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ABSTRACT 

 
 

THE EFFECTS OF UNDOCUMENTED IMMIGRATION ON THE EMPLOYMENT 

OPPORTUNITIES OF LOW SKILL NATIVES IN THE UNITED STATES 

 The economic effects of immigration have been well studied, but the majority of this 

research has not attempted to isolate the effects of undocumented immigration. Isolating this 

effect is a difficult task because dearth amounts of data exist for these individuals. This paper 

provides a substantial contribution to the economic impact of immigration for two reasons. First, 

it emulates a methodology adopted by notable immigrant demographers to generate annual state 

level estimates of the undocumented population between 1994 and 2010 in the United States. 

These estimates alone are very important to this topic because no other entity has attempted to 

accomplish this task. Secondly, this paper incorporates these estimates into a fixed effect 

dynamic model to capture the economic impact of undocumented immigrants on low skill native 

labor force participation rates (LFPR) and unemployment rates across the United States between 

1994 and 2009. Overall, undocumented immigrants have a menial impact on the native low skill 

LFPR and do not affect low skill unemployment rates. Additionally, the methods used in this 

paper allow us to isolate the effects of documented immigrants on the same native low skill 

employment indicators. The results suggest that documented immigrants do not have a 

statistically significant effect to either low skill employment indicator, which is also an important 

conclusion.  
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SECTION 1: INTRODUCTION 

 The undocumented immigrant population is increasing in the United States (US), which 

is fostering more controversy over an already polarizing debate between policymakers and US 

citizens. In reference to Appendices 1, 2, and 3, it is evident that the undocumented population is 

not only increasing, but is also becoming more widespread in the last 20 years. In the early 

1990s, approximately 85% of the undocumented population resided in the Big Six states, which 

included California, New York, New Jersey, Florida, Illinois, and Texas (Borjas et al 1996; 

Martin 1994). Although these states remain prominent destinations for undocumented 

immigrants, many states originally harboring low levels of these individuals are now catching up 

to the Big Six states—especially Alabama, North Carolina, Georgia, and Arizona. As 

undocumented immigrants become more widespread, so too does the debate regarding their 

economic effects. There is a growing concern that undocumented workers displace native 

citizens in the workforce and put downward pressure on native wages. Although much of the 

economic hardship associated with native workers may be attributed to the Great Recession, 

many states have responded to this growing negative sentiment by passing more stringent and 

controversial immigration laws. These states include Arizona, Alabama, Georgia, Indiana, Utah 

and South Carolina (Bowman 2010; Dade 2011; Estes 2011; Summers 2011)1.  

 Undocumented immigration may have a significantly negative impact on native citizens, 

but there is little evidence to support either side of the argument. One recent study by Hotchkiss 

et al (2012) used undocumented immigrant data to measure its effects on native wages in 

Georgia. They have concluded that native workers employed by firms hiring undocumented 

workers earn approximately 0.15% less than natives employed by firms only hiring documented 
                                                
1 From a thesis submitted to the Academeic Faculty of Colorado State University in partial fulfillment of the 
requirements for the degree of Masters. 
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workers. These results are menial at best and do not implicate any significant impact on native 

workers.  

 Very little research is dedicated to this topic because it is difficult to accurately estimate 

the undocumented population. This paper attempts to resolve this problem because it devises a 

methodology similar to other notable immigrant demographers to estimate the annual 

undocumented population at the state level between 1994 and 2010 (refer to Appendix 1). No 

other demographer to date has accomplished this task, which alone is a substantial contribution 

to this field of research. This estimation process is subject to a great deal of error if done 

improperly, which is why the undocumented estimates from this paper are compared to similar 

estimates produced by Jeffrey Passel of the PEW Hispanic Center. Passel is one of the leading 

authorities on estimating the undocumented immigrant population in the United States and his 

estimates serve as a benchmark to any party attempting to estimate the undocumented 

population. Passel has estimated the undocumented population at the state level for the following 

years: 1990, 2000, 2005, 2007, 2008, and 2010. As illustrated in Appendix 4, the estimates in 

this paper are very similar to the available years provided by Passel, which adds a great deal of 

credibility to the estimation process used in this paper.  

 In addition to its contribution to immigrant demography, this paper incorporates 

undocumented population estimates into a dynamic fixed effect model to capture the relationship 

between undocumented immigrant concentrations and native low skill labor force participation 

rates (LFPR) and unemployment rates2. No other paper has attempted to measure these effects. 

The native LFPR is the primary economic indicator of interest because there is not a great deal of 

evidence suggesting that immigrants in general have an adverse effect on native wages and 

                                                
2 Low skill individuals are people who have not graduated high school. This group is the primary target population 
because they appear to be the only group of natives that are adversely affected by immigration (Card 2005, Borjas 
2003, 2006, Johannsson and Weiler 2004). 
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unemployment rates (Card 1990, 2001, 2005). Native wages and unemployment rates may be 

unresponsive to immigrant inflows because the native LFPR may absorb this shock. Natives may 

respond to immigrant inflows by either migrating to another area or dropping out of the labor 

force while remaining in the same area. Either of these effects decreases the native LFPR, but 

has a countervailing effect on the labor supply from immigrant inflows—thus preserving native 

unemployment rates and wage levels.  

 In addition to placing emphasis on the native low skill LFPR, the dynamic model used in 

this paper will capture the effects of undocumented immigration at the state level, which may be 

relatively crude (Card 2005). Normally, any comparable labor market research would analyze 

these effects at the MSA level because it may represent local labor markets more accurately than 

state level models. However, MSA level analysis is currently impossible for this topic because 

the data needed to estimate the undocumented population is only available at the state level. To 

resolve this shortcoming, this paper uses a MSA level model created by Johannsson and Weiler 

(2004) as a guideline to create a sufficient state level model that captures the effects of 

undocumented immigration. Johannsson and Weiler’s model focuses on the effect the total 

foreign born (TFB) population has on native low skill labor force participation rates and 

unemployment rates. The TFB population includes the entire stock of both documented and 

undocumented immigrants. This statistic is too crude of a measure to isolate the effects of 

undocumented immigrants, but the TFB results from Johannsson and Weiler (2004) can be used 

as a benchmark comparison to the TFB results from state level model in this paper. If the TFB 

estimates from both models are comparable, then the state level model gains credibility because 

it captures similar effects to immigration as the MSA level model. After emulating a very similar 

process to Johannsson and Weiler (2004), the state level results between the TFB population and 
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the native LFPR are similar to the MSA results from Johannsson and Weiler (2004). The results 

from this paper suggest that a 10% increase in the TFB population decreases the native low skill 

LFPR by 0.44% while the results from Johannsson and Weiler (2004) suggest that the same 

relationship decreases the low skill native LFPR by 0.76%. Both models also find that the 

relationship between the TFB population and native low skill unemployment rates is 

insignificant. These similarities provide evidence that this state level model is both accurate and 

credible enough to decipher the economic impacts of immigration. Moreover, although many 

researchers deem state models to be too broad of a geographic space, others are in favor of state 

level models to analyze this topic. Borjas (2003, 2006) provide convincing evidence that models 

at both the state and national level capture greater effects to native citizens than at the MSA 

level3. Borjas’ conclusions in conjunction with similar estimates purported by Johannsson and 

Weiler (2004) provide enough evidence to support the use of a state level model in this paper.  

 Identifying the effects of the TFB population is not only used to add legitimacy to a state 

level model, but is also used to isolate the effects of undocumented immigration. The results 

from the TFB population tell us the collective effect both documented and undocumented 

immigrants have on low skill natives. An assumption underpinning this approach is that a single 

labor market exists for both documented and undocumented immigrants. If both groups operate 

in the same labor market, then they each compete relatively equally and have similar degrees of 

substitutionability with low skill natives. Although the results produced from this approach are 

useful, they are limited because these assumptions are not realistic. In reality, each group affects 

low skill natives differently due to the legal restrictions and language barriers undocumented 

immigrants face when seeking employment. To resolve these issues, a single market approach 

should be accompanied with a dual market approach because it assumes that documented and 
                                                
3 The arguments made by Borjas (2006) will be discusses in more detail in Section 2. 
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undocumented immigrants operate in separate labor markets and have different degrees of 

substitutionability with low skill natives. A dual market approach may be more robust because it 

incorporates each group of immigrants separately into identical models to isolate the effect each 

group has on low skill natives.  

 To employ a dual market approach, several steps are needed. The first step involves 

subtracting the undocumented population estimates from the TFB estimates. The residual values 

represent the documented immigrant estimates at the state level. These documented immigrant 

estimates are then incorporated into the same model used to measure the effects of the TFB 

population. The difference between the effects of the TFB population and the documented 

immigrant population in both their significance and magnitude provide some information on the 

economic impact of undocumented immigration. To complete the story, estimates representing 

only the undocumented population must be incorporated into the same model that analyzes the 

effects of the documented population. Comparing the isolated effects of both types of immigrants 

tell us whether documented or undocumented immigration has a greater effect on low skill 

natives. The group exhibiting the greater effect also suggests that this same group is relatively 

more substitutable with low skill natives than the other group. It also tells us whether any 

significant effect captured by the TFB population is primarily attributed to either the documented 

or undocumented population.  

 To ensure that the effects of both documented and undocumented immigration are as 

consistent as possible, two data sets representing the undocumented population are used to 

estimate annual levels of each immigrant group. The first data set was created using the 

methodologies from this paper. The second data set corresponds to the estimates generated by 

Passel (2009, 2010). Passel does not provide annual data between 1994 and 2010, but this paper 
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uses linear imputations to provide estimates for the years he did not address. Both data sets 

produce similar results when isolating the effects of documented immigrants, which is 

encouraging.   

 Overall, undocumented immigration appears to have a minor impact on the low skill 

native LFPR and does not affect unemployment rates.  Again, the estimates from the single 

market approach suggest that a 10% increase in the TFB population decreases the native low 

skill LFPR by 0.44%. This relationship alone is highly inelastic and does not favor any 

significant effect on native low skill employment opportunities. When applying the dual market 

approach, the relationship between immigrant concentrations and the native low skill LFPR 

becomes statistically insignificant when undocumented immigrants are omitted from the TFB 

population. The effects of this omission imply that undocumented immigrants play a critical role 

in the baseline relationship between the TFB population and the native low skill LFPR. 

Additionally, these results suggest that documented immigrants alone do not have a significant 

impact on low skill native employment indicators. To complete the story, the isolated effects of 

undocumented immigrants do not have a statistically distinguishable effect on the low skill 

native LFPR. Undocumented immigrants may influence the baseline relationship associated with 

the TFB population, but not enough evidence exists to argue that undocumented immigrants have 

a higher degree of substitutionability with low skill natives and affect them more than 

documented immigrants.     

 Due to the arduous nature of estimating the economic impacts of undocumented 

immigration, this paper is broken down into eight additional sections. Section 2 provides a 

literature review of some of the most prominent research pertaining to immigration. Section 3 

highlights the methods used to estimate the undocumented population at the state level. Section 3 
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will also explain the assumptions that were made to estimate the undocumented population as 

well as the limitations these assumptions create. Section 4 summarizes the dynamic fixed effects 

model that is used to estimate the effects of undocumented immigration on native low skill labor 

force participation rates and unemployment rates. Section 5 explains how the undocumented 

immigrant estimates addressed in Section 3 are incorporated into the model addressed in Section 

4 to isolate the economic impact of undocumented immigration. Section 6 summarizes the data 

sources needed for the models addressed in Section 3 and Section 4. Section 7 summarizes the 

results from the model presented in Section 4. Section 8 provides an alternative hypothesis to 

explain why the results presented in Section 7 are not substantial. Section 9 provides several 

closing remarks and possible methods that may be used to resolve the shortcomings produced in 

this paper once the accuracy of undocumented immigrant population levels improves. 

SECTION 2: LITERATURE REVIEW 
 
 This section summarizes the contributions of previous research as well as how they 

influence the model created in Section 4 of this paper. This section is broken into three sub-

sections. The first subsection provides a comprehensive explanation of the overall approach most 

previous research has adopted to analyze immigration. This method is referred to as Area 

Analysis. The second sub-section highlights an ongoing debate between economists on the 

proper geographic space used to capture the effects of immigration on native employment and 

income. The third sub-section summarizes how the models and approaches used to capture the 

economic impact of immigration have evolved over time.  



 8 

Area Analysis 
 
 To begin, it is important to provide a comprehensive description of one of the most 

conventional methods used by economists to study immigration. This method is referred to as 

Area Analysis. In its simplest form, Area Analysis tries to capture how certain labor market 

mechanisms used to measure the economic welfare of native citizens absorb changes in the local 

labor supply that are propelled by immigrant inflows (Friedberg and Hunt 1995; Borjas et al 

1996). Native wages and unemployment rates have been the primary absorption mechanisms in 

previous research. Native wages and unemployment rates absorb labor supply shocks when they 

decrease and increase respectively in response to immigrant inflows. Most previous research 

using Area Analysis is also reliant on TFB population data, which represents the entire 

immigrant population—both documented and undocumented. TFB population estimates help us 

answer whether immigration in general has an adverse effect on native citizens, but it does not 

isolate the effects of either documented or undocumented immigration.  

Area Analysis is reliant on several caveats to isolate the effects of immigrant inflows. 

One important assumption is that each labor market is “distinct and geographically segmented” 

from other labor markets (Slaughter and Hanson 2001). Geographic segmentation allows us to 

assume that certain labor shocks only affect a certain region and do not permeate to other 

regions. The model presented in Section 4 of this paper also adopts this assumption. Although it 

is considered a caveat, assuming that the labor market effects from immigration are isolated 

between states is less problematic than assuming a similar framework at the MSA level. Borjas 

(2006) presents convincing evidence that the omitted variables obfuscating the impact of 

immigration on natives becomes less severe as the geographic scope expands4. Although this 

                                                
4 Borjas’ evidence will be addressed in greater detail in the next sub-section. 
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paper assumes that effects within each state are isolated, it does not assume that the effects of 

documented immigrants are the same as undocumented immigrants. Within the segmented 

market assumption, this paper will employ both a single and dual labor market approach, as 

discussed in Section 1, to observe the isolated effects of both documented and undocumented 

immigrants.  

Another assumption applied to Area Analysis is that the local ratio of immigrants to 

natives can be used as a proxy to measure changes in the local labor supply. The model presented 

in Section 4 of this paper uses this statistic. Using this proxy may be present a severe 

shortcoming if it is assumed that the entire immigrant stock is a perfect substitute to the entire 

native stock. Research presented by Card (2001, 2005) suggests that the skills of immigrants are 

most likely heterogeneous (Card 2001, 2005). To resolve this issue, the stocks of natives and 

immigrants must be separated into different skill groups to form a specific immigrant to native 

ratio for each skill group. Separating these groups is possible because there is enough data on 

both documented and undocumented immigrants to assign each group to certain skill category. 

When each individual is assigned to the appropriate skill group, it is safer to assume that the 

immigrants and natives within each skill group are perfect substitutes. Assuming perfect 

substitutionability is a caveat, but research done by Borjas (2006) suggests that there is a high 

degree of substitutionability between immigrant and natives within each skill group. 

Furthermore, applying a dual market approach addresses the substitutionability issue addressed 

by Card to an even greater degree because documented and undocumented immigrants will be 

analyzed separately. Overall, there will be three different ratios of immigrants to natives that will 

be analyzed in this paper. The first ratio includes the entire TFB population while the second and 

third ratios only include documented and undocumented immigrants, respectively.   
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Finally, most previous research using Area Analysis focuses the effects of immigration 

on native high school drop outs because this group appears to be the most affected by 

immigration (Borjas 2004, 2005, 2006, Johannsson and Weiler 2004, Card 2005). Low skill 

natives in this paper are individuals that have not completed high school and will also be the 

target population of interest. The four assumptions of Area Analysis addressed above provide a 

framework for isolating the effect of immigrant inflows on the local labor supply and its 

subsequent effects on employment and income levels for low skilled natives (Slaughter and 

Hanson 2001).  

 The majority of previous research using Area Analysis applies the assumptions specified 

above, but the conclusions drawn from each paper do not always coincide. Most of these 

differences are attributed to the geographic space, the type of model used, and the native 

economic indicators used to capture the effects of immigration. The remaining portion of this 

section will summarize the differences in both the theoretical philosophy and the applied 

methodology that have led to different conclusions about immigration. The first half of this 

discussion will summarize an ongoing debate between researchers on the appropriate geographic 

space used to measure the effects of immigration. The second half will elaborate on how the 

models and approaches used to capture the effects of immigration have evolved over time.  

Debate on the Proper Geographic Space Needed to Observe the Effects of Immigration 

 To begin, there is a contentious debate currently taking place on whether MSAs are 

appropriate geographic spaces to isolate the effects of immigrant concentrations on native low 

skill economic welfare. The two economists at the forefront of this debate are David Card of the 

University of California—Berkeley and George J. Borjas of Harvard University. Both of these 

economists have contributed substantial research to the economic effects of immigration, but 
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their conclusions are completely opposite. Card is a proponent of MSA level models and his 

research suggests that the foreign born population either has no effect or a minimal effect on 

native low skill employment and wages (Card 1990, 2001, 2005). Borjas is in favor of using state 

and national level models and has captured a significantly negative effect with the foreign born 

population on the same native low skill economic indicators. The methods and conclusions made 

by Card and Borjas differ because they disagree on the effects of native outmigration that take 

place in response to immigrant inflows. Theoretically, natives may decide to vacate a region if 

they are displaced by an immigrant in the workforce. When natives leave an area, they drop out 

of the local labor market, which decreases the local labor supply. This decrease in the labor 

supply counters the upward pressure on the labor supply resulting from greater immigrant 

inflows. If native outmigration is a legitimate phenomenon, then it makes it difficult to ascertain 

any relationship between immigration and native economic welfare because low skill wages and 

unemployment levels remain relatively unchanged.  

 Borjas (2006) provides evidence to suggest that the effects of native outmigration become 

more apparent the smaller the geographic scope becomes. According to his results, for every 10 

immigrants entering an area, approximately 6.1 natives leave the area at the MSA level. At the 

state level, the same relationship suggests that the entry of 10 immigrants will only cause 2.8 

natives to leave the state. These results are consistent with regional economic theory because the 

transportation costs and opportunity costs of exiting a region become larger the greater the 

geographic region becomes. The effects of outmigration presented by Borjas (2006) also suggest 

that the native labor supply becomes more inelastic for larger geographic regions. A more 

inelastic labor supply will produce greater adverse effects if the labor demands for natives 

decreases when firms substitute out of hiring natives and instead employ immigrants. The effects 
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of immigration on native wages and unemployment rates suggest that the labor supply is, in fact, 

more inelastic at the state and national level than at the MSA level. The results from Borjas 

(2006) show that a 10 percent increase in immigrant concentrations leads to a four percent 

decrease in native low skill earnings at the national level. At the state level, this same 

relationship implies that immigration decreases native low skill earnings by only 1.6 percent. 

Borjas (2006) does not provide an elasticity estimate at the MSA level, but does say that the 

coefficient representing wage responsiveness to immigrant inflows is smaller at the MSA level 

than at the state or national level. This downward trend of wage responsiveness indicates that the 

effects of immigration on native economic welfare become more difficult to discern as the 

geographic scope becomes smaller.  

 Although Borjas presents a convincing argument in support of models covering large 

geographic space, Card (2001, 2005) also provides enough evidence to refute Borjas’ 

conclusions. Card is a proponent of MSA level models because his research suggests that native 

outmigration is not sensitive to immigrant inflows. If natives do not migrate to another area in 

response to immigration, then MSAs are the most accurate geographic spaces to measure the 

labor market outcomes of immigration. MSAs are physically better representations of labor 

markets because they harbor more concentrated economic activity than states and national 

boundaries and are less prone to omitted variable bias. To support this theoretical approach, Card 

(2001, 2005) uses a basic regression that captures the relationship between low skill immigrant 

concentrations and the overall low skill concentration. If immigrants do not displace natives and 

are merely added to the overall stock of low skill workers, then this regression should produce a 

coefficient near one. If immigrants displace natives, then this same relationship should produce a 

zero. The regression results from Card (2001, 2005) show that the coefficient is near one, which 
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implies that immigrants do not displace natives. If immigrants do not affect the migratory 

patterns of natives, then MSA level models are robust. Given that he provided substantial 

evidence in favor of no native outmigration, Card (2005) reports that changes in immigrant 

concentrations do not significantly affect native low skill wages and only affect unemployment 

rates to a minor degree.  

 If immigrant laborers do not displace native laborers and also do not affect native 

employment and income, then some mechanism must be absorbing these inflows. Card (2005) 

uses a Heckscher-Ohlin (HO) model to suggest that regions are partially absorbing these 

immigrant inflows by changing their output mix, which is also a topic that is addressed more 

extensively by Slaughter and Hanson (2001). Card (2005) says that the agriculture and textile 

industries have flocked to regions with greater concentrations of low skill workers. Firm in-

migration into heavily concentrated low skill areas will increase labor demand, which counters 

increases in the labor supply resulting from immigration—thus preserving the low skill wage and 

unemployment rate. Another reason why regions may absorb immigration inflows relates to the 

decisions firms make about technology endowments. Firms may “innovate in a direction that will 

take advantage of more readily available factors,” which suggests that firms will not invest in 

more advanced technology if they anticipate the stock of low skill workers to increase (314).  

 Both Borjas and Card use different approaches to justify their conclusions. The fact that 

both approaches are quite different does not repudiate the others’ methodology. The fact that 

Borjas provides convincing evidence that state level models may be more robust than MSA level 

models adds credibility to the state level model used in this paper to capture undocumented 

immigration. The debate on native outmigration may never be resolved, but the fact that this 
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issue has compelled both sides of the argument to devise more advanced methods to support 

their claims will benefit future research on this topic.  

Evolution of the Models Used to Measure the Effects of Immigration 
 
 This next section summarizes the different models previous research has used to capture 

the effects of immigration.  These models vary because some are static while others are dynamic. 

Some models use a conventional approach by measuring the effects of immigration on native 

low skill wages and unemployment rates while others use take an unorthodox approach to 

explain how immigration is absorbed through alternative mechanisms—such as regional output 

mixes and native labor force participation rates.  This section will initially discuss the use of 

static models and they are prone to endogeneity. We will then digress into the use of dynamic 

models and how they resolve many of the issues related to endogeneity. Finally, this section will 

summarize some of the key alternative approaches that have influenced the model applied in this 

paper.  

 To begin, some of the papers incorporating static models to measure the effects of 

immigrant inflows include Card (1990), Card (1991), Card (2001), Borjas (1994), and Borjas 

(1996). Most of these papers capture either a moderate effect or no effect between immigrant 

inflows and native wages and employment opportunities on a certain target population—usually 

low skill native citizens. Although the results of some of these models imply that immigrant 

inflows decrease native wages and employment opportunities, they are criticized for not 

addressing endogeneity issues that may be distorting their results. These results may be flawed, 

but static models may be useful if they are accompanied with an instrumental variable (IV) or a 

dynamic model. The papers summarized below use static models. 
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Card (1990) analyzed the effects of Mariel Boat Lift, which allowed a massive influx of 

Cuban immigrants to enter the shores of Miami in 1980. Using cross section summary statistics 

and regression analysis to describe the differences in wage growth and unemployment rates over 

time between Miami and other cities with comparable economic growth rates, Card (1990) 

concluded that the influx of Cuban immigrants had a minimal effect on the Miami labor market. 

The only group that was affected was the low skill Cuban immigrant population that resided in 

Miami before the Mariel Boat Lift. Cuban immigrants were the only group in Card’s sample that 

experienced an increase in the wage differential between Cubans residing in Miami and Cubans 

residing in comparable cities. However, the growth in the wage differential did not persist very 

long, which suggests that the effects of the immigrant influx did not last long. Card states that the 

adverse effects from immigrant inflows may have been mitigated by the expansion of several 

prominent low skill industries, which increased labor demand during the same time frame. Such 

an event creates an endogeneity issue with the results from Card (1990).  

Similar to Card (1990), Borjas et al (1996) use decennial data to develop a cross-sectional 

model that measures the effect of immigrant inflows on native wages across MSAs between 

1980 and 1990. Borjas et al (1996) apply a regression controlling for age, education attainment 

and gender to measure how changes in immigrant inflows affect the wages of native citizens 

(247). They apply this cross section regression across a group of MSAs for two different time 

periods: 1980 and 1990. The results from their model imply that immigrant inflows and native 

wages are negatively related in 1980 and positively related in 1990. The model created by Borjas 

et al (1996) is very similar to the model adopted in this paper, but this paper will resolve several 

shortcomings they did not address. 
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 The results from Card (1990) and Borjas (1996) do not provide convincing evidence that 

immigrant inflows have a significant effect on the native population. The conclusions drawn 

from each paper imply that other variables may be affecting the relationship between immigrant 

inflows and wage levels, which are not captured in the models they developed. For instance, one 

variable that might affect this relationship is the outmigration rates of native citizens. This topic 

was discussed heavily in the previous sub-section and will not be addressed in detail here. 

However, it is important to note that other researchers have delved into this topic and their 

conclusions also do not share an overall consensus in regards to the relationship between 

immigration and native outmigration. For instance, the results from Kritz and Gurak (2001) are 

not in favor of immigration affecting native migratory decisions because they attribute most of 

native labor outmigration to poor economic conditions and not immigrant inflows. However, 

research done by Filer (1992) found a significantly negative relationship between native net-

migration rates and immigration rates—especially within a 5 year time frame. The mixed results 

associated with these two researchers in conjunction with the mixed results between Card and 

Borjas imply that any future research may need to analyze the effects of immigrant inflows 

within a five year time frame to account for the possibility of native outmigration. However, 

short run models may also produce their own unique shortcomings, which will be addressed 

shortly. 

In addition to outmigration issues, the cross section models endorsed by Card (1990) and 

Borjas et al (1996) may be problematic because they treat immigrant inflows as exogenous. In 

reality, regionally specific characteristics may attract greater inflows of immigrants, which give 

rise to the possibility of endogeneity. Some regionally specific characteristics may include local 

wage levels, changes in labor demand, immigrant concentrations, and the quality of welfare 
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benefits (Altonji and Card 1991; Borjas 1996; Borjas 1999; Card 2001; Carter and Such 1999; 

Friedberg and Hunt 1995).  

Two alternative approaches can be applied to account for endogeneity. The first method 

involves using an instrumental variable that is correlated with immigrant inflows, but not wages. 

Several papers use instrumental variables to augment their results—such as Card (2001), Borjas 

(1996), and Altonji and Card (1991). One common instrumental variable is prior immigrant 

stock levels because immigrants may migrate to areas with high immigrant concentrations. 

However, we would not expect previous stock levels of immigrants to affect the growth in wages 

if these stocks are lagged enough (Altonji and Card 1991; Friedberg and Hunt 1995). The other 

alternative is to develop a dynamic model to measure how changes in immigrant inflows affect 

wage changes. Dynamic models usually produce more robust results than static models because 

immigrants’ migration decisions are more likely responsive to wage levels than wage changes. 

Thus, any dynamic model capturing the relationship between immigrant inflows and wage 

changes should better reflect how immigrant inflows affect wage changes (Friedberg and Hunt 

1995). Additionally, dynamic models resolve any issues associated with “location specific 

effects” that do not vary over time, but give immigrants incentive to migrate there (31). Location 

specific effects exist with stock variables, but are eliminated when a dynamic approach is used to 

create flow variables. Many papers adopting dynamic models use the first differencing approach 

to their initial static models to express how changes in immigrant population affect changes in 

native wages. First differencing a static model eliminates the fixed effects that distort the 

relationship between immigration and the desired native economic indicator of interest. Some 

papers that use first differencing include Altonji and Card (2001), Borjas et al (1996), and 
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Johannsson and Weiler (2004). This paper will also adopt a dynamic framework similar to 

Johannsson and Weiler to avoid endogeneity issues.  

In addition to applying static models and neglecting native outmigration, some prior 

research criticizes the use of the immigrant population as a fraction of the total population within 

an MSA to express changes in immigrant levels (Card 2001).  Two papers that use this method 

are Card (1990) and Borjas et al (1996). Using this statistic as a proxy for increases in the labor 

supply may be problematic because it is too broad of a measure to capture the effects of labor 

supply changes within certain labor markets corresponding to specific skills (Card 2001). The 

skills and earnings of immigrants are relatively heterogeneous, which suggests that all incoming 

immigrants are not direct substitutes for native labor. If immigration labor is relatively 

heterogeneous, then it may be more efficient to create separate labor markets for each skill level 

when measuring the effects of immigrant inflows (Card 2001).  

 Card (2001) analyzes the effects of immigrant inflows at the occupation level, which 

accounts for the substitutability issue between immigrants and natives. Card (2001) derives two 

labor supply and labor demand regressions to show how wages and unemployment rates are 

functions of a city specific component, an occupation and city specific productivity level, and 

relative population shares for each occupation. Additionally, Card stratifies each labor market by 

occupation and includes all observed workers in the labor supply. For people who are 

unemployed, but are relevant to a certain occupation, Card uses a multinomial logit model to 

form probability distributions based on an array of observable characteristics to estimate how 

many people who aren’t working pertain to a certain labor supply. In conjunction with 

incorporating this model into a dynamic framework that uses instrumental variables, the results 

from Card (2001) imply that immigrant inflows between 1985 and 1990 “reduced the relative 
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employment rates of natives and earlier immigrants in laborer and low skilled service 

occupations by up to 1 percentage point, and by up to 3 percentage points in very high-

immigrant cities” (57). The effects in low-immigrant cities and labor markets containing few low 

skill workers appear to be less severe.  

 The results from Card (2001) provide some of the strongest results to date that are 

relevant to the effects of immigration because he accounts for endogeneity and isolates the 

effects of immigrants at the occupation level. However, incorporating a model as detailed as 

Card (2001) is problematic for this paper because it is currently not possible to use a probability 

model to estimate the number of undocumented workers in specific occupation markets. There is 

a limited amount of data provided Passel (2009, 2010) on certain industries undocumented 

immigrants are often employed in, but there is not enough data to create enough between year 

variation in the distribution of undocumented immigrants across different occupations. 

Additionally, the effects of immigrant inflows drawn from the conclusions of this paper remain 

relatively modest, which may suggest that immigration does not significantly affect native low 

skill workers. However, models similar to Card (2001) may be either analyzing the effects of 

immigration over too long of a time frame or are not using the proper statistics to measure native 

citizens’ welfare. Three papers that use alternative statistics to measure how markets absorb 

immigrant inflows include Hanson and Slaughter (1999; 2001) and Johannsson and Weiler 

(2004).  

 The papers by Slaughter and Hanson use changes in state level output mixes as the 

primary absorption mechanism for changes in immigrant flows. Slaughter and Hanson (2001) 

premise their models on the Heckscher–Ohlin (HO) model and the Rybczynski Theorem. The 

primary theme from the HO model is that any province will produce greater amounts of goods 
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that are derived from its relatively cheapest and most abundant inputs (Acemoglu). As a 

complement to the HO model, the primary theme drawn from the Rybczynski Theorem is that an 

increase in the endowment of a certain input will result in an increase in any output that uses that 

input intensively (Acemoglu). In the case of immigration, the conclusions drawn from Slaughter 

and Hanson are that states who have become more immigrant-intensive have changed their 

output mix over time to be more labor intensive because most recent incoming immigrants are 

low skill laborers (Slaughter and Hanson 2001). Thus, the welfare effects to native low skill 

laborers are not substantial because output mixes absorb the labor supply shock rather than 

native wages and employment. Although the model in this paper does not focus on output mixes 

as an absorption mechanism, the results from Slaughter and Hanson are important because they 

provide additional evidence to repudiate the use the native wages and unemployment rates to 

measure the economic impact of immigration.  

 Hanson and Slaughter (2001) also address the possibility of the native labor force 

participation rate (LFPR) acting as an alternative absorption mechanism for immigrant inflows, 

which is a topic that is addressed by several papers—such as Altonji and Card (1991), Carter and 

Such (1999), and especially Johannsson and Weiler (2004). Johannsson and Weiler emphasize 

the importance of using the native LFPR because it accounts for natives potentially out-

migrating to another area and natives who remain in the same area, but exit the labor market. 

Using this statistic in an Area Analysis approach is also efficient because it evades many of the 

issues related to native outmigration. Hence, the native LFPR may be a more versatile statistic 

than native wages and employment levels in capturing any effects to the native population than. 

 The work done by Johannsson and Weiler (2004) is unique not only for their use of the 

native LFPR, but also for their emphasis on utilizing short run models. Many of the papers 
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previously summarized incorporate decennial census data into their models, which may be 

problematic because data spanning over that long of a time frame may not capture shocks to the 

labor market that occur during intermediate periods. For instance, natives may migrate out of an 

area or firms may migrate into an area within a 10 year time frame. Native outmigration 

decreases the labor supply while firm in-migration increases labor demand. Both of these effects 

put upward pressure on native wages, which is a countervailing force to immigrant inflows 

increasing the labor supply. Several papers have addressed this problem—such as Altonji and 

Card (1991), Card (1990), Filer (1992), Kritz and Gurak (2001), and Johannsson and Weiler 

(2004). According to Blanchard et al (1992), unemployment rates and wage levels need 

approximately five to seven years to re-equilibrate from an initial adverse labor market shock. 

These results encouraged Johannsson and Weiler to develop a model that spans over a five year 

time frame to measure the effects of immigrant inflows on native employment during periods 

where the labor market has not fully adjusted to equilibrium. Using a five year time frame may 

provide greater accuracy because the native workers that are adversely affected will not have 

migrated out of the area. Moreover, a similar time frame may also mitigate the effects of firm in-

migration. Similar to Borjas et al (1996), Johannsson and Weiler (2004) construct both static and 

dynamic models to capture the effects of immigrant inflows on native low skill employment 

opportunities. Their dynamic results suggest that a 10% increase in the ratio of low skill 

immigrants to low skill natives creates a 0.76% decrease in the native low skill LFPR.   

 In summary, the models used to capture the effects of immigration on native economic 

welfare have evolved over time. Earlier papers used simple cross-sectional models spanning over 

10 year periods. These models are not guaranteed to produce robust results because the 

relationships they capture may be endogenous. Additionally, these models do not address the 
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effects of labor outmigration and firm in-migration occurring between the recorded time periods 

if they use decennial data. In response to these issues, subsequent papers adopt a more dynamic 

framework and use instrumental variables to account for endogeneity. They have also focused on 

a shorter time frame to capture the adverse welfare effects to native citizens because most of 

these effects occur before the labor market re-equilibrates. Lastly, some papers claim that native 

wage levels and unemployment rates are not the primary absorption mechanism for labor supply 

shocks caused by immigration. Some suggest that other mechanisms absorb this shock more than 

native wages—such as output mixes and the native labor force participation rate. Although many 

of these papers offer significant insight regarding how to measure the economic effects of 

immigration, the model constructed by Johannsson and Weiler (2004) appears to produce some 

of the most robust results because of their emphasis on the use of the labor force participation 

rate. Additionally, the model used in Johannsson and Weiler (2004) conforms efficiently to the 

state level model needed for this paper, which is why this paper will adopt a similar model. 

Before this model is introduced, it is important to explain how state level undocumented 

populations are estimated and incorporated in the model presented in Section 4. The next section 

will highlight these procedures.  

SECTION 3: ESTIMATING THE UNDOCUMENTED IMMIGRANT POPULATION  
 

This section summarizes how state level undocumented population estimates are created. 

The process used to create these estimates is very similar to the one created by Jeffrey Passel. 

Passel is the senior demographer for the PEW Hispanic Center and is one of the leading 

authorities on estimating the undocumented population in the United States. Jeffrey Passel 

(2007) uses the “residual method” to estimate undocumented population levels. This method 

calculates the difference between the stock of the Total Foreign Born (TFB) population and the 
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stock of the Total Legal Foreign Born (TLFB) population. The residual represents the stock of 

undocumented workers. This section summarizes a methodology similar to Passel (2007) that is 

used to estimate the undocumented population between 1994 and 2010. These stock levels will 

in turn be applied to the dynamic model presented in Section 4 to capture the economic effects of 

undocumented immigration on native workers. 

To begin, estimates of the TFB stock and the TLFB stock must be provided to calculate 

the stock of the undocumented population. Annual TFB stock levels starting in 1994 are easily 

obtainable by the March Current Population Survey (CPS). The TLFB stock is not provided by 

any data source and must be estimated. The process below highlights the procedures needed to 

estimate the TLFB. Once the TLFB for each year is estimated, it is possible to estimate the 

population of undocumented immigrants at the state level.  

No recent data source provides annual stock estimates of the TLFB, which is also a 

shortcoming that this paper attempts to resolve because the methods used in this section have 

estimated the TLFB population between 1980 and 2010. The TLFB must be estimated by using 

the most recent year that the TLFB stock was recorded and apply flow data to estimate stock 

levels for subsequent years. The flow data is derived from several sources. Inflow data is 

provided by the Department of Homeland Security (DHS) and its predecessor the Immigration 

and Naturalization Service (INS). Both the DHS and INS have similar data gathering methods. 

The inflow data is used to add groups of incoming documented immigrants to the TLFB stock 

for each year. The three inflow groups of documented immigrants include the number of lawful 

permanent residents, naturalized citizens, and refugees and asylees added to the TLFB stock each 

year. Several outflow statistics accompany these inflow variables to properly deflate the TLFB 

stock for each year. These outflow statistics include the average annual immigrant death rate, the 
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deportation rate of documented immigrants, and double count rates, which will be explained in 

more detail shortly. 

 The first step to estimate the TLFB stock is to identify a base year stock level of 

documented workers. This base year stock can be added to the following year’s inflow of legal 

immigrants, which provides us with an estimate of the number of documented workers for the 

following year.  The last year the INS recorded the stock of documented workers was 1980, 

which means that our estimation process must begin in this year. To calculate the stock of 

documented workers for a subsequent year, we have to add the number of immigrants entering 

the country between 1980 and the current year of interest and subtract the number of immigrants 

that have vacated the country. For instance, to calculate the TLFB stock for 1998, we have to add 

the number of legal immigrants that have entered the US between 1980 and 1998 and subtract 

the number of legal immigrants that have either exited the country or became deceased during 

the same time frame. This tells us the net change in the stock of legal immigrants between 1980 

and 1998. Equation 1 below represents how the stock of documented workers in state i would be 

calculated for 1981. Another equation will be presented after Equation 1 to illustrate how stock 

levels of the TLFB are calculated for years following 1981.  

(1) 1981198119801981,, tionsNaturalizaLPRsLegalStockTLFB iTotal  19811981Re Asyleesfugees   

1981,1981,1981, iii tDoubleCounDepRateDeathRate   

 In reference to Equation 1 above, 1981,,iTotalTLFB represents the total stock of the legal 

foreign born population in 1981 in state i. 1980LegalStock  represents the stock of legal 

immigrants recorded in 1980. The 1981LPRs variable represents the number of immigrants granted 

lawful permanent residence in 1981. 1981tionsNaturaliza  represents the number of immigrants 
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that were naturalized in 1981. 1981Re fugees and 1981Asylees represent the number of foreigners 

granted refuge and asylum for the year 1981.  

The 1981,iDeathRate , 1981,iDepRate , and 1981,itDoubleCoun  figures are outflow variables 

used to deflate the present year’s stock of documented immigrants. The 1981,iDeathRate  variable 

is derived from state level mortality rates derived from the Center for Disease Control’s (CDC) 

average annual death rate for the overall population falling between the ages of 35 and 44. Death 

rates for the legal immigrant population are approximated by multiplying CDC death rates by the 

Total Foreign Born population as a fraction of the total population in state i.  The 

1981,iDepRate variable is an approximation of the number of legal immigrants deported in state i  

in 1981. State level deportation rates in year 1981 are approximated by multiplying the state 

distribution of the Total Foreign Population in 1981 by the total number of immigrants deported 

at the national level. This product is in turn multiplied by the number of legal immigrants in state 

i as a fraction of the Total Foreign Born population in state i for the year 1980. Finally, the 

1981,itDoubleCoun variable is used to avoid double counting documented immigrants that were 

included in 1980 stock of documented immigrants, but may have converted their immigration 

status to another form of documented immigration between 1980 and 1981. For instance, some 

immigrants convert from refugees and asylees to lawful permanent residents. Additionally, many 

lawful permanent residents become naturalized. According to several INS Statistical Yearbooks, 

the median length of time needed for lawful permanent residents to naturalize is 8 years. To 

avoid including the same group of immigrants in both the LPR and Naturalization categories for 

a certain year, the number of immigrants granted lawful permanent residence in year t-8 are 

subtracted from the TLFB stock in year t. This method assumes that every person granted lawful 

permanent residence is naturalized 8 years later. This assumption presents a severe shortcoming, 
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but there are no state level naturalization rates available. The best option given this limitation is 

to assume that most legal permanent residents become naturalized. The undocumented 

immigrant estimation process will significantly improve if state level naturalization rates are 

created.  In addition to a naturalization double count, the number of refugees and asylees granted 

lawful permanent residence must be accounted for.  Fortunately, the INS and DHS provide state 

level data for this double count for most years in each state. Mathematically, the number of 

refugees and asylees granted legal permanent residence in year t must be subtracted from the 

total number of immigrants granted legal permanent residence in year t.   

In summary, Equation 1 above shows us how the stock of legal immigrants can be 

calculated from 1980 to 1981. To calculate the stock of legal immigrants for future years, a very 

similar process is used. To calculate the stock of legal immigrants in year t, we must determine 

the stock of legal immigrants in year t-1 and apply the proper inflow and outflow statistics 

corresponding to year t. The general process to calculate the legal stock is highlighted by 

Equation 2 below. 

(2)                 titititi
tionsNaturalizaLPRsTLFBTLFB ,,1,,

  titi Asyleesfugees ,,Re   

tititi tDoubleCounDepRateDeathRate ,,,   

Once the counted TLFB stock at the state level is determined, the stock of undocumented 

workers can be calculated. Intuitively, the undocumented stock for state i in year t is represented 

by the residual of the TFB and TLFB. However, two equations are needed to calculate this 

residual. The first step requires us to determine the total number of immigrants that remain in the 

US for relatively longer periods of time. Equation 3 summarizes how this group of immigrants is 

calculated. 
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(3)                                                
tititi TempLegalTFBAll
,,,   

Where: 

1) tiAll ,  = Total number of both documented and undocumented immigrants that stay in 

the US for relatively long periods of time in state i, year t 

2) tiTFB , = Total Foreign Born population in state i, year t 

3) tiTempLegal ,  = Temporary Legal non-immigrants staying in the US in state i during 

year t. 

 Equation 3 is needed because the number of temporary legal non-immigrants entering the 

country each year should not be included the TLFB stock. The tiTempLegal ,  variable represents 

the number of non-immigrants admitted to the US in state i, year t5. These people include foreign 

students, exchange visitors, and temporary workers as well as the family members for each of 

these three groups. It is assumed that these individuals remain in the US for only one year. Non-

immigrants are not included in the TLFB stock because they stay in the United States for 

relatively short periods of time. In reference to Equation 2 above, the TLFB is calculated by 

adding inflow and outflow data to the previous year’s TLFB. If non-immigrants from year t-1 

were included in the TLFB for year t-1, then all of these non-immigrants would carry into the 

following year’s TLFB stock when the majority of these individuals exit the country after the 

year t-1. In summary, incorporating non-immigrants into the TLFB would overstate the number 

of legal foreign born people in the US, which is why Equation 3 is needed.  The Total Foreign 

                                                
5 It is important to note that the data for the Temporary Legal Citizens include people visiting the United States for 
pleasure or temporary business. These components of the Temporary Legal Citizens data were omitted because 
these people do not reside in the United States long enough to be considered part of the legal foreign born 
population of the US. More importantly, it would not be possible to estimate the illegal immigrant population if 
these individuals were included because the number of people visiting the US for pleasure or temporary business is 
so large that it would produce negative estimates for the illegal immigrant population. 
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Born (TFB) statistic includes the three primary documented immigrant inflow groups as well as 

the number of non-immigrants and undocumented immigrants for each year. By subtracting out 

the number of non-immigrants, Equation 3 provides us with an estimate of tiTotalAll ,, , which 

represents the total number of immigrants—both documented and undocumented—that remain 

in the US for relatively longer periods of time. Once Equation 3 has been applied to all states 

across all years, the undocumented stock for state i in year t is calculated by determining the 

residual between the appropriate tiTotalAll ,,  and tiTLFB , . Equation 4 represents this procedure.   

(4)                                       tititi TLFBAlledUndocument ,,,   

Where: 

1) tiedUndocument ,  = Total number of undocumented workers in state i, time t 

2) tiTFB , = Total Foreign Born population in state i, time t 

3) tiTLFB , = Total Legal Foreign Born population in state i, time t 

 In summary, the process to calculate the state level undocumented population between 

1994 and 2010 is very similar to Passel (2007), but digresses from Passel’s method for several 

important reasons. Passel (2007) applies several undercount rates to calculate the undocumented 

population. These undercount rates were derived from CPS and US Census data. These 

undercount rates were not applied to the data in this model because the data for the TLFB is 

derived from DHS and INS data. Applying these undercount rates to the DHS and INS data 

overestimates the undocumented population to a substantial degree, which is why they were 

omitted.   



 29 

Shortcomings of the Undocumented Immigrant Estimation Process 
 
 The process highlighted above must be taken with a degree of caution because the data 

used to estimate stocks of the TFB and TLFB is highly limited between 1981 and 1994. State 

level estimates for several documented immigrant inflow variables and for the Total Foreign 

Born population were either estimated using linear imputations or distributions from the most 

recent year recorded. These data limitations in conjunction with the Immigration and Reform 

Control Act (IRCA) of 1986 affect the accuracy of the undocumented estimates. The list below 

summarizes the estimation methods and assumptions that were used to account for these issues. 

It also addresses the issues related to IRCA.  

 Non-Immigrants: State level estimates of the TempLegal statistic between 1981 and 

1994 were generated by applying a 1995 distribution of TempLegal to national level estimates 

between 1981 and 1994. Additionally, non-immigrants are assumed to only remain in the US for 

one year. There are some non-immigrants that remain in the US for longer than a year, but there 

is no literature or data that specifies how long these non-immigrants remain in the US at the state 

level. Lastly, several states appear to have abnormally high non-immigrant entries for the year 

2010. These states include Maine, Michigan, North Dakota, and Vermont. These 2010 levels 

appear excessively high to previous years for these states and have understated the results 

compare to Passel (2010). No literature as been discovered to explain why these states exhibit 

normally high levels of non-immigrant entries for this year, which may indicate that this problem 

originated from data entry errors. To resolve this problem, 2009 estimates for each state were 

used in place of these 2010 estimates, which substantially improved the results.  

 Total Foreign Born Population (TFB): Two linear imputations were used to 

approximate the annual TFB population at the state level for the 1981-1989 and 1991-1993 time 
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frames. Linear imputations were required because state level data was only available from the 

decennial census until the March CPS began surveying foreign born individuals in 1994.  

 Refugees and Asylees: The number of asylees and refugees entering the country was not 

explicitly recorded until 2000. However, according to the 1997 INS Statistical Yearbook, 

approximately 80% of refugees and asylees are granted lawful permanent residence after an 

average of two years. This means that we can use the number of Refugees and Asylees granted 

LPR in year t to approximate the number of Asylees and Refugees entering the country in year t-

2. This process was applied to all states between 1984 and 1999. State level data for Refugees 

and Asylees was not available between 1981 and 1983 so a 1984 distribution was applied to 

national estimates for these years. Lastly, data for incoming asylees and refugees are only jointly 

available between 2000 and 2004. State level asylee data was not available between 2005 and 

2010 and only refugees were a part of this group during this time frame. This data limitation does 

not create any major concern because asylee inflows are relatively small to other documented 

immigrant inflow groups.  

 Legal Permanent Residents: State level estimates of the LPR were not available for 

1981 and 1983. Distributions from 1982 and 1984 were applied to national levels recorded in 

1981 and 1983, respectively.  

 Immigration and Reform Control Act (IRCA): In 1986, (IRCA) granted 

approximately 2.68 million undocumented aliens legal permanent residence (INS Yearbook 

1997). Some of these legalized aliens may be omitted from the recorded lawful permanent 

resident data when they were granted amnesty, which may understate future estimates of the 

TLFB stock and overestimate subsequent levels of the undocumented stock.  
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 Double Count Rates: The double count rates applied to the number of people 

naturalized and granted lawful permanent residence are based off a sample of several years’ 

worth of data. These are not trends that have been calculated over a long time frame. 

Additionally, assuming that all lawful permanent residents adjust to naturalization status creates 

a shortcoming and most likely understates annual stock levels of the TLFB. However, there are 

no state level naturalization rates available and this method is the only way possible to account 

for a naturalization double count at the state level.   

 Negative Population Estimates: Negative population estimates have been generated for 

several states over time. Negative estimates are created because of the highly approximated data 

between 1981 and 1994. Additionally, the data for the TFB is derived from the March CPS while 

data for the TLFB is derived primarily from the INS and DHS. The CPS may use different 

sampling methods from the INS and DHS, which can create negative population estimates if the 

CPS understates the TFB population or if the INS or DHS overstates the TLFB population. The 

majority of these problematic estimates are negative at a miniscule level. Additionally, most of 

the states with negative estimates have very low undocumented population levels according to 

the results from Passel (2009; 2010). To account for this problem, these estimates were replaced 

with a zero before including them into the model measuring the economic effects of 

undocumented immigrants.  

 This estimation process possesses several shortcomings, but it is one of the only methods 

available to estimate the undocumented population at the state level. The results from the method 

specified in this paper were compared to the years estimated by Passel and the results are similar. 

These comparisons are provided in Appendix 4. The fact that these results are similar suggests 

that the model used in this paper adequately measures the undocumented population given the 
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limitations to the data. Moreover, an additional data derived from the selected estimates from 

Passel (2009; 2010) will accompany the data set created from this paper to fortify the results 

presented in Section 7. Although Passel’s estimates are more accurate, they do not contain as 

much variation over time as the data set generated from this paper because Passel has only 

estimated the undocumented population at the state level for five specific years. The 

undocumented population from this paper has generated annual estimates for over 30 years and 

may better capture how immigrant movements over time affect low skill natives, which will be 

addressed in the following section.  

SECTION 4: USING UNDOCUMENTED IMMIGRANT DATA TO MEASURE THE 
EFFECT ON NATIVE WORKERS  

 
 This section highlights the model that will be used to capture the effects of both 

documented and undocumented immigration using data created from the methods presented in 

Section 3. This section is broken down into three sub-sections. The first sub-section highlights 

the overall approach that is applied to measure the effects of immigration on low skill natives.  

The second sub-section highlights several important arguments to support the use of a long run 

model to capture the effects of immigration. Some previous research criticizes the use of long 

run models, but there is also a considerable amount of evidence to support their use. Following 

this subsection, the third subsection will address the explicit model that will be used to capture 

the effects of immigration on low skill natives.   
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Overall Approach 
 
 As stated in Section 2, this model will use a form of Area Analysis to measure the effects 

of immigration on native employment opportunities between 1994 and 20096. This paper 

hypothesizes that all low skill immigrants have a high degree of substitutionability with low skill 

natives. Changes in the ratio of low skill immigrants to low skill natives is used as a proxy for 

changes in the low skill labor supply. Thus, an increase in immigrant concentrations should 

increase the low skill labor supply and put downward pressure on native-low skill labor force 

participation rates and upward pressure on unemployment rates. Unemployment rates are 

included in this model to test whether they are unresponsive to immigration, which is suggested 

by previous research. If unemployment rates are not affected, then it provides evidence to 

support the use of labor force participation rates as the primary economic indicator of interest. 

The model presented in this section is very similar to the one adopted by Johannsson and Weiler 

(2004), but will be augmented with undocumented immigrant data. There are three primary 

objectives of this paper. The first is to apply a single market approach, which helps us determine 

whether the state level model used in this paper produces similar results to the MSA results from 

Johannsson and Weiler (2004) regarding the relationship between TFB immigrant concentrations 

and native low skill labor force participation rates. The second goal, as discussed in Section 1, is 

to apply a dual market approach to observe whether documented or undocumented immigration 

has a greater effect on low skill natives. There are two steps to this approach. The first step is to 

omit undocumented immigrants from the total foreign born stock to determine whether this 

omission affects the significance and magnitude of the results corresponding to the single market 

approach. The results produced from this process isolate the effects of the documented 
                                                
6 State level undocumented data is available between 1994 and 2010, but the time frame of study is restricted to 
2009 because the model used to measure the effects of immigrant inflows is first-differenced.  
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population. To complete the dual market approach, undocumented immigrants must be analyzed 

by themselves to determine whether they affect low skill natives more significantly than 

documented immigrants.  Table 1 below highlights the objectives of this paper.  

 As illustrated in Table 1, two data sets will be used to incorporate state level estimates of 

the both the documented and undocumented population into the model addressed later on in this 

section. It is important to reiterate that documented immigrant estimates are calculated by 

subtracting the undocumented estimates from the TFB estimates. Two different data sets were 

used to not only represent the undocumented population, but also to isolate the effects of the 

documented population. The Schultz data set has been constructed using the methodology 

presented in Section 3. The Passel data set was constructed using estimates provided by Passel 

(2009; 2010). Linear imputations were used to estimate undocumented population levels for 

years not calculated by Passel. Passel’s data was incorporated into this model as a sensitivity 

check to the conclusions drawn from the Schultz data set. Overall, the conclusions drawn from 

each data set are similar when applying the dual market approach, which is convincing evidence 

that the methods used in Section 3 coincide with Passel’s methodology fairly well.  

TABLE 1 

 

Time Frame TFB Immigrants
 (BMS Data)

Documented 
Immigrants

(TFB - Undocumented)
Schultz Data

Documented 
Immigrants

(TFB - Undocumented)
Passel Data

Undocumented 
Immigrants

Schultz Data

Undocumented 
Immigrants
Passel Data

1994-2009

Measure the effects
of the TFB 
population at the 
state level using
data from the
Basic Monthly
Survey (BMS)

Measure the effects
of the Documented 
population at the 
state level using
data generated from 
this paper.

Measure the effects
of the Documented 
population at the 
state level using
data derived from
Passel (2009, 2010)

Measure the effects
of the Undocumented 
population at the 
state level using
data generated from 
this paper.

Measure the effects
of the Undocumented 
population at the 
state level using
data derived from
Passel (2009, 2010)

Model Layout
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Why Applying a Long Run Approach is Legitimate  
 
 Before we explicitly address the model that is used to estimate the economic impact of 

immigration, it is important to discuss differences and shortcomings associated with applying 

long run analysis versus short run analysis in the context of immigration. Some previous research 

is in favor of a short run approach while others claim that long run approaches are more robust. 

This paper analyzes the effects of immigration over the long run, but there is enough evidence to 

criticize this approach. Although a long run approach may possess several shortcomings, this 

sub-section provides several arguments to justify why a long run approach is more appropriate 

than a short run approach to measure the effects of undocumented immigration. 

 To begin, as stated in Section 2, previous research from Johannsson and Weiler (2004), 

Blanchard and Katz (1992), and Filer (1992) provide evidence that favors the use of short run 

models to capture labor market effects from immigration7. These papers emphasize the use of 

short run models to avoid the effects of native outmigration and firm in-migration that occur in 

response to immigrant inflows. Short run models may be more robust if they analyze the effects 

of immigrant inflows within a short enough time frame where natives and firms do not change 

their migratory decisions in response to this shock. Essentially, the evidence from these papers 

suggests that the effects of immigration can only be captured when the labor market is in 

disequilibrium from a labor shock propelled by immigrant inflows. Once native outmigration and 

firm in-migration take place, they decrease the labor supply and increase labor demand 

respectively, which makes it difficult to measure any welfare effect on native citizens once the 

labor market re-equilibrates. According to Blanchard and Katz (1992), state level labor markets 

                                                
7 However, the success of short run models is contingent on the assumption that state level markets re-equilibrate 
within a 5-7 year time frame, which may be problematic to assume (Blanchard and Katz 1992). This issue will be 
addressed later on in this section. 
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re-equilibrate from an adverse shock after five to seven years. As a result, most proponents of 

short run analysis ascribe to this time frame to analyze the effects of immigration.  

  Although these conclusions are important, they are limited because proponents of short 

run models premise their argument on the idea that labor markets achieve stationary states of 

equilibrium. In reality, labor markets are constantly changing—especially at the state level. To 

assume that a labor market experiences a period of time where native low skill labor force 

participation rates and unemployment rates are in equilibrium and that economic activity is in 

balance is difficult to prove. In reality, the only relationship we may be able to capture is whether 

changes in native labor market indicators are responsive to changes immigrant inflows. 

Analyzing this relationship over a longer time frame may provide more robust results than 

shorter time frames because there are more observations included in the analysis. Even if 

markets re-equilibrate, there is no evidence to suggest that these markets approach identical 

equilibrium levels. There may be a long run effect where immigrant oriented labor shocks put 

downward pressure on equilibrium levels of native low skill labor force participation rates and 

unemployment rates, which would be captured using a long run model. Lastly, the conclusions 

made by Blanchard and Katz (1992) are relatively outdated. No research subsequent to 

Blanchard and Katz (1992) has attempted to measure the length of time needed for labor markets 

to re-equilibrate with more updated data. The results from Blanchard and Katz (1992) may apply 

to more distant time periods, but not to ones in this paper.  

 In addition to the problems associated with the theoretical underpinnings applied to short 

run models, the nature in which the undocumented population has grown over time may be more 

suited to a long run analysis. In reference to Appendix 1, it is evident that periods corresponding 

to a five to seven year time frame do no experience as big of an increase in the undocumented 
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immigrant population as the entire time frame used in this paper. For instance, let’s focus on the 

following three periods: 1994-1998, 2002-2006, and 1994-2009. In reference to the Passel data 

set from Appendix 1, the undocumented population increased by 112% between 1994 and 2009 

while it only increased by 35% and 22% in 1994-1998 and 2002-2006, respectively. These short 

run models may not capture as great of an effect from the undocumented immigrant population 

because they do not exhibit as big of a change in the short run. Only a long run model may be 

appropriate to capture the effects of undocumented immigration. 

 In addition to undocumented population growth, it is important to note that several 

prominent researchers rely on long run analysis using decennial data to measure the effects of 

immigration. These researchers do not place as much emphasis on the short run models as 

Johannsson and Weiler (2004). Some of these papers include Card (2003, 2005) and Borjas 

(2003, 2006). These papers present obvious shortcomings because they only have several years 

worth of data to analyze a long run trend, but this is not the case for this paper. The fact that 

annual data was used to answer a comparable question adds credibility to using a long run 

analysis because it captures the effects of immigration during intermediate years that decennial 

data cannot account for. 

 In summary, the amount of evidence emphasizing the importance of short run models is 

not strong enough to repudiate the use of long run models that incorporate annual data. A short 

run analysis may be more appropriate at the MSA level because the geographic space is small 

enough to not be impeded by a multitude of omitted variables that distort the effects of 

immigration. However, since the methods used to estimate the undocumented population limits 

us to a state level framework, it is important to apply a long run approach.  
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Model Used to Estimate the Effects of Immigration on Low Skill Natives 
 
 Now that the theoretical underpinnings of the model have been explained, it is 

appropriate to explicitly address the model that will be used to estimate the effects of 

immigration on low skill native employment indicators. As a reminder, this paper will be 

observing the relationship between immigrant concentrations and native low skill labor force 

participation rates and unemployment rates. Based on previous research, the native low skill 

LFPR appears to be one of the primary absorption mechanisms to immigrant labor supply shocks 

while unemployment rates appear to be unresponsive.  

 As stated previously, this paper will adopt both a single market approach and a dual 

market approach to capture the effects of undocumented immigration. The dynamic equation 

presented below will be used to apply both approaches. Although it is not relied upon for 

application purposes, a static cross-sectional model will be presented to explain every variable 

used in the model. This static model is very similar to the one presented in Johannsson and 

Weiler (2004). The dynamic model needed to measure the effects of both documented and 

undocumented immigrants will be presented after the static model. The models presented below 

will only be applied over a long run time frame and will analyze the effects of immigration on 

native low skill employment opportunities between 1994 and 2009. Equation 5 below 

summarizes the static fixed-effect regression that is used to measure the effects of immigrant 

concentrations on native low skill employment opportunities.  

(5)                         ititititititit GSPAgeSexRaceIMFRY   54321  

Where: 

1) The i subscript represents the different states included in this analysis. All 50 US states 

are included. 
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2) The t subscript represents the years analyzed within the 1994-2009 period. 

3) itY = two different dependent variables: Native low skill labor force participation rate 

and the native low skill unemployment rate.  

4) itIMFR  = the state level ratio of low skill immigrants to low skill natives. This ratio is 

applied to three different groups: the TFB population, the documented immigrant 

population, and the undocumented immigrant population. Only individuals that have not 

graduated high school are included in this figure.  

5)  itRace = the state level labor force percentages of three different minority groups: 

African Americans, American Indians or Eskimos, and Asians or Pacific Islanders. This 

variable is primarily used to control for differences in racial concentrations across states.  

6) itSex = the state level labor force percentage of females. This variable is primarily used 

to control for differences in female concentrations across states. 

7) itAge = a categorical variable used to separate every dependent, independent, and 

control variable into the following age groups: 16-19, 20-29, 30-39, 40-49, 50-59, and 

60-64.  

8) itGSP = gross state product for state i in year t. This variable is used to control for 

structural shocks originating from the business cycle that apply to each state over time.  

10) it = error term. The error term is assumed to be independently and identically 

distributed.  

 The primary variable of interest in Equation 10 is the IMFR. The IMFR captures the 

concentration of immigrants for each state in each year. Higher IMFR values represent greater 

concentrations of immigrants in a state. The value of the IMFR will be different depending on 
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whether it includes the total foreign born population, the documented population, or the 

undocumented population. Johannsson and Weiler (2004) adopt a single market approach and 

only account for the TFB population in the IMFR. They have concluded that a negative 

relationship exists between IMFR levels and native labor force participation rates when only the 

TFB population is accounted for. The original hypothesis from this paper is that by using a dual 

market approach that subtracts out undocumented population estimates from the total foreign 

born IMFR will affect the relationship captured by Johannsson and Weiler (2004)—thus 

providing evidence that undocumented immigrants significantly affect native low skill workers. 

This process will also reveal the effects of the documented population. To fortify these results, 

an IMFR only including undocumented immigrants will be incorporated into the model to 

capture the effects the undocumented population alone has on native low skill employment 

indicators. The results generated from the undocumented population will be compared to the 

results from the documented population to determine which group has a greater effect on low 

skill natives.   

 As stated earlier, only a dynamic model will used to test for the effects of immigration 

because of endogeneity problems that are associated with the static model. The static model is 

prone to endogeneity because there may be characteristics of certain regions that attract higher 

concentrations of immigrants. For instance, areas with relatively lower native employment 

opportunities may attract more immigrant workers. Additionally, immigrants may flock to 

regions with relatively higher concentrations of similar immigrants. Immigrants may also 

migrate to states because of its advantageous geographical location. These endogeneity issues 

can be resolved with a dynamic model, which is addressed with Equation 6 below.   

(6)       it
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 Equations 5 and 6 are both fixed effects regressions. The only difference between 

Equation 5 and Equation 6 is that the dependent variables, the IMFR, and the GSP control 

variables are first-differenced in Equation 6. A percentage change approach is applied to these 

three variables in order to normalize the gross change occurring between each period. The 

empirical model only focuses on applying percentage changes to these three variables because 

first differencing the primary dependent variables eliminates all of the time invariant location 

specific effects that these variables are responsive to. The IMFR is first differenced because it 

helps eliminate the potential issue of reverse causality associated with low skill native 

employment and immigrant inflows. Finally, the GSP variable is first differenced because it is 

the primary regional control variable. Changes in employment indicators are more likely to be 

responsive to changes in gross state product than levels of gross state product. In contrast to 

these three variables, the empirical model uses level analysis for the Race and Sex variables 

because changes in the racial and gender composition of each state may be smaller or less 

volatile over time than the changes in the other variables. If these variables are first differenced, 

then the amount of across state variation in race and sex that affects native low skill employment 

may not be accounted for as well as if these variables remain in level form. These assumptions 

may be considered a caveat and a possible extension to this model would be to first difference 

every control variable. The 1B coefficient in Equation 6 captures the relationship between 

changes in immigrant stock levels and changes in the native low skill labor force participation 

rate and unemployment rate. As presented in Equation 5, it is possible for current levels of native 

low skill participation rates to influence immigrants’ migration decisions. However, we would 

not expect changes in the native labor force participation rate to have the same effect. Thus, a 

significant relationship captured in Equation 6 should provide more robust results. Finally, 
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Equation 6 will be analyzed using both Generalized Least Squares (GLS) and Weighted Least 

Squares (WLS). GLS is a more robust approach than WLS under these conditions because it 

accounts for both heteroskedasticity and autocorrelation that exist within the panel data set 

applied to Equation 6. The GLS results should be observed with greater weight than the WLS 

results, but applying WLS is still important to check the relative consistency of the GLS 

approach.  

SECTION 5: HOW THE UNDOCUMENTED WORKER DATA IS INCORPORATED 
INTO THE IMFR  

 
 Again, the IMFR represents the ratio of low skill immigrants to low skill natives. The 

IMFR in Johannsson and Weiler (2004) represents the ratio of both documented and 

undocumented low skill immigrants to low skill natives. Depending on whether a single labor 

market or dual labor market approach is applied, the IMFR can take on different values. Under a 

single market approach, the IMFR represents the ratio of the TFB population to low skill natives. 

Once the relationship between these two groups is captured, the first step to the dual market 

approach is to subtract the state level undocumented immigrant estimates from the TFB 

estimates. The residual represents state level estimates of the documented population. These 

documented immigrant estimates will then be incorporated into their own IMFR and applied to 

Equation 6. Running separate regressions on these different IMFR values will tell us the isolated 

effect of documented immigration and shed some light on the effects of undocumented 

immigrants. To fortify these results, the last step is to run an additional regression where only 

undocumented immigrants are included into the IMFR and applied to Equation 6. Comparing the 

isolated effects of documented immigration with the isolated effects of undocumented 

immigration tell us which group has a greater effect on and which group is more substitutable 
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with low skill natives. Depending on the results, it may also tell us that each group has an equal 

effect or does not have a significant effect on natives unless the other group is included.  

 Similar to the explanations provided for Equation 5 above, the IMFR will be broken 

down into 6 different age groups to isolate the effects immigration on low skill natives of 

different ages. The state level undocumented population estimates were not explicitly calculated 

for these age groups. However, age distributions for low skill immigrants in the total foreign 

born data for each state between 1994 and 2010 were used to estimate the number of low skill 

undocumented workers that belonged to each age group. These estimates were generated using 

data from the Basic Monthly Survey. Lastly, according to Passel (2009), approximately 47% of 

the total undocumented immigrant population has not graduated high school, which is a good 

proxy for the number of low skill undocumented immigrants residing in each state. Thus, 47% of 

each age group will be added to its proper stock of legal immigrants8.  

SECTION 6: DATA  
 
 This section summarizes the data sources that were used to approximate the 

undocumented population as well as the sources needed to apply the dynamic model presented in 

Section 4. The March CPS provides annual estimates of the Total Foreign Born (TFB) 

population between 1994 and 2010. The Department of Homeland Security (DHS) and its 

predecessor the Immigration and Naturalization Service (INS) provide the majority of the data 

needed to estimate annual levels of the TLFB. The DHS and INS provide data on the annual 

inflows of legal permanent residents, naturalized citizens, refugees, and asylees. Both the DHS 

                                                
8 It is important to note that more than 47% of undocumented workers are likely to compete with native low skill 
workers. According to Passel (2009) approximately 78% of undocumented workers have at most graduated high 
school. Some undocumented high school graduates most likely compete with native high school drop outs, but these 
undocumented individuals were omitted to provide the most conservative effects possible.  
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and INS also provide deportation data as well as the data needed to calculate the double count 

rates of documented immigrants. The Department of Health and Human Services provides data 

on state level refugee entries between 2000 and 2010.  The Center of Disease Control (CDC) 

provides annual death rates at the state level for all races and sexes for people between ages 35 

and 44. This age group was used because it represents the median age group from an age 

distribution presented by Passel (2009). State level total population data from the US Census was 

used to convert the death rates from the overall population to the TFB population. Lastly, data 

from the Basic Monthly Survey (BMS) data was used to estimate annual levels of native low 

skill labor force participation rates and unemployment rates for each state between 1994 and 

2010. BMS data was also used to estimate the concentration of females and different racial 

groups across states.  

SECTION 7: RESULTS  
 
 This section summarizes the primary results that emerge from the dynamic model 

specified in Section 4. The fixed effects dynamic model represented by Equation 6 was used to 

measure the effects of both documented and undocumented immigration on native low skill labor 

force participation rates and unemployment rates. These regressions were analyzed using both 

Generalized Least Squares (GLS) and Weighted Least Squares (WLS) between 1994 and 2009. 

There are five primary conclusions emerging from these results: 1) Changes in total foreign born 

immigrant concentrations significantly affect native labor force participation rates, but to a small 

degree 2) These results are similar in magnitude to the MSA results from Johannsson and Weiler 

(2004), which gives this model more credibility 3) Documented immigrants alone appear to not 

have an effect on the native low skill LFPR and the corresponding unemployment rates 4) The 

relationship between immigrant concentrations and native labor force participation rates become 
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insignificant when the undocumented population is taken out of the total foreign born IMFR 5) 

Undocumented immigrants alone do not have a statistically distinguishable effect on the native 

low skill LFPR. This section is separated into three subsections. The first subsection summarizes 

the descriptive statistics that correspond to each variable from Equation 6 over the 1994-2009 

time frame. The second subsection highlights the results produced by the single market and dual 

market approaches. The third subsection addresses whether the effects captured by the single and 

dual market approaches are distributed more heavily in certain states. 

Descriptive Statistics 
 

TABLE 2 
 

 
 
 Before delving into the results corresponding to dynamic fixed effects model, it is 

important to summarize a key feature from the descriptive statistics that emerge from the pooled 

cross-sectional data between 1994 and 2009. Table 2 above highlights the mean values for the 

dependent variables, the IMFR independent variables, and control variables that apply to the 

static model represented by Equation 5. The primary statistic of interest in Table 2 is the mean 

value of the native low skill LFPR, which is approximately 56.2%. This LFPR average is 

relatively low, which is important because any statistically significant effect captured from 

Variable Obs Mean Std Deviation Min Max
Labor Force Participation Rate 4800 0.5621039 0.15783 0.083 1.117
Unemployment Rate 4800 0.0983653 0.0639181 0 0.503
IMFR (TFB) 4800 0.3373636 0.5115608 0 5.36
IMFR Documented (Schultz Data) 4800 0.0985101 0.2035549 0 2.662
IMFR Documented (Passel Data) 4800 0.1433825 0.2783305 0 3.072
IMFR Undocumented (Schultz Data) 4800 0.2486568 0.3674586 0 3.554
IMFR Undocumented (Passel Data) 4800 0.1976298 0.2716994 0 2.868
GSP 4800 0.0481331 0.0321729 -0.12 0.172
Female Labor Force Percentage 4800 0.3942285 0.0863241 0.034 0.908
African American Labor Force Percentage 4800 0.1156084 0.1215382 0 0.731
American Indian Labor Force Percentage 4800 0.030022 0.0547063 0 0.625
Asian or Pacific Islander Labor Force Percentage 4800 0.0420241 0.1129902 0 1

Descriptive Statistics
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Equation 6 between the native low skill LFPR and immigrant concentrations is more severe for 

groups of natives with lower LFPR averages than groups with higher averages. In reference to 

Table 3 below, it is evident that both the TFB population and the undocumented population have 

a statistically significant, but small impact on the native low skill LFPR. These impacts are small 

by themselves, but remain significant because the average native low skill LFPR is low. 

Primary Results 
 
  Table 3 presents the long run effects of immigration on native low skill labor force 

participation rates and unemployment rates between 1994 and 2009. The TFB IMFR in Table 3 

represents the ratio of the low skill total foreign born population to low skill natives. The Passel 

Documented IMFR and Schultz Documented IMFR figures represent the ratio of low skill 

immigrants to low skill natives once the low skill undocumented immigrants are taken out of the 

total foreign born stock. These two figures represent the ratio of documented low skill 

immigrants to low skill natives. The Passel Undocumented IMFR and Schultz Undocumented 

IMFR figures represent the ratio of undocumented low skill immigrants to low skill natives. The 

coefficients from the GLS and WLS regressions were converted into elasticities for 

comparability purposes. Table 3 below only highlights the relationships between the various 

IMFRs and native low skill employment indicators. To review the full results corresponding to 

the GLS and WLS regressions, please refer to Appendix 5 and Appendix 6.  

 The results below show that a statistically significant relationship exists between low skill 

TFB immigrant concentrations and native low skill labor force participation rates. The single 

market approach was captured with both the GLS and WLS estimates and is similar in terms of 

their magnitude when compared to the GLS results from Johannsson and Weiler (2004). In 

reference to the GLS results, a 10% increase in the TFB IMFR decreases native low skill labor 
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force participation rates by approximately 0.44%. The GLS results from Johannsson and Weiler 

(2004) are that a 10% increase in the total foreign born IMFR decreases native low skill labor 

force participation rates by approximately 0.76%. Weiler and Johannson’s result was analyzed 

within a shorter time frame, but the fact that the baseline TFB results produced in this paper are 

similar to Johannsson and Weiler (2004) make a strong argument to support the use of a state 

level model to measure the isolate effects of both documented and undocumented immigration.  

TABLE 3: RESULTS 1994-2009 

 

 Table 3 also shows the results for the dual market approach used to isolate the effects of 

both documented and undocumented immigrants. It is evident that that relationship between low 

skill immigrant concentrations and low skill native labor force participation rates becomes 

statistically insignificant when undocumented immigrants are no longer included in the TFB 

immigrant stock. These results confirm that undocumented immigrants play a vital role in the 

GLS Model Elasticity Coefficient Std Error Z-Stat Prob>chi2
TFB IMFR -0.04414 0.0048601 0.0021391 2.27 0 0.0006675 0.0090527
Schultz Documented IMFR -0.00518 0.0007112 0.0011716 0.61 0 -0.001585 0.0030074
Passel Documented IMFR -0.00766 0.0011559 0.0014425 0.8 0 -0.0016713 0.0039832
Schultz Undocumented IMFR -0.01522 0.0018069 0.0016745 1.08 0 -0.0014751 0.0050889
Passel Undocumented IMFR -0.08866 0.0094113 0.0024771 3.8 0 0.0045563 0.0142662

WLS Model Elasticity Coefficient Std Error Z-Stat Prob>chi2
TFB IMFR -0.04247 0.0046758 0.0021056 2.22 0 0.0005489 0.0088026
Schultz Documented IMFR -0.00659 0.0009055 0.0011388 0.8 0 -0.0013265 0.0031374
Passel Documented IMFR -0.00249 0.0003756 0.0014529 0.26 0 -0.002472 0.0032231
Schultz Undocumented IMFR -0.00769 0.0009128 0.0016732 0.55 0 -0.0023667 0.0041923
Passel Undocumented IMFR -0.08778 0.0093177 0.0024656 3.78 0 0.0044853 0.0141501

GLS Model Elasticity Coefficient Std Error Z-Stat Prob>chi2
TFB IMFR 0.03616 0.0134171 0.0085063 1.58 0 -0.0032549 0.0300891
Schultz Documented IMFR -0.00227 -0.00105 0.0047541 -0.22 0 -0.0103679 0.0082678
Passel Documented IMFR 0.00051 0.0002592 0.0057619 0.04 0 -0.011034 0.0115523
Schultz Undocumented IMFR 0.03313 0.0132526 0.0069282 1.91 0 -0.0003263 0.0268316
Passel Undocumented IMFR 0.02859 0.0102257 0.0102635 1 0 -0.0098905 0.0303419

WLS Model Elasticity Coefficient Std Error Z-Stat Prob>chi2
TFB IMFR 0.05121 0.0189984 0.0083339 2.28 0 0.0026642 0.0353325
Schultz Documented IMFR 0.00003 0.0000149 0.0046127 0 0 -0.0090259 0.0090557
Passel Documented IMFR 0.00648 0.0032918 0.0058222 0.57 0 -0.0081195 0.014703
Schultz Undocumented IMFR 0.02805 0.0112219 0.0070261 1.6 0 -0.002549 0.0249927
Passel Undocumented IMFR 0.04756 0.0170134 0.0101741 1.67 0 -0.0029274 0.0369543

95% Confidence Interval
Labor Force Participation Rate

95% Confidence Interval

95% Confidence Interval

95% Confidence Interval

Unemployment Rate
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significant relationship captured between the TFB immigrant concentrations and native low skill 

labor force participation rates. It also suggests that documented immigrants alone do not have a 

statistically significant effect on low skill natives. When comparing the TFB IMFR to the 

documented IMFRs, we cannot say the degree to which undocumented immigrants affect the 

relationship in terms of its magnitude because the elasticities corresponding to both the Passel 

Documented IMFR and Schultz Documented IMFR are statistically insignificant. However, the 

fact that the entire immigrant population only pushes down the native low skill LFPR by 0.44% 

suggests that the effects of undocumented immigrants in terms of their magnitude is relatively 

small.  

 The inferences made about the undocumented population are confirmed when looking at 

the results that represent their isolated effect on low skill natives. In reference to the elasticities 

reported by the Passel Undocumented IMFR, a 10% increase in undocumented immigrant 

concentrations decreases the native low skill LFPR by 0.89%. When compared to the results 

associated with the TFB IMFR, the effects of undocumented immigrants alone appear to have a 

greater effect in terms of its degree and significance on low skill natives than either documented 

immigrants or the TFB population in general. To test the validity of these results, one simple 

procedure we can use to determine whether undocumented immigrants have a statistically 

distinguishable effect on the native low skill LFPR from the TFB population is to observe 

whether the confidence intervals from each group overlap. Table 3 above reports the values of 

these confidence intervals at the 95% significance level. Figure 1 below provides illustrations of 

each confidence interval corresponding to each type of IMFR used to capture the isolated effects 

of documented and undocumented immigration9.  

                                                
9 A similar illustration of the confidence intervals produced for the effects of these separate immigrant groups on 
native low skill unemployment rates is provided in Appendix 4.  
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FIGURE 1: LFPR CONFIDENCE INTERVALS FOR THE TFB, DOCUMENTED, AND 
UNDOCMENTED IMFRS 

 

 Using confidence intervals in this context requires us to determine whether certain 

variables embedded in a baseline variable significantly affect a specified baseline relationship. In 

this case, the baseline variable is the TFB population and the baseline relationship is how the 

TFB population affects the native low skill LFPR. The embedded variables that may affect this 

baseline relationship are documented and undocumented immigrants. If either group has a 

statistically distinguishable effect on the native low skill LFPR, then the confidence intervals 

they produce should not overlap with the baseline confidence interval. To be more specific, we 

want to determine whether subtracting out the undocumented immigrants from the TFB creates a 

statistically distinguishable effect on the native low skill LFPR. To do this, we have to observe 

how much overlap exists between the TFB confidence interval and the (TFB-undocumented) 

confidence interval. Two separate figures are used to represent the (TFB-undocumented) 

confidence interval: the Passel Documented IMFR and Schultz Documented IMFR. To determine 
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whether documented immigrants have a statistically distinguishable effect on the baseline 

relationship, we have to repeat the same procedures for the Passel Undocumented IMFR and 

Schultz Undocumented IMFR. Figure 1 above provides illustrations of the confidence intervals 

for each IMFR figure reported in Table 3.  

 As illustrated in Figure 1, it is evident that each IMFR figure has a considerable amount 

of overlap with the baseline TFB IMFR. These results imply that even though there is some 

evidence to suggest that undocumented immigrants alone have a statistically significant effect on 

low skill natives, this effect is not statistically distinguishable from the TFB results. Moreover, 

the results from Passel Undocumented IMFR are not strong enough to claim that undocumented 

immigrants alone are either greater substitutes to or have a greater effect on low skill natives than 

documented immigrants. The undocumented population still contributes to the baseline 

relationship between the TFB population and the native low skill LFPR, but we cannot claim that 

undocumented immigrants play a more significant role in this relationship than documented 

immigrants.  

 In addition to observing the confidence intervals, the results from the Passel 

Undocumented IMFR should not be taken with a high degree of confidence because the results 

produced by the Schultz Undocumented IMFR do not implicate a similar effect. The relationship 

between undocumented immigrant concentrations and the low skill LFPR implied by the Schultz 

Undocumented IMFR are very insignificant. The differences in the results between each 

undocumented IMFR may be because the estimates derived from Passel (2009, 2010) are more 

accurate than the annual estimates produced from Section 3 in this paper. Such a case is highly 

unlikely because the data produced using the methods in this paper appear to be relatively similar 

to the available years estimated by Passel (2009, 2010). These similarities suggest that some 
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other characteristic unique to the data set derived from Passel’s estimates is contributing to the 

significant relationship captured in Table 310. One plausible explanation may be due to the highly 

linearized nature of the data set derived from Passel’s estimates. This paper used linear 

imputations over relatively long time frames to create state level estimates of the undocumented 

population for the years Passel (2009, 2010) do not address11. The low level of within year 

variation produced from this data set may either be contributing to a spurious relationship or may 

be exaggerating the relationship between undocumented immigration and the native low skill 

LFPR. Additional analysis with an alternative data set representing the undocumented immigrant 

population will be needed to determine whether the results from the Passel Undocumented IMFR 

are more accurate than the results from the Schultz Undocumented IMFR. Producing a third 

undocumented data set is beyond the scope of this paper, but may be addressed in future 

research.  

Distributional Effects of Immigration 
 
 In addition to analyzing the effects of immigration on all 50 states, it is possible to 

observe the distributional effects across states that are associated with the significant 

relationships presented in Table 3. The two primary relationships discovered from Table 3 are 

that the TFB and undocumented populations share a negative relationship with the native low 

skill LFPR. Although these are significant discoveries within themselves, some states’ native low 

skill LFPRs may be more affected by immigrant inflows than other states. One method to 

determine whether there is a distributional effect is to test whether groups of states experiencing 

                                                
10 Please refer to Appendix 1 to observe the similarities between the estimates provided by Passel (2009, 2010) and 
the estimates provided by the methods specified in Section 3.  
 
11 Please refer to Appendices 1, 2, and 3 to observe the highly linearized nature of the undocumented estimates 
produced from the selected years provided by Passel (2009, 2010).  
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similar increases in the TFB population between 1994 and 2009 are affected more significantly 

than the baseline relationships captured in Table 3. Grouping states in this manner is relevant 

because the baseline results corresponding to the TFB population are significant and the effects 

of undocumented immigrants are not statistically distinguishable from the baseline results. After 

reviewing the estimates provided by the CPS, it appears that all 50 states can be assigned to one 

of the four following groups with respect to the gross number of undocumented immigrants that 

have entered their borders between 1994 and 2009: less than 100,000, between 100,000 and 

200,000, between 200,000 and 500,000, and over a 500,000. Table 4 below highlights the states 

that belong to each group.  

TABLE 4: GROSS INCREASE IN THE UNDOCUMENTED POPULATION BY STATE 

 

 Several dummy variables were applied to the TFB IMFR to distinguish these four groups 

of states. To be more specific, a dummy was assigned to each group except the Less than 

100,000 group and incorporated into a regression similar to Equation 6. The baseline relationship 

Less than 100,000 100,000-200,000 200,000-500,000 Greater than 500,000
Alaska Alabama Arizona California 
Delaware Arkansas Colorado Florida 
Hawaii Connecticut Georgia Illinois 
Idaho Indiana Maryland New Jersey 
Iowa Kentucky Michigan New York 
Kansas Massachusetts Nevada Texas 
Louisiana Minnesota North Carolina 
Maine Missouri Pennsylvania 
Mississippi New Mexico Tennessee 
Montana Ohio Virginia 
Nebraska Oregon Washington 
New Hampshire South Carolina 
North Dakota Utah 
Oklahoma Wisconsin 
Rhode Island 
South Dakota 
Vermont 
West Virginia
Wyoming 

Changes in Undocumented Population
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in this dummy regression reveals the effect immigrants have on the Less than 100,000 group 

while the coefficients produced for each dummy provide the added affects corresponding to each 

group. These added effects are only significant if the corresponding z-statistic is significant as 

well. The results illustrated in Table 5 below suggest that the effects from the TFB population 

are distributed relatively evenly between each group of states because no group exhibits a 

statistically different effect from the baseline relationship. The baseline relationship is also 

insignificant by itself. No elasticities are reported because none of the results are significant. 

 TABLE 5: DISTRIBUTIONAL EFFECTS OF UNDOCUMENTED IMMIGRATION 

 

 Overall, there appears to be a very small effect associated with the TFB population and 

that this effect is distributed relatively evenly across all states. The fact that this effect is small 

suggests that low skill immigrants in general are not displacing low skill natives in the work 

force. Some alternative mechanism may be absorbing these inflows or low skill immigrants may 

be filling in voids in the labor market that are left over from natives upgrading their skills, which 

is a topic that is addressed in the next section. 

SECTION 8: IMMIGRANTS DISPLACING NATIVES 

 This section briefly addresses whether the long run relationship between the native low 

skill LFPR and immigrant concentrations validly captures a displacement effect between low 

TFB Model Coef. Std Error Z-Stat Prob>chi2
Baseline Result (<100,000) 0.003828 0.0028097 1.36 0 -0.0016789 0.009335
Greater than 500,000 0.0062982 0.0129899 0.48 0 -0.0191616 0.031758
Between 200,000 & 500,000 0.0022179 0.0064007 0.35 0 -0.0103273 0.014763
Between 100,000 & 200,000 0.0019957 0.004964 0.4 0 -0.0077336 0.0117249
Sex -0.1018762 0.0139034 -7.33 0 -0.1291265 -0.074626
African American 0.0026899 0.0091943 0.29 0 -0.0153307 0.0207104
Native American -0.0080444 0.0237486 -0.34 0 -0.0545909 0.038502
Asian/Pacific Islander 0.0319112 0.0186668 1.71 0 -0.0046751 0.0684975
%ΔGSP 0.243428 0.0361443 6.73 0 0.1725864 0.3142696
Constant 0.0179082 0.0060607 2.95 0 0.0060295 0.029787

Confidence Interval
Labor Force Participation Rate
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immigrants and low skill natives. Immigrants displace natives if they are relatively substitutable 

and take jobs away from natives. However, if natives upgrade their skills and exit the low skill 

labor market, this leaves a void for low skill immigrants to fill (Hanson and Slaughter 2001)12. In 

this scenario, immigrants do not displace natives and instead provide a positive economic benefit 

to their destination regions because they allow low skill industries to remain viable.  

 The evidence from Section 6 suggests that undocumented immigrants have a very low 

displacement effect. The results from Section 6 favor the idea that both documented and 

undocumented immigrants are filling voids in the skill labor markets for most states rather than 

displacing low skill natives. A simple way to test this hypothesis is to compare the gross changes 

in the low skill native population to the gross changes in the low skill TFB and undocumented 

immigrant populations for each of the four groups of states addressed in Table 4. Figure 2 below 

reports the changes in the low skill native, TFB, and undocumented immigrant populations for 

these four groups of states between 1994 and 2009. This figure is relatively crude, but reveals a 

significant effect over time. Excluding the states that have exhibited the greatest increases in the 

TFB population, the native low skill population decrease is greater than or equal to the 

immigrant population increase. This suggests that low skill natives may be becoming more 

educated and upgrading their skills—leaving a void in the low skill labor market for both 

documented and undocumented immigrants to fill.    

                                                
12 Skill upgrading occurs when natives increase their education levels and improve their human capital. When 
natives upgrade their skills, they usually exit the low skill labor market and enter a labor market that requires higher 
skills. When low skill natives upgrade their skills, they create a void of jobs that need to be filled by comparable 
workers. Low skill immigrants can fill this void if they are relatively substitutable to low skill natives. 
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FIGURE 2: CHANGES IN LOW SKILL NATIVE, TOTAL FOREIGN BORN AND 
UNDOCUMENTED IMMIGRANT POPULATIONS AS A PERCENT OF THE TOTAL 

POPULATION (1994-2009) 
 

 Although Figure 2 may present some evidence against displacement, it is relatively crude 

and does not present enough evidence to repudiate the negative effect discovered between 

immigrant concentrations and the native low skill LFPR.  Figure 2 alludes to another method 

emphasized by Slaughter and Hanson (2001) used to measure the effects of immigration and 

would require a lot more investigating to determine whether skill upgrading has allowed regions 

to absorb immigrant inflows. This method will not be elaborated on in this paper, but would be 

an interesting topic to address in the future.   
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SECTION 9: CONCLUSION 
 

This paper is unique because it is one of the first attempts to estimate the economic 

impact of undocumented immigration. Overall, there appears to be a significantly negative, but 

relatively minor, relationship between total foreign born immigrant concentrations and native 

low skill labor force participation rates. This relationship becomes insignificant when 

undocumented immigrants are omitted from the model, which is important because it suggests 

that undocumented immigrants play a vital role in this relationship. However, using confidence 

intervals show that the effects of undocumented immigration alone are not statistically 

distinguishable from the effects corresponding to the TFB population. Moreover, the conclusions 

made from the dual market approach are inconsistent because the undocumented estimates from 

generated from this paper do not produce similar results. The relationship captured using 

estimates from Passel (2009, 2010) may be exaggerated due to the linearizations this paper used 

to create an ample data set. In addition to undocumented immigrants, documented immigrants 

alone appear to have no statistically significant effect on native employment opportunities, which 

is also significant. Documented immigration is not as controversial as undocumented 

immigration, but the fact that this group does not appear to have an economic impact on low skill 

natives contains policy significance regarding the number of immigrants the US legally allows to 

enter its borders annually.  

To provide a more complete story on the effects of immigration, one possible extension 

to this model would be to analyze the isolated effects of both documented and undocumented 

immigration on native low skill wages. The evidence from Borjas (2006) is compelling enough 

to explore whether undocumented immigrants alone have a significant impact on native low skill 

income. The fact that the model in this paper can be used to measure the isolated effects of 
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documented and undocumented immigrant inflows may help determine whether either group of 

immigrants is contributing significantly to the adverse effects on native wages discovered by 

Borjas (2006).  

Although this paper presents several important conclusions on the effects of immigration, 

they must be taken with a word of caution because the model used to measure these effects has 

several shortcomings. To begin, this paper analyzes the effect of undocumented immigration at 

the state level. It is difficult to argue that a state can be classified as a better labor market region 

than a MSA because the space a state covers is much larger and the level of economic activity in 

a state is not as concentrated as a MSA. However, evidence from Borjas (2006) and the 

similarities between this paper and Johannsson and Weiler (2004) add a great deal of credibility 

to using a state level model. If MSA level data for both the total foreign born population and 

documented immigrant inflows become available, then it will be possible to test the economic 

impact on the undocumented population within a geographic space that is more economically 

concentrated. Additionally, the assumptions needed to estimate undocumented immigrant stock 

levels for years predating 1994, but carry over into the years that are relevant to this paper, affect 

the results. Every possible method was exhausted to make these estimates as accurate as 

possible. The fact that the estimates generated in this paper are similar to the ones created by 

Passel (2009; 2010) are encouraging and gives the assertions we make in this paper more 

credibility.  

In summary, this paper is one of the first attempts to answer controversial policy 

questions pertaining to undocumented immigration. This paper does not provide a clear enough 

answer to determine whether undocumented immigrants adversely affect native citizens. The 

data sources used to address this question are relatively crude and need to become more accurate 
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to reveal the true effects of undocumented immigration. However, this paper provides some of 

the best evidence available to answer whether undocumented immigrants affect natives. The fact 

that undocumented immigrants do not have a statistically significant impact on native citizen 

employment opportunities could be used to help answer whether undocumented immigration 

poses a major concern for the US economy. This relationship may not be strong, but hopefully it 

will be addressed more accurately once the surveying methods covering the undocumented 

population improve.  
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APPENDIX 1: UNDOCUMENTED POPULATION AT THE NATIONAL LEVEL13 
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13 Note: The two line trends presented in above have been generated by different sources. The Passel line was produced by data provided by Jeffrey Passel of the 
PEW Hispanic Center. The Schultz line was produced by data using a methodology presented in Section 3 of this paper. 
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APPENDIX 2: TOP 10 STATES WITH LARGEST INCREASES IN UNDOCUMENTED POPULATION LEVELS14 

                                                
14 Note: Data for the figure above was generated using estimates from Passel (2009; 2010).  These trends appear very linear in nature because linear imputations 
were used for the years Passel did not explicitly estimate.  
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APPENDIX 3: UNDOCUMENTED POPULATION IN BIX SIX STATES15 
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15 Note: Data for the figure above was generated using estimates from Passel (2009; 2010).  Linear imputations were used to illustrate these trends.  
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APPENDIX 4: COMPARING SCHULTZ AND PASSEL RESULTS16 

State Passel Schultz Passel Schultz Passel Schultz Passel Schultz Passel Schultz Passel Schultz
Alabama 5000 16845 25000 30652 60000 43234 110000 124333 100000 84602 120000 94361
Alaska 2500 8241 5000 2626 5000 15786 5000 2718 5000 3395 5000 15190
Arizona 90000 139540 300000 434708 450000 577484 500000 537956 500000 477748 400000 427326
Arkansas 5000 8947 30000 20763 45000 29080 55000 66726 60000 53418 55000 50041
California 1500000 2934896 2300000 3974024 2650000 4101116 2750000 3601622 2700000 3183527 2550000 3103187
Colorado 30000 51685 160000 257458 240000 237818 240000 199759 240000 193409 180000 202732
Connecticut 20000 136172 75000 57783 85000 76935 110000 129021 110000 50155 120000 128685
Deleware 5000 11096 15000 12780 25000 33295 30000 37493 30000 27018 25000 23404
Florida 240000 810187 575000 1207492 925000 1226035 1050000 1208949 1050000 987218 825000 926492
Georgia 35000 75720 250000 109539 425000 442597 475000 555899 475000 501092 425000 389850
Hawaii 5000 41064 25000 37418 25000 48698 30000 47304 35000 35662 40000 41038
Idaho 10000 12535 25000 38346 30000 46326 35000 30457 35000 36228 35000 23782
Illinois 200000 433411 475000 378762 350000 487202 500000 652128 450000 471789 525000 545598
Indiana 10000 40418 65000 48014 85000 64184 100000 95165 120000 72237 110000 62126
Iowa 5000 11438 25000 62161 55000 94686 55000 70472 55000 90890 75000 96431
Kansas 15000 22777 55000 83328 60000 49849 70000 59872 70000 61258 65000 36759
Kentucky 5000 13405 20000 52684 50000 62957 45000 35429 45000 59356 80000 119597
Louisiana 15000 18513 20000 26965 25000 48200 35000 1112 65000 6536 65000 45445
Maine 2500 15297 5000 0 5000 0 5000 0 5000 0 5000 0
Maryland 35000 148544 120000 170351 250000 366272 275000 311187 250000 332858 275000 347220
Massachusetts 55000 269265 150000 267444 200000 256283 190000 190378 190000 128613 160000 80295
Michigan 25000 181494 95000 187908 120000 161626 120000 23885 110000 120749 150000 134292
Minnesota 15000 33549 55000 106149 85000 176556 110000 136807 110000 106601 85000 62032
Mississippi 5000 7355 10000 4283 40000 45444 40000 33564 35000 38994 45000 22624
Missouri 10000 31378 30000 68915 40000 17600 45000 73614 45000 65593 55000 33627
Montana 2500 6713 5000 0 5000 0 5000 968 5000 0 5000 0
Nebraska 5000 11784 30000 21141 45000 41865 50000 54564 45000 34053 45000 48470
Nevada 25000 56107 140000 197901 190000 269291 240000 285245 230000 285065 190000 251290
New Hampshire 2500 18357 5000 12235 15000 8574 20000 25379 20000 20303 15000 19777
New Jersey 95000 477905 325000 390230 475000 636086 600000 748889 550000 660199 550000 702101
New Mexico 20000 33149 55000 54904 65000 121218 80000 116283 80000 114334 85000 101118
New York 350000 1413568 725000 1265094 675000 1204251 825000 1102894 925000 1163289 625000 532602
North Carolina 25000 54219 210000 198336 375000 388566 375000 372842 350000 306109 325000 358807
North Dakota 2500 2834 5000 0 5000 0 5000 0 5000 0 5000 0
Ohio 10000 121610 55000 67944 100000 94102 100000 103967 95000 99959 100000 35816
Oklahoma 15000 12967 50000 40749 60000 75408 55000 24571 55000 30802 75000 58643
Oregon 25000 57357 110000 138813 140000 143366 140000 183058 150000 166040 160000 163036
Pennsylvania 25000 156983 85000 0 150000 104695 140000 79197 140000 72384 160000 24928
Rhode Island 10000 43007 20000 7036 30000 46911 30000 50673 30000 45903 30000 31782
South Carolina 5000 21849 45000 11727 55000 50226 70000 61754 70000 113444 55000 68616
South Dakota 2500 2849 5000 975 5000 6887 5000 6518 5000 7952 5000 8572
Tennessee 10000 21993 50000 29728 130000 167588 160000 169581 150000 147962 140000 165669
Texas 450000 611847 1100000 1225954 1400000 1818686 1450000 1633593 1450000 1707264 1650000 1551354
Utah 15000 17455 65000 53218 95000 68481 120000 139103 110000 111770 110000 88069
Vermont 2500 5357 5000 2815 5000 0 5000 4148 5000 0 5000 0
Virginia 50000 149282 150000 214404 275000 296303 325000 363710 300000 349413 210000 184716
Washington 40000 154954 160000 86761 200000 238426 170000 265596 180000 215730 230000 279807
West Virginia 2500 5651 5000 2549 5000 0 5000 0 5000 0 5000 363
Wisconsin 10000 55079 50000 102168 100000 128988 90000 116467 85000 128046 100000 80195
Wyoming 2500 1958 5000 0 5000 1120 5000 2007 5000 0 5000 1259
Total 3547500 8988608 8370000 11765233 10935000 14620300 12050000 14136855 11935000 12968964 11360000 11769124

2008 20101990 2000 2005 2007

 
                                                
16 Note: Passel (2009) and (2010) presents most of his estimates using a confidence interval that represents the 
possible range of values the undocumented population could be for each state.  The values presented above are the 
median values of these confidence intervals. This is important to note because the majority of the results produced 
using the method in this paper fall within Passel’s range. The results from this paper appear to overstate the 
undocumented population level when compared to Passel’s median values, but may not overstate the undocumented 
population to a substantial degree. The majority of the Schultz estimates fall below the upper bound of Passel’s 
confidence intervals. 
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APPENDIX 5: GLS BASELINE RESULTS17 
 

 
 
 
 
 

                                                
17 Note: The symbols “%Δ” represent a percentage change. Additionally, the “Afr American, Nat Am, and Aspac” titles represent state level low skill labor force 
percentages of African Americans, Native Americans, and Asian or Pacific Islanders, respectively. “Cons” represents the constant for each regression. No 
elasticities have been calculated in the figure above. Only the coefficients for each independent variable are reported.  Additionally, the p-values reported for 
each model apply to the entire regression itself—not each variable individually.  

Model Type
Cons %Δ IMFR Sex Afr Am Am Ind Aspac %Δ GSP Cons %Δ IMFR Sex Afr Am Nat Am Aspac %Δ GSP

TFB 0.01792 0.00486 -0.10196 0.00285 -0.00892 0.03195 0.24507 0.21899 0.01342 -0.20200 -0.02695 -0.01726 -0.00702 -2.44423
Std Error (0.00606) (0.00214) (0.01389) (0.00916) (0.02370) (0.01866) (0.03606) (0.02286) (0.00851) (0.05074) (0.03655) (0.09196) (0.06420) (0.13374)
Z-Stat 2.96 2.27 -7.34 0.31 -0.38 1.71 6.8 9.58 1.58 -3.98 -0.74 -0.19 -0.11 -18.28
Prob > chi2 0 0

Schultz Documented 0.01795 0.00071 -0.10197 0.00401 -0.00863 0.03038 0.24849 0.21936 -0.00105 -0.20254 -0.02413 -0.01880 -0.01086 -2.43448
Std Error (0.00606) (0.00117) (0.01390) (0.00915) (0.02371) (0.01865) (0.03604) (0.02290) (0.00475) (0.05081) (0.03649) (0.09219) (0.06418) (0.13371)
Z-Stat 2.96 0.61 -7.34 0.44 -0.36 1.63 6.9 9.58 -0.22 -3.99 -0.66 -0.2 -0.17 -18.21
Prob > chi2 0 0

Passel Documented 0.01793 0.00116 -0.10192 0.00382 -0.00859 0.03067 0.24863 0.21924 0.00026 -0.20255 -0.02390 -0.01863 -0.01089 -2.43341
Std Error (0.00607) (0.00144) (0.01391) (0.00916) (0.02371) (0.01866) (0.03607) (0.02288) (0.00576) (0.05078) (0.03648) (0.09207) (0.06410) (0.13367)
Z-Stat 2.96 0.8 -7.33 0.42 -0.36 1.64 6.89 9.58 0.04 -3.99 -0.66 -0.2 -0.17 -18.2
Prob > chi2 0 0

Schultz Undocumented 0.01787 0.00181 -0.10166 0.00341 -0.00825 0.03067 0.24733 0.21825 0.01325 -0.19967 -0.02825 -0.01278 -0.00759 -2.44595
Std Error (0.00606) (0.00167) (0.01389) (0.00917) (0.02371) (0.01865) (0.03605) (0.02285) (0.00693) (0.05073) (0.03658) (0.09201) (0.06431) (0.13364)
Z-Stat 2.95 1.08 -7.32 0.37 -0.35 1.64 6.86 9.55 1.91 -3.94 -0.77 -0.14 -0.12 -18.3
Prob > chi2 0 0

Passel Undocumented 0.01763 0.00941 -0.10176 0.00223 -0.00788 0.03211 0.24271 0.21848 0.01023 -0.20127 -0.02555 -0.01543 -0.00958 -2.44013
Std Error (0.00605) (0.00248) (0.01386) (0.00916) (0.02364) (0.01864) (0.03601) (0.02287) (0.01026) (0.05077) (0.03655) (0.09203) (0.06415) (0.13382)
Z-Stat 2.91 3.8 -7.34 0.24 -0.33 1.72 6.74 9.55 1 -3.96 -0.7 -0.17 -0.15 -18.23
Prob > chi2 0 0

Dependent Variable: Labor Force Participation Rate (Expressed as %Δ LFPR) Dependent Variable: Unemployment Rate (Expressed as %Δ UR)
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APPENDIX 6: WLS BASELINE RESULTS18 
 

 

                                                
18 Note: The symbols “%Δ” represent a percentage change. Additionally, the “Afr American, Nat Am, and Aspac” titles represent state level low skill labor force 
percentages of African Americans, Native Americans, and Asian or Pacific Islanders, respectively. “Cons” represents the constant for each regression. No 
elasticities have been calculated in the figure above. Only the coefficients for each independent variable are reported.  Additionally, the p-values reported for 
each model apply to the entire regression itself—not each variable individually. 

Model Type
Cons %Δ IMFR Sex Afr Am Am Ind Aspac %Δ GSP Cons %Δ IMFR Sex Afr Am Nat Am Aspac %Δ GSP

TFB 0.01999 0.00468 -0.10316 -0.00012 -0.00901 0.04025 0.20849 0.19320 0.01900 -0.18229 -0.02695 -0.05539 -0.00042 -2.10634
Std Error (0.00745) (0.00211) (0.01704) (0.01189) (0.03039) (0.02348) (0.04150) (0.02927) (0.00833) (0.06539) (0.04996) (0.12122) (0.09005) (0.15823)
Z-Stat 2.68 2.22 -6.05 -0.01 -0.3 1.71 5.02 6.6 2.28 -2.79 -0.54 -0.46 0 -13.31
Prob > chi2 0 0

Schultz Documented 0.01997 0.00091 -0.10317 0.00110 -0.00865 0.03830 0.21226 0.19249 0.00001 -0.18051 -0.02272 -0.05884 -0.00804 -2.08777
Std Error (0.00745) (0.00114) (0.01706) (0.01188) (0.03041) (0.02346) (0.04148) (0.02931) (0.00461) (0.06547) (0.04993) (0.12138) (0.09004) (0.15821)
Z-Stat 2.68 0.8 -6.05 0.09 -0.28 1.63 5.12 6.57 0 -2.76 -0.45 -0.48 -0.09 -13.2
Prob > chi2 0 0

Passel Documented 0.02002 0.00038 -0.10318 0.00103 -0.00856 0.03814 0.21278 0.19252 0.00329 -0.18093 -0.02295 -0.05828 -0.00673 -2.08793
Std Error (0.00746) (0.00145) (0.01707) (0.01190) (0.03039) (0.02347) (0.04151) (0.02930) (0.00582) (0.06545) (0.04991) (0.12139) (0.08996) (0.15822)
Z-Stat 2.68 0.26 -6.04 0.09 -0.28 1.63 5.13 6.57 0.57 -2.76 -0.46 -0.48 -0.07 -13.2
Prob > chi2 0 0

Schultz Undocumented 0.01989 0.00091 -0.10284 0.00076 -0.00846 0.03818 0.21238 0.19134 0.01122 -0.17814 -0.02562 -0.05341 -0.00389 -2.09294
Std Error (0.00745) (0.00167) (0.01706) (0.01189) (0.03042) (0.02346) (0.04149) (0.02928) (0.00703) (0.06544) (0.05007) (0.12120) (0.09024) (0.15821)
Z-Stat 2.67 0.55 -6.03 0.06 -0.28 1.63 5.12 6.54 1.6 -2.72 -0.51 -0.44 -0.04 -13.23
Prob > chi2 0 0

Passel Undocumented 0.01978 0.00932 -0.10310 -0.00088 -0.00824 0.04085 0.20570 0.19180 0.01701 -0.17978 -0.02564 -0.05249 -0.00421 -2.10004
Std Error (0.00744) (0.00247) (0.01701) (0.01189) (0.03031) (0.02347) (0.04145) (0.02926) (0.01017) (0.06538) (0.04998) (0.12123) (0.09001) (0.15825)
Z-Stat 2.66 3.78 -6.06 -0.07 -0.27 1.74 4.96 6.55 1.67 -2.75 -0.51 -0.43 -0.05 -13.27
Prob > chi2 0 0

Dependent Variable: Labor Force Participation Rate (Expressed as %Δ LFPR) Dependent Variable: Unemployment Rate (Expressed as %Δ UR)
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APPENDIX 7: CONFIDENCE INTERVALS FOR GLS BASELINE LOW SKILL 
UNEMPLOYMENT RESULTS  

 

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

TFB IMFR Schultz
Documented

IMFR

Passel
Documented

IMFR

Schultz
Undocumented

IMFR

Passel
Undocumented

IMFR

Coefficient
Upper Bound
Lower Bound

 
 


