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ABSTRACT 

 

THERE AND BACK AGAIN IN THE RAWAH WILDERNESS: REOCCUPATION AT HIGH 

ELEVATIONS IN THE MEDICINE BOW MOUNTAINS, COLORADO 

  

 This thesis considers the role of reoccupation and persistent use of place in broader 

systems of high elevation landscape use in the Southern Rocky Mountains. With a geographic 

focus on the Medicine Bow Mountains of northern Colorado, the study identifies substantive 

patterns in the assemblage composition, landscape distribution, and surface structure of sites 

exhibiting evidence of high reoccupation intensity. Following a laboratory analysis of 2,372 

artifacts from 30 sites, as well as high resolution mapping of surface artifact distributions in the 

field, the study identifies several trends with significant potential for clarifying understandings of 

the precontact utilization of these landscapes. First, a substantial range of reoccupation intensity 

exists in the surface record of the Medicine Bow Mountains. Second, sites with evidence of 

preferential reoccupation exhibit significant variability in their assemblage composition, likely 

reflecting the diverse range of functional activities and transhumance systems associated with 

their use through time. Third, spatioenvironmental modeling of reoccupation at the landscape 

scale suggests high elevation contexts, particularly the timberline ecotone, were a focal point of 

persistent reuse in the study area. Fourth, the surface record of persistently reused places 

constitutes a palimpsest of time-averaged deposits from many discrete occupations. Analysis of 

the spatial character and composition of these deposits informs broader understandings of the 

structure of these sites and the reconstruction of their long-term use through time. These results 

reinforce the archaeological significance of the Medicine Bow Mountains for clarifying larger 

patterns in the indigenous use of high elevations in Colorado.  
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CHAPTER 1 – INTRODUCTION 

 

Ancient Native Americans lived in and used the Southern Rocky Mountains of northern 

Colorado for at least 10,000 years (Brunswig and Pitblado 2007; LaBelle 2012; Morris 2010). 

Since the beginning of the Early Holocene, when these indigenous peoples are first believed to 

have traveled through the high mountain passes of the Rocky Mountains in the wake of receding 

glaciers, humans have made extensive use of the Colorado high country. These first 

mountaineers were not just visitors to these rugged and unpredictable environments, but active 

participants who quarried raw materials for stone tools, constructed sophisticated game drive 

systems, and established places of reverence and religious reflection (Bamforth 2006; Benedict 

1992; LaBelle and Pelton 2013). While we know the Arapaho, Cheyenne, and Ute peoples 

inhabited northern Colorado at the time of contact, and continue to maintain deep cultural and 

ancestral ties to these landscapes, there remains thousands of years of rich indigenous history in 

this region about which we know comparatively little. In recognition of these deep human ties to 

the mountains, we must approach the archaeological record of the Southern Rocky Mountains as 

an inherently cultural landscape with significant meaning to ancestral peoples and descendent 

populations. Exploring the ways in which these peoples perceived and used these mountain 

environments is necessary for generating a richer and more complete record of the human past in 

the northern Colorado region. 

Study of the persistent reuse of place in forager systems is a critical consideration for 

archaeologists who seek to reconstruct larger patterns in hunter-gatherer lifeways. Persistent 

places, distinctive locales on the landscape which have been consistently reoccupied over long 

periods, can provide insight into the dynamic processes behind site selection and landscape use 

which influenced patterns of hunter-gatherer mobility and settlement through time (Bender 2015; 
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Dooley 2004, 2008; Schlanger 1992; Shiner 2009). In alpine and subalpine contexts, where year-

round human occupation was impeded by harsh winter conditions, recognition of the preferential 

reuse and persistent reoccupation of place is necessary for making broader insights into high 

elevation landscape use. Mountain archaeology is associated with many research challenges, and 

the ephemerality of most high elevation occupation events can pose significant challenges to 

investigation. To resolve these uncertainties, archaeologists must employ a holistic landscape 

approach to consider the interconnected nature of mountain settlement systems and the 

accumulated use of a place through time. In the course of these investigations, analysis of the 

“organizational relationships” between place and landscape become a necessary consideration 

(Binford 1982:5). Particularly in mountain contexts, where Bender (2015:300) recognized that 

“variation in local environmental conditions will create variability across settlement systems”, 

there is a heightened need to consider the reciprocal roles of landscape and human agency in the 

use of those environments (Rademaker and Moore 2019). Though rugged terrain and adverse 

conditions imposed substantial constraints on human occupation of high elevation environments, 

a high degree of variability existed in hunter-gatherers’ use of these landscapes, and analysis of 

the persistent reuse of place is imperative for interpreting these patterns. 

The study of persistent land use and reoccupation are both rooted within the broader 

themes of place, space, and mobility in forager systems. The ancient hunter-gatherers who 

occupied the Southern Rocky Mountains practiced a mode of subsistence which was inherently 

mobile and structured around seasonal access to resources (Benedict 1992). These relationships 

between place and mobility were closely aligned, and consideration of their complimentary roles 

is necessary for understanding larger trends in the use of mountain landscapes. While there can 

be substantial variability in the mobility systems practiced by hunter-gatherer groups across the 
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forager-collector continuum, the patterns of persistent land use revealed by these seasonal 

movements are critical for interpretation of reoccupation in hunter-gatherer lifeways (Binford 

1980; Kelly 2013; Smith and McNees 2011). Similarly, these ancient peoples covered 

considerable distances as part of their seasonal mobility systems and these movements were 

organized around places on the landscape where people carried out a diverse range of activities 

ranging from toolstone quarrying to communal hunting (Bamforth 2006; Benedict 1992; Binford 

1982). Recognition of persistent reuse of place in these systems can then yield valuable insights 

into the ways in which hunter-gatherers organized their movements over the landscape and 

prioritized different aspects of these seasonal rounds.   

To address these considerations, this thesis applies a multiscalar approach which 

examines overarching patterns surrounding reoccupation and persistent place formation in the 

archaeological record of the Medicine Bow Mountains. By employing conceptual themes from 

persistent place theory, and methodological considerations from landscape and surface 

archaeologies and the analysis of time-averaged deposits, this study aims to synthesize these data 

into a cohesive profile for the persistent reuse of place at high elevations in the Rawah 

Wilderness. To achieve this goal, I apply a mixed methodological approach. First, extant 

collections from the study area are analyzed to identify a baseline range of reoccupation intensity 

for the Medicine Bow Mountains. Second, the spatial distribution of reoccupied sites is 

considered to investigate if significant contrasts are detectable in the relationship between certain 

landscape characteristics and preferential reoccupation. Third, I investigate the surface 

distribution of artifacts at persistently reused sites and evaluate the site structure of reoccupation 

in relation to landscape features and previous occupations. Based on these theoretical and 
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methodological approaches, the overarching objective of this study is to clarify understandings 

of landscape use, settlement, and persistent place formation in the Medicine Bow Mountains.  

 
Figure 1. Location of the study area (shown in green, at left) within western North America and northern Colorado. 
The study area, the naturally delineated West Branch of the Laramie River (WBLR) watershed, encompasses 36.9 
square kilometers of mountainous terrain. 

 

The West Branch of the Laramie River (WBLR) Watershed   

The West Branch of the Laramie River (WBLR) watershed, located in the Medicine Bow 

Mountains of northern Colorado, was selected as the study area for this analysis. The WBLR 

watershed encompasses a diverse range of high elevation ecosystems and mountain settings in a 

36.9 square kilometer area, which create a valuable microcosm for analysis of the dynamic 

nature of indigenous landscape use in high elevation contexts. Similarly, as a naturally delineated 

boundary, the WBLR watershed is less susceptible to the problematic sampling issues of 

artificial political boundaries. The watershed is located in western Larimer County, some 67 

kilometers (42 miles) west of the city of Fort Collins (Figure 1). The Medicine Bow Mountains 

are a constituent range of the Southern Rocky Mountains and border the Colorado Front Range 

to the south. Rocky Mountain National Park is located just 15 kilometers (9 miles) south of the 

study area and North Park is immediately adjacent to the west. To the north of the WBLR 

watershed, the continuation of the Medicine Bow Range extends into Wyoming and the Laramie 
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Basin. The Laramie River Valley is located adjacent to the east of the study boundary, and the 

Laramie River itself runs north before trending east and ultimately joining the North Platte River.  

The geomorphology of the study area is largely glacial in nature, and the upper elevations 

of the WBLR watershed are characterized by well-defined cirque basins associated with alpine 

lakes and tarns (Morris et al. 1994; Workman et al. 2018a, 2018b). The WBLR and the North 

Fork of the WBLR confluence within the watershed, forming a distinctive sideways ‘V’ which is 

clearly visible in satellite imagery (Figure 1). Elevation ranges substantially in the study area, 

from 2,620 meters (8,595 feet) at the mouth of WBLR to 3,948 meters (12,953 feet) at the 

summit of Clark Peak, the highest point in the Medicine Bow Range. Rawah batholith 

formations comprise the dramatic granitic uplifts of the Rawah Peaks and surrounding summits, 

while Pinedale-aged glacial till and recent Holocene alluvium fill the lower WBLR valley 

(Workman et al. 2018a, 2018b). Ancient glacial caps, which extended over the Southern Rocky 

Mountains in the geologic past, heavily shaped the geology of the study area through divergent 

periods of glaciation and deglaciation through the terminal Pleistocene (Workman et al. 2018a, 

2018b). While most of these geomorphic processes pre-date human occupation of the area, the 

Pinedale Glaciation is known to have overlapped with the earliest human colonization of the 

northern Colorado region (Brunswig and Pitblado 2007; LaBelle 2012; Workman et al. 2018b).  

In addition to the variable terrain and geology associated with the study area, a diverse 

range of mountain ecologies are also present (Veblen and Donnegan 2005). The montane, 

subalpine, and alpine ecozones, as well as their interceding ecotones, are all represented in the 

ecology of the watershed (Figure 2, Figure 3). Culturally significant floral and faunal species are 

likewise found throughout the study area. Bison (Bison bison), bighorn sheep (Ovis canadensis), 

elk (Cervus elaphus), and mule deer (Odocoileus hemionus) were known to have historically 



6 
 

occupied the high elevations of the Rawah Wilderness and were likely prey for the ancient 

hunters who occupied the watershed (Meaney and Vuren 1993:5). Edible plant species were 

likewise abundant within the study area and included dandelion (Taraxcum sp.), wild 

strawberries (Fragaria sp.), and sorrels (Oxyria and Rumax sp.) (Benedict 2007; Morris et al. 

1994:67). No known sources of toolstone exist within the watershed and its immediate 

surroundings, however small pockets of limestone and volcanic deposits in geologic faults 

abutting North Park may have yielded isolated deposits of suitable lithic materials (Black 2000; 

Morris et al. 1994:74; Morris and Marcotte 1976:25; Workman et al. 2018).  

 
Figure 2. Variability in elevation and terrain within the study area. A diverse range of mountain environments exist 
in the watershed, including (a) incised glacial valleys and subalpine forests, (b) dense riparian vegetation at river 
confluences, and (c) alpine tundra and cirque basins.  
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Figure 3. Ecozones and transitional ecotones of the West Branch of the Laramie River (WBLR) watershed. The 
watershed encompasses a diverse high elevation landscape, with a wide variety of ecological settings represented. 

Collectively, the diverse ecological and geomorphologic settings found in the WBLR 

watershed form an optimal laboratory for analysis of hunter-gatherer landscape use at high 

elevations. Access to the watershed was limited by a small number of traversable passes and 

drainages, neatly delineating the physical extent of the study area on the landscape. Ancient 

peoples, and modern recreationalists today, entered the watershed by crossing Grassy Pass in the 

north, Blue Lake Pass in the south, or by traveling up the WBLR valley from the river’s 

confluence with the greater Laramie River. The limited accessibility of the watershed creates a 

neatly encapsulated high elevation microcosm, where hunter-gatherer movements and settlement 

within that closed system can be closely investigated. Alongside a large quantity of known sites 

within the study area, discussed in-depth in the succeeding chapter, these environmental 

characteristics demonstrate the high analytical value of the WBLR watershed (Figure 4).  
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Figure 4. Locations of sites (n = 31) described in this study. 5LR17 is discussed in Chapter 2 but otherwise omitted 
from the analysis due to the incompleteness of the available sample. Not shown is the Carey Lake site (5LR230), 
which was not considered in the study due to its inclusion in an ongoing research program (Meyer 2019b). 
Contextual geographic information is not shown to protect resource locations. 

 

Primary Research Questions and Organization 

With the objective of isolating the dynamic processes behind preferential reoccupation in 

high elevation environments, this study is organized around three scales of inquiry which address 

the assemblage-level, landscape-level, and site-level manifestation of landscape persistence. To 

support this analysis, Chapters 2 and 3 define the contextual and theoretical foundations of the 

study. Chapter 2 discusses the known archaeological record of the Medicine Bow Mountains, 
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alongside a description analysis of existing collections from Metcalf (1971a), Morris et al. 

(1994), and Wheat (1947). This chapter outlines the known chronology of the study area, 

summarizes the history of previous archaeological investigations in the WBLR, and discusses the 

range of variability in the material record of the WBLR watershed. Chapter 3 opens with a brief 

exploration of the high elevation archaeological record of northern Colorado, which is evaluated 

for the purpose of developing expectations for reoccupation and persistent reuse in the Medicine 

Bow Mountains. Following this, the chapter explores the persistent place and palimpsest 

concepts, alongside method and theory in the study of reoccupation, to define a priori 

expectations for reuse and reoccupation of sites in the Medicine Bow Mountains.  

With these contextual and theoretical frameworks established, the thesis addresses the 

study’s principle research questions in three analytical chapters. Chapter 4, which represents the 

first scale of analysis, considers the assemblage composition of sites from existing collections to 

identify a range of reoccupation in the study area. Through a laboratory study of artifacts 

collected by Metcalf (1971a) and Morris et al. (1994), this chapter contextualizes the analysis of 

these extant surface assemblages with the expectations outlined in Chapter 3. The objective of 

the chapter is to provide an analytical baseline for preferential reoccupation in the Rawah 

Wilderness, which addresses two principle questions. First, what is the range of reoccupation 

intensity in the study area? And second, can reoccupation be recognized from analysis of mixed 

surface collections? 

With a defined range of reoccupation intensity for the study area, and ordinal 

classification of sites by reoccupation intensity, into high reuse, moderate reuse, or low reuse 

classes, Chapter 5 employs a distributional approach to evaluate the implications of landscape 

settlement for preferential reoccupation. Through advanced spatiotemporal modeling, using a 
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maximum entropy (Maxent) methodology, this chapter compares spatial models for the 

landscape suitability of high, moderate, or low reuse sites. The results of the modeling, derived 

from analysis of environmental variables and best available archaeological data, identify 

divergent patterns in the distribution of reoccupied sites across the larger watershed. Using these 

methods, the objective of the chapter is to better understand the role of high elevation landscapes 

in encouraging or discouraging reuse of place. The chapter asks, is there an identifiable 

landscape or ecological signature for persistent reoccupation? To what degree do environmental 

conditions contribute to high degrees of reuse? Are there substantive differences between 

environmental conditions associated with high, moderate, or low evidence of reoccupation? And, 

how does reoccupation intensity vary across diverse ecological and environmental conditions? 

With this improved understanding of assemblage composition and the landscape 

distribution of reoccupied sites, and their implications for persistent use of place, the final 

analytical chapter considers the spatial structure of preferentially reused sites. While the previous 

chapters rely on existing data, Chapter 6 applies spatial analyses to a newly collected field 

dataset from 2019 (Buckner 2019). Through analysis of surface artifact distributions, this chapter 

explores the dynamics of site structure through time, the formation and character of associated 

palimpsest deposits, and analysis of time-averaged surface contexts. In meeting these objectives, 

the chapter asks, to what degree is reoccupation recognizable from surface contexts? How is 

reoccupation reflected spatially in the distribution of artifacts at sites? And how does variation in 

artifact distributions inform analysis of reoccupation?  

The final chapter, Chapter 7, synthesizes these results to identify overarching patterns 

associated with persistent reoccupation of high elevations in the Medicine Bow Mountains. 

Alongside a discussion of how these results could inform broader understandings of high 
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elevation archaeology in the greater Southern Rocky Mountains, this final chapter outlines the 

larger implications of the study to academia and cultural resource management by discussing 

their relevance to current discourses in the study of hunter-gatherer landscape use and the 

archaeology of high elevation environments in northern Colorado. The final pages of the thesis, 

alongside a discussion of the study’s limitations and suggestions for their possible future 

resolution, discuss future directions for continued research. Collectively, the objective of this 

final chapter is to define the study’s contributions to existing bodies of literature and outline its 

role in guiding future research in these areas.  
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CHAPTER 2 – ARCHAEOLOGY OF THE WEST BRANCH OF THE LARAMIE RIVER 

  

 The current study is established upon an existing body of research on the archaeology of 

the Rawah Wilderness. These previous investigations generated a foundation for the high 

elevation archaeology of the Medicine Bow Mountains, and their findings form a critical 

component of this analysis. The objective of this chapter, then, is to evaluate these existing data 

to create a baseline dataset for continued analysis. This is accomplished through discussion of 

the existing bodies of knowledge for the study area and descriptive analysis of extant collections 

acquired by Wheat (1947), Metcalf (1971a), and Morris et al. (1994). Analysis of these 

collections can yield a better understanding of the chronology of foragers’ use of the study area, 

and will consider the variation in material culture commonly associated with sites in the 

Medicine Bow Mountains. Especially as time forms a critical aspect of this study, this chapter’s 

discussion of projectile point typologies and associated relative chronologies forms an integral 

component of the analyses presented later in the thesis. With its synthesis of the material culture 

of the Rawah Wilderness, this chapter acts as a foundation for the theoretical and analytical 

approaches employed in the later analysis.  

 The archaeological record of the Rawah Wilderness has been a subject of analysis since 

at least the mid-20th century (Table 1). In the historic recreational use of the watershed, anglers 

were reported to have brought “six inch Yumas [lanceolate projectile points] from the high 

lakes” which dot the cirque basins of the Medicine Bow Mountains (Gary Weinmeister to Jason 

LaBelle, personal communication 2018). The first documented site in the study area, and just the 

17th recorded site in Larimer County, was 5LR17. A Folsom point and Late Prehistoric 

diagnostics were reported at the site, which was discovered by avocational archaeologist Ralph 
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Culver and recorded “from data” by Wheat (1947). The presence of a reported Folsom point at 

5LR17 has led to its recognition as a rare example of a potential high elevation Folsom site, 

though the point is not available for study among the known collections from 5LR17 and may 

remain in the possession of the Culver family (Brunswig 2007:275; Jason LaBelle, personal 

communication 2018).  

Following Culver and Wheat’s (1947) recordation of 5LR17, there is no record of formal 

archaeological investigation in the Rawah Wilderness until 1971. At this time, Michael Metcalf 

(1971a) undertook an extensive solo survey of the high elevations of the WBLR watershed as 

part of his undergraduate research at Colorado State University. Metcalf’s (1971a) intuitive 

surveys, though aimed at identifying game drives similar to those in the Colorado Front Range, 

were successful in identifying a large number of sites with high data potential. These discoveries 

instigated a 25-year longitudinal study of the Rawah Wilderness led by Elizabeth Morris of 

Colorado State University (Morris and Metcalf 1993; Morris et al. 1994; Morris 2010). Morris 

and Metcalf’s (1993) work in the Rawah Wilderness aimed to better understand the 

chronological context and settlement patterns of ancient hunter-gatherers’ in the Medicine Bow 

Mountains, particularly in relation to the more defined archaeological record of the neighboring 

Colorado Front Range. In the context of Benedict’s (1985, 1992) work in the Indian Peaks 

Wilderness, Morris et al. (1994) sought to profile the archaeological record of the Rawah 

Wilderness and investigate the role of the Medicine Bow Mountains within hunter-gatherers’ 

lifeways in the larger northern Colorado region. Morris (2010) likewise used these longitudinal 

approaches to investigate the continued exposure of artifacts on the surface of sites through time. 

These Colorado State University investigations were successful in contributing an additional 34 

sites to the known record of the WBLR watershed and generated large curated collections for 



14 
 

analysis. These collections include a small number of obsidian artifacts (n = 5), which were 

among the materials which LaBelle (2009) considered in his broader sourcing analysis of 

obsidian artifacts from various sites within the South Platte River Basin. Subsequent studies, 

following the conclusion of Morris’ (2010) work, include limited compliance surveys and an 

ongoing longitudinal study at the Carey Lake site (5LR230) by the Center for Mountain and 

Plains Archaeology (Koenig 2018; LaBelle and Meyer 2017; Meyer and LaBelle 2017; Meyer 

2018, 2019b, 2019c).  

Table 1. History of archaeological investigations preceding the current study. Reproduced with modification from 
Buckner (2019). 

 

 

Documented Archaeological Sites and Existing Collections 

As of 2020, 37 sites have been formally recorded in the WBLR watershed. This total 

includes sites documented by Wheat (n = 1), Morris and Metcalf (n =34), and Buckner (n = 2) 

(Buckner 2019; Morris and Metcalf 1993; Morris et al. 1994; Wheat 1947). For the purposes of 

Researcher or 

Institution 

Year(s) Summary  Citations 

J.B. Wheat  1947 Recorded site 5LR17 based on 

account of Ralph Culver, 

amateur archaeologist. 

 

Wheat (1947) 

M. Metcalf and E.A. 

Morris  

(Colorado State 

University) 

1971 – 1996  Surveys, recordation, 

collection, and analysis of 

sites in the WBLR and 

surrounding area; Fieldwork 

was conducted with support 

from CSU crews, USDA-FS 

archaeologist John Slay, and 

others. 

 

Metcalf (1971a); Morris and 

Metcalf (1993); Morris et al. 

(1994); Morris (2010) 

USDA - FS   2018 NHPA Section 110 surveys in 

the lower elevations of the 

WBLR. 

Koenig (2018) 

CMPA 

(Colorado State 

University) 

2009; 2016 - 

Present 

Obsidian analysis (2009); 

Longitudinal study of the 

Paleoindian component at the 

Carey Lake site (5LR230) 

(2016 – Present) 

LaBelle (2009); LaBelle and 

Meyer (2017); Meyer and 

LaBelle (2017); Meyer (2018, 

2019b, 2019c) 
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this analysis, seven closely situated sites were consolidated into three localities. These localities, 

5LR235/5LR273/5LR274, 5LR227/5LR228, and 5LR153/5LR237, were located within 30 

meters of the nearest neighboring site(s) and were evaluated as single localities for the analytical 

portions of this study. The rationale for consolidating these sites was based on the place-oriented 

approach utilized in this study. With the aim of better understanding ancient hunter-gatherers’ 

use of place, it was critical to eliminate arbitrary delineations in site boundaries which would 

serve only to break spatially associated assemblages into distinct units and imply non-association 

(Dunnell 1992). While a true siteless approach was not possible given the nature of the existing 

datasets, and some reliance on the site concept was therefore necessary, it was important to 

consider closely spatially associated sites as representative of single places on the landscape. All 

27 individual sites, and the three consolidated localities, are associated with existing collections 

of surface artifacts housed in the Center for Mountain and Plains Archaeology at Colorado State 

University. During the 25 years of Morris et al.’s (1994) Rawah Wilderness investigations, 

Morris and Metcalf (1993) employed a strategy which called for surface collection of all tools 

and debitage during each visit to a site (Morris 2010). Sites were also revisited intermittently 

during this period, which resulted in extensive surface samples for these sites (Morris and 

Metcalf 1993; Morris et al. 1994). In contrast to those sites included within Morris and Metcalf’s 

(1993) study, only a partial record exists for the 1st site documented in the study area, 5LR17, as 

debitage and many reported tools are absent from known collections from the site. The surface 

sample from the 37th site in the study area, 5LR14336, is likewise partial, as only diagnostics 

were collected as part of a conventional site recording (Buckner 2019). While these sites are 

omitted from the analytical portions of this study due to the incompleteness of their surface 

samples, they are discussed in this chapter and considered in the broader evaluation of the study 
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area’s chronology and material culture. One site, the Carey Lake site (5LR230), is not discussed 

in this chapter or elsewhere in this thesis as it is the subject of an ongoing longitudinal study 

(Table 1; See Morris et al. [1994] and Morris [2010] for data on collections from the site).  

Table 2. Summary table of all known collections from the study area, arranged by individual site number. 
Collections from 5LR17 are curated at the University of Colorado, while all remaining collections are available from 
Colorado State University. Counts do not include collections made during 2019 fieldwork (See Buckner 2019).  

 

Site 

Assemblage 

Size 

(n) 

Total 

Debitage  

(n) 

Total  

Tools 

(n) 

Projectile 

Points 

(n) 

Ground 

Stone 

(n) 

Year 

Recorded 

5LR17 6 0 6 0 1 1947 

5LR101 16 11 5 1 0 1974 

5LR102 12 9 3 2 1 1974 

5LR113 26 23 3 0 0 1974 

5LR114 10 10 0 0 0 1974 

5LR131 91 86 5 2 0 1971 

5LR132 114 111 3 0 0 1971 

5LR133 41 35 6 1 2 1971 

5LR134 28 23 5 2 0 1971 

5LR135 10 8 2 0 0 1971 

5LR153 118 115 3 0 0 1971 

5LR158 76 73 3 1 0 1971 

5LR173 3 3 0 0 0 1979 

5LR174 160 147 13 7 0 1979 

5LR224 1 0 1 0 0 1972 

5LR225 24 21 3 0 0 1971 

5LR226 20 18 2 0 0 1971 

5LR227 43 38 5 1 0 1971 

5LR228 58 50 8 2 0 1971 

5LR229 21 13 8 2 0 1971 

5LR231 38 34 4 1 0 1971 

5LR232 54 50 4 0 0 1971 

5LR233 33 25 8 1 1 1971 

5LR234 83 79 4 0 0 1971 

5LR235 337 331 6 3 1 1972 

5LR236 47 44 3 0 0 1971 

5LR237 180 162 18 10 0 1971 

5LR238 148 142 6 2 0 1971 

5LR239 2 0 2 2 0 1972 

5LR240 66 53 13 5 1 1972 

5LR273 454 434 20 2 0 1972 

5LR274 33 29 4 1 0 1972 

5LR1733 1 0 1 1 0 1993 

5LR1834 23 22 1 0 0 1994 

5LR14335 1 0 1 1 0 1994* 
* Isolated Paleoindian point collected by Elizabeth Morris circa 1994. OAHP form completed in 2019 (Buckner 2019). 
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Lithic Raw Materials 

 Substantial variability exists among lithic raw materials in Rawah Wilderness 

assemblages, and recognition of this diversity is necessary for reconstruction of hunter-gatherer’s 

use of high elevation environments (Benedict 1992; Reckin and Todd 2020). Previous studies of 

the Medicine Bow Mountains identified a high degree of heterogeneity in material types and 

observed that lithic raw materials were imported “a considerable distance” from their sources 

(Metcalf 1971a; Morris et al. 1994:74; Morris and Marcotte 1976). Geological maps similarly 

reveal an apparent absence of local lithic raw material sources in the vicinity of the study area 

(Workman et al. 2018a, 2018b). Similarly, Black’s (2000) synthesis of Rocky Mountain lithic 

raw material sources likewise did not identify any quarriable sources in proximity to the WBLR 

study area. Continued investigation by Black (2019) and others has recognized the role of small-

scale quarries in raw material procurement in the larger North Park region, however there 

remains no evidence of truly local sources within 20 kilometers of the study area (Binford 1980). 

Lithic raw material type was documented for each of the 2,372 artifacts in existing 

collections from the WBLR, and 265 artifacts mapped in the field, and standardizing 

classification of lithic raw materials was critical (Buckner 2019). In the early stages of the 

analysis, Czubernat (2019) investigated variability in lithic raw materials at 5LR174 through a 

minimum analytical nodule analysis. Following methods in Larson (1994), Czubernat (2019) 

grouped the 5LR174 assemblage into analytical nodules by evaluating the macroscopic 

characteristics of each artifact under visible and ultraviolet light. Czubernat’s (2019) study 

identified a surprising range of variability among the material composition of the 5LR174 

assemblage, and raw materials initially thought to represent homogenous types were shown to be 

highly variable (Buckner 2019).  
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Figure 5. A representative sample of variability among lithic raw materials. Lithic raw materials were categorized 
into broad classes to minimize subjectivity and ensure the integrity of subsequent analyses. These classes were 
selected to emphasize qualities which could be objectively identified based on macroscopic characteristics and de-
emphasize subjective qualities like coloration, which can vary substantially within a single nodule of raw material.  
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Table 3. Criteria applied to classify chipped stone raw materials into grouped categories. Materials were classed into 
CCS, quartzite, quartz, and obsidian categories to minimize subjectivity and error in raw material classification. 
Table reproduced with modification from Buckner (2019). 

Raw Material  Definition Classification Characteristics 

 

Crypto-crystalline Silicate (CCS) 

 

Lithic materials with fine-grained silicate 

structures (e.g. chert, jasper, silicified wood, 

chalcedony). 

 

Fine granular structure, matte or waxy 

luster, may be opaque or transparent. 

Diverse colorations. Quartz grains are 

absent from the matrix. 

 

 

Quartzite 

 

 

 

Silicified quartz-bearing sandstone 

 

Granular structure with visible quartz 

crystals in silicified sandstone matrix. 

Diverse colorations. Opaque.  

 

 

Quartz 

 

 

Crystalline mineral which occurs in rock 

veins. 

 

Amorphous granular structure. 

Typically colorless or white, with 

possible additional colorations from 

mineral staining and impurities. 

Commonly transparent. 

 

 

Obsidian 

 

 

‘Volcanic glass’, formed from rapidly cooled 

extrusive lava flows. 

 

Glassy appearance. Black or grey 

coloration with banding possible, may 

occur in green or maroon varieties. May 

be opaque or transparent. 

 

 

Czubernat’s (2019) recognition of the high degree of heterogeneity in raw material 

classes necessitated additional measures to ensure accurate classification of material types for 

chipped stone artifacts. Particularly as blind studies have suggested that visual identification of 

raw materials is largely subjective and experience dependent, additional controls were required 

for field and laboratory classification of material types (Agam and Wilson 2019). To mitigate 

this issue, and ensure the integrity of raw material classifications, materials were classified into 

categories with objectively recognizable macroscopic characteristics and a negligible likliehood 

of misidentification (Figure 5; Table 3). These categories were defined as crypto-crystalline 

silicate (CCS), quartzite, quartz, and obsidian. CCS encompasses the widest variety of materials, 

such as cherts, jaspers, and chalcedonies, however this grouping was necessary due to high 

degrees of overlap between these materials. The “lusterous opaque white chalcedony” described 
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in Morris and Marcotte (1976:21), for example, is identified as “mixed chalcedonic chert” in 

Buckner (2019:9-10) and a “white to slightly translucent chert” in Meyer (2019c:13). Depending 

on the portion preserved, two fragments of this common material could be variously identified as 

either opaque white chert or translucent chalcedony (Buckner 2019). The challenges of 

classifying this frequently occurring material, alongside similarly subjective materials, 

underscores the need for controlled standardization of lithic raw material classification. 

In contrast to materials classified as CCS, materials grouped into quartzite, quartz, and 

obsidian categories exhibited little variability. Both quartzite and quartz are readily 

distinguishable from CCS and obsidian, as well as from each other, and can be consistently 

identified correctly by crewmembers regardless of experiential level. The quartzite category 

includes both meta-quartzites and ortho-quartzites, as little functional difference exists between 

these sub-materials and broader quartzite materials (Black 2000). Among the quartzite 

assemblage, coloration exhibited the highest variability, as there was limited variation in the 

granular structure and mineral composition of quartzite artifacts (Figure 5). Similarly, materials 

designated as quartz were easily distinguishable given their distinctive amorphous granular 

structure (Driscoll 2011). Obsidian was similarly identifiable with minimal probability of 

misclassification. Obsidian items considered in the study were limited to opaque black varieties, 

though a small number of obsidian flakes (n = 4) were not physically inspected by the author due 

to their temporary withdrawal from the collection for a sourcing analysis (LaBelle 2009; Jason 

LaBelle, personal communication 2018). 

Collectively, though limiting the available resolution, the application of controlled lithic 

raw material classes was successful in minimizing subjectivity and preserving the integrity of the 

study’s analysis of raw materials (See discussion in Chapter 4, Chapter 6). In total, of the 
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existing pre-2019 collections of both chipped stone debitage and tools, CCS comprised 78.6% of 

the assemblages (n = 1,871), quartzite represented 19.7% (n = 469), quartz encompassed 1.2% (n 

= 28), and obsidian covered 0.21% (n = 5) of the total WBLR assemblage. Lithic materials 

associated with ground stone technology did not require similar controls given the well-defined 

macroscopic characteristics of the most common materials, such as sandstone and granite (Pelton 

2013; Shropshire 2003). 

 

Tool Typologies and Chronology  

 This section considers the assemblage of 199 lithics tools from 29 localities in the WBLR 

watershed. An analysis of tool typologies was undertaken to establish the functional diversity of 

assemblages in the study area, alongside the contemporaneity or non-contemporaneity of 

artifacts within those assemblages. Of the tools available for this study, 181 tools were collected 

during investigations prior to 2019, while an additional 18 tools were collected as part of new 

fieldwork undertaken for this project (Buckner 2019; See Chapter 6). For each tool, maximum 

length (mm), maximum width (mm), maximum thickness (mm), and mass (g) metrics were 

collected alongside presence/absence of heat treatment, lithic material type, and portion. For 

projectile points, typological classification was recorded alongside additional applicable 

dimensions such as neck width (mm), base width (mm). Each tool was assigned to 11 pre-

defined functional classes, projectile points, bifaces, drills, scrapers, cores, preforms, handstones, 

netherstones, edge modified flakes, unifaces, and gravers. These classes were defined by their 

morphological attributes and existing conventions outlined in Andrefsky (1998) and Adams 

(2002), and were intentionally left as broad categories to minimize misclassification and 

associated error, better comply with the data needs of the analysis, and to allow for the complete 
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analysis of the total assemblage within the limited time constraints of the study. In total, bifaces 

(n = 61; 30.7%) comprised the majority of the tool assemblage, followed closely by projectile 

points (n = 56; 28.1%). Edge modified flakes occurred at the next highest frequency (n = 26; 

13.1%), with similar quantities of scrapers (n = 18; 9.1%) and preforms (n = 17; 8.5%). Ground 

stone was also represented in small quantities, with netherstones (n = 7; 3.5%) and a single 

handstone (n = 1; 0.5%) collectively representing just 4% of the larger assemblage. The 

remaining tool classes, which were observed only in small quantities, included cores (n = 4; 2%), 

drills (n = 3; 1.5%), unifaces (n = 3; 1.5%), and gravers (n = 3; 1.5%). The following sections 

define and evaluate each tool class in greater detail, alongside representative photographs.  

 

Projectile Points and Temporal Diagnostics 

In their analysis of the chronology of the Rawah Wilderness, Morris et al. (1994) 

described typological evidence for the indigenous occupation of the Medicine Bow Mountains 

from the Paleoindian period through the Late Prehistoric. Evidence of Protohistoric occupation 

was absent, however Morris et al.’s (1994) study recognized the long-duration of use and reuse 

which characterizes the human use of the Medicine Bow Mountains through time. Establishing 

chronological sequences and applying them to evaluate the long-term patterns of landscape use, 

in the same way as Morris et al. (1994), is likewise a critical component of this study. In the 

absence of subsurface investigations and absolute dating, this analysis relies entirely upon 

established projectile point typologies. In interpreting these typologies, the study applies the 

regional chronology outlined by Chenault (1999), which identifies three broad periods 

(Paleoindian, Archaic, and Late Prehistoric), and their associated phases (early, middle, late) 

(Table 4). Though Morris et al. (1994:70) incorporated other functional tool types behind 
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projectile points into their chronology, such as “beaked end scrapers” and “big knives” as 

diagnostic markers of the Paleoindian period, this study assigned temporal affiliation based only 

upon accepted projectile point typologies and preforms with diagnostic characteristics. Only one 

preform met this criteria, 5LR240-60, and was assigned a temporal affiliation (Figure 6).  

Table 4. A regional chronology for northern Colorado, adapted from Chenault (1999) and applied to organize the 
chronology of the Rawah Wilderness. 

Temporal Period Uncalibrated Date Range 

(RCYBP) 

Representative Projectile Point 
Typologies 

Early Paleoindian Period 

 
12,000 – 11,000 

 
  Clovis 

Middle Paleoindian Period 

 
11,000 – 10,000 

 
  Folsom, Agate Basin, Hell Gap 

Late Paleoindian Period 

 
 

10,000 – 7,500 

 
  James Allen, Angostura, Pryor 

Stemmed, Cody Complex 

Early Archaic 

 
7,500 – 5,000 

 
  Mount Albion 

Middle Archaic 

 
5,000 – 3,000 

 
  Duncan-Hanna, McKean 

Lanceolate, Mallory 

Late Archaic 

 
3,000 – 1,800 

 
  Yonkee, Pelican Lake 

 
Early Ceramic  
(Late Prehistoric)  

   
 

1,800 - 800 

 
   

  Hogback corner-notched 

 
Middle Ceramic 
(Late Prehistoric)  

 
 

800 - 410 

 
   

  Plains tri-notch,  
Plains side-notch  

 
Late Ceramic 
(Protohistoric) 

 
 

410 - 90 

 
   

  Metal trade points  

 

Following laboratory analysis of the 56 projectile points present in the WBLR watershed 

collection, 28 projectile points and one preform were assigned to specific types associated with 

this regional chronology. An additional 14 points were classed within a broader temporal 

category but were not assigned to a specific type (e.g. unassigned Archaic). The remaining 14 

projectile points, mostly comprised of fragmentary pieces, were classified as unassigned. A 
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conservative methodology was utilized for typological classification of projectile points, and 

relied upon specimens with complete hafting elements, or defined attributes which strongly 

aligned with published examples of an accepted type in the archaeological literature. 

The results of the projectile point analysis identified seven artifacts associated with the 

Late Paleoindian period, eleven with the Early Archaic, seven with the Late Archaic, and eight 

associated with the Late Prehistoric. Projectile point styles predating the Late Paleoindian period 

were absent, as were examples from the Middle Archaic and Protohistoric. Though Morris et al. 

(1994) reported the absence of materials associated with the Early and Middle Paleoindian 

period and Protohistoric period, they did affiliate a number of artifacts with the Middle Archaic. 

Given the more conservative strategy for typological identification employed here, this study 

was unable to corroborate Middle Archaic temporal affiliations based upon projectile point 

fragments without hafting elements. 

Artifacts (n = 7) assigned a Late Paleoindian temporal affiliation were comprised of six 

projectile points and a single preform (Figure 6). 5LR1733-1 is an example of a Late Paleoindian 

James Allen point (Morris 2010: Figure 1f). James Allen points are dated to approximately 

9,350–7,900 RCYBP and are associated with lanceolate forms with parallel to slightly 

converging bases and a distinctive parallel-oblique flaking pattern (Mulloy 1959; Pitblado 2003, 

2007). Notably, these points exhibit a characteristic basal concavity (Pitblado 2003:112). The 

James Allen type site is located nearby to the study area, in the vicinity of Laramie, Wyoming, 

and these points are likewise found in similar high elevation contexts and in the foothills of 

Larimer County (Benedict 1981, 1985; Husted 1965; Pitblado 2000, 2003; Pelton et al. 2016; 

Morris 2010; Mulloy 1959). 5LR134-26 was also classified as a James Allen projectile point, 

though with less certainty due to its condition (Figure 6). The artifact appears to represent a 
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basal/lateral fragment of a James Allen point which was reworked at the break along its medial 

axis. The point does not exhibit a clear parallel-oblique flaking pattern in its current condition, 

but the absence of this characteristic is explained by significant damage to the point, as reflected 

by fragmentations spalled from its surface and lateral chipping. 5LR134-26 embodies many 

aspects of the distinct basal morphology of James Allen points, and its size and characteristics 

closely align with known examples (cf., Benedict 1981: Figure 67a; Mulloy 1959: Figure 1p).  

 

Figure 6. Projectile points and preform (5LR240-60) diagnostic of the Late Paleoindian period. Top row, from left: 
A proximal/medial fragment of a James Allen point, a proximal fragment of a probable Scottsbluff point, an 
unassigned Late Paleoindian projectile point or knife, a possible Foothills-Mountain Complex point. Bottom row, 
from left: A possible basal fragment of a James Allen point, a proximal/medial fragment of an unassigned Late 
Paleoindian point, and an unassigned Late Paleoindian preform.   
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 Another point diagnostic of the Late Paleoindian period is 5LR174-150, which is a 

proximal fragment of a Scottsbluff projectile point. Scottsbluff points are associated with the 

Cody Complex, and date to approximately 9,400 – 8,300 RCYBP (Pitblado 2003). Scottsbluff 

forms have likewise been found at high elevations in the Southern Rocky Mountains nearby to 

the study area, including at Carey Lake (5LR230) and in the Colorado Front Range (Benedict 

2000; Brunswig 2007; Ives 1942; Morris 2010). The Horner site is often identified as the type 

site for the Cody Complex, though Scottsbluff points themselves take their name from the 

Scottsbluff Bison Quarry (Barbour and Schultz 1932; Frison and Todd 1987; Frison 1991). The 

points are commonly differentiated into Type I and Type II varieties. Type I points are 

characterized by transverse flaking, triangular blades, and a stemmed hafting element. Type II 

forms exhibit similar characteristics, but with wider blades and distinct shoulder definition 

(Wormington 1957). Due to the fragmentated nature of the specimen, it is not clear whether 

5LR174-150 represents a Type I or Type II point. A second point, 5LR174-151, bears an 

ambiguous resemblance to a stemmed Type II Scottsbluff point while other attributes are more 

characteristic of shallow corner-notching. The artifact exhibits some asymmetry in its blade 

shape, suggesting possible use as a knife or cutting tool. A slight basal indent, not characteristic 

of the Scottsbluff type, is also apparent. It is unclear if these characteristics are representative of 

intentional shaping or aberrant attributes from resharpening and retouching. While the point is 

somewhat smaller than many Scottsbluff points, heavily resharpened points of similar 

dimensions have been documented (Bonnichsen and Keyser 1982; Joyes 2000). The presence of 

a confirmed Scottsbluff point at the same site (5LR174-150) further supports that 5LR174-151 

may represent a diminutive Type II Scottsbluff form or Scottsbluff-aged tool, though it was 

ultimately classified as an unassigned Late Paleoindian type.  
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 The remaining Late Paleoindian forms are comprised of a possible Foothills-Mountain 

Complex point (5LR239-2), an unassigned point (5LR14335-1), and an unassigned preform 

(5LR240-60). The Foothills-Mountain Complex was defined by Frison (1991:67), and refers to 

artifacts associated with “foothill-mountain-oriented” groups who occupied the Southern Rocky 

Mountains in the Late Paleoindian period after 10,000 years ago. Projectile points assigned to 

this type reflect a high degree of variability, which Pitblado (2007) contends encompasses other 

better defined Late Paleoindian projectile point types. While debate remains ongoing over the 

utility of the Foothills-Mountain type, 5LR239-2 does exhibit similarities to representative 

Foothills-Mountain forms and similar Paleoindian-affiliated points from nearby North Park (cf., 

Frison 1991: Figure 2.33b-c; Lischka et al. 1983: Figure 7e). There are likewise some similarities 

with Pryor Stemmed points and associated forms, though these are also not definitive (Benedict 

1981; Frison 1991; Pitblado 2003). Ultimately, the point was classified as an unassigned Late 

Paleoindian type for analytical purposes. 5LR14335-1 and 5LR240-60 were similarly typed as 

unassigned Late Paleoindian forms. 5LR14335-1 exhibits a basal morphology and flaking pattern 

which are consistent with Late Paleoindian period technological complexes. The late-stage 

preform, 5LR240-60, likewise reflects elements of possible Paleoindian manufacture, such as a 

lanceolate morphology and concave base (LaBelle and Meyer 2017).   

 While significant variability exists among Late Paleoindian types in the study area, 

projectile points associated with the Early Archaic (n = 11) are well represented and largely 

homogenous. Early Archaic diagnostics from the study area are comprised entirely of Mount 

Albion Complex projectile points (Figure 7). The Mount Albion Complex dates from 

approximately 4,650 to 4,420 BCE, and is closely associated with the Southern Rocky 

Mountains of northern Colorado (Benedict and Olson 1978; Benedict 2012; LaBelle and Pelton 
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2013). The type site for the Mount Albion Complex, the Hungry Whistler (5BL67) site, is 

located some 70 kilometers (43 miles) to the south of the Rawah Wilderness study area. 

Projectile points associated with the Mount Albion Complex are comprised of dart points with 

ground bases and shallow side or corner notches (Benedict 1978). These points are likewise 

commonly associated with “poor quality” materials, such as vein quartz and quartzite, though 

smaller quantities of finer materials were also utilized (Benedict 1978:122).   

 

Figure 7. Early Archaic projectile points representative of the Mount Albion Complex. Artifacts 5LR237-178 and 
5LR240-2019-27 are produced from CCS, while the remaining examples are manufactured from quartzite.  

 Mount Albion complex points in the study area assemblages are consistent with examples 

in Benedict (1978, 2012) and Benedict and Olson (1978) (Figure 7). Quartzite is the most 

represented material among the Mount Albion points, with a few isolated examples of 

chalcedony and chert materials (5LR240-2019-27, 5LR237-178, 5LR237-172 [pictured in 
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Appendix A]). Basal morphology is largely uniform across the Mount Albion assemblage 

though, consistent with observations in Benedict (1978), there is a small degree of variability in 

size and notching.  

 Late Archaic projectile point morphologies are also represented in the Rawah Wilderness 

assemblages. Typologies associated with the Late Archaic include Pelican Lake projectile points 

and possible Pelican Lake/Elko forms. Pelican Lake points are associated with the Northern 

Plains, where they were first recognized by Wettlaufer (1955), however some ambiguities remain 

surrounding the use of this type in the Southern Rocky Mountain region (Eighmy and LaBelle 

1996). These points are characterized by corner-notches which form “sharp points or barbs” at 

their intersection with the body of the projectile, alongside variable bases which can be straight, 

concave, or convex (Frison 1991:101; Lee 2012; Wettlaufer 1955). Though questions remain 

surrounding the type’s distribution and chronology, Pelican Lake forms have been consistently 

reported in northern Colorado, where they are assigned a regional date of approximately 1,250 

BCE to 230 CE (Gooding 1981; LaBelle and Pelton 2013; Pelton et al. 2016; Tate 1999; Todd et 

al. 2001). The four points classified as Pelican Lake among the Rawah Wilderness assemblages 

(Figure 8, top row) reflected similar stylistic attributes to specimens identified as Pelican Lake or 

probable Pelican Lake forms in the northern Colorado region (cf., Pelton et al. 2016: Figure 5d; 

Todd et al. 2001: Figure 6; Whittenburg 2017: Figure 4.4). Though the specimens are heavily 

fragmented, the dimensions of each point are likewise consistent Pelican Lake forms.  

Three points were identified as representing possible Elko corner-notched or Pelican 

Lake variants (Figure 8; 5LR229-15, 5LR239-1, 5LR14336-2019-1), though they were classified 

as unassigned Late Archaic types for the analytical purposes of this study. The points were not 

assigned a definitive chronological affiliation due to their variable morphologies and because 
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Elko corner-notched points are commonly regarded as a “wastebasket” type with limited 

typological utility (Holmer 1986; Page 2017:319). With this caveat, evidence of Elko corner-

notched types and Great Basin influence on the point typologies of the Southern Rocky 

Mountains and Medicine Bow Mountains has been acknowledged by archaeologists (Benedict 

1992; Morris et al. 1994; Pitblado et al. 2007). 5LR229-15 exhibits some similarities to Late 

Archaic corner-notched points identified as Elko forms, but also closely resembles the 

representative MM4 type in Tate (1999: Figure 5-1). Though its form is distinct, the artifact is 

heavily reworked and is missing attributes which would facilitate improved classification. 

Artifacts 5LR239-1 and 5LR14336-2019-1 are both large corner-notched points with deep 

notches. 5LR14336-2019-1 closely resembles a near identical example from the Fossil Creek site 

(5LR13041), which was identified as a possible hafted knife or Elko/Pelican Lake variant (cf., 

LaBelle 2015a: Figure 34). Though only a medial/lateral fragment exists, 5LR239-1 exhibits 

similar characteristics as 5LR14336-2019-1 and could reflect a similar point morphology, though 

LaBelle and Meyer (2017) also considered it to represent a possible Paleoindian type.  

 

Figure 8. Projectile points representative of the Late Archaic (top row) and unassigned Archaic (bottom row). 
Artifacts in the top row represent probable Pelican Lake forms. Artifacts in the bottom row are unassigned Archaic 
forms. Projectile points 5LR229-15, 5LR239-1, and 5LR14336-2019-1 may represent Pelican Lake/Elko variants.  
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 The Late Prehistoric period is also well represented within the wider projectile point 

assemblage for the study area. Projectile point typologies associated with the Late Prehistoric 

include Hogback corner-notched, Plains side-notched, Plains tri-notched, and triangular 

unnotched varieties (Figure 9). Hogback corner-notched points, also referred to as Foothills 

corner-notched, exhibit deep corner-notches, barbed shoulders, and thin neck widths (Perlmutter 

2015). This type was first recognized at the George W. Lindsay Ranch site (5JF11), where 

Nelson (1971) defined the Hogback Phase. Following Nelson’s (1971) recognition of the points 

as a distinct type, they have been frequently reported in the foothills and mountains of northern 

Colorado (Benedict 1975a, 1975b, 1985, 1990, 1992; LaBelle 2015; LaBelle and Pelton 2013; 

Pelton et al. 2016). Hogback corner-notched points are closely associated with the Early Ceramic 

period in northern Colorado, and are assigned a date range of CE 600 to 1000 (LaBelle and 

Pelton 2013). Plains side-notched (5LR238-148) and Plains tri-notched (5LR174-148) are also 

examples of distinct Late Prehistoric types which are common in northern Colorado. These types 

are respectively associated with the Middle Ceramic period and Late Ceramic (Protohistoric) 

period (Gilmore 1999; LaBelle and Pelton 2013). Morris et al. (1994) argue that the observed 

Plains tri-notch point is representative of Late Ceramic precontact use of the Medicine Bow 

Mountains, and not the Protohistoric era, and this assertion is supported by the occurrence of 

Plains tri-notch styles in assemblages which pre-date the Protohistoric period (Butler 1988; 

Gilmore 1991, 1999; Nelson and Stewart 1973).  Both Plains side-notched and Plains tri-notched 

types have likewise been identified in high elevation contexts (Benedict 1985; LaBelle and 

Pelton 2013). Regional dates for these points range from CE 1,100 to 1,800 for Plains side-

notched varieties to CE 1,600 to 1,800 for Plains tri-notched types (LaBelle and Pelton 2013).  
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Figure 9. Representative Late Prehistoric forms. Top row, from left: A proximal/medial fragment of a Hogback 
Corner-notched arrow point, a proximal/lateral fragment of a Hogback Corner-notched projectile point, a Plains 
Side-notched projectile point, and a Plains tri-notched point. Bottom row: Triangular unnotched projectile points.  

 Triangular unnotched points are also present among the Late Prehistoric diagnostics 

(Figure 9). These points are often affiliated with the Middle and Late Ceramic, and can occur in 

a number of temporal contexts across these periods (Gilmore 1999; Johnston 2016; Meeker 

2017). Triangular unnotched points are distinguished from projectile point preforms, such as the 

“guitar pick[…]” preforms associated with the Early Ceramic period, by their thinned cross-

section and finished base (LaBelle 2015:40; Meeker 2017). These points are found in the plains 

and foothills of Larimer County, as well as at high elevations in the Colorado Front Range 

(Benedict 1985; Johnston 2016; Meeker 2017). Unnotched triangular points often co-occur with 

Plains side-notched and Plains tri-notched varieties, and there is evidence for their 

contemporaneity at the Roberts Buffalo Jump (5LR100) and upper occupation level of the 

Caribou Lake site (5GA22) (Benedict 1985; Johnston 2016).  
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Bifaces 

Bifaces (n = 61) comprise the bulk of the tool assemblage considered in this study, 

representing 30.7% of the total tools evaluated among the collections. Bifaces were classified as 

artifacts which exhibit modification on two-faces of a single flaked edge around at least half of 

the artifact (Andrefsky 1998). No distinction was made for the stage of biface manufacture for 

this study, due to time constraints which limited the analysis of a large legacy collection, and a 

wide degree of variability exists in the size and characteristics of artifacts associated with this 

class (Figure 10). Five of the artifacts in the biface assemblage were recovered in the field in 

2019 by Buckner (2019), while the remaining 56 are associated with collections by Morris et al. 

(1994) and Metcalf (1971a). The majority of bifaces were produced from CCS materials (n = 

52), with smaller frequencies of quartzite (n = 9). Varying stages of completion and preservation 

are apparent in the assemblage, with just six complete bifaces among all artifacts examined. 

Dimensions and characteristics of the full biface assemblage are available in Appendix B. 

Also present among the biface assemblage were “big knives”, which Morris et al. (1994) 

considered a distinct tool type (Figure 11). Morris et al. (1994) suggested these artifacts were 

associated with the Paleoindian period, though they were not assigned any temporal affiliation in 

this study. Morris et al. (1994) similarly identified these artifacts as large scrapers, though 

laboratory study for this analysis found them to be most consistent with large bifacial blanks. 

The artifacts were manufactured from gray quartzite and were transported into the study area as 

large flake blanks. There is likewise some resemblance to the large edge modified flakes 

discussed later in this chapter (See Figure 17). 5LR131-90 consists of a mended refit between 

sites 5LR131 and 5LR273, a straight-line distance of approximately 740 meters (Figure 11).  
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Figure 10. A representative sample of variability in biface forms among the WBLR watershed assemblages. Various 
morphologies, material types, and stages of reduction are represented.  

 

Figure 11. Examples of “Big Knives”, as defined in Morris et al. (1994). Artifact 5LR131-90 consists of a mended 
refit between 5LR131 and 5LR273, a straight-line distance of approximately 736 meters. 
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Drills 

 Drills (n = 3) account for just 1.5 % of the total assemblage and are little represented 

among the Rawah Wilderness collections. The three specimens identified among the WBLR 

assemblages include one complete winged drill and two drill fragments (Figure 12). For the 

purposes of this analysis, drills were defined as rotationally exerted perforating tools with a 

formally worked bit (Andrefsky 1998). 5LR17-4 is the most complete drill form and is 

comprised of a large ‘T’ shaped drill manufactured from white chert (Figure 12). The remaining 

artifacts are in fragmentary condition, including the medial fragment of a drill base and bit 

manufactured from chalcedony (5LR225-21), and a proximal fragment of an obsidian drill with a 

cylindrical base (5LR225-23). 5LR225-21 was refitted and glued at an indeterminant time 

following its collection between 1971 and 1996 and was recorded as a single artifact. 5LR225-23 

is the only documented obsidian tool associated with the study area and is finely flaked with a 

narrow bit. All artifacts are bifacially worked.  

 

Figure 12. The complete sample of drills among the WBLR watershed assemblages. From left: A complete T-
shaped drill, a proximal/medial fragment of a drill bit and base, and a base fragment of an obsidian drill.  
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Figure 13. A representative sample of scrapers among the WBLR watershed assemblages. There is substantial 
variability in morphology and material types across the wider scraper assemblage. 

 

Scrapers 

 Scrapers (n = 18) occur in moderate quantities in the WBLR assemblages, representing 

9.1% of the total, and these tools exhibit a high degree of morphological and functional 

variability. Scrapers were defined as flake tools with formal high angle retouch along at least one 

margin (Andrefsky 1998). No class distinction was made between end- and side-scrapers, due to 

time constraints which limited the analysis of a large legacy collection, and substantial diversity 

exists in the size and character of artifacts associated with this category (Figure 13). Some 

examples appear to represent hafted scrapers, such as 5LR17-2, while others reflect expedient 

use as thumbnail scrapers (5LR234-80). Discoidal scrapers are also present among the 

assemblage, showing more intensive retouch and formal shaping (5LR228-57, 5LR158-75). 

Scrapers in the assemblage are largely produced from chert varieties, with only one example of 
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an expediently utilized quartzite scraping tool (5LR174-157, See photograph Appendix A). Half 

of the scrapers in the assemblage are complete (n = 9), which reflects a much higher rate of intact 

discard than other tool classes. The high incidence of complete scrapers may be attributable to 

the heightened probability of their accidental discard during butchery and processing activities 

or, more likely, due to the selection of sturdy flake blanks for their manufacture.  

 In some cases, Morris et al. (1994) identified scraper subtypes as diagnostic tools. The 

Big Knives discussed previously, for example, were classified as scrapers diagnostic of the 

Paleoindian period. Similarly, Morris et al. (1994:70) referenced “beaked end scrapers” as an 

additional type which was considered diagnostic of this period. For this study, no temporal 

affiliation was assigned to any scraping tool, and Big Knives were found to be more consistent 

with the biface tool class.  

 

Cores 

 Cores occur in small quantities (n = 4) among the study area assemblages, a paucity 

likely attributable to the absence of local materials. While assemblages with large quantities of 

cores would be expected in proximity to procurement areas, the composition of tool assemblages 

in the study area suggest raw materials were reduced to preforms or large bifacial blanks before 

being transported to the high elevations of the Medicine Bow Mountains (Morris et al. 1994). 

Accordingly, the scarcity of these artifacts supports Morris et al.’s (1994) determination that 

materials were transported into the area over long distances.  

For the purposes of this study, cores were defined as the objective “nucleus” from which 

flakes were removed for production of formal and informal tools (Andrefsky 1998: xxii). Many 

artifacts, which perhaps started as cores in the early stages of the reduction process, were likely 
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utilized and used to produce formal tools themselves. Recognizing this, the core classification 

refers only to those tools which were discarded following their use for flake blank production. 

Cores in the Rawah sample are primarily manufactured from CCS, including cherts (5LR240-55, 

5LR233-32) and chalcedony (5LR174-146), with one additional core produced from quartz 

(5LR101-16). The WBLR cores are multidirectional and bifacial, discoidal in shape, and exhibit 

varying degrees of preparation. 5LR233-32 is characterized by a well-defined discoidal shape 

with preserved cortex coverage. 5LR174-146, which reflects a less formal reduction pattern, 

likewise retains a large amount of cortex coverage. The remaining cores, 5LR240-55 and 

5LRLR101-16, are without cortex. All cores in the study appear to be exhausted or nearly 

exhausted, though 5LR101-16 is significantly more reduced than examples pictured in Figure 14. 

Dimensions and characteristics for each artifact are reported in Appendix B.  

 

Figure 14. A sample of lithic cores among the WBLR watershed assemblages. All cores reflect a discoidal shape 
and were bifacially reduced. Two of the artifacts retain cortical material on their surface. There appears to be some 
variability in the reduction type for each core, but all exhibit multidirectional flaking. One additional quartz core 
(5LR101-16) is pictured in Appendix A. All dimensions and metrics are provided in Appendix B.  
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Figure 15. Variability in preform morphology across the study area assemblages. A high degree of diversity is 
apparent in the morphology and raw material selection for production of preforms. Additional examples of preforms 
are pictured in Appendix A. All dimensions and characteristics are provided in Appendix B. 

 

Preforms 

 Artifacts designated as preforms (n = 17) account for 8.5% of the total tool assemblage 

and were defined as a nearly completed stone tools which exhibit recognizable elements of the 

tool’s probable final form. In the case of preforms from the WBLR assemblages, this is mostly 

distinguished by characteristics which are indicative of the final stages of the reduction process, 

such as thin cross-sections and fine flaking (Figure 15). A high degree of variability exists 

among the preform assemblage, both in material, type of manufacture, and morphology. Only 

one preform (5LR240-60), pictured previously in Figure 6, was assigned a temporal affiliation. 

Given that the remaining preforms represent the production of many types of tools through time, 

largely assumed to be projectile points though this is not always the case, the diversity in their 

morphologies is expected. Observed preforms include artifacts produced from both CCS (n = 9) 
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and quartzite (n = 4). Representative quartzite artifacts include 5LR225-22 and 5LR224-1. 

5LR225-22 is a finely prepared ovate preform, which was lost or discarded in complete 

condition. Evidence of reddening and the development of pot-lids on the anterior surface of the 

artifact indicates it was exposed to high temperatures, through it is unclear if this is the result of 

natural or cultural processes. 5LR224-1 is a lanceolate shaped preform and a refit mended 

sometime after its collection between 1971 and 1996.  Preform fragments, such as 5LR133-38 

and 5LR234-83, are also present in the assemblage. These fragments were difficult to 

discriminate from projectile points and other formal tools, however they were distinguished by 

the absence of any evidence of resharpening, defined use-wear, and other morphological 

characteristics which would suggest a functionally complete tool. 

 

Ground Stone 

 The ground stone assemblage (n = 8) comprises two tool classes, handstones (n = 1) and 

netherstones (n = 7). Handstones were defined as handheld tools which were used to actively 

process items against a passive surface, through a grinding or battering motion (Adams 2002). 

Netherstones, in contrast, are the static surface against which items are ground or battered 

(Adams 2002). These terms are used in lieu of ‘mano’ or ‘metate’ to better reflect the 

morphologies of common ground stone artifacts in the northern Colorado region, which typically 

are not consistent with the formally shaped grinding tools described in the Southwestern 

literature (Adams 2002; LaBelle and Pelton 2013; Pelton 2013). One exception for the high 

elevations of the Rocky Mountains is the basin metate reported by LaBelle and Pelton (2013: 

Figure 10), though no comparable examples were identified among the Rawah Wilderness 

assemblages.  
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The single handstone (5LR102-10) identified in the Rawah Wilderness ground stone 

assemblage is comprised of a river cobble, which appears to be consistent with the area geology 

and may have been locally procured. Netherstones, by contrast, were produced from tabular 

fragments of tan and red sandstone (Figure 16). Two examples, 5LR233-33 and 5LR17-6, are 

complete or nearly complete, while the remaining artifacts represent fragments of smaller slabs. 

The sandstone used to produce the netherstones resembles Lyons formation varieties, which 

were quarried among the hogbacks of the eastern foothills of the Front Range (Morris et al. 

1994; Kvamme 1977; Shropshire 2003). The presence of this sandstone at the high elevations of 

the Rawah Wilderness, into the alpine ecozone in some cases, suggests that netherstones were 

carried from the lower elevations of the foothills some 60 kilometers (40 miles) away. The 

transport of sandstone grinding implements into the high country is consistent with trends 

identified by Benedict (1992) and Pelton (2013, 2017). There are, however, inconsistencies 

between patterns of ground stone use observed in the Colorado Front Range and the Medicine 

Bow Mountains. In the high elevations of the Indian Peaks Wilderness, for example, 40% of sites 

were associated with ground stone artifacts (Pelton 2017). In the Rawah Wilderness 

assemblages, by contrast, ground stone was present in fewer than 17% of site assemblages. 

 Variability among netherstones is difficult to recognize given the fragmented nature of 

most specimens. Some of the netherstones exhibit evidence of burning or sooting, notably 

5LR17-6 and 5LR240-2019-29 (pictured in Chapter 6, Appendix A). Evidence of pecking is also 

apparent on some surfaces, such as on the grinding surface of 5LR17-6 and 5LR133-40. 

Generally, ground stone artifacts from the WBLR are lightly ground and without formal shaping 

or concavity. Grinding surfaces are more apparent on some netherstone artifacts than others, 

though all show evidence of grain shearing on at least one surface.   
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Figure 16. A sample of ground stone artifacts among the WBLR watershed assemblages. Only a single handstone 
fragment (top left) has been recovered from sites within the study area. Netherstones and netherstone fragments, 
which comprise the majority of the ground stone assemblage, resemble sandstone acquired from quarries in the 
foothills ecotone of the Colorado Front Range (Kvamme 1977; Pelton 2013, 2017; Shropshire 2003). Additional 
examples of ground stone artifacts are pictured in Appendix A. All dimensions and characteristics are provided in 
Appendix B. 
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Figure 17. A representative collection of edge modified flakes from the study area. Edge modified flakes range from 
large blanks with light retouch (Top row, including 5LR17-5, 5LR236-47) to expediently made cutting tools 
(Bottom row). Additional examples of edge modified flakes are pictured in Appendix A. All dimensions and 
characteristics are provided in Appendix B. 

 

Edge Modified Flakes 

 Edge modified flakes (n = 26) were among the most common tools in the WBLR 

watershed assemblages, representing 13.1% of the total. Edge modified flakes were defined as 

informal tools produced through expedient retouch of flake debitage (Andrefsky 1998). In many 

cases, this tool class is represented by small biface thinning flakes with marginal retouch. In 

other instances, large flake blanks also exhibit evidence of varying degrees of informal marginal 

retouch (Figure 17). These tools were produced from both CCS (n = 16) and quartzite (n = 10) 

and reflect significant variability in their completeness and preservation. Regardless of size, 

however, both complete (n = 12) and fragmented artifacts (n = 14) reflect similar levels of 

expedient modification. Examples of waste flakes with marginal retouch represent short use life 

tools which were almost certainly rapidly discarded. Larger flake blanks, although exhibiting 

similar degrees of expedient retouch, likely had longer use lives and were curated as part of a 
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lithic raw material conservation strategy. The presence of large quartzite flake blanks with 

marginal modifications is likewise reminiscent of Morris et al.’s (1994:70) “Big Knives”, which 

were classified as bifaces for this study. At least two examples of edge modified flakes in the 

Rawah collections are comprised of mended refits (5LR273-450 and 5LR17-5).   

 

Figure 18. All unifaces (top) and gravers (bottom) among the WBLR watershed assemblages. Both tool classes 
were infrequent among the larger assemblage. All dimensions and characteristics for each tool are provided in 
Appendix B. 

 

Unifaces and Gravers 

 The final two tool classes, unifaces (n = 3) and gravers (n = 3), are specialized tool types 

which occur in small quantities among the Rawah assemblages, each representing just 1.5% of 

the total number of tools. Unifaces were defined as flake tools which exhibited modification “on 

either the dorsal or ventral surface only” (Andrefsky 1998: xxvii). The function of these tools is 

highly variable and they were assigned to the uniface class based on their physical characteristics 

rather than any apparent functional purpose. In fragmented form, they could represent 
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miscellaneous flake blank tools which only required reduction of the dorsal surface to meet the 

needs of the tool user. Gravers, in contrast, have a more explicit functional association. Graving 

tools were classified as artifacts with a prepared pressure-flaked tip which was used to incise 

various materials, such as bone or wood. These tools can be identified by fine pressure flaking 

and shaping associated with a graving tip which tapers to a sharp point (Figure 18). In cases, 

these tools can be expediently modified in a manner similar to an edge modified flake, though 

they take a more formal form in other instances. 5LR174-2019-1, for example, exhibits evidence 

of formal bifacial flaking in association with a well-defined graving tip.   

 

Lithic Debitage 

 In addition to tools, an extensive collection of lithic debitage is associated with the 

Rawah Wilderness collections. Metcalf (1971a) and Morris et al. (1994) collected surface 

debitage from sites they investigated, though four site assemblages were comprised only of 

isolated tools and no lithic debitage. Similarly, the surface sample of artifacts from 5LR17 does 

not contain any debitage. While Morris et al. (1994) applied a sampling strategy which included 

collection of debitage, collections from 5LR17 were limited to tools (Wheat 1947). 

 In total, 2,199 pieces of debitage were analyzed for this study. Debitage was classified 

into two categories, flakes and angular debris. Flakes were defined as the “portion of rock 

removed from an objective piece by percussion or pressure” which exhibit evidence of a ventral 

surface, striking platform, and bulb of percussion (Andrefsky 1998: xxiii). Though the proximal 

portion of a flake may be missing, artifacts were still classified as flakes if there was clear 

evidence of a distal-proximal orientation with clear ventral and dorsal surfaces, as well as a 

cross-section which was consistent with the removal of the artifact from an objective piece. 

Angular debris, by contrast, was defined as the miscellaneous fragments or shatter produced 
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during the reduction process which lack attributes diagnostic of flakes, such as the bulb of 

percussion or striking platform (Andrefsky 1998). Flakes (n = 2,080) comprised the vast majority 

of the debitage assemblage, representing 94.6% of the total, while 5.4% of debitage artifacts 

were classified as angular debris (n = 119). 

 Each debitage artifact was physically inspected, and a number of descriptive attributes 

were recorded for each item. These attributes include size class, which corresponds to the 

maximum length of each artifact. A size class of one describes a maximum length of 0 to 1cm, a 

size class of two indicates a length of 1cm to 2cm, and so on. Also recorded was 

presence/absence of heat treatment or thermal alteration, cortex, and a striking platform. Portion 

and lithic raw material type were also documented. Thermal alteration was defined by the 

presence of crazing, potlids, or significant reddening and change in coloration. Presence of 

cortex was recorded by examining artifacts for any cortical material, and no minimum 

percentage cortex coverage baseline was employed. The presence/absence of a striking platform 

was documented by inspecting each flake for evidence of an existing platform, associated 

platform preparation, and/or a bulb of percussion. A small number of obsidian flakes (n = 4) had 

been removed from the collection for sourcing analysis, and attributes were not documented for 

these items (LaBelle 2009; Jason LaBelle, personal communication 2018). 

 The results of the debitage laboratory analysis demonstrates that a high degree of 

variability exists among the assemblage.  Size class 1 (n = 676) and size class 2 (n = 999) 

debitage artifacts comprised 76.2% of the total amount of debitage, demonstrating that Morris et 

al.’s (1994) sampling strategy was successful in identifying small artifacts. Larger size classes, 

such as size class 3 (n = 374) and size class 4 (n = 116), occurred at smaller frequencies. The 

largest flakes, size class 5 (n = 27) and size class 6 (n = 3), comprised a negligible amount of the 
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total lithic debitage assemblage. Alongside the predominance of non-cortical flakes (n = 1,898; 

86.3%) over cortical flakes (n = 297; 13.5%), this pattern again supports the conclusion that no 

sources of lithic raw materials exist in the study area. If a significant source of toolstone was 

local to the study area, we would expect to see larger quantities of debitage with a higher size 

class, representing primary stages of reduction, as well as a higher proportion of cortical 

materials (Bamforth 2006). Instead, these findings support Morris et al.’s (1994) assertion that 

lithic raw materials were overwhelmingly imported to the WBLR watershed as finished tools or 

previously reduced blanks.  

 Other attributes of the lithic debitage assemblage include the presence/absence of thermal 

alteration or heat treatment, and the presence/absence of a defined striking platform. Thermal 

alteration data was collected to evaluate patterns in the heat treatment of lithic raw materials, 

however evaluation of heat treatment can be problematic when working with surface collections 

given their probable exposure to a regular fire regime through time. With this caveat, just 123 

(5.6%) debitage artifacts exhibited characteristics of thermal alteration or heat-treatment, 

compared to 2,072 artifacts which were unaltered (94.4%). Similarly, a striking platform was 

observed on 667 (30.4%) artifacts, which was largely consistent with the overall combined 

percentage of complete flakes and proximal fragments of flakes (28.3%). Additional analyses of 

debitage assemblages from the WBLR can yield insights into the intensity and modes of lithic 

reduction which were practiced in the study area, but this level of analysis was outside the scope 

of the present study. 
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Discussion 

 The descriptive analysis of existing assemblages from the WBLR study area 

demonstrates both the temporal and functional diversity of lithic artifacts from these high 

elevation contexts. These datasets offer a useful opportunity for investigation of the change in 

ancient people’s use of this landscape through time. Though the analysis of projectile point 

typologies shows that surface collections from the Medicine Bow Mountains are time-averaged, 

the artifact composition of these mixed assemblages represents a valuable dataset for the study of 

persistent places from a long-term perspective (Shiner 2009). Though these materials are 

provenienced only to the site level, as they were collected prior to the widespread availability of 

high-quality GPS equipment, they retain enormous data potential.  

 The functional variability among tools from the study area, alongside the heterogeneity of 

lithic raw materials, likewise reinforces the potential of the Rawah datasets to study the long-

term land use practices of ancient Native Americans in the northern Colorado region. Variability 

among tool function and lithic raw materials offers a window into the cumulative use of a place 

through time, and can be used to determine if these uses were homogenous or heterogenous over 

these extended temporal scales. Collectively, this descriptive analysis demonstrates that the 

existing collections from the WBLR study area retain substantial analytical value for the study of 

ancient hunter-gatherers’ use of high elevation landscapes. Particularly for this study, the time-

averaged nature of these collections is uniquely suited for addressing questions surrounding 

reoccupation and the persistent use of place. This chapter’s analysis of the archaeological record 

of the Rawah Wilderness, and the variability reflected in these assemblages, underscores the 

suitability of the WBLR sample and the potential for these datasets to the clarify the functional 

and temporal dynamics of ancient peoples’ use of the Medicine Bow Mountains. 
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CHAPTER 3 – DEVELOPING EXPECTATIONS FOR PERSISTENT REOCCUPATION  

  

Prior to implementation of any archaeological research design, it is necessary to outline 

the underlying theory and expectations which form the foundation of the analysis. While the 

previous chapter described the chronology and material culture of the study area, as reflected 

through extant collections, the objective of this chapter is to define the theoretical basis for the 

analysis and contextualize the research design within the broader state of knowledge surrounding 

the archaeology of the Southern Rocky Mountains. To explore these themes, the chapter begins 

with a concise overview of high elevation archaeology in northern Colorado, followed by a 

discussion of theoretical and methodological considerations for understanding reoccupation and 

the persistent use of place. The chapter then concludes by outlining expectations for the 

assemblage composition, landscape distribution, and spatial structure of reoccupied sites. By 

establishing these a priori baselines for the physical and spatial manifestation of high 

reoccupation intensity in mountain environments, the chapter will lay the groundwork for the 

analyses conducted in the subsequent chapters.      

 

High Elevation Archaeology of the Colorado Front Range and Medicine Bow Mountains  

 The Southern Rocky Mountains of northern Colorado are associated with a rich 

archaeological record representing at least 10,000 years of intensive human use (Benedict 1992; 

Brunswig 2007; Morris 2010). The material traces left by these activities remain readily apparent 

on the landscape today and visitors to the Colorado high country are likely to encounter these 

ancient artifacts and features, whether they are aware of them or not, surrounding the high passes 

and alpine lakes which draw recreationalists to these areas today. The indigenous use of these 

environments was so extensive that the large quantities of ground stone artifacts these peoples 
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transported into the upper elevations of the Colorado Front Range were once mistakenly 

attributed to natural sandstone deposits originating from geologic processes (Ives 1942). These 

mountain environments offered hunter-gatherers many high-value resources and subsistence 

opportunities which served to draw people into the high country on a seasonal basis. Alpine 

residential sites elsewhere in the Rocky Mountains and Sierra Nevada, for example, have yielded 

evidence of the systematic exploitation of fauna and flora for subsistence purposes (Adams 2010; 

Bettinger 1991; Morgan 2012). In Colorado, the iconic game drive systems of the Colorado 

Front Range exhibit evidence of communal organization for procurement of faunal resources 

(Benedict 1992, 1996; LaBelle and Pelton 2013). Research on high-elevation prehistory in 

Colorado has also emphasized the seasonal availability of alpine flora as a source of subsistence 

for indigenous peoples, which is reinforced by the large quantities of ground stone found at high 

elevations in the Colorado Front Range (Benedict 2007; Pelton 2013, 2017). The systematic 

precontact utilization of Colorado’s Rockies is also evidenced by the intensive high elevation 

quarrying of raw materials for tool production, such as at the Windy Ridge quartzite source 

(Bamforth 2006; Black and Theis 2015; Mitchell 2012). Collectively, this evidence for the 

intensive use of high elevation landscapes demonstrates that the ancient inhabitants of 

Colorado’s mountains were not simply passersby in these environments, but agentive actors who 

left indelible marks on the landscape. 

While the archaeological record of high elevation contexts in the Wind River Range and 

Sierra Nevada is characterized by the discovery of long-term residential occupations, the 

Colorado Front Range is defined by its “distinct form of residential settlement” which 

emphasized highly mobile seasonal transhumance systems and short-term camps associated with 

resource procurement (Pelton 2017:1). While the record of the Medicine Bow Mountains reflects 
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some similarities to these patterns, it also exhibits significant contrasts. For example, Benedict’s 

(1992) rotary transhumance system relies on the spring passage of low passes in the Medicine 

Bow Mountains, including Cameron Pass (ten kilometers south of the study area). If the 

Medicine Bow Mountains are a component of this larger annual round, as Benedict (1992) 

suggests, the archaeology of the two ranges is inexorably tied.  

Research on the role of the Medicine Bow Mountains in larger transhumance systems is 

inconclusive, though Morris et al. (1994:74) observed that lithic raw materials were imported a 

“considerable distance” from their sources. Similarly, Morris et al. (1994) describe Great Plains 

and Great Basin influences in the projectile point typologies identified among the Rawah 

Wilderness site assemblages. Though these lines of evidence require additional analysis to 

reconstruct any definitive patterns of transhumance, such as the systems proposed by Benedict 

(1992), by examining the archaeological record of both ranges these analyses can clarify how the 

Medicine Bow Mountains fit with the larger regional systems of northern Colorado. The alpine 

game drives, for which the Colorado Front Range is well known, do not exist in the Medicine 

Bow Mountains (Benedict 1992; Metcalf 1971a; Morris et al. 1994). Similarly, though Pelton 

(2017) identified ground stone artifacts at 40% of high elevation sites in the Colorado Front 

Range, and described a landscape-scale system of ground stone provisioning for intensive plant 

processing, ground stone artifacts occur in fewer than 17% of assemblages considered in this 

study (See Chapter 2).  

These discrepancies in landscape use and subsistence between the Medicine Bow 

Mountains and the Colorado Front Range point to substantive differences in forager groups’ 

utilization of the two ranges. While the Colorado Front Range reflects evidence of the intensive 

utilization of alpine flora, alongside a highly organized and community-driven hunting 
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infrastructure, the record of the Medicine Bow Wilderness exhibits evidence of a different level 

of social organization, subsistence emphasis, and settlement strategy. In Benedict’s (1992) rotary 

system for the Late Prehistoric period, these differences could be attributable to the dispersal and 

aggregation of “microbands” and “macrobands” during different phases of the seasonal round, 

and this model suggests occupation of the Medicine Bow Mountains largely occurred during 

these periods of dispersal rather than aggregation. Morris et al. (1994:67) similarly speculate that 

occupation of the Medicine Bow Mountains was limited to “generally small” groups. Alongside 

little evidence of any community aggregation, in contrast to the Colorado Front Range, Morris et 

al.’s (1994) assessment generally aligns with Benedict’s (1992) supposition that the seasonal 

movement of people into the Medicine Bow Mountains was principally characterized by 

microbands during these periods of dispersal in the spring and early summer.  

Additional research is required to clarify these contrasts in landscape use between the 

Medicine Bow Mountains and the Colorado Front Range, and to better understand the broader 

systems of human landscape use in the northern Colorado region over a larger time span. While 

Benedict’s (1981, 1985, 1990, 1992, 1996, 2000) prolific research program in the Colorado Front 

Range produced a wealth of invaluable data for evaluating these trends, additional research is 

required from the Medicine Bow Mountains to fully investigate the similarities and differences 

between the indigenous use of these landscapes. Analysis of reoccupation, and its implicit 

connections to the long-term “social investment” in mountain landscapes, is one interpretive 

avenue with the potential to lay a foundation for investigating these issues (Morgan et al. 2018; 

Scheiber and Zedeño 2015:1).    
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Persistent Places, Palimpsests, and the Study of Reoccupation  

 Study of reoccupation and the reuse of place is critical to understanding broader trends in 

landscape use, mobility, subsistence, and settlement. There is a clear distinction between sites 

which have been repeatedly and preferentially reused through time and sites which were used 

once and abandoned. Clarifying why some areas of the mountains, over others, were the subject 

of persistent reuse can inform broader understanding of human agency and ancient peoples’ 

perceptions of high elevation landscapes. Was persistent reoccupation simply the result of 

optimal environmental conditions for hunting and foraging? Or perhaps a cultural connection to 

the place reinforced by visible artifactual traces of past use? A framework for addressing these 

questions is the persistent place concept (Schlanger 1992). Persistent places are defined as 

“places that were repeatedly used during the long-term occupations of regions” which played 

significant “long-term roles in local land use patterns” (Schlanger 1992:97,110). As the 

“conjunction of particular human behaviors on a particular landscape” persistent places are 

likewise not as limited by the constraints of the site concept, and instead offer a broader 

interpretative framework for consideration of the complimentary roles of landscape, place, and 

space (Dunnell 1992; Schlanger 1992:97).  

Though Schlanger’s (1992) original application of the persistent place concept was 

focused on agriculturalist populations in the American Southwest, there has been growing 

application of persistent place studies to hunter-gatherer contexts (Dooley 2004, 2008; Gamble 

2017; Morgan 2018; Shiner 2009; Zilio and Hammond 2017). Similarly, though there is an 

increasing discourse in the Southwestern literature over the challenges of discriminating 

persistent places from permanent places, the persistent place concept has proven well suited for 

study of seasonal transhumance and mobility in hunter-gatherer landscape use (Clark and Gilman 
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2012; Shiner 2009). Given the broad chronological focus of persistent place studies, which are 

concerned with long-term trends rather than fine-grained study of isolated events, applications of 

the persistent place concept are generally oriented towards analyzing reuse with broad temporal 

resolution (Dooley 2004, 2008). Schlanger’s (1992) initial study was aided by the chronological 

resolution offered by tightly dated ceramic typologies in the American Southwest, however, 

persistent place analyses based solely on projectile point typologies necessitate a broader 

temporal approach. The persistent place concept has likewise been applied with great effect to 

the analysis of time-averaged contexts, which investigate the degree to which “remains from 

succeeding occupations are mapped onto or acknowledge remains from preceding occupations” 

(Wandsnider 1992, 2008:62). The persistent place framework has shown similar utility for 

addressing these time averaging issues in the Australian arid zone, and these studies have 

recognized the “the role of multiple behavioural events in the accumulation of the archaeological 

record” and importance of “understanding the organizational forces that lead to material 

organization at a place through time” as valuable contributors to landscape research (Davies and 

Holdaway 2018:126; Holdaway et al. 2008; Shiner 2009:26).  

The formation of persistent places is dependent upon three criteria. First, persistent places 

may be the result of “unique qualities” which facilitate “certain activities, behaviors, or 

practices” (Schlanger 1992:97). This criterion is largely analogous to optimal environmental 

conditions, which served to encourage and structure the reuse of the site. For example, the 

presence of a lithic raw material outcrop or other valued subsistence resource could serve to 

incentivize the repeated reuse of that place through time. Schlanger’s (1992:97) second criterion 

for persistent place formation is the presence of existing cultural facilities which allow hunter-

gatherers to reoccupy a place at reduced cost and “structur[e] the activities associated with those 
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various occupations.” Wandsnider (1992) proposed a similar concept in her analysis of the 

reoccupation of existing features, and conditions controlling reuse of extant cultural facilities. 

Other similar studies include Smith and McNees’ (1999, 2011) work with reuse of pithouses in 

southwest Wyoming and Morgan et al.’s (2018) experimental investigation of the cost incentives 

of reusing extant features. Another such example of this criteria of persistent place formation is 

the reuse of features at the Yarmony Pithouse site, where existing housepits structured the later 

occupation of the site even though the features were not reused explicitly for their original 

purpose (Bender 2015). Schlanger’s (1992) final persistent place criteria describes the visible 

traces of artifactual remains from past use as incentivizing the repeated use of landscapes. Under 

this criteria for persistent reuse of a place, existing artifact accumulations act as a “structuring 

component of the cultural landscape” which are themselves an “exploitable resource” (Schlanger 

1992:97). This criterion is similar to the concept of site furniture, as well as the anticipatory 

provisioning of items for later use at a site (Binford 1978, 1979; Pelton 2013, 2017; Stiger 2001). 

Closely related to these behaviors is the practice of caching of tools and raw materials, a land use 

strategy which represents an inherent intent to reoccupy a given place (Binford 1979; LaBelle 

2015b; Landt and Prouty 2017). Under this persistent place formation criterion, ground surface 

visibility of these material traces is also an important consideration which must be evaluated in 

the context of the recycling of materials from previous uses of a site (Camilli and Ebert 1992).  

Studies of reoccupation, based in this persistent place concept and similar frameworks, 

have contributed significantly to understandings of high elevation archaeology in northern 

Colorado. Andrews et al. (2008) and LaBelle and Holen (2008) analyze Folsom site structure to 

consider the role of reoccupation in Paleoindian landscape use in the Great Plains and Rocky 

Mountains. LaBelle’s (2005:226, 2010) analysis of foraging variability across the Great Plains 
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and Rocky Mountains likewise recognizes the importance of “persistent use of place” to explore 

why foragers were drawn to the same locales despite functional and environmental changes 

through time. Bender’s (2015:317) analysis of forager settlement systems in South Park 

employed the persistent place concept to consider the “explanatory potential of persistently re-

occupied places to understand hunter–gatherer land-use decisions.” In her analysis, Bender 

(2015) points to alpine game drives as an example of high elevation persistent places in the 

Southern Rocky Mountains. Elsewhere in the literature, game drives are recognized as 

“accumulated landscapes” which reflect patterns of significant episodic reuse over long periods 

(Benedict 1992; LaBelle and Pelton 2013:48). As an example of Schlanger’s (1992) second 

criterion for persistent place formation and Wandsnider’s (1992) discussion of reuse of extant 

‘facilities’, these alpine game drives are perfect representations of cultural facilities which are 

reoccupied and reused at reduced cost. Though occasionally repurposed or modified to fit a 

specific circumstance, alpine game drive systems are enduring features which structure the reuse 

of alpine landscapes in the Colorado Front Range. In his approach to reconstructing the 

occupation history of these features, Meyer (2019a:3) described the “complex nature of 

occupation, reoccupation, and the persistent use of place” represented by game drives. By 

applying palimpsest theory to unravel the nature of multiple reoccupation episodes, Meyer 

(2019a) was able to better understand the nature and character of the reuse and modification of 

game drive features.  

Closely related to the core site formation processes of persistent place theory, the 

palimpsest concept is a critical tool for understanding the nature and dynamics of reuse of a place 

through time. Binford (1981:197) first applied the term to archaeology, asserting that the 

“archaeological record represents a massive palimpsest of derivatives from many separate 
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episodes.” Subsequent studies have identified the palimpsest concept as a useful framework for 

approaching complex questions surrounding the long-term use of sites (Bailey 2007; Davies et 

al. 2016; Holdaway et al. 2008; Sullivan 2008; Zvelebil et al. 1992). Similarly, rather than 

focusing on isolating single components from these accumulated deposits, archaeologists 

increasingly “view any perceived loss of chronological resolution as an opportunity to explore 

processes operating over spatiotemporal scales” to inform understanding of the long-term use of 

a locale (Davies et al. 2016:451). In exploring these processes, Bailey (2007) offers a useful 

framework for classifying and interpreting these palimpsest deposits. Bailey (2007) distinguishes 

between five types of palimpsest deposits, of which four are most applicable to this study. A 

‘true palimpsest’ refers to a deposit where preceding material traces have been completely erased 

from the record (Bailey 2007). True palimpsests can occur from cleaning events, or new 

constructions which eradicate existing deposits (Sullivan 2008).  A ‘temporal palimpsest’, by 

contrast, is a deposit comprised of non-contemporaneous materials which entered the record 

simultaneously. These palimpsests are often created through the discovery, use or curation, and 

subsequent discard of an older artifact alongside younger materials in a single deposit. The 

Folsom point identified by Benedict (2000:163) at the Fourth of July Mine site (5BL153), which 

is believed to have been discovered elsewhere and transported to the site by later groups before 

being deposited alongside these later materials, is a fitting example of a temporal palimpsest. The 

final two types of palimpsests, ‘cumulative palimpsests’ and ‘spatial palimpsests’ are most 

widely applicable to hunter-gatherer contexts. A cumulative palimpsest refers to “successive 

periods of deposition” which result in a concentrated deposit of overlain and intermixed 

materials (Bailey 2007:204). A spatial palimpsest, by contrast, occurs when multiple deposition 

episodes are spatially segregated but structured around a common cultural or landscape feature 
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(Bailey 2007). While the material traces of overlying occupations centered on a hilltop represent 

a cumulative palimpsest deposit, for example, a concentration of spatially discrete non-

contemporaneous artifact concentrations structured around a spring would reflect a spatial 

palimpsest pattern. 

Persistent place and palimpsest theories are critical to any analysis of reuse of landscapes. 

With these concepts defined, it is then necessary to consider the substantial body of literature 

surrounding the study of occupation span and duration (Meeker 2017; Schiffer 1975; Schlanger 

1990; Surovell 2009; Varien and Mills 1997). Many of these methods have likewise originated in 

the American Southwest, such as discard equation and accumulation theory studies, and are 

largely oriented around questions surrounding population dynamics and occupation intensity 

(Schlanger 1990; Varien and Mills 1997). While most of these studies are not explicitly 

concerned with reoccupation, their methodological emphasis on the study of occupation intensity 

is also well suited for analysis of reoccupation intensity. There have been a number of attempts 

to apply similar methods towards recognition of reoccupation in hunter-gatherer settlement 

systems, such as by Surovell (2009:99) and his application of a “occupation span index” to 

distinguish between single component and reoccupied sites, however these studies have 

generally required neatly controlled, expansive, and specially curated datasets (Gallivan 2002). 

Particularly when dealing with palimpsest deposits, and the “reoccupation problem” as described 

by Surovell (2009:99), isolating the data necessary to perform these analyses can be challenging 

and impractical when working with legacy collections. Fortunately, when working in the high 

elevations of the Southern Rocky Mountains, the punctuated and episodic nature of occupation 

attributable to the inhospitable winter conditions in these areas generates an archaeological 

record which is well suited for analysis of reoccupation with these methods.  
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Figure 19. Conceptual models for the relationship between assemblage diversity and occupation span. At left, an 
idealized representation of the positively correlated relationship between assemblage diversity and occupation span 
for a continuously occupied site (Schiffer 1975, 1987; Reproduced with modification from Perlmutter 2015: Figure 
3.2). At right, a modified model reflecting the idealized relationship between assemblage diversity and an episodic 
sequence of reoccupation, such as characterizes the seasonal use of high elevation environments. 

Though discard equations and accumulations simulations are difficult to implement with 

a complex palimpsest assemblage, broader concepts derived from these studies are useful for 

generating expectations for assemblage composition. Schiffer’s (1975, 1987) Clarke Effect is 

one such concept with substantial utility towards the analysis of reoccupation in hunter-gatherer 

assemblages. Based on analysis of discard rates in simulated assemblages, Schiffer (1975, 

1987:55) recognized a “statistical tendency for the variety of discarded artifacts to increase 

directly with a settlement’s occupation span.” Subsequent studies appear to validate this 

observation, recognizing that high intensity occupations will generate more assemblage diversity  

than ephemeral occupations (Pyszcyk 1984; Schlanger 1990; Surovell 2009). Though the Clarke 

Effect has significant potential to contribute to analysis of reoccupation, there are a number of 

problematic aspects which must be resolved prior to application to mountain contexts. First, 

Schiffer’s (1975, 1987) conception of the Clarke Effect assumed a permanent settlement with 

continuous occupation, which is not consistent with the highly mobile nature of high elevation 
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occupations. Second, though confirming the Clarke Effect, Schlanger (1990) also observed the 

tendency for short-term occupations to reflect high variability in artifact frequencies, with long-

term occupations exhibiting more constant frequencies. Clarification of these interpretive 

challenges will allow for improved analysis of reoccupation in high elevation contexts. 

Though it was conceived with the assumption of a permanent occupation, the overarching 

patterns described by the Clarke Effect should also be reflected in the episodic reoccupation of 

sites (Figure 19). If we consider the deposition of long use-life tools as a probabilistic process, 

with a greater occupation span there is a concomitant increased likelihood for the deposition of 

artifacts representing a diverse range of activities (Surovell 2009). In representations of the 

Clarke Effect for permanent or year-round settlements, this pattern is reflected by a positively 

correlated relationship between occupation span and the range of activities which occur at the 

site (Perlmutter 2015; Figure 19). In a context where occupation is episodic, such as the high 

elevations of the Medicine Bow Mountains, I argue these trends would not vary significantly 

from this baseline. For example, Binford (1982:21) describes how “shifts in […] utility” across 

multiple occupations of a single site can result in a record reflecting multiple divergent site 

functions. Similarly, as a place is reused through time, there is an increased probability of 

multiple distinct activities occurring at the site (Binford 1980; Dooley 2008). Collectively, these 

concepts suggest that the deposition of a diverse range of artifact types is not inherently less 

probable for a episodic occupation pattern than for a continuous occupation pattern. We might 

visualize this as a stair-step pattern, as shown in Figure 19, where with each reoccupation there is 

a heightened probability of a different activity taking place at the site, and a concomitant increase 

in the likelihood of a diverse range of tool types being deposited into the record. Similarly, 

though Schlanger’s (1990) observation of variability in artifact type frequencies for short-term 
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occupations could cause interpretive challenges, the long-term reuse of a site should serve to 

“stabilize” artifact type ratios in the same way which a long-duration continuous occupation 

would (Surovell 2009:63). With these understandings, the Clarke Effect represents a powerful 

theoretical framework for investigation of reoccupation in mountain contexts.  

 

Expectations for Reoccupation at High Elevations in the Medicine Bow Mountains 

With this theoretical basis in the analysis of persistent reoccupation, it is necessary to 

apply these bodies of literature to derive expectations for how these patterns may be manifested 

in the archaeological record of the Medicine Bow Mountains. Based on the persistent place, 

palimpsest, and reoccupation studies described above, we can determine that evidence of 

reoccupation should be most recognizable at three scales of inquiry. First, reoccupation intensity 

should be reflected in the assemblage composition of reoccupied sites. Second, if reoccupation of 

high elevations is contingent on the “unique qualities” of a place, reuse of facilities, or structured 

by existing material traces, there should be recognizable patterns in the distribution of sites over 

landscapes (Schlanger 1992:97; Wandsnider 1992). Third, the site structure of reoccupied sites 

should represent a palimpsest deposition pattern and exhibit spatial evidence of multiple 

occupations. Analysis of these three scales of inquiry should therefore generate an improved 

picture of the nature and extent of reoccupation and reuse of high elevation landscapes in the 

Medicine Bow Mountains. 

 

Assemblage Composition of Reoccupied Sites   

The first scale of inquiry applied in this study is analysis of the role of reoccupation in 

assemblage composition. As a time-averaged representation of the cumulative range of activities 

which occurred at sites, site assemblages from extant collections offer significant potential for 
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analysis of reoccupation. In Shiner’s (2009:26) study of persistent places, for example, he 

recognized that the “composition of assemblages […] reflect the long-term repeated use of 

locations.” Reckin and Todd (2020) likewise evaluated variation in occupation duration and 

intensity at high elevations by integrating landscape-scale and assemblage-scale methodological 

approaches. Based on these and similar studies, we can derive a number of expectations for how 

preferential reuse of place may be represented in the assemblage composition of sites from the 

Rawah Wilderness.  

Colorado State University’s fieldwork in the Rawah Wilderness, from 1971 to 1996, 

produced a substantial representative sample of the surface assemblage composition of sites in 

the study area. Morris et al.’s (1994) 100% observed surface collection strategy for these sites 

was critical in generating this expansive dataset, and these data represent a complete snapshot of 

each site’s surface assemblage. Similarly, with the continued exposure of materials on the site 

surface from erosion and bioturbation, sites were revisited on an intermittent basis to enlarge 

assemblage samples (Morris and Metcalf 1993; Morris et al. 1994; Morris 2010). With this 

substantial dataset, and the standardized methods utilized by Morris and Metcalf (1993), it is 

possible to identify sites with the highest evidence of reuse through a comparative analysis. From 

Schiffer’s (1975, 1987) Clarke Effect, for example, we can anticipate that reoccupied sites will 

reflect a higher tool diversity than ephemeral sites. A paucity of lithic raw materials in the study 

area should likewise result in a higher lithic raw material diversity at reoccupied sites, caused by 

the transport of non-local materials into the area across multiple occupation episodes (Bender 

2015; Kvamme 1998). Similarly, given a similar rate of discard, sites with repeated reuse should 

accumulate larger quantities of artifacts than ephemeral sites. As long-use life tools, projectile 

point abundance should also reflect this trend (Burnett 2005; LaBelle 2010; Schlanger 1992).  
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Collectively, it is reasonable that reoccupied sites in the Medicine Bow Mountains could 

be distinguished from ephemeral sites by a number of distinct assemblage composition 

characteristics. First, reoccupied assemblages should reflect a wider range of site functions and 

activities than ephemeral sites. Even in time-averaged assemblages, diverse site functions and 

activities should be measurable through analysis of artifact diversity and typologies. Second, 

reoccupied site assemblages should exhibit evidence of occupation by discrete non-

contemporaneous groups with diverse mobility and settlement systems, a pattern represented by 

concomitant diversity in the lithic raw materials carried into the study area through time. Over 

long temporal scales, variable systems of high elevation land use and divergent levels of 

landscape use intensity should also be reflected by diverse assemblages at reused sites. These 

patterns can be measured through broader variability in assemblage characteristics, as well as 

lithic raw material diversity and projectile point abundance. 

 

Distribution of Reoccupied Sites over Landscapes   

 The second scale of inquiry, addressed by this study, concerns the variability of 

reoccupation intensity over mountain landscapes. The data sample collected by Colorado State 

University’s previous investigations in the Rawah Wilderness has substantial potential for 

clarifying the spatial character of reoccupation and long-term patterns in the indigenous 

utilization of alpine and subalpine environments. Similarly, under Schlanger’s (1992) criteria for 

persistent place formation, analysis of the distribution of sites and variable reoccupation intensity 

over broader landscapes is critical for evaluation of broader trends in landscape use. Often, 

though not in all cases, reuse of sites is conditioned by the character of the surrounding 

landscape. Surovell (2009:109), for example, connected the extent of suitable flat terrain with the 
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probability of eventual overlap and reoccupation. If such conditions are guiding reoccupation in 

the Medicine Bow Mountains, these trends should be quantifiable. As discussed in Schlanger 

(1992), the presence of optimal environmental conditions can likewise serve to incentivize the 

reuse of a place. Accordingly, if the long-term reuse of high elevation landscapes in the 

Medicine Bow Mountains was structured around access to a specific resource, this should also be 

recognizable in the landscape distribution of reoccupied sites. Conversely, if there is not a clear 

connection between persistent place formation and a distinct ecological ‘niche’, the absence of 

these patterns strongly suggests that other factors are at play in encouraging the reuse of place. 

From Schlanger’s (1992) perspective, these alternative incentives for reoccupation of a given 

locale could be tied to existing cultural facilities or settlement of areas with visible traces of past 

use. For these reasons, a landscape study of persistent places must also consider the ground 

surface visibility of features and artifacts in the analysis. The paucity of local raw materials 

within the study area, for example, could incentivize the recycling of discarded materials from 

previous occupations on the surface of existing of sites (Schlanger 1992; Camilli and Ebert 

1992). The discovery of these recyclable materials on the ground surface of a site, discarded 

during previous occupations, could then encourage reoccupation of the place. 

 Based on these considerations, we can derive a number of expectations for the likely 

characteristics of reoccupation over the landscape scale. First, it is reasonable to assume that 

variability in reoccupation intensity exists across the landscape. Second, if this variability in 

reoccupation intensity is influenced by the presence of optimal environmental conditions, the 

distribution of reoccupied sites should reflect a non-random pattern in relation to these landscape 

characteristics. Third, if no statistically significant trends exists between environmental 

conditions and reoccupation intensity, other social and cultural factors are likely responsible for 
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the distribution of reoccupation intensity across the landscape. By evaluating archaeological 

visibility in the distribution of these sites, it is possible to determine if this is attributable to reuse 

of existing cultural facilities or surface recycling of previously discarded artifacts (Schlanger 

1992). Generating and testing hypotheses derived from these expectations will clarify the 

approaches hunter-gatherers’ took to these high elevation landscapes and reveal aspects of their 

decision-making in the use of these environments.  

 

Spatial Structure of Reoccupied Sites   

 The final scale of analysis, the distribution of artifacts on the surface of sites, will 

evaluate the structure of reoccupation and the relationship between space and the reuse of place. 

The spatial structure of sites is a powerful source of data concerning the repeat use of locales on 

the landscape, and analysis of artifact distributions has significant interpretive power for 

understanding the long-term use of a place (Bailey 2007; Burnett 2005; Shiner 2009; Sullivan 

1992, 2008). These trends in the site structure of a persistent place should be represented in 

several ways. First, surface distributions of artifacts should reflect a cumulative and/or spatial 

palimpsest pattern. In the case of a cumulative palimpsest pattern, we would anticipate a 

reoccupied site with a surface distribution comprised of a single concentration of artifacts. As a 

cumulative palimpsest, this concentration will reflect spatially overlapping occupation events 

which are accumulated on a single place on the landscape. In the case of a spatial palimpsest 

pattern, we can expect multiple discrete clusters of artifacts structured around a single landscape 

feature. These clusters may individually be small, representing ephemeral events, however the 

spatial distribution of artifacts across the larger site will reflect a patchwork of many distinct 

occupations. 
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 Analysis of the assemblage composition of the clusters which comprise these cumulative 

or spatial palimpsests can likewise be used to identify evidence of reoccupation from surface 

artifact distributions. For example, the assemblage composition of a cumulative palimpsest 

deposit should reflect a high tool diversity, lithic raw material diversity, and assemblage size. As 

each subsequent occupation overlaps the existing traces of past occupations, the resulting time-

averaged surface deposits would reflect elements of the cumulative use of the place through time 

(Shiner 2009). In a spatial palimpsest by contrast, individual clusters may represent only an 

ephemeral single occupation. When all non-contemporaneous clusters within a spatial palimpsest 

are considered together, however, the assemblage composition of the site would reflect these 

previously identified characteristics of reoccupied site. Though discrete clusters can also exist 

within a single component site, representing contemporaneous activity areas, in these cases the 

assemblage composition of individual clusters and the larger site would both reflect limited 

evidence of reoccupation.  

 

Discussion 

The indigenous use of high elevation landscapes in the western United States was highly 

variable through time and across space. In the case of the Medicine Bow Mountains, with the 

study area’s close spatial proximity to the heavily studied Colorado Front Range, consideration 

of this variability is especially relevant. With these challenges in mind, it was necessary to turn 

to broader theoretical frameworks to consider reoccupation and use of place in diverse hunter-

gatherer systems. One such framework, the persistent place concept, offers a useful foundation to 

evaluate trends in reoccupation and reuse of place within high elevation contexts (Bender 2015). 

Methods and theoretical concepts from site formation studies, such as the Clarke Effect, are 
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likewise well suited to approach these issues (Schiffer 1975, 1987). Based on this body of 

literature, it is possible to derive expectations for how similar processes of reoccupation and 

reuse should be reflected at different scales in the archaeological record of the Medicine Bow 

Mountains. At the level of the time-averaged surface assemblage, for example, we should expect 

to see a time-averaged and mixed assemblage composition which reflects a high diversity of tool 

functions and lithic raw materials, alongside other characteristics. On the macro-spatial 

landscape scale, Schlanger’s (1992) first criteria of persistent place formation should be 

recognizable in the distribution of sites if reoccupation was structured around access to optimal 

environmental conditions. On the micro-spatial intrasite scale, we can anticipate that 

reoccupation events should create a palimpsest depositional pattern which reflects the long-term 

use of the place. Holistically, the theoretical frameworks considered in this chapter demonstrate 

that definable patterns of indigenous reuse of place exist within the archaeological record of the 

Medicine Bow Mountains. Approppriately defining expectations for how this persistent use of 

place is manifested in the Rawah Wilderness, as was the objective of this chapter, is necessary 

for successfully recognizing and correctly interpreting these patterns. 
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CHAPTER 4 – RECOGNIZING REOCCUPATION IN SITE ASSEMBLAGES 

  

The objective of this chapter is to define a range for persistent reoccupation based on 

extant collections and theoretical expectations for reoccupation intensity. The robust curated 

collections generated from Colorado State University’s 25 years of fieldwork in the Rawah 

Wilderness comprises an invaluable dataset for analysis of reoccupation (Metcalf 1971a; Morris 

et al. 1994; Morris 2010). These collections, as detailed in Chapter 2, contain a wide variety of 

lithic raw materials and functional artifact types. Analyses of the frequency of these artifact types 

and lithic raw materials in site assemblages, alongside a measured theoretical grounding in the 

archaeological literature, can be used to generate a scale of reoccupation for the WBLR 

watershed (Schiffer 1975, 1987; Reckin and Todd 2020). We can expect that a range of 

reoccupation, from ephemeral single component sites to persistently reoccupied multicomponent 

sites, exists within the archaeological record of the study area (Morris et al. 1994). With this 

understanding, analysis of artifact assemblages from these sites should reflect evidence of 

variable reoccupation intensity. Based on a priori expectations for reoccupation described in the 

previous chapter, there are several assemblage characteristics which are key indicators of 

persistently reoccupied sites. First, sites with high reuse should be associated with large 

assemblage sizes and large quantities of tools. Second, reoccupied sites should reflect evidence 

of high tool functional diversity and lithic raw material diversity (Schiffer 1975, 1987; Schlanger 

1990; Reckin and Todd 2020). Third, high reoccupation intensity sites should correlate with 

large projectile point assemblages comprised of non-contemporaneous typologies (Burnett 2005; 

LaBelle 2010; Schlanger 1992). This chapter will quantify these expectations and weigh them to 

generate a multivariate ranking of sites exhibiting the greatest and least evidence of 
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reoccupation. These findings will then be assessed to determine, what is the range of 

reoccupation intensity in the study area? And, can reoccupation be reliably discriminated from 

extant collections? The answers to these questions are then applied to frame the analyses in 

subsequent chapters.  

 

Methodology: Defining a Range of Reoccupation Intensity  

 In defining a comparative range of reoccupation intensity, it is necessary to select a 

suitable site sample with consistent sampling methodologies and collection strategies. To ensure 

the integrity of this study, a total of 30 high elevation archaeological localities from the WBLR 

watershed were selected for inclusion in the analysis. Two sites were not considered in the 

analysis, 5LR230 and 5LR17. 5LR230 was omitted due to its involvement in an ongoing 

longitudinal study on its significant Late Paleoindian component (LaBelle and Meyer 2017; 

Meyer and LaBelle 2017; Meyer 2019b). 5LR17 was omitted from this analysis because of the 

incomplete and irregular collection strategy employed during its initial investigation. The site, 

first documented by Wheat (1947), was recorded based on the descriptions of a local amateur 

archaeologist and collector named Ralph Culver (Buckner 2019; Wheat 1947). Materials from 

the site are present in collections at the University of Colorado, however the assemblage is 

incomplete (See discussion in Chapter 2). In contrast to the incomplete collection from 5LR17, 

collections by Colorado State University in the WBLR study area from 1971 to 1996 employed a 

standardized 100% observed sampling strategy and generated a snapshot of the surface context 

of each site (Buckner 2019; Morris et al. 1994; Morris 2010). 5LR17 was revisited in 2019, with 

the objective of gathering additional data, however poor ground visibility left the status and 

condition of the site inconclusive (Buckner 2019). For these reasons, materials from 5LR17 are 

referenced only in Chapter 2 and not included in the analyses conducted here.  
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Variable Selection and Multivariate Ranking of Sites 

 Careful consideration of assemblage characteristics and methodologies for comparing 

them across sites is a critical step for defining a range of reoccupation intensity from a landscape 

dataset. In Kvamme (1988a), for example, an integrated analysis of assemblage composition 

variables was used to classify sites by occupation duration and function. For the present study, 

five variables with an a priori association to reoccupation intensity and occupation duration were 

selected for analysis. These variables include assemblage size, tool frequency, tool functional 

diversity, lithic raw material diversity, and projectile point frequency. These assemblage 

characteristics were used to independently rank sites, and a mean estimated reoccupation 

intensity ranking was derived in addition to individual rankings in each variable category. The 

minimum number of occupations, derived from the number of co-occurring non-

contemporaneous diagnostic artifacts, was also quantified but withheld from these rankings as a 

control (e.g. the presence of Early Archaic and Late Archaic diagnostics suggests a minimum of 

two non-contemporaneous occupations). 

 The first variable selected was assemblage size. Assemblage size was defined as the total 

number of artifacts, including both debitage and tools, in the site collection. The theoretical basis 

for the inclusion of assemblage size is based in the expectation that with the increased use of a 

place, artifacts will be accumulated at the site at a higher rate (Schiffer 1987:55; Stiger 2001:64). 

For each reoccupation of the site, for example, the active use of the place will result in the 

deposition of additional material into the record. Alone, this variable can be problematic, as the 

rate of artifact deposition and accumulation can be highly circumstantial and challenging to 

quantify, and it must therefore be considered alongside other assemblage characteristics. The 

second variable selected, closely related to assemblage size, is tool frequency. Tool frequency 
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was defined as the total number of formal and informal lithic tools in the site collection, 

including all functional classes defined in Chapter 2. Though there is a clear logical relationship 

between tool frequency and assemblage size, inclusion of tool frequency as a variable contributes 

additional explanatory value which is essential for the analysis. For example, assemblage size is 

largely dependent on the quantity of debitage artifacts in a site assemblage, which can vary 

substantially and can be difficult to use as a sole measure of occupation duration or intensity 

(Meeker 2017). The frequency of lithic tools, by contrast, offers a useful contrast given their 

longer use life and the less frequent rates of discard and deposition (Schiffer 1987; Schlanger 

1990; Surovell 2009). With each subsequent reuse and reoccupation of a site, then, we can 

anticipate an increased probability of additional tool discard.  

 Though the frequency of tools is a useful indicator of occupation duration and 

reoccupation intensity, there can be challenges in distinguishing between multicomponent 

assemblages and high intensity single occupations. To account for these issues, additional 

variables are required to isolate sites with high rates of reoccupation. One method to accomplish 

this is through functional diversity analyses for lithic tools. Diversity analyses consider three 

principal assemblage characteristics, including, a) richness, or the number of tool classes present, 

b) evenness, the estimated similarity in abundance of tool classes, and c) heterogeneity, which is 

the simultaneous measurement of richness and evenness (Bobrowsky and Ball 1989:5). While 

archaeologists must be cautious in the application of these analyses, as a “single value masks the 

different properties of richness and evenness”, diversity measures retain significant “potential for 

resolving functional and processual relationships” (Bobrowsky and Ball 1989:7; Jones and 

Leonard 1989:3). These measures are likewise often used as measures to define site function, 

rather than site reuse or occupation intensity (Andrefsky 1998; Chatters 1987). With this study’s 
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emphasis on broader long-term patterns of landscape use and reuse, the specific site function of 

individual occupations is difficult to isolate in the record and was less critical than clarifying the 

accumulated use of a site through time (Dooley 2004). Other applications of diversity, for 

example, have significant utility for evaluating artifact accumulation and reoccupation intensity. 

As described in Chapter 3, for example, diversity plays prominently into the Clarke Effect and 

the increase in tool “variety” alongside occupation span (Schiffer 1987:54). Particularly for 

analysis of high elevation landscapes, where occupations are inherently seasonal rather than 

permanent, diversity analyses have significant utility for evaluating trends in long-term episodic 

reuse (Reckin and Todd 2020). While numerous diversity indices exist in archaeology, 

Shannon’s H is among the most frequently applied (Kaufman 1998; Rindos 1989). Shannon’s H, 

also variously described as the Shannon-Weiner or Shannon-Weaver index, is a probabilistic 

measure which estimates the heterogeneity of a given tool assemblage (Reckin and Todd 2020). 

Originally defined by Shannon and Weaver (1949) in the context of information theory, the 

index is calculated using the following formula:  

𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐻 = − ∑(𝑃𝑖 ln 𝑃𝑖)𝑠
𝑖=1  

The Shannon H diversity value is derived from the number of tool class categories (s), and 

relative percentage or proportion of a given tool classes’ occurrence (Pi) (Bobrowsky and Ball 

1989; Reckin and Todd 2020). Though the measure has been criticized for its treatment of 

sample size and other conditions, it remains a useful method for generating hypotheses and 

drawing comparisons between assemblages (Conkey 1989; Meltzer et al. 1992; Sullivan and 

Tolonen 1998; Rindos 1989). These sample size issues, for example, can be mitigated when 

Shannon’s H is calculated from carefully defined tool classes (Reckin and Todd 2020:9). In the 
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case of this analysis, where tool classes were generally ‘lumped’ rather than ‘split’, the 

Shannon’s H method is an appropriate comparative measure of diversity which can be used to 

generate useful hypotheses for further analysis.  

 In addition to the calculation of tool functional diversity, there is also utility in the 

analysis of lithic raw material diversity for measuring reoccupation (Kvamme 1998:139). High 

elevation occupations in the Front Range and Medicine Bow Mountains are associated with 

larger systems of seasonal movement over landscapes (Benedict 1992). The lithic materials 

collected during these transhumance systems, and subsequently deposited at sites, were acquired 

through embedded and direct procurement systems. In an embedded procurement system, 

suitable toolstone is “obtained incidentally” during the course of daily movements through a 

landscape (Binford 1979:269). In a direct procurement system, by contrast, dedicated trips are 

made to known quarry or outcrop sources (Bamforth 2006). In their previous study of the 

Medicine Bow Mountains, Morris et al. (1994:74) recognized that raw materials were imported 

into the study area in the form of finished tools, and that raw materials were transported a 

“considerable distance” from their sources. Similarly, analysis of existing geological maps 

suggests there is low potential for the occurrence of local raw materials within the study area 

(Workman et al. 2018a, 2018b). Given the paucity of local raw materials in the WBLR 

watershed, we can anticipate that bands traveling through the area would transport diverse lithic 

raw material types into the study area, whether practicing embedded or direct procurement 

systems. As these lithic raw materials are reflective of the “diversity of places and stone sources 

visited” and the “level of mobility and foraging range”, we can be certain that different groups 

accessing the WBLR watershed through time imported a diverse range of raw materials 
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associated with their specific annual round and procurement systems (Binford 1980; Clarkson 

2008:305; MacDonald 2008). 

 The lithic raw material diversity resulting from the repeated use of the study area through 

time is a powerful tool for estimating the level of reuse for each individual site. In Shiner’s 

(2009) study of time-averaged deposits and persistent places, for example, variability in raw 

material utilization was analyzed to identify sites with evidence of episodic reuse. The results of 

his analysis determined that variability in lithic raw materials is “indicative of variability in the 

intensity of occupation over the long-term” (Shiner 2009:38). Meeker (2017) measured ratios of 

local to non-local raw materials to understand occupation intensity and duration at stone circle 

sites in the foothills ecotone to the east of the study area. In her analysis, Meeker (2017:44) 

recognized that “multiple occupations should contain more [raw material] heterogeneity” due to 

the “different frequencies and types of non-local materials” imported to a given site. Burnett 

(2005) performed a similar analysis of toolstone variability in surface lithic scatters at high 

elevations, applying a comparison of lithic raw material diversity to assess occupation intensity. 

Reckin and Todd’s (2020) recent analysis offers the most comprehensive discussion of the 

relationship between lithic raw material diversity and occupation intensity through time. In their 

analysis, Reckin and Todd (2020) apply the local-to-non-local proportion model to interpret the 

intensity of high elevation landscape use through time. While Andrefsky (1998) and Surovell 

(2009) likewise recognize that raw material assemblages associated with longer duration 

occupations are likely to become more homogenous as the reliance on local raw materials 

increases, these models do not account for occupations where substantive local materials are not 

available. In these cases, where sites without local materials were occupied only during the 

summer season, we can expect that assemblage raw material composition will become more 
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heterogenous with each subsequent reuse. Given this basis for lithic raw material diversity as an 

indicator of reoccupation intensity, the Shannon’s H diversity for lithic raw materials was 

calculated using the same methodology employed for tool functional types. To minimize bias 

from subjective macroscopic visual identification of material types, diversity was calculated 

from broad raw material classes, such as CCS, quartzite, quartz, and obsidian (see Chapter 2).  

 The final variable used for ranking assemblages was projectile point frequency. Projectile 

points, even apart from their diagnostic potential, are a useful measure of the occupation and 

reoccupation intensity of high elevation localities (Burnett 2005:iv). In her original analysis of 

persistent places, Schlanger (1992:109) found that projectile points occurred in higher 

frequencies in surface contexts associated with multicomponent sites. Schlanger (1992) 

attributed this observation to the long-term use of these multicomponent sites for hunting 

activities. This interpretation generally aligns with theoretical expectations surrounding tool use-

lives and rates of deposition. For example, particularly in a raw material poor area, we may 

expect that damaged projectile points would be conserved and recycled rather than loosely 

discarded (Andrefsky 2008; Clarkson 2008). LaBelle (2005, 2010) likewise used projectile point 

frequency to understand landscape use and reoccupation. To quantify this variable, all artifacts 

classified as projectile points in Chapter 2 were summed by site. All projectile points, including 

incomplete or untyped specimens, were included in the count for each site.  

 Once all variables for quantifying reoccupation intensity were defined and calculated, it 

was necessary to rank order sites to create a gradient of reuse. Rather than employ a single value 

or statistic, in which certain variables could eclipse others, an independent multivariate ranking 

system was required. Each individual variable was ranked using a percentile ranking function in 

Microsoft Excel. Using this function, each site was assigned a percentage value expressing its 
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relative rank for every variable, which can calculated in relation to the remaining sites in the 

sample. These individual variable rankings were then averaged to generate a holistic ranking 

which represented the overall estimated reoccupation intensity of each site. This process allowed 

for the independent ranking of each variable, and for careful examination of the data and relative 

influence of each variable, alongside a holistic rank for the larger analysis of the dataset.     

 

Ordinal Classification of Reoccupation Intensity  

 Once each site was ranked by the assemblage composition variables, it became necessary 

to interpret and classify the results. For the purposes of this study, an ordinal classification 

system was adopted to frame the estimated reoccupation intensity of each site. Based on a priori 

expectations for reuse, discussed in this chapter and Chapter 3, higher ranking sites exhibit the 

most substantial evidence for persistent reuse through time. In contrast, sites with a lower mean 

percentile rank are anticipated to reflect significantly lower levels of reuse. To capture this 

variation in estimated reoccupation intensity, and categorize each locality for greater ease of 

analysis, each site was assigned to an ordinal scale. This scale was designed to represent three 

categories of reuse and reoccupation intensity, sites with evidence of high reuse, moderate reuse, 

and low reuse. Dooley (2004, 2008) employed a similar ordinal classification of sites by 

reoccupation intensity. Classification of sites into these categories was performed using the mean 

percentile rank assigned to each site, derived from the individual rankings per each variable. To 

facilitate classification, each category was defined by dividing the mean percentile site rankings 

into thirds. Each site in the top 33% was classified as exhibiting high evidence of reuse, the 

middle 33% were assigned as moderate reuse sites, and the bottom 33% was defined as those 

sites with low evidence of reuse. Though this method of classification is arbitrary, the theoretical 
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basis for the analyses support consolidation of these sites into these coarse-grained classes. A 

finer classification method would be problematic, given the data quality and chronometric 

limitations of this study, and broader categories are most appropriate for this range.  

 

Results: Assemblage Composition Variability and Evidence of Reuse  

 The results of the multivariate ranking analysis identified nine sites with evidence of high 

reuse, twelve sites with moderate evidence of reuse, and nine sites with low evidence of reuse 

(Table 5). Sites with known multiple occupations, as demonstrated by the presence of non-

contemporaneous tool typologies, were all correctly classified into the high evidence for reuse 

classification category. 5LR229, an example of a known multicomponent site with an unusually 

small assemblage size (n = 21) was likewise classified correctly due to its high tool frequency, 

tool diversity (H), and lithic raw material diversity (H). Similarly, 5LR132 is associated with an 

assemblage size (n = 114) which is greater than 87% of the sites in sample, but with no tools and 

homogenous raw materials. Despite this large assemblage size, 5LR132 likely represents a high-

intensity but ephemeral flaking event, and the site was correctly classified as exhibiting low 

evidence for reuse. These findings further reinforce the integrity of the classification and ranking 

methodology. In the case of both 5LR229 and 5LR132, the individual ranking for each variable 

offers useful analytical value while the holistic ranking situates each site within its larger 

archaeological context. Similarly, while the ordinal classification of sites into high reuse, 

moderate reuse, and low reuse categories was arbitrary, the results conform to pre-defined 

expectations. Similarly, the minimum number of occupations variable (withheld as a control) 

suggests that all known multicomponent sites were classified correctly.  
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Table 5. Site assemblages ranked by their relative estimated reoccupation intensity. Each site was assigned an individual rank per each variable, as well as a 
mean percentile ranking which was used to classify each site into ordinal categories of high reuse, moderate reuse, and low reuse sites. The minimum number of 
occupations, defined by number of non-contemporaneous projectile point typologies, was used as a control for the analysis. All three sites with non-
contemporaneous projectile point typologies were classified within the high reuse category.   

V A R I A B L E S  

Site (5LR) 

Total 

Assemblage 

Size % Rank 

Total 

Tools % Rank 

Tool 

Diversity 

(H) % Rank 

Lithic 

Diversity 

(H) % Rank 

Projectile 

Point 

Frequency % Rank 
Mean % 

Rank 

 Minimum 

Number of 

Occupations 

(Point typologies) 

Evidence 

of Reuse 

174 160 93% 13 87% 1.264 71% 0.686 100% 7 97% 90%  3 High 

235/273/274 824 100% 30 100% 0.678 46% 0.587 80% 6 93% 84%  1 High 

240 66 70% 13 87% 1.733 96% 0.558 73% 5 90% 83%  3 High 

153/237 298 97% 21 97% 1.083 64% 0.167 40% 10 100% 80%  1 High 

227/228 101 83% 13 87% 1.322 75% 0.323 57% 3 87% 78%  1 High 

131 91 80% 5 63% 1.332 82% 0.626 90% 2 67% 76%  1 High 

238 148 90% 6 73% 1.011 54% 0.625 87% 2 67% 74%  1 High 

233 33 53% 8 80% 1.733 96% 0.562 77% 1 43% 70%  1 High 

229 21 37% 8 80% 1.733 96% 0.410 60% 2 67% 68%  2 High 

134 28 50% 5 63% 1.055 61% 0.490 67% 2 67% 61%  1 Moderate 

231 38 57% 4 53% 1.386 89% 0.122 37% 1 43% 56%  1 Moderate 

101 16 30% 5 63% 1.332 82% 0.234 47% 1 43% 53%  1 Moderate 

158 76 73% 3 33% 1.099 68% 0.206 43% 1 43% 52%  1 Moderate 

133 41 60% 6 73% 1.330 79% 0 3% 1 43% 52%  1 Moderate 

102 12 27% 3 33% 0.637 32% 0.305 50% 2 67% 42%  1 Moderate 

225 24 43% 3 33% 0.637 32% 0.652 93% 0 3% 41%  1 Moderate 

234 83 77% 4 53% 1.040 57% 0 3% 0 3% 39%  1 Moderate 

232 54 67% 4 53% 0.562 29% 0.092 33% 0 3% 37%  1 Moderate 

135 10 20% 2 23% 0.693 50% 0.611 83% 0 3% 36%  1 Moderate 

113 26 47% 3 33% 0.637 32% 0.490 63% 0 3% 36%  1 Moderate 

236 47 63% 3 33% 0 4% 0.518 70% 0 3% 35%  1 Moderate 

132 114 87% 3 33% 0 4% 0.088 30% 0 3% 31%  1 Low 

114 10 20% 0 3% 0 4% 0.673 97% 0 3% 25%  1 Low 

239 2 13% 2 23% 0 4% 0 3% 2 67% 22%  1 Low 

1834 23 40% 1 10% 0 4% 0.305 50% 0 3% 21%  1 Low 

226 20 33% 2 23% 0.637 32% 0 3% 0 3% 19%  1 Low 

1733 1 3% 1 10% 0 4% 0 3% 1 43% 13%  1 Low 

14335 1 3% 1 10% 0 4% 0 3% 1 43% 13%  1 Low 

173 3 17% 0 3% 0 4% 0 3% 0 3% 6%  1 Low 

224 1 3% 1 10% 0 4% 0 3% 0 3% 5%  1 Low 
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 Assemblage size among the Rawah assemblages was highly variable, with a range 

exceeding 800 artifacts and a standard deviation of 154 artifacts. The largest site assemblage was 

from 5LR235/5LR273/5LR274, with 824 artifacts. This site is located at the confluence of the 

West Branch of the Laramie River and the North Fork of the West Branch of the Laramie River, 

and is one of the localities consolidated due to the close spatial proximity of the three sites. 

Variation among assemblage sizes was greatest in sites classified as having high evidence of 

reuse, and the assemblage sizes of moderate and low reuse sites were much less variable (Figure 

20). Tool frequency followed a similar pattern, though with a much more constrained range of 29 

tools and a standard deviation of 6.5 tools. The largest tool assemblages were associated with 

5LR235/5LR273/5LR274 and 5LR153/5LR237, with a respective tool frequency of 30 and 21. 

Variation in tool frequency was largely consistent with total assemblage size, unsurprisingly, and 

a strong correlation exists between the two variables (Pearson’s r = 0.8701). The tool frequencies 

of high reuse sites again exhibited substantial variability, while moderate and low reuse sites 

were generally closely constrained. While there was substantial overlap between the high, 

moderate, and low reuse site classes for assemblage size, there was negligible overlap in values 

for tool frequencies (Figure 20). This level of overlap is largely consistent with expectations, as 

large assemblages associated with low reuse sites could be attributed to high intensity ephemeral 

occupation or a dedicated ephemeral activity area. For example, a lithic reduction or tool retouch 

activity area could easily generate significant amounts of debitage from a single event. The 

consistent increase in tool frequencies across classes likewise aligns with this interpretation, as 

the accumulation of tools is less variable and more constant than debitage accumulation (Schiffer 

1975, 1987; Schlanger 1990; Surovell 2009).  
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Figure 20. Assemblage composition box-and-whisker plots for sites classified as high, moderate, or low reuse. Solid 
horizontal lines represent the mean value for the entire site sample (n = 30).  
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 Tool functional diversity and lithic raw material diversity reflect similar patterns as 

assemblage size and tool frequency. Tool functional diversity is highly variable across the larger 

study area sample, with a range of 1.73 and a standard deviation of 0.60. The sites with the 

highest tool functional diversity were 5LR240 (H = 1.73), 5LR233 (H = 1.73), and 5LR229 (H = 

1.73). Both 5LR240 and 5LR229 are known to have multiple components based on non-

contemporaneous projectile point typologies, and their associated high diversity (greater than 

96% of study sites) seems to support expectations derived from the Clarke Effect discussed in 

Chapter 3 (Schiffer 1975, 1987). By category, sites with evidence of high reuse and moderate 

reuse reflect similar variability in tool functional diversity (Figure 20). Sites with evidence of 

low reuse, by contrast, show little variation in tool diversity across their assemblages. This is 

largely attributable to the small numbers of tools associated with assemblages exhibiting little 

evidence for reoccupation, as many of these sites meet the management criteria for designation 

as isolated finds. Similar trends are apparent in analysis of variability in lithic raw material 

diversity, with a range of 0.69 and a standard deviation of 0.26. Localities exhibiting the highest 

raw material diversity include sites with evidence of high reuse 5LR174 (H = 0.69) and 5LR225 

(H = 0.65), and low reuse 5LR114 (H = 0.67). Both 5LR174 (n = 3) and 5LR225 (n = 1) contain 

obsidian debitage, and 5LR225 is likewise associated with an obsidian drill (5LR225-23; Figure 

12). The presence of obsidian is rare in the Medicine Bow Mountains, accounting for just 0.21% 

of the artifacts analyzed in this analysis (See discussion in Chapter 2). Likewise, obsidian 

sourcing studies conducted in study area and in the foothills ecotone to the east, suggest obsidian 

was imported to northern Colorado from as far away as Idaho, Wyoming, and New Mexico 

(LaBelle 2009; Pelton et al. 2016:14). The presence of obsidian at these sites, with evidence to 

suggest their high reoccupation intensity, is aligned with expectations for an increased 
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probability of raw material diversity and occurrence of exotic materials with higher reoccupation 

intensity (Bender 2015:310; Kvamme 1998). 5LR114 appears somewhat enigmatic by contrast. 

Designated as exhibiting low evidence of reuse, largely attributable to a complete lack of tools 

and an assemblage size of just 10 artifacts, the site’s assemblage composition does reflect a 

surprisingly high raw material diversity. It is possible that this discrepancy is a result of the 

sampling strategy employed or surface discovery bias (e.g. Wandsnider and Camilli 1992, 

Simmons 1998, etc.), however it is unclear. Given the small assemblage size of this site (n = 10), 

however, I argue 5LR114 is appropriately categorized as a site with low likelihood for 

reoccupation. Additional study of lithic raw material sourcing in northern Colorado could clarify 

the nature of outliers in lithic raw material diversity for the Rawah Wilderness study area.  

 The final assemblage composition variable, projectile point frequency, was also closely 

aligned with the trends apparent in previous variables (Figure 20). High reuse sites again 

reflected more variability in the number of projectile points identified at each site, while 

moderate reuse and low reuse sites were significantly more constrained. For the Rawah 

Wilderness site sample (n = 30) as a whole, the range of projectile point frequency was 10 points 

with a standard deviation of 2.40.  Sites with the highest quantities of projectile points, such 

5LR153/5LR237 (n = 10) and 5LR174 (n = 7), also represent localities with large assemblage 

sizes and high tool frequencies. By proportion of the total tool assemblage, projectile points also 

occur more frequently at these sites than other sites identified as reflecting high evidence of 

reuse. Some interpretation of site function could be made from these trends in tool assemblage 

composition, however the chronometric restraints of this study limit analysis to long-term 

patterns in the use of sites rather than evaluation of short-term function (Dooley 2004:107). In 

the low reuse category, we also see isolated projectile points which comprise the entire 
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assemblage of the site. These artifacts, typically defined as isolated finds for management 

purposes, are also important for understanding contrasts in the intensity of landscape use 

(Dunnell 1992; Schlanger 1992:101). In the case of the Rawah Wilderness assemblages, these 

likely represent missed or dropped points related to hunting activity and a single snapshot in 

time.  

 Generally, the results of the analysis for each assemblage composition variable align with 

expectations. The classification of sites into ordinal categories by their evidence for reuse 

likewise was consistent with expectations, with minor variations among individual sites. The 

analysis suggests that assemblage composition of the sites exhibiting the most evidence of reuse 

is associated with higher variability in assemblage composition. Although these sites do have 

large assemblage sizes and tool quantities, high tool and lithic raw material diversity, and large 

numbers of projectile points, there can be a high degree of variance among these assemblage 

characteristics. In contrast, sites with moderate or low evidence of reuse tend to be associated 

with more defined and constrained ranges in their assemblage variation (Figure 20).  

 

Discussion: Implications of Assemblage Composition for Analysis of Reoccupation  

 The assemblage analysis of 2,372 artifacts identified a number of trends which warrant 

further analysis. The objective of this chapter was to identify a range of reoccupation intensity 

for the study area based on assemblage composition, and to determine if reoccupation could be 

reliably discriminated from extant collections. The results of the analysis, as detailed above, 

suggest that these methods are appropriate for identifying sites with evidence of reuse and 

reoccupation can be discriminated from extant collections even when typological diagnostic 

markers are not present. Though this is not a replacement for absolute dating, and deals with 

coarse-grained chronometric scales, these methods and the establishment of relative scales of 
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reoccupation intensity are useful for understanding spatial and temporal trends. Similarly, the 

range of reoccupation intensity elucidated by this analysis demonstrates that reuse of place at 

high elevations in the study area was significantly more variable than previously understood. For 

example, many fewer sites exhibit typological evidence of reoccupation than anticipated, 

creating the need for this alternative method for investigating reoccupation intensity. Though 

Morris et al. (1994) assigned temporal periods to many more of these sites, this study employed a 

more conservative approach. For example, Morris et al. (1994) used distal and medial portions of 

fragmented projectile points in their chronology building, as well as non-projectile point forms 

such as big knives and beaked end scrapers (See discussion in Chapter 2). Though this study 

limited temporal affiliations to projectile points and preforms with intact hafting elements, the 

sites identified by Morris et al. (1994:68-69) as having multiple components were largely 

consistent with the sites identified as having the highest evidence of reuse in this analysis. For 

example, 90% of the WBLR watershed sites which Morris et al. (1994) identified as having 

multiple components (n = 10) were classified as exhibiting high evidence of reuse by this study. 

The remaining multicomponent site identified by Morris et al. (1994) which was not classified in 

the high reuse category, 5LR102, was categorized as a moderate reuse site by the multivariate 

ranking system. All of the sites classified as low reuse, were accordingly identified as having 

only a single temporal affiliation by Morris et al. (1994). This level of consistency between 

Morris et al.’s (1994) analysis and the current study is a striking endorsement of the methods 

employed here, as well as the utility of analysis of reoccupation through comparative evaluation 

of assemblage composition.  

  Following confirmation that these results are appropriately aligned with previous 

analyses, we can turn to the interpretation of variability in assemblage composition for sites with 
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evidence of high reoccupation intensity. As discussed above, moderate and low reuse sites 

appear to have limited variance and consistency in their assemblage composition (Figure 20). In 

contrast, despite comprising just nine site assemblages, localities with evidence of high 

reoccupation intensity exhibit significant degrees of variance in their assemblage composition. 

These contrasts have great interpretive potential for understanding variability in site reuse and 

settlement across the high elevation landscape of the study area. Namely, it suggests that patterns 

in assemblage composition are not consistent across all sites with evidence of reoccupation. 

Additionally, it indicates that a wide variety of occupation intensities and durations, as well as 

settlement patterns and site functions, are associated with these sites. This variability in 

assemblage composition is likely attributable to the effects of time-averaging and the 

“successional use” of these locales through time (Binford 1981:204). As surface collections, 

assemblages from these sites may represent artifacts deposited over thousands of years and many 

occupations. With each reoccupation, the function of individual occupations at a given site 

becomes increasingly masked by the palimpsest accumulation of artifacts through time (Binford 

1982; Dooley 2004). Similarly, these reoccupied sites may represent contexts where “shifts in [..] 

utility” resulted in the divergent functional use of a place through time, or locales where 

“particular resource[s] that might have drawn groups to the site […] were perhaps no longer 

there in subsequent periods” (Binford 1982:21; LaBelle 2010:43). Especially in the context of 

the seasonal use of high elevations, variable transhumance systems could likewise result in 

reoccupied sites with assemblages which were dependent on the geographic scale of the annual 

round. For example, Binford (1982:20) observed that “the more seasonally repetitive the 

movement of residential sites, the greater the chance for repetitive types of occupations at 

particular logistical sites”, and that non-repetitive and large-scale transhumance systems would 



86 
 

conversely result in greater “occupational differentiation and […] assemblage heterogeneity” 

than a more repetitive annual round.  Based on these observations, we might speculate that 

variability in the assemblage composition of reoccupied sites could be tied to differences in 

landscape use and settlement of the Medicine Bow Mountains through time. Reoccupation of 

these locales was episodic and, very likely, sporadic. Especially over thousands of years the 

material remains of a diverse range of activities and settlement patterns are reflected on the 

surface of these sites (Schiffer 1975, 1987). Over these millennia, groups likely accessed the 

high elevations of the Rawah Wilderness from different areas of the larger northern Colorado 

and southern Wyoming region, as part of variable systems of seasonal transhumance along the 

Southern Rocky Mountains (Benedict 1992). I argue that these divergent patterns of landscape 

use through time are more likely to be reflected in heavily reoccupied sites, where traces of these 

diverse activities are overlain, and therefore assemblages of reoccupied sites are more likely to 

exhibit substantial variability in their assemblage composition. As a site is reoccupied, 

intermixture of cultural materials from these discrete occupations creates a variable record 

reflecting a time-averaged snapshot of these diverse activities through time. In the case of the 

Rawah Wilderness assemblages, variability among the assemblage composition of sites 

identified as exhibiting high evidence for reuse is another line of evidence which supports their 

classification as reoccupied sites.   
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CHAPTER 5 – SPATIOENVIRONMENTAL MODELING OF REOCCUPATION 

  

The objective of this chapter is to identify landscape patterns which may correlate with 

selective reoccupation of place in the WBLR watershed. While the previous chapter identified 

sites with the highest evidence of reuse, based on an assemblage composition analysis of extant 

collections, this chapter compares and contrasts the spatioenvironmental context of sites with 

high, medium, and low evidence of episodic reuse. Under Schlanger’s (1992:97) framework for 

persistent place formation, the presence of environmentally advantageous conditions (“unique 

qualities”) at a site can be a powerful pull factor which encourages preferential reuse. For 

example, opportune access to a lithic raw material outcrop, a mountain pass, or a strategic 

viewshed can incentivize and structure the repeat use of a given place. Binford’s (1980:13) 

recognition of the practice of “mapping on” in forager settlement systems, where hunter-

gatherers strategically utilized areas with critical resources, is also consistent with this 

expectation. If optimal environmental conditions were a leading factor of persistent place 

formation in the high elevation landscapes of the Medicine Bow Mountains, we can expect to see 

evidence for spatial patterns in the distribution of heavily reoccupied sites over the landscape. In 

assessing these patterns, however, it is important to avoid unsubstantiated interpretations which 

rely on environmental determinism. Instead, it is necessary to recognize that, while the 

environment imposed limitations or incentives for the use of landscape, hunter-gatherers made 

agentive choices in the avoidance or settlement of these places (Rademaker and Moore 

2019:103). Similarly, when working at this scale, it is critical to recognize that both human and 

natural forces mutually acted upon each other to influence how these inherently cultural 

landscapes were used by ancient hunter-gatherers (Sauer 1925). With this understanding, this 
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chapter explores these agentive choices which led hunter-gatherers to selectively reuse certain 

places over others. Through this approach, it is then possible to evaluate the role of environment 

in persistent place formation while considering the complex ways in which people approached 

and perceived these landscapes.  

To identify the contribution of optimal environmental conditions to the preferential 

reoccupation of sites, this chapter applies statistical and probabilistic techniques to determine if 

certain landscape settings were strategically selected for repeat settlement. If the analysis 

identifies evidence for an association between reoccupied sites and a specific suite of 

environmental conditions, we can argue that Schlanger’s (1992) first criteria of persistent place 

formation is a leading factor in reuse of place in the Rawah Wilderness. If such evidence is not 

apparent, however, it suggests that social or cultural dynamics may be stronger influences 

guiding reuse of place. Schlanger’s (1992) remaining two criteria for preferential reuse of place, 

the draw of past artifactual traces visible on the landscape and reuse of existing features at 

reduced cost, likewise have implications for place-making and may explain reoccupation in the 

absence of a clear environmental pull. The clear absence of a preferentially occupied 

environmental niche is likewise evidence for unrecognized cultural conditions which could be 

responsible for persistent place formation and the “intergenerational commitment of a group to a 

particular landscape” (Scheiber and Zedeño 2015:1). With these expectations, this chapter 

addresses the following questions. Is there an identifiable landscape or ecological signature for 

occurrence of persistently reoccupied sites? To what degree do environmental conditions 

contribute to high degrees of reuse? Are there substantive differences between environmental 

conditions associated with high, moderate, or low evidence of reoccupation? And, how does 

reoccupation intensity vary across diverse ecological and environmental conditions? To address 
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these questions, this chapter will apply a Maximum entropy (Maxent) spationvironmental 

modeling methodology to identify the environmental conditions which exert the most influence 

on site suitability. By creating a separate maxent model for high, moderate, and low reuse sites, 

as defined in Chapter 4, we can then compare the results to determine if sites that are more likely 

to be reused are associated with specific environmental conditions.  

 

Methodology: Comparative Modeling of Reoccupation Intensity  

The Maxent methodology originated for the development of species distribution models 

in ecology, though recent archaeological applications of its “consistently competitive” predictive 

capabilities have shown it outperforms conventional archaeological modeling methods (Elith et 

al. 2010:2; Galleti et al. 2013; Healy et al. 2017; Noviello et al. 2018). Conventional 

archaeological predictive models are broadly organized into two categories, inductive and 

deductive models, and apply different datasets and expectations to predict suitable site locations 

(Verhagen and Whitley 2012). Inductive models use statistical correlations between known 

archaeological sites and environmental conditions to predict site locations, while deductive 

models rely on a priori “knowledge of ancient human characteristics” to identify suitable areas 

for site occurrence (Noviello et al. 2018:35). The Maxent modeling method applies an inductive 

framework of statistical inference to analyze site suitability and the relationships between site 

occurrence and certain environmental variables. Maxent’s algorithm is derived from the principle 

of maximum entropy which “states the estimate of the subject probability distribution should be 

based on known constraints as expressed by an expected value, but the distribution also should 

be as close to uniform as possible to avoid being biased” (Galleti et al. 2013:48; Philips et al. 

n.d.). The mathematical basis for Maxent is “maximally non-committal with regard to missing 

information” and stems from information theory and Bayesian statistics (Jaynes 1957:620). 
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A central characteristic of the Maxent methodology is its ability to make statistical 

inferences based on ‘presence-only’ data. While conventional spatial modeling methods require 

both presence and absence data, Maxent’s algorithm is designed to work with presence data 

alone. For archaeological applications, this presence-only capability is essential given the 

difficulty of verifying absence data in remote conditions. For example, it is straightforward for 

archaeologists to verify locations of archaeological sites (presence data), but substantially less 

practical to fully verify a lack of sites (absence data) given preservation and visibility biases. In 

the Rawah Wilderness, this is especially challenging given a lack of formal survey coverage. 

Especially with the legacy dataset available for this study, the Maxent methodology offers a 

useful opportunity to apply this preexisting presence-data to analyze the landscape distribution of 

persistently reoccupied sites.   

While Maxent’s most common use is as a predictive tool for development of 

archaeological predictive models, there is growing application of Maxent as a tool for evaluating 

the spatioenvironmental conditions associated with specific site types or cultural behaviors. In 

Howey et al. (2016) for example, Maxent is applied to study differences in the construction of 

monumental architecture in precontact Michigan. By applying spatial distribution datasets for 

two types of earthwork constructions, the authors ran Maxent models for each type to compare 

and contrast the cultural processes and environmental conditions associated with the construction 

of these features (Howey et al. 2016). Benner et al. (2019) and Walker (2019) performed similar 

comparative analyses using Maxent’s predictive capabilities. In Benner et al.’s (2019) 

ethnoecological analysis, Maxent was applied to compare the archaeological and contemporary 

distribution of culturally significant old growth trees in British Columbia. Walker (2019), in a 

more conventional archaeological analysis, applied Maxent’s spatioenvironmental powers to 
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compare land use strategies and the persistent use of place between the Late Archaic and Middle 

Woodland periods in the Trent Valley. Though Walker (2019) does not consider ‘persistence’ in 

the same theoretical context of Schlanger’s (1992) persistent place concept, her study highlights 

the potential for Maxent to be applied to understand reuse of place over both time and space. 

Alongside these studies, this analysis likewise employs Maxent for its comparative powers rather 

than its predictive modeling applications. By developing Maxent models to compare the 

spatioenvironmental contexts of high, moderate, and low reuse sites, it is possible to capitalize 

on these capabilities to “develop robust models of past cultural processes” (Howey et al. 

2016:7443) 

 

Sample Size and Quality 

 A critical component of the development of accurate spatioenvironmental models is the 

selection of an appropriate sample size and environmental dataset. These input data, the 

presence-data (known sites) and the environmental data layers, are weak points in the modeling 

process with the highest risk of user-introduced detrimental biases. For example, the training-

sample of known sites can be hampered by spatial autocorrelation, where closely associated data 

points create redundancy in observation data (Lee 2017). Tobler’s first law of geography, for 

example, holds that “everything is related to everything else, but near things are more related 

than distant things” (Tobler 1970). For this reason, dispersed input observation data is preferable 

over clustered data. A benefit of the Maxent program is that it does contain a parameter to 

remove duplicate presence records (observations occurring in the same grid cell), which 

significantly mitigates the potential for spatial autocorrelation biases (Phillips et al. n.d.). 

Similarly, the use of site distributions derived from survey, rather than a true random sample, is 

acceptable for these models (Kvamme 1988c: 302). 
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Figure 21. The input observation samples (known sites) used for each model. Spatial autocorrelation can impose 
some limitations on spatioenvironmental models, however the distribution of each site type is sufficiently dispersed 
to mitigate any biases caused by autocorrelation. Similarly, the density of each site type per square kilometer 
exceeds the minimum recommendation of Noviello et al. (2018). Background contextual information was omitted 
from the figure to protect site locations.  

 An appropriately sized sample for the input presence-data (known sites) is also a critical 

component of developing effective models. Though small sample sizes are not necessarily 

problematic in Maxent, larger samples allow for greater flexibility in model development 

(Benner et al. 2019:1380; McMichael et al. 2013:3; Proosdij et al. 2015). In the application of 

their archaeological model, Noviello et al. (2018:34) recommend a minimum density of 0.2 sites 

per square kilometer for design of an effective Maxent model. Using this standard, the site 

samples for sites with high evidence of reuse (n = 9), moderate evidence of reuse (n = 12), and 

low evidence of reuse (n = 9) are appropriately sized for analysis. The total area of the WBLR 
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watershed study area is 36.9 square kilometers and densities for each site type range from 0.24 to 

0.32 sites per square kilometer, indicating the available samples are sufficient for analysis with 

Maxent.   

 

Environmental Variables  

 Following selection of an adequate sample for heuristic development of the model, it is 

necessary to isolate environmental predictors which are likely to be associated with suitability of 

site occurrence. Variable selection is dependent on the a priori expectations of the user, and this 

stage of the modeling process requires careful consideration of these expectations. For this 

reason, it is critical to ensure the basis for potential environmental predictors are adequately 

grounded in best available archaeological evidence. For the purposes of this analysis, a suite of 

10 environmental variables was selected to evaluate the suitability for high reuse, moderate 

reuse, and low reuse sites. These variables were selected from three broad categories which were 

likely to influence ancient peoples’ use of high elevations, water availability, geomorphology 

and terrain, and ecology and landcover (Table 6). Variables in the water availability category 

include access to lakes, permanent running water sources (e.g. perennial streams), and ephemeral 

running water sources (e.g. seasonal streams). Geomorphology and terrain variables include 

elevation, slope, topographic position, topographic relief. The final category, ecology and land 

cover, includes proximity to ecotone boundaries, archaeological visibility, and ecological 

diversity. All environmental variables represent modern conditions and no paleoenvironmental 

reconstruction was performed for this analysis. In absence of this paleoenvironmental data, as in 

Howey et al. (2016:7445), contemporary variables were applied to understand “how areas across 

the landscape would have varied […] relative to each other.”  Similarly, though sites were 
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evaluated in the context of these contemporary environmental variables, if the distribution of 

sites in relation to the variables results in the clear identification of nonrandom patterns there is 

then still utility for understanding the landscape distribution of these sites (Kvamme 1992:23).  

Table 6. Environmental variables used to construct the models for high reuse, moderate reuse, and low reuse sites. 
These variables were selected based on a priori expectations for their likely significance to prehistoric utilization of 
the WBLR watershed.  

Variable Source Description 

Water Access 

Cost Distance to Lakes National Hydrography 
Dataset 

Measures the cost (as a function of 
slope and distance) to access lakes. 

Cost Distance to Permanent Water National Hydrography 
Dataset 

Measures the cost (as a function of 
slope and distance) to access 
perennial running water sources. 

Cost Distance to Ephemeral Water National Hydrography 
Dataset 

Measures the cost (as a function of 
slope and distance) to access 
ephemeral and seasonal running water 
sources. 

Geomorphology and Terrain 

Elevation USGS Measures elevation in meters above 
sea level.  

Slope Derived from 
Elevation 

Measures the steepness of terrain.  

Topographic Position Derived from 
Elevation/Slope 

Measures placement of sites in high 
(ridgelines) and low (valley floors) 
points in relation to surrounding 
terrain. Derived from elevation 
variability in 100-meter radius. 

Topographic Relief  Derived from 
Elevation/Slope 

Measures the ruggedness and 
difficulty of movement through 
terrain (large changes in elevation 
over short distances). Derived from 
variability of elevation over a 500-
meter radius. 

Ecology and Land Cover 

Cost Distance to Ecotone Boundary Derived from 
Elevation 

Measures the cost (as a function of 
slope and distance) to access ecotone 
boundaries. 

Archaeological Visibility Derived from CIR 
imagery, SWReGAP 

Land Cover, and 
Constructed Datasets 

Proxy for visibility of sites to (a) 
prehistoric peoples, and (b) modern 
archaeological surveyors. Provides 
estimated visibility of artifactual 
materials on the ground surface.  

Ecological Diversity  Derived from Land 
Cover  

Measures the number of discrete land 
cover types within a 100-meter radius.  
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Figure 22. Frequency of site occurrence by cost to access water resources. Low values indicate a minimal cost to 
access, while high values correspond to high cost. These variables include lakes, permanent running water (such as 
perennial rivers and streams), and ephemeral running water (such as seasonal snowmelt channels).  

  
For variables which measured proximity and access (such as water access or ecotone 

boundary), a cost distance raster was created. As a function of slope and distance, this raster 

measures the relative energy expenditure required to access the given resource. This is critical in 

mountain contexts, as a resource can be in apparent close proximity but far upslope or downslope 

(Buckner 2020). By using a cost distance raster to measure ease of access to a given resource, the 

models can measure proximity more accurately than by using distance alone. To create the cost 

raster, the mean slope and standard deviation of slope within a 100 meter radius of each cell was 

calculated using the Focal Statistics tool in ArcGIS. A value of ‘1’ was added to each raster 

using the Raster Calculator tool, and the natural log was taken for each cell using the Ln tool. 
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The resulting rasters were then combined in the Raster Calculator to generate the cost surface 

raster (Heilen et al. 2013).  

 

 
Figure 23. Frequency of site occurrence in different geomorphic and terrain conditions. These variables include 
elevation, slope, topographic position (high and low vantages), and topographic relief (terrain ruggedness).  
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The water resources category is comprised of variables which measure cost to access 

lakes, permanent running water, and ephemeral running water. Access to water is a well-

established variable in archaeological predictive modeling, and an important consideration in 

modeling differences between sites with variable reoccupation intensity (Kvamme 1988b). 

Morris and Metcalf (1993), accordingly, reported concentrations of sites nearby to water 

resources. Lakes are generally associated with the high elevation cirque basins of the WBLR 

watershed, while permanent and ephemeral running water sources are more variable throughout 

the study area. A number of Rawah sites are associated with lakefront settings in these high 

elevation contexts, and it is important to consider if these landscape features are associated with 

reoccupation (Morris et al. 1994). Additionally, given that primary drainages are also expedient 

travel routes through rough mountain terrain, proximity to permanent running water and 

drainages may also reflect travel corridors through the study area (Buckner 2020). Similarly, 

sites associated with ephemeral running water sources could reflect how indigenous peoples 

utilized areas of the landscape where permanent sources were not available. Each raster for these 

variables was created using shapefiles acquired from the National Hydrography Dataset and the 

Cost Distance tool in ArcGIS 

The geomorphology and terrain category includes the slope, elevation, topographic 

position, and topographic relief variables. Elevation and slope were derived from a digital 

elevation model (DEM) available from the United States Geological Survey (USGS). These are 

common variables in geospatial modeling in archaeology, and are particularly relevant to 

mountain contexts. Steep slopes, for example, inhibit both travel and settlement and are a useful 

predictor of sites occurrence. The topographic position and topographic relief variables were 

more complex and required significant data preparation. The topographic position raster 



98 
 

measures if settlement patterns are associated with a preference for either high (e.g. ridgelines) or 

low (e.g. valley floors) vantages (Holton 2013). The raster measures the difference in elevation 

in a 100 meter neighborhood to estimate the position of a cell in relation to the surrounding 

topography. Following the methodology of Holton (2013:47), the raster was created using the 

Focal Statistics and Raster Calculator tools and the following equation:  

𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  (𝐷𝐸𝑀 –  𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 –  𝑀𝑖𝑛𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) 

The topographic relief raster considers similar aspects of variability in terrain and its 

implications for settlement and movement. Relief acts as a proxy for the ruggedness of local 

terrain, which can expediate or limit settlement and movement through a given area (Heilen et al. 

2013; Kvamme 1988b).  To calculate the relief raster, the range of elevation within 500 meters of 

each cell was calculated using the focal statistics tool. Relief is high in areas where there was 

significant variability in elevation, and low in areas with little variation in elevation. 

 The final environmental category contains variables related to ecology and land 

cover. These variables include ecological diversity, proximity to ecotone boundaries, and 

archaeological visibility. Ecological diversity acts as a proxy for the variance in land cover and 

vegetation in close proximity to site, with the expectation that hunter-gatherers will strategically 

map on to areas with access to a range of resources (Binford 1980). The ecological diversity 

raster was created using a land cover dataset from the Southwest Regional Gap Analysis Project 

(SWReGAP). Using the Focal Statistics tool in ArcGIS, the raster was created using the number 

of discrete land cover types which occurred with 100 meters of each cell. The proximity to 

ecotone boundaries raster was created with a similar intent. Evidence from the Medicine Bow 

Mountains and Colorado Front Range suggests that hunter-gatherers strategically positioned 

themselves nearby to the timberline ecotone for protection from wind and elements, as well as 
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expedient access to the subsistence resources unique to both the subalpine and alpine ecozones 

(Benedict 1981, 1985, 1992, 2000; Morris and Metcalf 1993; Morris et al. 1994). With the 

diverse resources available from ecotone boundaries, and close access to resources from multiple 

ecozones, proximity to these transitional areas could encourage reoccupation. The cost distance 

to ecotone boundary variable acts as a proxy to measure these settlement and resource 

procurement strategies practiced by hunter-gatherers in high elevations. 

 

Figure 24. Frequency of site occurrence for ecological and visibility conditions. These variables account for 
strategic hunter-gatherer subsistence and settlement decisions, as well as the influence of visibility bias on the 
sample. Archaeological visibility can likewise be used to evaluate Schlanger’s (1992) criteria for persistent place 
formation and the role of visible traces of previous occupations in reoccupation.  
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Figure 25. Variability in ground visibility across the study area. Background images show color-infrared (CIR) 
aerial imagery of sites 5LR17 (top) and 5LR240 (bottom). Dark red coloration indicates rapid growth of high 
density vegetation, while exposed sediments and bedrock appear as white. Inset Photographs: Archaeological crew 
members Matthew Ballance and Colt Johnson survey in variable ground visibility conditions (Buckner 2019).   

 
The final variable, archaeological visibility, was created with several considerations in 

mind. Visibility bias is a common issue facing surface archaeology, and it is difficult to evaluate 

if a given landscape sample is representative of actual human behavior in the past, or simply 

optimal visibility conditions which allowed these sites to be more easily discovered (Wandsnider 

and Camilli 1992). Similarly, no formal survey coverage exists for the project area and absence 

data, where archaeological sites are not present on the landscape, is not available. For this 
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analysis, where it is necessary to isolate behavior from visibility, it was critical to develop a 

methodology to account for these considerations and the possibility of visibility bias. Similarly, 

Schlanger’s (1992) criteria for persistent place formation are dependent on the visibility of past 

material traces in a given place. For example, particularly in a raw material poor area, visible 

artifacts on the ground surface can attract additional occupations to a specific place and recycling 

of surface artifacts and raw materials (Camilli and Ebert 1992; Schlanger 1992). The discovery 

of these previous artifactual traces, and subsequent reuse of secondary raw materials, are largely 

dependent on surface visibility conditions (Camilli and Ebert 1992). For these reasons, 

archaeological visibility is both a necessary methodological consideration, as well as a critical 

component of understanding reoccupation and reuse of place.    

To determine whether archaeological visibility biases were adversely influencing the 

sample, and whether reoccupation was centered around high visibility areas where previous 

artifactual traces were likely to be highly visible, an archaeological visibility proxy layer was 

developed. Previous field investigations indicate visibility in the high elevations of the Medicine 

Bow Mountains is mostly contingent on a) vegetation density and ground exposure, and b) 

animal burrowing activities (Buckner 2019; Meyer 2019b:3; Morris et al. 1994:70; Morris 

2010:123). The northern pocket gopher (Thomomys talpoides), for example, is the most common 

burrowing mammal present in these high elevation environments (Winchell 2017). Pocket 

gophers burrow throughout the winter months, storing their backfill in subnivean snow tunnels 

which leave distinctive ‘eskers’ on the ground surface, and each T. talpoides is responsible for 

upwards of 2.25 tons of sediment disruption per year (Andelt and Case 2016; Bocek 1986; Pierce 

1992; Winchell 2017). The enormous quantities of soil moved by these animals causes 
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significant vertical movement in archaeological deposits, a site formation factor which exposes 

large quantities of artifacts in high elevation contexts (Bechberger 2010; Bocek 1986).  

 
Figure 26. Eskers associated with Northern pocket gopher (T. talpoides) burrowing, pictured nearby to Carey Lake. 
T. talpoides store backfill in subnivean tunnels during the winter months, forming these distinctive ‘eskers’ which 
are exposed by melting snowpack (Andelt and Case 2016). Pocket gopher burrowing can bring large quantities of 
artifacts to the site surface. Photograph by Marie Matsuda for Buckner (2019).  

 

To account for these visibility processes in the study area, such as vegetation density and 

T. talpoides activity, a geospatial data layer was constructed to estimate relative archaeological 

visibility. First, high resolution (0.3 meter) color-infrared (CIR) aerial imagery was procured for 

the study area (Figure 25). CIR imagery is a useful tool for measuring vegetation density and 

growth, and the multispectral bands reflected in CIR images contrast densely vegetated and 

thinly vegetated or bare areas (USDA 2013). The CIR data layer was resampled to a 10-meter 

resolution (necessary to match other data layers in the Maxent program), and reclassified into 

four visibility classes. These four classes were based on the light-to-dark spectrum represented in 

the imagery, where the darkest red areas represent dense and rapid growing vegetation and the 
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lightest areas represent exposed sediments (USDA 2013). Next, a northern pocket gopher 

suitability raster was developed using land cover, slope, and soils data. Using a Weighted 

Overlay Analysis in ArcGIS, areas with soil deposition, slopes below 30, and unforested 

meadows and alpine tundra were defined as suitable for northern pocket gopher habitation 

(Seabloom et al. 2000:26; Winchell 2017:23). The resultant T. talpoides raster layer coded each 

cell as ‘0’ (unsuitable habitat) or ‘1’ (suitable habitat). These two data layers, proxies for 

vegetation densities and northern pocket gopher habitat, were then overlain using the Weighted 

Overlay Analysis tool to create the archaeological visibility proxy layer. Ground visibility, as 

defined from analysis of CIR imagery, was weighted at 75% while pocket gopher habitat 

suitability was weighted at 25%. The resulting raster was incorporated into the model as an 

archaeological visibility raster to estimate the influence of visibility bias on the model, as well as 

the role of archaeological visibility in potentially encouraging reoccupation (Figure 27).  

To ensure the above variables could effectively contribute to a high functioning model, it 

is critical to evaluate environmental variables for multicollinearity and redundancies. For 

example, if many of the variables are highly correlated it is possible that model outputs and 

variable contributions could be adversely biased (Dormann et al. 2013; Elith et al. 2010; Kalle et 

al. 2013:6; Feng et al. 2019; Noveillo et al. 2018:42). Pearson’s correlation coefficients are 

commonly used to identify these correlations in Maxent models (Benner et al. 2019; Buckner 

2020; Chakraborty et al. 2016; Howey et al. 2016; Noviello et al. 2018). Once identified, 

redundant variables can then be removed through a step-wise process to optimize the model 

(Buckner 2020).  
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Figure 27. Environmental variables input into the Maxent models. These environmental layers were used to 
compare the ecological suitability for the occurrence of high reuse, moderate reuse, and low reuse sites. Color 
pallets reflect variation in variable values from low-to-high and are for illustrative purposes only.  

 In the case of the variables for this study, a correlation matrix analysis identified only a 

single statistically significant positive correlation. Nearly all the variables were found to be 

independent, which suggests that the selected variables will produce an effective and non-biased 

model. Just two variables were found to be significantly correlated, cost distance to ecotone 

boundaries and cost distance to lakes. While these variables are correlated at p = 0.01, the 

strength of this correlation was weak (Pearson’s r = .496). Given that this mild correlation, both 
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variables were ultimately retained. Neither lakes nor ecotone boundaries were removed from the 

analysis given their common importance for evaluating hunter-gatherer use of the high country, 

and the limited likelihood that they are redundant in their actual explanatory value. Similarly, 

though it is good practice to remove strongly correlated variables, Maxent’s internal algorithm is 

designed to limit bias from correlated environmental variables and the inclusion of both is 

unlikely to significantly affect the outcome of the models (Dormann 2011). 

 

Model Parameters and Technical Procedure  

 As with all computational methodologies in archaeology, spatioenvironmental modeling 

requires careful vetting of parameters to ensure models are as objective as possible. For this 

study, parameter selection was based on best practices for Maxent modeling in similar 

archaeological contexts, especially for previous studies which were oriented around 

understanding variation in settlement systems (Howey et al. 2016; Kailihiwa 2015; McMichael 

et al. 2013; Oyarzun 2016). Technical publications and statistical literature were also consulted 

to ensure the models were calibrated correctly (Elith et al. 2010; Phillips et al. 2006; Phillips 

2017; Young et al. 2011). The parameters and settings ultimately selected for the model, based 

on these best practices, are shown in Table 7. 

Each model was run 25 times and results were averaged. A bootstrap methodology was 

selected for the replicated run type and 20% of sites were removed with replacement from each 

run to develop the model’s heuristic process. Though cross-validation has been used in place of 

bootstrapping in similar applications (such as Howey et al. 2016), the sample size for this 

analysis warranted use of a bootstrapping methodology. The number of model runs and 

regularization multiplier parameters were taken from Oyarzun (2016:30). A regularization 
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multiplier of 5 was selected to minimize the potential for overfitting and an overly localized 

model (Phillips 2017). All other parameters were consistent with the default settings, which 

mostly govern model outputs and format of the model runs.  

Table 7. Parameters and settings used to run the Maxent models for high reuse, moderate reuse, and low reuse sites. 
Settings were selected to maximize the functionality of the model while mitigating possible limitations from sample 
size and spatial autocorrelation. 

Parameter Setting  Explanation  

Create Response Curves Enabled Creates probability plots for individual variables 

Make Pictures of Predictions Enabled Generates a .png image of summary probability grids 

Do jackknife Enabled Individual variables systematically omitted and tested in 
isolation 

Output format Logistic Probability method used in writing output grid 

Auto features Enabled Automatic limiting of feature types for small sample sizes 

Basic Settings Tab 

Random seed Enabled Different random sample used for each replicate 

Remove duplicate presence records Enabled Omits observations occurring in same grid cell 

Write clamp grid when projecting Enabled Shows spatial distribution of clamping  

Random test percentage 20 Percentage of sites removed for testing 

Regularization multiplier 5 Multiplies regularization parameters by this number 

Max number of background points 1,000 Maximum pseudo-absence background points used in testing 

Replicates 25 The number of model runs averaged to create the final model 

Replicated run type Bootstrap Sampling with replacement during model testing  

Advanced Settings Tab 

Add samples to background Enabled Adds background points with combination of conditions not 
otherwise present among the background sample 

Extrapolate Enabled Extends prediction beyond extent of training points 

Do clamping Enabled Variables outside the training range treated as limit of the 
range 

Default prevalence  0.5 Probability of prevalence at ordinary occurrence points 

Experimental Settings Tab 

Logscale raw/cumulative pictures Enabled Logarithmic scale used for color-coding 

Threads 4 Dependent on available CPU cores 
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Results: Landscape Modeling of Reoccupation  

 The Maxent results for high reuse, moderate reuse, and low reuse sites suggest the 

models were successful and a good fit for the data. The ability of the model to discriminate 

between a true positive (a known site test sample) and false positives (pseudo-absence 

background points), was used to calculate an area under the curve (AUC) score for each model. 

If a model has no gain over random chance, its AUC will be 0.5. A high functioning model, by 

contrast, should have an AUC close to 1.0. Each model reflected a high AUC score, including 

the high reuse model (0.92), moderate reuse model (0.95), and low reuse model (0.90). These 

AUC values correspond to an 80% to 90% relative improvement over random chance (0.5). An 

AUC at 0.90 or above reflects a model with “excellent” predictive capabilities and these models 

are considered highly efficient (Noviello et al. 2018:38; Swets 1988). Based on this benchmark, 

all three models were highly successful. Analysis of the accompanying receiver operating 

characteristic (ROC) curves likewise demonstrate that the models performed well (Figure 28). In 

a ROC plot, the model’s averaged performance over 25 runs is shown by the red line, while the 

diagonal black line represents random chance. A model with a high predictive power will be as 

close as possible to the top left-hand corner of the plot area, indicating the model retains superior 

predictive power over random chance (Pearson 2010).  

 A secondary method for evaluating the effectiveness of each models is through analysis 

of the model residuals. Model residuals can be used to determine if the underlying assumptions 

behind the models are consistent with the results, estimate the statistical error of the models, and 

determine whether they are a good fit to the data (Daniel 2014). The residual is the difference 

between the estimated suitability of each cell and the observed suitability of each cell containing 

an observation (site). The Maxent model assigns a suitability value ranging from ‘0’ (not 
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suitable) to ‘1’ (suitable) to each raster cell. The observed value of cells with known sites is 

always ‘1’, as the cell is known to be suitable. Following Daniel (2014:24), the calculation for 

the raw residual is then represented as follows:   

ri = yi - πi 

 In this equation, the raw residual (r) for a raster cell (i) is equal to the observed suitability 

(y) of ‘1’ subtracted from the estimated (π) suitability value assigned by Maxent. If the model is 

performing as intended, and the underlying assumptions of the model are consistent with the 

results, the resulting raw residuals should be normally distributed (Dormann 2011:183). One 

method for evaluating the normality of residuals is through the use of Q-Q plots. If the data is 

approximately normally distributed, the raw residuals should closely align with the plotted 

straight line which represents a perfectly normal distribution (Dormann 2011). In the case of 

WBLR watershed models, the plotted raw residuals for each model are closely associated with 

the line representing a normal distribution (Figure 28). These results were confirmed with a 

Kolmogorov-Smirnov Test of Normality, where the raw residuals from the High Reuse (D = 

0.157; p = 0.955), Moderate Reuse (D = 0.197; p = 0.673), and Low Reuse (D = 0.150; p = 

0.970) models were found to not differ significantly from that which is normally distributed. The 

resulting p values allow us to accept the alternative hypothesis that the raw residuals are 

normally distributed and that the models are a good fit to the data.  

From these results, we can determine that a) the models retain an excellent predictive and 

analytical capability, and b) the models are a good fit to the data with no evidence of significant 

compromising error. With confirmation that the models functioned properly and yielded accurate 

results, we can then turn to analysis of the environmental variables and their relative influence on 

suitability for sites from each reoccupation intensity category.  
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Figure 28. Receiver operating characteristic (ROC) plots (left) and Q-Q normality plots (right) for each model. 
ROC plots represent the ability of the model to discriminate between true positives and false positives. Normal Q-Q 
plots of model residuals identify whether the data are normally distributed. A normal distribution (shown by 
alignment of points along the line) of model residuals, which are the predicted value of a cell minus the observed 
(actual) value of a cell, suggests the model was a good fit for the data. 
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Table 8. Variable contribution and permutation importance values for each model. These values reflect the relative 
influence which environmental variable had on successfully predicting locations of sites. Variation between 
different reoccupation intensity classes suggests that there are differences in the environmental contexts which these 
site types are most commonly associated with.  

 .  

 High Reuse Moderate Reuse Low Reuse 

Variable 
Variable 

Contribution 
(%) 

Permutation 
Importance  

(%) 

Variable 
Contribution 

(%) 

Permutation 
Importance  

(%) 

Variable 
Contribution 

(%) 

Permutation 
Importance  

(%) 

Slope 95.4 97 43.6 38.6 65.4 65.7 

Permanent 
Running 
Water 

2.2 1.5 16.9 21.6 30.1 31.5 

Ecotone 
Boundary 

1 0.3 0 0 1.6 1 

Elevation 0.8 0.8 0 0 0 0 

Ecological 
Diversity  

0.5 0.2 0 0 0.4 0.2 

Topographic 
Relief 

0.1 0.1 0.1 0 0 0 

Lakes 0 0.1 35.5 33.7 1.8 0.8 

Topographic 
Position 

0 0 0 0 0 0 

Temporary 
Running 
Water 

0 0 3.1 5.4 0.1 0.2 

Archaeological 
Visibility 

0 0 0.9 0.6 0.6 0.7 
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Figure 29. Variable jackknife charts for each of the WBLR models. These plots show the increase or decrease in 
training gain for each variable when the given variable is either a) removed from the model or b) used in isolation as 
the only predictor. Alongside permutation importance, these plots are used to evaluate variable significance.  
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Maxent has several outputs which yield useful metrics for analysis of these issues, 

including variable contribution and permutation importance tables, jackknife plots, and variable 

response curves. Variable contribution and permutation importance values, as seen in Table 7, 

are intended to quantify the relative contributions of each variable for each model. The variable 

contribution is calculated using the specific heuristic process undertaken by the Maxent 

algorithm, and can vary from run to run. The permutation importance, by contrast, is more stable 

and not subject to the same level of uncertainty (Kalle et al. 2013:6). For this reason, though 

variable contribution is useful for evaluating the process undertaken by the models, the 

permutation importance is the output which should be relied upon for analysis of the ecological 

contexts of the sites. In the case of the WBLR models, for example, we see substantive contrasts 

in the permutation importance of variables across the high reuse, moderate reuse, and low reuse 

site categories (Table 8). For high reuse, slope accounts for 97% of the permutation importance, 

indicating that there are few patterns associated with the permutation importance of these sites 

outside of their occurrence on flat slopes. Moderate reuse sites, by contrast, are influenced by a 

more diverse combination of environmental factors. For example, cost distance to lakes accounts 

for 33.7% of the permutation importance for moderate reuse sites. Sites with evidence of low 

reuse exhibit similar trends in variable importance as the high reuse sites. Again, slope comprises 

the significant majority of the permutation importance, at 65.7%. In contrast to the others, 

however, the cost distance to permanent sources of running water likewise contributes 

substantially to the model’s ability to accurately predict suitability for these sites 

To aid in interpreting the permutation importance and variable contribution values, 

Maxent likewise outputs variable jackknife charts (Figure 29). The model’s internal jackknife 

tests are used to determine the individual variables which were most important to the model 
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(Elith et al. 2010). The Maxent program performs the jackknife test by sequentially omitting 

each individual variable from the model, and then running the model again with each variable as 

the sole environmental predictor (Kalle et al. 2013). The resulting increase or decrease in the 

model’s training gain can then be interpreted alongside the permutation importance values to 

understand the importance of each variable for determining site suitability.  

 

Figure 30. Response curves for water availability variables. These curves show the change in predicted site 
suitability (y-axis) in relation to cost distance to acccess water (x-axis) when the variable is used in isolation. A flat 
line indicates the variable has little influence on suitability, while a substantial increase or decrease suggests the 
variable substantively affects suitability.  

 

 The most valuable interpretive output of the Maxent program is variable response curves. 

These plots have the most utility for the identification and interpretation of contrasts in the 

environmental setting of different site categories (Howey et al. 2016; Walker 2019). The 
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response curves show the probabilistic response of site occurrence to individual variables when 

used in isolation. Figure 30 for example, shows the individual response of each site category to 

water availability variables. The y-axis of each plot represents the predicted site suitability, while 

the x-axis displays the cost distance to access water. A flat response curve indicates that the 

variable has little predictive influence over the occurrence of that given site type. A response 

curve which significantly increases or decreases, in contrast, reflects a variable which is actively 

influencing suitability across different conditions. The permanent running water response curve 

in Figure 30a is an excellent example of this. As a variable, permanent running water is most 

associated with the distribution of sites with moderate evidence of reoccupation. There appears 

to be little influence of sites with high evidence of reuse, as indicated by a mostly flat curve. This 

should not be taken to indicate that sites with high evidence of reoccupation are not associated 

with permanent running water, nor that they would not depend on access to running water. 

Instead, variability in the high reuse sample suggests permanent running water was not the only 

significant factor governing settlement patterns. In contrast, across all three variables, we see 

evidence that moderately reoccupied sites were dependent on close access to water over other 

environmental factors. This generally complies with expectations from the initial analysis of the 

jackknife plots and permutation importance values. Response to water availability for high reuse 

and low reuse sites is likely attributable to increased variability in the location of these sites. 

While moderately reoccupied sites are consistently associated with water, rather than other 

environmental factors, with the exception of slope, the occurrence of high reuse and low reuse 

sites is more dynamic.  
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Figure 31. Response curves for geomorphology and terrain variables. These curves show the change in predicted 
site suitability (y-axis) in relation to variable values (x-axis) when used in isolation. A flat line indicates the variable 
has little influence on suitability, while a substantial increase or decrease suggests the variable substantively affects 
suitability. 

Examination of the response curves for geomorphology and terrain variables is similarly 

informative. Apart from slope, many of these variables were inconclusive and had negligible 

influence on site occurrence. Slope largely fulfills expectations, as there is a steep decline in 

probability of site occurrence on slopes exceeding 10 (Figure 31c). Interestingly, low reuse sites 

do not respond as strongly to slope, likely because this category contains isolated finds which 

could correspond to hunting losses or accidental drops from moving through steeper terrain. 

Similarly, Morris and Metcalf (1993) and Morris et al. (1994) reported sites on steeper slopes as 

probable “kill sites”. By their nature, these sites would be highly ephemeral and would represent 

low reuse sites, possibly contributing to the lessened influence of slope on this category. Among 

the terrain variables, we also see a strong inclination for high reuse sites to occur at higher 
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elevations (Figure 31d). Moderate and low reuse response curves are flat for elevation, by 

contrast, suggesting they are not significantly influenced. In the context of the WBLR study area, 

which covers 36.9 square kilometers with a minimum elevation of 2,620 meters (8,595 feet), the 

trend of reoccupied sites occurring at higher elevations could indicate they were the 

‘destinations’ which people were traveling to when the entered the watershed. A more expansive 

analysis of persistent places from the plains to the alpine would likely not have a similar skew 

contingent on elevation, however the study area defined for this project is a snapshot of a wider 

high elevation landscape. Groups expending the high costs required to traverse this terrain were 

likely travelling to places on the landscape where they could access hunting grounds and procure 

alpine resources (e.g. Benedict 1992). This being the case, sites in the lower elevations in the 

study area would then be more likely to represent transitory stops on the way to these high 

elevation destinations. Over the wider ecological gradient from shortgrass prairie to alpine 

tundra, you should expect to see significant variability in transitory sites and destination camps 

occurring at different high and low elevations, but in this alpine/sub-alpine watershed context the 

evidence suggests these high altitude places constituted destinations for travel into the study area.  

The response curves for ecological and land cover variables were similarly informative. 

The results of the cost distance to ecotone boundaries variable suggests that both high reuse and 

moderate reuse sites are more likely to occur in areas with low cost access to an ecotone 

boundary, while low reuse sites exhibited a lower probability of occurring nearby to an ecotone 

boundary (Figure 32a). Land cover (ecological) diversity likewise reflects similar patterns 

(Figure 32b). A flat response curve for moderate reuse sites suggests that variability in land 

cover and ecology did not substantively influence the occurrence of these sites. Closely aligned 
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trajectories for high and low reuse sites indicates that this variable does not have sufficient 

explanatory power for discriminating between causation of preferential reoccupation.  

 

Figure 32. Response curves for ecology and land cover variables. These curves show the change in predicted site 
suitability (y-axis) in relation to variable values (x-axis) when the variable is used in isolation. A flat line indicates 
the variable has little influence on suitability, while a substantial increase or decrease suggests the variable 
substantively affects suitability. 

The final variable in this category is the archaeological visibility proxy layer. This layer, 

which was intended to evaluate the potential bias of visibility on the sample and to determine if 

reoccupation was oriented around areas where artifactual traces of previous occupations would 

be most visible, appears to reflect little variability across the three models (Figure 32c). While 

there is some variance in the response of moderate and low reuse sites to visibility, though not 

significant enough to conclude there is a substantive bias in the sample, the high reuse model 

does not appear to have been influenced by the archaeological visibility proxy layer. For low 

reuse sites, including isolated finds, low visibility conditions were actually more suitable for 
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occurrence. It is possible this may correspond to why fewer artifacts were found at these sites, or 

because they tend to occur at lower elevations with denser vegetation growth. In either 

eventuality, the results are fairly conclusive that archaeological visibility (as modeled for this 

study) did not significantly influence reoccupation or the discovery of sites. 

 

Discussion: Spatioenvironmental Patterns of Persistent Reoccupation   

 Initial analysis of models for high reuse, moderate reuse, and low reuse sites indicates 

there is variation across each model but that relatively few significant differences exist. To 

determine if these differences are reflective of variation in landscape use, and reoccupation 

intensity, this section will critically evaluate the results in the context of the archaeological 

literature for high elevation archaeology. Sites with evidence for high reoccupation intensity, for 

example, were predicted to appear more frequently at high elevations and nearby to ecotone 

boundaries. In contrast, moderate reuse and low reuse sites were not significantly influenced by 

elevation and are less associated with access to ecotone boundaries. Similarly, sites with high 

evidence for persistent reoccupation do not appear to be associated within any singular type of 

water source, indicating that persistence is not necessarily tied to basecamps associated with high 

elevation lakes in the study area (Morris et al. 1994). This does not indicate that persistently 

reoccupied sites are not associated with access to water resources, rather it suggests that no one 

water source (lakes, permanent, or ephemeral) is singularly associated with suitability for these 

sites. To evaluate these broader trends and the most significant differences between high reuse 

sites and others, Benedict’s (1981, 1985, 1992, 2000) work with the high elevation archaeology 

of the Colorado Front Range offers a useful comparative example.  

 The importance of the timberline ecotone in high elevation settlement systems is well 

recognized by archaeologists (Benedict 1981, 1992; Morris et al. 1994). The occurrence of sites 
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in this distinct transitional ecotone is attributed to the shelter offered by krummholz stands, the 

last stands of encroaching trees at timberline, and the ease of access to both subalpine and alpine 

resources (Benedict 1992). A large number of significant multicomponent sites have been 

identified and investigated across the timberline ecotone, and the heightened suitability of 

persistently reoccupied sites to high elevations and ecotone boundaries in the study area points to 

similarities between these settlement systems. At the Caribou Lake site (5GA22) for example, 

Benedict (1981:107; 1992:8) speculated that the repeat occupation of the site was tied to its 

setting in sheltered area with ready access to firewood fuels. Benedict (1981) likewise suggested 

that the elevated position and viewshed of the site, and well-drained flat ground, were also 

advantageous environmental factors which encouraged occupation of the site. The Fourth of July 

Mine site (5BL153) was associated with similar environmental characteristics. As a palimpsest 

of episodic reoccupation, Benedict (2000) attributed the draw of the site to its setting in the 

timberline ecotone and access to high elevation hunting grounds. Additional multicomponent 

sites in the high elevations of the Front Range, such as the Coney Lake site (5BL94), 5BL70, and 

the Ptarmigan site (5BL170), are likewise all located in this timberline setting (Benedict and 

Olson 1978; Benedict 1981, 1990).  

 Though the geology and terrain of the Colorado Front Range is not a direct parallel to the 

Medicine Bow Mountains, there is a clear pattern which reveals a similar reoccupation emphasis 

on the timberline ecotone. This same pattern appears to hold true for the study area and the 

results of the spatioenvironmental model employed in this chapter. The Maxent results for high 

reuse sites suggest that reoccupied sites are strongly associated with a) high elevations and b) 

proximity to ecotone boundaries. While not constituting a ‘niche’ that entirely explains persistent 

reoccupation of place in the study area, it confirms that these conditions were important 
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considerations in high elevation settlement systems. Schlanger’s (1992) first criteria for 

persistent place formation describes the availability of optimal environmental conditions as one 

driver of reoccupation. As indicated by the results of the model, these environmental conditions 

encouraged preferential reoccupation and persistent place formation to at least some degree. 

Similar to Benedict’s (1992) analyses of sites in the Front Range, there are patterns which 

suggest reoccupation was structured around the timberline ecotone and similar high elevation 

settings. Though Benedict (1981, 1990, 2000) also pinpoints access to alpine game drive systems 

as a factor in selection of these timberline camps, we can argue similar trends are at work in the 

Rawah Wilderness. As previously described, the placement of these high reuse sites suggests that 

they were a ‘destination’ for movements through the WBLR watershed. Though people were not 

occupying these sites in preparation for use of alpine game drives, such as in the Front Range, 

they were almost certainly utilizing campsites in this ecotone as logistical bases for alpine 

hunting and resource procurement. There are a number of high reuse sites which are not 

associated with the high elevations of the timberline ecotone. However these sites, 

5LR235/5LR273/5LR274 and 5LR131, are located along the principle travel corridors (primary 

drainages) which do lead to these high elevation cirques. Reoccupation across various 

environmental contexts was certainly dynamic and by no means limited to the timberline 

ecotone, as these lower elevations sites suggest, however the model’s support of similar patterns 

seen in the Front Range is compelling evidence for the preferential reoccupation of timberline 

and an emphasis on access to alpine resources. 

In analyzing this data it is important to recognize the limitations of spatioenvironmental 

modeling studies, which could potentially influence these results. The use of contemporary 

environmental data as a proxy for paleoenvironmental conditions can be problematic. Howey et 
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al. (2016) encountered this issue in their analysis of prehistoric monumentality and cultural 

processes using a Maxent methodology. Instead of considering modern variables as a direct 

corollary for the past, they evaluated the significance of these modern variables to “understand 

how areas across the landscape would have varied” in relation to one another in the past (Howey 

et al. 2016: 7445). Similarly, in his analysis of reoccupation of place on the Great Plains, LaBelle 

(2010:43) notes that sites with minimal evidence of reoccupation could “represent places where 

the particular resource[s] that might have drawn groups to the site […] were perhaps no longer 

there in subsequent periods”.  This is likewise an important consideration. Though analysis of 

local geology suggests there has been little change to the geomorphology of the study area since 

the terminal Pleistocene, there have been significant climatological shifts in the WBLR 

watershed through time (LaBelle and Meyer 2017; Workman et al. 2018a, 2018b). Though 

paleoenvironmental reconstruction was beyond the scope of the study, this study follows Howey 

et al.’s (2016) approach to use these data to understand how the landscape varied in relation to 

itself rather than assuming that modern conditions are a direct proxy to the past environment.  

The results of the chapter suggest that reoccupation was variable, but a strong pattern 

exists to suggest that sites located at high elevations, and in close proximity to ecotones, were 

selectively reoccupied. While persistent reoccupation is certainly not limited to this specific 

environmental setting, the study suggests that there are reoccupation patterns similar to those 

observed by Benedict (1985, 1990, 1992, 2000) in the Rawah study area. Likewise, while these 

reflect one compelling pattern which contributes to our understanding of reoccupation, it is a 

near certainty that there were additional dynamics which could have guided preferential 

reoccupation of place in the study area. Though the archaeological visibility model created for 

this study was inconclusive, artifactual traces of past occupations, revealed by the heightened 



122 
 

visibility of higher elevation areas, could have likewise structured reoccupation of these high 

elevation locales (Schlanger 1992). Though these other cultural and economic factors were not 

immediately apparent in the analysis conducted in this chapter, future analysis may clarify these 

further. For this study, the confirmation of high reoccupation intensity associated with the 

timberline ecotone is a significant step towards reconciling variability in landscape use across the 

high elevations of the Southern Rocky Mountains in northern Colorado. As an additional line of 

evidence, the preferential reoccupation of the timberline ecotone and high elevations of the study 

area reinforces the importance of alpine resources to the ancient inhabitants of the Medicine Bow 

Mountains. 
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CHAPTER 6 – RECOGNIZING REOCCUPATION IN SURFACE CONTEXTS 

 

 This chapter addresses the spatial character of reoccupation in high elevation surface 

contexts. The previous two chapters have outlined the assemblage composition and landscape 

characteristics of preferential reoccupation, and this third analysis will contribute an important 

spatial and site structure component to the holistic study of reoccupation in these environments. 

Under Schlanger’s (1992) framework for persistent places, sites may be selected for repeat reuse 

when (1) optimal environmental conditions exist, (2) past artifactual traces are visible on the 

landscape, or (3) when existing cultural features at the site allow it to be reoccupied at reduced 

cost. Each of these criteria outlined in Schlanger (1992) should be apparent in the spatial 

structure of sites, and the spatial relationships between discrete occupations can be used to 

identify the nature of the reuse of the site. A site-level analysis of these reoccupation criteria in 

the Medicine Bow Mountains, however, is complicated by the nature of high elevation 

archaeological analyses. The time-averaging of deposits through frost-heaving, sediment 

deflation, bioturbation, artifact collection, and erosion are common challenges which affect 

analysis of surface archaeology associated with hunter-gatherer sites. Despite these obstacles, in 

the alpine and elsewhere, the archaeological surface record constitutes “an appropriate source of 

data independent of subsurface remains” which can yield valuable information on the structure 

of archaeological sites (Dunnell and Dancey 1983:70). Surface archaeology, though often valued 

less than subsurface data, has also been recognized for its “intrinsic interpretive potential” and as 

an “indispensable component of modern settlement archaeology” (Downum and Brown 

1998:111; Sullivan 1998:XI). Though there are certainly visibility and interpretive challenges to 

interpretation of these data, this interpretive potential posed by surface artifact distributions 
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remains high (Kvamme 1998; Simmons 1998; Wandsnider and Camilli 1992). Particularly with 

the analytical power of modern GIS analyses, it is possible to capitalize on this potential to apply 

qualitative and quantitative means to examine the structure and spatial character of time-

averaged deposits. The principal objective of the chapter is to evaluate the character of 

palimpsest deposits in the context of reuse and persistent reoccupation of place. In addressing 

this objective, the chapter confronts three primary questions. First, to what degree is 

reoccupation recognizable from surface contexts? Second, how is reoccupation reflected 

spatially in the distribution of artifacts at sites? And, third, how does variation in artifact 

distributions inform analysis of reoccupation?  

 

Methodology: High Resolution Mapping and Surface Analysis of Reoccupied Sites   

 The discrimination of discrete occupations from time-averaged deposits is, by the very 

nature of a palimpsest, a significant challenge. To accomplish this, sophisticated means of spatial 

analysis are required. In Sullivan’s (1992:100) spatial analysis of short-duration occupations in a 

complex surface context, he recognized the necessity of dissecting larger artifact distributions to 

define “subsite areas” which could be used to “identify and monitor variation among 

occupations.” This is most commonly actualized through examination of clusters, or high density 

concentrations of artifacts, and such techniques are commonly applied to evaluate reoccupation 

or contemporaneity at sites. Burnett (2005) applied cluster analyses of artifact density, tool 

diversity, and lithic raw material variability to evaluate divergent chronological trends at high 

elevations. In Andrews et al. (2008), analysis of clusters was used to examine variability among 

the spatial structure of Folsom sites, alongside discrimination of reoccupied sites from single 

component sites. Meyer (2019a) analyzed discrete feature and artifact concentrations to decode a 

complex series of reoccupation episodes comprising an alpine game drive system. Specialized 
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spatial analysis of clusters is especially necessary as archaeological analysis of time-averaged 

sites can often be hampered by the “application of inappropriate interpretive frameworks that 

[…] assume that spatially separate deposits are contemporary” (Shiner 2009:25). As 

demonstrated by these examples, the identification of clusters on the surface of sites is a critical 

first step in carrying out any spatial analysis of reoccupation.  

 

Figure 33. Scenes from Rawah Wilderness fieldwork in 2019. Clockwise from top left: Crewmembers intensively 
survey 25-meter by 25-meter sampling grids for surface artifacts, volunteers map and document artifacts with a high 
resolution Trimble GNSS device, graduate student Marie Matsuda takes overview photographs, and an evening 
scene from field camp. Photographs by author (See also Buckner 2019). 

  To acquire the necessary data to identify clusters and assess the spatial character of 

reoccupation, an intensive fieldwork program was carried out in the summer of 2019 (Buckner 

2019). A total of six localities, identified previously as reflecting high evidence of reuse, were 
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selected for field investigation (Table 9). Sophisticated geospatial analyses of clusters require 

high-resolution datasets of piece-plotted surface artifacts, and acquiring these data was a critical 

objective of fieldwork (Buckner 2019; Hurst et al. 2010). To accomplish this, selected sites were 

intensively sampled with 25 meter by 25 meter sampling grids and shoulder-to-shoulder transect 

intervals. This sampling methodology has proven to be effective for surface analysis of large 

debitage scatters, and these strategies are advantageous for “ensur[ing] uniform surface coverage 

and eliminat[ing] artifact discovery biases” (Kvamme 1998:139). The Center for Mountain and 

Plains Archaeology has likewise successfully applied these strategies in other high elevation 

contexts, such as in the Colorado Front Range and at the Carey Lake site (5LR230) in the Rawah 

Wilderness (LaBelle and Pelton 2013; Meyer 2019b; Whittenburg 2017).  

All artifacts encountered in sampling areas were flagged, mapped in place with high 

resolution GNSS equipment, and documented on specialized data forms (Buckner 2019). All 

geospatial data was collected with sub-meter accuracy and at a decimeter resolution using a 

Trimble Geo7x device and accompanying geodetic antenna. Basic descriptive metrics were also 

recorded in the field for each artifact, including artifact class/element, maximum length (mm), 

presence/absence of cortex, presence/absence of thermal alteration, and lithic raw material type. 

Similar to the previous discussion of lithic raw material types in Chapter 2, each raw material 

type was field classified based on a visual macroscopic analysis (e.g. white chert), but artifacts 

were then grouped into broader analytical categories (e.g. CCS or quartzite) with low 

subjectivity to minimize error (See Chapter 2). These methods are also detailed in Buckner 

(2019), the technical report prepared for the USDA-Forest Service on the results of the author’s  

fieldwork in the Rawah Wilderness. Formal tools and diagnostic items were collected in the field 

for laboratory analysis and permanent curation, while informal tools received additional 
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documentation but were not collected. Following completion of fieldwork, all geospatial data 

was differentially corrected to resolve minor plotting inaccuracies and to ensure the integrity of 

the data sample (Buckner 2019).  

Table 9. Sites, with high evidence of reuse, selected for field investigation in 2019. Sites are shown in order of their 
investigation (Buckner 2019). See Chapter 4 for analysis of pre-2019 collections and identification of sites with 
evidence of probable reuse. 

Locality / Site Elevation (m) Assemblage Size (n)* Known Components*  

5LR235 / 5LR273 / 5LR274 2,910 824 1 

5LR153 / 5LR237 3,335 298 1 

5LR229 3,365 21 2 

5LR233 3,455 33 1 

5LR240 3,415 66 3 

5LR174 3,260 160 3 

*Values are from extant collections discussed in Chapter 4.   

Following collection of field data, it was then necessary to analyze artifact distributions 

for the presence of discrete clusters. To define these clusters, a mixed methodological approach 

incorporating various techniques from Burnett (2005), Brunswig and Diggs (2014), Morgan et al. 

(2013), and Stavrova et al. (2019) was applied. First, the Average Nearest Neighbor (ANN) tool 

from ArcGIS was run on each mapped site to determine if significant dispersion or clustering of 

artifacts exists within the surface distribution of artifacts at each site. Once statistically 

significant clusters were found to exist at a site, the boundaries of these clusters were then 

defined using the Kernel Density Estimation (KDE) tool in ArcGIS. KDE analyses use a 

quadratic kernel formula to generate a probabilistic density surface based on the fit of a 

smoothed interpolated surface around each point (Silverman 1986; Stravrova et al. 2019). These 

analyses have numerous applications in archaeology, though they are most commonly applied 

for visualization of contrasting high density and low density areas (Baxter and Beardah 1997; 
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Beardah 1999; McMahon 2014; Stravrova et al. 2019). In the context of the WBLR 

investigations, KDE was applied to define discrete areas where significant quantities of artifacts 

were concentrated (clusters). This was performed by reclassifying the default KDE output 

surface from a continuous probabilistic density raster to a standard deviation density raster. 

Then, areas within the site with artifact densities exceeding two standard deviations from the 

mean were selected to define cluster boundaries. These clusters, following Burnett’s (2005) 

example, were selected for further analysis if five or more artifacts were present within the 

cluster. Though the use of standard deviations in artifact density to define clusters is arbitrary, 

there is some basis for this in other forms of statistical spatial analysis (Stavrova et al. 2019). 

Likewise, definition of clusters based upon KDE relative densities is suitable for discriminating 

these concentrations when an ANN analysis has previously confirmed clusters exist among the 

distribution. However, to confirm the statistical validity of the KDE defined clusters, a secondary 

hot spot analysis was also applied. Hot spot analysis uses the Getis-Ord Gi* statistic to identify 

significant ‘hot’ and ‘cold’ spots in artifact distributions, and is likewise an effective tool for 

distinguishing artifact clusters from a lithic landscape (Brunswig and Diggs 2014). Such hot spot 

analyses have been shown to be especially useful for identifying “areas of very intense artifact 

clustering” while eliminating areas which appear to be clustered but are not actually statistically 

significant (Brunswig and Diggs 2014:85). Hot spot analysis faces some limitations, in that it 

requires a minimum of 30 data points, however the ArcGIS Optimized Hot Spot Analysis tool 

incorporates useful features which define appropriate scales of analysis and minimize the 

potential for user bias (Stavrova et al. 2019). Given the importance of correctly defining clusters 

for this scale of analysis, only clusters confirmed by the hot spot analysis were included in 

interpretation of artifact distributions. The Optimized Hot Spot Analysis tool likewise outputs a 
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p-value which can be used to test a null hypothesis (no clustering exists) against a predetermined 

confidence interval. In the case of validating the clusters identified through the ANN and KDE 

analyses, a confidence interval of 99% was chosen (p > 0.01) to accept or reject the null 

hypothesis. Through this procedure, it is then possible to discriminate clusters from complex 

lithic landscape contexts for intensive analysis of the spatial character of palimpsest deposits. 

 
Figure 34. Graphical representation of the procedure used to define clusters in surface artifact distributions. Once 
clustering was determined to exist at a site, using the Average Nearest Neighbor (ANN) tool, the Kernel Density 
Estimation (KDE) tool was used to define cluster boundaries. Boundary definition was performed by isolating areas 
with artifact densities greater than two standard deviations above the mean. Cluster boundaries were then validated 
using the Optimized Hot Spot Analysis tool, which was tested with a 99% confidence interval (p < 0.01). 

 

Results: Spatial Analysis of Surface Artifact Distributions 

During 2019 fieldwork, 5.21 hectares were sampled with intensive shoulder-to-shoulder 

transects across the six localities. A total of 263 artifacts were mapped and 17 formal tools were 

collected from additional analysis from these sites (Buckner 2019). The results of the 2019 

fieldwork were variable between the various localities investigated, and the quantities of artifacts 

identified were highly variable (Table 10, Figure 35). Three localities yielded more than 50 

surface artifacts, while surface artifacts identified at the remaining three localities ranged 

between just one and seven items. Archaeological visibility was likely a determining factor is the 

number of surface artifacts identified, with the possible exception of 5LR229, as the sites which 

yielded the most artifacts were all located in the alpine ecozone and timberline ecotone where 



130 
 

less deposition and low vegetation exposes artifacts. In contrast, sites which yielded few artifacts 

were exclusively located in the densely forested subalpine ecozone where forest detritus and 

surface vegetation obscure the ground surface (Buckner 2019).   

Table 10. Summary table of sampled area, mapped items, and collected artifacts from sites investigated in 2019. 
Sites 5LR17 and 5LR14336 were also visited, but are not included in this analysis (See Buckner 2019).  

Locality / Site Area Sampled (ha) Mapped Items Artifacts Collected 

5LR235 / 5LR273 / 5LR274 0.62 1 0 

5LR153 / 5LR237 1.44 103 7 

5LR229 0.56 5 0 

5LR233 1.25 80 3 

5LR240 0.87 67 6 

5LR174 0.44 7 1 

Total 5.21 263 17 

 

 
Figure 35. Observed surface artifacts by total area sampled at each locality. Three sites yielded more than 50 
surface artifacts, while visibility conditions imposed substantial limitations on surface investigation of the three 
remaining localities. See Buckner (2019a).  
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 Given the significant visibility issues impacting the three least productive sites, only 

localities which yielded 50+ artifacts could be analyzed for the presence of clusters. Similarly, 

the Optimized Hot Spot analysis tool could not be applied to sites with fewer than 30 artifacts, 

and these sites (5LR174, 5LR229, 5LR235/5LR273/5LR274) were therefore omitted for further 

analysis (Stavrova et al. 2019). Of the sites which did yield samples suitable for spatial analysis, 

all three returned ANN determinations which indicated statistically significant clustering exists 

on the surface of these sites (Table 11). The sites, the Twin Crater Lakes site (5LR153/5LR237), 

5LR233, and the Grassy Pass site (5LR240), are located at high elevations in the alpine ecozone 

or alpine/subalpine timberline ecotone. As discussed in Chapter 4 each site’s pre-2019 

assemblage was analyzed for reoccupation signatures and each site was found to exhibit high 

evidence of episodic reuse. One site, Grassy Pass, has a minimum of three known components 

based on this analysis, while the other two sites have suggested evidence of reoccupation but no 

non-contemporaneous diagnostic artifacts in extant collections. Two of the sites are likewise 

located nearby to high elevation lakes, while 5LR240 is situated in the context of a pass. 

Collectively, these three sites constitute an adequate sample for evaluation of the spatial 

character of reoccupation and structured reuse of place.    

Table 11. Results of the average nearest neighbor (ANN) analysis. The nearest neighbor ratio values indicate that 
statistically significant clusters of artifacts exist on the surface of each site which yielded 50 or more surface 
artifacts.  

Locality / Site Expected (m) Observed (m) NN Ratio p-value Determination 

5LR153 / 5LR237 4.773 3.239 0.678 0.000 Clustered 

5LR233 6.251 4.057 0.650 0.000 Clustered 

5LR240 4.795 3/811 0.795 0.001 Clustered 
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Figure 36. Locations of sites described in this chapter. The sites, located in the alpine ecozone and timberline 
ecotone, represent a longitudinal north-to-south sample across the wider WBLR watershed. Background contextual 
information is not shown to protect site locations.  

 

Twin Crater Lakes (5LR153 / 5LR237) 

 The Twin Crater Lakes site (5LR153/5LR237) was first recorded by Metcalf (1971a, 

1971b) during Colorado State University’s early investigations in the Rawah Wilderness in the 

early 1970’s. The site was originally documented as two distinct sites, however their close 

proximity of less than 30 meters warranted their consolidation for the 2019 analysis (See 

discussion in Chapter 2). The Twin Crater Lakes site is located in the timberline ecotone, at an 

elevation of 3,335 meters above sea level. The site is associated with the Twin Crater Lakes, 
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which are among the largest high elevation lakes in the study area. Metcalf’s (1971b) first visits 

to the site yielded several Mount Albion corner-notched projectile points, though they were not 

recognized as such until after Benedict and Olson’s (1978) identification of the complex. Metcalf 

(1971b) recognized the potential of the site for further analysis, and described it as “more 

promising than all others” in field notations. In Morris et al.’s (1994) synthesis of nearly 30 years 

of Rawah archaeology, they identify a Late Archaic component at 5LR153 and Early and Late 

Archaic components at 5LR237. The multiple component nature of these sites could not be 

substantiated through analysis of projectile point bases in the existing collections, however the 

sites reflect high diversity of tools and lithic materials which suggest they may represent multiple 

components. Morris et al. (1994) may have been referencing projectile point fragments (such as 

5LR153-118; See Appendix A), which were not assigned to a definitive temporal period by this 

study. In either case, there is strong evidence to suggest that the Twin Crater Lakes site 

represents a persistently reoccupied high elevation context, and spatial analysis of artifact 

distributions is a powerful tool for clarifying the extent and nature of the reuse of the site.       

 The 2019 investigations at the Twin Crater Lakes site sampled an area totaling 1.44 

hectares, and 103 artifacts were identified and mapped on the surface of the site (Buckner 2019). 

A large number of formal lithic tools were likewise identified on the site surface and collected 

for further analysis, including projectile points (n = 3), preforms (n = 3), and a biface fragment (n 

= 1). Informal tools were limited to a single edge modified flake which was not collected 

(Buckner 2019). Debitage was comprised of 95 artifacts, and excellent ground visibility allowed 

for identification and mapping of artifacts as small as 4 millimeters in length. Lithic raw material 

types across the site surface were mostly comprised of CCS materials (93.2%) with smaller 

amounts of quartzite (6.8%) (Buckner 2019).   
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Figure 37. The results of intensive sampling at the Twin Crater Lakes site (5LR153/5LR237). Identified tools 
include a Late Archaic Pelican Lake projectile point (a; 5LR153/5LR237-2019-97), a preform fragment (b; 
5LR153/5LR237-2019-98), an edge modified flake (c; 5LR153/5LR237-2019-103), Early Archaic Mount Albion 
projectile points (d; 5LR153/5LR237-2019-99; e; 5LR153/5LR237-2019-100), a refit preform (f; 5LR153/5LR237-
2019-102 (distal); g; 5LR153/5LR237-2019-101 (proximal)), and a biface fragment (h; 5LR153/5LR237-2019-1). 
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Figure 38. Results of the Kernel Density Estimation (KDE) analysis for the Twin Crater Lakes site. At left is the 
interpolated probabilistic density surface, output from the KDE tool in ArcGIS. At right is the reclassified KDE 
surface, showing standard deviations above the mean. High density areas with five or more artifacts, and exceeding 
two standard deviations above the mean, were used to define cluster boundaries.   

 

Figure 39. The three clusters, with five or more artifacts, defined from the surface artifact distribution at the Twin 
Crater Lakes site, shown at left. Validation of the clusters, using the Optimized Hot Spot Analysis tool, is shown at 
right. The cluster boundaries encompass all areas designated as hot spots at a confidence interval of p < 0.01.  
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 Analysis of surface artifact distributions at the Twin Crater Lakes site identified three 

principle clusters among the surface assemblage (Figure 38, Figure 39). A total of five clusters 

were defined from the KDE analysis, however two of these clusters were comprised of fewer 

than five artifacts and were omitted. The defined cluster boundaries were then tested with the 

Optimized Hot Spot Analysis tool, and it was found that all statistically significant hot spots 

were encompassed within the identified cluster boundaries. The three clusters, designated A 

through C, were considered valid for analysis.  

Table 12. Artifact composition of clusters identified at the Twin Crater Lakes site (5LR153/5LR237). The table 
shows the value for each category (N), as well as the cluster’s percentile rank (%) when compared against sites in 
the WBLR sample. 

 
  

 
Artifacts 

 
 

Tools 

 
Tool Diversity 

(H) 

 
Lithic Raw Material 

Diversity (H) 

Cluster  N % N % N % N % 

A  52 65 0 3 n/a 3 0 3 

B  25 45 4 52 0.693 46 0.5 70 

C  6 19 1 10 0 3 0 3 

 

 The next step of the analysis of the reuse of the Twin Crater Lakes site was examination 

of variation in artifact composition across the three clusters. Substantive differences exist in the 

quantity and character of the artifacts comprising each cluster, and these differences can be 

analyzed to determine if clusters represent distinct activity areas or non-contemporaneous 

occupations (Table 12). Cluster A is comprised of 52 debitage artifacts and no tools. All artifacts 

identified in Cluster A are likewise uniformly produced from CCS, and there is no lithic raw 

material diversity among the artifacts in the cluster. Cluster B, located approximately 40 meters 

away, consists of just 25 artifacts. Despite its smaller quantity of artifacts, however, four tools 

were found within the cluster and both quartzite and CCS artifacts are present among the cluster 
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assemblage. Cluster C was the smallest of the clusters, with just six artifacts, and is located five 

meters from Cluster B. A single biface fragment manufactured from CCS was identified within 

Cluster C, and the remaining five artifacts were comprised of CCS debitage.   

 Variation among artifact composition in clusters points to variability in occupation 

intensity between these clusters, and suggests that surface context of the site may represent 

multiple discrete occupations. For example, though Cluster A has twice as many artifacts as 

Cluster B, there are no tools or lithic raw material diversity associated with the cluster. In contrast, 

Cluster B has evidence of moderate tool diversity and high lithic raw material diversity. If a site 

represents a single occupation we may expect to see spatially discrete clusters representing 

different activity areas, but across these clusters there should exist relatively homogenous tool and 

lithic raw material diversity. Particularly given a probable embedded lithic raw material 

procurement system, and material conservation strategy necessitated by a paucity of suitable local 

materials, substantive variation in lithic raw material diversity between clusters is strong evidence 

for non-contemporaneity of clusters (Bender 2015; Kvamme 1998). Variable lithic raw material 

types at a site, and corresponding tool diversity between clusters, is then likely representative of 

non-contemporaneous use and a differential occupation ‘tempo’ at the site (Simek 1989; 

Wandsnider 1992). In the Colorado Front Range for example, these same trends are apparent in 

Benedict’s (1992) analysis of seasonal transhumance. Benedict (1992) notes that it was necessary 

to import suitable materials in easily transportable forms, and the routes by which people accessed 

high elevations influenced the material diversity of their toolkits. In the case of the clusters at the 

Twin Crater Lakes site, we may assume that substantive differences in lithic raw materials between 

clusters could represent different occupations of the site by hunter-gatherer groups who accessed 

the area via different routes (and thus acquired raw materials from different sources).  
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 The identification of a tool refit at the site likewise has compelling implications for the 

contemporaneity of clusters. In contrast to other refit tools in the study area, such as fragments of 

5LR131-90 which were found nearly a kilometer apart from one another, at the Twin Crater Lakes 

site the distal and proximal fragments of a large quartzite preform (5LR237/5LR153-2019-101 

and 5LR237/5LR153-2019-102) were found within just 80 centimeters apart in Cluster B (Buckner 

2019). Analysis of artifact refits and cross-mends is a powerful tool for examination of site 

formation processes, and can likewise be applied to evaluate contemporaneity of sites and intrasite 

clusters (Andrews et al. 2008; Schiffer 1987; Surovell et al. 2005). The identification of refits 

between discrete clusters, for example, is strong evidence of contemporaneity of those clusters 

(Andrews et al. 2008). Accordingly, the presence of refits only within a single cluster has been 

used to argue that discrete clusters represent different components (Surovell et al. 2005). 

Collectively, the presence of a refitting preform at the Twin Crater Lakes site, supported by the 

two Mount Albion points within one cluster, suggests that observed clusters are not 

contemporaneous and represent discrete occupations of the site.  

 The presence of discrete clusters of artifacts on the surface of the site, alongside substantive 

differences in the artifact composition of these clusters, indicates that variable occupational 

intensity occurred across space at the site. In the context of the timberline ecotone of the Medicine 

Bow Mountains, where lingering snow and alpine conditions limit individual occupations to the 

late summer months, this spatial and material signature is more consistent with reoccupation than 

a high-intensity single occupation. The discovery of a previously unknown Late Archaic 

component, in the form of a Pelican Lake projectile point, likewise reinforces the multicomponent 

nature of the site. The co-occurrence of both an Early Archaic and Late Archaic component at the 

site represents thousands of years of time, and the discovery of these diagnostics in different areas 
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of the site suggest these components were structured in different areas of the site. Given this 

determination, where we see spatially discrete artifact concentrations which reflect characteristics 

of reoccupation and reuse, the Twin Crater Lakes site appears to represent a spatial palimpsest. 

The distribution of artifacts at the site suggests that reuse of the site was structured around the 

same terrain, a sheltered flat in close proximity to the lakes, but occupations were not necessarily 

directly superimposed. From this, there is evidence for Schlanger’s (1992) first criteria for the 

development of persistent places, where optimal environmental conditions encourage 

reoccupation. The site’s close proximity to the lakes, among the biggest in the study area, and the 

timberline ecotone may have been factors which served to encourage the preferential reoccupation 

of the site. From the 2019 investigations, there is no apparent evidence of the reuse of previously 

deposited artifactual material from the site or that reoccupation of existing features was the impetus 

of the reuse of the Twin Crater Lakes site. Given the dynamic visibility conditions of the timberline 

ecotone, and the exposure and concealment of surface artifacts from year-to-year, continued 

investigation of the site through high-resolution spatial mapping may clarify the nature of reuse of 

the Twin Crater Lakes area.  

 

5LR233 

First documented by Metcalf (1971a) during CSU’s initial work in the WBLR watershed, 

site 5LR233 is located in the alpine ecozone at 3,455 meters above sea level. The site is 

associated with an unnamed tarn, and is situated in a high visibility setting just a hundred meters 

from the krummholz and modern timberline. Metcalf (1971a) and Morris et al.’s (1994) 

investigations of the site resulted in the collection of 33 artifacts, comprised of eight tools and 25 

debitage artifacts. Among the extant assemblage is a large netherstone fragment, and Morris et 



140 
 

al. (1994) assigned the site’s function as a camp given the presence of ground stone. Ground 

stone occurs at just 16.6% of sites in the watershed, and analysis of the existing collection in 

Chapter 4 found that the site has a high tool diversity (1.73) which is greater than 96% of Rawah 

sites. Morris et al.’s (1994) analysis of the site identified evidence of only a single Late Archaic 

component at the site, and this analysis of the collection likewise identified only one temporal 

diagnostic which was typed as a Pelican Lake projectile point (5LR233-26). Despite the small 

assemblage size, and single known component, the site was selected for investigation due to the 

presence of ground stone and high tool diversity (Buckner 2019). Given that these assemblage 

characteristics were somewhat contradictory in relation to expectations for reoccupation, spatial 

analysis of the surface artifact distribution at the site was necessary to clarify if 5LR233 

represents a reoccupied site or a high intensity single occupation.  

The 2019 investigations at 5LR233 intensively sampled a 1.25 hectare area and identified 

80 artifacts across the surface of the site. The large quantities of artifacts identified at the site in 

2019 more than doubles the existing collection. Formal and informal tools included bifaces (n = 

3) and an edge modified flake (n = 1). Debitage artifacts consisted of 76 flakes, which were 

produced from both CCS (85.5%) and quartzite (14.5%) materials. Tools, in contrast, were 

manufactured uniformly from CCS. High visibility conditions at the site allowed for 

identification and mapping of artifacts as small as 6.89 millimeters in length.  

Analysis of surface artifact distributions across the surface of 5LR233 identified two 

primary clusters (Figure 41, Figure 42). The clusters, designated Cluster A and Cluster B, are 

situated 30 meters apart and are spatially separated by a low saddle. Both clusters are located in 

close proximity to the unnamed tarn at the northern extent of the sampled area, and a snow 

runoff stream at the southern extent. Cluster A is comprised of 19 artifacts, all of which are flake 
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debitage. Cluster B is much larger, both spatially and in quantities of artifacts, and encompasses 

54 artifacts. All four tools, identified at the site in 2019, are spatially associated with Cluster B.  

 

 

Figure 40. The results of intensive sampling at 5LR233. Identified tools include a large bifacial blank (a; 5LR233-
2019-1), a late stage biface fragment (b; 5LR233-2019-4), an early stage biface fragment (c; 5LR233-2019-2), and 
an edge modified flake (d; 5LR233-2019-3). 



142 
 

 

 

Figure 41. Results of the Kernel Density Estimation (KDE) analysis for 5LR233. Shown at top is the interpolated 
probabilistic density surface, output from the KDE tool in ArcGIS. At bottom is the reclassified KDE surface, 
showing standard deviations above the mean. High density areas with five or more artifacts, and exceeding two 
standard deviations above the mean, were used to define cluster boundaries.   
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Figure 42. The two clusters, defined from the surface artifact distribution at 5LR233, shown at top. Validation of 
the clusters, using the Optimized Hot Spot Analysis tool, is shown at bottom. The cluster boundaries align with areas 
designated as hot spots at a confidence interval of p < 0.01. 
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 Analysis of the artifact composition of Cluster A and Cluster B reveals a number of 

substantive differences between the clusters. For example, Cluster B is significantly larger that 

Cluster A, both in terms of quantity of artifacts and spatial extent. Despite this differential, 

Cluster A retains a substantially higher lithic raw material diversity. Though Cluster B contains 

nearly three times as many artifacts as Cluster A, the lithic raw material diversity of Cluster A is 

over 200% higher (Table 13). Given the closest distance between the clusters is just 30 meters, 

one would not expect to see such a high range of lithic raw material diversity if the clusters 

represented a single depositional episode. For example, even if artifacts had existed in the low 

saddle separating the clusters and had been removed by snowmelt runoff or tarn outflow, there is 

little reason to suspect that this formation process would result in such spatial polarization of raw 

material diversity. Instead, it is more probable that the clusters represent different depositional 

events, where occupying groups had visited the site at different stages of their annual round and 

had last procured lithic resources from different areas (Benedict 1992). Similar to the Twin 

Crater Lakes site described previously, there is no reason to expect that contemporaneous 

activity areas from a single occupation would be demarcated by different patterns of lithic raw 

material use. Reoccupation of the site, reflected by clusters associated with distinct occupations, 

is a likely explanation for these differences.      

Table 13. Artifact composition of clusters identified at 5LR233. The table shows the value for each category (N), as 
well as the cluster’s percentile rank (%) when compared against sites in the WBLR sample. 

 
  

 
Artifacts 

 
 

Tools 

 
Tool Diversity 

(H) 

 
Lithic Raw Material 

Diversity (H) 

Cluster  N % N % N % N % 

A  19 32 0 3 0 3 0.681 97 

B  54 65 4 52 0.562 24 0.216 45 
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 Despite a lack of additional temporal diagnostics at 5LR233, substantive differences 

among the artifact and material composition of the identified clusters point to the 

multicomponent nature of the site. The discrete nature of these clusters, though separated by just 

30 meters, indicates a spatial palimpsest depositional pattern occurred at the site. The site’s 

proximity to the krummholz and timberline may have served as a draw to bands traveling 

through the area, as well as the availability of water resources. Though the site is located closely 

above the modern timberline, the occupation of the site may have been temporally associated 

with periods when the timberline advanced upslope and the site was sheltered from exposure by 

the krummholz. Generally, the spatial palimpsest patterns of artifact distributions points to 

occupations which were oriented around a common feature on the landscape (Bailey 2007). In 

the case of 5LR233, this is most likely the unnamed tarn which is located adjacent to the site. 

Both clusters are located on low rises, above the lakeshore to the north, and appear to take 

advantage of flat areas of topography in immediate proximity to the tarn. The structured 

orientation of the clusters in relation to the physical landscape provides some evidence for 

Schlanger’s (1992) first criteria of persistent place formation, that optimal environmental 

conditions served to encourage preferential reuse of the site.  Though there was no apparent 

evidence of the reuse of artifacts previously deposited at the site, or of site infrastructure, further 

investigation of the site may yield additional data in this regard. 

 

Grassy Pass (5LR240) 

 The Grassy Pass site (5LR240) was first documented by Metcalf (1971a), and revisited 

periodically by Morris et al. (1994). The site is situated on the saddle of Grassy Pass, which is 

one of a few passable access points into the WBLR watershed. The site is located at an elevation 

of 3,415 meters above sea level, and is within the alpine ecozone. Prior to 2019, a total of 66 
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artifacts had been collected from the site. In Metcalf’s (1971a) original field notes, he described 

two concentrations at the site. One concentration was reported on a small bench at the western 

extent of the pass, while a second concentration was documented at the crest of the pass. At the 

time of Metcalf’s (1971a) recording, both concentrations were described as containing less than 

10 artifacts each, however these observations could represent an interpretable site structure. 

Likewise, in contrast to the Twin Crater Lakes site and 5LR233, analysis of the extant 

assemblage from the Grassy Pass site identified at least three known components. These 

components include distinct Late Paleoindian, Early Archaic, and Late Archaic occupations, as 

reflected by temporally diagnostic projectile points, and the site offers a useful opportunity to 

evaluate the spatial structure and character of a site with definite repeat occupation over large 

time spans. Similar to 5LR233, this site was also one of four in the study area with ground stone 

present in the assemblage, another indicator of the use intensity of the site which can be 

evaluated to inform understandings of reoccupation.  

 During the 2019 investigations at Grassy Pass, a total of 0.87 hectares was sampled and 

intensively surveyed. In this area, 61 debitage artifacts and six tools were identified and mapped 

across the site surface. Many of the artifacts were found concentrated on a small bench located at 

the western extent of the pass crest. Tools found in this area included a proximal fragment of a 

point preform, a netherstone fragment, the base of an Early Archaic Mount Albion point, a distal 

fragment of a late stage biface, and the distal fragment of an unassigned Archaic projectile point. 

Outside of the western area of the site was a complete end scraper, which was identified just 

below the crest of the pass (Figure 43). Across the site, material types were comprised of CCS 

(88%), quartzite (10.4%), and sandstone (1.6%). High ground visibility likewise enabled 

identification and mapping of artifacts as small as 7.25 millimeters in length.  
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Figure 43. The results of intensive sampling at the Grassy Pass site (5LR240). Identified tools include a preform (a; 
5LR240-2019-28), a netherstone fragment (b; 5LR240-2019-29), an Archaic Mount Albion projectile point base (c; 
5LR240-2019-27), a distal late stage biface fragment (d; 5LR240-2019-26), a distal projectile point fragment (e; 
5LR240-2019-30), and an end scraper (f; 5LR240-2019-25).  
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Analysis of the surface distribution of artifacts at 5LR240 identified only a single cluster 

at the site. Though Metcalf (1971a) reported at least two concentrations at the site, his 

observations were based on small quantities of materials. The results of the spatial analysis of the 

artifacts mapped in 2019, following the application of an intensive sampling strategy, identified 

only a single cluster. The cluster, designated Cluster A, sits in the western area of the pass on a 

small elevated bench. It is likely that Cluster A represents the concentration which Metcalf 

(1971a) also described as existing in the area. Metcalf’s (1971a) second concentration may be 

associated with various small concentrations of flakes observed in the north central area of the 

site, however these did not meet the criteria to be designated as a distinct cluster (Figure 44).  

 Cluster A is comprised of 51 artifacts, including five tools. The observed tools represent 

multiple different classes and the cluster has a tool diversity in the 79th percentile for the WBLR 

watershed. The cluster likewise retains a high lithic raw material diversity in the 61st percentile 

for the study area. The presence of large numbers of debitage and tools concentrated in an 

approximate 35 meter by 25 meter concentration is indicative of the intensive use of this area of 

the site. Likewise, despite its small size, the cluster’s artifact composition is above average when 

compared to all sites in the WBLR study area for quantity of artifacts, quantity of tools, tool 

diversity, and lithic raw material diversity. Together, these high values concentrated in a single 

intrasite area are indicative of the intensive and concentrated occupation of the Grassy Pass site.  

Table 14. Artifact composition of the lone cluster identified at 5LR240. The table shows the value for each category 
(N), as well as the cluster’s percentile rank (%) when compared against sites in the WBLR sample. 

 
  

 
Artifacts 

 
 

Tools 

 
Tool Diversity 

(H) 

 
Lithic Raw Material 

Diversity (H) 

Cluster  N % N % N % N % 

A  51 65 5 61 1.332 79 0.456 61 
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Figure 44. Results of the Kernel Density Estimation (KDE) analysis for 5LR240. Shown at top is the interpolated 
probabilistic density surface, output from the KDE tool in ArcGIS. At bottom is the reclassified KDE surface, 
showing standard deviations above the mean. High density areas with five or more artifacts, and exceeding two 
standard deviations above the mean, were used to define cluster boundaries.   
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Figure 45. The single cluster defined from the surface artifact distribution at 5LR240, shown at top. Validation of 
the cluster, using the Optimized Hot Spot Analysis tool, is shown at bottom. The cluster boundary encompasses all 
areas designated as hot spots at a confidence interval of p < 0.01. 
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 The highly concentrated but diverse nature of the artifact composition of Cluster A is 

strong evidence for the site’s status as a cumulative palimpsest. The nature and topography of the 

pass, which acts as a bottlenecked travel corridor, limits settlement of the area to a few suitable 

places. The location of Cluster A, on a dry and flat bench above the pass, was one such area 

which offered suitable conditions for temporary settlement. Given the necessity of moving 

through the pass to access the WBLR watershed from the north, the pass represents one of the 

areas of the watershed which was most likely to be repeatedly encountered by bands entering and 

exiting the area. The repeat occupation of a suitable area on the pass (Cluster A), led to the 

superimposition of artifacts over deposits form previous occupations, creating a cumulative 

palimpsest.    

 

Discussion: Implications of Site Structure for Reoccupation 

Spatial analysis of artifact distributions at sites with high evidence of reuse appears to 

indicate that reoccupation signatures are identifiable on the surface of these sites. The surface 

site structure of both the Twin Crater Lakes site (5LR153/5LR237) and 5LR233 show signs of 

non-contemporaneous depositional periods representing a spatial palimpsest. Substantive 

differences in the artifact composition of discrete clusters at these sites is more consistent with 

reoccupation rather than long-duration single occupation, particularly in the specific context of 

high-elevation conditions. These findings were supported at the Twin Crater Lakes site, where 

definitive evidence of a Late Archaic component was identified in 2019, which validated the 

interpretation of the site as a reoccupied site and supported Morris et al.’s (1994) typological 

determination of site components. The Grassy Pass site (5LR240), though only a single cluster 

was identified, likewise shows evidence of reoccupation that is supported by temporal 

diagnostics in the existing collection. The lone cluster at Grassy Pass is tightly concentrated but 



152 
 

it concurrently reflects a higher tool and lithic raw material diversity than 61% to 79% of sites in 

the WBLR watershed. Though this interpretation is supported by the identification of at least 

three known components from existing Morris et al. (1994) and Metcalf (1971a) collections, the 

spatial context alone is compelling evidence that the site represents a cumulative palimpsest 

deposit. The topography of the pass, as well as the nature of its use, focused occupation of the 

site into one constrained area which structured the use of the place (Schlanger 1992). 

Though analysis of surface contexts to identify reoccupied sites is not a replacement for 

excavation or absolute dating methods, these results provide strong evidence to suggest that 

reoccupied sites can be reliably distinguished from single component sites in high elevation 

contexts. In this way, these methods are a powerful tool for archaeologists working at high 

elevations, given the logistical and regulatory difficulties of conducting excavations in these 

conditions. Such determinations are likely to be less practical at lower elevations, where long-

term seasonal or year-round occupations are possible, however the highly constrained seasonal 

nature of alpine and subalpine occupations allows for easier discrimination of reoccupation at 

these sites (Benedict 1992). To further evaluate the spatial and site structure considerations for 

persistent reoccupation of these places, it is then useful to compare the WBLR watershed sample 

against excavated sites from similar high elevation contexts. Though excavations at high 

elevations are rare, several decades of research in the Indian Peaks Wilderness has resulted in a 

useful dataset for comparison. Additionally, Morris and Marcotte’s (1976) work on the Joe 

Wright Reservoir site (5LR450) offers an example of an excavated site nearby to the study area. 

To compare the surface patterns identified in the Rawah Wilderness in 2019 against excavated 

sites with confirmed evidence of reoccupation in similar conditions, a brief discussion of these 

patterns is useful for interpretation of the WBLR watershed sample.  
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Benedict’s (1974, 1985, 1989) and Pitblado’s (2000) work at the Caribou Lake site 

(5GN22), Benedict’s (2000) excavation of the Fourth of July Mine site (5BL153), and Morris 

and Marcotte’s (1976) excavation at 5LR450 are examples of excavated reoccupied sites in high 

elevation contexts. Each of these sites is located in the alpine or subalpine ecozone, and many of 

them are associated with the timberline ecotone, and are situated in similar environmental 

contexts to sites in the study area. Collectively, comparative analysis of the surface and 

subsurface data detailed in these studies is necessary for the interpretation of the Rawah localities 

investigated in 2019.  

Similarly, Morris and Marcotte (1976) identified at least five spatially associated 

localities at 5LR450, which were variously dated to the Late Archaic and Late Prehistoric. Later 

surface mapping by the Center for Mountain and Plains Archaeology, several decades after the 

expansion of the reservoir, likewise identified a surface context comprised of disparate artifact 

scatters (Meeker et al. 2016). The site displays a clear pattern of variable reoccupation intensity 

reflected by these discrete clusters, and they have significant utility for interpretation of patterns 

seen among the WBLR sites. Similar depositional patterns were observed at the Twin Crater 

Lakes site and 5LR233, with clearly defined clusters apparent on the surface. At 5LR450, 

surface artifact concentrations of lithic debris were used to identify distinct loci of the site and 

target excavations (Morris and Marcotte 1976). Localities were separated from the next nearest 

locality by distances ranging from approximately 20 meters to 100 meters, within the range of 

clusters identified from the 2019 investigations. The spatial structure of the localities identified 

by Morris and Marcotte’s (1976) suggests they are analogous to the clusters identified in this 

study. Excavations and testing at Locality One (surface n = 39) and Locality Two (surface n = 

42) resulted in the recovery of 1,054 artifacts and 133 artifacts respectively (Morris and Marcotte 
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1976). Excavation of all localities likewise resulted in identification of substantive discrepancies 

in raw material type composition across the site. These discrepancies, where differential ratios of 

quartzites and chalcedonic cherts were evaluated between clusters, were hypothesized to 

represent evidence of reoccupation and is similar to the interpretation applied to the spatial 

datasets analyzed in this study (Morris and Marcotte 1976:24). These findings, from excavation 

of the spatial palimpsest at 5LR450, confirmed many of the same expectations applied to the 

sites mapped in 2019. Namely, subsurface deposits yielded definitive evidence of reoccupation 

of the site which were associated with substantive differences in raw material type composition 

for each locality (cluster).   

Investigations at the Fourth of July Mine site (5BL153), located in the Colorado Front 

Range, yielded similar results. Here, Benedict (2000) excavated a series of thermal features 

eroding from a cut hiking trail. Given the significant quantity of features at the site, Benedict 

(2000) sought to determine if the site represented a long-term base camp. Analysis of the spatial 

distribution of artifacts, however, led Benedict (2000:182) to conclude that the site “was visited 

repeatedly […] over the course of many millennia” and was preferentially reoccupied due to its 

association with the timberline ecotone and ease of access to game drive sites. A high temporal 

diversity of projectile points, dispersed over the surface of the site, likewise supported this 

assertion. Though differences in sampling strategies make direct comparison difficult, and 

additional surface mapping at the site is required, Benedict’s (2000) findings at 5BL153 exhibit a 

number of similarities and contrasts with the Rawah Wilderness sites. Notably, Benedict 

(2000:182) describes the surface record as consisting of thin lithic scatters with a stark “lack of 

stratigraphic or artifactual evidence for repeated use”. Benedict (2000:162) described this surface 

context as “a patchwork of overlapping prehistoric campsites”, a distribution consistent with a 
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spatial palimpsest depositional pattern. Given that projectile point typologies and radiocarbon 

dates from the site are strong evidence for the long-term episodic reuse of the site, this apparent 

contradiction is worthy of exploration. In fact, the record of 5BL153 is fairly consistent with 

trends seen on the surface of the Rawah Wilderness sites investigated in 2019. With the notable 

exception of the large quantities of features eroding from 5BL153, many of the Rawah sites 

exhibit similar patterns of temporally unassociated single-occupations structured around a 

common landscape feature. This spatial palimpsest pattern, as mentioned previously, is seen at 

both the Twin Crater Lakes site and 5LR233. Drawing from Schlanger’s (1992) framework, the 

lack of evidence for reused cultural facilities at the Fourth of July Valley Mine site is indicative 

of the preferential reoccupation of the site for its optimal environmental conditions (shelter of 

timberline ecotone and ease of access to alpine resources). In the case of the Rawah assemblages, 

a site occupying the same niche as 5BL153 could be expected to reflect a very similar surface 

context. It is likely that the Twin Crater Lakes site and 5LR233 both fill this same role, as spatial 

palimpsests reflecting reoccupation structured around reuse of an environmentally strategic 

place. For these reasons, the surface context at 5BL153 is aligned with many of the same 

expectations for similar sites in the Rawah Wilderness. Just as Benedict (2000:160) determined 

that the site constituted a “patchwork” of reoccupation rather than a single long-duration base 

camp, the analysis of surface artifact distributions at Twin Crater Lakes site and 5LR233 

indicates they represent a similar pattern of repeat reuse rather than high intensity ephemeral 

occupation. 

The Caribou Lake site (5GA22), in contrast, provides an opportunity to examine a mixed 

reoccupied context comprised of both spatial and cumulative palimpsest deposits (Benedict 

1974, 1985; Pitblado 2000). At 5GA22, three primary excavation areas produced evidence of six 
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variously overlapping depositional units associated with Protohistoric, Late Prehistoric, Archaic, 

and Paleoindian components (Benedict 1985). The setting of the site, adjacent to a lake and 

situated at 3,400 meters above sea level, closely mirrors the Twin Crater Lake site and 5LR233. 

The archaeological context of the surface archaeology at the site is likewise consistent with the 

findings at these sites. Benedict (1985:108) observed “several concentrations” of artifacts 

associated with the shore of the lake. Excavations of these concentrations, designated Area A 

through Area C, revealed that these clusters represented overlapping periods of occupation. 

Though Benedict (1985:108) was ultimately able to define six depositional units, the “thoroughly 

intermixed” context of multiple components at the site was a persistent challenge. The spatially 

discrete but overlapping nature of the repeat occupation of the Caribou Lake site reflects both the 

spatial and cumulative nature of the palimpsest deposits at the site. In this way, data from the site 

is useful for interpreting both the spatial palimpsest context identified at the Twin Crater Lakes 

site and 5LR233, as well as the cumulative palimpsest deposit present on the surface of the 

Grassy Pass site. In Area A, for example, Benedict (1985) observed distinct debitage 

concentrations on both the ‘lower’ and ‘upper’ surface of occupation. As frost-sorting processes 

resulted in some vertical post-depositional disturbances to the site, Benedict (1985) relied 

partially on differences in raw material composition across these concentrations to differentiate 

the different occupational episodes of Area A. Similarly to the Grassy Pass site, the high lithic 

raw material diversity concentrated on the surface of the site may be a result of the erosion of 

subsurface deposits such as those observed by Benedict (1985). Along with the overlapping 

nature of the lower and upper occupation surfaces, Area A of 5GA22 is an excellent example of 

a cumulative palimpsest alongside Grassy Pass. Benedict (1985) attributes the successive 

occupation of Caribou Lake to its viewshed, proximity to the timberline ecotone, access to alpine 
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game drives, and optimal camping conditions, and the overlapped occupation of Grassy Pass was 

likely due to similar constraining circumstances related to its use as a travel corridor and access 

point to the greater WBLR valley.  

The results of the analysis of surface contexts of likely reoccupied sites in the Rawah 

Wilderness yielded three principal conclusions. First, reoccupation can be reliably recognized 

from surface contexts at high elevations. Particularly given the seasonally limited nature of 

occupations in alpine climates, there is high potential for archaeologists to successfully identify 

the signatures of these ephemeral seasonal occupations. Second, reoccupation of these sites is 

reflected in site structure by spatial and cumulative palimpsest deposits at these sites, and these 

deposits can be analyzed in relation to their larger context to identify how reuse of place was 

structured at these sites. And third, variability in occupation intensity across site surfaces and 

between the artifact composition of clusters is a powerful tool for analysis of reoccupation 

intensity and episodic reuse of these locales. Analysis of the composition of these surface 

deposits, though limited by visibility considerations, can have significant utility for identification 

of contrasts indicating reoccupation when compared against a larger landscape sample. When 

available, such as for this study, cross-comparison of the artifact composition of clusters against 

other contexts is a powerful tool for recognizing characteristics of reoccupation even when 

temporal diagnostics are not present. Though these findings are not a replacement for subsurface 

investigation, archaeologists investigating sites in high elevation contexts should apply these 

considerations when evaluating the significance and data potential of these sites. Though time-

averaging of these contexts makes analysis of surface contexts challenging, breaking surface 

artifact distributions into cross-comparable intrasite units of analysis is a time efficient and 

effective means of recognizing reoccupation in surface contexts. 
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CHAPTER 7 – CONCLUSIONS AND FUTURE DIRECTIONS 

 

The results of this study reinforce the persistent nature of hunter-gatherers’ long-term use 

of high elevation landscapes in the Southern Rocky Mountains. Analysis of assemblage 

composition, site distributions over landscapes, and surface palimpsests demonstrate that 

measurable patterns of reuse exist within the archaeological record of the Medicine Bow 

Mountains. These patterns, representing the episodic reoccupation and persistent use of place, 

have significant implications for understanding landscape use systems in the broader context of 

northern Colorado prehistory. As a foundation for continued study of the archaeology of the 

Rawah Wilderness, these results likewise highlight the potential for analysis of the Medicine 

Bow Mountains to contribute to broader understandings of high elevation landscape use in the 

Southern Rocky Mountains, as well as to studies of the connectivity or isolation of land use 

systems across northern Colorado’s alpine and subalpine environments.  

The conclusions of this analysis also demonstrate the validity of the theoretical 

expectations for persistent reoccupation discussed in Chapter 3. Though the high elevation 

archaeological record in the Southern Rocky Mountains can be highly variable, and is innately 

distinguished from lower elevations by the challenging conditions found in these environs, this 

thesis demonstrated that persistent places can be recognized in these contexts using these well 

established expectations for assemblage composition, landscape distribution, and site structure. 

The Clarke Effect for example, which was developed in the context of a sedentary settlement 

system with indefinite occupations, was shown to apply equally well to the episodic nature of 

mountain occupations (Schiffer 1975, 1987). The Clarke Effect was used to derive expectations 

for the assemblage composition of persistent places at high elevations and the study 
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demonstrated that the “statistical tendency” outlined by Schiffer (1987:55) was present in these 

high elevation assemblages when evaluated against other criteria for preferential reoccupation. 

The thesis likewise demonstrated that the “shifts in […] utility” and accumulated use of place 

through time represented by this tendency were a critical aspect of the high elevation surface 

record in the Southern Rocky Mountains (Binford 1982:21; Shiner 2009). Expectations derived 

for landscape-scale distributions and site structure, using Schlanger’s (1992) persistent place 

criteria, palimpsest theory from Bailey (2007), and others, were also shown to be useful for 

generating hypotheses for the high elevation record.  

In Chapter 4, analysis of existing site collections identified a range of reoccupation 

intensity for sites within the study area. By testing expectations for reoccupation and assemblage 

composition, the analysis identified sites with evidence of high reuse. Though diagnostic 

temporal indicators were withheld from the analysis as a control, known multicomponent sites 

were successfully aligned with assemblages pinpointed as exhibiting evidence of reoccupation. 

These sites, identified as exhibiting evidence of high reuse, were likewise found to be consistent 

with Morris et al.’s (1994) own determinations of sites which likely represented multiple 

components. Analysis of assemblage characteristics likewise identified patterns of reuse which 

can inform broader understandings of high elevation landscape use in the Medicine Bow 

Mountains. High degrees of variability among the assemblage composition of reoccupied sites, 

for example, represent divergent patterns of landscape use through time. While the assemblage 

characteristics of moderate reuse and low reuse sites were largely consistent, the variability of 

high reuse assemblages suggests variable systems of transhumance, settlement, and site function 

are present in the archaeological record of the Rawah Wilderness. Clarification of these systems 
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will be critical for not only improving understanding of the indigenous use of the Medicine Bow 

Mountains, but also for the Colorado Front Range and the larger northern Colorado region.  

Chapter 5 explored the landscape and environmental implications of these results. By 

creating spatiotemporal models of the distribution of high reuse, moderate reuse, and low reuse 

sites, the analysis considered the conditions which drive reoccupation and persistent place 

formation. Through analysis of the response of site suitability to a set of environmental variables, 

defined from the literature and a priori expectations, the study was undertaken to identify if 

reoccupation was environmentally driven, or dependent on other conditions. The results of the 

study support Schlanger’s (1992:97) first criterion for persistent place formation, that the 

“unique qualities” of certain parts of the landscape attracted reuse, though it similarly exposed a 

high degree of variability in high elevation landscape use patterns. For example, though 

suitability for high reuse sites was associated with high elevations and proximity to ecotone 

boundaries, reoccupation was not explicitly associated with an environmental niche. The 

importance of the timberline ecotone in the Colorado Front Range, however, is added evidence 

to suggest that similar landscape use trends are occurred in the Medicine Bow Mountains. The 

timberline ecotone offered protection from harsh alpine conditions while allowing for expedient 

access to alpine and subalpine resources, and these optimal conditions attracted repeat 

occupation through time (Benedict 1985, 1990, 1992, 2000; Morris et al. 1994). The frequent 

occurrence of high reuse sites in association with the timberline ecotone suggest it acted as a 

destination for groups accessing the WBLR watershed from lower elevations. The presence of 

high reuse sites on alpine passes and at river confluences, however, demonstrates that persistent 

reoccupation was not limited to the timberline ecotone. Rather, though the study confirms that 

the timberline ecotone was an important component of landscape use systems in the Medicine 
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Bow Mountains, the persistent use of place at high elevations was an amalgamation of many 

complex social and environmental dynamics.    

Following the identification of reoccupied sites from existing collections, and analysis of 

their distribution over the landscape, the final analytical chapter addressed the question of 

reoccupation at the site scale. By exploring the physical characteristics of reoccupation, as 

reflected in the surface distribution of artifacts at sites, Chapter 6 confirmed that the 

archaeological record of the Medicine Bow Mountains represents a complex palimpsest of 

overlaying occupation episodes. Through high resolution mapping of artifact distributions at 

sites, the study undertook a sophisticated spatial analysis of these surface contexts to identify 

evidence of the spatial character of reoccupation. The results of the study demonstrate that 

cumulative and spatial palimpsest depositional patterns are observable on the surface of sites, 

and that analysis of these patterns can be used to evaluate reoccupation intensity. Despite the 

time averaging of these surface contexts, the study employed theoretical expectations for the 

artifact composition of distinct clusters to isolate variability in occupation intensity in the spatial 

structure of each site. The analysis identified substantive patterns in the composition of surface 

clusters on the surface sites, and variation in the artifact composition of these clusters was used 

to identify contrasts which were not characteristic of short-term ephemeral occupation. Similarly, 

given the inherent limitations of occupation in the high elevations of the alpine and subalpine 

ecozone, many of these patterns are more consistent with reoccupation than even long-duration 

single occupation. The study likewise validated the results of the analysis of assemblage 

compositions in Chapter 4. The Twin Crater Lake site (5LR153 / 5LR237), despite typological 

evidence of only an Early Archaic Mount Albion component, was classified as a probable 

reoccupied site with high evidence of reuse. When visited and mapped in the field, for analysis 
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of its spatial character in Chapter 6, the discovery of a Late Archaic component confirmed the 

status of the Twin Crater Lakes site as a reoccupied locale. Though no substitute for subsurface 

investigations, the study reiterates the power of surface analyses for reconstructing the long-term 

use of a site.  

These results have broad implications for approaches to high elevation archaeology in the 

Medicine Bow Mountains. First, it reinforces the inherent contradiction of the wilderness 

concept and the importance of considering these landscapes in larger regional analyses. As 

described by Cronon (1995), Anderson (2005:4), and others, the diverse indigenous uses of 

ostensibly uninhabited wilderness left an “indelible imprint” on the landscape. Generally, a lack 

of compliance surveys and a systematic perception of wilderness areas as ‘untrammeled by man’ 

pose serious obstacles to improved understanding of the archaeology of these high elevations 

(Adams et al. 2014; Blecha 2015). Alongside Benedict (1981, 1985, 1990, 1992, 2000) and 

other’s work in the Indian Peaks Wilderness, this study follows the pioneering work of Metcalf 

(1971a) and Morris et al. (1994) in recognizing the rich archaeological record and dynamic 

cultural landscape represented by the Rawah Wilderness. Second, the study reinforces the need 

for comparative analyses between the Medicine Bow Mountains and the Colorado Front Range. 

Though there are many similarities in the use of both ranges, there are significant contrasts in 

both the character of the archaeological record and research intensity. Clarification of these 

contrasts, such as the absence of alpine game drives and pottery in the Medicine Bow Mountains, 

and limited utilization of ground stone technology, has a significant potential to contribute to 

broader understandings of larger cultural systems in northern Colorado prehistory.  

This project has additional implications for the management approaches to archaeological 

resources, compliance archaeology, and evaluation of the significance of hunter-gatherer 
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archaeological sites for inclusion on the National Register of Historic Places (NRHP). First, in 

the management of archaeological sites in remote backcountry settings, the methods described 

here are a useful tool for identifying sites which are likely to represent persistent places. This is 

particularly critical for federal land management agencies’ allocation of resources for the study 

and preservation of sites, particularly as agency resources are increasingly strained by wildfire 

threats and other high severity climate change impacts. At the time of writing for example, the 

Cameron Peak Fire became the largest recorded wildfire in state history and burned thousands of 

acres within and adjacent to the study area. With an improved understanding of which places on 

the landscape may represent significant reoccupied sites, the USDA-FS could respond to the 

Cameron Peak Fire and similar wildfires by identifying areas where these persistent places may 

occur and by documenting them before they are adversely impacted by post-fire erosion and 

other threats. This research has similar implications for the cultural resource management 

industry and its standards for evaluating NRHP eligibility. It is clear from the research conducted 

here that cultural resource management archaeologists must consider more variables when 

making NRHP eligibility determinations from surface and/or limited subsurface contexts. For 

example, though a site may be lacking projectile points or other diagnostic artifacts due to illicit 

surface collection or other factors, archaeologists should consider other aspects of the surface 

context of sites, such as raw material and tool functional diversity, to identify evidence of their 

preferential use through time. Generally, cultural resource management archaeologists should 

also place greater emphasis on reoccupation when assigning eligibility. Persistent places, by their 

definition, reflect the preferential use of a place over long temporal scales and reflect a clear 

historic significance under the criteria of the NRHP. Greater emphasis in cultural resource 

management on identifying these places, and by utilizing a broader suite of variables for 
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identifying them through analysis of the surface assemblage composition of sites, will preserve 

critical sites for future research.    

Although the study was a success, and clarified many questions surrounding the reuse of 

mountain landscapes in the Medicine Bow Mountains, there were a number of limitations which 

future studies may resolve. First, the extent and quality of the Rawah Wilderness sample is 

somewhat unclear. Though Metcalf (1971a) and Morris et al. (1994) left an invaluable dataset for 

analysis of the Rawah Wilderness, no formal survey data is available. Similarly, though Morris 

et al. (1994) implemented a 100% surface collection strategy which yielded a substantial sample 

for analysis, it is unclear how frequently each site was revisited. These issues could be resolved 

with the longitudinal collection and mapping of these sites, such as is underway for the Carey 

Lake site (LaBelle and Meyer 2017; Meyer 2019b; Meyer and LaBelle 2017). Second, there are 

numerous questions surrounding lithic raw materials in the Rawah assemblages. Czubernat’s 

(2019) minimum analytical nodule analysis, for example, identified substantial variability among 

lithic raw material types which appear to represent the same sources. Clarifying the range of 

variability and sourcing of lithic raw materials in assemblages would be highly beneficial to 

future studies. Though the subjectivity of raw materials was mitigated in this study by reliance 

on broader macroscopic categories, with minimal likelihood of error, a detailed study with an 

accompanying minimum analytical nodule analysis would have significant potential for 

evaluating reoccupation (Hurst 2010).  

Collectively, analysis of the archaeological record of the Medicine Bow Mountains 

demonstrates the diverse patterns of use and reuse which drove high elevation landscape use in 

the area through time. As a diverse cultural landscape, the Rawah Wilderness constitutes a 

palimpsest of repeat occupations and dynamic systems of reuse. The results of this study 
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demonstrate the variability in its use through time, underpins its importance to the ancient 

occupants of northern Colorado, and reflects the long-term patterns surrounding the use of these 

high elevation landscapes. Following the work of Metcalf (1971a) and Morris et al. (1994), this 

study reinforces the rich potential of the Rawah Wilderness’ archaeological record to address 

significant questions pertaining to Rocky Mountain prehistory and the archaeology of mountain 

landscapes.   
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APPENDIX A: PHOTOGRAPHS OF TOOLS BY SITE 
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APPENDIX B: ASSEMBLAGE COMPOSITION BY SITE 

DEBITAGE BY INDIVIDUAL SITE PRIOR TO 2019 

Key: Flake (FK), angular debris (ANG), crypto-crystalline silicate (CCS), quartzite (QTZ), quartz (QZ), obsidian (OBS), yes (Y), no (N) 
* Obsidian flakes (n = 4) were removed for sourcing analysis and attribute data was not collected 

 

 
 

Artifact Element (n) 

  

 

Size Class (n) 

 

Thermally 

Altered (n) 

 

 

Cortex 

(n) 

 

Striking 

Platform 

(n) 

 

Lithic Raw Material 

(n) 

Site 

Total 

Quantity 

(n) FK 

 

 

ANG 1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

Y 

 

 

N 

 

 

Y 

 

 

N 

 

 

Y 

 

 

N 

 

 

CCS 

 

 

QTZ 

 

 

QZ 

 

 

OBS* 

5LR101 11 8 3 1 7 2 1 0 0 1 10 5 6 3 8 11 0 0 0 

5LR102 9 6 3 2 2 4 0 0 1 2 7 4 5 5 4 9 0 0 0 

5LR113 23 22 1 7 15 1 0 0 0 2 21 0 23 10 13 5 18 0 0 

5LR114 10 10 0 2 5 3 0 0 0 1 9 0 10 2 8 4 6 0 0 

5LR131 86 79 7 43 37 3 3 0 0 4 82 1 85 24 62 58 28 0 0 

5LR132 111 105 6 90 19 2 0 0 0 5 106 2 109 16 95 109 2 0 0 

5LR133 35 35 0 9 20 5 1 0 0 4 31 9 26 10 25 35 0 0 0 

5LR134 23 19 4 2 10 6 2 2 1 1 22 7 16 6 17 20 2 1 0 

5LR135 8 8 0 1 4 2 0 1 0 0 8 1 7 2 6 6 2 0 0 

5LR153 115 109 6 17 81 16 1 0 0 11 104 14 101 20 95 113 2 0 0 

5LR158 73 70 3 19 36 13 5 0 0 10 63 14 59 21 52 69 3 1 0 

5LR173 3 3 0 1 2 0 0 0 0 0 3 1 2 0 3 3 0 0 0 

5LR174 147 126 21 30 70 35 6 3 0 1 143 31 113 41 103 116 7 21 3 

5LR225 21 18 3 3 6 6 2 3 0 1 19 7 13 2 18 18 2 0 1 

5LR226 18 16 2 0 8 8 0 

2 
 

0 1 17 8 10 8 10 18 0 0 0 
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Artifact Element (n) 

  

 

Size Class (n) 

 

Thermally 

Altered (n) 

 

 

Cortex 

(n) 

 

Striking 

Platform 

(n) 

 

Lithic Raw Material 

(n) 

Site 

Total 

Quantity 

(n) FK 

 

 

ANG 1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

Y 

 

 

N 

 

 

Y 

 

 

N 

 

 

Y 

 

 

N 

 

 

CCS 

 

 

QTZ 

 

 

QZ 

 

 

OBS* 

5LR227 38 30 8 2 15 13 7 1 0 0 38 16 22 11 27 36 2 0 0 

5LR228 50 46 4 3 23 18 5 1 0 16 34 9 41 13 37 43 7 0 0 

5LR229 13 13 0 0 7 3 2 1 0 0 13 5 8 0 13 13 0 0 0 

5LR231 34 31 3 6 17 7 4 0 0 0 34 8 26 12 22 33 1 0 0 

5LR232 50 47 3 13 18 9 9 1 0 6 44 10 40 16 33 49 0 1 0 

5LR233 25 20 5 2 11 8 4 0 0 2 23 3 22 9 16 21 4 0 0 

5LR234 79 75 4 3 31 32 10 2 1 1 78 7 72 37 42 79 0 0 0 

5LR235 331 327 4 176 121 30 2 2 0 3 328 27 304 64 267 162 169 0 0 

5LR236 44 43 1 3 24 15 2 0 0 2 42 11 33 18 26 35 9 0 0 

5LR237 162 157 5 12 84 55 10 1 0 10 152 17 145 56 106 158 1 3 0 

5LR238 142 137 5 36 63 25 16 2 0 7 135 18 124 53 89 45 97 0 0 

5LR240 53 51 2 10 25 8 9 1 0 5 48 5 48 23 30 41 12 0 0 

5LR273 434 421 13 181 206 33 10 4 0 22 412 49 385 160 274 388 46 0 0 

5LR274 29 27 2 2 24 2 1 0 0 3 26 0 29 16 13 22 7 0 0 

5LR1834 22 21 1 0 8 10 4 0 0 2 20 9 13 9 13 20 2 0 0 
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TOOLS COLLECTED BY INDIVIDUAL SITE PRIOR TO 2019  

Key: FS#: Assigned sequentially by each individual site; Artifact Class: Chipped stone (CS); Artifact Element: Biface (BF), Scraper (SC), projectile point 

(PP), handstone (MAN), netherstone (MET), edge modified flake (EMF), core (CORE), drill (DR), preform (PRE), uniface (UN), graver (GR); Portion: 

Complete (C), near complete (NC), undetermined fragment (F), distal fragment (FD), proximal fragment (FP), medial fragment (FM), lateral fragment (FL); 

Other: Measurement based on incomplete artifact (*), not applicable (-), not available (n/a) 

Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR17 1 CS EMF 38.1 33.9 8.6 9.9 N - - - Quartzite FP 

5LR17 2 CS SC 48.3 38.7 10.3 23.2 Y - - - Chert (CCS) FD 

5LR17 3 CS EMF 59.3 37.2 14.3 35.4 N - - - Chert (CCS) C 

5LR17 4 CS DR 43 22.3 5.9 3.8 N - - - Chert (CCS) C 

5LR17 5 CS EMF 127.1 64.8 14.1 121.2 N - - - Quartzite C 

5LR17 6 GS MET 159.3 105.4 25.7 625 Y - - - Sandstone F 

5LR101 12 CS BF 15.4 20.1 6.4 3.3 Y - - - Chert (CCS) FM 

5LR101 13 CS PP 13.8 16.6 4 1.1 Y - - Unassigned Chert (CCS) FD 

5LR101 14 CS BF 27.7 32.1 8.7 8.1 N - - - Chert (CCS) FD 

5LR101 15 CS SC 36.9 27.4 5.2 6.7 N - - - Chert (CCS) C 

5LR101 16 CS CORE 28.5 21.8 11.8 10.2 N - - - Quartz C 

5LR102 10 GS MAN 59.7 78.3 28.3 148.5 N - - - Sandstone F 

5LR102 11 CS PP 21.1 17.2 3.1 1.2 N 10.5* n/a Pelican Lake Quartzite F 

5LR102 12 CS PP 11.2 11.3 3.3 0.3 N - - Unassigned Chert (CCS) FD 

5LR113 24 CS BF 41.9 64.7 13.9 37.4 Y - - - Quartzite FP 

5LR113 25 CS BF 30.1 47.4 7.5 15.5 Y - - - Quartzite F 

5LR113 26 CS EMF 37.5 37.6 8 13.1 N - - - Quartzite F 

5LR131 4 CS EMF 16.7 25 4.8 2.5 N - - - Chert (CCS) FP 

5LR131 28 CS PP 12 7.9 3.2 0.3 Y - - Unassigned Chert (CCS) FD 

5LR131 50 CS PP 11.8 7.7 3.5 0.3 N - - Unassigned Chert (CCS) FD 

5LR131 63 CS UN 6.3 13.2 2.4 0.2 N - - - Chert (CCS) FM 

5LR131 90 CS BF 87.1 100.9 10.3 85.6 N - - - Quartzite C 

5LR132 112 CS BF 45 32 14.5 27.4 N - - - Chert (CCS) C 

5LR132 113 CS BF 30.8 18.7 4.3 1.9 N - - - Chert (CCS) FL 

5LR132 114 CS BF 12.8 26.6 5.7 1.7 N - - - Chert (CCS) FL 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR133 36 CS PP 23.8 14.6 4.2 1.3 N - - Unassigned Chert (CCS) FD 

5LR133 37 CS BF 19.9 13 6.4 1.9 N - - - 
Chalcedony 

(CCS) FM 

5LR133 38 CS PRE 15.2 10.1 3.1 0.5 N - - - 
Chalcedony 

(CCS) FM 

5LR133 39 CS BF 11.4 15.1 3.1 0.6 N - - - Chert (CCS) F 

5LR133 40 GS MET 23.2 21.1 10.1 7.1 Y - - - Sandstone F 

5LR133 41 GS MET 20.5 17.2 8.6 3.9 N - - - Sandstone F 

5LR134 22 CS BF 12.8 37.4 11 5.7 N - - - Chert (CCS) FP 

5LR134 25 CS PP 19.6 20.9 3.5 1.3 N - - 

Unassigned 
Paleoindian / 

Archaic 
Chalcedony 

(CCS) FM 

5LR134 26 CS PP 31.8 23.1 5.2 4.8 N - - James Allen Quartzite FL / FP 

5LR134 27 CS BF 29.1 25.9 7 4.7 N - - - Chert (CCS) F 

5LR134 28 CS SC 55 29.7 10.7 17.2 N - - - Chert (CCS) C 

5LR135 9 CS SC 47.1 18.7 12 10.2 N - - - Chert (CCS) C 

5LR135 10 CS BF 29.4 25.7 3.7 4.7 N - - - Quartzite FD 

5LR153 116 CS EMF 45.2 29.7 4.3 6.4 Y - - - Chert (CCS) F 

5LR153 117 CS BF 20.7 10.4 3.6 0.7 N - - - 
Chalcedony 

(CCS) F 

5LR153 118 CS BF 13.2 13 3.2 0.8 - - - - Chert (CCS) FL 

5LR153 116 CS EMF 45.2 29.7 4.3 6.4 Y - - - Chert (CCS) F 

5LR158 74 CS BF 22.4 32.8 11.8 8.4 Y - - - 
Chalcedony 

(CCS) FD 

5LR158 75 CS SC 25 27.4 5.4 4.7 N - - - Chert (CCS) C 

5LR158 76 CS PP 12.2 12.4 3.8 0.6 N 7.8* 8.4* 
Hogback 

Corner-notched Chert (CCS) FP 

5LR174 146 CS CORE 57.7 41.9 33.8 98.7 N - - - Chert (CCS) F 

5LR174 147 CS PP 16.3 25.5 5.6 2.2 N 16.7 n/a 
Unassigned 

Archaic 
Chalcedony 

(CCS) F 

5LR174 148 CS PP 17.4 11.1 2.5 0.6 N 7.5 11.3 
Plains Tri-
Notched 

Chalcedony 
(CCS) NC 

5LR174 149 CS PP 13.2 13.6 2.2 0.4 N - 13.6 

Unnotched 
Triangular 

Point 
Chalcedony 

(CCS) FP 

5LR174 150 CS PP 31.4 22.6 6.6 6.5 N - 12.5 Scottsbluff Chert (CCS) FP 

5LR174 151 CS PP 33.8 20.5 5.8 4.2 N 12.2 12.9 

Unassigned 
Late 

Paleoindian Chert (CCS) NC 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR174 152 CS EMF 55.6 18.1 9.8 9.9 Y - - - Chert (CCS) C 

5LR174 153 CS SC 38.1 28 14.1 11.7 N - - - Chert (CCS) F 

5LR174 154 CS PRE 25.1 11 3.9 1.7 Y - - - Chert (CCS) FL 

5LR174 155 CS PP 18.3 14.5 4.2 1.4 N 11.8 13.9 
Unassigned 

Archaic Chert (CCS) FP 

5LR174 156 CS SC 28.6 27.3 5.7 4.7 Y - - - Chert (CCS) F 

5LR174 157 CS SC 45 21.3 5.9 5.1 N - - - Quartzite F 

5LR174 158 CS PP 31.1 23.1 5.6 4.7 N 14.7 *15.5 Mount Albion Quartzite F 

5LR224 1 CS PRE 26.1 18.5 3.6 2.9 N - 15  Quartzite FP 

5LR225 21 CS DR 10.2 11.8 2.3 0.3 N - - - 
Chalcedony 

(CCS) FM 

5LR225 22 CS PRE 27.9 20.3 3.9 2.7 Y - - - Quartzite C 

5LR225 23 CS DR 26 11.4 5.8 1.8 N - - - Obsidian FP 

5LR226 19 CS BF 32.1 14.5 9.7 3.5 N - - - 
Chalcedony 

(CCS) FL 

5LR226 20 CS EMF 24.9 10.3 2.3 0.6 Y - - - Chert (CCS) C 

5LR227 39 CS BF 36.5 25.8 9.3 10.3 N - - - Chert (CCS) F 

5LR227 40 CS PP 14.5 12.7 3 0.7 N - - 

Unassigned 
Late 

Prehistoric Chert (CCS) F 

5LR227 41 CS BF 22.2 21.6 5.9 2.7 N - - - Chert (CCS) F 

5LR227 42 CS BF 60.5 20 14.8 15.8 N - - - Chert (CCS) F 

5LR227 43 CS PRE 34.5 34.5 6.8 9.7 N - - - Chert (CCS) F 

5LR228 50 CS PP 17.8 14.1 2.4 0.6 N n/a 14.1 

Unnotched 
Triangular 

Point Chert (CCS) C 

5LR228 51 CS PP 9.6 10.9 2.6 0.4 N n/a n/a 
Unassigned 

late prehistoric 
Chalcedony 

(CCS) FM 

5LR228 52 CS UN 34.3 28.6 5.2 5.9 Y - - - Chert (CCS) C 

5LR228 53 CS BF 13.2 21.5 6.8 1.1 N - - - Chert (CCS) FD 

5LR228 54 CS BF 21.9 19 6 3.5 Y - - - Chert (CCS) FL 

5LR228 56 CS SC 28.5 35.7 9.4 11.6 Y - - - Chert (CCS) FD 

5LR228 57 CS SC 45.9 37.5 7.6 18.7 Y - - - Chert (CCS) C 

5LR228 58 CS EMF 45.2 54.3 10.7 42.1 N - - - Quartzite FM 

5LR229 17 CS BF 83 38.1 9 24.6 N - - - Quartzite FL 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR229 20 CS BF 17.7 15.7 5 1.4 N - - - 
Chalcedony 

(CCS) F 

5LR229 14 CS EMF 30.2 21.1 4.5 2.8 N - - - Chert (CCS) FL 

5LR229 21 CS PRE 19.4 16.4 3.8 1.2 N - - - 
Chalcedony 

(CCS) F 

5LR229 18 CS SC 35.3 23.1 9.3 7.3 N - - - Chert (CCS) FD 

5LR229 19 CS UN 23.2 18.3 6.8 2.6 N - - - 
Chalcedony 

(CCS) FL 

5LR229 16 CS PP 27.5 24.3 6 5 Y 13.1 12 Mount Albion Quartzite FP 

5LR229 15 CS PP 30.2 26.1 4.5 3.2 N 14.5 16 Pelican Lake Quartzite F 

5LR231 37 CS BF 13.3 9.5 3.5 0.4 N - - - Chert (CCS) FL 

5LR231 36 CS EMF 34.2 22.8 10 10.7 Y - - - Chert (CCS) F 

5LR231 35 CS SC 26.8 23.8 7 3.6 N - - - Chert (CCS) C 

5LR231 38 CS PP 20.5 16.1 3.8 1.1 Y - - Unassigned Chert (CCS) FP 

5LR232 51 CS BF 37.1 44 14.1 22.4 Y - - - 
Chalcedony 

(CCS) FL 

5LR232 52 CS BF 30.4 35.3 10 12 Y - - - Chert (CCS) FL 

5LR232 53 CS BF 29.1 18.7 5 3.6 N - - - Chert (CCS) FL 

5LR232 54 CS SC 14.1 12.7 4 1 N - - - Chert (CCS) FL 

5LR233 28 CS BF 22.6 27.8 5.9 4.7 N - - - Quartzite FD 

5LR233 29 CS BF 19.2 16.6 3.6 1.6 N - - - Chert (CCS) FP 

5LR233 32 CS CORE 58 50.7 18.2 54.6 N - - - Chert (CCS) C 

5LR233 30 CS EMF 32.9 22.2 8.8 7.9 N - - - Quartzite C 

5LR233 31 CS EMF 27 25.7 9.7 6.9 N - - - Chert (CCS) C 

5LR233 33 GS MET 128.6 77 36 638 N - - - Sandstone FL 

5LR233 27 CS PRE 24.6 22 7.4 4.7 Y - - - Quartzite FP 

5LR233 26 CS PP 20 23.1 3.4 2.1 N 13.8 11.1 Pelican Lake Quartzite FP 

5LR234 81 CS BF 21.2 28 8.6 4.7 N - - - Chert (CCS) FD 

5LR234 82 CS PRE 37.5 22.1 6.2 7.1 N - - - 
Chalcedony 

(CCS) C 

5LR234 83 CS PRE 16.3 16.7 3.3 1.2 N - - - Chert (CCS) FP 

5LR234 80 CS SC 20.5 22 4.8 2.4 N - - - Chert (CCS) FP 

5LR235 345 CS BF 40.7 32.3 6.9 7.7 N - - - Chert (CCS) F 

5LR235 346 CS BF 21.3 6.1 2.3 0.4 N - - - Quartzite FL 

5LR235 347 CS BF 23.6 14.6 3.4 1.1 Y - - - Chert (CCS) FP 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR235 350 CS PP 11.6 7.7 2.2 0.2 N - - Unassigned Chert (CCS) F 

5LR235 348 CS PP 9.5 10.3 2.8 0.2 Y - - 

Unassigned 
Late 

Prehistoric Chert (CCS) FD 

5LR235 349 CS PP 8.9 13.8 3.7 0.4 Y - - 

Unassigned 
Late 

Prehistoric Chert (CCS) FP 

5LR236 45 CS EMF 31.4 18.2 5.8 4.1 N - - - Chert (CCS) C 

5LR236 46 CS EMF 30.3 42.7 9.6 10.4 N - - - Chert (CCS) FD 

5LR236 47 CS EMF 98.5 49.8 14.1 74.4 N - - - Quartzite C 

5LR237 163 CS BF 35.6 36.8 10.4 13.2 N - - - Chert (CCS) FD 

5LR237 164 CS BF 29.9 35.5 6.7 11.4 Y - - - Chert (CCS) FD 

5LR237 165 CS BF 22 22.1 7.3 3.7 Y - - - Chert (CCS) FD 

5LR237 167 CS BF 23 37 6.5 7.4 N - - - Chert (CCS) FM 

5LR237 169 CS BF 13 25 5.8 1.7 N - - - Chert (CCS) FD 

5LR237 170 CS BF 12.8 16.1 3.7 1.2 N - - - Chert (CCS) FM 

5LR237 171 CS BF 20.8 21.9 9.4 6.4 N - - - Chert (CCS) FD 

5LR237 166 CS EMF 16.2 16.2 2.6 1.2 Y - - - Chert (CCS) FD 

5LR237 168 CS SC 30.7 19.7 6.4 5.9 N - - - Chert (CCS) FL 

5LR237 178 CS PP 18.4 10.3 4 1.1 N n/a n/a Mount Albion Chert (CCS) FL 

5LR237 179 CS PP 37.5 21.4 6.8 6.2 N 12.7 13.8 Mount Albion Quartzite C 

5LR237 180 CS PP 46.3 17.1 7.2 6.3 N 11 13.1 Mount Albion Quartzite C 

5LR237 181 CS PP 25.9 17.2 5.2 2.4 N 11.6 12.3 Mount Albion Quartzite C 

5LR237 174 CS PP 17.2 14.2 2.8 1.1 N n/a n/a unassigned Quartzite FM 

5LR237 175 CS PP 15.7 13.1 2.2 0.8 N n/a n/a unassigned Chert (CCS) FM 

5LR237 176 CS PP 8.5 16.6 3.2 0.7 N 12* 16.6 Unassigned Chert (CCS) FP 

5LR237 172 CS PP 8.9 19.5 3.7 0.8 N 13.5* 19.5 Mount Albion Chert (CCS) FP 

5LR237 173 CS PP 15 8.9 4.6 0.8 N n/a n/a 
Unassigned 

Archaic Chert (CCS) F 

5LR237 177 CS PP 17.3 12.2 4.3 0.9 N n/a n/a 
Unassigned 

Archaic Chert (CCS) FL 

5LR238 146 CS BF 17.4 18.6 4.3 1.3 N - - - Chert (CCS) FD 

5LR238 143 CS EMF 28 11.8 8.3 2.3 N - - - Chert (CCS) C 

5LR238 144 CS EMF 15.4 19 6.7 3.2 Y - - - Quartzite FL 

5LR238 145 CS EMF 20.7 19.5 2.9 1.7 N - - - Quartzite FP 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR238 147 CS PP 18.5 13.5 3 0.7 N n/a 13.1 

Unnotched 
Triangular 

Point Quartzite C 

5LR238 148 CS PP 14.7 12.6 3.1 0.7 N 8 12.5 
Plains Side-

notched Quartzite C 

5LR239 2 CS PP 30.5 13 4.5 2.8 N 9.9 9.6 

Possible 
Mountain-
Foothills or 
Unassigned 

Paleoindian/Ar
chaic Chert (CCS) FP 

5LR239 1 CS PP 17.2 13.4 3.7 1.3 N n/a n/a 
Unassigned 

Archaic 
Chalcedony 

(CCS) F 

5LR240 54 CS BF 44.4 37 5.8 16.4 N - - - Chert (CCS) C 

5LR240 57 CS BF 20.8 14.7 3.9 1 Y - - - Chert (CCS) C 

5LR240 55 CS CORE 63.4 44.3 26.6 60.6 N - - - Chert (CCS) C 

5LR240 56 CS EMF 23.5 8 2.8 0.7 N - - - Chert (CCS) C 

5LR240 66 GS MET 39.3 39.8 18.5 58.1 N - - - Sandstone F 

5LR240 63 CS PRE 16.1 17.7 3.1 0.9 N - - - Quartzite FD 

5LR240 65 CS PP 6 8.5 2.8 0.1 N - - Unassigned Quartzite FD 

5LR240 58 CS SC 30.1 26.1 4.8 4.4 N - - - Chert (CCS) C 

5LR240 61 CS PP 26.5 22 5.2 3.8 Y 14.1 15.8 Mount Albion Quartzite FP 

5LR240 62 CS PP 19.8 21.6 4 1.8 Y 13.3* n/a Pelican Lake Chert (CCS) F 

5LR240 59 CS PP 44.5 19.8 5 4.5 N 12.1* n/a 
Unassigned 

Archaic Quartzite F 

5LR240 64 CS PP 17.1 12.7 4.8 1.3 N n/a n/a 
Unassigned 

Archaic Chert (CCS) FL 

5LR240 60 CS PRE 44.9 24.1 6.2 8.1 Y n/a n/a 

Unassigned 
Late 

Paleoindian Chert (CCS) C 

5LR273 435 CS BF 6.3 6.7 3 0.1 N - - - Chert (CCS) FP 

5LR273 436 CS BF 28.4 8.8 4.6 1.1 N - - - Chert (CCS) FL 

5LR273 437 CS BF 13.5 13.8 6 1 N - - - Chert (CCS) FD 

5LR273 441 CS BF 22.8 15.7 5 2.1 Y - - - Chert (CCS) F 

5LR273 444 CS BF 7.6 9 2.4 0.2 N - - - Chert (CCS) FL 

5LR273 445 CS BF 10.8 8.9 4.8 0.7 N - - - Chert (CCS) FD 

5LR273 446 CS BF 7.2 5.5 1.8 <0.1 N - - - Chert (CCS) FL 

5LR273 447 CS BF 45.3 35.4 15.1 30.9 Y - - - Chert (CCS) F 
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Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thicknes

s (mm) 

Weight 

(g) 

Thermall

y Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR273 449 CS BF 20.7 17.9 5.4 2.4 Y - - - Chert (CCS) FL 

5LR273 451 CS BF 32.6 17.1 7.7 5.3 N - - - Chert (CCS) FM 

5LR273 438 CS EMF 49.3 31.6 7 13.6 N - - - Quartzite F 

5LR273 440 CS EMF 27.8 16.4 2.3 1.4 N - - - Chert (CCS) C 

5LR273 448 CS EMF 32 25.5 5.5 4.4 N - - - Quartzite C 

5LR273 450 CS EMF 16.5 15 3.4 0.9 N - - - Chert (CCS) F 

5LR273 452 CS EMF 12.2 16.8 5 0.9 Y - - - Chert (CCS) F 

5LR273 454 CS GR 14.8 8.1 2.1 0.3 N - - - 
Chalcedony 

(CCS) F 

5LR273 439 CS PRE 25.7 19.4 3.8 2.9 N - - - Chert (CCS) FP 

5LR273 453 CS PRE 14.8 17.7 3.5 1 N - - - 
Chalcedony 

(CCS) FP 

5LR273 443 CS PP 11.7 6.4 3 0.1 N n/a n/a 
Hogback 

Corner-notched Chert (CCS) FL 

5LR273 442 CS PP 11.5 12.3 3 0.4 N n/a n/a Unassigned Chert (CCS) FD 

5LR274 31 CS BF 20 14 4.3 1.9 N - - - Quartzite FL 

5LR274 32 CS GR 11.3 9.6 2.5 0.6 N - - - Chert (CCS) F 

5LR274 30 CS SC 39.8 32.2 13.1 14.6 N - - - Chert (CCS) C 

5LR274 33 CS PP 12.6 7.7 2 0.2 N n/a n/a Unassigned 
Chalcedony 

(CCS) FD 

5LR1733 1 CS PP 50.2 24.3 6 10.9 N - - James Allen Quartzite FP 

5LR1834 23 CS BF 27.4 28.2 5 3.2 - - - - Chert (CCS) FD 

5LR1433
5 1 CS PP 22 17.9 5.3 3.4 N n/a 17.9 

Unassigned 
Late 

Paleoindian Quartzite FP 
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TOOLS COLLECTED BY SITE IN 2019 (See also, Appendix C) 

Key: FS#: Assigned sequentially by each individual site; Artifact Class: Chipped stone (CS); Artifact Element: Biface (BF), Scraper (SC), projectile point 

(PP), handstone (MAN), netherstone (MET), edge modified flake (EMF), core (CORE), drill (DR), preform (PRE), uniface (UN), graver (GR); Portion: 

Complete (C), near complete (NC), undetermined fragment (F), distal fragment (FD), proximal fragment (FP), medial fragment (FM), lateral fragment (FL); 

Other: Measurement based on incomplete artifact (*), not applicable (-), not available (n/a) 

Site # FS # 

Artifact 

Class 

Artifact 

Element 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Max 

Thickness 

(mm) 

Weight 

(g) 

Thermally 

Altered 

(Y/N) 

PP: 

Neck 

Width 

(mm) 

PP: 

Base 

Width 

(mm) 

Typological 

Classification 

Lithic 

Material 

Type Portion 

5LR237 / 
5LR153 2019-97 CS PP 13.6 18.5 3.2 1.1 N 10.7* 11.25* Pelican Lake Chert (CCS) FM / FP 

5LR237 / 
5LR153 2019-101 CS PRE 28.5 27.5 10.9 9.7 N - - - Quartzite FP 

5LR237 / 
5LR153 2019-102 CS PRE 40.9 27.8 11.5 15.7 N - - - Quartzite FD 

5LR237 / 
5LR153 2019-99 CS PP 37.5 18.5 5.7 5.1 N 15.1 17.1 Mount Albion Quartzite C 

5LR237 / 
5LR153 2019-100 CS PP 20.3 22.9 6.6 3.8 N 16.2 18.6 Mount Albion Quartzite FP 

5LR237 / 
5LR153 2019-98 CS PRE 21.2 11.7 5.5 1.5 N - - - Chert (CCS) FM 

5LR237 / 
5LR153 2019-1 CS BF 12.6 10.1 5.9 0.8 N - - - Chert (CCS) F 

5LR233 2019-2 CS BF 50 42.2 9.9 29.9 N - - - Chert (CCS) C 

5LR233 2019-1 CS BF 93.8 68.6 21.9 168 N - - - Chert (CCS) C 

5LR233 2019-4 CS BF 46.1 20.7 9.2 9.2 N - - - Chert (CCS) FL 

5LR240 2019-25 CS SC 28.4 21 8.5 4.7 N - - - Chert (CCS) C 

5LR240 2019-29 GS MET 43.7 41 18.9 51.6 Y - - - Sandstone F 

5LR240 2019-28 CS PRE 21.1 21.4 4.9 2.4 N - - - Quartzite FP 

5LR240 2019-30 CS PP 18.7 18.6 5 1.3 N n/a n/a Unassigned Chert (CCS) FD 

5LR240 2019-26 CS BF 15.6 20 3.6 1.3 N - - - Quartzite FD 

5LR240 2019-27 CS PP 11.3 16.4 4.8 1 N 13.1 16.4 Mount Albion 
Chalcedony 

(CCS) FP 

5LR174 2019-1 CS Graver 16.4 22.3 2.4 1.1 N - - - Chert (CCS) FL 

5LR14336 2019-1 CS PP 33.6 33.9 4.7 5.9 N 16.9 23.4 
Pelican 

Lake/Elko Chert (CCS) FP 

5LR14336 2019-2 CS FK 16.7 15.9 3.9 1 N - - - Obsidian C 
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APPENDIX C: MAPPED SURFACE ARTIFACTS BY SITE  
 

UTM coordinates available in Buckner (2019) 

Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR174 5LR174-2019-1 CS BF 16.4 N N CCS Y 

5LR174 5LR174-2019-2 CS FK 17.78 N N CCS N 

5LR174 5LR174-2019-3 CS FK 31.32 N N CCS N 

5LR174 5LR174-2019-4 CS FK 9.56 N N CCS N 

5LR174 5LR174-2019-5 CS FK 25.61 N N CCS N 

5LR174 5LR174-2019-6 CS FK 20.87 N N CCS N 

5LR174 5LR174-2019-7 CS FK 47.82 N N CCS N 

5LR229 5LR229-2019-1 CS FK 19.92 Y N CCS N 

5LR229 5LR229-2019-2 CS FK 18.26 N N Quartzite  N 

5LR229 5LR229-2019-3 CS FK 14.18 N N Quartzite  N 

5LR229 5LR229-2019-4 CS FK 24.43 N N CCS N 

5LR229 5LR229-2019-5 CS FK 22.96 N N CCS N 

5LR233 5LR233-2019-1 CS BF 93.8 N N CCS Y 

5LR233 5LR233-2019-2 CS BF 50 N N CCS Y 

5LR233 5LR233-2019-3 CS EMF 25.93 N N CCS N 

5LR233 5LR233-2019-4 CS BF 46.1 N N CCS Y 

5LR233 5LR233-2019-5 CS FK 42.44 N N CCS N 

5LR233 5LR233-2019-6 CS FK 14.61 N N CCS N 

5LR233 5LR233-2019-7 CS FK 8.95 N N CCS N 

5LR233 5LR233-2019-8 CS FK 15.05 N N CCS N 

5LR233 5LR233-2019-9 CS FK 23.14 N N Quartzite N 

5LR233 5LR233-2019-10 CS FK 44.72 N N CCS N 

5LR233 5LR233-2019-11 CS FK 16.7 N N CCS N 

5LR233 5LR233-2019-12 CS FK 17.69 N N CCS N 

5LR233 5LR233-2019-13 CS FK 24.94 N N CCS N 

5LR233 5LR233-2019-14 CS FK 13.88 N N CCS N 

5LR233 5LR233-2019-15 CS FK 12.01 N N CCS N 

5LR233 5LR233-2019-16 CS FK 22.68 N N CCS N 

5LR233 5LR233-2019-17 CS FK 8.33 N N CCS N 

5LR233 5LR233-2019-18 CS FK 15.72 N N CCS N 

5LR233 5LR233-2019-19 CS FK 13.44 N N CCS N 

5LR233 5LR233-2019-20 CS FK 26.44 N N CCS N 

5LR233 5LR233-2019-21 CS FK 21.94 N N Quartzite N 

5LR233 5LR233-2019-22 CS FK 35.15 Y N CCS N 

5LR233 5LR233-2019-23 CS FK 14.64 N N CCS N 

5LR233 5LR233-2019-24 CS FK 18.18 N N CCS N 

5LR233 5LR233-2019-25 CS FK 12.43 N N CCS N 

5LR233 5LR233-2019-26 CS FK 16.67 N N CCS N 

5LR233 5LR233-2019-27 CS FK 14.63 N N CCS N 

5LR233 5LR233-2019-28 CS FK 15.98 N N CCS N 

5LR233 5LR233-2019-29 CS FK 14.98 N Y CCS N 

5LR233 5LR233-2019-30 CS FK 17.48 N N CCS N 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR233 5LR233-2019-31 CS FK 45.86 N N Quartzite N 

5LR233 5LR233-2019-32 CS FK 17.33 N N CCS N 

5LR233 5LR233-2019-33 CS FK 14.64 N N CCS N 

5LR233 5LR233-2019-34 CS FK 26.89 N N CCS N 

5LR233 5LR233-2019-35 CS FK 24.05 N N CCS N 

5LR233 5LR233-2019-36 CS FK 23.81 N N CCS N 

5LR233 5LR233-2019-37 CS FK 8.72 N N CCS N 

5LR233 5LR233-2019-38 CS FK 12.93 N N CCS N 

5LR233 5LR233-2019-39 CS FK 21.8 N N CCS N 

5LR233 5LR233-2019-40 CS FK 16.28 N N CCS N 

5LR233 5LR233-2019-41 CS FK 21.84 Y N CCS N 

5LR233 5LR233-2019-42 CS FK 20.32 N N CCS N 

5LR233 5LR233-2019-43 CS FK 20.6 N N CCS N 

5LR233 5LR233-2019-44 CS FK 23.28 N N CCS N 

5LR233 5LR233-2019-45 CS FK 17.97 N N CCS N 

5LR233 5LR233-2019-46 CS FK 15.24 N N CCS N 

5LR233 5LR233-2019-47 CS FK 23.89 N N CCS N 

5LR233 5LR233-2019-48 CS FK 20.14 N N CCS N 

5LR233 5LR233-2019-49 CS FK 28.44 N N CCS N 

5LR233 5LR233-2019-50 CS FK 18.47 N N CCS N 

5LR233 5LR233-2019-51 CS FK 15.02 N N CCS N 

5LR233 5LR233-2019-52 CS FK 16.49 N N CCS N 

5LR233 5LR233-2019-53 CS FK 29.86 N N CCS N 

5LR233 5LR233-2019-54 CS FK 12.8 N N CCS N 

5LR233 5LR233-2019-55 CS FK 15.84 N N CCS N 

5LR233 5LR233-2019-56 CS FK 15.53 N N CCS N 

5LR233 5LR233-2019-57 CS FK 20.34 N N CCS N 

5LR233 5LR233-2019-58 CS FK 28.97 N N CCS N 

5LR233 5LR233-2019-59 CS FK 21.47 N N CCS N 

5LR233 5LR233-2019-60 CS FK 23.47 N N CCS N 

5LR233 5LR233-2019-61 CS FK 31.53 N N Quartzite N 

5LR233 5LR233-2019-62 CS FK 13.83 N N Quartzite N 

5LR233 5LR233-2019-63 CS FK 17.71 N N Quartzite N 

5LR233 5LR233-2019-64 CS FK 19.73 N N Quartzite N 

5LR233 5LR233-2019-65 CS FK 6.89 N N Quartzite N 

5LR233 5LR233-2019-66 CS FK 29.41 N N Quartzite N 

5LR233 5LR233-2019-67 CS FK 18.33 N N CCS N 

5LR233 5LR233-2019-68 CS FK 19.89 N N CCS N 

5LR233 5LR233-2019-69 CS FK 9.86 N N CCS N 

5LR233 5LR233-2019-70 CS FK 9.5 N N Quartzite N 

5LR233 5LR233-2019-71 CS FK 13.59 N N CCS N 

5LR233 5LR233-2019-72 CS FK 27.12 N N CCS N 

5LR233 5LR233-2019-73 CS FK 14.98 N N CCS N 

5LR233 5LR233-2019-74 CS FK 21.02 N N Quartzite N 

5LR233 5LR233-2019-75 CS FK 28.83 N N CCS N 

5LR233 5LR233-2019-76 CS FK 23.89 N N CCS N 

5LR233 5LR233-2019-77 CS FK 30.73 N N CCS N 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR233 5LR233-2019-78 CS FK 25.9 N N CCS N 

5LR233 5LR233-2019-79 CS FK 14.68 N N CCS N 

5LR233 5LR233-2019-80 CS FK 12.81 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-1 CS BF 12.6 N N CCS Y 

5LR153/5LR237 
5LR237/5LR153-
2019-2 CS FK 7.1 N N Quartzite N 

5LR153/5LR237 
5LR237/5LR153-
2019-3 CS FK 20.38 Y N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-4 CS FK 42.31 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-5 CS FK 18.28 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-6 CS FK 17.82 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-7 CS FK 13.49 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-8 CS ANG 28.67 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-9 CS FK 21.61 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-10 CS FK 12.51 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-11 CS FK 11 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-12 CS ANG 13.41 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-13 CS FK 21.32 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-14 CS FK 8.14 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-15 CS FK 17.38 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-16 CS FK 10.37 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-17 CS FK 14.79 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-18 CS FK 10.85 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-19 CS ANG 18.02 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-20 CS FK 13.86 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-21 CS FK 20.93 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-22 CS FK 21.84 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-23 CS FK 11.91 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-24 CS FK 11.65 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-25 CS FK 7.84 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-26 CS FK 9.5 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-27 CS FK 35.6 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-28 CS FK 14.12 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-29 CS FK 19.33 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-30 CS FK 12.13 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-31 CS FK 7.91 N N CCS N 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR153/5LR237 
5LR237/5LR153-
2019-32 CS FK 21.38 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-33 CS FK 15.13 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-34 CS FK 16.4 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-35 CS FK 12.06 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-36 CS FK 11.32 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-37 CS FK 9 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-38 CS FK 4.92 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-39 CS FK 17.11 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-40 CS FK 5.78 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-41 CS FK 14.61 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-42 CS FK 13.77 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-43 CS FK 9.42 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-44 CS FK 8.56 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-45 CS FK 32.43 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-46 CS FK 13.54 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-47 CS FK 23.88 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-48 CS FK 11.42 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-49 CS FK 19.4 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-50 CS FK 15.45 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-51 CS FK 17.36 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-52 CS FK 9.75 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-53 CS FK 10.55 Y N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-54 CS FK 13.38 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-55 CS FK 7.11 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-56 CS FK 9.97 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-57 CS FK 6.14 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-58 CS FK 6.12 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-59 CS FK 15.24 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-60 CS FK 13.99 Y N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-61 CS FK 15.82 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-62 CS FK 10.32 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-63 CS FK 22.27 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-64 CS FK 21.52 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-65 CS FK 12.36 Y N CCS N 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR153/5LR237 
5LR237/5LR153-
2019-66 CS FK 20.28 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-67 CS FK 20.7 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-68 CS FK 20.51 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-69 CS FK 13.07 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-70 CS FK 14.22 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-71 CS FK 4.07 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-72 CS FK 8.64 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-73 CS FK 8.57 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-74 CS FK 14.11 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-75 CS FK 16.57 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-76 CS FK 18.07 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-77 CS FK 24.29 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-78 CS FK 25.6 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-79 CS FK 25.47 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-80 CS FK 4.26 N N Quartzite N 

5LR153/5LR237 
5LR237/5LR153-
2019-81 CS FK 16.71 Y N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-82 CS FK 21.91 Y N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-83 CS FK 12.5 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-84 CS FK 16.61 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-85 CS FK 13.62 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-86 CS FK 12.68 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-87 CS FK 16.75 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-88 CS FK 11.75 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-89 CS FK 12.06 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-90 CS FK 18.6 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-91 CS FK 12.9 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-92 CS FK 21.57 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-93 CS FK 14.18 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-94 CS FK 23.19 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-95 CS FK 16.89 N Y CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-96 CS FK 21.88 N N CCS N 

5LR153/5LR237 
5LR237/5LR153-
2019-97 CS PP 13.6 N N CCS Y 

5LR153/5LR237 
5LR237/5LR153-
2019-98 CS PRE 21.2 N N CCS Y 

5LR153/5LR237 
5LR237/5LR153-
2019-99 CS PP 37.5 N N Quartzite  Y 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR153/5LR237 
5LR237/5LR153-
2019-100 CS PP 20.3 N N Quartzite  Y 

5LR153/5LR237 
5LR237/5LR153-
2019-101 CS BF 28.5 N N Quartzite Y 

5LR153/5LR237 
5LR237/5LR153-
2019-102 CS BF 40.9 N N Quartzite Y 

5LR153/5LR237 
5LR237/5LR153-
2019-103 CS EMF 28.39 N N CCS N 

5LR240 5LR240-2019-1 CS FK 16.91 N N CCS N 

5LR240 5LR240-2019-2 CS FK 9.16 N N CCS N 

5LR240 5LR240-2019-3 CS FK 16.57 N N Quartzite  N 

5LR240 5LR240-2019-4 CS FK 9.69 N N CCS N 

5LR240 5LR240-2019-5 CS FK 11.15 Y N CCS N 

5LR240 5LR240-2019-6 CS FK 11.54 Y N CCS N 

5LR240 5LR240-2019-7 CS FK 10.7 N N CCS N 

5LR240 5LR240-2019-8 CS FK 18.38 Y N CCS N 

5LR240 5LR240-2019-9 CS FK 26.15 N N CCS N 

5LR240 5LR240-2019-10 CS FK 15.68 Y N CCS N 

5LR240 5LR240-2019-11 CS FK 14.89 N N CCS N 

5LR240 5LR240-2019-12 CS FK 15.98 N N Quartzite N 

5LR240 5LR240-2019-13 CS FK 19.16 N Y CCS N 

5LR240 5LR240-2019-14 CS FK 20.23 N Y CCS N 

5LR240 5LR240-2019-15 CS FK 15.08 Y N CCS N 

5LR240 5LR240-2019-16 CS FK 8.52 N N CCS N 

5LR240 5LR240-2019-17 CS FK 13.79 N N CCS N 

5LR240 5LR240-2019-18 CS FK 20.01 Y N CCS N 

5LR240 5LR240-2019-19 CS FK 17.18 N N CCS N 

5LR240 5LR240-2019-20 CS FK 13.72 N N CCS N 

5LR240 5LR240-2019-21 CS FK 30.04 Y N CCS N 

5LR240 5LR240-2019-22 CS FK 10 N N CCS N 

5LR240 5LR240-2019-23 CS FK 10.29 N N CCS N 

5LR240 5LR240-2019-24 CS FK 14.08 Y N CCS N 

5LR240 5LR240-2019-25 CS SC 28.4 N N CCS Y 

5LR240 5LR240-2019-26 CS BF 15.6 N N Quartzite Y 

5LR240 5LR240-2019-27 CS PP 11.3 N N CCS Y 

5LR240 5LR240-2019-28 CS PRE 21.1 N N Quartzite Y 

5LR240 5LR240-2019-29 CS MET 43.7 N N Sandstone Y 

5LR240 5LR240-2019-30 CS PP 18.7 N N CCS Y 

5LR240 5LR240-2019-31 CS FK 8.31 N N CCS N 

5LR240 5LR240-2019-32 CS FK 10.54 N N CCS N 

5LR240 5LR240-2019-33 CS FK 19.17 Y N CCS N 

5LR240 5LR240-2019-34 CS FK 15.15 N N CCS N 

5LR240 5LR240-2019-35 CS FK 21.6 N N CCS N 

5LR240 5LR240-2019-36 CS FK 24.39 N N CCS N 

5LR240 5LR240-2019-37 CS FK 19.48 N N CCS 
N 

5LR240 5LR240-2019-38 CS FK 27.62 N N CCS N 

5LR240 5LR240-2019-39 CS FK 19.43 Y N CCS N 

5LR240 5LR240-2019-40 CS FK 40.1 N N Quartzite N 

5LR240 5LR240-2019-41 CS FK 17.03 N N Quartzite N 
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Site # FS # Class Element 

Length 

(mm) Cortex  Burning  Material  

 

Collected 

5LR240 5LR240-2019-42 CS FK 20.3 N N CCS N 

5LR240 5LR240-2019-43 CS FK 17.27 N N CCS N 

5LR240 5LR240-2019-44 CS FK 27.53 N N CCS N 

5LR240 5LR240-2019-45 CS FK 36.21 Y N CCS N 

5LR240 5LR240-2019-46 CS FK 19.15 Y N CCS N 

5LR240 5LR240-2019-47 CS FK 16.33 N N CCS N 

5LR240 5LR240-2019-48 CS FK 9.95 N N CCS N 

5LR240 5LR240-2019-49 CS FK 13.42 N N CCS N 

5LR240 5LR240-2019-50 CS FK 17.73 N N CCS N 

5LR240 5LR240-2019-51 CS FK 27.31 N N CCS N 

5LR240 5LR240-2019-52 CS FK 22.75 N N CCS N 

5LR240 5LR240-2019-53 CS FK 30.92 N N CCS N 

5LR240 5LR240-2019-54 CS FK 22.19 N N Quartzite  N 

5LR240 5LR240-2019-55 CS FK 20.62 N N CCS N 

5LR240 5LR240-2019-56 CS FK 30.33 N N CCS N 

5LR240 5LR240-2019-57 CS FK 7.25 N N CCS N 

5LR240 5LR240-2019-58 CS FK 13.58 N N CCS N 

5LR240 5LR240-2019-59 CS FK 16.12 Y N CCS N 

5LR240 5LR240-2019-60 CS FK 16.3 N N CCS N 

5LR240 5LR240-2019-61 CS FK 13.77 N N CCS N 

5LR240 5LR240-2019-62 CS FK 15.03 N N CCS N 

5LR240 5LR240-2019-63 CS FK 12.49 N N CCS N 

5LR240 5LR240-2019-64 CS FK 22.41 Y N CCS N 

5LR240 5LR240-2019-65 CS FK 16.88 Y N CCS N 

5LR240 5LR240-2019-66 CS FK 23.8 Y N CCS N 

5LR240 5LR240-2019-67 CS FK 17.4 N N CCS N 
5LR235/5LR273/5
LR274 

5LR235/273/274-
2019-1 CS FK 11.34 Y N CCS N 

5LR14336 5LR14336-2019-1 CS PP 33.6 N N CCS Y 

5LR14336 5LR14336-2019-2 CS FK 16.7 Y N Obsidian 
Y 
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APPENDIX D: OBSIDIAN SOURCING OF RAWAH WILDERNESS MATERIALS 
 

The following tables detail the results of an obsidian sourcing analysis undertaken for artifacts recovered from the Rawah Wilderness, including 

but not limited to the WBLR study area. These data are provided in this appendix courtesy of Jason LaBelle (See LaBelle 2009 for additional 

information).  

Table A. Descriptive Attributes, Rawah Wilderness Obsidian Data (LaBelle 2009, LaBelle personal communication 2020). All samples were 

collected from Larimer County, Colorado.  

Obsidian 

 Sample 

Number 

Smithsonian 

Site Number 
Site Name 

Catalog 

Number 
Level Age 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Thickness 

(mm) 

Mass 

(gm) 
Cortex Burning Item Portion Comment 

CSU 07-5 5LR164     Surface Unknown 14.8 12.9 3.4 0.6 no no 

Edge 

modified 

flake 

from a 

flake mid-

section 

  

CSU 07-6 5LR164     Surface Unknown 13.5 10.0 4.2 0.5 yes no 
angular 

debris 
complete   

CSU 07-15 5LR174     Surface Unknown 21.2 20.4 9.3 3.9 yes no core complete 

small 

pebble 

core, at 

least 6 

removals, 

could 

have been 

done at 

same 

time, 

when 

smashed 

CSU 07-16 5LR174     Surface Unknown 24.1 12.1 4.8 1.3 no no flake complete 

very 

opaque, 

crystal 

structure 
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Obsidian 

 Sample 

Number 

Smithsonian 

Site Number 
Site Name 

Catalog 

Number 
Level Age 

Max 

Length 

(mm) 

Max 

Width 

(mm) 

Thickness 

(mm) 

Mass 

(gm) 
Cortex Burning Item Portion Comment 

CSU 07-17 5LR174     Surface Unknown 9.3 13.4 1.8 0.2 no no flake proximal   

CSU 07-7 5LR221 
Montgomery 

Pass 
  Surface Unknown 18.8 15.5 5.2 0.9 yes no flake complete 

cortex on 

platform; 

examine 

for edge 

use later 

CSU 07-8 5LR221 
Montgomery 

Pass 
221 W Surface Unknown 10.1 10.3 4.6 0.4 yes no 

angular 

debris 
complete   

CSU 07-9 5LR221 
Montgomery 

Pass 
  Surface Unknown 17.6 10.3 4.5 0.7 yes no flake complete   

CSU 07-4 5LR225     Surface Unknown 11.5 14.3 3.3 0.5 yes no flake complete 

Decortifac

-tion flake 

off pebble 

CSU 07-1 5LR244     Surface Unknown 13.8 14.3 3.3 0.5 yes no flake complete 

cortex on 

platform 

only 

CSU 07-2 5LR244     Surface Unknown 10.1 10.1 3.3 0.2 yes no flake midsection   
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Table B. Trace Element Composition and Source Location, Rawah Wilderness Obsidian Data (LaBelle 2009, LaBelle personal communication 

2020) 

Obsidian 

Sample 

Number 

Smithsonian 

Site 

Number 

Ti Mn Fe Rb Sr Y Zr Nb Ba Source State 

CSU  

07-5 
5LR164 995 233 8093 120 74 32 98 16   Malad, ID ID 

CSU  

07-6 
5LR164 1228 233 12172 177 39 64 258 31   Reas Pass, ID ID 

CSU  

07-15 
5LR174 869 815 7746 842 10 98 120 112   

unknown, 

high Rb 
UNK 

CSU  

07-16 
5LR174 1166 346 11953 202 24 60 234 50   

Fish/Partridge 

Cr, ID 
ID 

CSU  

07-17 
5LR174 1046 251 8230 127 79 20 91 11   Malad, ID ID 

CSU  

07-7 
5LR221 705 701 7193 815 11 87 120 123   

unknown, 

high Rb 
UNK 

CSU 

 07-8 
5LR221 777 733 7117 804 11 91 123 111   

unknown, 

high Rb 
UNK 
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Obsidian 

Sample 

Number 

Smithsonian 

Site 

Number 

Ti Mn Fe Rb Sr Y Zr Nb Ba Source State 

CSU  

07-9 
5LR221 797 785 7661 825 10 91 116 116   

unknown, 

high Rb 
UNK 

CSU  

07-4 
5LR225 1032 698 7375 782 13 94 107 112   

unknown, 

high Rb 
UNK 

CSU  

07-1 
5LR244 739 661 6373 741 9 86 98 108   

unknown, 

high Rb 
UNK 

CSU 

 07-2 
5LR244 816 749 7308 839 14 91 118 119   

unknown, 

high Rb 
UNK 

 


