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Abstract

Modeling the Upper Tail of the Distribution of Facial Recognition

Non-match Scores

In facial recognition applications, the upper tail of the distribution of non-match scores

is of interest because existing algorithms classify a pair of images as a match if their score

exceeds some high quantile of the non-match distribution. I construct a general model for the

distribution above the (1 − τ)th quantile borrowing ideas from extreme value theory. The

resulting distribution can be viewed as a reparameterized generalized Pareto distribution

(GPD), but it differs from the traditional GPD in that τ is treated as fixed. Inference for

both the (1 − τ)th quantile uτ and the GPD scale and shape parameters is performed via

M-estimation, where my objective function is a combination of the quantile regression loss

function and reparameterized GPD densities.

By parameterizing uτ and the GPD parameters in terms of available covariates, under-

standing of these covariates’ influence on the tail of the distribution of non-match scores

is attained. A simulation study shows that my method is able to estimate both the set of

parameters describing the covariates’ influence and high quantiles of the non-match distribu-

tion. The simulation study also shows that my model is competitive with quantile regression

in estimating high quantiles and that it outperforms quantile regression for extremely high

quantiles. I apply my method to a data set of non-match scores and find that covariates

such as gender, use of glasses, and age difference have a strong influence on the tail of the

non-match distribution.
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CHAPTER 1

Facial Recognition Motivation

Facial recognition is the identification or verification of a person from a still image or video

using a stored database of faces, and is used in law enforcement and surveillance, information

security, and entertainment (Zhao et al., 2003). Facial recognition problems can be separated

into identification or verification problems. In identification problems, an unknown face is

submitted and the system reports back the determined identity. In verification problems the

system must confirm or reject the claimed identity of the individual.

In both identification and recognition problems, facial recognition compares a query, an

image of a person being examined, to a target, an image of a known individual of interest.

The comparison of the two images is issued a score, with higher scores indicating a better

match between the query and target. If the score exceeds a certain value, which we will term

the “classification threshold”, then the target/query pair is labeled as a match.

To make a meaningful determination of a classification threshold, one needs to understand

the distribution of scores for target/query pairs known to be non-matches. Researchers have

extensive databases of images of known individuals from which they can create target/query

pairs of distinct individuals, and these can be subsequently scored providing draws from the

distribution of possible non-match scores. Of particular interest is the upper tail of this

distribution, as these are scores which indicate that the target/query pairs exhibit strong

similarities. The bulk of this distribution is of little interest.

Currently, the two most commonly used classification thresholds are the empirical .99 or

.999 quantiles of the non-match distribution. That is, the threshold is set so that the false

match rate is 1-in-100 or 1-in-1000.
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Figure 1.1 gives a heuristic representation of the decision making process. One can

imagine the facial recognition procedure as consisting of two distributions: the non-match

distribution, consisting of scores provided by pairs of images containing different subjects,

and the much smaller match distribution, consisting only of scores from pairs of images

containing the same subject. The mean of the match distribution should be higher than

that of the non-match distribution. The vertical line represents the classification threshold,

set so that the false match rate is .001. This classification threshold is chosen without taking

available covariate information into account.

The Match Decision Process

score

−2 0 2 4

match
non−match

Figure 1.1. The vertical line is the classification threshold, set at the .999
quantile of the non-match distribution.

1.1. The Role of Covariates

Understanding factors that influence algorithm performance has been an important focus

of some facial recognition work. To that end, both subject covariates and image covariates

have been collected, and their relationship with the algorithm have been studied. The earliest

2



exploration of covariate effects usually used dataset partitioning (Gross et al., 2001), while

more recent studies have used generalized linear mixed models (Beveridge et al., 2009). These

studies are often concerned with identifying ‘quality measures,’ first introduced by Grother

and Tabassi (2007), but adapted by (Beveridge et al., 2008) to represent covariates that are

‘predictive of (algorithm) performance.’ This is complicated by the fact that covariate effect

is often dependent upon the algorithm used, although determining which covariate effects are

consistent across algorithms has been studied (Givens et al., 2004; Lui et al., 2009; Givens

et al., 2013).

Beveridge et al. (2008) break the covariates of interest into two categories: subject and

image covariates. Subject covariates are specific to the person in the image, such as age,

gender, or race, whereas image covariates are specific to the image quality, such as focus or

size of the face. While usually only covariates that can be reliably and consistently measured

are recorded, the question of whether the covariate can be changed when the image is taken

is also a concern. Beveridge et al. (2008) calls these actionable covariates, and would include

factors such as the size of the face in an image, and whether a person is wearing glasses.

These are factors that can be controlled for in practical settings. Non-actionable covariates

include gender, race, and age.

The aforementioned covariate studies have all been concerned with the verification rate.

That is, they are concerned with the factors that lead to bigger or smaller similarity scores

for matched pairs of images. The exploration of covariate effects on the non-match pairs has

not been a focus.

It is important to stress that current algorithms do not make use of available covariate

information which is included in a target/query pair. Although the identities of the people in

3



the target/query pair are unknown, covariates associated with the images are known. Thus,

the overall non-match distribution is actually a mixture of a number of distributions given

covariates. The classification threshold is set using the overall non-match distribution in

most cases. This suggests that a situation such as that illustrated in Figure 1.2 is possible,

where the overall match and non-match distributions are broken down into those with target

images containing a male subject and those with target images containing a female subject.

A situation similar to the one in Figure 1.2 would suggest that certain covariate values are

more likely to result in false matches than others.

While there has been some exploration on the effect that the covariates have on choice

of threshold (O’Toole et al., 2012), a flexible model for the non-match distribution that uses

knowledge of the covariates has not yet been proposed. My primary aim is to develop such

a model, thereby understanding how covariates influence the tail of the resulting non-match

distribution.

1.2. Goals

The goal of this project is to model the upper tail of the non-match distribution given

covariates. I will use a model which borrows ideas from extreme value theory, whose primary

objective is to model the upper tail of a distribution. Unlike most extremes-based threshold

exceedance approaches, I model the tail of a distribution above the (1− τ)th quantile corre-

sponding to a fixed proportion of observations exceeding that quantile, where τ is chosen as

a level of interest by facial recognition researchers. Of particular interest is how covariates

influence both uτ and the tail of the distribution above this threshold. I adopt a model

for the distribution above the threshold which is a reparameterization of the GPD, and be-

cause this distribution is parametric, it allows one to interpret how covariates affect the tail.
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The Match Decision Process: Target Males

score

−2 0 2 4

match
non−match

The Match Decision Process: Target Females

score

−2 0 2 4

match
non−match

Figure 1.2. The vertical line is the classification threshold, set at the .999
quantile of the overall non-match distribution.

My approach will use all of the data to model uτ , but will only use exceedances over this

threshold for inference on the tail model. Inference for my model is more complicated than

traditional extremes studies because the threshold uτ is estimated rather than being fixed at

5



the outset, rendering standard likelihood-based approaches infeasible. In Chapter 2, I review

key concepts from extreme value theory. I present my model in Chapter 3, with Chapters 4

and 5 used to discuss my inference method via M-estimation. Chapter 6 and 7 will illustrate

the utility of my model with an extensive simulation study and application to a dataset of

non-match facial recognition scores, respectively.
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CHAPTER 2

A Brief Introduction to Extreme Value Theory

Extreme value theory is a branch of statistics that focuses on the unusually large (or

small) levels of a data set. The goal of an extreme value analysis is often to extrapolate

beyond the range of the data. For example, one might have 50 years of data, but need to

make an estimate of the magnitude of an event that occurs once every 100 years on average.

Extreme value theory is commonly used in fields such as hydrology, atmospheric science,

finance, and insurance, where such rare events can have tremendous impact. Models in

extreme value theory are derived using asymptotic arguments, of which there are two major

approaches: the block maxima approach or the threshold exceedance approach.

2.1. Block Maxima Approaches

Classical extreme value theory focuses on the behavior of

Dn = max{Y1, . . . , Yn},

where Y1, . . . , Yn are independent random variables with common distribution function F .

The distribution of Dn is F n, but this is not helpful in practice if the distribution function F

is unknown. While it might be possible to estimate F from observed data, small discrepancies

in the estimate can lead to substantial discrepancies for F n. Classical statistical methods

for extremes treat F as unknown and estimate models of F n using only block maxima data.

That is, a block length is selected (like a year), the maximum of each block is extracted, and

a model is fit only to this subset of block maxima.

7



2.1.1. The Extremal Limits. A result similar to the central limit theorem, which

states that a normalized sample mean converges to a Gaussian distribution, is used to de-

scribe the limiting behavior of block maxima. The renormalization

(1)
Dn − bn
an

as n → ∞ is considered, where an and bn are sequences of constants such that an > 0.

Beirlant et al. (2004) describe this problem as two-fold: all possible limiting distributions of

(1) must be determined and the distributions F for which there exist sequences an and bn

that lead to a limiting distribution must be categorized.

The limiting distributions problem has been solved by Fisher and Tippett (1928) and

Gnedenko (1943). The three-types theorem (alternately called the extremal types theorem

in Coles (2001)) states that if there exist sequences of constants {an > 0} and {bn} such that

(2) P

(

Dn − bn
an

≤ z

)

d
−→ Gξ (z) as n→ ∞,

where Gξ is a non-degenerate distribution function, then Gξ belongs to one of three different

families: the Gumbel, the Fréchet, or the Weibull. These three types of extreme value

distributions are the only possible limits for distributions of the form given in (1). Thus,

just as the central limit theorem states that if Y has a finite 2nd moment, then its suitably

renormalized sample mean will converge to a Gaussian, the three-types theorem states that

a renormalized maximum must converge to a Gumbel, Fréchet, or Weibull.

The Gumbel family, defined for all real numbers, has cumulative distribution function

(3) Gξ (z) = exp

(

− exp

[

−
z − b

a

])

,
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where a and b are scale and shape parameters, respectively, such that a > 0. The Fréchet

family has cumulative distribution function

(4) Gξ (z) =



















0, z ≤ b

exp
(

−
(

z−b
a

)−α
)

, z > b

.

In addition to scale and location parameters, the Fréchet has shape parameter α, where α

must be positive. The cdf for the Weibull family is

(5) Gξ (z) =



















exp
(

−
(

− z−b
a

)α)
, z < b

1, z ≥ b

,

where α is once again a shape parameter restricted to positive values. These three families

can be combined into a single family so that

(6) Gξ (z) = exp

(

−

(

1 + ξ
z − b

a

)− 1

ξ

)

,

with shape parameter ξ. The Gumbel family is interpreted as the limit of (6) as ξ → 0.

The second part of the problem described by Beirlant et al. (2004) is the domain of

attraction problem. This is concerned with determining which of the three extremal types

will be the limiting distribution if Y follows a specific distribution F . For example, the

uniform distribution is in the Weibull domain of attraction. That is, if Y1, . . . , Yn follow a

uniform distribution, then ∃ {an > 0} and {bn} such that the limiting distribution of (1)

is Weibull. Other distributions with bounded upper tails fall in the Weibull domain of

attraction, so that a ξ in (6) is negative. Light tailed distributions, such as the Gaussian and
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gamma distributions, are in the Gumbel domain of attraction with ξ = 0, whereas heavy

tailed distributions such as the t, F , and Pareto distributions are in the Fréchet domain of

attraction with ξ > 0.

2.1.2. Generalized Extreme Value Distribution. The three types of limits dis-

cussed in Section 2.1.1 correspond to the different forms of tail behavior for F . The earliest

applications of the three-types theorem saw practitioners adopting one of the three families

as the limiting distribution, and then estimating the relevant parameters of that distribution.

This method is not ideal, as the choice of limiting family is accompanied by some uncer-

tainty. However, the Gumbel, Fréchet, and Weibull families of the three-types theorem can

be combined into a single family have models having common distribution function. This is

known as the generalized extreme value (GEV) distribution.

The GEV distribution G with location parameter µ ∈ (−∞,∞), scale parameter σ̃ > 0,

and shape parameter ξ ∈ (−∞,∞) defined on the set {z : 1 + ξ (z − µ) /σ̃ > 0} is

(7) GEV (z;µ, σ̃, ξ) =



















exp
(

−
(

1 + ξ z−µ
σ̃

)− 1

ξ

)

, ξ 6= 0

exp
(

exp
(

− z−µ
σ̃

))

, ξ = 0

.

The shape parameter ξ determines which of the three families of limiting distributions is

used: ξ > 0 corresponds to the Fréchet family, ξ < 0 corresponds to the Weibull family, and

ξ = 0 corresponds to the Gumbel family. Thus, the three-types theorem says

(8) P

(

Dn − bn
an

≤ z

)

d
−→ GEV (z) as n→ ∞.

10



Figure 2.1 shows the behavior of the GEV under three different shape parameters, each

corresponding to a different limiting distribution.
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Figure 2.1. Plot of different GEVs. Each has u = 0 and σ = 1.

If n is large enough, then GEV (z) is an approximation of (1), so that

(9) P

(

Dn − bn
an

≤ z

)

≈ exp
(

− (1 + ξz)−
1

ξ

)

.

This can be used to determine an approximation of the distribution of Dn. Let z
∗ = anz+bn.

Then

(10) P (Dn ≤ z∗) ≈ exp

(

−

(

1 + ξ
z∗ − bn
an

)− 1

ξ

)

.

By treating an as the location parameter µ and bn as the scale parameter σ̃, the GEV can

be used as an approximate distribution of the Dn. In turn, the GEV can be used to fit a

series of block maxima.

2.1.3. Statistical Practice With GEV. The GEV parameters are traditionally es-

timated using either numerical maximum likelihood methods or L-moments. The GEV

11



approach lends itself well to the estimation of return levels, which are extreme quantiles of

the distribution of the (annual) maximum. Because of this, the block maxima approach is

popular in environmental statistics.

2.2. Traditional Threshold Exceedance Methods

The block maxima approach has a weakness in that it discards many of the data points,

some of which might be useful for describing extreme behavior. The block maxima approach

is particularly problematic if several of the largest values are contained in the same block. The

determination of the appropriate block size n can also cause problems. The block size choice

represents a bias-variance trade-off so commonly seen in statistics: a block too small can

result in the GEV approximation being poor, leading to bias in estimation and extrapolation;

block size too large gives few maxima, leading to larger variance of the estimator, and

consequently greater parameter uncertainty. Although the bias-variance trade-off remains,

threshold based methods can be used to reduce the issue of wasting large values.

Let Y1, Y2, . . . be a sequence of i.i.d. random variables having distribution function F . The

peaks over threshold method considers the Yi exceeding some high threshold u as extreme

events. While the distribution of threshold exceedances is known if F is known, this is not

the case in practical applications. Thus, approximations that are broadly applicable for high

values of the threshold are used, and asymptotic results lead to the on the generalized Pareto

distribution.

2.2.1. The Generalized Pareto Distribution. Pickands III (1975) and Balkema

and De Haan (1974) showed that if a distribution is in the domain of attraction of the

GEV, then the distribution of exceedances above a threshold u converges to a generalized

Pareto distribution (GPD) as u→ y+, where y+ is the upper endpoint of the support of the

12



distribution. The GPD has a distribution given by

(11) G(y; σu, ξ) =















1−
(

1 + ξ(y−u)
σu

)− 1

ξ

, ξ 6= 0

1− exp
(

−y−u
σu

)

, ξ = 0

,

where σu > 0 and depends on u, and ξ ∈ (−∞,∞). G has support y ≥ u when ξ ≥ 0

and u ≤ y ≤ u − σu/ξ when ξ < 0. Additionally, the probability of a given observation

exceeding the threshold u is denoted by τu, and this additional parameter is needed to

calculate unconditional high quantiles.

The GPD exhibits a threshold stability property, in that once a GPD has been established

for exceedances above a threshold u, the exceedances above all thresholds greater than u

will also follow a GPD. That is, if [Y |Y > u] is distributed GPD(σu, ξ), then [Y |Y > u0] for

u0 > u is distributed GPD(σu0
, ξ), where σu0

= σu + ξ (u0 − u).

The GPD and GEV are closely related. The parameters of the GPD are uniquely deter-

mined by those of the associated GEV. In particular, the shape parameter ξ is unchanged

between the two, and the scale parameter of the GPD is such that σu = σ̃+ ξ (u− µ). Since

the shape is unchanged, different values of ξ determine the nature of the GPD’s tail. Positive

shape indicates a heavy tail, negative shape a bounded tail, and shape of 0 an exponentially

decaying tail. Figure 2.2 shows the tail behavior of the GPD under different shape parameter

values.

Given an i.i.d. sample of size n, traditional threshold exceedance methods proceed by

determining a threshold u above which a GPD approximation is reasonable. Only data

exceeding this threshold are used to estimate σu and ξ, and τu is estimated by the observed

proportion of exceedances.
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Figure 2.2. Plot of different GPDs. Each has u = 0 and σ = 1.

2.2.2. Threshold Selection. Selecting an appropriate threshold is both important

and difficult. If a chosen threshold is too low, then the GPD approximation will be poor,

and estimates of high quantiles may be biased. If a chosen threshold is too high, then

parameter estimates will have high variability due to inadequate sample size. Thresholds

are commonly chosen using graphical methods such as mean exceedance plots and parameter

stability plots, (Coles, 2001, Section 4.3.1). However, threshold selection remains subjective

and imprecise.

Two types of diagnostic plots are often used for threshold selection. Figure 2.3 shows

the mean exceedance plot (with 95% confidence intervals) for the data set of daily rainfall

accumulations at a single location in south-west England, which is part of a larger data

set detailed in Coles and Tawn (1996). If the distribution above a threshold u is exactly

GPD, then the true mean exceedance E [X|X > u] is a linear function of u. Empirical mean

exceedance plots are therefore used to determine a u above which the mean exceedances

appear to be linear and the GPD approximation is appropriate. Parameter stability plots

for the same data set are given in Figure 2.4. The modified scale parameter is σ∗ = σu − ξu.

The shape and modified scale parameter should both be constant above u0 if the GPD

14



approximation is appropriate. When evaluating this data set, Coles (2001, Section 4.3.1)

suggests that the mean exceedance plot appears to curve from u = 0 to about u = 30 before

displaying a linear relationship until about u = 60. In my opinion, any curvature between

u = 5 and u = 30 is unclear. I do agree that there is an approximately linear pattern between

u = 30 and u = 40, but I find such a pattern occurring between u = 40 and u = 60 to be

far more questionable. Meanwhile, the stability plots suggest that both the modified scale

and shape parameters are constant for thresholds between u = 0 and u = 40. Taking both

the mean exceedance and threshold stability plots into account suggest that a threshold of

between 30 and 40 would be appropriate.
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Figure 2.3. Mean exceedance plot for daily rainfall.

Figures 2.5 and 2.6 are the mean excess and stability plots for surge heights at a single

location off south-west England (Coles, 2001, Example 1.10, Section 1.2). It is somewhat

easier to see the desired patterns in these plots, but threshold selection is still imprecise.

The mean exceedance plot shows a linear relationship between about 0.1 and 0.3. The
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Figure 2.4. Stability plots for daily rainfall.

stability plots show that both the shape parameter and the modified scale parameter are

fairly constant between about 0.1 and 0.3. Therefore, a threshold of between 0.1 and 0.3

would seem appropriate here.
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Figure 2.5. Mean exceedance plot for surge heights.
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Figure 2.6. Stability plots for surge heights.

Motivated by the subjectivity of threshold selection methods, there has been some work

to develop automated threshold selection methods, though these have thus far failed to

replace the graphical methods. Guillou and Hall (2001) designed a method that uses the

Hill estimator (Hill, 1975). Xiangxian and Wenlei (2009) created an algorithm for estimating

the threshold that attempts to minimize the MSE while also using a Kolmogorov-Smirnov

statistic to check if the GPD approximation fits the empirical distribution of excesses well.

Bootstrap methods that attempt to minimize the MSE have been proposed by Caers and

Dyck (1998) and Danielsson et al. (2001).

Alternative automated threshold selection methods, such as those of Behrens et al. (2004),

Tancredi et al. (2006), and MacDonald et al. (2011), model the data below the threshold by

fitting a parametric or more flexible model to the bulk of the distribution while fitting a GPD

or other extreme value model above the threshold. As extremes methods wish to “let the tail

speak for itself”, a concern of any approach which uses non-extreme data is that the data

in the bulk of the distribution could contaminate tail inference. These automatic threshold
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selection methods are somewhat related to some of the approaches I used in modeling the

upper τth proportion of a distribution, though my inference approach differs in that τ is

fixed. As such, these methods will be revisited in Section 4.1.1.

2.2.3. Parameter Estimation. Once a proper threshold has been selected, the pa-

rameters of the GPD can be estimated. Numerical maximum likelihood is a commonly used

option, as analytical maximization is not possible. Since maximum likelihood estimation

requires a fixed set of data, this method requires that the threshold is selected before esti-

mation, and the GPD is fit only to observations exceeding the threshold. If the threshold is

not chosen before estimation, the exceedances are no longer fixed. This distinction will be

important in Chapter 4.

An alternative to maximum likelihood estimation is the method of probability-weighted

moments (PWM), first introduced by Hosking and Wallis (1987), though PWM implicitly

assumes ξ < 1. Furthermore, the PWM method may result in estimates inconsistent with

the observed data. This can occur if ξ < 0 if some of the observations fall above the estimate

of the right endpoint. It has been suggested that PWMmay outperform numerical maximum

likelihood in cases of small sample size (Hosking and Wallis, 1987). Coles and Dixon (1999)

respond that if a penalty similar to the assumption that ξ < 1 is applied, maximum likelihood

is competitive with PWM. In the simulation study in Chapter 6, I will impose a penalty

similiar to Coles and Dixon (1999).

2.2.4. Point Process Characterization. The threshold exceedances can also be

modeled using a point process characterization. Let Y1, . . . , Yn be independent random

variables with common distribution F such that equation (2) holds. Then the sequence of

18



point processes

(12) Nn =

{(

i

n+ 1
,
Yi − bn
an

)

; i = 1, . . . , n

}

,

for an and bn appropriately chosen as in Section 2.1.1, converges to a Poisson process with

intensity measure ν given by

ν ([t1, t2]× [y,∞)) = (t2 − t1)

(

1 + ξ

(

y − µ

σ̃

))− 1

ξ

,

for t1 < t2.

The point process representation is advantageous in that is uses the GEV parameteriza-

tion. Thus, all parameters are invariant to the threshold, whereas in the GPD representation,

scale is dependent on threshold. Furthermore, the threshold exceedance rate forms part of

the inference in the point process characterization. One of the advantages of the GPDτ

model that I will develop in Chapter 3 is that its parameters will not be functions of uτ .

2.2.5. Use of Covariates. When covariate information is available, the data are no

longer identically distributed across different covariate values. Regression methods for ex-

tremes allow the characteristics of the tail to change with covariates. Several studies have

employed models where the shape and scale parameters of the generalized Pareto distribution

vary with covariates (Beirlant et al., 2004, Section 7.4). It is less common for the threshold

to vary with covariates in traditional methods. If it is desired that the threshold vary with

covariates, the point process characterization detailed by Smith (1989) can be used.
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Coles (2001, Section 7.6) suggests using the point process setting over a threshold ex-

ceedance model when working with time-varying thresholds, such as in the Wooster temper-

ature data shown in Figure 2.7. This data consists of daily minimum temperatures (degrees

Fahrenheit) in Wooster, Ohio for 1983 through 1987. A strong seasonal effect is apparent in

Figure 2.7, and Coles (2001, Section 7.7) suggests using a threshold that gives an approxi-

mately uniform rate of exceedances over the course of the year, so that the threshold also

varies with season.
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Figure 2.7. Wooster temperature data with time-varying threshold.
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2.3. The Role of Extreme Value Theory in Facial Recognition

Extreme value theory has been used in some biometric recognition problems. Daugman

(2006) uses the GEV as a model for the non-match distribution for iris comparisons. In this

application, k different rotations of the same eye are compared to irises in a database. Only

the best of these k rotations is kept in the non-match distribution. Shi et al. (2008) recognize

that the tails of both the non-match and match distributions in a biometric system should

follow a GPD. They choose a GPD threshold using a mean excess plot and fit a GPD tail

to fingerprint comparison data.

Scheirer et al. (2010) theorizes that when comparing a single query image to all possible

targets, the sampling of the top n similarity scores will result in a GEV. They attempt

to justify the use of the method of block maxima to model the top n similarity scores by

arguing that each of these top n scores is “likely to have been sampled from the extreme of

their underlying portfolio,” defining each portfolio as an independent subset of the overall

non-match distribution. Since the independence assumption necessary for the three-types

theorem to hold is suspect, the authors argue in Scheirer et al. (2011) that the maxima of

the portfolios are exchangeable random variables, and thus the three-types theorem holds

following Berman (1962). The fitted GEV is used to determine if the largest similarity score

is an outlier, which would suggest it belongs in the match distribution, ultimately using the

information gained to compare the performance of different algorithms.
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CHAPTER 3

A New Model for the Tail Above the (1− τ )th

Quantile

In this chapter, I develop the GPDτ distribution, a model for the upper τth proportion

of a distribution. Because my aim is to model the upper tail corresponding to a fixed

proportion τ , my approach cannot be viewed in the usual context of extreme value theory.

Nevertheless, my argument justifying GPDτ borrows ideas from extremes. In particular, the

classical development of the GPD from the assumption that the distribution is in the domain

of attraction of the GEV provides the framework for my model. For the GPD approximation

to be valid, the fixed τ must be relatively small. In practice, τ would likely need to be less

than 10%. Furthermore, the choice of τ has implications on how far into the tail one could

make practical inference. The formal development follows.

Recall that the three-types theorem (Fisher and Tippett, 1928; Gnedenko, 1943) states

that as n→ ∞,

P n

(

Y − bn
an

≤ y

)

→ exp
[

− (1 + ξy)−
1

ξ

]

,

as stated in (9). Assuming n is fixed and large enough for the above convergence to imply

approximate equality, then for z a high quantile of Y ,

nP (Y > z) ≈

(

1 + ξ
z − bn
an

)− 1

ξ

.

As long as this approximation is appropriate for uτ , then

nP (Y > uτ ) = nτ ≈

(

1 + ξ
uτ − bn
an

)− 1

ξ

.
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Treating the approximation as an equality and solving for bn yields bn = uτ−an/ξ
[

(nτ)−ξ − 1
]

so that for z > uτ ,

nP (Y > z) ≈

(

ξ
z − uτ
an

+ (nτ)−ξ

)− 1

ξ

.

Conditioning on Y > uτ returns

P (Y > z|Y > uτ ) =
nP (Y > z, Y > uτ )

nP (Y > uτ )
=

(

ξ z−uτ

an
+ (nτ)−ξ

)− 1

ξ

nτ
.

Now assume (as in statistical practice) that n is fixed and define σ = ann
−ξ, which allows

n to be eliminated, so that

(13) P (Y > z|Y > uτ ) =
1

τ

(

ξ
z − uτ
σ

+ τ−ξ

)− 1

ξ

.

I will refer to the conditional distribution given in (13) as the GPDτ , and its density is given

by

(14) gτ (z; uτ , σ, ξ) =
1

τσ

(

ξ
z − uτ
σ

+ τ−ξ

)− 1

ξ
−1

for z ≥ uτ when ξ ≥ 0 and uτ ≤ z ≤ uτ − στ−ξ/ξ when ξ < 0. Importantly, the scale

parameter in (13) and (14) does not depend on the threshold. For ξ = 0, both (13) and (14)

should be interpreted as limits just as with the standard GPD.

Because the scale and threshold parameters are independent in GPDτ , σ is not equivalent

to the scale of a standard GPD with the same threshold. However, σ can be used to find
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the scale in the corresponding GPD. Let [Y |Y > uτ ] ∼ GPDτ (uτ , σ, ξ). Then, using (13),

P (Y > z|Y > uτ ) =
1

τ

(

ξ
z − uτ
σ

+ τ−ξ

)− 1

ξ

=

(

1

τ−ξ

)− 1

ξ
(

ξ
z − uτ
σ

+ τ−ξ

)− 1

ξ

=

(

ξ
z − uτ
στ−ξ

+ 1

)− 1

ξ

.

Let σ0 = στ−ξ. Then,

(15) P (Y > z|u > uτ ) =

(

ξ
z − uτ
σ0

+ 1

)− 1

ξ

.

Since (15) is the GPD cumulative distribution function given in (11), then [Y |Y > uτ ] ∼

GPD
(

uτ , στ
−ξ, ξ

)

.

The GEV can be shown to be the class of limiting distributions of the maximum of

i.i.d. random variables as block size increases. The GPD is the limiting distribution of

threshold exceedances as the threshold approaches the upper tail. Although GPDτ does not

have a similar asymptotic justification, it is nevertheless sensible to assume that it is a good

approximation of the tail for sufficiently small τ . Furthermore, it has the benefit of being a

general model for the tail, requiring only that the underlying distribution is in the domain

of attraction of the GEV. Thus, GPDτ can be used to model the tail of a distribution as

long as τ is suitably small.

3.1. Threshold Stability

Notably, a version of the threshold stability property characterized by the generalized

Pareto distribution is exhibited by GPDτ . Let Y be a random variable. Consider a fixed τ
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such that P (Y > uτ ) = τ . Assume [Y |Y > uτ ] ∼ GPDτ (uτ , σ, ξ), so that for y > uτ ,

P (Y > y|Y > uτ ) =
1

τ

(

ξ
y − uτ
σ

+ τ−ξ

)− 1

ξ

by (13). Let τ ∗ < τ . Consider uτ∗ such that P (Y > uτ∗) = τ ∗, indicating that uτ < uτ∗ .

Then,

P (Y > y|Y > uτ∗) = P (Y > y|Y > uτ∗ , Y > uτ )

=
P (Y > y, Y > u|Y > uτ∗)

P (Y > uτ∗ |Y > uτ )

=
P (Y > y|Y > uτ )

P (Y > uτ∗ |Y > uτ )
.

Thus, using (13),

P (Y > y|Y > uτ∗) =
1
τ

(

ξ y−uτ

σ
+ τ−ξ

)− 1

ξ

1
τ

(

ξ uτ∗−uτ

σ
+ τ−ξ

)− 1

ξ

=

(

ξ y−uτ

σ
+ τ−ξ

ξ uτ∗−uτ

σ
+ τ−ξ

)− 1

ξ

=

(

ξ
(

y−uτ∗

σ
+ uτ∗−uτ

σ

)

+ τ−ξ

ξ uτ∗−uτ

σ
+ τ−ξ

)− 1

ξ

=

(

ξ y−uτ∗

σ
+ ξ uτ∗−uτ

σ
+ τ−ξ

)− 1

ξ

(

ξ uτ∗−uτ

σ
+ τ−ξ

)− 1

ξ

.

Now, let

(16) τ ∗ =

(

ξ
uτ∗ − uτ

σ
+ τ−ξ

)− 1

ξ
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so that

P (Y > y|Y > uτ∗) =
1

τ ∗

(

ξ
y − uτ∗

σ
+ τ ∗−ξ

)− 1

ξ

.

Notice that [Y |Y > uτ∗ ] ∼ GPDτ∗ (uτ∗ , σ, ξ) based on (13). Furthermore,

P (Y > uτ∗) = P (Y > uτ∗ |Y > uτ )P (Y > uτ )

=
1

τ

(

ξ
uτ∗ − uτ

σ
+ τ−ξ

)− 1

ξ

τ

=

(

ξ
uτ∗ − uτ

σ
+ τ−ξ

)− 1

ξ

,

and by (16),
(

ξ
uτ∗ − uτ

σ
+ τ−ξ

)− 1

ξ

= τ ∗.

Therefore, if P (Y > uτ ) = τ and [Y |Y > uτ ] ∼ GPDτ (uτ , σ, ξ), then

[Y |Y > uτ∗ ] ∼ GPDτ∗ (uτ∗ , σ, ξ) where P (Y > uτ∗) = τ ∗.

In the next chapter, I develop inference methods for the GPDτ parameters uτ , σ, and ξ.

Inference for uτ will require more than just the density in (14), as likelihood methods are

unsuited for estimation of the parameters of GPDτ .
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CHAPTER 4

Parameter Estimation

Given a set of observations, fitting the model from Chapter 3 would entail obtaining

estimates for the parameters uτ , σ, and ξ. One estimation method used in traditional

extremes threshold exceedance modeling is (numerical) maximum likelihood. Recall that a

sample density considered as a function of the parameters for fixed observations is considered

a likelihood (Lehmann and Casella, 1998, Section 6.3). For traditional GPD modeling, once

the threshold is selected, the data exceeding the threshold are fixed and the generalized

Pareto density can be used to construct a likelihood. Such an approach cannot be used with

the density given in (14) as uτ is a parameter and the data exceeding this threshold is not

fixed. Thus, an alternative estimation method is needed.

A method that uses all data, both above and below uτ , is needed to estimate uτ . However,

it is important that the data below uτ does not influence the shape and scale parameters

in GPDτ . Thus, a piece in addition to GPDτ is necessary in order to properly estimate all

three parameters.

4.1. Unsuccessful Attempts to Estimate uτ

The biggest difference between estimation here and in the traditional threshold ex-

ceedance setting is that uτ must be estimated. My attempt to develop an objective function

that could be used to accurately estimate u was met with several ineffective forms before

achieving success. It is helpful to discuss some of these attempts, as well as the underlying

reasons for their failure, as this will help to illustrate the usefulness of the estimator employed

for the analysis.
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4.1.1. Modeling the Bulk Distribution. Estimating uτ requires the use of all of

the data available, at least to the extent of utilizing information about the empirical quan-

tile. Automatic threshold selection methods, as described in Chapter 2.2.2, have considered

how to use data in the bulk of the distribution while not contaminating information in the

tail. One suggested approach has been via mixture models, as described in Scarrott and

MacDonald (2012, Section 6). These mixture models tend to model not only the tail of a

distribution with a GPD, but also the bulk of the distribution below the threshold u, using

density

(17) f(y) =



















f1(y) for y ≤ u

f2(y) for y > u

,

where f2 is assumed GPD. The choice of f1 is the main way in which the different mixture

model approaches differ. The major advantage of mixture models over other efforts in

choosing u is that uncertainty in such a choice can be incorporated into one’s inferences.

However, extreme value models for the tail are attractive because they make no assumption

about the underlying distribution, but the mixture model in (17) implies that a sensible

model for the distribution below the threshold is necessary.

The approaches of Behrens et al. (2004), do Nascimento et al. (2012), and Frigessi et al.

(2002) all use parametric or semiparametric bulk models for f1. Model misspecification is

an issue, as inference suffers if the chosen bulk distribution is inappropriate. Robustness is

also a common issue, in that the bulk model often exerts influence on the tail. Additionally,

each of these methods treats the GPD scale parameter and threshold as independent.
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Use of nonparametric bulk models circumvent misspecification issues. Furthermore, the

point process representation of the GPD can be used to overcome the scale and threshold

dependence issue. The models of both Tancredi et al. (2006) and MacDonald et al. (2011)

proceed in such a matter. Tancredi et al. (2006) use a “mixture of uniforms” density esti-

mator for f1, whereas MacDonald et al. (2011) use a symmetric kernel density estimator for

f1. Neither attempts to allow the threshold to vary with covariates.

Nonparametric models for the bulk would seemingly be an ideal solution, as they provide

a model for the bulk which has very little, if any, influence on the tail. However, an issue

does arise specifically because of the flexibility associated with a nonparametric model for f1

in (17). Because the GPD is a limiting distribution for the tail above a high threshold, the

nonparametric model f1 is often found to fit the data better than the GPD f2 very far into

the tail (and often for the entire data set). Of course, an entirely nonparametric model is not

useful for extrapolating further into the tail. In threshold selection contexts, the flexibility

of the kernel coupled with the nature of the GPD often results in very high thresholds being

selected. MacDonald et al. (2011) alleviate this issue by employing a Bayesian approach

with an informative prior on u. The use of covariates would complicate the Bayesian prior

specification.

I tried to use a similar model as that of MacDonald et al. (2011) by using (17) with

f1 = τ
h (y;λ)

H (y;λ)
Iyu<u

and

f2 = (1− τ) gτ (y; u, σ, ξ) Iyi≥u,
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for gτ as in (14) and kernel density h with bandwidth λ. This model allows one to directly

construct a likelihood, but simulation studies showed that the estimates for u were biased

high due to the flexibility of the kernel. Use of an empirical cdf in place of the kernel density

exhibited the same issue. Ultimately, I found that it was not necessary to model the data in

the bulk, so my subsequent approach will not have a model for f1. However, I will no longer

be able to directly use likelihood-based methods, as will be explained.

4.1.2. Using a Binomial Distribution to Model the Exceedances. Since only

the number of observations that appear in the bulk versus the tail of the distribution is im-

portant, another approach I attempted was to use a binomial distribution to model whether

an observation exceeded the threshold u. A GPDτ was simultaneously used to model the

exceedances. The objective function to be used for estimation was thus

(18) Mn (uτ , σ, ξ;y) = log b (k;n, τ) +
n
∑

i=1

log gτ (uτ , σ, ξ; yi) Iyi≥uτ
,

where k =
∑n

i=1 Iyi≥uτ
and b is the binomial probability mass function, so that

b (k;n, τ) =

(

n
k

)

τ k (1− τ)n−k .

This model does not run the risk of having the bulk distribution’s model overtake that of

the tail, as the bulk is not modeled. At the same time, the binomial distribution has great

influence on the choice of threshold. Simulation studies for this method proved it suitable

for parameter estimation if no covariates were used. Since the scale and shape parameters

appear only in the GPDτ piece, the binomial piece has limited effect on the distribution of
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the tail. Monte Carlo simulations suggested that the threshold is consistent. However, the

introduction of covariates proved to be an issue.

While the binomial distribution works towards an estimated model that has about τ% of

the observations exceeding uτ , it does not take into account the location of the exceedances.

Simulation studies showed that this leads to identifiability issues, in that the optimization

is satisfied as long as about τ% of the observations exceed uτ , regardless of where these

exceedances occur. Most frequently, the estimates are chosen such that a majority of the

exceedances occur at small values of the covariate, with very few, if any, occurring at high

values. Figure 4.1 shows one such example, where the plotted line shows the estimated uτ

line such that uτ = β0 + β1xi.
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Figure 4.1. An example displaying the identifiability issue associated with
the use of the binomial distribution in the objective function. The plotted line
is the estimated uτ line.

Quantile regression (Koenker, 2005) is a well-developed method for modeling a quantile

as a function of covariates. In the next section, I show that substituting a quantile regression

based function for the binomial distribution is a sensible alternative.
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4.2. Quantile Regression Background

While standard least squares regression is used to estimate the conditional mean of a

response variable, quantile regression is concerned with estimating the conditional quantiles

of a response variable. First developed in Koenker and Bassett Jr (1978), the authors

recognized that the quantile could be defined as the solution to a problem minimizing a sum

of asymmetrically weighted absolute residuals (Hallock and Koenker, 2001). In other words,

the unbiased θth quantile estimate is the solution to

(19) min
η∈ℜ

∑

ρθ (yi − η) ,

where ρθ is a loss function defined so that ρθ (z) = z (θ − Iz<0). Most importantly, the authors

expressed the problem of finding the θth sample quantile as the solution to an optimization

problem rather than through the sorting and ordering of the sample observations.

Koenker (2005, Chapter 1.4) defines the θth conditional quantile function as Qy (θ|x) =

xTβ (θ), where β̂ (θ) is the solution to

(20) min
β∈ℜp

∑

ρθ
(

yi − xTβ
)

.

So quantile regression estimates the sample quantile by replacing the scalar η in (19) with the

parametric function η (x, β) = xTβ. The minimization problem in (20) is usually efficiently

solved through linear programming methods. Asymptotic theory for quantile regression is

well developed in Koenker (2005, Chapter 4).
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4.3. The Objective Function

Quantile regression can be sensibly combined with the model in Chapter 3 to obtain

estimates for uτ , σ, and ξ. A sequential approach could be employed, first estimating uτ

using quantile regression and then, treating uτ as fixed, using (14) to create a likelihood.

However, a disadvantage of this method is that it would not propagate the uncertainty in the

threshold. Instead, since quantile regression and maximum likelihood are both M-estimators,

I will use an objective function which combines the loss function from quantile regression

and a ‘likelihood’ for estimating the GPDτ parameters, which will allow the parameters to

be estimated simultaneously.

Let y = (y1, . . . , yn)
T , where yi are independent observations. The basic objective func-

tion I employ is

(21) Mn (uτ , σ, ξ;y) =
n
∑

i=1

q (uτ ; yi) +
1

N

n
∑

i=1

log gτ (uτ , σ, ξ; yi) Iyi≥uτ
,

where N =
∑n

i=1 I{yi > uτ} and

(22) q (uτ ; yi) = τ (yi − uτ ) Iyi<uτ
+ (τ − 1) (yi − uτ ) Iyi≥uτ

arises from (19). Thus, the objective function is the quantile regression objective function

plus the mean log-“likelihood” contribution of the exceedances. I will perform M-estimation;

that is, I seek the uτ , σ, and ξ which maximize (21). The objective function has the appealing

property that only observations which exceed uτ will influence the estimates of σ and ξ.

One of my goals is to link the tail of a distribution to covariates, so each of the parameters

may be a parametric function of covariates: uτ = fu(β, X), σ = fσ(γ, X), ξ = fξ(η, X).
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This approach is analogous to regression approaches in extremes, which have been applied

to both the generalized extreme value (GEV) distribution and the traditional GPD. The use

of covariates will be discussed in more detail in Chapter 5.

It is worth providing some explanation of why the mean log-“likelihood” contribution is

taken in (21) rather than the sum. Generally, a log-likelihood’s magnitude increases with

sample size; becoming increasingly negative (positive) if the likelihood contributions tend to

be negative (positive). If the mean were replaced with the sum in (21), this second term’s

magnitude would increase with N , the number of exceedances above uτ . This results in

biased estimates for uτ . In my investigations, the contribution from the GPDτ piece tends

to be negative, thus estimates of uτ would be biased high as the naive objective function

(with a sum rather than mean) would favor values which result in too few exceedances.

With the mean log-“likelihood”, the second term of (21) converges to the mean log-likelihood

contribution above uτ . Importantly for a given u, the same values of σ and ξ which maximize

the mean log-“likelihood” also maximize the standard log-likelihood.

4.4. M-estimators

An M-estimator, or maximum likelihood type estimator, is any estimate θ defined by

minimizing
∑n

i=1 ρ(xi; θ) (Huber, 2011, Chapter 3). M-estimators are a very broad class of

estimators, which includes the ordinary maximum likelihood estimator.

When ρ is a differentiable function with respect to θ, the minimization problem is equiv-

alent to solving
∑

ψ (xi; θ) = 0 for θ, where ψ(x; θ) = (∂/∂θ)ρ(x; θ). When such differenti-

ation is possible, the M-estimator is said to be of ψ-type. Otherwise, the M-estimator is of

ρ-type.
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One of the advantages of the maximum likelihood estimator is that well known sufficient

conditions exist establishing the consistency of the estimator. These conditions, often called

regularity conditions, are satisfied in most reasonable problems (Casella and Berger, 1990).

There are numerous consistency results for M-estimators of ψ-type where ψ is monotone (or

ρ is convex) under general regularity conditions, such as those in Huber (2011, Chapter 3,

Corollary 2.2), Haberman (1989), Niemiro (1992), and Hjort and Pollard (2011). However,

the objective function in (21) does not adhere to such a convexity argument.

M-estimators where ψ is not monotone are called “redescending” (Maronna et al., 2006,

Section 2.2). Consistency results for redescending M-estimators are more complicated than

in monotone cases. Hampel et al. (1986, Chapter 2.5) places two assumptions on the pop-

ulation density and four assumptions on ψ to show consistency, which Shevlyakov et al.

(2008) extends to three and five assumptions, respectively, but both of these results rely on

symmetry of the population distribution, as do results in Freedman and Diaconis (1982).

Results of Mizera (1994) require that ψ is unimodal. Jurecková and Sen (1996, Chapter 7)

give consistency results for nonmonotone ψ that are sufficiently smooth in θ.

Huber (2011, Chapter 6) gives consistency under five assumptions for ρ-type M-estimators.

Three of these conditions rely on the existence of unknown functions. The choice of such

functions is not obvious.

4.5. Estimator Consistency

Since the requirements of the known results for consistency of redescending M-estimators

cannot be shown for Mn (u, σ, ξ;y) as defined in (21), I will use a more direct approach. As-

sume that [Y |Y > uτ ] ∼ GPDτ and [Y |Y > u∗] ∼ GPDτ∗ . Define uτ such that P(Y > uτ ) =

τ . Define u∗ 6= uτ such that P(Y > u∗) = τ ∗.
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Since σ and ξ only appear in the GPDτ portion of the objective function defined in (21),

for any fixed u > min(uτ , u
∗), let (σ̂u, ξ̂u) = argmax(σ,ξ)Mn(u, σ, ξ). Then (σ̂u, ξ̂u)

p
→ (σ, ξ),

as these estimates correspond to the maximum likelihood estimates for a likelihood based

on the log-density of the GPDτ for exceedances over u.

Thus, I will focus on showing that the estimator

(23) ûn = argmax
u

Mn

(

u, σ̂τ , ξ̂τ ;y
)

,

where σ̂τ and ξ̂τ are as defined above, is consistent. I will first show that as n→ ∞,

(24) P
(

Mn

(

uτ , σ̂τ , ξ̂τ ;y
)

−Mn

(

u∗, σ̂∗, ξ̂∗;y
)

> 0
)

→ 1.

Note that plugging u∗ into Mn creates a mismatch: the true probability that an observation

exceeds u∗ is τ ∗, but Mn fixes this at τ .

The difference in (24), Mn

(

uτ , σ̂τ , ξ̂τ ;y
)

−Mn

(

u∗, σ̂∗, ξ̂∗;y
)

, can be separated into a

quantile regression difference and a GPDτ difference. I will look at these two differences

separately, but ultimately I will show that the quantile regression difference will grow with

n, whereas the GPDτ difference is bounded below.

Lemma 4.5.1. If uτ is defined such that P(Y ≥ uτ ) = τ , and u∗ 6= uτ so that P(Y ≥ u∗) =

τ ∗, then

(25) P

(

n
∑

i=1

q (uτ ; yi)−
n
∑

i=1

q (u∗; yi) < k

)

→ 0

for any finite k > 0.
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Proof. Note that

n
∑

i=1

q (u; yi) =
n
∑

i=1

[τyi − τu− yiIyi≥u + uIyi≥u] ,

so that

n
∑

i=1

q (uτ ; yi)−
n
∑

i=1

q (u∗; yi) = n

[

τu∗ − τuτ +
1

n
uτ

n
∑

i=1

Iyi≥uτ
−

1

n
u∗

n
∑

i=1

Iyi≥u∗

+
1

n

n
∑

i=1

yi (Iyi≥u∗ − Iyi≥uτ
)

]

=: nH (y) .(26)

In order to show (25), it is enough to show that H (y)
p
→ C such that C > 0.

Define y∗ = inf {yi ∈ (min(uτ , u
∗),max(uτ , u

∗)]}. Then

H (y) ≥ τu∗ − τuτ +
1

n
uτ

n
∑

i=1

Iyi≥uτ
−

1

n
u∗

n
∑

i=1

Iyi≥u∗

+
1

n
y∗

n
∑

i=1

(Iyi≥u∗ − Iyi≥uτ
)

=: H∗ (y) .(27)
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Taking the limit of H∗ (y) as n→ ∞, then

H∗ (y)
p
→ τu∗ − τuτ + uτ E[Iyi≥uτ

]− u∗ E[Iyi≥u∗ ]

+y∗ (E[Iyi≥u∗ ]− E[Iyi≥uτ
])

= u∗ (τ − τ ∗) + y∗ (τ ∗ − τ)

= (y∗ − u∗) (τ ∗ − τ) ,(28)

by LLN.

Note that expression (28) must be positive. If uτ > u∗, then it follows that τ < τ ∗ and

y∗ > u∗. If uτ < u∗, then it follows that τ > τ ∗ and y∗ < u∗. Thus, I have shown that

H (y)
p
→ C where C > 0, and (25) is therefore true. �

Lemma 4.5.2 and Proposition 4.5.3 will be helpful in determining the behavior of the

GPDτ difference, which is given in Lemma 4.5.4.

Lemma 4.5.2. If σ̂
p
→ σ and ξ̂

p
→ ξ, then as n→ ∞,

(29)
1

n

n
∑

i=1

log gτ

(

u, σ̂, ξ̂; yi

)

p
→ E[log gτ (u, σ, ξ; yi)] .

Proof. When ξ 6= 0, showing (29) is equivalent to showing

(30)
1

n

n
∑

i=1

[

log

(

1

τ σ̂

(

ξ̂
yi − u

σ̂
+ τ−ξ̂

)− 1

ξ̂
−1
)

− log

(

1

τσ

(

ξ
yi − u

σ
+ τ−ξ

)− 1

ξ
−1
)]

→ 0

as n→ ∞, since

1

n

n
∑

i=1

log

(

1

τσ

(

ξ
yi − u

σ
+ τ−ξ

)− 1

ξ
−1
)

p
→ E

[

log

(

1

τσ

(

ξ
yi − u

σ
+ τ−ξ

)− 1

ξ
−1
)]
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by LLN.

First, note that

log

(

1

τσ

(

ξ
yi − u

σ
+ τ−ξ

)− 1

ξ
−1
)

= log

(

τ ξ

σ

)

+

(

−
1

ξ
− 1

)

log

(

τ ξξ
yi − u

σ
+ 1

)

.

Thus, the left hand side of (30) is equal to

log

(

τ ξ̂

σ̂

)

+

(

−
1

ξ̂
− 1

)

1

n

n
∑

i=1

log

(

τ ξ̂ ξ̂
yi − u

σ̂
+ 1

)

− log

(

τ ξ

σ

)

−

(

−
1

ξ
− 1

)

1

n

n
∑

i=1

log

(

τ ξξ
yi − u

σ
+ 1

)

.(31)

Since

log

(

τ ξ̂

σ̂

)

p
→ log

(

τ ξ

σ

)

and

−
1

ξ̂
− 1

p
→ −

1

ξ
− 1

by the continuous mapping theorem, then (31) converges to 0 as long as

(32)
1

n

n
∑

i=1

[

log

(

τ ξ̂ ξ̂
yi − u

σ̂
+ 1

)

− log

(

τ ξξ
yi − u

σ
+ 1

)]

p
→ 0.

Working with the term inside the summation of expression (32) gives

log

(

τ ξ̂ ξ̂
yi − u

σ̂
+ 1

)

− log

(

τ ξξ
yi − u

σ
+ 1

)

= log

(

τ ξ̂ ξ̂ yi−u
σ̂

+ 1

τ ξξ yi−u
σ

+ 1

)

= log

(

τ ξ̂ ξ̂ yi−u
σ̂

− τ ξξ yi−u
σ

τ ξξ yi−u
σ

+ 1
+ 1

)

.(33)
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Notice that (33) converges to 0 as long as

τ ξ̂ ξ̂
yi − u

σ̂
− τ ξξ

yi − u

σ

p
→ 0,

which is true by the continuous mapping theorem. Therefore, (32) is true, (31) must converge

to 0, and thus (30) is true.

If ξ̂
p
→ 0, then I need to show

(34)
1

n

n
∑

i=1

[

log

(

τ ξ̂ ξ̂
yi − u

σ̂
+ 1

)− 1

ξ̂
−1

+
yi − u

σ

]

p
→ 0

in place of (32). Using the fact that

lim
ξ→0

(

1 + τ ξξ
yi − u

σ

)− 1

ξ
−1

= exp

(

−
yi − u

σ

)

,

and the continuous mapping theorem, (34) follows.

�

Proposition 4.5.3.

(35) E[log gτ (u, σ, ξ; yi)] = log

(

τ ξ

σ

)

− ξ − 1

Proof. Focusing on the case where ξ 6= 0, note that the expected value in (35) is equal

to the integral

(36)

∫ y+

u

log

(

1

τσ

(

ξ
y − u

σ
+ τ−ξ

)− 1

ξ
−1
)

1

τσ

(

ξ
y − u

σ
+ τ−ξ

)− 1

ξ
−1

dy,

40



which can be solved directly. Expression (36) is equal to

(37)

∫ y+

u

[

− log (τσ) +

(

−
1

ξ
− 1

)

log

(

ξ
y − u

σ
+ τ−ξ

)]

1

τσ

(

ξ
y − u

σ
+ τ−ξ

)− 1

ξ
−1

dx.

Using u-substitution, let v = ξ y−u
σ

+ τ−ξ so that dv = ξ
σ
. Thus, solving equation (37) is

equivalent to solving

(38)

∫ v+

τ−ξ

[

− log (τσ) +

(

−
1

ξ
− 1

)

log v

]

1

τξ
v−

1

ξ
−1dv.

Now, using integration by parts on expression (38), choose w = − log (τσ)+
(

−1
ξ
− 1
)

log v

and dx = 1
τξ
v−

1

ξ
−1dv, so that dw =

(

−1
ξ
− 1
)

1
v
dv and x = −v

−
1
ξ

τ
. Then (38) is equivalent to

(

− log (τσ) +

(

−
1

ξ
− 1

)

log v

)

(

−v−
1

ξ τ−1
)

















v+

τ−ξ

−

∫ v+

τ−ξ

(

−
1

ξ
− 1

)

v−
1

ξ
−1τ−1dv,

which integrates to

(39)

(

− log (τσ) +

(

−
1

ξ
− 1

)

log v

)

(

−v−
1

ξ τ−1
)

+ v−
1

ξ τ−1 (1 + ξ)

















v+

τ−ξ

.

The upper bound of v+ here will vary depending on whether ξ > 0 or ξ < 0.

First assume that ξ > 0. This indicates that v+ = ∞. Solving for (39) gives

0−

[(

− log (τσ) +

(

−
1

ξ
− 1

)

log
(

τ−ξ
)

)

(−1) + 1 + ξ

]

= log

(

τ ξ

σ

)

− ξ − 1.

Thus, if ξ > 0, then (35) is true.
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Now assume that ξ < 0, so that v+ = 0. First, adjust (39) to keep track of the negative

shape. By letting k = −ξ so that k > 0, (39) becomes

(40)

(

− log (τσ) +

(

1

k
− 1

)

log v

)

(

−v
1

k τ−1
)

+ v
1

k
−1τ−1 (1− k)

















0

τk
,

and solving for (40) gives

0−

[(

− log (τσ) +

(

1

k
− 1

)

log
(

τ k
)

)

(−1) + 1− k

]

= log

(

1

στ k

)

+ k − 1

= log

(

τ ξ

σ

)

− ξ − 1.

Thus, (35) is also true when ξ < 0.

If ξ = 0, a similar process will show

∫ ∞

u

log

(

1

σ
exp

{

−
y − u

σ

})

1

σ
exp

{

−
y − u

σ

}

dy = log

(

1

σ

)

− 1.

�

Lemma 4.5.4. Let uτ be defined such that P(Y ≥ uτ ) = τ , and u∗ 6= uτ such that

P(Y ≥ u∗) = τ ∗. Let (σ̂, ξ̂) = argmax(σ,ξ)Mn(uτ , σ, ξ) such that (σ̂, ξ̂)
p
→ (σ, ξ), and let

(σ̂∗, ξ̂∗) = argmax(σ,ξ)Mn(u
∗, σ, ξ) such that (σ̂∗, ξ̂∗)

p
→ (σ∗, ξ∗). Then ∃k > −∞ such that

as n→ ∞,

(41) P

(

1

N

n
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; yi

)

Iyi≥uτ
−

1

N∗

n
∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; yi

)

Iyi≥u∗ < k

)

→ 0,

for N =
∑n

i=1 Iyi≥uτ
and N∗ =

∑n
i=1 Iyi≥u∗.
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Proof. Define zi = [yi|yi ≥ uτ ] and z
∗
i = [yi|yi ≥ u∗]. Then

1

N

n
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; yi

)

Iyi≥uτ
=

1

N

N
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; zi

)

.

Likewise,

1

N∗

n
∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; yi

)

Iyi≥u∗ =
1

N∗

N∗

∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; z∗i

)

.

Recognize that as n→ ∞, both N and N∗ → ∞. Lemma 4.5.2 says that

1

N

N
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; zi

)

→ E[log gτ (uτ , σ, ξ; zi)]

and

1

N∗

N∗

∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; z∗i

)

→ E[log gτ (u
∗, σ∗, ξ∗; z∗i )] .

Thus, using Proposition 4.5.3,

1

N

N
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; zi

)

−
1

N∗

N∗

∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; z∗i

)

p
→ log

(

τ ξ

σ

)

− ξ − 1−

(

log

(

τ ξ
∗

σ∗

)

− ξ∗ − 1

)

= log

(

τ ξ−ξ∗ σ
∗

σ

)

− (ξ − ξ∗) .(42)

Choose k < log
(

τ ξ−ξ∗ σ∗

σ

)

− (ξ − ξ∗). Then (41) holds. �

I can now show that (24) must be true.
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Theorem 4.5.5. Let uτ , u
∗, σ̂, ξ̂, σ̂∗, and ξ̂∗ be defined as in Lemma 4.5.4. Then as

n→ ∞,

(43) P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

u∗, σ̂∗, ξ̂∗;y
)

< 0
)

→ 0.

Proof. Let k > −∞. Then

P
(

Mn

(

uτ , σ̂, ξ̂;y
)

− Mn

(

u∗, σ̂∗, ξ̂∗;y
)

< 0
)

≤ P

(

n
∑

i=1

q (uτ ; yi)−
n
∑

i=1

q (u∗; yi) < k

)

(44)

+P

(

1

n

n
∑

i=1

log gτ

(

uτ , σ̂, ξ̂; yi

)

Iyi≥uτ

−
1

n

n
∑

i=1

log gτ

(

u∗, σ̂∗, ξ̂∗; yi

)

Iyi≥u∗ < −k

)

.(45)

Lemma 4.5.1 says that (44) converges to 0. Lemma 4.5.4 says that (45) converges to 0.

Therefore, (43) is true. �

Notice that Theorem 4.5.5 uses a specific u∗. I wish to replace u∗ with ûn as defined in

(23). Cases where ûn are more than a specific distance away from uτ will be considered.

Lemma 4.5.6. Let ûn = argmaxu∈Bc
δ
Mn

(

u, σ̂, ξ̂;y
)

, where Bδ = (uτ − δ, uτ + δ) for a

fixed δ > 0. Then

(46) P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

< 0
)

→ 0

as n→ ∞.
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Proof. By Theorem 4.5.5, it is known that as n→ ∞,

P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

u∗, σ̂u∗ , ξ̂u∗ ;y
)

< 0
)

→ 0

for a fixed u∗ ∈ Bc
δ . This implies that for any ǫ > 0 there exists a nǫ such that if n > nǫ,

P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

u∗, σ̂u∗ , ξ̂u∗ ;y
)

< 0
)

< ǫ.

Notice that nǫ is tied to the specific u∗ selected. Call this nǫ (u
∗), and define

nǫ,Bc
δ
= sup

u∈Bc
δ

nǫ (u) .

Then if n > nǫ,Bc
δ
,

P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

< 0
)

< ǫ,

∀ǫ > 0. Therefore, (46) holds. �

I can now establish consistency.

Theorem 4.5.7. Let ûn be defined as in (23). Then ûn is a consistent estimator of uτ .

Proof. Assume that for δ > 0 and c 6= 0,

P(|uτ − ûn| > δ) → c.

This implies that there exists a γ > 0 such that every n > 0 has a n∗ > n such that

P(|uτ − ûn∗ | > δ) > γ.
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If the event ‘|uτ − ûn| > δ’ occurs, then ûn ∈ Bc
δ and

Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

≥Mn

(

uτ , σ̂, ξ̂;y
)

,

where Bδ = (uτ − δ, uτ + δ). So P(|uτ − ûn| > δ) > γ implies

(47) P
({

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

< 0
}

⋂

{ûn ∈ Bc
δ}
)

> γ.

However, (47) is a contradiction by Lemma 4.5.6, since

P
({

Mn

(

uτ , σ̂, ξ̂;y
)

− Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

< 0
}

⋂

{ûn ∈ Bc
δ}
)

≤ P
(

Mn

(

uτ , σ̂, ξ̂;y
)

−Mn

(

ûn, σ̂ûn
, ξ̂ûn

;y
)

< 0
)

< ǫ,

for all ǫ > 0. Thus, for all γ > 0,

P(|uτ − ûn∗ | > δ) < γ

as n→ ∞, and ûn is therefore a consistent estimator of uτ . �
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CHAPTER 5

Practical Optimization Considerations

Recall that I am interested in tying both the threshold uτ and the GPDτ parameters to

covariates. Chapter 4 demonstrates that optimizing the objective function Mn defined in

equation (21) leads to consistent estimates for uτ , σ, and ξ in simple cases. Adding covariates

makes things more difficult. This chapter will discuss some practical modifications to (21)

to allow for the implementation of covariates. Further modifications to improve estimation

are also discussed.

5.1. Implementing Covariates

Obtaining estimates for uτ , σ, and ξ via the objective function in (21) requires numerical

optimization. Allowing these three parameters to be functions of covariates (as in GLM

settings) complicates the optimization. Furthermore, the objective function’s unique treat-

ment of the data set leads to unique optimization issues. Specifically, since the number

of exceedances used to estimate the GPDτ parameters changes with uτ , treating uτ as a

parametric function of covariates adds a new layer of complexity to the model. As a result,

covariate implementation must be carefully considered, with special consideration given to

continuous covariates.

5.1.1. A Grid Search Method. The grid search method described in this section

was developed during my investigation of equation (18), which uses the binomial probability

mass function in place of the quantile regression piece of (21). The motivation for the grid

search method is that the objective function has a discontinuous jump whenever uτ , varying

continuously, ‘passes over’ an observed data value, leading to its inclusion or exclusion in
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the GPD piece of (18). This jump is exacerbated with the objective function which uses the

binomial rather than the quantile regression piece, but still remains in the quantile regression

formulation. The grid search method was only implemented in the case of discrete covariates.

Its applicability in the presence of continuous covariates is dubious, as will be discussed.

For a given data set, let Y(i) and Y(i+1) be the ith and (i+ 1)th largest order statistics.

Consider optimizing Mn from (18) for values of uτ ∈
(

Y(i), Y(i+1)

]

. It can be shown that the

maximum value of Mn is attained when uτ = Y(i+1) (see Appendix A for proof). This allows

for an optimization scheme based on a grid search method which can be used to implement

categorical covariates.

Since the set of possible values for uτ is finite, a grid search optimization scheme need

only consider uτ corresponding to observations in the given data set. By optimizing the

shape and scale parameters at each possible uτ , the set of parameters that maximize Mn

are chosen as the estimates. Bivariate categorical covariates are implemented seamlessly by

breaking the data into two separate sets. If uτ = β0 + β1X, then the optimization scheme

finds two values of uτ : one for X = 0 and one for X = 1. These are used to determine the

values of β0 and β1.

The implementation described can also be extended to allow multiple bivariate categorical

covariates. If k covariates are used, then the algorithm searches a k + 1 dimensional grid.

Furthermore, categorical covariates with j categories are included by treating these as j − 1

bivariate categorical variables, as is often done in regression settings.

While the grid search method can be unwieldy, especially if the sample size is large,

practically limiting the observations considered as possible uτ values to be within a certain

range of the sample quantiles can hasten computation speed. Initial simulation studies using
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this grid search optimization scheme suggest that it is a reasonable method of estimation if

only categorical covariates are used.

An attempt to extend the grid search method to the most simple continuous covariate

setting demonstrates its shortcomings. Assume thatMn is maximized if uτ (y) passes through

a data point. The logical extension of the grid search method is to fix a data point and then

optimize β0 and β1 (in addition to the GPDτ parameters) subject to uτ passing through that

data point. The process would be repeated for all sensible data points until one is convinced

the maximum is achieved. Performing the repeated optimization that this procedure would

require is clearly tedious, with multiple covariates compounding this issue. I chose not to

proceed in this manner, seeking a more elegant and tractable estimation method instead.

5.1.2. A Kernel Smoothing Method. The grid search method was inspired by plots

of the profile objective function of uτ , which have ‘sharktooth’ appearances, an example of

which is shown in Figure 5.1. I realized that the discontinuous jumps occurred at obser-

vations in the data set, which led to the proof in Appendix A. However, optimization is

usually improved by smooth functions, so it is desirable to introduce smoothness into the

objective function if the grid based method is not used. Use of the quantile regression form

of the objective function, as in (21), works to smooth the profile objective function, but

discontinuous jumps remain.

Instead of treating each observation as a unitary mass at a point, a kernel density, centered

at each observation, is used to introduce a weight into the objective function. The weight

corresponds to mass of the kernel which exceeds the threshold. Whereas exceedances and

non-exceedances were previously given respective weights of 1 and 0, now if the value of uτ
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Figure 5.1. Example of the ‘sharktooth’ behavior exhibited by the profile
objective function of uτ . The first plot uses the objective function in (18),
whereas the second uses the objective function in (21).

increases across an observation’s value, that observation’s contribution to Mn will smoothly

vary from 1 down to 0.

An isotropic kernel density with finite support is used. Denote δ to be the radius of the

kernel. Observations which exceed uτ −δ will contribute to the generalized Pareto portion of

the objective function, which must be adjusted slightly to account for this change. Using the

threshold stability property of GPDτ (and assuming this holds for values above uτ − δ), one

can show τδ =
(

τ−ξ − ξδ/σ
)−1/ξ

. Thus, uτ can still be estimated, despite using observations

that exceed uτ − δ in fitting GPDτ .
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The objective function with kernel density smoothing implemented is

(48) Mn (uτ , σ, ξ;y) =



















∑n
i=1 q (uτ ; yi) +

1∑n
i=1

wi

∑n
i=1wi log gτ (uτ , σ, ξ; yi), ξ 6= 0

∑n
i=1 q (uτ ; yi) +

1∑n
i=1

wi

∑n
i=1wi log g (uτ , σ, ξ; yi), ξ = 0

,

where wi are weights. These are defined such that wi = P (Xi > uτ ) for Xi ∼ kh (yi)

where kh (yi) is the kernel density of the ith observation with bandwidth h. Note that only

observations exceeding uτ − h
2
will contribute to the GPDτ portion of (48), as all other

observations will have weights of 0.

Some consideration must be given to the kernel bandwidth. Kernel densities are tradition-

ally used to estimate probability density functions. The bandwidth controls the smoothness

of the density estimate, with larger bandwidths yielding smoother densities (Givens and

Hoeting, 2012, Chapter 10.2.2). The bandwidth is often used to balance the bias-variance

trade-off in kernel density estimators: if bandwidth is too small, variance may be high, but if

bandwidth is too large, estimates may be biased due to oversmoothing. While oversmoothing

is not likely a concern in my approach, the bandwidth is still used to balance a trade-off: a

wider bandwidth introduces more smoothness aiding the optimization, but too wide a band-

width could introduce bias for estimates of σ and ξ as information about the tail becomes

contaminated by observations in the bulk. Sensitivity analysis performed on bandwidth

selection suggested that decreasing the bandwidth does not jeopardize optimization in my

approach. Analysis in Chapters 6 and 7 therefore use small bandwidths.

In both the simulation study (Chapter 6) and the facial recognition application (Chapter

7), a uniform kernel is used. This kernel is chosen for simplicity. Simulations run using both
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biweight and Epanechnikov kernels suggest that the choice of kernel is of relatively little

importance as long as its support is finite.

This kernel-based weighting scheme further allows for the implementation of continuous

covariates, as the choice of threshold no longer corresponds to one of the observations.

Thus, uτ , σ, and ξ in (48) may be parametric functions of covariates, both categorical and

continuous, as in generalized linear modeling.

5.2. Avoiding Unreasonable Shape Estimates

It is well known that numerical maximum likelihood can produce bad estimates for ξ when

sample size is small (Coles and Dixon, 1999). As my M-estimation method also requires

numerical optimization, similar difficulties can arise. Both Coles and Dixon (1999) and

Martins and Stedinger (2000) advocate penalized likelihood approaches which enforce ξ to

take on reasonable values. Similar to Martins and Stedinger (2000), I construct a penalty

via a shifted beta distribution centered at 0, which restricts the shape parameter to values

in [−0.5, 0.5]. It is reasonable to assume that ξ is in this interval. If the shape is less than

-0.5, the tail is not only finite, but the density evaluated at the upper endpoint exceeds 0,

which would not mimic the behavior of the distribution of non-match scores. If the shape

is greater than 0.5, then the distribution does not have a finite variance. Many application

areas (such as the natural sciences) restrict ξ so that −0.5 < ξ < 0.5, and thus assume a

finite second moment; both Hosking and Wallis (1987) and Coles and Dixon (1999) use such

a restriction for practicality reasons. I am comfortable making an initial assumption that

the non-match distribution has a finite second moment, but the behavior of ξ will be checked
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in an exploratory analysis of the data. The shifted beta’s log-density is

(49) p (ξ) = log

(

(0.5 + ξ)α−1 (0.5− ξ)β−1

B (α, β)

)

,

where B(α, β) denotes the beta function. Throughout this study I set α = 2 and β = 2

yielding a moderately peaked symmetric density about 0. This restricts the support of ξ

to values between −0.5 and 0.5, but it also nudges all estimates slightly towards 0. Tuning

α and β to specific cases may improve performance. For example, a left skewed penalty is

likely preferred if the non-match distribution has a heavy tail.

In the penalized likelihood setting, a penalty such as the one in (49) is added onto the

log-likelihood. Because log-likelihood’s magnitude increases with sample size and the penalty

does not, the influence of the penalty on the estimate of ξ decreases with sample size. With

the objective function defined in (21), since the magnitude of the “likelihood” piece does

not increase with sample size, a penalty whose influence will decrease with sample size is

imposed. The penalized objective function is

(50) Mn (uτ , σ, ξ;y) =
n
∑

i=1

q (uτ ; yi) +
1

∑n
i=1wi

p (ξ) +
1

∑n
i=1wi

n
∑

i=1

wi log gτ (uτ , σ, ξ; yi).

While adding the penalty term will prove useful for the simulation study in Section 6, it will

have very little influence on the results of the application. Consequently, as n → ∞, the

estimate of ξ from the penalized objective function approaches the estimate of ξ from the

unpenalized objective function.
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5.3. A Practical Optimization Scheme

Despite efforts to smooth the objective function, it is still possible that optimization

performs poorly. These minor adjustments in optimization scheme will work to improve the

provided parameter estimates.

5.3.1. Gauss-Seidel Iterization. The parameter uτ appears in both the quantile

regression and GPDτ pieces of the objective function. Due to the fact that the quantile

regression piece grows with n and the GPDτ piece converges to a value, the quantile regression

exerts far more influence on the estimate of uτ (by design). However the imbalance in the

magnitudes of the two pieces can lead to poor shape and scale estimates if the optimization

scheme updates the three parameters all-at-once. In order to counteract this, I employ a non-

linear Gauss-Seidel iterization (Givens and Hoeting, 2012, Section 2.2.5). Each iteration of

the optimization has two steps. The first step optimizes the threshold parameter(s), whereas

the second step optimizes the GPD parameters.

5.3.2. Reasonable Starting Values. Satisfactory performance of the numerical op-

timizer requires reasonable starting values, which merits some consideration. Threshold pa-

rameters are set using a simple quantile regression fit. Initial values for the shape and scale

parameters are the GPDτ equivalents to those used in the ismev package in R (Heffernan

and Stephenson, 2012).
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CHAPTER 6

A Simulation Study

In this chapter, a simulation study is performed in order to test the performance of my

model in fitting the tail fo a distribution. 95% bootstrap confidence intervals for param-

eters and select quantiles are calculated. Estimated quantiles are compared to their true

values, and my method’s ability to estimate high quantiles is compared to standard quantile

regression.

6.1. Generating Model and Bootstrapping Procedure

Monte Carlo data sets each with n = 5000 observations Y were generated according to

the formula

(51) Y = 10 + 5X1 + 20X2 + exp (1 + 0.02X1)T4,

where X1 is a continuous variable with values from 20 to 60, X2 is binary, and T4 is a

t-distributed random variable with four degrees of freedom. The first three terms of the

equation will effect the threshold, whereas the terms inside the exponential function will

effect both the threshold and scale.

Using a kernel density bandwidth of 0.01, I fit a model that includes the continuous and

categorical covariates in both the threshold and scale, such that uτ = β0 + β1X1 + β2X2

and σ = exp (γ0 + γ1X1 + γ2X2) . Importantly, while the fitted model captures the behavior

of the generating equation (51), it does not correspond exactly. For example, the true uτ

resulting from (51) is not linear. Also note that I fit a scale parameter using the categorical
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variable even though it does not appear in the scaling term applied to the t-distributed

random variable.

To obtain confidence intervals for both parameter estimates and estimated high quantiles,

a semiparametric paired bootstrap is used. The procedure is as follows, where (xi, yi) , i =

1, . . . , n denotes independent observations from (51):

(1) Resample with replacement from {(xi, yi) , i = 1, . . . , n}. Denote these resampled

realizations as (x∗i , y
∗
i ) , i = 1, . . . n.

(2) If y∗i ≤ uτ (x
∗
i ), then y

∗∗
i = y∗i .

(3) If y∗i > uτ (x
∗
i ), then let y∗∗i be drawn from a GPDτ with fixed parameter values

β̂, γ̂,and ξ̂, and covariate value x∗i , where β̂ = (β̂0, β̂1, β̂2)
T and γ̂ = (γ̂0, γ̂1, γ̂2)

T .

(4) The model is fitted to the (x∗i , y
∗∗
i ) realizations.

Use of this semiparametric bootstrap process eliminates ties in the tail of the resampled data

set, improving the representation of the tail once the data set is fitted to my model.

Because optimization is computationally expensive, this process is performed on the CSU

ISTeC Cray HPC System, a cluster computing environment composed of nodes each with

32 CPU cores and dedicated memory allocation. The computational process was distributed

by running each Monte Carlo iteration and its bootstrap on an individual core, with 24

instances run on each node to prevent exceeding memory limits. The Cray performed the

process on each node in under 24 hours, and the system’s queuing system allowed for the

use of up to four nodes at one time for a process of its length. Ultimately, I generated 504

Monte Carlo data sets with corresponding bootstraps.
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6.2. Results

Figure 6.1 helps to illustrate the performance of the fitted model with regards to two

separate simulated data sets. These two instances were chosen because they reflect a good

range of observed fits. Shown are both the true and fitted 0.95 and 0.999 quantiles. The

top panels show an instance where the fitted model mimics the truth quite well, whereas the

bottom panels show some differences but still seem to capture the overall behavior reasonably

well.
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X2 = 1

X1

Y
true 0.95 quantile
true 0.999 quantile
fitted 0.95 quantile
fitted 0.999 quantile
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Figure 6.1. Fitted and true quantile against Monte Carlo generated data set
1 (top) and data set 2 (bottom).
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Figure 6.2 shows histograms for the parameter estimates from the 504 Monte Carlo

data sets. The top row shows estimates for the threshold parameters. Due to the mismatch

between the generating equation and the fitted model, the estimates for β are not centered at

the values in (51). Despite the mismatch, the threshold parameters remain very interpretable.

Estimates of β1 are slightly larger than 5, implying that the threshold grows at approximately

this rate with a per unit increase in the continuous covariate X1. Estimates of β2 are

approximately 20, also indicating the effect the binary covariate has on uτ . The middle row

of Figure 6.2 shows the histograms for the scale parameter estimates. The positive estimates

for γ1 show that the fitted model recognizes that scale increases with X1. The estimates for

γ2 are properly centered about 0. The bottom panel of Figure 6.2 shows estimates of the

shape parameter. The true shape for a GPD fit to the tail of a t-distribution with 4 degrees

of freedom is 0.25. However, this parameter value is achieved as the sample size increases

to infinity, and finite-sample estimates for ξ for a t-distribution tend to be lower than the

asymptotic value. Additionally, the penalty could slightly nudge shape estimates toward 0.

In contrast to the model parameter estimates which cannot be compared to true values

due to the mismatch between generating and fitted models, the estimated quantiles can be

compared to the true quantiles for specified covariate values. Histograms for five quantiles

of interest are given for two specific sets of covariates in Figure 6.3. The first set uses

X1 = 27.5 and X2 = 1, whereas the second set uses X1 = 42.5 and X2 = 0. The line on

each histogram indicates where the true quantile is located. Overall, the performance of my

model in predicting the quantiles appears to be quite good. The estimates are relatively

unbiased and roughly normally distributed. While some bias appears at the 0.9999 quantile,

this is likely due to the underestimation of the shape parameter ξ. Only five observations
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Figure 6.2. Histograms of threshold (top), scale (middle), and shape (bot-
tom) parameter estimates from 504 Monte Carlo simulations.
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Figure 6.3. Histograms of quantile estimates from 504 Monte Carlo simulations evaluated for two covariate
settings. The top row corresponds to X1 = 27.5 and X2 = 1 and the bottom row corresponds to X1 = 42.5 and
X2 = 0. The vertical lines indicate the location of the true quantile.
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are expected to occur above the 0.999 quantile for a data set of size n = 5000, so this

performance is reasonable.

It is also worth assessing the bootstrap method’s ability to accurately account for es-

timation uncertainty. Table 6.1 shows the parameter estimates along with 95% bootstrap

confidence intervals for the data set illustrated in the top panels of Figure 6.1. While cov-

erage cannot be assessed due to the mismatch between generating and fitted models, notice

that the β estimates show relatively little uncertainty, while the confidence interval for ξ is

relatively wide as is common for extremes studies. The GPDτ row of Table 6.2 uses the same

data set and shows selected quantile estimates and 95% bootstrap confidence intervals for

the two covariate settings, along with the true quantile values in the last row. For this Monte

Carlo simulation, the true quantile is contained in each of the confidence intervals. Bootstrap

95% confidence interval coverage rates for the entire simulation study are reported in the

GPDτ row of Table 6.3 for both covariate settings. Keeping in mind that there are only

504 confidence intervals considered, the coverage rate appears reasonable for the 0.95, 0.97,

and 0.99 quantiles. Once again, performance deteriorates slightly in the 0.999 and 0.9999

quantiles, but the achieved coverage rate still yields a reasonable estimate of the uncertainty

associated with these very high quantiles.

Tables 6.2 and 6.3 also include QR rows, which correspond to estimates of the quantiles

obtained using standard quantile regression methods. Table 6.2 shows that my method and

quantile regression yield similar estimates and 95% confidence intervals for the .95 quantile.

Results for the .999 quantile, however, suggest that my method may be an improvement in

generating confidence intervals for high quantiles, as its confidence intervals are narrower

than those provided by quantile regression. Table 6.3 shows that the coverage rate of the
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Table 6.1. Parameter estimates and 95% bootstrap confidence intervals.

Parameter β0 β1 β2 γ0 γ1 γ2 ξ

Estimate 14.23 5.22 19.54 1.13 0.0131 0.0199 0.0403

Confidence Interval (11.64, 16.40) (5.16, 5.30) (18.15,20.76) (0.347, 1.965) (-0.003,0.029) (-0.0258,0.292) (-0.103, 0.179)
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Table 6.2. Quantile estimates and 95% bootstrap confidence intervals for
GPDτ and quantile regression (QR).

Quantile 0.95: Setting 1 0.999: Setting 1 0.95: Setting 2 0.999: Setting 2

GPDτ

Estimate 177.33 199.01 236.16 262.04
Confidence Interval (176.92, 178.40) (193.42, 204.45) (234.64, 236.52) (255.77, 268.83)

QR
Estimate 177.80 211.12 235.83 269.41
Confidence Interval (176.81, 178.85) (191.93, 219.17) (234.69, 237.24) (253.43, 286.99)

True Value 177.52 201.27 236.08 268.15

Table 6.3. 95% bootstrap confidence interval coverage rates and average
widths for GPDτ and quantile regression (QR).

Quantile 0.95 0.97 0.99 0.999 0.9999

Setting 1
Coverage Rate (%)

GPDτ 93.25 92.66 94.64 92.46 86.90
QR 93.85 94.05 96.03 92.46 42.46

Width
GPDτ 1.752 2.189 4.251 14.020 42.105

QR 1.743 2.439 5.302 29.682 35.492

Setting 2
Coverage Rate (%)

GPDτ 95.44 93.65 92.86 91.87 88.10
QR 95.83 94.84 94.25 93.85 49.80

Width
GPDτ 2.165 2.809 5.698 18.880 56.856

QR 2.159 3.023 6.557 35.364 49.604

confidence intervals are comparable for my method versus quantile regression for the .95,

.97, .99, and .999 quantiles, whereas my method clearly outperforms quantile regression for

the .9999 quantile.

Figure 6.4 plots the width of each of the 504 confidence intervals provided by my method

against the confidence interval widths of quantile regression for each of the quantiles. The

plotted line shows a one-to-one relationship. The .95 quantile figures suggest that my GPDτ

method and quantile regression yield similar 95% confidence interval widths, whereas the .999

figures suggest that my method will produce a narrower confidence interval more often than

quantile regression. Table 6.3 also shows the average width of the 95% confidence intervals

for the different quantiles across both methods. While my method has larger average interval

widths for the .95 quantile, the average widths are smaller for the .97, .99, and .999 quantiles.

Interestingly, the .9999 quantile’s mean interval width is actually larger for my method than
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Figure 6.4. Comparison of 95% bootstrap confidence interval widths for my
GPDτ method versus quantile regression for the quantiles of interest. The
plotted line shows a 1:1 relationship.
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in quantile regression, but my method also does a much better job in capturing the true

.9999 quantile.

6.3. Conclusion

In summary, the simulation study shows that my method yields both interpretable pa-

rameter estimates and reasonable estimates for high quantiles. My method also does a better

job in capturing the uncertainty associated with large quantiles than standard quantile re-

gression. That the quantile estimates are reasonable is important for understanding the

approximate false discovery rate’s association with some classification thresholds. The in-

terpretability of the parameter estimates in this case of slight model mismatch will remain

important as I turn my attention to the facial recognition application in Chapter 7, as one

of its primary goals is to understand how covariates associated with the non-match scores

influence the tail of the non-match distribution.
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CHAPTER 7

Facial Recognition Application

7.1. Data: Non-match Scores and Covariates

A sample of the non-match pairs of the Bad partition of the Good, the Bad, and the

Ugly (GBU) face challenge problem presented by Phillips et al. (2012) will be fit to my

model for τ = 0.05. This data set consists of similarity scores yielded by an algorithm that

compares still query to target images. A set of covariates is attached to each image. The

Good partition of the GBU data set contains images that are easy to match, whereas the

Ugly partition contains images that are difficult to match. The Bad partition, which will be

used, is considered to have average matching difficulty. The Bad partition contains 1,173,928

non-match pairs. To keep computational time manageable, I randomly selected 100,000 of

these pairs to fit to the model.

Covariates in the GBU data set are assigned to each image. In the non-match setting, it

is common for the covariates in the query and target images to be different. Thus, I found

it necessary to create new covariates from the ones given in many instances. Specifically,

in addition to an age difference covariate, I created new gender, glasses, and indoor or out-

door setting covariates so that each one had four categories based on the target/query pair.

Gender, for example, would be classified as either female/female, female/male, male/female,

or male/male. When fitting the model, these categorical covariates are separated into three

binary covariates.

In addition to these newly created covariates, I will also use target and query FRIFM

covariates when fitting the model. FRIFM is a continuous measurement of picture quality,

which is defined in Section 3.2 of Beveridge et al. (2008). FRIFM is expected to differ
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between any two images, so the target/query FRIFM values are included separately in the

model.

7.2. Exploratory Data Analysis and Model Choice

The empirical .999 quantile of the randomly selected non-match scores is 4.093, thus this

could be the classification threshold under current algorithms, regardless of covariates. The

histograms in Figure 7.1 explore how the different covariates affect the tail and the probability

of being incorrectly classified as a match. The top two rows of Figure 7.1 correspond to the

categorical covariates, and the bottom two rows to the continuous covariates. The top row of

each pair shows histograms for the entire sample, whereas the second row shows histograms

for those non-match pairs in the sample that would exceed a classification threshold of 4.093.

For many of these covariates, it is clear that the histograms differ, indicating that the value

of the covariate affects the match score. Based on these histograms, it appears that images in

which the categorical covariates are the same are more likely to be classified as matches than

those in which the categorical covariates are not the same. Using gender as an example, a

disproportionate amount of the target/query pairs which would be classified as matches were

either MM or FF. Turning attention to the continuous covariates, it seems images comparing

people with a smaller age difference are more likely to be classified as matches than those

with large age differences. The two FRIFM covariates don’t appear to have much of an effect

on increasing the similarity score between two non-match pairs.

It is worth exploring how the tail index parameter ξ changes with different covariates.

The 95% confidence intervals given by fitting a GPD to data exceeding the fixed empirical

.95 quantile for different subsets of the data are calculated. For all the subsets, ξ̂ is roughly

in the range from -.1 to .05, and there is notable overlap in the confidence intervals. These
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Figure 7.1. Top two rows are histograms showing breakdown of categorical
variables in the overall sample (top row) and for pairs classified as matches
(second row). Bottom two rows are histograms showing breakdown of numeric
variables in the overall sample (third row) and for pairs classified as matches
(bottom row).

intervals are displayed in Figure 7.2. Additionally, likelihood ratio tests performed on each

of the six groupings of covariate subsets yielded large p-values when comparing the null

model with common shape parameter to a model with a shape parameter that varies by

subset, further suggesting that the use of a common ξ is appropriate. I conclude that use of

a common ξ parameter, which is not a function of covariates, adequately models the data.
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Further, if slight differences in true ξ values exist between the different groups, this will likely

be compensated for by the flexibility in σ, satisfactorily capturing the tail behavior.
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Figure 7.2. Shape point estimates and 95% confidence intervals.

Based on the results of the exploratory analysis, I will fit my model with uτ = Xβ,

σ = exp (Xγ) where β = (β0, . . . , β12)
T , γ = (γ0, . . . , γ12)

T , and X is a design matrix with

13 columns. Coefficients 1 through 3 are indicators for the gender covariates, 4 through 6 are

indicators for the glasses covariates, 7 through 9 are indicators for indoor or outdoor setting

covariates, 10 corresponds to the age difference covariate, and 11 and 12 correspond to the

two FRIFM covariates. I once again use 0.01 as the kernel density bandwidth.

Computing is distributed differently on the cluster than in the simulation study. Opti-

mization here is much more expensive than it was in the simulation study, as the sample

size is much larger and there are many more parameters to estimate. Bootstrapping is dis-

tributed across nodes, running 24 bootstrap fits on each node at a time, resulting in 1008

bootstrap instances used to calculate confidence intervals.
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7.3. Results

7.3.1. Parameter Estimates and Interpretation. The parameter estimates, along

with bootstrap confidence intervals, are reported in Table 7.1. I first interpret the param-

eters β which determine the threshold uτ . All interpretations assume all other coefficients

are being held constant.

The parameter estimates for the gender coefficients β1, β2, β3 are all negative, suggesting

that the non-match pairs containing two female subjects have the highest .95 quantile. The

coefficients for the FM and MF categories are larger negative numbers indicating lower .95

quantiles for mixed-gender target/query pairs, likely reflecting an overall tendency for mixed

gender scores to be lower. Parameter estimates for β4, β5, and β6 indicate that target/query

pairs where both subjects are wearing glasses have the highest .95 quantiles of four glasses

categories, followed by cases where both subjects are not wearing glasses. The probability

of being classified a match looks to increase fairly significantly if both pictures are taken

outdoors. A non-match pair where both pictures are taken indoors is more likely to be

classified as a match than pairs where the pictures are taken in different locations. Essentially,

for all of the categorical covariates, uτ is higher when there is agreement in the variable

between the target and query.

I next interpret the β estimates describing how the continuous covariates affect uτ . The

negative estimate for the age difference covariate β10 indicates that as age difference increases

the threshold uτ decreases, thus non-match pairs with subjects that have similar ages have

higher match scores. The FRIFM covariates β11 and β12 are both small in magnitude,

although β12 is significantly different from zero.
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Table 7.1. Parameter estimates for threshold parameters β, scale parameters γ, and shape parameter ξ.

Parameter β0 β1: Gender FM β2: Gender MF β3: Gender MM β4: Glass NY β5: Glass YN β6: Glass YY

Estimate 4.252 -2.094 -2.046 -0.885 -0.761 -0.730 1.675

95% CI (4.09, 4.39) (−2.19,−1.20) (−2.15,−1.94) (−0.99,−0.79) (−0.86,−0.67) (−0.83,−0.65) (1.46, 1.86)

Parameter β7: Setting IO β8: Setting OI β9: Setting OO β10: AgeDiff β11: tFRIFM β12: qFRIFM -

Estimate -0.438 -0.390 2.600 -0.041 -0.002 0.008 -

95% CI (−0.56,−0.31) (−0.50,−0.31) (2.26, 3.02) (−0.045,−0.038) (−0.005, 0.002) (0.004, 0.012) -

Parameter γ0 γ1 γ2 γ3 γ4 γ5 γ6

Estimate 0.384 -0.096 -0.076 0.045 -0.176 -0.171 0.014

95% CI (0.067, 0.43) (−0.11, 0.053) (−0.093, 0.089) (0.034, 0.20) (−0.22,−0.023) (−0.22,−0.011) (−0.031, 0.23)

Parameter γ7 γ8 γ9 γ10 γ11 γ12 ξ

Estimate -0.159 -0.187 0.224 -0.015 -0.003 0.008 -0.011

95% CI (−0.21, 0.048) (−0.23,−0.026) (0.080, 0.49) (−0.019,−0.012) (−0.008,−0.000) (0.004, 0.012) (−0.021, 0.045)
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Fewer of the scale parameter estimates are significant. Aside from γ3, all the γ estimates

which are significantly different from zero have the same sign as the estimate for the cor-

responding β, implying that an increase in uτ tends to occur with an increase in the scale

parameter σ. The significant positive estimate for γ3 implies that when both query and

target are male, the distribution above the threshold uτ has larger scale than in the baseline

FF case, despite the uτ being lower for the MM case.

7.3.2. Covariate Effect on Tail and Probability of False Match Classifi-

cation. To get an idea of how the non-match tail behaves under different covariate settings,

I investigate 16 specific covariate settings. For the first 8 settings, which are listed in Ta-

ble 7.2, the numeric variables are held constant, so that the age difference is 5, the target

FRIFM is 25, and the query FRIFM is 25. For settings 9 through 16, categorical covariates

are held constant, such that the non-match pairs both contain males, the target subject is

not wearing glasses but the query subject is wearing glasses, and both pictures are taken

indoors.

In addition to listing the settings, Table 7.2 lists the point estimates for uτ and σ.

It is clear that the covariates have noteworthy effect on these parameters. For instance,

setting 1, which has all categorical covariates in agreement between query and target, has

a much higher threshold and a scale parameter nearly double that of setting 2 which has

all categorical covariates disagree. In fact, setting 1 has the highest threshold of any of

the investigated settings, two units higher than any other that I tested. Also listed is the

estimated probability that an observation with the listed covariates would have a similarity

score exceeding the overall empirical .999 quantile of 4.093. Settings 1, 3, and 4 all have

estimates for uτ which exceed this level, meaning that the fitted model estimates that more
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Table 7.2. Covariate values used for each setting with corresponding prob-
abilities of exceeding the algorithm’s classification threshold.

Covariate Covariate Used uτ σ Prob
Setting Gender Glasses Setting AgeDiff tFRIFM qFRIFM > 4.093

1 FF YY OO 5 25 25 8.473 1.963 > 0.05
2 FM NY IO 5 25 25 0.904 1.005 0.0018
3 FF YN OO 5 25 25 6.068 1.632 > 0.05
4 MF NN OO 5 25 25 4.752 1.795 > 0.05
5 FF NY II 5 25 25 3.437 1.297 0.0296
6 MF YY OI 5 25 25 3.437 1.206 0.0285
7 MM NN II 5 25 25 3.313 1.617 0.0332
8 MM YN II 5 25 25 2.583 1.363 0.0158
9 MM NY II 0 25 25 2.758 1.462 0.0194
10 MM NY II 0 40 10 2.607 1.236 0.0143
11 MM NY II 20 25 25 1.936 1.084 0.0063
12 MM NY II 20 10 10 1.845 1.004 0.0048
13 MM NY II 20 40 40 2.027 1.170 0.0079
14 MM NY II 40 25 25 1.114 0.804 0.0010
15 MM NY II 40 25 10 0.993 0.721 0.0005
16 MM NY II 40 25 40 1.235 0.908 0.0018

than 5% of observations with these covariates would be incorrectly classified as matches if

this 4.093 were used as the classification threshold. Settings 1, 3, and 4 all compare images

that were both taken outdoors.

Figure 7.3 plots the estimated GPDτ distributions for the 16 settings’ values for compar-

ison. The top panel shows settings 1 through 8, and the bottom panel 9 through 16. The

thick vertical lines in each figure represent the classification threshold of 4.093. Several of the

aforementioned features are clearly illustrated with some distributions being entirely above

the classification threshold. Differences in scales of the distributions are also evident. Other

interesting aspects of the fitted model become evident in Figure 7.3, such as the fact that

the estimated distributions for settings 5 and 6 are very similar despite the settings them-

selves being quite different. In the bottom panel, there is a noticeable distinction between

settings 9 and 10, settings 11 through 13, and settings 14 through 16 which correspond to

changes in age difference. As age difference gets smaller, the GPDτ threshold gets bigger.
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Figure 7.3. GPDτ distributions for settings 1 through 8 (top) and 9 through
16 (bottom).

While changes in the target and query FRIFM do have an effect on the threshold placement,

it’s not as pronounced as the effect of age difference. Also note that none of the GPDτ

distributions displayed in the bottom panel of Figure 7.3 have thresholds that exceed the

classification threshold. For all eight of these settings, the categorical covariates are fixed

at settings which do not have the largest effect on the threshold, as the non-match pair is

comparing two images of males taken indoors, where the target subject is not wearing glasses

74



but the query subject is wearing glasses. It appears that numeric covariates alone are not

enough to push the GPDτ threshold above the classification threshold.

7.3.3. Model Performance. Since only 100,000 of the non-match pairs in the GBU

Bad partition are used, it is possible to compare the empirical .95 quantiles from the entire

partition to the predicted uτ values. Table 7.3 compares such empirical quantiles to the

predicted uτ and its confidence interval for select settings, chosen so that each setting had

at least 100 observations in the sample of 100,000. Note that in order to find the empirical

quantiles, I am ignoring both target and query FRIFM effects, which are minimal.

Table 7.3. Empirical .95 quantiles of the Bad partition compared to the
predicted uτ for select settings.

Covariate Bad Partition 95% Confidence
Setting Empirical Quantile uτ Interval for uτ

5 2.974 3.437 (3.00, 3.88)
7 3.269 3.313 (2.85, 3.76)
8 2.175 2.583 (2.01, 3.11)
9 2.578 2.758 (2.22, 3.28)

In settings 7, 8, and 9, the Bad partition’s .95 empirical quantile is contained within the

95% confidence interval for uτ . The confidence interval for setting 5 does not include the .95

empirical quantile, though it is just below the lower bound. In this case, the .95 empirical

quantile of the sample of 100,000 is 3.720, which suggests that the sample is a relatively

poor representation of the Bad partition. More encouraging still, the model predicts a uτ

that lies between the two empirical .95 quantiles, suggesting that the model offsets this

poor representation issue to some degree. Taking this into consideration, along with the

performance for settings 7, 8, and 9, it appears that the model does an admirable job in

estimating the .95 quantile.
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7.4. Conclusion

In general, it appears that non-match pairs that compare images that are similar to

each other in terms of subject gender, age, and use of glasses, as well as indoor or outdoor

setting, have higher probabilities of being classified as matches. In some cases, such as

situations where both images are taken outdoors, this probability far exceeds the 0.001 false

accept rate that is applied to all non-match pairs when choosing the classification threshold.

Furthermore, similarities in these situations are not created equal, as the algorithm is more

likely to suggest two different female subjects are matches compared to two different male

subjects. One way to lessen this probability of being incorrectly classified as a match is to

control all images so that they are taken indoors and the subjects are not wearing glasses.
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CHAPTER 8

Conclusion and Future Work

This dissertation presents a new method for modeling the tail of a distribution. The

model is related to the peaks over threshold setting in extreme value theory. The utility of

the model is demonstrated through both a simulation study and an application to a facial

recognition setting. This chapter serves to review my work and to suggest future research

directions.

8.1. Review

Chapter 1 describes the facial recognition setting which served as motivation for my work.

An algorithm intended to determine if subjects in two different pictures are the same yields a

set of non-match and match scores. Scores above some classification threshold are classified

as matches, so that scores in the upper tail of the non-match distribution are false matches.

Covariate information is not used to set the classification threshold. The purpose of my work

is to determine whether the covariate information available can be used to predict whether

a pair of images will lead to a false match.

In Chapter 2, I review standard statistical extreme value practices. The three-types

theorem establishes the three possible limiting distributions of an n-block of maxima. These

three domains of attraction carry over to the generalized Pareto distribution (GPD), which

is the limiting distribution used in the peaks over threshold (POT) approach to modeling

the tail of a distribution above some threshold u. Traditional POT methods fix a threshold

u and estimate a probability of exceeding that threshold τ , but my new approach will fix an

appropriate τ and estimate a threshold uτ .
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Chapter 3 establishes a new version of the generalized Pareto distribution, GPDτ , which

is a sensible model for the upper τth proportion of a distribution, so long as τ is relatively

small. GPDτ differs from the standard GPD in its aim, and it treats τ as fixed. The scale

and threshold parameters of GPDτ do not depend on each other as they do in the traditional

GPD. Like the GPD, GPDτ exhibits a type of threshold stability.

In Chapter 4, I use GPDτ and quantile regression to develop an objective function to

be used in order to estimate the threshold, shape, and scale parameters. Estimation is

performed via M-estimation, and the consistency of the resulting estimators is proved.

Chapter 5 discusses the implementation of covariates into my model, as well as some

practical considerations to improve optimization of the parameters. Covariate implementa-

tion is handled by introducing a kernel smoother to the objective function as a weight. A

kernel with radius δ is centered at each observation, and all observations exceeding uτ − δ

contribute to the GPDτ portion of the objective function. Use of this kernel density appro-

priately handles issues arising from the fact that an observation may switch from appearing

in the bulk distribution to appearing in the tail as optimization is performed. A penalty

term is applied to the shape parameter to avoid unreasonable shape estimates. Because the

objective function is not smooth, a Gauss-Seidel iterization scheme is used.

Chapter 6 presents a simulation study which verifies that my method can be used to

reliably model the tail of some distribution, yielding unbiased quantile estimates. My method

is comparable to quantile regression for estimating high quantiles, and outperforms quantile

regression in estimating extreme quantiles.

Chapter 7 applies my model to the facial recognition data that motivated this work. I

find that factors such as gender and indoor or outdoor setting strongly influence the location
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of uτ and, to a lesser extent, the scale σ of the tail. If classification were performed via the

.99 or .999 empirical quantile across covariate levels, these factors would influence whether

a pair of images are incorrectly classified as a match.

8.2. Future Work

Some of the suggestions I will make for future research are limited by the computational

time of my method. Estimation using my method requires adequate computational resources,

and many natural extensions of my work are liable to further increase computation time.

While use of a common shape parameter appears appropriate in the facial recognition

setting, it is possible that covariates could change the tail behavior of a given distribution.

Implementing covariates into the shape parameter is slightly more complicated than in the

threshold or scale, as my method imposes a penalty on the shape parameter alone. Work to

verify that the shape can adequately handle covariate implementation needs to be performed.

My work has treated all covariates as linearly related to the threshold and exponentially

related to the scale, but it’s theoretically possible for the covariates to have more compli-

cated nonlinear relationships with the parameters. Implementation of higher order terms is

likely straightforward. Interaction terms, which would be of particular interest in a facial

recognition setting, could also be used. Use of such terms in my model should be verified

for accuracy.

In the facial recognition application, I chose to use covariates that were of interest in pre-

vious facial recognition studies, foregoing a formal model selection process. Use of a stepwise

procedure would increase the computational burden, as it requires repeated model fitting

and bootstrapping in order to determine which covariates are significant. Use of likelihood

ratio tests to determine covariate significance would be more tractable, eliminating the need
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for bootstrapping, but these would require a likelihood, as would information criterion model

selection methods such as AIC. The binomial objective function (18) discussed in Chapter

4.1.2 may prove useful here. It may be possible to treat this function as a log-likelihood once

the parameters have been estimated, paving the way for a more efficient model selection

method.

8.3. Conclusion

Importantly, my work clearly demonstrates that covariates can have a considerable effect

on the upper tail of the distribution of non-match scores. GPDτ , which produces a flexible

model for the upper tail of a distribution, is an effective tool for capturing this covariate be-

havior, as GPDτ ’s parameterization in terms of location (uτ ), scale (σ), and shape (ξ) yields

interpretable covariate relationships. I look forward to improving my method’s performance

and applying it to a variety of different problems in the future.
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APPENDIX A

Grid Search Method Proof

Theorem A.0.1. Let Mn be defined as in (18). Consider u such that Y(i) < u ≤

Y(i+1). Let σ∗ and ξ∗ be the best estimates of σ and ξ so that for any u, Mn (u, σ, ξ;y) ≤

Mn (u, σ
∗, ξ∗;y). Then the objective function Mn is maximized when u = Y(i+1).

Proof. Assume that Mn (u, σ
∗, ξ∗;y) > Mn

(

Y(i+1), σ
∗, ξ∗;y

)

. The proof will be broken

down into three cases.

Case 1: ξ∗ = 0

For each j,

1

σ
exp

(

−
Y(j) − u

σ

)

>
1

σ
exp

(

−
Y(j) − Y(i+1)

σ

)

−
(

Y(j) − u
)

> −
(

Y(j) − Y(i+1)

)

u < Y(i+1),

which is a contradiction. So Mn

(

Y(i+1), σ
∗, ξ∗;y

)

≥Mn (u, σ
∗, ξ∗;y) in Case 1.

Case 2: 0 < ξ∗ ≤ 0.5

Note that
(

− 1
ξ∗

− 1
)

is negative. So for each j,

(

−
1

ξ∗
− 1

)

log

(

ξ∗
Y(j) − u

σ
+ τ−ξ

)

>

(

−
1

ξ∗
− 1

)

log

(

ξ∗
Y(j) − Y(i+1)

σ
+ τ−ξ

)

log

(

ξ∗
Y(j) − u

σ
+ τ−ξ

)

< log

(

ξ∗
Y(j) − Y(i+1)

σ
+ τ−ξ

)

Y(j) − u < Y(j) − Y(i+1)

Y(i+1) < u,

which is a contradiction. Thus, Mn

(

Y(i+1), σ
∗, ξ∗;y

)

≥Mn (u, σ
∗, ξ∗;y) in Case 2.
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Case 3: −0.5 ≤ ξ∗ < 0
(

− 1
ξ∗

− 1
)

is positive here. For each j,

(

−
1

ξ∗
− 1

)

log

(

ξ∗
Y(j) − u

σ
+ τ−ξ

)

>

(

−
1

ξ∗
− 1

)

log

(

ξ∗
Y(j) − Y(i+1)

σ
+ τ−ξ

)

ξ∗
Y(j) − u

σ
> ξ∗

Y(j) − Y(i+1)

σ

Y(j) − u < Y(j) − Y(i+1)

Y(i+1) < u,

which is a contradiction. Thus, Mn

(

Y(i+1), σ
∗, ξ∗;y

)

≥Mn (u, σ
∗, ξ∗;y) in Case 3.

Thus, Mn

(

Y(i+1), σ
∗, ξ∗;y

)

≥Mn (u, σ
∗, ξ∗;y) for all possible values of ξ∗, and the objec-

tive function Mn from (18) for a fixed set of exceedances is maximized when u is equal to

the smallest exceedance. �
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