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ABSTRACT OF DISSERTATION 

RAINFALL ESTMANTION FROM SPACEBORNE AND GROUND BASED 

RADARS USING NEURAL NETWORKS 

Rainfall observed on the ground is dependent on the four dimensional radar 

observations. However it is difficult to express this in a simple form. The key challenge 

in radar rainfall estimation is the space-time variability in precipitation microphysics, 

such as DSD and drop shapes. A simple Z-R relation is not sufficient and has large 

uncertainty and it needs to be adaptively adjusted. Prior research has shown that neural 

networks can be used to estimate ground rainfall from radar measurements. Neural 

network is a nonparametric method to represent the relationship between radar 

measurements and rainfall rate. The usefulness of the neural network is subject to many 

factors such as the representativeness and sufficiency of the training data set, the 

generalization capability of the network, seasonal changes, and regional changes. 

Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) is the first space 

borne observation platform for mapping precipitation over the tropics. TRMM measured 

rainfall is important in order to study the precipitation distribution all over the globe in 

the tropics. TRMM ground validation is a critical important component to ensure the 

measurement accuracy. However, this ground validation has quite different 

characteristics from TRMM in terms of resolution, scale, viewing aspect, and 
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uncertainties. This makes the use of ground radar rainfall information to correct TRMM 

rainfall estimates a very challenging task. In this dissertation, rainfall estimation using 

neural networks is investigated in order to improve rainfall estimation based on 

measurements taken by ground radars and TRMM PR. Ground Radar measurements will 

be used to estimate rainfall using adaptive neural network techniques. Improvements are 

also suggested and performed including the use of Principal Components Analysis, 

ensemble average neural network technique, and the use of Bayesian Neural Networks. 

For TRMM-PR purposes a single neural network is not efficient to extract the relation 

between TRMM-PR measurements and the rain gauges; this is because of the resolution 

differences between TRMM-PR profile and the rain gauges and the low number of 

TRMM overpasses over these gauges which will make the training data set to have less 

number of profiles and not be able to generalize. Therefore, a novel hybrid Neural 

Network model is presented to train ground radars for rainfall estimate using rain gauge 

data and subsequently the trained ground radar rain estimates to train TRMM PR based 

Neural Networks for rainfall estimation. This hybrid neural network model will derive 

the relation between rain gauges and ground radar measurements, and transfer this 

relation to adaptive rainfall estimation for TRMM PR in order to estimate rainfall and 

generate global rainfall maps. 

Amin Alqudah 
Department of Electrical and Computer Engineering 

Colorado State University 
Fort Collins, Colorado 80523 

Summer 2009 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Rainfall observed on the ground is dependent on the four dimensional radar 

observations. However it is difficult to express it in a simple form. The key challenge in 

radar rainfall estimation is the space-time variability in precipitation microphysics, such 

as Drop Size Distribution (DSD) and drop shapes. The empirical Z-R relation is not 

sufficient to capture the variability and has large uncertainty and it needs to be adaptively 

adjusted based on validation. Prior research has shown that neural networks can be used 

to estimate ground rainfall from radar measurements (Xiao and Chandrasekar, 1997, Liu 

et al., 2001, Stefano and Isabella, 2000). Neural network is a nonparametric method to 

represent the relationship between radar measurements and rainfall rate. The relationship 

is derived directly from a dataset consisting of radar measurements and rain gauge 

measurements. The usefulness of the rainfall estimation using neural networks is subject 

to many factors such as the representativeness and sufficiency of the training dataset, the 

generalization capability of the network to new data, seasonal changes, regional changes, 

and so on. 

Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) is known 

to be the first observation platform for mapping precipitation over the tropics. TRMM is 

a joint mission between the National Aeronautic and Space Administration (NASA) of 



the United States and the Japanese Aerospace Exploration Agency (JAXA) of Japan. 

TRMM measured rainfall is important in order to study the precipitation distribution all 

over the tropics globally. TRMM ground validation is a critically important component in 

TRMM system to ensure the measurement accuracy and its successful application using 

certain ground based weather radars and rain gauge networks of stable and sufficient 

quality. However, this ground validation has quite different characterizations from 

TRMM in terms of resolution, scale, viewing aspect, and uncertainties in the sensing 

environments. This makes the use of ground radar rainfall information in order to get 

TRMM point of view a very challenging task. 

In this dissertation, rainfall estimation is investigated using neural network 

techniques based on measurements taken by ground radars and TRMM PR radar. Ground 

Radar measurements will be used to estimate rainfall using adaptive neural networks 

techniques. Investigations are also performed including: the use of Principal Components 

Analysis, the use of Bayesian Neural Networks, and the use of Ensemble Average Neural 

Networks Technique. For TRMM-PR purposes, a single neural network is not efficient to 

extract the relation between TRMM-PR measurements and the rain gauges; this is 

because of the resolution differences between TRMM-PR profiles and the rain gauges 

and the low number of TRMM overpasses over these gauges which will make the 

training data set to have less number of profiles and not be able to generalize. Therefore, 

a novel hybrid Neural Network model is presented to train ground radars for rainfall 

estimate using rain gauge data and subsequently the trained ground radar rain estimates 

as target to train TRMM PR based Neural Networks for rainfall estimation. This hybrid 
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neural network model will derive the relation between rain gauges and ground radar 

measurements, and transfer this relation to adaptive rainfall estimation for TRMM 

precipitation radar. The main product of this technique is to produce local and instant 

rainfall rate maps as well as global rainfall accumulation maps. 

1.2 LITERATURE REVIEW 

Rainfall estimation based on radar measurements has been an important topic in 

radar meteorology for decades. This research problem has been addressed using a 

parametric approach where a simple Z-R relation is used to estimate rainfall from radar 

reflectivity factor. This approach is also used in TRMM-PR algorithm to estimate rain 

rate where different Z-R relations are used based on the rain type and height. Neural 

Networks technique was introduced to address this problem by taking into account the 

three-dimensional (3-D) structure of the radar observations. Many approaches were tried 

to improve rainfall estimation using either ground radar measurements or TRMM 

measurements. These approaches are presented in this section. 

1.2.1 RAINFALL ESTIMATION BASED ON GROUND RADAR MEASUREMENTS 

Neural network technique to estimate rainfall on the ground from radar 

observations was introduced by (Xiao and Chandrasekar, 1997). That neural network 

technique was tested using data set gathered during a few storm events. The neural 

network developed in that time was a multilayer perceptron network MLP which was not 

best suited for long term applications such as over months and years because of the long 

time it takes to train the network. Another attempt came later where an adaptive Radial 
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Basis Function (RBF) neural network was developed for radar rainfall estimation based 

on horizontal reflectivity profiles (Liu et al, 2001). Although the network was adaptively 

trained and tested on large data sets with reasonable computations, that adaptive RBF 

technique used a 9-point input vector sampled on a horizontal plane; which increases the 

complexity of a neural network, and ignores other weather data within the rain region. 

This issue (network complexity) was investigated later by (Li, et al., 2003) and it was 

shown that reducing the size of the input vector will reduce the complexity of the 

designed network without having significant effect on the estimation. Another attempt to 

improve the adaptive technique mentioned above was done by (Li and Chandrasekar, 

2002). The improvement was done through a classification network, where a limit on the 

rainfall estimate was performed in order not to overestimate the rain rate. 

Rainfall estimation using Neural Networks has also been done by (Orlandini and 

Morlini, 2000); different neural network architectures were tried in order to get good 

rainfall estimate. They explored the capabilities of three artificial neural networks in 

order to identify and reproduce the functional relationship between Z and R. The three 

networks that were used were multilayer perceptron (MLP), Bayesian network, and radial 

basis function network. Results using these three networks were good compared to Z-R 

relation. A weakness in their work was that all networks were not adaptive; the networks 

need to be retrained from the beginning each time new data became available, making it a 

time consuming process especially if data sets of a year or more need to be processed. 

This was already solved in the previous group (Liu et al, 2001) where adaptively training 

the neural network was started. 
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Another investigation to enhance rainfall estimation using neural network 

technique was also done by (Teschl et al., 2007). This group added the height of 

precipitation as another input to the neural network, and they used MLP network to do 

the estimation. This addition (the height of precipitation) was studied by (Li et al., 2003), 

and it was shown that radar measurements up to 4 km in height is enough to give good 

rainfall estimation based on neural networks. 

1.2.2 RAINFALL ESTIMATION BASED ON SPACE BORNE RADAR MEASUREMENTS 

In contrast to estimating rainfall based on ground radar measurements using neural 

network; there is not much research done to do so based on TRMM-PR measurements. In 

the year TRMM was launched, (Tsintikidis et al., 1997) used an MLP neural network to 

do rainfall estimation where the input was the brightness temperature (BT) obtained from 

the Special Sensor Microwave/Imager (SSM/I) instrument (Hollinger et al., 1990) 

onboard the F10 and Fll satellites launched in 1987 as part of the Defense 

Meteorological Satellite Program (DMSP). The input vector of the network was the (BT) 

which has low resolution especially at the low frequency measurements (25 x 25 km at 

the low frequencies and 12.5 x 12.5 at the high frequencies) which makes it difficult and 

potentially inaccurate to validate against rain gauges. Using this technique would be 

again inaccurate and inconvenient to use with the Microwave Imager on top of TRMM 

(TMI) for the same resolution issue ( 7 x 5 km at the high frequencies and 37 km x 63 

km at the low frequencies (Viltard et al., 2006)). 
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The same technique used in (Tsintikidis et al., 1997) was also used by (Gairola et 

al., 2001) and (Tapiador, et al., 2004) and was applied on TRMM data to estimate rain 

rate from brightness temperature. In these two latter works, neither one used the rain 

gauge to validate against. In (Gairola et al., 2001) the validation was against PR rain rate 

product (2A25 TRMM product), while in (Tapiador, et al., 2004) the validation was 

against rain rate estimated using a Bayesian approach (2A12 TRMM product) for 

previously calculated profiles using the Goddard Profiling (GPROF) algorithm 

(Kummerow et al. 1996). This makes the estimation and validation not complete enough 

because the validation in both techniques was based on calculated estimates (2A25 and 

2A12 TRMM products). 

1.3 PROBLEM STATEMENT 

There is a recognized need to accurately estimate rainfall on a variety of temporal 

and spatial scales. There are many real life aspects and applications that would depend on 

rainfall estimation: including climate monitoring, severe weather and flood warnings, 

river monitoring and control as well as numerical weather prediction models initialization 

and verification (Ebert and Le, 1995). In addition, other areas like agriculture would 

depend on the weather conditions in general and on rainfall in particular (Barrett and 

Martin, 1981). 

Rainfall on the ground is dependent on the four dimensional radar observations. 

The relation between the rain rate on the ground and the four-dimensional radar 

observations is difficult to express in a simple form. The key challenge in radar rainfall 
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estimation is the space-time variability in precipitation microphysics, such as DSD and 

drop shapes. Empirical Z-R relation is not sufficient to capture the variability and has a 

large uncertainty and needs to be adaptively adjusted based on validation. 

Prior research has shown that neural networks can be used to estimate ground 

rainfall from radar measurements. The usefulness of the rainfall estimation using neural 

networks is subject to many factors such as the representativeness and sufficiency of the 

training dataset, the generalization capability of the network to new data, seasonal 

changes, and regional changes. Therefore, improving the performance of a neural 

network technique to use in rainfall estimation based on ground radar measurements and 

rain gauges is a very important topic for decades. 

TRMM Precipitation Radar (PR) is a unique instrument, capable of providing high 

resolution vertical profile of precipitation. However, fundamental challenges exist in 

performing TRMM ground validation. The horizontal resolution of TRMM PR is about 

5km; much coarser when compared to rain gauges in the spatial scale. Another challenge 

is that during a single weather event, available data pairs for comparison (TRMM vertical 

profile of reflectivity versus rain gauge measurement) are scarce because of TRMM's 

limited overpasses. It is impractical to deploy a dense gauge network for TRMM PR 

validation. 
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1.3.1 RESEARCH QUESTION 

The main goal of this research is to use and to improve the use of neural networks 

techniques in ground rainfall estimation using ground radar /satellite radar measurements. 

This study attempts to address the following question: 

"How much can we improve ground rainfall estimation compared to rain gauge 

measurements using ground and/or satellite radar measurements, rain gauge 

measurements and neural networks, taking into considerations the 

time/complexity issues of the designed network?" 

1.4 OBJECTIVES OF THE RESEARCH 

The following points summarize the objectives of the research in this dissertation. 

• Estimate Rainfall from ground radar measurements using neural networks: 

o Examine the effect of the radar vertical profile height on rainfall estimation 

using neural networks, 

o Improve rainfall estimation using neural networks and compare it against rain 

gauge measurements and against other empirical and statistical estimators like 

Z-R relation and the best fit method. 

o Validate the performance of the proposed method using different datasets 

from different years and different locations. 
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o Improve the performance of the proposed neural network method by input 

conditioning using methods such as "Principal Component Analysis" (PCA) 

concept. 

o Improve the rainfall estimation by applying other Neural Network architecture 

such as "Bayesian Neural Networks", 

o Improve the rainfall estimation by applying "Ensemble Average Neural 

Networks" technique. 

• Estimate Rainfall from satellite radar measurements (TRMM-PR) using neural 

networks: 

o Estimate rainfall from TRMM-PR measurements using a novel hybrid neural 

network technique. 

o Improve rainfall estimation using neural networks and compare it against rain 

gauge measurements and against TRMM rain rate estimate products, 

o Validate the performance of the proposed technique using different datasets 

from a variety of years and different locations. 

• Generate Rainfall maps based on radar/satellite measurements using neural 

network estimators. 

o Generate local and instantaneous rainfall maps by ground radar 

measurements, 

o Generate local and instantaneous rainfall maps by using TRMM-PR radar 

measurements. 
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o Compare the maps generated by both neural network estimators against maps 

generated by TRMM product. 

o Generate global rainfall accumulation maps by using TRMM-PR radar 

measurements using the hybrid neural network. 
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CHAPTER 2 

BACKGROUND 

2.1 RAIN RATE ESTIMATION 

Relationships of radar reflectivity factor Z with rain rate R are established through 

measurements of rain drop size distributions (DSD). Rain rates are either measured by 

rain gauge or estimated from the observed drop size distributions. A widely used DSD is 

the Marshall-Palmer DSD (Marshall, and Palmer, 1948) which has a one-parameter 

exponential expression as the following, 

N(D) = N0 exp(-AD) (2.1) 

where N(D) (m~3mm~]) is the number of raindrops per unit volume per unit size in 

diameter interval D (mm) andD + AD(mm), N0 = S000 m~3mm'1, and A is related to 

A) by 

where D0 (mm) is the median volume diameter and defined such that all drops up to size 

Dn contribute to half of the rainwater content. 
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Rain rate which can be defined as the measure of the intensity of rainfall by 

calculating the amount of rain that would fall over a given interval of time if the rainfall 

intensity were constant over that time period. The rate is typically expressed in terms of 

length (depth) per unit time, for example, millimeters per hour, or inches per hour. Rain 

rate can be computed as the third moment of N(D) as follows, 

CO 

R = -\D3N(D)v(D)dD (2.3) 
6 o 

where v(D) = 17.67Z)067 is the raindrop terminal velocity ( D in centimeter) (Atlas, and 

Ulbrich, 1977). Marshall and Palmer in (Marshall, and Palmer, 1948) found that 

A = 4.1 R~°'2lmm~l to be good over a wide range of rain rates, but other values also have 

been reported in (Louis, 1973). 

2.2 RADAR REFLECTIVITY FACTOR AND RAINRATE ESTIMATE 

In Rayleigh scattering, where the drop diameter is much less than the wavelength, 

the radar reflectivity factor Z can be defined as the sixth moment of N(D) (Atlas and 

Ulbrich, 1977) as follows: 

Z = JD6N(D)dD (2.4) 
0 

Using the Marshall and Palmer DSD, Z can be written as follows: 

x 

Z = jXexp(-A£>)Z)6d!D=6! N0A^7(mm6m^) (2.5) 
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and by applying A = 4.1 R~°2imm ' (2.5) can be reduced to a power law Z-R relation: 

Z = aRb (2.6) 

where the coefficients a and b are determined by least squares fit to large samples of 

observations of Z and R. For various data and models, a ranges from 127 to 505, while b 

ranges from 1.41 to 2.39. A very common pair of the coefficients a and b is a=200 and, 

b=\.6 (Marshall, and Palmer, 1948). 

2.3 WEATHER SURVEILLANCE RADAR: WSR-88D 

2.3.1 INTRODUCTION 

Across the United States, various groups use the Doppler radar to gather 

information vital to our everyday life. From weather forecasting to emergency 

management, Next generation weather Radar or NEXRAD ensures public safety. A 

world wide network of 167 NEXRAD radars provides weather coverage for the entire 

United States and selected international locations as shown in Figure 2.1. 

• • National Doppler Radar Sites 

• • • • • • • 
• • • • 

A a • • • wm A 

• * . » - » " » » • • • • 
* • •. • ' • * * • • • • • 

• • » • • • » 
Hawan m » • 

Cuba Puerto Rio 

Figure 2.1: Locations of NEXRAD radars in the United States (http://www.roc.noaa.gov). 
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The formal name of NEXRAD radars is WSR-88D which stands for Weather 

Surveillance Radar established in 1988 and D stands for Doppler. The radar network is 

operated by the National Weather Service which is an agency of the National Oceanic 

and Atmospheric Administration (NOAA) and it is directly supported by a Radar 

Operation Center ROC in Oklahoma. The mission there is to keep the radars running 

smoothly and improve radar technology and capabilities to maintain peak performance 

from all radars. 

2.3.2 WEATHER RADARS 

The radar collects data by sending a radio signal out to a target. The signal bounces 

off the target (raindrops in this case) and returns to the radar. The returned signal conveys 

three important properties of the target. The first is the time it takes the signal to bounce 

off the target and return determines the distance from the target to the radar and the 

location of the storm. Second is the strength of the returned signal also known as 

reflectivity, is proportional to the size and number of raindrops (DSD) in the storm. Third 

is the frequency shift of the returned signal reveals whether the winds are moving toward 

or away from the radar, as well as their speeds. The data is converted into visual images 

and used by the National Weather Service forecasters. 

2.3.3 WSR-88D SYSTEM OVERVIEW 

The WSR-88D system generates three basic meteorological radar quantities 

mainly: radar reflectivity, mean radial velocity and spectrum width. Using these basic 

quantities, WSR-88D system generates numerous analysis of meteorological products. 
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There are three major functional components of the WSR-88D system, The RDA 

(Radar Data Acquisition), the RPG (Radar Products Generator) and the PUP (Principal 

User Processor). Detailed description of these components can be found in 

(http://www.roc.noaa.gov/eng/nexradtech.asp). 

The RDA considered as the information gathering component of the system, and it 

is composed of four primary components which are the antenna, the transmitter, the 

receiver and the signal processor. The RDA component transfer the measured 

information about the base data (radar reflectivity, mean radial velocity and spectrum 

width) to the next component (RPG) where this information is temporarily stored to be 

used by the algorithms that reside at the RPG. 

The RPG takes the base data and generates user requested meteorological and 

hydrological products. The RPG calls analysis programs (algorithms) that convert the 

base data from RDA into different meteorological and hydrological products. These 

products are stored so that they can be used by the users. The RPG also passes these 

products to the PUP component where they will be displayed and analyzed to be shown 

to the meteorologist. Table 2.1 shows some of the technical characteristics of WSR-88D 

or NEXRAD system. 
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Table 2.1: NEXRAD Radar Characteristics (http://trmm-fc.gsfc.nasa.gov/trmm_gv). 

Type 

Antenna size 

Beam width 

Gain at 2850 MHz 

Wave length 

Peak power 

Pulse width 

Polarization 

Range 

Frequency 

Sensitivity 

Normal Scan 

Range increment 

Azimuth increment 

S-band 

8.53 m 

0.88-0.96 deg 

45.5 dB 

10.0-11.1 cm 

750 kW (peak) 1.5 kw (Avg.) 

1.5 -4.5 ms 

Single, Horizontal 

460 km 

2.7-3.0 GHz 

lOdBZ 

+0.5 to+19.5 Degree 

250 m 

1 deg 

2.3.4 SCANNING STRATEGIES 

The antenna of the WSR-88D radar continuously scans the atmosphere in a 

sequence of 360° in the azimuth at various elevation angles. The antenna has two 

different patterns of scans and they are done alternatively based on the status of the 

atmosphere (Precipitation/No precipitation). In the "No precipitation" case or the "Clear 

air" mode, the antenna completes 360 in the azimuth in ten minutes at five elevation 

angles (0.5° to 4.5 °). In the "Precipitation mode", the antenna completes 360° in the 

azimuth in five minutes at 14 elevation angles (0.5° to 19.5°). Figure 2.2 shows the beam 

width and the height above the earth surface as a function of range for the five and 

fourteen elevation angles (both Precipitation/No precipitation modes). 
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(a) (b) 
Figure 2.2: Beam width and height above the earth surface as a function of range for the (a) five elevation 

angles (No precipitation modes) and (b) for the fourteen elevation angles (Precipitation). 
(Adopted from: http://www.desktopdoppler.com/help/nws-nexrad.htm). 

2.3.5 NEXRAD RAINFALL RATE ESTIMATE 

The NEXRAD PUP system mentioned before automatically determines the rainfall 

rate, and produces an estimated rainfall map of its scan area 

(http://www.roc.noaa.gov/eng/nexradtech.asp). The calculations are based on a simple Z-

R relation. This method of calculating the rainfall estimates is often in error. Error 

sources can be measurements of radar reflectivity factor, evaporation, variations in the 

DSD, and gauge- radar sampling differences. Equation (2.7) shows the Z-R relation used 

in NEXRAD. 

Z = 300i?14 (2.7) 
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2.4 RAIN GAUGE DATA SOURCE 

NEXRAD system uses a wide rain gauge network to help to do the radar 

calibration and Z-R relation adjustments. A rain gauge is a type of instrument used to 

gather and measure the amount of rain liquid over a set period of time. "Millimeter" is a 

common unit of measure, and when we are talking about rain rate this unit becomes 

Millimeter per hour. Tipping bucket gauges are commonly used in NEXRAD rain gauge 

networks. Rain gauges are not free of errors and limitations. Attempting to collect rain 

data during a very strong storm can be nearly impossible and unreliable due to wind 

extremes. Also, rain gauge measurements are limited to the local areas they are 

representing. 

Five rain gauge networks were considered in this study. Three over Melbourne- FL 

NEXRAD site (KMLB: 28.113°N, 80.654°W), one over Houston-TX (KHGX: 

29.472°N, 95.079°W), and one over Kwajalein-Marshall Islands (KWAJ: 8.7189°N, 

167.7319°E). The three networks over KMLB were: South FLorida Water Management 

District (SFL), St. Johns Water Management District (STJ), and Kennedy Space Center 

(KSC). Within a 100 km radius around KMLB site, these networks have 46, 99, and 33 

rain gauges, respectively. KHGX has only one rain gauge network around it, it is called: 

Houston-Area Raingauge (HAR) which has 160 rain gauges within a 100 km radius. 

KWAJ network has only 20 rain gauges and all of them are within a 100 km radius a way 

from the radar. Figure 2.3 shows these sites with their corresponding gauge networks. 
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Figure 2.3: KMLB, KHGX and KWAJ gauge networks. 

2.5 EVALUATION OF THE Z-R RELATION AGAINST THE RAIN GAUGE 

MEASUREMENT AROUND KMLB, KWAJ AND KHGX SITES 

To show the importance and the need of using neural networks to estimate rain rate 

from ground radar measurements, the rain rate was calculated using the Z-R relation 

19 



shown in (2.7). Rain rate was also estimated using a best fit. Radar data and rain gauge 

observations were used during different years (2005, 2006, 2007 and 2008) over 

Melbourne-Florida, Houston-Texas sites, and Kwajalein-Marshall Islands. Radar data 

were collected by the three radars Constant Altitude Plan Position Indicator (CAPPI) 

scans .The lowest height of the CAPPI scans is 1 km and it was used in this regard. The 

horizontal resolution of the resampled desired output (radar reflectivity factor Zh) was set 

to be lxl km. The gauge data were maintained by NASA TRMM program. As mentioned 

before, data within 100km radius around the site was only considered. The radar 

parameter of interest in this evaluation was only radar reflectivity factor Zh at 1km height. 

The performance of the Z-R relation was evaluated using the following metrics: 

—-£ (RFn ( / ) - RFg (/)) 
FracBias = - ^ - ^ _ (2.8) 

RFg 

,\'g 

X (RFg ( 0 - ^g )(RFn ( 0 - RFn ) 

a (RFg ).<j(RFn ) 
Corr =^l-izl (2.9) 

1 Ng 

£ \RFg (/) - RFn (/)| 
NSE = Ng '=1 (2.10) 

RFg 

f a 2 V ' 2 

- ^ - f (RFg (i)-RFn (/)) 

FRMSE = v g '"' _ 1— (2-11) 
RFg 
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where FracBias, Corr, NSE, and FRMSE are fractional bias, correlation, normalized 

standard error, and fractional root mean square error, respectively. RFn and RFg 

represent the estimated rainfall and the actual rain gauge, respectively, and Ng is the size 

of the data. 

Hourly rainfall accumulation comparisons are shown in the scatter plots in 

Figures 2.5, 2.6, 2.7, 2.10, 2.12, 2.13, 2.14, 2.16 and 2.17, in the standard deviation plots 

in Figures 2.11, 2.15 and 2.18, and in Tables 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10 and 

2.11. As it can be seen in the simple Z-R relation shows a poor performance compared 

with the best fit technique used when they were both compared with the gauge. The best 

fit was done adaptively "after the fact" in order to find the best fit parameters of the Z-R 

relation "a" and "b". The simple Z-R relation shows a poor performance in terms of all 

the evaluation parameters used. The best fit estimation showed better estimate, and our 

goal later is to have a neural network technique to seek or improve upon the best fit 

performance. The results show how the bias of the simple Z-R relation was significant; 

the correlation was not good enough, which would make the other evaluation parameters 

(NSE and the FRMSE) large. The same conclusion was seen for the instantaneous rain 

rate comparisons in Figures 2.4, 2.8 and 2.9 and Table 2.5; it is easy to see that a simple 

Z-R relation is not able and not enough to capture the variations in the rain gauge. It is 

worth mentioning that the simple Z-R relation was underestimating the rain rate in 

comparison with the corresponding rain gauge most of the times. 
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Rain Rate vs. Reflectivity : KMLB site 2008 

30 40 
Reflectivity (dBZ) 

I Rain Gauge 
Z-R Estimate 

50 60 

Figure 2.4: Z-R rain rate estimate and Rain gauge vs. Reflectivity. Data from year 2008 over KMLB. 
(Instantaneous Rainfall). 
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Table 2.2: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2005 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2005 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-32.3 

-22.8 

Corr. 

0.82 

0.87 

NSE 

0.40 

0.30 

FRMSE 
(%) 

54.3 

44.0 

Z-R Hourly rainfall Accumulation :KMLB site 2005 

Rain Gauge (mm) 

(b) 
Best Fit Hourly rainfall Accumulation :KMLB site 2005 

mean(Rain Gauge) = 4 12 (mm) 
mean(Best Fit Rainfall Estimate)^ 3 18 (mm) 
FracBias = -22.8 % 
corr. =0.87 
points = 1877 

5 10 
Rain Gauge (mm) 

(b) 
Figure 2.5: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2005 over KMLB. 

(Hourly Rainfall Accumulation). 
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Table 2.3: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2006 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2006 

ZrR Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-44.9 

-26.5 

Corr. 

0.72 

0.80 

NSE 

0.50 

0.36 

FRMSE 
(%) 

68.8 

51.5 

20 

18 

16 

I" 

Z-R Hourly rainfall Accumulation :KMLB site 2006 

DC 
Of 
M 

mean(Rain Gauge) ~ 4 39 (mm) 
mean(Z-R Rainfall Estimated 2 42 (mm) 
FracBias = -44.9 % 
corn = 0.72 
points = 1328 

I 5 10 15 
Rain Gauge (mm) 

(a) 
Best Fit Hourly rainfall Accumulation :KMLB site 2006 

I" 
.1 12 

a. 
Z 6 

i* 
2 

0 

mean(Rain Gauge) = 4.39 (mm) 
mean(Best Fit Rainfall Estimate)= 
FracBias = -26.5 % 
corr. =0.8 
points = 1323 

k * 

3 23 ^mm) / 

-

5 10 15 
Rain Gauge (mm) 

20 

• 2 5 

(b) 
Figure 2.6: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2006 over KMLB. 

(Hourly Rainfall Accumulation). 
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Table 2.4 Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2007 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2007 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-44.0 

-16.6 

Corr. 

0.75 

0.82 

NSE 

0.51 

0.32 

FRMSE 
(%) 

68.4 

46.8 

Z-R Hourly rainfall Accumulation :KMLB site 2007 

? 1 6 

£ 12 

CC 

£ 6 

1 < 
2 

G 

Rain Gauge (mm) 

(a) 
Best Fit Hourly rainfall Accumulation :KMLB site 2007 

mean(Rain Gauge) = 4.09 (mm) 
mean(Best Fit Rainfall Estimate)= 3 41 (mm) 
FracBias = -16.6 % / 
corr. = 0.82 / 
points =1705 / 

* & ' ' ZF* 

/ 

-
-

• 

-

0 20 
Rain Gauge (mm) 

(b) 
Figure 2.7: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2007 over KMLB. 

(Hourly Rainfall Accumulation). 
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Table 2.5: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2008 over KMLB. (Instantaneous Rainfall). 

KMLB 2008 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-44.8 

-11.8 

Corr. 

0.62 

0.74 

NSE 

0.61 

0.45 

FRMSE 
(%) 

104.6 

70.5 

Z-R Instantaneous rainfall :KMLB site 2008 

mean(Rain Gauge) =9.71 (mm/hr) 
mean(Z-R RR Estimate)= 5 35 (rnm/hr) 
FracBias = -44 8 % 
corr = 0 62 
points = 120481 

20 40 60 
Rain Gauge (mm/h) 

(a) 

Best Fit Instantaneous rainfall :KMLB site 2008 
100 

90 

g" 80 
E 
| TO 
s 
E 60 
w 

UJ 
« 50 
% 
£ 40 

1 30 

2 20 
m 

10 

0 

mean(Rain Gauge) =9 71 (rnm/hr) 
mean(BGst Fit RR Estimate^ 8.55 (mm/hr) 
FracBias = -11.8% 
corr = 0 74 
points = 120431 

40 60 
Rain Gauge (mm/h) 

(b) 
Figure 2.8: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2008 over 

KMLB. (Instantaneous Rainfall). 
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Best Fit Instantaneous rainfall :KMLB site 2008 

mean(Rain Gauge) = 9 71 (mm/hr) 
- mean(Best Fit RR Estimate)= 8 55 (mm/hr) 

FracBias = -11 8 % 
• corr. = 0 74 

points = 120481 
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(b) 
Figure 2.9: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. 

Data from year 2008 over KMLB. (Instantaneous Rainfall). 
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Table 2.6: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2008 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2008 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-44.5 

-19.9 

Corr. 

0.65 

0.83 

NSE 

0.52 

0.30 

FRMSE 
(%) 

74.4 

45.8 

20 

18 

16 

J , 2 

Z-R Hourly rainfall Accumulation :KMLB she 2008 

mean(Rain Gauge) = 4 51 (mm) 
rnean(Z-R Rainfall Estimate)= 2 55 (mm) 
FracBias = -44 5 % 
corr. = 0 G5 
points = 1671 

/ 
/ 

~ 16 
E 

§ 14 

Best Fit Hourly rainfall Accumulation :KMLB site 2008 

mean(Rain Gauge) = 4 61 (mm) 
rneart(Best Fit Rainfall Estimate)= 3.69 (mm) / ' 
FracBias--19 9 % 
corr. = 0 83 
points = 1671 

10 
Rain Gauge (mm) Rain Gauge (mm) 

(a) (b) 
Figure 2.10: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2008 over KMLB. 

(Hourly Rainfall Accumulation). 

Z-R Hourly rainfall Accumulation :KMLB site 2008 

mean(Rain Gauge) = 4 61 (mm) 
rnean(Z-R Rainfall Estimate)^ 2 55 (mm) 
FracBias = -44.5 % 
corr. = 0.65 
points = 1671 

6 3 10 12 
Rain Gauge (mm) 

(a) 

20 

IB 

r 

V-
1, 

2 

0 

Best Fit Hourly rainfall Accumulation :KMI R site 2008 

mean(Rain Gauge) = 4 61 (mm) 
• mean(Best Fit Rainfall Estimate)= 3.69 (mm) 

FracBias = -19.9% 
• corr = 0 83 y 

points =1671 S 

y\ y^-

A 

/ 
y 

/ 
/ 

k: 
/ • 

-

8 10 12 
Rain Gauge (mm) 

(b) 
Figure 2.11: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. 

Data from year 2008 over KMLB. (Hourly Rainfall Accumulation). 
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Table 2.7: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2005 over KHGX. (Hourly Rainfall Accumulation), 

KHGX 2005 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-31.7 

-23.6 

Corr. 

0.69 

0.80 

NSE 

0.50 

0.34 

FRMSE 
(%) 

69.4 

44.3 

20 

16 

16 

I» 
J" 

Z-R Hourly rainfall Accumulation :KHGX site 2005 

DC 
Of 
N 

mean(Rain Gauge) = 6 02 (mm) 
tnean(Z-R Rainfall Estimate)= 4.11 (mm) 
FracBias = -31.7% 
corr. = 0.69 
points = 666 

Rain Gauge (mm) 

(a) 
Best Fit Hourly rainfall Accumulation :KHGX site 2005 

20 

9" 16 

— 14 

tnean(Rain Gauge) = 6.02 (mm) 
mean(Best Fit Rainfall Estimate)= 4 6 (mm) 
FracBias = -23.6 % 
corr. = 0.8 
points - 666 

Rain Gauge (mm) 

(b) 
Figure 2.12: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2005 over KHGX. 

(Hourly Rainfall Accumulation). 
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Table 2.8: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2006 over KHGX. (Hourly Rainfall Accumulation). 

KHGX 2006 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-42.0 

-9.7 

Corr. 

0.75 

0.86 

NSE 

0.48 

0.24 

FRMSE 
(%) 

61.5 

33.3 

Z-R Hourly rainfall Accumulation :KHGX site 2006 

Rain Gauge (mm) 

(a) 
Best Fit Hourly rainfall Accumulation :KHGX site 2006 

10 15 
Rain Gauge (mm) 

(b) 
Figure 2.13: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2006 over KHGX. 

(Hourly Rainfall Accumulation). 
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Table 2.9: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain rate. 
Data from year 2007 over KHGX. (Hourly Rainfall Accumulation). 

KHGX 2007 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-46.9 

-19.8 

Corr. 

0.71 

0.84 

NSE 

0.53 

0.29 

FRMSE 
(%) 

67.1 

38.4 

Z-R Hourly rainfall Accumulation :KHGX site 2007 Best Fit Hourly rainfall Accumulation :KHGX site 2007 

I" 
S 12 
E 

mean(Rain Gauge) = 6 97 (mm) 
mean(Z-R Rainfall Estimate)= 3 7 (mm 
FracBias = -46 9 % 
corr = 0 71 
points = 106B 

^ Jgr 

/ / 

/ 

-

-

Rain Gauge (mm) 

(a) 

E 6 

meariJRain Gauge) = 6.97 (mm) 
rneari(Best Fit Rainfall Estimate)= 5.59 (mm 
FracBias = -19 8 % 
corr = 0 84 
points = 1068 

Rain Gauge (mm) 

(b) 
Figure 2.14: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2007 over KHGX. 

(Hourly Rainfall Accumulation). 

Z-R Hourly rainfall Accumulation :KHGX site 2007 

mean(Rain Gauge) = 6 97 (mm) 
mean(Z-R Rainfall Estimate)= 3 7 (mm) 
FracBias = -46.9 % 
corr =0.71 
paints = 1068 

10 12 
Rain Gauge (mm) 

s:; 
10 

Best Fit Hourly rainfall Accumulation :KHGX site 2007 

UJ 

i l S 

L 
2 

mean(Rain Gauge) = 6.97 (mm) 
- meanfBest Fit Rainfall Estimate) 

FracBias =-19 8 % 
- corr. = 0.84 

points = 10E3 

• ^ 

^ . 

= 5 59 (mm) 

^ 

-

-

6 3 10 12 
Rain Gauge (mm) 

(a) (b) 
Figure 2.15: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. 

Data from year 2007 over KHGX. (Hourly Rainfall Accumulation). 
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Table 2.10: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain 
rate. Data from year 2006 over KWAJ. (Hourly Rainfall Accumulation). 

KWAJ 2006 

ZrR Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-53.7 

-12.1 

Corr. 

0.80 

0.80 

NSE 

0.57 

0.37 

FRMSE 
(%) 

85.3 

61.0 

Z-R Hourly rainfall Accumulation :KWAJ site 2006 

mean(Rain Gauge) = 3 11 (mm) 
mean(Z-R Rainfall Estimate)- 1 44 (mm) 
FracBias = -537 % 
corr. = 0 8 
points = 517 

% 

HI 

5 10 
Rain Gauge (mm) 

(a) 
Best Fit Hourly rainfall Accumulation :KWAJ site 2006 

mean(Rair) Gauge) = 3.11 (mm) 
mean(Best Fit Rainfall Estimate)= 2 74 (mm) 
FracBias = -12.1 % 
corr. = 0.8 
points = 517 

5 10 
Rain Gauge (mm) 

(b) 
Figure 2.16: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2006 over KWAJ. 

(Hourly Rainfall Accumulation). 
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Table 2.11: Performance evaluation of the Z-R relation and the Best-Fit method used in estimating rain 
rate. Data from year 2007 over KWAJ. (Hourly Rainfall Accumulation). 

KWAJ 2007 

Z-R Est. 
vs. 

Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-53.7 

-0.8 

Corr. 

0.64 

0.72 

NSE 

0.60 

0.40 

FRMSE 
(%) 

83.4 

60.2 

Z-R Hourly rainfall Accumulation :KWAJ site 2007 Best Fit Hourly rainfall Accumulation :KWAJ site 2007 

rneanfRain Gauge) = 3 21 (mm) 
rnean(Z-R Rainfall Estimate)= 1 48 [mm) 
FracBias = -53 7 % 
corr = 0 64 
points = 454 

rneanfRain Gauge) = 3 21 (mm) 
mean(Best Fit Rainfall Estimate)^ 3.18 (mm) 
FracBias =-0.6 c 

corr. - 0 72 
points = 454 

* * 

j& 
Rain Gauge (mm) Rain Gaug* (mm) 

(a) (b) 
Figure 2.17: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. Data from year 2007 over KWAJ. 

(Hourly Rainfall Accumulation). 

Z-R Hourly rainfall Accumulation :KWAJ site 2007 Best Fit Hourly rainfall Accumulation :KWAJ site 2007 

mBan(Rain Gauge) = 3.21 (mm) 
mean(Z-R Rainfall Estimate)= 1 48 (mm) 
FracBias = -53 7 % 
corr. = 0 64 
points = 454 

5 10 
Rain Gauge (mm) 

mean(Rain Gauge) = 3 21 (mm) 
mean(Best Fit Rainfall Estimated 3 18 (mm) 
FracBias = -0 8 % 
corr. = 0 72 
points = 454 

5 10 
Rain Gauge (mm) 

(a) (b) 
Figure 2.18: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit estimate. 

Data from year 2007 over KWAJ. (Hourly Rainfall Accumulation). 
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CHAPTER 3 

TROPICAL RAINFALL MEASURING MISSION (TRMM) 

3.1 rNTRODUCTION 

Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the 

National Aeronautics and Space Administration (NASA) and the Japanese Aerospace 

Exploration Agency (JAXA). It was launched by the H-II rocket from Tanegashima 

Space Center on November 28, 1997 (TRMM Manual February 2001). Its main goal is to 

monitor and study tropical rainfall. TRMM mainly observes rain structure, rain rate and 

distribution in both tropical and subtropical regions. TRMM measurements are expected 

to play a very important role in understanding the global climate and monitoring the 

environmental variation. 

3.2 TRMM INSTRUMENTS 

As shown in Figure 3.1, TRMM has three primary instruments namely the 

Precipitation Radar (PR), the TRMM Microwave Imager (TMI), and the Visible and 

Infrared Scanner (VIRS) (TRMM Manual February 2001), and uses the Clouds and 

Earth's Radiant Energy System (CERES) and the Lightning Imaging Sensor (LIS). Some 

of the characteristics of these five instruments are summarized in Table 3.1. 
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Figure 3.1: TRMM instruments, [http://nasadaacs.eos.nasa.gov/articles/2004/2004_clouds.html]. 

Table 3.1: TRMM instruments characteristics (TRMM Manual February 2001). 

Frequency/ 
Wavelength 

Ground 
Resolution 

Swath 
Width 

PR 

13.8GHz 

5.0 km 

247 km 

TMI 
10.65, 19.35, 
21.3,37.0, 
85.5 GHz 

5.1km 
at 85.5 GHz 

878 km 

VIRS 
0.63,1.6,3.75, 

10.8, and 12 
um 

2.4 km 

833 km 

LIS 

0.7774 urn 

4km 

600km 

CERES 

0.3 to 50 jam 

10km 

± 82 deg 

The TRMM PR is the first space bome precipitation radar; its operating frequency 

is 13.8GHz. Its main goal is to provide 3-D maps of storms as well as to estimate rainfall 

over land and ocean. 
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The VIRS is a radiometer with five channels of different frequencies or 

wavelengths (0.63, 1.6, 3.75, 10.8, and 12 urn). The VIRS provides high resolution 

observations about cloud coverage, cloud type, and cloud top temperatures. 

The TMI is a multichannel dual-polarized passive microwave radiometer operating 

at five different frequencies: 10.65, 19.35, 21.3, 37.0, 85.5 GHz. All these channels 

operate at dual polarization (Vertical and Horizontal polarization) except the 21.3 GHz 

channel which operates at single polarization (Vertical polarization). The TMI provides 

measurements of the brightness temperature, cloud liquid water, cloud ice, rain intensity, 

and rainfall types (stratiform, convective). 

There are two other TRMM instruments: the Lightning Imaging Sensor (LIS) and 

the Clouds and Earth's Radiant Energy System (CERES). The LIS is an optical sensor 

operating at 0.7774 urn, and it observes the distribution and the variability of lightning 

over earth. The LIS data can be used together with data from PR, TMI and VIRS to study 

the relation between lightning and rainfall. The CERES is a scanning radiometer with 

operating wavelength ranges from 0.3 to 50 urn. It measures the emitted and the reflected 

radiative energy from the surface of the earth and from the atmosphere. The goal of 

CERES is to reduce the uncertainties in predicting long-term changes in the climate. 

3.3 TRMM MEASUREMENT LEVELS 

The data observed by TRMM's instruments mentioned above are processed by 

NASA and distributed to the users. The data can be divided into three levels where each 

level has sublevels in it. In this section we are summarizing the levels that are related to 
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TRMM-PR instrument. Table 3.2 shows the definition of the TRMM products related to 

some of those instruments, and Figure 3.2 shows how some of these products are related 

to each other. For more details about the products of the other instruments, it is 

recommended to see (TRMM Manual February 2001) and (TRMM-PR Manual, Ver. 6). 

Table 3.2: TRMM Products (TRMM Manual February 2001). 

Sensor 
PR 

TMI 

VIRS 
COMB 

Processing Level 
1B21 
1C21 
2A21 

2A23 
2A25 
3A25 

3A26 

1B11 
2A12 
3A11 
1B01 
2B31 
3B31 
3B42 

3B43 

Product 
Calibrated Received Power 

Radar Reflectivity 
Normalized Radar Surface 

Cross Section 
PR Qualitative 

Rain Profile 
Monthly Statistics of 

Rain Parameter 
Monthly Rain Rate 

using a Statistical Method 
Brightness Temperature 

Rain Profile 
Monthly Oceanic Rainfall 

Radiance 
Rain Profile 

Monthly Rainfall 
TRMM & IR 
Daily Rainfall 

TRMM & Other Sources 
Monthly Rainfall 

3.3.1 LEVEL-1 

The PR Level-1 has two data products; 1B21 and 1C21. They can be shortly 

described as follows: 
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Level 2 

Level 3 

Level 3 
(Combined Product using 
TRMM& Other data 

COMB 
Rain Profile 

PR 
Normalized Radar 

Surface Cross Section 

TRMM & Other 
Sources Monthly 

Rainfall 

InfraRed 
Global Precipitation Index 
Special Sensor 
Micro wave/lmager 

CAMS Climate Assessment and 
Monitoring System 
Global Precipitation 
Climataology Center 

GPCC 

Figure 3.2: TRMM algorithm flow diagram (TRMM Manual February 2001). 
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• 1B21 is mostly about the calibrated received power. It has other information about the 

Noise Power, Minimum Echo Flag (Rain/No Rain Flag), Storm Height, etc. The 

received power is presented in three arrays: normal sample, surface oversample, and 

rain oversample. Each array is a 3-dimensional array whose dimensions are: scan, ray, 

and range bin. In the case of normal sample the power has 250 m vertical spacing, 

otherwise it is 125 m. 

• The 1C21 product is known for Radar Reflectivity (Z Factor). It carries information 

about radar reflectivity without rain attenuation correction. The 1C21 product has the 

same format as in lB21.The radar reflectivity factor is calculated from the measured 

power in 1B21 without rain attenuation correction (TRMM-PR Manual, Version 6). 

3.3.2 LEVEL-2 

PR Level-2 has three products; 2A21, 2A23, and 2A25. 

• 2A21 product is mainly responsible for calculating the Radar Surface Cross Section. 

In the cases where rain exists, it computes the path integrated attenuation (PIA) with 

the surface as a target using the Surface Reference Technique (SRT). 

• The 2A23 product is referred to as PR Qualitative. It produces the rain flag. In the 

cases where rain is detected, it will detect the existence of the bright band, and 

determine its width and height. From there, it can classify the rain profile to be 

startiform or convective. 

• The 2A25 product is well known as PR Profile. It produces a vertical profile of the 

rain rate estimate as well as the corrected version of the reflectivity. For ground 
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validation purposes, the rain rate near the surface and the reflectivity near the surface 

are also given. In order to correct for attenuation, this algorithms uses a hybrid 

method of both the surface reference technique (SRT) and Hitschfeld-Bordan method 

(HB) (Iguchi et al., 2000). 

3.3.3 LEVEL-3 

The PR Level-3 has two main products; 3A25 and 3A26. 

• 3A25 product is the Monthly Statistics of the Rain. It contains monthly statistics of PR 

Level-1 and Level-2 products (rainfall, reflectivity, Path-Integrated Attenuation, storm 

height, and bright band height). These statistics are performed using two resolutions; 

5°x5° and 0.5°x0.5° latitude/longitude at 5 layers (2 km, 4km, 6km, 10km and 15km 

heights). The statistics include probability of occurrence, means and standard 

deviations, and histograms. 

• 3A26: Estimation of space-time rain rate statistics over a 5°x5° grid on a monthly 

basis at 3 layers (2 km, 4 km and 6 km heights). The statistics are the same as in 3A25 

above (probability of occurrence, means and standard deviations, histograms and 

correlation coefficients). This product has monthly global rainfall maps. 

3.4 TRMM-PR DESCRIPTION 

3.4.1 TRMM-PR OVERVIEW. 

The TRMM precipitation radar (PR) is a space borne precipitation radar that has 

the ability to observe vertical distribution of precipitation all over the tropics. The PR 
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operates at a frequency of 13.8 GHz, and it provides rainfall estimation over land as well 

as ocean. Major design and performance parameters of the PR are shown in Table 3.3 

(Kozu et al., 2001). Observation geometry of PR is shown in Figure 3.3. The PR antenna 

beam scans in the cross-track direction over ±17° to give 247 km swath. The antenna 

beam width of the PR is 0.71° and there are 49 angle bins within the scanning angle of 

±17°. The horizontal resolution is around 5 km at nadir. The vertical range resolution of 

PR is 250 m. 

^ . 

TRMM Observatorv 

Plisht Direction 

Sensitivity: At the Top of 
Rain Area < 0.5 lnmli 

Brisht Band 

H: Satellite Altitude 350 km 

Number of Independent Samples 
> Appros. 64 

R~„ - H - ""O km <*: EaEsa Sr°BL **!atelliK 
TJ"» " toimoism-itioopoiatl 

Kicas ~ R'c05 8m 

0.5 km 

Rain Area 5 km 

6^: Maximum Scan Angle IT 

Ranse Resolution < 250 m 

Swath Widths 215 km 

Horizontal Resolution < Approx. 4 km 

Figure 3.3. The observation concept of the PR (adopted from TRMM Manual 2001). 
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Table 3.3: Major parameters of TRMM-PR. 

Frequency 

Swath Width 

Observable Range 

Range Resolution 

Horizontal Resolution 

Weight 

Power 

Beam Width 

Aperture 

Scan Angle 

Gain 

Peak Power 

13.8 GHz 

About 247 km 

Over 20 km 

250 m 

5 km (nadir) 

465 kg 

213 watts 

0.71° x 0.71° 

2.1 m x 2.1 m 

±17° 

About 47.4 dB 

Over 700 W 

3.4.2 TRMM-PR RAIN RATE ESTIMATION 

The TRMM-PR 2A25 product provides a vertical profile of the rain. The rain is 

simply calculated using the Z-R relation based on global averaged DSD model where Z is 

the attenuation-corrected version of the measured radar reflectivity factor (Zm). In this 

dissertation our concern is to estimate the rain rate near the surface. Therefore, we will 

deal with the lowest height measurement of the rain vertical profile. 

The appropriate selection of the DSD model is very important in estimating the rain 

rate. Two DSD models were assumed in TRMM-PR product; one for stratiform rain type 

and the other is for convective rain type. These models were made from a collection of 

Z-R relations measured near the ocean from widely distributed locations around the 

world. Typical Z-R relations were found to be (Kozu et al. 1999): 
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Stratiform: Z = 300#138 (3.1) 

Convective: Z = 185i?143 (3.2) 

For each model, the Z-R relationship is converted into an N0 - A relationship, 

where N0 and A are the parameters in the size distribution: 

N(D) = N0D
Me-AD (3.3) 

where /u is the shape factor and A is related to // and D0 as follows: 

KJ-^V- (3.4) 

Once the DSD model is obtained, the parameters in the k-Z and Z-R relations can 

be calculated for rain and snow at different temperatures and mixing ratio, where these 

parameters are functions of the rain type, presence or absence of the bright band, the 

heights of the 0°C isotherm and storm top. 

In the case of stratiform rain with bright band detected, the stratiform DSD model 

with a vertical profile model defined by (Awaka et al. 1985) is used to calculate the k-Z 

and Z-R coefficients. 

In this model, the coefficients of k-Z and Z-R are computed at 5 levels as shown in 

Figure 3.4; three levels for snow-water mixture (A,B C), and two levels for water drop 

(D,E). 

Levels A, B and C are defined such that the snow-water mixtures have fractional 

water contents of 1.1%, 1.7%, and 17%, respectively. Level D was defined where water 

drops have a temperatures of 0°C, while level E was defined at 20°C. Moreover, Level A 
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was considered as the storm top, level B was taken to be 500m above the bright band 

peak while level D was taken to be 500m below that peak. 

For other values of the k-Z and Z-R coefficients at intermediate levels, they are 

calculated by linear interpolation assuming a lapse rate of 5°C/Km. 

Fractional 
Water content 

1.1 % 

a or a 
>20°C 

Figure 3.4: Schematic presentation of the profiles for stratiform profile with bright band detected. 
(Adopted from Iguchi et al., 2000). 

In the cases of stratiform rain with no bright band detected or in the cases of 

convective rain type, the DSD model shown in Figure 3.5 is used to calculate the 

parameters of the k-Z and Z-R relations. The only difference is that the hydrometeors are 

assumed to be at 0°C in the 750m on both sides of the of 0°C isotherm. Actual values of 

the k-Z and Z-R parameters used in TRMM-PR 2A25 product are listed in Table 3.4. 

Other details about TRMM-PR rainfall estimation can be found in (Iguchi et al., 2000). 
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A ) Stratiform (No BB ) 
•*s. & Convective 

a or a 
Figure 3.5: Schematic presentation of the profiles for convective profile and for stratiform profile with no 

bright band detected.(Adopted from Iguchi et al., 2000). 

Table 3.4: Initial k-Z and Z-R parameters (k = aZp, R = aZ\ Z =a"R" ) 

Rain Type 

Stratiform 

Convective 

Others 

Parameter 

a 

P 
a 
b 
a" 
b" 
a 

P 
a 
b 
a" 
b" 
a 

P 
a 
b 
a 
b" 

A 

0.0000861 
0.79230 
0.01398 
0.7729 
250.8 
1.294 

0.0001273 
0.7713 
0.02027 
0.7556 
174.1 

1.323 
0.0001273 
0.7713 
0.02027 
0.7556 
174.1 

1.323 

B 

0.0001084 
0.79230 
0.01263 
0.7644 

304.6 
1.308 

0.0004109 
0.7713 
0.03484 
0.6619 
159.5 

1.511 
0.0001598 
0.7713 
0.01871 
0.7458 
207.4 
1.341 

C 

0.0004142 
0.79230 
0.004521 
0.7288 

1649.3 
1.372 

0.0004109 
0.7713 
0.03484 
0.6619 
159.5 

1.511 

0.0004109 
0.7713 

0.03484 
0.6619 
159.5 
1.511 

C(0°C 
water) 

0.0002822 
0.79230 
0.02010 
0.6917 

283.9 
1.446 

0.0004109 
0.7713 
0.03484 
0.6619 
159.5 
1.511 

0.0004109 
0.7713 
0.03484 
0.6619 

159.5 
1.511 

20°C 
water 

0.0002851 
0.79230 
0.02282 
0.6727 
275.7 
1.487 

0.0004172 

0.7713 
0.04024 
0.6434 

147.5 
1.554 

0.0004172 
0.7713 
0.04024 
0.6434 

147.5 
1.554 
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3.5 TRMM VALIDATION 

TRMM Ground Validation (GV) system is one of the very important systems that 

are part of TRMM mission. Its function is to support TRMM to improve some of the 

measuring and estimation techniques (Reflectivity and rain rate). The GV system has 10 

ground validation sites around the world as shown in Figure 3.6 in addition to there gauge 

networks. The main ground validation sites are located at Florida, Texas, Darwin, and 

Kwajalein. 

TRMM measurements require comparisons with well-calibrated ground-based 

systems (ground radars and rain gauges). The GV system takes TRMM measurements 

when TRMM overpasses over GV sites and compare there products in order to see how 

good TRMM measurements are. Results show that the reflectivity factor derived from the 

PR data after attenuation correction agrees with those obtained from the WSR-88D. 

Comparisons of rain rates estimated by TRMM-PR with rain gauges showed that TRMM 

may underestimate rainfall rate (Liao and Meneghini, 2009), (Okamoto et al. 2007). 

Figure 3.6: TRMM ground validation sites locations around the world. 
(http://trrnm-fc.gsfc.nasa.gov/trrnm_gv/index.htrnl). 
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3.5.1 TRMM-PR MEASURED REFLECTIVITY/ESTIMATED RAIN RATE VALIDATION 

In the years 2005, 2006, 2007 and 2008, TRMM has flown over KMLB, KWAJ 

and KHGX sites more than 600 times each. However, not all these times have 

precipitation. Over each site few overpasses were considered as precipitation overpasses. 

We studied these overpasses in order to evaluate the TRMM-PR measured reflectivity 

factor. Over KMLB site there were 166 precipitation cases during those four years (32, 

15, 41, and 78, respectively). Over KHGX site there were 85 precipitation cases during 

the years of 2005, 2006 and 2007 (27, 26, and 32, respectively), while over KWAJ site 

there were 50 precipitation cases during the years of 2006 and 2007 (26, and 24, 

respectively). 

The alignment procedure introduced by (Bolen and Chandrasekar, 2003) is used to 

align TRMM-PR reflectivity product with the ground radar reflectivity measurements. 

Resampling the ground-based and spaceborne datasets to a common grid provides a 

means by which the radar reflectivity factors can be compared at different heights. The 

results show that radar reflectivity factor derived from the PR data after attenuation 

correction agrees to within about 2 dB on average and it is within 1 dB for most of the 

cases. 

Figures 3.7, 3.9, 3.10, 3.11, 3.12, 3.14, 3.15, 3.16 and 3.18 represent scatter plots of 

TRMM-PR reflectivity compared with the ground reflectivity overpassed during the four 

years mentioned above. Figures 3.8, 3.13and 3.17 represent standard deviation plots of 

TRMM-PR reflectivity compared with the ground reflectivity overpassed certain years 

form the years mentioned above. Results are shown for four heights (1, 2, 3 and 4km). 
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Results show how close the TRMM-PR reflectivity product to the corresponding ground 

radar reflectivity product. Goodness is extracted through the good correlation the small 

bias, and small standard deviation of the bias at each height. The goal of doing the 

alignment in this dissertation is to use the closeness and the relationship of TRMM-PR 

reflectivity product and the ground radar reflectivity product and map it to a neural 

network in order to improve TRMM-PR rain rate estimate as will be shown in Chapter 5. 

Comparisons of TRMM PR rain rate product with rain gauge for the same years 

yield to the indication that TRMM-PR tends to underestimate rain rate compared with the 

rain gauge as shown in Table 3.5. Rain gauge networks used in this evaluation are those 

explained in Section 2.5 in the previous chapter. Detailed results of the evaluation in 

Table 3.5 will be shown in Chapter 5. 

Table 3.5: Evaluation of TRMM-PR rain rate estimates vs. rain gauge over 

KMLB, KHGX and KWAJ. (Instantaneous Rainfall). 

Site/Year 

KMLB 2005 

KMLB 2006 

KMLB 2007 

KMLB 2008 

KHGX 2005 

KHGX 2006 

KHGX 2007 

KWAJ 2007 

FracBias 

(%) 
-48.3 

-27.9 

-35.2 

-25.3 

-54.9 

-59.9 

-42.3 

-47.5 

Corr. 

0.53 

0.46 

0.58 

0.48 

0.20 

0.37 

0.59 

0.95 

NSE 

0.58 

0.64 

0.58 

0.64 

0.62 

0.61 

0.48 

0.47 

FRMSE 

(%) 
92.7 

105.1 

123.3 

114.0 

113.4 

93.0 

68.4 

65.8 
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K M L B - 2 0 0 5 : R a d a r R e f l e c t i v i t y F a c t o r V a l i d a t i o n 
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Figure 3.7: TRMM-PR reflectivity vs. KMLB reflectivity. Data from year 2005. 

KMLB- 2005 : Radar Reflectivity Factor Validation 
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Figure 3.8: Standard deviation plot: TRMM-PR reflectivity vs. KMLB reflectivity. Data from year 2005. 
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K M L B - 2 0 0 6 : Radar Reflectivity Factor Va l idat ion 
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Figure 3.9: TRMM-PR reflectivity vs. KMLB reflectivity. Data from year 2006. 
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Figure 3.10: TRMM-PR reflectivity vs. KMLB reflectivity. Data from year 2007. 
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KM LB 2008 : Radar Reflectivity Factor Validation 
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Figure 3.11: TRMM-PR reflectivity vs. KMLB reflectivity. Data from year 2008. 
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Figure 3.12: TRMM-PR reflectivity vs. KHGX reflectivity. Data from year 2005. 
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KHGX-2005 : Radar Reflectivity Factor Validation 
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Figure 3.13: Standard deviation plot: TRMM-PR reflectivity vs. KHGX reflectivity. Data from year 2005. 
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Figure 3.14: TRMM-PR reflectivity vs. KHGX reflectivity. Data from year 2006. 
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KHGX-2007 : Radar Reflectivity Factor Validation 
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Figure 3.15: TRMM-PR reflectivity vs. KHGX reflectivity. Data from year 2007. 

KWAJ- 2006 : Radar Reflectivity Factor Val idat ion 
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Figure 3.16: TRMM-PR reflectivity vs. KWAJ reflectivity. Data from year 2006. 
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KWAJ- 2006 : Radar Reflectivity Factor Validation 
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Figure 3.17: Standard deviation plot: TRMM-PR reflectivity vs. KWAJ reflectivity. Data from year 2006. 
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Figure 3.18: TRMM-PR reflectivity vs. KWAJ reflectivity. Data from year 2007. 
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CHAPTER 4 

RAIN RATE ESTIMATION USING NEXRAD GROUND RADAR 

MEASUREMENTS BASED ON NEURAL NETWORK 

4.1 INTRODUCTION 

An artificial neural network (ANN), often called a neural network (NN), is a 

nonparametric method based on biological neural networks. In other words, neural 

network is a non linear mapping from input space to a target space. It consists of 

interconnected group of neurons, each characterizing a simple function. The term non 

parametric does not mean that the network does not have parameters; on the contrast, it 

means that the number and nature of the parameters are flexible and not fixed in advance. 

In other words, the method does not rely on any assumptions that the data are drawn from 

a given parametric model. As a system, the network is adjusted, or trained, so that a 

particular input leads to a specific target output. Avery general representation of a NN is 

shown in Figure 4.1. 

Neural Network techniques are widely used in radar systems. Some major 

applications can be summarized into snowfall estimation, rain fall estimation, rain 

detection, and rain type classification. Snowfall estimation was introduced first by (Xiao 

and Chandrasekar, 1996). Rainfall estimation was introduced by the same authors (Xiao 
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and Chandrasekar, 1997). A trial to improve rainfall estimation was started in 1998 by 

(Xiao et al. 1998); improvement was done through the detection of rain existence before 

going to estimation. As an attempt to do rain type classification, (Zafar and Chandra, 

2003) started the idea of using Self Organizing Maps (SOM) in 2003. 

Target 

Input 

Neural Network 
including connections 
(called weights) 
between neurons 

^ | Compare ] 

Output V J 

Adjust 
weights 

Figure 4.1: Representation of a general Neural Network. 

4.2 RADIAL BASIS FUNCTION NEURAL NETWORK 

The radial basis function (RBF) network is part of the multilayer feed forward 

neural network (MFNN) class. It gets its name from the use of the radial basis function as 

activation function in the hidden layer. Figure 4.2 shows the structure of an RBF 

network. It contains three layers which are the input layer, the hidden layer and the output 

layer. The input vectors are fed to the input layer where they pass to the hidden layer. The 

hidden layer units or neurons have nonlinear radial-basis functions where each has its 

own center vector and width or size. The output of each neuron is calculated based on the 

Euclidean distance between the input vector and the center vector of that neuron. The 

outputs of the hidden layers are weighted and added linearly at the output layer. 
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4.2.1 RBF NEURAL NETWORK ARCHITECTURE 

As mentioned above, the RBF NN has three layers (input, hidden, and output 

layer). The input layer accepts the input vector X=[xi, X2,..., xp]T. The hidden layer 

consists of m neurons with h(x) as transfer function. In this work, h(x) was chosen to be 

the Gaussian RBF given by 

hj(x) = exp 
fi^-c^ 
1=1 

(4.1) 

f(x) Output layer 

1 

hm(x) 

Hidden layer 

Input layer 

Figure 4.2: The general structure of RBF network. 

and the output j(x) can be calculated by a linear combination of the hidden layer outputs 

as follows: 
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JW^Wjhjix) (4.2) 

where Cj=[cij, C2j,..., cPJ] is the center vector of neuron j , ij=[rij, r2j,..., rpj] is the size or 

width vector of neuron j , m is the number of neurons in the hidden layer, and wj is the 

weight from neuron j to the output layer. 

4.2.2 INPUT/TARGET OF THE RBF NEURAL NETWORK 

Radar data and rain gauge observations that are used to train and test this RBFNN 

were during the years 2005, 2006, 2007 and 2008 over Melbourne-Florida, Houston-

Texas and Kwajalein-Marshall Islands areas. Radar data (radar reflectivity factor) will be 

used as an input to the neural network and the rain gauge corresponding to that input will 

be the target of the neural network. Radar data were collected by the three radars 

Constant Altitude Plan Position Indicator (CAPPI) scans. The lowest height level of the 

CAPPI scans is 1 km and the highest level is 4 km. The spacing between the CAPPI 

levels is chosen to be 1 km. The gauge data were maintained by NASA TRMM program. 

Around KMLB radar, the gauge networks that were considered are Kennedy Space 

Center (KSC), South Florida Water Management District (SFL), and St. Johns Water 

Management District (STJ). Around KHGX radar, Houston-Area Raingauge (HAR) 

gauge network was the only station available, and around KWAJ radar KWAJ gauge 

network was the only station there. Data within 100km was only considered. At 100 km 

from the GR the vertical resolution of the beam is about 1.8 km, and going further than 

100km would cause coarse sampling for ground radar measurements. The radar 
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parameter of interest in this work was only radar reflectivity factor Zh . CAPPI data 

containing Zh values at 1km, 2km, 3km, and 4km heights with 1km horizontal resolution 

were generated from the radar data as shown in Figure 4.3. 

/T7 4 km 

3 km 

2 km 

1 km 

Location of rainfall estimate 

Figure 4.3: Data locations for 4 point input vector. 

4.2.3 TRAINING THE RBF NEURAL NETWORK. 

Training the RBFNN means finding its main parameters, or in other words: finding 

the center vectors of all neurons, finding the size vectors of all neurons and finding the 

weights from all the neurons to the output layer. Once these parameters are found, the 

network is trained and ready to be used. 

4.2.3.1 Finding the Optimal Centers and their Sizes 

The design or the training of the RBFNN in this work is based on a method called 

forward selection. The network starts with an empty subset. Then we start adding one 

basis function at a time. The basis function we add is the one that would reduce the sum-

squared error most (see equation 4.3), and also keep the convergence condition decrease 

which is based on the Generalized Cross Validation (GCV) method (Mark, 1996). To 

speed this up, a faster algorithm was involved where the added basis functions were 
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based on the Orthogonal Least Square (OLS) method (Chen et al., 1991); which means 

even if the candidate basis function reduces the sum-squared error most and it keeps the 

convergence condition decrease, it also has to suffice the Orthogonal Least Square 

condition, which ensures that the new basis function is orthogonal to all previous basis 

functions. 

This method has great advantages: 

1) There is no need to fix the number of hidden units as used to be in the past. 

2) The computation requirements are low. 

To find the sizes of the centers, we chose a simple way to do that where the size of 

each center is fixed and is set to be the maximum Euclidean distance between any center 

and the others, and this can result in a simpler training strategy (Chen et al., 1991). 

4.2.3.2 Finding the Optimal Weights 

In training a RBFNN, the goal is to map the input data to a target data with the least 

error. In this concept, the error can be referred as sum-squared-error S where S can be 

defined as 

s = t,(yi-f(xi))
2 (4.3) 

1=1 

where yi is the actual output when the input is xt . Once the centers and the sizes are 

found as shown in the previous subsection, all what we need is to find the minimum of S 

with respect to the weights of the network and this can be done by solving a least square 

problem and find the set of weights that would minimize S. 
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To avoid over fitting, and to get better generalization, a penalty should be applied 

to the weights. A cost function C can be introduced in this regard where C can be defined 

as 

c = £(j?,-/(*'))2+£v? (4.4) 
./=i 

where Af is a regularization or a penalty factor that would be applied to w. (Mark, 

1996). The goal here is to prevent large weights from producing rough output. 

The solution of the weight vector w to minimize the cost function C can be written as 

w=A'HTy 

where A" is the variance matrix and is defined as 

A"1=(HTH+A) •' 

(4.5) 

(4.6) 

where A is a diagonal matrix with X- 's on the diagonal, and H is called the design matrix 

and can be written as 

H= 

hx(xx) h2{x,) ••• hm(x{) 

hx(x2) h2(x2) ••• hm(x2) 

h,{xp) h2(xp) ••• hm(xp) 

(4.7) 

The regularization parameters A.. 's can be found using a cross validation technique called 

Generalized Cross Validation (GCV) as shown in (Mark, 1996). 
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4.2.3.3 Adaptively Training the RBFNN 

The goal in this research is to estimate rainfall in daily base. At the end of any, and 

if we have new data available, we need to create a new model to test the next day data 

with. Figure 4.4 shows the idea of daily adapting the neural network. 

Radar 

Data 

Switch when 
new data 
available 

Adaptive Updating 

Algorithm 
<-©<• 

Rain Rate 
> 

New gauge 
data 

Figure 4.4: Dynamic Neural network. 

As we know and especially if our goal is to estimate rainfall over a year, the 

network might get very large and hard to train from the beginning if we keep adding 

neurons every time we have new input. Another concern is that the coming data might 

not carry new information or it might but with slightly different output (gauge). 

Therefore, the idea of adaptively training the RBFNN on daily base came to the seen (Liu 

et al., 2001). To include the information from the new data, it is necessary to treat the 
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network not only by adding some neurons, but also by removing some neurons. If the 

new data carries similar input data with different output, there is no need to retrain the 

network again; rather we just need to recalculate the weights from the hidden units to the 

output unit; and this reduces the complexity of the network, and the redundancy of the 

data, and by doing this it improves the generalization of the network, and reduces the 

training time because adjusting the weights is a simple operation and that would make the 

operation faster. 

4.2.3.4 Pruning the RBFNN 

The technique of refining the training data mentioned above is not enough; in the 

cases where we have large data set, the neural network will start to be bigger and bigger 

even after cleaning up the data. The best way to solve this issue is to refine the network 

itself; in other words, we need to "prune" those centers that the network has seen before 

and incorporate those centers that are new (Liu et al., 2001). Figure 4.5 shows the idea of 

pruning the neural network. 

In Figure 4.5, the new network is a combination of a modified version of a pre

existing network and new set of neurons added to it. The procedure of getting a new 

neural network in this scheme is simple. Using the new input data X, and using the same 

method we used to get the centers and widths of the current model, we can get the centers 

and widths of the new model (see: Finding the Optimal Centers in the previous sections). 

Assuming the current model has a center vector Ci and the new data set has a center 

vector C2, then a new center vector can be constructed out of these centers as follows: 
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Forward selection 
of centers c , 

A 
New data I 

Select new 
centers cL 

Calculate new 
weights W 

c ^ new 

A 

6> 
Select new 
training set Xnew 

A 

Figure 4.5: Adaptive RBF Neural network technique. (Adopted from Liu et al., 2001). 

{ For Cj e C, and Cj e C2, 

if||Ci-Cj||< T, 

then remove Cj } 

where || || is the Euclidean distance, and T is a threshold. For the rest of the centers that 

were not removed from C-, or in other words those who have distance with any center in 

C2 more than the threshold , we add them to the new centers C2 and a new set of centers 

is performed Cnew. Now, since we have this new model of C„ew we can calculate a new 

set of weights to get the target of X (Liu et al., 2001). 

This technique gives the priority to the new data and removes redundant data, and 

this would keep the network growth small, keep the network updated and generalized. 
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4.3 PERFORMANCE EVALUATION OF THE ADAPTIVE RADIAL BASIS 

FUNCTION NEURAL NETWORK 

4.3.1 TRAINING THE NETWORK. 

The radar data used in this evaluation were collected by Melbourne-Florida, 

Houston-Texas and Kwajalein-Marshall Islands sites. The neural network was trained 

adaptively at the end of every day. The target of the network was the rain gauge 

measurements that were collected from the tipping bucket rain gauge networks around 

those three radars. The data were from years 2005, 2006, 2007 and 2008. Data were taken 

within 100km around the radar. Input training data which was the radar measurements 

was taken at 1km 2km, 3 km and 4 km heights as shown in Figure 4.3. This would make 

the size of the input vector to be four (p=4). Rain gauge data were averaged over 5 

minutes to meet the radar sweep time. Figure 4.6 shows a representation of how the 

neural network is trained. 

Neural Network Design 

Ground 
Radar 

Ground Radar 
Vertical Profile 

% 

Neural Network 1 
(Training) 

Target: 
Rain Gauge 

Figure 4.6: Neural Network Training: Input ground radar reflectivity. Target: Rain gauge. 
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4.3.2 TESTING AND VALIDATING THE NETWORK 

At the end of any day, once the network is trained, and then in the following day, 

when we have new data available, this data is used to estimate rain rate using the neural 

network that was trained in the previous day. The estimation was validated against the 

rain gauge measurements of that day. Figure 4.7 shows a representation of the rain rate 

estimation using the trained neural network. 

Rainfall estimation 

Ground s^\ 
Radar GST^N 

Ground Radar 
Vertical Profile 

Neural Network 1 
(Testing) 

% 

Rain Rate 
Estimated by 
Ground Radar 

Figure 4.7: Rain rate estimation using trained neural network. 

4.3.3 PERFORMANCE EVALUATION 

The performance of the network was calculated using the evaluation criteria 

mentioned in chapter 2 (FracBias, Corr., NSE, and FRMSE). The network performance 

was also compared with the simple Z-R relation used in NEXRAD radars, and with the 

Best-Fit statistical technique. 
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Tables 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 show hourly rainfall 

accumulation scores of the adaptive neural network using data from year 2005, 2006, 

2007 and 2008 over KMLB KHGX and KWAJ. As shown in the tables, the performance 

of the neural network approach is much better than the performance of the Z-R relation. It 

is also shown that the performance of the neural technique is very close or sometimes 

better than the performance of the Best-Fit method even though the fitting was done 

"after the fact". As we see, the Z-R relation has significant bias compared to the rain 

gauge measurements, while the neural network product has less biases. The same was 

also shown in Table 4.4 where instantaneous rainfall rate scores are calculated. 

The tables also show that the correlation and the FRMSE scores of the neural 

networks are better than that for the Z-R relation. The neural networks score higher 

correlation and lower FRMSE while the Z-R scores lower correlation and higher FRMSE 

which means a lower variation from truth (rain gauge) in the favor of the neural network 

technique. The proposed technique has good scores compared to the Best-Fit method as 

well. As we see, the neural network scores are either very close or sometimes better than 

the Best-Fit scores taking into consideration again that the Best-Fit was done after the 

fact. Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 show the same 

conclusions that can be entailed from the tables. The figures show better scatter and 

standard deviation plots of the neural network performance when compared to the Z-R 

plots shown at the end of Chapter 2. The figures show a competitive performance when 

compared to the best fit figures shown in the same chapter. 
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Table 4.1: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2005 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2005 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

1.6 

-32.3 

-22.8 

Corr. 

0.86 

0.82 

0.87 

NSE 

0.25 

0.40 

0.30 

FRMSE 
(%) 

38.6 

54.3 

44.0 

20 

16 

1 , 4 

NN Hourly rainfall Accumulation :KMLB site 2005 

mean(Rain Gauge) = 4.12 (mm) 
mean(NN Rainfall Estimate)= 4.18 (mm) 
FracBias = 1.6% 
corr. = 0.86 
points = 1877 

Rain Gauge (mm) 

.8: Actual rain gauge vs. NN estimate. Data from year 2005 over KMLB. 
(Hourly Rainfall Accumulation). 
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Table 4.2: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2006 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2006 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

2.4 

-44.9 

-26.5 

Corr. 

0.81 

0.72 

0.80 

NSE 

0.30 

0.50 

0.36 

FRMSE 
(%) 

44.2 

68.8 

51.5 

Figure 4.9: Actual rain gauge vs. NN estimate. Data from year 2006 over KMLB. 
(Hourly Rainfall Accumulation). 
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Table 4.3: Performance evaluation of the NN rain rate estimation , the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2007 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2007 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

3.1 

-44.0 

-16.6 

Corr. 

0.82 

0.75 

0.82 

NSE 

0.31 

0.51 

0.32 

FRMSE 
(%) 

45.9 

68.4 

46.8 

Figure 4.10: Actual rain gauge vs. NN estimate. Data from year 2007 over KMLB. 
(Hourly Rainfall Accumulation). 
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Table 4.4: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2008 over KMLB. (Instantaneous Rainfall). 

KMLB 2008 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

10.4 

-44.8 

-11.8 

Corr. 

0.71 

0.62 

0.74 

NSE 

0.51 

0.61 

0.45 

FRMSE 
(%) 

73.9 

104.6 

70.5 

NN Instantaneous rainfall :KMLB site 2008 

100 

90 

40 60 
Rain Gauge (mm/h) 

(a) 
NN Instantaneous rainfall :KMLB site 2008 

mean(Rain Gauge) = 9 71 (mm/hr) 
mean(NN RR Estimated 10.72 (mm/hr) 
FracBias = -11.8 % 
corr = 0 71 
points = 120481 

30 40 50 60 70 

Rain Gauge (mm/h) 

(b) 
Figure 4.11: Actual rain gauge vs. NN estimate, a) Scatter plot, b) Standard deviation plot. 

Data from year 2008 over KMLB. (Instantaneous Rainfall). 

70 



Table 4.5: Performance evaluation of the NN rain rate estimation , the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2008 over KMLB. (Hourly Rainfall Accumulation). 

KMLB 2008 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

2.7 

-44.5 

-19.9 

Corr. 

0.84 

0.65 

0.83 

NSE 

0.27 

0.52 

0.30 

FRMSE 
(%) 

40.9 

74.4 

45.8 

NN Hourly rainfall Accumulation :KMLB site 2008 

mean(Rain Gauge) = 4 61 (mm) 
meanfNN Rainfall Estimate)^ 4.74 (mm) 
FracBias = 2.7 % / 

15 20 
Rain Gauge (mm) 

(a) 
NN Hourly rainfall Accumulation :KM1 R site 2008 

mean(Rain Gauge) = 4.61 (mm) 
mean(NN Rainfall Estimate)= 4.74 (mm) 
FracBias = 2.7 % 
corr = 0 84 
points = 1671 

10 12 

Rain Gauge (mm) 

(b) 
Figure 4.12: Actual rain gauge vs. NN estimate, a) Scatter plot, b) Standard deviation plot. 

Data from year 2008 over KMLB. (Hourly Rainfall Accumulation). 
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Table 4.6: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2005 over KHGX. (Hourly Rainfall Accumulation). 

KHGX 2005 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

0.3 

-31.7 

-23.6 

Corr. 

0.79 

0.69 

0.80 

NSE 

0.29 

0.50 

0.34 

FRMSE 
(%) 

40.0 

69.4 

44.3 

Figure 4.13: Actual rain gauge vs. NN estimate. Data from year 2005 over KHGX. 
(Hourly Rainfall Accumulation). 
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Table 4.7: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2006 over KHGX. (Hourly Rainfall Accumulation). 

KHGX 2006 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

6.30 

-42.0 

-9.7 

Corr. 

0.84 

0.75 

0.86 

NSE 

0.24 

0.48 

0.24 

FRMSE 
(%) 

35.1 

61.5 

33.3 

NN Hourly rainfall Accumulation :KHGX site 2006 

mean(Rain Gauge) = 7.13 (mm) 
18 \ mean(NN Rainfall Estimate)= 7.59 (mm) 

FracBias = 6.3 % 
corr. = 0.84 
points = 858 

Rain Gauge (mm) 

Figure 4.14: Actual rain gauge vs. NN estimate. Data from year 2006 over KHGX. 
(Hourly Rainfall Accumulation). 
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Table 4.8: Performance evaluation of the NN rain rate estimation , the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2007 over KHGX. (Hourly Rainfall Accumulation). 

KHGX 2007 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

1.4 

-46.9 

-19.8 

Corr. 

0.86 

0.71 

0.84 

NSE 

0.23 

0.53 

0.29 

FRMSE 
(%) 

32.5 

67.1 

38.4 

NN Hourly rainfall Accumulation :KHGX site 2007 

20 

18 

16 

S 12 
E 

Rain Gauge (mm) 

(a) 
NN Hourly rainfall Accumulation :KHGX site 2007 

mean(Rain Gauge) = 6.97 (mm) 
• mean(NN Rainfall Est imate) ' 7.08 (mm) 

FracBias = 1.4% 
- corr = 0 86 y 

points = 1068 

jf~ 

r 
(1" / 

-

L 

#€L 
/%_ 

' - ^ 7 * ^ 

8 10 12 

Rain Gauge (mm) 

(b) 
Figure 4.15: Actual rain gauge vs. NN estimate, a) Scatter plot, b) Standard deviation plot. 

Data from year 2007 over KHGX. (Hourly Rainfall Accumulation). 
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Table 4.9: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2006 over KWAJ. (Hourly Rainfall Accumulation). 

KWAJ 2006 

NN Est. 
vs. 

Rain Gauge 
Z-R Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-4.0 

-53.7 

-12.1 

Corr. 

0.82 

0.80 

0.80 

NSE 

0.35 

0.57 

0.37 

FRMSE 
(%) 

57.4 

85.3 

61.0 

Figure 4.16: Actual rain gauge vs. NN estimate. Data from year 2006 over KWAJ. 
(Hourly Rainfall Accumulation), 
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Table 4.10: Performance evaluation of the NN rain rate estimation, the Z-R estimation, and the Best-Fit 
estimation against rain gauge. Data from year 2007 over KWAJ. (Hourly Rainfall Accumulation). 

KWAJ 2007 

NN Est. 
vs. 

Rain Gauge 
ZrR Est. 

vs. 
Rain Gauge 
Best Fit Est. 

vs. 
Rain Gauge 

FracBias 
(%) 

-5.5 

-53.7 

-0.8 

Corr. 

0.72 

0.64 

0.72 

NSE 

0.39 

0.60 

0.40 

FRMSE 
(%) 

58.8 

83.4 

60.2 

NN Hourly rainfall Accumulation :KWAJ site 2007 

a. 
z 
z 

mean(Ram Gauge) = 3 21 (mm) 
meanfNN Rainfall Est imate^ 3.03 (mm) 
FracBias = -5 5 % 
corr. = 0.72 
points = 454 

5 10 
Rain Gauge (mm) 

(a) 
NN Hourly rainfall Accumulation :KWAJ site 2007 

5 10 

Rain Gauge (mm) 

(b) 
Figure 4.17: Actual rain gauge vs. NN estimate, a) Scatter plot, b) Standard deviation plot. 

Data from year 2007 over KWAJ. (Hourly Rainfall Accumulation). 
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4.3.4 TESTING THE DESIGNED NETWORK WITH ALTERNATIVE SITE RADAR/GAUGE 

DATA 

In order to evaluate the generalization capability of the designed networks, we test 

KMLB NN using KHGX data. The same training technique described before was done in 

this scenario; the network was adaptively trained on daily base and the data from any day 

was tested by the network designed the day before. The same scoring parameters were 

used as before. Table 4.11 shows the performance evaluation of estimating the rain rate. 

The table still shows better performance of the neural networks compared to the Z-R 

relation, which means that this technique can be generalized to include other areas. This 

idea is yet to be studied for other climatological areas. 

Table 4.11: Performance evaluation of KMLB NN testing KHGX data. (Hourly Rainfall Accumulation). 

KHGX Est. using 
KMLB NN: 2005 
KHGX Est. using 
KMLB NN: 2006 
KHGX Est. using 
KMLB NN: 2007 

FracBias 
(%) 
-23.0 

-24.6 

-24.1 

Corr. 

0.83 

0.83 

0.82 

NSE 

0.31 

0.32 

0.32 

FRMSE 
(%) 
41.9 

42.6 

41.7 

4.3.5 EFFECT OF RADAR MEASUREMENT HEIGHTS ON RAIN RATE ESTIMATION USING 

NEURAL NETWORKS 

In the last two sections, the neural network was designed and tested based on radar 

measurements taken up to 4km height starting at 1 km with 1km spacing. In this section, 

we are trying to investigate the effect of the height going from 3 km up to 10 km keeping 
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the same spacing. In other words, we need to find out whether radar measurements for 

heights lower or higher than 4km would improve the performance of the network or not? 

To answer this question, we first calculated the correlation between rain gauge 

measurements and the radar reflectivity factor measured at different heights starting at 

lkm and up to 10 km. We noticed that the correlation starts to decrease after the 4km 

height, as shown in Table 4.12. This was noticed for most of the radars in most of the 

years. 

Table 4.12: Correlation between rain gauge and radar reflectivity at different heights (1 to 10 km). 

In continuation to answer the previous question, the neural networks were trained 

and tested using rain gauges and radar measurements at different heights (3km to 10 km). 

Tables 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21 show the results of this test 

over KWAJ, KHGX and KMLB sites. The tables show that when the radar measurements 
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were taken from 1km and up to 4 km height, the performance was better than that if we 

take radar measurements up to height lower or higher than 4 km. The red rows in the 

tables indicate the performance of the networks for radar measurements from 1km and 

going up to 4 km for most of the radars in most of the years. The red rows in all tables 

show that measurements up to 4km height were giving the best performance compared to 

the other heights. 

It is worth mentioning that taking radar measurements higher than 4km will reduce 

the number of good (valid) profiles that can be used to train the network; this is because 

of low rain rate measurements are mostly related to weak storms, which usually do not 

have measured reflectivity at higher altitudes. Therefore, considering measurements at 

higher altitudes would eliminate weak storms from taking part. 

Table 4.13: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2005 over KMLB. (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

0.6 

Corr. 

0.87 

NSE 

0.26 

FRMSE (%) 

38.0 

5 

6 

7 

8 

9 

10 

1.8 

2.0 

4.9 

9.1 

16.3 

22.0 

0.85 

0.86 

0.79 

0.77 

0.77 

0.73 

0.26 

0.26 

0.32 

0.36 

0.41 

0.47 

40.3 

39.4 

51.3 

58.4 

64.5 

73.3 
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Table 4.14: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2006 over KMLB. (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

2.5 

Corr. 

0.81 

NSE 

0.31 

FRMSE (%) 

46.9 

5 

6 

7 

8 

9 

10 

1.6 

2.7 

3.4 

9.8 

15.1 

20.9 

0.80 

0.80 

0.77 

0.73 

0.68 

0.64 

0.30 

0.31 

0.33 

0.40 

0.45 

0.51 

44.8 

46.7 

50.6 

58.9 

68.2 

73.7 

Table 4.15: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2007 over KMLB, (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

3.2 

Corr. 

0.82 

NSE 

0.31 

FRMSE (%) 

46.8 

5 

6 

7 

8 

9 

10 

3.1 

1.7 

1.9 

5.9 

5.5 

8.6 

0.81 

0.80 

0.77 

0.74 

0.69 

0.67 

0.31 

0.32 

0.33 

0.35 

0.39 

0.42 

46.1 

46.4 

50.2 

54.3 

60.9 

65.6 

Table 4.16: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2008 over KMLB. (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

1.2 

Corr. 

0.84 

NSE 

0.27 

FRMSE (%) 

41.4 

5 

6 

7 

8 

9 

10 

4.3 

3.9 

4.6 

10.7 

14.9 

28.0 

0.82 

0.77 

0.76 

0.76 

0.75 

0.59 

0.29 

0.31 

0.33 

0.37 

0.41 

0.58 

44.2 

50.3 

51.8 

56.9 

62.2 

96.3 

80 



Table 4.17: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2005 over KHGX, (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

0.7 

Corr. 

0.77 

NSE 

0.29 

FRMSE (%) 

41.2 

5 

6 

7 

8 

9 

10 

-0.9 

-0.4 

-0.6 

2.2 

2.6 

6.9 

0.80 

0.84 

0.80 

0.81 

0.82 

0.73 

0.27 

0.26 

0.28 

0.28 

0.29 

0.34 

38.9 

36.5 

40.4 

40.2 

39.0 

49.1 

Table 4.18: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2006 over KHGX. (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

5.4 

Corr. 

0.84 

NSE 

0.25 

FRMSE (%) 

35.6 

5 

6 

7 

8 

9 

10 

6.8 

7.9 

5.8 

8.0 

10.0 

11.6 

0.82 

0.81 

0.79 

0.81 

0.76 

0.75 

0.25 

0.27 

0.29 

0.31 

0.34 

0.35 

38.0 

40.5 

43.4 

44.9 

49.1 

51.8 

Table 4.19: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2007 over KHGX. (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

4.4 

Corr. 

0.86 

NSE 

0.24 

FRMSE (%) 

33.7 

5 

6 

7 

8 

9 

10 

1.7 

1.1 

2.2 

2.1 

0.8 

5.8 

0.84 

0.85 

0.81 

0.84 

0.83 

0.81 

0.24 

0.24 

0.27 

0.28 

0.28 

0.31 

34.7 

34.7 

39.7 

38.5 

39.0 

47.7 

81 



Table 4.20: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2006 over KWAJ. (Hourly Rainfall Accumulation) 

Height (Km) FracBias (%) Corr. NSE FRMSE (%) 

3.2 0.81 0.37 58.7 

5 

6 

7 

8 

9 

10 

-5.0 

-6.8 

-2.0 

0.5 

-4.5 

16.1 

0.82 

0.73 

0.71 

0.70 

0.59 

0.44 

0.37 

0.40 

0.44 

0.47 

0.53 

0.75 

55.4 

61.5 

62.7 

65.9 

80.6 

102.5 

Table 4.21: The effect of using radar measurements from different heights on the performance of the NN 
rain rate estimator. Data from year 2007 over KWAJ, (Hourly Rainfall Accumulation) 

Height (Km) 

3 
FracBias (%) 

2.1 

Corr. 

0.72 

NSE 

0.41 

FRMSE (%) 

62.1 

5 

6 

7 

8 

9 

10 

-5.3 

-3.6 

-1.2 

2.3 

30.4 

-19.3 

0.63 

0.66 

0.57 

0.66 

0.75 

0.69 

0.45 

0.45 

0.51 

0.49 

0.64 

0.51 

69.3 

70.8 

87.7 

75.7 

92.2 

88.5 

4.4 USING PRINCIPAL COMPONENT ANALYSIS TO IMPROVE THE 

PERFORMANCE OF THE RBF NN 

4.4.1 PRINCIPAL COMPONENT ANALYSIS 

In this section, the spatial variability of the radar reflectivity factor Z along 4 

CAPPI levels is explored by applying the Principal Component Analysis (PCA) over the 
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standardized values of Zj(i=l,...,4), where Zj represents the radar reflectivity factor 

measured at height i. The standardized values of Zj are given by 

i /=(Z,-£[Z1.])/>/Fflr[Z,] (4.8) 

where E[Z,] and Var[Zj] denote the sample mean and variance of Zj. Standardization is 

necessary due to the different range values Zj might have. If we define S^to be the sample 

covariance matrix of Z, with elements (Sj) y given by 

(Si)ij=Cov[zi,Zy.] = f;(Z,-)J(Z7-)1/M: (i=l,...,4; j=l 4) (4.9) 
5=1 

where M is the number of input patterns, then we need to find the eigenvectors e and the 

eigenvalues Dii of the covariance matrix as below, 

e-'Sze=Dii 4.10) 

After that we calculate the Principal Components PC's that are associate with the 

eigenvalues using 

PC,= e1
rZ,PC2=e^ Z, ..., PC4=e[Z, (4.11) 

The goal of using the PC A concept in this contest is to reduce the dimensionality of 

the training data to a level where we still can get good performance. In this section, we 

are going to train the neural network using the PC's rather than the radar reflectivity 

factor Z. To get benefit from this concept and to reduce the dimensionality of the training 

data, we are going to neglect those PC's with small eigenvalues. There are two methods 

to decide which PC's to neglect. The first one is to sum the eigenvalues from the largest 
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to the lowest, and when the sum exceeds a certain threshold we stop adding eigenvalues, 

and we use only those PC's whose eigenvalues were considered in the addition. Another 

way to find out which PC's to include is to use the Fisher's Maximum Coverage Test 

(Mielke and Berry, 2007). 

4.4.2 PERFORMANCE EVALUATION OF RBF NN USING PCA 

The PCA concept was applied to the data from years 2005, 2006, 2007and 2008 

over KMLB, KWAJ and KHGX sites. It was found that two principal components were 

enough to give good performance or even better than that using four levels of radar 

reflectivity factor to train the network. Two input configurations were tested in this 

regard, in each one the performance of the neural network was measured as well as the 

time it takes the neural network to train, and the number of neurons needed (network 

size). The goal why we include the training time and the network size is to see the effect 

of the size of the input data and to see how feasible the network can be in order to be 

applied in real life. 

• Input Configuration 1: 

This input configuration is the same one used in the previous evaluations. The 

network was trained using radar measurements at 1, 2, 3 and 4km heights, and rain 

gauges were the target. The reason we show this input configuration here is to show the 

training time and the network size at each case in order to find out the improvement 

brought by PCA technique. 
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Figure 4.18 shows the configuration of the input where radar reflectivity factor at 

four different heights was used to train the network. The performance of the neural 

network using this input configuration is shown in Table 4.22. 

Ground 

Radar 

Reflectivity 

Factor 

/4km\ 

3km 

2km 

\ l k m / 

Rain Gauge 

• 

Figure 4.18: Schematic of NN trained with input configuration 1. 

Table 4.22: The performance of the RBF NN using radar data as. (Hourly rainfall accumulation). 

Site/Year 

KWAJ 2006 
KWAJ 2007 
KHGX2005 
KHGX2006 
KHGX2007 
KMLB 2005 
KMLB 2006 
KMLB 2007 
KMLB 2008 

-4.0 
-5.5 
0.3 
6.3 
1.4 
1.6 
2.4 
3.1 
2.7 

0.82 
0.72 
0.79 
0.84 
0.86 
0.86 
0.81 
0.82 
0.84 

0.35 
0.39 
0.29 
0.24 
0.23 
0.25 
0.30 
0.31 
0.27 

57.4 
58.8 
40.0 
35.1 
32.5 
38.6 
44.2 
45.9 
40.9 

475 
820 
1010 
1629 
2523 
2154 
831 
1911 
5328 

45 
29 
22 
34 
25 
39 
34 
62 
37 

• Input Configuration 2: 

In this configuration, the network was trained using the PC's calculated from the 

radar measurements at 1, 2, 3 and 4km heights. Only two principal components were 

used in the training together with their corresponding rain gauges. The chosen PC's were 
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those whose eigenvalues accumulation is more than the threshold value chosen. Figure 

4.19 shows a schematic of this configuration and Table 4.23 shows the neural networks 

performance when using this input configuration. As we see in Table 4.23, the 

performance of the neural networks was improved. The main improvements happened in 

the training time. The training time was reduced on average by almost 50% of the 

original training time that was spent using the previous input configuration, in addition, 

the other performance metrics such as (FracBias, Corr., NSE, and FRMSE) were almost 

the same in most of the cases. Another improvement of using this configuration is the 

reduction of the network complexity; the previous network was designed using 4-D input 

vectors, while this network is designed using 2-D input vectors. As can be seen from the 

table, the network size got reduced by about 50% in most of the cases. This reduction is 

very important especially when the network is going to be implemented in real time. 

Ground 
Radar 

Reflectivity 
Factor 

/4km \ 

3km 

2km 

\ l k m / 

Rain Gauge 
• 

Figure 4.19: Schematic of NN trained with input configuration 2. 
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Table 4.23: The performance of the RBF NN using 2 PC's as input: Fixed eigen vectors. 
(Hourly rainfall accumulation). 

Site/Year 

KWAJ 2006 
KWAJ 2007 
KHGX2005 
KHGX2006 
KHGX2007 
KMLB 2005 
KMLB 2006 
KMLB 2007 
KMLB 2008 

-6.8 
-5.9 
1.2 
6.5 
2.7 
0.7 
0.9 
2.6 
1.9 

0.79 
0.77 
0.76 
0.85 
0.85 
0.85 
0.82 
0.80 
0.83 

0.38 
0.36 
0.30 
0.24 
0.24 
0.25 
0.29 
0.33 
0.28 

61.7 
53.0 
42.8 
34.4 
33.5 
39.6 
43.7 
47.9 
42.1 

283 
439 
641 
997 
1611 
1324 
508 
1124 
2716 

20 
11 
6 
7 
18 
18 
15 
19 
15 

The previous results in Tables 4.23 were achieved while the eigen vectors are fixed. 

The eigen vectors were calculated from the training data set that was used to create the 

first initial model of the neural network, and were used to calculate the principal 

components that were used to train and test the network. Another attempt was done 

where the eigen vectors were recalculated from the updated training data adaptively and 

used to calculate the principal components that were used to train and test the network. 

The principal components of the radar reflectivity factor were calculated and used to train 

and test the network. As shown in Tables 4.24; the performance of the networks was 

almost the same with sometimes a slight increase in the training time occurred because of 

the need to recalculate the eigen vectors. 

As just shown, the PC's were calculated from radar data taken up to 4 km height. 

The PC's could be calculated form data up to 10 km height for example, but it is better to 
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do that from a 4-point radar reflectivity factor (4km height) which would give us the 

chance to use this method for most kinds of storms weak or strong). 

Table 4.24: Th 

Site/Year 

KWAJ 2006 
KWAJ 2007 
KHGX2005 
KHGX2006 
KHGX2007 
KMLB 2005 
KMLB 2006 
KMLB 2007 
KMLB 2008 

e performance of the RBF NN using 2 PC's as input: Variable eigen vectors. 
(Hourly rainfall accumulation). 

-7.8 
-5.9 
1.4 
6.2 
2.6 
0.5 
1.3 
2.5 
-0.6 

0.74 
0.76 
0.76 
0.85 
0.85 
0.86 
0.80 
0.80 
0.82 

0.39 
0.36 
0.31 
0.24 
0.24 
0.25 
0.31 
0.32 
0.28 

68.1 
54.1 
42.7 
34.1 
34.4 
37.8 
46.3 
47.6 
43.7 

297 
439 
632 
1014 
1537 
1349 
517 
1164 
2726 

19 
13 
17 
17 
15 
16 
16 
20 
21 

4.5 USING BAYESIAN NEURAL NETOWK TO IMPROVE RAINFALL 

ESTIMATION 

4.5.1 INTRODUCTION 

In the previous sections, RBF neural network was used to estimate rainfall rate. In 

this section different neural network architecture is used to do the same homework. 

Bayesian neural network (BN) is going to be used in order to reduce the complexity of 

the network taking into considerations the performance of the estimation as well as the 

training time. BN is a modified version of another neural network architecture called 

Multilayer Perceptrons Neural Network (MLP). MLP neural network was shown and 
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proved that it can be use to estimate rainfall from radar measurements (Xiao and 

Chandrasekar, 1997). 

4.5.2 MULTILAYER PERCEPTRONS NEURAL NETWORK ARCHITECTURE 

MLP neural network is shown in Figure 4.20. It usually consists of input layer, 

hidden layer and output layer. Training the network is in a supervised manner where 

there is a target to train against is done with error back-propagation algorithm. The error 

back-propagation algorithm consists of two passes through the layers of the network. The 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

I 

N 

P 

U 

T 

fc/ 

*\ 

fc/ 
*\ 

Target 
J Error U 

Back 
Propagatio 

I 
Figure 4.20: Schematic Multilayer Perceptrons Neural Network. 
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first pass is forward pass, where the training input data is applied to the input neurons of 

the network and its outputs propagate through the network, layer by layer, until an output 

is produced by the network. Weights between neurons of layers are initially assigned in 

random. In the second pass which is called backward pass, the error between the network 

output and the desired responses (target) is computed and used to adjust the weights. 

Adjusting the weights is done using the gradient descent algorithm described in (Hayken, 

1999). The output layer was modeled by a linear function, while each neuron in the 

hidden layer is modeled by a nonlinear activation function. In this work, the logistic 

function expressed by the following equation was used: 

a=logsig(n) = X—— (4.12) 
(1 + exp(-rc)) 

4.5.3 BAYESIAN NEURAL NETWORK DEVELOPMENT 

Training the MLP network is carried out to minimize an objective function F that 

can be expressed by 

^ = LO)2 (4.13) 

i=i 

where e is the error between the network estimate and the desired output (target: t ) , and 

N is the number of training patterns. To improve the generalization capability of the 

network a modification of the objective function is made where the weights are taken into 

considerations. The objective function C is defined as follows: 
w , 

C = F + A^( w^'^F + AEw (4.14) 
i=i 
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where A is a regularization parameter, and W is the number of weights in the network. 

The goal of including the weights in the cost function C is to ensure smooth response in 

cases when the network produces large weights. If we assume the weights w to be 

random variable, the density function for the weights can be written according to Bayes' 

rule as: 

P(W|U)=
 p{f\x) (4-15) 

If we assume that the noise in the training set data is Gaussian and that the prior 

distribution for the weights is Gaussian, then the probability densities can be written as: 

P(* I w ) = —W7Y e x p ( - F ) (4.16) 
K 

P(w I *) = , ,^wi2 e x p ( - ^ w ) (4.17) 
\7t I A) 

Recall Bayes' rule from 4.15 we can write: 

p(w \t,A) = —exp(-(F + AEW)) 
A 

(4.18) 
= - e x p ( - C ) 

where A is a factor. Then the goal is to minimize the cost function C, or in other words to 

maximize the posterior function p{w\t). Further details about this type of neural networks 

and how to find the regularization parameter /lean be found in (Foresee and Hagan, 

1997). 

91 



4.5.4 PERFORMANCE OF BAYESIAN NEURAL NETWORK 

The network was trained and tested using data from KWAJ, KHGX and KMLB. 

Training data has a size of four representing radar reflectivity at 1, 2, 3 and 4 km heights. 

Older training data was pruned every time we have newer data that is close to the older 

data. The way to do pruning is already described in previous sections in this chapter. The 

network is trained at the end of the day after pruning is done, and today's network is used 

to test tomorrow's data. Two architectures of Bayesian neural network are tested; the first 

architecture has one hidden layer with four neurons in that layer. The second architecture 

is with two hidden layer where the first layer has four neurons and the second layer has 

two neurons. The same performance metrics considered before were calculated in these 

scenarios. Table 4.25 shows the performance of the RBF NN and the BN with one hidden 

layer in the latter one. Table 4.26 shows the performance of both networks but when two 

hidden layers were used in the BN. 

As we see from Table 4.25, both networks (RBF NN and BN) have almost the 

same performance; the main point in this table is the number of hidden units and the 

number of centers. As we see from the table, the BN requires less number of hidden units 

compared with RBF NN which requires more centers to converge to the answer, but due 

to the back propagation that is used in training the BN, BN usually needs more training 

time. 

Table 4.26 shows both networks results but for the BN the number of layers was 

two with four neurons in the first layer and two in the second. The scenario was done in 

order to check the generalization ability of the network when the size of the network is 
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Table 4.25: The performance of the RBF NN vs BN. BN has one hidden layer of four neurons. 
(Hourly rainfall accumulation). 

Site/Year 

KWAJ 2006/ 
RBF 

KWAJ 2006/ 
BN 

KWAJ 2007/ 
RBF 

KWAJ 2007/ 
BN 

KHGX2005/ 
RBF 

KHGX2005/ 
BN 

KHGX2006/ 
RBF 

KHGX2006/ 
BN 

KHGX2007/ 
RBF 

KHGX2007/ 
BN 

KMLB 2005/ 
RBF 

KMLB 2005/ 
BN 

KMLB 2006/ 
RBF 

KMLB 2006/ 
BN 

KMLB 2007/ 
RBF 

KMLB 2007/ 
BN 

KMLB 2008/ 
RBF 

KMLB 2008/ 
BN 

-4.0 

-4.2 

-5.5 

-7.1 

0.3 

0.1 

6.3 

5.4 

1.4 

0.9 

1.6 

0.5 

2.4 

2.2 

3.1 

1.7 

2.7 

2.4 

0.82 

0.81 

0.72 

0.72 

0.79 

0.79 

0.84 

0.85 

0.86 

0.86 

0.86 

0.87 

0.81 

0.81 

0.82 

0.82 

0.84 

0.84 

0.35 

0.36 

0.39 

0.38 

0.29 

0.29 

0.24 

0.24 

0.23 

0.23 

0.25 

0.25 

0.30 

0.30 

0.31 

0.31 

0.27 

0.27 

57.4 

58.3 

58.8 

58.7 

40.0 

39.9 

35.1 

34.1 

32.5 

32.0 

38.6 

37.5 

44.2 

45.1 

45.9 

45.4 

40.9 

41.5 

475 

2535 

820 

2004 

1010 

4529 

1629 

5302 

2523 

5102 

2154 

3736 

831 

4291 

1911 

4146 

5328 

4277 

45 

4 

29 

4 

22 

4 

34 

4 

25 

4 

39 

4 

34 

4 

62 

4 

37 

4 
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increased by adding one more layer. It was recommended by (Xiao and Chandrasekar, 

1997) that adding a second hidden layer would improve the generalization ability of the 

network if the size of the training data is enough to make the network converge. From the 

table, we see that the performance of the new BN is almost the same as the previous one, 

which tells us that both networks ( the one-hidden layer BN and the two-hidden layer 

BN) have almost the same generalization capability. In this case, it is recommended to 

use the simpler network which is the BN network with one hidden layer and not the one 

with two hidden layers. 

From Table 4.25 and 4.26, a conclusion can be drawn: in the application where 

simpler network is required and time is not a constraint, the BN is better to use. In the 

other hand, when time is a constraint and adaptability is important, RBF is better to use 

because BN is not well suited to be adaptively trained while RBF is. 
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Table 4.26: The performance of the RBF NN vs BN. BN has two hidden layers, layer one has 
four neurons and layer two has two neurons. (Hourly rainfall accumulation). 

Site/Year 

KWAJ 2006/ 
RBF 

KWAJ 2006/ 
BN 

KWAJ 2007/ 
RBF 

KWAJ 2007/ 
BN 

KHGX2005/ 
RBF 

KHGX2005/ 
BN 

KHGX2006/ 
RBF 

KHGX2006/ 
BN 

KHGX2007/ 
RBF 

KHGX2007/ 
BN 

KMLB 2005/ 
RBF 

KMLB 2005/ 
BN 

KMLB 2006/ 
RBF 

KMLB 2006/ 
BN 

KMLB 2007/ 
RBF 

KMLB 2007/ 
BN 

KMLB 2008/ 
RBF 

KMLB 2008/ 
BN 

-4.0 

-5.4 

-5.5 

-4.8 

0.3 

0.9 

6.3 

5.8 

1.4 

2.5 

1.6 

0.5 

2.4 

2.4 

3.1 

2.6 

2.7 

1.3 

0.82 

0.82 

0.72 

0.69 

0.79 

0.79 

0.84 

0.84 

0.86 

0.86 

0.86 

0.86 

0.81 

0.82 

0.82 

0.82 

0.84 

0.84 

0.35 

0.36 

0.39 

0.41 

0.29 

0.28 

0.24 

0.24 

0.23 

0.23 

0.25 

0.25 

0.30 

0.29 

0.31 

0.31 

0.27 

0.27 

57.4 

57.9 

58.8 

62.5 

40.0 

39.6 

35.1 

35.1 

32.5 

32.4 

38.6 

38.4 

44.2 

44.2 

45.9 

45.4 

40.9 

40.8 

475 

3424 

820 

2975 

1010 

6256 

1629 

7621 

2523 

4418 

2154 

5595 

831 

4793 

1911 

6238 

5328 

6499 

45 

4 

29 

4 

22 

4 

34 

4 

25 

4 

39 

4 

34 

4 

62 

4 

37 

4 
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4.6 USING ENSEMBLE AVERAGE NEURAL NETWORKS TECHNIQUE TO 

IMPROVE RAINFALL ESTIMATION 

4.6.1 INTRODUCTION 

In this section, a hybrid or an ensemble of neural networks is constructed which is 

good or better in the MSE sense than any individual neural network in the ensemble if 

some conditions are valid. The good thing about this approach is that it uses all the built 

networks without knowing which network would give better estimate for certain input, 

and without discarding any network in the ensemble. Ensemble neural networks have 

been employed to improve results in classification and regression applications (Jimenez 

1998; Maqsood et al. 2004; and Shen and Kong 2004). The idea can be described by 

building different neural networks, getting the estimate out of each one and averaging 

them all. Figure 4.21 shows a schematic of three neural networks forming an ensemble by 

averaging their individual outputs. One can argue that we could build different networks, 

and simply take the one which has the best performance. This is inefficient because the 

best network among these might not be always the best especially for totally new data. 

We will show how the ensemble neural networks can outperform individual networks. 



4.6.2 ENSEMBLE METHOD 

To do the ensemble estimator, we will be building a basic ensemble of networks 

where the output of all estimators is averaged to give a single estimate. To prove this 

method mathematically, let's assume the function to be estimated to be f(x). What we 

need is to find the best estimate of f(x) from a group of estimators. We will call the new 

estimate of f(x) to be fens(x). If we define mj(x)= f(x)- fj(x) to be the error function 

between the true value f(x) and the estimated value fj(x) based on estimator /. The mean 

square error of estimator i can be written as 

MSE[fi(x)]=E[mi
2(x)] (4.19) 

If the ensemble average estimate fens(x) can be written as 

feJx) = ̂ tfi(x) (4-20) 

then, the mean square error of the ensemble estimate can be calculated as 

MSE[fem(x)] = £ [ ( i - J> ; W ) 2 ] 

= -^E[f4mi{x)2} + ~E[fjmi{x)mj{x)] (4.21) 

Now, if we assume that the mj(x) are mutually independent with zero mean, then 

MSE[fens(x)] can be simplified by 

MSE[fem{x)} = ^-Eif^m-Xx)2} (4.22) 

If we define the average mean square error MSE to be 

MSE = \fJE[mi{x)2} (4.23) 
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then, MSE[fenS(x)] can be further simplified by 

MSE[fens(x)] = ^ - (4.24) 

This is powerful, by averaging the estimators we can reduce the mean square error 

by a factor of N, but again this is based on the assumption that the nij(x) are mutually 

independent with zero mean. 

4.6.3 PERFORMANCE OF THE ENSEMBLE AVERAGE NEURAL NETWORKS 

To examine this technique, data from KMLB, KHGX and KWAJ were used to test 

three networks. The first network is the regular RBF NN used in most of this dissertation. 

The second and third networks are Bayesian networks with one and two hidden layers, 

respectively. The first Bayesian network has four neurons in its hidden layer, and the 

second Bayesian network has four neurons in its first hidden layer, while the second 

hidden layer has two. The output of all these networks was averaged and compared to the 

actual output. Results are shown in Tables 4.27, 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34 

and 4.35. In the tables: NN1 is RBF NN, NN2 is BN with single hidden layer and NN2 is 

BN with two hidden layers. As shown in the tables, the ensemble technique tries to 

improve the estimate, it gives some improvement but it is not significant because the data 

is not mutually independent and as clearly shown the mean of the error (bias) of each 

estimator is not zero. This would make our assumption in equations 4.21 and 4.22 

invalid, which means the MSE of the ensemble will not be the average of the MSE of the 

individual estimators. That is the reason why we have MSE more than what we should 

get. Good thing about this technique is that even if we do not know which estimator 
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should be used, which is usually the case; the performance of this technique would be at 

least better than or equal the performance of the worst. 

Table 4.27: The performance of the individual networks vs. the ensemble average estimate. 
Data from KWAJ 2006. (Hourly rainfall accumulation). 

Table 4.28: The performance of the individual networks vs. the ensemble average estimate. 
Data from KWAJ 2007. (Hourly rainfall accumulation). 

Table 4.29: The performance of the individual networks vs. the ensemble average estimate. 
Data from KHGX 2005. (Hourly rainfall accumulation). 
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Table 4.30: The performance of the individual networks vs. the ensemble average estimate. 
Data from KHGX 2006. (Hourly rainfall accumulation). 

Table 4.31: The performance of the individual networks vs. the ensemble average estimate. 
Data from KHGX 2007. (Hourly rainfall accumulation). 

Table 4.32: The performance of the individual networks vs. the ensemble average estimate. 
Data from KMLB 2005. (Hourly rainfall accumulation). 

Table 4.33: The performance of the individual networks vs. the ensemble average estimate. 
Data from KMLB 2006. (Hourly rainfall accumulation). 
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Table 4.34: The performance of the individual networks vs. the ensemble average estimate. 
Data from KMLB 2007. (Hourly rainfall accumulation). 

Table 4.35: The performance of the individual networks vs. the ensemble average estimate. 
Data from KMLB 2008. (Hourly rainfall accumulation). 

4.7 VALIDATION AGAINST TRMM GROUND VALIDATION AT KWAJ SITE 

4.7.1 TRMM GROUND VALIDATION 

TRMM Ground Validation (GV) system is an important system that is part of 

TRMM mission. Its function is to support TRMM to improve some of the measuring and 

estimation techniques (Reflectivity and rain rate). The GV system has 10 ground 

validation sites around the world as shown in Figure 3.6 in addition to their gauge 

networks. The main ground validation sites are located at Florida, Texas, Darwin, and 

Kwajalein. In this section, we are going to validate the rainfall estimated by the neural 

network designed by KWAJ radar using the radar/gauge products provided by the GV 

site. Before we go to the validation, let's describe briefly how the GV system estimates 
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rainfall from the radar measurements and the gauges around. The radar rainfall estimation 

is done using the power law Z-R relation (Z=ARB; A=300, B=1.4). The rainfall 

accumulation of a month is first calculated and then compared to the gauge 

accumulations. Bulk adjustment is used to calibrate the coefficient A to force agreement 

between the radar and the gauge data. Then the radar rainfall accumulation of that month 

is recalculated using the new coefficient A. More information and details about this 

algorithm can be found at TRMM GV site at [http://trmm-fc.gsfc.nasa.gov/ 

trmm_gv/gv_products/level_2.html] and [http://trmm-fc.gsfc.nasa.gov/trmm_gv/Ground__ 

truth/sites/florida/melb/Mel_results.html]. 

4.7.2 VALIDATION AGAINST KWAJ RADAR RAINFALL ESTIMATE 

The data from KWAJ site in years 2006 and 2007 were tested using the RBF neural 

network estimator and compared to the actual gauge. Input to the network was the radar 

reflectivity factor at heights 1, 2, 3, and 4km. The GV rainfall estimate for this data was 

also compared to the actual gauge. The neural network rainfall estimation was converted 

to monthly accumulation to match the gauge accumulation provided by the GV site. Data 

was taken for certain gauges and certain months as shown in [http://trmm-fc.gsfc.nasa. 

gov/trmm_gv/gv_products/level_2/scatter_plots/kwaj_data/kwaj_2006_v7_diff.txt] and 

[http://trmm-fc.gsfc.nasa.gov/trmm_gv/gv_products/level_2/scatter_plots/kwaj_data/ 

kwaj_ 2007_v7_diff.txt]. 

Tables 4.36 and 4.37 show the performance metrics (Bias, Corr., and NSE) that are 

used to do the comparison between the neural network estimation and the GV estimation 
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for years 2006 and 2007, respectively. Figures 4.22, and 4.23 show the scatter plot of the 

same data represented by the metrics shown in the same tables. As can be seen from the 

tables and the figures; the neural network performance is very close or better than the GV 

performance when both compared against the rain gauge. The neural network 

performance has small bias, high correlation and low NSE, which means low variation 

from the truth. The goal of this section is to validate the output of the neural network to a 

confident algorithm which is the GV output in this case in order to see how good the 

neural network estimate in comparison to other estimators. It is worth mentioning that the 

GV estimate is taken "after the fact"; i.e., the coefficient A in the Z-R relation is 

recalculated based on any month data (reflectivity and gauges) and then the rainfall 

accumulation for that month is recalculated using the adjusted Z-R relation, while in the 

neural network estimation, the rainfall accumulation of any day was calculated based on a 

model that was built based on data up to the day before. 

Table 4.36: The performance of the NN rainfall accumulation and the GV rainfall accumulation 
Compared with the actual rainfall accumulation at KWAJ site in 2006. 

Year: 2006 

NN vs. Actual RG 

ZR vs. Actual RG 

Bias (mm) 

1.3985 

0.7018 

Corr. 

0.9605 

0.9448 

NSE 

0.1377 

0.1324 

Table 4.37: The performance of the NN rainfall accumulation and the GV rainfall accumulation 
Compared with the actual rainfall accumulation at KWAJ site in 2007. 

Year: 2007 

NN vs. Actual RG 

ZR vs. Actual RG 

Bias (mm) 

2.9614 

0.2755 

Corr. 

0.9728 

0.9208 

NSE 

0.1368 

0.1783 
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Actual Rainfall Accumulation vs NN Rainfall Accumulation : KWAJ 2006 Actual Rainfall Accumulation vs GV-Rainfall Accumulation : KWAJ 2006 
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Figure 4.22: (a) Scatter plot of the NN rainfall accumulation vs. the actual rainfall accumulation, (b) 
Scatter plot of the GV rainfall accumulation vs. the actual rainfall accumulation. KWAJ site in year 2006. 
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Figure 4.23: (a) Scatter plot of the NN rainfall accumulation vs. the actual rainfall accumulation, (b) 
Scatter plot of the GV rainfall accumulation vs. the actual rainfall accumulation. KWAJ site in year 2007. 
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CHAPTER 5 

RAIN RATE ESTIMATION USING TRMM-PR MEASUREMENTS 

BASED ON NEURAL NETWORK 

5.1 INTRODUCTION 

Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) is known 

to be the first observation platform for mapping precipitation over the tropics. It is a 

unique instrument, capable of providing high-resolution vertical profile of precipitation. 

TRMM measured rainfall is important in order to study the precipitation distribution all 

over the globe in the tropics. Ground validation is a critical important component in 

TRMM system. Fundamental challenges exist in performing TRMM ground validation. 

The ground sensing systems have quite different characterizations from TRMM in terms 

of resolution, scale, viewing aspect, and uncertainties in the sensing environments. The 

horizontal resolution of TRMM PR is about 5km, much coarser compared to rain gauges 

in the spatial scale. Another challenge is that during a single weather event, available data 

pairs for comparison (TRMM vertical profile of reflectivity versus rain gauge 

measurement) are scarce because of TRMM's limited overpasses. It is impractical to 

deploy a dense gauge network for TRMM PR validation. In this work, we introduce a 

novel technique to improve the estimation of TRMM-PR rainfall product. 
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5.2 TWO-STAGE NEURAL NETWORK FOR TRMM-PR RAINFALL 

ESTIMATION 

In this chapter a novel hybrid Neural Network model is presented to train ground 

radars for rainfall estimation using rain gauge data and subsequently using the trained 

ground radar neural network rainfall estimate as target to train TRMM PR based Neural 

network for rainfall estimation. This hybrid neural network model will derive the relation 

between rain gauges and ground radar measurements, and transfer this relation to 

adaptive rainfall estimation for TRMM precipitation radar. 

In ground radar rainfall estimation, it is easy to obtain large amount of training 

pairs because ground radar is able to scan over the same location in fine temporal 

resolution, which is not possible for TRMM. To solve this issue in TRMM, two neural 

networks will be created and used for global precipitation mapping and ground 

validation. The first neural network is built based on ground radar data and rain gauges. 

Then, the matched TRMM-PR profiles with the corresponding ground radar (GR) 

measurements are used to train the second neural network using rainfall estimated from 

the first neural network. Figure 5.1 shows a schematic of the general idea for this 

network. 

Radial Basis function (RBF) neural network is capable of learning the complex 

functional relation from high dimension input space to target space. It is shown and 

demonstrated in the previous chapter that RBF Neural Network is capable of learning the 

relation between ground radar measurements and rain gauge data. Therefore, the same 

network architecture will be used in this chapter to train the second NN. 
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Figure 5.1: Two-stage neural network system for TRMM rainfall estimation. 

5.3 DEVELOPMENT OF THE HYBRID NEURAL NETWORK TECHNIQUE FOR 

TRMM-PR RAINFALL ESTIMATION 

The process of building this hybrid neural network rainfall estimator has four main 

steps: ground validation (GV) neural network design, alignment between TRMM-PR and 

GV products, TRMM neural network design, and product validation. These steps are 

described in the coming subsections. 

5.3.1 GROUND VALIDATION NEURAL NETWORK DESIGN 

In this step we construct a neural network (NN1) to estimate rainfall based on GV 

radar. This network is trained with the GV radar reflectivity and the corresponding rain 

gauge data which makes this network to have the advantage of having large population of 

sample pairs and smaller scale mismatch. This neural network is trained adaptively and 

107 



weights are updated in daily base. This network was already described, designed and 

tested in the previous chapter. 

5.3.2 TRMM-PR AND GROUND RADAR DATA ALIGNMENT 

The goal of this hybrid neural network model is to derive the relation between rain 

gauges and ground radar measurements, and transfer this relation to adaptive rainfall 

estimation for TRMM precipitation radar. The means to do that is to do alignment 

between the GV radar measurements and TRMM-PR measurements. The alignment 

process done by (Bolen and Chandrasekar, 2003) is used to align TRMM-PR reflectivity 

product with the ground radar reflectivity measurements. Resampling the ground-based 

and spaceborne datasets to a common grid provides a means by which the radar 

reflectivity factors can be compared at different heights. The final product of aligning the 

TRMM-PR and GV radar products has a resolution of (4 x 4 x 0.5 km). Figure 5.2 shows 

the geometry between TRMM-PR and GR-based measurements. 

An example of the alignment output is shown in Figure 5.3. Data were taken from 

KHGX radar in Houston. As we see, there is good matching between these two products. 

For more statistical results about the alignment procedure, please see Chapter 3. The 

results presented in Chapter 3 show that radar reflectivity factor derived from the PR data 

after attenuation correction agrees to within about 1 dB bias for most of the cases. This 

bias will be automatically compensated for during the training process of the second 

neural network. 
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Figure 5.2: Geometry between TRMM-PR and GR-based measurements 
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Figure 5.3: An example of aligned snapshot of TRMM PR reflectivity and GR reflectivity. 
The snapshot was taken in January 28, 2005 at 09:33:00 UTC in Houston TX. 
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5.3.3 DESIGNING TRMM-PR NEURAL NETWORK 

The second neural network is designed using TRMM reflectivity vertical profiles 

starting at 1km and going up to 4 km with 1km vertical resolution. These profiles were 

aligned with the GV reflectivity profiles as shown in the previous step. The target of this 

network is the rainfall estimated by the first neural network with GR data that is aligned 

to TRMM data which will also be used to train the second network. 

Training this neural network was based on the same technique used in the GV 

neural network. The only difference between them is that the first neural network was 

trained every day while the second neural network was trained every overpass. Rainfall 

estimation was done using the model of the previous overpass. The whole process of 

training TRMM -PR neural network is shown in Figure 5.4. 

TRMM 
Radar 

Ground 
Radar 

Alignment 

Ground Radar 
Vertical Profile 

NN 1 
(Estimation) 

TRMM Radar 
Vertical Profile 

2km 

I km 

NN2 
(Training) 

Rain Rate 
Estimated by 
Ground Radar 

Figure 5.4: Training TRMM-PR neural network using GV neural network rain rate estimate. 
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5.3.4 PRODUCT VALIDATION 

To validate this novel method for global rainfall estimation and mapping, we compare 

the rain rate estimated by the first network and the second network to the rain gauges. 

TRMM-PR rain rate product was also compared to the rain gauges in order to do a 

comparison between TRMM-PR rain rate product and the neural network product. Figure 

5.5 demonstrates the two-stage neural network: system testing and evaluation. The same 

scoring metrics used in the previous chapter were also used to evaluate the performance 

of each network as well as the performance of TRMM-PR product in this chapter. 

TRMM Radar 
Vertical Profile 

NN2 
(Estimation) 

<CN 

Ground Radar 
Vertical Profile 

NN 1 
(Estimation) 

Rain Rate Estimated 
by TRMM Radar 

Rain Rate Estimated 
by Ground Radar 

Figure 5.5: Two-stage neural network: system testing and evaluation. 
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5.3.5 RESULTS AND EVALUATION 

Radar data, their TRMM overpasses, and rain gauge observations were used to test 

this technique during the year 2005, 2006, 2007 and 2008 over Melbourne-Florida, 

Houston-Texas and Kwajalein-Marshall Islands areas. TRMM-PR rain rate product was 

used in this evaluation in order to see how much improvements we can get using this 

neural network method. 

For the first neural network, radar data were collected where the lowest height level 

of the CAPPI scans is 1 km and the highest level is 4 km. Horizontal resolution of the 

ground radar data was set to be 1km. The spacing between levels is chosen to be 1 km. 

The gauge data were maintained by the NASA TRMM program. The same gauge 

networks that were used in the previous chapter were also used in this chapter. Data 

within 100km was only considered. The radar parameter of interest in this work was 

radar reflectivity factor Zh. 

TRMM data were collected from overpasses over Melbourne, Houston and 

Kwajalein sites. TRMM data were aligned to the GV radars data with a final resolution of 

both products to be 4 x 4 x 0.5 km. Data starting at 1km height and going up to 4 km 

height with 1 km spacing were used to train the second network. There were around 600 

overpasses over each site in each year. On average, there are around 30 overpasses with 

precipitation. The performance of the rainfall product estimated from TRMM PR neural 

network is compared against TRMM standard products. A direct gauge comparison study 

is done to demonstrate the improvement brought in by the neural networks. 
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Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 show the scores of the hybrid neural 

network scheme using data from year 2005, 2006, 2007 and 2008 over KMLB, KWAJ 

and KHGX. As shown in the tables, the performance of the neural network approach is 

better than the performance of TRMM product. As we can see, TRMM product has 

significant bias compared to the rain gauge measurements, while the neural network 

product has less bias. 

The tables also show that the correlation and the FRMSE scores of the rainfall 

estimated by the neural networks are better than that for TRMM product. The neural 

networks score higher correlation with the rain gauges and lower FRMSE while TRMM 

product scores lower correlation and higher FRMSE which means less variation from 

truth (rain gauge) in the favor of the neural network technique. 

Figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 show the same conclusions that 

can be entailed from the tables. The figures show better scatter plots of both neural 

networks against TRMM standard product; neural networks show lower bias and higher 

correlation. 
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Figure 5.6: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2005 over KMLB. 

(Instantaneous rainfall). 

Table 5.1: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2005 over KMLB. (Instantaneous rainfall). 

Year 2005 

KMLB NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-3.7 

-15.5 

-48.3 

Corr. 

0.69 

0.62 

0.53 
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NSE 

0.50 

0.50 

0.58 

FRMSE 
(%) 

73.3 

74.6 

92.7 
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Figure 5.7: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2006 over KMLB. 

(Instantaneous rainfall). 

Table 5.2: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2006 over KMLB. (Instantaneous rainfall). 

Year 2006 

KMLB NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

5.9 

0.6 

-27.9 

Corr. 

0.67 

0.62 

0.46 

NSE 

0.59 

0.60 

0.64 

FRMSE 
(%) 

84.1 

88.1 

105.1 
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Figure 5.8: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2007 over KMLB. 

(Instantaneous rainfall). 

Table 5.3: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2007 over KMLB. (Instantaneous rainfall). 

Year 2007 

KMLB NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

22.1 

6.1 

-35.2 

Corr. 

0.76 

0.72 

0.58 

NSE 

0.61 

0.57 

0.58 

FRMSE 
(%) 

98.4 

100.4 

123.3 
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KMLB Rain Rate Estimate vs. Actual RainGauge :KMLB site 2003 T R M M Rain Rate Estimate vs. Actual RainGauge :KMLB site 2008 

— 
w 

•Si 
oc 
CD 

•? 
* 

90 

80 

m 

HI 

50 

40 

in 

;n 

10 

mean(KMLB-RR Estimated 
mean(Actual RainGauge) -
FracBias = 9 5 % 
corr = 0.59 
points = 325 

*• ' . 
., 

.:».-. • • • ••• .. 
'J8r:*'-, .' . 
w*** ** 

10.21 (mm/hr) 
9.32 (mm/hr) 

-
-
. 
. 
-

* , 
, 

* * 

20 40 GO 

Actual RainGauge (mm/h) 

(a) 

10 
rnean(TRMM-RR Estimate^ 10.46 (mm/hr) 
mean(Actual RainGauge) = 9.32 (mm/hr) 
FracBias = 12 2 % 
corr = 0.65 
points = 325 

>: 

40 60 
Actual RainGauge (mm/h) 

(b) 

T R M M Rain Rate Product vs. Actual RainGauge :KMLB site 2008 
100 

mean(TRMM-RR Product)^ 6.96 (mm/hr) 
meanfActua! RainGauge) = 9 32 (mm/hr) 
FracBias = -25 3 % 
corr. = 0.48 
points = 325 

# -SU*j 
20 40 60 

Actual RainGauge (mm/h) 

(c) 

Figure 5.9: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2008 over KMLB. 

(Instantaneous rainfall). 

Table 5.4: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2008 over KMLB. (Instantaneous rainfall). 

Year 2008 

KMLB NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

9.5 

12.2 

-25.3 

Corr. 

0.59 

0.65 

0.48 

NSE 

0.60 

0.58 

0.64 

FRMSE 
(%) 

100.6 

95.9 

114.0 
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KHGX Rain Rate Estimate vs. Actual RainGauge :KHGX sits 2005 TRMM Rain Rat« Estimate vs. Actual RainGauge :KHGX site 2005 
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Figure 5.10: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRJVIM-PR rain rate product. Data from year 2005 over KHGX. 

(Instantaneous rainfall). 

Table 5.5: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2005 over KHGX. (Instantaneous rainfall). 

Year 2005 

KHGX NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-4.9 

-22.3 

-54.9 

Corr. 

0.73 

0.64 

0.20 

NSE 

0.43 

0.46 

0.62 

FRMSE 
(%) 

72.3 

86.6 

113.4 
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Figure 5.11: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2006 over KHGX. 

(Instantaneous rainfall). 

Table 5.6: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2006 over KHGX. (Instantaneous rainfall). 

Year 2006 

KHGX NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-3.6 

1.1 

-59.9 

Corr. 

0.82 

0.75 

0.37 

NSE 

0.31 

0.37 

0.61 

FRMSE 
(%) 

43.8 

51.1 

93.0 
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KHGX Rain Rate Estimate vs. Actual RainGauge :KHGX site 2007 T R M M Rain Rate Estimate vs. Actual RainGauge :KHGX site 2007 
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Figure 5.12: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2007 over KHGX. 

(Instantaneous rainfall). 

Table 5.7: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2007 over KHGX. (Instantaneous rainfall). 

Year 2007 

KHGX NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

8.4 

3.3 

-42.3 

Corr. 

0.69 

0.65 

0.59 

NSE 

0.39 

0.41 

0.48 

FRMSE 
(%) 

53.3 

51.7 

68.4 
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Figure 5.13: Actual rain gauge vs. a) GV radar NN rain rate estimate b) TRMM-PR NN rain rate 
estimate c) TRMM-PR rain rate product. Data from year 2007 over KWAJ. 

(Instantaneous rainfall). 

Table 5.8: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2007 over KWAJ. (Instantaneous rainfall). 

Year 2007 

KWAJ NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

2.3 

-5.5 

-47.5 

Corr. 

0.94 

0.90 

0.95 

NSE 

0.21 

0.27 

0.47 

FRMSE 
(%) 

27.4 

34.2 

65.8 
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5.3.6 TESTING EACH NETWORK WITH ALTERNATIVE RADAR/GAUGE DATA 

In order to evaluate the generalization capability of the designed neural networks 

(KMLB NN and KHGX NN); we test each neural network with the other data from the 

other site. In other words, we test KMLB NN using KHGX data, and we test KHGX NN 

using KMLB data. The same training technique described before was done in this 

scenario; the first neural network was adaptively trained on daily base and the data from 

any day was tested by the network designed in the day before. The second network was 

adaptively trained every time we have available TRMM overpass over the site, and the 

data from any overpass was tested by the network designed based on the previous 

overpass. 

The same scoring parameters were used as before. Tables 5.9, 5.10, 5.11, 5.12, 5.13 

and 5.14 show the performance evaluation of estimating rain the rate of each site from the 

network built by data from the other site. The performance of both networks is included 

in these tables. The tables also show the performance evaluation of TRMM standard 

product. All these evaluations were done against the rain gauge at that moment. As we 

see the tables still show better performance of the neural networks compared to TRMM 

standard product, and also they show that both networks have close performance when 

both compared with rain gauges, which means that mapping the relation between the 

ground radar reflectivity factor and the rain gauge was done and passed through the 

alignment process that was done, and another format of this relation was achieved to 

relate TRMM reflectivity factor with the rain gauges. A final remark to say here is that 

122 



based on the tables, this technique can be generalized to include other areas as we will 

see later when both networks were tested with other NEXRAD sites. 

Table 5.9: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2005 over KMLB. Estimation based on KHGX NN. 

(Instantaneous rainfall). 

Year 2005 

GRNNEst. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-1.7 

-13.6 

-48.2 

Corr. 

0.67 

0.55 

0.53 

NSE 

0.52 

0.54 

0.58 

FRMSE 
(%) 

75.8 

79.0 

92.7 

Table 5.10: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2006 over KMLB. Estimation based on KHGX NN. 

(Instantaneous rainfall). 

Year 2006 

GR NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

9.3 

5.1 

-27.9 

Corr. 

0.62 

0.63 

0.46 

NSE 

0.62 

0.61 

0.64 

FRMSE 
(%) 

90.5 

87.1 

105.1 

Table 5.11: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2007 over KMLB. Estimation based on KHGX NN. 

(Instantaneous rainfall). 

Year 2007 

GRNNEst. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

27.4 

5.3 

-35.2 

Corr. 

0.76 

0.73 

0.58 

NSE 

0.64 

0.60 

0.58 

FRMSE 
(%) 

98.7 

100.6 

123.3 

123 



Table 5.12: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2005 over KHGX. Estimation based on KMLB NN. 

(Instantaneous rainfall). 

Year 2005 

GRNNEst. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-2.4 

-26.0 

-54.9 

Corr. 

0.72 

0.59 

0.20 

NSE 

0.46 

0.45 

0.62 

FRMSE 
(%) 

71.7 

88.4 

113.4 

Table 5.13: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2006 over KHGX. Estimation based on KMLB NN. 

(Instantaneous rainfall). 

Year 2006 

GR NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

-5.8 

-3.0 

-59.9 

Corr. 

0.88 

0.74 

0.37 

NSE 

0.26 

0.36 

0.61 

FRMSE 
(%) 

37.0 

51.7 

93.0 

Table 5.14: Performance evaluation of the GV NN rain rate estimation, TRMM-PR NN rain rate estimate, 
and TRMM-PR rain rate product. Data from year 2007 over KHGX. Estimation based on KMLB NN. 

(Instantaneous rainfall). 

Year 2007 

GR NN Est. 
vs. Rain Gauge 

TRMM NN Est. 
vs. Rain Gauge 

TRMM Product 
vs. Rain Gauge 

FracBias 
(%) 

9.8 

3.0 

-42.3 

Corr. 

0.68 

0.65 

0.59 

NSE 

0.40 

0.41 

0.48 

FRMSE 
(%) 

52.8 

51.3 

68.4 
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5.3.7 RAINFALL MAPS GENERATION 

Each network in the hybrid network designed before is tested for some instances of 

TRMM-PR as well as their corresponding ground radar measurements. Figures 5.14, 5.15 

and 5.16 show instances seen by KMLB radar and overpassed by TRMM radar. Each 

instance was tested by the KMLB neural network that was designed in the year the 

instance was measured. The same goes for Figures 5.17 and 5.18; these figures show 

instances seen by KHGX radar and overpassed by TRMM radar and tested by the neural 

network that was designed based on KHGX radar measurements and their TRMM radar 

overpasses. 

The top row of the figures shows two maps of the reflectivity factor from both 

radars. The second row shows the rainfall maps generated by both neural networks. The 

third row shows a map of TRMM standard rainfall product. The last row of the figures 

shows two scatter plots; one is for the output of the neural networks versus each other, 

and the second shows the output of TRMM NN versus TRMM standard product. 

As we see from the figures, the maps generated by the neural networks are showing 

better representation of the storm compared to TRMM product; TRMM product tends to 

underestimate the rainfall while the neural network technique captures the storm better. 

The figures also show through the scatter plots how close the output of both networks to 

each other, and how TRMM-PR standard product tends to underestimate rain rate 

compared to the neural networks output. 
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Figure 5.14: (a) KMLB reflectivity (b) TRMM-PR reflectivity (c) KMLB-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (0 KMLB-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KMLB: 05/25/2005). 

126 



; 7 5 ( / : 

iA 

•82 5 -32 -81 5 

(a) 

\1 
^ 

^ 
7 S 

2/ 

65 

/ ' M 
\ w 

• \ 

\ 

^^^^^-

: ) 
•:• I 

I 
4 

• i 
• -4 

-82 5 -32 -815 -6' -50 5 -80 
Long 

2 5 -32 -815 -81 -BO 5 -80 -79 5 -79 

(mm/hi) 

-20 

(c) (d) 
TRMM Product: Rain Rale near the surface 

Case: KMLB060509R1 

# 

-82 5 -32 -815 -81 -80 5 -80 

(e) 
KHLB060509R1 

90 r Bus = - j3(mi 

1 
1 80 

30 SB Sfl 50 70 3D 
n Rate Estimated by KMLB HH (mm/hi) 

20 30 40 50 60 
Rain Rate Estimated by TRMM HH (mm/hr) 

iO 90 W 

(f) (g) 
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5.3.8 RAINFALL MAPS GENERATION USING ALTERNATIVE SITE'S NEURAL NETWORK 

In this section each site's neural network was used to generate rainfall maps from 

data generated at the other site. In other words; KMLB NN was used to generate rainfall 

maps from KHGX data, and KHGX NN was used to generate rainfall maps from KMLB 

data. The goal of this test is again to check for generalization as well as to see if we get 

the same conclusions drawn in the previous section. 

Again Figures 5.19 and 5.20 show instances seen by KHGX radar and overpassed 

by TRJVIM radar. Each instance was tested by the KMLB neural network that was 

designed in the year the instance was measured. The same goes for Figures 5.21, 5.22, 

and 5.23; these figures show instances seen by KMLB radar and overpassed by TRJVIM 

radar and tested by the neural network that was designed based on KHGX radar 

measurements and their TRMM radar overpasses. 

The figures have the same description used in the previous section; the top row of 

the figures shows two maps of the reflectivity factor from both radars. The second row 

shows the rainfall maps generated by both neural networks but in this case the network 

was designed using the other site's data. The third row shows a map of TRMM standard 

rainfall product. The last row of the figures shows two scatter plots; one is for the output 

of both neural networks versus each other, and the second shows the output of TRMM 

NN versus TRMM standard product. 

As we see from the figures, the neural networks were generalized and they were 

giving good performance when tested with data have never seen before; the performance 

here is close to the performance achieved in the last section, the maps generated by the 
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neural networks are showing better representation of the storm compared to TRMM 

product; TRMM product tends to underestimate the rainfall while the neural network 

technique captures the storm better. The figures also show through the scatter plots how 

close the output of both networks to each other, and how TRMM-PR standard product 

tends to underestimate rain rate when compared to the neural networks output. 
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Figure 5.19: (a) KHGX reflectivity (b) TRMM-PR reflectivity (c) KMLB-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KMLB-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KHGX: 07/26/2006). 
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Figure 5.20: (a) KHGX reflectivity (b) TRMM-PR reflectivity (c) KMLB-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KMLB-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KHGX: 07/04/2007). 
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Figure 5.21: (a) KMLB reflectivity (b) TRMM-PR reflectivity (c) KHGX -NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KHGX -NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KMLB : 05/25/2005). 
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Figure 5.22: (a) KMLB reflectivity (b) TRMM-PR reflectivity (c) KHGX -NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KHGX -NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KMLB : 05/09/2006). 
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Figure 5.23: (a) KMLB reflectivity (b) TRMM-PR reflectivity (c) KHGX -NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KHGX -NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KMLB : 08/02/2007). 

137 



5.3.9 RAINFALL MAPS GENERATION USING DATA FROM OTHER NEXRAD SITES 

In this section we tested the designed neural networks with instances from other 

NRXRAD radars instances and their TRMM-PR overpasses. Two instances from two 

NEXRAD radars were tested; the first instance was around KEVX (Eglin AFB, FL) radar 

(01/27/2007 at 03:59:44UTC) and the second instance was around KSHV (Shreveport, 

LA) radar (10/27/2006 at 03:12:50UTC). Figure 5.24 shows the location of two three 

sites circled in green, and it also shows the location of KMLB and KHGX (KHGX) 

circled in red. Table 5.15 shows the full name of four five sites as well as their 

corresponding latitudes and longitudes. 

Both designed neural networks at each site were used to generate rainfall maps 

from the two instances mentioned above. The goal of this test is again to check for 

generalization as well as to see if we can use the designed neural networks to test for 

other NEXRAD radars. Figures 5.25 and 5.26 show the two instances as well as their 

TRMM-PR overpassing measurements. Each instance was tested by the KMLB neural 

network that was designed in the year the instance was measured. The figures have the 

same description used in the previous section; the top row of the figures shows two maps 

of the reflectivity factor from both radars. The second row shows the rainfall maps 

generated by both neural networks designed at KMLB site. The third row shows a map of 

TRMM standard rainfall product. The last row of the figures shows two scatter plots; one 

is for the output of both neural networks versus each other, and the second shows the 

output of TRMM NN versus TRMM standard product. The same figures description goes 
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for Figures 5.27 and 5.28; these figures show the same instances but testing was based on 

the neural networks designed at KHGX site. 

As can be seen from the figures, the neural networks were generalized and they 

were giving good performance when tested with data have never seen before, the 

performance achieved by KMLB NN is close to the performance achieved by KHGX 

NN. Again the maps generated by the neural networks are showing better representation 

of the storm compared to TRMM product; TRMM product tends to underestimate the 

rainfall while the neural network technique captures the storm better. The figures also 

show through the scatter plots how close the output of both networks (ground radar 

network and TRMM network) to each other. This would lead us to the conclusion that the 

network can also be applied to other geographical regions beyond the ground validation 

sites. 

Figure 5.24: Location of NEXRAD radars in the southeastern US. Green-circled used to design the neural 
networks. Red-circled used for validation. 
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Table 5.15: NEXRAD sites used in this study 

Site Short Name 
KMLB 

KHGX 
KEVX 
KSHV 

Site Full Name 
Melbourne, FL 

Houston, TX 
Eglin AFB, FL 

Shreveport, LA 

Latitude 
28.1133N 

29.4719N 
30.5644N 
32.4508N 

Longitude 
80.6542W 

95.0792W 
85.9214W 
93.8414W 
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Figure 5.25: (a) KEVX reflectivity (b) TRMM-PR reflectivity (c) KMLB-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KMLB-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KEVX: 01/28/2007). 
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Figure 5.26: (a) KSHV reflectivity (b) TRMM-PR reflectivity (c) KMLB-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KMLB-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KSHV: 10/27/2006). 
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Figure 5.27: (a) KEVX reflectivity (b) TRMM-PR reflectivity (c) KHGX-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KHGX-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KEVX: 01/28/2007). 
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Figure 5.28: (a) KSHV reflectivity (b) TRMM-PR reflectivity (c) KHGX-NN rain rate estimate 
(d) TRMM-NN rain rate estimate (e) TRMM-PR rain rate product (f) KHGX-NN rain rate estimate vs. 
TRMM-NN rain rate estimate (g) TRMM-PR rain rate product vs. TRMM-NN rain rate estimate. 

(Case: KSHV : 10/27/2006). 
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5.4 GLOBAL RAINFALL MAPS GENERATION 

In this section, monthly global rainfall maps are generated using TRMM-NN that 

was designed at KMLB site in year 2008. The monthly rainfall maps are generated and 

compared to TRMM-PR monthly rainfall maps. Monthly surface rainfall totals are 

derived by multiplying the mean rainfall rate by the total number of hours in each month. 

TRMM-PR rainfall maps are taken from TRMM-3A26 product. TRMM-PR maps are 

generated based on TRMM-PR 2A25 product. Description of how TRMM-PR rainfall 

maps are generated can be found at [http://trmm.gsfc.nasa.gov/3a26.html]. Resolution of 

these maps is 5°x5° (lat, long). 

Figures 5.29, 5.31, 5.33, 5.35, 5.37, 5.39, 5.41, 5.43, 5.45, 5.47, 5.49 and 5.51 show 

global rainfall maps for each month in year 2008. In these figures, the top left panel is the 

rainfall accumulation map generated by the neural network at each month. The top right 

panel is the rainfall accumulation map generated by TRMM-PR 3A26 product. The 

bottom left panel shows the zonal mean of the rain accumulation generated by both 

TRMM-PR and NN products. The bottom right panel shows the scatter plot of zonal 

mean of the rain accumulation generated by both TRMM-PR and NN products. Figure 

5.53 shows global rainfall maps for the whole year of 2008. Description of the panels in 

this figure is the same as in the monthly figures described above. 

As can be seen in the figures, the maps generated by the neural network estimator 

are some times very similar to the maps generated by TRMM-PR product. This can be 

seen easily in the zonal mean plots and scatter plots in most of the months. This trial of 

creating global rainfall maps from a neural network designed at a single place (KMLB in 
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this case) was not meant to compare the two products to see which one is better or to test 

the closeness of the neural network product to TRMM-PR product. Again, these global 

maps were generated using a neural network designed based on a local data. The 

closeness and the behavior that was noticed from the plots indicate that there is a good 

potential the technique can be used to generate global rainfall maps. To get better results, 

different neural networks need to be designed from different meteorological areas, and 

then the globe can be tested so that any area is tested using a neural network that is 

designed based on data taken from neighboring area. Table 5.16 shows numerical 

comparison between the neural network maps and TRMM-PR maps. Again, the table 

shows good potential of using the neural network technique to generate global rainfall 

maps. As shown in the table, the bias was not significant; the overall NSE of year 2008 

was less than 0.08, together with the high correlation shown are good indications of how 

the two outputs are close to each other. 

Table 5.16: NN rainfall accumulation estimate vs. TRMM-PR rainfall accumulation product. 

Month of 2008 
January 
February 

March 
April 
May 
June 
July 

August 
September 

October 
November 
December 
Year 2008 

FracBias (%) 
-2.6 

-19.7 
-2.2 
-1.1 
-6.6 

-10.9 
-5.4 

-11.9 
8.5 
8.9 
14.1 
16.6 
-1.0 

Corr. 
0.91 
0.95 
0.97 
0.97 
0.95 
0.96 
0.92 
0.96 
0.97 
0.99 
0.97 
0.94 
0.97 

NSE 
0.19 
0.22 
0.12 
0.09 
0.13 
0.16 
0.18 
0.17 
0.11 
0.09 
0.14 
0.17 
0.07 

FRMSE (%) 
23.6 
28.9 
14.8 
12.4 
17.1 
20.3 
21.3 
20.4 
15.6 
11.5 
17.5 
21.6 
9.2 
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To get fair comparison between the maps generated by the NN and the maps 

generated by TRMM-PR product; two areas were selected and compared to each other. 

Figures 5.30, 5.32, 5.34, 5.36, 5.38, 5.40, 5.42, 5.44, 5.46, 5.48, 5.50 and 5.52 show the 

rainfall maps for each month in year 2008 but over KMLB and KHGX areas as shown by 

the squares drawn on the maps. In these figures, the top left panel is the rainfall 

accumulation map generated by the neural network at each month. The top right panel is 

the rainfall accumulation map generated by TRMM-PR 3A26 product. The bottom left 

panel shows the scatter plot of the rain accumulation generated by both TRMM-PR and 

NN products over KMLB area, while the bottom right panel shows the scatter plot of the 

rain accumulation generated by both TRMM-PR and NN products over KHGX area. 

Figure 5.54 shows rainfall maps for the whole year of 2008 over those two areas. 

Description of the panels in this figure is the same as in the monthly figures. 

As can be seen in the figures, the maps generated by the neural network estimator are 

very similar to the maps generated by TRMM-PR product on average. This can be seen 

easily in the scatter plots and by comparing the maps generated by both. Tables 5.17 and 

5.18 show numerical comparison between the neural network maps and TRMM-PR maps 

over KMLB and KHGX, respectively. Table 5.17 shows that on average, TRMM-PR 

product underestimates the neural network product by 83mm with high correlation and 

small NSE which is less than 0.09. This tells us a better idea about TRMM-PR rainfall 

estimate; if we believe that the neural network is right, then TRMM-PR rain estimate 

over KMLB underestimates rain gauge, and this was shown in previous sections of this 

Chapter. On the other hand, the results over KHGX area show that TRMM-PR rain 
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estimate overestimates the neural network estimate with slight bias. It is worth 

mentioning that even if TRMM-PR over KMLB area underestimates the neural network; 

the bias between these two products is considered to be small (83mm) taking into 

considerations that the NSE was less than 0.09. This shows us again the potentiality of 

using the neural networks to build rainfall estimator that can be used to generate local 

rainfall maps. 

Table 5.17: NN rainfall accumulation estimate vs. TRMM-PR rainfall accumulation product. (KMLB area) 
Month of 2008 

January 
February 

March 
April 
May 
June 
July 

August 
September 

October 
November 
December 
Year 2008 

FracBias (%) 
40.6 
-11.8 
1.1 
9.9 
-3.3 

-14.8 
2.2 
4.5 
7.9 
15.7 
22.3 
17.3 
7.2 

Corr. 
0.96 
0.99 
-0.34 
0.97 
0.91 
0.58 
0.84 
0.99 
0.97 
0.99 
0.99 
0.90 
0.71 

NSE 
0.40 
0.11 
0.14 
0.11 
0.18 
0.22 
0.07 
0.05 
0.11 
0.15 
0.22 
0.18 
0.08 

FRMSE (%) 
42.4 
17.0 
15.4 
20.6 
20.2 
26.7 
9.2 
6.5 
14.4 
15.9 
25.6 
25.0 
11.2 

Table 5.18: NN rainfall accumulation estimate vs. TRMM-PR rainfall accumulation product. (KHGX area) 
Month of 2008 

January 
February 

March 
April 
May 
June 
July 

August 
September 

October 
November 
December 
Year 2008 

FracBias (%) 
22.9 
-17.5 
-6.7 

-13.7 
-11.0 
-13.0 
-2.4 
0.7 
-0.2 
10.5 
13.7 
30.7 
-0.6 

Corr. 
0.90 
0.96 
0.98 
0.98 
0.97 
0.99 
0.99 
0.96 
0.94 
0.91 
0.99 
0.99 
0.95 

NSE 
0.32 
0.17 
0.11 
0.13 
0.11 
0.18 
0.04 
0.06 
0.19 
0.11 
0.16 
0.30 
0.08 

FRMSE (%) 
38.2 
20.5 
18.0 
15.5 
17.7 
25.7 
6.9 
7.4 

25.4 
14.5 
19.3 
43.8 
10.4 
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Figure 5.29: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (01/2008). 
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Figure 5.30: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (01/2008). 
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Figure 5.31: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (02/2008). 
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Figure 5.32: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (02/2008). 
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Figure 5.33: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (03/2008). 

153 



TRMM NN Product: Rainfall Accumulation 
03/2008 (KMLB NN) (mm) 

TRMM PR Product: Rainfall Accumulation 
012008 <mm> 

-110 -105 -100 -95 -90 

400 

350 

300 

250 

200 

150 

100 

50 

0 

50 

45 

40 

35 

* 30 

25 

20 

15 

10 
-110 -105 -100 -95 -90 75 -70 -65 

(a) (b) 

E 150 
£ 

Rainfall Accumulation (mm) over KMLB 
NN product vs. PR product: 03/2008 

Bias= 1.16 (mm) 
Corr = -0 34 
NSE = 0.14 

50 100 150 200 
Rainfall Accumulation (mm): PR product 

(c) 

£ 150 
£ 

Rainfall Accumulation (mm) over KHGX 
NN product vs. PR product: 03/2008 

Bias = -5.82 (mm) 
Corr = 0 98 
NSE = 0.11 

50 100 150 200 
Rainfall Accumulation (mm): PR product 

(d) 

Figure 5.34: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (03/2008). 
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Figure 5.35: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (04/2008). 
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Figure 5.36: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (04/2008). 
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Figure 5.37: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (05/2008). 
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Figure 5.38: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (05/2008). 
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Figure 5.39: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (06/2008). 
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Figure 5.40: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (06/2008). 
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Figure 5.41: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (07/2008). 
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Figure 5.42: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (07/2008). 

162 



TRMM-NN Product: Rainfall Accumulation 
08/2008 (KMLB-NN) 

TRMM-PR Product: Rainfall Accumulation 
08/2008 (mm) 

(a) (b) 

.2 150 

Zonal mean of Rainfall Accumulation (mm): 08/2008 

-40 -30 -20 -10 0 
Lat 

10 20 30 40 

Zonal mean of Rainfall Accumulation (mm): 08/2008 

Z 
| 200 

f 150 

Bias = -9.22 (mm) 
Corr = 0 96 
NSE = 0.17 

50 100 150 200 
Rainfall Accumulation (mm) : PR-Product 

(d) 

Figure 5.43: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (08/2008). 
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Figure 5.44: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (08/2008). 
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Figure 5.45: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (09/2008). 
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Figure 5.46: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (09/2008). 
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Figure 5.47: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (10/2008). 
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Figure 5.48: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (10/2008). 
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Figure 5.49: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (11/2008). 
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Figure 5.50: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (11/2008). 
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Figure 5.51: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (12/2008). 
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Figure 5.52: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (12/2008). 
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Figure 5.53: (a) Global Rainfall accumulation map generated by the NN (b) Global Rainfall accumulation 
map generated by TRMM-PR product (c) Zonal mean of the rainfall accumulation, (d) Scatter plot of Zonal 
mean of the rainfall accumulation. Maps resolution is 5°x5° (lat, long), and data from (Year 2008). 
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Figure 5.54: (a) Rainfall accumulation map over KMLB and KHGX areas generated by the NN (b) 
accumulation map over KMLB and KHGX areas generated by TRMM-PR product (c) Scatter plot of NN 
rainfall accumulation vs. TRMM-PR rainfall accumulation over KMLB area, (d) Scatter plot of NN rainfall 
accumulation vs. TRMM-PR rainfall accumulation over KHGX area. Maps resolution is 5°x5° (lat, long), 
and data from (Year 2008). 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

The main goal of this research is to estimate rain rate from ground radar and 

spaceborne radar measurements using neural networks. Radial basis function neural 

network was the main neural network architecture applied to do the estimation. 

Two approaches were used to do rainfall estimation. The first approach was based 

on a neural network that is designed based on rain gauges and ground radar 

measurements. Three ground radars were used in this regard: KMLB NEXRAD, KWAJ 

NEXRAD radar and KHGX NEXRAD radar. Five rain gauge networks were taken 

around these three radars; KMLB radar has three rain gauge networks: KSC, SFL, STJ, 

KWAJ radar has only one rain gauge network named after the radar (KWAJ), and 

KHGX radar also has one rain gauge network: HAR. 

The second approach was based on a hybrid neural network technique where a two-

stage neural network was designed. The first network was based on rain gauges and 

ground radar measurements. This network was used to map the relation between the 

ground radar reflectivity factor and the rain gauges as first stage to a second stage of the 

hybrid network where TRMM-PR measurements aligned with the ground radar 

measurements that were used in the first stage were used to train another network with 
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rainfall estimated based on those ground radar measurements by the first network as a 

target. 

The following points summarize the activities that have been completed in this 

dissertation. This section groups the tasks according to their major goals: 

• Estimating Rainfall from ground radar measurements using neural networks: 

o A neural network technique was used to estimate rainfall from ground radar 

measurements. The effect of the radar vertical profile height on rainfall 

estimation was examined. It was found that measurements up to 4km were 

giving better performance in most of the cases. 

o The neural network performance was compared with the Z-R relation and 

with a statistical approach (Best-Fit) against the rain gauge. It was found that 

the neural network performance was better in most of the cases. The Z-R 

relation was underestimating the rain rate and was unable to capture the storm 

variations in most of the cases. 

o The designed neural network was validated using different datasets from 

different years and different locations. It was found that the network was 

generalized and was able to estimate rainfall from datasets have never seen 

and from other locations. 

o The "Principal Component Analysis" (PCA) concept was used as a trial to 

improve the performance of estimation. Two principal components were used 

to train the neural network. It was shown that significant improvements were 

achieved in terms of statistical metrics (FracBias, correlation, NSE, and 
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FRMSE) and in terms of reducing the training time and the network 

complexity. 

o Bayesian Neural network (BN) was sued as another architecture to do rainfall 

estimation; this network proves its capability in this regard with the advantage 

of reducing the network complexity significantly at the expense of increasing 

the training time. 

o Ensemble average neural network technique was used to improve rainfall 

estimation; the ensemble was based on RBF neural network, and BN neural 

network. This technique can add a significant improvement to the estimation 

by reducing the MSE of the ensembled output by a factor up to the number of 

the networks in the ensemble. This reduction is conditioned by how small the 

bias of the individual networks is, and how much mutually independent the 

errors of the individual networks are. 

o Validation the performance of the neural network against TRMM GV estimate 

at KWAJ site. The network shows competitive performance that can be better 

than the GV performance. 

• Estimating Rainfall from satellite radar measurements (TRMM-PR) using 

neural networks: 

o A novel hybrid neural network was designed to estimate rainfall from 

TRMM-PR measurements. This hybrid network has two stages, the first one is 

a neural network designed based on ground radar measurements and rain 
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gauges. The second network is designed based on TRMM-PR radar 

measurements and rainfall estimated by the first network. 

o It was shown that the performance of this hybrid neural technique is better 

than the performance of TRMM-PR rain rate standard product when both 

were compared with rain gauges; TRMM-PR rain rate standard product tends 

to underestimate the rain gauge. 

o When comparing the performance of the two stages in this hybrid method to 

each other, it can be shown that both have close performance compared to rain 

gauge. This indicates that the first neural network maps to the second neural 

network the relation between the radar reflectivity factor and the rain gauges. 

The mapping was done through aligning the ground radar measurements with 

TRMM-PR radar measurements 

o The designed neural network was validated using different datasets from 

different years and different locations. It was found that the network was 

generalized and was able to estimate rainfall from datasets that have never 

seen or even from other locations. 

• Rainfall maps generation using radar/satellite measurements and neural 

network estimators. 

o Instantaneous rainfall maps were generated by applying ground radars 

measurements and TRMM-PR measurements. The ground radars data was 

applied to the network that was built based on ground radar measurements, 
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while TRMM-PR data was applied to the network that was built based on 

TRMM-PR measurements. 

o The generated instantaneous rainfall maps from both networks were very 

similar to each other, and both were giving representation of the storm better 

than TRMM product. 

o To validate the instantaneous rainfall maps generation at each site, similar 

maps were generated using the neural network that was built based on the 

other site's data. It was shown that these maps were similar to those maps 

generated using the same site's neural network and were giving similar 

performance. 

o To do more validation, we applied the designed neural networks at KMLB 

and KHGX to generate instantaneous rainfall maps by testing other NEXRAD 

radars data. Two radars were chosen: KEVX (Eglin AFB, FL), and KSHV 

(Shreveport, LA). It was shown that the designed neural networks are 

generalized and can be applied to estimate rainfall at other geographical 

regions beyond the ground validation sites. 

o Global monthly rainfall maps were generated and compared to TRMM 

standard generated rainfall maps, and the hybrid neural network shows the 

possibility to produce global rainfall maps. 

179 



6.2 FUTURE WORK 

Several suggested topics to be done after this dissertation. They are mostly about 

performance improvement and validation, and can be summarized as follows: 

• Performance improvement 

o The performance of the estimation can be improved by building a "Rain/No 

Rain" detection neural network running simultaneously with the estimation 

network, 

o Including other radar measurements like the path integrated attenuation (PIA). 

o The global rainfall accumulation maps can be generated with better 

performance if we use neural networks designed by data from different 

meteorological areas, rather than using one regime, 

o The hybrid technique can be improved in the next mission (GPM) where 

measurements from Dual-Precipitation Radar (DPR) will be available. 

• Performance validation 

Different ideas are suggested to do more validation of the designed neural 

networks: 

o Validating this method based on other ground validation radars in other 

climatological areas. 

o Validating this method using the Next Generation Multisensor Quantitative 

Precipitation Estimates QPE (Q2). The Q2 project is a joint initiative by the 

National Oceanic and Atmospheric Administration, and the National Severe 

Storms Laboratory NSSL to improve river forecasts, flood watches and 
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warnings as well as to enhance various hydrometeorological services for 

numerous users and customers. At the time of this dissertation, the Q2 data 

estimates were considered preliminary and not publicly available. 
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