protein from influenza A virus.

3.1. Data and pre-processing

In the development of PAIRpred, we have used the protein-protein docking benchmark

data set version 3.0 (DBD 3.0) [47]. This data set has also been used in the performance

analysis of PPiPP [42] and allows a direct performance comparison. DBD 3.0 contains 124

non-redundant complexes of pairs of proteins for which both the bound and unbound X-ray

crystallography structures are known. The proteins structures in DBD 3.0 have resolutions

better than 3.25 Å and a minimum sequence length of 30. No two complexes in DBD 3.0

share the same SCOP [88] family-family pair [89] and have sequence identity of more than

30% in both chains. Further testing was performed on version 4.0 of DBD which contains a

total of 176 complexes including those already in DBD 3.0.

3.2. Interacting residue-pair definition

We define two residues belonging to two different proteins in a complex to be interacting

if the distance between any two heavy atoms of those residues in the bound conformations

of their proteins is less than or equal to 6.0 Å. All other residue pairs from the two proteins

on that complex were taken as negative examples. Similar definitions have been used in

previous studies (see [42] and references therein). Defining interacting residues in this way

resulted in a total of about 11,500 positive examples in DBD 3.0, i.e., 93 interacting residue

pairs per complex on average. The average number of residues pairs, in overall, for a complex

is around 67,000.
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Figure 3.1. Residue-level feature extraction in PAIRpred. The feature rep-
resentation for residue a is denoted by xa. Different components of the feature
representation are denoted by the superscript (e.g., xrASAa indicates the rela-
tive accessible surface area for residue a). Each box also indicates the program
used to extract a given set of features.

3.3. Feature extraction

We extracted both sequence and structure features at the residue level from the unbound

structure of each protein. When the three dimensional of proteins forming a complex is

not available, PAIRpred can make predictions based on its sequence alone. We have used

a number of existing programs and methods from the literature to extract features from

protein sequences and structures (see Figure 3.1).

3.3.1. Structure based features. The following features have been computed di-

rectly from the structure.

Relative Accessible Surface Area (xrASAa ): The relative accessible surface area (rASA)

from a given protein structure was computed using STRIDE [90].
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Residue depth (xRDa ): Residue depth is defined as the minimum distance of a residue

from the surface of the protein and has been computed using MSMS [91]. The

residue depth values produced by MSMS were normalized to have the range from 0

to 1. xRDa and xrASAa are combined to form a single surface exposure feature denoted

by xexpa . We found that residue depth carries complimentary information to that in

rASA for residue interaction prediction.

Half Sphere Amino Acid Composition (xHSAACa ): Hamelryck [92] found that the

geometry and physiochemical characteristics of the regions in the direction of the

side chain of a residue (called the ‘up’ direction) and in its opposite direction (called

the ‘down’ direction) can be very different from each another. Based upon this

observation, we computed a feature (called HSAAC) that captures the amino acid

composition in the direction of the side chain of a residue xHSAACu
a and in the

direction opposite to the side chain xHSAACd
a . The amino acid composition in a

direction is defined as the number of times a particular amino acid occurs in that

direction within a minimum atomic distance threshold of 8.0 Å from the residue of

interest. Thus, HSAAC combines surface accessibility and amino acid composition

within the neighborhood of a residue. These amino acid composition vectors in the

two directions are then normalized to have unit norm to get xHSAACu
a and xHSAACd

a

which are then concatenated to get xHSAACa . We utilized Biopython (Cock et al.,

2009) to compute xHSAACa .

Protrusion Index (xCXa ): The protrusion index of a non-hydrogen atom is defined

as the proportion of the volume of a sphere with a radius of 10.0 Å centered at that
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atom that is not filled with atoms [93]. The protrusion index has been calculated

using PSAIA [94].

The protrusion index for single residue is a 6 dimensional vector comprising the

mean, standard deviation, maximum and minimum of the protrusion values of all

atoms in the residue along with the mean and standard deviation of the protrusion

values of only its side chain atoms. Each element of this vector is normalized to

have the range from 0 to 1.

3.3.2. Sequence based features. We ran three iterations of PSI-BLAST [95] against

the non-redundant ‘nr’ database [96] to compute the Position Specific Scoring Matrix (PSSM)

and the Position Specific Frequency Matrix (PSFM) for a given protein. We also experi-

mented with PSSM and PSFM extracted using HHblits [97] against the UniProt20 database

which is a clustered version of the UniProt database with a maximum pairwise sequence

identity of 20%. No major differences in accuracy, in comparison to the profiles from PSI-

BLAST were observed. The following sequence based features are then computed from the

profiles:

Profile Features (xPSSMa , xPSFMa ): In order to extract the profile features for a residue

from the PSSM, we took the PSSM columns within a length 11 window centered at

that residue. This 20×11 matrix is converted to a single 220 dimensional unit vector

denoted by xPSSMa . xPSFMa is constructed in a similar manner from the PSFM.

Predicted Relative Accessible Surface Area (xprASAa ): To determine whether pre-

dicted rASA can be used instead of the true rASA, we used SPINE X [98] to predict

rASA using the PSI-BLAST data. The predicted rASA is denoted by prASA to

emphasize the fact that it has been predicted from sequence.
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Figure 3.2. Overview of PAIRpred. (i) Extract residue-level features from
sequence and unbound structures (see Figure 3.1 for details). (ii) Construct
pairwise kernel from the residue-level kernel Kr(ai, aj). (iii) Use the pairwise
kernel to train the SVM and classify each residue pair in the query proteins.

3.4. Pairwise classification using SVMs

We model the interface prediction problem as a classification problem in which a classifi-

cation example i is a pair of residues from two different proteins in a complex. Each example

i is represented by ((ai, bi), yi), where (ai, bi) is a pair of residues and yi is the associated

label, indicating whether the two residues interact (yi = +1) or not (yi = −1). Figure 3.2

illustrates this concept.

As a classifier, we use a support vector machine (SVM) [99] trained over a set of N

labeled examples. An SVM finds the optimal separating boundary between two classes by

simultaneously maximizing the margin between them and minimizing the cost of misclas-

sification over the training data. For an overview of SVMs in computational biology, the

interested reader is referred to [100]. Due to its large-margin nature, an SVM can offer good

accuracy over previously unseen examples during testing.
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In order to use an example in training or classification, a classifier needs the feature

representation for the pair of residues in that example. However, it is easier and computa-

tionally more efficient to extract features for a single residue in a given protein than for a

pair of residues from two different proteins. Thus, we would like to be able to use the residue

level features directly to generate predictions at the residue pair level. This is where our use

of SVMs for classification offers a significant advantage in comparison to other classifiers.

Unlike other classifiers, such as the neural networks employed in PPiPP, SVMs can operate

without requiring the explicit feature representation of an example by using a kernel function

[100]. A kernel function is, in essence, a dot product that measures the degree of similarity

between two examples. In this work, we employ pairwise kernels of the form K((a, b), (a′, b′))

which can directly score the similarity between examples (a, b) and (a′, b′) by comparing the

feature representations of individual residues in these examples. The pairwise kernel elim-

inates the need of constructing an explicit feature representation of each example because

the scoring function of the SVM can be expressed only in terms of this pairwise kernel as:

fAB((a, b)) =
N∑
i=1

αiyiK((ai, bi), (a, b)). In this scoring function, the values of αi are obtained

through training.

One of the interesting features of using pairwise kernels in the SVM is that these kernels

can themselves be built from kernels over individual residues. Such residue level kernels,

denoted by Kr (a, b), compare the explicit feature representations of residues a and b to score

the degree of similarity between them. The problem of constructing pairwise kernels from

kernels over individual objects has been studied in the machine learning and Bioinformatics

communities [101, 102, 103, 104]. We constructed the pairwise kernel Kpw for our SVM as
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the additive combination of one or more of the following pairwise kernels from the literature:

Ktppk((a, b), (a
′, b′)) = Kr(a, a

′)Kr(b, b
′) +Kr(a, b

′)Kr(b, a
′)

Kmlpk((a, b), (a
′, b′)) = (Kr(a, a

′)−Kr(a, b
′)−Kr(b, a

′) +Kr(b, b
′))2

Ksum((a, b), (a′, b′)) = Kr(a, a
′) +Kr(b, b

′) +Kr(a, b
′) +Kr(b, a

′).

Here, Ktppk is the tensor product pairwise kernel (TPPK) proposed by Ben-Hur and Noble

[101]. TPPK detects high similarity between examples (a, b) and (a′, b′) if a, expressed in

terms of its feature representation, is similar to one of the residues in (a′, b′) and b is also

similar to the other residue in the other example. It can be shown that the feature space of

TPPK consists of products of features of the underlying residue kernel Kr.

Kmlpk((a, b), (a
′, b′)) is the metric learning pairwise kernel (MLPK) [102]. If the feature

representation of a residue a is given by φ(a), then the MLPK kernel can be written as:

Kmlpk((a, b), (a
′, b′)) = ((φ(a)− φ(b))T (φ(a′)− φ(b′)))2.

This shows that the MLPK is a homogeneous polynomial kernel of degree 2 between pairs

after mapping a pair (a, b) to the vector Φmlpk((a, b)) = φ(a)− φ(b). Vert et al. have shown

that MLPK performs slightly better than TPPK for predicting protein-protein interactions

and that their additive combination performs better than either of the kernels [102].

Given the feature space representation φ(a) of a residue a, the direct sum pairwise kernel

can be written as [103, 105]:

Ksum((a, b), (a′, b′)) = (φ(a) + φ(b))T (φ(a′) + φ(b′)).
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This shows that the sum kernel uses the underlying feature map Φsum((a, b)) = φ(a) + φ(b).

We found that the simple kernel Ksum performed better than both TPPK and MLPK for

our problem. However, the additive combination of the three kernels performed better than

any of the individual kernels (see the results section for more details). Finally, each pairwise

kernel Kpw is normalized as K((a, b), (a′, b′)) =
Kpw((a, b), (a′, b′))√

Kpw((a, b), (a, b))Kpw((a′, b′), (a′, b′))
for

use in the SVM.

To produce a pairwise prediction for an example (a, b), PPiPP [42] concatenates the

feature representation of the two residues in the example in both orders
[
φ(a)
φ(b)

]
and

[
φ(b)
φ(a)

]
. In

comparison to PPiPP, our pairwise kernel based approach is computationally more efficient

as it requires no duplication of the data. Moreover, pairwise kernels in our formulation

directly model the inter-dependencies within individual feature components.

The residue kernel Kr used in constructing the pairwise kernel in PAIRpred is itself an

unweighted summation of one or more of the following kernels, which are computed using

the features described in section 3.3:

Kprofile(a, b) = g(xPSSMa , xPSSMb ; γPSSM) + g(xPSFMa , xPSFMb ; γPSFM)

KHSAAC(a, b) = g(xHSAACa , xHSAACb ; γHSAAC)

KprASA(a, b) = g(xprASAa , xprASAb ; γprASA)

Kexp(a, b) = g(xexpa , xexpb ; γexp)

KCX(a, b) = g(xCXa , xCXb ; γCX).

In the above equations, g(a, b; γ) = exp(−γ‖a− b‖2) is the Gaussian kernel. The parameter

γ in the Gaussian kernel controls the decay of the exponential function. If γ is set too
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high or too low, the exponential function can saturate at 0 or 1 which will inhibit effective

learning from the training data. We chose the values of these parameters so that, for the

majority of non-identical input vectors for a kernel, the similarity score does not saturate and

maintains good dynamic range. This heuristic is inspired by the literature about parameter

selection in radial basis function neural networks [106]. Once chosen in this manner, these

parameters were not changed to optimize accuracy. The selected values of these parameters

are as follows: γPSSM = γPSFM = γHSAAC = 0.5, γCX = 1.0 and γexp = γprASA = 3.0. As

discussed in the results section, these values give good performance over test data. Training

and classification has been performed using the SVM implementation in the machine learning

library PyML [107].

3.5. Post-processing

A binding site or interface is a collection of spatially neighboring residues whose bind-

ing propensities are correlated (see section 2.3). Keeping this in mind, we smoothed the

prediction score for a pair of residues by averaging prediction scores within their local neigh-

borhoods through the following post-processing step:

(1) f ′AB((a, b)) =
1

2


∑

b′∈N(b)

fAB((a, b′))

|N(b)|
+

∑
a′∈N(a)

fAB((a′, b))

|N(a)|

 ,

where fAB((a, b)) is the raw PAIRpred discriminant score from the trained SVM and N(r)

is the set of the 10 neighboring residues of residue r on the same protein including r itself.

Thus the post-processed scores is the sum of the averages of the prediction scores of a residue

on one protein with a set of residues on the other protein. As discussed in the results section,

this simple post-processing scheme improves the prediction performance significantly.
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3.6. Performance evaluation

Performance evaluation was carried out in two stages. In the first stage we compared

different kernel designs, and residue-level features using five-fold cross-validation at the com-

plex level. In this cross-validation procedure, examples from all complexes in our data set

were divided into 5 folds such that all examples from a complex are found in exactly one fold.

To reduce computational time during model selection, the 5 fold cross-validation was done

using a class-size balanced sample from DBD 3.0 in which the number of randomly chosen

negative examples for a complex is equal to the number of positive examples in it. For each

fold, the value of the parameter C that controls the cost of misclassification over training

data in the SVM was selected by performing a similar nested 5-fold cross-validation. The

value of C was selected from {0.1, 1.0, 10.0, 100.0}. The classification function values and

the known true labels of the examples were used to compute the Receiver Operating Charac-

teristic (ROC) curve for each complex. The average of the area (expressed as a percentage)

under the ROC curve for all complexes, labeled as AUC, has been used as the performance

statistic for selecting the optimal model.

In the second stage of performance evaluation, we performed a leave-one-complex-out

cross-validation analysis with the optimal kernel design selected in the first stage. In this

cross-validation procedure, a classifier is trained on a balanced set of examples extracted

from all but one of the complexes, and testing is performed on all pairs of residues from the

left-out complex. This evaluation protocol is identical to the one used for PPiPP [42] and

allows a direct and fair comparison between the two methods. The average area (expressed as

percentage) under the ROC curves for all complexes (AUC) is used as a performance metric

as it allows a quantitative comparison with other interface prediction methods. However,
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AUC scores are not easy to interpret in this setting. In cases with highly unbalanced data

with a big difference in the number of positive and negative test examples as we have here,

AUC can give a false impression of accuracy. For these reasons we propose a measure of

accuracy that is specifically designed for this domain. Our measure, which we call RFPP

(rank of the first positive prediction), is defined as follows: RFPP(p) = q, if p % of the

complexes tested have at least one true positive interacting residue pair among the top q

predictions. Thus, an ideal classifier will have RFPP(100) = 1, i.e., in every complex, the

top scoring prediction from the classifier belongs to the interface. In comparison to an ROC

curve, this measure is more informative for the biologist as it tells us directly how often the

top ranking predictions can be expected to correspond to known interactions.

We also evaluate the performance of PAIRpred for binding site prediction at the single

protein level (i.e., binding site prediction) and compare it to existing partner-independent

methods. Pairwise predictions of interacting residues at the complex level (from Equation

(1)) are converted into predictions at the protein level for each protein as follows: fA(aj) =

maxbj∈B f
′
AB((aj, bj)) and fB(bj) = maxaj∈A f

′
AB((aj, bj)). AUC scores for an individual

protein can then be easily computed.

3.7. Results and Discussion

3.7.1. Comparison of residue and pairwise representations. We analyzed and

compared different feature representations and pairwise kernel formulations in order to see

the contribution of different features towards prediction accuracy and the impact of pairwise

kernel design. Figure 3.3 shows the complex-wise averaged ROC curve for different feature

and kernel combinations. In order to compare different feature representations, we chose to

use Kpw = Kmlpk + Ktppk + Ksum as the pairwise kernel. Our first step was to analyze the
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Figure 3.3. Selecting the optimal sequence/structure representation by com-
paring ROC curves for different kernel designs. Shown are the averaged ROC
curves computed using 5-fold cross-validation over complexes in DBD 3.0. The
inset shows the true positive rate (TPR) vs. false positive rate (FPR) for up
to first 10 % false positives. The legend shows the AUC scores for the different
kernels used. (a) Results for different residue kernels Kr using the pairwise
kernel Kpw = Kmlpk +Ktppk +Ksum. The curves illustrate the increase in per-
formance as additional structural information is added to the sequence-based
kernel. Recall that Kprofile is the PSI-BLAST profile kernel; KprASA uses pre-
dicted rASA; Kexp is the residue exposure kernel; KHSAAC is the half-sphere
exposure kernel; KCX uses protrusion-index features. (b) Results for different
pairwise kernels Kpw with residue kernel Kr = Kprofile+Kexp+KHSAAC+KCX .

accuracy when our method is restricted to using sequence-based features only, which include

sequence profile and relative accessible surface area predicted from sequence. As shown in

Figure 3.3, profile features alone give an AUC of 79.4, and adding the predicted rASA (i.e.,

Kr = Kprofile +KprASA) increases the AUC to 80.4. For the profile-based features we found

that the combination of PSSM and PSFM features performed slightly better than either

of the two alone (results not shown). The addition of structure-based features provides a

big boost in performance: the combination of true surface accessibility features (Kexp) with

the profile features (Kprofile) gives an AUC of 86.2 compared to 79.4 for the profile-based

features alone and 80.4 using the combination of profile and predicted rASA features. Such
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an improvement is to be expected because most of the residues involved in the interaction

have high surface accessibility. However, the use of predicted rASA did not result in such

a big increase. This is because the protein-wise averaged correlation between predicted and

true rASA values for binding residues is low (r = 0.56, against r = 0.76 for non-interacting

residues). Thus, the use of a better sequence based predictor of surface accessibility can help

improve the accuracy of the sequence based predictions in future.

Addition of HSAAC and protrusion index based features (KHSAAC +KCX) improves the

accuracy of the method even further (AUC of 87.1). For the rest of the analyses in the paper

we have used Kr = Kprofile +Kexp +KHSAAC +KCX .

The choice of a pairwise kernel has a strong influence on accuracy. Figure 3.3 shows the

ROC curves for different pairwise kernel formulations. Kmlpk, Ktppk, and Ksum produce AUC

scores of 82.0, 86.7, and 86.9 respectively, while adding all three provides an AUC score of

87.1. For the rest of the analyses in the paper we have used Kpw = Kmlpk +Ktppk +Ksum.

In order to test the variability of the results, the cross-validation procedure in model

selection was repeated 5 times with change both in the randomly selected negative examples

and the membership of complexes in different folds. We then evaluated the mean and

standard deviation of different cross-validation runs. The maximum standard deviation in

the AUC scores for any kernel combination was 0.2. This shows that these results are robust

to changes in the training data.

3.7.2. Prediction using residue exposure alone. As discussed above, residue ex-

posure features result in a big improvement in accuracy. To explore the contribution of

the residue exposure features (rASA, reside depth, and mean protrusion), we computed the

sum of the residue exposure of the two residues in each example. Using this combination
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as a ranking criterion we computed the AUC score for each complex. This näıve way of

classification yields some interesting results. The average AUC scores for all complexes from

rASA, reside depth (RD) and the mean protrusion value are 71.9, 69.4 and 71.2 respectively.

These results are only marginally inferior to the leave-one-complex-out cross-validation re-

sults from PPiPP (AUC = 72.9) [42]. Since rASA and RD are both measures of the surface

accessibility of a residue, the AUC values for these features clearly reflect the known fact

that surface residues are more likely to participate in protein-protein interactions. The AUC

score of the protrusion index shows that the residues that interact have few atoms around

them. This includes surface atoms, and especially those atoms on the surface that lie in

cavities or protrude out from their local neighborhood. The protrusion index captures more

local shape information than rASA and the two can be complementary to one another. The

fact that pairwise summation of surface exposure features provides good results explains

why the pairwise sum kernel Ksum was able to perform better than the other two pairwise

kernels.

The same ranking criterion over the relative accessible surface area predicted from se-

quence using SPINE X gives an AUC of only 0.56. This clearly shows that these predictions

need to be more accurate to be effective in finding interfaces in protein complexes.

3.7.3. Results for leave-one-complex-out cross-validation. For comparison

with other methods we used the optimal kernel combination found through kernel evalua-

tion (section 3.7.1) and recomputed its performance using the leave-one-complex-out cross-

validation protocol detailed in Section 3.6. Results of this analysis are reported in Table 3.1.

The AUC scores for interface prediction, averaged across the 123 complexes in DBD 3.0, for

sequence and structure kernels are 80.9 and 87.3, respectively. It is interesting to note that
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these scores from leave-one-complex-out cross-validation over all examples are very close to

those obtained with the balanced sample. Evaluation over all the 176 complexes in DBD 4.0

gives an AUC score of 87.0 with the structure kernel. At the protein level, the AUC scores

of PAIRpred for sequence and structure kernels for DBD 3.0 are 70.8 and 77.0 (with post-

processing), respectively. It can also be noted that post-processing increases the performance

of the method. This is particularly true at the protein level.

3.7.4. Comparison with PPiPP and ZDOCK. PPiPP [42] is a recently proposed

sequence based method for partner-specific predictions that uses an ensemble of neural net-

works trained with a more elaborate version of our profile representation with different

window sizes [42]. Table 3.1 shows the results of leave-one-complex-out cross-validation for

DBD 3.0 using PPiPP. Even with the sequence features alone, PAIRpred gives better AUC

and RFPP scores than PPiPP. As shown in figure 3.4, PAIRpred’s performance at the com-

plex level (i.e., for interface prediction) is superior to PPiPP not only in overall AUC but

also in the number of true positives within the first 10% false positives.

PPiPP offers better accuracy than other published sequence based methods for binding

site prediction such as PSIVER and SPPIDER (results given in [42]). PAIRpred’s perfor-

mance at the protein level (i.e., for binding site prediction) is also superior to PPiPP using

either sequence features alone or in conjunction with protein structure (see Table 3.1 and

Figure 3.4). We also compared PAIRpred with the docking method ZDOCK [71] over the

176 complexes in DBD 4.0. For this purpose, we have used, for each complex, the top 2000

predictions in the 15-degrees sampling data available online for ZDOCK v. 3.02. For each

ZDOCK prediction for a complex, we computed the pairwise minimum inter-atomic distance

between all residues of the two proteins in the predicted complex. The inverse of this distance
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Table 3.1. PAIRpred and PPiPP performance. We compare the perfor-
mance of PAIRpred and PPiPP [42] using Area Under the ROC Curve (AUC)
and the rank of the first positive prediction (RFPP). RFPP(p) indicates that
p percent of the proteins achieve that level of performance. For example, on
DBD 4.0 without post processing, the second PAIRpred prediction is part of
the interface for 10% of the complexes. PAIRpred results are provided for two
residue kernels: the sequence-based kernel, and for the kernel that uses all the
features computed from sequence and structure.

Dataset Method 
RFPP (p) AUC 

10% 25% 50% 75% 90% Complex Protein 

DBD 3.0 
(124 complexes) 

PPiPP 9 19 78 297 760 72.9 66.1 

PAIRPred  

Kr = Kprofile + KprASA No post-processing 2 13 68 257 804 80.9 70.8 

Kr = Kprofile + Kexp + KHSAAC + KCX 
No post-processing 1 5 22 89 282 87.3 73.4 

With post-processing 1 3 16 103 272 88.7 77.0 

DBD 4.0 
(176 complexes) 

Kr = Kprofile + Kexp + KHSAAC + KCX 
No post-processing 2 6 19 75 340 87.0 73.1 

With post-processing 1 3 18 101 282 87.8 75.4 
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Figure 3.4. Comparison between PAIRpred, PPiPP [42] and vanilla SVM
at the complex and protein level predictions on DBD 3.0. PAIRpred-seq refers
to PAIRpred based only on sequence features.

was used as a ranking criterion in the evaluation of the AUC score at the complex level. The

AUC score of a ZDOCK prediction tells us how good that prediction is at identifying the

known interface in the complex and is directly comparable to the AUC scores given earlier for

PAIRpred and PPiPP. For a given complex, we computed the maximum AUC score in the

top N ZDOCK predictions and then averaged these scores across all complexes for a given
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Figure 3.5. The maximum AUC from top N ZDOCK predictions in com-
parison to PAIRpred and PPiPP [42].

value of N to obtain the results shown in Figure 3.5. These results show that PAIRpred is

better than the best of the top 11 ZDOCK predictions. The AUC score of the top prediction

by ZDOCK is roughly comparable to that of PPiPP.

3.7.5. Comparison with partner-independent predictions. In order to test the

hypothesis that a partner-specific predictor can perform better than partner-independent

predictors, we developed an SVM based binding site predictor (referred to as vanilla SVM )

using the same structural features as in PAIRpred and compared its leave-one-protein-out

cross validation performance to the PAIRpred results at the protein level. Figure 3.4 shows

the ROC curve for vanilla SVM which gives an AUC score of 72.6. PAIRpred performs

much better than the vanilla SVM. This clearly shows that partner-specific predictors can

offer superior performance in comparison to partner-independent ones even when the same

residue level features are used. Moreover, PAIRpred’s AUC score of 70.8 with the sequence
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features alone is only marginally inferior to vanilla SVM even though the latter employs

structure based features. As a matter of fact, PAIRpred with sequence features alone gives

better true positive rates than the vanilla SVM consistently for false positive rates less than

0.4.

At the protein level, PAIRpred’s performance using structure based features can be

roughly contrasted to PredUS [67], a recently published structure based binding site pre-

dictor. PredUS performs better than other similar predictors available in the literature and

gives an AUC score of 73.9 over 188 chains in DBD 3.0. It must be noted that a direct com-

parison between the performance of the two methods is not possible because of differences in

their evaluation data sets, interface definitions, and cross-validation protocols. PAIRpred’s

performance with structure features can be expected to be equal or slightly better than that

of PredUS as PAIRpred gives an AUC score of 77.0 over 248 proteins in DBD 3.0.

3.7.6. Spatial proximity of PAIRpred predictions. In order to see whether the

top predictions by PAIRpred are spatially close, we compared pairwise distances between

residues in our top predictions with a random sample of residues. More specifically, we

computed the pairwise distances among the top 20 residue predictions from PAIRpred for

each protein and also between the remaining pairs of residues from each protein. The average

of the pairwise distances in the top predictions is 15.6 Å and 20.1 Å for the remaining pairs.

These distances are significantly different (with a p-value of 4.7× 10−25 using the Wilcoxon

Rank Sum test on all complexes in DBD 4.0). This indicates the top PAIRpred predictions

exhibit spatial clustering.

Furthermore, we found that the difference between the mean pairwise distances across

the top predictions and the remaining residues in a protein is inversely correlated with the
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its AUC (correlation coefficient of -0.49, 2 tailed p-value of 1.1×10−21). Thus, this difference

in distances is a rough indication of the quality of prediction.

3.7.7. Effects of conformational change. Proteins can undergo significant con-

formation change upon binding as buried residues can become exposed and vice versa. In

order to observe the effects of the degree of conformational change on the accuracy of PAIR-

pred, we plotted the AUC of a complex against the root mean square deviation (RMSD)

between the bound and the unbound states over the interface residue for in the complex.

A large RMSD value for a complex corresponds to a large binding-associated conforma-

tion change. Figure 3.6 shows that the accuracy decreases with increase in conformational

change. This effect was also observed for PPiPP. However, PAIRpred performs much better

than PPiPP for complexes with large conformational change. Based on the degree of confor-

mational change, the complexes in the docking benchmark datasets have been divided into

three categories: rigid body, medium difficulty and hard. Figure 3.6 shows the prediction

performance across complexes in these categories. As expected, PAIRpred performs bet-

ter for rigid body complexes in comparison to the other two categories that involve larger

conformational changes. We investigated the effects of conformational change on PAIRpred

performance at the residue level as well. As we had access to both the bound and the un-

bound states of each protein, we were able to calculate the absolute difference in rASA for a

residue between the two states of the protein. A large difference is indicative of a large con-

formational change in the environment around that residue. For a pair of residues we define

the degree of conformational change as the sum of the changes in the individual residues,

and denote it as ∆rASA(a, b). AUC exhibits a high negative correlation (see figure 3.6) with

∆rASA (correlation coefficient of -0.97, p-value of 1.5 × 10−3). AUC vs. change in residue
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Figure 3.6. Effect of conformational change on PAIRpred performance. (a)
AUC vs. RMSD for each complex in DBD 3.0 and the 53 new complexes
in DBD 4.0 using leave-one-complex-out cross-validation. The legend shows
mean AUC and standard deviation (within paranthesis) of complexes in each
category for each data set. (b) Relationship between AUC and the change
in rASA (∆rASA). Residue pairs were binned into groups based on their
∆rASA and the AUC score was computed for all the residues within each bin
using our 5-fold cross-validation scheme on DBD 3.0 complexes.

depth shows a similar trend. This demonstrates the inherent difficulty of predicting residue-

residue interactions in protein complexes that undergo a large conformational change. This

difficulty is exacerbated by the fact that there is only a small amount of training data (24

complexes in DBD 4.0) available for such cases. Furthermore, the standard deviation of

AUC scores for complexes from the hard category in DBD 4.0 shown in figure 3.6 is much

larger in comparison to other categories. This suggests that effective handling of complexes

with large conformational change requires a larger number of training examples with this

property.

3.7.8. Evaluation on CAPRI targets. In order to further analyze the performance

of PAIRpred, we tested it on nine recent targets from the Critical Assessment of Protein

Interactions (CAPRI) experiment [87]. We used all heteromeric protein complexes published

57



Table 3.2. PAIRpred evaluation results on recent heteromeric protein com-
plex targets from CAPRI with both bound and unbound X-ray structures
available. The degree of conformational change for the ligand and receptor
proteins has been measured as the backbone root mean square deviation. The
maximum sequence identity of a protein from the CAPRI set to any protein
in DBD 4.0 has been calculated using local sequence alignment. The AUC
score for each complex and the rank of the first positive prediction (RFPP) is
reported.

Complex ID in 
PDB 

Target ID 
in CAPRI 

L igand 
Backbone 
RMSD (Å) 

Receptor  
Backbone 
RMSD (Å) 

Max. Seq Id. of 
ligand to DBD4 

Max. Seq Id. of 
receptor to DBD4 AUC RFPP 

4G9S T58 0.3 0.7 28 % 27% 89.7 4 

4EEF T56 0.7 0.5 27 % 29 % 76.3 1 
3R2X T50 0.5 0.6 29 % 26 % 90.3 15 
3U43 T47 0.9 1.5 60 % 55 % 88.9 2 
2WPT T41 2.0 0.7 62 % 66 % 85.8 1 
3E8L T40 0.2 0.4 100 % 28 % 92.1 9 
3FM8 T39 0.0 1.6 28 % 25 % 79.6 71 
3BX1 T32 2.0 0.4 30 % 56 % 89.7 10 
2VDU T29 1.1 0.4 28 % 27 % 82.9 302 

 

after 2007 for which both the bound and unbound X-ray crystallography structures are

available. For this task, PAIRpred was trained using DBD 4.0, and results of this analysis

are reported in Table 3.2.

This table shows that PAIRpred is able to predict the interface with good accuracy for

most targets. For seven out of these nine targets, the top 15 PAIRpred predictions contain

at least one true positive. It is interesting to note that even for complexes involving large

conformational changes, such as 3BX1 and 2WPT, the first true positive lies within the top

10 predictions. PAIRpred does not perform well on two targets: 3FM8 and 2VDU. These

targets have proven to be very challenging for docking methods as well: only 1% and 4% of

the models predicted by docking methods in CAPRI have an acceptable complex structure

for 3FM8 and 2VDU, respectively [108].
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3.8. Application to Human ISG15-Influenza A NS1 interaction

Due to its partner-specific nature and state of the art accuracy, PAIRpred can be used

to study the nature and mechanics of an interface beyond what is possible with partner-

independent predictors. In this section, we demonstrate PAIRpred’s capabilities beyond the

simple prediction of an interface by using the interaction between ISG15 protein in human

and mouse and NS1 protein from Influenza A virus as a case study.

The influenza B virus is known to infect only human and non-human primates and the

cause of this specific behavior have been investigated in [109] through a study of the bound

and unbound structures of NS1 protein from the virus and the ISG15 protein in humans and

other species. We have used PAIRpred to study the binding between these two proteins and

compare the findings from this computational analysis to the results published in [109].

We first predicted the interface of the complex from the unbound structures of the two

proteins using both PPiPP and PAIRpred and used the known interface to compare the

performance of the two methods. The unbound PDB structures of NS1 and ISG15 are

available as 1XEQ [110] and 1Z2M [111]. The complex structure (PDB ID: 3SDL) has

two chains each of NS1 and ISG15 [112]. There is no significant conformational change in

NS1 upon binding to ISG15 with only a disorder to order change in a short C-terminal

polypeptide sequence. ISG15 undergoes modest conformational change upon binding NS1

with a backbone RMSD of 1.05 Å. We obtained the predictions from the unbound proteins by

training PAIRpred on DBD 3.0 to allow for a comparison with PPiPP, and used structure-

based features. This complex is not a part of training sets of PAIRpred or PPiPP. The

AUC scores for PPiPP and PAIRpred for this complex are 67.2 and 92.4, respectively. The

first true positive detected by PAIRpred is the top-most prediction, whereas the first true
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positive detected by PPiPP occurs at rank 174. PAIRpred is able to find more than half of

the interacting residue pairs within its top 100 predictions (see Figure 3.7). The predictions

correspond very closely to the interactions discussed in [109]. We also compared the interface

prediction performance of PAIRpred to that of ZDOCK for this complex by using the inverse

of the inter-residue distance from ZDOCK predictions as a ranking criterion as described in

Section 3.7.4. It was found that the AUC score from PAIRpred is better than the best of

the top 13 ZDOCK predictions for this complex.

Next we used, PAIRpred predictions in order to identify the residues that are crucial

for binding. Specifically, we conducted an in silico mutagenesis experiment in which we

changed the NS1: L88 residue involved in our top prediction (ISG15: L10, NS1: L88) to an

alanine. We also recapitulated one mutagenesis experiments reported in (Guan et al., 2011)

which involved changing NS1: F34 (which also interacts with ISG15: L10) to an alanine.

The (ISG15: L10, NS1: F34) interaction is originally ranked 8th in PAIRPRed predictions

for this complex. We obtained the predicted structure after the mutations using I-TASSER

(Roy et al., 2010). In comparison to the wild-type predictions for (ISG15: L10, NS1: L88)

and (ISG15: L10, NS1: F34), we observed a decrease of 25% and 53% in prediction scores

for L88 and F34 mutations in NS1, respectively (see Figure 3.7). The prediction scores for

other interacting residues were essentially unchanged. These results indicate that both these

residues are, as experimentally determined in [109], very important for this interaction.

As stated earlier, NS1 binds specifically to ISG15 from human and non-human primates

and does not bind to mouse ISG15. Guan et al. [109] attribute this binding specificity

to residues 47-52 and 76-80 in the sequence alignment of ISG15s from these three species.

We obtained the unbound structure of mouse ISG15 using I-TASSER. We then compared
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(a)
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Figure 3.7. (a) PAIRpred predictions for human ISG15 and influenza B
NS1 mapped onto the 3D structure of the complex (PDB ID: 3SDL). The red
dotted lines indicate the true positives in the top predictions with the width
of the line proportional to the prediction score. The circled area is expanded
in (b). (b) Results of in silico mutagenesis. The blue residues were changed to
alanines. Notice the change in the prediction score (indicated by the width of
the orange dotted lines) for the mutated residues between the wild-type (left)
and the mutant (right).

the PAIRpred prediction scores for (human ISG15,NS1) complex to those from the (mouse

ISG15, NS1) interaction. This comparison allowed us to identify the ISG15 residues that are

interacting in (human ISG15, NS1) complex but undergo a large decrease in their prediction

scores in the (mouse ISG15, NS1) interaction. These locations (in order of decreasing mag-

nitude of change in predictions scores) are 76, 77, 72, 74 and 49. This strengthens the claim

made in [109].

These analyses clearly demonstrate the usefullness of partner-specific predictions gener-

ated from PAIRpred as the mutagenesis studies explained above cannot be performed with

conventional partner-independent predictors.
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3.9. Using PAIRpred

PAIRpred has been implemented in Python and its architecture allows future extensions

to include additional residue-level features or pairwise kernels. Complete implementation of

PAIRpred, together with the pre-trained classifier, can be downloaded at http://combi.cs.

colostate.edu/supplements/pairpred/. PAIRpred users need to supply the sequences in

FASTA format or, when available, the PDB format structure files as input. PAIRpred then

automatically extracts features from these files and produces predictions using a pre-trained

SVM. Users also have the option of training the classifier on their own data sets. PAIRpred

generates its prediction for a complex as a text file which contains the pairwise interaction

scores for each pair of residues from the two query proteins. This pairwise prediction file

can then be used to generate protein-level binding site predictions through scripts available

as part of the PAIRpred package. PAIRpred implementation also provides PyMOL scripts

for visualizing top PAIRpred predictions both at the complex and protein levels as shown in

Figure 3.7.

3.10. Conclusions

We have presented a new method for predicting the interface of a protein complex called

PAIRpred that offers state-of-the-art accuracy for both interface and binding site prediction.

The proposed scheme is able to make accurate predictions using either sequence information

alone or in conjunction with structure-based features. There are very few machine learning

based methods that perform partner-specific prediction of interactions, and PAIRpred pro-

vides a large improvement over the recently published PPiPP method. We investigated the

merit of sequence and structure-based features and found that using structure provides a big

improvement in performance. Furthermore, the analysis of the accuracy of PAIRpred shows
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much better scaling of performance with respect to the degree of conformational change upon

complex formation in comparison to PPiPP.

Although, PAIRpred offers state of the art prediction accuracy, there is still significant

room for improvement. This is particularly true for protein complexes whose formation

involves large structural conformation changes in its constituent proteins. In the next two

chapters, we describe our experiments with using structural alignments based features and

more sophisticated machine learning schemes in an effort to improve the quality of prediction

even further.
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CHAPTER 4

Structural alignment and template based features

for interface prediction

Structural alignment is a valuable tool in identifying homology between proteins, espe-

cially in cases where such evolutionary relationships cannot be established through sequence

alignment techniques. This is because protein structure is significantly more conserved than

protein sequence. Structural similarities between proteins can be used for prediction of

interfaces because there is significant evidence that binding sites and interfaces are more

conserved than other surface residues. We have developed three different types of features

based on structural alignments of proteins that can be used in PAIRpred. These features

capture structural conservation, local geometric similarity and similarity to a set of tem-

plate complexes. In this chapter, we discuss the construction and performance evaluation of

PAIRpred with these features.

Given the structures of two proteins, the task of a structure alignment algorithm is to

find similarities between the two proteins and produce their pairwise alignment that opti-

mizes a performance metric such as the root mean square deviation (RMSD) for the aligned

structures. Examples of such algorithms [113] include Multiprot [114], TM-align [82], Pro-

BiS [115], etc. We have used ProBiS in this work because, unlike most other commonly

used local structural alignment methods such as Multiprot and TM-align, ProBiS produces

accurate alignments in cases where the protein structures exhibit significant flexibility [113].

An example of a local structure alignment, obtained using ProBiS [116], is shown in Fig-

ure 1.2. ProBiS also produces e-values for each alignment which indicates the probability of
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the alignment to occur by chance. In this work, we consider an alignment to be significant

only if its e-value is less than 0.001. For more details on ProBiS, the interested reader is re-

ferred to Appendix A and [115, 117]. On the basis of such structural alignments, we extract

three different classes of features for inclusion in PAIRpred. These features are described in

detail in the following sections.

4.1. Structural conservation features

Protein structure is more conserved than sequence (see Section 1.2.2). As a consequence,

structural alignments can be more sensitive in finding evolutionary relationships between

proteins in comparison to sequence alignments. Local structure alignment of a given protein

against a non-redundant set of proteins can be used to measure the degree of structural

conservation of different residues on the protein. This set should, ideally, be a uniform sample

set of the universe of proteins so the features are not biased towards any particular type of

proteins. If certain regions on the protein show significant structural conservation against

the non-redundant set, then those regions can be expected to be functionally important and

may participate in binding to other proteins, ligands (small molecules) and ions. Figure

4.1 shows the residue-level structural conservation scores of a protein obtained through its

pairwise local structural alignment against a set of approximately 33,000 non-redundant

proteins in PDB (called NR-PDB). It is interesting to note that interface residues have

significantly higher conservation scores than most non-interface surface residues.

In this work, we have used ProBiS to obtain local structural alignments of a protein

against the NR-PDB. Based on these structural alignments, ProBiS produces a structural

conservation score for all conserved residues in the query protein. Analogous to the position

specific scoring matrix (PSSM) from PSI-BLAST, we constructed the PSSM for a query
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Figure 4.1. Interface residues in protein 1A2K (chain A) shown in stick rep-
resentation with the color indicating the degree of structural conservation of
the protein (blue to red) obtained using ProBiS through pairwise local struc-
tural alignments of 1A2K with about 33,000 non-redundant protein structures
from PDB. Please note that the majority of interacting residues have high
structural conservation scores.

protein based on its structural alignments against proteins in the NR-PDB. The PSSM score

for residue at position i and amino acid a indicates the log-odds of the residue at i being

structurally aligned to a in the NR-PDB relative to background frequency of occurrence of a

in the NR-PDB. The PSSM features x
PSSMprobis
a and the ProBiS structural alignment scores

x
sasprobis
a can be directly incorporated in PAIRpred through the following residue level kernel

(see Section 3.4 for details):

KNRPDB(a, b) = g(x
PSSMprobis
a ,x

PSSMprobis

b ; γPSSMprobis
) + g(x

sasprobis
a , x

sasprobis
b ; γsasprobis)

4.2. Local geometric similarity

We have developed a novel way of measuring local geometric similarity between residues

belonging to two proteins using their structural alignments against the NR-PDB. We use

the alignments of a protein A to obtain a local geometry similarity (LGS) descriptor xlgsa

for each residue a in the protein. The length of the vector xlgsa is equal to the number of
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Figure 4.2. Computation of template interface and contact potentials based
on the structural alignment kernel Ksa. Proteins in the query complex and a
single template from the template set are shown in (I). (II) shows the struc-
tural alignment of A and B to the individual template components and the
computation of the template interface potential using a single template. (III)
shows the computation of the template contact potential.

proteins in the NR-PDB and xlgsa (P ) is equal to 1 only if residue a is part of a statistically

significant ProBiS alignment of A to P .

These descriptors can then be used to measure the geometric similarity between residues

in two proteins because if two residues align to the same set of proteins in the NR-PDB, then

it is highly likely that the two have significant local geometric similarity. The residue level

kernel for local geometric similarity is a simple dot product kernel over the local geometric

descriptors of the two residues: Klgs(a, b) = (xlgsa )Txlgsb .

4.3. Template based features

As discussed in Section 2.2.2, template based features can be quite helpful in the pre-

diction of protein interfaces. In this section, we propose a scheme for incorporating such

features in PAIRpred. Specifically, we propose two different representations of template

based features: template interface potential (TIP) and template contact potential (TCP). In
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this section, we describe both of these features in detail. The computation of these features

assumes the availability of a non-redundant set T of template complexes.

In this work, we have used the template set from PRISM [118] with 1036 non-redundant

templates. Each complex ti in the template set is composed of two chains tLi and tRi . The set

of pairs of interacting residues for ti is denoted by I(ti) = {(l, r)|l ∈ tLi ∧ r ∈ tRi ∧ d(l, r) <

6.0 Å}. Here, d(l, r) is the minimum inter-atomic distance between residues l and r.

4.3.1. Template interface potential. Template Interface Potential (TIP) is a sin-

gle residue level feature that measures the degree of similarity between a residue in a protein

and all the interface residues in the template set. Mathematically, the general formula for

TIP of a residue a can be written as:

(2) xTIPa =
∑
ti∈T

∑
(l,r)∈I(ti)

Kr(a, l) +Kr(a, r).

In this formulation, Kr(a, ·) is any similarity function that measures the similarity between

a and a residue in a template interface. It can, possibly, be any of the sequence or structure

based residue kernels discussed in section 3.4. However, we propose to use ProBiS alignments

between a protein in a query complex against proteins in the set of templates to construct

a similarity function Ksa. Ksa(a, l) = 1 only when ProBiS finds a significant alignment of a

to l and zero otherwise. In essence, TIP represents a single residue level feature which can

be easily incorporated into PAIRpred through a residue level kernel KTIP (a, b). This idea is

illustrated in Figure 4.2.

4.3.2. Template contact potential. Template Contact Potential is a single residue

pair level feature that measures the degree of similarity between a pair of residues from a
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query complex and all interacting residues in complexes from the template set. Mathemati-

cally, the general formula for TCP of a pair of residues a and b can be written as:

(3) xTCP(a,b) =
∑
ti∈T

∑
(l,r)∈I(ti)

Kr(a, l)Kr(b, r) +Kr(b, l)Kr(a, r).

The definition of Kr is identical to the one used in TIP. If we use the ProBiS based similarity

function Ksa(a, l) defined in the previous section in the above equation, then xTCP(a,b) will be

non-zero only if the residues a and b from the query complex simultaneously align to a

pair of interface residues in at least one template in the template set. See Figure 4.2 for

an illustration of this concept. It is important to note that TCP is defined at the level of

pairs of residues and is, thus, a genuine pairwise complex-level feature which can produce

a pairwise kernel directly: KTCP ((a, b), (a′, b′)) = g
(
xTCP(a,b) , x

TCP
(a′,b′); γTCP

)
. This Gaussian

kernel can then simply be added to the pairwise kernels (such as TPPK) computed using

residue level kernels. This illustrates the flexibility of kernel methods as they allow easy and

computationally efficient integration of different types of features.

4.4. Results

In this section, we analyze the effect of including the structural alignment and template

based features described above on PAIRpred’s performance. This evaluation has been car-

ried out using leave one complex out cross-validation over the docking benchmark data set

version 4.0 (DBD 4.0). However there are a few important differences between the evaluation

protocol used here and the one described in section 3.7.3. Some proteins in DBD 4.0 contain

multiple chains. A chain can potentially occur multiple times in a protein in DBD 4.0. and

each ‘copy’ of the chain can use different interfaces in its interaction with another chain in
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the formation of a complex. If we consider all unique pairwise interactions between chains

in the 176 complexes, the resulting number of heterodimers in DBD 4.0 is 196. For this

evaluation we performed cross-validation in a leave-one-complex-out fashion over these 196

hetero-dimers. The set of interacting residues for each dimer was developed by taking the

symmetry and stoichiometry of the complex into account, e.g., if two ‘copies’ of a protein

chain interact with another protein then the set of interacting residues is the union of the

set of interacting residues of each protein chain. Since interacting residues in larger com-

plex assemblies can be predicted by running PAIRpred over all interacting pairs of chains

in the complex, the results presented here give a more realistic assessment of PAIRpred’s

performance in general. To establish a baseline, we first re-ran the best performing version

of PAIRpred from Chapter 3 with this new protocol.

The results for different PAIRpred variants are given in Table 4.1. Note that with the

changes in the evaluation data set describe above, the AUC scores go down slightly but the

RFPP values show some improvement. The addition of structural conservation profiles and

local geometric similarity features improve the RFPP scores further. The median RFPP

with the addition of these features is 16 in comparison to 20 without them. The AUC scores

remain roughly the same. This shows that these features do make the predictions more

accurate.

The use of template based features warrants a more careful performance evaluation. This

is because some of the proteins in DBD 4.0 exhibit significant sequence identity to the pro-

teins in the template set. Calculating template based features for such proteins without

considering their sequence identity to proteins in the template set will lead to overly op-

timistic prediction accuracies as in [64]. As a consequence, we computed template based
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Table 4.1. PAIRpred evaluation results with structure alignment and tem-
plate based features. In this table, Kr = Kprofile + KHSAAC + Kexp + KCX

is used as the residue kernel to establish baseline results. This is the same
residue kernel used for evaluation in Section 3.7.3. The evaluation has been
performed using the new protocol described in the text with 196 hetero-dimers.
KNRPDB, KLGS, KTIP and KTCP are the kernels based on structural conserva-
tion (Section 4.1), local geometric similarity (Section 4.2), template interface
potential (Section 4.3.1) and template contact potential (Section 4.3.2) fea-
tures, respectively. SID is the sequence identity threshold in the evaluation
of template based features. AUC is the area under the ROC curve calculated
for both protein and complex level predictions. RFPP is the rank of the first
positive prediction at different percentiles.

Kernel 
RFPP AUC 

10 25 50 75 90 Complex Protein 

With original cross validation protocol over 176 complexes in DBD 4.0 

   2 6 19 75 340 87.0 73.1 

With new cross validation protocol over 196 heterodimers in DBD 4.0 

   1 4 20 78 230 85.0 71.4 

With structural conservation 

          1 3 15 74 276 85.0 71.0 

With local geometric similarity 

               1 3 16 74 296 85.1 71.3 

With template features                      and      added to pairwise kernel 

SID = 100 % 1 1 2 27 161 89.3 79.8 

SID = 95 % 1 2 16 77 270 86.0 72.9 

SID = 90 % 1 2 16 78 277 86.0 72.9 

SID = 80 % 1 2 16 78 245 86.0 72.9 

SID = 70 % 1 2 16 66 251 86.0 72.9 

 

features with different sequence identity thresholds (SID). Specifically, during the computa-

tion of template based features for a particular protein or complex in DBD 4.0, only those

templates are considered that do not have more than a certain sequence identity to the

query protein. The sequence identities were obtained using local sequence alignments with

the Smith-Waterman algorithm [119]. This allows us to understand the generalization char-

acteristics of PAIRpred with template based features. As shown in Table 4.1, if no sequence

identity thresholding is performed (SID=100%), we get excellent performance. However, this
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improvement is because of complete sequence identity between the query proteins and the

proteins in the template set. As SID is decreased, the number of proteins and complexes for

which TIP and TCP are non-zero reduces significantly and the performance remains roughly

the same. It is important to note that even at low sequence identities, the template based

features seem to improve the AUC scores at both the protein and complex levels. However,

the overall effect of including template based features and structural alignment features is

not very pronounced. This may be because such features do not add more information for

the prediction above and beyond the features already included in PAIRpred.
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CHAPTER 5

Transductive and Semi-supervised Machine Learning

Models for Interface Prediction

All existing machine learning methods for finding binding regions or interfaces in proteins,

including PAIRpred, use supervised classification, i.e., they use a training set of known

interacting and non-interacting examples from a number of complexes to induce a decision

function to classify all query test cases. Each query example is treated independently of the

other, even if they come from the same complex. As a consequence, such approaches ignore

the fact that the classification examples from a query or test complex have inter-dependencies

between them. For example, spatial clustering and sparsity requirements discussed in section

2.3 impose certain constraints on how examples in the query complex can be labeled.

In this chapter, we present machine learning techniques we have developed to model

different types of inter-dependencies between examples from the query complex such as

spatial clustering and sparsity. We incorporate these characteristics of the prediction problem

by considering transductive [120] and semi-supervised classification schemes [121]. These

schemes use unlabeled or partially labeled data from the test complex to develop a test-set

specific classifier.

We have developed two separate classes of machine learning models for this purpose.

Firstly, we experimented with ‘wrapper’ style algorithms that essentially use heuristics to

manipulate the feature or kernel data and labels of the query examples to model dependencies

between them while utilizing a classical support vector machine for classification. Our second

approach models the inter-dependencies between examples from a query complex directly as
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an optimization problem. The objective of optimization is to find a discriminant function

which does not violate the inter-dependencies between examples of the query complex while

maintaining good generalization characteristics and low empirical error on the training data.

We formulate and propose a stochastic sub-gradient solver for this optimization problem.

This chapter describes both the schemes in detail.

5.1. Transductive learning for interface prediction

PAIRpred, discussed in Chapter 3, is an inductive supervised classification scheme: it

uses fully labeled training data to build a discriminant function which is then used for pro-

ducing predictions for any example from any complex. The goal of training in such classifiers

is to minimize classification error on the whole distribution of classification examples. How-

ever, using the same decision function for finding interfaces in a variety of query complexes

can be one of the accuracy limiting factors in our problem domain because all types of com-

plexes may not be represented or sampled equally well in the training data. This can be

especially true for complexes involving large conformational changes for which the amount

of available training data is small. A possible solution to this problem is to use transduc-

tive learning [120]. In transductive learning the learner receives as input both the training

and test sets with the objective of learning a model to produce predictions for the test set

with as few errors as possible on that test set. Transductive learning uses information from

the unlabeled examples in the test set to improve the accuracy of prediction. Transductive

learning and classification have been used in a variety of problem domains such as text clas-

sification [122, 123], image processing [124, 125], natural language processing [126, 127], etc.

In Bioinformatics, transductive learning has been used to identify promoter regions [128],

hot spot residues in protein complexes [129], protein classification based on phylogenetic
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profiles [130], protein function prediction [131, 132] and literature mining [133]. To the

knowledge of this author, no existing binding site or interface predictor is transductive in

nature.

In this work, we have used the transductive support vector machines (TSVM) proposed by

Joachims [134]. TSVM is a wrapper style algorithm and is well suited to our problem because

it allows us to use pairwise and residue level kernels from PAIRpred directly. Moreover, this

formulation will serve as a basis for modeling sparsity and geometric labeling constraints. In

what follows, we describe the formulation of the interaction prediction problem as a TSVM.

TSVM requires a training set S = {(x1, y1) , (x2, y2) , . . . , (xN , yN)} of N labeled training

examples from different complexes and an unlabeled test set {x?1,x?2, . . . ,x?M} of M test

examples from the query complex for which the labels y?1, y
?
2, . . . , y

?
M are to be computed. We

use S? = {(x?1, y?1) , (x?2, y
?
2) , . . . , (x?M , y

?
M)} to indicate the set of test examples together with

their labels which are to be obtained through transductive learning. The TSVM optimization

problem can now be written as [134]:

min
w,b,y?,ξ≥0,ξ?≥0

1

2
wTw + C

N∑
i=1

ξi + C?

M∑
j=1

ξ?j(4)

Subject to:

yi
(
wTxi + b

)
≥ 1− ξi, ∀ (xi, yi) ∈ S(5)

y?j
(
wTx?j + b

)
≥ 1− ξ?j , ∀

(
x?j , y

?
j

)
∈ S?(6)

M∑
j=1

y?j = 2M+ −M.,(7)

where the parameters C and C? control the impact of misclassification on examples from

the training and test sets, respectively and the last constraint (Equation (7)) ensures that
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M+ test examples are classified as positive. This constraint can thus be used to control

the number of positive examples in any complex. The solution to the above optimization

problem produces not only the optimal weight vector w and bias b but also the labels

y? = [y?1, y
?
2, . . . , y

?
M ]T for the test set while minimizing the error on both training and test

sets.

The TSVM optimization problem described above is combinatorial in nature owing to

the binary labels for the test examples, and as a consequence, convex optimization methods

used in classical SVM cannot be employed here. For a small number of test examples, this

problem can be solved by trying all possible assignments of the test set labels or using branch

and bound style algorithms. However, this approach is impractical for the data sets in our

problem domain. A number of algorithms have been developed to solve this problem. An

excellent review and comparison of different algorithms has been presented by Chapelle et

al. [135]. On the basis of the empirical results provided in [135], no single technique could be

identified as consistently superior to others in terms of generalization performance. There-

fore, we choose to use the algorithm originally presented by Joachims [134], and improved

in terms of computational speed by Sindhwani and Keerthi [136]. This choice is based on

the fact that this algorithm uses an out-of-the-box SVM formulation and offers comparable

performance to more sophisticated algorithms in the comparison reported by Chapelle et

al. [135]. Moreover, for the data sets considered in [135], this algorithm consistently per-

formed better than a regular inductive SVM. This algorithm is based on a local combinatorial

search guided by a label switching procedure which ensures that the value of the objective

function does not increase and that convergence to a local minimum is reached in a finite

number of steps. Algorithm box 1 gives a simplified pseudo-code of this algorithm.
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Algorithm 1 Transductive SVM

1: Train a regular SVM over data in S to obtain the discriminant function.
2: Use the discriminant function to label examples in S?.
3: Set labels of top scoring M+ test examples to +1 and of the remaining examples to −1.
4: Set C = 10−5

5: while C < C? do
6: Solve the following quadratic optimization problem with fixed labels for the test set

and C? replaced by C:

min
w,b,ξ≥0,ξ?≥0

1

2
wTw + C

N∑
i=1

ξi + C
M∑
j=1

ξ?j

Subject to:

yi
(
wTxi + b

)
≥ 1− ξi, ∀ (xi, yi) ∈ S

y?j
(
wTx?j + b

)
≥ 1− ξ?j , ∀

(
x?j , y

?
j

)
∈ S?.

7: Obtain the discriminant function scores vi and corresponding labels for all examples
in the test set S?.

8: Identify test examples with currently positive labels. Sort corresponding discriminant
function scores in ascending order. Let the sorted list of examples be L+.

9: Identify test examples with currently negative labels. Sort corresponding discriminant
function scores in descending order. Let the sorted list of examples be L−.

10: Set U = {}.
11: Set V = {}
12: for all i in L+ do
13: for all j in L− do
14: if l (+1, vi) + l (−1, vj) > l (−1, vi) + l (+1, vj) and j 6∈ U then
15: U = U ∪ {j} .
16: V = V ∪ {(i, j)} .
17: Break.
18: end if
19: end for
20: end for
21: if V is not empty then
22: Switch the labels of the pairs in V .
23: end if
24: C = 2× C.
25: end while
26: Return the current labels and discriminant function scores for the test set.

The algorithm, essentially, switches the labels of two examples from the query complex

if doing so reduces the loss associated with margin violation. In this algorithm, we have

used the hinge loss function l (y, v) = max {0, 1− yv}. This switching doesn’t violate the

77



−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 5.1. Illustration of the impact of transductive learning using the
TSVM algorithm. Shown is a two-class toy data set from which only a few
examples are used as labeled examples (marked with stars) to train a regular
support vector machine and a TSVM. The decision function boundaries of the
two classifiers are shown (red: regular SVM, green: transductive SVM).

sparsity constraint at any time. This algorithm gradually increases the value of C in its

iterations which controls the non-convex part of the objective function. This gradual increase,

effectively, increases the impact of the test data on the decision function, and can protect

the algorithm from converging to a sub-optimal local minimum. Figure 5.1 shows how

this algorithm performs in practice on a toy data set. Note that the decision boundary in

Figure 5.1 passes through a low-density region of the feature space. This behavior of the

TSVM has been pointed out in the literature (see [135] and references therein).

5.2. Incorporating geometric labeling constraints

The three dimensional structures of proteins that form a complex impose constraints on

which residues from two proteins can possibly interact with each other. For example, two
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distant residues in a protein are not likely to simultaneously interact with another protein

and even less likely to interact with the same residue on the other protein because this

requires unrealistically large conformational changes on binding (see Figure 5.2a).

In this section we present an extension of the transductive SVM which explicitly mod-

els the geometric labeling constraint described earlier. This constraint can be written as:

whenever pairs of examples i and j in S? are ‘far away’ from each other, at most one of the

labels y?i and y?j can be +1 . Please note that a single example i is, in itself, composed of two

residues in the two proteins forming the query complex. In order to formalize this constraint,

we introduce a set DAB =
{

(i, j) | d (i, j) > θABd
}

to store the indices of pairs of examples

that are ‘far away’ from each other in a query complex composed of proteins A and B (see

Figure 5.2b). In the figure, θABd is a tunable distance threshold and d (i, j) is the normalized

distance between the two examples i and j computed as d(i, j) = max(
dAij
DA

,
dBij
DB

), where dAij

(or dBij) is the distance between the residues in protein A (or B) that occur in examples i

and j (see Figure 5.2a). DA (DB) is the median value of all pairwise inter-residue distances

in protein A (B). These values allow us to normalize the distances within each protein

with respect to the overall size of the protein. The geometric labeling constraint defined

above, can now be mathematically expressed as: min
(
y?i , y

?
j

)
= −1,∀ (i, j) ∈ DAB. Fig-

ure 5.2b shows the histogram and cumulative distribution of normalized distances between

interacting residues for all proteins in DBD 4.0. These plots show that the probability of

two residues whose distance from each other is greater than twice the median distance to

be involved simultaneously in an interaction with another protein is very small. This clearly

shows that this condition can be used as a constraint to supplement transductive learning.
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Figure 5.2. (a) Defining labeling constraints for a query complex. (b) His-
togram and cumulative distribution of normalized distances between interact-
ing residues on a protein for all proteins in DBD 4.0.

The complete learning problem is expressed as:

min
w,b,y?,ξ≥0,ξ?≥0

1

2
wTw + C

N∑
i=1

ξi + C?

M∑
j=1

ξ?j(8)

Subject to:

yi
(
wTxi + b

)
≥ 1− ξi, ∀ (xi, yi) ∈ S(9)

y?j
(
wTx?j + b

)
≥ 1− ξ?j , ∀

(
x?j , y

?
j

)
∈ S?(10)

min
(
y?i , y

?
j

)
= −1, ∀ (i, j) ∈ DAB(11)

M∑
j=1

y?j = 2M+ −M.(12)

Addition of these distance constraints during learning entails some changes to the heuristic

algorithm given in the previous section for TSVM. The pseudo-code of the modified algorithm

is given in Algorithm box 2. Pairwise constraints have been utilized in other domains such

as video object classification [137], clustering [138], etc.
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Algorithm 2 Transductive SVM with geometric constraints

1: Train a regular SVM over data in S to obtain the discriminant function.
2: Use the discriminant function to label examples in S?.
3: Set labels of top scoring M+ test examples to +1 and of the remaining examples to −1.
4: Set C = 10−5

5: while C < C? do
6: Solve the following quadratic optimization problem with fixed labels for the test set

and C? replaced by C:

min
w,b,ξ≥0,ξ?≥0

1

2
wTw + C

N∑
i=1

ξi + C
M∑
j=1

ξ?j

Subject to:

yi
(
wTxi + b

)
≥ 1− ξi, ∀ (xi, yi) ∈ S

y?j
(
wTx?j + b

)
≥ 1− ξ?j , ∀

(
x?j , y

?
j

)
∈ S?.

7: Obtain the discriminant function scores vi and corresponding labels for all examples
in the test set i = 1, . . . , | S? |.

8: Identify test examples with currently positive labels. Sort corresponding discriminant
function scores in ascending order. Let the sorted list of examples be L+.

9: Set S = {}
10: for all pairs of positive examples (i, j) from L+ (with i 6= j) that violate the geometric

constraint. do
11: if vi < vj then
12: yi = −1.
13: else
14: yj = −1.
15: end if
16: Change the label of the currently highest scoring negatively labeled example to +1.
17: end for
18: C = 2× C.
19: end while
20: Return the current labels and discriminant function scores for the test set.

5.3. A stochastic sub-gradient optimization model for interface prediction

The transductive learning algorithm given in section 5.2 does not model the geometric

labeling constraints directly in the objective function. The problem of semi-supervised classi-

fication with pairwise labeling constraints over unlabeled data has been a subject of interest

for the machine learning community. A number of existing methods model this problem

indirectly as a metric learning problem [139, 140, 141, 142, 143], while others propose a more
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direct solution [137, 144, 145]. The pairwise constrained SVM presented by Nguyen and

Caruana [145] is most relevant to our application domain. Their formulation assumes that

a number of labeling constraints are available, which dictate whether two examples have the

same label or not. In the context of our problem, the labeling constraints (see Equation (11))

are different from the ones in [145]. We propose a mathematical formulation inspired from

the pairwise constrained SVM which directly minimizes an objective function including the

pairwise constraints of Equation (11). Such an approach can be advantageous to the one pre-

sented in section 5.2 because direct learning ensures that the geometric labeling constraints

from the test set are not violated. We also use the same formulation to enforce sparsity at

the protein level, i.e., to ensure that the number of interactions for each residue on a protein

is small.

In order to facilitate the development and explanation of this formulation, we choose to

use a joint feature representation of classification examples which includes the feature vector

of an example together with its label as φ (x?, y?) =

[
x?1 (y? = +1) x?1 (y? = −1)

]T
. In

this representation, 1 (·) = 1 whenever the argument is true and 0 otherwise. The objective

of this formulation is to learn the weight vector w which can be used in the discriminant

function f (x) = wTφ (x,+1)−wTφ (x,−1) to generate the label for an example x. Given

a labeled training data set S and the test set S? for which only labeling constraints DAB are

known (see section 5.2 for definitions), the learning problem considers the following factors:

Minimization of empirical loss: Like a classical SVM, our formulation also in-

cludes a term aimed at minimization of empirical loss over training examples from S.

This is achieved by adding the term,
∑N

i=1 lS (w; (xi, yi)) to the objective function.

In this term, lS (w; (xi, yi)) is the hinge loss function given by: lS (w; (xi, yi)) =
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max {0, 1− zi} with zi = wTφ (xi, yi) − wTφ (xi,−yi). The loss function scores

can be weighted differently for different examples in order to control effects of class

imbalance. The minimization of this term leads to the satisfaction of the constraints:

wTφ (xi, yi) ≥ 1 +wTφ (xi,−yi) for all training examples in S. This ensures that

the examples in the training data are labeled correctly.

Margin maximization: A large margin between positive and negative examples en-

sures better generalization. As in a classical SVM, margin maximization is achieved

in our formulation by minimizing the norm of the weight vector w. Mathematically,

the complete learning problem is represented as a minimization in which the objec-

tive function contains the term λ
2
wTw for margin maximization. The parameter λ

controls the extent of this regularization.

Satisfaction of geometric constraints: The geometric labeling constraints are mod-

eled in our formulation by the addition of the term ν
∑

(i,j)∈DAB lS?

(
w;
(
x?i ,x

?
j

))
in

the objective function. Here, the loss function is given by: lS?

(
w;
(
x?i ,x

?
j

))
=

max
{

0, 1− z(i,j)
}

in which z(i,j) = max(y?i ,y?j )∈V
(
wTφ (x?i , y

?
i ) +wTφ

(
x?j , y

?
j

))
−(

wTφ (x?i , 1) +wTφ
(
x?j , 1

))
. The set V = {(+1,−1) , (−1,+1) , (−1,−1)} con-

tains all possible pairs of labels for examples in DAB. The minimization of this

term implies that for (i, j) ∈ DAB, both i and j cannot be labeled as positive simul-

taneously and can only take a value from the set V . The parameter ν controls the

relative importance of this term.

Sparsity at the protein level: To ensure that the number of interacting residues in

each protein is kept small, two separate terms, one for each protein in the query com-

plex, are added to the objective function. For protein A, this is achieved by addition
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of the term µ
|A|
∑

a∈A lA (w; a) to the objective function. In this term, the loss func-

tion is given by: lA (w; a) = max {0, za − c} with za =
1

| EA (a) |
∑

i∈EA(a) f (x?i ),

and EA (a) is the set of all test examples in S? that contain the residue a from pro-

tein A. The minimization of this term leads to:
1

| EA (a) |
∑

i∈EA(a) f (x?i ) ≤ c. This

is a relaxed version of the exact sparsity constraint:
1

| EA (a) |
∑

i∈EA(a)

y?i + 1

2
≤ c

which allows each residue in A to interact with at most c residues in B. Analogous

to c, the parameter c in our formulation acts as an effective control for the propor-

tion of interacting residues in A. The parameter µ controls the contribution of this

term in the optimization.

Based on the discussion above, the complete learning problem can be expressed as the

following unconstrained optimization problem:

min
w

λ

2
wTw+

1

N

N∑
i=1

lS (w; (xi, yi)) +
ν

| DAB |
∑

(i,j)∈DAB

lS?

(
w;
(
x?i ,x

?
j

))
+

µ

| A |
∑
a∈A

lA (w; a) +
µ

| B |
∑
b∈B

lB (w; b) .

It is important to note that the last three terms in the formulation have the tendency to

make the discriminant function scores of all examples from the test complex non-positive.

To counter this, we also add a global sparsity constraint:
1

| S? |
∑

i∈S? f (x?i ) = p+. This

constraint is a relaxed form of the constraint in TSVM (Equation (7)). Note that if we

make the mean of the feature representation of examples in the test complex equal to

zero (i.e.,
1

| S? |
∑

i∈S? φ (x?i ) = 0), then this constraint can be satisfied outside of the

optimization procedure by including a bias term ρ = p+ in the objective function as:

f (x) = wTφ (x,+1) −wTφ (x,−1) + ρ. A similar procedure for enforcing class balancing
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constraints in TSVM learning is described in [146, 135]. This ‘centering’ can be implemented

directly in kernels as well [147].

Now, we make some general observations on the formulation given above:

(1) If ν and µ are zero and λ =
1

CN
, the formulation reverts to a classical SVM with

C as its cost of margin violation.

(2) The above function is strongly convex9 with respect to w.

(3) The problem is not continuously differentiable because of the presence of the hinge

loss functions.

Due to the discontinuous nature of the objective function, we cannot use a gradient

descent algorithm to solve this problem. Similar to the work by Nguyen et al. [145] and

Shalev-Shwartz [148], we also propose a customized stochastic sub-gradient10 optimization

(SSO) based algorithm for the solution to this problem, which is presented in Appendix B.

Figure 5.3 shows the results of this algorithm on a two-class toy data set. In this example,

the algorithm is provided with only three labeled examples (represented by squares) and a

set of pairwise constraints of the form min
(
y?i , y

?
j

)
= −1. The examples involved in forming

the pairwise constraints are shown as triangles. The sparsity constraints are not used for

this example (i.e., µ = 0). Notice that the SSO-SVM with pairwise constraints is able to

construct, near perfectly, the classification boundary (red). In comparison, the boundary

9A function f(x) is called strongly convex if for all (x, y) in its domain, any 0 ≤ t ≤ 1 and any m > 0:

f (tx+ (1− t)x) ≤ tf(x) + (1 − t)f(y) − 1

2
mt(1 − t)‖x− y‖22. Optimization of strongly convex functions

using gradient descent and stochastic gradient descent is much faster than for convex functions that are not
strongly convex or non-convex functions.
10A vector ∇ ∈ Rn is called the sub-gradient of f : Rn → R at x ∈ dom (f) if ∀z ∈ dom (f), f (z) ≥
f (x) + ∇T (z − x), i.e., the affine function (of z) f (x) + ∇T (z − x) is a global under-estimator of f . For
example, the sub-gradient of l (w,x) = max

{
0, 1−wTx

}
with respect to w at w is −x if wTx < 1 and

0 otherwise. A function has a set of sub-gradients at a given x, each element of which satisfies the above
definition. x∗ is a minimizer of a convex function f if and only if the sub-gradient set of f at x∗ is non-empty
and 0 is a sub-gradient of f at x∗, i.e., from the definition of the sub-gradient, f (z) ≥ f (x∗).
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Figure 5.3. Impact of pairwise constraints on learning using the stochastic
sub-gradient approach.

formed by the SSO-SVM without pairwise constraints (i.e., with ν = 0) is based only on the

three training examples and is far from optimal. This clearly shows the correctness of the

algorithm and the impact of including pairwise constraints in classification.

5.4. Results

In this section, we present results of our analysis with the new machine learning tech-

niques proposed in this chapter. We use leave-one-complex out cross validation over a set of

70 hetero-dimers selected from the docking benchmark version 4.0 (DBD 4.0). The conditions

used for selection of complexes in this subset are:

(1) The number of examples in each complex should be less than 50,000 to limit memory

usage. This is required because our implementation of the machine learning models

proposed in this section needs the kernel matrices of the training and testing data

to fit in memory simultaneously.

86



(2) The complexes must be hetero-dimeric only because complexes with more units can

potentially violate the assumptions behind the pairwise constraints in the proposed

models.

The chosen subset of 70 heterodimers is large and diverse enough for a valid performance

comparison. However, we first compared the performance of the stochastic sub-gradient

optimization (SSO) based SVM (with ν = 0 and µ = 0) to that of the sequential minimal

optimization [149] (SMO) based SVM from PyML [150] used in the original PAIRpred on

the complete data set of 196 complexes. Table 5.1 presents the leave-one-complex-out cross-

validation results for this analysis. Here, we used Kr = Kprofile + Kexp + KHSAAC + KCX

as the residue kernel. The value of λ in the SSO based SVM was chosen to correspond to

C = 10 in the SMO based SVM. Note that both the SVMs give very similar results with the

SMO based SVM performing slightly better. However, if the data is centered so that the

average of each feature in all training examples is zero, the SSO based SVM gives marginally

better RFPP scores. Similar improvements through centering have also been observed for

other data sets in [148]. Moreover, the SSO based SVM is, on average, 75% faster than the

SMO based SVM. The SSO-SVM (with ν = 0 and µ = 0) can generate predictions for about

50,000 examples in a complex in under 10 minutes using a single processor.

On the reduced data set of 70 complexes, the transductive SVM implementation (algo-

rithm 1) offers better RFPP scores than the original SMO based SVM on the same data set

with comparable AUC scores. This shows that transductive SVM offers a small improve-

ment in prediction accuracy. This is especially true for non-rigid complexes in DBD 4.0, i.e.,

complexes whose constituent proteins undergo a moderate to large conformational change

on complex formation (see Table 5.2). For this analysis, C? was set to 1.0. However, the

87



Table 5.1. PAIRpred evaluation results with the proposed machine learning
models on the complete data set from DBD 4.0 consisting of 196 complexes and
the reduced data set of 70 complexes. SMO SVM is the Sequential minimal
optimization based SVM used in PAIRpred. SSO SVM is the stochastic sub-
gradient optimization based SVM presented earlier. RFPP is the rank of the
first positive prediction and AUC is the area under the ROC curve.

Data Classifier 
RFPP (%) AUC 

10 25 50 75 90 Complex Protein 

DBD 
4.0 

(196) 

SMO SVM 1 4 20 78 230 85.0 71.4 

SSO SVM 1 5 22 98 319 83.8 70.8 

SSO SVM with centering 1 3 19 83 319 83.3 70.6 

DBD 
4.0 
(70) 

SMO SVM 1 2 7 33 154 84.2 71.9 

SMO based TSVM 1 1 5 25 95 84.1 71.7 

SMO TSVM with pairwise constraints 1 1 7 40 100 84.1 71.7 

SSO SVM with centering 1 2 6 28 100 82.2 70.7 

SSO SVM centering & pairwise constraints 1 1 6 32 175 80.3 70.9 

SSO centering, pairwise & sparsity constraints 1 3 11 40 139 81.8 70.5 

Table 5.2. PAIRpred evaluation results with the proposed machine learning
models on 22 non-rigid complexes in the set of 70 complexes from DBD 4.0
used in Table 5.1.

 
Classifier 

RFPP (%) AUC 

10 25 50 75 90 Complex Protein 

SMO SVM 1 3 5 34 192 81.2 69.0 

SMO based TSVM 1 1 4 28 203 81.2 69.0 

SSO SVM with centering 1 2 6 20 223 79.0 67.7 

SSO SVM with centering & pairwise constraints 1 1 5 19 110 77.8 68.9 

transductive SVM is very time consuming to operate. The addition of pairwise constraints

does not seem to improve classification performance with the SMO SVM.

The SSO based SVM with ν = 0 and µ = 0 with centering gives marginally better RFPP

scores on the reduced data set containing 70 hetero-dimers as well. However, its AUC scores
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are lower than the SMO based SVM. Table 5.1 shows that the addition of pairwise constraints

to the SSO SVM does not improve the average performance as well. For this analysis, we

used a set of 30,000 randomly generated pairwise constraints for each complex with ν set to

0.0111. One of the possible reasons for this might be that our classification problem suffers

from huge class-imbalance. Pairwise constraints are expected to improve performance when

a significant number of constraints have at least one positive example in them. In our case,

the number of such constraints is very small because of the class-imbalance. We do observe a

minor improvement in RFPP scores and protein level AUC scores with the SSO based SVM

with pairwise constraints for non-rigid complexes (see Table 5.2).

We tested the SSO SVM with pairwise constraints with the addition of sparsity con-

straints for a number of combinations of values of µ, ν, c and ρ. However, the addition of

these constraints always resulted in a decrease of performance in comparison to the baseline.

Table 5.1 shows a representative result with ρ = −0.3, c = −0.3, ν = 0.001 and µ = 0.001.

Due to the computational complexity of the approach, it is not possible to exhaustively or

systematically search for the set of possible parameter values which might improve accuracy

relative to the baseline.

11Other values of ν generated similar result as well (not shown).
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CHAPTER 6

Multiple instance learning of Calmodulin binding

sites

In this chapter we focus on prediction of binding sites in proteins that interact with a

specific protein: Calmodulin. Focusing on a specific protein allows us to model the spe-

cial properties of Calmodulin binding sites. Calmodulin (CaM) is an intracellular calcium

sensor protein that interacts with a large number of proteins to regulate their biological

functions and exhibits sequence conservation across all eukaryotes [151]. Calcium plays a

very important role in many cellular functions ranging from fertilization and cellular division

to neuronal spiking [152]. Due to the importance of calcium signaling in cells, identifying

proteins that bind CaM and determining the location of the CaM binding site in them can

help in gaining a better understanding of cellular function in general and the role of calcium

in different cellular processes in particular.

We present a highly accurate large margin approach that can identify the location of a

CaM binding site in a protein solely on the basis of its amino acid sequence, helping avoid

the significant effort of performing such experiments in the lab [152]. We propose a novel

algorithm (MI-1 SVM)12 for binding site prediction and evaluate its performance on a set

of 210 CaM-binding proteins extracted from the Calmodulin Target Database [154]. The

sites on these proteins that are involved in their interaction with CaM have been annotated

through a variety of experimental techniques. However, these annotations are not precise

and usually span an area much larger than the true binding site. Thus, not all residues in

12Our paper describing MI-1 SVM has been published in a special issue of Bioinformatics (2012 impact
factor: 5.323) for the European conference on computational biology (ECCB), 2012 [153]. MI-1 SVM is
available online at: http://combi.cs.colostate.edu/supplements/mi1/.
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an annotated binding site interact with CaM. Our prediction scheme directly models the

problem of binding site prediction as a large-margin classification problem, and is able to

take into account the imprecision in binding site annotations in the training data through

multiple instance learning (MIL). Please note that MI-1 SVM, although partner-specific in

nature, is very different from PAIRpred in its construction. This is because, MI-1 SVM is

geared towards making accurate predictions on proteins that bind Calmodulin using sequence

alone. Moreover, the construction of MI-1 SVM has been adapted to handle imprecision in

training data annotation.

CaM binding sites are known to be contiguous in sequence, often occurring through an

amphiphilic alpha helix [155]. This makes CaM binding site prediction amenable to sliding-

window classification approaches [156, 157]. The method by Radivojac et al. [157] uses a

hierarchical neural network classifier trained on the basis of amino acid properties averaged

over a fixed-size window. Hamilton et al. [156] showed that a simple sliding window SVM

trained on average amino acid composition achieves similar performance.

Our novel formulation is based on the framework of multiple instance learning (MIL) [158].

In MIL positive examples come in bags. For a positive bag, it is assumed that at least one

of the examples is indeed a positive example. Negative examples are all negative. MIL has

been applied in a variety of other problem domains such as object tracking [159], protein

identification [160], and prediction of protein-ligand binding affinities [161]. We use MIL for

binding site prediction by forming a positive bag out of fixed-size sequence windows that

overlap the annotated binding site. This allows us to model the uncertainty in the location

of the true binding sites explained earlier. Another advantage of using multiple instance
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learning is that it allows us to construct sequence representations that are position depen-

dent, i.e., features that capture both the type of an amino acid and its location in a sequence

window simultaneously. This permits learning of motifs that are characteristic of the binding

site.

Our results show that the proposed MI-1 SVM has higher accuracy than classical multiple

instance SVM (mi-SVM) and is also faster to train. MI-1 also performs better than a

standard SVM, thereby improving on existing work of Radivojac et al. [157] and Hamilton

et al. [156]. We also compare the merits of several ways of representing binding sites, and

demonstrate the ability of our method to learn motifs that are associated with CaM binding.

Finally, we show how the resulting binding site predictor can be used as the basis for a

classifier that predicts CaM binding proteins, with improved accuracy over earlier work.

6.1. Data Sets and Pre-processing

The data set for CaM binding site prediction and its pre-processing follows the steps given

in [157]. A set of 210 proteins was obtained from the Calmodulin Target Database [154].

Each of these proteins bind CaM, and one or more binding sites within each protein are

annotated. A non-redundant subset of 153 proteins containing 185 binding sites was then

chosen such that no two proteins have more than 40% sequence identity and no two binding

sites are more than 50% identical.

Sequence windows of length 21, the average length of CaM binding sites, were extracted

from the protein sequences to create positive and negative examples. Negative examples

were created by sliding a length 21 window in 10 amino acid increments such that no part

of the window overlaps an annotated binding site. Positive examples, on the other hand,

were created by sliding a length 21 window over an annotated binding site in increments of
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1 amino acid. Thus, the number of positive examples from an annotated binding site equals

the number of amino acids in the binding site.

For CaM binding prediction, we used a data set of 241 proteins experimentally deter-

mined to bind CaM using a protein array screen that tested around a thousand proteins

in Arabidopsis thaliana [162]. The remaining 27,138 proteins in the Arabidopsis thaliana

proteome were used as negative examples (non-binders).

6.2. Classification schemes

Our labeled dataset consists of N labeled examples (xi, yi), where xi is the sequence of a

window centered at residue i in a protein, and yi ∈ {+1,−1} is its associated label indicating

whether the central residue of xi lies in an annotated binding site or not. We denote the

feature representation of xi by φ (xi). We used three different classification schemes to

predict whether a given residue on a CaM binding protein is involved in binding or not.

6.2.1. Vanilla SVM. First, we experimented with a conventional SVM (referred to as

vanilla SVM) [99] given below.

min
w,ξ≥0

1

2
wTw + C

N∑
i=1

ξi

such that ∀i :

yi
(
wTφ (xi) + ρ

)
≥ 1− ξi.

(13)

This is the classifier used in [156]. We used the vanilla SVM to establish the baseline results

for different features.

6.2.2. Classical multiple instance learning SVM (mi-SVM). Since not all residues

in an annotated binding site may be participating in the interaction with CaM, therefore,
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we formulate this problem as a multiple instance learning problem. In this formulation, the

positive examples from each binding site are grouped into a single bag. We denote the set

of positive examples for a given annotated binding site b as P (b) and the set of negative

examples from the protein to which the binding site b belongs as N (b). One possible solu-

tion to this problem has been proposed by Andrews et al. as the mi-SVM formulation given

below [163].

min
y∈{−1,+1}N

(
min
w,ρ,ξ≥0

1

2
wTw +

C

N

N∑
i=1

ξi

)

Subject to:

yi
(
wTφ (xi) + ρ

)
≥ 1− ξi, ∀i∑

i∈P (b)

yi + 1

2
≥ 1,∀b

yi = −1,∀i ∈ N (b),∀b.

(14)

In this formulation, the objective is to find the optimal labeling of the examples that

comprise the positive bags such that at least one example in each positive bag is labeled

as positive. This is mathematically represented by the constraint
∑

i∈P (b)

yi + 1

2
≥ 1 in the

above formulation. The other constraints ensure correct labeling of the given training exam-

ples and that all negative examples are labeled as negative examples. In case of the binding

site prediction problem, this means that a trained mi-SVM will choose at least one positive

window from the set of positive windows in a binding site. The mi-SVM formulation is a

combinatorial optimization problem. We use the heuristic algorithm proposed by Andrews

et al. [163] to solve this optimization problem. The algorithm initially assigns the label of a
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bag to all examples in it, i.e. all examples in positive bags are assigned a label of +1 whereas

all negative examples are assigned −1. It uses these assigned labels to solve a regular SVM

learning problem. Labels for all examples in positive bags are then imputed based upon

the sign of their discriminant function value. If no example in a positive bag is assigned a

positive label (i.e., the constraint
∑

i∈P (b)

yi + 1

2
≥ 1 is violated), the algorithm picks the

example in the bag having the largest discriminant function value and sets its label to +1.

The algorithm then alternates between label imputation and SVM training until the labels

stop changing. This simple algorithm has shown good performance in comparison to more

complicated ones [163].

6.2.3. Novel multiple instance learning formulation (MI-1 SVM). Accurate

prediction of the location of a binding site in a protein requires a less stringent condition

than the one used in mi-SVM: at least one window in the true binding site needs to score

higher than the negative windows from the same protein (see Figure 6.1). This allows us to

significantly reduce the complexity of the learning problem in comparison to mi-SVM. The

mi-SVM and vanilla SVM formulations try to classify windows as binding or non-binding

without modeling the concept that these windows in fact lie within a protein. Our proposed

MI-1 SVM formulation, on the other hand, operates at the protein level. The large-margin

formulation of this learning problem, can be expressed as follows:

min
w,ξ≥0

1

2
wTw +

C

M

∑
b

ξb

such that ∀b :

maxi∈P (b)

(
wTφ (xi)

)
≥ wTφ (xj) + 1− ξb,∀j ∈ N (b).

(15)
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Binding Site  Windows 𝑦𝑖 = +1  

Non Binding Site Windows 𝑦𝑖 = −1  

Annotated binding site 

Protein 

Discriminant Score for different windows 𝑓 𝑥𝑖  = 𝒘𝑇𝜙 𝑥𝑖   

Figure 6.1. The CaM binding site prediction problem. The annotated bind-
ing site is shown as a box, and is represented by a bag composed of the windows
indicated in red above the binding site. The rest of the windows that do not
overlap the binding site are negative examples (shown in blue below the pro-
tein). The bottom panel illustrates the desired characteristics of the classifier’s
discriminant function. The dots indicate the score of different examples (posi-
tive indicated by solid red circles and negative shown as hollowed blue circles).
The score from the trained discriminant function for one window in a binding
site should be higher than the scores generated for non-binding site windows
within that protein.

Here M is the total number of binding sites in the training data. For a given binding site,

this formulation tries to maximize the difference between the discriminant function values of

the maximum scoring window within the binding site and the non-binding windows in the

rest of the protein containing the binding site. MI-1 SVM formulation of the problem offers

a number of advantages over vanilla SVM and mi-SVM. MI-1 does not require a bias term

since it simply compares the discriminant function scores of the binding and non-binding

windows in its constraints. Also, the number of slack variables (ξb) in MI-1 SVM is equal

to the number of binding sites and not the number of training examples, as in the vanilla

SVM and the mi-SVM formulations. As a consequence, the number of variables involved in
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the optimization in MI-1 SVM is much smaller than that in mi-SVM and this leads to faster

training. Using the same ξb for a single binding site effectively takes the maximum of the

scores over all non-binding site windows of the protein to which the binding-site b belongs.

Another important feature of MI-1 SVM is that, like ranking-SVM [164], MI-1 SVM also

explicitly maximizes the area under the Receiver Operating Characteristics (ROC) curve.

Similar to mi-SVM which performs optimization over the labels of examples in positive

bags, MI-1 SVM is also a combinatorial optimization problem because of the maximum

operation in its constraints. We have used the heuristic algorithm given below to obtain a

solution to this problem. The algorithm can be stopped when the representative examples

of all binding sites stop changing, or on the basis of a user-defined maximum number of

iterations. In all our experiments, the algorithm converged in 10 iterations or less. A trained

MI-1 SVM can be used to produce discriminant function scores for any given residue in a

protein.

Algorithm 3 MI-1 SVM

1: Initialization: With each binding site b, associate a representative example xb, with
feature representation φ

(
xb
)

which is initialized to the mean of the examples in P
(
xb
)
:

φ
(
xb
)

=
1

| P (xb) |
∑

i∈P(xb)

φ
(
xb
)
,∀b

2: repeat
3: Solve the following quadratic programming optimization problem

min
w,ξ≥0

1

2
wTw +

C

M

∑
b

ξb

Subject to ∀b :

maxi∈P (b)

(
wTφ

(
xb
))
≥ wTφ (xj) + 1− ξb,∀j ∈ N (b).

4: Update (∀b): φ
(
xb
)

= φ (xi), such that i = argmaxj∈P (b)w
Tφ (xj).

5: until convergence conditions are met.
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The quadratic programming problem in the MI-1 algorithm can be solved in the primal

or in the dual. The primal formulation of the problem is more efficient than the dual when

the dimensionality of the feature vector is smaller than the number of training examples.

The dual formulation of the quadratic programming problem (based upon the Lagrangian

of the primal objective function) is given by:

min
α

1

2

∑
b,j∈N(b)

∑
c,i∈N(c)

αci
(
∆c
i
T∆b

j

)
αbj −

∑
b,j∈N(b)

αbj


such that ∀b :

αbj ≥ 0, j ∈ N (b)

∑
b,j∈N(b)

αbj ≤
C

M
.

(16)

Here αbj is the Lagrange variable corresponding to the primal constraintwTφ
(
xb
)
≥ wTφ (xj)+

1 − ξb and ∆b
j = φ

(
xb
)
− φ (xj). The dual formulation reveals some interesting aspects of

the MI-1 SVM. It shows that Lagrange variables α only exist for negative examples, and

that the sum of all α for negative examples from a single protein is constrained to be less

than or equal to
C

M
. This differs from a conventional SVM formulation which requires that

each of the α, on its own, should be less than or equal to
C

M
and the sum of products of α

from all training examples with their corresponding labels should be zero. Thus, the MI-1

SVM formulation is less constrained than a conventional SVM formulation and this can,

potentially, lead to achieving a better solution.
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6.3. CaM Binding Prediction

In this work, we compare the following two strategies for predicting whether a protein

binds Calmodulin or not.

6.3.1. Discriminant Function Scoring. The maximum discriminant function score

across all windows in a protein can be used as the CaM binding propensity of that pro-

tein. This approach was used in [156] to predict CaM binding of proteins in the Arabidopsis

thaliana proteome. In their method, the scores were generated using a standard SVM clas-

sifier trained for binding site prediction. In this paper, we use the scores from MI-1 SVM

instead, i.e., the maximum value of the discriminant function score from a trained MI-1 SVM

across all windows in a protein is taken as the propensity with which that protein is expected

to bind CaM.

6.3.2. Cascaded Classification. We implemented a two stage cascaded classification

approach for CaM binding prediction. In the first stage the window in a given protein with

the highest MI-1 SVM discriminant function score is chosen as the most likely binding site

window for that protein. This is done for all proteins in the training set. In the second stage,

a standard SVM is trained to discriminate between the most likely binding site windows in

positive examples (known CaM binding proteins) and negative examples (non CaM-binding

proteins). Once the second stage SVM has been trained, the binding propensity of a test

protein can be estimated by first finding its most likely binding site window using MI-1 SVM,

and then evaluating the discriminant function value of the second stage SVM for the chosen

window. A Gaussian kernel was used in the second stage SVM as it performed significantly

better than a linear kernel. However, the use of non-linear kernels in MI-1 SVM did not

seem to improve performance.
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6.4. Feature representations

The performance of the learning methods described above for binding site prediction was

analyzed using the following sequence based feature representations.

p-spectrum: The p-spectrum of a string over an alphabet Σ is a vector φ (x), each

of whose components φv (x) is the number of occurrences of each length-p substring

v in the string x. For protein sequences, Σ is the set of the 20 amino acids. The

p-spectrum kernel between two strings is given by the Euclidean dot product of

their p-spectra [165].

Position dependent p-spectrum: For a given string x, the position dependent p-

spectrum φ (x) is represented by a vector of indicator variables φv,k (x) each showing

whether the string x contains the length-p substring v at position k in the string x

or not. The position dependent p-spectrum kernel KPD (x, z) = φ (x)Tφ (z) is the

number of common substrings occurring at the same locations in the two strings x

and z. The position dependent kernel takes the relative position of an amino acid

in a window into account whereas the p-spectrum kernel does not.

Position dependent gappy triplet: This feature representation quantifies the oc-

currences of motifs of the form a ×m b ×n c, where a, b, c are amino acids and ×m

indicates m don’t-care positions. For a given string x, the feature vector φm,n (x) of

the position dependent gappy triplet comprises of variables φm,na,b,c,k (x) which indicate

whether the motif a×m b×n c starts at position k in the string or not. The kernel

Km,n (x, z) = φm,n (x)Tφm,n (z) between two strings tells us the number of locations

in the two strings that have the same motif starting at them. We have used multiple

position dependent gappy triplet kernels as KPDGT (x, z) =
∑4

m=0

∑4
n=0K

m,n (x, z).
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This kernel allows us to extract meaningful information about motifs for CaM bind-

ing sites and is only used for binding site prediction for this purpose.

We normalize any kernel using the cosine kernel Kcos (x, z) =
K (x, z)√

K (x, x)K (z, z)
which

corresponds to normalized each feature vector φ (x) to have unit norm.

6.5. Performance Evaluation

We use Leave-One-Protein-Out (LOPO) cross validation in order to analyze the per-

formance of the techniques described above for binding site prediction. In LOPO cross

validation, all examples (positive or negative) from a single protein are held-out while the

classifier is trained on the remaining proteins. The classifier is then evaluated over the ex-

amples from the held out protein. We evaluate the following performance metrics and use

their average across all proteins to make comparisons between methods and kernels:

Protein level area under the ROC curve (AUC): The area (expressed as per-

centage) under the Receiver Operating Characteristic (ROC) curve (the plot of true

positive rate versus false positive rate) obtained for windows in a given protein.

Protein level Area under ROC 10% Curve (AUC0.1): The area (expressed as

percentage) under the ROC curve based on up to the first 10% false positives in a

protein.

False Hit Ratio (FH-measure): The percentage of non-binding site windows (out

of the total number of non-binding site windows) that have a score higher than

the maximum scoring window in the known binding site. This measure tells us

how many non-binding site windows are expected with a score higher than the true

binding site window.
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True Hit Probability (TH-measure): For a given protein, a true hit is defined to

occur when the residue at the center of the highest scoring window for that protein

lies within a binding site. The average number of true hits across all proteins

(called the TH-measure) represents the probability of the maximum scoring window

predicted by a classifier to lie within a true binding site.

In the context of this problem, the AUC is a measure of how good a particular method is

in ranking binding site windows above non binding sites. AUC0.1 gives us a sense of how

good are the top scoring windows produced by a classifier. The FH measure represents the

chances of a non-binding site window to be ranked higher than a true binding site window.

The TH-measure tells us about the chances of the highest scoring window predicted by a

classifier to belong to a true binding site. Both the TH and the FH measures provide very

meaningful information about the accuracy of the method to a biologist who intends to use

the proposed prediction scheme to verify potential binding site locations experimentally.

We use AUC as the performance metric for CaM binding prediction. AUC can be di-

rectly computed from the estimated CaM binding propensities when using the Discriminant

function scoring approach. With the Cascaded classification approach, AUC is obtained

from 5-fold stratified cross-validation with nested grid search for model selection. In cross-

validation, it was ascertained that two proteins with more than 40% sequence similarity are

in the same fold (evaluated using BLASTCLUST from the NCBI BLAST package [166]).

Moreover, the data for CaM binding prediction in A.thaliana did not include any proteins

which were part of the MI-1 training set.
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6.6. Model Selection

In order to perform model selection (the choice of the cost parameter C) for the vanilla

and MI-1 SVM formulations for binding site prediction, we have used nested 5-fold cross

validation within each iteration of the LOPO cross validation process. The TH-measure

obtained from the 5-fold cross validation is then used to choose the value of C for that

iteration of LOPO cross validation. The values of C that were used in the nested cross

validation are {0.01, 0.1, 1.0, 10, 100}.

As mi-SVM takes a long time to train, nested cross validation could not be performed.

Instead we evaluated the LOPO cross validation performance (TH-measure) of mi-SVM with

different values of C in {0.01, 0.1, 1.0, 10, 100} and the best results with the optimal value

of C = 10 are reported. It should be noted that this method for selection of C for mi-SVM

can potentially lead to over optimistic performance estimates. This is not an issue, since our

claim is that the proposed approach performs better.

The window size was chosen as 21 as it is the average number of amino acids in known

CaM binding sites in our dataset.

In the case of CaM binding prediction in proteins from Arabidopsis thaliana using cas-

caded classification, we performed a nested (5-fold) grid search within each cross validation

fold for selecting the parameter values of the second-stage SVM. In the grid search, opti-

mal values of C in the SVM and γ of the Gaussian kernel K (x1, x2) = exp (−γ|x1 − x2|2)

were chosen from {0.1, 1, 10, 100} and {0.005, 0.02, 0.5, 2.0} respectively. The data for CaM

binding prediction in A. thaliana did not include any proteins which were part of the MI-1

training set.
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6.7. Results

Table 6.1 presents the leave-one-protein-out cross validation results for the three SVM

formulations for the 1-spectrum, position dependent 1-spectrum and the combination of the

two feature representations for predicting CaM binding sites. We observe that both MIL

formulations (mi-SVM and MI-1 SVM) perform better than the vanilla SVM. This shows

the value of expressing binding site prediction as a multiple instance learning problem. This

is particularly evident with the use of position dependent feature representations, as they

are more sensitive to changes in relative position of an amino acid in a window within the

binding site than position independent feature representations. It can also be noted that the

accuracy of MI-1 SVM is noticeably better than mi-SVM. We believe that this improvement

stems from the fact that the proposed scheme implements a more realistic model of the

binding site prediction problem. The improvement resulting from switching to a position

dependent feature representation is also larger for MI-1 SVM than that observed in the case

of mi-SVM. The higher AUC0.1 scores indicate the improved sensitivity and specificity of MI-

1 SVM which is also reflected in the 8% improvement in the TH-measures and the decrease

in the FH-measure.

The vanilla SVM approach is the same as the method in [156], which they showed works

comparably as the neural network approach of [157]. Therefore we conclude that the pro-

posed scheme performs better than previously reported approaches.

We also compare the performance of these approaches with a naive local alignment based

method for finding CaM binding sites. In this method, local alignment between a held out

protein and the binding sites of the remaining proteins is performed and if the best scoring

alignment overlaps (by at least ten residues) with the known binding site in the held out
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protein, it is considered to be a true hit. This approach gives a TH% of 39.5%. This shows

that the machine learning approaches presented in this paper use more than mere sequence

identity to make better predictions.

We have also performed an analysis of the stability of the results for the MI-1 and the

Vanilla SVMs by averaging performance statistics of 12 runs of 5-fold cross validation. This

analysis was not performed for the mi-1 SVM owing to its large time requirements. The

5-fold cross validation results for both the methods are very similar to the LOPO cross

validation results. The maximum standard deviation in a particular performance metric

across different feature representations obtained from the 5-fold cross validation is given in

Table 6.1. This statistic gives an idea of the variability of the results with respect to changes

in the data.

Figure 6.2 shows the output of the MI-1 SVM for a single protein for the position depen-

dent and position independent versions of the 1-spectrum feature representation. It should

be noted that out of the two binding sites in the protein, only one is predicted correctly

Table 6.1. Results across different methods and feature representations (ker-
nels). Here, Max. Std. indicates the maximum standard deviation of different
performance metrics for different methods obtained through 5-fold leave pro-
tein out cross validation. These values could not be obtained for mi-SVM
because of its long training times.
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versus false positive rate) obtained for windows in a given
protein.

(b) Protein level area under ROC 10% curve (AUC0.1): The area
(expressed as percentage) under the ROC curve based on up
to the first 10% false positives in a protein.

(c) False-Hit ratio (FH-measure): The percentage of non-binding
site windows (out of the total number of non-binding site
windows) that have a score higher than the maximum scoring
window in the known binding site. This measure tells us how
many non-binding site windows are expected with a score
higher than the true binding site window.

(d) True-Hit probability (TH-measure): For a given protein, a true
hit is defined to occur when the residue at the center of the
highest scoring window for that protein lies within a binding
site. The average number of true hits across all proteins (called
the TH-measure) represents the probability of the maximum
scoring window predicted by a classifier to lie within a true
binding site.

The AUC is a measure of how good a particular method is in
ranking binding site windows above non-binding sites. AUC0.1
gives us a sense of how good are the top scoring windows produced
by a classifier. The FH measure represents the chances of a non-
binding site window to be ranked higher than a true binding
site window. The TH-measure tells us about the chances of the
highest scoring window predicted by a classifier to belong to a true
binding site. Both the TH and the FH measures provide meaningful
information about the accuracy of the method to a biologist who
intends to use the proposed prediction scheme to verify potential
binding site locations experimentally.

We use AUC as the performance metric for CaM binding
prediction. AUC can be directly computed from the estimated
CaM binding propensities when using the Discriminant function
scoring approach. With the Cascaded classification approach, AUC
is obtained from 5-fold stratified cross-validation with nested grid
search for model selection. In cross-validation, it was ascertained
that two proteins with more than 40% sequence similarity are in the
same fold (evaluated using BLASTCLUST from the NCBI BLAST
package (Altschul et al., 1990)). Moreover, the data for CaM binding
prediction in A.thaliana did not include any proteins which were part
of the MI-1 training set.

2.8 Model selection
In order to perform model selection (the choice of the cost parameter
C) for the vanilla and MI-1 SVM formulations for binding site
prediction, we used nested 5-fold cross-validation within each
iteration of LOPO cross-validation. The TH-measure obtained from
the 5-fold cross-validation is then used to choose the value of C for
that iteration of LOPO. The values of C that were used in the nested
cross-validation are {0.01, 0.1, 1.0, 10, 100}.

As mi-SVM takes a long time to train, nested cross-validation
could not be performed. Instead we evaluated the LOPO cross-
validation performance (TH-measure) of mi-SVM with different
values of C in {0.01, 0.1, 1.0, 10, 100} and the best results with
the optimal value of C =10 are reported. This method for selection
of C for mi-SVM can potentially lead to over optimistic performance

Table 2. Results across methods and kernels

Method Features AUC AUC0.1 TH % FH %

Vanilla SVM 1-Spec 95.5 53.9 66 2.6
PD-1 95.6 54.5 64 2.5
Comb. 95.9 55.1 65 2.1
Max. Std. 0.16 0.59 2.2 0.15

mi-SVM 1-Spec 95.5 54.4 64 2.6
PD-1 96.0 55.8 69 2.1
Comb. 96.2 55.6 68 1.9

MI-1 SVM 1-Spec 96.0 54.3 62 2.1
PD-1 96.8 58.5 72 1.3
Comb. 96.9 59.0 75 1.2
Max Std. 0.14 0.80 3.4 0.11
Gappy 96.5 58.5 68 1.6

The features are 1-spectrum (1-Spec), position-dependent 1-spectrum (PD-1) and the
combination (Comb) of the 1-Spec and PD-1 representations. The Max Std. rows
show the maximum standard deviation of a particular performance metric using
the above feature representations. Results with the position-dependent Gappy triplet
kernel (Gappy) with MI-1 SVM are also reported (for a single run due to its longer
computational time). Bold numbers indicate the best value (across all methods) for a
particular metric using a particular feature representation. (AUC: area under the ROC
curve, AUC0.1 AUC for first 10% false positives, TH: true hit, FH: false hit).

estimates. This is not an issue, since our claim is that the proposed
approach performs better.

In the case of CaM binding prediction in A.thaliana using
cascaded classification, we performed a nested (5-fold) grid search
within each cross-validation fold for selecting the parameter values
of the second-stage SVM. Values of C in the SVM and γ

of the Gaussian kernel
(

K
(
x1,x2

)=exp
(
−γ ‖φ

(
x1
)−φ

(
x2
)‖2

))
were chosen from {0.1, 1, 10, 100} and {0.005, 0.02, 0.5, 2.0},
respectively.

3 RESULTS AND DISCUSSION
Table 2 presents the LOPO cross-validation results for the three
SVM formulations for the 1-spectrum, position-dependent 1-
spectrum and the combination of the two feature representations
for predicting CaM binding sites. We observe that both MIL
formulations (mi-SVM and MI-1 SVM) perform better than the
vanilla SVM. This shows the value of expressing binding site
prediction as an MIL problem. This is particularly evident with
the use of position-dependent feature representations, as they are
more sensitive to changes in relative position of an amino acid
in a window within the binding site than position-independent
feature representations. It can also be noted that the accuracy of
MI-1 SVM is noticeably better than mi-SVM. We believe that
this improvement stems from the fact that the proposed scheme
implements a more realistic model of the binding site prediction
problem. The improvement resulting from switching to a position-
dependent feature representation is also larger for MI-1 SVM than
that observed in the case of mi-SVM. The higher AUC0.1 scores
indicate the improved sensitivity and specificity of MI-1 SVM which
is also reflected in the ∼8% improvement in the TH-measures and
the decrease in the FH-measure.

The vanilla SVM approach is the same as the method in (Hamilton
et al., 2011), which they showed works comparably as the neural
network approach of (Radivojac et al., 2006). Therefore we conclude
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Figure 6.2. MI-1 discriminant values along the length of a held-out protein
with the position independent (top) and the position dependent (bottom) 1-
spectrum features.

(i.e., a window in the binding site has a score higher than all non-binding site windows)

by the position independent features, whereas the position dependent features are able to

predict both annotated binding sites accurately. This clearly illustrates the usefulness of

position dependent feature representation. It is quite clear that the output for the position-

independent features is much smoother than that from the position-dependent 1-spectrum

features. This is because the position-independent 1-spectrum feature vector representation

changes only slightly as the window is translated by one position, whereas the position-

dependent feature vector can change dramatically. Due to the increased resolution power,

the position-dependent features lead to a classifier that is able to correctly predict both

binding sites in the example shown in Figure 2, which is not achieved using the position-

dependent features.

On the task of CaM binding prediction (see Table 6.2), the performance of discriminant

function scoring is only marginally better than that of the 1-spectrum feature representation
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used in [156]. However, with the cascaded classification approach with a Gaussian kernel,

the results are significantly better. Even though the AUC for the position-independent 1-

spectrum features is higher than that of the position-dependent features, the AUC0.1 was

higher for position-dependent features (29.1) in comparison to the simple 1-spectrum features

(26.6).

In order to obtain a better understanding of what our classifier picks up, we considered

the proteins that are not known to bind to CaM and ranked that list according to the

score provided by our classifier. We then tested for enrichment of GO terms of segments

of that list: the first 1000 proteins, proteins 1001-2000 etc., using the GOrilla tool [167].

For the first 1000 we found enriched terms that are in agreement with known functions

of CaM binders [152]: In GO molecular function, transcription function activity and CaM-

dependent kinase activities were the most highly enriched with adjusted p-values below 10−10.

All other enriched terms were related to these except for ‘inward rectifier potassium channel

activity’ which had an adjusted p-value of 0.02. In GO biological process namespace all the

terms except for ‘response to carbohydrate stimulus’ (adjusted p-value 0.02) were related

to phosphorylation and various regulatory processes. In analyzing enrichment for size-1000

Table 6.2. The features are 1-spectrum (1-Spec), position-dependent 1-
spectrum (PD-1) and the combination (Comb) of the 1-Spec and PD-1 feature
representations. Using Cascaded Classification with a liner kernel in the sec-
ond stage SVM instead of the Gaussian kernel, the best AUC was 0.72 with
1-spectrum features. (AUC: area under the ROC curve).
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Fig. 3. (a) Weights of different amino acids in the (position-independent) 1-spectrum feature representation; (b) Heat map of the weights of different amino
acids versus their position from the MI-1 SVM position-dependent 1-spectrum feature representation; and (c) Top 100 (in terms of their weights) motifs from
the position-dependent gappy triplet kernel. The last (numeric) column shows actual weight values

Table 3. Results of CaM binding prediction for Discriminant function
scoring and Cascaded classification with an SVM with a Gaussian kernel

Method Features AUC

Discriminant function scoring 1-Spec 71.9
PD-1 70.1
Comb. 71.9

Cascaded classification 1-Spec 75.3
PD-1 71.1
Comb. 72.3

The features are 1-spectrum (1-Spec), position-dependent 1-spectrum (PD-1) and the
combination (Comb) of the 1-Spec and PD-1 feature representations. Using Cascaded
Classification with a liner kernel in the second stage SVM instead of the Gaussian
kernel, the best AUC was 0.72 with 1-spectrum features. (AUC: area under the ROC
curve).

classifier. We then tested for enrichment of GO terms of segments
of that list: the first 1000 proteins, proteins 1001–2000 etc., using
the GOrilla tool (Eden et al., 2009). For the first 1000 we found
enriched terms that are in agreement with known functions of CaM
binders (Reddy et al., 2011): In GO molecular function, transcription
function activity and CaM-dependent kinase activities were the most
highly enriched with adjusted p-values below 10−10. All other
enriched terms were related to these except for ‘inward rectifier

potassium channel activity’which had an adjusted p-value of 0.02. In
GO biological process namespace all the terms except for ‘response
to carbohydrate stimulus’ (adjusted p-value 0.02) were related to
phosphorylation and various regulatory processes. In analyzing
enrichment for size-1000 chunks we found that the p-values for
these functions and processes went down as we went down the
ranked list, and for proteins ranked 5000–6000, no terms showed
enrichment.

4 CONCLUSIONS AND FUTURE WORK
We have presented a novel MIL algorithm for CaM binding site
prediction called MI-1 SVM, and shown its performance advantages
in comparison to the standard MIL SVM and regular SVM, which
was used in previous work. Our new MIL formulation captures the
minimal constraints that a good binding site classifier needs to have,
and we believe this is the reason for its better accuracy. Not only that,
it also runs more than twice as fast as standard MIL SVM (running
time on a dataset of 16,060 windows was 510.5s for MI-1, 1059.1s
for mi-SVM, and 348.3s for vanilla SVM).

Expressing binding site prediction as an MIL problem is a natural
way to incorporate uncertainty about binding site location, and our
results show that this allows the classifier to ‘align’ binding sites
and learn position-dependent motifs that characterize the binding
site. The proposed scheme also shows its efficacy in prediction of
CaM binding proteins.
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chunks we found that the p-values for these functions and processes went down as we went

down the ranked list, and for proteins ranked 5000-6000, no terms showed enrichment.

6.8. Recovering binding motifs

We analyzed the weights from different features in order to extract amino-acid compo-

sition related information for CaM binding sites. The plot of weights from the 1-spectrum

features and the position dependent 1-spectrum features are shown in Figure 6.3. The

weights for the 1-spectrum features closely follow the amino acid propensities in CaM bind-

ings sites as observed in [156], with R (Arginine), K (Lysine) and W (Tryptophan) showing

large positive weights, whereas D (Aspartic acid), E (Glutamic acid) and P (Proline) have

large negative weights. The plot of the position dependent 1-spectrum features indicates

that the importance of different amino acids changes with their position in the window. For

example, Arginine shows large positive weights in the middle of the window, and negative

weights in the ends; Glutamic acid shows the opposite behavior. This indicates that the

classifier is indeed learning a position dependent model.

The results of 5-fold cross validation using the position dependent gappy triplet kernel

KPDGT shown in Table 6.3 indicate that this kernel provides comparable performance to

other feature representations using MI-1 SVM. Since the number of dimensions in the fea-

ture representation of the gappy triplet kernel is much larger than the number of training

examples, MI-1 SVM learning was performed using the dual formulation for this kernel,

which is more computationally intensive. That is why we have used 5-fold cross validation

instead of LOPO cross-validation.

Next, we ranked the features of the gappy triplet kernel in terms of their weights in MI-1

SVM learning in order to find motifs that are associated with CaM binding. Figure 6.3
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shows the top 100 motifs and their positions. We observe that motifs tend to associate with

particular positions, showing that MI-1 SVM uses the flexibility in choosing a representative

window to ‘align’ instances of CaM binding sites (for instance, notice the presence of ‘R’ at

positions 10 and 11). Moreover, it is able to find parts of known CaM binding motifs provided

in the CaM Target Database [154]. The CaM Target Database classifies CaM binding targets

into 5 groups, each characterized by certain motifs: three predominantly calcium dependent

motifs (1-10, 1-14 and 1-16, named according to the position of large hydrophobic residues),

the IQ motif which is typically not dependent on calcium concentration, and others. As

is evident from Figure 6.3, IQ, QxxxR, RxxxxR, RGxxxR, RxxL, KxxxxR receive large

positive weights. These motifs are components of the IQ subclass of motifs. Other features

belonging to different subclasses of motifs that receive large positive weights include: AxxI,

IxxxF, LxxV, (from the 1-14 subclass), RR, KK, RxF (from the 1-10 subclass) etc. This

clearly illustrates the capabilities of the proposed scheme to learn CaM binding motifs. We

also note that most of the top ranking features correspond to a motif with 3 or 4 don’t care

positions. This is in agreement with the known fact that CaM binding usually occurs via an

alpha helix, and this corresponds to the periodicity of the alpha helix.

6.9. MI-2: Simultaneous prediction of binding and binding sites

We also developed a large-margin formulation (called MI-2) to simultaneously learn

whether a protein binds CaM or not and its potential binding site. The intuition behind the

development of MI-2 is that the two tasks (binding site prediction and binding prediction)

Table 6.3. Results for the position dependent gappy triplet kernel.

Method AUC AUC0.1 TH % FH % 

MI-1 SVM 96.5 58.5 68 1.6 
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Figure 6.3. (a) Weights of different amino acids in the (position indepen-
dent) 1-spectrum feature representation (b) Heat map of the weights of differ-
ent amino acids versus their position from the MI-1 SVM position dependent
1-spectrum feature representation and (c) Top 100 (in terms of their weights)
motifs from the position dependent gappy triplet kernel. The last (numeric)
column shows actual weight values.

are very closely related and the joint learning of the two tasks can potentially improve pre-

diction accuracy on both tasks. In this section, we first describe this formulation and then

present its results.

Let B be the set of all binding sites from the set of 153 proteins for which the location

of the binding site is known. As earlier, for any binding site b ∈ B, the set of binding and

non-binding windows in the protein containing b are denoted by P (b) and N (b), respectively.

B+ denotes the set of the known 241 CaM binding proteins in A. thaliana. B− is the set of
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remaining proteins in A. thaliana. The formulation can then be written as follows:

min
w,ρ,ξ,ξ+,ξ−

1

2
wTw +

C

| B |
∑
∀b∈B

ξb +
C+

| B+ |
∑
∀p∈B+

ξ+p +
C−

| B− |
∑
∀p∈B−

ξ−p


Binding site constraints ∀b ∈ B :

∀j ∈ N (b) : max
i∈P (b)

(
wTφ (xi)

)
≥ wTφ (xj) + 1− ξb

ξb ≥ 0

Binding prediction constraints:

∀p ∈ B+ and ∀i ∈ p : wTφ (xi) + ρ ≥ 1− ξ+p , ξ+p ≥ 0

∀p ∈ B− and ∀i ∈ p : wTφ (xi) + ρ ≤ −1 + ξ−p , ξ
−
p ≥ 0.

The objective of the above formulation is to learn an objective function f (x) = wTφ (x) +ρ

that can predict whether the input sequence window x is part of a binding site or not. The

maximum discriminant function score of a protein can be used to predict whether it can bind

CaM or not. Note that the binding site constraints in MI-2 are identical to those in MI-1.

The binding prediction constraints in MI-2 ensure that the maximum of the discriminant

function scores of all windows in a CaM binding protein is higher than +1 and that it is

lower than −1 for non-binding proteins. Note that the binding prediction constraints use a

single slack variable ξ+p or ξ−p for all examples from a protein. This implicitly applies the

maximum operation over all examples from the same protein and enforces the constraints

discussed earlier without introducing any non-linearities in the formulation. The parameters

C, C+ and C− control the relative contribution of the three sets of constraints. Since B−

can potentially contain CaM binders as well, C− is taken to be very small in comparison to
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C and C+. This formulation can be solved with straightforward additions to the heuristic

algorithm for MI-1 to incorporate the changes in the objective function and constraints in

the quadratic programming problem.

In order to evaluate the performance of MI-2 for binding site prediction, 5-fold cross

validation was performed on the data set of 153 proteins for which the binding sites are

known. The training set for binding prediction was kept the same across all cross-validation

folds. Using the combination of position dependent and independent 1-spectrum features,

the results for binding site prediction with MI-2 are as follows: AUC = 95.3, AUC0.1 = 56.3,

TH% = 71.3 and FH% = 1.3. These results are marginally inferior to the results from

MI-1. However, they are better than the vanilla SVM and classical mi-SVM formulations.

For the task of binding prediction, we performed 5-fold cross validation on B+∪B−. The

binding site prediction data set was not changed during these cross validation folds. This

gave an AUC of 74.0 which is slightly better than the results from discriminant function

scoring with MI-1 but slightly lower than the results from cascaded classification.

6.10. Discussion

We have presented a novel MIL algorithm for CaM binding site prediction called MI-

1 SVM, and shown its performance advantages in comparison to the standard MIL SVM

and regular SVM, which was used in previous work. Our new MIL formulation captures the

minimal constraints that a good binding site classifier needs to have, and we believe this is the

reason for its better accuracy. Not only that, it also runs more than twice as fast as standard

MIL SVM (running time on a dataset of 16,060 windows was 510.5s for MI-1, 1059.1s for

mi-SVM, and 348.3s for vanilla SVM). Expressing binding site prediction as an MIL problem

is a natural way to incorporate uncertainty about binding site location, and our results show
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that this allows the classifier to ‘align’ binding sites and learn position-dependent motifs that

characterize the binding site. The proposed scheme also shows its efficacy in prediction of

CaM binding proteins. In addition, we also analyzed the performance of a model (MI-2) for

the joint learning of binding sites and CaM binding. However, we could not attain major

performance improvements using this model in comparison to MI-1.
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CHAPTER 7

Conclusions and Future work

In this work we have proposed a number of large-margin models for the prediction of

binding sites and interfaces. Specifically, we presented a generic predictor called PAIRpred

which explicitly models the partner-specific nature of protein complex formation using a

pairwise support vector machine. PAIRpred can predict the binding sites in individual

proteins in a complex as well as inter-residue contacts between two proteins using sequence

alone or in conjunction with structural features. PAIRpred offers state of the art accuracy

for both interface and binding site prediction. We also presented a multiple instance learning

based approach for predicting the binding sites in proteins that bind Calmodulin using only

sequence. Major contributions to the field from this work can be enumerated as follows:

Impact of partner-specific predictions: PAIRpred is the first method to make

partner-specific predictions of protein interfaces from structure. PAIRpred offers

better accuracy for binding site prediction at the protein level in comparison to an

SVM classifier (AUC of 77.0 compared to 72.6) trained using the same set of features

over the same evaluation data set. This clearly shows that modeling the partner-

specific nature of protein complexes can lead to better predictions. Moreover, using

PAIRpred we were able to replicate, in silico, an experimental study for analyzing

the binding specificity of the NS1B protein from the Influenza A virus. Such an

analysis is possible only with partner-specific predictors like PAIRpred.

Accuracy of interface prediction: PAIRpred currently offers the best accuracy for

both binding site prediction at the protein level and interface prediction at the com-

plex level. We attribute this accuracy to the use of a pairwise SVM for classification.
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Impact of different types of features: We have found that sequence and struc-

tural conservation through local alignments, surface exposure, local surface geom-

etry and template based features contribute to the accuracy of prediction. The

pairwise SVM in PAIRpred allows us to extract features at the residue level and

combine them with pairwise features in a seamless manner through its use of kernels.

Transductive and semi-supervised approaches: We have investigated the design

of transductive and semi-supervised machine learning schemes to better model the

nature of the problem. We have found that transductive models can provide limited

improvement in prediction accuracy. However, our attempts at modeling pairwise

labeling constraints between classification examples from a query complex and the

sparsity of the prediction did not contribute towards improvement in accuracy.

Impact of conformational change on accuracy: We have found that binding as-

sociated conformational change in proteins is one of the major factors that limit

accuracy of interface and binding site prediction. PAIRpred offers a more graceful

degradation of prediction performance with respect to the degree of conformational

change in comparison to other existing methods.

Novel multiple instance learning models: We have also developed two large-margin

multiple instance learning models which are able to handle imprecision in binding

site annotations. These models achieve state of the art accuracy in binding site

prediction for Calmodulin binding proteins.

7.1. Future Work

As future work, a list of some more ideas in relation to binding site prediction is presented

below.
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7.1.1. Incorporation into docking methods. Output from our partner-specific

predictor can be used to improve docking solutions either by re-ranking the models pro-

duced by a docking method [168, 75] or incorporating the predicted residue pair binding

propensities directly into the energy function used in such methods [169, 76].

7.1.2. Handling binding associated conformational changes. One of the biggest

challenges in predicting binding sites or protein interfaces are the conformational changes

resulting from binding. This issue is compounded by the fact that complexes with large

conformational changes are under-represented in the PDB. Most existing machine learning

methods for interface prediction do not explicitly model protein flexibility or incorporate

features based on protein flexibility. We would greatly encourage future researchers to focus

on this aspect of the problem. One possibility can be to extract features from the NMR

structures of proteins and complexes, as such structures do capture the dynamics and flexi-

bility of proteins. However, currently the number of complexes with NMR structures is very

small. A search for protein NMR structures with two or more chains in their biological units

results in approximately 1200 hits whereas this number is almost 50,000 for X-ray structures.

7.1.3. Using protein-protein interaction network data. A number of high-

throughput experimental techniques can detect existence of protein-protein interactions

(PPIs) but they do not provide any specific information about the binding interface be-

tween these proteins. An interesting problem is the prediction of protein binding regions

from a protein-protein interaction network. Some computational methods [85, 177], pre-

dict protein domain interactions given such a network. However, to the knowledge of this

author, no computational prediction scheme for finding binding sites at the residue level
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from protein-protein interaction data exists in the literature. Here, a brief description of the

problem is given and a possible solution through multiple instance learning is described.

Assume that we have been given a protein interaction network in which each node is a

protein and the edges indicate the existence of an interaction between two proteins. Specif-

ically, let U denote the set of pairs (A,B) of proteins in the given network so that yAB

indicates whether these proteins interact (yAB = +1) or not (yAB = −1). The objective

here is to find out whether a pair of residues (denoted by i) in a protein complex interact

(yABi = +1) or not (yABi = −1). Let’s assume further that we also know the interfaces

for a set S of protein complexes. Formally, given a residue pair i in the complex (A,B) in

S, we can use yABi to indicate whether this pair is known to interact (yABi = +1) or not

(yABi = −1). We can use the following large-margin formulation to generate a predictor for

inferring whether a residue pair in a query complex is likely to interact or not. It can also

be used for finding the interfaces on complexes in the training data.

min
w,b

1

2
wTw + CU

∑
ξAB + CS

∑
ξABi(17)

Subject to:

yAB max
i∈AB

(wTxABi + b) ≥ 1− ξAB, ξAB ≥ 0, ∀(A,B) ∈ U(18)

yABi (wTxABi + b) ≥ 1− ξABi , ξABi ≥ 0, ∀i ∈ AB, ∀(A,B) ∈ S.(19)

The set of constraints in Equation (18) state that no residue pair in a non-interacting pair

of proteins should be classified as interacting and at least one residue pair in a known

protein complex should be classified as interacting. Thus, these constraints ensure that the

classifier explains the interaction network properly. The parameter CU in Equation (17)
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controls the cost of misclassification of edges in the interaction network. The constraints

in Equation (19) ensure correct classification in cases with known binding interfaces. Once

the above optimization problem has been solved, yABi = wTxABi + b can be used to rank

pairs of interacting residues in training complexes for which the binding interfaces were not

previously known. The above model seamlessly integrates interaction and interaction site

data for training a predictor which can potentially be more accurate than a predictor that

uses only interaction site data. This formulation can be viewed as a generalization of the

multiple instance learning based MI-1 SVM described earlier [153].

7.1.3.1. Prediction of binding sites in Flaviviridae proteins. A special case of the problem

described in the previous subsection is the interaction network between the NS3 and NS5

proteins from various Flaviviridae viruses. Flaviviridae include, among others, Dengue, West

Nile, Hepatitis and Yellow Fever viruses. The NS3 and NS5 proteins in these viruses are

thought to play a vital role in replication of these viruses [178, 179, 180]. There is significant

evidence that the NS3 protein from one virus species interacts with only the NS5 protein

from the same species [181]. That is, NS3 protein from Dengue virus does not interact with

that from the West Nile virus and so on. Figure 7.1 shows the protein-protein interaction

network for these viruses which points out the species-specific nature of the interaction

of these proteins. Thus, for the PPI network of Figure 7.1, we do know which proteins

interact but do not know the residues involved in these interactions. The NS3 proteins from

different Flaviviridae species have a large number of conserved residues across the species.

The same holds true for NS5 proteins. Therefore, the residues which differ between proteins

from different species hold the key to explain the species-specific pattern of interactions.
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Figure 7.1. The special protein-protein interaction network for NS3 and NS5
proteins in Flaviviridae.

This information can be modeled by the large-margin formulation proposed in the previous

subsection to locate the residues involved in the interaction for individual proteins.

7.1.4. Spectral features. Proteins sequences can be treated as multidimensional,

non-stationary and non-linear signals. Different properties of a protein sequence (such as

hydrophobicity and accessible surface area) can be taken as components of these multidi-

mensional signals [182]. The frequency characteristics of these signals can change over the

length of the sequence giving them a non-stationary nature. Moreover, sequence properties

are a result of complex and usually non-linear thermodynamic and evolutionary laws that

govern protein folding and binding. As a consequence, protein sequences can be subjected to

spectral analysis techniques such as wavelets and the Hilbert-Huang transform [183, 184, 185]

in order to extract spectral features to study the spectral properties of protein sequences and

their relation to binding sites. To the knowledge of this author, no existing method has used

such features for predicting binding sites. Spectral features derived from protein structures

can be very helpful in modeling the surface characteristics of proteins and can result in more

accurate interface predictions. However, extracting such features requires significant insight

in the working of these methods and devising extensions of such methods that can operate
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on a multidimensional feature representation of physiochemical and structural properties of

protein surfaces.
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APPENDIX A

ProBiS

Given two proteins A and B, the objective of ProBiS is to find out how similar the local

neighborhoods of two surface accessible residues a and b on the two respective proteins are

to each other in terms of their local geometry and physiochemical characteristics. For the

purpose of this discussion, it is convenient to represent a residue a on A by a ≡ (va, L(a)),

where va represents the position vector of a and L(a) is an integer label indicating the

general physiochemical characteristics of the residue (1. H-Bond acceptor, 2. H-Bond donor,

3. Mixed Donor - Acceptor, 4. Aliphatic and 5. Aromatic). The local neighborhood of a

residue a is denoted by N(a) and is composed of all surface accessible residues within an

inter-atomic distance of 12 Å from a. There are four major steps in ProBiS for determining

the structural similarity between a and b as shown in Figure A.1:

I. Determine, using a computationally efficient quantitative measure s(a, b), whether

the local neighborhoods of the two residues are similar enough in their geometri-

cal arrangement so as to warrant the computationally complex local alignment or

not. Formally, this measure is calculated using the following three steps [117]: (1)

construct a 5× 48 dimensional local neighborhood descriptor matrix Mp∈P
i,j for each

residue p ∈ {a, b} so that Mp∈P
i,j represents the number of residues p

′
in N(p) with

L(p
′
) = i such that j = d4 × d(p, p

′
)e. Here, d(p, p

′
) is the distance between the

two residues p and p
′
. Note that the maximum distance between p and p′ is 12 Å.

(2) Smooth the counts in the matrices by using Mp∈P
i,j = 0.25Mp∈P

i,j−1 + 0.75Mp∈P
i,j +

0.25Mp∈P
i,j+1. (3) Compute the local similarity as s(a, b) =

∑
i,j |Ma∈A

ij +M b∈B
ij |∑

i,j |Ma∈A
ij −M b∈B

ij |
unless
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Vertices : 𝑉 𝑎, 𝑏 = 𝑎′, 𝑏′ |𝑎′ ∈ 𝐴 𝑎𝑛𝑑 𝑏′ ∈ 𝐵 𝑎𝑛𝑑 𝐿 𝑎′ = 𝐿 𝑏′  𝑎𝑛𝑑 𝑑 𝑎, 𝑎′ < 12Å 𝑎𝑛𝑑 𝑑 𝑏, 𝑏′ < 12Å  
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𝑎 

𝑎 ≡ 𝒗𝑎, 𝐿 𝑎   

𝑏 ≡ 𝒗𝑏, 𝐿 𝑏   
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𝑩 

𝐈 𝐈𝐈 𝐈𝐈𝐈 𝐈𝐕 

Figure A.1. Different steps in computing the local alignment of residues
a ∈ A and b ∈ B with ProBiS [115]. See the text for details on each step.
The local neighborhoods of the two residues are shown in (II). The colors of
the residues in (II) indicate their physiochemical label. (III) shows the graph
Gab. Note that a vertex in this graph is a pair of identically labeled residues
from the two proteins (see equation 20). Two vertices are linked by edges
(solid lines) only when the distance between the residues from each protein
in the two vertices is almost identical (see equation 21). The vertices in the
maximum clique for this graph (of size 3) are linked by edges indicated by
thicker lines in green. (IV) shows the transformed neighborhood of b.

the denominator is zero, in which case, this similarity is set equal to the numera-

tor. The following local structural alignment steps (II-IV) are performed only if

s(a, b) > 2.8.

II. Construct a joint graph Gab ≡ (V (a, b), E(a, b)) of the two neighborhoods of residues

a ∈ A and b ∈ B with vertex and edge sets defined as follows:

V (a, b) = {(a′ , b′) | a′ ∈ N(a) ∧ b
′ ∈ N(b) ∧ L(a

′
) = L(b

′
)}(20)

E(a, b) = {((a′ , b′), (a′′ , b′′)) | |d(a
′
, a
′′
)− d(b

′
, b
′′
)| < 0.5Å ∧ (a

′
, b
′
), (a

′′
, b
′′
) ∈ V (a, b)}(21)
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This graph can be viewed as a representation of all possible rotations and transla-

tions of the neighborhoods around the residues from the two proteins.

III. Find the maximum clique13 in Gab using the efficient branch and bound heuristic

algorithm given in [186]. A maximal clique in Gab corresponds to an optimal local

alignment, i.e., a transformation that superimposes or aligns the largest number of

residues with similar physiochemical properties in the two neighborhoods.

IV. Based on the maximum clique, geometrically transform N(b) to match N(a). The

alignment is considered significant only if the RMSD after alignment of the two

neighborhoods is less than 2.0 Å and there are 10 or more vertices in the alignment.

13A clique is a subset of vertices of a graph such that each pair of vertices in this subset are connected by an
edge. A maximum clique of a graph is a clique with the largest possible number of vertices for that graph.
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APPENDIX B

Stochastic sub-gradient optimization based SVM

Here we describe the mathematical formulation behind the development of an algorithm

for a stochastic sub-gradient solution to the optimization problem given in Equation (13).

Similar to gradient descent techniques, sub-gradient methods also operate in an iterative

manner to reach an optimal or near-optimal solution to the optimization problem. Instead

of taking a step in the direction opposite of the gradient as in gradient descent techniques,

sub-gradient methods take a step in the direction opposite to the sub-gradient. The use

of the sub-gradient instead of the gradient allows for handling the non-differentiability of

the objective function but, at the same time, it implies that the value of the objective

function can, and often does, increase over consecutive steps in sub-gradient methods. As a

consequence, sub-gradient methods are not ‘descent’ methods and it is not possible to define

a precise convergence criterion when using these methods. What is guaranteed for sub-

gradient methods is that the distance to the set of near optimal solutions does not increase

over iterations of the method.

In stochastic sub-gradient methods, at each iteration t = 1, . . . , T the sub-gradient ∇t

with respect to the optimization variable (w in our case) is defined using a single randomly

selected example instead of all examples. This allows for faster computation. In the case

of our objective function, we define the sub-gradient ∇t at iteration t using a randomly

selected classification example it from S, a randomly selected constraint (jt, kt) from DAB,

and a residue from each protein (at ∈ A, bt ∈ B). The weight update equation can then be

written as: wt+1 = wt − ηt∇t where the step size is given by: ηt = 1
λt

. This choice of the

step size improves the convergence bounds of the method as explained in [148]. Formally,
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the sub-gradient for the objective function of Equation (13) can be written as:

∇t = λwt−1 (zit < 1) {φ (xit , yit)− φ (xi,−yi)}−

ν1
(
z(jt,kt) < 1

){(
φ
(
x?jt , y

?t

jt

)
+ φ

(
x?kt , y

?t

kt

))
−
(
φ
(
x?jt , 1

)
+ φ

(
x?kt , 1

))}
+

µ1 (zat > c)
∑

i∈EA(at)

(φ (xi,+1)− φ (xi,−1)) +

µ1 (zbt > c)
∑

i∈EB(bt)

(φ (xi,+1)− φ (xi,−1)) .

Here
(
y?

t

jt , y
?t

kt

)
= arg max(y,y′)∈V

(
wT
t φ
(
x?jt , y

)
+wT

t φ (xkt , y
′)
)
. If w0 = 0, then, with the

example it and constraint (jt, kt), the weight vector at iteration t+ 1 can be expressed as:

wt+1 =
1

λt

t∑
i=1

1 (zit < 1) {φ (xit , yit)− φ (xit ,−yit)}+

ν

λt

t∑
i=1

1
(
z(jt,kt) < 1

){(
φ
(
x?jt , y

?t

jt

)
+ φ

(
x?kt , y

?t

kt

))
−
(
φ
(
x?jt , 1

)
+ φ

(
x?kt , 1

))}
−

µ

λt

t∑
j=1

1 (zat > c)
∑

i∈EA(at)

(φ (xi,+1)− φ (xi,−1))−

µ

λt

t∑
j=1

1 (zbt > c)
∑

i∈EB(bt)

(φ (xi,+1)− φ (xi,−1)) .

Note that, in the above equation, each term includes a count of the number of times a

constraint has been violated up to the current iteration t + 1. If we use αt+1 [i], αt+1 [j, k],

αAt+1 [a] and αBt+1 [b] to indicate the number of times, up to the current iteration t+ 1, zi < 1,

z(j,k) < 1, za > c and zb > c respectively, then we can simplify the above equation as follows.
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wt+1 =
1

λt

N∑
i=1

αt+1 [i] {φ (xi, yi)− φ (xi,−yi)}+

ν

λt

∑
(j,k)∈DAB

αt+1 [j, k]
{(
φ
(
x?j , y

?t

j

)
+ φ

(
x?k, y

?t

k

))
−
(
φ
(
x?j , 1

)
+ φ (x?k, 1)

)}
−

µ

λt

∑
a∈A

αAt+1 [a]
∑

i∈EA(a)

(φ (xi,+1)− φ (xi,−1))−

µ

λt

∑
b∈B

αBt+1 [b]
∑

i∈EB(b)

(φ (xi,+1)− φ (xi,−1)) .

Now, the output ft+1 (x, y) = 〈wt+1, φ (x, y)〉 can be written as:

ft+1 (x, y) =
1

λt

N∑
i=1

αt+1 [i] {K (xi, yi,x, y)−K (xi,−yi,x, y)}+

ν

λt

∑
(j,k)∈DAB

αt+1 [j, k]
(
K
((
x?j , y

?t

j

)
, (x, y)

)
+K

((
x?k, y

?t

k

)
, (x, y)

))
−

ν

λt

∑
(j,k)∈DAB

αt+1 [j, k]
(
K
((
x?j , 1

)
, (x, y)

)
+K ((x?k, 1) , (x, y))

)
}−

µ

λt

∑
a∈A

αAt+1 [a]

 ∑
i∈EA(a)

K (xi,+1, x, y)−K (xi,−1, x, y)

−
µ

λt

∑
b∈B

αBt+1 [b]

 ∑
i∈EB(b)

K (xi,+1, x, y)−K (xi,+1, x, y)

 .

Based on the feature representation φ (x, y), the kernelK (x, y,x′, y′) = 〈φ (x, y) , φ (x′, y′)〉

can be written as: K ((x, y) , (x′, y′)) = Kpw (x,x′) 1 (y = y′) with Kpw being the pairwise

kernel combination used in PAIRpred. Thus, f (x, y) can be expressed as follows.
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ft+1 (x, y) =
1

λt

N∑
i=1

αt+1 [i] {Kpw (xi,x) (1 (y = yi)− 1 (y = −yi))}+

1

λt

∑
(j,k)∈DAB

αt+1 [j, k]Kpw

(
x?j ,x

) (
1
(
y = y?

t

j

)
− 1 (y = 1)

)
+

1

λt

∑
(j,k)∈DAB

αt+1 [j, k]Kpw (x?k,x)
(

1
(
y = y?

t

k

)
− 1 (y = 1)

)
−

µ

λt

∑
a∈A

αAt+1 [a]

 ∑
i∈EA(a)

K (xi, x) (1 (y = 1)− 1 (y = −1))

−
µ

λt

∑
b∈B

αBt+1 [b]

 ∑
i∈EB(b)

K (xi, x) (1 (y = 1)− 1 (y = −1))

 .

Since, 1 (y = yi) − 1 (y = −yi) = yyi, 1
(
y = y?j

)
− 1 (y = 1) =

y(y?j − 1)

2
and 1 (y = 1) −

1 (y = −1) = y, ft+1 (x, y) in the above equation can be written as: ft+1 (x, y) = yf ′t+1 (x),

where f ′t+1 (x) is given by:

f ′t+1 (x) =
1

λt

N∑
i=1

αt+1 [i] {Kpw (xi,x) yi}+(22)

ν

2λt

∑
(j,k)∈DAB

αt+1 [j, k] {Kpw

(
x?j ,x

) (
y?

t

j − 1
)

+Kpw (x?k,x)
(
y?

t

k − 1
)
}−

µ

λt

∑
a∈A

αAt+1 [a]
∑

i∈EA(a)

K (xi,x)− µ

λt

∑
b∈B

αBt+1 [b]
∑

i∈EB(b)

K (xi,x)

Recall that, for each iteration t+ 1,
(
y?

t

j , y
?t

k

)
= arg max(y,y′)∈V

(
ft
(
x?j , y

)
+ ft (x?k, y

′)
)
. The

scoring function for a test example x after training is then computed as: f (x) = fT (x,+1)−

fT (x,−1), which should be positive for examples in the test set that interact and negative

otherwise. Please note that, even though the weight vector and the output function have been
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expressed solely in terms of kernel operators, the problem is still being solved in the primal

using the sub-gradient over the weight vector. This is because the objective function, though

convex with respect to the weight vector, may not be strongly convex with respect to α [148].

This algorithm is guaranteed to converge to an ε > 0 accurate solution within O

(
R2

λε

)
iterations, where R = 2 maxx (‖Φ (x)‖) and Φ (x) is the implicit feature representation from

the kernel Kpw of an example in the training and test set14. This shows that the number of

iterations is independent of the number of examples. Here, we also present a pseudo-code

of the algorithm that can be used to find α [·] and α [·, ·]. Algorithm 4 is inspired from the

kernelized Pegasos algorithm [148].

14The proof for this bound is omitted since it is similar to the ones given in [145, 148]
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Algorithm 4 SSO for SVM with pairwise constraints

Input: S: Labeled training data, S?: Test samples with unknown labels, DAB: List of index
tuples (j, k) from S? that define pairwise constraints over S?.

Parameters: λ ≥ 0: Regularization parameter, T > 0: Number of iterations, 0 ≤ ν ≤ 1:
Controls relative contribution from the training data and pairwise constraints, 0 ≤ µ ≤ 1:
Controls relative contribution from the sparsity constraints.

Output: Prediction scores z?j and labels y?j for all test examples j? ∈ S?.
1: Set N = Number of training examples in S.
2: Set M = Length of DAB.
3: Set α0 [j] = 0, ∀j = 1, . . . N .
4: Set α0 [j, k] = 0, ∀ (j, k) ∈ DAB.
5: Set αA0 [j] = 0, ∀j ∈ A.
6: Set αB0 [j] = 0, ∀j ∈ B.
7: Set y?j = −1, ∀j ∈ S?.
8: for t = 0, . . . , T − 1 do
9: Set αt+1 [j] = αt [j], ∀j = 1, . . . N .

10: Set αt+1 [j, k] = αt [j, k], ∀ (j, k) ∈ DAB.
11: Set αAt+1 [j] = αAt [j], ∀j ∈ A.
12: Set αBt+1 [j] = αBt [j], ∀j ∈ B.
13: Select a training example it from S randomly.
14: if yitf

′
t (xit) < 1 then

15: αt+1 [it] = αt [it] + 1.
16: end if
17: Select (j, k) from DAB randomly.
18: Set (y?j , y

?
k) = arg max(y,y′)∈V

(
yf ′t+1

(
x?j
)

+ y′f ′t+1 (x?k)
)

19: if
((
y?j − 1

)
f ′t+1

(
x?j
)

+ (y?k − 1) f ′t+1 (x?k)
)
< 1 then

20: αt+1 [j, k] = αt [j, k] + 1.
21: end if

22: Select a residue a from A randomly and compute za =
1

| EA (a) |
∑

i∈EA(a) ft+1 (x?i )

23: if za > c then
24: αAt+1 [a] = αAt [a] + 1
25: end if

26: Select a residue b from B randomly and compute zb =
1

| EB (b) |
∑

i∈EB(b) ft+1 (x?i )

27: if zb > c then
28: αBt+1 [b] = αBt [b] + 1
29: end if
30: end for
31: Use Equation 22 for t = T together with αT [·], αT [·, ·] and the test labels y? obtained

above to compute the output scores and labels for all examples in S?.
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