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ABSTRACT

USING LOCALLY OBSERVED SWARM BEHAVIORS TO INFER GLOBAL FEATURES

OF

HARSH ENVIRONMENTS

Robots in a swarm are programmed with individual behaviors but then interactions with the

environment and other robots produce more complex, emergent swarm behaviors. A partial differ-

ential equation (PDE) can be used to accurately quantify the distribution of robots throughout the

environment at any given time if the robots have simple individual behaviors and there are a finite

number of potential environments. A least mean square algorithm can then be used to compare

a given observation of the swarm distribution to the potential models to accurately identify the

environment being explored. This technique affirms that there is a correlation between the indi-

vidual robot behaviors, robot distribution, and the environment being explored. For more complex

behaviors and environments, there is no closed-form model for the emergent behavior but there is

still a correlation which can be used to infer one property if the other two are known. A simple,

single-layer neural network can replace the PDE and be trained to correlate local observations of

the robot distribution to the environment being explored. The neural network approach allows for

more sophisticated robot behaviors, more varied environments, and is robust to variations in en-

vironment type and number of robots. By replacing the neural network with a simulated human

rescuer who uses only locally observed velocity information to navigate a disaster scenario, the im-

pact of fundamental swarm properties can be systematically explored. Further, the baseline swarm

resilience can be quantified. Collectively, this development lays a foundation for using minimalist

swarms, where robots have simple motions and no communication, to achieve collective sensing

which can be leveraged in a variety of applications where no other robotic solutions currently exist.
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Chapter 1

Introduction

Robots have long captured the human imagination. From ancient mythology to science fiction

and modern pop culture, many people have come to envision robots as highly intelligent or super

strong human assistants. Indeed, the term “robot” was first introduced in a 1920 play by Czech

writer Karel C̆apek to describe a class of artificial human workers in his futuristic play “R.U.R.”.

It was a modification of the Slavic word “robota” which translated to forced laborer and was used

to describe the indentured peasant working class of that time [1].

Today’s robots have expanded beyond C̆apek’s early vision in some ways as they can be found

assisting people in a much wider range of domains from medical surgeries to self-driving vehicles.

On the other hand, fundamental challenges still limit the versatility of robots. In particular, one

important topic of interest in the robotics community which underlines many other applications

is the navigation of harsh environments. Collapsed buildings, old mines, and distant planets are

all dangerous environments for a human to explore but the rough, unpredictable terrain also makes

these locations extremely challenging for robots. One significant example is the Fukushima nuclear

reactor site. At least seven robots failed in 2015 and were abandoned in the reactors [2]. These

robots were often tethered with communication cables and directed by a human driver yet were

still unable to safely navigate the terrain.

In response to the 2011 disaster at Fukushima, the Defense Advanced Research Projects Agency

(DARPA) created the DARPA Robotics Challenge (DRC) and hosted the first trial in 2013 [3].

DARPA recognized both the danger of disaster sites for human aid workers as well as the short-

comings of current robotics technology. The DRC was designed to incentivize advancements in

robot disaster response by presenting an obstacle course of potential disaster scenarios and offer-

ing a $3.5 million prize to the best robot design. During the challenge, robots needed to complete

comparatively simple challenges like climb a small set of steps, walk across cement blocks, ro-

tate a valve, open a door, etc. The first trials were held in 2013 and the finals were held in 2015.
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Although two winning teams were ultimately crowned, the course proved too difficult for many

of the challengers. Some robots simply fell over when attempting to climb a stair. Others ended

up receiving incorrect sensor input and collapsing. The winning team with the fastest time ended

up manually programming commands for every centimeter of the course into the robot and still

required an agonizing 45 minutes to finish. Suffice to say, the approach is not a reliable solution in

real disaster scenarios where the environment is not known.

Fukushima and the DRC demonstrate the need for robots to navigate or explore rough terrain

but also the limitations of current disaster robots. To improve disaster robots, many researchers

tend to focus on developing increasingly sophisticated robots but these robots may not be the best

solution. A single robot can only explore so much terrain in a given amount of time whereas a team

of robots can explore a much larger area. Similarly, a single robot is not very robust. Sophisticated

robots often rely on complex localization strategies which fail in GPS-denied environments or

when communication fails. Single robots for disaster scenarios also depend on a wide range of

expensive sensors to ensure proper operation. When those sensors start to malfunction, the robot

fails as was often the case in Fukushima. Adding components to the single robot necessarily

increases the cost of the robot, the power requirements, and also the overall size which can make

maneuvering in an unstable environment more treacherous. Further, if that single robot fails, the

entire mission fails. By contrast, if one robot in a team of ten fails, the remaining robots can

continue the mission. These observations are the principal motivation for using a large team or

swarm of inexpensive robots to explore unknown, potentially harsh environments.

Swarms are a relatively new focus area within the robotics community but take inspiration from

well-observed biological systems. Like their biologic counterparts, robots in a swarm are governed

by local rules but frequent interactions with other robots and the environment generate a more

complex, emergent behavior. Sophisticated foraging strategies and complex colony construction

by ants reveal just a few of the potential advantages of emergent behavior because these actions are

accomplished in a distributed and robust manner. Similar emergent behaviors in artificial systems

will be extremely useful in many exploration tasks, particularly in harsh environments with a high
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probability of robot failure. Despite the many important applications, research in robotic swarms

has not yet matured to the point of reliable, real-world deployment.

One of the biggest challenges in swarm design is correlating individual robot behaviors with

the collective behavior of the swarm which emerges over time for a given environment. In many

cases, the individual robot behaviors are known, the environment being explored is unknown, and

only a subset of the emergent behavior can be observed. Despite the limited information, local

observations of the emergent swarm behavior can be used to identify features of the environment.

For example, consider rafting a river. Each water particle is like a member of the river “swarm”

while the flow of the river is the emergent behavior as water particles interact with each other

and obstacles in the river. Observing the upstream flow allows an experienced person to predict

downstream characteristics of the river such as rocks or other obstructions. As with the river,

emergent behavior in robotic swarms can be observed from physical implementations or simulated

with computer models but it requires the equivalent of experience to properly correlate observations

of the emergent behavior with the desired environmental features.

This dissertation presents foundational work in using observations of emergent behavior in

a simulated swarm of robots to predict environmental features. The robustness of a minimalist

swarm is also quantified to establish a baseline metric for potential disaster rescue scenario ap-

plications. Chapter 2 presents our first work where partial differential equations were used to

model the swarm distribution in simple 1D and 2D environments. We verified an observation of

the swarm distribution in a central portion of the environment could be used to identify the entire

environment by using a least squared error between the observed density and the set of potential

PDE models. We extend the correlation between emergent behavior and unknown environments

in Chapter 3. In Chapter 3 we train a single-layer, soft max neural network to predict which wall

most likely contains a door given the central distribution of robots. The neural network increases

the robustness of our methodology - allowing for variation in the simulated door placement with

respect to the training data as well as a drastic 90% loss in the number of robots exploring the

environment.

3



With a partial demonstration of swarm robustness verified through use of a simple neural net-

work, Chapter 4 extends the robustness analysis. We quantify the impact of local swarm variables

on the utility of the emergent behavior for a simulated rescuer attempting to locate a lone survivor

in an unknown disaster environment. The simulated rescuer uses a minimalist interaction by only

relying on the locally observable emergent swarm velocity and yet reliably locates the survivor

despite significant changes in initial swarm size, environment shape, and local swarm parameters.

The swarm can again undergo catastrophic failure but the distributed nature of the swarm allows

the rescuer to successfully locate the survivor when as few as 12 of the original 300 robots are still

functional. With these promising results, Chapter 5 summarizes the demonstrated advantages of

swarms from our work and highlights important areas for future study to help swarms bridge the

gap from simulation to real-world deployment.
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Chapter 2

Modelling Emergent Swarm Behavior Using

Continuum Limits for Environmental Mapping 1

2.1 Summary

Robotic swarms are comprised of simple, individual robots but can collectively accomplish

complex tasks through frequent interactions with other robots and the environment. One pertinent

objective for swarms is mapping unknown, potentially hazardous environments. We show that even

without communication or localization, the emergent behavior of a swarm observed at one area can

be used to infer the presence of obstacles in an unknown environment. The main body of this work

focuses on how partial differential equation (PDE) models of emergent swarm behavior can be

derived by applying continuum limits to approximate discrete-time rules for individual robots in

continuous-time. We illustrate our approach by demonstrating how obstacles can be located by

comparing swarm observations to a base library of PDE models. As supported in this work, the

PDE models accurately capture identifying characteristics of the emergent behavior and are solved

in a few seconds allowing for fast feature identification.

2.2 Introduction

Swarms are a relatively new focus area within the robotics community but take inspiration

from well-observed biological systems. Like a colony of ants, a robotic swarm is comprised of

simple individual robots that can collectively accomplish complex tasks via frequent interactions

with other robots and the environment [4]. Multi-robot systems provide an increased level of re-

dundancy and may outperform individual, more sophisticated robots by working cooperatively to

accomplish a given task [5]. Leveraging the number of robots, swarms have a variety of applica-

1Published in Proceedings of the IEEE International Conference on Control and Automation, June 2018, pp.

86–93.
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tions in surveillance, medical treatment, and exploration [6]. Swarms have additional advantages in

exploration; very simple, inexpensive robots can quickly reveal important features of an unknown

environment, as shown in this paper.

Even in a worst-case scenario where robots within a swarm are reduced to random motion with

no communication, their distribution can reveal important environmental information. The shape

of an environment influences how robots are dispersed through the domain so observing the den-

sity of robots at one location can provide information about features throughout the environment,

particularly the presence of obstacles. By way of analogy, the position of downstream blockages

in a river can be inferred by observing the flow of water upstream. The identification requires no

communication between robots and only local, rather than global, knowledge—making the system

fully scalable. Identifying features becomes a matter of developing appropriate models and match-

ing observed swarm behavior with the corresponding model. During the identification process, the

emergent behavior of a swarm is more informative than individual behaviors, just as the river flow

is more significant than individual water droplets.

For physical implementations, individual robots are programmed so local behaviors are known.

The emergent behavior can be observed from a physical implementation or modeled through simu-

lation but both methods are extremely time consuming, especially as swarm and environment size

increase. In this paper, we propose a methodology to map discrete-time, probabilistic behaviors

of individual robots to a partial differential equation (PDE) model of the emergent behavior. The

PDE model is quickly solved to determine the emergent behavior at any desired time and position

and thus allows for fast feature identification in an unknown environment.

This paper is organized as follows. In Section 3.3, a brief summary of related work is presented

before we introduce the continuum limit methodology in Section 2.4. A detailed derivation of

the PDE model for a one-dimensional (1D) random walk scenario is presented first to provide a

theoretical foundation. The 1D model also allows for more intuitive visualization and validation

of the proposed methodology. We then apply the same methodology to a two-dimensional (2D)

environment. Validation of both 1D and 2D models is given in Section 2.5. In Section 2.6 we

6



provide a preview into how the PDE models can be used to infer the boundary-types of a simulated

environment. The preview includes a illustrative simulated scenario. Finally, we conclude the

work in Section 3.7 and present some directions for future work.

2.3 Related Work

A detailed review of early research in swarm robotics is provided by Navarro and Matía [4]

where they also present important characteristics of swarm robotics. Citing Şahine [7], Navarro

and Matía consider a swarm to be comprised of many autonomous robots with only local sensing

capabilities. Another key feature is scalability of the system. The proposed methodology herein

encompasses the swarm definition by assuming robots with no localization or communication.

Many swarm researchers have focused on designing control strategies to produce a desired

emergent behavior. Strategies include the use of event-triggered controllers [8], chemical reaction

models [9], [10], and potential fields [11]. These strategies all focus on developing rules for indi-

vidual robots, in essence taking a top-down approach by dictating local rules to produce a desired

final state.

Some researchers have linked partial differential equation (PDE) models to emergent behavior

of the swarm. Elamvazhuthi and Berman [12] use a set of advection-diffusion-reaction PDEs

to model swarm behavior but still take a top-down approach. The parameters of the PDE are

optimized to achieve a desired emergent behavior and then the individual robots behave according

to the tuned PDE.

This paper proposes a reverse approach. Rather than imposing a high-level control strategy and

influencing individual robot actions to generate a desired distribution, we propose a methodology to

map individual robot actions to the natural emergent behavior generated in varying environments.

Berger et al. [13] similarly take a bottom-up approach to swarm modeling by proposing the use

of compressive subspace learning to identify emergent behavior. The subspace learning still lacks

a direct correlation between individual robot actions and the emergent behavior. It also does not

provide information about environmental features and requires extensive computations.
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The methodology proposed herein provides a direct mapping between local and emergent be-

haviors for varying environments. A PDE model is obtained based on local behavior rules. The

boundary conditions of the PDE model encode environmental features—namely open-space or ob-

struction. The model derivation is based on the work of Zhang et al. [14] who apply continuum

limits to derive PDE models for large-scale wireless networks.

2.4 Continuum Limit Methodology

2.4.1 Derivation of 1D Random Walk Model

To fully illustrate the proposed methodology, we start with a one-dimensional (1D) environ-

ment where robots can only move left or right. In this scenario, the robots are performing a random

walk. The limited capability of the robot model demonstrates how even simple robots can be used

to map unknown environments and represents a worse-case scenario in the spectrum of robot ca-

pabilities. The environment itself is composed of N bins evenly distributed in a one-dimensional

line, D = (0, 1), where N specifies the desired spatial resolution of the environment. Two addi-

tional bins, denoted n = 0 and n = N + 1 for the left and right-most bins respectively, map to

the boundaries of the interval. There are M robots distributed in the N interior bins. At every

discrete-time step, each robot randomly chooses to move left or right one bin with probability PL

or (1 − PL) respectively. As a result, the number of robots in each bin, the bin occupancy, varies

over time according to a random process.

Let µn,k be the occupancy of bin n at time k. We wish to characterize the dynamics of µn,k

over time. The value of µn,k+1 depends on the number of robots moving from adjacent bins and

hence is a random function of µn−1,k and µn+1,k. To precisely characterize the evolution of bin

occupancies over time, we use the method in [14] and define ~µk = [µ1,k, . . . , µN,k] as the vector

of bin occupancies at time k. Assume that for each robot, the choice to move left or right is

independent over robots, time, and also of ~µk. Taking the conditional expectation of µn,k+1 given

~µk, we obtain

E[µn,k+1|~µk] = PLµn+1,k + (1− PL)µn−1,k. (2.1)

8



The right-hand side of (2.1) has the form f(~µk). From this expression, we can write the mean-field

equation, similar to the process in [14],

~mk+1 = f(~mk), (2.2)

the nth component of which is

mn,k+1 = PLmn+1,k + (1− PL)mn−1,k. (2.3)

For simplicity, it is assumed robots move left or right with equal probability so

PL =
1

2
, (2.4)

and the mean occupancy of bin n at time k + 1 reduces to

mn,k+1 =
1

2
[mn+1,k +mn−1,k]. (2.5)

The mean change in the occupancy of bin n between discrete-time steps k and k + 1 can be

expressed as

∆mn =
1

2
[mn+1,k +mn−1,k]−mn,k. (2.6)

Equation (2.6) represents the discrete-time change in mean bin occupancy for interior bins along a

one-dimensional line. To map the discrete-time model to continuous time, the following substitu-

tions are made:

n± 1 → s±∆s

k + 1 → t+∆t.
(2.7)

The continuous-time model for a one-dimensional random walk becomes

∆m(s, t) =
1

2
[m(s+∆s, t) +m(s−∆s, t)]−m(s, t). (2.8)
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The continuous-time model can be represented by a partial differential equation by first performing

a second-order Taylor Series expansion where

m(s±∆s, t) = m(s, t)± ∂m(s,t)
∂s

∆s

+1
2
∂2m(s,t)

∂s2
∆s2 + o(∆s2).

(2.9)

Substituting (2.9) into (2.8) and performing algebraic simplifications, the continuous-time model

then becomes

m(s, t+∆t)−m(s, t) =
1

2

∂2m(s, t)

∂s2
∆s2 + o(∆s2). (2.10)

Now let ∆t = ∆s2 and divide both sides of (2.10) accordingly to reach

m(s, t+∆t)−m(s, t)

∆t
=

1

2

∂2m(s, t)

∂s2
+

o(∆s2)

∆s2
. (2.11)

Taking the limit as ∆t → 0, the continuous-time model converges to the standard heat equation

∂m(s, t)

∂t
=

1

2

∂2m(s, t)

∂s2
(2.12)

for interior bins. The interior model of (2.12) becomes increasingly accurate as the variables of

interest, namely environment size (N ) and number of robots (M ), approach infinity (see [14]).

To fully define the PDE solution, it is necessary to determine boundary conditions and define

corresponding initial conditions.

Boundary Conditions for 1D Random Walk

Equation (2.12) describes the one-dimensional random walk scenario for internal bins, n ∈

[1, N ], in continuous time but does not address the boundary conditions which are represented in

discrete time by bins 0 and N + 1. To derive continuous-time rules for the boundary bins, it is

important to note that all internal bins must follow the rule described by (2.5). Let general bin a

represent a boundary bin, b the adjacent internal bin, and c the internal bin adjacent to b.
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Two different types of boundaries are considered: sinks and walls, roughly corresponding to

open exits and obstacles, respectively. When a robot chooses to move into bin a where a is a sink,

the robot is removed from the system. The discrete-time model for the population of bin b at time

k + 1 is therefore

mb,k+1 =
1

2
mc,k (2.13)

but the internal rule requires

mb,k+1 =
1

2
ma,k +

1

2
mc,k. (2.14)

The two equations can both be satisfied by choosing

ma,k = 0 ∀k. (2.15)

Physically, the discrete rule means the sink boundary bin should have an occupancy of zero at every

discrete-time step which agrees with the initial intent of the model–robots that enter a sink are

instantly removed. Extending the discrete rule into continuous time results in a Dirichlet boundary

condition,

m(a, t) = 0 ∀t, (2.16)

for the PDE in (2.12).

Discrete- and continuous-time rules for a wall boundary are a bit more complicated but follow

the same general process. A robot that chooses move ‘into’ a wall boundary actually stays in its

current bin for that time step. The population of bin b at time k + 1 is therefore represented in

discrete time as

mb,k+1 =
1

2
mb,k +

1

2
mc,k (2.17)

Comparing to (2.14), both conditions are satisifed by choosing

ma,k = mb,k ∀k. (2.18)
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Noting that bin b is adjacent to bin a and using the substitutions from (2.7), the continuous-time

rule becomes

m(a, t)−m(a−∆s, t) = 0 ∀t. (2.19)

Dividing both sides by ∆s and taking the limit as ∆s → 0, a Neumann boundary condition,

∂m(a, t)

∂s
= 0 ∀t, (2.20)

is obtained for the PDE model.

Initial Conditions for 1D Random Walk Scenario

With the internal PDE and boundary conditions determined, only the initial conditions are

needed to fully define the PDE model. Assume that M robots are initially distributed in the N

internal bins so bin j has occupancy determined by

mj+1 =
π ∗M

2(N + 1)
sin(

π ∗ j

N + 1
), j = 0, 1, . . . , N − 1 (2.21)

where the actual population is rounded to the nearest integer. This initial distribution approxi-

mating a half sine wave was chosen as a simple example to validate the PDE model but could

correspond to a physical system where the majority of robots are inserted far away from potential

obstacles (boundaries in this illustration). To map the occupancy of robots in bins 1 → N to the

continuous time domain, D = (0, 1), the PDE should have initial condition

m(s, 0) = sin(πs). (2.22)

2.4.2 Extension of Methodology to 2D Random Walk

Though the 1D case illustrates our proposed methodology, 2D environments are a more realistic

representation for our domain of interest. When moving from 1D to 2D, the same general steps

are applied. Now N bins are evenly distributed in a rectangle, RNx×Ny where Nx = {1, 2, . . . , X}
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and Ny = {1, 2, . . . , Y }, in order to designate the desired spatial resolution. Two additional bins

are required for each row, denoted as 0 and X + 1, and column, 0 and Y + 1, to define the interval

boundaries. At every discrete-time step, each of the M robots now randomly decides to move

either up, right, down, or left one bin with probabilities PU , PR, PD, or PL respectively. To be a

proper probability model, an additional constraint where the sum of the probabilities for each of

the four different moves is equal to one applies. The mean occupancy, m, of interior bin [i, j] at

time k+1 is once again the sum of robots in neighboring bins which choose to move into bin [i, j],

mathematically expressed as

m[i,j],k+1 = PUm[i,j−1],k + PRm[i−1,j],k+

PDm[i,j+1],k + PLm[i+1,j],k.
(2.23)

For simplicity, we assume that the robots move to one of the four available bins with equal proba-

bility:

PU = PR = PD = PL =
1

4
. (2.24)

Using a similar methodology as the 1D case, the mean occupancy of bin [i, j] at time k+1 therefore

reduces to

m[i,j],k+1 = 1
4
(m[i,j−1],k +m[i−1,j],k+

m[i,j+1],k +m[i+1,j],k).
(2.25)

The change in the mean occupancy of bin [i, j] between time k and k + 1 can be expressed as

∆m[i,j] = 1
4
(m[i,j−1],k +m[i−1,j],k +m[i,j+1],k+

m[i+1,j],k)−m[i,j],k.
(2.26)

Equation (2.26) represents the mean discrete-time change in bin population for interior bins in

a two-dimensional rectangle. To map the discrete-time model to continuous time, the following

substitutions are made much as in the 1D case:
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[i± 1, j ± 1] → [x±∆x, y ±∆y]

k + 1 → t+∆t.
(2.27)

The continuous-time model for the internal, two-dimensional random walk becomes

m([x, y], t+∆t)−m([x, y], t) =

1
4
m([x, y −∆y], t) + 1

4
m([x−∆x, y], t)+

1
4
m([x, y +∆y], t) + 1

4
m([x+∆x, y], t)−

m([x, y], t).

(2.28)

By using a second-order Taylor Series expansion to approximate the continuous-time model of

(2.28), performing algebraic simplification, defining ∆t = ∆x2 and ∆t = ∆y2 so both sides of the

equation can be divided appropriately, and taking the limit as ∆t → 0, the continuous-time model

converges to the standard multi-dimensional heat equation

∂m(~x, t)

∂t
=

1

4
∇2m(~x, t) (2.29)

where in this scenario

~x = [x, y] ∈ (0, 1)2. (2.30)

Boundary Conditions in 2D

As for the 1D scenario, the key to boundary conditions is ensuring all internal bins follow the

same rule as described by (2.25). The discrete-rule is satisfied for sink boundaries by again impos-

ing a Dirichlet boundary condition. Similarly, the discrete-rule is satisfied for a wall boundary by

imposing a modified Neumann boundary condition,

~d · ∇xm(a, t) = 0 ∀t, (2.31)

where ~d represents the direction of the boundary bin with respect to the internal bin of interest.
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Initial Conditions in 2D

For the 2D random walk simulation, M robots are initially distributed in the N internal bins so

bin [i, j] has occupancy determined by

mi,j = M π
2(Y+1)

sin( π∗i
Y+1

) π
2(X+1)

sin( π∗j
X+1

),

i = 0, 1, . . . , Y − 1, j = 0, 1, . . . , X − 1

(2.32)

with mi,j rounded to the nearest integer. Mapping the discrete bin occupancy to continuous time

as in the 1D scenario reveals the PDE should have initial conditions:

m([i, j], 0) = sin(π ∗ i) sin(π ∗ j). (2.33)

2.5 Validation of Partial Differential Equation Models for Emer-

gent Behavior

2.5.1 Overview

To evaluate the effectiveness of the proposed methodology for deriving a PDE model of emer-

gent swarm behavior, scripts were written in MATLAB to simulate a swarm of robots exploring an

environment using simple random walk motion. Robots are distributed in finite-sized bins evenly

spaced throughout the environment. During every discrete-time step, each robot moves to a neigh-

boring bin with appropriate probability. The MATLAB-based simulation records the population of

all bins for each discrete-time step. Similarly, the corresponding PDE model is solved to produce

a solution showing the time evolution of robot occupancy throughout the environment.

2.5.2 Scaling for 1D Random Walk Scenarios

We again start with the 1D model for validation before expanding into 2D. To simulate the 1D

random walk, M robots are distributed across N bins according to the initial conditions of (2.21).
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The corresponding internal PDE model is given by (2.12). Appropriate scaling factors are required

for time, space, and population to accurately compare the simulation and corresponding PDE.

For the 1D line, a total of N + 2 bins are used in the simulation to account for boundary bins.

Each bin is represented by its mid-point. The left-most midpoint corresponds to the left boundary

of the PDE, namely 0. Similarly, the midpoint of the right-most bin is associated with the right

PDE boundary. Hence, to correlate the simulation which has a variable number of bins to the fixed

(0, 1) PDE interval, the simulation is scaled by

∆s =
1

N + 1
. (2.34)

Increasing N improves the spatial resolution because more bins are mapped to the fixed (0, 1)

interval. With the spatial scaling specified by the user, temporal scaling is determined by ∆t = ∆s2

as previously described.

The final scaling is to ensure comparable bin occupancies. The simulation is normalized by

dividing the occupancy of each bin by the total number of robots in a simulation - namely M - so

from (2.21) has a maximum possible value of

zmax =
π

2(N + 1)
. (2.35)

The PDE is initialized according to (2.22) which has a maximum value of one so for comparison

the PDE model must be multiplied by zmax as well. With these scaling factors, a simulation can be

compared to its associated PDE model to produce nearly identical bin populations with improved

accuracy for increased values of M and N as supported in the following section.

2.5.3 Results of 1D Random Walk

To evaluate the effectiveness of the derived PDE model, the occupancy of each bin was plotted

per time step and compared to the corresponding PDE solution at equivalent time samples. Both

techniques generate a surface plot, showing the bin occupancy at every position for each time,
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so slices of each surface were taken at equivalent times for better comparison. Using the scaling

described in the previous section, the simulation and PDE generate very similar results. The time

required to generate simulation results depends on the number of robots and the number of bins

whereas the PDE solution is independent of both factors and was consistently solved in less than

0.8 seconds.

Running a simulation with sink boundaries at both ends to represent an obstacle-free environ-

ment and using N = 10 bins with M ≈ 10, 000 robots results in the expected behavior for both

the PDE model and simulation as shown in Fig. 2.1. Even with this comparatively low resolution

environment, the simulation required more than 21 times the computation time of the PDE.
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Figure 2.1: Comparison of spatial occupancies for a 1D environment at fixed time intervals for the (a) PDE

model and (b) discrete, 10-bin simulation with two sink boundaries.

Introducing a wall boundary at bin n = N + 1 to represent an obstacle causes a build-up in

the occupancy of the adjacent bin throughout the simulation though the sink boundary allows for a

steady decrease in bin occupancy as shown in Fig. 2.2. A slight difference in occupancy at the wall

boundary between the simulation and PDE is the result of the low number of bins and the scaling

of (2.34). In the simulation, robots only occupy N bins but the PDE necessarily considers N + 1

bins. As N → ∞, the difference becomes negligible and even with N = 10 is minor.
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Figure 2.2: Comparison of spatial occupancies for a 1D environment at fixed times for the (a) PDE model

and (b) discrete, 10-bin simulation for a left sink and right wall boundary.

When both boundaries become obstructed, denoted as wall boundaries, the difference between

the PDE and simulation becomes more pronounced because the steady-state solution is non-zero.

With two wall boundaries, robots cannot ‘escape’ the simulation so instead approach a uniform

distribution. A uniform distribution for the simulation results in a mean bin occupancy of 0.1

because N = 10 bins are available. By contrast, the PDE necessarily settles to 1/(N + 1) or

approximately 0.09, an artifact of the continuum limit mapping. As shown in Fig. 2.3, the PDE

model nonetheless presents a distinguishable distribution when compared to the other boundary

scenarios.

The overall behavior between the actual simulation and the PDE model for the double wall

scenario becomes increasingly similar as the number of bins is increased. Using N = 50 increases

the spatial resolution of the simulation and decreases the impact of the N + 1 artifact; hence, a

closer correlation between the emergent behavior of the swarm and the PDE model is observed.

The error between the PDE model and emergent behavior, averaged over ten simulation runs, is

presented in Fig. 2.4 for the scenario with N = 10 as the solid lines and N = 50 as the dashed

lines at three different sample times. Each 10-bin simulation required less than 47 seconds to
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Figure 2.3: Comparison of spatial occupancies for a 1D environment at fixed time intervals for the (a) PDE

model and (b) discrete, 10-bin simulation with two wall boundaries.

run while the 50-bin simulations each took over 30 minutes. The PDE in both scenarios required

approximately 7 seconds to complete.
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Figure 2.4: Comparison of error between the PDE model and emergent behavior in simulated 10-bin (solid

line) and 50-bin (dashed line) environments for double wall boundary conditions.

Although increasing the spatial resolution improves the model accuracy, a resolution of N =

10 bins was used for all three 1D scenarios. This chosen resolution balanced simulation time

and model accuracy. Figure 2.5 shows the error between the robot densities for the simulation

and PDE model in a 1D environment with double sink boundaries as the number of robots and
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the environment resolution are systematically increased. The model accuracy improves as both

variables increase but the amount of improvement decreases after N ≈ 10 bins. It is further worth

noting the significant difference in generation time: increasing the resolution from N = 10 to

N = 30 internal bins increased the run-time from 14 seconds to over 15 minutes. Due to the long

simulation time required for higher environment resolution and the evidence from Fig. 2.5 showing

diminishing improvement in accuracy, the subsequent work maintains smaller N to focus on the

effectiveness of the PDE models.
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Figure 2.5: The PDE model for a 1D, double sink environment becomes increasingly accurate as the number

of bins and number of agents increase.

2.5.4 Evaluation of 2D Model

With the 1D models validated, we again apply a similar strategy to investigate the more repre-

sentative 2D models. Similar scaling is applied to the 2D PDE model and simulation to compare

both techniques graphically. With N bins now distributed in a 2D configuration, time samples of

robot distribution are surface plots rather than lines and a greater combination of boundary con-

ditions exist. Systematically varying the boundary conditions for a 10 × 10 bin environment with

M ≈ 100, 000 confirmed that the PDE model again effectively captured the emergent behavior

with solutions obtained in seconds rather than minutes or even hours.
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As an illustrative example, Fig. 2.6 shows the bin occupancies for a double wall, double sink

boundary scenario. Such a scenario could represent a room corner. The PDE model captures the

overall shape of the emergent behavior with a slightly lower magnitude at the wall boundaries–a

discrepancy once again caused by the low bin count.
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Figure 2.6: PDE solution and simulation at one time sample with two wall boundaries and two sink bound-

aries.

2.6 Environmental Mapping from PDE Model

2.6.1 Simple Illustrative Use Case

Thus far, we have shown that PDE models derived from individual random walk behavior

of robots using a continuum limit methodology reasonably capture the emergent behavior of a

robotic swarm in varying environments. The PDE model is increasingly accurate at modeling

the distribution of robots as the simulation resolution increases but the solution is significantly

faster through the PDE. In this section, we will show how the PDE models can be used to infer

environmental boundary conditions very quickly, but first we propose a relevant physical example.

Assume you are in a mine tunnel that has recently experienced a partial collapse. Two exits,

either going left or right, are in the tunnel. You no longer know the state of either exit as one
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or both may now be blocked. Rather than expend energy searching both directions, you deploy a

swarm of robots. After some time you see how many robots are near you and from that observation

are able to determine the state of both potential exits.

Many challenges need to be addressed before the proposed scenario is physically realizable,

but this work lays a promising theoretical foundation. PDE models for each potential scenario can

be quickly generated and the observed robot occupancy in the middle can be compared to each

PDE to find the nearest model, as demonstrated next.

2.6.2 Boundary Identification for 1D Environment

Three different boundary condition pairs were considered for the 1D environment: double

sink, double wall, and mixed. Using M ≈ 100, 000, N = 10, and an initial distribution placing

the majority of robots in bins furthest away from the boundaries, only a few iterations (time steps)

were required before the simulations revealed a distinguishable distribution of robots throughout

the environment. The associated PDE models also captured the unique distribution but much more

quickly.

By observing the number of robots in a central bin (furthest from the boundaries) and com-

paring the occupancy to each of the three PDE models, it is possible to use a least-squares error

to determine which model is most similar to the observed behavior and therefore determine the

boundary conditions. To demonstrate the effectiveness of this simple approach, a simulation for

each boundary condition pair was executed in MATLAB with the middle bin occupancy compared

to the three potential PDE models. As shown in Fig. 2.7, the simulation consistently and reliably

converged to the appropriate model within 15 time steps.

Observing the middle bin is the worst-case scenario because it is furthest from the discriminat-

ing features and would be ineffective in determining whether the wall was to the ‘left’ or ‘right’ in

the case of the sink and wall boundary scenario. Nonetheless, Fig. 2.7 demonstrates the potential of

using the proposed continuum limit methodology to develop environmental models for quick iden-

tification. The presence or absence of an obstacle was determined reliably after simulated robots
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Figure 2.7: Convergence of central bin occupancy for 10-bin simulated environment to corresponding PDE

model reliably occurs in 15 discrete-time steps.

within the swarm moved 15 times in a worse-case scenario where communication was absent and

the robots were reduced to random movements.

2.6.3 Doorway Detection in 2D Environment

Looking toward physical implementations, a 2D environment is more common but the same

general methodology can be applied. Consider an office room with no light and a single doorway. It

may be impossible to identify where the doorway is after a partial building collapse and extremely

dangerous for survivors in the room to search for the door. A safer option may be to use a swarm

of robots to safely locate the exit.

To demonstrate the feasibility of this illustrative scenario, a simulation and corresponding PDE

models were developed using the presented methodology. The simulation consisted of a 10 × 10

bin interior environment. Additional boundary bins were placed around the environment, all cor-

responding to walls except for four consecutive, central bins in the ‘north’ wall that were modeled

by sinks to represent the available doorway. Four separate PDE models were developed–all iden-

tical for the internal model but with varying boundary conditions to represent a central doorway in

either the north, east, south, or west wall.

The bin occupancy for four central bins in the simulation was compared to corresponding points

in each PDE model to create a 4 × 1 difference vector. The norm of the difference vector, hereby
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referred to as the error, for each PDE model was averaged over ten simulations. The averaged error

was then plotted at each time step to show the proximity of the simulation to each of the four PDE

models over time. Results are shown in Fig. 2.8. When M ≈ 104, a statistical discernment exists

between the error for each PDE model. Increasing the number of robots by an order of magnitude

clarifies the separation of the error between the models with the north model having the lowest

error which is encouraging as it matches the simulation. Further increasing the number of robots

refined the separation between models.
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(a) Simulation with M ≈ 104
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(b) Simulation with M ≈ 105
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(c) Simulation with M ≈ 106

0 10 20 30 40 50 60

Iterations

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ag

ni
tu

de
 o

f E
rr

or

×10-4 Error Between Simulation and PDE Model

North
East
South
West

(d) Simulation with M ≈ 107

Figure 2.8: Error between the central observation area for a 10× 10 simulated environment with a four-bin

doorway in the north wall and each of the four PDE models for doorways in the north, east, south, and west

walls.
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It is important to not misconstrue the data from Fig. 2.8. Identifying which of the four walls

contains the single doorway does not require M ≈ 105 robots nor are error plots the desired

method for environment detection. We show these plots to illustrate the convergence properties of

the PDE model and to support the theoretical basis of the proposed methodology. With M ≈ 104

or fewer robots, see Fig. 2.8(a), there is already a significant difference in the statistical properties

associated with the four possible environments. In the following section, we will show how this

statistical difference can be physically visualized.

Nonetheless, Fig. 2.8 supports the use of PDE models in place of simulations for determining

emergent swarm behavior and using the resulting robot density to identify environmental features

such as unobstructed doorways. Further work is needed to define the correlation between robot

count, environment size, features, and resolution. More sophisticated robot behaviors will also

impact these four key variables and will be our next focus. However, here we have provided a

theoretical foundation for a worst-case scenario in terms of robot exploration. Robots unable to

communicate and that are reduced to random motion can still be used to identify in which direction

a doorway lies by observing the density of robots in another area.

2.6.4 Illustration of Methodology for Particle Collisions

Our ultimate goal is to have a physical realization of a swarm wherein the observed robot

density in one area can be used to infer the presence of obstacles in an unknown environment.

This work provides the beginning theoretical foundation for achieving our goal but as a further

illustration of how robot density in one region can be used to determine the presence of obstacles

in another, even in a worse-case scenario, consider the collision of particles in a gas.

In a simplified model, each particle travels a straight trajectory until a collision occurs, at

which point the particle is deflected in a way to conserve momentum [15]. As the number of

particles in a bounded area increases, individual particle motions also become increasingly random

and approach the behavior we have assumed for robots in this preliminary work. By extension,
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there should be an observable difference in the number of particles present at the center of unique

environments–a difference that can distinguish between the possible environments.

We illustrate the particle analogy in MATLAB. Initially, the square environment is fully bounded

so no particles can escape and the particles approach a uniform distribution as expected. When a

doorway is added to the north wall, paralleling the doorway detection simulations in Section 2.6.3,

particles are able to escape and hence fewer are present in the environment. Snapshots of both

environments are shown in Fig. 2.9 at equivalent times. The center red square aids in compar-

ing the density of particles in the middle of the environment. Fewer particles are clearly present

in the observation area for Fig. 2.9(b) and hence one can conclude that environment contains the

doorway.

(a) Distribution of particles with no doorway (b) Distribution of particles with a single doorway

Figure 2.9: A comparison of particle density in two distinct environments confirms the density in one area

is distinguishable for different environments.

Robots are capable of much more sophisticated behaviour than gas particles but this work is

a first step toward modelling emergent behavior with PDEs and developing models to identify

environmental features from observed swarm behavior. Gas particles approach the random motion

assumed for the initial robot models in this work and provide a stepping stone toward physical

demonstration of our proposed methodology.
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2.7 Conclusions

This foundational work proposes the use of continuum limits to model the emergent behavior

of a swarm of robots with stochastic behaviors. By extending discrete local rules into a continuous-

time domain, a PDE model is obtained. The base PDE model describes the interior behavior of

robots in the environment while the PDE boundary conditions encode environmental features—

namely open space or obstacle.

Solutions to PDEs can be quickly computed and are independent of the number of robots and

largely independent of environment size. By contrast, large-scale stochastic networks like robotic

swarms require many hours or even days to run with the time depending on both the number

of robots and the network or environment size. As a result, PDEs can serve to provide quickly

generated environmental models.

Different environmental features cause unique, distinguishable distributions of robots in the

environment so observations at one location can be correlated to environmental features in another

location. As shown in this preliminary work, observing the number of robots in a central location

can be used to identify the presence of sink or wall boundaries by comparing to already deter-

mined PDE models. The robots considered in this work represent a worse-case scenario where no

communication or advanced decision making is implemented and motion is random. Nonetheless,

valuable information can be obtained as partially illustrated in this work.

Future work will focus on extending the complexity of the robot behaviors modeled, introduc-

ing internal obstacles, and implementing the results on physical robots in real-world environments.

Additional investigations into the relationship between number of robots, environment size, and

exploration time will also be investigated to provide confidence bounds on the results obtained.
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Chapter 3

Classifying Environmental Features from Local

Observations of Emergent Swarm Behavior 2

3.1 Summary

Robots in a swarm are programmed with individual behaviors but then interactions with the

environment and other robots produce more complex, emergent swarm behaviors. One discrimi-

nating feature of the emergent behavior is the local distribution of robots in any given region. In

this work, we show how local observations of the robot distribution can be correlated to the envi-

ronment being explored and hence the location of openings or obstructions can be inferred. The

correlation is achieved here with a simple, single-layer neural network that generates physically

intuitive weights and provides a degree of robustness by allowing for variation in the environment

and number of robots in the swarm. The robots are simulated assuming random motion with no

communication, a minimalist model in robot sophistication, to explore the viability of cooperative

sensing. We culminate our work with a demonstration of how the local distribution of robots in an

unknown, office-like environment can be used to locate unobstructed exits.

3.2 Introduction

While individual or small teams of robots have been used for exploration in relatively controlled

settings, harsh environments like partially collapsed buildings and underground mines remain an

important challenge. Our goal is to leverage the domain of swarm robotics to expand the type

of environments which can be reliably explored. In this work we provide a base level for what

information can be obtained about features in an unknown environment from a minimalist swarm -

2Published in IEEE/CA Journal of Automatica Sinica, 2020
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one comprised of very simple, inexpensive robots that contain no sensing or direct communication

abilities.

Inspired by cooperative biological systems like ants and bees, robotic swarms are a relatively

new area of robotics research that extend multi-robot systems by incorporating significantly more

robots. The increase in robot numbers is frequently countered by a decrease in the individual

robot complexity to ensure the entire system is scalable [4] and more easily managed by a human.

Like multi-robot systems, swarms can accomplish complex tasks that exceed the capabilities of

the individual robots but swarms have additional benefits in exploration applications. The swarm

can cover an area more efficiently than an individual robot or small team, and, as we demonstrate

in this paper, environmental features can be inferred without requiring robots to explicitly store or

relay information, further increasing system robustness and decreasing exploration time.

Feature inference is achieved using local observations of the swarm distribution. Each in-

dividual robot is programmed with a set of known behaviors. Frequent robot-robot and robot-

environment interactions naturally lead to more complex but often difficult to predict emergent

behaviors. The emergent behavior can be quantified by different properties (see, e.g., [16]) but in

this work we focus on how the robots are distributed. Hence there is a correlation between three

key factors: individual robot behaviors, environment features, and the observable distribution of

robots. If two factors are known, the third can be inferred. If the robot behaviors are independent

and the environment is known, a partial differential equation (PDE) can be derived to exactly model

the robot distribution [17]. With a finite number of environments, a least-squared error comparison

between each derived PDE model and an observed robot distribution can be used to identify in

which environment the robots are moving.

As individual robot behaviors become more sophisticated and environments become more var-

ied, there is no plausible deterministic approach for predicting the robot distribution, but there is

still a correlation. In this paper, we exploit the correlation by using a simple, single-layer neural

network to demonstrate how known individual robot behaviors and locally observed robot distri-

butions can accurately predict environmental features. We focus on a minimum sensing scenario
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where the robots are limited to random motion and have no communication abilities. A simple,

single-layer neural network is then trained to correlate the number of robots in a central region of

the environment with the environment type itself. Despite the limited robot capabilities and local

observations, this work shows the distribution of a swarm can be used to quickly and accurately

infer environmental features.

The primary contribution of this work is providing a baseline feasibility study to affirm that

environmental information can be obtained from a minimalist swarm where the robots are not

equipped with sensors or communication. Current robotic exploration approaches have funda-

mental problems when applied to disaster scenarios because communication is often unreliable,

traditional robots experience high failure rates, and sensing is limited. As such, our results can

have significant impact on physical implementations of swarms for disaster scenarios. Rather than

trying to design more complicated swarms to overcome these challenges, our work begins by as-

suming that robots have minimal capabilities. Even without sensing and communication, a local

observation of the swarm can be used to infer environmental features in a simulated disaster sce-

nario.

The remainder of this work is organized as follows. Related work is presented in Section 3.3.

We then describe the simulation test platform and introduce the neural network used to correlate

observed robot distributions with training environments in Section 3.4. Section 3.5 evaluates the

performance of the implemented network. We extend the simulations in Section 3.6 to explore the

robustness of the methodology with respect to variation in environmental features and swarm size.

Conclusions and future work are presented in Section 3.7.

3.3 Related Work

The sophisticated emergent behaviors of cooperative biological systems in nature have inspired

many researchers to focus on recreating observed swarm properties in robotic systems. Properties

like group consensus ( [18], [19]), task allocation ( [20], [21], [22]), and localization ( [23], [24])

have applications in standard exploration strategies. These approaches essentially expand multi-
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robot strategies so they face fundamental scalability challenges by requiring global communication

and/or localization.

In response, many works have limited the communication range to local communication be-

tween robots as in [25], [26], or [27] but these works still rely on sensory information which is not

robust, especially in disaster scenarios, because they are approaching the design as a reduction of

multi-robot abilities. By contrast, our work is establishes what information can be obtained from

a minimalist swarm. Additional sensors can then be added to build up to the required level of

performance as appropriate.

Several impressive works have been done fully in the swarm domain but these strategies incor-

porate some form of global knowledge as in [28], are computationally expensive like [29] or [30],

or imbue the robots with sophisticated sensory knowledge to construct individual maps as in [31].

Unlike these works, our approach simulates robots with no sensory information or communication.

We are focused on disaster scenarios where these other works will fail because sensory information

is not robust and computational resources are limited.

Other key contributions to swarm research have focused on a top-down approach: the applica-

tion is defined so individual robot control strategies are designed to reach the goal using optimiza-

tion methods (e.g. [32], [9], [33], [11]). These approaches do produce the desired behaviors but

therefore require first knowing what behavior is desierd. The top-down approach also obscures fun-

damental relationships between individual robots and the environment. Instead, we take a unique

bottom-up approach by exploring what can be done with very simple systems and leveraging the

number of interactions much more like biological systems.

Our work is simulation-based but the robots are modeled such that they do not exceed the

physical capabilities of current mobile robots. There are a variety of commercially available mobile

robots, including the Khepera [34] and e-puck [35] which can be used for small robot teams but are

prohibitively expensive for swarm research. The constraint of scalability places additional limits

on swarm platforms beyond component cost. Currently the kilobot [36] is one promising research

platform because the robots can be managed collectively.
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3.4 Formulation of Test Environment

3.4.1 Pattern Correlation

Individual robot behaviors, environmental features, and observable robot distributions are cor-

related so if two of the characteristics are known, the third can be inferred [17]. In this work, the

individual robot behaviors are known and we want to use the local robot distribution to predict

global environmental features. Environmental features are inferred using a simple, single-layer

neural network that is trained to correlate local observations of robot distribution with the labeled

environment in which the robots were simulated. Individual robots have no knowledge of the

environment themselves. Instead, a central agent (human or computer with visual data) uses the

distribution of robots immediately around them and a trained neural network to predict global

environment properties not visible to the central, independent agent.

A single input neuron serves as a bias term while each additional neuron in the input layer

considers the number of robots in a single observation bin at a given time. In order to reduce the

impact of initial robot count on environmental correlation, the raw robot density data is first nor-

malized before being applied to the neural network. The output is the likelihood the observations

came from each of the potential environment classes. Logically, the goal of the neural network is

to determine the probability of the training environment, C, being from class k given an observa-

tion of the local robot distribution, x. Mathematically, the desired output from the trained neural

network for a specific simulation run n can be formulated as

gk(xn) = p(C = k|xn) (3.1)

where the value of gk(xn) represents the probability that observation n came from environment

class k .

It is further desired to have the conditional probability output be a function of tunable weights,

w, that can be trained to maximize the likelihood of the data distinguishing between all K potential

environment classes. Introducing a function f(xn,wk) and defining
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gk(xn) =
f(xn,wk)

∑K
m=1 f(xn,wm)

(3.2)

ensures that the probability of any given environment class, k, is between 0 and 1, and the prob-

ability across all K potential classes sums to 1 independent of the choice of weights. We then

choose

f(xn,wk) = exp(w⊺

kxn) (3.3)

to create a general softmax formulation [37]. To further understand our choice, we first define an

indicator variable, tn,k, for each robot density observation, n, and each potential environment, k, to

identify from which environment class observation n came. The environment classes are labelled

with an integer value from 1 to K. The indicator variable for observation n is therefore defined as

tn,k =















1, if xn is from class k

0, otherwise.

(3.4)

We form a measure of how distinguishable the classes are from each other by considering the

product of the probabilities for all N environment observations, hereby called the data likelihood.

Using the class indicator variables for a K-class scenario, the data likelihood, L(w), is expressed

as

L(w) =
N
∏

n=1

K
∏

k=1

gk(xn)
tn,k . (3.5)

Maximizing the likelihood with respect to the tunable weights increases the network’s ability to

classify an observation sample. Finding the weight values that maximize the likelihood requires

first finding the gradient of L in (3.5), but for computational efficiency we instead maximize the

natural logarithm of the likelihood:

log L(w) =
N
∑

n=1

K
∑

k=1

tn,k log gk(xn). (3.6)
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Substituting (3.2) back into (3.6) and taking the gradient with respect to the weights of a single

output neuron, j, we get

∇wj
log L(w) =

∑N
n=1

∑K
k=1

tn,k

gk(xn)
∇wj

gk(xn)

=
∑N

n=1(tn,j − gj(xn))xn.

(3.7)

Equation (3.7) is still nonlinear with respect to x, so an iterative update process is needed to find

which weights maximize the conditional probability in (3.2). This leads to a gradient ascent update

rule for the weights of the form

wj(i+ 1) = wj(i) + α

N
∑

n=1

(tn,j − gj(xn))xn (3.8)

where α is the learning rate. Throughout this work, a constant learning rate of α = 0.0001 was

used and the weights were updated over 500 iterations, as further iterations did not greatly change

the final weight values. These values are not optimized as the focus of this work is not the neural

network but rather demonstrating the feasability of using local observations of robot distributions

to infer more global environmental features.

3.4.2 Simulated Robot Swarm

The focus of this work is establishing what features can be determined from a minimalist swarm

for applications in disaster scenarios where resources are limited. A specific example use case for

this work is locating viable exits in the case of a partial building collapse. To model this hypo-

thetical scenario, we used MATLAB to simulate the robot distribution in 1D and 2D environments

to model hallways and office rooms. Each simulation consisted of a user-defined environment

that contained either a single line of N internal bins or a square of N × N internal bins for the

one-dimensional (1D) hallway and two-dimensional (2D) room scenarios, respectively. Boundary

bins form the perimeter of each environment and are specified as a sink or a wall to represent an

opening or an obstruction in the environment. The use of bins to model the environment with
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potential obstacles placed at the boundary is inspired by Yamauchi’s occupancy grid approach to

map generation [38].

At every iteration, each robot randomly selects a desired bin that is orthogonally adjacent (no

diagonal motion) to its current bin using a uniform distribution so that each potential bin is equally

likely. If the desired bin is not a boundary, the robot will move to the adjacent bin at the next

time step. If the desired bin is a sink boundary, the robot is removed from the simulation because

the sink represents an opening in the environment; however, if the desired bin is a wall, the robot

instead stays in its current bin for the next time step. The robot density, that is, the number of

robots in every bin of the environment, is stored at each iteration.

For this work, we considered three distinct environments, or classes, for the 1D scenario and

four classes for the 2D scenario. Each 1D environment approximated a hallway with N = 10

internal bins and a potential exit at the left and right boundaries. The boundary bins were varied

such that Class I had a sink boundary at each end so that the hallway was unobstructed, Class II

had a wall boundary at each end so that robots could not escape the hallway, and Class III had a

sink at the left edge and a wall at the right edge so that robots could only escape the hallway at the

left side.

The 2D environments modeled a square office space consisting of N × N internal bins sur-

rounded by wall boundaries. A set of five consecutive sink bins were placed near the middle of a

single wall, spanning bins 5—9, to model an unobstructed doorway. The North Class contained a

doorway in the ‘north’ wall, East Class had the doorway in the ‘east’ wall, and so forth.

We extend our hallway and office metaphors by evenly distributing the robots in the central-

most bins of the 1D and 2D environments and observing the density in these central bins at each

time iteration. This approach models a person who is in the middle of an unknown environment,

equally far from all potential openings, and deploys a swarm of robots in the area around them. The

person then uses the observed density of robots immediately around them to predict the location

of a viable exit.
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To evaluate the feasibility of using locally observed robot densities and a relatively generic

neural network to predict the environment being explored, 200 simulations were run in MATLAB

for each environment class in both the 1D and 2D scenarios. The number of robots in each interior

bin of the environment was stored at every iteration to form a full population for each simulation.

The simulation time in MATLAB increased significantly as the number of robots increased, but

1D simulations typically required just a few seconds to run while 2D simulations often required

several minutes.

3.5 Evaluation of Swarm Methodology

3.5.1 Overview

Robot densities from the observed bins at the desired time are selected from the full population

for the 1D or 2D scenario to form a complete data set for that environment type. Each row in a

data set corresponds to a single MATLAB run. Each column in the data set represents the number

of robots in one observation bin. Each column is normalized and then used with the neural network

to form a correlation between the number of robots in locally observed bins and the environment

being explored. In all cases, 70% of the data set was used to train the neural network with each

environment type being equally represented. The remaining 30% was reserved for evaluating the

classification accuracy of the trained network.

3.5.2 Performance in 1D Environment

The 1D hallway model was evaluated first as a benchmark for the feasibility of using local

density observations to infer global environmental features like exits. For all 1D simulations,

robots moved freely in the ten internal bins, numbered 2—11. Bins 1 and 12 were boundary bins,

represented as either a sink or wall, and defined the three potential environment classes. It is

assumed a physical implementation would have a person located in the center of the environment

deploy a swarm of robots to help predict which of the two potential directions is a viable exit;

hence, robots are initially distributed evenly in bins 6 and 7. The person can only observe the
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number of robots in these same two bins to model the limited visibility likely in a disaster scenario.

To model this scenario, the neural network weights were initialized using a uniform distribution

on the open interval (0, 1) and then updated using (3.8) with the observed robot density in bins 6

and 7.

Initially, the neural network was trained using the robot densities observed in bins 6 and 7 at a

single time step while the number of robots placed in the environment was systematically varied

from just 10 robots up to 1000 robots. The goal of this preliminary simulation was to determine

how many robots and what length of time would ensure a sufficient number of interactions to en-

code environmental features. Two hundred simulations were run for each of the three environment

classes creating a data set with 600 rows and just two columns, the first for observed densities in

bin 6 and the second for bin 7. Fig. 3.1 summarizes the classification accuracies from this explo-

ration with the results being averaged over 50 trials at the same robot count and time to reduce the

impact of statistical variation.
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Figure 3.1: A stronger correlation is achieved between locally observed robot density and the environment

when more robots are initially distributed. In addition, the robots need a sufficient amount of time to interact

with each other and the environment. For example, 90% of the environments were classified correctly when

500 robots moved about 30 times.

Adding more robots to the environment generally improved the classification accuracy of the

neural network as expected because more interactions occur. However, there are diminishing re-
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turns in the classification accuracy with respect to increased robot count, suggesting the system can

become saturated. Exploration time is also a key factor in evaluating the effectiveness of correlat-

ing environmental features to observations of the local robot density. A minimum of 9 moves are

required for a robot to reach a potential wall boundary and return to one of the central observation

bins so it is not surprising that the classification accuracy was essentially random, independent

of robot count, for a time sample of 10. Observing the central robot density after robots moved

20 times significantly increased the classification accuracy but it required 30 moves before the

classification accuracy was reliably over 90% for the robot counts considered.

Based on the results in Fig. 3.1, a robot count of 500 was used for the remaining analysis in

1D as 500 robots appeared to provide a sufficient number of interactions without saturating the

environment. A closer look at the classification accuracy of the neural network with 500 robots is

shown in Fig. 3.2(a). The trained network classified the 420 training samples and 180 previously

unseen test samples with over 90% accuracy after 30 time steps. In our hypothetical hallway

scenario, these results indicate that a person could allow the robots in a swarm to move 30 times and

then look at the distribution immediately around them to determine which direction is unobstructed.

More realistically, a person would watch the evolution of the robot density around them, which

means the neural network should consider the density in bins 6 and 7 at the current time step and

all previous time steps. We define this approach as a sequential observation. Using the sequential

bin density did decrease the time required to reach a desired classification accuracy as shown in

Fig. 3.2(b). It required observing the number of robots in bins 6 and 7 for about 25 robot moves

before training environments could be classified with 90% accuracy.

As expected, the initial classification accuracy in both approaches of Fig. 3.2 was approxi-

mately 33%, equivalent to randomly guessing one of the three potential environment classes. As

was noted earlier, the 1D scenario requires a minimum of 9 moves for a robot to reach a potential

wall boundary and return to one of the central observation bins. This reflection property is affirmed

in the results of Fig. 3.2, where the accuracies begin to steadily climb after time step 9. Fig. 3.2(b)

indicates a slight overtraining of the neural network as the training data was consistently classified
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Figure 3.2: By observing the number of robots in the center of a simulated 10-bin hallway, a simple neural

network could correlate the density with the environment being explored and predict the location of exits

with 90% accuracy after 500 robots move just 30 times whether considering a single time step (a) or a

sequential observation (b).

with higher accuracy than the testing data. Nonetheless, using a sequential observation of robots in

bins 6 and 7, which better model a human observer, did reduce the number of robot moves required

to predict the environment class for a desired accuracy as anticipated.

3.5.3 Performance in 2D Environment

A similar analysis was performed using the 2D simulations. The 2D environment represents

an office-type scenario where a person is attempting to identify which wall contains the single,

5-bin doorway in a square, 10 × 10-bin room by observing the local distribution of robots. An

observation center was placed at bin (7, 7), near the middle of the environment to represent our

hypothetical office employee who is equally distant from all four defining boundaries. A person

can deploy robots immediately around them, which corresponds to the simulated robots being

initially distributed equally in the eight bins surrounding the observation center.

With four potential environment classes and 200 simulations per class, a data set with 800 rows

was created for each scenario. Each generated data set has eight columns, each corresponding to

a single observation bin around the observation center. As in the 1D scenario, the classification
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accuracy of the neural network was averaged across 50 trials to reduce the impact of statistical

variation in the results.

Once again, an initial simulation was performed to determine an appropriate number of robots

for the 2D environment. The number of robots distributed in the eight bins surrounding the ob-

servation center was systematically increased from just 100 up to 15000 in increments of 100.

Fig. 3.3 summarizes the results of this exploration. As anticipated, increasing the size of the

environment–from 10 bins in the 1D scenario to 100 bins in the 2D scenario–also increased the

number of individual robots and robot moves to explore the environment.
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Figure 3.3: Increasing the environment size meant more robots were needed to perform the classification

and each robot needed more moves to encode features. For a 10 × 10 environment, it took 10, 000 robots

and approximately 40 moves before enough interactions had occured for the neural network to accurately

identify 80% of the environments.

Fig. 3.4 shows the relative distribution of 10, 000 robots after they have moved 40 times in the

2D environment. The environment pictured is a sample from the North Class. Robots can only

exit through the north doorway and no robots will re-enter the environment through a doorway, so

the adjacent bins have a noticeably lower density of robots. However, the decrease is less distinct

in the bins surrounding the observation center at bin (7, 7) where the hypothetical office worker is

located.
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Figure 3.4: A heat map of the robot density for 10, 000 robots after 40 time steps in a 2D environment with

a north doorway shows a lower density in the northern bins as expected. The difference is less distinct in the

bins surrounding the observation center at (7,7).

If the hypothetical office worker attempted to classify the environment based on the least dense

bin in the observation center, they would obtain only a 21% accuracy after 40 robot moves. By

contrast, using the density in all 8 bins of the observation center, the neural network classified

more than 80% of the environments correctly after approximately 40 time steps as reconfirmed in

Fig. 3.5(a), despite the subtle variation in robot distribution. Using sequential observations around

the observation center improved the classification accuracy slightly. Fig. 3.5(b) shows the test data

still required approximately 40 robot moves to reliably reach over 80% classification accuracy. In

our hypothetical office scenario, a person near the center of the environment could therefore predict

in which wall a doorway was located with 80% accuracy by observing the number of robots around

them over the course of about 40 robot moves.

Fig. 3.5(a) shows that for about the first 15 moves, the classification accuracy was equivalent

to a random guess, similar to the 1D simulations. This is not surprising as at a minimum, a robot

initially placed in bin (8, 8) (the lower right initialization bin) would need 7 moves to reach either

the east or south wall and return to the observed area. A robot in the upper left requires a minimum

of 9 moves to return after encountering a wall in the north or west. If a robot moves one bin ‘left’

or ‘right’ during its minimal trajectory, the robot may miss a door and return to falsely inflate the

number of robots in an observed bin. This is one reason why the classification accuracy increased
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Figure 3.5: Locating a doorway in the 2D environment using eight central bin densities required approxi-

mately 40 time steps to reach 80% accuracy if using a single time observation (a) or using observed robot

densities at all previous times (b).

much more slowly in the 2D scenarios. The increased number of potential bins to explore also

increased the time required for classification.

The same general behavior extends to the sequential observations shown in Fig. 3.5(b), though

there are signs of overtraining as the training data had a consistently higher classification accuracy

than the testing data. Even with these results, the local observations of a robot swarm can be

correlated to global environmental features. Indeed, Fig. 3.5(b) shows that the number of robots

around a central bin can be used to form an educated prediction about which wall contains a

doorway—even with a simple single-layer neural network and minimalist robots.

3.5.4 Robustness of the Classification Process

The robustness of the trained network in Fig. 3.5(b) at time 40 was explored with respect to

variations in the environment and a decrease in robot count. For the first investigation, test data

was gathered from simulated environments where the doorway had been shifted with respect to

the training environments. The doorway width was maintained at five bins and was incrementally

moved from the far left (a shift of -3) to the far right (a shift of +2). A total of 60 simulations

were conducted per environment variation to ensure a comparable test data size of 240 samples per

doorway location.
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The resulting classification accuracy for each new doorway position is summarized in Table 3.1.

As expected, the highest classification accuracies of 97% occured in environments most similar to

the training environment. Shifting the doorway three bins left resulted in the lowest classification

accuracy of 77% because this corner is the furthest from the original training doorway. These

results affirm one major advantage of the neural network when compared to a PDE approach—the

ability to avoid explicitly describing environmental scenarios. Indeed, the trained neural network

still predicted the location of a doorway with 77% accuracy–significantly better than random–even

when the doorway was shifted to the far side of a wall and only partially overlapped the original

doorway position.

Table 3.1: Classification Accuracy for Shifted Doorway

Door Shift Accuracy

-3 77%

-2 88%

-1 95%

0 97%

1 97%

2 95%

The trained neural network can also account for a large loss of robots. For the next robustness

investigation, the number of robots in a test enviornment was systematically reduced from 10000

to 1000 to simulate potential robot failures. Sixty simulations were run for each environment class,

so once again, 240 data samples were used to evaluate the neural network for each reduced robot

count. The classification accuracy was averaged over 10 separate trials to reduce the impact of

statistical variation. Fig. 3.6 shows that the classification accuracy decreased as the number of

robots was reduced, as expected, but remains at nearly 94% as accurate as the training scenario

when only 5000 robots are present. This means that half of the robots can fail, but the worker

in our hypothetical building collapse can still predict the environment and be 94% as accurate as

if all the robots were still functional. Further, the neural network classified the environment with

over 64% of the original accuracy when only 1000 robots are present. Nine out of ten robots can
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fail, but the network is still able to predict which wall contains the single doorway with better than

random accuracy.
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Figure 3.6: A network trained on 10000 robots can still reasonably identify a 2D environment when the

system undergoes large-scale robot failure.

3.6 Extending the Neural Network Results

Using just one-tenth of the original number of robots, the neural network is ruling out certain

environment classes based purely on observations of the local robot distribution. Table 3.2 summa-

rizes how the neural network classified the different environments for a single run in a confusion

matrix. Sixty of the test samples contained a doorway in the north wall (N), and 36 of those sam-

ples were correctly classified; however, 9 of the samples were mistakenly classified as having a

door in the west (W). Looking at samples which contained a doorway in the west wall, 38 of the

60 samples were correctly classified while 8 were misclassified as having a door in the north and

14 classified as having a door in the south (S). Zero were classified as the ‘opposite’ where a door

was placed in the east (E). Overall, the confusion matrix indicates environments were most rarely

confused with their opposite direction which is encouraging.

Ruling out the least-likely environment by observing robot distributions makes intuitive sense.

When the bottom row of observation bins has a low robot count, it is likely that the door is in the
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Table 3.2: A confusion matrix of the test data classification for the 2D, sequential observation scenario with

just 1000 robots shows that the neural network rarely classifed an environment as its cardinal opposite when

pre-trained with 10 times as many robots.

south wall but robots may still be escaping east or west with regular frequency so reaching full

classification confidence remains difficult. The classification process can be further understood by

comparing the relative weight values of the neural network for each environment class. For each

class, the highest weight is associated with the corner furthest away from the doorway while the

associated row or column also contains generally higher weights. Hence, having a large number

of robots in three of the observed bins greatly reduces the likelihood of the opposite wall from

containing a doorway. Determining which specific wall contains the doorway is more challenging

because now the discriminating weights are much more similar and, as can be seen in Fig. 3.4, the

variation in robot density is less clear.

Still referencing Fig. 3.4, the distribution of robots does become more distinct in bins closer to

the doorway. This observation led to an update scheme that demonstrates how a person can further

leverage observations of the emergent swarm behavior in differing environments to locate viable

exits. Specifically, the demonstrated strategy moves the observation center one bin away from the

least likely doorway location, analogous to the office worker moving away from the most crowded

area.

The single-layer neural network was again trained using the derived update procedure from

(3.8). Training data came from the scenario shown in Fig. 3.5(b) with 10000 robots. New test data

was generated with only 1000 robots exploring the same four environment classes, a failure rate

of 90%, to show what information can still be obtained about the environment. Sixty simulations

were run for each class to generate 240 test samples for consistency with previous experiments.
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During the training process, five separate sets of weights were generated. The center set was

trained using density data from the eight bins surrounding the original observation center at bin

(7,7) where the office worker is initially standing. These trained center weights were then used to

perform an initial classification. If the classification results indicated that the doorway was least

likely to be located in the south wall, the office worker moves one bin in the opposite direction so

the observation center is now one bin north at (6, 7). A new observation of the robot distribution is

then taken and used to predict an updated doorway location using a second set of trained weights.

The second set of weights is pre-generated using training data from the eight bins surrounding a

north observation center. Similar weights are generated for a potential move either east, south, or

west.

Fig. 3.7 summarizes how the dynamic observation center significantly improved the classifica-

tion accuracy even when the swarm experienced a drastic 90% failure rate. The test environments

were initially classified randomly with an accuracy of about 25% but improved to 40% when con-

sidering the number of robots in the surrounding bins for 40 robot moves as shown by the blue line.

Moving the observation center one bin opposite the least likely environment class and reclassify-

ing the environment consistently increased the accuracy as shown by the red line in Fig. 3.7. At

time 40, the dynamic observation produced a classification accuracy of 51% and the improvement

continued throughout the simulated time.

In a disaster scenario, it is very likely the terrain will cause some degree of failure in exploratory

robots. Our simulation assumed a 90% failure rate, which left just 1000 robots to explore an

unknown domain. A person could still observe the local distribution of this swarm for 40 moves to

predict in which direction a doorway is located and they would be about 40% correct. However, if

they move once and re-evaluate, their prediction will now be 51% correct. Waiting longer improves

both results. In short, a person can regularly update their prediction by moving in a more promising

direction and re-evaluating the local robot distribution. Fig. 3.7 shows that moving just once will

consistently improve the person’s ability to accurately predict where a doorway is located even

after mass failure of the swarm.
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Figure 3.7: Moving the observation center one bin opposite the least-likely environment increases the

classification accuracy.

3.7 Concluding Remarks

Our focus in this work was to exploit the correlation between individual robot behaviors, envi-

ronmental features, and locally observed robot distributions to reliably predict global environmen-

tal features. Using simulated robots equipped with minimum sensing and no communication, we

found that the local distribution of robots could be used to accurately infer information about the

environment being explored. A simple, single-layer neural network was sufficient for correlating

observations of the robot density in a central part of the environment with the location of openings

in the environment. The approach was robust with respect to variations in the environment as well

as large-scale swarm failure. We demonstrated how trapped office workers could use a simple

microprocessor and observations of the local swarm distribution around them to navigate toward

unobstructed openings in hallways or office rooms even after 9 out of 10 robots fail.

This work is a preliminary step in designing swarms of simple, inexpensive robots to explore

harsh environments where communication and sensing are unreliable. While there is much to

be done to improve the mobility of physical swarms - especially for harsh environments - our

work focuses on achieving reliable feature inference given minimal sensing and computational

abilities. Our future work will continue building on the general premise of using local observations

of emergent swarm behavior to infer environmental features. While our long-term focus is toward
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increasing the richness of environmental features that can be predicted, we will next focus on

implementing a simulated test platform to better quantify the relationship between swarm size,

environment size, and identification accuracy for varying swarm behaviors. This platform will also

be used to compare the effectiveness of swarms with respect to smaller teams of robots equipped

with more sophisticated sensors.
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Chapter 4

Quantifying Swarm Resilience with Simulated

Exploration of Maze-Like Environments 3

4.1 Summary

Artificial swarms have the potential to provide robust, efficient solutions for a broad range of

applications from assisting search and rescue operations to exploring remote planets. However,

many fundamental obstacles still need to be overcome to bridge the gap between theory and appli-

cation. In this characterization work, we demonstrate how a minimalist human rescuer can leverage

local observations of emergent swarm behavior to locate a lone survivor in challenging environ-

ments. The simulated robots and rescuer have limited sensing and no communication capabilities

to model a worst-case scenario. We then explore the impact of fundamental properties at the in-

dividual robot level on the utility of the emergent behavior to direct design choices. We further

demonstrate the relative resilience of the simulated robotic swarm by quantifying how reasonable

probabilistic failure affects the rescue time in a complex environment. These results are compared

to the theoretical performance of a single wall-following robot to further demonstrate the potential

benefits of utilizing robotic swarms for rescue operations.

4.2 Introduction

Swarm robotics is a relatively new domain of research that takes inspiration from cooperative

biological systems such as flocking birds, ant colonies, and schools of fish. Like their biologic

counterparts, robots in a swarm are governed by local rules but frequent interactions with other

robots and the environment generate a more complex, emergent behavior. Sophisticated foraging

strategies and complex colony construction by ants reveal just a few of the potential advantages

3Submitted in Robotics and Automation Letters, 2021
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of emergent behavior because these actions are accomplished in a distributed and robust manner.

Similar emergent behaviors in artificial systems will be extremely useful in many exploration tasks,

particularly in harsh environments with a high probability of robot failure. Disaster scenarios

are an especially relevant application domain with an increasing rise in occurance and economic

impact [39] and there are currently no viable robotic solutions.

Despite the many important applications, research in robotic swarms has not yet matured to

the point of reliable, real-world deployment. Two fundamental hurdles between the potential and

reality of swarms are (1) determining what collective behavior will emerge from the swarm and

(2) identifying the influence of local parameters. These challenges are not decoupled. Each robot

within the swarm may be equipped with a variety of sensors and control strategies which can be

considered as parameters. Swarms are necessarily composed of a large number of agents [6], [7]

so the choice of parameters is immediately scaled by the size of the swarm which imposes some

minor difficulties. The true difficulty comes from the collective behavior that emerges after the

robots interact with each other as well as the environment. Robot interactions propagate aspects of

the local parameters but there is no closed-form method for determining how individual behaviors

will affect the emergent behavior.

Physical implementations would best reveal the full emergent behavior. Swarm test platforms

are surfacing and offer improved research development but current realizations are restricted to

table-top environments, like the kilobot [40] or Zooid [41], and constrained by the physical number

of robots. For example, Georgia Tech’s impressive Robotarium offers a remotely accessible testbed

for swarm algorithms but only includes 25 physical robots [42]. Beyond environment and size

limitations, the initial choice of robot physicality already constrains the range of potential emergent

behaviors the swarm can exhibit [43]. Simulation therefore remains a very necessary design step

because it can be used to investigate the general impact of local parameters on collective properties.

The investigation can inform choices for the base physicality of the swarm and is not as constrained

by swarm size nor environmental constraints.
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Arguably the most fundamental local parameters dictate how a robot moves and interacts with

the environment. Specifically, a robot’s speed, motion ability, and sensing range control how

the robot will move through an environment. The effect of these parameters will be amplified

in a swarm and impact properties of the emergent behavior. A human observing the swarm will

likely not be able to identify subtle changes in the emergent behavior but group studies where

human participants are asked to classify swarm behaviors by observing simulated results have

shown people can recognize general patterns [44], [45], [46]. Robot density, velocity, and relative

cohesion were all notable properties that helped human participants classify the simulated emergent

behavior.

In this foundational study, we consider a minimalist human rescuer using local observations of

the emergent swarm velocity to navigate a simulated disaster environment in an attempt to locate

a lone survivor. Robots within the swarm have no communication or localization ability. The in-

fluence of fundamental robot features related to motion and sensing can be explored. Variations in

local swarm parameters are evaluated qualitatively by observing the resulting motion and area cov-

erage as well as quantitatively by the impact of the parameter variation on the rescuer’s ability to

successfully locate the lone survivor. From this work, we begin to establish important swarm char-

acterization. The robustness of swarms in terms of parameter variation, environmental features,

and robot failure is quantified. We also demonstrate the value of employing swarms in disaster

scenarios.

We first place our work in the grander scope of swarm robotics by presenting related work

in Section 4.3 before presenting the simulation framework in Section 4.4. Section 4.5 presents

a summary of results from our investigation of emergent behavior. We also discuss important

observations from our research in Section 4.6 before summarizing our work in Section 4.7.

4.3 Related Work

Our work is motivated by the absence of robot solutions for disaster scenarios including mine

rescue [47] and building collapse [48]. Ongoing DARPA challenges and reports [49] indicate a
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need for more reliable physical robot implementations. There is promising progress in this domain

for single robots [50], [51] and improved path planning to mitigate risk [52]. Swarms can po-

tentially leverage these advancements and further reliability efforts by utilizing a large number of

robots for increased robustness. Experiments have shown that emergent swarm patterns can serve

as an information storage mechanism [53], [54] which supports the robustness paradigm. Yet, to

the best of our knowledge, no work has actually quantified the resilience of a swarm.

In our investigation, we explore a minimalist swarm to establish a baseline performance to

which additional functionality can then be compared. Our approach considers the interests of

potential swarm users as indictated in an important study conducted by Carrillo-Zapta et al. where

target users, including firefighters, identified areas where swarms can support current activities

[55]. Study participants considered swarms beneficial for gathering information and supporting

communication but emphasized that an actual person should remain ‘in the loop’ for decision

making.

Decision-making by the human can be informed by observations of the emergent swarm be-

havior. As demonstrated by works in swarm expressivity, human participants were able to classify

swarm behavior by ‘unfocusing’ and instead looking at collective behaviors such as robot spac-

ing, velocity, and relative cohesion [44], [45], [46]. We maintain our baseline approach by only

utilizing the swarm velocity for our simulated rescuer.

The results from our work focus on maintaining a minimal approach which can represent a

worst-case scenario in robot functionality but also serve as a baseline. More sophisticated algo-

rithms can then be compared to these results for design and application purposes. For example,

the potential benefits of improved odometry [56], velocity control [57], shape formation [43], and

local communication for risk mitigation [58] can be evaluated.
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4.4 Simulation Framework

4.4.1 Swarm Behavior Model

We model a minimalist robot moving in an unknown, two-dimensional environment. The robot

is unable to communicate, has no means for localization, and relies on limited sensing. This model

allows us to characterize baseline performance for the swarm but also represents a worst-case

scenario for physical robot deployments.

The swarm is composed of M such robots where M is a user-defined parameter allowing the

significance of swarm size to be explored. Robots are initially distributed randomly within a user-

defined radius around the start_center. The position of robot i at iteration k is denoted as x(i, k).

Using discrete-time steps, robots attempt to move in a straight line with general desired velocity

vd(k) = ss[cos(αk), sin(αk)], (4.1)

with ss representing the maximum robot speed, while also striving to avoid collisions. Each robot

is initialized with a uniformly distributed starting angle α1. Subsequent trajectory angles are a

combination of the previous n trajectory angles and a Gaussian noise calculated as

αk =















1
n

∑k−1
a=k−n αa + γ if n < k

α1 otherwise

(4.2)

where γ is a normally distributed random variable centered at zero with user-defined standard

deviation, σ. We explore the impact of heading control on swarm resiliency by varying σ. The size

of the moving window, n, is also varied to determine the importance of memory on the emergent

swarm behavior.

Once a desired velocity is determined, we ensure the robot does not collide with any objects in

its sensing radius, rs, by using a generalized forcing model. The actual velocity for robot i at time

step k is calculated as
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vs(i, k) = vd(i, k) +
W
∑

w=1

fw(w) +
M
∑

j=1,j 6=i

fs(i, j) (4.3)

where fw and fs denote the effect of the environment and other robots on robot i, respectively. We

next define the repulsive wall force for each of the W walls creating our environment as

fw(w) =















Ase
(rs−dw)/Bsn̂ if dw ≤ rs

0 otherwise

(4.4)

with n̂ as a unit vector pointing into the environment, perpendicular to the wall, and dw as the

minimum distance to the wall segment. The choice of coefficients As and Bs dictates how strongly

robots will be repelled from obstacles. Robots in the swarm also need to avoid collisions with each

other so fs is a similarly repulsive force imposed on robot i by all other robots. Specifically, we

define

fs(i, j) =















Cse
(rs−d(i,j))/Fsk̂ if d(i, j) ≤ rs

0 otherwise

(4.5)

where d(i, j) is now the scalar distance between robot i and robot j calculated as

d(i, j) = ‖x(i, k)− x(j, k)‖. (4.6)

We maintain Cs and Fs as exploration parameters and k̂ as a unit vector in the direction of the line

of impact for the collision. Here we note (4.5) also serves as a dispersion model to ensure robots

are generally directed further into new regions of the environment.

4.4.2 Rescuer Model

Maintaining our base assumptions of a disaster scenario, the human rescuer likewise has a

limited visibility range and cannot modify the behavior of the robots. The rescuer can travel at a

maximum speed of smax, has an observation radius of rh, and position xh(k) at time step k. During
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time step k, the rescuer calculates their desired velocity as

vd,h(k) = vobs(k) +
W
∑

w=1

fhw(w) (4.7)

where vobs(k) is a velocity inferred from local observations of the swarm behavior. The second

term in (4.7) prevents the rescuer from colliding with the wall, analogous to (4.4) but with defined

scalars

Ah = 0.1smax (4.8)

Bh = 2smax/ log
2smax

Ah

. (4.9)

By the formulation of (4.7), the rescuer’s desired velocity is primarily determined using obser-

vations of the swarm. We implement a simple flow model for the rescuer to explore how changes

in the emergent swarm behavior influence the utility of observable swarm properties. More specif-

ically,

vobs(k) = smax
ve(k)

‖ve(k)‖
(4.10)

where

ve(k) =
M
∑

i=1

vs(i, k) ∀i ∈ M s.t.

‖x(i, k)− xh(k)‖ ≤ rh. (4.11)

Finally, the rescuer cannot exceed their maximum speed, smax, nor will they act if the inferred

velocity from swarm observation is below some threshold magnitude, smin, so the actual imple-

mented velocity at iteration k, denoted as vh(k), becomes
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vh(k) =































smax
vd,h(k)

‖vd,h(k)‖
if smax < ‖vd,h(k)‖

0 ‖vd,h(k)‖ < smin

vd,h(k) otherwise

(4.12)

with an additional limit of π/4 on the maximum angle change the rescuer will experience between

time steps unless they are near a wall boundary.

Equation (4.11) leverages the pattern recognition ability of people and demonstrated in studies

like those by Walker et al. [44]. It also introduces an important but challenging aspect of au-

tonomous exploration which is determining the ‘optimal’ amount of time to wait for information

before acting.

Swarm interactions encode important environmental information like the presence of open-

ings [54]. The encoding process changes properties of the emergent behavior but takes an amount

of time depending on the robot density and distance to obstacles. We introduced two simple param-

eters to explore when the rescuer should begin moving in the environment using local observations

of the swarm. The smin parameter specifies a minimum magnitude of observed velocity the rescuer

must observe before acting and represents a coarse consensus within the swarm about a desired di-

rection. The second parameter, PT , is a specified pause time wherein the rescuer allows the robots

time to interact before observing the emergent velocity.

4.4.3 Environment Description

Our goal in this work is to initiate a baseline quantification of swarm parameters so we defined

a starting environment, explored the simulated performance, then systematically added features to

gain insight into how different parameters influenced the emergent behavior. Figure 4.1 presents

the four main environments discussed in this work. All of the environments are built around a

central, square room that is four units wide. The size of the environment serves as a scaling factor

which directed the choice of other exploratory parameters like maximum speed and sensor radius.

The simulated robot swarm and rescuer are initially positioned centrally in this room and cannot
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pass through environment boundaries. Robots continue to move about the environment according

to (4.3) unless they experience a failure or are within a sensor radius of the survivor’s location at

which point the robot is removed from the simulation.

(a) (b)

(c) (d)

Figure 4.1: A lone survivor is placed at the end of the top, left-most hallway for each of the four simulated

disaster environments, denoted as the yellow circle. The rescuer begins in the center of the environment but

has limited sensing as indicated by the red circle.
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4.5 Results

4.5.1 Preliminary Parameter Characterization

For the initial swarm parameter evaluation, we focused on qualitatively assessing the reason-

ableness of the emergent behavior by animating the swarm exploration process and quantitatively

recording the percentage of area explored in a fixed time. We initially simulated the robots in En-

vironment 1. As indicated in Fig. 4.1, the survivor is placed at the end of the west hallway. Robots

stop when they are in the vicinity of the survivor. After identifying a reasonable initial operating

range for all parameters, we proceeded to systematically vary one parameter at a time and evaluate

the resulting swarm performance. The experiments confirmed several intuitive correlations:

• Increasing the number of robots increased the area explored but with diminishing rate of

return so a very large number of robots was needed to generate even a small increase in

exploration area

• Increased robot speed similarly increased area explored but again with diminishing returns

– Too large a speed resulted in unnatural motion, disproportionate to environment size

• The number of past movements stored had a negligible effect on the area explored when

there were robot interactions

• More area was explored when the robots’ motion was less random

– To represent realistic motion, a small value of σ should be incorporated into the robot

motion

– The presence of other robots acted to restrict sporadic motion due to collision avoidance

• Larger sensor radius generally improved performance.

From this preliminary set of experiments, we defined base values for the swarm parameters, sum-

marized in Table 4.1, that created a relatively fluid and efficient dispersion in the environment.
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Table 4.1: Summary of Simulation Parameters

Parameter Significance Base Value

M Number of robots in swarm 300

ss Maximum robot speed 0.4

n Number of past movements stored 1

σ Std. dev. for Gaussian noise in motion 0.1

ro Robot’s sensing radius 0.8

As, Bs Force coefficient for obstacles 1, 0.5

Cs, Fs Force coefficient for neighboring robots 1, 0.5

4.5.2 Resilience to Rescuer Variation

Using the baseline swarm parameter values summarized in Table 4.1, we ran 100 different

swarm dispersion scenarios for the environments in Fig. 4.1. A maximum exploration time of

3000 steps was imposed on all scenarios to ensure the simulation time remained tractable. We then

simulated a rescuer who navigates the unknown environment according to (4.12) in an effort to

reach the lone survivor. Each rescuer parameter - threshold speed (smin), pause time (PT ), sensor

radius (rh), and maximum speed (smax) - was systematically varied to explore the resiliency of the

swarm and resulting rescue strategy with respect to variations in the fundamental rescuer behavior.

Our priorities in evaluating the rescuer performance align with real-world disaster scenarios: en-

suring the rescuer successfully locates the survivor as reliably as possible, minimizing the danger

to the rescuer by reducing the number of steps they take in a potentially dangerous environment,

and reducing the time it takes for the rescuer to locate the survivor.

Systematically varying each rescuer parameter revealed fundamental relationships between the

properties of a successful rescue and the local emergent behavior. Variation in smin had negligi-

ble impact on our evaluation criteria but the rescuer often required fewer steps to locate the lone

survivor when the PT was first increased. The median rescue times for each environment and a

range of PT s are plotted in Figure 4.2 along with a fitted curve to help visualize the overall trend.

Pause times around 300 were generally most beneficial for reducing the number of steps the res-

cuer needed to locate the survivor, independent of environment. Further increases to the PT did

not notably reduce the number of steps and instead only increased the rescue time.
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Figure 4.2: The rescuer requires fewer steps to locate the lone survivor if they first pause and allow the

robots to do some preliminary exploration. The median number of steps taken by the rescuer over 100

simulations shows a PT of 300 was generally the most beneficial but there is a range of comparable values

indicating resilience to rescuer PT .

Decreasing the number of rescuer steps is partially correlated with reduced danger to the res-

cuer, an important priority in disaster scenarios, but waiting for the robots to do preliminary ex-

ploration also adds time to the overall rescue which is undesirable. The trade-off between acting

early or waiting for more information is not new but disaster scenarios add the challenge of a po-

tentially dynamic environment where uncertainty is never fully resolved. Fortunately, rescuers are

highly trained to make decisions based on the specific situation so the results of Fig. 4.2 can be

used to primarily inform real-world rescue strategies. The informative role of the swarm explo-

ration also aligns with the preferred swarm interaction expressed by participants in the survey by

Carrillo-Zapata et al. [55].

Speed is a similarly important parameter to ensure the rescuer fully leverages information from

the swarm. Figure 4.3 shows the median time required to locate the survivor as a function of

rescuer speed for the first three environments from Fig. 4.1. The survivor is located a specific

distance away from the center of the environment where the rescuer is initially positioned so,

theoretically, a faster speed would result in decreasing the lower bound on rescue time. We see the

benefits of travelling faster are initially present in Fig. 4.3 but speeds faster than the swarm speed

of 0.4 do not significantly improve performance in any of the environments.
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Figure 4.3: The rescuer often requires the fewest number of steps to locate the survivor when they have

the same maximum speed as the robots. Here the median rescuer step count is shown when robots have a

maximum speed of 0.4. Travelling faster than the swarm does not offer improved performance but indicates

a resiliency to variations in rescuer speed.

While the utility of the swarm was resilient to variations in rescuer parameters, the rescuer

generally required fewer steps to locate the survivor if they implemented a sufficient pause time

(PT ) and a reasonable speed (smax). Another important parameter is the number of robots present

in the swarm to ensure an informative behavior emerges. Figure 4.4 demonstrates the effect of

increasing the number of robots in Environment 4 on the average rescue time. A sufficient number

of robots are clearly needed - the rescuer never located the survivor when only one robot was

present and required more than 2400 time steps on average with 50 robots - but sufficient is difficult

to define in advance, particularly when the environment itself is unknown as is the case for most

disaster scenarios. Fortunately, the rescue performance for our minimalist scenario is relatively

robust with respect to variations in swarm size. Swarm sizes of 200 − 600 robots all resulted in

very similar average rescue times as summarized in Fig. 4.4 for Environment 4.

4.5.3 Resilience to Environment Hazards

The harsh terrain of many disaster scenarios results in a high probability of failure for au-

tonomous systems. We have shown that the utility of the emergent behavior is robust with respect

to initial swarm size but, alternatively, these results can be extended to scenarios where a large

number of robots fail during the exploration task. To more fully characterize the impact of robot
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Figure 4.4: The rescuer required less time on average once more than 300 robots were initially distributed

because a sufficient number of robot interactions occurred for informative behaviors to emerge. Using more

than 300 robots did not significantly reduce the rescue time as demonstrated by the average rescue times for

Environment 4.

failure on our hypothetical disaster rescue scenario, we introduce a failure parameter, pf , to our

simulation model. Prior to moving, a robot will be assigned a uniformly generated random num-

ber R. The robot is removed from the simulation if R ≤ pf to simulate a realistic, immobilizing

failure.

The lower curve in Figure 4.5 shows the median time required to locate the survivor in Environ-

ment 4 as pf was systematically increased. The top curve indicates how many of the 100 scenarios

resulted in the rescuer successfully locating the survivor. For all 100 scenarios, 300 robots are

initially dispersed, travelling at 0.4 units, and a rescuer PT of 300 time steps.

It is instructive to compare the performance of the swarm in the presence of catastrophic failure

from Fig. 4.5 to the results for varying the initial swarm size in Fig. 4.4. A pf of 0.0014 resulted

in the rescuer taking a median of 639 steps. The swarm experienced a 75% failure rate over the

course of the simulation so 225 of the original 300 robots failed by the time the rescuer successfully

located the survivor. Although there were only 75 robots operating in the environment near the end

of the simulation, the surviving robot behaviors had still been influenced by interactions with other

robots pre-failure. Information about the environment was distributed through the swarm by these

interactions so, even with mass failure, the rescuer could still leverage the swarm knowledge to

locate the survivor. Interpolating the values from Fig. 4.4, the median time for the rescuer would
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Influence of Failure on Swarm Resilience

Figure 4.5: The median rescue time in Environment 4 (lower red curve) increased as robots experienced

larger failure rates but the rescuer still successfully located the survivor in the majority of scenarios (top blue

curve) even when as few as 12 robots remained functional.

have been about 2000 steps if the swarm was initially composed of only 75 robots and there were

no failures. Amazingly, the rescuer successfully reached the survivor as long as at least 12 of the

original 300 robots were still present in the environment which occurred in 58 of the 100 scenarios.

To further put the swarm resilience into context, we consider the theoretical performance of a

single robot that primarily operates using a wall-following strategy. Environment 4 has a perimeter

of 104 units so a wall-following robot would have an expected path length of 52 units or, enforcing

the same speed, we expect the wall-follower to need 130 steps on average to locate the lone sur-

vivor. The wall-following robot is also a singular entity so the rescuer will only successfully locate

the survivor if the robot itself does not fail but each move in a harsh environment adds a chance for

failure. We model the probability, pn, of the wall-following robot successfully moving n steps by

using the exponential decay model

pn = e−cn (4.13)

where c is the probability of failure per unit step. Evaluating (4.13) with n = 130, the wall-

following robot would theoretically need to achieve a 99.58% reliability per step to locate the lone

survivor in Environment 4 in as many trials as our minimalist swarm where 75% of the robots failed

and the survivor was still successfully located.
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Even with 100% step reliability, a wall-following strategy may simply be ineffective for the par-

ticular environment of interest due to a physical lack of boundaries or extremely reduced visibility

which even limits the abilities of human rescuers [55]. We further explore the swarm’s resilience

to environmental variations by adding a room, or cavern, to one end of Environment 4 and placing

the lone survivor at the center of this room. The room dimensions are such that neither the robots

nor the rescuer can sense the survivor without losing contact with a wall. Figure 4.6 shows the

new environment as well as the resulting rescuer trajectory for one illustrative simulation. The

trajectory shows the rescuer sometimes circles back on their previous path which adds steps to the

total that would not occur with a wall-following algorithm; however, the trajectory also shows the

rescuer avoided entering several unoccupied regions of the environment, instead spending extra

time in areas that must necessarily be entered in order to reach the survivor.

Figure 4.6: In the cavern environment, the survivor (yellow square) is positioned in the middle of a large

room where limited sensing prevents both the rescuer and robots from seeing the survivor while maintaining

contact with the wall. The survivor would therefore not be successfully located if the rescuer was alone, or

reliant on a wall-following robot with comparable sensing radius, but the dispersion of robots in the swarm

directs the rescuer away from the wall and to the survivor. The rescuer also avoids entering unnecessary

regions of the environment in this scenario.

Our minimalist rescuer model only considers the velocities of robots within the rescuer’s sens-

ing radius but this simple algorithm leverages the emergent swarm behavior to reduce the likeli-

hood of entering unnecessary regions of the environment. Consider the rescuer’s decision making

process when they approach the final hallway junction before entering the large room where the
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survivor is located. Figure 4.7 zooms in on this region of the environment and shows the rescuer’s

position as a red ‘x’ with the sensing area illustrated with the purple circle. At this point, the res-

cuer has been unable to detect the upper hallway. A wall-following strategy would lead the rescuer

into the dead-end hallway but several robots have already explored this region and are moving back

up, creating a small repulsive wave that directs other robots as well as the rescuer away from the

dead end in general. The velocity for each robot is shown as a green arrow. The repulsive force

of the wall combined with the observable swarm motion at the single time step direct the rescuer

away from a potentially hazardous region of the environment and up into the correct hallway.

Figure 4.7: Some robots have already entered the left-most branch of the cavern environment and en-

countered a dead end. Zooming in on the final junction of the cavern environment and showing the robot

velocities as green arrows, the returning robots exert a pressure that helps direct the rescuer, who can only

detect objects located within the large purple circle, into the correct hallway and away from the unnecessary

environment segment.

More sophisticated path-planning algorithms would reduce the amount of rescuer back-tracking

but our focus in this work was on quantifying the resiliency of the emergent swarm behavior to per-

turbations. Even with the minimalist model used, the rescuer successfully located the lone survivor

in our cavern environment in 83 out of 100 simulations and required a median of 676 steps. The

rescuer also frequently avoided entering unnecessary regions of the environment, thereby further

reducing the potential hazards encountered in real disaster scenarios. No change in the swarm be-
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havior was needed to account for a significant change in the environment which further illustrates

the swarm’s resiliency, this time with respect to environmental features.

4.6 Discusison

While we present specific parameter values in Section 4.5, we are by no means proposing

these as ideal scalars for swarm exploration. Nor are we advocating a simplistic interaction be-

tween swarm and simulated rescuer. The real contribution of this work is establishing a baseline

quantification of swarm resilience, demonstrating important relationships between robots and a

minimalist human rescuer, and illustrating the feasible benefits of leveraging emergent properties

for important applications like locating survivors in disaster environments.

Interactions are the primary force driving emergent swarm behavior so a sufficient number

of robots are necessary to ensure collective properties evolve. While this statement is partially

intuitive and also supported by Fig. 4.4, the influence of swarm size on individual robot properties

is potentially less clear but an extremely important design consideration. We used values from

Table 4.1 to govern the dispersion algorithm. The choice of coefficients was impressively resilient

to variations but testing minimum swarm sizes highlights the value of interactions for producing

more complex behaviors.

For example, during our preliminary investigations, we found that an individal robot did not

need to store past steps or implement sophisticated heading control for efficient area coverage if

other robots were in the sensing area. Neighboring robots in the swarm essentially serve as a mo-

tion memory and enforce more direct trajectories. When one robot moved, other robots could fill

in the space to prevent the robot from undoing its move which is the traditional role of ‘memory’.

Similarly, an individual robot may have very random motion (large value of σ in our simulation)

but the presence of other robots combined with a simple collision avoidance mechanism reduced

the robot’s erratic trajectory compared to the robot’s trajectory in isolation. The collective behav-

ior generally resulted in more efficient local behaviors without any change to the individual robot

parameters. Figure 4.8 qualitatively demonstrates the improved trajectory for a robot in a swarm
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with M = 300 robots (red line) compared to a robot operating on its own (blue line) with the same

values from Table 4.1.

Figure 4.8: A robot operating with the parameters of Table 4.1 with swarm size M = 1 ineffectively

navigates the environment (blue line) but increasing the swarm size improves exploration trajectories without

any change to the local rules. The red line is an illustrative robot trajectory when M = 300.

Robot interactions also contribute to the desired robustness frequently associated with swarms

because information is stored implicitly in the behaviors rather than explicitly with any single

robot. Figure 4.5 demonsrates that the swarm could experience catastrophic failure but still retain

sufficient information for the rescuer to leverage and successfully locate the lone survivor. Of the

58 scenarios with pf = 0.0014 where the rescuer successfully reached the survivor, the fewest

number of robots still functioning in the environment was just 12 but the motion of those 12 robots

had benefitted from the initial distribution of 300 robots.

The surviving robots were generally guided along a more direct path to the survivor by other

robots that had entered dead end hallways and were attempting to return before failing. The rescuer

similarly benefitted from the exploration of failed robots before they were immobilized. One

challenge from our implementation is that the rescuer required a minimum observed velocity from

the swarm before moving. Thus, in the event that all robots within the rescuer’s sensing radius

failed, the rescuer was unable to move. In a real-world disaster scenario, the swarm would most

likely only inform the rescuer’s search strategy so even in the extreme cases where no robots are

in the rescuer’s sensing radius, the rescuer can still navigate the environment.
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4.7 Conclusion

The distributed nature of swarms offers an intuitive promise of robustness and efficiency which

is especially desirable for exploration-based tasks in harsh environments like locating disaster sur-

vivors. In this work, we establish a baseline quantification of swarm resilience by first evaluating

the impact of fundamental robot properties on the utility of the emergent behavior. A simulated

human rescuer relies on the locally observable swarm velocity to navigate an unknown disaster

environment while attempting to locate a lone survivor. We affirmed that a minimalist swarm

governed by a simple collision avoidance algorithm had sufficiently complex interactions to en-

code important environmental information that the rescuer successfully leveraged. The utility of

the swarm was robust with respect to variations in fundamental rescuer parameters and signifi-

cant changes in the environment. More impressively, the rescuer still found the survivor when the

swarm underwent catastrophic failure and lost up to 288 of the original 300 robots.

Although simple, the robust success of a simulated rescuer locating a lone survivor affirms the

benefits of robot swarms. Local observations of the emergent swarm behavior often reduced the

number of regions the rescuer entered and even reliably directed the rescuer into empty spaces that

would be inaccessible if relying on limited-sensing strategies like wall-following. Properties of the

swarm do not need to be optimized for the swarm to still be effective in a variety of environments.

While our simulation established an important baseline, we believe more information can be ex-

tracted by a human observing the emergent behavior and the additional information will further

improve the swarm performance in all interactive applications.
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Chapter 5

Concluding Remarks and Future Work

From the earliest conceptions, robots have often taken human forms with a predilection for

individual sophistication. Humanoid robot designs partially turned these preferences into reality

with impressive demonstrations, including Boston Dynamics’ Atlas robot doing parkour, yet a

noticeable lack of robotic presence remains in disaster rescue scenarios despite technological ad-

vancements. The increase in occurrence and economic impact of disaster scenarios [39] demands

solutions and robots can still be a part of that solution but perhaps in a form more analogous to

ants than humans!

Robotic swarms have many potential benefits in exploration-based tasks, including aiding

in disaster rescue scenarios, as demonstrated in nature by cooperative systems including insect

colonies, schools of fish, and flocking birds. In all of these systems, local interactions governed

by individual rules contribute to a more complex, cooperative behavior. The emergent behavior

can lead to efficient foraging strategies or complex constructions which exceed the abilities of

any single swarm member. Though evidence of desirable emergent behaviors exists, the local

mechanisms which lead to those emergent behaviors is generally unintuitive, leading to a very

fundamental challenge in the design of robotic swarms. No closed-form mapping exists between

local and emergent behaviors within a swarm.

Some researchers have attempted to resolve the correlation between local and emergent behav-

iors using a top-down approach wherein a desired emergent behavior is described mathematically

and then the coefficients for individual robot controllers are iteratively optimized to reproduce the

desired emergent behavior [8], [11], [12]. The top-down approach can be effective in controlled

settings but undermines the overall potential of swarms. First, the resulting behaviors are no longer

robust because changes in the swarm composition or environment fundamentally alter the interac-

tions and hence change the emergent behavior. The top-down strategies also fail to leverage the

interaction element of swarms and instead impose more sophisticated controllers at the local level
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which is similar to the humanoid robot strategies which thus far have been ineffective in harsh

environments.

This dissertation takes a fundamentally different approach by establishing bottom-up swarm

strategies with minimalist swarms. In Chapter 2, we use a continuum limit methodology to map

discrete-time robot actions to a partial differential equation (PDE) model which describes the dis-

tribution of robots in the environment as a function of time. The robots represent a worst-case

model because they were reduced to random motion with no communication or localization abil-

ities. Nonetheless, the minimalist swarm encoded enough information about the environment for

a centrally located observer to determine the location of openings in a 1D hallway or 2D square

room. The observer would compare the locally observed distribution of robots to the PDE model

for each potential environment and classify the environment using a least-square error strategy.

Explicitly modelling each potential environment is not practical in real-world disaster scenar-

ios where the environment has been altered; however, the mathematically-based PDE formulation

established an important correlation between local robot behaviors, environmental features, and

resulting emergent swarm behavior which we then expanded on in Chapter 3. A simple neural

network with a soft max activation function was trained to correlate locally observed robot dis-

tributions with the environment being explored by the swarm. Once again, this bottom-up swarm

approach used simple robots and leveraged the emergent behavior to classify environment features.

The trained neural network reliably predicted the location of single openings in the environment

and was demonstrably robust. The network could be trained using centrally located doorways in

a square 2D office but then accurately identify which wall contained the doorway when the sim-

ulated environment actually shifted the door to the far side. The minimalist swarm could also

experience catastrophic failure, losing 90% of the original robots, and still be used to predict the

doorway location with better than random accuracy. We demonstrate the value of this robustness

in Chapter 3 by introducing a theoretical person in the center of the office who uses the observed

swarm density to locate the single doorway with better than random accuracy even with 90% robot

failure.
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Chapter 4 further characterizes the robustness of bottom-up swarm strategies for disaster envi-

ronments and extends the swarm-human interaction scenarios. First, we affirm the robustness of

the swarm with respect to variations in local robot characteristics. Robots within the swarm con-

sistently dispersed throughout the environment despite large changes in individual speed, heading

control, and swarm size. Building on studies where human participants are asked to classify simu-

lated emergent swarm behaviors from a list of established behaviors [44], [45], [46], we introduced

a simulated human rescuer who was only able to discern the local robot velocities. Using this min-

imalist information, the rescuer was able to reliably locate a survivor in the environments. The

rescuer could utilize a variety of speeds themself and change how long they allowed the robots

to explore before acting without significantly changing the amount of time needed to reach the

survivor. Further, the swarm consistently helped direct the rescuer away from dead end passages

which is advantageous in real-world environments where conditions are unstable. No change in

strategy was needed even when the environment was fundamentally changed to include a large

open room which would preclude the use of wall-following strategies. Once again, the swarm was

quantifiably robust to individual robot failure. The survivor was located when as few as 12 of the

original 300 robots remained.

The results of the foundational work presented in this dissertation validate the potential for

implementing swarms to aid in the exploration of harsh environments. By leveraging fundamental

interactions between robots and the environment rather than imposing top-down rules, we demon-

strated that even minimalist robots can encode key features of unknown environments. PDE models

quickly and accurately described the emergent behavior for a simple environment. Neural networks

expanded the variety of environmental features which could be classified. More than classifying a

full environment, we demonstrated how rescuers can use local observations of the emergent swarm

behavior to aid in locating disaster survivors and navigating unknown environments.

We focused on minimalist robots throughout this work. The simple robots serve as a worst-

case model but also establish a baseline performance to which more sophisticated sensor additions

and algorithms can be compared. Future work building on this foundation should include physical
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implementations and potentially additional complexity at the local robot level. Before adding func-

tionality to the robots, however, properties of the emergent behavior should be investigated further.

We only utilized density or velocity properties from the swarm in our work because the focus was

on the swarm itself but this methodology affirmed that beneficial information was encoded in the

emergent behavior. All of the available information from the swarm should be extracted prior to

increasing the complexity of robot interactions so the most informative emergent properties can be

identified for the desired tasks.

Robots have advanced significantly since their inception but are still unable to reliably navigate

harsh terrain like collapsed buildings or mines. Perhaps applications like interplanetary exploration

and especially disaster rescues would benefit from a new approach inspired by nature’s cooperative

systems. Robotic swarms leverage interactions between relatively simple robots and the environ-

ment to generate more complex emergent behaviors. As asserted in this dissertation, the emergent

behavior can encode important environmental features to aid in navigation and the swarm itself is

robust to changes in its fundamental properties, the environment, and can even withstand catas-

trophic failures. Swarms may not look like the automatic assistants described by Karel C̆apek in

1920 but they may be the key advancement to support rescuers in the harsh terrain of a disaster.

72



Bibliography

[1] Robot. https://en.wikipedia.org/wiki/Robot#cite_note-6. Accessed: 2020-03-28.

[2] CBC Radio. Robots are piling up inside fukushima’s robot graveyard. https://www.cbc.ca/

radio/quirks/one-minute-of-exercise-fukushima-robots-fail-dna-stores-everything-but-the-kitchen-sink-1.

4019376/robots-are-piling-up-inside-fukushima-s-robot-graveyard-1.4019409, March

2017. Accessed: 2020-03-28.

[3] Defense Advanced Research Projects Agency. Darpa robotics challenge (drc). https://www.

darpa.mil/program/darpa-robotics-challenge. Accessed: 2020-03-28.

[4] Iñaki Navarro and Fernando Matía. An introduction to swarm robotics. ISRN Robotics, 2013,

2012.
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