
THESIS

A STEP TOWARD CONSTANT TIME LOCAL SEARCH FOR OPTIMIZING PSEUDO

BOOLEAN FUNCTIONS

Submitted by

Wenxiang Chen

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2013

Master’s Committee:

Advisor: L. Darrell Whitley
Co-advisor: Adele E. Howe

Margaret Cheney

ABSTRACT

A STEP TOWARD CONSTANT TIME LOCAL SEARCH

FOR OPTIMIZING PSEUDO BOOLEAN FUNCTIONS

Pseudo Boolean Functions (PBFs) are the objective functions for a wide class of hard

optimization problems, such as MAX-SAT and MAX-CUT. Since these problems are NP-

Hard, researchers and practitioners rely on incomplete solvers, such as Stochastic Local Search

(SLS), for large problems. Best-Improvement Local Search (BILS) is a common form of SLS,

which always takes the move yielding the highest improvement in the objective function.

Generally, the more runtime SLS is given, the better solution can be obtained. This thesis

aims at algorithmically accelerating SLS for PBFs using Walsh Analysis.

The contributions of this thesis are threefold. First, a general approach for executing

an approximate best-improvement move in constant time on average using Walsh analysis,

“Walsh-LS”, is described. Conventional BILS typically requires examining all n neighbors to

decide which move to take, given the number of variables is n. With Walsh analysis, however,

we can determine which neighbors need to be checked. As long as the objective function

is epistatically bounded by a constant k (k is the number of variables per subfunctions),

the number of neighbors that need to be checked is constant regardless of problem size. An

impressive speedup of runtime (up to 449×) is observed in our empirical studies.

Second, in the context of Walsh-LS, we empirically study two key components of SLS from

the perspectives of both efficiency and effectiveness: 1) Local optimum escape method: hard

random or soft restarts; 2) Local search strategy: first-improvement or best-improvement.

Lastly, on average we can perform approximate BILS using the mean over a Hamming

region of arbitrary radius as a surrogate objective function. Even though the number of

points is exponential in the radius of the Hamming region, BILS using the mean value of

points in the Hamming region as a surrogate objective function can still take each move in

time independent of n on average. According to our empirical studies, using the average over

ii

a Hamming region as a surrogate objective function can yield superior performance results

on neutral landscapes like NKq-landscapes.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors Dr. Darrell Whitley and Dr. Adele Howe for their

patient guidance. I would also like to thank Dr. Margaret Cheney for serving as my external

committee member.

I would like to thank the Air Force Office of Scientific Research for funding this work.

My research was sponsored by the Air Force Office of Scientific Research, Air Force Materiel

Command, USAF, under grant number FA9550-11-1-0088.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ACRONYMS . xvi

1 Introduction . 1

1.1 Local Search using Walsh Analysis . 1

1.2 Related Work . 3

2 Background . 6

2.1 Pseudo-Boolean Functions . 6

2.2 NK-landscapes . 7

2.3 Stochastic Local Search for NP-Hard Problems 7

2.4 Walsh Analysis for Pseudo-Boolean Functions 9

3 Average Constant Time Approximate Best-Improvement Local Search . 11

3.1 BILS Implementation . 11

3.1.1 An Improved Implementation of BILS 12

3.2 Walsh-LS: Best-Improvement Local Search based on Walsh Analysis 14

3.2.1 Compute Difference between Adjacent Candidate Solutions in Standard

Fitness Space . 15

3.2.2 Update Data Structures after a Single Bit Flip 17

3.3 Runtime Complexity Analysis for Walsh-LS 19

v

3.3.1 Initialization Costs . 19

3.3.2 The O(n) Worst Case Analysis . 21

3.3.3 The O(1) Average Case Analysis . 23

3.3.3.1 Approximation in Move Selection 25

3.4 Empirical Studies . 26

3.4.1 Can exact-Walsh-LS run faster than PE-BILS? 26

3.4.2 Will “expensive” bits break the efficiency of exact-Walsh-LS? 31

4 Parameterization of Constant Time

Best-Improvement Local Search . 39

4.1 Random Restart vs. Random Walk . 39

4.1.1 Reducing Impr.len from O(n) to O(1) 39

4.1.2 Runtime . 46

4.1.3 Solution Quality . 48

4.2 Best-Improvement vs. First-Improvement . 56

4.2.1 Runtime . 57

4.2.2 Solution Quality . 57

5 Walsh-LS using Surrogate Function of Mean Value over Hamming Region 66

5.1 Mean over Hamming Regions as Surrogate Fitness 67

5.1.1 Hamming Regions . 67

5.1.2 Mean Values over Hamming Spheres 67

5.1.3 Walsh-LS with Surrogate Fitness . 68

5.1.4 Update Proxy after a Single Bit Flip 69

5.1.5 Mean Values over Hamming Balls as Surrogate Fitness 70

5.2 Empirical Studies . 71

5.2.1 Solution Quality . 71

5.2.2 Runtime . 78

5.2.3 Why Can Surrogate Fitness Help Search? 83

vi

6 Conclusion and Future Work . 85

6.1 Conclusion . 85

6.2 Future Work . 86

References . 88

vii

LIST OF TABLES

3.1 Overall runtime in seconds (including the initialization step) on uniform instances.

The median runtimes over 10 runs is presented, and the numbers colored in grey

after the “±” symbol are the corresponding standard deviations. Under the

“Speedup” column, the speedups of exact-Walsh-LS over PE-BILS are shown. . . 28

3.2 Best-improve move time in seconds (only considering update operations) on

uniform instances. The median runtimes over 10 runs are presented, and the

number colored in grey after the “±” symbol is the corresponding standard

deviations. Under the “Speedup” column, the speedups of Walsh-LS over PE-

BILS are shown. 29

3.3 Overall runtime in seconds for uniform random and non-uniform random instances.

The median runtimes over 10 runs are presented, and the number colored in grey

after the “±” symbol is the corresponding standard deviations. 38

4.1 Evaluations (maximization) of solutions on uniform random instances found by

exact-Walsh-LS and walk-Walsh-LS. Mean values and standard deviations over 10

independent runs are reported. P-values calculated from Wilcoxon rank-sum test

are also presented. Statistical significantly better solutions and the related p-values

are marked in bold with Bonferroni adjusted significance level 0.05
44

= 0.0011. . . 51

4.2 Evaluations (maximization) of solutions on non-uniform random instances found

by exact-Walsh-LS and walk-Walsh-LS. Mean values and standard deviations over

10 independent runs are reported. P-values calculated from Wilcoxon rank-sum

test are also presented. Statistical significantly better solutions and the related

p-values are marked in bold with Bonferroni adjusted significance level 0.05
44

= 0.0011. 52

4.3 Number of successful restarts over 100,000 moves by exact-Walsh-LS and walk-

Walsh-LS on uniform random instances. Mean values and standard deviations

over 10 independent runs are reported. 53

viii

4.4 Number of successful restarts over 100,000 moves by exact-Walsh-LS and walk-

Walsh-LS on non-uniform random instances. Mean values and standard deviations

over 10 independent runs are reported. 54

4.5 Number of restarts over 100,000 moves by exact-Walsh-LS and walk-Walsh-LS

on uniform random instances. Mean values and standard deviations over 10

independent runs are reported. 55

4.6 Number of restarts over 100,000 moves by exact-Walsh-LS and walk-Walsh-LS

on non-uniform random instances. Mean values and standard deviations over 10

independent runs are reported. 55

4.7 Evaluations (maximization) of solutions on uniform random instances found by

Walsh-FILS and exact-Walsh-LS. Mean values and standard deviations over 10

independent runs are reported. P-values calculated from Wilcoxon rank-sum test

are also presented. Statistical significantly better solutions and the related p-values

are marked in bold with Bonferroni adjusted significance level 0.05
44

= 0.0011. . . 58

4.8 Evaluations (maximization) of solutions on non-uniform random instances found

by Walsh-FILS and exact-Walsh-LS. Mean values and standard deviations over 10

independent runs are reported. P-values calculated from Wilcoxon rank-sum test

are also presented. Statistical significantly better solutions and the related p-values

are marked in bold with Bonferroni adjusted significance level 0.05
44

= 0.0011. . . 58

4.9 Number of restarts over 100,000 moves by Walsh-FILS and exact-Walsh-LS

on uniform random instances. Mean values and standard deviations over 10

independent runs are reported. 60

4.10 Number of restarts over 100,000 moves by Walsh-FILS and exact-Walsh-LS on

non-uniform random instances. Mean values and standard deviations over 10

independent runs are reported. 60

4.11 Number of SUCCESSFUL restarts over 100,000 moves by Walsh-FILS and exact-

Walsh-LS on uniform random instances. Mean values and standard deviations

over 10 independent runs are reported. 61

ix

4.12 Number of SUCCESSFUL restarts over 100,000 moves by Walsh-FILS and exact-

Walsh-LS on nonuniform random instances. Mean values and standard deviations

over 10 independent runs are reported. 62

5.1 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on

uniform NK random instances with K = 2. Mean values and standard deviations

over 10 independent runs are reported. P-values calculated from Wilcoxon rank-

sum tests comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also

presented. Statistical significantly better solutions and the related p-values are

marked in bold with Bonferroni adjusted significance level 0.05
88

= 0.000568. . . . 72

5.2 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on

uniform NK random instances with K = 4. Mean values and standard deviations

over 10 independent runs are reported. P-values calculated from Wilcoxon rank-

sum tests comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also

presented. Statistical significantly better solutions and the related p-values are

marked in bold with Bonferroni adjusted significance level 0.05
88

= 0.000568. . . . 73

5.3 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on

uniform NKq (q=2) random instances with K = 2. Mean values and standard

deviations over 10 independent runs are reported. P-values calculated from

Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 74

x

5.4 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on

uniform NKq (q=2) random instances with K = 4. Mean values and standard

deviations over 10 independent runs are reported. P-values calculated from

Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 75

5.5 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS

on non-uniform NK random instances with K = 2. Mean values and standard

deviations over 10 independent runs are reported. P-values calculated from

Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 75

5.6 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS

on non-uniform NK random instances with K = 4. Mean values and standard

deviations over 10 independent runs are reported. P-values calculated from

Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 76

5.7 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS

on non-uniform NKq (q=2) random instances with K = 2. Mean values and

standard deviations over 10 independent runs are reported. P-values calculated

from Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 76

xi

5.8 Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS

on non-uniform NKq (q=2) random instances with K = 4. Mean values and

standard deviations over 10 independent runs are reported. P-values calculated

from Wilcoxon rank-sum tests comparing solutions by exact-Walsh-LS and Walsh-

LS-HS(1) are also presented. Statistical significantly better solutions and the

related p-values are marked in bold with Bonferroni adjusted significance level

0.05
88

= 0.000568. 77

5.9 Overall runtimes in seconds on uniform NK instances with K = 2. The median

runtimes over 10 runs are presented, and the numbers after the “±” symbol are

the corresponding standard deviations. 78

5.10 Overall runtimes in seconds on uniform NK instances with K = 4. The mean

runtimes over 10 runs are presented, and the numbers after the “±” symbol are

the corresponding standard deviations. 79

5.11 Overall runtimes in seconds on uniform NKq (q=2) instances with K = 2. The

mean runtimes over 10 runs are presented, and the numbers after the “±” symbol

are the corresponding standard deviations. 79

5.12 Overall runtimes in seconds on uniform NKq (q=2) instances with K = 4. The

mean runtimes over 10 runs are presented, and the numbers after the “±” symbol

are the corresponding standard deviations. 80

5.13 Overall runtimes in seconds on non-uniform NK instances with K = 2. The mean

runtimes over 10 runs are presented, and the numbers after the “±” symbol are

the corresponding standard deviations. 80

5.14 Overall runtimes in seconds on non-uniform NK instances with K = 4. The mean

runtimes over 10 runs are presented, and the numbers after the “±” symbol are

the corresponding standard deviations. 81

5.15 Overall runtimes in seconds on non-uniform NKq (q=2) instances with K = 2.

The mean runtimes over 10 runs are presented, and the numbers after the “±”

symbol are the corresponding standard deviations. 81

xii

5.16 Overall runtimes in seconds on non-uniform NKq (q=2) instances with K = 4.

The mean runtimes over 10 runs are presented, and the numbers after the “±”

symbol are the corresponding standard deviations. 82

xiii

LIST OF FIGURES

2.1 Pictorial View of Best-Improvement Local Search [LMS03] 9

3.1 Speedup on uniform instances of NK-landscapes. 30

3.2 Runtime in seconds on uniform instances. The fitted curve is generated using the

nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual

standard error (“RSE”) is reported to indicate the goodness of fitting. 32

3.3 Correlation between frequency of a variable appearing in subfunctions and the

number of times being flipped on uniform instances. 34

3.4 Correlation between frequency of a variable appearing in subfunctions and the

number of times being flipped on non-uniform instances. 35

3.5 Overall runtime in seconds of exact-Walsh-LS on both uniform random and non-

uniform random NK-landscape instances. The fitted curve is generated using the

nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual

standard error (“RSE”) is reported to indicate the goodness of fit. 37

4.1 Probability density function of Irwin-Hall distribution.1 40

4.2 Correlation between evaluation value of candidate solutions sampled by exact-

Walsh-LS and their relative Impr.len on uniform random NK-landscape instances. 43

4.3 Correlation between evaluation value of candidate solutions sampled by exact-

Walsh-LS and their relative Impr.len on non-uniform random NK-landscape

instances. 44

4.4 The average Impr.len over one million bit-flips by exact-Walsh-LS on uniform

and non-uniform instances. The fitted curve is generated using the nonlinear

regression “nls” from R with the formula AvgLen = a + b ∗ N c. The residual

standard error (“RSE”) is reported to indicate the goodness of fitting. 45

4.5 The average Impr.len over one million bit-flips by walk-Walsh-LS on uniform

and non-uniform instances. 47

xiv

4.6 Runtime in seconds on uniform instances. The fitted curve is generated using the

nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual

standard error (“RSE”) is reported to indicate the goodness of fitting. 49

4.7 Runtime in seconds on non-uniform instances. The fitted curve is generated using

the nonlinear regression “nls” from R with the formula F = a + b ∗ N c. The

residual standard error (“RSE”) is reported to indicate the goodness of fitting. . 50

4.8 Evaluations of solutions found by walk-Walsh-LS with λ ranging from 10 to 500.

Each point represents the mean evaluations over 10 independent runs. The highest

mean of evaluations (358.572) is achieved by walk-Walsh-LS with λ = 120. The

mean evaluations of solutions found by exact-Walsh-LS (354.69, which is colored

in red) is reported as a baseline. 63

4.9 Median runtimes of Walsh-FILS in seconds on uniform instances over 10 runs.

The left subfigures relate to the overall runnning time, while the right subfigures

represent the time spent on updating data structures. 64

4.10 Median runtimes of Walsh-FILS in seconds on non-uniform instances. The left

subfigures relate to the overall runnning time, while the right subfigures represent

the time spent on updating data structures. 65

5.1 The number of restarts issued by Walsh-LS-HS(r) (r = {0, 1, 2, 3}) during 100000

moves. 84

xv

LIST OF SYMBOLS AND ACRONYMS

x̄ complement of a Boolean variable x, i.e., x̄ = 1− x 6

D(x,y) the Hamming distance between two candidate solutions x and y 67

Impr(x) list of improving moves that corresponds to candidate solution x 17

L the set of literals . 6

x binary string . 6

x(p) the candidate solution after flipping the pth bit to x. 13

B {0, 1} . 6

HB(r)(x) a Hamming ball of radius r around a point x ∈ Bn 67

HS(r)(x) a Hamming sphere of radius r around a point x ∈ Bn 67

ψi(x) Walsh function, as defined in equation (2.8) . 10

c subfunction to variable ratio, m
n

. 12

K in NK-landscapes, K = k + 1 . 7

k the number of variables per subfunction . ii

m the number of subfunctions . 10

N the number of subfunctions in a NK-Landscapes, N = n 7

n the number of variables in a PBF . ii

Sp(x) the sum of all Walsh terms that involve the pth variable 16

T subset of L . 6

xvi

wi Walsh coefficient . 10

w′i(x) Walsh term: Walsh coefficients multiplies its relative Walsh function 16

bc(i) bc is a function that returns the number of 1’s in bit string i 10

BILS Best-Improvement Local Search . 1

exact-Walsh-LS exact Walsh-LS without approximation in selecting best improvement moves

26

MAX-SAT Maximum Satisfiability . 1

MaxBitFlip the number of maximum bit-flips . 26

naive-BILS naive implementation of BILS that takes Θ(n2) 12

PBF Pseudo Boolean Function . 1

PE-BILS an improved implementation of BILS based on partial evaluation 13

Q set of n-bit strings whose corresponding Walsh coefficients are non-zero 67

SLS Stochastic Local Search . 1

walk-Walsh-LS exact-Walsh-LS with random walk in place of random restart 42

Walsh-FILS exact-Walsh-LS with first-improvement local search in place of best-improvement

local search . 57

Walsh-LS Approximate constant time BILS based on Waslh analysis 2

Walsh-LS-HB(r) Walsh-LS with the mean values over Hamming balls of radius r as surrogate

fitness . 70

Walsh-LS-HS(r) exact-Walsh-LS with the mean values over Hamming sphere of radius r as

surrogate fitness . 69

xvii

Chapter 1

Introduction

1.1 Local Search using Walsh Analysis

Pseudo-Boolean functions (PBFs) [BH02] act as the objective functions for a wide

variety of optimization problems arising from various areas. The applications of PBFs

include maximum satisfiability (MAX-SAT) from computer science [Zha04], spin glasses

from statistical mechanics [SK75], and NK-landscapes from theoretical biology [KW89].

Optimizing PBFs in general is NP-hard [KS11][Sut11], implying that no polynomial-time

algorithm has been found. Instead of solving these problems using complete algorithms, which

takes exponential time in the worst case with respect to the size of input, researchers and

practitioners settle for good suboptimal solutions using metaheuristics [BR03]. Metaheuristics

are designed to return a solution of good quality (not necessarily the optimal one) in a

reasonable amount of time.

Stochastic Local Search (SLS) [HS04] is a simple yet effective heuristic that iteratively

improves a candidate solution through choosing better moves among neighbors under a

predefined neighborhood operator. Best-Improvement Local Search (BILS) is a common

form of SLS. BILS chooses the most improving move among n neighbors. Conventionally,

each move requires a complete scan over all n neighbors, and examining each neighbor takes

O(n) time on PBFs. Overall, the conventional approach takes O(n2) time to execute one

best-improvement move on PBFs.

Since SLS with more runtime usually returns a better solution, we first present a Walsh

analysis approach to algorithmically accelerate the conventional implementation of BILS.

Second, empirical evidence about the impact of two key components of BILS, local optimum

escape method and move selection strategy, on effectiveness and efficiency are presented.

Last, we demonstrate how smoothing the search space by replacing the standard objective

1

function with the mean value over a Hamming region can improve the solution quality with

no extra cost in runtime.

Walsh analysis allows us to design an approximate constant time BILS on uniform random

PBF instances, which we call “Walsh-LS” . The Walsh transform [Gol89a][Gol89b] decomposes

an objective function into a linear combination of Walsh bases. The corresponding coefficients

for the Walsh bases serve to capture the interaction among variables. Walsh analysis is a set

of techniques built on the basis of the Walsh transform. In this thesis, we implement a general

approach that maintains a proxy vector for the objective function values of neighbors, and

utilizes Walsh coefficients to update the proxy vector during search instead of recomputing

the objective function values of neighbors every time after flipping a bit. Assume on a uniform

random instance, the proxy vector can be updated in O(1) time in expectation after flipping a

bit. Since the list of improving bits can be O(n), only a constant number of bits are sampled

from the list to select the approximate best improving move. We therefore reduce the average

amount of computation required for taking one best-improvement move from O(n2) to O(1)

on uniform random PBF instances. 2

We also explore two other ways of achieving the expected O(1) complexity per move:

1) replacing hard random with soft restarts; 2) replacing best-improving local search with

first-improving local search. The impact of these changes on solution quality is investigated

in our empirical study.

Sutton et al. [SHW10] conduct an initial study of bringing theoretical results of Walsh

analysis into algorithm development. They introduce Directed Plateau Search (DPS) [SHW10].

DPS employs the mean value of the objective function over the localized Hamming region

of the search space as a surrogate “gradient” function. They empirically show that formal

analysis of the search space structure is able to direct search to escape plateaus (connected

equal moves) in a more principled fashion. Rather than using the mean value over a Hamming

2This thesis is primarily based on two conference papers that we have published [WC12][WCH12].

2

region only to assist the search in escaping plateaus, we explore the possibility of directly

replacing the objective function with the surrogate function. Surrogate functions can be

defined as the mean value over Hamming regions. One can view the replacement of the

objective function as a transformation of the search space. We argue that the search space

after the transformation is smoother, has fewer plateaus, and therefore is easier for search.

In this thesis, we focus on NK-landscapes as optimization problems whose objective

functions are a particular class of PBFs. There are two often studied classes of NK-landscapes:

unrestricted NK-landscapes and nearest-neighbor NK-landscapes [Pel10]. Nearest-neighbor

NK-landscapes restrict the pattern of neighbors to be consecutive in position. This class of

NK-landscapes can be solved exactly using dynamic programming as discussed in [PSG+09].

Unrestricted NK-landscapes, however, have been proven NP-hard [Wei96]. We limit our

investigation to unrestricted NK-landscapes, since these problems are often beyond complete

solvers and require the power of SLS.

1.2 Related Work

The idea of applying the Walsh transform to search dates back to 1980s. Bethke [Bet81]

introduces a direct method to compute the average schema fitness value (schema is a partition

of the search space [Hol92]). The direct calculation of the average fitness value is significant

because genetic algorithms compare schemata and allocate more computational resources to

those with higher fitness. The efficient computation of average schema fitness has been used

to help explain the search behavior of genetic algorithms.

Walsh analysis was not practical however, as the Walsh transform requires complete

enumeration over the entire search space. Rana et al. [RHW98] argue that for k-bounded

pseudo-Boolean functions, the cost of the Walsh transform is O(m2k), given that m is the

number of subfunctions and k is the maximum number of variables in all subfunctions. This

can be achieved by performing the Walsh transform on each subfunction and summing up

the Walsh polynomial to obtain the results for the overall function. This discovery makes

many calculations based on Walsh analysis tractable for practical purposes.

3

Walsh analysis can be employed to exactly calculate summary statistics of the entire search

space or partitions of the search space. Heckendorn et al. [HRW99] introduce an approach

to compute summary statistics for the entire search space for a generalization of MAX-SAT

and NK-landscapes, called embedded landscapes, in polynomial time. They later propose

a method to directly compute summary statistics for hyperplanes (partitions of the search

space) [Hec02]. Recently, Zhou et al. [ZHS08] extend these results to a black-box function

with a domain of arbitrary-cardinality under the bounded epistasis. Rather than considering

summary statistics for the entire space or hyperplanes, Sutton et al. [SWH12] concentrate

on a localized subspace. They [SHW09] disclose that MAX-k-SAT can be decomposed into k

elementary landscapes [Gro92] [Sta95]. A landscape is called elementary , if the mean value

over the neighborhood of any candidate solution x, denoted as E(f(y)), can be computed

directly based on x’s objective function value f(x) using equation (1.1).

E(f(y)) = f(x) +
k

d
(f̄ − f(x)) (1.1)

where y ∈ N(x), N(x) is the neighborhood of x, k is a constant relative to the problem, and

d is the size of neighborhood. They show that the elementary landscape decomposition of

MAX-k-SAT allows us to directly compute the expectation of the objective function evaluated

across neighboring points without enumeration. This result is then used to prove previously

unknown bounds for local maxima and plateau width in the 3-SAT search space.

Sutton et al. [SWH12] further propose a general method to compute moments of k-

bounded PBFs over a Hamming region of arbitrary radius. They discover that the moments

of k-bounded PBFs over Hamming regions of arbitrary radius can be applied to approximate

the fitness distribution over Hamming regions by solving a system of linear equations.

Walsh polynomials can also be applied to compute some “global” problem hardness

measures. These measures typically project features of the entire search space onto a

single quantity. Sutton et al. [SWH09] introduce a polynomial time computation of the

autocorrelation function for k-satisfiability landscapes. Auto-correlation [Sta96] is a statistical

quantity that captures ruggedness of a fitness landscape, and it is one of the problem hardness

measures that are widely used to connect the performance of algorithms to problem difficulty.

4

Another well-known measure of problem hardness is fitness distance correlation [JF95], which

quantifies the correlation between fitness and the distance from a current candidate solution

to the closest optimum. Chicano and Alba provide a closed-form formula for calculating the

fitness-distance correlation for PBFs with one global optimum using Walsh analysis [CA12].

Walsh analysis also can be applied in understanding a search algorithm’s behavior. For

instance, Walsh analysis can be used to compute the expectation curves for the uniform

crossover operator [CWA12] and the bit-flip mutation operator [CA11].

Even though there are quite some interesting theoretical works on Walsh analysis, relatively

little work is devoted to exploring Walsh analysis to actually improve the search process,

either for effectiveness or efficiency. My thesis explores how the Walsh analysis can be utilized

to speed up a widely used algorithm, and furthermore, to improve the solution quality of

local search algorithms.

5

Chapter 2

Background

2.1 Pseudo-Boolean Functions

Pseudo-Boolean Functions (PBFs) map an n-dimensional Boolean vector x = (x1, x2, . . . ,

xn) to a value f . xi (i ∈ [1, n]) is the ith element of x3. Every PBF can be uniquely written

as a multi-linear polynomial [BH02]:

f(x) = f(x1, . . . , xn) =
∑
S⊆V

cs
∏
j∈S

xj. (2.1)

where V = {1, 2, . . . , n}, B = {0, 1}, x ∈ Bn. Conventionally,
∏

j∈∅ xj = 1. The size of the

largest subset S such that cs 6= 0 is the degree of PBF f , denoted as deg(f).

In the field of optimization, however, PBFs are more commonly represented as posiforms

[BH02]. Posiforms build on the basis of literals. Let the complement of a Boolean variable xi

be x̄i, i.e., x̄i
def
= 1 − xi for i ∈ V. Both xi and x̄i are called literals. The set of literals is

denoted as L = {x1, x̄1, . . . , xn, x̄n}. The following equation demonstrates the representation

of PBFs in posiforms:

φ(x) =
∑
T⊆L

aT
∏
u∈T

u, (2.2)

where T is a subset of L. Even though it might be more intuitive to interpret PBFs in

posiforms, there can be different posiforms representing the same PBF.

Example 1 ([BH02]). Equation (2.3) and Equation (2.4) show two different posiforms for the

same pseudo-Boolean function, while Equation (2.5) shows its unique multi-linear polynomial

form.

ψ1(x) = 5x1 + 4x̄1x̄2x3 + 7x1x2x4 + 9x3x̄4, (2.3)

3In this thesis, bold fonts are used for vectors while normal fonts with subscripts are used for elements in
a vector.

6

ψ2(x) = x1 + 4x1x2 + 4x1x̄2x̄3 + 7x1x2x4 + 4x̄2x3 + 9x3x̄4. (2.4)

f(x1, x2, x3, x4) = 5x1 + 13x3 − 4x1x3 − 4x2x3 − 9x3x4 + 4x1x2x3 + 7x1x2x4 (2.5)

One can easily verify the claim in Example 1 by enumerating all possible assignments

for Equation (2.3), Equation (2.4) and Equation (2.5). Also note that all representations in

Example 1 have degree of 3, which indicates the degree of a PBF is an inherent property and

is independent of its representation.

The optimization problem of maximizing or minimizing a PBF is NP-Hard in general

[Sut11]. Based on the widely believed conjecture that P 6= NP [For09], there is no polynomial

time algorithm for problems that belong to the NP class. Regardless of the fact that some

problems in the NP class can be solved with a polynomial-time algorithm [CKT91], optimizing

PBFs can take exponential time of input size n in the worst case. Finding an exact solution

can be prohibitively time consuming. Incomplete solvers thus become a compelling topic for

researchers and a more reasonable choice for practitioners.

2.2 NK-landscapes

NK-landscapes are the class of PBFs under investigation in this thesis. NK-Landscapes

[KL87] are constructed from N subfunctions, where each subfunction fj(xIj) evaluates a

substring xIj of binary string x. xIj includes xj and k other randomly chosen bits, where Ij

is a set of k + 1 indices that extract a substring from the full binary string x. In other words,

each subfunction fj(xIj) is a PBF of length K = k + 1, and the entire NK-Landscape is a

K-bounded pseudo-Boolean function, where

f(x) =
N∑
j=1

fj(xIj). (2.6)

2.3 Stochastic Local Search for NP-Hard Problems

Local search algorithms move from one candidate solution to its neighboring candidate

solution in the search space by applying local changes, until an optimal solution is found

7

or a time limit has been reached. SLS takes advantage of randomized choices in generating

or selecting moves. The best-performing algorithms for many NP-Hard problems are SLS

algorithms, such as LKH [Hel00] for the Traveling Salesperson Problem (TSP) and WalkSAT

for satisfiability problem [SKC94].

Algorithm 1 [HS04] demonstrates a general outline of SLS for a maximization problem4.

SLS takes a problem instance π′ as input and returns the solution sol. We denote the search

space for π′ as S(π′), the optimal solution sets as S′(π′), candidate solution(s) as s, best-so-far

(bsf) candidate solution as ŝ, and a memory state as m (such as in Tabu Search [GL97]).

Algorithm 1: sol ← SLS-maximization(π′)

1 (s,m)← init(π′,m) ; // initialize candidate solution and memory state

2 ŝ ← best(π′, s) ; // save best initial solution as bsf solution

3 while terminate(π′,s,m)==False do
4 (s,m) ← step(π′,s,m); // apply (randomized) local changes

5 if f(π′, s) > f(π′,̂s) then
6 ŝ← s; // update bsf candidate solution

7 return ŝ;

In this thesis, we address Best-Improvement Local Search (BILS), a common form of

SLS used with the one bit-flip neighborhood operator for PBFs, a single search thread and

no external memory. BILS initializes with a single point in the search space, and always

moves it to the neighbor that yields the greatest improvement in the objective function

(the so-called best-improvement move) if possible, otherwise after hitting a local optimum

it perturbs the candidate solution in hope of ending up with a better local optimum (as

pictured in Figure 2.1). The BILS is sketched in Algorithm 2. BestImpr function in line 4

of Algorithm 2 examines all n neighbors of s under the one bit-flip neighborhood operator,

and returns the most improving neighbor if any, otherwise it returns s.

4In all pseudocodes in this thesis, sans-serif fonts represent vectors, italic fonts represent variables and
all-capital-letters fonts present functions.

8

co
st

Solution Space S

perturbation

Figure 2.1: Pictorial View of Best-Improvement Local Search [LMS03]

Algorithm 2: sol ← BILS(π′, escape)

1 s ← Init(π′) ; // initialize candidate solution

2 ŝ ← s;
3 while terminate(π′,s)=False do
4 s′ ← BestImpr(π′,s);
5 if s′ = s then // no improving move in neighborhood

6 if f(π′, s) > f(π′,̂s) then
7 ŝ← s; // update bsf candidate solution

8 s ← Perturbs(s, escape) ; // local optimum: perturbs s

9 else move over to the best improving neighbor
10 s← s′

11 return ŝ;

2.4 Walsh Analysis for Pseudo-Boolean Functions

The Walsh transform [Wal23] (also called Hadamard transform) is an example of a discrete

Fourier Transform [BM67]. It decomposes any given PBF f(x) defined over Bn → R into a

9

linear combination of orthonormal bases ψi(x), where i,x ∈ Bn, as shown in Equation (2.7).

f(x) =
∑
∀i∈Bn

wiψi(x) (2.7)

where wi ∈ R is called the Walsh coefficient and ψi(x) is called the Walsh function that

generates a sign as defined in Equation (2.8).

ψi(x) = (−1)bc(i∧x) = (−1)i
Tx (2.8)

bc(i) counts the number of 1’s in bit string i. The Walsh coefficients are then added or

subtracted in the calculation of f(x) depending on the sign generated by the Walsh function

ψi(x). The Walsh transform enables us to compute Walsh coefficients directly from f(x), as

shown in Equation (2.9).

wi =
1

2n

∑
∀j∈Bn

f(j)ψi(j) (2.9)

Since the summation in Equation (2.9) goes over all possible bit strings of length n, direct

computation of Walsh coefficients requires the enumeration of the entire search space. The

exponential cost renders the Walsh transform intractable for practical purposes. However,

Rana et al. [RHW98] take advantage of the linearity of the Walsh transform. They show that

the Walsh transform can be performed on a linear combination of subfunctions, therefore

reducing the complexity of the Walsh transform from O(2n) to O(m2k), where m is the

number of subfunctions (assuming the posiform representation) and k = deg(f). In addition,

they prove that the number of non-zero Walsh coefficients is also O(m2k). In other words,

the complexity of performing the Walsh transform on PBFs is determined by the subfunction

with the maximum number of variables.

Fortunately, in many real-world applications of optimizing PBFs such as industrial

instances of MAX-SAT [ABJ13] [BF98], k is typically very small (2 or 3) and n� 2k. The

subfunction-based Walsh transform is efficient on these problems. In this thesis we mostly

address PBFs with small K, yet still shed some light on the scalability of Walsh analysis on

larger K.

10

Chapter 3

Average Constant Time Approximate
Best-Improvement Local Search

Taking one best-improvement move (which corresponds to Line 4 of Algorithm 2) in Best-

Improvement Local Search (BILS) requires checking all n neighbors of the current candidate

solution s under the single bit-flip neighborhood operator. In this chapter, we describe an

approximate best-improvement local search algorithm that only takes constant time per move

in expectation on random instances of unrestricted NK-landscape. We name this algorithm

“Walsh-LS”, as it is a local search algorithm based on Walsh analysis. Walsh-LS was initially

proposed by Whitley [Whi11] to handle MAX-SAT problems. It was later extended to

NK-landscapes domain by Whitley and Chen [WC12]. To make the thesis self-contained, we

present a new proof for the main results in [WC12] in the theory part of this chapter.

The rest of this chapter is organized as follows. First, we review current implementations

of BILS for NK-landscapes and analyze its complexity per move. Second, the Walsh-LS

algorithm is introduced. We discuss how to execute BILS entirely on the basis of the Walsh

transform. Third, we investigate the complexity per move of Walsh-LS and derive analytic

bounds of cost per best-improvement move for both the average case and the worst case.

Last, we study empirically how much speedup Walsh-LS can achieve over an implementation

of BILS on NK-landscapes with various settings of N and K.

3.1 BILS Implementation

A naive implementation (denoted as naive-BILS for convenience) makes no use of the

characteristics of k-bounded PBFs and takes Θ(n2) time per move (page 273 in [HS04]).

BestImpr function at line 4 in algorithm 2 is critical for the complexity per move of BILS.

Also, it is exactly the place where naive-BILS behaves naively.

11

We present the naive-BILS’s implementation of BestImpr in algorithm 3. Rather than

using problem instance π′ as an abstract input, we detail the inputs as the number of variables

n, the number of subfunctions m, the evaluation function f , the current candidate solution s

and the evaluation value fitS associated with s. The m subfunctions fj that compose f are

also needed for evaluating a candidate solution. Let c be the subfunction to variable ratio

(i.e., c = m
n

). Clearly, algorithm 3 runs in O(mn) = O(c ∗ n2) = O(n2) time.

Algorithm 3: bestS′ ← Naive-BestImpr(n, m, f , s, fitS)

1 bestF it← fitS;
2 bestSList← {s};
3 for i← 1 to n do
4 s′ ← Flip(s, i) ; // flip the ith bit of binary string s
5 fitCur ← 0;
6 for j ← 1 to m do // sum over each subfunction

7 fitCur ← fitCur + fj(s
′);

8 if fitCur > bestF it then // new best improving

9 bestSList← {s′};
10 bestF it← fitCur;

11 else if fitCur = bestF it and fitCur > fitS then // equally best

12 bestSList← bestSList ∪ {s′}

13 return RandomChoice(bestSList) ; // break ties arbitrarily

Each subfunction fj contains exactly k variables. If the flipped bit i is not in the set of k

variables, fj will remain unchanged. This suggests that naive-BILS redundantly re-evaluates

some (potentially large number of) subfunctions to compute f .

3.1.1 An Improved Implementation of BILS

Instead of re-evaluating all subfunctions to compute f , we consider only re-evaluating the

subfunctions that are affected by the flipped bit. In this way, we can reduce the cost per move.

In some sense, we are trying to partially evaluate a candidate solution on a subfunction fj

basis rather than on a function f basis. Motivated by this idea, an improved implementation

of BILS based on partial evaluation, PE-BILS , is introduced.

12

In an NK-landscape instance, n subfunctions are evaluated and summed up together to

construct the objective function. Each subfunction involves k = K + 1 variables. Let the

current candidate solution be x, and its adjacent neighbor after flipping the pth bit be x(p),

i.e., x(p) def= x[xp ← x̄p], where p ∈ [1, n].

We capture the changes in evaluation function f after flipping the pth bit using equa-

tion (3.1).

f(x(p))− f(x) =
n∑
j=1

fj(x
(p)
Ij

)−
n∑
j=1

fj(xIj)

=
∑

j∈[1,n]∧p∈Ij

(fj(x
(p)
Ij

)− fj(xIj)) (3.1)

We shall then partially evaluate f(x(p)) as in equation (3.2).

f(x(p)) = f(x) +
∑

j∈[1,n]∧p∈Ij

(fj(x
(p)
Ij

)− fj(xIj)) (3.2)

We now present PE-BILS in algorithm 4. PE-BILS requires P, a length-n vector of lists. Pj

contains the list of indices of all subfunctions that contain the jth variable. P needs to be

constructed before performing BILS, and requires a Θ(m ∗ k) one-time cost.

Algorithm 4: bestS′ ← PE-BILS(n, m, f , s, fitS, P)

1 bestF it← fitS;
2 bestSList← {s};
3 for i← 1 to n do
4 s′ ← Flip(s, i) ; // flip the ith bit of binary string s
5 fitCur ← fitS;
6 for j ← 1 to m and j ∈ Pi do // sum subfunctions containing ith bit

7 fitCur ← fitCur + fj(s
′)− fj(s) ; // by equation (3.2)

8 if fitCur > bestF it then // new best improving

9 bestSList← {s′};
10 bestF it← fitCur;

11 else if fitCur = bestF it and fitCur > fitS then // equally best

12 bestSList← bestSList ∪ {s′}

13 return RandomChoice(bestSList) ; // break ties arbitrarily

13

Lemma 1. The complexity per move for PE-BILS is O(n) on any k-bounded pseudo-Boolean

function.

Proof. Line 4 to line 7 in algorithm 4 traverses P. Therefore, the number of iterations is in

fact the number of all indices in P, i.e.,
∑m

j=1 |Pj|. On the other hand, the index of each

subfunction is added to P exactly k times since there are k variables in a subfunction. We

thus have
∑m

j=1 |Pj| = m ∗ k = c ∗n ∗ k = O(n). Algorithm 4 describes the operations needed

for taking one best improvement move, hence the complexity per move for PE-BILS is O(n)

on all k-bounded pseudo-Boolean functions.

As PE-BILS is provably superior to naive-BILS, we will use PE-BILS as the baseline for

evaluating the runtime of Walsh-LS.

3.2 Walsh-LS: Best-Improvement Local Search based

on Walsh Analysis

After a best-improvement move is taken (flipping one bit xi), only those subfunctions that

reference xi change, and all the other subfunctions remain the same. In the worst case, where

all subfunctions contain the bit xi, the number of subfunctions that changes their evaluations

is n. On a uniform random instance of NK-landscapes, however, only a constant number of

subfunctions change their evaluations in expectation. With approximation in selecting the

best move from the list of improving moves and maintaining extra data structures, the O(1)

average complexity can be achieved using Walsh analysis.

We apply a Walsh decomposition of the objective function to expose variable interactions.

The information about interactions is used to construct a relative objective function that

keeps the difference in the objective function between the current candidate solution and

its n neighbors. The relative objective function computes which neighbors can yield an

improving move after a single bit flip. On a uniform random instance, in expectation only a

constant number of the neighbors should change the relative objective function after a bit

flip. A list of improving moves with respect to the current solution is also maintained. The

14

length of this list can be O(n) in the worst case. With approximation in selecting the best

move (i.e., sampling from improving bits list instead of doing a full scan over the list), the

best-improvement move can be performed in constant time on average.

The concept of relative objective function relates to the score vector that is widely used

in SAT community. The score of a variable p with respect to x, scorex(p), is the decrease

of the objective function when p is flipped. Modern incomplete SAT solvers such as GSAT

[SLM92] and AdaptG2WSAT [LH05] have utilized the score vector to efficiently determine

next move to take.

3.2.1 Compute Difference between Adjacent Candidate Solutions
in Standard Fitness Space

We start with computing the relative objective functions for all n neighbors of current

candidate solutions.

Lemma 2 (Section 2 in [WC12]). For any i,x ∈ Bn,

∀p ∈ [1, n], ψi(x
(p))− ψi(x) =

{
−2ψi(x) if ip = 1,

0 if ip = 0.

Proof. By definition in equation (2.8),

ψi(x
(p)) = (−1)bc(i∧x

(p)).

No matter what xp originally is, flipping xp will change the parity of the number of 1’s in x.

If ip = 1, the change of parity is captured by i ∧ x(p),

ψi(x
(p)) = (−1)bc(i∧x

(p)) = (−1)(−1)bc(i∧x) = −ψi(x).

Otherwise ip = 0, the change of parity is not captured by i ∧ x(p).

ψi(x
(p)) = (−1)bc(i∧x

(p)) = (−1)bc(i∧x) = ψi(x).

15

By equation (2.8), calculating the sign (Walsh basis) for Walsh coefficients every time

takes O(n) time. In order to achieve the O(1) bound, we maintain the Walsh coefficient along

with its corresponding sign. We shall let w′i(x) = wiψi(x). We call w′i(x) Walsh terms , then

w′(x) is the vector of Walsh terms. There are O(n ∗ 2k) non-zero Walsh coefficients for a

NK-landscape instance, thus w′(x) is a vector of length O(n ∗ 2k).

Lemma 3 (Lemma 1 in [WC12]). For any i,x ∈ Bn, the relative objective function value of

x after flipping its pth bit is

f(x(p))− f(x) = −2
∑

i∈Bn∧ip=1

w′i(x),

where p ∈ [1, n].

Proof.

f(x(p))− f(x) =
∑
∀i∈Bn

wiψi(x
(p))−

∑
∀i∈Bn

wiψi(x) By equation (2.7)

=
∑
i∈Bn

wi(ψi(x
(p))− ψi(x))

= −2
∑

i∈Bn∧ip=1

w′i(x) By lemma 2

The above derivation holds for ∀p ∈ [1, n].

In lemma 3, direct computation of the relative objective function for all n possible values

of p takes at least O(n) time. We again overcome this by maintaining an extra data structure

and updating it accordingly during search. We shall let Sp(x) =
∑

i∈Bn∧ip=1w
′
i(x), by lemma 3

we have

f(x(p))− f(x) = −2Sp(x) (Lemma 1 in [WC12]) (3.3)

The relative objective function f(x(p))− f(x) can serve as a proxy for f(x(p)), because

f(x) is invariant as p varies. For a given candidate solution x, all its n neighbors can be

represented via the proxy vector S(x) of length n. Selecting the optimum Sp(x) yields the

best-improvement move in the neighborhood of f(x). S(x) is only a constant difference from

scorex. More precisely, −2S(x) = scorex.

16

One can determine whether flipping any given bit will yield an improving move entirely

from the proxy vector S(x). Of course, we shall not check the entire S(x) vector of length n

to decide which bit to flip, because that would break the O(1) time bound. Instead, we keep

track of the improving moves in a dynamic-length list Impr(x), which is a subset of all n

possible positions {1, 2, . . . , n}. At the initialization stage, we have to scan the whole vector

S(x) for the purpose of constructing the initial Impr(x). After that, however, we only need

to examine those positions (only a constant number, which we will address in detail later) in

the vector S(x) that can possibly be affected by flipping a certain bit q.

3.2.2 Update Data Structures after a Single Bit Flip

We have introduced three data structures, namely vector w′(x), vector S(x) and list

Impr(x). Our high-level guideline is to only compute the data structures once for some

initial solution xinit, then apply updates induced by a certain flipped bit q to generate new

ones. We first study how to compute w′(x(q)) on the basis of w′(x).

Lemma 4 (Section 3 in [WC12]). Suppose i,x ∈ Bn. After flipping a bit q, the vector

w′(x(q)) can be computed using

∀i ∈ Bn, w′i(x(q)) =

{
−w′i(x) if iq = 1,

w′i(x) if iq = 0.

Proof. Immediately by equation (2.8) and definition of wi(x).

Intuitively, any Walsh term that references the bit q changes its sign because flipping the

q bit changes the parity of i ∧ x. We then focus on the updates on S(x) after flipping the pth

bit. Lemma 5 gives the recursive form.

Lemma 5 (Section 3 in [WC12]). Suppose i,x ∈ Bn. After flipping a bit q, the vector S(x(q))

can be computed using

∀p ∈ [1, n], Sp(x
(q)) = Sp(x)− 2

∑
i∈Bn∧ip=1∧iq=1

w′i(x)

17

Proof. ∀p ∈ [1, n], the difference between Sp(x
(q)) and Sp(x) can be calculated as follows:

Sp(x
(q))− Sp(x) =

∑
i∈Bn∧ip=1

wiψi(x
(q))−

∑
i∈Bn∧ip=1

wiψi(x) By definition

=
∑

i∈Bn∧ip=1

wi(ψi(x
(q))− ψi(x))

= −2
∑

i∈Bn∧ip=1∧iq=1

wiψi(x) By lemma 2

= −2
∑

i∈Bn∧ip=1∧iq=1

w′i(x) By definition

On a uniform random instance of NK-landscapes, the number of non-zero Walsh terms

that are affected by flipping the qth bit is constant given that c is constant. These Walsh

terms can be described as the set in equation (3.4)

{w′i|iq = 1 ∧ wi 6= 0 ∧ i ∈ Bn} (3.4)

Lemma 6 describes how Impr(x(q)) can be efficiently computed based on Impr(x) and

S(x(q)).

Lemma 6 (Section 3.2 in [WC12]). Suppose i,x ∈ Bn. After flipping a bit q, the list

Impr(x(q)) can be computed by the following steps.

1. Impr(x(q))← Impr(x).

2. For all p ∈ {j ∈ [1, n]|ij = 1 ∧ iq = 1 ∧ wi 6= 0 ∧ i ∈ Bn}, repeat:

Impr(x(q))←

{
Impr(x(q)) ∪ {p} ifSp(x

(q)) is an improving move ∧ p /∈ Impr(x),

Impr(x(q)) \ {p} ifSp(x
(q)) is a disimproving move ∧ p ∈ Impr(x).

Proof. We first consider the positions that are not affected by flipping q, namely any position

p where p /∈ {j ∈ [1, n]|ij = 1 ∧ iq = 1 ∧ wi 6= 0 ∧ i ∈ Bn}. In this case, there is no non-zero

Walsh term that references both positions p and q. Therefore, the change of parity induced

by flipping the qth bit has no way to propagate to position p. Sp(x
(q)) stays the same as Sp(x)

for p /∈ {j ∈ [1, n]|ij = 1 ∧ iq = 1 ∧ wi 6= 0 ∧ i ∈ Bn}. The initialization in Step 1 guarantees

the correctness for this case.

18

We next consider the positions that are affected by flipping q, that is any position p where

p ∈ {j ∈ [1, n]|ij = 1 ∧ iq = 1 ∧ wi 6= 0 ∧ i ∈ Bn}. Since there are Walsh coefficients that

reference both position p and q, Sp(x
(q)) can possibly differ from Sp(x) by lemma 5. To reflect

this difference, Sp(x
(q)) needs to be checked for updating Impr(x) to generate Impr(x(q)).

Those affected positions are either appended to Impr(x(q)) if they yield improving moves

and were not in Impr(x), or removed from Impr(x(q)) if they yield disimproving moves and

were previously in Impr(x).

3.3 Runtime Complexity Analysis for Walsh-LS

In this section, we justify our claims about the complexity per move of Walsh-LS. We

start by analyzing the cost of initialization, then discuss the worst case scenario for taking

one best-improvement move, and lastly prove the O(1) time bound for the average case.

3.3.1 Initialization Costs

Operations in the initialization stage fall into two main categories: the Walsh transform

and data structures initialization. We first recall Rana et al.’s analysis on the Walsh transform

on k-bounded pseudo-Boolean functions (PBFs).

Theorem 1 ([RHW98]). The Walsh transform on k-bounded pseudo-Boolean functions takes

O(m2k), where m is the number of subfunctions.

Proof. We can perform the Walsh transform on the basis of each subfunction of PBF, and then

synthesize subfunction results for generating the Walsh decomposition for the original PBF.

Since each subfunction involves at most k variables, the Walsh transform on a subfunction

takes O(2k) time. Conducting this process on m subfunctions takes O(m2k) time in total.

In the case of unrestricted NK-landscapes, the number of subfunctions m is the same as the

number of variables n. Theorem 1 applies as well to NK-landscapes, thus the Walsh transform

on NK-landscapes takes O(n2k). However, one could also directly generate NK-landscapes by

using randomly generated numbers as Walsh coefficients, and no Walsh transform is needed.

19

We now concentrate on the complexity of initializing the data structures required in

Walsh-LS. The major data structures in Walsh-LS are vector w′(x), vector S(x) and list

Impr(x).

Lemma 7. On a k-bounded pseudo Boolean function, initialization of the vector w′(x) in

Walsh-LS for any given candidate solution x ∈ Bn takes O(mk2k), where n is the number of

variables and m is the number of subfunctions.

Proof. w′(x) can be calculated on a subfunction basis. Since there are k variables in a

subfunction and 2k Walsh terms associated with it, w′(x) for a subfunction can be computed

in O(k2k) time by equation (2.8) and equation (2.9). For m subfunctions, the overall

complexity is O(mk2k).

Lemma 8. On a k-bounded pseudo Boolean function, initialization of the vector S(x) in

Walsh-LS for any given candidate solution x ∈ Bn takes O(mk2k−1), where m is the number

of subfunctions.

Proof. In calculating the vector S(x), i.e., Sp(x) =
∑

i∈Bn∧ip=1w
′
i(x), Walsh terms with order

higher than 1 can be reused. In fact, any Walsh term with order j will be used exactly j

times in computing S(x). For the O(2k) non-zero Walsh terms induced by one subfunction,

we calculate the cost related to these Walsh terms by counting how many times the Walsh

terms induced by a single subfunction are reused, as shown in equation (3.5).

k∑
i=1

i

(
k

i

)

= k +
k∑
i=2

k

(
k − 1

i− 1

)

= k + k

k−1∑
i=1

(
k − 1

i

)

= k(
k−1∑
i=0

(
k − 1

i

)
)

= k2k−1. (3.5)

Summing up all m subfunctions, we get the bound O(mk2k−1).

20

Lemma 9. On a k-bounded pseudo Boolean function, initialization of the list Impr(x) in

Walsh-LS for any given candidate solution x ∈ Bn takes O(n), where n is the number of

variables.

Proof. A complete scan over the vector S(x) is sufficient to construct Impr. Impr is initially

∅. For every variable (assume the pth), check Sp(x). If Sp(x) yields an improving move, then

p is appended to Impr. The complete scan over S(x) takes O(n) time.

Theorem 2. The initialization stage of Walsh-LS runs in O(mk2k) on a k-bounded pseudo-

Boolean function.

Proof. This follows immediately from Lemmas 7, 8, 9 and Theorem 1, since constructing

w′(x) forms the bottleneck and takes O(mk2k) time.

We are going to investigate the cost of updating the data structures to reflect the impact

of flipping a bit in the following subsection.

3.3.2 The O(n) Worst Case Analysis

We address the situation where the bit to flip appears in O(n) subfunctions, or in a more

general sense, appears in αn subfunctions, where α ∈ (0, m
n

]. We will prove that flipping such

bits are “expensive” moves to take. The costs for updates of w′(x), S(x) and Impr(x) are

studied separately.

Lemma 10. Assume the qth variable appears in αn subfunctions and suppose x ∈ Bn and

q ∈ [1, n], updating w′(x) in Walsh-LS after flipping a bit q takes O(n) time on a k-bounded

pseudo-Boolean function.

Proof. According to lemma 4, the required update for w′(x) is just flipping the sign of all

w′i(x) terms that reference bit q. Since the bit q appears in αn subfunctions, these subfunction

generates up to α2kn Walsh terms. Half of the α2kn Walsh terms contain bit q. Therefore,

there are at most α2k−1n number of w′i(x) terms that reference bit q. The update cost for

w′(x) O(α2k−1n) = O(n).

21

Lemma 11. Assume the qth variable appears in αn subfunctions and suppose x ∈ Bn and

p ∈ [1, n], updating S(x) in Walsh-LS after flipping a bit q takes αn(k − 1)2k−2 time on a

k-bounded pseudo-Boolean function.

Proof. For a subfunction where the qth variable appears, it contains the qth variable and

k − 1 other variables. We consider how the Walsh terms induced by this subfunction are

used in the formula of lemma 5. The k − 1 other variables can generate 2k−1 non-zero Walsh

terms. We make the qth a mandatory variable included in these Walsh terms, each Walsh

term decreases its order by 1, which does not change the amount of non-zero Walsh terms.

Because of the restriction iq = 1 in the formula of lemma 5, this is the same situation that

we faced in the proof of lemma 8, except that each subfunction now only contains k − 1 free

variables (the qth mandatory variable is omitted). Equation (3.5) applies here as well, we

then get the bound (k − 1)2k−2 for one subfunction. Since there are αn such subfunctions,

the update cost is αn(k − 1)2k−2.

Lemma 12. Assume the qth variable appears in αn subfunctions and suppose x ∈ Bn and

p ∈ [1, n], updating Impr(x) in Walsh-LS after a bit q takes O(n) time on a k-bounded

pseudo-Boolean function.

Proof. For any given subfunction that includes the bit q, there are k − 1 other variables that

interact with the bit q. According to lemma 5, each of these (k − 1) variables generates

non-zero Walsh terms that induce updates to a single element in the vector S(x). Since the

qth variable appears in αn subfunctions, there can be at most αn(k − 1) elements in S(x)

changes. We conclude that at most αn(k − 1) variables need to be examined for eligibility in

Impr(x(q)).

Theorem 3. In Walsh-LS, the update cost associated with flipping a bit that appears in αn

subfunctions is O(n) on k-bounded pseudo-Boolean functions.

Proof. Based on the results by lemma 10, lemma 11 and lemma 12, it is immediately obvious

because the operations that update S(x) after a single bit flip forms the bottleneck and that

takes αn(k − 1)2k−2.

22

Another concern about the runtime of Walsh-LS is deciding improving moves from Impr.

If the length of the list Impr is O(n), selecting the best-improvement move can take O(n)

time. Since the update cost of αn(k − 1)2k−2 in the worst case is even more expensive than

this, we postpone our solution until next subsection for the O(1) average case analysis.

3.3.3 The O(1) Average Case Analysis

We showed that Walsh-LS can take up to O(n) time for selecting one best-improvement

move in the worst case. The worst-case scenario happens when the flipped bit appears in

O(n) subfunctions. We argue, however, the worst-case scenario is unlikely to happen and

Walsh-LS can achieve O(1) runtime on uniform random instances in expectation. Assuming a

uniform random instance, we start justifying our argument from the fact that the probability

of any variable appearing in O(n) subfunctions is low, then stress that the expected number

of subfunctions in which any given variable can appear is a constant with respect to n.

Lemma 13. Suppose β ∈ R ∧ β ∈ (0, m
n

], a uniform random instance of k-bounded pseudo-

Boolean functions, the probability of at least one variables appearing in at least βn (as a

representative of function class O(n)) subfunctions is
∑m

i=βn

(
n
i

)
(k
n
)
i
(1− k

n
)(m−i).

Proof. For a given variable p, consider its appearing in one subfunction as an event A. The

probability of p appearing in one subfunction (denoted as P (A)) is k
n
. Now that there are m

subfunctions, the experiment is repeated m times. Generally, the probability of A happening

exactly i times (0 ≤ i ≤ m) among m independent experiments is
(
n
i

)
P (A)i(1− P (A))(m−i).

Applying to our problem, the probability of p appearing in at least βn subfunctions is∑m
i=βn

(
n
i

)
(k
n
)
i
(1− k

n
)(m−i).

For n = 100,m = 100, k = 4 and β = 0.1,

m∑
i=βn

(
n

i

)
(
k

n
)
i

(1− k

n
)(m−i) =

100∑
i=0.1∗100

(
100

i

)
(

4

100
)
i

(1− 4

100
)(100−i) = 0.0068.

This indicates that it is already very unlikely for a variable to appear in more than 20% of all

subfunctions on uniform random instances of k-bounded pseudo-Boolean functions, especially

with large n and small k, where our main focus is.

23

Lemma 14. On a uniform random instance of k-bounded pseudo-Boolean functions, the

expected number of subfunctions in which any given variable appears is ck.

Proof. We shall view the number of subfunctions that any given variable appears in as a

random variable V. V follows the binomial distribution B(m, k
n
). The expectation of the

random variable E(V) is m ∗ k
n
. Given m = c ∗ n, the expected number of subfunctions in

which any given variable appears is ck.

Lemma 14 shows the expected number of subfunctions in which any variable appears is

bounded by k. It does not indicate, however, all variables on a uniform random instance

appear in exactly ck subfunctions. We need to consider the variance as well. As explained in

the proof of Lemma 14, V follows the binomial distribution B(m, k
n
). The variance of V is

m ∗ k
n
∗ (1− k

n
) = ck(1− k

n
). Given k � n, ck(1− k

n
) ≈ ck. The variance of V is also bounded

by k. Moreover, we learn from lemma 10, lemma 11 and lemma 12 that the complexity for

updating w′(x), S(x) and Impr(x) is linear in V . We can therefore consider the expectation

of V as an average-case scenario without changing the asymptotic bound.

According to the arguments in lemmas 13 and 14, the worst-case scenarios discussed in

subsection 3.3.2 are unlikely to happen for uniform random variable placement. We shall

now explore how to achieve the O(1) average cost.

Lemma 15. Assume the qth variable appears in ck subfunctions and suppose x ∈ Bn and

p ∈ [1, n], updating w′(x) after a bit q takes O(1) time on a k-bounded pseudo-Boolean

function.

Proof. Most of the proof of lemma 11 still holds here. The only difference is that there are

ck subfunctions that include the bit q, thus the cost for updating w′(x) is ck2k−1.

Lemma 16. Assume the qth variable appears in ck subfunctions and suppose x ∈ Bn and

p ∈ [1, n], updating S(x) after a bit q takes ck(k−1)2k−2 time on a k-bounded pseudo-Boolean

function.

Proof. Most of the proof of lemma 11 still holds here. The only difference is that there are

ck subfunctions that include the bit q, thus the cost for updating S(x) is ck(k − 1)2k−2.

24

Lemma 17. Assume the qth variable appears in ck subfunctions and suppose x ∈ Bn and

p ∈ [1, n], updating Impr(x) after a bit q takes O(1) time on a k-bounded pseudo-Boolean

function.

Proof. Most of the proof of lemma 12 still holds here. The only difference is that there are

ck subfunctions that include the bit q, thus the cost for updating Impr(x) is ck(k − 1).

Theorem 4. In Walsh-LS, the update cost associated with flipping a bit that appears in ck

subfunctions is O(1) in expectation on uniform random k-bounded pseudo-Boolean functions.

Proof. Based on Lemma 15, Lemma 16 and Lemma 17, it is obvious because the operations

that update S(x) after a single bit flip forms the bottleneck and that takes ck(k− 1)2k−2.

3.3.3.1 Approximation in Move Selection

We are now able to achieve the O(1) average cost on updating data structures. There is

only one issue left: the length of list Impr. Determining the best-improvement move from

Impr of length O(n) can take O(n) time, since a complete scan over Impr is required. We

overcome this by approximating the best-improvement move. Let θ ∈ [1, n] and Impr.len

be the length of the list Impr. The constant θ serves as a threshold. The approximate

best-improvement move is generated by algorithm 5.

Algorithm 5: BestI ← ApproxBestImprMove(Impr)

1 if Impr.len > θ then // take the approximate move

2 approxImpr ← sample(Impr) ; // sample θ elements from Impr

uniformly at random

3 BestI ← SelectBest(approxImpr);

4 else // take the standard best-improvement move

5 BestI ← SelectBest(Impr);

Theorem 5. The complexity per move for Walsh-LS with the approximation (called approx-

Walsh-LS) described in algorithm 5 is O(1) on average.

Proof. Since θ is a constant and determining the approximate best-improvement move requires

examining no more than θ candidate improving moves, algorithm 5 returns the index of the

25

bit to flip BestI in O(1) time. Combined with Theorem 4, we conclude that approx-Walsh-LS

requires O(1) time for taking one approximate best-improvement move.

Whitley and Chen [WC12] accomplish the O(1) complexity per move result in a slightly

different approach. Besides the approximation in selecting best moves, they adopt a Tabu

mechanism that prevents high-cost bits (that appear in many subfunctions) from being

flipped too many times. They can then prove an amortized O(1) complexity per move without

assuming uniformity of the variable distribution over subfunctions.

3.4 Empirical Studies

In order to match the solution obtained in standard BILS, a complete scan over Impr is

implemented in our empirical studies on Walsh-LS. To avoid confusion, we denote Walsh-LS

without approximation in selecting best improvement moves as exact-Walsh-LS.

3.4.1 Can exact-Walsh-LS run faster than PE-BILS?

Three major concerns on the performance of exact-Walsh-LS when compared with PE-

BILS on uniform random instances are: 1) The O(n) initialization cost needs to be charged

for every restart. 2) Impr.len can be O(n), which leads to the O(n) complexity of scanning

over the whole list. 3) The setting of k will affect the runtime. These bring up the first

question: can exact-Walsh-LS run faster than BILS in practice? The question is addressed

by posing the following hypotheses.

When applying SLS to solve binary-encoded combinatorial problems, the number of

maximum bit-flips (MaxBitFlip) is typically predefined to terminate the execution after

some computational time. In the widely used UBCSAT library5 for solving SAT problems

using SLS [TH04], two parameters are defined for terminating SLS: the number of trials

MaxTries and the number of bit-flips within one trial MaxBitFlipPerTrial. Each trial consists

5UBCSAT :: A Stochastic Local Search SAT Solver Framework. http://ubcsat.dtompkins.com/

26

of MaxBitFlipPerTrial number of bit-flips, and between any two consecutive trials, a random

restart is enforced to escape possible deep local optima. By default, MaxBitFlipPerTrial is set

to 10000 and MaxTries is set to 10. Overall, the maximum number of bit-flips allowed when

evaluating a SLS is 10000 ∗ 10 = 100000. We claim that the O(n) one-time initialization cost

in theorem 2 should comprise only a small portion of overall runtime, and can be amortized

over this amount of bit-flips. Regarding the O(n) scanning cost during the update stage, we

argue that most of the time Impr.len is small. The hidden constant in the O(n) complexity

is small. To sum up, we expect exact-Walsh-LS to have less runtime than PE-BILS.

Hypothesis 1. On uniform random NK-landscape instances with small K (less than 5), not

only does exact-Walsh-LS make best-improvement moves (only considering update operations)

more efficiently than PE-BILS, but also the overall exact-Walsh-LS (including the initialization

stage) runs more efficiently than PE-BILS.

All algorithms6 are implemented in Python 2.7. The computational platform was Fedora

16 using Xeon5450 at 3.00GHz with 16Gb main memory.

Experiment 1. We run both exact-Walsh-LS and PE-BILS on uniform random NK-

landscapes instances7 with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and K = {2,

4}. 100000 bit-flips (denoted as MaxBitFlip) are allowed for each algorithm on every instance.

To make the results statistically sound, the trials for each configuration are repeated 10 times

independently. We record best-so-far solutions, overall runtime, and time spent on performing

updates, for both exact-Walsh-LS and PE-BILS.

Table 3.1 compares the overall runtime of exact-Walsh-LS and PE-BILS, as well as the

speedups of exact-Walsh-LS versus PE-BILS as n increases (Speedup = TBILS

Texact−Walsh−LS
) on

6Our source code can be checked out at https://github.com/qzcwx/WalLS.

7Our benchmark problem instances as well as the problem generators written in Python are publicly
available at http://bitbucket.org/qzcwx/nk-q-instances.

27

uniform random instances, while table 3.2 only considers the time spent on performing

updates. We observe from table 3.1 that Walsh-LS does run faster than PE-BILS in practice.

In fact, the speedups of Walsh-LS versus PE-BILS range from 17.5× to 110×, and the

speedups grow as n increases. As shown in table 3.2, without taking the O(n) initialization

stage of Walsh-LS into account, the speedups are even more pronounced. It is not surprising

though because PE-BILS does not have any initialization cost, and thus the time spent on

update is nearly identical to the overall runtime for PE-BILS. The range of speedups is now

from 85.6× to 449×. Hypothesis 1 is validated.

Table 3.1: Overall runtime in seconds (including the initialization step) on uniform instances.
The median runtimes over 10 runs is presented, and the numbers colored in grey after the
“±” symbol are the corresponding standard deviations. Under the “Speedup” column, the
speedups of exact-Walsh-LS over PE-BILS are shown.

k n exact-Walsh-LS PE-BILS Speedup

2

20 1.19 ± 0.01 29.50 ± 0.16 24.69 ± 0.35
50 1.52 ± 0.01 67.10 ± 0.34 44.07 ± 0.20

100 2.12 ± 0.00 135.00 ± 0.88 63.53 ± 0.35
150 2.71 ± 0.01 203.50 ± 1.79 75.19 ± 0.58
200 3.27 ± 0.01 284.00 ± 2.88 86.59 ± 0.91
250 3.98 ± 0.01 349.50 ± 2.88 88.16 ± 0.72
300 4.54 ± 0.01 428.50 ± 2.41 94.28 ± 0.40
350 5.12 ± 0.02 507.50 ± 1.78 99.02 ± 0.40
400 5.80 ± 0.02 587.50 ± 5.10 101.21 ± 0.97
450 6.31 ± 0.02 660.50 ± 3.18 104.69 ± 0.50
500 6.99 ± 0.02 768.00 ± 4.00 109.95 ± 0.66

4

20 3.08 ± 0.02 53.80 ± 0.20 17.48 ± 0.15
50 4.40 ± 0.04 127.00 ± 0.32 28.86 ± 0.32

100 6.39 ± 0.05 243.00 ± 0.52 38.08 ± 0.29
150 8.30 ± 0.07 362.50 ± 4.85 43.60 ± 0.94
200 10.00 ± 0.13 490.00 ± 6.65 48.75 ± 1.21
250 12.10 ± 0.74 637.00 ± 7.02 52.27 ± 3.10
300 14.20 ± 0.29 735.50 ± 5.90 51.65 ± 1.46
350 16.70 ± 0.51 869.00 ± 8.38 51.95 ± 2.28
400 19.20 ± 0.85 997.00 ± 5.13 51.90 ± 2.74
450 21.25 ± 0.70 1140.00 ± 18.14 53.41 ± 2.85
500 23.10 ± 0.63 1250.00 ± 14.49 54.00 ± 2.24

28

Table 3.2: Best-improve move time in seconds (only considering update operations) on
uniform instances. The median runtimes over 10 runs are presented, and the number colored
in grey after the “±” symbol is the corresponding standard deviations. Under the “Speedup”
column, the speedups of Walsh-LS over PE-BILS are shown.

k n exact-Walsh-LS PE-BILS Speedup

2

20 0.34 ± 0.00 29.10 ± 0.15 85.61 ± 1.46
50 0.44 ± 0.00 66.75 ± 0.33 150.62 ± 1.01

100 0.56 ± 0.00 134.50 ± 0.92 239.75 ± 1.78
150 0.72 ± 0.00 203.50 ± 1.55 281.27 ± 2.01
200 0.85 ± 0.00 283.50 ± 2.95 331.39 ± 3.66
250 1.02 ± 0.00 349.50 ± 2.88 342.65 ± 3.39
300 1.15 ± 0.00 428.00 ± 2.22 372.17 ± 1.93
350 1.30 ± 0.01 507.50 ± 1.65 389.66 ± 2.29
400 1.43 ± 0.01 587.50 ± 5.06 410.53 ± 4.10
450 1.55 ± 0.01 660.00 ± 3.17 427.18 ± 2.22
500 1.71 ± 0.00 768.00 ± 3.89 449.12 ± 2.42

4

20 0.91 ± 0.01 53.15 ± 0.20 58.40 ± 0.70
50 1.22 ± 0.02 126.00 ± 0.48 103.28 ± 1.22

100 1.63 ± 0.02 243.00 ± 0.67 148.77 ± 1.65
150 2.02 ± 0.02 362.00 ± 4.54 178.77 ± 4.10
200 2.37 ± 0.04 489.00 ± 6.34 206.54 ± 5.99
250 2.84 ± 0.23 636.00 ± 7.08 221.97 ± 17.28
300 3.34 ± 0.09 735.50 ± 6.00 219.28 ± 7.90
350 3.90 ± 0.16 868.00 ± 8.21 222.54 ± 12.78
400 4.45 ± 0.27 997.00 ± 5.20 224.30 ± 16.35
450 4.88 ± 0.23 1135.00 ± 18.53 233.06 ± 16.67
500 5.39 ± 0.21 1250.00 ± 14.91 230.84 ± 13.20

In order to investigate more on the growth of speedup, we plot the speedup versus n in

figure 3.1. We find the speedup grows in a sublinear manner as n increases, which is expected

because there is no difference in exact-Walsh-LS and PE-BILS from runtime complexity

point of view. To better understand the speedup plots, we need to go back to the growth of

runtime for individual algorithms. We plot Texact−Walsh−LS and TPE−BILS versus n separately

in figure 3.2. Nonlinear regression is used to fit the sample points using R8. This enables

us to quantitatively analyze the growth of runtime. We can see from figure 3.2 that the

8The R Project for Statistical Computing. http://www.r-project.org/

29

●

●

●

●

●
●

●

● ●

●

●

100 200 300 400 500

20
40

60
80

10
0

Comparison of overall runtime (K=2, uniform)

n

S
pe

ed
up

 o
f W

al
sh

LS
 v

er
su

s
B

IL
S

●

●

●

●

●

●
●

●
●

●

●

100 200 300 400 500

20
30

40
50

Comparison of overall runtime (K=4, uniform)

n

S
pe

ed
up

 o
f W

al
sh

LS
 v

er
su

s
B

IL
S

●

●

●

●

●

●

●
●

● ●

●

100 200 300 400 500

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Comparison of move time (K=2, uniform)

n

S
pe

ed
up

 o
f W

al
sh

LS
 v

er
su

s
B

IL
S

●

●

●

●

●

●
●

●

●
●

●

100 200 300 400 500

10
0

15
0

20
0

Comparison of move time (K=4, uniform)

n

S
pe

ed
up

 o
f W

al
sh

LS
 v

er
su

s
B

IL
S

Figure 3.1: Speedup on uniform instances of NK-landscapes.

30

difference in runtime (which leads to substantial speedup) is mainly captured by the constant

b in the nonlinear model F = a+ b ∗N c. 9 The parameter b for exact-Walsh-LS is always

much smaller than that for PE-BILS.

3.4.2 Will “expensive” bits break the efficiency of exact-Walsh-
LS?

Exact-Walsh-LS runs far more efficiently than PE-BILS on uniform random instances

without “expensive”. Will “expensive” bits break the efficiency of exact-Walsh-LS? As a rule

of thumb, we call a bit “expensive” if it appears in more than 1
10
n subfunctions. Otherwise,

it is called a “cheap” bit.

We first investigate how to create instances that contain such “expensive” bits. To create

non-uniform random NK-landscape instances, we employ the binomial distribution instead of

a uniform random distribution. The generator for non-uniform random instances is presented

in algorithm 6. Binomial function returns an integer sampled from a binomial distribution

B(n, 0.5), and the integer serves as the index for selecting an element from permutation Π.

Algorithm 6: Non-uniform random NK-landscapes generator

1 Π← Perm({1, . . . , n}) ; // Π is a permutation of sequence {1,...,n}
2 for i← 1 to N do
3 Ii ← {i}; // Ii is the set of indices of variables appear in fi
4 for j ← 1 to K − 1 do
5 cand← Π[Binomial(N, 0.5)];
6 while cand ∈ Ii do
7 cand← Π[Binomial(N, 0.5)];

8 Ii ← Ii ∪ {cand}

“Expensive” bits could possibly break the efficiency of exact-Walsh-LS only if they are

frequently flipped. Based on the knowledge of the generator for non-uniform instances that

9The constant term a typically captures the initialization time. However, the initialization time in
exact-Walsh-LS is O(n). Therefore, the factor of linear term, b, captures both initialization time and update
time.

31

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

0
20

0
40

0
60

0

NK−PE−BILS−K2−All

n

ru
nn

in
g

tim
e/

s

F=13+0.65*N^1.1, RSE=6.9

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

1
2

3
4

5
6

7

NK−exact−Walsh−K2−All

n

ru
nn

in
g

tim
e/

s

F=0.96+0.011*N^1, RSE=0.037

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

0
20

0
40

0
60

0

NK−PE−BILS−K2−update

n

ru
nn

in
g

tim
e/

s

F=12+0.66*N^1.1, RSE=6.9

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

NK−exact−Walsh−K2−update

n

ru
nn

in
g

tim
e/

s

F=0.28+0.0035*N^0.97, RSE=0.012

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

20
0

40
0

60
0

80
0

12
00

NK−PE−BILS−K4−All

n

ru
nn

in
g

tim
e/

s

F=8.6+2*N^1, RSE=9.3

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

5
10

15
20

NK−exact−Walsh−K4−All

n

ru
nn

in
g

tim
e/

s

F=2.6+0.022*N^1.1, RSE=0.24

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

20
0

40
0

60
0

80
0

12
00

NK−PE−BILS−K4−update

n

ru
nn

in
g

tim
e/

s

F=7.6+2.1*N^1, RSE=8.4

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

1
2

3
4

5

NK−exact−Walsh−K4−update

n

ru
nn

in
g

tim
e/

s

F=0.86+0.0034*N^1.2, RSE=0.056

Figure 3.2: Runtime in seconds on uniform instances. The fitted curve is generated using
the nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual standard
error (“RSE”) is reported to indicate the goodness of fitting.

32

variables are uniformly distributed and have no interaction, we conjecture that variables

that appear in many subfunctions typically have a greater impact on the overall evaluation

function. Once these variables are flipped, then they rarely change again. On the contrary,

“cheap” bits that appear in a small number of subfunctions tend to be flipped many times.

Hypothesis 2. On non-uniform random NK-landscapes instances, exact-Walsh-LS tends to

flip “expensive” bits less times than “cheap” bits.

Experiment 2. We run exact-Walsh-LS on both uniform and non-uniform random NK-

landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and K = {2,

4}. MaxBitFlip is set to 100000 for each algorithm on every instance. In order to make the

results statistically sound, the trials for each configuration are repeated 10 times independently.

The mean bit-flip counts for each variable over 10 runs (denoted as FlipCount) are stored. A

script parses input instances to count the number of occurrences of variables (denoted as

NumOccur) in subfunctions.

We pick three representative values 100, 200 and 500 for n, and plot FlipCount versus

NumOccur for uniform random instances in figure 3.3, and for non-uniform random instances

in figure 3.4. The trends shown in the figures are consistent across tested instances with all

n. We report the data for uniform random instances mostly for reference purposes, since

in expectation there will be few “expensive” bits. The vertical dashed lines are drawn for

distinguishing “expensive” bits from “cheap” ones. Points on the right side of dashed lines

correspond to “expensive” bits. We also report the expected bit-flip counts if all bits are

flipped uniformly at random (i.e., MaxBitF lip
n

) as an horizontal dotted lines. Preferably, all

points on the right side of dashed lines will sit below dotted lines.

From figure 3.3, we observe that there are indeed very few “expensive” bits except when

n = 100 and K = 4. That is an artifact of the way we define “expensive” bit (0.1n=10) and

the impact of K on the expected number of occurrences (ck = 4). Nevertheless, “expensive”

bits are generally flipped less than “cheap” bits.

We then examine figure 3.4. Clearly, the distribution of NumOccur is much less uniform.

In the case where n = 500 and K = 4, NumOccur for random instance ranges from 1 to

33

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

1 2 3 4 5 6

60
0

80
0

10
00

12
00

14
00

NK−N100−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

2 4 6 8 10

80
0

90
0

10
00

11
00

12
00

13
00

NK−N100−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

30
0

40
0

50
0

60
0

70
0

NK−N200−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●
●

●

●

●

●

●●
●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

2 4 6 8 10 12

40
0

50
0

60
0

70
0

NK−N200−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0
25

0
30

0

NK−N500−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●●

●●
●●●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●
●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

2 4 6 8 10

15
0

20
0

25
0

30
0

NK−N500−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

Figure 3.3: Correlation between frequency of a variable appearing in subfunctions and the
number of times being flipped on uniform instances.

34

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

0 5 10 15 20 25

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

NonNK−N100−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

0 10 20 30

60
0

80
0

10
00

12
00

NonNK−N100−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

0 5 10 15 20 25

30
0

40
0

50
0

60
0

NonNK−N200−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

●
●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●●
●

●
●

0 10 20 30 40 50

30
0

40
0

50
0

60
0

NonNK−N200−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

0 10 20 30 40

12
0

14
0

16
0

18
0

20
0

22
0

24
0

NonNK−N500−k2

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

MaxBitFlip/n

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●●

●●

●

●
●
●

●

●
●

●

●

●

●

●
●

●●
●
●

●●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ● ●
●

●

●

●

●
●●

●

●
●
● ●

●●
●●

●

●

●
● ●

●

0 20 40 60 80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0 NonNK−N500−k4

Occurence of variable in subfunction

B
it−

F
lip

 C
ou

nt

0.1n

MaxBitFlip/n

Figure 3.4: Correlation between frequency of a variable appearing in subfunctions and the
number of times being flipped on non-uniform instances.

35

11, while that range for non-uniform is from 1 to 81. This is what we would expect from

non-uniform NK-landscape instances. On the other hand, “expensive” bits are apparently

flipped much less than “cheap” ones. In fact, all points corresponding to “expensive” bits

are below the dashed lines. The trend is more remarkable for K = 4. One can think of

the plot for K = 4 as stretched along the x-axis. In some sense, exact-Walsh-LS is more

well-behaved on instances with larger K. We then verify hypothesis 2 empirically. We shall

now be confident that “expensive” bits will not blow up the efficiency of exact-Walsh-LS.

Even better, since exact-Walsh-LS keeps flipping “cheap” bits, exact-Walsh-LS might run

faster on non-uniform instances with the same settings of n and K.

Hypothesis 3. On non-uniform random NK-landscape instances, exact-Walsh-LS runs at

least at a comparable speed (if not faster) than it does on uniform random instances with the

same settings of n and K.

Experiment 3. We run exact-Walsh-LS on both uniform random and non-uniform random

NK-landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and

K = {2, 4}. MaxBitFlip is set to 100000. The trials for each configuration are repeated 10

times independently. We record overall runtime for exact-Walsh-LS on both uniform random

and non-uniform random instances.

We compare the overall runtime of exact-Walsh-LS on uniform random and non-uniform

random instances in table 3.3. Surprisingly, exact-Walsh-LS consistently runs faster on

non-uniform random instances than on uniform random instances with the same settings of

n and K.

We are able to view the trend better in figure 3.5. Circles represent the runtime of

exact-Walsh-LS on uniform random instances, while triangles stand for that on non-uniform

random instances. The gap between circles and triangles becomes more pronounced when K

gets larger. This matches the bit-flip pattern of exact-Walsh-LS we uncovered before. As

shown in the empirical studies above, exact-Walsh-LS has a clear superiority over PE-BILS

in runtime, while the solutions obtained from exact-Walsh-LS match exactly with PE-BILS.

36

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

1
2

3
4

5
6

7

exact−Walsh−LS, k=2

n

ru
nn

in
g

tim
e/

s
F_uni=0.96+0.011*N^1.02
RSE=0.037

F_non=0.91+0.0089*N^1.04
RSE=0.064

● Uniform
Non−Uniform

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

5
10

15
20

exact−Walsh−LS, k=4

n

ru
nn

in
g

tim
e/

s

F_uni=2.6+0.022*N^1.1
RSE=0.24

F_non=2.2+0.0077*N^1.18
RSE=0.11

● Uniform
Non−Uniform

Figure 3.5: Overall runtime in seconds of exact-Walsh-LS on both uniform random and non-
uniform random NK-landscape instances. The fitted curve is generated using the nonlinear
regression “nls” from R with the formula F = a+ b∗N c. The residual standard error (“RSE”)
is reported to indicate the goodness of fit.

It is important because we are now able to execute standard BILS far more efficiently via

Walsh analysis. However, without approximation in selecting the best moves, the complexity

per move is still O(n). We will overcome this by parameterizing Walsh-LS.

37

Table 3.3: Overall runtime in seconds for uniform random and non-uniform random instances.
The median runtimes over 10 runs are presented, and the number colored in grey after the
“±” symbol is the corresponding standard deviations.

k n Uniform Non-Uniform

2

20 1.19 ± 0.01 1.15 ± 0.01
50 1.52 ± 0.01 1.43 ± 0.01

100 2.12 ± 0.00 1.96 ± 0.01
150 2.71 ± 0.01 2.60 ± 0.01
200 3.27 ± 0.01 3.20 ± 0.02
250 3.98 ± 0.01 3.71 ± 0.01
300 4.54 ± 0.01 4.30 ± 0.02
350 5.12 ± 0.02 4.97 ± 0.02
400 5.80 ± 0.02 5.69 ± 0.03
450 6.31 ± 0.02 6.10 ± 0.02
500 6.99 ± 0.02 6.74 ± 0.02

4

20 3.08 ± 0.02 2.44 ± 0.02
50 4.40 ± 0.04 2.94 ± 0.02

100 6.39 ± 0.05 4.04 ± 0.03
150 8.30 ± 0.07 5.08 ± 0.03
200 10.00 ± 0.13 6.08 ± 0.06
250 12.10 ± 0.74 7.23 ± 0.12
300 14.20 ± 0.29 8.46 ± 0.16
350 16.70 ± 0.51 9.98 ± 0.32
400 19.20 ± 0.85 11.05 ± 0.35
450 21.25 ± 0.70 12.60 ± 0.32
500 23.10 ± 0.63 13.70 ± 0.42

38

Chapter 4

Parameterization of Constant Time
Best-Improvement Local Search

In the previous chapter, we stated that the O(n) complexity per move of exact-Walsh-LS

on uniform random instances is a result of two conditions: 1) Impr.len is O(n), and 2)

determining the true best-improvement move requires a complete scan over Impr, which

takes O(n). In this chapter, we aim at overcoming the O(n) complexity per move by breaking

one of the two conditions.

The evaluation values of all subfunctions in the uniform random k-bounded pseudo-

Boolean function considered in this section are independent and identically distributed

random variables drawn from uniform distribution U (0, 1).

4.1 Random Restart vs. Random Walk

4.1.1 Reducing Impr.len from O(n) to O(1)

We conjecture that the hard random restart when Walsh-LS hits a local optimum is

responsible for the O(n)-length of Impr. For a randomly initialized solution, we claim that

Impr.len is O(n) in expectation. On a uniform random k-bounded pseudo-Boolean function,

only a constant number of bits are expected to be appended to or removed from Impr in each

move. Since Walsh-LS keeps taking improving moves, we expect the bits are removed from

Impr in most cases. In other words, Impr.len tends to decrease as the search progresses.

When Impr.len goes down to zero, a hard random restart is triggered, which brings Impr.len

back to O(n) again. Amortized over a period of time, the Impr.len is O(n).

Lemma 18. On a uniform random k-bounded pseudo-Boolean function f in which the

evaluation values of all subfunctions are independent and identically distributed random

39

m
m
m
m
m

Figure 4.1: Probability density function of Irwin-Hall distribution.10

variables drawn from uniform distribution U (0, 1), Impr.len associated with a randomly

generated solution is O(n).

Proof. We first consider the distribution of evaluation values of f . The continuous probability

distribution for the sum of m independent and identically distributed U (0, 1) random variables

is Irwin-Hall distribution with mean value m
2

[Hal27] (see figure 4.1). Thus the evaluation

value associated with a randomly generated solution x that can be viewed as a sample

from Irwin-Hall distribution is expected to be m
2

. The evaluation values of its n neighbors

are basically n more samples from the same distribution. Since Irwin-Hall distribution is

symmetric, there are expected to be n
2

neighbors better than x. Impr.len associated with x

is O(n).

We learn from lemma 17 that only a constant number of bits can possibly be added

to or removed from Impr. In order to analyze the amortized Impr.len over the search

process, we need to acquire the changing pattern of Impr.len as a randomly initialized

10Figure is modified from http://en.wikipedia.org/w/index.php?title=File:Irwin-hall-pdf.svg

40

http://en.wikipedia.org/w/index.php?title=File:Irwin-hall-pdf.svg

candidate solution approaches a local optimum. Intuitively, we expect Impr.len to decrease

as the candidate solution approaches a local optimum, and eventually reach 0 (hitting a

local optimum). However, there might be some exception where a candidate solution moves

to a better neighbor while its Impr.len increases as well. Such exceptions cannot occur

all the time, since the best solution of the entire search space is bounded. The question

is though how often such exceptions actually happen. We pose a hypothesis regarding the

correlation between evaluation value of a solution and its Impr.len. If there is a strong

negative correlation between these two factors, we are confident that the described exception

rarely happens in practice.

Hypothesis 4. On a uniform random k-bounded pseudo-Boolean function, the evaluation

value of candidate solutions sampled by exact-Walsh-LS is negatively correlated with their

relative Impr.len.

Experiment 4. We run exact-Walsh-LS on both uniform random and non-uniform random

NK-landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and

K = {2, 4}. MaxBitFlip is set to 1000000. We record the evaluation value of every candidate

solution sampled by exact-Walsh-LS as well as their relative Impr.len on both uniform

random and non-uniform random instances.

Previously in chapter 3, MaxBitF lip was 100,000 and repeat trials 10 times for each

configuration. In experiment 4, however, the manually enforced restart for 10 times is not

necessary, because we can set MaxBitF lip to be 1,000,000 and give exact-Walsh-LS the

choice to restart a search thread when necessary.

We report the correlation between evaluation value and Impr.len on uniform random

instances in figure 4.2. The results for non-uniform instances are also presented in figure 4.3

for reference purposes. The two factors under consideration are clearly negatively correlated.

After taking an improving move, Impr.len is very unlikely to increase. Interestingly, the

trend corresponding to non-uniform instances in figure 4.3 bends a bit when impr.len gets

closer to 0, while on uniform instances in figure 4.2 it mostly stays straight. We observe that

41

when the search approaches to a local optimum, Impr.len on non-uniform instances is likely

to be longer than that on uniform instances. We now pose the hypothesis regarding the

expected Impr.len during the execution of exact-Walsh-LS.

Hypothesis 5. The average Impr.len during exact-Walsh-LS is O(n).

We report the average Impr.len over one million bit-flips by exact-Walsh-LS in figure 4.4.

Nonlinear regression is performed to compute a polynomial model for the points in figure 4.4.

Indeed, on uniform instances, the growth is nearly linear (=O(n)). In contrast, the growth on

non-uniform instances is a bit faster than linear. It is attributable to the “bend” we observe

in figure 4.3.

We consider a way to break the average O(n) Impr.len: what if we only force a constant

number of bits to flip rather than trigger a random restart (which in expectation flips n
2

= O(n)

bits) after hitting a local optimum? We refer to the former approach as random walk or soft

restart , the number of bits to flip as λ, and the corresponding algorithm as “walk-Walsh-LS”.

We expect that flipping λ bits leads to a constant increase in Impr.len (which was previously

zero). In that way, the only O(n) cost is introduced by the one time initialization, which can

be amortized over multiple random walks. As a result, the average Impr.len is O(1). The

O(1) result should hold regardless of the distribution of variables over subfunctions.

Hypothesis 6. On a k-bounded pseudo-Boolean function, the average Impr.len associated

with a candidate solution sampled by walk-Walsh-LS is O(1).

Experiment 5. We run walk-Walsh-LS with λ = 10 on both uniform random and non-

uniform random NK-landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400,

450, 500} and K = {2, 4}. MaxBitFlip is set to 1, 000, 000. We record the Impr.len for each

candidate solution sampled by walk-Walsh-LS on both uniform random and non-uniform

random instances.

We report the average Impr.len versus n in figure 4.5. The average Impr.len is clearly

bounded by some constant regardless of the setting of n, and this conforms to our previous

42

Figure 4.2: Correlation between evaluation value of candidate solutions sampled by exact-
Walsh-LS and their relative Impr.len on uniform random NK-landscape instances.

43

Figure 4.3: Correlation between evaluation value of candidate solutions sampled by exact-
Walsh-LS and their relative Impr.len on non-uniform random NK-landscape instances.

44

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

20
40

60
80

exact−NK−K2

n

A
ve

ra
ge

 Im
pr

.le
n

AvgLen=0.34+0.19*n^0.997
RSE=0.4

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500
10

20
30

40
50

60
70

exact−NK−K4

n

A
ve

ra
ge

 Im
pr

.le
n

AvgLen=0.73+0.16*n^0.987
RSE=0.11

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

20
40

60
80

10
0

exact−NonNK−K2

n

A
ve

ra
ge

 Im
pr

.le
n

AvgLen=0.3+0.19*n^1.02
RSE=0.36

●

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

0
20

40
60

80
10

0

exact−NonNK−K4

n

A
ve

ra
ge

 Im
pr

.le
n

AvgLen=0.23+0.15*n^1.05
RSE=0.22

Figure 4.4: The average Impr.len over one million bit-flips by exact-Walsh-LS on uniform
and non-uniform instances. The fitted curve is generated using the nonlinear regression “nls”
from R with the formula AvgLen = a + b ∗ N c. The residual standard error (“RSE”) is
reported to indicate the goodness of fitting.

45

analysis. However, the average Impr.len corresponding to smaller n like 50 is remarkably

lower than that with larger n. For example, in the top-left subfigure, the Impr.len for n = 20

is about 4, while those for n greater than 100 are around 8. This is because when n is as

small as 20, a random restart is expected to flip n
2

= 10 bits, which is just the same as λ.

4.1.2 Runtime

Three major data structures are maintained in Walsh-LS: vector w′(x), vector S(x) and

list Impr(x). What prevents Walsh-LS from achieving O(1) complexity in updating data

structures is the complete scan over the O(n)-length Impr. Now that we have empirically

shown that Impr.len after substituting random restart with random walk is O(1), walk-

Walsh-LS should achieve O(1) complexity for updating data structures. We thus pose

hypothesis 7.

Hypothesis 7. On uniform random NK-landscape instances, the update time of walk-Walsh-

LS is O(1).

The question now is how much the O(n) initialization step would affect the overall runtime.

We conjuncture that the O(n) one time start-up cost can be amortized over a large number

of moves (100,000 in our case), so the growth of the overall runtime should be slower than

O(n).

Hypothesis 8. On uniform random NK-landscape instances, the overall runtime of walk-

Walsh-LS grows sublinearly.

Experiment 6. We run walk-Walsh-LS with λ = 10 on both uniform and non-uniform

random NK-landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500}

and K = {2, 4}. MaxBitFlip is set to 100000 for each algorithm on every instance. To

make the results statistically sound, the trials for each configuration are repeated 10 times

independently. Best-so-far solutions, overall runtime, and time spent on updating data

structures are recorded.

46

●

●

●

●

●

● ●

●
● ● ●

100 200 300 400 500

4
5

6
7

8

Walk−NK−K2

n

A
ve

ra
ge

 Im
pr

.le
n

●

●

●
●

●
● ● ● ●

● ●

100 200 300 400 500
4

5
6

7
8

9

Walk−NK−K4

n

A
ve

ra
ge

 Im
pr

.le
n

●

●

●

●

● ●
●

●
● ● ●

100 200 300 400 500

4.
5

5.
0

5.
5

6.
0

Walk−NonNK−K2

n

A
ve

ra
ge

 Im
pr

.le
n

●

●

● ●
●

●
●

● ● ● ●

100 200 300 400 500

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Walk−NonNK−K4

n

A
ve

ra
ge

 Im
pr

.le
n

Figure 4.5: The average Impr.len over one million bit-flips by walk-Walsh-LS on uniform
and non-uniform instances.

47

We report the overall runtime as well as the time for updating data structures on uniform

instances in figure 4.6 and on non-uniform instances in figure 4.7. Non-linear regression is

applied to fit a runtime model using formula F = a + b ∗ N c. We fail to obtain running

models within the standard error threshold 10−6 for the update time under all settings of K

on both uniform and non-uniform instances. It is mainly attributable to the fact that the

update time for n ≥ 150 flattens out while that for smaller n is substantially smaller. There

is no polynomial model that can easily fit such growth. We conclude that the update time is

indeed bounded by some constant, and there is barely any increase in the update time after

n = 150. We therefore verify hypothesis 7. Regarding the growth of the overall runtime, the

exponent of n in the formula clearly indicates that the overall runtime indeed increases in a

sublinear manner. c ranges from 0.19 to 0.59. Hypothesis 8 is verified empirically.

We have empirically demonstrated the advantage of substituting random restart with

random walk in terms of efficiency. Our next concern is whether the increase in efficiency is

at the expense of sacrificing the solution quality.

4.1.3 Solution Quality

We now study the solution quality returned by exact-Walsh-LS and walk-Walsh-LS on

both uniform random and non-uniform instances in experiment 6. The solution quality

obtained by exact-Walsh-LS and walk-Walsh-LS on uniform random instances is presented

in table 4.1. We perform Wilcoxon rank sum test on evaluations of solutions returned

by exact-Walsh-LS and walk-Walsh-LS. Since 44 statistical tests (including those on both

uniform random instances and non-uniform random instances) are conducted simultaneously,

Bonferroni adjustment [Dun61] is applied to the overall significance level α = 0.05. The

adjusted significance level for each test is α
n

= 0.05
44

= 0.0011.

Except on small instances where both exact-Walsh-LS and walk-Walsh-LS find optimal

solutions, walk-Walsh-LS consistently discovers better solutions. The superiority of random

walk over random restart is due to the fact that a hard restart upon reaching a local optimum

completely undoes the efforts of previous local search. Soft restart (random walk), however,

48

●

●

●

●

●

●

●

●

●

● ●

100 200 300 400 500

1.
20

1.
25

1.
30

1.
35

NK−walk−Walsh−K2−All

n

ru
nn

in
g

tim
e/

s

F=0.93+0.14*N^0.19, RSE=0.011

●

●

●

●
●

●
● ●

●
●

●

100 200 300 400 500
0.

30
0.

34
0.

38

NK−walk−Walsh−K2−update

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●
●

●

●
●

●

●

100 200 300 400 500

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

NK−walk−Walsh−K4−All

n

ru
nn

in
g

tim
e/

s

F=2+0.03*N^0.59, RSE=0.09

●

●

●

●
● ●

●
● ●

●

●

100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

NK−walk−Walsh−K4−update

n

ru
nn

in
g

tim
e/

s

Figure 4.6: Runtime in seconds on uniform instances. The fitted curve is generated using
the nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual standard
error (“RSE”) is reported to indicate the goodness of fitting.

49

●
●

●

●

●
●

●

●
●

●
●

100 200 300 400 500

1.
15

1.
20

1.
25

1.
30

1.
35

NonNK−walk−Walsh−K2−All

n

ru
nn

in
g

tim
e/

s

F=1+0.025*N^0.41, RSE=0.022

●

●

●

●
● ●

●

● ●

●

●

100 200 300 400 500
0.

30
0.

35
0.

40

NonNK−walk−Walsh−K2−update

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●

●

●
●

●

●

●

100 200 300 400 500

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

NonNK−walk−Walsh−K4−All

n

ru
nn

in
g

tim
e/

s

F=1.4+0.078*N^0.46, RSE=0.082

●

●

●

●
●

●

● ●

●
●

●

100 200 300 400 500

0.
5

0.
6

0.
7

0.
8

0.
9

NonNK−walk−Walsh−K4−update

n

ru
nn

in
g

tim
e/

s

Figure 4.7: Runtime in seconds on non-uniform instances. The fitted curve is generated
using the nonlinear regression “nls” from R with the formula F = a+ b ∗N c. The residual
standard error (“RSE”) is reported to indicate the goodness of fitting.

50

Table 4.1: Evaluations (maximization) of solutions on uniform random instances found by
exact-Walsh-LS and walk-Walsh-LS. Mean values and standard deviations over 10 independent
runs are reported. P-values calculated from Wilcoxon rank-sum test are also presented.
Statistical significantly better solutions and the related p-values are marked in bold with
Bonferroni adjusted significance level 0.05

44
= 0.0011.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS p-value exact-Walsh-LS walk-Walsh-LS p-value
20 14.36±0.00 14.36±0.00 NaN 15.43±0.00 15.43±0.00 NaN
50 38.65±0.00 38.65±0.00 NaN 39.38±0.13 39.44±0.00 0.1675
100 73.07±0.09 73.16±0.00 < 0.0001 77.81±0.43 79.59±0.05 < 0.0001
150 111.99±0.22 112.80±0.02 < 0.0001 114.92±0.57 118.14±0.36 0.0002
200 147.88±0.37 149.17±0.05 0.0002 152.03±0.95 157.06±0.53 < 0.0001
250 184.71±0.49 187.26±0.14 0.0002 189.66±0.75 196.78±0.54 < 0.0001
300 223.02±0.65 226.50±0.17 < 0.0001 225.02±0.93 233.57±0.80 < 0.0001
350 262.39±0.57 266.93±0.19 0.0002 262.20±1.35 272.74±0.73 < 0.0001
400 296.20±0.50 302.24±0.20 < 0.0001 297.58±1.14 310.24±0.67 < 0.0001
450 328.42±0.60 335.00±0.54 < 0.0001 335.04±0.51 349.83±1.33 < 0.0001
500 368.12±0.71 374.98±0.30 < 0.0001 374.28±1.15 390.15±1.70 < 0.0001

only partially reinitializes the solution, and search focuses more on close-to-local-optima

regions.

We next study the solution quality by exact-Walsh-LS and walk-Walsh-LS on non-uniform

random instances, which are generated using algorithm 6. The results are summarized in

table 4.2. As opposed to the results on uniform random instances, exact-Walsh-LS with

random restarts instead consistently returns solutions with better (or the same) mean values

in evaluations, compared with walk-Walsh-LS on all non-uniform random instances. The

difference in the evaluations of solutions is even more pronounced on non-uniform random

instances with larger K. Exact-Walsh-LS finds statistically significantly better solutions on 7

out of 11 non-uniform random instances with K = 4, while it is only statistically significantly

better than walk-Walsh-LS on 4 out of 11 non-uniform random instances with K = 2.

Non-uniform random instances seem to favor hard random restarts over soft random

restarts upon reaching local optima. Similar phenomena have also been observed in the

Maximum-Satisfiability (MAX-SAT) domain. Smyth et al. [SHS03] report that IRoTS (a

SLS algorithm) has difficulties in finding good solutions on structured MAX-SAT instances,

while it performs exceptionally well on random MAX-SAT instances.

51

Table 4.2: Evaluations (maximization) of solutions on non-uniform random instances
found by exact-Walsh-LS and walk-Walsh-LS. Mean values and standard deviations over 10
independent runs are reported. P-values calculated from Wilcoxon rank-sum test are also
presented. Statistical significantly better solutions and the related p-values are marked in
bold with Bonferroni adjusted significance level 0.05

44
= 0.0011.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS p-value exact-Walsh-LS walk-Walsh-LS p-value
20 14.17±0.00 14.17±0.00 NaN 14.83±0.00 14.83±0.00 NaN
50 35.78±0.00 35.78±0.00 NaN 37.02±0.00 37.02±0.00 NaN
100 72.73±0.00 72.73±0.00 NaN 75.40±0.00 74.92±0.41 0.0050
150 107.46±0.00 106.90±0.54 0.0022 109.98±0.14 109.02±0.99 0.0080
200 143.63±0.16 143.25±0.58 0.0933 146.08±0.41 142.79±1.53 < 0.0001
250 175.84±0.34 175.00±1.05 0.1304 183.46±0.72 177.55±3.51 < 0.0001
300 214.73±0.40 214.04±1.66 0.5437 216.60±0.50 209.97±3.56 < 0.0001
350 249.84±0.58 246.62±2.12 < 0.0001 251.82±0.99 243.14±3.11 < 0.0001
400 286.95±0.31 284.01±3.15 0.0892 285.51±0.86 278.37±3.13 < 0.0001
450 319.91±0.51 317.06±1.89 < 0.0001 321.63±1.47 311.60±4.23 < 0.0001
500 352.24±1.13 348.20±2.08 0.0003 354.69±1.07 346.62±3.60 0.0005

In order to shed some light on the underlying reason for the flip in comparison between

exact-Walsh-LS and walk-Walsh-LS on solution quality, we pose hypothesis 9.

Hypothesis 9. On non-uniform random NK-landscape instances, walk-Walsh-LS with λ = 10

finds worse solutions than exact-Walsh-LS due to the fact that λ = 10 is insufficient to escape

local optima on non-uniform instances.

Upon reaching a local optimum LO , if the walk length for a random walk is insufficient,

applying local search undoes the effect of the random walk and the search falls back to

LO . Motivated by this conjecture, we define an unsuccessful restart as in definition 4.1.1.

Similarly, we can define a successful restart as in definition 4.1.2.

Definition 4.1.1. A restart (either soft or hard) upon a local optimum LO is unsuccessful ,

if the effect of the restart is undone after applying local search and the search falls back to

the same local optimum LO.

Definition 4.1.2. A restart (either soft or hard) upon a local optimum LO is successful , if

applying local search after a restart leads to a local optimum other than LO.

We revise experiment 6 to highlight the effectiveness of restart in escaping local optima.

The revised experiment is described in experiment 7.

52

Table 4.3: Number of successful restarts over 100,000 moves by exact-Walsh-LS and walk-
Walsh-LS on uniform random instances. Mean values and standard deviations over 10
independent runs are reported.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS exact-Walsh-LS walk-Walsh-LS

20 12614.70±67.96 12486.10±46.02 17523.10±54.95 17540.90±38.76
50 5254.00±10.54 6436.60±65.38 7139.30±15.33 8863.80±39.70

100 2781.30±7.97 4435.20±63.60 3641.70±14.10 5519.00±59.84
150 1814.20±4.57 3197.70±105.66 2373.40±5.08 3090.00±147.34
200 1323.10±3.60 2303.20±65.42 1774.40±6.70 2192.40±171.49
250 1102.30±1.89 1957.90±69.32 1404.60±3.47 1526.30±185.25
300 906.80±2.53 1643.10±44.84 1162.10±3.25 1298.50±165.34
350 767.50±2.88 1164.20±50.18 991.80±2.66 1067.00±84.26
400 694.50±1.96 1304.10±57.44 880.00±2.49 1022.80±85.56
450 609.50±1.84 1170.90±84.48 778.50±2.68 936.70±47.54
500 550.20±1.23 983.60±43.70 686.10±2.23 818.60±17.16

Experiment 7. We run exact-Walsh-LS and walk-Walsh-LS with λ = 10 on both uniform

and non-uniform random NK-landscapes instances with n = {20, 50, 100, 150, 200, 250, 300,

350, 400, 450, 500} and K = {2, 4}. MaxBitFlip is set to 100000 for each algorithm on every

instance. The trials for each configuration are repeated 10 times independently. The number

of successful restarts and the number of restarts for each run are recorded.

The numbers of successful restarts on uniform random instances and non-uniform random

instances are respectively reported in table 4.3 and table 4.4. We observe that on uniform

random instances, walk-Walsh-LS consistently performs more successful restarts than exact-

Walsh-LS across all tested instances. It suggests walk-Walsh-LS is able to more effectively

sample distinct local optima in the search space, which in turn leads to better solutions. On

non-uniform random instances, however, the numbers of successful restarts by walk-Walsh-LS

are typically much smaller than those by exact-Walsh-LS. The trend is more evident on

instances with large n. This explains why walk-Walsh-LS finds inferior solutions compared

with exact-Walsh-LS on non-uniform instances.

53

Table 4.4: Number of successful restarts over 100,000 moves by exact-Walsh-LS and walk-
Walsh-LS on non-uniform random instances. Mean values and standard deviations over 10
independent runs are reported.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS exact-Walsh-LS walk-Walsh-LS

20 12665.70±48.90 12883.20±41.69 15548.90±33.93 15767.00±32.68
50 5083.20±9.02 4963.00±62.30 5722.90±16.65 4852.00±52.57

100 2427.90±6.54 947.90±51.68 2719.80±5.71 941.00±73.39
150 1598.80±3.19 552.20±112.88 1744.30±4.64 439.00±88.12
200 1175.20±1.40 293.60±95.63 1266.40±2.63 253.10±107.41
250 955.90±1.85 255.80±67.46 1006.80±2.25 151.30±65.42
300 785.20±1.48 169.10±48.33 829.80±2.62 140.50±44.83
350 677.40±1.71 132.50±39.71 706.20±1.14 94.00±34.13
400 579.90±0.99 79.80±37.06 610.20±1.23 115.30±51.47
450 516.40±1.07 111.60±33.31 542.00±0.94 89.50±25.91
500 465.80±0.92 75.60±18.22 484.50±1.08 67.70±24.67

To validate hypothesis 9, the total number of restarts are further presented in table 4.5

and table 4.6. It is clear that exact-Walsh-LS with hard restarts almost never visits the same

local optimum twice in a row, since most restarts are successful. walk-Walsh-LS with λ = 10

on the other hand has a high percentage of unsuccessful restarts, especially on non-uniform

instances. Take non-uniform instance with n = 500 and K = 4 for example, on average only

67 out of 9980 restarts (0.067%) are successful. It suggests λ = 10 may be insufficient for

walk-Walsh-LS to escape local optima, particular on non-uniform instances. Hypothesis 9 is

hence empirically verified.

To show the potential of walk-Walsh-LS on non-uniform instances, we pick the non-uniform

instance with n = 500 and K = 4 where the number of successful restarts for exact-Walsh-LS

is especially low and adjust λ in hopes of improving the performance and possibly surpassing

exact-Walsh-LS.

Experiment 8. We run walk-Walsh-LS with λ ranging from 10 to 500 with an interval 10

on non-uniform random NK-landscapes instances with n = 500 and K = 4. MaxBitFlip is

54

Table 4.5: Number of restarts over 100,000 moves by exact-Walsh-LS and walk-Walsh-LS
on uniform random instances. Mean values and standard deviations over 10 independent
runs are reported.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS exact-Walsh-LS walk-Walsh-LS

20 13348.50±52.24 12889.30±41.67 17707.30±50.24 17558.40±39.49
50 5263.90±11.10 10209.40±11.86 7139.30±15.33 9615.50±25.30

100 2781.30±7.97 9999.20±8.38 3641.70±14.10 9456.30±13.37
150 1814.20±4.57 9936.50±8.73 2373.40±5.08 9742.20±39.84
200 1323.10±3.60 9928.30±10.85 1774.40±6.70 9821.70±22.26
250 1102.30±1.89 9974.50±8.34 1404.60±3.47 9886.50±22.93
300 906.80±2.53 9957.00±6.32 1162.10±3.25 9911.70±13.85
350 767.50±2.88 9956.80±3.77 991.80±2.66 9921.00±12.99
400 694.50±1.96 9972.30±5.36 880.00±2.49 9924.60±5.34
450 609.50±1.84 9971.70±4.22 778.50±2.68 9928.60±9.47
500 550.20±1.23 9972.30±5.27 686.10±2.23 9937.50±4.65

Table 4.6: Number of restarts over 100,000 moves by exact-Walsh-LS and walk-Walsh-LS
on non-uniform random instances. Mean values and standard deviations over 10 independent
runs are reported.

K=2 K=4
n exact-Walsh-LS walk-Walsh-LS exact-Walsh-LS walk-Walsh-LS

20 13643.60±39.23 13323.30±32.21 16050.90±21.64 15886.60±26.89
50 5120.00±7.97 9928.30±12.37 5733.20±15.00 9030.30±33.32

100 2430.50±5.50 10018.80±8.34 2719.80±5.71 9859.70±20.56
150 1599.10±3.45 10002.30±8.58 1744.30±4.64 9994.40±10.66
200 1175.20±1.40 9998.90±6.74 1266.40±2.63 9987.20±7.58
250 955.90±1.85 9995.90±5.53 1006.80±2.25 9994.00±3.13
300 785.20±1.48 9986.90±3.00 829.80±2.62 9987.80±7.33
350 677.40±1.71 9987.00±3.80 706.20±1.14 9990.00±3.20
400 579.90±0.99 9984.30±1.64 610.20±1.23 9987.40±2.63
450 516.40±1.07 9981.50±2.64 542.00±0.94 9984.60±1.65
500 465.80±0.92 9979.60±1.96 484.50±1.08 9980.70±3.86

55

set to 100000 for each algorithm on every instance. Each configuration is repeated 10 times

independently. Best-so-far solutions are recorded.

The impact of λ on the performance of walk-Walsh-LS is illustrated in figure 4.8. It can

be concluded that by carefully choosing λ, walk-Walsh-LS can find better solutions than

exact-Walsh-LS. We also observe that in the interval of λ = [10, 120], increasing λ generally

enhances the performance of walk-Walsh-LS. This shows that the potential of walk-Walsh-LS

can be better exploited with a suitable setting of λ.

Summing up the studies in subsection 4.1.2 and subsection 4.1.3, walk-Walsh-LS clearly

dominates exact-Walsh-LS in terms of efficiency. From the perspective of effectiveness,

however, the λ parameter should be carefully chosen for walk-Walsh-LS to discover better

solutions than exact-Walsh-LS. We also found λ appears to rely on the characteristics of the

problem instances under investigation, since λ = 10 seems to be insufficient for non-uniform

instances while it may be large enough for uniform instances. The optimal values of λ on

non-uniform instances seem higher than that on uniform instances.

4.2 Best-Improvement vs. First-Improvement

We now consider how to achieve O(1) complexity per move on uniform random instances

by only breaking the second condition listed at the beginning of this chapter: determining

the true best-improvement move requires a complete scan over Impr, which takes O(n).

Instead of taking the move yielding the highest improvement in evaluation, we can flip the

first encountered bit that leads to improvement in evaluation. In such a way, the O(n) cost of

scanning the complete Impr list can be avoided. We refer to the SLS with this heuristic for

selecting improving moves as first-improvement local search (FILS). Specifically, Walsh-LS

that takes first improving moves is called Walsh-FILS.

56

4.2.1 Runtime

Experiment 9. We run Walsh-FILS on both uniform and non-uniform random NK-landscapes

instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and K = {2, 4}. MaxBit-

Flip is set to 100, 000 for each algorithm on every instance. The trials for each configuration

are repeated 10 times independently. Best-so-far solutions, overall runtime, and time spent

on updating data structures are recorded.

The median runtimes of Walsh-FILS on uniform instances and non-uniform instances

are reported in figure 4.9 and figure 4.10. The two figures suggest that the update time is

bounded by some constant. We also find such a trend holds for both uniform and non-uniform

instances. For example, top-right subfigure of figure 4.9 indicates that the update time only

raises from 0.45 seconds to 0.55 seconds when n increases from 20 to 500 on random instances.

We even observe a declining trend of the update time on non-uniform instances when n grows.

Even though Walsh-FILS has to pay a O(n) initialization cost, it still achieves a great

scalability in the overall runtime. Raising n from 20 to 500 only increases the overall runtime

from 1.35 seconds to 1.5 seconds on uniform instances with K = 2 for instance.

4.2.2 Solution Quality

Our next concern is whether the improvement in runtime by Walsh-FILS is at the cost of

sacrificing the solution quality. The comparisons between Walsh-FILS and exact-Walsh-LS in

terms of quality of solutions are summarized in table 4.7 and table 4.8.

On uniform instances with K = 2, Walsh-FILS finds worse solutions than exact-Walsh-LS

on uniform random instances in cases where n is sufficiently large to differentiate Walsh-

FILS and exact-Walsh-LS. Wilcoxon rank-sum tests indicate that 6 out of 9 such cases are

statistically significant. When K increases to 4 on uniform instances, however, the advantage

of exact-Walsh-LS over Walsh-FILS is not statistically significant. When distribution of

variables over subfunctions changes from uniform to non-uniform (binomial), exact-Walsh-LS

still returns better solutions than Walsh-FILS on not-too-small instances (starting from

n = 100). Nevertheless, the superiority of exact-Walsh-LS over Walsh-FILS in quality of

57

Table 4.7: Evaluations (maximization) of solutions on uniform random instances found by
Walsh-FILS and exact-Walsh-LS. Mean values and standard deviations over 10 independent
runs are reported. P-values calculated from Wilcoxon rank-sum test are also presented.
Statistical significantly better solutions and the related p-values are marked in bold with
Bonferroni adjusted significance level 0.05

44
= 0.0011.

K=2 K=4
n Walsh-FILS exact-Walsh-LS p-value Walsh-FILS exact-Walsh-LS p-value

20 14.36±0.00 14.36±0.00 NaN 15.43±0.00 15.43±0.00 NaN
50 38.65±0.00 38.65±0.00 NaN 39.38±0.13 39.38±0.13 1.0000
100 72.66±0.20 73.07±0.09 0.0002 77.74±0.30 77.81±0.43 0.9705
150 111.59±0.19 111.99±0.22 0.0007 114.64±0.60 114.92±0.57 0.3642
200 147.71±0.37 147.88±0.37 0.2176 151.90±0.67 152.03±0.95 1.0000
250 183.08±0.44 184.71±0.49 < 0.0001 189.10±0.79 189.66±0.75 0.0753
300 222.20±0.61 223.02±0.65 0.0191 224.49±0.66 225.02±0.93 0.2799
350 261.44±0.90 262.39±0.57 0.0185 262.34±1.66 262.20±1.35 0.9705
400 294.01±0.69 296.20±0.50 < 0.0001 298.08±1.34 297.58±1.14 0.3930
450 326.84±0.60 328.42±0.60 < 0.0001 335.87±1.11 335.04±0.51 0.0630
500 366.05±0.57 368.12±0.71 < 0.0001 374.48±1.15 374.28±1.15 0.7394

Table 4.8: Evaluations (maximization) of solutions on non-uniform random instances
found by Walsh-FILS and exact-Walsh-LS. Mean values and standard deviations over 10
independent runs are reported. P-values calculated from Wilcoxon rank-sum test are also
presented. Statistical significantly better solutions and the related p-values are marked in
bold with Bonferroni adjusted significance level 0.05

44
= 0.0011.

K=2 K=4
n Walsh-FILS exact-Walsh-LS p-value Walsh-FILS exact-Walsh-LS p-value

20 14.17±0.00 14.17±0.00 NaN 14.83±0.00 14.83±0.00 NaN
50 35.78±0.00 35.78±0.00 NaN 37.02±0.00 37.02±0.00 NaN
100 72.60±0.16 72.73±0.00 0.0336 74.97±0.32 75.40±0.00 0.0007
150 107.15±0.22 107.46±0.00 0.0020 109.68±0.24 109.98±0.14 0.0088
200 143.42±0.21 143.63±0.16 0.0534 144.93±1.06 146.08±0.41 0.0068
250 174.96±0.49 175.84±0.34 0.0002 181.02±1.05 183.46±0.72 0.0002
300 213.67±0.73 214.73±0.40 0.0021 214.11±0.74 216.60±0.50 < 0.0001
350 247.95±0.71 249.84±0.58 < 0.0001 248.70±1.50 251.82±0.99 < 0.0001
400 284.57±0.39 286.95±0.31 < 0.0001 282.58±1.26 285.51±0.86 < 0.0001
450 317.91±0.88 319.91±0.51 < 0.0001 315.64±1.07 321.63±1.47 < 0.0001
500 349.85±0.87 352.24±1.13 < 0.0001 349.64±1.90 354.69±1.07 < 0.0001

58

solutions becomes more pronounced on non-uniform instances with K = 4, in 7 out of 9

cases the differences are statistically significant. In short, exact-Walsh-LS finds equally

good or better solutions than Walsh-FILS on both uniform and non-uniform NK-Landscapes

instances.

We conjecture that it is because that first-improvement local search is typically less greedy

than best-improvement local search. Given the same number of moves and the same restart

strategy, first-improvement local search requires more moves to hit a local optimum which

results in visiting less local optima than best-improvement local search.

Hypothesis 10. On both uniform random and non-uniform random NK-landscape instances,

Walsh-FILS takes more moves to reach a local optimum and visits less local optima when

compared with exact-Walsh-LS, given the same number of moves and the same restart strategy.

Experiment 10. We run Walsh-FILS on both uniform and non-uniform random NK-

landscapes instances with n = {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and K = {2,

4}. MaxBitFlip is set to 100000 for each algorithm on every instance. The trials for each

configuration are repeated 10 times independently. The number of successful restarts and the

number of restarts for each run are recorded.

We compare the number of restarts issued by Walsh-FILS and exact-Walsh-LS on uniform

and non-uniform instances separately in table 4.9 and table 4.10.

As expected, exact-Walsh-LS visits remarkably more local optima than Walsh-FILS, which

in return leads to more restarts. This suggests that starting from a random point in the

search space, Walsh-FILS indeed requires more moves to reach a local optimum. This trend

is consistent across all tested uniform and non-uniform instances.

Nonetheless, visiting more local optima does not necessarily lead to more effective sampling

of search space. As shown previously, some restarts can be unsuccessful and can be undone

by applying local search after restarts. Hereby, we report the number of successful restarts

in table 4.11 and table 4.12. We find the hard random restart employed by Walsh-FILS

and exact-Walsh-LS avoids the same local optimum being visited successively. Except on

59

Table 4.9: Number of restarts over 100,000 moves by Walsh-FILS and exact-Walsh-LS on
uniform random instances. Mean values and standard deviations over 10 independent runs
are reported.

K=2 K=4
n Walsh-FILS exact-Walsh-LS Walsh-FILS exact-Walsh-LS

20 10246.20±39.30 13348.50±52.24 11398.90±44.57 17707.30±50.24
50 4032.10±11.00 5263.90±11.10 4522.70±13.72 7139.30±15.33

100 2073.50±10.14 2781.30±7.97 2266.10±6.72 3641.70±14.10
150 1325.20±5.12 1814.20±4.57 1484.60±4.45 2373.40±5.08
200 994.80±3.36 1323.10±3.60 1115.40±4.01 1774.40±6.70
250 802.90±2.77 1102.30±1.89 887.00±2.58 1404.60±3.47
300 680.80±1.75 906.80±2.53 732.50±2.42 1162.10±3.25
350 575.20±2.30 767.50±2.88 622.00±2.16 991.80±2.66
400 524.40±1.84 694.50±1.96 549.90±1.91 880.00±2.49
450 461.50±1.18 609.50±1.84 486.40±1.26 778.50±2.68
500 409.30±1.34 550.20±1.23 431.30±1.83 686.10±2.23

Table 4.10: Number of restarts over 100,000 moves by Walsh-FILS and exact-Walsh-LS on
non-uniform random instances. Mean values and standard deviations over 10 independent
runs are reported.

K=2 K=4
n Walsh-FILS exact-Walsh-LS Walsh-FILS exact-Walsh-LS

20 10575.80±22.73 13643.60±39.23 11044.00±33.57 16050.90±21.64
50 4024.90±13.88 5120.00±7.97 4385.20±16.85 5733.20±15.00

100 2040.90±6.71 2430.50±5.50 2119.20±8.72 2719.80±5.71
150 1335.50±3.84 1599.10±3.45 1385.00±5.25 1744.30±4.64
200 981.70±3.06 1175.20±1.40 1046.00±4.92 1266.40±2.63
250 815.00±2.49 955.90±1.85 829.60±3.31 1006.80±2.25
300 682.30±1.83 785.20±1.48 697.10±1.60 829.80±2.62
350 588.20±1.32 677.40±1.71 589.20±2.35 706.20±1.14
400 499.30±1.34 579.90±0.99 519.40±1.35 610.20±1.23
450 446.60±1.35 516.40±1.07 457.10±1.37 542.00±0.94
500 403.40±0.84 465.80±0.92 411.80±1.14 484.50±1.08

60

Table 4.11: Number of SUCCESSFUL restarts over 100,000 moves by Walsh-FILS and
exact-Walsh-LS on uniform random instances. Mean values and standard deviations over 10
independent runs are reported.

K=2 K=4
n Walsh-FILS exact-Walsh-LS Walsh-FILS exact-Walsh-LS

20 10069.00±46.58 12614.70±67.96 11353.80±45.35 17523.10±54.95
50 4031.40±10.97 5254.00±10.54 4522.70±13.72 7139.30±15.33

100 2073.50±10.14 2781.30±7.97 2266.10±6.72 3641.70±14.10
150 1325.20±5.12 1814.20±4.57 1484.60±4.45 2373.40±5.08
200 994.80±3.36 1323.10±3.60 1115.40±4.01 1774.40±6.70
250 802.90±2.77 1102.30±1.89 887.00±2.58 1404.60±3.47
300 680.80±1.75 906.80±2.53 732.50±2.42 1162.10±3.25
350 575.20±2.30 767.50±2.88 622.00±2.16 991.80±2.66
400 524.40±1.84 694.50±1.96 549.90±1.91 880.00±2.49
450 461.50±1.18 609.50±1.84 486.40±1.26 778.50±2.68
500 409.30±1.34 550.20±1.23 431.30±1.83 686.10±2.23

small instances where n is less than or equal to 100, all restarts performed by Walsh-FILS

and exact-Walsh-LS are actually successful by definition 4.1.2. Moreover, exact-Walsh-LS

consistently issues more successful restarts than Walsh-FILS on uniform and non-uniform

restarts, which validates hypothesis 10.

The choice between best-improvement local search and first-improvement local search for

Walsh-LS is clearly a trade-off between runtime and quality of solutions. While Walsh-LS

with first-improvement local search achieves constant complexity per move, it sacrifices the

quality of solutions when compared with exact-Walsh-LS with best-improvement local search.

61

Table 4.12: Number of SUCCESSFUL restarts over 100,000 moves by Walsh-FILS and
exact-Walsh-LS on nonuniform random instances. Mean values and standard deviations over
10 independent runs are reported.

K=2 K=4
n Walsh-FILS exact-Walsh-LS Walsh-FILS exact-Walsh-LS

20 10215.70±27.85 12665.70±48.90 10934.40±32.27 15548.90±33.93
50 4021.10±14.42 5083.20±9.02 4384.50±17.00 5722.90±16.65

100 2040.90±6.71 2427.90±6.54 2119.20±8.72 2719.80±5.71
150 1335.50±3.84 1598.80±3.19 1385.00±5.25 1744.30±4.64
200 981.70±3.06 1175.20±1.40 1046.00±4.92 1266.40±2.63
250 815.00±2.49 955.90±1.85 829.60±3.31 1006.80±2.25
300 682.30±1.83 785.20±1.48 697.10±1.60 829.80±2.62
350 588.20±1.32 677.40±1.71 589.20±2.35 706.20±1.14
400 499.30±1.34 579.90±0.99 519.40±1.35 610.20±1.23
450 446.60±1.35 516.40±1.07 457.10±1.37 542.00±0.94
500 403.40±0.84 465.80±0.92 411.80±1.14 484.50±1.08

62

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

● ●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

●

● ●

● ●
● ●

●
●

●

●
●

●

0 100 200 300 400 500

34
6

34
8

35
0

35
2

35
4

35
6

35
8

Evaluations of Solutions Found By walk−Walsh−LS with different λ

λ

E
va

lu
at

io
ns

 o
f S

ol
ut

io
ns

(120, 358.572)

354.69

Figure 4.8: Evaluations of solutions found by walk-Walsh-LS with λ ranging from 10 to 500.
Each point represents the mean evaluations over 10 independent runs. The highest mean of
evaluations (358.572) is achieved by walk-Walsh-LS with λ = 120. The mean evaluations of
solutions found by exact-Walsh-LS (354.69, which is colored in red) is reported as a baseline.

63

●
●

●

●

●

●

●

●

●

●

●

100 200 300 400 500

1.
35

1.
40

1.
45

1.
50

NK−FILS−K2−All

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●

●

●

●

●
●

●

100 200 300 400 500
0.

46
0.

48
0.

50
0.

52
0.

54

NK−FILS−K2−update

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●

●

●

●
●

●

●

100 200 300 400 500

2.
5

3.
0

3.
5

4.
0

NK−FILS−K4−All

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●

●

●

● ● ●

●

100 200 300 400 500

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5 NK−FILS−K4−update

n

ru
nn

in
g

tim
e/

s

Figure 4.9: Median runtimes of Walsh-FILS in seconds on uniform instances over 10 runs.
The left subfigures relate to the overall runnning time, while the right subfigures represent
the time spent on updating data structures.

64

●

●
●

●

●

●

●

●

●

●

●

100 200 300 400 500

1.
18

1.
20

1.
22

1.
24

1.
26

1.
28

NonNK−FILS−K2−All

n

ru
nn

in
g

tim
e/

s

●

●

●

●

●

● ●
●

●

●

●

100 200 300 400 500
0.

34
0.

36
0.

38
0.

40

NonNK−FILS−K2−update

n

ru
nn

in
g

tim
e/

s

●

●

● ●

●

●

●

●

●
●

●

100 200 300 400 500

2.
0

2.
1

2.
2

2.
3 NonNK−FILS−K4−All

n

ru
nn

in
g

tim
e/

s

●

● ●

●
●

●

●

●

●

●

●

100 200 300 400 500

0.
58

0.
62

0.
66

0.
70

NonNK−FILS−K4−update

n

ru
nn

in
g

tim
e/

s

Figure 4.10: Median runtimes of Walsh-FILS in seconds on non-uniform instances. The
left subfigures relate to the overall runnning time, while the right subfigures represent the
time spent on updating data structures.

65

Chapter 5

Walsh-LS using Surrogate Function of
Mean Value over Hamming Region

Plateaus are connected search regions in which all search positions have the same evaluation

[HS04]. Since all positions on a plateau share the same evaluation, SLS has no gradient

information to follow and thus gets stuck. Plateaus often occur in neutral landscapes, where

neighboring positions in the search space are likely to have equal evaluation. The landscapes

encountered for SAT instances are classic neutral landscapes [HK96] [FCS97] [SHW10]. This

chapter studies how the mean value over a Hamming region can be used as surrogate fitness

function to smooth the fitness landscape and to reduce the total number of plateaus. To

study the effect of surrogate fitness function, we also consider NKq-landscapes (“quantized”

NK [Gea01]) as an example of neutral landscapes in this chapter.

NKq-landscapes [GWH+02] are almost identical to NK-Landscapes except that their

subfunctions are lookup tables from uniform distribution of integers [0, q), where q is the

discretization level. The smaller q is, the less variance appears in the values of subfunctions.

Hence there are more plateaus when q is small. We choose q = 2 for our empirical studies.

Both NKq-Landscapes and SAT display plateaus and result in more equally good improving

moves compared to the standard NK-Landscapes.

From the viewpoint of runtime, we show Walsh-LS using the mean value over a Hamming

region as surrogate fitness function still achieves the same complexity per move as the original

Walsh-LS. From the perspective of effectiveness, we demonstrate how Walsh-LS employs

Walsh terms differently when surrogate fitness function is used. We will also present how the

difference in using Walsh terms impacts the quality of solutions as the radius of Hamming

regions being averaged varies.

66

5.1 Mean over Hamming Regions as Surrogate Fitness

5.1.1 Hamming Regions

SLS makes small changes to a candidate solution (e.g., by flipping a bit). The short-term

dynamics of such algorithms are influenced by the statistical properties of the states that are

mutually reachable by a small number of changes [SWH11]. Accordingly, we are interested

in the mean of fitness values over regions that are local to a candidate solution. We formalize

this as follows. Consider two candidate solutions x,y ∈ Bn. The Hamming distance D(x,y)

is the number of positions in which the binary strings x and y differ. The set Bn together

with the Hamming distance function form a metric space. Given a “centroid” x, we can

partition Bn into regions about x.

A Hamming sphere of radius r around a point x ∈ Bn is defined as the set

HS(r)(x) = {y ∈ Bn : D(x,y) = r}. (5.1)

Similarly, we define a union of concentric spheres. A Hamming ball of radius r around a

point x ∈ Bn is defined as the set

HB(r)(x) = {y ∈ Bn : D(x,y) ≤ r}. (5.2)

We refer to Hamming spheres and Hamming balls as Hamming regions.

5.1.2 Mean Values over Hamming Spheres

This subsection reviews an efficient method introduced by Sutton et al. [SWH12] to

compute mean values over Hamming Regions from Walsh coefficients.

Suppose Q = {i|i ∈ Bn, wi 6= 0}, then Q is the set of n-bit strings whose corresponding

Walsh coefficients are non-zero. The mean values over a sphere of radius r can be computed

using equation (5.3).

67

HS(r)(x) =

(
n

r

)−1 k∑
j=0

γ
(r)
j ϕ[j](x) Equation 25 in [SWH12]

=

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j

wiψi(x) Equation 9 in [SWH12] (5.3)

where

γ
(r)
j = Kr(j, n) =

r∑
i=0

(
j

i

)(
n− j
r − i

)
(−1)i. (5.4)

Kr(p, n) is the Krawtchouk polynomials [Kra29].

5.1.3 Walsh-LS with Surrogate Fitness

We consider how to execute Walsh-LS using surrogate fitness function. We first define

the analogy of S(x) for Walsh-LS in equation (5.5).

Sp(HS
(r)(x)) =

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j∧ip=1

w′i(x) (5.5)

After flipping a bit p, the difference in the surrogate fitness can be computed using

equation (5.6).

HS(r)(x(p))− HS(r)(x)

=

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j

wi(ψi(x
(p))− ψi(x))

=

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j∧ip=1

wi(−2ψi(x))

= −2Sp(HS
(r)(x)) (5.6)

Similar to equation (3.3) with the original fitness, Sp(HS
(r)(x)) can be used as a proxy

for the new surrogate fitness HS(r)(x(p)), since HS(r)(x) is constant as p varies. S(HS(r)(x)) is

a proxy vector that reflects the changes in surrogate fitness when any one of n possible bits

is flipped.

68

5.1.4 Update Proxy after a Single Bit Flip

Walsh-LS maintains three data structures, namely vector w′(x), vector S(x) and list

Impr(x). With the surrogate fitness, only the vector S(x) is replaced with S(HS(r)(x)), while

w′(x) and Impr(x) remain the same. We consider how to efficiently update the proxy vector

S(HS(r)(x)) after flipping a bit.

Lemma 19. Suppose x ∈ Bn and i ∈ Q. After flipping a bit q, the vector S(HS(r)(x)) can be
computed using

∀p ∈ [1, n],

Sp(HS
(r)(x(q)))

= Sp(HS
(r)(x))− 2

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j∧ip=1∧iq=1

w′i(x)

Proof. ∀p ∈ [1, n], the difference between Sp(HS
(r)(x(q))) and Sp(HS

(r)(x)) can be calculated

as follows:

Sp(HS
(r)(x(q)))− Sp(HS(r)(x))

=

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j∧ip=1

wi(x)(ψi(x
(q))− ψi(x))

= −2

(
n

r

)−1 k∑
j=0

γ
(r)
j

∑
i∈Q:bc(i)=j∧ip=1∧iq=1

w′i(x) (5.7)

Denote exact-Walsh-LS with the mean values over Hamming sphere of radius r as surrogate

fitness as Walsh-LS-HS(r). We now demonstrate that Walsh-LS-HS(r) can be executed as fast

as exact-Walsh-LS. Comparing equation (5.7) with lemma 5, we observe that the difference lies

in the factor of Walsh term w′i(x). Equation (5.8) how the extra factors from equation (5.7)

are absorbed into Walsh terms.

wHS
(r)
i (x) =

(
n

r

)−1
γ
(r)
bc(i)w

′
i(x) (5.8)

After defining wHS
(r)
i , equation (5.7) can be rewritten as

69

Sp(HS
(r)(x(q)))− Sp(HS(r)(x)) = −2

∑
i∈Q:bc(i)=j∧ip=1∧iq=1

wHS
(r)
i (x) (5.9)

This suggests that except for substituting w′i(x) in Walsh-LS with wHS
(r)
i (x) in the

initialization stage, Walsh-LS-HS(r) can be executed in exactly the same manner as Walsh-LS.

The runtime complexity of Walsh-LS-HS(r) is also therefore the same as Walsh-LS.

Our study extends Whitley and Chen’s work [WC12]. They provide an efficient method

for computing the mean value over a special Hamming sphere, HS(1), and use it as surrogate

fitness. However, they execute Walsh-LS-HS(1) with surrogate fitness at the cost of doubling

the runtime of exact-Walsh-LS with original fitness. In this chapter, we extend their approach

to Hamming spheres of arbitrary radii, and we also show that using mean values over

Hamming spheres of arbitrary fitness can be achieved without any extra cost in runtime.

5.1.5 Mean Values over Hamming Balls as Surrogate Fitness

A ball of radius r can be viewed as a superposition of r spheres of radii from 1 to r. We now

show that the previously introduced techniques in this section also apply to Walsh-LS with

mean values over Hamming balls of radius r as surrogate fitness (denoted as Walsh-LS-HB(r)).

The mean values over a Hamming ball of radius r can be computed using equation (5.10).

HB(r)(x) = (
r∑
s=0

(
n

s

)
)

−1 r∑
s=0

k∑
j=0

γ
(s)
j ϕ[j](x) Equation 25 in [SWH12]

= (
r∑
s=0

(
n

s

)
)

−1 r∑
s=0

k∑
j=0

γ
(s)
j

∑
i∈Q:bc(i)=j

wiψi(x) Equation 9 in [SWH12] (5.10)

Similar to the definition of wHS
(r)
i (x), we can define

(r)
i (x) in equation (5.11).

wHB
(r)
i (x) = (

r∑
s=0

(
n

s

)
)

−1 r∑
s=0

γ
(s)
bc(i)w

′
i(x) (5.11)

Again, after initializing wHB
(r)
i (x), Walsh-LS-HB(r) can be executed as efficiently as

Walsh-LS. While executing Walsh-LS-HB(r), wHB
(r)
i (x) is treated in the same way as w′i(x).

70

5.2 Empirical Studies

In this section, we first show that searching in the surrogate fitness space can improve the

ability of Walsh-LS to find good solutions. We next empirically verify that using surrogate

fitness over Hamming spheres comes at no additional cost of running time. Some in-depth

empirical analysis is provided at the end of this section to provide insight on why the surrogate

fitness can help discover better solutions.

Experiment 11 is conducted to evaluate the efficiency and effectiveness of Walsh-LS-HS(r).

Exact-Walsh-LS is essentially Walsh-LS-HS(0), since Hamming Sphere with r = 0 shrinks to a

single point. Also, Walsh-LS-HS(r) with r > 0 works entirely on the surrogate fitness, which

means it has no access to the real fitness. We evaluate the best-so-far solution obtained in

the surrogate fitness space using the original fitness function at the end of Walsh-LS-HS(r).

Experiment 11. We run Walsh-LS-HS(r) with r = {0, 1, 2, 3} on both uniform and non-

uniform random NK-landscapes and NKq-landscapes (q = 2) instances with n = {20, 50,

100, 150, 200, 250, 300, 350, 400, 450, 500} and K = {2, 4}. MaxBitFlip is set to 100, 000 for

each algorithm on every instance. The trials for each configuration are repeated 10 times

independently. Best-so-far solutions, their relative real fitnesses, the number of restarts, and

overall runtime are recorded.

5.2.1 Solution Quality

We compare the real fitnesses returned by Walsh-LS-HS(r) with r = {0, 1, 2, 3} on uniform

NK random instances in table 5.1 and table 5.2. We are mainly interested in investigating

the impact of using surrogate fitness in search. The comparison between exact-Walsh-LS

and Walsh-LS-HS(1) highlights the difference, therefore p-value related to Wilcoxon rank-sum

test comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are presented in the last

71

columns of table 5.1 and table 5.2. As there are 88 possible comparisons11 to perform, the

significant level is adjusted to 0.05
88

= 0.000568 according to Bonferroni adjustment [Dun61].

As suggested by table 5.1 and table 5.2, applying the surrogate fitness makes no statistically

significant difference in solution quality. It indicates that on the rugged uniform NK-landscapes

with little inherent structure, searching in the surrogate fitness space makes no difference in

solution quality.

Table 5.1: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
uniform NK random instances with K = 2. Mean values and standard deviations over 10
independent runs are reported. P-values calculated from Wilcoxon rank-sum tests comparing
solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical significantly
better solutions and the related p-values are marked in bold with Bonferroni adjusted
significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 14.362±0.000 14.362±0.000 14.362±0.000 14.041±0.000 NaN
50 38.648±0.000 38.648±0.000 38.648±0.000 38.587±0.000 NaN

100 73.073±0.095 73.033±0.160 72.980±0.179 73.103±0.079 0.9075
150 111.987±0.216 112.249±0.180 111.962±0.204 112.102±0.245 0.0140
200 147.879±0.369 147.837±0.166 148.226±0.490 147.920±0.213 0.6842
250 184.711±0.494 184.672±0.423 184.642±0.476 184.652±0.406 1.0000
300 223.021±0.648 222.960±0.349 223.252±0.740 223.407±0.979 0.9705
350 262.395±0.569 262.614±0.698 262.193±0.626 262.678±0.454 0.4813
400 296.195±0.497 296.278±1.172 296.318±0.821 295.991±0.613 0.8534
450 328.425±0.597 328.679±0.667 328.945±1.113 328.336±0.568 0.3930
500 368.116±0.705 367.590±0.843 367.449±0.831 367.875±1.128 0.1051

Compared to NK-landscapes, NKq-landscapes are neutral landscapes that are more similar

to SAT instances. Evaluations of solutions by Walsh-LS-HS on uniform NKq-landscapes

(q = 2) are presented in table 5.3 and table 5.4. Walsh-LS-HS(1) consistently finds statistically

significant better solutions than exact-Walsh-LS on sufficiently large instances (starting from

the ones with n = 100).

11{11 levels for n} × {2 levels for “uniform” versus “non-uniform”} × {2 levels for “NK” versus “NKQ”}
× 2 levels for K

72

Table 5.2: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
uniform NK random instances with K = 4. Mean values and standard deviations over 10
independent runs are reported. P-values calculated from Wilcoxon rank-sum tests comparing
solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical significantly
better solutions and the related p-values are marked in bold with Bonferroni adjusted
significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 15.427±0.000 15.427±0.000 15.204±0.000 15.204±0.000 NaN
50 39.382±0.126 39.409±0.104 39.112±0.000 39.112±0.000 0.6701

100 77.812±0.425 77.899±0.477 78.199±0.525 78.274±0.608 0.4359
150 114.919±0.566 114.730±0.480 114.832±0.638 115.326±0.762 0.4359
200 152.029±0.949 151.899±0.616 152.093±0.690 152.380±0.747 1.0000
250 189.661±0.748 189.368±0.463 189.589±0.779 190.090±1.137 0.2475
300 225.019±0.928 224.827±0.666 225.209±0.854 225.505±0.952 0.9118
350 262.196±1.354 263.126±1.129 262.372±0.826 262.922±1.069 0.1655
400 297.577±1.144 297.394±1.027 298.219±1.086 297.802±1.055 0.6842
450 335.036±0.507 335.671±0.617 336.055±1.071 336.941±1.940 0.0147
500 374.279±1.150 374.172±1.644 374.855±2.125 373.977±1.273 0.4813

We now study how the previously observed trends could change on non-uniform in-

stances. Recall that the “non-uniform” distribution comes from the variables distribution

over subfunctions. Non-uniform instances are generated using algorithm 6.

Evaluations of solutions on non-uniform NK-landscapes instances are summarized in

table 5.5 and table 5.6. Applying the surrogate fitness appears to statistically significantly

deteriorate the performance on small instances. While on larger instances (where n ≥ 200),

utilizing surrogate fitness makes no statistically significant difference in solution quality.

We next study the impact of variable distributions over subfunctions on non-uniform

NKq-landscapes. Evaluations of solutions on non-uniform NKq (q=2) landscapes instances

are summarized in table 5.7 and table 5.8. Walsh-LS-HS(1) finds statistically significant better

solutions than exact-Walsh-LS on some instances, while on other instances Walsh-LS-HS(1)

achieves comparable performance. Compared to the results on uniform NKq-landscapes,

however, statistically significant better solutions are less commonly found. On uniform

random NKq-landscapes, Walsh-LS-HS(1) discovers statistically significantly better solutions

73

Table 5.3: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
uniform NKq (q=2) random instances with K = 2. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 18.000±0.000 18.000±0.000 18.000±0.000 17.000±0.000 NaN
50 45.000±0.000 45.000±0.000 45.000±0.000 45.000±0.000 NaN

100 93.000±0.000 93.900±0.316 94.000±0.000 93.900±0.316 < 0.0001
150 136.800±1.033 140.600±0.516 140.900±0.316 140.800±0.422 0.0001
200 180.700±1.160 186.200±0.789 187.000±0.943 186.600±0.843 0.0001
250 224.100±1.595 231.300±0.949 231.800±0.632 232.300±0.675 0.0001
300 268.500±0.850 277.300±1.059 277.200±0.632 277.300±1.160 0.0001
350 310.800±1.874 322.300±0.823 323.800±0.632 323.900±0.876 0.0001
400 355.300±1.829 372.500±0.850 373.700±1.160 373.700±1.337 0.0002
450 394.300±1.567 410.600±0.843 411.800±1.476 411.100±1.287 0.0002
500 444.800±1.874 462.500±1.434 464.100±1.370 463.700±1.636 0.0002

in 18 out of 22 cases, whereas it only returns statistically significantly better solutions on 9 out

of 22 non-uniform NKq instances. The non-uniform variable distribution over subfunctions

seems to make applying surrogate fitness less advantageous.

74

Table 5.4: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
uniform NKq (q=2) random instances with K = 4. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 10.000±0.000 10.000±0.000 10.000±0.000 10.000±0.000 NaN
50 27.000±0.000 27.000±0.000 27.000±0.000 27.000±0.000 NaN

100 52.100±0.994 54.700±0.483 54.800±0.422 54.900±0.316 0.0002
150 77.700±1.829 83.300±0.483 83.600±0.516 84.400±0.843 0.0001
200 98.800±2.044 107.300±1.418 107.900±1.370 107.600±1.075 0.0002
250 121.900±1.370 133.900±1.197 134.900±0.994 135.100±1.370 0.0002
300 143.600±2.011 161.300±1.703 161.900±1.792 161.600±1.506 0.0002
350 165.200±2.394 187.400±2.413 187.000±1.491 187.200±2.098 0.0002
400 187.600±2.836 210.200±1.751 211.900±2.025 211.600±1.350 0.0002
450 210.600±2.757 236.900±0.738 238.700±1.889 239.400±1.578 0.0001
500 228.900±3.695 261.300±2.058 260.800±1.687 263.000±1.886 0.0002

Table 5.5: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS
on non-uniform NK random instances with K = 2. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 14.172±0.000 14.126±0.000 14.126±0.000 14.126±0.000 < 0.0001
50 35.777±0.000 35.771±0.000 35.771±0.000 35.654±0.000 < 0.0001

100 72.727±0.000 72.727±0.000 72.727±0.000 72.727±0.000 NaN
150 107.462±0.000 107.461±0.000 107.461±0.000 107.461±0.000 < 0.0001
200 143.627±0.159 143.653±0.137 143.677±0.177 143.625±0.131 0.4388
250 175.841±0.341 175.876±0.177 175.923±0.211 175.804±0.267 0.8534
300 214.733±0.396 214.926±0.437 214.655±0.403 214.569±0.354 0.4495
350 249.842±0.584 249.938±0.530 249.808±0.636 250.062±0.672 0.7959
400 286.945±0.312 286.906±0.231 287.029±0.757 286.874±0.372 0.8534
450 319.910±0.511 319.766±0.471 319.963±0.527 319.780±0.357 0.4813
500 352.241±1.134 352.110±0.938 352.135±1.188 352.423±0.882 0.9118

75

Table 5.6: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS
on non-uniform NK random instances with K = 4. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 14.832±0.000 14.771±0.000 14.771±0.000 14.361±0.000 < 0.0001
50 37.015±0.000 37.006±0.000 37.006±0.000 37.006±0.000 < 0.0001

100 75.400±0.000 75.208±0.329 75.352±0.147 75.247±0.271 < 0.0001
150 109.983±0.139 109.927±0.136 109.973±0.195 109.950±0.169 0.3836
200 146.076±0.413 146.262±0.360 146.218±0.438 146.405±0.253 0.3829
250 183.456±0.716 183.624±0.806 183.329±0.427 183.346±0.545 0.6305
300 216.599±0.504 216.122±0.617 216.009±0.868 216.263±0.568 0.0524
350 251.822±0.986 252.452±0.888 252.836±1.573 252.415±1.210 0.2176
400 285.510±0.858 286.734±1.367 286.389±1.508 286.129±1.060 0.0355
450 321.627±1.469 321.262±1.375 320.755±1.128 320.943±1.556 0.7394
500 354.690±1.073 354.855±1.325 353.973±0.939 354.461±1.731 0.7959

Table 5.7: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
non-uniform NKq (q=2) random instances with K = 2. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 18.000±0.000 18.000±0.000 18.000±0.000 18.000±0.000 NaN
50 46.000±0.000 46.000±0.000 46.000±0.000 46.000±0.000 NaN

100 91.000±0.000 91.000±0.000 91.000±0.000 91.000±0.000 NaN
150 135.100±0.316 136.000±0.000 136.000±0.000 136.000±0.000 < 0.0001
200 175.600±0.516 176.000±0.000 176.000±0.000 176.000±0.000 0.0336
250 214.600±0.843 216.000±0.000 215.800±0.422 216.000±0.000 0.0002
300 261.900±0.738 262.700±0.483 262.900±0.316 262.800±0.422 0.0170
350 297.900±0.738 299.000±0.667 299.300±0.823 299.000±0.471 0.0057
400 347.300±1.494 348.500±0.707 349.000±0.943 349.100±0.738 0.0276
450 387.300±0.675 389.900±0.738 389.700±0.823 389.800±1.033 0.0001
500 430.600±0.966 432.600±0.699 432.600±0.699 432.600±0.699 0.0002

76

Table 5.8: Evaluations of solutions (maximization) after 100,000 moves by Walsh-LS-HS on
non-uniform NKq (q=2) random instances with K = 4. Mean values and standard deviations
over 10 independent runs are reported. P-values calculated from Wilcoxon rank-sum tests
comparing solutions by exact-Walsh-LS and Walsh-LS-HS(1) are also presented. Statistical
significantly better solutions and the related p-values are marked in bold with Bonferroni
adjusted significance level 0.05

88
= 0.000568.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3) p-value
20 10.000±0.000 10.000±0.000 10.000±0.000 10.000±0.000 NaN
50 24.000±0.000 24.000±0.000 24.000±0.000 24.000±0.000 NaN

100 43.000±0.000 43.000±0.000 43.000±0.000 43.000±0.000 NaN
150 56.900±0.316 57.000±0.000 57.000±0.000 57.000±0.000 0.3681
200 81.300±0.823 82.000±0.000 82.000±0.000 82.000±0.000 0.0146
250 103.000±1.333 105.000±0.000 105.000±0.000 104.900±0.316 < 0.0001
300 116.800±1.033 119.000±0.000 119.000±0.000 119.000±0.000 < 0.0001
350 128.600±1.506 132.700±0.483 133.000±0.000 132.700±0.675 0.0001
400 142.800±0.789 148.100±1.101 148.300±0.949 148.100±0.876 0.0001
450 168.900±3.348 174.200±1.751 175.200±0.919 174.200±1.398 0.0016
500 178.700±2.452 185.900±1.969 183.900±2.378 184.800±1.549 0.0002

77

5.2.2 Runtime

We verify the previous claim that applying surrogate fitness incurs no extra cost of runtime.

The runtime data collected from experiment 11 are presented in table 5.9 to table 5.16. Across

all tested instances, surrogate fitness appears to be applied to Walsh-LS with no additional

cost in runtime. In fact, exact-Walsh-LS with the original fitness takes even more time to

complete 100000 moves than Walsh-LS-HS(r) with r > 0 on most tested cases. This suggests

the performance gain in solution quality can be achieved at little extra runtime cost.

Table 5.9: Overall runtimes in seconds on uniform NK instances with K = 2. The
median runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 2.955±0.015 2.859±0.007 2.707±0.007 2.758±0.014
50 3.040±0.011 2.990±0.015 2.982±0.008 2.937±0.005

100 3.342±0.017 3.270±0.026 3.309±0.014 3.285±0.013
150 3.436±0.037 3.480±0.027 3.519±0.030 3.481±0.035
200 3.688±0.014 3.683±0.015 3.674±0.020 3.644±0.012
250 3.916±0.023 3.955±0.029 3.960±0.005 3.919±0.025
300 4.154±0.021 4.128±0.015 4.124±0.028 4.148±0.016
350 4.480±0.039 4.514±0.032 4.508±0.021 4.434±0.036
400 4.715±0.035 4.697±0.025 4.696±0.031 4.703±0.034
450 4.910±0.044 5.019±0.041 4.893±0.032 4.880±0.031
500 5.110±0.020 5.062±0.036 5.245±0.074 5.171±0.040

78

Table 5.10: Overall runtimes in seconds on uniform NK instances with K = 4. The
mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 6.514±0.056 6.123±0.031 5.815±0.031 5.611±0.026
50 8.182±0.076 8.092±0.062 7.798±0.091 7.726±0.053

100 8.887±0.099 9.075±0.270 9.066±0.107 8.754±0.133
150 9.264±0.228 9.186±0.092 9.160±0.113 9.071±0.169
200 9.612±0.188 10.004±0.270 9.855±0.229 9.680±0.163
250 10.374±0.232 10.457±0.341 10.524±0.200 10.448±0.228
300 11.302±0.206 11.605±0.269 11.471±0.318 11.738±0.427
350 13.185±0.348 12.911±0.270 13.061±0.341 12.862±0.187
400 14.158±0.414 14.036±0.253 14.107±0.273 14.122±0.355
450 15.129±0.441 14.849±0.221 14.970±0.304 15.084±0.408
500 15.819±0.344 15.514±0.172 15.678±0.250 15.547±0.164

Table 5.11: Overall runtimes in seconds on uniform NKq (q=2) instances with K = 2. The
mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 3.597±0.018 2.797±0.018 2.816±0.007 2.723±0.010
50 3.317±0.011 2.660±0.012 2.664±0.015 2.634±0.008

100 3.328±0.022 2.771±0.012 2.700±0.008 2.693±0.022
150 3.649±0.021 3.049±0.032 3.015±0.034 3.056±0.028
200 3.935±0.013 3.301±0.006 3.259±0.009 3.238±0.007
250 4.127±0.013 3.484±0.009 3.465±0.009 3.465±0.006
300 4.122±0.026 3.656±0.011 3.679±0.011 3.639±0.009
350 4.492±0.020 3.928±0.012 3.959±0.013 3.949±0.011
400 4.648±0.017 4.137±0.014 4.116±0.015 4.132±0.013
450 4.971±0.007 4.392±0.014 4.368±0.014 4.443±0.009
500 5.148±0.015 4.632±0.020 4.583±0.079 4.575±0.084

79

Table 5.12: Overall runtimes in seconds on uniform NKq (q=2) instances with K = 4. The
mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 6.009±0.068 4.974±0.024 4.712±0.023 4.496±0.026
50 7.953±0.051 6.508±0.038 6.197±0.075 6.448±0.036

100 8.911±0.078 7.274±0.044 6.995±0.050 6.905±0.064
150 9.228±0.182 7.103±0.060 6.956±0.025 6.837±0.102
200 9.514±0.123 7.680±0.072 7.505±0.068 7.370±0.049
250 9.951±0.109 7.969±0.164 7.604±0.134 7.536±0.086
300 10.473±0.117 7.974±0.100 8.100±0.076 7.942±0.178
350 10.908±0.163 8.529±0.099 8.468±0.235 8.449±0.137
400 11.954±0.128 9.065±0.224 8.884±0.132 8.886±0.136
450 12.541±0.309 9.883±0.248 9.237±0.176 9.268±0.134
500 13.095±0.260 10.380±0.294 10.109±0.263 10.144±0.297

Table 5.13: Overall runtimes in seconds on non-uniform NK instances with K = 2. The
mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 2.674±0.007 2.654±0.007 2.649±0.010 2.531±0.018
50 2.690±0.007 2.641±0.009 2.649±0.012 2.620±0.015

100 2.870±0.012 2.886±0.015 2.838±0.017 2.899±0.013
150 3.132±0.028 3.150±0.034 3.168±0.026 3.167±0.033
200 3.373±0.006 3.373±0.009 3.396±0.012 3.377±0.012
250 3.561±0.011 3.568±0.016 3.532±0.004 3.584±0.011
300 3.809±0.013 3.780±0.012 3.811±0.010 3.829±0.013
350 4.202±0.019 4.277±0.009 4.164±0.018 4.219±0.035
400 4.428±0.026 4.417±0.035 4.422±0.022 4.449±0.026
450 4.621±0.048 4.605±0.037 4.656±0.026 4.637±0.034
500 4.788±0.034 4.853±0.019 4.877±0.081 4.850±0.015

80

Table 5.14: Overall runtimes in seconds on non-uniform NK instances with K = 4. The
mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are the
corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 4.804±0.039 4.748±0.025 4.408±0.025 4.180±0.017
50 4.951±0.038 4.851±0.062 4.923±0.040 4.839±0.020

100 5.366±0.039 5.309±0.022 5.203±0.112 5.287±0.105
150 5.579±0.167 5.545±0.156 5.557±0.147 5.612±0.095
200 5.732±0.134 5.764±0.078 5.711±0.068 5.750±0.100
250 5.904±0.056 6.241±0.092 6.159±0.160 6.097±0.146
300 6.430±0.139 6.655±0.211 6.592±0.075 6.968±0.091
350 7.139±0.092 7.212±0.155 7.445±0.131 7.251±0.078
400 7.854±0.061 8.247±0.131 7.890±0.105 8.081±0.172
450 8.425±0.145 8.370±0.112 8.459±0.099 8.488±0.099
500 9.344±0.181 9.306±0.188 9.325±0.225 9.350±0.199

Table 5.15: Overall runtimes in seconds on non-uniform NKq (q=2) instances with K = 2.
The mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are
the corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 2.755±0.017 2.198±0.013 2.278±0.013 2.228±0.018
50 3.032±0.021 2.471±0.019 2.471±0.021 2.501±0.017

100 3.252±0.007 2.616±0.013 2.630±0.007 2.661±0.010
150 3.314±0.010 2.856±0.038 2.824±0.032 2.849±0.010
200 3.510±0.015 3.046±0.009 3.035±0.009 3.041±0.006
250 3.813±0.012 3.336±0.015 3.236±0.006 3.230±0.009
300 3.955±0.021 3.599±0.006 3.571±0.007 3.521±0.016
350 4.165±0.014 3.749±0.010 3.704±0.011 3.716±0.008
400 4.463±0.012 4.152±0.012 4.123±0.015 4.060±0.009
450 4.567±0.016 4.314±0.010 4.317±0.016 4.264±0.013
500 4.675±0.014 4.533±0.030 4.525±0.021 4.532±0.016

81

Table 5.16: Overall runtimes in seconds on non-uniform NKq (q=2) instances with K = 4.
The mean runtimes over 10 runs are presented, and the numbers after the “±” symbol are
the corresponding standard deviations.

n exact-Walsh-LS Walsh-LS-HS(1) Walsh-LS-HS(2) Walsh-LS-HS(3)

20 4.536±0.022 4.100±0.019 3.898±0.025 3.816±0.023
50 5.518±0.094 4.632±0.039 4.105±0.023 4.083±0.026

100 6.267±0.204 4.808±0.049 4.537±0.033 4.512±0.035
150 7.535±0.222 5.243±0.031 4.961±0.039 4.909±0.044
200 7.358±0.191 5.391±0.098 4.989±0.069 4.985±0.025
250 7.987±0.160 5.560±0.069 5.416±0.036 5.347±0.042
300 8.723±0.157 6.006±0.071 5.648±0.117 5.492±0.051
350 9.104±0.255 6.411±0.120 6.155±0.056 6.022±0.123
400 9.769±0.231 6.632±0.067 6.495±0.121 6.502±0.089
450 10.362±0.275 6.940±0.100 6.682±0.147 6.712±0.098
500 11.023±0.252 7.810±0.143 7.350±0.143 7.361±0.141

82

5.2.3 Why Can Surrogate Fitness Help Search?

Previous empirical studies suggest that applying surrogate fitness can help Walsh-LS

discover better solutions on NKq-landscapes other than NK-landscapes. The key factor that

distinguishes them is that NKq-landscapes are neutral landscapes, where equal moves occur a

lot and there is no gradient to follow. In such cases, Walsh-LS issues a restart. We conjecture

that surrogate fitness reflects the fitness of candidate solutions that are several moves away,

and the number of equal moves is greatly reduced, which leads to less restarts given the same

number of moves.

We report the number of restarts in figure 5.1. For neutral landscapes including uniform

and non-uniform NKq-landscapes, increasing the radius from 0 to 1 greatly reduces the

number of restarts. Further increase of radius from 1 does not seem to further reduce the

number of restarts. Complete restarts void previous efforts on going deep in the search

space and searching on promising regions. Too many restarts prevents exact-Walsh-LS from

focusing on promising regions, which results in inferior solutions. This partially explains why

Walsh-LS-HS(1) outperforms exact-Walsh-LS on uniform and non-uniform NKq-landscapes.

Meanwhile, we observe that varying the radius does not appear to affect the number

of restarts on rugged landscapes including uniform and non-uniform NK-landscapes. It

conforms with the fact that using the surrogate fitness does not impact the performance of

Walsh-LS-HS(r) on uniform and non-uniform NK-landscapes.

We only report the number of restarts on instances with n = {300, 500} and K = {2, 4}.

Nonetheless, we find the reported trends hold consistently across all tested instances in

experiment 11.

83

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

80
0

90
0

11
00

13
00

15
00

N300−K2

radius

N
um

be
r

of
 R

es
ta

rt
s

● NK
NKQ
NonNK
NonNKQ

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

80
0

10
00

14
00

18
00

N300−K4

radius

N
um

be
r

of
 R

es
ta

rt
s

● NK
NKQ
NonNK
NonNKQ

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

50
0

60
0

70
0

80
0

90
0

N500−K2

radius

N
um

be
r

of
 R

es
ta

rt
s

● NK
NKQ
NonNK
NonNKQ

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

50
0

60
0

70
0

80
0

90
0

N500−K2

radius

N
um

be
r

of
 R

es
ta

rt
s

● NK
NKQ
NonNK
NonNKQ

Figure 5.1: The number of restarts issued by Walsh-LS-HS(r) (r = {0, 1, 2, 3}) during
100000 moves.

84

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Stochastic Local Search (SLS) is a class of simple yet effective algorithms in solving

NP-Hard problems. The solution quality of SLS relies heavily on the number of iterations

allowed for execution. Our goal is to utilize Walsh Analysis to improve both efficiency and

effectiveness of SLS. Specifically, we algorithmically accelerate SLS without affecting the

solution quality as described in chapter 3, and statistically significantly improve solution

quality of SLS as described in chapter 5 with no extra cost in runtime.

Best-Improvement Local Search (BILS) is a common form of SLS, which always takes

the move yielding the highest improvement in the objective function. Conventional BILS

typically requires checking all n neighbors to determine which move to take.

With Walsh analysis, we propose a general approach, “Walsh-LS”, that can determine

which neighbors need to be examined. Given the objective function is epistatically bounded by

a constant k, the number of neighbors that need to be checked is constant regardless of number

of variables. We achieve an impressive speedup of runtime (up to 449×) versus a conventional

implementation. Even though the number of neighbors that need to checked is constant, a

full scan over the list of improving moves is required to determine the best improving move.

In the worse case, the length of this list can be O(n). To overcome this obstacle, Walsh-LS

adopts approximation in selecting best improving moves, which leads to O(1) complexity

per move on average. To match the solution to the conventional implementation, we use

Walsh-LS without approximation (denoted as exact-Walsh-LS) in empirical studies.

We also explore two other ways to achieve O(1) complexity per move other than adopting

approximation in selecting the best improving move: 1) using soft restarts (random walks)

instead of random restarts upon hitting a local optimum; 2) using First-Improvement Local

85

Search (FILS) instead of BILS. We found that 1) exact-Walsh-LS with soft restarts indeed

achieves O(1) complexity per move. With carefully selected walk length, it can outperform

the one using random restarts; 2) exact-Walsh-LS with FILS also achieves O(1) complexity

per move. However, it generally finds worse solution compared with BILS.

Finally, we attempt to improve the solution quality of exact-Walsh-LS. We conjecture

that the information from candidate solutions that are several moves away can help search to

determine where to focus when there is little gradient information in distance one neighbors

on neutral landscapes. We utilize Walsh analysis to compute the mean values over Hamming

regions of arbitrary radius and use these mean values as surrogate fitnesses to guide exact-

Walsh-LS. This is achieved with no extra cost in runtime compared to the original exact-Walsh-

LS. We empirically show that exact-Walsh-LS with surrogate fitness statistically significantly

outperforms the original exact-Walsh-LS on neutral landscapes like NKq-landscapes, while it

finds solutions of similar quality on rugged landscapes like NK-landscapes.

6.2 Future Work

Even though we have improved SLS in terms of both efficiency and effectiveness using

Walsh analysis, there are still many ways to further explore along this direction.

First, while our proofs on runtime complexity should generalize to any problem that

has a k-bounded pseudo-Boolean function as the objective function, the conclusion drawn

from empirical studies on solution quality may not be generalized to other problem domains

with k-bounded pseudo-Boolean function as objective function. Particularly, it would be

interesting to examine if the improvement achieved by using surrogate fitness also holds for

other neutral landscapes such as those in the Satisfiability problem. In addition, in many

SAT solvers such as GSAT [SLM92] and WalkSAT [SKC94], simply the best move, regardless

whether it is an improving one or not, is taken. Walsh-LS can also be extended to take such

best moves.

Second, the quality of solutions returned by walk-Walsh-LS depends heavily on the setting

of walk length λ. We also show the optimal setting of λ is problem-specific. It is worth

86

exploring some self-tuning mechanism on the setting of λ. Tabu mechanism [GL97] can also

be applied to prevent local search from falling back to the same local optimum.

Third, we have theoretically show both Walsh-LS-HS(r) and Walsh-LS-BS(r) with surrogate

fitness (r > 0) can be executed as fast as exact-Walsh-LS with the original fitness. Empirical

studies show that Walsh-LS-HS(r) can outperform exact-Walsh-LS on NKq-landscapes. It is

unclear how Walsh-LS-BS(r) compares to Walsh-LS-HS(r) in terms of solution quality.

Lastly, we have extensively employed Walsh analysis to examine the runtime complexity

per move of SLS. On solution quality of SLS, however, we resort to empirical studies. It would

be even more interesting if Walsh analysis could be utilized to predict or estimate the solution

quality of SLS. In that case, practitioners could have some idea about the performance of

SLS before it is actually run.

87

References

[ABJ13] Marijn Heule Adrian Balint, Anton Belov and Matti J arvisalo. The International
SAT Competitions Webpage. http://www.satcompetition.org/, 2013. (10)

[Bet81] Albert Donally Bethke. Genetic Algorithms as Function Optimizers. Ph.D.
Dissertation, University of Michigan, 1981. (3)

[BF98] Brian Borchers and Judith Furman. A Two-Phase Exact Algorithm for MAX-
SAT and Weighted MAX-SAT Problems. Journal of Combinatorial Optimization,
2:299–306, 1998. 10.1023/A:1009725216438. (10)

[BH02] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete
Applied Mathematics, 123(1-3):155 – 225, 2002. (1, 6)

[BM67] E. O. Brigham and R. E. Morrow. The fast fourier transform. Spectrum, IEEE,
4(12):63 –70, dec. 1967. (9)

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308,
September 2003. (1)

[CA11] Francisco Chicano and Enrique Alba. Exact computation of the expectation
curves of the bit-flip mutation using landscapes theory. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11,
pages 2027–2034, New York, NY, USA, 2011. ACM. (5)

[CA12] Francisco Chicano and Enrique Alba. Exact computation of the fitness-distance
correlation for pseudoboolean functions with one global optimum. In Jin-Kao Hao
and Martin Middendorf, editors, Evolutionary Computation in Combinatorial
Optimization, volume 7245 of Lecture Notes in Computer Science, pages 111–123.
Springer Berlin / Heidelberg, 2012. (5)

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard
Problems Are. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, IJCAI-91, Sydney, Australia, pages 331–337, 1991. (7)

[CWA12] Francisco Chicano, Darrell Whitley, and Enrique Alba. Exact computation of
the expectation curves for uniform crossover. In Proceedings of the Fourteenth
International Conference on Genetic and Evolutionary Computation Conference,
GECCO ’12, pages 1301–1308, New York, NY, USA, 2012. ACM. (5)

[Dun61] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
Statistical Association, 56:52–64, 1961. (48, 72)

88

http://www.satcompetition.org/

[FCS97] Jeremy D. Frank, Peter Cheeseman, and John Stutz. When gravity fails: Local
search topology. Journal of Artificial Intelligence Research, 7:249–281, 1997.
(66)

[For09] Lance Fortnow. The status of the P versus NP problem. Communications of the
ACM, 52(9):78–86, September 2009. (7)

[Gea01] Nicholas Geard. An exploration of NK landscapes with neutrality. PhD thesis,
The University of Queensland, 2001. (66)

[GL97] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997. (8, 87)

[Gol89a] David E. Goldberg. Genetic algorithms and Walsh functions: Part I, a gentle
introduction. Complex Systems, 3(2):129–152, 1989. (2)

[Gol89b] David E. Goldberg. Genetic Algorithms and Walsh Functions: Part II, Deception
and Its Analysis. Complex Systems, 3:153–171, 1989. (2)

[Gro92] Lov K. Grover. Local search and the local structure of NP-complete problems.
Operations Research Letters, 12(4):235 – 243, 1992. (4)

[GWH+02] N Geard, J Wiles, J Hallinan, B Tonkes, and B Skellett. A comparison of
neutral landscapes - NK, NKp and NKq. In D B Fogel, M A El-Sharkawi,
X Yao, G Greenwood, H Iba, P Marrow, and M Shackleton, editors, Congress on
Evolutionary Computation (CEC2002), pages 205–210. IEEE Press, 2002. (66)

[Hal27] Philip Hall. The distribution of means for samples of size n drawn from a
population in which the variate takes values between 0 and 1, all such values
being equally probable. Biometrika, 19(3/4):pp. 240–245, 1927. (40)

[Hec02] Robert B. Heckendorn. Embedded landscapes. Evolutionary Computation,
10(4):345–369, 2002. (4)

[Hel00] Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106 – 130,
2000. (8)

[HK96] Steven Hampson and Dennis Kibler. Large plateaus and plateau search in boolean
satisfiability problems: When to give up searching and start again. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 26:437–455,
1996. (66)

[Hol92] John H. Holland. Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA, 1992. (3)

[HRW99] Robert B. Heckendorn, Soraya B. Rana, and L. Darrell Whitley. Polynomial
Time Summary Statistics for a Generalization of MAXSAT. In GECCO, pages
281–288, 1999. (4)

89

[HS04] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations &
Application. Morgan Kaufmann, 1 edition, September 2004. (1, 8, 11, 66)

[JF95] Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. In Larry J. Eshelman, editor, In-
ternational Conferecen on Genetic Algorithm (ICGA), pages 184–192. Morgan
Kaufmann, 1995. (5)

[KL87] Stuart Kauffman and Simon Levin. Towards a general theory of adaptive walks
on rugged landscapes. Journal of Theoretical Biology, 128(1):11–45, 1987. (7)

[Kra29] Mikhail Kravchuk. Sur une généralisation des polynomes d’Hermite. Comptes
rendus de l’Académie des sciences, 189(17):620–622, 1929. (68)

[KS11] Fredrik Kahl and Petter Strandmark. Generalized roof duality for pseudo-boolean
optimization. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc
J. Van Gool, editors, International Conference on Computer Vision (ICCV),
pages 255–262. IEEE, 2011. (1)

[KW89] Stuart A. Kauffman and Edward D. Weinberger. The NK model of rugged fitness
landscapes and its application to maturation of the immune response. Journal
of Theoretical Biology, 141(2):211 – 245, 1989. (1)

[LH05] Chu Min Li and Wen Qi Huang. Diversification and determinism in local search
for satisfiability. In Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing, SAT’05, pages 158–172, Berlin, Heidelberg,
2005. Springer-Verlag. (15)

[LMS03] Helena Loureno̧, Olivier Martin, and Thomas Stützle. Iterated local search.
In Fred Glover and Gary Kochenberger, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management Science,
pages 320–353. Springer New York, 2003. 10.1007/0-306-48056-5 11. (xiv, 9)

[Pel10] Martin Pelikan. NK landscapes, problem difficulty, and hybrid evolutionary
algorithms. In GECCO ’10: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, pages 665–672, New York, NY, USA,
2010. ACM. (3)

[PSG+09] Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark
Hauschild. Performance of evolutionary algorithms on NK landscapes with
nearest neighbor interactions and tunable overlap. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’09,
pages 851–858, New York, NY, USA, 2009. ACM. (3)

[RHW98] Soraya Rana, Robert Heckendorn, and Darrell Whitley. A Tractable Walsh
Analysis of SAT and its Implications for Genetic Algorithms. In Jack Mostow
and Chuck Rich, editors, Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelligence, pages
392–397. American Association for Artificial Intelligence, 1998. (3, 10, 19)

90

[SHS03] Kevin Smyth, Holger H. Hoos, and Thomas Stützle. Iterated Robust Tabu
Search for MAX-SAT. In Yang Xiang and Brahim Chaib-draa, editors, Canadian
Conference on AI, volume 2671 of Lecture Notes in Computer Science, pages
129–144. Springer, 2003. (51)

[SHW09] Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley. A theoretical analysis
of the k-satisfiability search space. In Proceedings of the Second International
Workshop on Engineering Stochastic Local Search Algorithms. Designing, Im-
plementing and Analyzing Effective Heuristics, SLS ’09, pages 46–60, Berlin,
Heidelberg, 2009. Springer-Verlag. (4)

[SHW10] Andrew M. Sutton, Adele E. Howe, and L. Darrell Whitley. Directed Plateau
Search for MAX-k-SAT. In Proceedings of the Third Annual Symposium on
Combinatorial Search (SOCS), 2010. (2, 66)

[SK75] David Sherrington and Scott Kirkpatrick. Solvable Model of a Spin-Glass. Phys.
Rev. Lett., 35:1792–1796, Dec 1975. (1)

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving
local search. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (vol. 1), AAAI ’94, pages 337–343, Menlo Park, CA, USA, 1994.
American Association for Artificial Intelligence. (8, 86)

[SLM92] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence, AAAI’92, pages 440–446. AAAI Press, 1992. (15, 86)

[Sta95] Peter Stadler. Towards a theory of landscapes. In Ramn Lpez-Pea, Henri Wael-
broeck, Riccardo Capovilla, Ricardo Garca-Pelayo, and Federico Zertuche, edi-
tors, Complex Systems and Binary Networks, volume 461-461 of Lecture Notes in
Physics, pages 78–163. Springer Berlin / Heidelberg, 1995. 10.1007/BFb0103571.
(4)

[Sta96] Peter F. Stadler. Landscapes and their correlation functions. Journal of Mathe-
matical Chemistry, 20:1–45, 1996. 10.1007/BF01165154. (4)

[Sut11] Andrew M. Sutton. An analysis of combinatorial search spaces for a class of
NP-hard problems. Ph.D. Dissertation, Colorado State University, Fort Collins,
CO, USA, 2011. (1, 7)

[SWH09] Andrew M. Sutton, L. Darrell Whitley, and Adele E. Howe. A polynomial
time computation of the exact correlation structure of k-satisfiability landscapes.
In Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’09, pages 365–372, New York, NY, USA, 2009. ACM.
(4)

[SWH11] Andrew M. Sutton, Darrell Whitley, and Adele E. Howe. Approximating the
distribution of fitness over hamming regions. In Hans-Georg Beyer and William B.

91

Langdon, editors, Foundations of Genetic Algorithms (FOGA), pages 93–104.
ACM, 2011. (67)

[SWH12] Andrew M. Sutton, L. Darrell Whitley, and Adele E. Howe. Computing the
moments of k-bounded pseudo-Boolean functions over Hamming spheres of
arbitrary radius in polynomial time. Theoretical Computer Science, 425(0):58 –
74, 2012. (4, 67, 68, 70)

[TH04] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An Implementation and
Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In
Holger H. Hoos and David G. Mitchell, editors, SAT (Selected Papers, volume
3542 of Lecture Notes in Computer Science, pages 306–320. Springer, 2004. (26)

[Wal23] J. L. Walsh. A closed set of normal orthogonal functions. American Journal of
Mathematics, 45(1):pp. 5–24, 1923. (9)

[WC12] Darrell Whitley and Wenxiang Chen. Constant time steepest descent local
search with lookahead for NK-landscapes and MAX-kSAT. In Proceedings of the
Fourteenth International Conference on Genetic And Evolutionary Computation
Conference, GECCO ’12, pages 1357–1364, New York, NY, USA, 2012. ACM.
(2, 11, 15, 16, 17, 18, 26, 70)

[WCH12] Darrell Whitley, Wenxiang Chen, and Adele Howe. An Empirical Evaluation of
O(1) Steepest Descent for NK-Landscapes. In Carlos Coello, Vincenzo Cutello,
Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors,
Parallel Problem Solving from Nature - PPSN XII, volume 7491 of Lecture Notes
in Computer Science, pages 92–101. Springer Berlin / Heidelberg, 2012. (2)

[Wei96] Edward D. Weinberger. NP Completeness of Kauffman’s N-K Model, A Tuneable
Rugged Fitness Landscape. Working Papers 96-02-003, Santa Fe Institute,
February 1996. (3)

[Whi11] Darrell Whitley. Defying Gravity: constant time steepest ascent for MAX-kSAT.
Technical report, Colorado State University, December 2011. (11)

[Zha04] Weixiong Zhang. Configuration landscape analysis and backbone guided local
search: part i: Satisfiability and maximum satisfiability. Artificial Intelligence,
158:1–26, September 2004. (1)

[ZHS08] Shude Zhou, Robert Heckendorn, and Zengqi Sun. Detecting the epistatic
structure of generalized embedded landscape. Genetic Programming and Evolvable
Machines, 9:125–155, 2008. 10.1007/s10710-007-9045-7. (4)

92

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	Introduction
	Local Search using Walsh Analysis
	Related Work

	Background
	Pseudo-Boolean Functions
	NK-landscapes
	Stochastic Local Search for NP-Hard Problems
	Walsh Analysis for Pseudo-Boolean Functions

	Average Constant Time Approximate Best-Improvement Local Search
	BILS Implementation
	An Improved Implementation of BILS

	Walsh-LS: Best-Improvement Local Search based on Walsh Analysis
	Compute Difference between Adjacent Candidate Solutions in Standard Fitness Space
	Update Data Structures after a Single Bit Flip

	Runtime Complexity Analysis for Walsh-LS
	Initialization Costs
	The O(n) Worst Case Analysis
	The O(1) Average Case Analysis
	Approximation in Move Selection

	Empirical Studies
	Can exact-Walsh-LS run faster than PE-BILS?
	Will ``expensive'' bits break the efficiency of exact-Walsh-LS?

	Parameterization of Constant Time Best-Improvement Local Search
	Random Restart vs. Random Walk
	Reducing Impr.len from O(n) to O(1)
	Runtime
	Solution Quality

	Best-Improvement vs. First-Improvement
	Runtime
	Solution Quality

	Walsh-LS using Surrogate Function of Mean Value over Hamming Region
	Mean over Hamming Regions as Surrogate Fitness
	Hamming Regions
	Mean Values over Hamming Spheres
	Walsh-LS with Surrogate Fitness
	Update Proxy after a Single Bit Flip
	Mean Values over Hamming Balls as Surrogate Fitness

	Empirical Studies
	Solution Quality
	Runtime
	Why Can Surrogate Fitness Help Search?

	Conclusion and Future Work
	Conclusion
	Future Work

	References

