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ABSTRACT

SENSING, COMMUNICATIONS AND MONITORING FOR THE SMART GRID

With the increasing concern for environmental factors, reliability, and quality of

service, power grids in many countries are undergoing revolution towards a more dis-

tributed and flexible “smart grid.” In the development of the envisioned smart grid,

situational awareness takes a fundamental role for a number of crucial advanced op-

erations, such as power flow scheduling, dynamic pricing, energy management, wide

area control, wide area protection etc. To fulfill the mission of situational aware-

ness across various entities in the grid, more advanced sensing, communications and

monitoring techniques need to be introduced to the existing power grid.

In this research, we will first address the issue of battery power efficiency (BPE)

in a wireless sensor network (WSN) which is essential for the sensing system lifetime.

We show that the BPE can be improved either by selecting a more battery-power-

efficient modulation format or by developing a cooperative communications scheme.

Then, to transmit the sensed data over the scarse wireless bandwidth, we adopt

cognitive radio as a possible solution. To enable the cognitive radio communication,

we aim at improving both the reliability and efficiency of the overall system via

cooperative spectrum sensing. With these fundamental communication capabilities

available for the sensed data, we then investigate wide area power grid monitoring

based on synchronized measurements from newly developed devices such as phasor

measurement units (PMUs), mode meters and so on. In addition, an optimal fusion
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technique is studied as a good foundation for detection in wireless sensor networks,

with application to event detection in the power grid.
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CHAPTER 1

INTRODUCTION

1.1 Smart Grid and Situational Awareness

With the increasing concern for environmental factors, reliability, and quality of

service, power grids in many countries are undergoing revolution towards a more eco-

nomic, stable, distributed and flexible “smart grid.” [26] The traditional power system

can usually be divided hierarchically into power generation plants, high-voltage trans-

mission network, medium-voltage distribution network and low-voltage customers.

The smart grid revolution penetrates all four regimes.

For power generation plants, as the climate is of increasing concern, renewable

energy sources are preferable. However, this means increased variety and complex-

ity for the entire generation system. For example, some renewable sources, such as

wind power and photovoltaic panels, are innately unstable [3]. In addition, incor-

porating these various kinds of renewable sources renders the generation much more

distributed geographically. The distributed generation structure also unavoidably in-

creases the complexity of the transmission network. Moreover, power deregulation

results in different transmission networks operated by different entities and adds fur-

ther complexity. For the distribution network, even more flexibility is desired with

the increasing popularity of an advanced metering infrastructure (AMI) to ensure

optimized energy utilization by the customers. On the other hand, the vision to uti-
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lize energy storage devices at the customer’s side, such as the hybrid electric vehicle

(HEV), demands a bi-directional power flow strategy rather than the current uni-

directional one. All these ongoing and future smart grid developments make this area

an interdisciplinary field of research.

In the development of the envisioned smart grid, situational awareness takes a

fundamental role for a number of crucial advanced operations, such as power flow

scheduling, dynamic pricing, energy management, wide area control, wide area pro-

tection, etc [35]. To fulfill the mission of situational awareness across various entities

in the grid, more advanced sensing, communications and monitoring techniques need

to be introduced to the existing power grid [23]. A system diagram for obtaining

situational awareness for the smart grid is shown in Fig. 1.1.

As illustrated in the figure, sensing is the very first step in obtaining data such

as voltage/current instantaneous phasor values, power flow measurements, real-time

advanced metering of electric usage, and so on. However, the data will only be

meaningful when combined with efficient collection and processing. Therefore, com-

munication of the sensed data is crucial. The quality of service (QoS) indicators for

communication within the smart grid measurement system include data rate, delay

and so on [66]. When the data is collected in a reliable and timely manner, the power

system can be monitored for more advanced operations such as control, protection,

pricing and flow scheduling.

Among various possible communication techniques, wireless communications is a

promising candidate to fulfill lots of communication tasks in the smart grid due to its
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easy implementation and low cost [37]. However, two issues are to be addressed in the

application of wireless communications. First, if the sensor nodes, a.k.a. measurement

devices, are organized via wireless links into a wireless sensor network (WSN), the

energy efficiency is a very important issue since the sensor nodes are usually driven

by batteries, which can cause significant environmental hazard. As a result, green

communications, a concept of energy-efficient communications, has recently emerged

as a hot research area. The second issue is the wireless spectrum. Although many

unlicensed techniques such as Wi-Fi, Bluetooth and Zigbees can be directly applied

in the smart grid with low cost, more spectrum resources are still required to provide

high QoS. With the current exhaustive allocation of the wireless spectrum, assigning

dedicated bandwidth for smart grid wireless communications is both unrealistic and

costly. Fortunately, most communications within the smart grid in the transmission

network are to be deployed mostly in rural areas where plenty of bandwidth is idle.

In other words, there is plenty of “spectrum white space” to be exploited. Therefore,

the cognitive radio technique can be adopted in such applications to reutilize these

spectrum white spaces.

To address these issues in this research, we will first study green communication

schemes in WSNs. We show that the battery energy efficiency can be improved either

by selecting a more battery-efficient modulation format or by utilizing possible coop-

erative communication links. Then, to enable cognitive radio functionality for smart

grid communications, we aim at improving both the overall system reliability and

efficiency via cooperative spectrum sensing. With these fundamental communication

3



capabilities available for the sensed data, we then investigate wide area power grid

monitoring based on synchronized measurements from a newly developed devices such

as phasor measurement units (PMUs). In addition, a better sensor fusion technique

is developed for potential applications in the smart grid.

Power GridPower Grid

PMU measurementsPMU measurements
Tradiittional

Measurements

Traditional

Measurements
...

Power Grid MonitoringPower Grid Monitoring

Global Positioning

System (GPS)

Synchronization

Global Positioning

System (GPS)

Synchronization

Communications

Advanced MeteringAdvanced Metering Other MeasurementsOther Measurements

Higher Layer Applications: Control, Protection, Pricing,

Power Flow Scheduling, etc.

Higher Layer Applications: Control, Protection, Pricing,

Power Flow Scheduling, etc.

Communications

Sensing

Figure 1.1: System description for gaining situational awareness for the smart grid

1.2 Dissertation Organization

The organization of this dissertation is as follows. We will first discuss green com-

munications for smart grid in Chapter 2. Then, to solve the problem of spectrum

scarcity, we will introduce cooperative spectrum sensing techniques in Chapter 4 from

a diversity optimization perspective. With these two aspects of wireless communi-

cation techniques discussed, we will then study the monitoring of the power grid by

state estimation (SE) from the synchrophasor measurement data with possible bad

data occurrences in Chapter 5. Then, a general optimal sensor fusion technique is

developed in Chapter 6. A summary and discussion of future work will be presented

in Chapter 7.
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CHAPTER 2

GREEN WIRELESS COMMUNICATIONS FOR THE SMART GRID:

OPTIMIZING THE BATTERY EFFICIENCY

2.1 Motivation

To ensure better situational awareness, sensors are being widely installed in the

smart grid for better power grid monitoring [20]. However, while the trend of the

smart grid is to turn green, the wireless communications among the installed sen-

sors can cause even more environmental damages since the sensor nodes are typically

driven by nonrenewable batteries [2]. Battery energy-efficient communication tech-

niques are desired to make wireless communications green. There are quite a few

studies of battery efficiency for wireless communications in sensor networks (see e.g.

[11, 29]). However, the analyses in most existing literature adopt an ideal model with-

out taking into account the extra power consumption due to circuit operations and

battery nonlinearities. In recent years, there has been an increasing trend of incorpo-

rating special battery characteristics into network protocol design and optimization

(see e.g. [57, 45, 13, 68]) with the introduction of a more realistic sensor node model.

To optimize battery energy efficiency, we first select a more battery-efficient modula-

tion scheme for WSNs and then, for further optimization, we introduce the problem

of selecting between single-hop direct-link communication and multi-hop cooperative

communication utilizing intermediate relaying nodes.
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To select a more energy-conserving modulation, the comparisons between energy

efficiencies of modulation schemes have been well studied (see e.g. [44]). However,

these comparisons do not take into account the circuit operations of the modulation

schemes and the extra battery energy loss due to battery nonlinearities. To illus-

trate the effects of these two factors, we present a case study of the battery energy

consumption of two modulation schemes, namely frequency shift keying (FSK) mod-

ulation and pulse-position modulation (PPM), which are considered to have identical

energy efficiency. Results show that due to the differences of their circuit operation

time and pulse energy distribution, these two modulation schemes consume different

average battery energy, and the selection criterion depends on internode distances in

the network.

To further improve the network battery energy efficiency, it is well known that

when relaying is utilized to split the direct transmission from the source to the desti-

nation into two or more hops, the total battery energy consumption is expected to be

greatly reduced, since the transceiver distances are smaller than those of the direct

link and the path loss is thus significantly reduced [28]. However, when circuit energy

consumptions are considered, it is shown that relaying does not always save energy

(see e.g. [53, 52]). This gives rise to an intriguing relay selection problem. However,

considerations of this problem in [53] and [52] use very limiting assumptions such as

linear relay node placement, identical and fixed transmission energy at the source, re-

lay nodes without energy allocation optimization, and an ideal linear battery model.

Here, we adopt a more general setup by assuming arbitrary relay node placement with

6



a more realistic nonlinear battery model. With this problem formulation, closed-form

expressions are derived for relay selection to maximize battery efficiency. Results

show that the relay selection criterion depends on both the transmission distance and

the relative position of the relay node with respect to the primary nodes. In addition,

numerical results are presented to show the battery power efficiency improvement at

different candidate relay locations and for various scenarios.

This chapter is organized as follows: the system model together with the average

battery energy consumption analysis for a single pulse transmission are presented in

Section 6.2. With this analysis, the battery energy consumption comparison of M-

FSK and M-PPM is presented in Section 2.3 and the relay selection problem is solved

in Section 2.4. Finally, summarizing remarks are given in Section 2.5.

2.2 System Battery Energy Consumption Model

2.2.1 Node Circuit Operation and Battery Nonlinearity

To capture the actual battery energy consumption at sensor nodes, circuit power

consumptions are taken into account with Pct and Pcr denoting transmitter and re-

ceiver circuit power consumption, respectively. Also, the inefficiency of the DC/DC

convertor in the node circuit is denoted by a factor η < 1 and the imperfections of a

power amplifier (PA) are described by an extra power loss factor α > 0.

Moreover, the real battery discharge process is nonlinear. As introduced in [57],

the nonlinear behavior of the battery discharge process can be captured by P0 =

∫ Imax

Imin

V i
1−ωi

f(i)di, where P0 is the average power consumption of the battery over a
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battery discharge process, V is the battery voltage, f(i) is the density function of

the battery discharge current profile during the time period of interest [tmin, tmax],

1 − ωi with 0 < ω ≪ 1 is the battery efficiency factor [38] and Imax and Imin are

respectively the maximum and minimum affordable discharge currents. To facilitate

the ensuing analysis, we define the instantaneous power consumption at time t as

P0(t) = V i(t)/(1 − ωi(t). Then, the average power consumption of the battery over

the discharge interval [tmin, tmax] can be alternatively expressed as:

P0 =

∫ tmax

tmin

P0(t)dt =

∫ tmax

tmin

V i(t)

1− ωi(t)
dt . (2.1)

2.2.2 Channel Model

The channel considered here is a path-loss Rayleigh fading channel with addi-

tive white Gaussian noise (AWGN). The channel gain factor G(d) depends on the

transceiver distance d and is given by [48, Chapter 4]: G(d) = Ps/Pr = MlG1d
K ,

where Ps and Pr are the transmitted and received power of the signal, and the re-

maining parameters are defined in Table 2.1. Accordingly, the relationship between

the average energy at the transmitter E and the average energy at the receiver Er is:

E/Er = Ps/Pr = G(d) = MlG1d
K . (2.2)

2.2.3 The Average Battery Energy Consumption

As a preliminary, we will first analyze the battery energy consumption for a single

transmitted pulse.
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Table 2.1: Notations

Ml channel link margin

G1 gain factor at d = 1

K path-loss exponent

µ(i) battery efficiency factor µ(i) = 1− ωi

η transfer efficiency of the DC/DC converter

α extra power loss factor of the PA

p(t) transmitted pulse

γp
∫ Tp

0

(

p(t)
∫ Tp
0

|p(t)|dt

)2

dt

Ep pulse energy

E0 average battery energy consumption

Pct transmitter circuit power

Pcr receiver circuit power

C.1: Transmitter Battery Energy Consumption

With our realistic circuit and battery model, the actual battery energy consump-

tion for transmitting a single pulse can be obtained as the following theorem:

Thoerem 2.1 The total battery energy consumption for transmitting a single pulse

p(t) with duration Tp and energy Ep is approximately:

E0t =
ωγp(1 + α)2

V η2
E2
p +

1 + α

η
Ep +

Pct

η
Tp , (2.3)

with parameters defined in Table 2.1.

Proof. See Section 2.6

In (2.3), the η and α terms reflect the influence of the inefficiency of the DC/DC

converter and the extra PA power loss, respectively. The result in Theorem 2.1 shows

that the total battery energy consumption can be decomposed into three parts:
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1. The first term in (2.3) refers to the excess power loss due to the nonlinear bat-

tery discharge process. This term is proportional to the square of the energy

of the transmitted signal. In addition, this term is only affected by the pulse

shape through a scaling factor γp. Notice that, though γp can be interpreted as

the “energy” of p0(t), it is not the actual energy consumption of a DC battery

with a constant voltage V . Instead, this scaling factor γp is the result of normal-

ization of the un-amplified pulse waveform p0(t) in order to ensure a constant

pure (without any circuit energy consumption) and ideal (without any battery

nonlinearity) battery energy consumption independent of the actual shape the

pulse takes. Finally, this term also depends on the battery parameter ω, which

captures the nonlinear feature of the battery;

2. The second term in (2.3) refers to the energy carried by the transmitted signal.

it would be exactly the energy of the transmitted pulse if there were not effects

of the DC/DC converter (via η) and the PA (via α);

3. The third term in (2.3) refers to the circuit energy consumption. It depends on

the power of the circuit and the pulse duration Tp.

C.2: Receiver Battery Energy Consumption

At the receiving node, there is no PA but a low noise amplifier (LNA) with nearly

constant power consumption. Thus, the current Ir = Pcr/(ηV ) where Pcr is the circuit

power consumption at the receiver. In general, Ir is very small, so µ(Ir) = 1− ωIr ≈

µmax = 1 [57]. The circuit of the receiver needs to be turned on for the demodulation
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duration Td. Hence, the total battery energy consumption of the receiving node is

E0r =
Pcr

η
Td . (2.4)

Then, the total battery energy consumption can be obtained as the summation of

the transmitter and receiver battery energy consumptions.

2.2.4 Performance Criterion

In the analysis of battery energy consumption, average bit-error-rate (BER) is

adopted as the performance metric. Thus, in all the comparisons, the average battery

energy consumptions to achieve the same target BER performance (P̄e) are compared

for both the modulation selection and the communication link selection problems.

2.3 Modulation Selection: A Case Study

In this section, we will establish a framework for choosing the more battery en-

ergy efficient modulation in wireless sensor networks, and will present a case study of

modulation selection between PPM and FSK to show the effects of circuit power con-

sumption and battery nonlinearities on the battery energy consumption, and obtain

the selection criterion expressed as a closed-form function of the internode distance.

With △f = 1/Ts, M-FSK and M-PPM have identical bandwidth occupancy and

bandwidth efficiency as shown in [57]. However, when the realistic system model is

considered, these two schemes are found to have different battery energy consumption

performances.
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For M-FSK, the signal pulse transmitted for symbol m ∈ {0, 1, . . . ,M − 1} is

pFm(t) = sin(2π(fc + (2m− 1)△f)t), t ∈ [0, Ts], where fc is the carrier frequency and

△f is the frequency spacing.

For M-PPM, all possible signals utilize the same pulse shaper and the information

is conveyed by signal pulse position. To compare with M-FSK, pass-band M-PPM

is considered. Then, the basic pulse is pP (t) = sin 2πfct with t ∈ [0, Ts/M ], where

fc is the carrier frequency. Correspondingly, the pulse transmitted for symbol m is

pPm(t) = pP
(

t−mTs

M

)

, mTs

M
< t ≤ (m+1)Ts

M
.

To calculate the average battery energy consumptions for these two modulation

schemes, the pulse shape factors γF
p and γP

p need to be obtained in the first place. Ac-

cording to Theorem 2.1 and Table 2.1, for M-FSK: γF
p,m =

∫ Ts
0

[sin(2π(fc+(2m−1)△f)t)]2dt

[
∫ Ts
0

|sin[2π(fc+(2m−1)△f)t]|dt]
2 =

Ts

2
/
(

Ts

2π

)2
= 2π2

Ts
. Similarly, for M-PPM, γP

p,m = 2π2

Ts/M
= M 2π2

Ts
= MγF

p,m.

M-FSK and M-PPM have the same required energy at the receiver, i.e., EF
pr =

EP
pr = Esr, where Esr is the required average symbol energy to obtain the target BER

performance P̄e. In Rayleigh fading channels, this value can be obtained from the

formula given in [57]. Then, according to our path-loss channel model describe in

(2.2), the transmitted pulse energies are EF
p = EP

p = MlG1EsrdK . At the receiver

demodulator, the circuit works the same amount of time to detect received signals.

Thus, the receiver circuit energy consumption for both M-FSK and M-PPM is PcrTs.

Substituting all these parameters into (2.3) and (2.4), the difference between the
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average battery energy consumptions of M-FSK and M-PPM is obtained as:

∆EFP
0 =(1−M)

2π2M2
l G

2
1ω(1+α)2

TsV η2 log2M
E2
srd

2K+
M−1

M2

PctTs

ηlog2M

= k2d
2K + k0 ,

(2.5)

where k2 = (1−M)
2π2M2

l
G2

1
ω(1+α)2

TsV η2 log2 M
E2
sr < 0 and k0 =

M−1
M2

PctTs

η log2 M
> 0. Thus,

Proposition 2.1 There is a critical distance dc =
(

−k0
k2

)
1

2K

such that when the

internode transmission distance d < dc, M-PPM consumes less battery energy than

M-FSK and vice versa.

The critical distance, and the advantageous operation region for both FSK and

PPM, is plotted in Fig. 2.1 with system parameters given in Table 2.2.
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Figure 2.1: Comparison results of M-FSK and M-PPM under Rayleigh fading channel
as a function of modulation size M and BER requirement. Below the surface: PPM-
advantageous region; above the surface: FSK-advantageous region.

The comparison between M-PPM and M-FSK presented in this section shows that

the slight nonlinearity of the battery is actually not negligible. If no battery nonlin-
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Table 2.2: System Parameters

ω = 0.05 Tp = 1.33× 10−4s α = 0.33 µmin = 0.5
K = 3 N0/2 = −171dBm/Hz G1 = 27dB Ml = 40dB

V = 3.7V Pcr = 52.5mW Pct = 105.8mW η = 0.8

earity were considered, then we would expect that M-PPM is always preferred since

it costs less transmitter circuit power consumption. However, the comparison result

shows that M-FSK is preferred when internode transmission distance is sufficiently

large since M-FSK has a lower pulse amplitude and thus higher battery discharge

efficiency.

2.4 Communication Link Selection: To Relay or Not To Relay?

2.4.1 Single Relay Node Cooperation

In this work, we only consider the case that a single relay node is utilized to assist

communication. The primary communication nodes are the source node S1 and the

destination node S2. Then a relay node R exists as shown in Fig. 2.2. The relay

node R can lie anywhere in the two-dimensional space. There are two candidate links

for the end-to-end communication from S1 to S2, namely the single-hop direct link

S1–S2 and the two-hop relay link S1–R–S2. We denote the distance of S1–S2 as d, the

distance of S1–R as d1 = θ1d, and R–S2 as d2 = θ2d. Straightforwardly, θ1 and θ2

satisfy conditions θ1, θ2 > 0 and θ1 + θ2 ≥ 1. The linear relay node placement is a

special case with θ1 + θ2 = 1.

Without loss of generality, we adopt a simpler modulation scheme, namely base-

band binary phase-shift keying (BPSK) for analysis simplicity. Under the Rayleigh
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fading channel with coherent detection at the receiver, the average BER at high

signal-to-noise ratio (SNR) is approximated as [59, Chapter 3]:

Pe =
N0

4Er
, (2.6)

where Er is the signal energy at the receiver. In addition, for the relaying link, a

Decode and Forward (DF) relaying protocol is considered first. It is shown later that

DF and Amplify and Forward (AF) protocols are identical at high SNR.

S1

R

S2

d, P̄
e

d1
=

θ1
d, P1

d
2 =

θ
2d, P

2

Figure 2.2: Communication with possible single relay node assistance.

2.4.2 Total Battery Energy Consumption for Direct Transmission

Considering baseband BPSK modulation over the Rayleigh fading channel, γB
p =

1
Tp

according to Table 2.1. Substituting (2.6) into (2.3) and (2.4), the total battery

energy consumption of the direct transmission S1–S2, denoted as ED, can be expressed

as an explicit function of the direct-link transmission distance d and the target BER

P̄e:

ED = l2
d2K

P̄ 2
e

+ l1
dK

P̄e

+ l0 , (2.7)
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where l2 =
M2

l
G2

1
ω(1+α)2N2

0

16TpV η2
, l1 =

MlG1(1+α)N0

4η
, and l0 = (Pct+Pcr)Tp

η
. Notice that ED can

be regarded either as a quadratic function of P̄−1
e for a given S1-S2 distance d, or as

a quadratic function of dK with some desired P̄e.

2.4.3 Total Battery Energy Consumption for Relaying Transmission

When the relay link is deployed using the DF protocol, the relay node R first

demodulates the signal from the source and then forwards the remodulated signal to

the destination. Therefore, the relay link S1–R–S2 can essentially be separated into

two decoupled links S1–RD and RF–S2, each having received pulse energy Epr,i and

transmission distance di = θid, for i = 1, 2. As a result, the total battery energy

consumption for the S1–R–S2 link can be simply expressed as the summation of the

energy consumption of the two decoupled links.

Due to the inverse relationship between the received pulse energy and the average

BER given in (2.6), the energy distribution among the source node and the relay node

is exclusively determined by the average BER of the two decoupled links, denoted

by P1 and P2 respectively. The overall average BER for the relay link can be tightly

upper bounded using P1 and P2 as P̄e ≤ 1 − (1 − P1)(1 − P2) = P1 + P2 − P1P2. In

practice, the desired BER is usually small (P̄e ≤ 10−3), which means P1+P2 ≫ P1P2

and therefore P̄e ≈ P1 + P2. The latter will be considered as the error performance

constraint for the relaying transmission in the sequel, and the total battery energy

16



consumption can be rewritten in terms of P1 as

ER(P1)=l2

(

d2K1
P 2
1

+
d2K2

(P̄e − P1)2

)

+l1

(

dK1
P1

+
dK2

P̄e − P1

)

+2l0 , (2.8)

with constraint 0 < P1 < P̄e. Obviously, in this expression it is seen that with

relaying, an extra l0 battery energy consumption term is introduced which is caused

by the extra circuit energy consumption of the relay node.

Now the energy optimization problem is introduced: given the relay location d,

the relative position of the relay node with respect to the primary nodes, and the

BER fixed at P̄e, an optimal energy allocation strategy should be adopted to obtain

the S1–R link BER performance P1 to minimize the total battery energy consumption

ER(P1); that is,

ER = min
P1

ER(P1), subject to 0 < P1 < P̄e , (2.9)

where ER(P1) is given by (2.8).

It turns out that the first-order term in the total battery energy consumption

ER(P1) formula for the relay link in (2.8) dominates the total energy consumption

within the BER range of 0 < P1 < P̄e. Therefore, second-order terms can be tem-

porarily discarded during the energy allocation optimization process with negligible

effect on the optimality.
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After removal of the second-order term, the first-order total battery energy con-

sumption becomes

E1
R(P1) = L1

(

dK1
P1

+
dK2

P̄e − P1

)

+ 2L0 . (2.10)

To find the P1 for minimization, taking the derivative of E1
R(P1) with respect to P1

and setting it to zero, it is obtained that:

(

dK2 − dK1
)

P 2
1 + 2dK1 P̄eP1 − dK1 P̄

2
e = 0 , (2.11)

which is a quadratic equation in P1. Note that the root of this equation only depends

on the distance ratio d2/d1 = θ2/θ1 and the overall target BER P̄e. It has nothing to do

with the battery consumption formula coefficients L1 and L0. The quadratic equation

has well-established simple root expressions. Within the range of 0 < P1 < P̄e, (2.11)

always has a single positive root, and the suboptimal P1 can be obtained as:

P so
1 =

1

(θ2/θ1)
K
2 + 1

P̄e ,

and P so
2 = P̄e − P so

1 =
(θ2/θ1)

K
2

(θ2/θ1)
K
2 + 1

P̄e .

It is shown in [68] that the total energy consumption with this suboptimal P so
1 ap-

proaches that with the theoretical optimal solution to Eq. (2.9). Substituting P so
1

back into (2.8), the total battery energy consumption ER for the relay link S1–R–S2
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can be obtained as:

ER =
L2

P̄ 2
e

(

θ
K
2

1 + θ
K
2

2

)2
(

θK1 + θK2
)

d2K

+
L1

P̄e

(

θ
K
2

1 + θ
K
2

2

)2

dK + 2L0 . (2.12)

With this result, the next question to be addressed is: in order to achieve higher

battery energy efficiency, under what conditions, should the relay link S1–R–S2 be

chosen rather than the direct link S1–S2.

2.4.4 Relay Selection Criterion

To compare the direct and relaying transmissions in terms of the battery energy

efficiency, the difference of the total battery energy consumptions between the direct

and the optimal relaying transmissions, denoted as ∆EDR, is evaluated. The sign of

the difference will reveal the more efficient one: direct link outperforms the relay link

if the difference is negative, and vice versa. ∆EDR can be readily obtained by taking

the difference of (2.7) and (2.12):

∆EDR(θ1, θ2) = ED − ER

=
L2

P̄ 2
e

(

1−
(

θ
K
2

1 +θ
K
2

2

)2
(

θK1 +θK2
)

)

(

dK
)2

+
L1

P̄e

(

1−
(

θ
K
2

1 +θ
K
2

2

)2
)

dK−L0 , (2.13)

which is a quadratic function of dK . The constant term is negative. This results

from the fact that the relaying transmission consumes more distance-independent
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transceiver circuit energy than the direct transmission. As a result, the relay selection

criterion can be obtained as following:

Proposition 2.2 For a relay node with distances θ1d and θ2d apart from the primary

nodes, choose the direct link if ∆EDR(θ1, θ2) < 0; otherwise, choose the relay link.
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Figure 2.3: The position of the relay node: inside the curve, choose relay-link com-
munication; outside the curve, choose direct-link communication. The solid dots are
the primary nodes. (a) d = 100m. (b) d = 150m. (c) d = 200m.

The numerical results for primary nodes located at (−d/2, 0) and (d/2, 0) using the

system parameters in Table 2.2 are presented in Fig. 2.3. These figures show the relay

and no-relay zones. Also, we can see that the nearer the relay node is to the center

of the primary nodes, the more battery energy can be saved (darker as shown in the
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figure). Thus, within the curve ∆EDR(θ1, θ2) = 0 is the battery-energy saving area.

Comparing Figs. 2.3.(a)-(c), we can see that as the distance between the primary

nodes increases, the battery-energy saving area enlarges. For example, when d =

100m, a relay node cannot reduce the total battery energy consumption; while when

d = 200m, nearly any relay node between the primary nodes can be utilized for better

battery energy efficiency. This is because while the extra circuit consumption caused

by relaying is a distance-unrelated constant, relaying can reduce energy consumption

for combatting the channel fading in longer-distance communications.

Interestingly, the energy-saving area can be approximated by an ellipse as shown

in Fig. 2.4. The expression for the ellipse can be written as: x2

x2
max

+ y2

y2max

= 1, where

the parameters xmax and ymax can be calculated by taking two special points on the

curve with θ1 = 1 − θ2 and θ1 = θ2, respectively. Thus, in real applications, one

can just check whether there are any relay nodes within the elliptical area to utilize

cooperative communication for better battery energy efficiency.

2.4.5 AF and DF Equivalence in Our Scenario

For the AF protocol, the relay amplifies what it receives from the source, including

the noise, and forwards it to the destination. With two links S1–R and R–S2, the AF

relaying transmission follows the same total battery energy consumption formula as

the DF case as illustrated in the following: Denote the SNR for the two links as

ρ1 = Epr1/N0 and ρ2 = Epr2/N0. Using the AF protocol, the received signal at the

destination essentially involves two parts: useful signal Epr2 · ρ1/(ρ1 + 1) and noise

Epr2/(ρ1 + 1) magnified at the relay node. Therefore, the overall SNR for the relay
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link S1–R–S2 is ρ = (Epr2 · ρ1/(ρ1 + 1))/(N0 + Epr2/(ρ1 + 1)). Taking the reciprocal

of ρ, it is obtained that 1/ρ = (1/ρ2) · ((ρ1 + 1)/ρ1) + 1/ρ1 ≈ 1/ρ1 + 1/ρ2, where the

approximation comes from the fact that the practical desired SNR is small and thus

only the medium to high SNR, i.e. ρ1 ≫ 1, is considered. Due to the relationship

in (2.6), the average BER constraint for the AF relaying transmission is obtained

as follows: P̄e = P1 + P2 , which is identical to that in the DF case. Since the AF

relaying transmission shares the same battery energy consumption formula and BER

performance constraint with the DF transmission, all the analyses for DF also hold

for AF. In other words, the two relaying protocols are equivalent in terms of the relay

selection over Rayleigh fading channels at high SNR.

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

x (m)

y 
(m

)

θ
1
=1−θ

2
 

x=x
max

 , y=0

θ
1
=θ

2
 

x=0, y=y
max

Figure 2.4: The ellipse to approximate the energy-saving area for d = 200m. Solid
curve: the energy-saving area calculated by numerical computing; dashed curve with
stars: the elliptical approximation.
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2.5 Conclusions

In this chapter, to ensure green wireless communication in the smart grid, we

introduced a realistic node model to optimize the system energy efficiency in wireless

sensor networks (WSN), by taking into account both circuit power consumption and

battery nonlinearities. Under this model, we first chose a more battery-energy-efficient

modulation scheme for the entire network and then, we selected either single-hop

direct-link or multi-hop relay-link communication to further reduce the total battery

energy consumption. For modulation selection, new understandings on the battery

energy efficiency of modulation schemes were facilitated by our case study of M-FSK

and M-PPM, which are traditionally considered as identically energy efficient, and it

was found that the selection criterion relies on the internode transmission distance of

the wireless network. For communication link selection, the multi-hop transmission

was shown to be not always more battery energy efficiency and the criterion for

selecting single- or multi-hop transmissions depends on both the transmission distance

and the relative position of the relay node with respect to the primary nodes.

2.6 Proof of Theorem 2.1

Denote the output current as p(t). Then, at the output stage, the total energy

consumption Eo can be obtained as Eo =
∫ Tp

0
V |p(t)| dt. Due to the inefficiency of the

DC/DC converter and the extra power loss of the power amplifier, the output pulse

energy is Ep = ηEo/(1+α). Define p0(t) = p(t)/
∫ Tp

0
|p(t)| dt, then p(t) = (1+α)Ep

ηV
p0(t).

In addition to the current induced by the transmitted waveform, the circuit power
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consumption will also induce a current Ict = Pct/(ηV ). Thus, the instantaneous

current running through the battery is i(t) = |p(t)| + Ict. From (2.1), we can obtain

the total battery energy consumption in one pulse duration as follows:

E0t =

∫ Tp

0

P0(t)dt = V

∫ Tp

0

i(t)

1− ωi(t)
dt ≈ V

∫ Tp

0

i(t)(1 + ωi(t))dt

= V

∫ Tp

0

(|p(t)|+ Ict) [1+ω(|p(t)|+Ict)] dt

= V

[

(1+2ωIct)

∫ Tp

0

|p(t)| dt+(1+ωIct)

∫ Tp

0

Ictdt+ω

∫ Tp

0

(p(t))2dt

]

≈ V

[
∫ Tp

0

|p(t)| dt+

∫ Tp

0

Ictdt+ ω

∫ Tp

0

(p(t))2dt

]

= V

[

(1 + α)Ep
ηV

+
Pct

ηV
Tp + ω

(1 + α)2E2
p

η2V 2
γp

]

=
ωγp(1 + α)2

η2V
E2
p +

1 + α

η
Ep +

Pct

η
Tp ,

where the substitution γp :=
∫ Tp

0
(p0(t))

2dt is used. In the above derivation, the

first approximation comes from the fact that practically ωi(t) ≪ 1, and thus 1/(1 −

ωi(t)) ≈ 1 + ωi(t), and the second approximation follows from ωIct ≪ 1.
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CHAPTER 3

COGNITIVE RADIO FOR THE SMART GRID 1: COOPERATIVE

DIVERSITY OF SPECTRUM SENSING

3.1 Motivation

With wide area measurement, monitoring, protection and control for the power

grid, communication loads increase dramatically. Although wireless communications

is a very good candidate to fulfill a large part of the tasks, due to its low cost and easy

implementation [37], wireless spectrum resources are scarse today due to the explosive

growth of wireless communications. Although the existing unlicensed techniques, such

asWi-Fi, Bluetooth and Zigbee, can be utilized, much more bandwidth is still required

to fulfill the need for real-time high-volume data communications over the power grid.

However, purchasing extra spectrum resources for smart grid applications is both

unrealistic and costly. Fortunately although the spectrum is almost fully assigned

to various licensed wireless users, its actual utilization is not quite efficient (see e.g.,

[24]), especially in rural areas where transmission networks are located. To address

such inefficiency, cognitive radio systems [33] were proposed as a means of filling the

spectrum vacancy in time or space [55] and are also recently proposed and tested for

application in the future smart grid [47].

In cognitive radio systems, the unlicensed wireless users (a.k.a. secondary users)

take chances to access the spectrum (temporarily or spatially) released by the licensed
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users (a.k.a. primary users) so that the spectrum access is dynamic and somewhat

opportunistic [69]. To realize this, the first step is to find such opportunities in the

primary users’ spectrum usage; this is spectrum sensing.

Among existing work on spectrum sensing, some focus on algorithms to improve a

single-user’s sensing performance by utilizing some side information (see, e.g., [7, 25]).

Nonetheless, single-user spectrum sensing is still the system performance bottleneck

due to fading and shadowing effects of the wireless channel, as well as the noise un-

certainty of the device [56]. To this end, cooperative spectrum sensing by multiple

secondary users can significantly improve the sensing performance. Hence, this has

become the focus of most ongoing research (see, e.g., [46, 63]). However, while di-

versity has been well acknowledged as the intuitive benefit of cooperative sensing,

its rigorous meaning in this setup has remained largely unexplored. In this chapter,

we will determine quantitatively the diversity order in various cooperative spectrum

sensing schemes.

Diversity has been widely adopted as a fundamental performance indicator in

communication systems, where it is defined and quantified in terms of the signal-to-

noise ratio (SNR)-dependent behavior of the bit error rate (BER) for symbol detection

([59, Chapter 3]) or the probability of the mutual information ([59, Chapter 5]). This

concept was recently extended to the context of cooperative estimation in wireless

sensor networks [12]. Therein, diversity refers to the SNR-dependent behavior of the

outage probability that the estimation variance exceeds a predefined value. In [39],

the missed detection probability is adopted for the determination of diversity in a
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cooperative detection scenario while keeping the false alarm probability fixed (SNR

independent). In [63], the opposite is considered by emphasizing the false alarm

probability while fixing the missed detection probability. However, in the spectrum

sensing problem, none of these measures can sufficiently and appropriately quantify

diversity.

Unlike traditional detection problems where focusing on either the false alarm

or missed detection probabilities while fixing the other is a rather common exercise,

doing so in a spectrum sensing problem will risk unbalanced treatment between the

system efficiency and reliability. On the one hand, false alarm probability is of critical

importance because the whole purpose of cognitive radio is to maximally utilize the

spectrum vacancies, while false alarms lead to undetected spectrum holes and can

significantly reduce the efficiency of such usage. On the other hand, missed detections

lead to deteriorated “cognition” level and give rise to unexpected interference from

the secondary users to the primary ones. In short, false alarm and missed detection

probabilities respectively capture the efficiency and reliability of the overall cognitive

system. Hence, a diversity measure of cooperative sensing performance should fairly

account for both probabilities. In this work, we consider the false alarm and missed

detection probabilities both individually and jointly in terms of the average error

probability, which balances system efficiency and reliability.

This new perspective accounting for both efficiency and reliability makes our work

unique with respect to existing ones such as [39] and [63]. First, with this perspective,

the threshold of the energy detector can be adjusted to improve both performances
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simultaneously. Secondly, our study better reflects the nature of the spectrum sensing

problem by quantitatively capturing the tradeoff between the efficiency and reliability

in closed form. This tradeoff has never been observed or documented before due to

the biased emphasis towards specific performance measures. Thirdly, for multi-user

sensing with hard information fusion, the local detection strategy and the fusion

detection strategy can be jointly optimized based on the tradeoffs established in our

analysis.

Our technical contributions are summarized as follows: i) We derive the opti-

mum detection thresholds by minimizing the average error probability in both non-

cooperative single-user and cooperative multi-user sensing scenarios. The diversity

orders of all three probabilities are then quantified under the optimum thresholds. We

also prove that such thresholds lead to the maximum diversity order in both sensing

scenarios. ii) We consider two cooperative strategies, namely multi-user sensing with

soft information fusion and hard information fusion. The former provides a theo-

retical bound on the diversity orders and error probability performance in an ideal

cooperative sensing setup; whereas the latter leads to practical fusion and decision

rules together with their respective quantified diversity orders. iii) We investigate the

tradeoff between the system efficiency (via false alarm probability) and reliability (via

missed detection probability) and present analytical results to guide practical system

designs with differing preference. iv) Depending on whether the secondary users have

knowledge of the number of cooperative users, we find that the optimal hard fusion

rules are respectively the majority-fusion rule and the OR-fusion rule. v) We verify
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the benefit of cooperative sensing and compare the performances of majority-fusion

and OR-fusion rules at low SNR.

The signal model, cooperation strategies and the performance metrics with di-

versity definition will be given in Section 3.2. The diversity orders of the single-user

spectrum sensing will be analyzed in Section 3.3, followed by various multi-user cases

in Section 3.4. Simulated verifications will be presented in Section 3.5, and concluding

remarks will be given in Section 3.6.

Notation: Subscripts ‘f ’, ‘md’ and ‘e’ refer to false alarm, missed detection, and

average error respectively; subscripts ‘s’ and ‘h’ refer to fusion with soft information

and fusion with hard information respectively. x ∼ CN (µ, σ2) denotes a complex

Gaussian random variable x with mean µ and variance σ2; b ∼ Bernoulli(p0, 1 − p0)

denotes a Bernoulli random variable b with p0 = P [b = 0]; u ∼ U(a, b) denotes a real

random variable u uniformly distributed over interval [a, b]. f(γ) ∼ g(γ) denotes two

functions of γ with limγ→+∞
f(γ)
g(γ)

= k, where k is a non-zero constant.

3.2 Problem Formulation

In cognitive radio networks, the secondary users need to sense the spectrum usage

by the primary users. The performance of spectrum sensing depends heavily on

the signal strength at the secondary users. However, the signal strength at a single

secondary user can be very low due to channel fading. Thus, cooperation among

secondary users can be utilized to improve the sensing performance, as suggested in

[15, 24, 25, 46, 63]. In this section, we will introduce the signal model at the spectrum
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sensing users, their cooperation strategies and the performance metric of spectrum

sensing in terms of the diversity order.

3.2.1 The Signal at Sensing Users

In the spectrum sensing process, the sensing users observe signals under the fol-

lowing two hypotheses:

H0 : absence of primary user in the spectrum band of interest,

H1 : presence of primary user in the spectrum band of interest.

We adopt the signal model in [25], where the channels between the primary and the

sensing users are Rayleigh fading with additive white Gaussian noise (AWGN). Then

the received signal at the sensing user is given by [25]:

r|H0 = n ∼ CN (0, σ2
n),

r|H1 = hx+ n ∼ CN (0, Exσ
2
h + σ2

n),

where n is AWGN with variance σ2
n, h is the channel coefficient with variance σ2

h and

x is the signal from the primary user with energy Ex. Suppose the sensing users know

the noise variance, hence, without loss of generality, we normalize the noise variance

to 1. Accordingly, the signal at the sensing users becomes:

r|H0 = n ∼ CN (0, 1),

r|H1 = hx+ n ∼ CN (0, γ + 1),

(3.1)
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where γ , Exσ
2
h/σ

2
n is the average signal-to-noise ratio (SNR) at the sensing users.

With geographically distributed sensing users, it is reasonable to assume that they ex-

perience independent fading channels. Thus, the received signals for different sensing

users ris are conditionally independent under each hypothesis.

3.2.2 Cooperative Strategies

Cooperative spectrum sensing requires cooperation among multiple sensing users.

In our analysis, a fusion center collects information from all secondary users and fa-

cilitates their cooperation. Ideally, the cooperation benefit is maximized if all sensing

information from all secondary users reaches the fusion center without any loss. This

condition, however, can not always be satisfied due to the limited spectrum resource

available to the secondary user system. Hence, we will next consider two types of sens-

ing strategies, namely cooperative multi-user sensing with soft information fusion and

cooperative multi-user sensing with hard information fusion.

3.2.2.1 Multi-User Sensing with Soft Information Fusion

In this case, the fusion center can obtain information from the distributed sec-

ondary users perfectly. This provides a best case scenario for cooperative sensing

among multiple secondary users. Although this may not be practically achievable, it

does provide a useful bound on the multi-user sensing performance. Moreover, this is

also a good model for the case where multiple independent faded copies of the primary

user’s signal are collected at a single secondary user. For example, multiple receive

antennas with appropriate antenna spacing can provide independent faded copies of
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the signal, or in the case of a fast fading scenario, the signals from different time

slots are independently distributed. In these cases, the single secondary user can be

regarded as the fusion center and the different sources of independent faded signals

can be regarded as the multiple spectrum sensing nodes with lossless transmission to

the fusion center, leading to soft information fusion.

3.2.2.2 Multi-User Sensing with Hard Information Fusion

In a more practical multi-user setup, each distributed secondary user senses the

spectrum usage and then only transmits the one bit sensing decision, ‘0’ for absence

of primary users or ‘1’ for presence of primary users, to the fusion center.

3.2.3 Performance Metric and Diversity Order

In traditional signal detection problems, the receiver operating characteristic (ROC)

curves (false alarm probability Pf vs. missed detection probability Pmd) are generally

used to graphically illustrate the detection performance [43]. Every ROC curve is

plotted for a certain combination of the system parameters such as SNR, number of

cooperative users and so on. As a result, they do not provide an explicit quantita-

tive relationship between the system parameters and the system metrics (false alarm,

missed detection and average detection error probabilities) [15]. Hence, to better il-

lustrate the effects of the system parameters on the performance, in this chapter, we

analyze each single system metric as a function of the system parameter variables.

As introduced in Section 6.1, the performance of spectrum sensing is indicated by

the false alarm probability Pf , the missed detection probability Pmd and the average
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error probability Pe. Pf is the probability of deciding on H1 when H0 is true (type

I error); Pmd is the probability of deciding on H0 when H1 is true (type II error);

Pe is the average probability of making a wrong decision. Physically, Pf determines

the capability of detecting the available spectrum resource, and thus the efficiency

of the system; and Pmd indicates the level of interference that the secondary user

system introduces to the primary user system, and thus the reliability of the system.

As a result, Pe combines the efficiency and reliability considerations. We denote

the probability of the absence of the primary user (H0) as α and thus that of the

presence of the primary user (H1) as (1 − α), then the average error probability is

Pe = αPf + (1− α)Pmd .

The concept of diversity was introduced in wireless communications to quantify

the effects of independent fading in space, time, frequency or code space on the

improvement of the system performance [59]. Quantitatively, the diversity order is

defined as:

d = − lim
SNR→+∞

logP

log SNR

where P can be the bit error rate or the outage probability of the communication

system and SNR is the average signal-to-noise ratio. In cooperative sensing, the fusion

center also receives multiple copies of the original signal under independent fading.

Hence, the sensing performance is expected to exhibit a similar behavior. Here we

define the diversity order in sensing scenarios as:

d∗ = − lim
γ→+∞

logP∗

log γ
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where ∗ can be f (false alarm), md (missed detection) or e (average error). Accord-

ingly, there will be false alarm diversity df , missed detection diversity dmd and average

error diversity de. Obviously, de = min{df , dmd} when df 6= dmd. In the following

sections, we will quantify the diversity order of spectrum sensing according to the

definitions above for three cases: single-user sensing, multi-user cooperative sensing

with soft information fusion and multi-user cooperative sensing with hard information

fusion. In addition, we will show that, though the diversity order is defined in the

limit when γ → +∞, it actually shows up quite early at low SNR.

3.3 Single-User Sensing

To achieve uniformly most powerful detection performance, we use the Neyman-

Pearson (NP) detector [43]. With our signal model, the NP test is the likelihood ratio

test:

λ = |r|2
H1

R
H0

θ (3.2)

where θ is the threshold of the test. According to (3.1), the distribution of the decision

statistic is:

f(λ|H0) = e−λ (λ > 0)

f(λ|H1) =
1

γ + 1
e−

λ
γ+1 (λ > 0).

(3.3)

Hence the probabilities of false alarm and missed detection are, respectively:

Pf =

∫ +∞

θ

f(λ|H0)dλ =

∫ +∞

θ

e−λdλ = e−θ (3.4)
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and

Pmd =

∫ θ

0

f(λ|H1)dλ =

∫ θ

0

1

γ + 1
e−

λ
γ+1dλ = 1− e−

θ
γ+1 . (3.5)

3.3.1 Diversity Order when Minimizing Pe

As shown in (3.4) and (3.5), the performance metrics Pf , Pmd and Pe all rely on

the choice of the decision threshold θ. Clearly, one may choose different thresholds

when optimizing different performance metrics. Recall that Pf captures the cognitive

system’s efficiency while Pmd captures its reliability. To balance the system efficiency

and reliability, we will optimize the threshold θ by minimizing the average error

probability Pe = αPf + (1− α)Pmd. Setting dPe/dθ = 0 and solving for θ, we obtain

the optimum threshold as:

θo =

(

1 +
1

γ

)

log

[

α

1− α
(γ + 1)

]

, (3.6)

where log is base-e throughout this chapter unless otherwise specified. Using this

threshold, as γ → +∞, we have:

Pf = e−θ = e−(1+ 1

γ
) log[ α

1−α
(γ+1)]

= (γ + 1)−(1+ 1

γ
)

(

α

1− α

)−(1+ 1

γ )
∼ (1 + γ)−1

(3.7)

and

Pmd = 1− e−
θ

γ+1 = 1− e−
1

γ
log[ α

1−α
(γ+1)]

∼ γ−1 log

[

α

1− α
(γ + 1)

]

.

(3.8)
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Thus, their respective diversity orders can be obtained as:

df = − lim
γ→+∞

logPf

log γ
= 1

dmd = − lim
γ→+∞

logPmd

log γ
= 1

de = min(df , dmd) = 1.

(3.9)

Accordingly, we establish the following result:

Theorem 3.1 For single-user spectrum sensing, when the threshold θ is chosen to

minimize the average error probability Pe as in (3.6), the diversity order of the NP

detector is de = df = dmd = 1.

This theorem is quite intuitive since any single sensing user only has one copy of

the original signal going through the fading channel and it is well known that the

probability of deep fading in this case is proportional to γ−1 (see e.g. [59]).

From the analysis above, we see that the a priori probabilities of the hypotheses

α and (1 − α) do not affect the diversity orders of the performance. Without loss of

generality, to simplify the following analyses on the diversity orders, we choose α = 1
2

for the rest of this chapter.

3.3.2 False Alarm Diversity versus Missed Detection SNR Gain

In Theorem 3.1, we choose θo to minimize the average detection error probability

Pe, which is the average of efficiency and reliability. However, in some systems, the two

features may have different levels of importance. Thus, we will next analyze Pf and

Pmd separately. Our analysis will reveal an interesting tradeoff between the system
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efficiency and reliability. This tradeoff can be exploited to achieve the desirable Pf

and Pmd performance and accordingly the preferable spectrum usage efficiency and

interference level.

From (3.4) and (3.6), we notice that, if one changes the threshold to θ′ = d0θ
o,

then the false alarm diversity order changes from 1 in (3.9) to:

d′f = − lim
γ→+∞

logP ′
f

log γ
= − lim

γ→+∞

−d0(1 +
1
γ
) log(γ + 1)

log γ
= d0. (3.10)

On the other hand, with this new threshold θ′, as γ → +∞, we have:

P ′
md = 1− e−

θ′

γ+1 = 1− e−
d0
γ

log(γ+1) ∼ d0γ
−1 log(γ + 1). (3.11)

This implies that d′md = 1, which is identical to dmd in (3.9) with threshold θo. In other

words, the missed detection diversity order remains unaltered. However, the scalar

difference between (3.8) and (3.11) suggests that, to ensure P ′
md ≈ Pmd as γ → +∞,

ones needs γ′ = d0γ. This implies that the missed detection probability Pmd exhibits a

−10 log10 d0 dB SNR gain (or equivalently 10 log10 d0 dB SNR loss) when the threshold

is chosen as θ = d0θ
o. This interesting phenomenon may result from the fact that

the false alarm probability is the right tail of the Rayleigh distribution which decays

very rapidly; whereas the missed detection is the left tail of the Rayleigh distribution

which decays quite slowly.

We summarize the tradeoff between the false alarm diversity and the missed de-

tection SNR gain in the following corollary:
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Collarory 3.1 For single-user spectrum sensing, when the threshold is set to d0θ
o

with θo given in (3.6), the false alarm diversity order becomes df = d0, while the

missed detection diversity order remains dmd = 1 but the Pmd curve exhibits a − log10 d0

dB SNR gain.

The tradeoff between the false alarm diversity and the missed detection SNR

gain presented above provides system designers with a flexible tool to achieve the

desirable tradeoff between the spectrum usage efficiency of the secondary users and

the reliability of the primary users. For example, if the primary users in the cognitive

system are capable of interference suppression and the spectrum usage efficiency is of

major concern for the system designer, then, by the properties above, the secondary

users can set the threshold as d0θ
o with d0 > 1. This means, the false alarm diversity

is increased to d0(> 1) by sacrificing a 10 log10 d0 dB SNR loss for the missed detection

probability. On the other hand, if the primary users are vulnerable to interference

and the performance of primary users in the cognitive system is of the major concern,

then, the secondary users can set the threshold at d0θ
o with 0 < d0 < 1. As a result,

there will be a −10 log10 d0 dB SNR gain for the missed detection probability by

reducing the false alarm diversity to d0(< 1).

As shown later in Section 3.4.2, this flexibility of the false alarm diversity can

also be utilized to maximize the diversity order of the multi-user sensing with hard

information fusion.
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3.4 Multi-User Sensing

3.4.1 Soft Information Fusion

With a soft information fusion strategy, the fusion center receives r1, r2, . . . , rN

from the distributed sensing users, where N is the total number of cooperative sensing

users and ris are conditionally independent identically distributed (i.i.d.) under both

H0 and H1. Similar to Section 3.3, the NP test is

λs =

N
∑

i=1

|ri|
2

H1

R
H0

θs, (3.12)

where the subscript ‘s’ refers to soft information fusion.

Since ris are conditionally independent, and according to (3.1), we have:

f(λs|H0) = λN−1
s

e−λs

(N − 1)!
(λs > 0)

f(λs|H1) = λN−1
s

e−
λs
γ+1

(N − 1)!(γ + 1)N
(λs > 0).

(3.13)

Hence the probabilities of false alarm and missed detection are, respectively:

Pf,s =

∫ +∞

θs

f(λs|H0)dλs =

(

N−1
∑

i=0

θis
i!

)

e−θs (3.14)

and

Pmd,s =

∫ θs

0

f(λs|H1)dλs =

(

+∞
∑

i=N

θis
i!(γ + 1)i

)

e−
θs

γ+1 . (3.15)

Accordingly, the average error probability is Pe,s =
1
2
Pf,s+

1
2
Pmd,s. Similar to Section
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3.3, minimizing Pe,s by taking dPe,s/dθs = 0, we obtain the optimum threshold as:

θos = N

(

1 +
1

γ

)

log(γ + 1). (3.16)

Using this threshold, we establish the following theorem:

Theorem 3.2 For multi-user sensing with soft information fusion, when the thresh-

old θs is chosen as in (3.16) to minimize the average error probability Pe,s, the diver-

sity order of the NP detector is de,s = df,s = dmd,s = N , where N is the number of

cooperative users.

Proof. See Section 3.7.

This theorem is also intuitive in that the fusion center has copies of the original

received signals from N independently fading channels. Similar to Section 3.3.2, we

can also choose the threshold as θ′s = d0θ
o
s , where d0 can be any positive number and

is not necessarily integer, to increase the false alarm diversity to d0N while keeping

the missed detection diversity unaltered at N . In this case, there is also a tradeoff

between the missed detection SNR gain and the false alarm diversity. For the false

alarm diversity to be d0N , the missed detection probability will exhibit a −10 log10 d0

dB SNR gain (or equivalently 10 log10 d0 dB SNR loss).

3.4.2 Hard Information Fusion

With the hard information fusion strategy, each sensing user makes its own local

hard decision and then sends the binary decision bi to the fusion center. For simplicity,
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we assume that all distributed sensing users employ the same threshold θl for their

local decisions where subscript ‘l’ stands for local. The corresponding local false alarm

and missed detection probabilities are denoted as Pf,l and Pmd,l, respectively. Clearly,

bi follows conditionally i.i.d. Bernoulli distribution with (1 − Pf,l) and Pmd,l as the

probabilities of value 0 under H0 and H1, respectively; that is:

bi|H0 ∼ Bernoulli(1− Pf,l, Pf,l)

bi|H1 ∼ Bernoulli(Pmd,l, 1− Pmd,l)

(3.17)

In this case, the NP test becomes:

λh =
N
∑

i=1

bi

H1

R
H0

θh, θh = 1, 2, . . . , N, (3.18)

where subscript ‘h’ refers to hard information fusion. Accordingly, the distribution

of λh is:

f(λh|H0) =

(

N

λh

)

P λh

f,l (1− Pf,l)
N−λh , λh = 0, 1, . . . , N ;

f(λh|H1) =

(

N

λh

)

(1− Pmd,l)
λhPN−λh

md,l , λh = 0, 1, . . . , N.

(3.19)

In hard information fusion, there are two levels of decision making, each level

having its own decision performance. For the local decision, there are diversity orders

for the local false alarm probabilities (df,l) and local missed detection probabilities

(dmd,l). At the fusion center, there are also corresponding diversity orders for the over-

all hard-decision false alarm probability (df,h), missed detection probability (dmd,h)

and average error probability (de,h). Here we establish the relationship between the
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local decision diversity orders with the overall diversity orders at the fusion center in

the following theorem:

Theorem 3.3 For multi-user sensing with 1-bit hard information fusion, and with

the fusion center threshold θh (θh = 1, 2, . . . , N), the diversity orders of the NP detec-

tor are df,h = θhdf,l, dmd,h = (N−θh+1)dmd,l and de,h = min{θhdf,l, (N−θh+1)dmd,l},

where N is the number of cooperative users.

Proof. See Section 3.8.

Similar to the single-user sensing and cooperative sensing with soft information

fusion, cooperative sensing with hard information fusion also provides the system

designer with the flexibility of balancing between the spectrum efficiency of the sec-

ondary users (via df,h) and the reliability of the primary users (via dmd,h) by the

choice of the threshold θh. A larger θh will improve the false alarm performance,

leading to higher spectrum usage efficiency of the secondary users; while a smaller θh

will improve the missed detection performance, leading to enhanced reliability of the

primary users. However, it is worth noting that the tradeoff and flexibility here are

very different from what we have discussed in Corollary 3.1 for the single-user sens-

ing and the multi-user soft-fusion cases. In previous cases, the tradeoff was between

the false alarm diversity and the missed detection SNR gain, while here in the case

of multi-user hard-fusion, the tradeoff is between the false alarm diversity and the

missed detection diversity.

Note that, though the local threshold θl does not appear explicitly in Theorem

3.3, it affects the overall system implicitly via df,l and dmd,l. Hence, if one opts to
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minimize Pe,h = 1
2
Pf,h +

1
2
Pmd,h, one needs to jointly choose both the optimum local

threshold θl at the individual sensing users and the optimum hard decision threshold

θh at the fusion center. However, under this fusion rule, θl has a very complicated form

in Pe,h through parameters Pf,l and Pmd,l, rendering optimization intractable. Even

with numerical techniques, the optimization over θl still requires knowledge of the

total number of distributed sensors in the network N , which is not always available

to the secondary users in real applications. However, with Theorem 3.3, one can

optimize the overall hard decision fusion performance from the diversity perspective

with different strategies as detailed in the following two scenarios.

B.1) Number of cooperative users N unknown

In this case, the sensing users can only perform their optimum detection locally.

From Theorem 3.1, the local threshold is θl = θo and the local diversities are df,l =

dmd,l = 1. According to Theorem 3.3, the diversity orders at the fusion center are

df,h = θh, dmd,h = N−θh+1 and de,h = min{θh, N−θh+1}. With equal emphasis on

false alarm and missed detection performance, by maximizing min{θh, N−θh+1}, we

obtain the optimum threshold θoh at the fusion center that maximizes the detection

error diversity:

Collarory 3.2 For multi-user sensing with 1-bit hard information fusion, and with

each sensing user using the locally optimum threshold θl = θo, the optimum threshold

at the fusion center in the sense of maximizing the detection error diversity is θoh =

⌊N+1
2

⌋ or θoh = ⌈N+1
2

⌉ with de,h = ⌊N+1
2

⌋, where N is the number of cooperative users.
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In this case, the strategy is the so-termed majority-fusion rule. Notice that under

this rule, about half of the diversity is lost compared with the soft information fusion.

This indicates that a hard decision at each local sensing user leads to considerable

information loss of the received signal.

B.2) Number of cooperative users N known

From Corollary 3.1, we have seen that the false alarm diversity at each local

sensing user is flexible. It is shown in the following corollary that this property can

be utilized to maximize the average error diversity.

Collarory 3.3 For multi-user sensing with 1-bit hard information fusion, if each

distributed sensing user knows the number of cooperative users N , the average er-

ror diversity order at the fusion center can be maximized by choosing local decision

threshold θl = Nθo with θo given in (3.6) and the fusion decision threshold θh = 1.

Proof. See Section 3.9.

Notice that the decision strategy turns out to be the so-termed OR-fusion rule. From

this corollary, we see that with the number of sensors known at each local sensor,

the diversity of the average detection error probability of hard information fusion

equals that of soft information fusion (de,h = de,s = N). In other words, knowledge

of N completely compensates for the loss of information by local hard decisions, in

terms of the detection error diversity. However, we should also notice that though the

diversity performance of the two cases are identical, their average error probability

performances are still different. As detailed in Section 3.3.2, there is a 10 logN SNR

loss for the missed detection probability Pmd,l by setting θl = Nθo.
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Remarks: As stated in Section 3.2.2, our results on multi-user sensing with soft infor-

mation fusion can be readily applied to the case of combining signals from different

multiple time slots at a single user, as long as the combined received signals experi-

ence independent fading. In this case, if the system also uses cooperative multi-user

sensing with hard information fusion among these multiple time slot sensors, our

analysis in this section can be readily extended by combining the results in Theorems

3.2 and 3.3. In addition, for the correlated fading case, intuitively, we expect that

the diversity orders equal the rank of the correlation matrix of the received signals,

which will be justified in the following section.

3.5 Simulation Results

3.5.1 Single-User Sensing
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Figure 3.1: Single-user sensing. Solid curves: threshold θ = θo; Dashed curves:
threshold θ = 2θo.
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For single-user sensing, we use the test given by (3.2) and the threshold of (3.6) to

obtain the average error probability, false alarm probability and the missed detection

probability. These probabilities are shown as the solid curves in Fig. 3.1. All three

curves exhibit the same slope, indicating diversity orders df = dmd = de = 1. To

illustrate the tradeoff between the false alarm diversity and missed detection SNR

gain (loss) discussed in Section 3.3.2, we change the threshold to θ′ = 2θo and obtain

the dashed curves in Fig. 3.1. From the figure, we see that d′f = 2 and d′md = dmd = 1,

as predicted Corollary 3.1. In addition, comparing the solid curve with the dashed

one, at high SNR, there is an approximately 10 log10 d0 = 3 dB SNR loss. This is the

price paid for the increase of the diversity for the false alarm probability.

3.5.2 Multi-User Sensing with Soft Information Fusion
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Figure 3.2: N = 5 multi-user sensing with soft decision fusion. Solid curves: threshold
θ = θos ; Dashed curves: threshold θ = 0.5θos .
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Here, we simulate the multi-user sensing with soft information fusion strategy.

The total number of cooperating users is N = 5. From the analysis in Section 3.4.1,

we expect the relative performance of Pe,s, Pf,s and Pmd,s to be similar to the single-

user sensing case, except for the diversity order of 5. This is verified in Fig. 3.2. The

solid curves show that with the threshold minimizing the average error probability,

the diversity orders are de,s = df,s = dmd,s = N = 5. In multi-user sensing with soft

information fusion, we can also set the threshold to θ′s = d0θ
o
s to make df,s = d0N .

The dashed curves in Fig. 3.2 show Pf,s and Pmd,s with d0 = 0.5. Similar to the

single-user sensing case, comparing the solid curve with the dashed one for Pmd,s, we

verify that at high SNR, there is approximately −10 log10 d0 = 3 dB SNR gain for the

decrease of the false alarm diversity (from 5 to 2.5).

In the simulations above, the fading coefficients at each user are assumed to be

independent. However, for multi-time-slot sensing which can be modeled as multi-

user sensing with soft information fusion, the fading coefficients can be correlated. To

investigate the diversities in this case, we plot the simulation results of the detector

under the threshold ηos in Fig. 3.3. Notice that in this case, the signals under hypoth-

esis H0 remains unaltered, thus it suffices to give the missed detection performances

only. In this simulation, the number of time slots N = 5 and the correlations of the

fading coefficients are assumed to be E[h∗
ihj] = r|i−j| where i and j are indices for the
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time slot. Under this assumption, the correlation matrix is

Λh = E[hHh] =














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In Fig. 3.3, we see that when the correlation (r) among the fading coefficients in-

creases, the performance degrades. However, as long as the correlation matrix Λh is

full-rank, the diversity results obtained under the independent fading scenario still

hold. When the matrix loses rank to rank 1 at r = 1, the diversity order reduces to

1.
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Figure 3.3: N = 5 multi-user sensing with soft decision fusion on correlated signals
with correlation E[h∗

ihj ] = r|i−j|. In the direction of arrow: r = 0, r = 0.2, r = 0.5, r =
0.9, r = 1, respectively.
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3.5.3 Multi-User Sensing with Hard Information Fusion
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Figure 3.4: N = 5 multi-user sensing with hard decision fusion. Solid curves: thresh-
old θl = θo, θh = 1; Dashed curves: threshold θl = θo, θh = 2.

For the multi-user sensing with hard information fusion in Section 3.4.2, we first

consider the case where the number of cooperative users N is not available to the indi-

vidual sensing users. Then, each distributed sensing user makes the locally optimum

hard decision, i.e., θl = θo as defined in (3.6). In this case, as Theorem 3.3 dictates,

the false alarm diversity, the missed detection diversity and the average error diversity

are all heavily dependent on the threshold θh at the fusion center. Fig. 3.4 shows the

behavior of Pf,h, Pmd,h and Pe,h of the hard information fusion strategy with θh = 1

(solid curves) and θh = 2 (dashed curves) when the number of cooperative users is

N = 5. When θh = 1, the solid curves show that df,h = 1, dmd,h = 5 and de,h = 1;

when θh = 2, the dashed curves show that df,h = 2, dmd,h = 4 and de,h = 2. These

results are consistent with Theorem 3.3 and illustrate the tradeoff between the false

alarm diversity and the missed detection diversity.
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With locally optimum hard decision (θl = θo) at distributed sensing users, the

threshold maximizing the average error diversity should be chosen as ⌊N+1
2

⌋ or ⌈N+1
2

⌉

according to Corollary 3.2. This result is shown in Fig. 3.5 when N = 5. From

this figure, we see that θh = 3 gives the maximum average error diversity. Compared

with the error performance under soft information fusion, we see here that this locally

optimum hard decision strategy suffers from a large loss of diversity.
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Figure 3.5: N = 5 multi-user sensing with soft information fusion and hard informa-
tion fusion with θl = θo and various θhs.

When the distributed sensing users know the number of cooperative users in the

network, then the flexibility of the false alarm diversity in Corollary 3.1 can be utilized

to maximize the diversities of the hard information fusion. In this case, the local

decision threshold is θl = Nθo where θo is defined in (3.6). Fig. 3.6 shows the

performance with this strategy and compares this with that of the soft information

fusion strategy. From this figure, we see that in terms of diversity order de, the

hard information fusion with adjusted local threshold equals the soft information
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fusion. However, the soft information fusion has a huge SNR advantage over the hard

information fusion on the missed detection and average error probabilities. This is

due to the fact that in the local decisions, a 10 log10 5 = 7 dB SNR loss of missed

detection probability is introduced to increase the false alarm diversity from df,l = 1

to df,l = 5 by setting θl = 5θo. This also explains why the false alarm performance

in this hard information fusion strategy with knowledge of the number of cooperative

users is better than that in the soft information fusion strategy. In addition, compared

with the dotted curves, we see that this strategy recovers the diversity loss introduced

by the locally optimum hard decision.
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Figure 3.6: N = 5 multi-user sensing with OR-fusion rule with θl = Nθo (solid
curves), majority-fusion rule with θl = θo (dotted curves), and soft information fusion
(dashed curves).

3.5.4 Low SNR Performance Comparisons

The analysis in this chapter focuses on the diversity order which is meaningful only

at high SNR. However, from the simulation results above, we see that the diversity
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shows up quite early in SNR. Actually, most cases with better diversity order also

results in better performance as shown at low SNR in Figs. 3.1-3.6.

To further illustrate the relative performance of various decision strategies in the

low SNR range, we show in Fig. 3.7 the average detection error of soft information

fusion (de,s = N) with θs = θos , hard information fusion with θl = θo and θoh = ⌊N+1
2

⌋

as in Corollary 3.2 (de,h = ⌊N+1
2

⌋) and hard information fusion with θl = Nθo and

θh = 1 as in Corollary 3.3 (de,h = N) at γ = 0 dB. Comparing the solid curve with the

other two curves, we see that at low SNR, the soft information fusion is still better

than the hard information fusion. This is consistent with our expectation in that

the soft information fusion center collects all the information at individual sensing

users and the threshold maximizing the diversity in (3.16) is actually optimum for

any SNR value γ. Also, the performance of soft information fusion improves as the

number of cooperative sensing users N increases. This means that a bigger number

of cooperative sensing users not only increases the diversity order at high SNR but

also boosts the performance at low SNR.

Comparing the dashed curve with the dotted one, we see that, though with the

knowledge of the number of cooperative sensing users, the diversity of the hard infor-

mation fusion can be maximized as dictated in Corollary 3.3, its low-SNR performance

is greatly compromised. This is due to the fact that with the strategy in Corollary

3.3, the performance of local missed detection Pmd,l is sacrificed for the sake of false

alarm diversity. At low SNR, the benefit of false alarm is insignificant while the loss

of local missed detection performance takes dominance on the overall decision fusion

52



performance. Also, it should be noticed that with the strategy in Corollary 3.3, larger

number of cooperative users N causes more performance loss of local missed detec-

tion Pmd,l, leading to more significantly deteriorated overall performance of the hard

information fusion.
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Figure 3.7: Low SNR performance of different decision strategies (γ = 0 dB). Solid:
soft information fusion; dotted: majority fusion with θl = θo; dashed: OR fusion with
θl = Nθo.

With this comparison, we also obtain the conclusion that at low SNR, the majority-

fusion introduced in Corollary 3.2 is preferred over the OR-fusion introduced in Corol-

lary 3.3 for hard information fusion. This is quite intuitive since the majority-fusion

rule is more robust to individual errors.

3.5.5 Simulation with Imperfect SNR Estimate

In all our strategies, one needs the SNR information to determine the decision

thresholds θo, θos and θh. However, in real applications, the SNR information can

only be obtained via estimation and is thus never perfectly known. Next, we simulate
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our algorithms with imperfectly estimated SNR values. First, suppose our estimated

SNR γ̂ = uγ where u ∼ U(a, b) is the multiplicative noise factor. As discussed before,

the performance of the single-user sensing is fundamental to that of the multi-user

sensing case. Therefore, here we only present the effect of imperfect SNR estimate

on single-user sensing in Fig. 3.8.
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Figure 3.8: Performances of single-user spectrum sensing with imperfect SNR es-
timate γ̂ = uγ. Solid curves: u = 1 (perfect); Dotted curves: u ∼ U(0.5, 1.5)
(unbiased); Dashed curves: u ∼ U(1, 1.5) (biased).

This figure shows the performances of the single-user sensing with perfect (solid),

unbiased (dotted) and biased (dashed) SNR estimate. From this figure we see that

there is very little difference among the performances with different SNR estimation

quality. This means that our spectrum sensing algorithm is robust against imperfect

SNR estimate. This is because though the threshold expression involves the SNR

value, the algorithm only requires the threshold to increase or decrease in consistency

with SNR. It is also worth noting that with the biased SNR estimate, if the bias is

positive as in the dashed curve case, the performance of false alarm (Pf ) will actually
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get improved because we are choosing a larger threshold. We expect the opposite

when the bias is negative.

3.6 Conclusions

In this chapter, we analyzed various cooperative spectrum sensing strategies under

different scenarios. By considering both false alarm and missed detection probabilities

individually and jointly via the average error probability, we found several tradeoffs

between the system efficiency and reliability under three different spectrum sensing

strategies. For single-user sensing and multi-user sensing with soft information fu-

sion, the tradeoff is between the false alarm diversity gain and the missed detection

SNR loss by altering the detection threshold. For multi-user sensing with hard in-

formation fusion without information of cooperative user number, there is a tradeoff

between the diversities of false alarm and missed detection. In addition, under hard

information fusion, with the knowledge of cooperative user number, the soft decision

diversity can be achieved at a given missed detection SNR loss. With these diversity

and tradeoff results, we derived the optimum threshold in each cooperative strategy

to guide practical system design. Simulations have also been presented to further

illustrate the analytical results and compare the various cooperative strategies.

3.7 Proof of Theorem 3.2

With θs = N(1 + 1
γ
) log(γ + 1), as γ → +∞, e−θs = (1 + γ)−N(1+ 1

γ
) ∼ (γ + 1)−N

and
∑N−1

i=0 θis/i! =
∑N−1

i=0 N i(1+ 1
γ
)i(log(γ+1))i/i! ∼ NN−1(log(γ+1))N−1/(N −1)! .
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Thus, according to (3.14), Pf,s ∼
NN−1

(N−1)!
(log(γ + 1))N−1(γ + 1)−N and

df,s = − lim
γ→+∞

logPf,s

log γ
= N.

Also, with θs defined above, as γ → +∞, e−θs/(γ+1) = e−
N
γ
log(γ+1) → 1 and

∑+∞
i=N θis/(i!(γ + 1)i) =

∑+∞
i=N N i(1 + 1

γ
)i(log(γ + 1))i/(i!(γ + 1)i) ∼ NN (log(γ +

1))N(γ + 1)−N/N ! . Thus, according to (3.15), Pmd,s ∼ NN

N !
(log(γ + 1))N(γ + 1)−N

and dmd,s = − limγ→+∞
logPmd,s

log γ
= N . Accordingly, de,s = min(df,s, dmd,s) = N .

3.8 Proof of Theorem 3.3

From (3.18) and (3.19),

Pf,h = P (λh ≥ θh|H0) =
N
∑

i=θh

(

N

i

)

P i
f,l(1− Pf,l)

N−i.

The false alarm diversity at the local sensing decision is df,l, so as γ → +∞, Pf,l ∼

(γ + 1)−df,l , 1 − Pf,l → 1, thus P i
f,l(1 − Pf,l)

N−i ∼ (γ + 1)−idf,l. In the summation of

Pf,h, as γ → +∞, the term with lowest power order of (γ + 1)−1 will dominate, thus

Pf,h ∼
(

N
θh

)

(γ + 1)−θhdf,l , and the false alarm diversity order is

df,h = − lim
γ→+∞

logPf,h

log γ
= θhdf,l, θh = 1, 2, . . . , N.
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From (3.18) and (3.19),

Pmd,h = P (λh < θh|H1) =

θh−1
∑

i=0

(

N

i

)

(1− Pmd,l)
iPN−i

md,l .

From the same argument, the missed detection diversity order is

dmd,h=−lim
γ→+∞

logPmd,h

log γ
=(N − θh + 1)dmd,l, θh=1, 2, . . . , N.

3.9 Proof of Corollary 3.3

From Corollary 3.1, we know that the local threshold can be chosen as θl = d0θ
o

(d0 > 0). In this case, df,l = d0 and dmd,l = 1. By Theorem 3.3, if the hard

decision threshold is θh (θh ∈ {1, 2, . . . , N}), the average error diversity is de,h =

min(θhd0, N − θh + 1). To maximize de,h, we need to maximize both θhd0 and (N −

θh + 1) simultaneously. By maximizing the latter, we obtain θh = 1. Then de,h =

min(d0, N). Thus, as long as d0 ≥ N , we obtain the maximum diversity de,h = N .

However, as stated in Corollary 3.1, higher d0 will cause higher SNR loss for the

missed detection performance. Thus, we choose d0 = N to minimize the SNR loss

for the missed detection performance while achieving the maximum average error

diversity.
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CHAPTER 4

COGNITIVE RADIO FOR THE SMART GRID 2: COOPERATIVE

SPECTRUM SENSING WITH TERNARY LOCAL DECISIONS

4.1 Motivation

In our previous chapter, the gain of cooperation is quantified in terms of the co-

operative diversities for missed detection, false alarm and average error probabilities.

Using diversity as the performance metric, we optimally designed the sensing thresh-

old strategies for cooperative sensing with both soft information fusion (SCoS) and

binary information fusion (BCoS). We found that while SCoS can achieve the maxi-

mum diversity, BCoS either loses half of the diversity or achieves the full diversity at

the price of some signal-to-noise ratio (SNR) loss.

While the performance of SCoS is desirable, it is impractical since it requires in-

finite bandwidth for the communications between the sensing users and the fusion

center. Intuitively, the performance gap between SCoS and BCoS results from the

loss of information with the single-bit local decisions in BCoS. It should be possible to

improve the performance by allowing the sensing users to provide more information.

In this chapter, we investigate a cooperative sensing scheme with local ternary deci-

sions. While developing the optimum strategies is complicated and mathematically

intractable, our focus is to show that with local ternary decisions, it is possible to

gain in terms of both diversity and SNR. This is in sharp contrary with the inevitable
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diversity-SNR tradeoff when binary local decisions are used. Compared with existing

work on cooperative spectrum sensing with multi-threshold local decisions such as

[8, 27, 32, 31] and [36], our algorithm provides simple and closed-form expressions for

both the local thresholds and fusion rule based on the metric of cooperative diversity.

Moreover, we also obtain an explicit analytical expression for the performance gain,

which has only been illustrated by simulations in the literature.

The problem formulation, together with the preliminaries of binary (BD) and

ternary (TD) local decisions will be introduced in Section 4.2. Then, we will determine

the detection fusion rules for TD by first finding the relationship between BD and

TD in Section 4.3 and then selecting the detection regions for TD in Section 4.4 with

simulation results given in Section 4.5. Finally, concluding remarks will be presented

in Section 4.6.

Notation: x ∼ CN (µ, σ2) denotes a complex Gaussian random variable x with mean

µ and variance σ2. g(γ) ∼ f(γ) means lim
γ→+∞

g(γ)

f(γ)
= c where c > 0 is a constant.

g(γ) ≈ f(γ) means lim
γ→+∞

g(γ)

f(γ)
= 1.

59



4.2 System Model

4.2.1 Signal Model and Performance Metrics

In the spectrum sensing process, the sensing users observe signals under the fol-

lowing two hypotheses:

H0 : absence of primary user,

H1 : presence of primary user.

We assume that the channels between the primary and the sensing users are

Rayleigh fading with additive white Gaussian noise (AWGN). Then after normaliza-

tion, the signal at each sensing users becomes (see e.g. [14, 25]):

ri|H0 = ni ∼ CN (0, 1),

ri|H1 = hix+ ni ∼ CN (0, γ + 1) ,

(4.1)

where γ is the average SNR at the sensing users. With geographically distributed

sensing users, it is reasonable to assume that they experience independent fading

channels. With this assumption, the received signals for different sensing users ris

are conditionally independent identically distributed (i.i.d.) under each hypothesis.

Under this model, the Neyman-Pearson (NP) detector at each secondary user is the

energy detector with ‖ri‖2
H1

R
H0

θl, where θl is the local decision threshold.

In our previous chapter, it has already been shown that the a priori probabilities of

the hypotheses do not affect the diversity gains. Therefore, without loss of generality,

60



we assume that P (H0 = 0) = P (H1 = 1) = 1
2
in this chapter. For the detection

problem introduced in Eq. (4.1), there are three performance measures, namely

false alarm (Pf), missed detection (Pmd) and average error (Pe) probabilities. As in

Chapter 3, we will use the diversity defined as d∗ = − lim
γ→+∞

logP∗

log γ
for each of them.

By definition, diversity only captures the performance at high SNR. Hence, in our

analyses, we will aim at achieving better low-SNR performance while maintaining the

same diversity gain.

4.2.2 Binary Local Decision (BD) and BCoS-k0

For BCoS introduced in Chapter 3, the secondary users make local binary decisions

Di ∈ {0, 1} and a fusion center will collect all decisions and make a global decision.

The local decisions are:

Di =















0 if 0 ≤ ‖ri‖2 < θl,B

1 if ‖ri‖2 > θl,B .

(4.2)

If the local decision threshold is θl,B = k0θ
o, where θo = (1 + 1

γ
) log(1 + γ) is

the local optimum threshold [14]. Then, as γ → +∞, Pf,l = e−θl,B ≈ γ−k0 and

Pmd,l = e
θl,B
γ+1 ≈ k0γ

−1. With the NP detector
∑N

i=1Di RH1

H0
θf,B, the diversities are

df,B = k0θf,B and dmd,B = N − θf,B − 1, where N is the total number of secondary

users. To jointly optimize both diversities, the fusion threshold can be selected as1:

argmax
θf,B

(min(k0θf,B, N − θf,B − 1)) =
N + 1

k0 + 1
. The optimized diversities can be deter-

1It should be noticed that at the fusion center,
∑

Di’s can only take integer values. However, to
simplify the notation, the integer restrictions are neglected without affecting the analysis.
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mined accordingly as de = df = dmd =
k0

k0+1
(N+1). This indicates that with larger k0,

BCoS-k0 can achieve higher diversities by setting larger local threshold. However, in

this case, the local decisions have missed detection probabilities Pmd,B ≈ k0γ
−1 with

−10 log10 k0 SNR loss and smaller false alarm probabilities Pf,B ≈ γ−k0 . The larger

missed detection probability Pmd will dominate the overall average error probabilities

performance Pe. Furthermore, instead of the diversity gain, the SNR losses for the

missed detection probabilities will dominate the overall average error probability Pe

at low-to-medium SNR.

4.2.3 Ternary Local Decision (TD)

The local decisions for TD are:

Di =































0 if 0 ≤ ‖ri‖2 < θl,1

♠ if θl,1 ≤ ‖ri‖2 ≤ θl,2

1 if ‖ri‖2 > θl,2 ,

(4.3)

where θl,2 > θl,1 are two local decision thresholds and ♠ means “not sure”. Then, the

“0” or “1” decisions2are sent to the fusion center for the global decision D ∈ {0, 1}.

2Note that the sensor will remain silent when the local decision is ♠ .
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Under this local decisions, the conditional probabilities under each hypothesis are:

P (Di = 0|H0) = α1 = 1− e−θl,1 ,

P (Di = ♠|H0) = α2 = e−θl,1 − e−θl,2 ,

P (Di = 1|H0) = α3 = e−θl,2 ,

P (Di = 0|H1) = β1 = 1− e−
θl,1
γ+1 ,

P (Di = ♠|H1) = β2 = e−
θl,1
γ+1 − e−

θl,2
γ+1 ,

P (Di = 1|H1) = β3 = e−
θl,2
γ+1 .

(4.4)

At the fusion center, Dis follow the trinomial distribution as:

P (D1, D2, . . . , DN |H0) = αn0

1 αN−n0−n1

2 αn1

3 ,

P (D1, D2, . . . , DN |H1) = βn0

1 βN−n0−n1

2 βn1

3 ,

(4.5)

where n0 = {the number of Di = 0}, n1 = {the number of Di = 1} and N is the

total number of cooperating local detectors. Accordingly, the sufficient statistics is

(n0, n1). Denoting R1 as the set of (n0, n1) to make global decision D = 1 and R0

vice versa, we have:

Pf =
∑

(n0,n1)∈R1

P (n0, n1|H0) ,

Pmd =
∑

(n0,n1)∈R0

P (n0, n1|H1) .

(4.6)

Based on Eqs. (4.4), (4.5) and (4.6), the optimum fusion rule can be obtained by

jointly optimizing Pe =
1
2
(Pf+Pmd) over θl,1, θl,2 and R1. However, not only that this

is mathematically intractable, the solution also does not provide any clear insights
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on the diversity-SNR tradeoff. As an alternative, we will first find the relationship

between fusions with TD and BD and then develop the fusion rule for cooperative

sensing with ternary local decisions (TCoS).

4.3 The Link between Fusions with BD and TD

It is worth noting that at the fusion center, BD has a one-dimensional sufficient

statistics set with n0+n1 = N while TD has a two-dimensional set with n0+n1 ≤ N .

We find that when the fusion center with TD makes a global decision based on only

one of n0 and n1, it is equivalent to the fusion with BD as the following:

Theorem 4.1 For cooperative sensing based on local ternary decisions with thresh-

olds θl,1 and θl,2:

1. If R1 = {(n0, n1) : n1 ≥ θt}, this TD fusion is equivalent to BD fusion with

local threshold θl,B = θl,2 and fusion threshold θf,B = θt;

2. If R0 = {(n0, n1) : n0 ≥ N − θt + 1}, this TD fusion is equivalent to BD fusion

with local threshold θl,B = θl,1 and fusion threshold θf,B = θt;

Proof. If R1 = {(n0, n1) : n1 ≥ ηt}, then:

Pf,t =

N
∑

n1=ηt

N−n1
∑

n0=0

N !

n0!(N − n0 − n1)!n1!
αn0

1 αN−n0−n1

2 αn1

3

=
N
∑

n1=ηt

N

n1!(N − n1)!
(1− α3)

N−n1αn1

3 ,
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and

Pmd,t=

ηt−1
∑

n1=0

N−n1
∑

n0=0

N !

n0!(N−n0−n1)!n1!
βn0

1 βN−n0−n1

2 βn1

3

=

ηt−1
∑

n1=0

N

n1!(N − n1)!
(1− β3)

N−n1βn1

3 .

This is equivalent to BT with ηl,B = ηl,2 and ηf,B = ηt.

If R0 = {(n0, n1) : n0 ≥ N + 1− ηt}, then:

Pf,t=

N−ηt+1
∑

n0=0

N−n0
∑

n1=0

N !

n0!(N−n0−n1)!n1!
αn0

1 αN−n0−n1

2 αn1

3

=

N−ηt+1
∑

n0=0

N

n0!(N − n0)!
αn0

1 (1− α1)
N−n0 ,

and

Pmd,t=
N
∑

n0=N−ηt+1

N−n1
∑

n1=0

N !

n0!(N−n0−n1)!n1!
βn0

1 βN−n0−n1

2 βn1

3

=

N
∑

n0=N−ηt+1

N

n0!(N − n0)!
βn0

1 (1− β1)
N−n0 .

This is equivalent to BT with ηl,B = ηl,1 and ηf,B = ηt.

4.4 TCoS Fusion Rule

With the relationship between BD and TD established in Theorem 4.1, we will

next develop the fusion rule for TCoS. In particular, with local sensing thresholds

θl,1 = k1θ
o and θl,2 = k2θ

o and k1 < k2, the corresponding sensing strategy is termed

as TCoS-k1-k2.

Recall that from Section 4.2.2, BCoS-k1 has a smaller diversity order. On the other

hand, BCoS-k2 achieves larger diversity but suffers from the SNR loss with the missed
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detection probability. Therefore, here we try to improve BCoS-k2 missed detection

performance by moving part of the decision region R0 to R1 while maintaining its

larger false alarm and hence the overall diversity.

With TCoS-k1-k2, the probabilities for local decisions are: α1 ≈ 1 − γ−k1, α2 ≈

γ−k1, α3 ≈ γ−k2 and β1 ≈ k1γ
−1, β2 ≈ (k2 − k1)γ

−1, β3 ≈ 1− k2γ
−1. Accordingly,

P (n0, n1|H0)≈αN−n0−n1

2 αn1

3 ∼γ−(k1N−k1n0+(k2−k1)n1), (4.7)

P (n0, n1|H1)≈βn0

1 βN−n0−n1

2 ∼γ−(N−k1). (4.8)

The false alarm probability can be then calculated as:

Pf =
∑

(n0,n1)∈R1

P (n0, n1|H0)

∼
∑

(n0,n1)∈R1

γ−(k1N−k1n0+(k2−k1)n1).

(4.9)

By Theorem 4.1, the decision region corresponding to BCoS-k2 is R1 = {(n0, n1) :

n1 ≥ N+1
k2+1

}, R0 = {(n0, n1) : n1 < N+1
k2+1

} and df,BCoS−k2 = k2
k2+1

(N + 1). In order

to reduce the missed detection probability which dominates the average error per-

formance, we want to increase the decision region of R1, or equivalently decrease

R0. At the same time, however, the false alarm diversity should be preserved.

From Eq. (4.7), if k1N − k1n0 + (k2 − k1)n1 ≥ k2
k2+1

(N + 1), or equivalently n0 ≤

(k2 − k1)n1 +
k1(k2+1)N−k2(N+1)

k2+1
, P (n0, n1|H0) will have a larger exponent of γ−1 than

df,BCoS−k2. Therefore, all points in R0 satisfying n0 ≤ (k2 − k1)n1 +
k1(k2+1)N−k2(N+1)

k2+1

can be moved into R1 without affecting the false alarm diversity according to (4.9).

66



As a result, the boundary between R1 and R0 of the resultant fusion rule is the line

n0 = (k2
k1
−1)n1+

k1(k2+1)N−k2(N+1)
k1(k2+1)

, which starts from (n0, n1) =
(

k1(k2+1)N−k2(N+1)
k1(k2+1)

, 0
)

and ends at (n0, n1) =
(

k2N−1
k2+1

, N+1
k2+1

)

where k2N−1
k2+1

+ N+1
k2+1

= N .

The decision region for TCoS-k1-k2 is illustrated in Fig. 4.1. The bold line is the

boundary between R0 and R1 for TCoS-k1-k2 while the dashed line is the boundary

corresponding to BCoS-k2.

Figure 4.1: The decision region for TCoS-k1-k2 with the points at the boundary belonging
to R1.

Compared with BCoS-k2, TCoS-k1-k2 will provide the same overall diversities

with de = dmd = df = N+1
k2+1

. Denoting ∆R = {(n0, n1) : 0 ≤ n1 < N+1
k2+1

, 0 ≤

n0 ≤ (k2 − k1)n1 +
k1(k2+1)N−k2(N+1)

k2+1
}, the difference between the missed detection

probabilities of TCoS-k1-k2 and BCoS-k2 is

∆Pmd=Pmd,TCoS−k1−k2−Pmd,BCoS−k2 =−
∑

∆R

βn0

1 βN−n0−n1

2 βn1

3 , (4.10)

and the difference between the false alarm probabilities of TCoS-k1-k2 and BCoS-k2
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is

∆Pf = Pf,TCoS−k1−k2 − Pf,BCoS−k2 =
∑

∆R

αn0

1 αN−n0−n1

2 αn1

3 . (4.11)

It should be noticed that ∆Pe = Pe,TCoS−k1−k2 − Pe,BCoS−k2 = 1
2
(∆Pmd + ∆Pf ) < 0.

Therefore, we obtain overall performance gain over BCoS-k2. This once again confirms

that TCoS not only keeps the diversity gain that captures high SNR performance but

also improves the SNR gain that characterizes the low-to-medium.

4.5 Simulations

Although it is possible to optimize k1 for any given k2 to obtain the maximum

performance gain of TCoS by the analytical expressions given in Section 4.4, the

complexity is high. Therefore, we opt to verify and demonstrate the performance

gain of TCoS over BCoS using some simple k1 and k2 values.
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Figure 4.2: TCoS-1-2 (solid) vs. BCoS-1 (dotted) and BCoS-2 (dashed) with N = 5.

To illustrate the performance gain of TCoS-k1-k2 over both BCoS-k1 and BCoS-

k2, we simulate TCoS-1-2 with 5 cooperating users and compare its performance with

68



BCoS-1 and BCoS-2 in Fig. 4.2. We see that BCoS-2 exhibit a higher diversity

than BCoS-1, but a worse performance at low SNR. Our proposed TCoS-1-2 not only

retains the higher diversity of BCoS-2 but also has better performance at low SNR.
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Figure 4.3: TCoS-1-2 (solid) vs. optimal TCoS by exhaustive search (dashed) with N = 5.
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Figure 4.4: TCoS-2.5-5 vs. BCoS-5 with N = 5.

In Fig. 4.3, the performance of our proposed TCoS-1-2 is compared with the

optimal TCoS with exhaustive search. It can be seen that our TCoS-1-2 only sacrifices

a little performance (≈ 1.5 dB) in exchange for the low-complexity closed-form local
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and global decision rules. In addition, we know that BCoS-N achieves the maximum

diversity but suffers from considerable SNR loss. Here, we compare the performance

of TCoS-2.5-5 and BCoS-5 in Fig. 4.4. It can be observed that TCoS-2.5-5 also

achieves the same full diversity (de = 5), but has about 2dB SNR gain. Together

with Fig. 4.2, it is confirmed that the overall SNR gain is obtained without losing

any false alarm diversity.

4.6 Concluding Remarks

In this chapter, we proposed cooperative sensing with ternary local decisions

(TCoS) to improve upon binary hard decisions (BCoS) by gaining SNR while main-

taining the same diversity. The link between the fusion with BD and TD has been

established and further used to determine the fusion rule for TCoS. The algorithm

developed in this chapter provides simple and closed-form expressions for both the

local decision thresholds and the fusion rule. The performance gain was also derived

analytically. Furthermore, simulations confirmed that, as the middle ground between

BCoS and SCoS, TCoS provides a practical yet effective solution for the inevitable

diversity-SNR tradeoff encountered by BCoS.
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CHAPTER 5

SMART GRID MONITORING USING SYNCHROPHASOR

MEASUREMENTS: STATE ESTIMATION WITH BAD DATA

5.1 Motivation

With synchronization from Global Positioning System (GPS) satellite signals,

direct, accurate and synchronized measurement of the voltage and current phasors in

the power system becomes feasible with phasor measurement units (PMU) [40]. PMUs

are widely installed in current power systems to form wide-area measurement systems

(WAMS) for better power grid monitoring. Among various objectives for WAMS,

wide-area state estimation (SE) is a very important component of the supervisory

control and data acquisition (SCADA) system and the energy management system

(EMS). The synchronized phasor measurements provided by PMUs can be beneficial

to the system state estimation process [16]. In conventional power systems, only the

real and reactive power measurements are available and the state estimate can only be

obtained from an iterative method [67]. With PMU measurements, the state estimate

can be obtained linearly [41].

While PMU measurements are expected to significantly improve SE accuracy,

there is little literature on SE from PMU measurements with bad data. Many just use

the largest residual removal (LRR) method in conventional SE (see e.g. [42, Chapter

7]). However, with the linear signal model enabled by PMU measurements, more
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sophisticated algorithms become feasible. In this chapter, we develop and analyze

several algorithms by explicitly incorporating the bad data into our system model.

To deal with the bad data, one can either estimate the locations first, or estimate their

locations and values simultaneously. With the former approach, the determined bad

data locations can be directly used to simply remove the contaminated measurements,

or they can facilitate the estimation of the bad data values and subtract them from

the measurements. We show that these will result in identical state estimators. Thus,

bad data removal is actually a simplified form of bad data subtraction with separate

location and value estimations.

Before proposing our algorithms for SE with bad data, we first show that the

traditional LRR method has no performance assurance when the data redundancy is

not enough. Then, we rewrite the joint bad data and state estimation problem into

a sparsity-regularized minimization problem (SRM), which is further transformed

into a compressive sensing problem facilitating application of various algorithms in

the literature [49]. This algorithm is trying to estimate the locations and values of

bad data simultaneously. Next, we propose the projection and minimization (PM)

algorithm to estimate the bad data location first and then remove those bad data.

Simulations are presented to compare these algorithms. Results show that our PM

algorithm provides the best performance among all, and that it perfectly locates the

bad data in the case of a single occurrence.

Notations: Bold capital letters denote matrices; bold lowercase letters denote column

vectors; A(i, :) and A(:, i) denote the i-th row and column of matrix A, respectively;
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A∗, A′ and A−1 denotes the conjugate, conjugate transpose and inverse of A, respec-

tively; Ip×p denotes a p × p identity matrix; ‖a‖n denotes the Ln-norm of vector a;

A(i, :) = [ ] indicates removal of the i-th row of matrix A.

5.2 System Model

With PMU measurements, the signal model is given by:

m =









mv

mi









=









I

Y









s+ e = Hs + b+ η (5.1)

where mv and mi are p voltage and q−p current synchronized phasor measurements,

respectively; s is the state of the power grid which contains the p bus voltage phasors;

Y is the admittance matrix which is determined by the power grid structure and

the transmission line parameters [1, Chapter 1]; e is the measurement error vector

composed of the measurement device noise η and possible high-magnitude bad data

b due to communication errors or equipment failures. Since communication errors or

equipment failures are rare, we expect b to be a sparse vector, i.e., ‖b‖0 ≪ p.

Without loss of generality, we assume entries of η follow the i.i.d. proper complex

Gaussian distribution with variance σ2. Then, assuming absence of bad data b, the

maximum likelihood estimator of the system state is the least-squares (LS) estimator

[41]: ŝML=ŝLS=(H ′H)−1H ′m. With knowledge of the noise variance σ2, bad data

presence can be readily detected by the χ2-test [42, Chapter 7], which declares bad

data occurrence when ‖HŝLS−m‖22/σ
2>χ2

1−α,2(q−p), where χ
2
1−α,2(q−p) is the tail value
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of 1 − α for χ2-distribution with 2(q − p) degrees of freedom and α is the detection

confidence level.

Once the bad data presence is detected, there are two ways to deal with them. One

can either start by determining locations of the bad data, or estimating their locations

and values simultaneously. With the former approach, the determined bad data

locations can be directly used to simply remove the contaminated measurements, or

they can facilitate the estimation of the bad data values which can be then subtracted

from the measurements. In the next section, we will first analyze and compare these

two options.

5.3 Removal or Subtraction?

Let Ib denote the bad data locations with |Ib| = k. The bad data vector becomes

b = Θbk where vector bk contains all k non-zero bad data entries from b and Θ=[I(:

, i1),. . . ,I(:, ik)] is the q × k selection matrix satisfying Θ′Θ = Ik. Then, the signal

model in Eq. (5.1) becomes:

m = Hs+Θbk + η (5.2)

To remove the k contaminated measurements, pre-multiply m with the (q−k)×q

bad data removal matrix Θ⊥ = (null(ΘT ))T , which evidently satisfies Θ⊥Θ = 0 and

ΘΘ′ +Θ′
⊥Θ⊥ = Iq×q. Accordingly, the state estimate based on bad data removal is

ŝR = argmins‖Θ⊥m −Θ⊥Hs‖22 = (H ′Θ′
⊥Θ⊥H)−1H ′Θ′

⊥Θ⊥m. To formulate the

state estimate based on bad data subtraction, one starts with a conditional estimate of

74



the bad data b̂(s) = Θ′(m−Hs) which comes from Θ′m = Θ′Hs+bk+Θ′η. Hence,

the state estimate after bad data subtraction can be obtained as: ŝS = argmins‖m−

Θb̂k(s)−Hs‖22. The objective function can be rewritten as: ‖(I−ΘΘ′)(m−Hs)‖22 =

‖Θ′
⊥Θ⊥(m − Hs)‖22 = ‖Θ⊥(m − Hs)‖22. As a result, ŝS = ŝR. Interestingly,

these estimators are also equivalent to the joint state and bad data estimator given

in [6, Eq. (32)]. The reason is that the oblique pseudo-inverse (H ′Θ′
⊥Θ⊥H)−1=

(H ′PΘ⊥

H)−1H ′PΘ⊥

solves the LS problem and PΘ⊥

is bad measurement removal.

The preceding analyses assume perfect knowledge of the bad data locations. How-

ever, when only the estimate Θ̂ is available, the removal-subtraction equivalence still

holds since the objective functions of both estimators will remain the same except

that Θ is replaced by Θ̂.

Due to this equivalence, we will not distinguish the bad data removal and sub-

traction algorithms in our ensuing analyses and comparisons.

5.4 State Estimation with Bad Data Presence

5.4.1 Largest Residual Removal (LRR)

Traditionally, the measurement with the largest residual is usually considered bad

and removed in power grid SE as described in Algorithm 1 [42]. However, as we will

show next, the largest residual location is not always that of the bad data even for

a single bad data occurence. Considering only a single bad data and the LS state
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estimator, the measurement residual is:

r = m−Hŝ = m−H(H ′H)−1H ′m

= (I −H(H ′H)−1H ′)m

= P⊥
Hm = P⊥

H(Hs+ e) = P⊥
He

where P⊥
H=I−H(H ′H)−1H ′. In the absence of additive noise (η = 0), we have

r=P⊥
Hb=P⊥

HΘbi=biP
⊥
H (:, i), where i is the bad data location. Then, with the LRR

algorithm, the bad data location will be determined as î = argmaxj ‖P
⊥
H(j, i)‖2. The

relationship between î and i relies on the property of P⊥
H .

By singular-value decomposition (SVD), H=UΣV , where U and V are q × q

and p× p orthogonal matrices, respectively and Σ =









Λp×p 0p×(q−p)

0(q−p)×p 0(q−p)×(q−p)









with

Λ = diag(λ1, λ2, . . . , λp) and λi being the singular values of H . Since rank(H) = p,

we know that ∀i, λi 6= 0. Then:

P⊥
H = I −H(H ′H)−1H ′

= I − (UΣV )(V ′Σ′U ′UΣV )−1V ′Σ′U ′

= I −U









Ip×p 0p×(q−p)

0(q−p)×p 0(q−p)×(q−p)









U ′

= U









0p×p 0p×(q−p)

0(q−p)×p −I (q−p)×(q−p)









U ′
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Accordingly, P⊥
H (j, i)=−

∑q
k=p+1U(j, k)U

∗(k, i). Notice that:

q
∑

k=1

U(j, k)U ∗(k, i)=



















1, for j = i

0, for j 6= i

due to the orthogonality of U . Then,

P⊥
H(i, j) =



















−1 +
∑p

k=1U(j, k)U ∗(k, i), for j = i

∑p
k=1U(j, k)U ∗(k, i), for i 6= j

.

When q ≫ p, we expect
∑p

k=1U(j, k)U ∗(k, i) to be small. Then, ‖P⊥
H (i,i)‖2≈1 and

‖P⊥
H (j,i)‖2≈0 for j 6= i. In this case, î = argmaxj ‖P

⊥
H(j, i)‖2 = i. However, when q

is not large enough, this argument obviously does not hold. Thus, we conclude that

LRR can not guarantee the performance unless the measurements are sufficiently

redundant.

Algorithm 1: Largest Residual Removal (LRR) [42]

Input: The measurement matrix H with size q × p and q > p, the PMU
measurements m with size q × 1, the noise variance σ2, the confidence
level α

Result: The state estimate ŝ

Initialization: ŝ = (H ′H)−1H ′m;
while ‖Hŝ−m‖22/σ

2 > χ2
1−α,2q do

Calculate the residual: r = m−Hŝ;
Find the largest residule index: î = argmaxi ‖r(i)‖2;
Bad date removal and parameter update:
H (̂i, :) = [ ], m(̂i) = [ ] and q = q − 1;
if r(H) = p then Update ŝ = (H ′H)−1H ′m;
else break;

end
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5.4.2 Sparsity Regularized Minimization (SRM)

Accounting for the sparsity of bad data b, the joint estimation of bad data and

state can be formulated as a sparsity regularized minimization problem as follows:

(ŝ, b̂) = argmin
(s,b)

(

‖m− b−Hs‖22 + λ · spar(b)
)

(5.3)

where spar(b) = ‖b‖0, but can be replaced with any other approximating sparsity

measures such as ‖b‖p with p ≤ 1.

With the conditional estimate ŝ(b) = (H ′H)−1H ′(m − b), Eq. (5.3) can be

rewritten as:

b̂=argminb(‖m−b−H(H ′H)−1H ′(m−b)‖22+λ spar(b))

=argminb
(

‖P⊥
H (b−m)‖22 + λ spar(b)

)

(5.4)

where P⊥
Hm is the residual defined in Section 5.4.1.

However, Eq. (5.4) does not facilitate direct adoption of existing sparsity reg-

ularized algorithm because P⊥
H is a square matrix. To deal with this, recall that

rank(P⊥
H )=q−p. Hence, by QR decomposition [22], we can obtainP⊥

H = Q









H⊥(q−p)×q

0p×p









,

where Q is an orthogonal matrix and H⊥H=0 since P⊥
HH=0. Then, we have

∥

∥P⊥
H(b−m)

∥

∥

2

2
=
∥

∥Q′
(

P⊥
H(b−m)

)
∥

∥

2

2
=

∥

∥

∥

∥

∥

∥

∥

∥









H⊥b

0









−









H⊥m

0









∥

∥

∥

∥

∥

∥

∥

∥

2

2

=‖H⊥(b−m)‖22. Thus, the
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problem defined in Eq. (5.4) can be reformulated as:

b̂ = argminb
(

‖H⊥(b−m)‖22 + λ spar(b)
)

(5.5)

where H⊥m=z can be interpreted as the syndrome in the channel decoding problem

[51]. Notice that Eq. (5.5) is essentially the compressive sensing formulation [5]. It

is well known that with l0-norm regularization, it is an NP hard problem to obtain

the optimal solution. However, plenty of algorithms are proposed in the literature

to find suboptimal solutions with reasonable complexity by using different sparsity

measures of b. Alternative forms of this problem also exist, which include the sparsity

constrained minimization and sparsity minimization with squared error constraint

[49].

Algorithm 2: Bad Data Estimation with Sparsity Regularized Minimization
(SRM)

Input: The measurement matrix H with size q × p and q > p, the PMU
measurements m with size q × 1, the noise variance σ2, the confidence
level α

Result: The state estimate ŝ

Initialization: ŝ = (H ′H)−1H ′m ;
if ‖Hŝ−m‖22 > χ2

1−α,2q then

H⊥ = (null(HT ))T ; syndrome: z = H⊥m

Find: b̂ = argminb
(

‖H⊥b− z‖22 + λ spar(b)
)

using algorithms for spectrum sensing problems;
Update the measurement: m = m− b̂;
Update the state estimation: ŝ = (H ′H)−1H ′m;
finish
else finish;
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5.4.3 Projection and Minimization

Algorithm 2 simultaneously estimates both the locations and values of the bad

data. However, one can also estimate the bad data location and values separately

and we have shown that with this strategy the location estimate alone dictates the

performance. Thus, we will develop an algorithm only to determine bad data locations

and remove them recursively based on the objective function in Eq. (5.5).

To locate the bad data one by one, we restrict ‖b‖0=1 at each step, i.e., b=bI(:, i),

then (b̂,̂i)=argmin(b,i)‖bH⊥I(:, i)−z‖22=argmin(b,i)‖bH⊥(:, i)−z‖22,where b̂(i) can be

found by projecting vector z onto H⊥(:, i) and the process is described in Algorithm

3. It is worth noticing that unlike existing LRR, with single bad data occurance, this

algorithm guarantees the correct bad data removal when noise is absent, since it is

equivalent to exhaustive search over all bad data positions in Eq. (5.2).

Algorithm 3: Projection and Minimization (PM)

Input: The measurement matrix H with size q × p and q > p, the PMU
measurements m with size q × 1, the noise variance σ2, the confidence
level α

Result: The state estimate ŝ

Initialization: ŝ = (H ′H)−1H ′m; ;
while ‖Hŝ−m‖22 > χ2

1−α,2q do
Estimate the bad data index:
H⊥ = (null(HT ))T ; syndrome: z = H⊥m

for i = 1 to q do

Calculate: b̂(i) = (H⊥(:, i))
′z/‖H⊥(:, i)

′‖22;
fi = ‖b̂(i)H⊥(:, i)− z‖22

end

î = argmini fi;
Bad data removal and parameter update:
H (̂i, :) = [ ], m(̂i) = [ ], and q = q − 1;
if r(H) = p then Update: ŝ = (H ′H)−1H ′m;
else break;

end
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5.5 Simulations

We use the IEEE 14-bus system in [62] for our simulations and the diagram is

drawn in Fig. 5.1. The noise variance is kept constant with per sample SNR of 20dB.

Among various sparsity measures and algorithms, here we use l1-norm with LASSO

algorithm [54] and l0-norm minimization algorithm [34]. Genie-aided solutions with

known bad data locations are also included as a reference.

Figure 5.1: IEEE 14-bus test system.

In Figs. 5.2 and 5.3, we simulate the case with 14 bus voltage and 14 injection

current measurements (q=2p) and the occurrence of a single bad measurement and 3

bad measurements, respectively. Clearly, the measurements are not redundant enough

for LRR to guarantee a good performance. In Fig. 5.2, PM is best and perfectly

identifies the single bad data as expected. Moreover, none of other algorithms is
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good even in this single bad data occurrence case. In Fig. 5.3 with 3 bad data, it can

be seen that the performance is ranked as Genie-Aid>PM>l0-SRM>LASSO-SRM.
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Figure 5.2: The state estimation performance for measuring the bus voltages and
injection currents with 1 bad data.
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Figure 5.3: The state estimation performance for measuring the bus voltages and
injection currents with 3 bad data.
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In Fig. 5.4, we increase the data redundancy by including all possible 68 mea-

surements, i.e., 14 bus voltage, 14 injection current and 40 line current measurements

(q>4p). Out of these, 4 bad measurements are randomly generated. The results

show that even with increased bad measurements, performance of all but LASSO is

significantly better than those in Figs. 5.2 and 5.3. This implies that in order to

improve the estimator performance, it is desirable to include as many measurements

as possible. However, LASSO has worse performance than in former cases, which

may be caused by the non-fatness of the 54× 68 regression matrix H⊥. On the other

hand, it is worth noticing that in this case, the measurement redundancy resulted in

pretty good performance with LRR.
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Figure 5.4: The state estimation performance for measuring the bus voltages, injection
currents and all line currents with 4 bad data.
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5.6 Conclusions

In this chapter, power grid state estimation algorithms using PMU measurements

with bad measurements were proposed. With bad data explicitly incorporated into

the estimation model, we showed that the conventional LRR does not have perfor-

mance assurance and developed several more sophisticated algorithms. To deal with

the bad data, one can estimate the bad data location and values either separately or

jointly. For the former approach, we established the equivalence between bad data

removal and subtraction which is a consequence of the fact that the oblique pseudo-

inverse [6] is a subtraction algorithm for a selection matrix. Then we developed the

projection and minimization (PM) algorithm. For the joint bad data location and

value estimation, we formulated a sparsity regularization minimization (SRM) prob-

lem and transformed it into a compressive sensing problem. Simulations on the IEEE

14-bus test system with different levels of measurement redundancy and bad data

occurrence are provided. Results showed that our PM algorithm has not only the

lowest complexity but also the best performance among existing competitors.
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CHAPTER 6

OPTIMAL LOCAL DETECTION FOR SENSOR FUSION BY LARGE

DEVIATION ANALYSIS

6.1 Motivation

Signal detection is a classical problem in applications including radar, wireless

sensor networks, wireless communication systems, cognitive radio spectrum sensing,

and so on. It will also have important applications in future power system for fault

diagnosis, event classification, and so on. To enhance performance, a fusion center

collects information from multiple local detectors and makes a global decision. Due to

the bandwidth constraint, the local detectors often make decisions first and transmit

the one bit decisions to the fusion center. Accordingly, the entire process is called

detection fusion or decision fusion [64].

In the pioneering work of Tsitsiklis on this problem [60], it has been shown that

while the fusion strategy can be easily obtained by the Neyman-Pearson (NP) lemma,

the selection of a local decision rule to optimize the global performance is intractable.

In the current literature, some work fixes the fusion rule and then obtains the optimal

local decision rule [58]; whereas others compare the fusion detection performance for

various local decision rules, including the locally optimal minimized average error

probability [14], the maximum decision output entropy [8] and the largest divergence

between the statistical distribution under different hypotheses [30, 21]. None of these
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detectors is optimum. Recently, some asymptotic analyses for detection fusion have

been reported in the literature. For example, [18] develops a fusion rule for channel

distorted decisions using a Chernoff exponent bound analysis. Similar analysis is

followed in [19] to obtain an asymptotically optimum fusion rule for an M-hypothesis

testing problem, and in [17] for non-centralized distributed fusion. However, these

papers focus only on designing the fusion rule, while the optimum local decision

strategy remains an open problem. In this chapter, our goal is to find an optimal

local decision strategy that optimizes the asymptotic global performance.

We will deal with a parallel fusion structure [65] and work with a binary hypothesis

testing problem. By large deviation analysis, we will optimize the local thresholds to

obtain the best global performance, asymptotically in the number of local detectors.

Compared with existing work in the literature, our method has a lower complexity

and guarantees the global optimal performance, asymptotically. Some interesting

properties of the optimal strategy will also be discussed. Then, with a specific example

of cooperative energy sensing, we will demonstrate the optimality of our proposed

algorithm.

This chapter is organized as follows: we first present the general signal model

for detection fusion in Section 6.2 and formulate the joint optimization problem in

Section 6.3. Then, we will present the error exponent expressions in Section 6.4 and

develop the asymptotically optimized local detection strategy accordingly in Section

6.4. Finally, we present a case study to compare performance under various local deci-

sion strategies in Section 6.6 and give concluding remarks in Section 6.7. Throughout
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the chapter, X ∼ CN (µ, σ2) denotes a random variable X following a proper complex

Gaussian distribution with mean µ and variance σ2; d ∼ Ber(p) denotes a Bernoulli

random variable; X ∼ Bin(N, p1) denotes a random variable X following a binomial

distribution; f(x) ∼ g(x) means that lim
x→+∞

f(x)

g(x)
= c where c is a constant.

6.2 System Model

Local detector 1

Local detector 2

Local detector N

Fusion

Center

...

...

Figure 6.1: System diagram for detection fusion.

The diagram for a detection fusion system is shown in Fig. 6.1. As depicted in this

figure, there is a common random signal source which follows either distribution f0

under hypothesis H0, or distribution f1 under hypothesis H1, where P (H0 true) = π0

and P (H1 is true) = π1 are the a priori probabilities of the hypotheses. Each local

detector will make its own local decision di ∈ {0, 1} based on its own observed signal

si. Then, a fusion center will collect all local decisions dis and make a global decision

d ∈ {0, 1} accordingly. It has been shown that in the case that the signals at local

decisions are dependent, the solution for optimal detection fusion is non-deterministic
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polynomial-time hard [61]. Therefore, in our analysis, we assume that the signals at

different detectors are independent, which is true in many real applications. Then, in

[60], it is proved that to obtain asymptotically optimal performance, all local detectors

should follow the same decision rule. Under this strategy, the dis are independent

and identically distributed.

To describe the distributions of the dis at the fusion center, we denote Pf,l =

P (di = 1|H0) as the local false alarm probability and Pd,l = P (di = 1|H1) as the local

detection probability. Then, (Pf,l, Pd,l) ∈ [0, 1]× [0, 1] is called the receiver operating

characteristic (ROC) curve. The local decision di follows a Bernoulli distribution with

Pf,l and Pd,l under hypothesis H0 and H1, respectively. At the fusion center:

P (d1, d2, . . . , dN |H0) = P
∑N

i=1
di

f,l (1− Pf,l)
N−

∑N
i=1

di ,

P (d1, d2, . . . , dN |H1) = P
∑N

i=1
di

d,l (1− Pd,l)
N−

∑N
i=1 di .

(6.1)

Accordingly, ds =

N
∑

i=1

di is the sufficient statistics and it follows a binomial distribu-

tion under each hypothesis.

6.3 Optimum Local and Fusion Decisions

In this chapter, we adopt the global average error probability as the performance

metric, i.e., Pe = π0P (d = 1|H0) + π1P (d = 0|H1). To obtain the best performance,

we want to find a local threshold and a corresponding fusion rule that minimizes Pe.
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The Bayesian detector will minimize Pe by implementing the likelihood ratio test [50]

π1P
ds
d,l(1− Pd,l)

N−ds

π0P
ds
f,l(1− Pf,l)N−ds

H1

R
H0

1 , (6.2)

and the corresponding minimized Pe can be calculated. Notice that as long as

(Pf,l, Pd,l) is known to the fusion center, the optimal fusion rule can be easily ob-

tained according to Eq. (6.2).

From Eq. (6.2), it is easy to verify that for any given local false alarm probability

Pf,l, the larger the local detection probability Pd,l is, the smaller the global average

error probability Pe will be. Therefore, at local detectors, the NP detector or equiv-

alently the maximum likelihood (ML) detector [50] should be adopted to achieve the

best performance:

f1(si)

f0(si)

H1

R
H0

L . (6.3)

However, this will only give an ROC curve (Pf,l, Pd,l) for the local detectors. How

to select the optimal point (P o
f,l, P

o
d,l) on the ROC of the NP detector according to

Eqs. (6.2) and (6.3) is usually a non-convex and mathematically intractable problem.

In addition, the optimization process involves the number of local detectors N , which

is not always available to local detectors.

In this chapter, we will use large deviation analysis to obtain the optimal local

decision strategy, i.e. (P o
f,l, P

o
d,l) to minimize the global average error probability Pe,

asymptotically in N .

89



6.4 Error Exponent Expressions

As introduced in Section 6.2, the sufficient statistic at the fusion center ds =

∑N
i=1 di follows a binomial distribution:

H0 : ds ∼ Bin(N,Pf,l) ,

H1 : ds ∼ Bin(N,Pd,l) .

(6.4)

Let the fusion threshold be Pf,lN < ηf = θFN < Pd,lN . Then by large deviation

analysis, the global error probabilities are asymptotically [4]:

Pf = P (ds ≥ θFN |H0) ∼ e−NE0 ,

Pmd = P (ds < θFN |H1) ∼ e−NE1 ,

(6.5)

where

E0 = θF log
θF
Pf,l

+ (1− θF ) log
1− θF
1− Pf,l

= DKL(θF ||Pf,l) ,

E1 = θF log
θF
Pd,l

+ (1− θF ) log
1− θF
1− Pd,l

= DKL(θF ||Pd,l) ,

(6.6)

and DKL(·) denotes the Kullback-Leibler divergence [10]. Accordingly, the overall

probability of error is given by:

Pe=π0Pf+π1Pmd∼π0e
−NE0+π1e

−NE1 ∼e−N min(E0,E1) (6.7)
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6.5 Asymptotically Optimal Local Decision

To minimize this global average error probability asymptotically, we need to max-

imize min(E0, E1). Hence, the problem becomes:

max
Pf,l,Pd,l,θF

min(E0, E1) (6.8)

It should be noticed that when Pf,l < θF < Pd,l, E0(θF ) is an increasing function of

θF and E1(θF ) is a decreasing function of θF . As a result, the maximum value of

min(E0(θF ), E1(θF )) is achieved when E0(θF ) = E1(θF ). According to Eq. (6.6),

θoF =
log

1−Pd,l

1−Pf,l

log
Pf,l

Pd,l
+ log

1−Pd,l

1−Pf,l

. (6.9)

According to Eqs. (6.8) and (6.9), the optimal local decision rule can be obtained

as follows:

(P o
f,l, P

o
d,l) = arg max

(Pf,l,Pd,l)
DKL(θ

o
F ||Pf,l) , (6.10)

where θof is parameterized by (Pf,l, Pd,l) according to Eq. (6.9).

Recall that for local detectors, we already have an NP detector ROC curve which

constrains (Pf,l, Pd,l) to lie on the ROC curve, at a point determined by the local

threshold. So, Eq. (6.10) can be interpreted as a search over the ROC curve to

find a point which leads to the maximum error exponent. Although (Pf,l, Pd,l) is

two-dimensional, it only has a one-dimensional degree of freedom, namely the local

threshold. This renders the optimization a one dimensional problem. In fact, under
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many signal models, the NP local detectors are in the form of a scalar sufficient

statistic compared to a single threshold and in this case Pf,l and Pd,l can often be

represented by this threshold analytically in closed form. Therefore, the global average

error exponent can be rewritten as a single-variable function. The objective function

DKL(θ
o
F ||Pf,l) is uni-modal in many scenarios and hence can be easily optimized by

line search techniques such as those in [9, Chapter 7].

Note that although Eq. (6.9) gives an asymptotically optimal fusion threshold,

the fusion center always uses an NP detector according to Eq. (6.2) to obtain the

best fusion performance.

Remarks:

1. Asymptotically, the optimal local decision strategy is independent of the total

number of sensors N , but only dependent on the signal model si under the

original hypotheses. This enables the global optimization even when the local

distributed detectors do not know the network size N . In fact, if the sensors

have sufficient computing resources, the local thresholds could be periodically

recomputed locally if the distribution of si changes over time.

2. Asymptotically, the optimal local decision strategy is independent of the a priori

probabilities. This is due to the fact that when N approaches infinity, the π0

and π1 terms in Eq. (6.2) will contribute very little to the likelihood ratio.
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6.6 Example: Energy Sensing

To illustrate our solution for the asymptotically optimum detection fusion, we

adopt the specific signal model for a cooperative energy sensing problem as an example

and show the performance comparisons.

6.6.1 Signal Model

In the energy sensing problem, the task is to determine whether there is a signal

transmitted over a certain channel (H1) or not (H0). Under Rayleigh fading and

additive white Gaussian noise, the normalized signal model for local detectors is [14]:

si|H0 = n ∼ CN (0, 1)

si|H1 = hx+ n ∼ CN (0, γ + 1)

(6.11)

where n is white Gaussian noise, h is a Rayleigh fading channel, x is the transmitted

signal and γ is the average signal to noise ratio (SNR). Under this signal model, the

NP detector is the energy detector:

‖si‖
2

H1

R
H0

η . (6.12)

Correspondingly, the local false alarm and detection probabilities are

Pf,l = e−η ,

Pd,l = e−
η

γ+1 .

(6.13)
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6.6.2 Numerical Results

To gain a better understanding of the detection fusion optimization problem, we

first plot in Fig. 6.2 the performance (Pe) surface vs. the local and fusion thresholds.

In this figure, the number of local detectors is N = 20. Evidently, there are 4 local

minima. This verifies our discussions of the non-convexity in Section 6.3. In addition,

the number of local minima will increase with N .
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Figure 6.2: The performance surface under local and fusion thresholds with N = 20.

For large deviation analysis, we plot the error exponent under different local de-

cision thresholds in Fig. 6.3. In this figure, it can be observed that with the energy

sensing signal model, the error exponent is a uni-modal function of the local threshold.

Therefore, the optimal local threshold can be easily found using a one-dimensional

line search algorithm.

The local thresholds for joint optimization by exhaustive search, and the thresh-

olds by large deviation analysis for several different per sensor SNR values are plotted
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vs. N in Fig. 6.4. It can be verified that as the number of local detectors increases,

the local thresholds obtained by the joint optimization will converge to the threshold

given in our large deviation analysis.
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Figure 6.3: Error exponent under different local thresholds. From bottom to top, the
per sensor SNR is γ = 0, 5, 10, 15, 20 dB.
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Figure 6.4: Local decision thresholds under joint optimization by exhaustive search
and large deviation analysis. From bottom to top, the per sensor SNR is γ = 0, 10, 20
dB.
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In Fig. 6.5, we compare the performance of the large deviation solution with exist-

ing ones, including the local average error probability minimization min(Pf,l+1−Pd,l)

[14], the decision output entropy maximization [8] with Pf,l = Pd,l and the mutual

information maximization between decision and hypothesis with max(I(H, di)) [21].

We also present the performance limit by optimizing the local thresholds via exhaus-

tive search. Note that in all cases, the fusion threshold is obtained according to Eq.

(6.2).

In Fig. 6.5, we plot the global average error probability at per sensor SNR γ = 15

dB as a function of the number of local detectors N . It can be observed that the

average error probability does decay exponentially with N as the large deviation anal-

ysis indicates. In addition, our proposed method approaches the optimized detection

fusion by exhaustive search very well and actually does not require N to be very large

to approach the optimal performance.
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Figure 6.5: Global average error probability under different local decision criteria at
per detector SNR γ = 15 dB as a function of the number of local detectors N .
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In Fig. 6.6, we plot the global average error probability performance at N = 8 as

a function of per sensor SNR. It can be seen that even with a quite small N in this

case, our proposed fusion rule has nearly the same performance with the exhaustively

optimized fusion rule. In addition, the performance has a faster decaying rate than

all other alternatives when the per sensor SNR increases.
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Figure 6.6: Global average error probability Pe under different local decision criteria at
N = 8 as a function of the per detector SNR.

6.7 Conclusions

In this chapter, large deviation analysis is used to derive the asymptotically opti-

mal local detection strategy for detection fusion. Asymptotically, the joint optimiza-

tion problem was simplified to a simple line search on an ROC curve. It was observed

that the asymptotically optimal local decision rule is independent of the number of lo-

cal detectors N and the a priori probabilities of the hypotheses. A cooperative energy

sensing problem was considered to demonstrate our proposed approach. Numerical
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results verify that our proposed method approaches the optimal local detection strat-

egy obtained by exhaustive search and has demonstrated better performance than

all other reported local decision alternatives at small to moderate N values, with no

additional information required at the local detectors.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this research, we first introduced the smart grid and highlighted the importance

of situational awareness. To gain better situational awareness, sensing, communica-

tions and monitoring of the smart grid are involved. To fulfill the various communica-

tion requirements of the smart grid, wireless communication is a very good candidate

for its simplicity and low cost [20]. However, wireless communication does have sev-

eral drawbacks. Firstly, the devices in wireless communications are usually driven

by batteries which can cause damage to the environment which works against the

green trend of the smart grid. Thus, we looked into green communication strategies

by selecting more battery efficient modulation schemes and utilizing possible cooper-

ative communication links. Secondly, wireless communications nowadays are running

out of spectrum resources. Investment in extra spectrum resources for smart grid

communications would counteract the low cost advantage of wireless communication.

Fortunately, cognitive radio, which accesses unused bands for existing licensed users

is a promising technique to solve this problem. In our work, we developed coopera-

tive spectrum sensing schemes from a diversity perspective to improve the cognitive

radio system performance and advance its availability for real applications. Then,

when basic sensing and communications are enabled in the smart grid, we looked into
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the monitoring of the power grid states utilizing the synchronized measurement from

PMUs. We developed and compared several algorithms to address the problem of

possible bad data occurrence. Higher layer activities in smart grid, such as power

grid control, protection, electric pricing, power flow schedule and so on, can be ben-

efited from our works. In addition, optimal sensor fusion technique under a general

system setup was developed in our work, which can be applied to specific smart grid

scenarios.

7.2 Future Works

7.2.1 State Estimation with Parameter and Topology Errors

For the monitoring of the power grid, we studied state estimation (SE), which is

a crucial component in the supervisory control and data acquisition (SCADA) and

energy management systems (EMS). We utilized the recently developed synchronized

measurement device, namely the phasor measurement unit (PMU) to make SE a linear

process which can be carried out much more efficiently than SE based on traditional

measurements. With this convenient linear model, several sophisticated bad data

processing techniques were developed. Our proposed projection and minimization

(PM) bad data removal scheme is fast, simple and has good performance. However,

besides bad data in the measurement, possible parameter and topology errors may

also occur [1, Chapters 7 and 8]. In our future work, we will develop algorithms to

detect and identify parameter and topology errors in the state estimation process.
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The possible coexistence of bad data in the measurements, parameter errors and

topology errors renders state estimation a very complicated process. We propose

to utilize the structure and properties of the data to distinguish different types of

errors. Traditionally, in the detection process, we only evaluate the residual r for the

entire model. Actually, finer detection can be made to verify the correctness of the

data or the model parameters and the structure. Assuming that the full redundancy

measurements are available, then the following finer detections can be made:

1. The agreement between voltage and current measurement: With full

redundancy measurements, the disagreement between the voltage and current

measurement can be detected. For any current measurements, m̃I = mI −

Y mV . An hypothesis test of m̃I indicates the agreement/disagreement be-

tween voltage and current measurements. If disagreement occurs, we can locate

suspicious bad measurements, parameter and topology errors.

2. KCL agreement: KCL states that the overall current of a nodes should sum

up to zero, i.e.,
∑

j

mI(ij) = 0. If disagreement occurs among current mea-

surements for KCL, then it should be caused by the bad measurements and the

corresponding suspicious bad measurements can be located.

3. KVL agreement: KVL states that the overall voltage drop within a loop

should sum up to zero, i.e.,
∑

l∈{Loop L}

Y lmI,l. If disagreement occurs among

current measurements for KVL, one can locate the suspicious bad measure-

ments, parameter and topology errors.
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By combining all these locations of suspicious bad measurements, parameter and

topology errors from the finer local tests, it is possible to determine the exact type of

error and develop the corresponding error correction mechanism.

7.2.2 Optimal Sensor Fusion with More Complicated Setup

In Chapter 6, we introduced the asymptotical optimal local detection for sensor

fusion by large deviation analysis. However, we were assuming a quite simple setup.

There are several ways to incorporate more complex setups:

1. The local detectors make multiple-bit decisions. In this case, there would be

multiple thresholds for local detectors, and the resultant statistics at the fusion

center would be multi-nomail. How to select the local thresholds would be a

challenge and interesting problem.

2. In our current work, we only deal with binary hypothesis testing problems. In

many applications, there might be multiple hypotheses under test. To find the

optimal local detection strategy in this scenario is also a possible future work.

3. In our current setup, we assume that the signal models for all individual sensors

are the same. However, in many applications, they observe signals with different

distributions even under the same hypothesis. For example, they might have

different distances from the signal sources, hence have different SNRs in their

received signals. How to make sensor fusion in this case is another interesting

and challenging problem.
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