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ABSTRACT

WEIGHTING ADJUSTMENTS IN SURVEYS

We consider three topics in this dissertation: 1) Nonresponse weighting adjustment using pe-

nalized spline regression; 2) Improving survey estimators through weight smoothing; and 3) An

investigation of weight smoothing estimators under mixed model specifications.

In the first topic, we propose a new survey estimator under nonresponse, which only assumes

that the response propensity is a smooth function of a known covariate, and we estimate the propen-

sity function by fitting a nonparametric logistic model using penalized spline regression. We obtain

the linearization of the nonresponse weighting adjustment estimator with respect to the sampling

design and the random response mechanism, allowing us to perform asymptotically correct infer-

ence. In a simulation study, we show that the nonparametric estimator remains competitive with a

linear logistic estimator when the response propensity function follows a linear logistic model, but

performs significantly better when the response propensity function is nonlinear.

Beaumont (2008) proposed model-based weight smoothing as a way to improve the efficiency

of survey estimators. In the second topic, we extend this work by obtaining the asymptotic proper-

ties of this approach with respect to the sampling design and the weight model. The latter is taken

to be a lognormal linear regression model. We derive the asymptotic distribution of the estimator

and propose a consistent estimator of the asymptotic variance. A Hájek version of the estimator

is considered, as well as a replication variance estimator, both of which improve the robustness of

weight smoothing against model misspecification.

In the third topic, the results from the second topic are extended to models with random effects.

Two versions of the estimator are proposed, depending on whether the random effects are predicted

or integrated out, and their practical performance is compared through a simulation study.
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case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Monte Carlo relative biases and variances of the NWA estimators (Horvitz-Thompson

type), the variances are scaled with respect to ȳd, based on 10,000 samples. (Non-
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CHAPTER 1

INTRODUCTION

A large amount of the quantitative information about the economy and society comes from

sample surveys. The statistics may either come from censuses or be based on a sample of the

population. In Statistics, survey sampling is the process of selecting a sample of elements from

a population to conduct a survey. Broadly, there are two types of survey sampling: probability

sampling and non-probability sampling. Probability sampling is the commonly used procedure in

academic and government survey research. Probability sampling allows design-based inference

about the population.

For a pure design-based inference, only the uncertainty from the randomization of the design

needs to be accounted for, with all other aspects of the population treated as fixed. Consider a

finite set of elements identified by the integers UN = {1, . . . , i, . . . , N}. The design-based esti-

mator of ȳN = N−1
∑

U yi is given by the Horvitz-Thompson estimator ŷHT = N−1
∑

i∈S yi/πi

or the Hájek estimator ŷHA = N̂−1
∑

i∈S yi/πi, where N̂ =
∑

i∈S 1/πi and πi is the probability

that the element i will be included in a sample. The Horvitz-Thompson estimator ŷHT is unbi-

ased for ȳN . The explicit form of the variance is available when the sampling design is decided.

Inferential procedures, including confidence intervals and hypothesis tests are constructed for ȳN

under asymptotic normality. The Hájek estimator ŷHA is an approximately unbiased estimator of

the population mean ȳN . An approximate variance is used instead of the explicit form of the vari-

ance. Together with the Gaussian distribution, an inference that can be made from these estimates.

The estimators from the pure design-based approach can be inefficient. Improving the efficiency

of estimators following sampling can be achieved in a number of ways. One can reduce variances

through the use of auxiliary information or by changing the weights themselves, such as nonre-

sponse adjustments, calibration weighting, weight trimming methods and weighting adjustment

through some functions. Many of the methods used to reduce the variance often results in the in-

troduction of some bias. There is a trade-off between the bias and the variance. If the amount of the

1



variance reduction is larger than the amount of the squared bias increase, it leads to a smaller mean

square error. The regression estimator is a type of estimator that can improve the efficiency through

using of auxiliary information for the population. Let xi represent a vector of auxiliary variables

for element i and x̄ its population mean. The general form of the linear regression estimator is

defined as

ŷreg = ŷHT + (x̄N − x̂HT )B̂,

where B̂ is the estimated coefficients that from the specific regression analysis being considered.

The regression estimator is a "model-assisted approach" as it improved the efficiency by adding

an adjustment term, while the regression estimator remains design consistent. The regression

estimator is a special case of a Calibration estimator. A calibration estimator use the new weights

wi as close as possible to the original inverse-probability weights with respect to the calibration

constraints
∑

i∈S wixi =
∑

i∈U xi for a given distance measure.

One may consider modeling the weights as a way to obtain more effective survey estimators.

When the model for the weighting adjustment is considered, the question involved in this study

is whether the model is correct for the sample data or for the population level or both. More

generally, when fitting models to survey data, one needs to take care how to specify models and

how the model(s) and the design relate to each other. There are four basic approaches for modeling

with survey data. The first approach is to assume that the model is valid under the sample itself and

make inference based on that model. This is not preferable because a non-representative sample

may not provide a valid inference for the population. The second approach is to assume that the

model is valid under the sample and the population simultaneously. The third approach is that

there are two models valid for the sample and the population separately, the two models can be

connected through an additional model setup. In addition, we can also assume the fact that the two

models are connected through the design, which leads to the fourth approach. The fourth approach

assumes a model for the population only, without doing so for the sample. In that case, estimation

and inference are done under a combined design and model-based approach. For instance, the

2



ordinary least square estimator for β for the population level is

β =

(∑
i∈U

xTi xi

)−1∑
i∈U

xTi yi.

Combined with Horvitz-Thompson estimation, the sample-based estimator of β can be written as

β̂HT =

(∑
i∈S

xTi xi
πi

)−1∑
i∈S

xTi yi
πi

.

A model-based method for the finite population is conditional on the realized sample and once

the model is found, the model-based inference can be established. For example, suppose that the

observations in the sample and the population follow the linear model, which is given by

yi = xiβ + εi,

where the εi’s are independent and identically distributed random variables. Then the model-based

predictor is given by

ŷpred =
1

N

(∑
i∈S

yi +
∑
SC

xiB̂

)
,

where SC represents the complement of the sample S and B̂ is the estimator obtained from the

ordinary least square based on the sample. Besides linear regression model, other models can be

used in the study depending on the type of the relationships.

In Chapter 2, we adjust the weights under nonresponse by estimating the response propensity

through nonparametric logistic model using penalized spline regression. Even though it involves

modeling, this is often still considered a design-based method, because no model is assumed for

the target variables of interest, i.e. the yi. In other words, the weights are adjusted through the

auxiliary variables that are available for the population and we are not trying to adjust for the

study variables. The inferential procedure like the confidence interval is obtained under asymptotic

normality, while the approximate variance is derived from the Taylor linearization of the estimator.

In particular, we consider a nonparametric model instead of a regular regression model since the

nonparametric model is more flexible. The nonparametric model has advantages when the true

relationship between the response propensity and auxiliary variables is unknown to us.
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In Chapter 3, the efficiency of the proposed estimators is improved by specifying a weight

model through the study variables. The smoothed weights are obtained from the weight model,

which lead to large reduces in variance of the estimators, while introducing a slight bias. Beau-

mont [2008] refers to this approach as "generalized design-based" inference. The principles remain

close to the design-based inference as we are modeling the survey weights only, not the study vari-

ables. There are two main methods to obtain the variance approximation: the linearization variance

estimation approach and the replicate variance estimation approach. We consider both approaches

in this chapter. For the linearization variance estimation approach, the Taylor linearization of the

estimator is derived with respect to the sampling design and the weight model, the variance is com-

puted using the standard variance estimation. The replicate variance estimation is a commonly used

method to estimate a variance in survey sampling, including the jackknife and bootstrap methods.

The jackknife technique was first developed by Quenouille [1949, 1956] for reducing the bias of

the estimation with respect to an infinite population context. Durbin [1959] considered the use of

jackknife in finite-population estimation. We investigate jackknife variance estimation as a more

robust and practical alternative in this chapter. The inferential procedure like confidence interval

is derived under normality.

In Chapter 4, the results from Chapter 3 are extended to models with random effects. A mixed

model is a statistical model containing both fixed effects and random effects. This is useful in set-

ting when the measurements are made on clusters of units. The estimators are obtained. Combined

with the jackknife variance estimation, the confidence intervals are constructed under asymptotic

normality for inferential purposes.
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CHAPTER 2

NONRESPONSE WEIGHTING ADJUSTMENT USING PENALIZED

SPLINE REGRESSION

2.1 Introduction

Weighting by the inverse of the estimated response probabilities is a procedure that is often

applied to nonresponse in surveys. Brick [2013] reviewed the consequences of nonresponse on

the bias of the estimates and the methods for its adjustment. Nargundkar and Joshi [1975] and

Cassel et al. [1983] provided general descriptions of propensity weighting as an adjustment for

nonresponse in survey estimators. Groves et al. [2002] and Särndal and Lundström [2006] provided

overviews of nonresponse weighting adjustment (NWA) techniques in survey sampling. Under

nonresponse, the set of respondents can be considered to have been obtained through two-phase

sampling. In the first phase, a sample of elements is selected from the population, and the second

phase is the set of respondents. Following two-phase estimation ideas, the NWA approach is to

multiply the sampling weight by a response weight that is the inverse of the response probability,

and then to apply the usual inverse-probability-weighted estimation approach. However, the true

response probability is usually not available in practice, and an estimated response probability is

used to correct for nonresponse bias. Applications of the NWA estimator can be found in Ekholm

and Laaksonen [1991] and Iannacchione [2003].

Auxiliary variables are often present in surveys, either at the population or the sample level.

These auxiliary variables often correlate with the study variable of interest and they can be applied

in adjusting the design weights to account for nonresponse. Regression weighting is a popular

method for incorporating auxiliary variables. A discussion about the regression NWA estimator

can be found in Cassel et al. [1983], Bethlehem [1988] and Fuller and An [1998]. Lundström and

Särndal [1999] suggested that increased auxiliary information content could reduce both variance

and nonresponse bias of the point estimator.
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Traditionally, the NWA estimator incorporates estimated response probability into the estima-

tor, with the response probability estimated by regressing on the auxiliary information paramet-

rically, with logistic and probit regression models as common choices. See Alho [1990], Folsom

[1991], Ekholm and Laaksonen [1991] and Iannacchione et al. [1991] for references. Beaumont

[2005] gave a clear justification for reduced variance using estimated response probability from a

logistic regression model in the imputation context. Kim and Kim [2007] regressed the response

on auxiliary variables into a linear logistic regression model for the estimated response probability.

However, if this response propensity function is misspecified, the NWA estimators are likely to be

biased. Another approach is to estimate the response propensities through nonparametric meth-

ods. Giommi [1984] estimated the response probabilities by kernel smoothing. Silva and Opsomer

[2009] considered the estimation of the response propensities by local polynomial regression.

In this chapter, we extend Kim and Kim [2007] through nonparametric methods. The approach

we consider is the NWA estimator using the estimated response probability by fitting a nonparamet-

ric logistic model that uses penalized spline regression. We show that the nonparametric estimator

remains competitive with a linear logistic estimator when the response propensity function follows

a linear logistic model, but performs significantly better when the response propensity function is

nonlinear. In Section 2.2, we provide a literature review for the estimator under nonresponse and

the penalized spline logistic regression. In Section 2.3, the properties of the NWA estimator using

the estimated response probability from the penalized spline regression are discussed. In Section

2.4, the variance estimation for the NWA estimator using the estimated response probability from

the penalized spline regression are provided. In Section 2.5, we perform a simulation study to

evaluate the finite sample properties of the estimator. Conclusions are given in Section 2.6.

2.2 Proposed Estimator

Let the finite population UN = {1, · · · , i, · · · , N}, where N is assumed known. Let FN =

{u1, · · · ,uN} denote the population variables. For each individual, ui = (xi, yi)
T , where yi is

the study variable and xi is the auxiliary variable for unit i. For simplicity, we consider a single
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study variable yi and a single auxiliary variable xi. The population mean for the study variable is

given by ȳU = N−1
∑

U yi. A probability sample of size n is drawn from UN , the inclusion of a

given element i in a sample S is a random event indicated by the random variable Ii, with Ii = 1 if

i ∈ S, and Ii = 0 otherwise. Let ȳs be an estimator of ȳU , we consider here the Horvitz-Thompson

estimator,

ȳs = N−1
∑
i∈S

π−1
i yi = N−1

∑
i∈UN

yiIi
πi
,

where πi = Pr{i ∈ S} = Ep[Ii] and π−1
i be the sampling weight of unit i. The expectation of ȳs,

conditional on FN , is ȳU . Therefore, ȳs is unbiased for ȳU with respect to the sampling design.

Under nonresponse, the desired study variable yi may not be obtained for the entire set of

elements S. To define the response model, let Ri be an indicator of the response for the study

variable yi in each unit ui. AssumingRi = 1 if unit i responds, andRi = 0, otherwise. We assume

that, given the sample, the response indicators are independent Bernoulli random variables with

pi|S = Pr{Ri = 1|i ∈ S}. For simplicity and as commonly done in this context, we assume that

the response probability of a unit does not depend on the characteristics of the other elements in the

sample nor on the realized sample. Thus, we write pi|S = pi. Let ȳd,HT be the Horvitz-Thompson

type estimator of ȳs, so that ȳd,HT is of the form

ȳd,HT = N−1
∑
i∈S

1

πi

Ri

pi
yi.

Conditional on the sample S, ȳd,HT is an unbiased estimator of ȳs if the true response probability

is known. Therefore, ȳd,HT is unbiased for ȳU in that case.

Särndal et al. [1992, p. 182] suggested to use the Hájek estimator instead of Horvitz-Thompson

estimator since the Hájek estimator is usually more efficient, despite estimation of a priori known

quantity N . Therefore, we also consider a Hájek type estimator in this paper. Under the sampling

design and nonresponse, the Hájek type estimator ȳd,HA is of the form

ȳd,HA =

∑
i∈S

1
πi

Ri
pi
yi∑

i∈S
1
πi

Ri
pi

,

and ȳd,HA is asymptotically unbiased for ȳU .
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The response probability pi is usually unknown in practice. Instead of using the true probability

pi, the estimated probability p̂i will be used to estimate the population mean. Then, two possible

estimators of the population mean ȳU are given by

ȳe,HT = N−1
∑
i∈S

1

πi

Ri

p̂i
yi, (2.1)

and

ȳe,HA =

∑
i∈S

1
πi

Ri
p̂i
yi∑

i∈S
1
πi

Ri
p̂i

. (2.2)

In order to implement the nonresponse weighting adjustment estimators in (2.1) and (2.2), it is

necessary to estimate the response probability p̂i. We estimate the propensity function by fitting

a nonparametric logistic model using penalized spline regression. We will use cubic B-splines to

create a spline basis, a common choice in practice described in Chapter 5 Appendix of Hastie et al.

[2009, p. 186] and Wand and Ormerod [2008].

The spline basis and the corresponding penalty matrix are constructed as follows. Consider

an interval [a, b], which contains all the xi′s. For an integer K ≤ n, let k1, · · · , kK+8 be a knot

sequence in [a, b] such that

a = k1 = k2 = k3 = k4 < k5 < · · · < kK+4 < kK+5 = kK+6 = kK+7 = kK+8 = b

and let B1, · · · , BK+4 be the cubic B-spline basis functions defined by these knots. Given the

vector of auxiliary variables (x1, · · · , xn)T , we create the n× (K + 4) design matrixB with (i, k)

entry Bik = Bk(xi) and the (K + 4)× (K + 4) penalty matrix Ω with (k, k′) entry

Ωkk′ =

∫ b

a

B′′k(x)B′′k′(x)dx.

The generalized linear model with the canonical logit link can be expressed as

log
(

pi
1− pi

)
= ηi.

It is assumed that ηi depends on the auxiliary variable through the vector Bxi , where Bxi ≡

[B1(xi), · · · , BK+4(xi)]. More explicitly, it is assumed that ηi is a function of Bxi with parameter

ν evaluated at ν = ν∗,

ηi = Bxiν
∗,
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where ν∗ is the vector of unknown true values. Hence

log
(

pi
1− pi

)
= ηi = Bxiν

∗. (2.3)

Note that we ignore here any model misspecification between the logit of the true response function

and the spline. For a sufficiently smooth response function andK large, any remaining bias will be

small and practically negligible. While this bias could be handled explicitly and its behavior as K

grows investigated [see for instance Gerda Claeskens, 2009], this would significantly complicate

the theoretical investigation of the proposed procedure. We construct the sample penalized pseudo-

log-likelihood function [see Binder and Roberts, 2003].

lλ(ν) =
∑
i∈S

ki{Rilogit(pi) + log(1− pi)} −
1

2
λνTΩν

=
∑
i∈S

ki{Ri (Bxiν)− log
(
1 + eBxiν

)
} − 1

2
λνTΩν, (2.4)

where λ is a fixed smoothing parameter and ki is the weight of unit i in the estimating equation

for ν. The choice ki = 1 was suggested by Beaumont [2005] to estimate ν under the logistic

regression model for the response probability, while Fuller and An [1998] suggested to use ki =

π−1
i under the two-phase sampling approach. We will therefore consider both cases.

Define gi(ν) = ∂{logit(pi)}/∂ν. Differentiating the sample penalized pseudo-log-likelihood

function with respect to ν leads to the score function

Sλ(ν) =
∂l

∂ν
=
∑
i∈S

ki (Ri − pi) gi(ν)− λΩν. (2.5)

Let ν∗λ represents the value of ν that solves

E{Sλ(ν)|FN} = 0.

The “population parameter" ν∗λ can be viewed as a population level estimate of ν∗ under specific

asymptotic scenario, but we do not emphasize this further here. Here, we consider ν̂ as the es-

timator of ν∗λ, and ν̂ can be obtained by maximizing the sample penalized pseudo-log-likelihood

function (2.4).
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2.3 Asymptotic properties

In this section, we present the properties of the NWA estimators (2.1) and (2.2) under estimation

of response propensities by penalized pseudo-log-likelihood maximization.

We state some assumptions before presenting the properties of the NWA estimator. We will

follow the framework of Kim and Kim [2007].

A 2.1. Assume that the sequence of finite populations of ui = (xi, yi)
T have bounded fourth

moments.

A 2.2. The sample moments converge to population moments, that is

N−1
∑
i∈S

π−1
i wiw

T
i = N−1

N∑
i=1

wiw
T
i +Op(n

−1/2), (2.6)

wherewi = vec(uiu
T
i ) is the column vector obtained by stacking the columns of the matrix uiuTi .

A 2.3. As N →∞,
n

N
→ π ∈ (0, 1),

and the sample design probabilities satisfy

C1 ≤ n−1Nπ ≤ C2,

where C1 and C2 are fixed positive constants.

A 2.4. Assume that

p lim
n→∞

N−1
∑
i∈S

π−1
i [gi(ν), gi(ν)gi(ν)T , {∂gi(ν)/∂ν}]yi <∞ (2.7)

uniformly in ν, where gi(ν) = ∂{logit(pi)}/∂ν. That is, for the logistic parametric function

logit(pi) = Bxiν, we have gi(ν) = Bxi and gi(ν) satisties (2.7) when Bxi has finite second

moments.

In addition to the assumptions on the sampling design and population distribution of ui, we

assume the following conditions on the response mechanism.
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B 2.1. The responses Ri and Rj are independent random variables for i 6= j, and

E(Ri|FN) = pi,

V (Ri|FN) = pi(1− pi).

B 2.2. LetBxi be the cubic B-spline basis function obtained from xi. There exists a vector ν∗ such

that the model (2.3) is true.

B 2.3. The inverse of the response probability p−1
i is bounded by a fixed constant C; that is,

p−1
i < C.

In addition to the assumptions of sampling design and response mechanism, we also need the

following assumptions for the penalized spline regression:

C 2.1. The smoothing parameter λ is a positive scalar and satisfies

λ = O(
N√
n

),

where n is the sample size.

C 2.2. The penalty matrix Ω is a symmetric positive semidefinite matrix.

C 2.3. We assume that the matrices

∑
i∈UN

πikipi(1− pi)gi(ν)gTi (ν) + λΩ

and ∑
i∈S

kipi(1− pi)gi(ν)gTi (ν) + λΩ

are nonsingular for all possible samples S, thus invertible.

Theorem 2.1 below provides a linearized expression for the estimator of model parameters.

This will be used subsequently to linearize the NWA estimator in Theorem 2.2.
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Theorem 2.1. Assume that (A2.1)-(A2.4), (B2.1)-(B2.3), (C2.1)-(C2.3) hold. The estimator ν̂

satisfies

ν̂ = ν∗λ + {Iλ(ν∗λ)}−1Sλ(ν
∗
λ) + op(n

−1/2), (2.8)

where Sλ(ν∗λ) is the score function at ν∗λ given by

Sλ(ν
∗
λ) =

∑
i∈S

ki (Ri − pi) gi(ν∗λ)− λΩν∗λ,

and Iλ(ν∗λ) is the Fisher information matrix at ν∗λ given by

Iλ(ν
∗
λ) = −E

{
∂

∂νT
Sλ(ν

∗
λ)

∣∣∣∣FN} =
∑
i∈UN

πikipi(1− pi)gi(ν∗λ)gTi (ν∗λ) + λΩ. (2.9)

Proof of Theorem 2.1: To prove (2.8), we apply a Taylor expansion to obtain

Sλ(ν) = Sλ(ν
∗
λ) +

∂Sλ(ν
∗
λ)

∂νT
(ν − ν∗λ) + op(ν − ν∗λ).

Evaluating the preceding at ν = ν̂ yields an approximation which holds provided that ν∗λ is close

to ν̂ and ν̂ satisfies

Sλ(ν̂) = 0.

That is,

ν̂ − ν∗λ =

{
−∂Sλ(ν

∗
λ)

∂νT

}−1

Sλ(ν
∗
λ) + op(ν̂ − ν∗λ), (2.10)

and let

Iλ(ν
∗
λ) = −∂Sλ(ν

∗
λ)

∂νT
=
∑
i∈S

kipi(1− pi)gi(ν∗λ)gTi (ν∗λ) + λΩ.

Then (2.10) can be written as

ν̂ − ν∗λ = {Iλ(ν
∗
λ)}−1 Sλ(ν

∗
λ) + op(ν̂ − ν∗λ). (2.11)

Now, let Iλ(ν∗λ) be the Fisher Information matrix at ν∗λ and Iλ(ν∗λ) of the form

Iλ(ν
∗
λ) = −E

{
∂

∂νT
Sλ(ν

∗
λ)

∣∣∣∣FN} =
∑
i∈UN

πikipi(1− pi)gi(ν∗λ)gTi (ν∗λ) + λΩ.
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Consider the normalized form of (2.11), we have

ν̂ − ν∗λ =

{
1

N
Iλ(ν

∗
λ)

}−1{
1

N
Sλ(ν

∗
λ)

}
+ op(ν̂ − ν∗λ). (2.12)

Under the stated design and model assumptions, we have

1

N
Sλ(ν

∗
λ) =

1

N

∑
i∈S

ki (Ri − pi) gi(ν∗λ)− 1

N
λΩν∗λ = Op(n

−1/2), (2.13)

and
1

N
Iλ(ν

∗
λ) =

1

N
Iλ(ν

∗
λ) +Op(n

−1/2). (2.14)

Apply Taylor expansion to equation (2.14) and get{
1

N
Iλ(ν

∗
λ)

}−1

=

{
1

N
Iλ(ν

∗
λ)

}−1

+Op(n
−1/2). (2.15)

Inserting (2.15) and (2.13) into (2.12), we therefore obtain

ν̂ − ν∗λ = Op(n
−1/2). (2.16)

Inserting (2.15) and (2.16) into (2.12), we have

ν̂ − ν∗λ =

{
1

N
Iλ(ν

∗
λ)

}−1{
1

N
Sλ(ν

∗
λ)

}
+ op(n

−1/2).

Theorem 2.2. Assume that (A2.1)-(A2.4), (B2.1)-(B2.3), (C2.1)-(C2.3) hold. Consider the esti-

mation of the population mean ȳU by the Horvitz-Thompson type NWA estimator ȳe,HT defined in

(2.1). Estimate the response propensity under model (2.3), where the parameter ν∗ is estimated by

ν̂, the maximizer the penalized pseudo-log-likelihood function (2.4). Then the Horvitz-Thompson

type NWA estimator satisfies

ȳe,HT = ȳel,HT + op(n
−1/2), (2.17)

where

ȳel,HT =
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi
(yi − kiπipigTi0γN)

}
+N−1λν∗λ

TΩγN ,
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gi0 is the value of gi(ν) = ∂{logit(pi)}/∂ν evaluated at ν = ν∗λ and

γN =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1 ∑
i∈UN

(1− pi)gi0yi.

Proof of Theorem 2.2: To prove (2.17), we apply a Taylor expansion to the estimated response

probability to obtain

p̂−1
i − p−1

i =

(
∂p−1

i

∂ν

∣∣∣∣
ν=ν∗λ

)T

(ν̂ − ν∗λ) + 0.5(ν̂ − ν∗λ)T
(
∂2p−1

i

∂ν∂νT

∣∣∣∣
ν=ν̈

)
(ν̂ − ν∗λ),

where ν̈ is on the line segment joining ν̂ and ν∗λ. Considering now

ȳd,HT = N−1
∑
i∈S

1

πi

Ri

pi
yi

and

ȳe,HT = N−1
∑
i∈S

1

πi

Ri

p̂i
yi,

we have

ȳe,HT = ȳd,HT + ATn (ν̂ − ν∗λ) + 0.5(ν̂ − ν∗λ)TBn(ν̂ − ν∗λ), (2.18)

where

An = N−1
∑
i∈S

π−1
i Ri

(
∂p−1

i

∂ν

∣∣∣∣
ν=ν∗λ

)
yi,

Bn = N−1
∑
i∈S

π−1
i Ri

(
∂2p−1

i

∂ν∂νT

∣∣∣∣
ν=ν̈

)
yi.

From the definition of gi, we have

gi =
∂logit(pi)

∂ν
=

1

pi(1− pi)
∂pi
∂ν

.

Thus, we obtain
∂p−1

i

∂ν
= −(p−1

i − 1)gi,

and
∂2p−1

i

∂ν∂νT
= (p−1

i − 1)

(
gig

T
i −

∂gi
∂ν

)
.
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Hence,

An = N−1
∑
i∈S

π−1
i Rip

−1
i (pi − 1)gi0yi,

where gi0 is the value of gi(ν) evaluated at ν = ν∗λ and

Bn = N−1
∑
i∈S

π−1
i Rip

−1
i (1− pi)

(
gi1g

T
i1 −

∂gi1
∂ν

)
yi,

where gi1 is the value of gi(ν) evaluated at ν = ν̈. Thus,

An = N−1
∑
i∈S

π−1
i (pi − 1)gi0yi +Op(n

−1/2), (2.19)

and under (2.6) and (2.7),

Bn = Op(1). (2.20)

Thus, from (2.18) and (2.20), we have

ȳe,HT = ȳd,HT + ATn (ν̂ − ν∗λ) +Op(n
−1). (2.21)

For (2.8), plug in (2.5) and (2.9), we obtain

ν̂ − ν∗λ =

{∑
i∈UN

πikipi(1− pi)gi(ν∗λ)gTi (ν∗λ) + λΩ

}−1

[∑
i∈S

ki {(Ri − pi)gi(ν∗λ)} − λΩν∗λ

]
+ op(n

−1/2). (2.22)

Inserting (2.19) and (2.22) into (2.21), we have

ȳe,HT = ȳ∗el,HT + op(n
−1/2), (2.23)

where

ȳ∗el,HT = N−1
∑
i∈S

π−1
i Rip

−1
i yi +

{
N−1

∑
i∈S

π−1
i (pi − 1)gi0yi

}T

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1{∑
i∈S

ki(Ri − pi)gi0 − λΩν∗λ

}

= N−1
∑
i∈S

π−1
i Rip

−1
i yi +N−1

{∑
i∈S

ki(pi −Ri)g
T
i0 + λν∗λ

TΩ

}
{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1{∑
i∈S

π−1
i (1− pi)gi0yi

}
.
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Thus, ȳ∗el,HT can be written as

ȳ∗el,HT =
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γn +

Ri

pi
(yi − kiπipigTi0γn)

}
+

1

N
λν∗λ

TΩγn, (2.24)

where

γn =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1{∑
i∈S

π−1
i (1− pi)gi0yi

}
.

Let γN to be the variable γ under the population, i.e.

γN =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1{∑
i∈UN

(1− pi)gi0yi

}
,

and we have

γn = γN +Op(n
−1/2). (2.25)

For (2.24), plug-in (2.25), it follows

ȳ∗el,HT =
1

N

∑
i∈S

1

πi

Ri

pi
yi +

{
1

N

∑
i∈S

1

πi
(1− Ri

pi
)
(
kiπipig

T
i0

)
+

1

N
λν∗λ

TΩ

}{
γN +Op(n

−1/2)
}
.

From assumption (C2.1), which states λ = O
(
N√
n

)
, then 1

N
λν∗λ

TΩ = O(n−1/2), ȳ∗el,HT can be

written as

ȳ∗el,HT =
1

N

∑
i∈S

1

πi

Ri

pi
yi +

{
1

N

∑
i∈S

1

πi
(1− Ri

pi
)
(
kiπipig

T
i0

)
+

1

N
λν∗λ

TΩ

}
γN + op(n

−1/2).

(2.26)

Combining (2.23) and (2.26), we obtain the desired result.

Theorem 2.2 states that the equation (2.17) is the Taylor linearization of ȳe,HT under the sam-

pling design and response mechanism. The Horvitz-Thompson type NWA estimator ȳe,HT is

asymptotically equivalent to a random variable ȳel,HT . This is similar to the linearization obtained

in Kim and Kim [2007], except that our result includes penalization, allowing for a penalized

spline approach, and the fact the linearization in Kim and Kim [2007] was conditional on the

sampling design. By doing the linearization with respect to the design as well, we are able to con-

duct the variance estimation through variance decomposition either conditionally on the response

mechanism or on the sampling design given the population, as will be further discussed in the

next section. Theorem 2.3 derives the same linearization as in Theorem 2.2, for the Hájek type

estimator.
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Theorem 2.3. Assume that (A2.1)-(A2.4), (B2.1)-(B2.3), (C2.1)-(C2.3) hold. Consider the estima-

tion of the population mean ȳU by the Hájek type NWA estimator ȳe,HA defined in (2.2). Estimate

the response propensity under model (2.3), where the parameter ν∗ is estimated by ν̂, the max-

imizer the penalized pseudo-log-likelihood function (2.4). Then the Hájek type NWA estimator

satisfies

ȳe,HA = ȳel,HA + op(n
−1/2),

where

ȳel,HA = ȳU +
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γNC +

Ri

pi
(yi − ȳU − kiπipigTi0γNC )

}
+N−1λν∗λ

TΩγNC ,

gi0 is the value of gi(ν) = ∂{logit(pi)}/∂ν evaluated at ν = ν∗λ and

γNC =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1 ∑
i∈UN

(1− pi)gi0(yi − ȳU).

Proof of Theorem 2.3: The estimation of the population mean ȳU by the Hájek type NWA

estimator ȳe,HA defined in (2.2) can be written as

ȳe,HA =

1
N

∑
i∈S

1
πi

Ri
p̂i
yi

1
N

∑
i∈S

1
πi

Ri
p̂i

.

Let z̄e = 1
N

∑
i∈S

1
πi

Ri
p̂i

, then

ȳe,HA =
ȳe,HT
z̄e

.

Using the result from Theorem 2.2, we have

ȳe,HT = ȳel,HT + op(n
−1/2),

where

ȳel,HT =
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi
(yi − kiπipigTi0γN)

}
+N−1λν∗λ

TΩγN ,

gi0 is the value of gi(ν) = ∂{logit(pi)}/∂ν evaluated at ν = ν∗λ and

γN =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1 ∑
i∈UN

(1− pi)gi0yi.
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Similarly, applying Theorem 2.2 to z̄e, we obtain

z̄e = z̄el + op(n
−1/2),

where

z̄el =
1

N

∑
i∈S

1

πi

{
kiπipi|Sg

T
i0γN1 +

Ri

pi
(1− kiπipigTi0γN1)

}
+N−1λν∗λ

TΩγN1 ,

gi0 is the value of gi(ν) = ∂{logit(pi)}/∂ν evaluated at ν = ν∗λ and

γN1 =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1 ∑
i∈UN

(1− pi)gi0.

The approximate Hájek type estimator ȳe,HA can be written as

ȳe,HA =
ȳel0 +N−1λν∗λ

TΩγN

z̄el0 +N−1λν∗λ
TΩγN1

+ op(n
−1/2), (2.27)

where

ȳel0 =
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi
(yi − kiπipigTi0γN)

}
and

z̄el0 =
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN1 +

Ri

pi
(1− kiπipigTi0γN1)

}
.

Then, apply Taylor expansion to (2.27) about E(ȳel0|FN) and E(z̄el0|FN) for the numerator and

the denominator, respectively. Notice that E(ȳel0|FN) = ȳU , E(z̄el0|FN) = 1, and 1
N
λν∗λ

TΩγN =

O(n−1/2), 1
N
λν∗λ

TΩγN1 = O(n−1/2). Then the approximate Hájek type estimator is

ȳe,HA = ȳel0 +
1

N
λν∗λ

TΩγN − ȳU(z̄el0 − 1)− ȳU
1

N
λν∗λ

TΩγN1 + op(n
−1/2)

= ȳU +
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi
(yi − kiπipigTi0γN)

}
−ȳU

1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN1 +

Ri

pi
(1− kiπipigTi0γN1)

}
+

1

N
λν∗λ

TΩγN − ȳU
1

N
λν∗λ

TΩγN1 + op(n
−1/2).

Let

γNC = γN − ȳUγN1 =

{∑
i∈UN

πikipi(1− pi)gi0gTi0 + λΩ

}−1 ∑
i∈UN

(1− pi)gi0(yi − ȳU),
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thus, we obtain

ȳe,HA = ȳel,HA + op(n
−1/2),

where

ȳel,HA = ȳU +
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γNC +

Ri

pi
(yi − ȳU − kiπipigTi0γNC )

}
+

1

N
λν∗λ

TΩγNC .

Theorems 2.2 and 2.3 have shown that the Horvitz-Thompson and Hájek type NWA estima-

tors are asymptotically equivalent to estimators that are linear with respect to the design and the

response mechanism. Therefore, the variances of their respective asymptotic distributions can be

directly obtained from those of the linearized approximations, as is standard practice in survey

asymptotic theory. In the next section, we discuss consistent estimation of these variances.

2.4 Variance estimation

Variance estimation for the NWA estimator can be conducted under a two-phase sampling

[Beaumont, 2005] or under the so-called “reverse approach" [Fay, 1991, Shao and Steel, 1999].

For the two-phase sampling, we consider a random sample S is selected from population according

to the design first, and then apply the response mechanism to the sample S. The form of the two-

phase variance estimation can be found in Särndal et al. [1992, p. 348, Result 9.3.1]. In the reverse

approach, the response variable Ri is extended to the entire finite population. First, the response

mechanism is applied to the population, Ri = 1 if unit i responds and Ri = 0 if unit i do not

respond. Second, a random sample S is selected from the population according to the design. By

reversing the order of sampling and response, the response is explicitly treated as independent from

the sample.

In this section, we discuss the variance estimation for the Horvitz-Thompson type NWA esti-

mator ȳe,HT and Hájek type NWA estimator ȳe,HA. As noted above, since we proved that the esti-

mators ȳel,HT and ȳel,HA have the same asymptotic distributions as ȳe,HT and ȳe,HA respectively in

Section 3, we will consider the variance estimation for the asymptotic equivalent estimators ȳel,HT
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and ȳel,HA. The penalty terms N−1λν∗λ
T
ΩγN and N−1λν∗λ

T
ΩγNC are non-random and they do

not contribute to the variance of ȳel,HT and ȳel,HA, so that we will ignore them in the following

variance estimation calculation. The variance estimators will be plug-in type estimators and we

will not prove their consistency. Instead, we will evaluate and compare them via simulations in the

next section.

2.4.1 Variance estimation of the Horvitz-Thompson type estimator

First, we consider the reverse approach variance estimation of the Horvitz-Thompson type

NWA estimator ȳe,HT . The linearized term ȳel,HT in (2.17) can be written as

ȳel,HT =
1

N

∑
i∈S

1

πi
δi +

1

N
λν∗λ

TΩγN ,

where

δi = kiπipig
T
i0γN +

Ri

pi
(yi − kiπipigTi0γN).

The total variance of ȳel,HT is

V (ȳel,HT |FN) = E {V (ȳel,HT |RN ,FN)|FN}+ V {E(ȳel,HT |RN ,FN)|FN} , (2.28)

where RN = (R1, · · · , RN). Given the response for the finite populations, the variance of ȳel,HT

is

V (ȳel,HT |RN ,FN) = V

(
N−1

∑
i∈S

π−1
i δi

∣∣∣∣RN ,FN

)

=
1

N2

∑
i∈UN

∑
j∈UN

∆ij
δi
πi

δj
πj
,

where ∆ij = πij − πiπj , and then

E

{
V (ȳel,HT

∣∣RN ,FN)

∣∣∣∣FN} = E

{
1

N2

∑
i∈UN

∑
j∈UN

∆ij
δi
πi

δj
πj

∣∣∣∣FN
}
.

After plugging in the estimated p̂i = p(xi;Bxi , ν̂) and ĝi = g(xi;Bxi , ν̂), an estimator of the first

term in the total variance (2.28) is
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V̂e1,HT =
1

N2

∑
i∈S

∑
j∈S

∆ij

πij

δ̂i
πi

δ̂j
πj
,

where

δ̂i = kiπip̂iĝ
T
i γ̂n +

Ri

p̂i
(yi − kiπip̂iĝTi γ̂n), (2.29)

γ̂n =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1{∑
i∈SR

π−1
i (p̂−1

i − 1)ĝiyi

}
,

and SR = {i ∈ S;Ri = 1} is the set of respondents in the sample.

Particularly, under the stratified simple random sampling without replacement (STSI), which is

used in the simulation below, the first term V̂e1,HT can be written as

V̂e1,HT,STSI =
1

N2

H∑
h=1

N2
h(1− nh

Nh

)
1

nh

1

nh − 1

∑
Sh

(
δ̂i − ¯̂

δSh

)2

,

where δ̂i is given in (2.29), Nh is the number of elements in stratum h, nh is the size of the sampled

elements in stratum h and ¯̂
δSh is the averaged δ̂i within each strata h.

To estimate the second term of the total variance in (2.28), note that

V
{
E(ȳel,HT

∣∣RN ,FN)
∣∣FN} = V

{
E

(
N−1

∑
i∈S

π−1δi

∣∣∣∣RN ,FN

)∣∣∣∣FN
}

= V

(
1

N

∑
i∈UN

δi

∣∣∣∣FN
)

=
1

N2

∑
i∈UN

pi(1− pi)
p2
i

(yi − kiπipigTi γN)2.

So an estimator for the second term of the total variance is

V̂e2,HT =
1

N2

∑
i∈SR

π−1
i p̂−2

i (1− p̂i)(yi − kiπip̂iĝTi0γ̂n)2.

Then, the total variance estimator is given by

V̂e,HT = V̂e1,HT + V̂e2,HT , (2.30)

where V̂e1,HT and V̂e2,HT are given above.
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Second, consider the variance estimation by using the two-phase sampling. Under the finite

populations, the variance of ȳel,HT can be written as

V (ȳel,HT
∣∣FN) = V

{
E(ȳel,HT

∣∣IN ,FN)
∣∣FN}+ E

{
V (ȳel,HT

∣∣IN ,FN)
∣∣FN} . (2.31)

Given the sample, the expected value of ȳel,HT is

E(ȳel,HT
∣∣IN ,FN)

= E

[
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi
(yi − kiπipigTi0γN)

} ∣∣∣∣IN ,FN
]

=
1

N

∑
i∈S

1

πi
yi.

So the first term in (2.31) is given by

V
(
E
(
ȳel,HT

∣∣IN ,FN) ∣∣FN) = V

(
1

N

∑
i∈S

1

πi
yi

∣∣∣∣FN
)

=
1

N2

∑
i∈UN

∑
j∈UN

∆ij
yi
πi

yj
πj

=
1

N2

∑
i∈UN

∆ii

(
yi
πi

)2

+
1

N2

∑
i,j∈UN

∑
i 6=j

∆ij
yi
πi

yj
πj
.

Since pi is unknown, we use the estimate p̂i = p(xi;Bxi , ν̂) to obtain a plug-in estimator

V̂sam,HT =
1

N2

∑
i∈SR

p̂−1
i

∆ii

πi

(
yi
πi

)2

+
1

N2

∑
i,j∈SR

∑
i 6=j

p̂−1
i p̂−1

j

∆ij

πij

yi
πi

yj
πj
.

Particularly, under the stratified simple random sampling without replacement (STSI), the first term

Vsam,HT is

Vsam,HT,STSI =
1

N2

H∑
h=1

N2
h

(
1− nh

Nh

)
1

nh

{
1

Nh − 1

∑
Uh

(yi − ȳUh)2

}
.

An estimator for Vsam,HT,STSI can be written as

V̂sam,HT,STSI =
1

N2

H∑
h=1

N2
h

(
1− nh

Nh

)
1

nh

 1∑
ShR

1
p̂i
− 1

∑
ShR

1

p̂i

(
yi −

∑
ShR

yi
p̂i∑

ShR

1
p̂i

)2
 ,
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where Nh is the number of elements in stratum h, nh is the size of the sampled elements in stratum

h. Given the sample, the variance of ȳel,HT in the second term of (2.31) is

V (ȳel,HT
∣∣IN ,FN)

= V

[
1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γN +

Ri

pi

(
yi − kiπipigTi0γN

)} ∣∣∣∣IN ,FN
]

=
1

N2

∑
i∈S

1

π2
i

1− pi
pi

(
yi − kiπipigTi0γN

)2
,

so that

Vres,HT = E
{
V (ȳel,HT

∣∣IN ,FN)
∣∣FN}

= E

{
1

N2

∑
i∈S

1

π2
i

1− pi
pi

(
yi − kiπipigTi0γN

)2

∣∣∣∣FN
}
.

After plugging-in the estimates of p̂i = p(xi;Bxi , ν̂) and ĝi = g(xi;Bxi , ν̂), we obtain the esti-

mator for Vres,HT is

V̂res,HT =
1

N2

∑
i∈SR

1

π2
i

1− p̂i
p̂2
i

(
yi − kiπip̂iĝTi γ̂n

)2
.

Then, the total two phase variance estimator is given by

V̂HT = V̂sam,HT + V̂res,HT , (2.32)

where V̂sam,HT and V̂res,HT are given above.

2.4.2 Variance estimation of the Hájek type estimator

Similarly, we obtain the variance estimator of the Hájek type estimator by the reverse approach

and the two-phase sampling methods. We consider two types of Hájek variance estimators on the

basis of whether the true population total N or the estimated population total N̂ is used, where

N̂ =
∑

i∈S
1
πi

Ri
p̂i

.

First, consider the reverse approach. We consider the asymptotic equivalent linearization term

ȳel,HA of the Hájek type NWA estimator ȳe,HA. The total variance of ȳel,HA is

V (ȳel,HA|FN) = E {V (ȳel,HA|RN ,FN)|FN}+ V {E(ȳel,HA|RN ,FN)|FN} , (2.33)
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where RN = (R1, · · · , RN). Given the response for the finite populations, the variance of ȳel,HA

is

V (ȳel,HA|RN ,FN)

= V

[
ȳU +

1

N

∑
i∈S

1

πi

{
kiπipig

T
i γNC +

Ri

pi
(yi − ȳU − kiπipigTi γNC )

} ∣∣∣∣RN ,FN

]
.

Let

δic = kiπipig
T
i γNC +

Ri

pi
(yi − ȳU − kiπipigTi γNC ),

where

γNC = γN − ȳU · γN1 =

{∑
i∈UN

πikipi(1− pi)gigTi + λΩ

}−1 ∑
i∈UN

(1− pi)gi(yi − ȳU).

Then, it follows

V (ȳel,HA|RN ,FN) = V

(
1

N

∑
i∈S

1

πi
δic

∣∣∣∣RN ,FN

)
=

1

N2

∑
i∈UN

∑
j∈UN

∆ij
δic
πi

δjc
πj
,

so the first variance component of (2.33) is

E {V (ȳel,HA|RN ,FN)|FN} = E

(
1

N2

∑
i∈UN

∑
j∈UN

∆ij
δic
πi

δjc
πj

∣∣∣∣FN
)
.

If the true population totals N is known, then the plug-in Hájek type I variance estimator of the

first term in (2.33) is

V̂e1,HA(I) =
1

N2

∑
i∈S

∑
j∈S

∆ij

πij

δ̂ic
πi

δ̂jc
πj
,

where

δ̂ic = kiπip̂iĝ
T
i γ̂nc +

Ri

p̂i
(yi − ȳe,HA − kiπip̂iĝTi γ̂nc), (2.34)

γ̂nc =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1 ∑
i∈SR

π−1
i (p̂−1

i − 1)ĝi(yi − ȳe,HA).

Then, if we use a population estimator N̂ instead of a priori known quantity N , the plug-in Hájek

type II variance estimator of the first term in (2.33) is

V̂e1,HA(II) =
1

N̂2

∑
i∈S

∑
j∈S

∆ij

πij

δ̂ic
πi

δ̂jc
πj
,
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where

N̂ =
∑
i∈S

1

πi

Ri

p̂i
,

δ̂ic = kiπip̂iĝ
T
i γ̂nc +

Ri

p̂i
(yi − ȳe,HA − kiπip̂iĝTi γ̂nc),

γ̂nc =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1 ∑
i∈SR

π−1
i (p̂−1

i − 1)ĝi(yi − ȳe,HA).

Particularly, under STSI, V̂e1,HA(I) and V̂e1,HA(II) are

V̂e1,HA(I),STSI =
1

N2

H∑
h=1

N2
h(1− nh

Nh

)
1

nh

1

nh − 1

∑
Sh

(
δ̂ic − ¯̂

δcSh

)2

,

V̂e1,HA(II),STSI =
1

N̂2

H∑
h=1

N2
h(1− nh

Nh

)
1

nh

1

nh − 1

∑
Sh

(
δ̂ic − ¯̂

δcSh

)2

,

where δ̂ic is given in (2.34),Nh is the number of elements in stratum h, nh is the size of the sampled

elements in stratum h and ¯̂
δcSh is the averaged δ̂ic within each strata h.

Notice that the expected value of ȳel,HA givenRN in the second term of (2.33),

E(ȳel,HA|RN ,FN) = ȳU +
1

N

∑
i∈UN

δic,

and then

V {E(ȳel,HA|RN ,FN)|FN} = V

(
1

N

∑
i∈UN

δic

∣∣∣∣FN
)

=
1

N2

∑
i∈UN

1− pi
pi

(yi − ȳU − kiπipigTi0γNC )2,

so an estimator for the second variance component of Hájek type I is

V̂e2,HA(I) =
1

N2

∑
i∈SR

π−1
i p̂−2

i (1− p̂i)(yi − ȳe,HA − kiπip̂iĝTi γ̂nc)2,

where

γ̂nc =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1 ∑
i∈SR

π−1
i (p̂−1

i − 1)ĝi(yi − ȳe,HA).
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Similarly, using N̂ instead of N , the second variance components of Hájek type II estimator is

V̂e2,HA(II) =
1

N̂2

∑
i∈SR

π−1
i p̂−2

i (1− p̂i)(yi − ȳe,HA − kiπip̂iĝTi γ̂nc)2,

where

N̂ =
∑
i∈S

1

πi

Ri

p̂i
,

γ̂nc =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1 ∑
i∈SR

π−1
i (p̂−1

i − 1)ĝi(yi − ȳe,HA).

Then, the total variance estimator of the Hájek type I and Hájek type II are given by

V̂e,HA(I) = V̂e1,HA(I) + V̂e2,HA(I), (2.35)

V̂e,HA(II) = V̂e1,HA(II) + V̂e2,HA(II), (2.36)

where V̂e1,HA(I), V̂e2,HA(I), V̂e1,HA(II), V̂e2,HA(II) are given above.

Second, consider the two-phase sampling variance estimation of the Hájek type estimator

ȳe,HA. Under the finite population, the variance of ȳel can be written

V (ȳel,HA
∣∣FN) = V

{
E(ȳel,HA

∣∣IN ,FN)
∣∣FN}+ E

{
V (ȳel,HA

∣∣IN ,FN)
∣∣FN} . (2.37)

The first term of two-phase variance is

V
{
E
(
ȳel,HA

∣∣IN ,FN) ∣∣FN} =
1

N2

∑
i∈UN

∑
j∈UN

∆ij
yi − ȳU
πi

yj − ȳU
πj

.

Then the plug-in estimator of Hájek type I for the first term is

V̂sam,HA(I)

=
1

N2

∑
i∈SR

p̂−1
i

∆ii

πi

(
yi − ȳel,HA

πi

)2

+
1

N2

∑
i,j∈SR

∑
i 6=j

p̂−1
i p̂−1

j

∆ij

πij

(
yi − ȳe,HA

πi

)(
yj − ȳe,HA

πj

)
.

If we use N̂ instead of N in V̂sam,HA(I), the Hájek type II variance estimator of the first component

in (2.37) is

V̂sam,HA(II)

=
1

N̂2

∑
i∈SR

p̂−1
i

∆ii

πi

(
yi − ȳel,HA

πi

)2

+
1

N̂2

∑
i,j∈SR

∑
i 6=j

p̂−1
i p̂−1

j

∆ij

πij

(
yi − ȳe,HA

πi

)(
yj − ȳe,HA

πj

)
,
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where

N̂ =
∑
i∈S

1

πi

Ri

p̂i
.

Under STSI in the simulation study for the following Chapter, V̂sam,HA(I) and V̂sam,HA(II) can be

written as

V̂sam,HA(I),STSI

=
1

N2

H∑
h=1

N2
h

(
1− nh

Nh

)
1

nh

 1∑
ShR

1
p̂i
− 1

∑
ShR

1

p̂i

(
yi − ȳe,HA −

∑
ShR

yi−ȳe,HA
p̂i∑

ShR

1
p̂i

)2
 ,

V̂sam,HA(II),STSI

=
1

N̂2

H∑
h=1

N2
h

(
1− nh

Nh

)
1

nh

 1∑
ShR

1
p̂i
− 1

∑
ShR

1

p̂i

(
yi − ȳe,HA −

∑
ShR

yi−ȳe,HA
p̂i∑

ShR

1
p̂i

)2
 .

Consider the variance of ȳel,HA given the sample in the second term of (2.37),

V (ȳel,HA|IN ,FN)

= V

[
ȳU +

1

N

∑
i∈S

1

πi

{
kiπipig

T
i0γNC +

Ri

pi
(yi − ȳU − kiπipigTi0γNC )

} ∣∣∣∣IN ,FN
]

=
1

N2

∑
i∈S

1

π2
i

1− pi
pi

(yi − ȳU − kiπipigTi0γNC )2,

so that

Vres,HA = E {V (ȳel,HA|IN ,FN)|FN}

= E

{
1

N2

∑
i∈S

1

π2
i

1− pi
pi

(yi − ȳU − kiπipigTi0γNC )2

∣∣∣∣FN
}
.

Then, the estimator of Vres of type I and type II are

V̂res,HA(I) = 1
N2

∑
i∈SR

1
π2
i

1−p̂i
p̂2i

(yi − ȳe,HA − kiπip̂iĝTi γ̂nc)2,

V̂res,HA(II) = 1

N̂2

∑
i∈SR

1
π2
i

1−p̂i
p̂2i

(yi − ȳe,HA − kiπip̂iĝTi γ̂nc)2,

where

γ̂nc =

{∑
i∈SR

ki(1− p̂i)ĝiĝTi + λΩ

}−1 ∑
i∈SR

π−1
i (p̂−1

i − 1)ĝi(yi − ȳe,HA),
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and

N̂ =
∑
i∈S

1

πi

Ri

p̂i
.

Then, the total two phase variance estimator of Hájek type I and Hájek type II are given by

V̂HA(I) = V̂sam,HA(I) + V̂res,HA(I), (2.38)

V̂HA(II) = V̂sam,HA(II) + V̂res,HA(II), (2.39)

where V̂sam,HA(I), V̂res,HA(I), V̂sam,HA(II), V̂res,HA(II) are given above.

In the next section, we compare these two variance estimators through a simulation experiment.

2.5 Simulation study

The simulation study follows the structure of Kim and Kim [2007]. Suppose the finite popula-

tions are from a multivariate normal distribution

(
yhi
xhi

)
i.i.d.∼ N

[(
2
2

)
,

(
1 ρ
ρ 1

)]
, h = 1, 2, 3, 4; i = 1, · · · , Nh,

where yhi is the study variable and xhi is the auxiliary variable available for both responses and

nonresponses, and Nh = 1000, 2000, 3000, 4000 for h = 1, 2, 3, 4, respectively. Three different

finite populations are generated from different levels of ρ, that is, ρ = (0, 0.3, 0.6).

For each population, two sets of independent stratified random samples of size n = 100 and

n = 400 are generated without replacement and the sample sizes are all equal (nh = n/4, for h =

1, 2, 3, 4) in each stratum. The response indicator variable Rhi is generated from the Bernoulli

distribution with probability phi, where phi is considered in two logistic response functions of the

auxiliary variable xhi. These two functions consider a linear and a nonlinear predictor of xhi, which

are similar to Silva and Opsomer [2009] as follows

Linear predictor: phi = {1 + exp [−(xhi − 1)]}−1

Nonlinear predictor: phi =

{
1 + exp

[
−
(
−1 +

xhi
3

+
x3
hi

5
+ cos

(
−x

3
hi

π

)
sin

(
−2x2

hi

π

))]}−1

.
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The study variable yhi is observed if and only if the response indicator variable Rhi = 1, and

the auxiliary variable xhi is observed for the sample. The finite populations of (yhi, xhi) are fixed

in the Monte Carlo sampling. The average response rates for both linear predictor and nonlinear

predictor are about 70% in the simulation. The Monte Carlo sample sizes are all B = 10, 000.

For each of three different populations and two different sets of stratified random samples of

size n = 100 and n = 400, we compare the means and variances of the nine NWA estimators 1-9

for both linear and nonlinear predictors in the following:

1. ȳd: NWA estimator using the true response probability phi,

2. ȳep(1): NWA estimator using the logistic regression estimated response probability with

ki = 1,

3. ȳep(π−1): NWA estimator using the logistic regression estimated response probability with

ki = π−1
i ,

4. ȳenp1(1): NWA estimator using the penalized spline logistic regression estimated response

probability with ki = 1 and the smoothing parameter λ = 1,

5. ȳenp1(π
−1): NWA estimator using the penalized spline logistic regression estimated response

probability with ki = π−1 and the smoothing parameter λ = 1,

6. ȳenp10(1): NWA estimator using the penalized spline logistic regression estimated response

probability with ki = 1 and the smoothing parameter λ = 10,

7. ȳenp10(π
−1): NWA estimator using the penalized spline logistic regression estimated re-

sponse probability with ki = π−1 and the smoothing parameter λ = 10,

8. ȳenp200(1): NWA estimator using the penalized spline logistic regression estimated response

probability with ki = 1 and the smoothing parameter λ = 200,

9. ȳenp200(π
−1): NWA estimator using the penalized spline logistic regression estimated re-

sponse probability with ki = π−1 and the smoothing parameter λ = 200.
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The simulation results are given in Table 2.1 through Table 2.16. Notice that for the nonlinear

predictor function, when the sample size is small, say n = 100, if the model is misspecified, the

estimated response probability will be close to 0. In that case, the inverse of the estimated response

probability may become very large, and the means and the variances of the NWA estimators will

be extremely large because of these. Since the Horvitz-Thompson type estimators are not stable

in some replicates in the simulation, we correct the results by deleting such particular extreme

replicates from B = 10, 000 Monte Carlo sample sizes. These corrections are made only for

the Horvitz-Thompson type estimators of the nonlinear predictor function when the sample size

n = 100, as shown in Table 2.2, Table 2.6 and Table 2.12.

Table 2.1 though Table 2.4 give the Monte Carlo percentage relative biases and variances of

the Horvitz-Thompson type estimators and Hájek type estimators for both linear predictor and

nonlinear predictor, respectively. The Monte Carlo percentage relative bias and scaled variances

are computed by

Percentage Relative Bias =
E(·)− ȳN

ȳN
× 100%

and

Scaled Variance =
V ar(?)

V ar(ȳd)
,

where the notation · stands for each of the NWA estimators 1-9 and the notation ? stands for each

of the NWA estimators 2-9. For the Horvitz-Thompson estimators of the linear predictor in Table

2.1, the relative biases of the estimators 2 and 3 from linear logistic regression are all small with

absolute values less than 0.2%. The absolute values of the relative biases of the estimators 4-9 from

the penalized spline logistic regression are all less than 3%. As the smoothing parameter increases

from 1 to 200, the relative biases gets smaller. The scaled variances of the estimators 2-9 are all

less than 1, which means the variance of the estimator using the estimated response probability

is smaller than the variance of the estimator using the true response probability, regardless of the

correlation coefficient between yhi and xhi.

For the Horvitz-Thompson estimators of the nonlinear predictor in Table 2.2, we recognize

that the relative biases of the estimators 2 and 3 from unweighted and weighted linear logistic
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Table 2.1: Monte Carlo relative biases and variances of the NWA estimators (Horvitz-Thompson
type), the variances are scaled with respect to ȳd, based on 10,000 samples. (Linear case)

n Estimator Relative Bias (%) Variance (Scaled)
ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6

ȳd -0.03 0.13 0.14 – – –
ȳep(1) -0.01 0.07 0.11 0.58 0.57 0.60
ȳep(π

−1) -0.07 0.03 0.09 0.48 0.48 0.52
ȳenp1(1) -0.91 -0.44 -0.20 0.50 0.55 0.58

100 ȳenp1(π
−1) -2.45 -1.76 -1.18 0.40 0.44 0.49

ȳenp10(1) -0.34 -0.07 0.03 0.54 0.56 0.59
ȳenp10(π

−1) -1.63 -1.07 -0.64 0.40 0.44 0.49
ȳenp200(1) -0.11 0.07 0.11 0.57 0.57 0.60
ȳenp200(π

−1) -0.79 -0.43 -0.19 0.41 0.45 0.50
ȳd 0.02 0.00 0.10 – – –
ȳep(1) -0.04 0.00 0.06 0.52 0.55 0.57
ȳep(π

−1) -0.05 -0.02 0.07 0.43 0.45 0.48
ȳenp1(1) -0.39 -0.20 -0.04 0.49 0.54 0.57

400 ȳenp1(π
−1) -0.70 -0.46 -0.18 0.39 0.44 0.47

ȳenp10(1) -0.21 -0.10 0.01 0.50 0.54 0.57
ȳenp10(π

−1) -0.51 -0.31 -0.07 0.39 0.44 0.47
ȳenp200(1) -0.06 -0.01 0.05 0.52 0.55 0.57
ȳenp200(π

−1) -0.27 -0.15 0.01 0.40 0.44 0.47
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Table 2.2: Monte Carlo relative biases and variances of the NWA estimators (Horvitz-Thompson
type), the variances are scaled with respect to ȳd, based on 10,000 samples. (Nonlinear case)

n Estimator Relative Bias (%) Variance (Scaled)
ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6

ȳd -0.26 0.07 -0.21 – – –
ȳep(1) 19.46 13.96 6.58 18.25 13.50 8.48
ȳep(π

−1) 21.88 14.51 6.78 18.18 15.24 12.51
ȳenp1(1) 4.04 3.16 1.28 1.57 1.62 1.17

100 ȳenp1(π
−1) -3.23 -2.48 -1.82 0.37 0.42 0.47

ȳenp10(1) 15.51 11.24 5.39 10.96 8.90 4.97
ȳenp10(π

−1) -1.46 -1.17 -1.01 0.41 0.50 0.51
ȳenp200(1) 19.23 13.80 6.51 17.75 13.18 8.21
ȳenp200(π

−1) 9.47 6.29 3.06 4.19 4.21 2.62
ȳd -0.01 -0.02 0.00 – – –
ȳep(1) 20.14 14.48 5.78 12.67 8.56 6.63
ȳep(π

−1) 21.01 14.08 5.78 15.12 8.37 7.99
ȳenp1(1) 0.47 0.31 -0.24 0.53 0.59 0.58

400 ȳenp1(π
−1) -0.87 -0.72 -0.48 0.35 0.39 0.44

ȳenp10(1) 10.14 7.32 2.95 2.75 2.60 1.64
ȳenp10(π

−1) -0.27 -0.39 -0.43 0.36 0.41 0.46
ȳenp200(1) 19.33 13.90 5.57 11.40 7.84 5.90
ȳenp200(π

−1) 9.34 6.09 2.51 2.24 1.86 1.33

regression are quite large for both sample sizes n = 100 and n = 400. As the correlation coefficient

increase from ρ = 0 to ρ = 0.6, the relative biases get smaller. Examining the relative biases of

the estimators 4-9 from penalized spline logistic regression, we see the penalized spline logistic

regression estimators are all smaller than the linear logistic regression estimators, regardless the

choice of the weight. The relative biases from the penalized spline logistic regression estimators

become closer to the relative biases of the linear logistic regression estimators by increasing the

smoothing parameter from λ = 1 to λ = 200. The scaled variances of the estimators 4-9 from

penalized spline logistic regression are all smaller than the scaled variances of the estimators 2 and

3 from the logistic regression. It is seen that the estimators which have small absolute relative bias

(less than 2%) also have small scaled variance (less than 1).

The Monte Carlo percentage relative biases and variances of the Hájek type NWA estimators

for linear predictor and nonlinear predictor are also provided here for comparison, as shown in

Table 2.3 and Table 2.4, respectively. The percentage relative biases are all small with absolute
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values less than 0.2% when ρ = 0 for both linear and nonlinear predictors. As ρ gets larger,

the penalized spline logistic regression estimators 4-9 give nearly unbiased estimates compared

with the linear logistic estimators 2 and 3 when the response propensity function follows a linear

logistic relationship, as shown in Table 2.3. For the nonlinear predictor, where the form of the

response propensity function do not follow a linear logistic relationship, as shown in Table 2.4,

the linear logistic estimators 2 and 3 yield large biases for the nonlinear model, but the penalized

spline logistic regression estimators 4-9 present smaller biases. For example, when ρ = 0.6 with

the sample size n = 400, the absolute percentage relative bias from the linear logistic regression is

around 11%, but the nonparametric estimator with wi = π−1 and the smoothing parameter λ = 10

presents a much smaller absolute percentage relative bias, which is around 0.1%. Again, it is seen

that the relative biases from the penalized spline logistic regression estimators become closer to the

relative biases of the linear logistic regression estimators by increasing the smoothing parameter

from λ = 1 to λ = 200. By using Hájek type estimators instead of Horvitz-Thompson type

estimators, we correct the percentage relative bias to be more stable and closer to 0% when ρ = 0

for both linear predictor and nonlinear predictor.

The variance results of the Hájek type estimators in Table 2.3 and Table 2.4 present the scaled

variances of the linear logistic regression estimators and the penalized spline logistic regression

estimators (i.e. estimators 2 to 9) with respect to the variance of ȳd. It shows the penalized spline

logistic regression estimators (i.e. estimators 4 to 9) are more efficient than the linear logistic

regression estimators (i.e. estimators 2 and 3), regardless the choice of the weight. Given the same

smoothing parameter λ, the penalized spline logistic regression estimators using ki = 1 tend to be

less efficient than the estimators using ki = π−1
i .

Table 2.5 through Table 2.10 present the percent relative biases of the variance estimators

for NWA estimators 1-9 from both linear predictor and nonlinear predictor using the Horvitz-

Thompson type, Hájek type I and Hájek type II estimators, respectively. The relative bias of

the estimated variance is the Monte Carlo bias divided by the Monte Carlo variance of the point

estimator. We compute two variance estimators for each of the estimators 2-9. One is the variance
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Table 2.3: Monte Carlo relative biases and variances of the NWA estimators (Hájek type), the
variances are scaled with respect to ȳd, based on 10,000 samples. (Linear case)

n Estimator Relative Bias (%) Variance (Scaled)
ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6

ȳd -0.06 0.15 0.34 – – –
ȳep(1) -0.06 0.16 0.20 1.03 0.99 0.90
ȳep(π

−1) -0.08 0.13 0.19 1.03 0.99 0.86
ȳenp1(1) -0.06 0.38 0.63 0.99 0.95 0.83

100 ȳenp1(π
−1) -0.02 0.63 1.28 0.98 0.94 0.79

ȳenp10(1) -0.06 0.22 0.32 1.01 0.98 0.88
ȳenp10(π

−1) -0.04 0.48 0.95 0.98 0.94 0.79
ȳenp200(1) -0.06 0.16 0.21 1.03 0.99 0.90
ȳenp200(π

−1) -0.07 0.31 0.54 0.99 0.95 0.80
ȳd -0.04 0.00 0.11 – – –
ȳep(1) -0.04 0.00 0.10 1.01 0.97 0.89
ȳep(π

−1) -0.04 -0.01 0.09 1.01 0.97 0.86
ȳenp1(1) -0.04 0.13 0.33 1.00 0.95 0.81

400 ȳenp1(π
−1) -0.04 0.20 0.49 0.99 0.94 0.77

ȳenp10(1) -0.04 0.06 0.20 1.00 0.95 0.83
ȳenp10(π

−1) -0.04 0.15 0.39 0.99 0.94 0.77
ȳenp200(1) -0.04 0.00 0.11 1.01 0.97 0.88
ȳenp200(π

−1) -0.04 0.07 0.23 1.00 0.94 0.80
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Table 2.4: Monte Carlo relative biases and variances of the NWA estimators (Hájek type), the
variances are scaled with respect to ȳd, based on 10,000 samples. (Nonlinear case)

n Estimator Relative Bias (%) Variance (Scaled)
ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6

ȳd -0.18 0.26 0.34 – – –
ȳep(1) -0.02 -4.23 -8.66 2.71 3.27 3.77
ȳep(π

−1) 0.11 -4.57 -8.90 2.77 3.57 3.71
ȳenp1(1) -0.09 -1.26 -2.68 1.46 1.56 1.40

100 ȳenp1(π
−1) -0.11 0.72 1.43 1.02 0.97 0.78

ȳenp10(1) -0.02 -3.60 -7.41 2.39 2.84 3.12
ȳenp10(π

−1) -0.11 0.19 0.41 1.06 1.04 0.81
ȳenp200(1) -0.02 -4.20 -8.59 2.69 3.25 3.73
ȳenp200(π

−1) 0.05 -2.51 -4.67 1.81 2.28 1.86
ȳd -0.02 0.01 0.10 – – –
ȳep(1) -0.14 -6.64 -11.74 4.25 6.58 8.00
ȳep(π

−1) -0.07 -6.63 -11.59 4.24 6.51 7.56
ȳenp1(1) 0.03 -0.46 -0.83 1.07 1.04 0.82

400 ȳenp1(π
−1) 0.04 0.20 0.45 0.99 0.93 0.71

ȳenp10(1) -0.02 -3.80 -6.90 2.25 2.95 3.19
ȳenp10(π

−1) 0.04 -0.10 -0.12 1.01 0.95 0.71
ȳenp200(1) -0.13 -6.44 -11.40 4.07 6.26 7.58
ȳenp200(π

−1) 0.07 -3.37 -6.01 2.00 2.51 2.42
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estimator using the reverse approach, as defined in (2.30) for Horvitz-Thompson type estimator,

in (2.35) for Hájek type I estimator and in (2.36) for Hájek type II estimator. The other one

is the two-phase variance estimator, as defined in (2.32) for Horvitz-Thompson type, in (2.38)

for Hájek type I estimator and in (2.39) for Hájek type II estimator. We also provide the two-

phase variance estimators of ȳd for comparison. The reverse approach and two-phase variance

estimators show similar results of percent relative biases. We see the absolute percentage relative

biases of the variance estimators using the estimated response probability tend to be smaller as n

increases from n = 100 to n = 400. For linear predictor in Table 2.5, Table 2.7 and Table 2.9, the

Horvitz-Thompson type variance estimators show similar performances as the Hájek type variance

estimators, and there is a negative relative bias implying that the two variance estimators may

underestimate the true variance. For nonlinear predictor in Table 2.6, Table 2.8 and Table 2.10,

when n is as large as 400, the Hájek type I variance estimators from the linear logistic regression

estimators (i.e. estimators 2 and 3) show positive relative bias values, while the Horvitz-Thompson

type estimators and Hájek type II variance estimators from the linear logistic NWA estimators show

negative relative bias values. The changes in the sign can be explained by the fact that the linear

logistic regression is misspecified for a nonlinear predictor. For n is as large as 400, the absolute

relative biases of the Hájek type variance estimators from the penalized spline logistic regression

are smaller than the variance estimators from linear logistic regression in general. The relative

biases of the variance estimators from the penalized spline logistic regression become closer to the

variance estimators from the linear logistic regression by increasing the smoothing parameter from

λ = 1 to λ = 200.

Table 2.11 through Table 2.16 present the mean lengths and coverages of 95% confidence inter-

vals of linear predictor and nonlinear predictor for each of the Horvitz-Thompson type estimator,

Hájek type I estimator and Hájek type II estimator, respectively. The mean length is 2× 1.96
√
V̂

and the confidence intervals are
(
θ̂ − 1.96

√
V̂ , θ̂ + 1.96

√
V̂
)

, where θ̂ is a point estimator and V̂

is its estimated variance. The same as the variance estimators, there are no significant differences

between the interval estimators computed from the reverse method and that computed from the
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Table 2.5: Percent relative biases of the variance estimators (Horvitz-Thompson type), based on
10,000 samples. (Linear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase 2.20 -0.04 -0.12
Variance of ȳep(1) Reverse -6.25 -2.33 -2.03

Two-phase -8.46 -5.22 -5.38
Variance of ȳep(π−1) Reverse -8.99 -4.05 -5.57

Two-phase -10.08 -6.16 -8.19
Variance of ȳenp1(1) Reverse -5.36 -4.25 -2.74

Two-phase -8.78 -8.12 -7.06
Variance of ȳenp1(π

−1) Reverse -13.36 -10.90 -8.36
100 Two-phase -15.89 -14.75 -13.67

Variance of ȳenp10(1) Reverse -5.45 -2.62 -2.19
Two-phase -8.25 -5.82 -5.78

Variance of ȳenp10(π
−1) Reverse -9.75 -7.73 -6.78

Two-phase -11.69 -10.75 -10.95
Variance of ȳenp200(1) Reverse -6.22 -2.70 -2.04

Two-phase -8.48 -5.61 -5.41
Variance of ȳenp200(π

−1) Reverse -6.07 -4.44 -5.61
Two-phase -7.83 -6.97 -8.83

Variance of ȳd Two-phase -2.80 -3.90 -2.01
Variance of ȳep(1) Reverse -3.73 -3.31 -1.85

Two-phase -4.38 -4.02 -2.67
Variance of ȳep(π−1) Reverse -4.99 -3.58 -0.76

Two-phase -5.39 -4.10 -1.45
Variance of ȳenp1(1) Reverse -6.29 -4.94 -3.18

Two-phase -7.39 -6.13 -4.48
Variance of ȳenp1(π

−1) Reverse -9.23 -7.90 -4.07
400 Two-phase -9.76 -8.88 -5.52

Variance of ȳenp10(1) Reverse -4.97 -3.96 -2.43
Two-phase -5.84 -4.87 -3.43

Variance of ȳenp10(π
−1) Reverse -7.19 -5.87 -2.93

Two-phase -7.60 -6.66 -4.10
Variance of ȳenp200(1) Reverse -3.88 -3.34 -1.89

Two-phase -4.56 -4.08 -2.72
Variance of ȳenp200(π

−1) Reverse -5.81 -4.36 -1.59
Two-phase -6.31 -5.04 -2.47
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Table 2.6: Percent relative biases of the variance estimators (Horvitz-Thompson type), based on
10,000 samples. (Nonlinear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase 0.65 -0.87 -1.05
Variance of ȳep(1) Reverse -68.32 -65.61 -65.51

Two-phase -64.46 -62.05 -62.60
Variance of ȳep(π−1) Reverse -52.58 -53.08 -59.35

Two-phase -46.12 -46.03 -54.41
Variance of ȳenp1(1) Reverse -52.89 -53.36 -41.02

Two-phase -53.33 -53.84 -42.35
Variance of ȳenp1(π

−1) Reverse -25.64 -23.80 -16.24
100 Two-phase -27.83 -27.71 -22.40

Variance of ȳenp10(1) Reverse -69.00 -66.69 -63.39
Two-phase -66.17 -63.90 -61.33

Variance of ȳenp10(π
−1) Reverse -24.38 -27.44 -18.21

Two-phase -26.10 -30.03 -22.09
Variance of ȳenp200(1) Reverse -68.43 -65.70 -65.46

Two-phase -64.63 -62.19 -62.61
Variance of ȳenp200(π

−1) Reverse -50.80 -55.42 -55.27
Two-phase -48.24 -51.57 -52.84

Variance of ȳd Two-phase 0.35 -1.37 -1.96
Variance of ȳep(1) Reverse -28.51 -23.93 -28.66

Two-phase -25.33 -20.73 -25.30
Variance of ȳep(π−1) Reverse -37.62 -31.59 -36.82

Two-phase -33.83 -28.05 -33.43
Variance of ȳenp1(1) Reverse -10.51 -10.58 -6.23

Two-phase -11.34 -11.47 -6.60
Variance of ȳenp1(π

−1) Reverse -9.19 -7.38 -4.74
400 Two-phase -9.51 -8.28 -6.18

Variance of ȳenp10(1) Reverse -32.65 -30.36 -28.44
Two-phase -31.42 -28.93 -26.31

Variance of ȳenp10(π
−1) Reverse -8.34 -7.20 -5.40

Two-phase -8.48 -7.70 -5.88
Variance of ȳenp200(1) Reverse -29.40 -24.75 -29.63

Two-phase -26.38 -21.71 -26.47
Variance of ȳenp200(π

−1) Reverse -41.39 -36.86 -33.21
Two-phase -40.27 -35.66 -31.14
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Table 2.7: Percent relative biases of the variance estimators (Hájek type I), based on 10,000 sam-
ples. (Linear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase -2.15 -1.56 -3.74
Variance of ȳep(1) Reverse -4.39 -4.65 -7.91

Two-phase -5.65 -6.16 -9.66
Variance of ȳep(π−1) Reverse -4.91 -5.22 -7.86

Two-phase -5.95 -6.53 -9.16
Variance of ȳenp1(1) Reverse -6.58 -7.25 -10.40

Two-phase -7.33 -8.21 -11.53
Variance of ȳenp1(π

−1) Reverse -14.92 -15.49 -16.95
100 Two-phase -14.26 -15.17 -16.57

Variance of ȳenp10(1) Reverse -4.99 -5.34 -8.69
Two-phase -6.13 -6.71 -10.35

Variance of ȳenp10(π
−1) Reverse -10.76 -11.13 -12.83

Two-phase -10.74 -11.40 -13.10
Variance of ȳenp200(1) Reverse -4.43 -4.69 -7.97

Two-phase -5.69 -6.19 -9.72
Variance of ȳenp200(π

−1) Reverse -6.74 -7.26 -9.37
Two-phase -7.36 -8.13 -10.29

Variance of ȳd Two-phase -2.33 -0.95 1.33
Variance of ȳep(1) Reverse -2.86 -2.15 -1.79

Two-phase -3.20 -2.56 -2.28
Variance of ȳep(π−1) Reverse -3.17 -2.42 -2.86

Two-phase -3.46 -2.75 -3.22
Variance of ȳenp1(1) Reverse -5.61 -5.43 -4.55

Two-phase -5.72 -5.60 -4.70
Variance of ȳenp1(π

−1) Reverse -8.54 -8.63 -7.21
400 Two-phase -8.36 -8.57 -7.07

Variance of ȳenp10(1) Reverse -4.17 -3.67 -3.10
Two-phase -4.40 -3.97 -3.45

Variance of ȳenp10(π
−1) Reverse -6.66 -6.37 -5.33

Two-phase -6.61 -6.41 -5.30
Variance of ȳenp200(1) Reverse -2.99 -2.34 -2.08

Two-phase -3.32 -2.74 -2.56
Variance of ȳenp200(π

−1) Reverse -4.69 -4.06 -3.76
Two-phase -4.83 -4.25 -3.96
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Table 2.8: Percent relative biases of the variance estimators (Hájek type I), based on 10,000 sam-
ples. (Nonlinear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase -3.13 -4.55 -4.73
Variance of ȳep(1) Reverse -18.52 -25.83 -28.20

Two-phase -20.23 -27.00 -28.44
Variance of ȳep(π−1) Reverse -15.12 -10.53 -22.89

Two-phase -16.17 -9.27 -21.46
Variance of ȳenp1(1) Reverse -25.35 -30.10 -30.98

Two-phase -27.33 -32.16 -33.03
Variance of ȳenp1(π

−1) Reverse -27.49 -28.41 -25.76
100 Two-phase -26.91 -28.11 -25.47

Variance of ȳenp10(1) Reverse -22.85 -29.80 -33.07
Two-phase -24.95 -31.50 -34.19

Variance of ȳenp10(π
−1) Reverse -22.64 -25.08 -20.92

Two-phase -22.87 -25.53 -21.47
Variance of ȳenp200(1) Reverse -18.82 -26.12 -28.57

Two-phase -20.56 -27.32 -28.88
Variance of ȳenp200(π

−1) Reverse -22.24 -27.78 -28.53
Two-phase -24.02 -28.20 -29.63

Variance of ȳd Two-phase -0.99 -0.55 -1.24
Variance of ȳep(1) Reverse 22.30 20.35 15.04

Two-phase 20.90 21.01 17.05
Variance of ȳep(π−1) Reverse 16.72 17.84 11.30

Two-phase 15.55 19.22 14.21
Variance of ȳenp1(1) Reverse -4.90 -5.05 -3.57

Two-phase -5.44 -5.64 -3.31
Variance of ȳenp1(π

−1) Reverse -9.13 -8.45 -7.50
400 Two-phase -8.98 -8.40 -7.26

Variance of ȳenp10(1) Reverse 1.94 -4.98 -9.59
Two-phase -0.30 -6.39 -9.78

Variance of ȳenp10(π
−1) Reverse -6.81 -6.51 -4.35

Two-phase -6.92 -6.61 -3.87
Variance of ȳenp200(1) Reverse 20.17 17.42 12.33

Two-phase 18.66 17.86 14.12
Variance of ȳenp200(π

−1) Reverse -2.56 -6.48 -13.56
Two-phase -4.68 -7.56 -13.27
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Table 2.9: Percent relative biases of the variance estimators (Hájek type II), based on 10,000
samples. (Linear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase -1.53 -1.71 -4.51
Variance of ȳep(1) Reverse -4.91 -5.26 -9.40

Two-phase -5.86 -6.46 -10.86
Variance of ȳep(π−1) Reverse -5.56 -5.60 -8.72

Two-phase -6.55 -6.86 -10.06
Variance of ȳenp1(1) Reverse -5.10 -5.91 -9.28

Two-phase -5.57 -6.60 10.11
Variance of ȳenp1(π

−1) Reverse -10.59 -11.34 -12.81
100 Two-phase -9.84 -10.94 -12.33

Variance of ȳenp10(1) Reverse -4.79 -5.26 -9.17
Two-phase -5.63 -6.35 -10.51

Variance of ȳenp10(π
−1) Reverse -7.83 -8.33 -10.05

Two-phase -7.76 -8.56 -10.28
Variance of ȳenp200(1) Reverse -4.91 -5.27 -9.39

Two-phase -5.85 -6.46 -10.84
Variance of ȳenp200(π

−1) Reverse -5.41 -5.98 -8.16
Two-phase -6.00 -6.82 -9.05

Variance of ȳd Two-phase -2.28 -1.10 0.78
Variance of ȳep(1) Reverse -3.00 -2.50 -2.98

Two-phase -3.26 -2.83 -3.38
Variance of ȳep(π−1) Reverse -3.26 -2.64 -3.68

Two-phase -3.54 -2.96 -4.03
Variance of ȳenp1(1) Reverse -4.98 -4.86 -3.96

Two-phase -5.03 -4.96 -4.04
Variance of ȳenp1(π

−1) Reverse -7.30 -7.42 -5.98
400 Two-phase -7.11 -7.36 -5.82

Variance of ȳenp10(1) Reverse -3.90 -3.47 -2.95
Two-phase -4.06 -3.70 -3.22

Variance of ȳenp10(π
−1) Reverse -5.78 -5.51 -4.47

Two-phase -5.72 -5.54 -4.43
Variance of ȳenp200(1) Reverse -3.09 -2.61 -3.03

Two-phase -3.35 -2.93 -3.43
Variance of ȳenp200(π

−1) Reverse -4.28 -3.67 -3.42
Two-phase -4.41 -3.86 -3.62
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Table 2.10: Percent relative biases of the variance estimators (Hájek type II), based on 10,000
samples. (Nonlinear Case)

n Parameter Method Relative Bias (%)
ρ = 0.0 ρ = 0.3 ρ = 0.6

Variance of ȳd Two-phase -3.00 -4.45 -4.75
Variance of ȳep(1) Reverse -51.71 -58.66 -64.06

Two-phase -52.85 -59.57 -64.62
Variance of ȳep(π−1) Reverse -52.93 -60.55 -63.60

Two-phase -53.94 -61.00 -63.80
Variance of ȳenp1(1) Reverse -33.49 -39.11 -40.45

Two-phase -34.78 -40.48 -41.75
Variance of ȳenp1(π

−1) Reverse -22.66 -23.65 -20.83
100 Two-phase -21.96 -23.24 -20.41

Variance of ȳenp10(1) Reverse -48.91 -56.15 -61.15
Two-phase -50.23 -57.28 -62.02

Variance of ȳenp10(π
−1) Reverse -20.54 -23.26 -18.99

Two-phase -20.72 -23.62 -19.39
Variance of ȳenp200(1) Reverse -51.55 -58.54 -63.91

Two-phase -52.71 -59.46 -64.49
Variance of ȳenp200(π

−1) Reverse -42.07 -52.74 -49.48
Two-phase -43.44 -53.69 -50.50

Variance of ȳd Two-phase -1.03 -0.81 -2.65
Variance of ȳep(1) Reverse -33.46 -46.64 -50.28

Two-phase -34.52 -46.84 -49.76
Variance of ȳep(π−1) Reverse -35.07 -46.66 -51.44

Two-phase -36.03 -46.57 -50.50
Variance of ȳenp1(1) Reverse -6.11 -6.98 -5.20

Two-phase -6.54 -7.47 -4.84
Variance of ȳenp1(π

−1) Reverse -7.46 -6.76 -5.76
400 Two-phase -7.31 -6.71 -5.51

Variance of ȳenp10(1) Reverse -22.98 -34.09 -39.49
Two-phase -24.68 -35.20 -39.72

Variance of ȳenp10(π
−1) Reverse -6.25 -6.01 -3.79

Two-phase -6.36 -6.10 -3.30
Variance of ȳenp200(1) Reverse -32.85 -46.02 -49.84

Two-phase -33.97 -46.28 -49.38
Variance of ȳenp200(π

−1) Reverse -22.68 -31.57 -38.39
Two-phase -24.40 -32.51 -38.29
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two-phase method. For the linear predictor, the mean lengths and coverages of 95% confidence

intervals from linear logistic regression estimators and the penalized spline logistic regression es-

timators with a large smoothing parameter perform similarly for each of the three type estimators,

as shown in Table 2.11, Table 2.13 and Table 2.15. For the mean lengths and coverages of the

nonlinear predictor as shown in Table 2.12, Table 2.14 and Table 2.16, the penalized spline logis-

tic regression estimators (i.e. estimators 4-9) are more efficient than the linear logistic regression

estimators (i.e. estimators 2 and 3) for each of the three populations, which the penalized spline

logistic regression estimators provide shorter mean lengths and coverages closer to 95% than the

logistic linear regression estimators, regardless the choice of the weight ki.

2.6 Conclusions

In this chapter, we studied the properties of the nonresponse weighting adjustment estimators

when the response probability was estimated by maximizing the penalized pseudo-log-likelihood

function. Two types of the estimators were considered. The first type was the Horvitz-Thompson

type estimator, and the second type was the Hájek type estimator. Both estimators were seen to be

consistent. However, the Hájek type estimator was more efficient in reducing the bias and variance.

The penalized spline logistic estimator with ki = 1 tended to be less efficient in bias than ki =

π−1
i with the same smoothing parameter. It was seen that in the penalized pseudo-log-likelihood

function (2.4), the pseudo-log-likelihood function
∑

i∈S ki{Rilogit(pi) + log(1 − pi)} was much

larger as ki = π−1
i compared with ki = 1. Therefore, given the same smoothing parameter λ, the

penalty term 1
2
λνTΩν had larger penalty on the term

∑
i∈S ki{Rilogit(pi) + log(1 − pi)} with

ki = 1 than ki = π−1
i in practice. Therefore, for a given choice of ki, the penalty value can be

selected that gives the desired amount of smoothing.

When the response propensity function followed a linear logistic relationship, the penalized

spline logistic regression estimator with a large smoothing parameter remained competitive in bias

and variance with a linear logistic regression estimator. When the response propensity function did

not follow a linear logistic relationship, the penalized spline logistic regression estimated response
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Table 2.11: Mean lengths and coverages of 95% confidence interval estimators (Horvitz-Thompson
type), based on 10,000 samples. (Linear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.833 0.778 0.709 94.23 94.46 94.78
ȳep(1) Reverse 0.599 0.579 0.541 94.19 93.91 94.17

Two-phase 0.591 0.570 0.531 93.97 93.63 93.65
ȳep(π

−1) Reverse 0.540 0.523 0.492 93.72 93.81 93.97
Two-phase 0.536 0.517 0.485 93.62 93.49 93.67

ȳenp1(1) Reverse 0.571 0.564 0.532 93.43 93.75 93.86
Two-phase 0.561 0.552 0.520 93.04 93.20 93.33

ȳenp1(π
−1) Reverse 0.492 0.490 0.473 90.51 92.28 93.06

100 Two-phase 0.484 0.480 0.458 89.85 91.58 92.23
ȳenp10(1) Reverse 0.589 0.574 0.537 93.96 93.86 94.07

Two-phase 0.580 0.565 0.528 93.70 93.52 93.57
ȳenp10(π

−1) Reverse 0.500 0.498 0.477 92.33 92.99 93.65
Two-phase 0.495 0.490 0.466 91.86 92.56 93.00

ȳenp200(1) Reverse 0.598 0.579 0.540 94.18 93.91 94.16
Two-phase 0.590 0.570 0.531 93.96 93.65 93.64

ȳenp200(π
−1) Reverse 0.516 0.510 0.485 93.38 93.75 93.90

Two-phase 0.511 0.503 0.476 93.06 93.34 93.37
ȳd Two-phase 0.421 0.390 0.356 94.52 94.33 94.61
ȳep(1) Reverse 0.302 0.290 0.269 94.10 94.51 94.72

Two-phase 0.301 0.289 0.268 94.00 94.43 94.60
ȳep(π

−1) Reverse 0.272 0.263 0.247 94.20 94.62 94.66
Two-phase 0.271 0.262 0.246 94.15 94.59 94.57

ȳenp1(1) Reverse 0.289 0.285 0.266 93.71 94.16 94.54
Two-phase 0.288 0.283 0.264 93.61 93.98 94.39

ȳenp1(π
−1) Reverse 0.255 0.254 0.241 93.14 93.64 94.25

400 Two-phase 0.254 0.253 0.239 93.08 93.54 94.02
ȳenp10(1) Reverse 0.294 0.287 0.267 93.87 94.42 94.62

Two-phase 0.293 0.286 0.266 93.75 94.27 94.57
ȳenp10(π

−1) Reverse 0.257 0.256 0.243 93.64 94.20 94.31
Two-phase 0.256 0.255 0.241 93.57 94.09 94.25

ȳenp200(1) Reverse 0.301 0.290 0.269 94.03 94.49 94.72
Two-phase 0.300 0.289 0.268 93.94 94.41 94.61

ȳenp200(π
−1) Reverse 0.263 0.259 0.245 94.07 94.43 94.62

Two-phase 0.262 0.258 0.244 94.02 94.36 94.51
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Table 2.12: Mean lengths and coverages of 95% confidence interval estimators (Horvitz-Thompson
type), based on 10,000 samples. (Nonlinear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.993 0.893 0.774 92.39 93.29 93.69
ȳep(1) Reverse 1.370 1.156 0.873 88.61 89.28 90.12

Two-phase 1.400 1.176 0.883 89.12 89.67 90.48
ȳep(π

−1) Reverse 1.432 1.139 0.851 85.01 85.77 87.58
Two-phase 1.477 1.174 0.870 86.36 86.93 88.61

ȳenp1(1) Reverse 0.763 0.714 0.616 89.47 89.53 90.94
Two-phase 0.753 0.703 0.605 88.80 88.88 90.35

ȳenp1(π
−1) Reverse 0.522 0.510 0.488 86.85 88.88 91.12

100 Two-phase 0.514 0.496 0.469 86.20 87.68 89.70
ȳenp10(1) Reverse 1.184 1.024 0.792 88.25 88.71 89.73

Two-phase 1.200 1.035 0.795 88.40 88.92 90.00
ȳenp10(π

−1) Reverse 0.549 0.533 0.501 89.79 90.17 91.70
Two-phase 0.544 0.524 0.489 89.54 89.64 90.90

ȳenp200(1) Reverse 1.359 1.148 0.868 88.59 89.30 90.10
Two-phase 1.388 1.167 0.877 89.07 89.58 90.46

ȳenp200(π
−1) Reverse 0.877 0.769 0.628 85.82 86.90 89.03

Two-phase 0.883 0.773 0.628 86.08 86.96 89.01
ȳd Two-phase 0.505 0.453 0.393 94.73 94.34 94.58
ȳep(1) Reverse 0.959 0.816 0.552 68.98 77.92 85.89

Two-phase 0.977 0.832 0.564 70.94 79.72 87.29
ȳep(π

−1) Reverse 0.924 0.750 0.518 59.44 72.97 82.42
Two-phase 0.946 0.766 0.531 61.50 74.87 84.20

ȳenp1(1) Reverse 0.346 0.330 0.293 93.64 93.69 93.64
Two-phase 0.345 0.328 0.292 93.46 93.47 93.57

ȳenp1(π
−1) Reverse 0.284 0.276 0.257 92.86 93.56 94.03

400 Two-phase 0.284 0.274 0.255 92.81 93.34 93.84
ȳenp10(1) Reverse 0.575 0.517 0.386 78.07 84.52 90.00

Two-phase 0.579 0.522 0.392 78.66 85.02 90.73
ȳenp10(π

−1) Reverse 0.290 0.281 0.261 93.52 93.87 93.96
Two-phase 0.290 0.281 0.260 93.57 93.80 93.90

ȳenp200(1) Reverse 0.923 0.789 0.536 69.14 78.28 86.19
Two-phase 0.940 0.803 0.548 71.11 79.89 87.48

ȳenp200(π
−1) Reverse 0.486 0.429 0.338 70.45 80.83 88.02

Two-phase 0.488 0.432 0.344 70.87 81.30 88.82
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Table 2.13: Mean lengths and coverages of 95% confidence interval estimators (Hájek type I),
based on 10,000 samples. (Linear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.518 0.528 0.544 93.90 93.87 93.36
ȳep(1) Reverse 0.518 0.518 0.507 93.67 93.57 93.27

Two-phase 0.515 0.515 0.503 93.61 93.43 93.19
ȳep(π

−1) Reverse 0.517 0.516 0.499 93.72 93.49 93.55
Two-phase 0.515 0.513 0.495 93.42 93.39 93.42

ȳenp1(1) Reverse 0.505 0.503 0.486 93.41 93.31 92.75
Two-phase 0.503 0.501 0.483 93.24 93.19 92.57

ȳenp1(π
−1) Reverse 0.481 0.478 0.457 92.19 92.07 91.22

100 Two-phase 0.483 0.479 0.458 92.22 92.11 91.35
ȳenp10(1) Reverse 0.514 0.513 0.500 93.57 93.49 93.12

Two-phase 0.511 0.510 0.496 93.49 93.43 92.98
ȳenp10(π

−1) Reverse 0.492 0.490 0.467 92.77 92.78 92.26
Two-phase 0.492 0.489 0.467 92.81 92.76 92.31

ȳenp200(1) Reverse 0.518 0.518 0.507 93.67 93.56 93.27
Two-phase 0.515 0.514 0.503 93.58 93.44 93.19

ȳenp200(π
−1) Reverse 0.505 0.503 0.481 93.42 93.27 93.10

Two-phase 0.504 0.501 0.479 93.27 93.05 92.98
ȳd Two-phase 0.262 0.269 0.281 94.62 94.91 94.50
ȳep(1) Reverse 0.262 0.264 0.260 94.56 94.61 94.15

Two-phase 0.262 0.264 0.260 94.54 94.59 94.13
ȳep(π

−1) Reverse 0.262 0.263 0.255 94.46 94.60 94.14
Two-phase 0.262 0.263 0.255 94.47 94.59 94.08

ȳenp1(1) Reverse 0.257 0.258 0.248 94.19 94.37 93.73
Two-phase 0.257 0.257 0.248 94.16 94.31 93.76

ȳenp1(π
−1) Reverse 0.253 0.253 0.239 93.72 93.94 93.31

400 Two-phase 0.254 0.253 0.240 93.72 93.93 93.26
ȳenp10(1) Reverse 0.260 0.260 0.253 94.41 94.56 93.94

Two-phase 0.260 0.260 0.253 94.41 94.51 93.96
ȳenp10(π

−1) Reverse 0.256 0.255 0.242 93.96 94.13 93.65
Two-phase 0.256 0.255 0.242 93.92 94.15 93.65

ȳenp200(1) Reverse 0.262 0.264 0.259 94.55 94.63 94.14
Two-phase 0.262 0.263 0.259 94.53 94.60 94.12

ȳenp200(π
−1) Reverse 0.259 0.259 0.247 94.29 94.43 94.07

Two-phase 0.259 0.258 0.247 94.26 94.36 94.02
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Table 2.14: Mean lengths and coverages of 95% confidence interval estimators (Hájek type I),
based on 10,000 samples. (Nonlinear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.576 0.571 0.587 93.10 92.53 92.26
ȳep(1) Reverse 0.765 0.789 0.832 91.60 90.64 89.65

Two-phase 0.755 0.780 0.824 91.35 90.36 89.45
ȳep(π

−1) Reverse 0.778 0.822 0.836 91.06 90.14 88.83
Two-phase 0.769 0.817 0.832 90.62 89.83 88.32

ȳenp1(1) Reverse 0.594 0.590 0.574 90.36 89.43 89.85
Two-phase 0.588 0.583 0.567 90.14 89.17 89.39

ȳenp1(π
−1) Reverse 0.506 0.491 0.465 89.42 88.90 88.86

100 Two-phase 0.508 0.492 0.467 89.59 89.11 88.94
ȳenp10(1) Reverse 0.720 0.736 0.761 91.11 90.11 89.07

Two-phase 0.710 0.726 0.752 90.88 89.85 88.71
ȳenp10(π

−1) Reverse 0.531 0.517 0.488 90.48 89.88 90.46
Two-phase 0.531 0.516 0.487 90.45 89.78 90.33

ȳenp200(1) Reverse 0.762 0.786 0.827 91.59 90.64 89.63
Two-phase 0.753 0.776 0.820 91.34 90.32 89.37

ȳenp200(π
−1) Reverse 0.643 0.658 0.633 90.25 89.39 88.86

Two-phase 0.635 0.652 0.627 89.81 89.10 88.43
ȳd Two-phase 0.295 0.294 0.306 94.59 94.62 93.75
ȳep(1) Reverse 0.563 0.648 0.698 96.22 93.49 83.55

Two-phase 0.557 0.645 0.700 95.98 93.24 83.45
ȳep(π

−1) Reverse 0.560 0.641 0.667 95.91 93.19 80.77
Two-phase 0.554 0.640 0.671 95.66 93.10 81.19

ȳenp1(1) Reverse 0.298 0.292 0.276 94.18 94.04 94.02
Two-phase 0.297 0.291 0.277 94.13 94.00 93.95

ȳenp1(π
−1) Reverse 0.282 0.273 0.254 93.59 93.72 93.42

400 Two-phase 0.282 0.273 0.254 93.65 93.72 93.42
ȳenp10(1) Reverse 0.414 0.440 0.452 94.97 92.28 84.81

Two-phase 0.409 0.436 0.450 94.69 91.99 84.65
ȳenp10(π

−1) Reverse 0.288 0.279 0.259 93.88 93.78 94.09
Two-phase 0.288 0.279 0.260 93.85 93.80 94.12

ȳenp200(1) Reverse 0.550 0.630 0.677 96.13 93.32 83.46
Two-phase 0.544 0.627 0.679 95.85 93.06 83.35

ȳenp200(π
−1) Reverse 0.392 0.410 0.396 94.43 91.30 82.73

Two-phase 0.387 0.407 0.396 94.14 91.07 82.86
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Table 2.15: Mean lengths and coverages of 95% confidence interval estimators (Hájek type II),
based on 10,000 samples. (Linear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.520 0.529 0.545 93.93 93.95 93.59
ȳep(1) Reverse 0.518 0.518 0.506 93.76 93.56 93.40

Two-phase 0.516 0.515 0.502 93.53 93.40 93.23
ȳep(π

−1) Reverse 0.517 0.516 0.498 93.69 93.54 93.63
Two-phase 0.514 0.513 0.495 93.51 93.41 93.45

ȳenp1(1) Reverse 0.509 0.507 0.489 93.55 93.54 93.01
Two-phase 0.508 0.505 0.487 93.37 93.38 92.94

ȳenp1(π
−1) Reverse 0.493 0.489 0.468 92.91 92.76 92.09

100 Two-phase 0.495 0.490 0.470 92.96 92.70 92.30
ȳenp10(1) Reverse 0.515 0.514 0.500 93.70 93.62 93.30

Two-phase 0.513 0.512 0.497 93.46 93.39 93.16
ȳenp10(π

−1) Reverse 0.500 0.497 0.475 93.25 93.20 92.81
Two-phase 0.501 0.497 0.474 93.27 93.11 92.78

ȳenp200(1) Reverse 0.518 0.518 0.506 93.75 93.56 93.38
Two-phase 0.515 0.514 0.502 93.53 93.40 93.24

ȳenp200(π
−1) Reverse 0.509 0.507 0.485 93.65 93.45 93.32

Two-phase 0.507 0.505 0.482 93.47 93.30 93.22
ȳd Two-phase 0.262 0.269 0.281 94.59 94.96 94.53
ȳep(1) Reverse 0.262 0.264 0.260 94.57 94.65 94.22

Two-phase 0.262 0.264 0.259 94.47 94.63 94.10
ȳep(π

−1) Reverse 0.262 0.263 0.255 94.47 94.62 94.14
Two-phase 0.262 0.263 0.255 94.40 94.62 94.13

ȳenp1(1) Reverse 0.258 0.258 0.249 94.22 94.40 93.85
Two-phase 0.258 0.258 0.249 94.19 94.28 93.87

ȳenp1(π
−1) Reverse 0.255 0.254 0.241 93.82 94.11 93.50

400 Two-phase 0.255 0.254 0.241 93.81 94.14 93.55
ȳenp10(1) Reverse 0.260 0.261 0.254 94.45 94.60 94.10

Two-phase 0.260 0.260 0.253 94.30 94.54 93.95
ȳenp10(π

−1) Reverse 0.257 0.256 0.243 94.04 94.23 93.73
Two-phase 0.257 0.256 0.243 94.05 94.23 93.83

ȳenp200(1) Reverse 0.262 0.264 0.259 94.58 94.63 94.19
Two-phase 0.262 0.263 0.259 94.46 94.60 94.10

ȳenp200(π
−1) Reverse 0.259 0.259 0.248 94.30 94.40 94.09

Two-phase 0.259 0.259 0.247 94.25 94.39 94.07
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Table 2.16: Mean lengths and coverages of 95% confidence interval estimators (Hájek type II),
based on 10,000 samples. (Nonlinear case)
n Point Var. Estimation Mean Length Coverage (%)

Estimator Method ρ = 0.0 ρ = 0.3 ρ = 0.6 ρ = 0.0 ρ = 0.3 ρ = 0.6
ȳd Two-phase 0.578 0.572 0.590 93.31 93.05 92.63
ȳep(1) Reverse 0.635 0.642 0.660 85.30 82.40 79.22

Two-phase 0.627 0.634 0.654 84.59 81.86 78.63
ȳep(π

−1) Reverse 0.634 0.649 0.657 84.28 81.72 78.67
Two-phase 0.626 0.643 0.653 83.70 81.35 78.27

ȳenp1(1) Reverse 0.569 0.561 0.544 88.91 87.60 87.95
Two-phase 0.564 0.555 0.539 88.44 87.19 87.48

ȳenp1(π
−1) Reverse 0.522 0.507 0.481 90.40 89.94 90.00

100 Two-phase 0.525 0.508 0.482 90.62 90.15 90.10
ȳenp10(1) Reverse 0.619 0.622 0.632 85.83 83.29 80.78

Two-phase 0.611 0.614 0.625 85.33 82.87 80.07
ȳenp10(π

−1) Reverse 0.538 0.524 0.494 90.84 90.21 90.87
Two-phase 0.538 0.523 0.494 90.89 90.26 90.69

ȳenp200(1) Reverse 0.634 0.641 0.659 85.30 82.45 79.23
Two-phase 0.626 0.633 0.652 84.62 82.00 78.67

ȳenp200(π
−1) Reverse 0.584 0.586 0.568 86.89 85.51 84.97

Two-phase 0.577 0.580 0.562 86.50 84.86 84.55
ȳd Two-phase 0.295 0.294 0.306 94.59 94.69 93.93
ȳep(1) Reverse 0.450 0.492 0.532 91.57 82.88 65.66

Two-phase 0.445 0.489 0.533 91.18 82.57 65.58
ȳep(π

−1) Reverse 0.448 0.490 0.512 90.72 82.10 63.07
Two-phase 0.443 0.488 0.515 90.30 81.88 63.57

ȳenp1(1) Reverse 0.296 0.289 0.275 94.16 93.86 93.70
Two-phase 0.296 0.289 0.275 94.12 93.77 93.77

ȳenp1(π
−1) Reverse 0.285 0.276 0.256 93.86 93.96 93.68

400 Two-phase 0.285 0.276 0.257 93.88 93.95 93.69
ȳenp10(1) Reverse 0.371 0.385 0.395 92.40 87.29 76.45

Two-phase 0.366 0.381 0.394 92.01 86.89 76.12
ȳenp10(π

−1) Reverse 0.289 0.280 0.260 93.88 93.90 94.19
Two-phase 0.289 0.280 0.260 93.89 93.93 94.29

ȳenp200(1) Reverse 0.444 0.484 0.522 91.54 83.11 66.22
Two-phase 0.439 0.481 0.523 91.19 82.79 66.15

ȳenp200(π
−1) Reverse 0.355 0.366 0.355 91.65 87.13 76.00

Two-phase 0.351 0.363 0.355 91.27 86.85 76.10
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probability improved efficiency in reducing bias and variance to a misspecified parametric response

model. As the smoothing parameter increased, the bias and the variance of the penalized spline

logistic regression estimator were closer to the linear logistic regression estimator.
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CHAPTER 3

IMPROVING SURVEY ESTIMATORS THROUGH WEIGHT

SMOOTHING

3.1 Introduction

In academic and government surveys, probability-based sampling continues to be commonly

used. Probability-based sampling allows design-based inference about finite population quantities

such as population totals and means. In particular, the classical Horvitz and Thompson [1952]

estimator is unbiased with respect to the sampling design distribution, for any variable of interest.

The variance of this estimator is small if the variable of interest is positively correlated with the

inclusion probabilities. However, in most practical surveys, achieving high correlation across many

variables is unfeasible because a single design (and hence a single set of weights) is used to produce

estimates for all variables in the survey. In addition, while achieving high precision in the survey

estimators is desirable, this is often only one of several considerations when selecting a sampling

design. Hence, while survey weights are used to account for the sampling design and ensure that

the estimators are at least approximately unbiased, the resulting estimators can be inefficient.

Improving the efficiency of estimators following sampling can be achieved in a number of

ways, including calibration and model-assisted estimation [Särndal et al., 1992]. These methods

can be expressed as weight adjustments and take advantage of relationships between auxiliary

variables in the sample and the population to increase efficiency. Survey agencies frequently apply

these methods to adjust survey weights prior to release. However, these methods do not target

weight stability directly and can result in individual weights that are even larger or smaller than

the original design weights, which can still lead to unstable estimators. The problem can be par-

ticularly acute for domains, where weight discrepancies can have an overwhelming effect on the

stability of the estimators.

The most common approach for dealing directly with large survey weights is weight trimming

[Elliot and Little, 2000, Potter, 1990], in which individual weights larger than some value w0
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are reduced to w0 and the remaining weights are ratio-adjusted so that the sum of the weights is

unchanged. This winsorization approach reduces variance at the cost of introducing some bias.

This method requires the determination of the winsorization threshold w0 [Martinoz et al., 2015].

The selection of the value for the threshold is not straightforward in practice and requires some

care. Beaumont et al. [2013] proposed robust estimators to downweight influential sample units,

but this method again requires the determination of a tuning constant.

Another approach is to reduce the variability of design weights through the application of a

functional adjustment to all weights. Chambers [1996] considered a method of ridge shrinkage

regression to ensure positive weights. Beaumont and Bocci [2008] and Kim [2010] also discussed

ridge regression to avoid extreme weights by considering different objective functions. Beaumont

[2008] considered a “generalized design-based approach.” It is similar to the other proposed func-

tional adjustments, in the sense that all the weights are jointly modified according to an objective

function, but it departs from them by explicitly assuming a model for the relationship between

the weight and the survey variable. That is, the survey weights are parametrically modeled as a

function of the survey variables and it leads to a single set of smoothed weights. To the extent that

this model is correctly specified, it can lead to substantial gains in precision.

While Beaumont [2008] proposed the approach and showed how it can reduce the variance of

the estimator under correct model specification, he did not fully explore a number of important

aspects. The aim of the current work is to extend Beaumont’s results, by completing some of

the theoretical investigation of model-based weight smoothing. We also consider a Hájek-type

extension of his estimator as well as a replication variance estimation, both of which are widely

used in practice.

One particular application where this model-based weight smoothing is particularly promising

is in surveys that are subject to “stratum jumpers.” Beaumont and Rivest [2009] discuss this in the

context of business surveys, where the stratum jumping is the result of inaccurate size information

at the time of sampling. The application motivating the current work is the National Survey of Col-

lege Graduates (NSCG), in which respondents are selected from the American Community Survey
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(ACS) sample. The ACS is stratified based on several variables that are thought to be important for

the NSCG. The NSCG sample is selected through a stratified design with widely different stratum

sampling fractions, depending on the level of interest in that stratum and the stratum size. However,

the ACS stratification variables are recorded with error, so that some of the selected respondents

will end up in an estimation domain that differs from their ACS stratum. When such a “stratum

jumper” with a large weight ends up in a domain in which most respondents have much smaller

weights, the quality of the resulting domain estimates can be significantly degraded, in the sense

that the responses from the stratum jumper(s) end up dominating the estimates. The application of

weight smoothing to address the stratum jumper issue in the NSCG will not be addressed in this

chapter, focusing instead on the general properties of the estimator.

In Section 3.2, the smoothed Horvitz-Thompson estimator is introduced. In Section 3.3, the

smoothed weight is estimated under the model assumptions. Section 3.4 derives the theoretical

properties of the smoothed Horvitz-Thompson estimator, and Section 3.5 describes the associated

variance estimation. In Section 3.6, the Hájek version of the weight smoothing estimator is dis-

cussed. Section 3.7 describes simulation studies of the smoothed Horvitz-Thompson and Hájek

estimators, under both correctly and incorrectly specified weight models. In Section 3.8, replicate

variance estimation is discussed. Conclusions are given in Section 3.9.

3.2 The smoothed Horvitz-Thompson estimator

We denote the finite population by UN = {1, · · · , i, · · · , N}. Let FN = {u1, · · · ,uN} rep-

resent the population variables. For each individual, ui = (yi, zi)
′
, where yi is the study variable

of interest for population unit i, and zi is the design variable for population unit i. For simplicity,

we consider a single study variable yi and a single design variable zi for now. Suppose that an

estimate is needed for the finite population total Ty =
∑

i∈UN yi. A sample S of size n is drawn

from UN according to a probability sampling design p(IN |ZN ,YN) = p(IN |ZN), where ZN is

a population vector containing zi for i = 1, · · · , N , YN is a vector containing yi for i = 1 · · ·N

and IN = (I1, · · · , IN) is a vector of the sample inclusion indicators, Ii = 1 if i ∈ S, and Ii = 0
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otherwise. Let Ŷ HT be the Horvitz-Thompson estimator,

Ŷ HT =
1

N

∑
i∈S

wiyi,

where wi = 1/πi is the design weight of unit i and πi = E(Ii|ZN ,YN) = E(Ii|ZN). The condi-

tional expectation of Ŷ HT , conditioning on FN is Ȳ , therefore, the Horvitz-Thompson estimator

Ŷ HT is an unbiased estimator of Ȳ .

When design variable z is strongly correlated with the variable of interest y, it is possible to

construct an efficient Horvitz-Thompson estimator, using the principle of PPS sampling. How-

ever, such a strongly correlated design variable may not be available in many surveys, so that the

Horvitz-Thompson estimator, while unbiased, is highly variable. To solve the inefficient Horvitz-

Thompson estimator, a smoothed random variable Ỹ SHT was proposed by Beaumont [2008]. This

smoothed random variable is of the form

Ỹ SHT = E(Ŷ HT
∣∣IN ,YN) = E

(
1

N

∑
i∈S

wiyi

∣∣∣∣IN ,YN
)

=
1

N

∑
i∈S

w̃iyi,

where w̃i = E(wi|IN ,YN) is the smoothed weight for unit i ∈ S. The w̃i is not observable, but it

can be estimated after specifying a model for the conditional expectation. Once we obtain an esti-

mator ŵi of w̃i, we can construct a smoothed Horvitz-Thompson estimator ŶSHT = 1
N

∑
i∈S ŵiyi.

As explained in Beaumont [2008], assuming correct specification of the weight smoothing

model, Ỹ SHT continues to be unbiased but will have smaller variance than Ŷ HT . Speaking some-

what loosely, this is because the portion of the weightwi that is unrelated to yi is removed, reducing

variance, while the portion of the weight that depends on yi and is necessary to provide unbiased-

ness is preserved.

3.3 Estimation of the smoothed weight

To estimate w̃i, it is assumed that w̃i = fs(yi), where the function fs is some function that

needs to be estimated from (yi, wi) under the sample. Following Beaumont [2008], we consider a

shifted log-normal regression model,

wi = 1 + exp(Biν + εi) (3.1)
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for i ∈ S, where the vector Bi = [B1(yi), · · · , Br(yi)] is a set of basis functions depending on yi,

the vector ν = [ν1, ν2, · · · , νr]′ is a vector of unknown coefficients, the εi given IN and YN are

independently and identically normally distributed with E(εi|IN ,YN) = 0 and Var(εi|IN ,YN) =

σ2 > 0. The shift of 1 is added to the model to ensure that w̃i ≥ 1. The unknown model parameters

to be estimated are ν and σ2. Note thatBi = [1, yi] is a special case of this model, corresponding to

a simple loglinear regression model. If yi is itself multivariate, then a multiple loglinear regression

model is likewise a special case of model (3.1).

Under this model, the smoothed weight is

w̃i = E(wi|IN ,YN) = 1 + exp

(
Biν +

σ2

2

)
.

The lognormal model implies a weight distribution that is quite variable and which has a long

upper tail. While that distribution will not be appropriate for all surveys, it is a reasonable model

for large-scale surveys with complex designs and potential weight stability problems, such as the

NSCG.

To obtain an estimator ŵi of the smoothed weight w̃i, we estimate ν and σ2 by their least

squares estimators. However, it will be convenient to consider their maximum likelihood (ML) esti-

mators first, to enable generalization to more complicated models in the future. The log-likelihood

function is

l(ν, σ2) = −n
2

log(2π)− n

2
log(σ2)−

∑
i∈S {log(wi − 1)−Biν}2

2σ2
.

Conditional on the sample, the least squares or ML estimator of the parameter ν given theBi is

ν̂ =

(∑
i∈S

BT
i Bi

)−1{∑
i∈S

BT
i log (wi − 1)

}
.

The ML variance estimator of σ2 is

σ̂2
ML =

1

n

∑
i∈S

{log(wi − 1)−Biν̂}2 .
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The estimator ν̂ is unbiased for ν, but σ̂2
ML is biased:

E(σ̂2
ML|IN ,YN) = E

{
1

n
εTε− 1

n
εTB(BTB)−1BTε

∣∣∣∣IN ,YN}
=

1

n

[
tr(In)− tr

{
B(BTB)−1BT

}]
σ2

=
n− r
n

σ2.

However, the least squares estimator σ̂2 = n
n−r σ̂

2
ML is unbiased.

The plug-in estimator of w̃i is therefore defined as

ŵi = 1 + exp(Biν̂ +
σ̂2

2
).

In the next section, we study the properties of the smoothed HT estimator, with the weights ŵi

created as just described.

3.4 Theoretical properties

Before presenting the properties of the smoothed HT estimator, we state the assumptions we

will be using.

A 3.1. Let Bi be a vector composed of fixed functions of the study variable yi. Assume that the

sequence ofBi and the sequence of yi are bounded.

A 3.2. The inclusion probabilities satisfy mini∈U πi ≥ π∗ > 0 and maxi 6=j |πij − πiπj| < Cπ/n

for all N for some constant Cπ. The sample size n is non-random and satisfies n/N → f with

0 < f < 1.

A 3.3. Assume that the matrix
∑

i∈SB
T
i Bi is nonsingular for all samples S. Assume that the

matrix
∑

i∈U πiB
T
i Bi is nonsingular.

A 3.4. Assume that weight model parameters ν and σ2 satisfy ‖ν‖ < Cν and 0 < σ2 < Cσ for

two fixed constants Cν and Cσ, for all samples S.
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Theorem 3.1. Assume that (A3.1)-(A3.4) hold. The smoothed estimator Ŷ SHT can be linearized,

in the sense that

Ŷ SHT = Ŷ SHT
l + op(n

−1/2),

where

Ŷ SHT
l =

1

N

∑
i∈S

yi +
1

N

∑
i∈S

yi exp

(
Biν +

σ2

2

){
1 +Bi (ν̂ − ν) +

1

2

(
σ̂2 − σ2

)}
.

Proof of Theorem 3.1: We first show that ν̂ and σ̂2 are consistent for ν and σ2, respectively,

under the weight model. For ν̂,

ν̂ − ν =

(
1

n

∑
i∈S

BT
i Bi

)−1(
1

n

∑
i∈S

BT
i εi

)
.

Applying assumption (A3.1), (A3.2) and (A3.3), we find that(
1

n

∑
i∈S

BT
i Bi

)−1

=

(
1

n

∑
i∈U

πiB
T
i Bi

)−1

+Op(n
−1/2). (3.2)

Consider

E

(
1

n

∑
i∈S

BT
i εi

∣∣∣∣YN
)

= E

{
E

(
1

n

∑
i∈S

BT
i εi

∣∣∣∣IN ,YN
)∣∣∣∣YN

}
= 0

and

Var

(
1

n

∑
i∈S

BT
i εi

∣∣∣∣YN
)

= E

(
1

n2

∑
i∈S

BT
i Biσ

2

∣∣∣∣YN
)
.

Applying assumption (A3.1), (A3.2) and (A3.4), we immediately have Var
(

1
n

∑
i∈SB

T
i εi
∣∣YN) =

Op(n
−1). By Chebyshev’s inequality, we have

1

n

∑
i∈S

BT
i εi = Op

(
n−1/2

)
(3.3)

with respect to the model and the sampling design. Therefore, from (3.2) and (3.3), it follows

ν̂ − ν = Op(n
−1/2). (3.4)
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For σ̂2, consider first

σ̂2
ML =

1

n

∑
i∈S

{εi −Bi(ν̂ − ν)}2

=
1

n

∑
i∈S

ε2
i −

(
1

n

∑
i∈S

εTi Bi

)(
1

n

∑
i∈S

BT
i Bi

)−1(
1

n

∑
i∈S

BT
i εi

)
.

By Chebyshev’s inequality again, we have 1
n

∑
i∈S ε

2
i = σ2 +Op(n

−1/2). Applying (3.2) and (3.3),

it follows

σ̂2
ML − σ2 = Op(n

−1/2)

and hence,

σ̂2 − σ2 = Op(n
−1/2). (3.5)

Applying a Taylor expansion of Ŷ SHT as a function of ν̂, σ̂2 in the neighborhood of ν, σ2, we

obtain

Ŷ SHT = Ỹ SHT +

∂Ŷ SHT

∂ν̂

∣∣∣∣∣(
ν̂

σ̂2

)
=
(

ν

σ2

)

T

(ν̂ − ν)

+

∂Ŷ SHT

∂σ̂2

∣∣∣∣∣(
ν̂

σ̂2

)
=
(

ν

σ2

)

T (
σ̂2 − σ2

)
+ op

(∣∣ν̂ − ν, σ̂2 − σ2
∣∣)

= Ỹ SHT +
1

N

∑
i∈S

yi exp

(
Biν +

σ2

2

)
Bi (ν̂ − ν)

+
1

N

∑
i∈S

yi exp

(
Biν +

σ2

2

)
× 1

2

(
σ̂2 − σ2

)
+ op

(∣∣ν̂ − ν, σ̂2 − σ2
∣∣) .

From this, (3.4) and (3.5), we immediately obtain

Ŷ SHT = Ŷ SHT
l + op(n

−1/2)

as desired.

In Theorem 3.1, we approximated the estimator Ŷ SHT by Ŷ SHT
l , with both estimators sharing

the same asymptotic distribution. We now consider the bias and variance properties of Ŷ SHT
l with

respect to the sampling design and the weight model.
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Theorem 3.2. Assume that (A3.1)-(A3.4) hold. The linearized estimator Ŷ SHT
l is unbiased for the

population mean and

Var
(
Ŷ SHT
l

∣∣∣∣YN) = E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN}
+E
[{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)− Var
(
Ŷ HT

∣∣∣∣IN ,YN)}∣∣∣∣YN] ,
where

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)
=

1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)wiwjyiyj

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN) =
1

N2

∑
i∈S

∑
j∈S

yiyj exp
{

(Bi +Bj)ν + σ2
}{
Bi

(
BTB

)−1
BT
j σ

2

+
1

2 (n− r)
(
σ2
)2
}

Var
(
Ŷ HT

∣∣∣∣IN ,YN) =
1

N2

∑
i∈S

y2
i

(
eσ

2 − 1
)
e2Biν+σ2

.

Proof of Theorem 3.2: The unbiasedness of Ŷ SHT
l follows directly from the conditional unbi-

asedness of ν̂ and σ̂2 and the unbiasedness of Ỹ SHT . The variance of Ŷ SHT
l is written

Var
(
Ŷ SHT
l

∣∣∣∣YN) = E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN}+ Var
{

E
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN} . (3.6)

The second component of (3.6) is

Var
{

E
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN} = Var
(
Ỹ SHT

∣∣∣∣YN) . (3.7)

Taking advantage of the fact that

Var
(
Ŷ HT

∣∣∣∣YN) = Var
{

E
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}+ E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}
= Var

(
Ỹ SHT

∣∣∣∣YN)+ E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}
= E

{
Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN} , (3.8)

we have

Var
(
Ỹ SHT

∣∣∣∣YN) = E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN}− E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN} . (3.9)
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The total variance of Ŷ SHT
l can therefore be written as

Var
(
Ŷ SHT
l

∣∣∣∣YN) = E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN}
+E
[{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)− Var
(
Ŷ HT

∣∣∣∣IN ,YN)}∣∣∣∣YN] . (3.10)

The variance of Horviz-Thompson estimator conditional on the design in (3.10) is

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)
=

1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)wiwjyiyj.

Under the stated weight model, the conditional variance Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN) is

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)
= Var

[
1

N

∑
i∈S

yi +
1

N

∑
i∈S

yi exp

(
Biν +

σ2

2

){
1 +Bi (ν̂ − ν) +

1

2

(
σ̂2 − σ2

)}∣∣∣∣IN ,YN
]

=
1

N2

{∑
i∈S

yi exp

(
Biν +

σ2

2

)
Bi

}
Var (ν̂|IN ,YN)

{∑
j∈S

yj exp

(
Bjν +

σ2

2

)
Bj

}T

+
1

N2
× 1

4

{∑
i∈S

yi exp

(
Biν +

σ2

2

)}
Var
(
σ̂2|IN ,YN

){∑
j∈S

yj exp

(
Bjν +

σ2

2

)}T

=
1

N2

∑
i∈S

∑
j∈S

yiyj exp
{

(Bi +Bj)ν + σ2
}{
Bi

(
BTB

)−1
BT
j σ

2 +
1

2 (n− r)
(
σ2
)2
}
.

Finally, since wi − 1 = exp (Biν + εi) has a log-normal distribution with mean exp
(
Biν + σ2

2

)
and variance {exp (σ2)− 1}×exp (2Biν + σ2), the variance of Horviz-Thompson estimator con-

ditional on the model in (3.10) is

Var
(
Ŷ HT

∣∣∣∣IN ,YN) = Var

(
1

N

∑
i∈S

wiyi

∣∣∣∣IN ,YN
)

=
1

N2

∑
i∈S

y2
i

(
eσ

2 − 1
)
e2Biν+σ2

.

The next theorem establishes the
√
n-consistency of the estimator with respect to the sampling

design and the weight model.
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Theorem 3.3. Assume that (A3.1)-(A3.4) hold. The smoothed estimator Ŷ SHT satisfies

Ŷ SHT = Ȳ +Op

(
n−1/2

)
.

Proof of Theorem 3.3: Under assumptions (A1) and (A2), the design variance

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)
< C1/n

for some constant C. Hence, it immediately follows that

E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN} = O(n−1).

Considering now Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN) and Var
(
Ŷ HT

∣∣∣∣IN ,YN), assumption (A3.1)–(A3.4) en-

sure that all the terms inside the sample summations remain bounded and hence that

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN) < C2/n

and

Var
(
Ŷ HT

∣∣∣∣IN ,YN) < C3/n

for all samples. We conclude

E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN} = O(n−1),

and

E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN} = O(n−1).

Together with the unbiasedness obtained in Theorem 3.2, these lead to

Ŷ SHT
l = Ȳ +Op(n

−1/2),

Finally, combined with Theorem 3.1, we obtain that

Ŷ SHT = Ȳ +Op(n
−1/2),

that is, Ŷ SHT is a
√
n-consistent estimator for Ȳ .
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3.5 Variance estimation

Starting from Theorem 2, a plug-in estimator for the total variance can be constructed as

V̂
(
Ŷ SHT
l

)
= V̂1 +

{
V̂2 − V̂3

}
, (3.11)

where

V̂1 =
1

N2

∑
i∈S

∑
j∈S

(πij − πiπj)
πij

wiwjyiyj, (3.12)

V̂2 =
1

N2

∑
i∈S

∑
j∈S

yiyj exp
{

(Bi +Bj) ν̂ + σ̂2
}

×
{
Bi

(
BTB

)−1
BT
j σ̂

2 +
1

2 (n− r)
(
σ̂2
)2
}
, (3.13)

and

V̂3 =
1

N2

∑
i∈S

y2
i

(
eσ̂

2 − 1
)
e2Biν̂+σ̂2

. (3.14)

Note that V̂1 is the standard estimator for the variance of a HT estimator, so it can be simplified for

most sampling design into a standard form, or approximated by a with-replacement version.

In order to use V̂
(
Ŷ SHT
l

)
to construct asymptotically correct confidence intervals, one would

normally try to show that it is a consistent estimator of Var
(
Ŷ SHT
l

∣∣YN) with respect to the sam-

pling design and weight model. However, that is not possible without specifying the distribu-

tion of W = (w1, w2, · · · , wN)T under the population, i.e. conditioning on YN but no longer

on ZN and IN . In specific cases where a model for this distribution can be formulated, then

it would indeed be possible to show the consistency of the variance estimator with respect to this

model. Here, we will restrict ourselves here to show that V̂
(
Ŷ SHT
l

)
is asymptotically unbiased for

Var
(
Ŷ SHT
l

∣∣YN). We will do this by showing that V̂1, V̂2 and V̂3 are asymptotically unbiased for

E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN}, E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN}, E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN},

respectively. This is not sufficient for consistency, because we do not address the second asymp-

totic moment of V̂
(
Ŷ SHT
l

)
.

We will use some moment results for the normal distribution in the proof of the main theorem

in this Section. They are given in the following two lemmas.

62



Lemma 3.1. Suppose that ε ∼ N (0, σ2I), letA: k × n be matrix of constants, then

E {exp (A′ε)} = exp

{
1

2
A′
(
σ2I
)
A

}
.

Proof of Lemma 3.1: By the definition of expectation,

E {exp (A′ε)}

=

∫ ∞
−∞

eA
′εf (ε) dε

=

∫ ∞
−∞

exp
{
−1

2
ε′ (σ2I)

−1
ε+A′ε

}
|σ2I|

1
2 (2π)

n
2

dε

=

∫ ∞
−∞

exp
[
−1

2
{ε− (σ2I)A}′ (σ2I)

−1 {ε− (σ2I)A}
]
· exp

{
1
2
A′ (σ2I)A

}
|σ2I|

1
2 (2π)

n
2

dε

= exp

{
1

2
A′
(
σ2I
)
A

}
,

because
exp
[
− 1

2{ε−(σ2I)A}′(σ2I)
−1{ε−(σ2I)A}

]
|σ2I|

1
2 (2π)

n
2

is the pdf of N (σ2IA, σ2I).

Lemma 3.2. Suppose that ε ∼ N (0, σ2I), the matrix A is a symmetric matrix of constant and

idempotent. Let Q = ε′Aε
σ2 , then Q ∼ χ2 (r), where r = rank (A). If Q ∼ χ2 (r), then E

(
etQ
)

=

(1− 2t)−
r
2 , E

(
QetQ

)
= r (1− 2t)−

r
2
−1 and E

(
Q2etQ

)
= (r + 2) r (1− 2t)−

r
2
−2.

Proof of Lemma 3.2: The matrix A is symmetric and of rank r, so it can be written as A =

UDU ′, where U : n× r is semi-orthogonal andD: r× r is diagonal. Note thatA is idempotent,

then AA = A ⇒ UDU ′UDU ′ = UDU ′ ⇒ U ′U = D−1. Let z = D−
1
2U ′ε
σ

, then the

distribution of z is z ∼ Nr (0, Ir) and Q = ε′Aε
σ2 = z′z ∼ χ2 (r), where r = rank (A). Then

E
(
etQ
)

=

∫ ∞
0

etQf (Q) dQ

=

∫ ∞
0

1

Γ
(
r
2

)
2
r
2

Q
r
2
−1e−( 1

2
−t)QdQ

= 2−
r
2

(
1− 2t

2

)− r
2
∫ ∞

0

1

Γ
(
r
2

) (
2

1−2t

) r
2

Q
r
2
−1e−( 1

2
−t)QdQ

= (1− 2t)−
r
2 ,
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because 1

Γ( r2)( 2
1−2t)

r
2
Q

r
2
−1e−( 1

2
−t)Q is the pdf of Γ

(
r
2
, 2

1−2t

)
.

E
(
QetQ

)
=

∫ ∞
0

QetQf (Q) dQ

=

∫ ∞
0

1

Γ
(
r
2

)
2
r
2

Q
r
2 e−( 1

2
−t)QdQ

=
Γ
(
r
2

+ 1
) (

2
1−2t

) r
2

+1

Γ
(
r
2

)
2
r
2

∫ ∞
0

1

Γ
(
r
2

+ 1
) (

2
1−2t

) r
2

+1
Q

r
2 e−( 1

2
−t)QdQ

= r (1− 2t)−
r
2
−1 ,

and similarly,

E
(
Q2etQ

)
= (r + 2) r (1− 2t)−

r
2
−2 .

Theorem 3.4. Assume (A3.1)-(A3.4). The variance estimator V̂
(
Ŷ SHT
l

)
is asymptotically unbi-

ased for Var
(
Ŷ SHT
l

∣∣∣∣YN) with respect to the sampling design and the weight model.

Proof of Theorem 3.4: First, consider the expectation of V̂1,

E
(
V̂1

∣∣YN) = E
{

E
(
V̂1

∣∣ZN ,YN
)∣∣YN}

= E

{
E

(
1

N2

∑
i∈U

∑
j∈U

πij − πiπj
πij

wiwjyiyjIiIj

∣∣∣∣ZN ,YN

)∣∣∣∣YN
}

= E

{
1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)wiwjyiyj
∣∣∣∣YN

}

= E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN} .
Therefore, V̂1 is asymptotically unbiased for E

{
Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN}.

Second, show that V̂2 is asymptotically unbiased for E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN}. Condi-

tional on the sample, we consider V̂2 as a function of the estimated model parameters. Asymptoti-

cally, we write nV̂2 = gn(ν̂, σ̂2), a sequence of functions mapping Rr+1 into R,

gn
(
ν̂, σ̂2

)
=

n

N2

∑
i∈S

∑
j∈S

yiyj exp
{

(Bi +Bj) ν̂ + σ̂2
}{
Bi

(
BTB

)−1
BT
j σ̂

2 +
1

2 (n− r)
(
σ̂2
)2
}
.
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Considering the expectation conditional on the sample, from Lemma 3.1 and Lemma 3.2, we obtain

E
{
gn(ν̂, σ̂2)− nVar

(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣IN ,YN}
=

n

N2

∑
i∈S

∑
j∈S

yiyjBi

(
BTB

)−1
BT
j × E

{
e(Bi+Bj)ν̂

∣∣IN ,YN}× E
{(
σ̂2
)
eσ̂

2∣∣IN ,YN}
+
n

N2

∑
i∈S

∑
j∈S

yiyj
1

2(n− r)
× E

{
e(Bi+Bj)ν̂

∣∣IN ,YN}× E
{(
σ̂2
)2
eσ̂

2∣∣IN ,YN}
− n

N2

∑
i∈S

∑
j∈S

yiyje
(Bi+Bj)ν+σ2 ×

{
Bi

(
BTB

)−1
BT
j σ

2 +
1

2(n− r)
(
σ2
)2
}

=
n

N2

∑
i∈S

∑
j∈S

yiyjBi

(
BTB

)−1
BT
j × e(Bi+Bj)ν × σ2

×

{
e

1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 ×
(

1− 2σ2

n− r

)−n−r
2
−1

− eσ2

}
+
n

N2

∑
i∈S

∑
j∈S

yiyj
1

2(n− r)
× e(Bi+Bj)

T ν ×
(
σ2
)2

×

{
e

1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 × n− r + 2

n− r
×
(

1− 2σ2

n− r

)−n−r
2
−2

− eσ2

}
.

Since

limn→∞e
1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 ×
(

1− 2σ2

n− r

)−n−r
2
−1

= eσ
2

and

limn→∞e
1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 × n− r + 2

n− r
×
(

1− 2σ2

n− r

)−n−r
2
−2

= eσ
2

,

we can write

e
1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 ×
(

1− 2σ2

n− r

)−n−r
2
−1

− eσ2

= o(1)

and

e
1
2

(Bi+Bj)(B
TB)−1(Bi+Bj)

T σ2 × n− r + 2

n− r
×
(

1− 2σ2

n− r

)−n−r
2
−2

− eσ2

= o(1).

As assumptions (A3.1) - (A3.4) ensure that all the terms inside the sample summations remain

bounded,

E
(
gn
(
ν̂, σ̂2

)∣∣IN ,YN) = nVar
(
Ŷ SHT
l

∣∣∣∣IN ,YN)+ o(1),
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that is

E
(
V̂2

∣∣IN ,YN) = Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)+ o
(
n−1
)
. (3.15)

Because of the boundedness assumptions, this result continues to hold for all samples, and hence

E
(
V̂2

∣∣YN) = E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN}+ o
(
n−1
)
.

Thus, V̂2 is asymptotically unbiased for E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN}.

Third, we need to show that V̂3 is asymptotically unbiased for E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}.

As before, we let fn(ν̂, σ̂2) be a sequence of functions mapping Rr+1 into R, such that

fn(ν̂, σ̂2) = nV̂3 =
n

N2

∑
i∈S

y2
i

(
eσ̂

2 − 1
)
e2Biν̂+σ̂2

.

Consider the expectation conditional on the sample, from Lemma 3.1 and Lemma 3.2, we obtain

E
{
fn(v̂, σ̂2)− nVar

(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣IN ,YN}
=

n

N2

∑
i∈S

y2
i

{
E
(
e2Biν̂+2σ̂2∣∣IN ,YN)− E

(
e2Biν̂+σ̂2∣∣IN ,YN)}

− n

N2

∑
i∈S

y2
i (e

σ2 − 1)e2Biν+σ2

=
n

N2

∑
i∈S

y2
i e

2Biνe2Bi(B
TB)−1BTi σ

2 ×

{(
1− 4σ2

n− r

)−n−r
2

−
(

1− 2σ2

n− r

)−n−r
2

}
− n

N2

∑
i∈S

y2
i (e

σ2 − 1)e2Biν+σ2

=
n

N2

∑
i∈S

y2
i e

2Biν

{[
e2Bi(B

TB)−1BTi σ
2 ×

(
1− 4σ2

n− r

)−n−r
2

− e2σ2

]

−

[
e2Bi(B

TB)−1BTi σ
2 ×

(
1− 2σ2

n− r

)−n−r
2

− eσ2

]}
.

Since

limn→∞e
2Bi(B

TB)−1BTi σ
2 ×

(
1− 4σ2

n− r

)−n−r
2

= e2σ2

and

limn→∞e
2Bi(B

TB)−1BTi σ
2 ×

(
1− 2σ2

n− r

)−n−r
2

= eσ
2

,
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we can write

e2Bi(B
TB)−1BTi σ

2 ×
(

1− 4σ2

n− r

)−n−r
2

− e2σ2

= o(1)

and

e2Bi(B
TB)−1BTi σ

2 ×
(

1− 2σ2

n− r

)−n−r
2

− eσ2

= o(1).

As assumption (A3.1) - (A3.4) ensure that all the terms inside the sample summations remain

bounded and hence that

E
{
fn(ν̂, σ̂2)

∣∣IN ,YN} = nVar
(
Ŷ HT

∣∣∣∣IN ,YN)+ o(1),

that is,

E
(
V̂3

∣∣IN ,YN) = Var
(
Ŷ HT

∣∣∣∣IN ,YN)+ o
(
n−1
)
. (3.16)

Because of the boundedness assumptions, this again continues to hold for all the samples from the

population, so that

E
(
V̂3

∣∣YN) = E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}+ o
(
n−1
)
.

Thus, V̂3 is asymptotically unbiased for E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}.

We have shown that V̂1, V̂2, V̂3 are asymptotically unbiased for E
{

Var
(
Ŷ HT

∣∣∣∣ZN ,YN

)∣∣∣∣YN},

E
{

Var
(
Ŷ SHT
l

∣∣∣∣IN ,YN)∣∣∣∣YN} and E
{

Var
(
Ŷ HT

∣∣∣∣IN ,YN)∣∣∣∣YN}, respectively. That is, the total

variance estimator V̂
(
Ŷ SHT
l

)
is asymptotically unbiased for Var

(
Ŷ SHT
l

∣∣∣∣YN).

3.6 Smoothed Hájek estimator

In this section, we consider the Hájek version of the weight smoothing estimator, which we will

refer to here as the “smoothed Hájek estimator.” The Hájek estimator is often more efficient than

the Horvitz-Thompson estimator in practice, and as will be shown further below, the smoothed Há-

jek estimator tends to be more robust to weight model misspecification than the smoothed Horvitz-

Thompson estimator. However, we do not develop the detailed asymptotic theory for this estimator

here and instead only sketch the expected results.
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Let Ŷ HA be the Hájek estimator,

Ŷ HA =

∑
i∈S wiyi∑
i∈S wi

.

Define the smoothed random variable Ỹ SHA as following

Ỹ SHA =
E
(∑

i∈S wiyi
∣∣IN ,YN)

E
(∑

i∈S wi
∣∣IN ,YN) =

∑
i∈S w̃iyi∑
i∈S w̃i

.

Then the smoothed Hájek estimator Ŷ SHA is of the form

Ŷ SHA =

∑
i∈S ŵiyi∑
i∈S ŵi

. (3.17)

In order to obtain an approximate variance for inference for Ŷ SHA, we first derive its linearized

form. Leting Ñ =
∑

i∈S w̃i and applying a Taylor expansion, we find that

Ŷ SHA = Ỹ SHA +

∂Ŷ SHA

∂ν̂

∣∣∣∣∣(
ν̂

σ̂2

)
=
(

ν

σ2

)

T

(ν̂ − ν)

+

∂Ŷ SHA

∂σ̂2

∣∣∣∣∣(
ν̂

σ̂2

)
=
(

ν

σ2

)

T (
σ̂2 − σ2

)
+ op

(∣∣ν̂ − ν, σ̂2 − σ2
∣∣)

= Ỹ SHA +
1

Ñ

∑
i∈S

yi exp

(
Biν +

σ2

2

){
Bi(ν̂ − ν) +

1

2
(σ̂2 − σ2)

}
− 1

Ñ2
T̃ SHTy ×

∑
i∈S

exp

(
Biν +

σ2

2

){
Bi(ν̂ − ν) +

1

2
(σ̂2 − σ2)

}
+ op(n

−1/2).

Letting Ai = exp
(
Biν + σ2

2

){
Bi(ν̂ − ν) + 1

2
(σ̂2 − σ2)

}
, we rewrite this as

Ŷ SHA = Ŷ SHA
l + op(n

−1/2),

where

Ŷ SHA
l = Ỹ SHA +

1

Ñ

∑
i∈S

Ai

(
yi − Ỹ SHA

)
.

As Ŷ SHA
l has the same asymptotic distribution as Ŷ SHA, we consider the variance of Ŷ SHA

l with

respect to the sampling design and the weight model. The variance of Ŷ SHA
l is written

Var
(
Ŷ SHA
l

∣∣∣∣YN) = E
{

Var
(
Ŷ SHA
l

∣∣∣∣IN ,YN)∣∣∣∣YN}+ Var
{

E
(
Ŷ SHA
l

∣∣∣∣IN ,YN)∣∣∣∣YN} . (3.18)
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As in the previous section, consider first the fact that

Var
(
Ŷ HA

∣∣∣∣YN) = Var
{

E
(
Ŷ HA

∣∣∣∣IN ,YN)∣∣∣∣YN}+ E
{

Var
(
Ŷ HA

∣∣∣∣IN ,YN)∣∣∣∣YN}
= E

{
Var
(
Ŷ HA

∣∣∣∣ZN ,YN

)∣∣∣∣YN} ,
and hence,

Var
{

E
(
Ŷ HA

∣∣∣∣IN ,YN)∣∣∣∣YN} = E
{

Var
(
Ŷ HA

∣∣∣∣ZN ,YN

)∣∣∣∣YN}− E
{

Var
(
Ŷ HA

∣∣∣∣IN ,YN)∣∣∣∣YN} .
Appling Taylor linearization again around Ỹ HA, Ŷ HA is approximated as follows

Ŷ HA ≈ Ỹ SHA +
1

Ñ

∑
i∈S

(wi − w̃i)
(
yi − Ỹ SHA

)
.

Then the second component of (3.18) is

Var
{

E
(
Ŷ SHA
l

∣∣∣∣IN ,YN)∣∣∣∣YN} = Var
(
Ỹ SHA

∣∣YN)
≈ Var

{
E
(
Ŷ HA

∣∣∣∣IN ,YN)∣∣∣∣YN} .
the first equation follows because E

(
Ai
∣∣IN ,YN) = 0. Therefore, the total variance of Ŷ SHA

l is

approximated as

Var
(
Ŷ SHA
l

∣∣∣∣YN) ≈ E
{

Var
(
Ŷ HA

∣∣∣∣ZN ,YN

)∣∣∣∣YN}
+E
[{

Var
(
Ŷ SHA
l

∣∣∣∣IN ,YN)− Var
(
Ŷ HA

∣∣∣∣IN ,YN)}∣∣∣∣YN] .(3.19)

The variance of Hájek estimator conditional on the design in (3.19) is approximated by

Var
(
Ŷ HA

∣∣∣∣ZN ,YN

)
≈ 1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)wiwj
(
yi − Ȳ

) (
yj − Ȳ

)
.

Let yic = yi − Ỹ SHA, the conditional variance Var
(
Ŷ SHA
l

∣∣∣∣IN ,YN) in (3.19) is

Var
(
Ŷ SHA
l

∣∣∣∣IN ,YN) =
1

Ñ2
Var

(∑
i∈S

Aiyic

∣∣∣∣IN ,YN
)

=
1

Ñ2

∑
i∈S

∑
j∈S

yicyjc exp
{

(Bi +Bj)ν + σ2
}{
Bi

(
BTB

)−1
BT
j σ

2

+
1

2 (n− r)
(
σ2
)2
}
.
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The variance of Hájek estimator conditional on the model in (3.19) is

Var
(
Ŷ HA

∣∣∣∣IN ,YN)
≈ Var

(
1

Ñ

∑
i∈S

wiyic

∣∣∣∣IN ,YN
)

=
1

Ñ2

∑
i∈S

y2
ic

(
eσ

2 − 1
)
e2Biν+σ2

.

Let N̂ =
∑

i∈S ŵi. Using the above approximations, a plug-in estimator for the total variance is as

follows:

V̂
(
Ŷ SHA
l

)
= V̂1 +

{
V̂2 − V̂3

}
, (3.20)

where

V̂1 =
1

N2

∑
i∈S

∑
j∈S

(πij − πiπj)
πij

wiwj

(
yi − Ŷ HA

)(
yj − Ŷ HA

)
, (3.21)

V̂2 =
1

N̂2

∑
i∈S

∑
j∈S

(
yi − Ŷ SHA

)(
yj − Ŷ SHA

)
exp

{
(Bi +Bj) ν̂ + σ̂2

}
×
{
Bi

(
BTB

)−1
BT
j σ̂

2 +
1

2 (n− r)
(
σ̂2
)2
}
, (3.22)

and

V̂3 =
1

N̂2

∑
i∈S

(
yi − Ŷ SHA

)2 (
eσ̂

2 − 1
)
e2Biν̂+σ̂2

. (3.23)

3.7 Simulation Study

3.7.1 Beaumont’s population

We begin by evaluating the performance of the smoothed Horvitz-Thompson and smoothed

Hájek estimators under the same simulation setup as in Beaumont [2008]. In this set-up, the

weight model is not correctly specified, because the relationship between the survey variables and

the weights is implicitly determined. First, a population U of 50,000 units is generated. A design
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variable zi for each population unit i is drawn from an exponential distribution with mean 30, then

increased by 0.5. The three variables of interest follow model

yki = β0 + βkzi + εki (k = 1, 2, 3),

where β0 = 30, and the εki are independent normal random variables with mean zero and variance

2000. The constants β1, β2 and β3 are chosen to yield correlation coefficients ρ1 = 0, ρ2 = 0.011/2

and ρ3 = 0.81/2, respectively. From the finite population, a set of independent samples of size

n = 100 and n = 500 are selected under pps sampling with replacement. Hence, because of this

population construction and design, y1 is unrelated to the weights, y2 is weakly related and y3 is

strongly related, but the functional form of the relationship between the survey variables and the

weights is unknown.

We start with the smoothed Horvitz-Thompson estimators. Following Beaumont [2008], eight

estimators are computed, denoted HT, SHT-U, SHT-1, SHT-2, SHT-3, SHT-1(5), SHT-2(5), SHT-

3(5). The smoothed Horvitz-Thompson estimators are obtained using different versions of (3.1).

For SHT-U estimator, we use Bi = 1. The SHT-k estimators use Bi = (1, yki), and the SHT-k(5)

are polynomial models of order 5 with Bi = (1, yki, y
2
ki, y

3
ki, y

4
ki, y

5
ki). The Monte Carlo sample

sizes are all 10,000 in the simulation.

Table 3.1 presents the relative biases (RB) and relative efficiencies (RE) of the estimators, both

expressed as percentages and computed as

RB
(
Ŷ
)

= 100
E
{

(Ŷ − Ȳ )
∣∣ZN ,YN

}
Ȳ

, (3.24)

RE
(
Ŷ
)

= 100
E
{

(Ŷ − Ȳ )2
∣∣ZN ,YN

}
E
{

(Ŷ HT − Ȳ )2
∣∣ZN ,YN

} , (3.25)

with Ŷ denoting one of the eight considered estimators. The smoothed estimators exhibit a modest

amount of bias for y1 and y2, but are still more efficient than the HT estimator for those variables,

because of the very large reduction in variance. The results are similar for the linear and the

polynomial model specification and regardless of which variables are used in the smoothing model.
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Table 3.1: Relative biases and relative efficiency of the smoothed Horvitz-Thompson estimators
under Beaumont’s population.

n Estimators Variable y1 Variable y2 Variable y3

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HT 0.16 100.00 -0.21 100.00 0.03 100.00

SHT-U -7.64 33.66 3.24 34.58 59.01 5616.54
SHT-1 -7.62 45.08 3.46 35.18 58.84 5587.91

100 SHT-2 -7.19 33.66 -7.74 47.92 57.66 5371.16
SHT-3 -11.76 41.66 -8.00 38.86 4.45 90.12

SHT-1(5) -6.32 51.02 4.45 38.63 58.04 5452.77
SHT-2(5) -5.87 34.54 -6.87 52.95 56.93 5252.78
SHT-3(5) -7.28 46.49 -4.59 46.61 -1.40 57.60

HT 0.07 100.00 0.00 100.00 0.03 100.00
SHT-U -7.98 56.48 3.15 38.66 59.02 25699.46
SHT-1 -8.24 70.03 3.20 38.93 58.98 25669.22

500 SHT-2 -7.75 55.17 -8.11 79.41 57.79 24642.40
SHT-3 -12.21 96.21 -8.19 71.46 4.35 195.99

SHT-1(5) -8.01 69.67 3.38 40.08 58.84 25554.16
SHT-2(5) -7.51 53.92 -8.00 79.66 57.66 24535.94
SHT-3(5) -8.15 68.40 -5.16 56.08 -1.69 71.78

These results are somewhat surprising for y1, since this variable is not related to the weights at all.

However, most likely because of the misspecification of the lognormal weight model itself, the

weight smoothing estimator ends up biased even in this case. For y3, the variable most strongly

related to the weights, the bias is very large when the smoothing is done with respect to other

variables and leads to highly inefficient estimation, but the bias is significantly reduced when the

weight model uses the correct variable. The efficiency is improved when the polynomial model is

used, relative to a linear model.

We next consider variance estimation and inference. Table 3.2 shows the simulation expec-

tations of V̂1, V̂2, V̂3 and V̂ as defined in (3.12), (3.13), (3.14) and (3.11), respectively, together

with the true variances for comparison. The results clearly illustrate the fact that an incorrect

model specification leads to very poor performance of the model-based variance estimator for the

smoothed Horvitz-Thompson estimators, including substantial overestimation for y1 and y2 and

even negative estimates in the case of y3. This is further confirmed in Table 3.3, which presents

the relative biases of the variance estimators as percentages, average mean lengths and coverages
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Table 3.2: Expectations of estimated variance components for smoothed Horvitz-Thompson esti-
mators, under Beaumont’s population.

n Estimators Variable y1 Variable y2

V̂1 V̂2 V̂3 V̂ Var. V̂1 V̂2 V̂3 V̂ Var.
HT 99.52 - - 99.52 96.86 99.78 - - 99.78 97.72

SHT-U 99.52 7.08 23.99 82.61 27.38 99.78 11.74 29.32 82.20 32.54
SHT-1 99.52 18.80 24.65 93.68 38.47 99.78 11.99 29.67 82.10 32.94

100 SHT-2 99.52 7.27 24.15 82.65 27.98 99.78 19.47 24.95 94.30 39.66
SHT-3 99.52 2.05 6.80 94.77 27.99 99.78 2.79 7.57 95.00 30.31

SHT-1(5) 99.52 24.98 33.56 90.94 45.85 99.78 13.79 32.09 81.48 35.38
SHT-2(5) 99.52 8.94 26.39 82.07 30.37 99.78 24.63 32.02 92.38 46.10
SHT-3(5) 99.52 3.08 7.78 94.83 40.30 99.78 3.70 8.38 95.09 43.03

HT 19.67 - - 19.67 19.71 19.91 - - 19.91 19.33
SHT-U 19.67 1.33 4.57 16.43 5.43 19.91 2.24 5.62 16.53 6.28
SHT-1 19.67 3.54 4.58 18.63 7.73 19.91 2.25 5.63 16.53 6.30

500 SHT-2 19.67 1.34 4.55 16.46 5.51 19.91 3.67 4.66 18.92 7.47
SHT-3 19.67 0.37 1.27 18.77 5.64 19.91 0.52 1.42 19.00 5.77

SHT-1(5) 19.67 3.76 4.90 18.53 7.99 19.91 2.30 5.70 16.51 6.38
SHT-2(5) 19.67 1.39 4.62 16.43 5.59 19.91 3.89 4.91 18.88 7.73
SHT-3(5) 19.67 0.42 1.33 18.76 7.54 19.91 0.54 1.46 18.99 7.65

n Estimators Variable y3

V̂1 V̂2 V̂3 V̂ Var.
HT 97.27 - - 97.27 96.14

SHT-U 97.27 332.53 506.28 -76.47 337.96
SHT-1 97.27 333.37 505.57 -74.92 339.23

100 SHT-2 97.27 322.85 485.80 -65.68 331.39
SHT-3 97.27 35.72 38.94 94.05 57.84

SHT-1(5) 97.27 336.30 501.60 -68.03 345.46
SHT-2(5) 97.27 326.36 483.24 -59.60 337.78
SHT-3(5) 97.27 26.39 26.66 97.00 52.53

HT 19.38 - - 19.38 19.96
SHT-U 19.38 64.46 97.43 -13.59 66.87
SHT-1 19.38 64.49 97.39 -13.53 66.90

500 SHT-2 19.38 62.43 93.53 -11.72 64.70
SHT-3 19.38 6.85 7.47 18.76 11.62

SHT-1(5) 19.38 64.58 97.27 -13.31 67.25
SHT-2(5) 19.38 62.56 93.41 -11.48 65.00
SHT-3(5) 19.38 4.96 5.02 19.32 10.19
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of nominal normal 95% confidence interval estimators. The mean length is 2 × 1.96
√

V̂ and the

confidence intervals are
(
Ŷ SHT − 1.96

√
V̂, Ŷ SHT − 1.96

√
V̂
)

.

We now turn to the Hájek-type estimators. We hypothesize that a Hájek-type estimator will

correct for model misspecification effects that result in a “level” mismatch between the original

and the smoothed weights, but might still result in improved efficiency if the weight variability

not related to the target survey variable(s) is removed. Therefore, we also consider a Hájek type

smoothed mean estimator Ŷ SHA as defined in (3.17). The results for the estimator are shown in

Table 3.4. For variable y1, we observed that all the smoothed Hájek estimators have small relative

biases, with the absolute values are less than 2%, and they are more efficient than the original Hájek

estimator. For variable y2, both SHA-2 and SHA-2(5) estimators now have very small relative

biases, and both of them performed well in terms of efficiency. For y3, however, the estimator

continues to be strongly biased, with only SHA-3(5) exhibiting less than 10% bias. We note that

the relationship between the weights and y3 is quite strong, with a high correlation between the

design variable and the target variable, but that the log-linear model is still misspecified, so that

even the Hájek-type estimator is not able to lead to a well-behaved weight smoothing estimator.

In comparison, for a significant but less strong model such as that between the weights and y2, the

model misspecification biasing effect was effectively removed by the Hájek-type estimator.

Table 3.5 presents the expectations of estimated variance components for the smoothed Hájek

estimators under Beaumont’s population. The variances of the smoothed Hájek estimator V̂1, V̂2,

V̂3 and the total expected variance estimator V̂ are defined in (3.21), (3.22), (3.23) and (3.20),

respectively. For variable y1 and variable y2, the expected variance estimators V̂ for the smoothed

Hájek estimators overestimate the true variance. For variable y3, the expected variance estima-

tors V̂ either overestimate or underestimate the true variance, but they are never close to the true

variances. Finally, Table 3.6 presents the relative biases of the variance estimators as percentages,

average mean lengths and coverages of 95% confidence interval estimators. The relative biases of

the variance estimators are all large, and the coverages of 95% confidence intervals are far away

from 95%. This is not surprising since the population distribution of wi−1 do not follow a mixture
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Table 3.3: Relative biases of the variance estimators, average mean lengths and coverages of 95%
confidence interval for the smoothed Horvitz-Thompson estimators under Beaumont’s population.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HT 2.75 39.11 91.84 2.10 39.16 90.48
SHT-U 201.67 35.63 99.89 152.65 35.54 99.38
SHT-1 143.47 37.94 99.62 149.20 35.52 99.39

100 SHT-2 195.38 35.64 99.88 137.76 38.07 99.65
SHT-3 238.58 38.16 99.96 213.41 38.21 99.89

SHT-1(5) 98.36 37.38 99.06 130.34 35.39 99.02
SHT-2(5) 170.23 35.51 99.77 100.40 37.68 99.06
SHT-3(5) 135.32 38.17 99.38 120.97 38.23 99.41

HT -0.19 17.39 93.11 2.96 17.49 93.54
SHT-U 202.39 15.89 99.48 163.11 15.94 99.50
SHT-1 141.04 16.92 98.89 162.51 15.94 99.49

500 SHT-2 198.80 15.90 99.49 153.46 17.05 98.64
SHT-3 232.93 16.98 98.50 229.14 17.09 99.44

SHT-1(5) 131.88 16.87 98.80 158.89 15.93 99.44
SHT-2(5) 194.15 15.89 99.48 144.33 17.03 98.43
SHT-3(5) 148.75 16.98 99.01 148.37 17.08 99.51

n Estimators Variable y3
RB (%) AL CR (%)

HT 1.18 38.66 91.09
SHT-U -122.63 NaN NA
SHT-1 -122.09 NaN NA

100 SHT-2 -119.82 NaN NA
SHT-3 62.59 38.02 95.42

SHT-1(5) -119.69 NaN NA
SHT-2(5) -117.64 NaN NA
SHT-3(5) 84.66 38.61 98.80

HT -2.93 17.26 93.12
SHT-U -120.33 NaN NA
SHT-1 -120.22 NaN NA

500 SHT-2 -118.12 NaN NA
SHT-3 61.49 16.98 82.83

SHT-1(5) -119.79 NaN NA
SHT-2(5) -117.66 NaN NA
SHT-3(5) 89.56 17.23 98.39
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Table 3.4: Relative biases and relative efficiency of the smoothed Hájek estimators under Beau-
mont’s population.

n Estimators Variable y1 Variable y2 Variable y3

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HA -0.10 100.00 0.64 100.00 1.89 100.00

SHA-U -1.75 34.31 13.08 66.57 72.84 2964.04
100 SHA-1 0.23 53.66 12.94 66.06 72.08 2903.95

SHA-2 -1.63 34.83 -0.21 52.31 70.55 2783.52
SHA-3 -0.54 43.07 4.58 45.78 18.88 252.18

SHA-1(5) 0.31 62.43 12.35 64.79 68.82 2656.05
SHA-2(5) -1.47 36.81 -0.61 61.81 67.46 2553.96
SHA-3(5) -0.59 55.56 3.26 54.76 7.44 107.55

HA -0.12 100.00 0.30 100.00 0.44 100.00
SHA-U -1.73 30.97 12.84 174.13 72.93 13535.29

500 SHA-1 0.20 47.45 12.80 173.25 72.76 13471.15
SHA-2 -1.61 31.08 -0.75 47.47 71.15 12882.95
SHA-3 -0.57 37.51 4.29 53.37 18.75 942.74

SHA-1(5) 0.23 49.39 12.67 170.74 72.12 13237.24
SHA-2(5) -1.57 31.21 -0.74 49.11 70.58 12678.30
SHA-3(5) -0.54 45.96 3.02 53.71 7.39 205.48

log-normal distribution, therefore, the model-dependent variance component estimators as shown

in (3.22) and (3.23) do not hold for an arbitrary population. Hence, variance estimators based on

the weight smoothing model continue to be inappropriate under model misspecification, despite

the improvement in the estimators themselves.

3.7.2 Simulation under correct model

We now consider a simulation in which the relationship between the weight and the target

variable are correctly specified in the sample. Consider weight model (3.1) again, and letting xi =

wi−1, then xi|yi has a Log-normal distribution of lN(Biν, σ
2) with E (xi|yi) = exp

(
Biν + σ2

2

)
under the sample. However, we are faced with an additional difficulty: in order for xi to have a

Log-normal distribution in the sample, we first need the population distribution of xi, so that we

can generate the population-level weights and hence inclusion probabilities. We apply a result of

Pfeffermann and Sverchkov [1999], who showed the following relationship between the sample
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Table 3.5: Expectations of estimated variance components for the smoothed Hájek estimators un-
der Beaumont’s population.

n Estimators Variable y1 Variable y2

V̂1 V̂2 V̂3 V̂ V V̂1 V̂2 V̂3 V̂ V
HA 58.83 - - 58.83 61.14 59.94 - - 59.94 61.82

SHA-U 58.83 0.00 18.24 40.59 20.71 59.94 0.00 18.51 41.43 20.30
SHA-1 58.83 12.80 18.45 53.18 32.80 59.94 0.13 18.63 41.45 20.43

100 SHA-2 58.83 0.13 18.13 40.83 21.06 59.94 12.72 18.60 54.06 32.36
SHA-3 58.83 0.02 5.53 53.33 26.31 59.94 0.04 5.55 54.44 25.76

SHA-1(5) 58.83 16.85 24.34 51.33 38.16 59.94 1.13 19.54 41.53 21.47
SHA-2(5) 58.83 1.10 18.98 40.95 22.32 59.94 16.92 24.29 52.57 38.20
SHA-3(5) 58.83 0.57 5.40 54.00 33.94 59.94 0.54 5.36 55.12 32.58

HA 13.81 - - 13.81 13.68 13.85 - - 13.85 13.85
SHA-U 13.81 0.00 3.70 10.11 3.97 13.85 0.00 3.75 10.11 4.02
SHA-1 13.81 2.60 3.71 12.70 6.49 13.85 0.01 3.75 10.11 4.02

500 SHA-2 13.81 0.01 3.66 10.16 4.02 13.85 2.58 3.74 12.69 6.51
SHA-3 13.81 0.00 1.12 12.70 5.10 13.85 0.00 1.12 12.74 5.15

SHA-1(5) 13.81 2.82 4.04 12.59 6.75 13.85 0.04 3.79 10.10 4.06
SHA-2(5) 13.81 0.04 3.69 10.16 4.05 13.85 2.79 3.96 12.68 6.74
SHA-3(5) 13.81 0.02 1.06 12.77 6.26 13.85 0.03 1.06 12.82 6.33

n Estimators Variable y3

V̂1 V̂2 V̂3 V̂ V
HA 237.19 - - 237.19 263.01

SHA-U 237.19 0.00 163.50 73.70 179.63
SHA-1 237.19 1.15 163.19 75.15 179.94

100 SHA-2 237.19 3.16 155.41 84.94 176.62
SHA-3 237.19 10.30 22.28 225.21 154.09

SHA-1(5) 237.19 11.32 169.97 78.54 187.96
SHA-2(5) 237.19 13.04 162.54 87.70 184.81
SHA-3(5) 237.19 22.66 25.05 234.81 207.34

HA 56.59 - - 56.59 57.56
SHA-U 56.59 0.00 32.74 23.85 35.49
SHA-1 56.59 0.05 32.69 23.95 35.52

500 SHA-2 56.59 0.49 31.10 25.98 34.88
SHA-3 56.59 2.05 4.52 54.12 30.14

SHA-1(5) 56.59 0.43 32.94 24.07 35.85
SHA-2(5) 56.59 0.81 31.34 26.06 35.16
SHA-3(5) 56.59 4.43 4.85 56.17 38.76
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Table 3.6: Relative biases of the variance estimators, average mean lengths and coverages of 95%
confidence interval for the smoothed Hájek estimators under Beaumont’s population.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HA -3.78 30.07 92.00 -3.04 30.35 92.03
SHA-U 96.02 24.97 99.41 104.12 25.23 96.35
SHA-1 62.11 28.59 98.69 102.93 25.24 96.38

100 SHA-2 93.86 25.05 99.31 67.07 28.82 98.87
SHA-3 102.70 28.63 99.46 111.34 28.92 99.40

SHA-1(5) 34.52 28.09 97.34 93.46 25.26 96.43
SHA-2(5) 83.49 25.08 99.11 37.63 28.42 97.89
SHA-3(5) 59.10 28.81 98.45 69.18 29.10 98.71

HA 0.96 14.57 94.33 0.04 14.59 94.63
SHA-U 154.48 12.46 99.76 151.52 12.46 80.88
SHA-1 95.80 13.97 99.38 151.18 12.46 81.13

500 SHA-2 152.38 12.49 99.77 95.00 13.97 99.48
SHA-3 148.80 13.97 99.85 147.38 13.99 99.26

SHA-1(5) 86.48 13.91 99.12 148.62 12.46 81.56
SHA-2(5) 150.74 12.49 99.79 88.14 13.96 99.35
SHA-3(5) 103.98 14.01 99.45 102.51 14.04 99.07

n Estimators Variable y3
RB (%) AL CR (%)

HA -9.82 60.37 86.13
SHA-U -58.97 33.65 0.00
SHA-1 -58.23 33.98 0.00

100 SHA-2 -51.91 36.13 0.00
SHA-3 46.16 58.83 70.66

SHA-1(5) -58.21 34.74 0.00
SHA-2(5) -52.55 36.71 0.00
SHA-3(5) 13.25 60.07 92.58

HA -1.68 29.49 91.18
SHA-U -32.81 19.14 0.00
SHA-1 -32.58 19.18 0.00

500 SHA-2 -25.52 19.98 0.00
SHA-3 79.59 28.84 6.39

SHA-1(5) -32.85 19.23 0.00
SHA-2(5) -25.90 20.01 0.00
SHA-3(5) 44.92 29.38 82.19
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and population distribution functions for pairs of vector random variables (ui,vi):

fp(ui|vi) =
Es(wi|ui,vi)fs(ui|vi)

Es(wi|vi)
,

where fp, fs are the distribution functions in the population and sample, respectively, and Ep,Es

the corresponding expectations. Thus, applying this to (ui,vi) = (xi, yi), we have

fp(xi|yi) =
Es(wi|xi, yi)fs(xi|yi)

Es(wi|yi)
,

where

fs(xi|yi) =
1

xiσ
√

2π
exp

{
−(lnxi −Biν)2

2σ2

}
,

Es(wi|xi, yi) = wi = xi + 1,

Es(wi|yi) = 1 + exp

(
Biν +

σ2

2

)
.

From this, we immediately obtain

fp(xi|yi)

=

{
1 + exp

(
Biν +

σ2

2

)}−1(
1 +

1

xi

)
1

σ
√

2π
exp

{
−(lnxi −Biν)2

2σ2

}

=

{
1 + exp

(
Biν +

σ2

2

)}−1
1

xiσ
√

2π
exp

{
−(lnxi −Biν)2

2σ2

}

+ exp

(
Biν +

σ2

2

){
1 + exp

(
Biν +

σ2

2

)}−1
1

xiσ
√

2π
exp

{
−(lnxi −Biν − σ2)

2

2σ2

}
,

which is the probability density function of a mixture of two Log-Normal distributions lN(Biν, σ
2)

and lN(Biν + σ2, σ2) with proportions p =
{

1 + exp
(
Biν + σ2

2

)}−1

and 1− p, respectively.

We are interested in evaluating the effect of different model specifications on the behavior of

the weight smoothing estimator. In order to create a population with multiple variables, some of

which are in the weight smoothing model and others which are not, we generate four variables of

interest from a multivariate normal distribution,
y1i

y2i

y3i

y4i

 i.i.d.∼ N




6
6
6
6

 ,


1 0 0.2 −0.5
0 1 0 0

0.2 0 1 0
−0.5 0 0 1


 , i = 1, · · · , N.

79



Then, we consider the following simple linear regression model under the sample

log(wi − 1) = β0 + β1y1i + β2y2i + εi,

where εi ∼ N(0, σ2). Both variables y1 and y2 are part of the weight model, while y3 and y4

are correlated, weakly positively and strongly negatively, respectively, with y1. Then, xi = wi −

1|y1i, y2i ∼ lN(β0 + β1y1i + β2y2i, σ
2) under the sample. Thus, the population xi of 50,000 units

is generated from a mixture of two Log-Normal distributions of lN(β0 + β1y1i + β2y2i, σ
2) and

lN(β0 +β1y1i +β2y2i +σ2, σ2) with the proportion p =
{

1 + exp
(
β0 + β1y1i + β2y2i + σ2

2

)}−1

and 1− p, respectively.

Following construction of these population variables and weights, independent samples of size

n = 100 and n = 500 are generated under pps sampling with replacement, with the selection

probabilities proportional to 1/wi. This results in samples in which the sample weight model is

lognormal, as desired. For n = 100, the constants β0, β1, β2, σ2 are chosen to yield the population

correlation coefficients ρw,y1 = 0.136, ρw,y2 = −0.267, ρw,y3 = 0.026 and ρw,y4 = −0.066. For

n = 500, the constants β0, β1, β2, σ2 are chosen to yield the population correlation coefficients

ρw,y1 = 0.127, ρw,y2 = −0.221, ρw,y3 = 0.025 and ρw,y4 = −0.063. The Monte Carlo sample sizes

are all 10,000 in the simulation.

Five estimators are computed: Horvitz-Thompson (HT), and four different weight smoothing

estimators, denoted SHT-U, SHT-1, SHT-2, SHT-12. The parameter estimates ν̂ and σ̂2 in these

last four estimators are obtained by fitting model (3.1) for different sets of covariates. The SHT-U

estimator contains Bi = 1 only, while the SHT-1 estimator adds Bi = y1i, the SHT-2 estimator

adds Bi = y2i and the SHT-12 estimator adds Bi = (y1i, y2i). We compute the means and

variances of five estimators for all y1, y2, y3 and y4 variables separately.

Table 3.7 presents the relative biases (RB) and relative efficiencies (RE) as in (3.24) and (3.25).

The SHT-12 estimator is unbiased and efficient for all four variables, since the SHT-12 estimator

is from the smoothed weight with Bi = (1, y1i, y2i), so that SHT-12 holds under the true model.

For variable y1, the estimators SHT-1 and SHT-12 are both unbiased and more efficient than the
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Table 3.7: Relative biases and relative efficiency of the smoothed Horvitz-Thompson estimators
under correct model.

n Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HT 0.13 100.00 0.09 100.00 0.17 100.00 0.10 100.00

SHT-U -3.18 74.25 6.36 122.93 -0.56 77.36 1.39 84.92
100 SHT-1 0.47 80.38 6.84 127.43 0.60 80.40 0.37 81.92

SHT-2 -2.68 74.67 0.31 85.54 -0.13 78.53 1.82 86.70
SHT-12 0.76 81.15 0.76 87.02 0.89 81.46 0.75 83.18

HT -0.20 100.00 -0.17 100.00 -0.20 100.00 -0.14 100.00
SHT-U -4.71 75.70 8.69 183.83 -0.97 66.80 2.67 81.14

500 SHT-1 0.15 65.84 8.87 187.75 0.17 68.30 0.40 69.43
SHT-2 -4.61 75.66 -0.02 72.29 -0.75 67.21 2.78 81.86

SHT-12 0.35 66.52 0.13 72.63 0.41 69.23 0.54 70.04

HT estimator. Since the smoothed weights from model depend on y1, so that SHT-1 estimator is

an unbiased and efficient estimator for the mean of y1. As the sample size increases to n = 500,

the estimators SHT-1 and SHT-12 are more efficient than the HT estimator, the SHT-U estimator

and the SHT-2 estimator. Similarly, for variable y2, the estimators SHT-2 and SHT-12 are both

unbiased and more efficient than the HT estimator, the SHT-U estimator and the SHT-2 estimator.

Hence, as long as the variable being estimated is included in the weight model, the resulting weight

smoothing estimator remains unbiased and is efficient. However, if a variable is part of the true

weight model but is not included in the model fitting, the resulting estimator is biased.

For variable y3, the estimators SHT-U, SHT-1, SHT-2 and SHT-12 are approximately unbiased

and more efficient than HT, due to the moderate correlation betweenw and y3. For variable y4, both

estimators SHT-1 and SHT-12 are unbiased and efficient since y4 is strongly correlated with y1, so

their relative biases and relative efficiencies have similar performance to y1 as expected. Unlike

for y3, SHT-U is biased for y4, because the stronger correlation with y1 requires that covariate to

be part of the weight smoothing model. We conclude from these results that the weight smoothing

estimator appears to perform well when the correct variables are included as model predictors, both

for these target variables and for other variables that are correlated with these model predictors.

Table 3.8 presents the simulated expected values of V̂1, V̂2, V̂3 and V̂ as defined in (3.12),

(3.13), (3.14) and (3.11), respectively. The true variances are also provided for comparison. The
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Table 3.8: Expectations of estimated variance components for smoothed Horvitz-Thompson esti-
mators, under correct model.

n Estimators Variable y1 Variable y2

V̂1 V̂2 V̂3 V̂ Var. V̂1 V̂2 V̂3 V̂ Var.
HT 0.948 - - 0.948 0.950 0.710 - - 0.710 0.713

SHT-U 0.948 0.646 0.805 0.789 0.669 0.710 0.781 0.969 0.522 0.731
100 SHT-1 0.948 0.728 0.917 0.758 0.763 0.710 0.780 0.970 0.519 0.740

SHT-2 0.948 0.598 0.758 0.788 0.683 0.710 0.595 0.702 0.603 0.610
SHT-12 0.948 0.663 0.850 0.761 0.769 0.710 0.591 0.700 0.601 0.618

HT 0.407 - - 0.407 0.411 0.297 - - 0.297 0.299
SHT-U 0.407 0.225 0.348 0.285 0.231 0.297 0.293 0.450 0.140 0.278

500 SHT-1 0.407 0.259 0.414 0.252 0.270 0.297 0.288 0.445 0.139 0.278
SHT-2 0.407 0.205 0.327 0.286 0.234 0.297 0.209 0.298 0.207 0.216

SHT-12 0.407 0.233 0.388 0.252 0.273 0.297 0.203 0.293 0.207 0.217
n Estimators Variable y3 Variable y4

V̂1 V̂2 V̂3 V̂ Var. V̂1 V̂2 V̂3 V̂ Var.
HT 0.882 - - 0.882 0.892 0.827 - - 0.827 0.834

SHT-U 0.882 0.681 0.848 0.715 0.689 0.827 0.709 0.882 0.654 0.701
100 SHT-1 0.882 0.696 0.873 0.705 0.716 0.827 0.678 0.833 0.672 0.683

SHT-2 0.882 0.629 0.795 0.715 0.700 0.827 0.655 0.828 0.654 0.711
SHT-12 0.882 0.636 0.810 0.707 0.724 0.827 0.621 0.777 0.671 0.692

HT 0.367 - - 0.367 0.370 0.343 - - 0.343 0.348
SHT-U 0.367 0.244 0.375 0.236 0.244 0.343 0.262 0.403 0.203 0.257

500 SHT-1 0.367 0.247 0.386 0.228 0.252 0.343 0.240 0.362 0.221 0.241
SHT-2 0.367 0.223 0.355 0.236 0.247 0.343 0.239 0.378 0.204 0.257

SHT-12 0.367 0.223 0.362 0.229 0.255 0.343 0.217 0.338 0.221 0.243
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Table 3.9: Relative biases of the variance estimators, average mean lengths and coverages of 95%
confidence interval for the smoothed Horvitz-Thompson estimators, under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HT -0.23 3.82 90.57 -0.48 3.30 91.45

SHT-U 17.93 3.48 96.77 -28.56 2.83 87.71
100 SHT-1 -0.59 3.41 95.23 -29.86 2.82 87.02

SHT-2 15.28 3.48 96.68 -1.02 3.05 95.24
SHT-12 -1.07 3.42 95.04 -2.77 3.04 94.92

HT -0.80 2.50 91.14 -0.78 2.14 91.83
SHT-U 23.40 2.09 94.82 -49.54 1.47 66.84

500 SHT-1 -6.78 1.97 94.02 -49.93 1.46 66.15
SHT-2 21.98 2.09 94.85 -4.14 1.78 94.63

SHT-12 -7.48 1.97 94.03 -4.85 1.78 94.44
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.15 3.68 90.77 -0.89 3.56 90.71

SHT-U 3.83 3.32 95.77 -6.71 3.17 94.43
100 SHT-1 -1.54 3.29 95.05 -1.66 3.21 95.14

SHT-2 2.09 3.31 95.56 -8.10 3.17 94.04
SHT-12 -2.28 3.30 94.94 -2.96 3.21 94.87

HT -0.65 2.38 91.76 -1.39 2.30 91.97
SHT-U -3.18 1.90 94.78 -21.11 1.76 90.37

500 SHT-1 -9.71 1.87 93.76 -8.42 1.84 93.87
SHT-2 -4.38 1.90 94.66 -20.79 1.77 90.30

SHT-12 -10.52 1.87 93.62 -8.77 1.84 93.76

expected estimated variances V̂ are close to the true variances when the correct variables are in-

cluded as model predictors. As shown in Table 3.7, the variance component V̂2 is always smaller

on average than V̂3, leading to a reduction in the estimated overall variance.

Table 3.9 presents the relative biases of the variance estimators as percentages, and the average

mean lengths and coverages of nominal 95% confidence interval estimators. All four smoothed

estimators have slight advantages in the mean length compare to the mean length of the Horvitz-

Thompson estimator. The SHT-12 estimators show good coverages, which is close to 95%. This

is what we expected since the smoothed weights of SHT-12 are from the underlying model, which

should fit the data well for all the variables. Similar to the results shown in Table 3.7, SHT-

1 variance estimators have small relative biases and the coverages are all close to 95% for the
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variables y1, y3 and y4 since both y3 and y4 correlate with y1. Instead, SHT-2 variance estimators

have small relative biases and the coverages are all close to 95% for the variable y2.

Table 3.10: Relative biases and relative efficiency of the smoothed Hájek estimators, under correct
model.

n Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HA -0.10 100.00 0.17 100.00 0.01 100.00 0.01 100.00

SHA-U -3.14 147.71 6.51 482.96 -0.49 35.74 1.47 57.46
100 SHA-1 -0.06 69.84 6.41 471.96 0.12 35.69 -0.07 43.21

SHA-2 -3.06 147.40 0.10 70.03 -0.49 40.86 1.48 63.60
SHA-12 -0.09 70.37 0.12 70.22 0.10 40.58 0.00 47.58

HA -0.08 100.00 0.09 100.00 -0.03 100.00 0.06 100.00
SHA-U -4.90 789.36 8.50 2005.53 -1.16 63.70 2.48 220.48

500 SHA-1 -0.21 51.78 8.52 2012.99 -0.18 22.79 0.07 27.93
SHA-2 -4.93 804.75 -0.29 50.34 -1.07 63.55 2.45 221.51

SHA-12 -0.17 53.36 -0.32 51.82 -0.09 28.68 0.06 32.66

The Hájek type smoothed estimators are also considered under correct model. Table 3.10

presents the relative biases and relative efficiency of the smoothed Hájek estimators under correct

model. For all variables, the resulting weight smoothing estimators are unbiased and efficient as

long as the variable being estimated is included in the weight model. Table 3.11 presents the sim-

ulated expected variance components for smoothed Hájek estimators under correct model. The

variance components for smoothed Hájek estimators are all small compared to smoothed Horvitz-

Thompson estimators. Table 3.12 represents the relative biases of the variance estimators as per-

centages, and the average mean lengths and coverages of 95% confidence interval for the smoothed

Hájek estimators under correct model. For n = 100, the SHA-12 estimators show good coverages,

which is close to 95%. Similar to the results shown in Table 3.10, the SHA-1 estimators show

good coverages for the variable y1, y3 and y4, while the SHA-2 estimators show good coverages

for the variable y2 as expected. However, as n increases to 500, the coverages for all smoothed

estimators degrade and are below 95%, even for the SHA-12 estimators. This suggests that model-

based variance estimator might not be appropriate for the Hájek-type estimators, but further study

is warranted.
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Table 3.11: Expectations of estimated variance components for smoothed Hájek estimators, under
correct model.

n Estimators Variable y1 Variable y2

V̂1 V̂2 V̂3 V̂ Var. V̂1 V̂2 V̂3 V̂ Var.
HA 0.030 0.000 0.000 0.030 0.031 0.032 0.000 0.000 0.032 0.034

SHA-U 0.030 0.000 0.021 0.008 0.010 0.032 0.000 0.022 0.010 0.010
100 SHA-1 0.030 0.011 0.022 0.019 0.021 0.032 0.000 0.022 0.010 0.011

SHA-2 0.030 0.000 0.020 0.010 0.012 0.032 0.010 0.023 0.019 0.024
SHA-12 0.030 0.009 0.020 0.019 0.022 0.032 0.010 0.023 0.019 0.024

HA 0.011 0.000 0.000 0.011 0.011 0.013 0.000 0.000 0.013 0.013
SHA-U 0.011 0.000 0.010 0.001 0.002 0.013 0.000 0.010 0.002 0.002

500 SHA-1 0.011 0.003 0.011 0.004 0.006 0.013 0.000 0.010 0.002 0.002
SHA-2 0.011 0.000 0.009 0.002 0.003 0.013 0.003 0.012 0.004 0.006

SHA-12 0.011 0.003 0.010 0.004 0.006 0.013 0.003 0.012 0.004 0.006
n Estimators Variable y3 Variable y4

V̂1 V̂2 V̂3 V̂ Var. V̂1 V̂2 V̂3 V̂ Var.
HA 0.029 0.000 0.000 0.029 0.030 0.029 0.000 0.000 0.029 0.031

SHA-U 0.029 0.000 0.021 0.008 0.010 0.029 0.000 0.022 0.008 0.010
100 SHA-1 0.029 0.001 0.021 0.009 0.011 0.029 0.003 0.022 0.010 0.013

SHA-2 0.029 0.000 0.020 0.010 0.012 0.029 0.000 0.020 0.009 0.012
SHA-12 0.029 0.001 0.019 0.011 0.012 0.029 0.003 0.020 0.012 0.015

HA 0.011 0.000 0.000 0.011 0.011 0.011 0.000 0.000 0.011 0.011
SHA-U 0.011 0.000 0.010 0.001 0.002 0.011 0.000 0.010 0.001 0.002

500 SHA-1 0.011 0.000 0.010 0.001 0.002 0.011 0.001 0.010 0.002 0.003
SHA-2 0.011 0.000 0.009 0.001 0.003 0.011 0.000 0.009 0.002 0.003

SHA-12 0.011 0.000 0.009 0.001 0.003 0.011 0.001 0.009 0.002 0.004
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Table 3.12: Relative biases of the variance estimators, average mean lengths and coverages of 95%
confidence interval for the smoothed Hájek estimators, under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HA -2.84 0.676 91.32 -5.00 0.701 89.17

SHA-U -14.49 0.359 47.15 -0.02 0.395 2.81
100 SHA-1 -13.43 0.533 93.38 -1.83 0.401 3.71

SHA-2 -11.26 0.397 56.13 -20.52 0.537 92.01
SHA-12 -11.35 0.542 93.69 -19.75 0.540 92.02

HA -0.78 0.413 92.19 -2.18 0.443 90.95
SHA-U -47.97 0.126 0.00 18.71 0.192 0.00

500 SHA-1 -31.58 0.244 89.07 12.39 0.196 0.00
SHA-2 -36.67 0.161 0.01 -42.52 0.235 85.61

SHA-12 -32.06 0.248 89.31 -41.03 0.241 85.94
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HA -3.38 0.670 91.68 -5.63 0.669 91.57

SHA-U -21.66 0.346 90.53 -24.10 0.340 79.09
100 SHA-1 -20.17 0.363 91.87 -22.53 0.398 91.54

SHA-2 -16.56 0.384 91.58 -19.86 0.380 81.97
SHA-12 -14.21 0.402 92.98 -18.51 0.429 92.35

HA -1.28 0.403 93.75 -1.49 0.408 93.19
SHA-U -68.46 0.098 31.96 -67.19 0.102 1.55

500 SHA-1 -60.83 0.118 76.68 -47.85 0.156 84.08
SHA-2 -57.14 0.133 51.23 -40.07 0.155 8.84

SHA-12 -51.76 0.150 82.46 -35.88 0.188 88.48
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3.8 Replicate Variance Estimation

3.8.1 Proposed estimator

As discussed in the previous section, the weight smoothing estimator appears to be reasonably

robust to model misspecification when it is implemented as a Hájek-type estimator. However, even

that modification was ineffective in producing reliable model-based variance estimators. Here, we

investigate jackknife variance estimation as a more robust and practical alternative. We consider

the widely used delete-a-group jackknife (DAGJK), as described in Kott [2001].

Let R denote the number of variance replication groups. The sample is divided into R random

groups of sizem, and we assume n = mR for simplicity. We investigate two procedures to perform

DAGJK variance estimation, depending on whether the weights are smoothed before or after the

creation of the replicates. The first procedure, which we will denote by JK−A, creates weights as

follows: for r = 1, · · · , R, delete the rth group, fit weight model (3.1) on the remaining observa-

tions to obtain replicate model predictions ŵr,i, and create replicate weights ŵ(r)
i = ŵr,i/(1−R−1).

Then, the rth replicate of the smoothed Horvitz-Thompson estimator is

Ŷ HT (r) =
1

N

∑
i∈S(r)

ŵ
(r)
i yi, (3.26)

with S(r) denoting the sample remaining after remove the rth group. The jackknife variance esti-

mator is then defined as either

V̂JK1−A =
R− 1

R
×

R∑
r=1

(
Ŷ HT (r) − Ŷ HT

)2

, (3.27)

or

V̂JK2−A =
R− 1

R
×

R∑
r=1

(
Ŷ HT (r) − Ȳ R

)2

, (3.28)

with Ȳ R =
∑R

r=1 Ŷ
HT (r)/R. For the second procedure, denoted JK − B, the smoothed weights

ŵi are not recomputed in each replicate. Instead, group r is removed and the replicate weights are

ŵ
(r)
i = ŵi/(1 − R−1). Two jackknife variance estimators, JK1 − B and JK2 − B, are defined

completely analogously as above. All these replication variants can readily be applied to the Hájek-

type estimators, by using the suitably modified replication weights in the Hájek estimators.
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3.8.2 Beamont’s population

We evaluate the performance of JKDAG variance estimators for the smoothed Horvitz-Thompson

estimators under the setup from Beaumont [2008] as described in Section 7.1, and we set R = 20.

Table 3.13 through Table 3.16 represent the relative biases of the jackknife variance estimators, av-

erage mean lengths and coverages of 95% confidence interval estimators for JK1−A, JK1−B,

JK1−B and JK2−B, respectively. For JK − A, the jackknife variance estimators for SHT-1,

SHT-2 and SHT-3 have moderate relative biases, with the absolute values less than 5%. However,

the smoothed estimators have poor coverages, due to the bias of the estimators themselves shown

in Table 3.1. For JK −B, all the smoothed estimators perform badly.

We implement the JKDAG variance estimator for the Hájek-type weight smoothing estimators.

Table 3.17 through Table 3.20 present the relative biases of the JK1 − A, JK2 − A, JK1 −

B and JK2 − B variance estimators, average mean lengths and coverages of 95% confidence

interval for the Hájek estimators, respectively. The JK1 and JK2 continue to have similar results,

and JK − B fails to result in reasonable variance estimation across all cases. In contrast, the

JK − A variance estimators have modest bias and coverage for the weight smoothing estimators

that is at least as good as for the unsmoothed estimator, when the estimator itself is appropriate.

Specifically, for y1, which is uncorrelated with the weights, the weight smoothing estimator is

approximately unbiased regardless of which survey variable is used as a covariate in the weight

model, and the JK − A variance estimators result in confidence intervals that are narrower than

for the Hájek estimator and have close to nominal coverage. For y2, only the weight smoothing

estimators that use y2 as covariate are unbiased, and JK − A leads to narrow intervals with good

coverage. When weight smoothing is done without y2 as a covariate, the bias in the estimator

leads to significant undercoverage. For y3, poor performance of the estimator continues to lead to

unacceptable inference.

3.8.3 Simulation under correct model

We evaluate the JKDAG variance estimators under the correct weight model distribution. The

set-up is identical to that in Section 7.2. Table 3.21 through 3.24 present the relative biases of
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Table 3.13: Relative biases of the JK1 − A variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under Beaumont’s model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HT 3.17 39.19 90.73 1.75 39.09 89.53
SHT-U 2.19 20.74 87.21 0.51 22.42 93.75

100 SHT-1 4.40 24.84 88.62 0.90 22.60 93.86
SHT-2 2.67 21.01 87.95 0.04 24.69 86.47
SHT-3 4.07 21.16 83.35 0.27 21.61 85.66

SHT-1(5) 10.60 27.91 89.71 5.50 23.95 94.52
SHT-2(5) 7.76 22.43 89.59 7.86 27.64 88.24
SHT-3(5) 10.37 26.14 88.45 4.84 26.33 89.31

HT -0.45 17.36 91.93 2.91 17.49 92.19
SHT-U 0.18 9.15 77.15 1.65 9.91 92.82

500 SHT-1 -0.18 10.89 79.89 1.81 9.92 92.81
SHT-2 0.00 9.20 78.10 2.91 10.87 77.66
SHT-3 -0.10 9.30 61.55 2.36 9.53 73.29

SHT-1(5) 0.99 11.14 81.01 2.36 10.01 92.76
SHT-2(5) 0.75 9.30 79.24 3.83 11.10 78.57
SHT-3(5) 0.74 10.81 80.12 3.36 11.02 86.05

n Estimators Variable y3
RB (%) AL CR (%)

HT 1.05 38.64 90.08
SHT-U 2.31 72.89 0.01
SHT-1 2.85 73.22 0.01

100 SHT-2 2.10 72.11 0.01
SHT-3 1.85 30.09 93.14

SHT-1(5) 5.40 74.80 0.02
SHT-2(5) 4.47 73.64 0.06
SHT-3(5) 2.24 28.73 89.35

HT -3.34 17.22 91.60
SHT-U 0.46 32.13 0.00
SHT-1 0.60 32.16 0.00

500 SHT-2 0.80 31.66 0.00
SHT-3 -2.28 13.21 67.26

SHT-1(5) 0.88 32.29 0.00
SHT-2(5) 1.10 31.78 0.00
SHT-3(5) -3.98 12.26 84.90
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Table 3.14: Relative biases of the JK2 − A variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under Beaumont’s model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HT 3.17 39.19 90.73 1.75 39.09 89.53
SHT-U 2.18 20.74 87.21 0.50 22.42 93.75

100 SHT-1 4.38 24.84 88.62 0.88 22.60 93.86
SHT-2 2.64 21.01 87.95 0.02 24.69 86.47
SHT-3 4.06 21.16 83.34 0.26 21.61 85.66

SHT-1(5) 10.21 27.86 89.69 5.25 23.92 94.52
SHT-2(5) 7.44 22.39 89.55 7.39 27.58 88.21
SHT-3(5) 10.16 26.12 88.43 4.63 26.30 89.31

HT -0.45 17.36 91.93 2.91 17.49 92.19
SHT-U 0.18 9.15 77.15 1.65 9.91 92.82

500 SHT-1 -0.19 10.89 79.89 1.80 9.92 92.80
SHT-2 0.00 9.20 78.10 2.91 10.87 77.66
SHT-3 -0.10 9.30 61.55 2.36 9.53 73.29

SHT-1(5) 0.94 11.13 81.00 2.33 10.01 92.75
SHT-2(5) 0.71 9.30 79.24 3.78 11.10 78.57
SHT-3(5) 0.72 10.80 80.12 3.34 11.02 86.05

n Estimators Variable y3
RB (%) AL CR (%)

HT 1.05 38.64 90.08
SHT-U 2.30 72.89 0.01
SHT-1 2.84 73.22 0.01

100 SHT-2 2.09 72.10 0.01
SHT-3 1.84 30.09 93.13

SHT-1(5) 5.29 74.76 0.02
SHT-2(5) 4.37 73.60 0.05
SHT-3(5) 2.17 28.72 89.34

HT -3.34 17.22 91.60
SHT-U 0.46 32.13 0.00
SHT-1 0.60 32.16 0.00

500 SHT-2 0.80 31.66 0.00
SHT-3 -2.28 13.21 67.26

SHT-1(5) 0.87 32.29 0.00
SHT-2(5) 1.09 31.78 0.00
SHT-3(5) -4.00 12.26 84.90
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Table 3.15: Relative biases of the JK1 − B variance estimation for the smoothed Horvitz-
Thompson variance estimators, average mean lengths and coverages of 95% confidence interval
estimators under Beaumont’s model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HT 3.17 39.19 90.73 1.75 39.09 89.53
SHT-U -36.86 16.30 80.07 -45.88 16.45 83.35

100 SHT-1 -53.63 16.56 74.98 -45.69 16.58 83.51
SHT-2 -36.27 16.55 80.88 -59.59 15.69 70.60
SHT-3 -19.68 18.59 79.92 -25.69 18.60 82.07

SHT-1(5) -40.81 20.42 78.63 -42.94 17.61 84.09
SHT-2(5) -34.17 17.53 82.90 -49.16 18.98 74.44
SHT-3(5) -10.63 23.52 86.46 -16.11 23.55 87.07

HT -0.45 17.36 91.93 2.91 17.49 92.19
SHT-U -37.81 7.21 66.05 -44.93 7.29 81.13

500 SHT-1 -56.09 7.22 61.71 -44.83 7.31 81.33
SHT-2 -37.48 7.27 67.24 -59.03 6.86 55.28
SHT-3 -22.45 8.20 54.28 -23.73 8.23 66.27

SHT-1(5) -53.53 7.55 63.85 -44.53 7.37 81.07
SHT-2(5) -37.11 7.35 68.61 -57.01 7.15 57.04
SHT-3(5) -16.47 9.84 76.56 -16.37 9.91 82.35

n Estimators Variable y3
RB (%) AL CR (%)

HT 1.05 38.64 90.08
SHT-U -53.88 48.94 0.00
SHT-1 -54.17 48.88 0.00

100 SHT-2 -54.69 48.03 0.00
SHT-3 -77.09 14.27 55.87

SHT-1(5) -55.36 48.68 0.01
SHT-2(5) -55.77 47.91 0.01
SHT-3(5) -75.59 14.04 53.40

HT -3.34 17.22 91.60
SHT-U -54.20 21.69 0.00
SHT-1 -54.24 21.69 0.00

500 SHT-2 -54.30 21.32 0.00
SHT-3 -78.05 6.26 26.50

SHT-1(5) -54.53 21.68 0.00
SHT-2(5) -54.59 21.30 0.00
SHT-3(5) -79.44 5.67 48.61
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Table 3.16: Relative biases of the JK2 − B variance estimation for the smoothed Horvitz-
Thompson esitmators, average mean lengths and coverages of 95% confidence interval estimators
under Beaumont’s model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HT 3.17 39.19 90.73 1.75 39.09 89.53
SHT-U -36.86 16.30 80.07 -45.88 16.45 83.35

100 SHT-1 -53.63 16.56 74.98 -45.69 16.58 83.51
SHT-2 -36.27 16.55 80.88 -59.59 15.69 70.60
SHT-3 -19.68 18.59 79.92 -25.69 18.60 82.07

SHT-1(5) -40.81 20.42 78.63 -42.94 17.61 84.09
SHT-2(5) -34.17 17.53 82.90 -49.16 18.98 74.44
SHT-3(5) -10.63 23.52 86.46 -16.11 23.55 87.07

HT -0.45 17.36 91.93 2.91 17.49 92.19
SHT-U -37.81 7.21 66.05 -44.93 7.29 81.13

500 SHT-1 -56.09 7.22 61.71 -44.83 7.31 81.33
SHT-2 -37.48 7.27 67.24 -59.03 6.86 55.28
SHT-3 -22.45 8.20 54.28 -23.73 8.23 66.27

SHT-1(5) -53.53 7.55 63.85 -44.53 7.37 81.07
SHT-2(5) -37.11 7.35 68.61 -57.01 7.15 57.04
SHT-3(5) -16.47 9.84 76.56 -16.37 9.91 82.35

n Estimators Variable y3
RB (%) AL CR (%)

HT 1.05 38.64 90.08
SHT-U -53.88 48.94 0.00
SHT-1 -54.17 48.88 0.00

100 SHT-2 -54.69 48.03 0.00
SHT-3 -77.09 14.27 55.87

SHT-1(5) -55.36 48.68 0.01
SHT-2(5) -55.77 47.91 0.01
SHT-3(5) -75.59 14.04 53.40

HT -3.34 17.22 91.60
SHT-U -54.20 21.69 0.00
SHT-1 -54.24 21.69 0.00

500 SHT-2 -54.30 21.32 0.00
SHT-3 -78.05 6.26 26.50

SHT-1(5) -54.53 21.68 0.00
SHT-2(5) -54.59 21.30 0.00
SHT-3(5) -79.44 5.67 48.61
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Table 3.17: Relative biases of the JK1 − A variance estimation for the smoothed Hájek estima-
tors, average mean lengths and coverages of 95% confidence interval estimators under Beaumont’s
model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HA 2.22 30.99 92.67 3.56 31.36 92.79
SHA-U -2.83 17.58 92.98 0.79 17.73 81.21

100 SHA-1 0.56 22.51 93.34 1.62 17.86 81.49
SHA-2 -1.97 17.81 93.10 3.05 22.64 93.85
SHA-3 -0.35 20.07 93.17 2.75 20.17 92.35

SHA-1(5) 5.29 24.85 93.47 7.07 18.79 83.77
SHA-2(5) 2.39 18.74 93.71 7.89 25.16 94.00
SHA-3(5) 4.37 23.33 93.32 8.31 23.29 93.04

HA 2.91 14.71 93.50 1.26 14.68 93.81
SHA-U 0.98 7.85 92.65 1.77 7.93 39.58

500 SHA-1 1.43 10.06 93.58 1.99 7.94 39.82
SHA-2 1.06 7.91 92.83 2.10 10.11 93.76
SHA-3 1.79 8.93 93.59 1.99 8.98 88.45

SHA-1(5) 3.04 10.34 93.66 3.07 8.02 41.27
SHA-2(5) 2.00 7.97 92.92 3.46 10.35 93.94
SHA-3(5) 3.15 9.96 93.72 2.45 9.98 91.44

n Estimators Variable y3
RB (%) AL CR (%)

HA 1.16 63.94 88.89
SHA-U -1.21 52.22 0.00
SHA-1 -0.16 52.54 0.00

100 SHA-2 0.18 52.14 0.00
SHA-3 -0.44 48.55 53.43

SHA-1(5) 8.24 55.91 0.36
SHA-2(5) 8.86 55.60 0.45
SHA-3(5) 1.21 56.79 83.41

HA 1.11 29.90 91.43
SHA-U 0.18 23.38 0.00
SHA-1 0.24 23.39 0.00

500 SHA-2 0.45 23.20 0.00
SHA-3 1.49 21.68 1.77

SHA-1(5) 1.78 23.68 0.00
SHA-2(5) 1.65 23.44 0.00
SHA-3(5) 1.87 24.63 65.20
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Table 3.18: Relative biases of the JK2 − A variance estimation for the smoothed Hájek estima-
tors, average mean lengths and coverages of 95% confidence interval estimators under Beaumont’s
model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HA 2.14 30.98 92.67 3.46 31.35 92.79
SHA-U -2.83 17.58 92.98 0.79 17.73 81.21

100 SHA-1 0.56 22.51 93.34 1.62 17.86 81.49
SHA-2 -1.97 17.81 93.10 3.05 22.64 93.85
SHA-3 -0.36 20.07 93.17 2.75 20.17 92.35

SHA-1(5) 5.09 24.83 93.46 6.86 18.78 83.70
SHA-2(5) 2.20 18.72 93.71 7.66 25.14 94.00
SHA-3(5) 4.23 23.32 93.32 8.16 23.27 93.02

HA 2.90 14.71 93.50 1.25 14.68 93.81
SHA-U 0.98 7.85 92.65 1.77 7.93 39.58

500 SHA-1 1.43 10.06 93.58 1.99 7.94 39.82
SHA-2 1.06 7.91 92.83 2.10 10.11 93.76
SHA-3 1.79 8.93 93.59 1.99 8.98 88.45

SHA-1(5) 2.98 10.34 93.66 3.03 8.02 41.26
SHA-2(5) 1.98 7.97 92.92 3.41 10.35 93.94
SHA-3(5) 3.13 9.96 93.71 2.43 9.98 91.42

n Estimators Variable y3
RB (%) AL CR (%)

HA 0.98 63.89 88.88
SHA-U -1.21 52.22 0.00
SHA-1 -0.18 52.54 0.00

100 SHA-2 0.16 52.14 0.00
SHA-3 -0.45 48.55 53.43

SHA-1(5) 7.31 55.67 0.36
SHA-2(5) 7.95 55.37 0.43
SHA-3(5) 1.16 56.77 83.41

HA 1.08 29.90 91.43
SHA-U 0.18 23.38 0.00
SHA-1 0.23 23.39 0.00

500 SHA-2 0.44 23.20 0.00
SHA-3 1.49 21.68 1.77

SHA-1(5) 1.60 23.66 0.00
SHA-2(5) 1.50 23.42 0.00
SHA-3(5) 1.86 24.63 65.20

94



Table 3.19: Relative biases of the JK1 − B variance estimation for the smoothed Hájek estima-
tors, average mean lengths and coverages of 95% confidence interval estimators under Beaumont’s
model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HA 2.22 30.99 92.67 3.56 31.36 92.79
SHA-U -2.83 17.58 92.98 0.79 17.73 81.21

100 SHA-1 37.92 17.69 86.46 0.86 17.79 81.30
SHA-2 -2.68 17.75 93.07 -34.79 18.01 87.42
SHA-3 -0.48 20.06 93.16 2.19 20.11 92.34

SHA-1(5) 26.52 20.76 88.06 1.23 18.27 82.80
SHA-2(5) -3.22 18.22 93.11 -23.82 21.15 88.16
SHA-3(5) 0.40 22.88 93.11 3.96 22.82 92.67

HA 2.91 14.71 93.50 1.26 14.68 93.81
SHA-U 0.98 7.85 92.65 1.77 7.93 39.58

500 SHA-1 -37.98 7.86 85.75 1.83 7.93 39.79
SHA-2 0.91 7.90 92.78 -35.88 8.01 86.83
SHA-3 1.76 8.93 93.60 1.57 8.96 88.41

SHA-1(5) -35.27 8.20 86.12 1.97 7.98 41.04
SHA-2(5) 0.98 7.93 92.72 -34.30 8.25 87.05
SHA-3(5) 2.13 9.91 93.61 1.13 9.92 91.27

n Estimators Variable y3
RB (%) AL CR (%)

HA 1.16 63.94 88.89
SHA-U -1.21 52.22 0.00
SHA-1 -1.62 52.16 0.00

100 SHA-2 -2.23 51.51 0.00
SHA-3 -30.63 40.53 41.85

SHA-1(5) -0.90 53.50 0.31
SHA-2(5) -0.77 53.08 0.36
SHA-3(5) -19.14 50.76 79.72

HA 1.11 29.90 91.43
SHA-U 0.18 23.38 0.00
SHA-1 -0.02 23.36 0.00

500 SHA-2 -0.89 23.05 0.00
SHA-3 -29.62 18.05 0.70

SHA-1(5) -0.19 23.45 0.00
SHA-2(5) -0.96 23.13 0.00
SHA-3(5) -23.72 21.31 57.41
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Table 3.20: Relative biases of the JK2 − B variance estimation for the smoothed Hájek estima-
tors, average mean lengths and coverages of 95% confidence interval estimators under Beaumont’s
model.

n Estimators Variable y1 Variable y2
RB (%) AL CR (%) RB (%) AL CR (%)

HA 2.14 30.98 92.67 3.46 31.35 92.79
SHA-U -2.83 17.58 92.98 0.79 17.73 81.21

100 SHA-1 -37.92 17.69 86.46 0.86 17.79 81.30
SHA-2 -2.68 17.75 93.07 -34.79 18.01 87.42
SHA-3 -0.48 20.06 93.15 2.19 20.11 92.34

SHA-1(5) -26.53 20.76 88.06 1.22 18.27 82.80
SHA-2(5) -3.22 18.22 93.11 -23.84 21.14 88.16
SHA-3(5) 0.39 22.88 93.11 3.95 22.81 92.67

HA 2.90 14.71 93.50 1.25 14.68 93.81
SHA-U 0.98 7.85 92.65 1.77 7.93 39.58

500 SHA-1 -37.98 7.86 85.75 1.83 7.93 39.79
SHA-2 0.91 7.90 92.78 -35.88 8.01 86.83
SHA-3 1.76 8.93 93.60 1.57 8.96 88.41

SHA-1(5) -35.27 8.20 86.12 1.97 7.98 41.04
SHA-2(5) 0.98 7.93 92.72 -34.30 8.25 87.05
SHA-3(5) 2.13 9.91 93.61 1.13 9.92 91.27

n Estimators Variable y3
RB (%) AL CR (%)

HA 0.98 63.89 88.88
SHA-U -1.21 52.22 0.00
SHA-1 -1.62 52.16 0.00

100 SHA-2 -2.23 51.51 0.00
SHA-3 -30.64 40.52 41.85

SHA-1(5) -0.91 53.50 0.31
SHA-2(5) -0.78 53.08 0.36
SHA-3(5) -19.19 50.74 79.72

HA 1.08 29.90 91.43
SHA-U 0.18 23.38 0.00
SHA-1 -0.02 23.36 0.00

500 SHA-2 -0.89 23.05 0.00
SHA-3 -29.63 18.05 0.70

SHA-1(5) -0.19 23.45 0.00
SHA-2(5) -0.96 23.13 0.00
SHA-3(5) -23.72 21.31 57.41
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the jackknife variance estimators, average mean lengths and coverages of 95% confidence interval

estimators for JK1 − A, JK2 − A, JK1 − B and JK2 − B, respectively. As expected, we see

that the JK1 and JK2 have very similar results, so that the choice between these two versions can

be left to the discretion of the user.

For JK−A, the results in Tables 3.21 and 3.22 exhibit a modest negative bias for the Horvitz-

Thompson estimators for all sample sizes and survey variables, and results in undercoverage. In-

terestingly, both the bias and the undercoverage are improved for the weight smoothing estimators

when the weight models include the relevant survey variables, while still resulting in shorter con-

fidence intervals relative to the Horvitz-Thompson estimator. More specifically, SHT-12 has the

best coverages for all four variables, SHT-1 has good coverages for variable y1 and SHT-2 has good

coverages for variable y2. Also, the SHT-U, SHT-1 and SHT-2 estimators have good coverages for

variable y3 and variable y4 since both y3 and y4 have weak relationship with the weight although

they are correlate with y1. In contrast, as shown in Tables 3.23 and 3.24, JK − B performed very

poorly, so that this method cannot be recommended even for correctly specified models.

Finally, we implement the JKDAG variance estimator for the Hájek-type weight smoothing

estimators under correct model. Table 3.25 through Table 3.28 present the relative biases of the

JK1 − A, JK2 − A, JK1 − B and JK2 − B variance estimators, average mean lengths and

coverages of 95% confidence interval for the Hájek estimators, respectively. Again, the JK1 and

JK2 have similar results, and JK − B performed poorly in general, although there are several

smoothed Hájek scenarios in which they happen to have coverages close to 95% for variable y3.

For JK − A variance estimators, the biases of the variance estimation are modest for all vari-

ables. The coverages are close to 95% as long as the weight smoothing estimator itself is appro-

priate. Specifically, SHA-1 and SHA-12 show good coverages for y1, y3 and y4, while SHA-2 and

SHA-12 show good coverages for y2.

3.9 Conclusions

We have extended the theoretical investigations of the weight smoothing estimator proposed in

Beaumont [2008], focusing on a lognormal linear model for the weights that was also suggested by
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Table 3.21: Relative biases of the JK1 − A variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HT -0.59 3.81 89.67 -0.72 3.30 90.48

SHT-U 1.20 3.23 89.08 1.30 3.37 94.00
100 SHT-1 1.48 3.45 92.34 1.51 3.40 94.03

SHT-2 1.42 3.26 89.58 1.16 3.08 92.34
SHT-12 1.59 3.46 92.53 1.23 3.10 92.72

HT -1.18 2.50 90.41 -1.20 2.13 90.89
SHT-U -0.18 1.88 85.45 -0.47 2.06 85.33

500 SHT-1 -0.07 2.04 93.15 -0.43 2.06 84.97
SHT-2 -0.16 1.89 85.82 -0.45 1.82 92.84

SHT-12 0.08 2.05 93.25 -0.39 1.82 92.89
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.48 3.67 89.80 -1.25 3.56 89.80

SHT-U 0.85 3.27 91.52 1.00 3.30 92.77
100 SHT-1 0.99 3.33 92.36 1.01 3.26 92.05

SHT-2 0.94 3.30 91.89 1.02 3.32 92.98
SHT-12 1.02 3.35 92.59 1.01 3.28 92.43

HT -0.95 2.37 90.53 -1.54 2.29 90.77
SHT-U -0.21 1.93 92.13 -0.31 1.98 93.47

500 SHT-1 -0.20 1.97 93.05 -0.35 1.92 92.95
SHT-2 -0.25 1.94 92.36 -0.14 1.99 93.58

SHT-12 -0.18 1.98 93.34 -0.23 1.93 93.19

98



Table 3.22: Relative biases of the JK2 − A variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HT -0.59 3.81 89.67 -0.72 3.30 90.48

SHT-U 1.17 3.22 89.08 1.27 3.37 94.00
100 SHT-1 1.42 3.45 92.33 1.45 3.40 94.02

SHT-2 1.36 3.26 89.58 1.10 3.08 92.33
SHT-12 1.49 3.46 92.52 1.13 3.10 92.68

HT -1.18 2.50 90.41 -1.20 2.13 90.89
SHT-U -0.19 1.88 85.45 -0.48 2.06 85.31

500 SHT-1 -0.09 2.04 93.14 -0.45 2.06 84.97
SHT-2 -0.18 1.89 85.82 -0.47 1.82 92.84

SHT-12 0.06 2.05 93.24 -0.42 1.82 92.89
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.48 3.67 89.80 -1.25 3.56 89.80

SHT-U 0.82 3.27 91.51 0.98 3.30 92.76
100 SHT-1 0.92 3.33 92.36 0.94 3.25 92.05

SHT-2 0.88 3.30 91.89 0.96 3.32 92.96
SHT-12 0.92 3.35 92.59 0.91 3.28 92.41

HT -0.95 2.37 90.53 -1.54 2.29 90.77
SHT-U -0.22 1.93 92.13 -0.32 1.98 93.47

500 SHT-1 -0.22 1.97 93.04 -0.37 1.92 92.95
SHT-2 -0.27 1.94 92.36 -0.15 1.99 93.58

SHT-12 -0.21 1.98 93.34 -0.26 1.93 93.19
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Table 3.23: Relative biases of the JK1 − B variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HT -0.59 3.81 89.67 -0.72 3.30 90.48

SHT-U -98.50 0.39 17.85 -98.60 0.40 17.12
100 SHT-1 -92.76 0.92 37.08 -95.83 0.69 27.11

SHT-2 -88.78 1.09 44.80 -96.23 0.59 26.98
SHT-12 -83.02 1.42 55.35 -93.35 0.80 36.35

HT -1.18 2.50 90.41 -1.20 2.13 90.89
SHT-U -99.13 0.18 11.84 -99.25 0.18 8.05

500 SHT-1 -93.96 0.50 35.85 -96.47 0.39 16.74
SHT-2 -89.66 0.61 38.68 -95.46 0.39 31.63

SHT-12 -83.09 0.84 57.02 -91.98 0.52 41.61
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.48 3.67 89.80 -1.25 3.56 89.80

SHT-U -98.53 0.39 19.02 -98.54 0.40 18.37
100 SHT-1 -95.24 0.72 31.23 -97.56 0.51 22.91

SHT-2 -88.64 1.11 46.34 -88.36 1.13 47.63
SHT-12 -85.32 1.28 52.58 -87.40 1.16 49.15

HT -0.95 2.37 90.53 -1.54 2.29 90.77
SHT-U -99.18 0.18 14.01 -99.21 0.18 13.60

500 SHT-1 -95.95 0.40 30.42 -97.99 0.27 20.99
SHT-2 -89.37 0.63 46.27 -89.31 0.65 45.51

SHT-12 -85.13 0.76 53.79 -87.37 0.69 50.20
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Table 3.24: Relative biases of the JK2 − B variance estimation for the smoothed Horvitz-
Thompson estimators, average mean lengths and coverages of 95% confidence interval estimators
under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HT -0.59 3.81 89.67 -0.72 3.30 90.48

SHT-U -98.50 0.39 17.85 -98.60 0.40 17.12
100 SHT-1 -92.76 0.92 37.08 -95.83 0.69 27.11

SHT-2 -88.78 1.09 44.80 -96.23 0.59 26.98
SHT-12 -83.02 1.42 55.35 -93.35 0.80 36.35

HT -1.18 2.50 90.41 -1.20 2.13 90.89
SHT-U -99.13 0.18 11.84 -99.25 0.18 8.05

500 SHT-1 -93.96 0.50 35.85 -96.47 0.39 16.74
SHT-2 -89.66 0.61 38.68 -95.46 0.39 31.63

SHT-12 -83.09 0.84 57.02 -91.98 0.52 41.61
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.48 3.67 89.80 -1.25 3.56 89.80

SHT-U -98.53 0.39 19.02 -98.54 0.40 18.37
100 SHT-1 -95.24 0.72 31.23 -97.56 0.51 22.91

SHT-2 -88.64 1.11 46.34 -88.36 1.13 47.63
SHT-12 -85.32 1.28 52.58 -87.40 1.16 49.15

HT -0.95 2.37 90.53 -1.54 2.29 90.77
SHT-U -99.18 0.18 14.01 -99.21 0.18 13.60

500 SHT-1 -95.95 0.40 30.42 -97.99 0.27 20.99
SHT-2 -89.37 0.63 46.27 -89.31 0.65 45.51

SHT-12 -85.13 0.76 53.79 -87.37 0.69 50.20
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Table 3.25: Relative biases of the JK1−A variance estimation for the smoothed Hájek estimators,
average mean lengths and coverages of 95% confidence interval estimators under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.06 0.693 92.11 0.98 0.722 90.69

SHA-U 0.14 0.388 51.73 -1.25 0.392 3.11
100 SHA-1 1.78 0.578 93.68 0.02 0.405 4.43

SHA-2 0.61 0.423 58.31 -1.65 0.597 92.26
SHA-12 1.91 0.581 93.65 -1.47 0.598 92.34

HA 1.93 0.419 92.30 0.84 0.450 91.32
SHA-U -0.09 0.175 0.00 1.77 0.178 0.00

500 SHA-1 0.47 0.295 92.95 1.75 0.186 0.00
SHA-2 -0.47 0.201 0.04 2.12 0.314 93.43

SHA-12 0.37 0.301 92.89 2.11 0.317 93.52
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.03 0.689 92.40 -0.60 0.687 92.44

SHA-U -0.23 0.391 92.75 1.00 0.393 83.97
100 SHA-1 1.64 0.410 93.71 1.26 0.455 93.60

SHA-2 2.32 0.426 92.83 1.13 0.427 84.78
SHA-12 3.61 0.442 93.72 1.46 0.478 93.58

HA 1.08 0.408 93.41 0.79 0.412 92.58
SHA-U -1.07 0.174 63.80 -3.09 0.175 9.54

500 SHA-1 -1.32 0.188 92.89 -1.44 0.215 93.27
SHA-2 -0.96 0.202 73.53 -1.44 0.199 18.53

SHA-12 -0.72 0.215 93.35 -0.35 0.234 93.60
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Table 3.26: Relative biases of the JK2−A variance estimation for the smoothed Hájek estimators,
average mean lengths and coverages of 95% confidence interval estimators under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.00 0.693 92.11 0.89 0.722 90.69

SHA-U 0.14 0.388 51.73 -1.25 0.392 3.11
100 SHA-1 1.77 0.578 93.68 0.01 0.405 4.43

SHA-2 0.61 0.423 58.31 -1.66 0.597 92.26
SHA-12 1.90 0.581 93.65 -1.48 0.598 92.34

HA 1.88 0.419 92.30 0.77 0.450 91.32
SHA-U -0.09 0.175 0.00 1.77 0.178 0.00

500 SHA-1 0.47 0.295 92.95 1.75 0.186 0.00
SHA-2 -0.47 0.201 0.04 2.12 0.314 93.43

SHA-12 0.37 0.301 92.89 2.11 0.317 93.52
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HA 1.98 0.689 92.39 -0.65 0.686 92.44

SHA-U -0.23 0.391 92.75 1.00 0.393 83.97
100 SHA-1 1.64 0.410 93.71 1.25 0.455 93.59

SHA-2 2.31 0.426 92.83 1.12 0.427 84.78
SHA-12 3.60 0.442 93.72 1.45 0.478 93.58

HA 1.05 0.408 93.41 0.76 0.412 92.58
SHA-U -1.07 0.174 63.80 -3.09 0.175 9.54

500 SHA-1 -1.32 0.188 92.88 -1.44 0.215 93.27
SHA-2 -0.96 0.202 73.53 -1.44 0.199 18.53

SHA-12 -0.73 0.215 93.35 -0.35 0.234 93.60
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Table 3.27: Relative biases of the JK1−B variance estimation for the smoothed Hájek estimators,
average mean lengths and coverages of 95% confidence interval estimators under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.06 0.693 92.11 0.98 0.722 90.69

SHA-U 0.14 0.388 51.73 -1.25 0.392 3.11
100 SHA-1 -49.93 0.406 82.33 -1.53 0.401 4.19

SHA-2 -0.75 0.420 58.10 -41.78 0.459 84.13
SHA-12 -42.28 0.437 84.68 -39.88 0.467 84.57

HA 1.93 0.419 92.30 0.84 0.450 91.32
SHA-U -0.09 0.175 0.00 1.77 0.178 0.00

500 SHA-1 -58.97 0.189 76.50 1.45 0.186 0.00
SHA-2 -0.78 0.201 0.04 -45.07 0.230 83.55

SHA-12 -47.48 0.218 81.98 -41.72 0.240 84.10
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.03 0.689 92.40 -0.60 0.687 92.44

SHA-U -0.23 0.391 92.75 1.00 0.393 83.97
100 SHA-1 -3.64 0.399 93.31 -20.40 0.404 90.56

SHA-2 1.07 0.423 92.51 -0.03 0.425 84.69
SHA-12 -1.61 0.430 93.30 -16.17 0.435 91.36

HA 1.08 0.408 93.41 0.79 0.412 92.58
SHA-U -1.07 0.174 63.80 -3.09 0.175 9.54

500 SHA-1 -7.40 0.182 91.97 -27.78 0.184 88.65
SHA-2 -1.32 0.201 73.43 -1.84 0.199 18.40

SHA-12 -4.94 0.211 92.88 -19.72 0.210 90.15
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Table 3.28: Relative biases of the JK2−B variance estimation for the smoothed Hájek estimators,
average mean lengths and coverages of 95% confidence interval estimators under correct model.

n Estimators Variable y1 Variable y2

RB (%) AL CR (%) RB (%) AL CR (%)
HA 2.00 0.693 92.11 0.89 0.722 90.69

SHA-U 0.14 0.388 51.73 -1.25 0.392 3.11
100 SHA-1 -49.93 0.406 82.33 -1.53 0.401 4.19

SHA-2 -0.75 0.420 58.10 -41.78 0.459 84.13
SHA-12 -42.29 0.437 84.68 -39.89 0.467 84.57

HA 1.88 0.419 92.30 0.77 0.450 91.32
SHA-U -0.09 0.175 0.00 1.77 0.178 0.00

500 SHA-1 -58.97 0.189 76.50 1.45 0.186 0.00
SHA-2 -0.78 0.201 0.04 -45.08 0.230 83.55

SHA-12 -47.48 0.218 81.98 -41.72 0.240 84.10
n Estimators Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%)
HA 1.98 0.689 92.39 -0.65 0.686 92.44

SHA-U -0.23 0.391 92.75 1.00 0.393 83.97
100 SHA-1 -3.64 0.399 93.31 -20.40 0.404 90.56

SHA-2 1.07 0.423 92.51 -0.03 0.425 84.69
SHA-12 -1.61 0.430 93.30 -16.17 0.435 91.36

HA 1.05 0.408 93.41 0.76 0.412 92.58
SHA-U -1.07 0.174 63.80 -3.09 0.175 9.54

500 SHA-1 -7.40 0.182 91.97 -27.78 0.184 88.65
SHA-2 -1.32 0.201 73.43 -1.84 0.199 18.40

SHA-12 -4.94 0.211 92.88 -19.72 0.210 90.15
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Beaumont [2008]. For this model, asymptotic theory was developed, including the consistency of

the weight smoothing estimator with respect to the sampling design and the weight model, and the

asymptotic unbiasedness of a model-based variance estimator. This extends the results of Beau-

mont [2008], who only sketched these theoretical results. Simulation experiments have explored

the effect of model choice and inclusion/exclusion of model covariates on the practical behavior of

the weight smoothing estimator. Our results show that the estimator and the model-based variance

estimator perform well when the model is correctly specified, but can be unacceptably biased in

case of model failure.

We therefore considered a Hájek-type version of the weight smoothing estimator. This is a

commonly used survey estimation adjustment to improve the efficiency of survey estimators, and

we applied it here to improve their robustness to model misspecification. The results were en-

couraging, in the sense that the adjusted weight smoothing estimator was close to unbiased and

more efficient than the unsmoothed estimator under modestly misspecified models, as long as the

required covariates are included in the weight model.

With regards to inference, the Hájek-type adjustment was not effective in correcting the model-

based variance estimator under model misspecification. However, the delete-a-group jackknife,

a widely used variance estimation replication method, resulted in variance estimators with low

bias and confidence intervals with close-to-nominal coverage, for the same scenarios in which the

Hájek-type weight smoothing estimator worked well. While we did not explore other replication

methods, we conjecture that other jackknife or bootstrap methods will perform equally well.
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CHAPTER 4

AN INVESTIGATION OF WEIGHT SMOOTHING ESTIMATORS

UNDER MIXED MODEL SPECIFICATIONS

4.1 Weight model with random effects

In the previous chapter, we considered a model-based weight smoothing estimator, using a

lognormal linear model specification for the survey weights. These results are extended here to the

case with a random effect weight model.

As before, we address the estimation of Ȳ = 1
N

∑
i∈UN yi for a finite population UN . A sample

S of size n is drawn from UN with the survey weight wi, based on the sampling design variables

are specified. The Horvitz-Thompson estimator of Ŷ HT is

Ŷ HT =
1

N

∑
i∈S

wiyi,

which is unbiased estimator for Ȳ . Following the modeling approach described in the previous

chapter, we generalize the model here to the case with random effects, i.e.

wi = 1 + exp(Biν +Hiu+ εi)

for i ∈ S, where Bi = [B1(yi), · · · ,Br1(yi)] and Hi = [H1(yi), · · · ,Hr2(yi)] are known func-

tions depending on yi, and νr1×1 and ur2×1 are vectors of coefficients. The vector of coefficients

u given IN and YN are normally distributed with E(u|IN ,YN) = 0 and Var(u|IN ,YN) = σ2
uG,

whereG is a known r2×r2 matrix, which could be the identity matrix. The εi given IN and YN are

independently and identically normally distributed with E(εi|IN ,YN) = 0 and Var(εi|IN ,YN) =

σ2
ε > 0. We define λ2 = σ2

ε/σ
2
u, and we will assume here that λ is known. Hence, the only

unknown model parameters are ν and σ2
ε .

There are two possible approaches to construct a weight smoothing estimator, depending on

whether the random effects are predicted or removed from the smoothed weights. For the for-

mer approach, the expected weight is taken to be conditional on the random effect u, so that the
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(unfeasible) weight smoothing estimator is defined as

Ỹ SHT,BLUP =
1

N

∑
i∈S

E (wi|IN ,YN ,u) yi =
∑
i∈S

w̃iyi

=
1

N

∑
i∈S

{
1 + exp

(
Biν +Hiu+ σ2

ε/2
)}
yi.

This contains unknown parameters as well as the unknown values of the random effect. We will

apply Best Linear Unbiased Prediction (BLUP) ideas to estimate ν and σ2
ε and predict u.

Letting li = log(wi − 1), we obtain a linear mixed model with normal errors and random

effects, for which straightforward application of BLUP leads to

ν̂ =
(
BTV ∗−1B

)−1
BTV ∗−1L,

û = λ−2GHTV ∗−1(L−Bν̂),

σ̂2
ε =

1

n− r1

(L−Bν̂ −Hû)T V ∗ (L−Bν̂ −Hû) ,

with

V ∗ = In + λ−2HGHT .

Hence, the (feasible) BLUP smoothed estimator is given by

Ŷ SHT,BLUP =
1

N

∑
i∈S

{
1 + exp

(
Biν̂ +Hiû+ σ̂2

ε/2
)}
yi.

Under the latter approach, the random effect is integrated out, which implies that it becomes

part of the variance structure of the model, rather than its (conditional) mean. To differentiate it

from the previous approach, we will denote the estimator as NOBLUP. The unfeasible estimator is

now defined as

Ỹ SHT,NOBLUP =
1

N

∑
i∈S

E (wi|IN ,YN) yi =
∑
i∈S

w̃iyi

=
1

N

∑
i∈S

{
1 + exp

(
Biν +HiGH

T
i σ

2
u/2 + σ2

ε/2
)}
yi

=
1

N

∑
i∈S

{
1 + exp

(
Biν +

(
λ−2HiGH

T
i + 1

)
σ2
ε/2
)}
yi.
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To obtain the feasible smoothed weight estimator, we again estimate the model parameters ν and

σ2
ε by

ν̂ =
(
BTV ∗−1B

)−1
BTV ∗−1L,

σ̂2
ε =

1

n− r1

(L−Bν̂ −Hû)T V ∗ (L−Bν̂ −Hû)

with

V ∗ = In + λ−2HGHT ,

and write

Ŷ SHT,NOBLUP =
1

N

∑
i∈S

{
1 + exp

(
Biν̂ +

(
λ−2HiGH

T
i + 1

)
σ̂2
ε

)}
yi.

It will be of interest to compare the behavior of the two above versions of the weight smoothing

estimators, and in particular, to determine whether an estimator that includes prediction might be

preferable to one that removes the random effect. This will be done through simulations in the next

section.

4.2 Simulation

As explained in the previous chapter, population distributions need to be constructed so that

the sample distributions have the desired functional forms. Using the results of Pfeffermann and

Sverchkov [1999], we obtain that the population distribution of the weights is a mixture of two

lognormal distributions, i.e.

wi − 1|yi ∼ p× lN
(
Biν +Hiu, σ

2
ε

)
+ (1− p)× lN

(
Biν +Hiu+ σ2

ε , σ
2
ε

)
with

p =
{

1 + exp
(
Biν +Hu+ σ2

ε/2
)}−1

.

For the random effect, we want that u has a normal distribution with mean 0 and variance σ2
uG

under the sample. Applying Pfeffermann and Sverchkov [1999] again, we find that the population

model for the u is a mixture of normal distributions, or

u ∼ p×N
(
0, σ2

uG
)

+ (1− p)×N
(
σ2
uHiG, σ

2
uG
)
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with

p =

{
1 + exp

(
Biν +

σ2
uHiGH

T
i

2
+
σ2
ε

2

)}−1

. (4.1)

However, this result is for random variables that are independently generated across all i ∈ UN .

This is not the case for u, which represents a single random vector for the population. We will

discuss a number of ways to address this below.

The population variables of interest are generated from a multivariate normal distribution,

which is identical to that in the previous chapter. To generate the random effect, we split the

population in groups of k people. Assume N/k is an integer. So, there are r2 = N/k groups.

The sample sizes n = 100 and n = 500 are considered. We use 200 random groups for n = 100

and 2000 groups for n = 500. For each group, we randomly generate a random intercept, which

will follow a mixture of normal distributions. We consider four different scenarios to generate the

random intercepts, depending on whether we use a unique or a group-specific mixture coefficient

p and whether we average the Bi,Hi prior to computing p or first compute p for each i and then

average.

The four random effect population generation scenarios are compared based on whether the

sample distribution of the random effects follows the stated normal. Figure 4.1 shows Q-Q plots

for representative single sample realizations of the four scenarios. Plots (a) and (b) are for p

computed for each i, and plots (c) and (d) are for Bi,Hi averaged prior to computing p. Plots

(a) and (c) are based on a single distribution for the population, while plots (b) and (d) are for

separate distributions for each group. None of these plots appear to indicate severe departures from

normality in the sample. We also used the Shapiro-Wilks test to detect deviations from normality in

repeated simulations, and none of the four scenarios led to rejection of normality at more than the

5% level. Hence, we decided to generate the population random effects from a single population

mixture distribution with p computed for each i and averaged for the population (corresponding to

plot (a) in Figure 4.1).

Next, we generated the weights. A population wi − 1 of 50, 000 units is generated from a

mixture of two Log-Normal distribution of lN(Biν + Hiu, σ
2
ε) and lN(Biν + Hiu + σ2

ε , σ
2
ε)

with the proportion p = {1 + exp (Biν +Hu+ σ2
ε/2)} and 1− p, respectively.
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Figure 4.1: Q-Q plots of a sample of a random effect for (a) overall mean of the mixture probability,
(b) mean of the mixture probability by group, (c) mixture probability from the overall mean of the
population and (d) mixture probability from the mean of the population by group.
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Following construction of these population variables and weights, independent samples of

size n = 100 and n = 500 are generated under pps sampling with replacement. We set νi =

(7.06, 0.3,−0.5)
′ when the sample size is n = 100 and νi = (5.41, 0.3,−0.5)

′ when the sample

size is n = 500. The Monte Carlo sample sizes are all 10, 000 in the simulation.

Seven estimators are computed: Horvitz-Thompson (HT), and six different weight smoothing

estimators, denoted SHT-U, SHT-1, SHT-2, SHT-12, HT-GLS-BLUP and HT-GLS-NOBLUP. For

the weight smoothing estimators SHT-U, SHT-1, SHT-2 and SHT-12, the parameter estimators ν̂

and σ̂2
ε are obtained from the ordinary least square estimation with different sets of covariates, as

was done in the previous chapter. The SHT-U estimator contains Bi = 1 only, while the SHT-1

estimator adds y1i, the SHT-2 estimator adds y2i and the SHT-12 estimator adds (y1i, y2i) to Bi,

respectively. For the weight smoothing estimators HT-GLS-BLUP and HT-GLS-NOBLUP, the

parameter estimators ν̂ and σ̂2
ε are obtained by generalized least square estimation on the model

withBi = (1, y1i, y2i), followed by prediction of û in the case of HT-GLS-BLUP.

Table 4.1 and Table 4.2 present the relative biases as percentages (RB) and the relative effi-

ciencies as percentages (RE) of the estimators when the sample size is 100 and the sample size is

500, respectively. For Table 4.1, a sample size of 100 with groups of 200 for the random effects,

we see SHT-12 is the best estimator for all variables, which is unbiased and more efficient than

the Horvitz-Thompson estimator. The two models with random effect seem to be biased and less

efficient than the Horvitz-Thompson estimator. The same results hold for n = 500, as shown in

Table 2.

We implement delete-a-group Jackknife (JKDAG) variance estimation as described in the pre-

vious chapter, with R = 20. We consider the four jackknife variance estimators JK1 − A,

JK2 − A, JK1 − B and JK2 − B. Table 4.3 through Table 4.10 present the relative biases

of the jackknife variance estimators, average mean lengths and coverages of 95% confidence inter-

val estimators for JK1−A, JK2−A, JK1−B and JK2−B when the sample size is 100 or 500,

respectively. The JK1 and JK2 again exhibit very similar results. For JK − A, the results from

the smoothed Horvitz-Thompson estimators without random effect have a modest positive bias
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Table 4.1: Relative biases and relative efficiency results for a sample size n = 100 and 200 random
groups for the smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HT -0.14 100.00 -0.09 100.00 -0.10 100.00 -0.08 100.00

SHT-U -4.83 66.88 8.38 125.92 -0.67 71.85 2.79 82.57
SHT-1 1.00 74.54 8.90 130.00 0.94 75.65 0.80 75.79
SHT-2 -4.21 67.38 0.90 81.40 -0.14 73.23 3.15 83.79

SHT-12 1.25 75.30 1.34 82.72 1.23 76.63 1.04 76.37
HT-GLS-BLUP -9.57 78.26 -9.48 89.91 -9.58 81.37 -9.64 83.10

HT-GLS-noBLUP 10.92 122.13 11.06 147.41 10.92 127.95 10.74 129.78

Table 4.2: Relative biases and relative efficiency results for a sample size n = 500 and 2000
random groups for the smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HT 0.19 100.00 0.20 100.00 0.17 100.00 0.18 100.00

SHT-U -4.04 84.48 9.30 261.12 0.00 73.22 3.25 99.19
SHT-1 0.94 75.98 9.39 264.20 1.14 77.67 0.96 79.01
SHT-2 -3.88 83.80 1.11 84.24 0.06 73.85 3.33 100.24

SHT-12 0.92 76.17 1.19 84.70 1.09 77.87 0.98 79.45
HT-GLS-BLUP 11.25 217.81 -11.16 282.22 -11.20 232.21 -11.27 250.48

HT-GLS-noBLUP 7.01 148.72 7.18 188.01 7.11 158.37 6.94 163.08
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Table 4.3: Relative biases of the JK1−A variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 100 and 200 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U 1.51 3.757 86.74 1.23 4.064 94.62 1.47 3.861 91.08 1.66 3.945 93.42
SHT-1 1.67 4.143 92.36 1.41 4.086 94.58 1.74 3.964 92.34 1.89 3.832 92.39
SHT-2 1.96 3.823 87.57 1.36 3.632 92.50 1.83 3.908 91.65 2.18 3.969 93.68

SHT-12 2.09 4.169 92.42 1.50 3.656 92.76 2.10 3.992 92.65 2.43 3.854 92.46
HT-GLS-BLUP 4.96 3.653 79.10 4.74 3.145 79.24 5.37 3.493 79.31 5.59 3.361 79.04

HT-GLS-noBLUP 9.52 4.814 95.44 8.87 4.287 94.94 9.59 4.634 95.33 10.00 4.492 95.26

Table 4.4: Relative biases of the JK2−A variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 100 and 200 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U 1.46 3.756 86.73 1.19 4.063 94.62 1.43 3.860 91.07 1.61 3.944 93.42
SHT-1 1.59 4.142 92.35 1.33 4.085 94.56 1.65 3.962 92.33 1.80 3.830 92.35
SHT-2 1.88 3.821 87.55 1.28 3.630 92.49 1.75 3.906 91.63 2.10 3.968 93.65

SHT-12 1.98 4.167 92.41 1.38 3.654 92.76 1.98 3.990 92.63 2.31 3.851 92.45
HT-GLS-BLUP 4.77 3.650 79.08 4.53 3.142 79.22 5.17 3.490 79.30 5.39 3.357 79.03

HT-GLS-noBLUP 8.79 4.798 95.37 8.00 4.270 94.73 8.81 4.618 95.21 9.19 4.476 95.13

and the coverage for the weight smoothing estimators that is at least as good as for the unsmoothed

estimator, when the mean estimator itself is appropriate. For the smoothed Horvitz-Thompson es-

timators with random effect, both HT-GLS-BLUP estimator and HT-GLS-NOBLUP overestimate

the true variance. However, the model with random effect where we do not predict it is the best

one for the coverages. Specifically, the HT-GLS-NOBLUP estimator have good coverage, which

is close to 95%. In contrast, JK −B performed very poorly, which is not suggested for use.

Table 4.5: Relative biases of the JK1−B variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 100 and 200 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U -98.85 0.399 14.74 -99.04 0.396 14.43 -98.96 0.391 14.96 -98.96 0.399 15.64
SHT-1 -90.14 1.291 42.59 -93.91 1.002 31.64 -93.23 1.022 35.52 -96.16 0.744 27.09
SHT-2 -87.65 1.331 44.52 -94.61 0.837 31.61 -87.44 1.372 47.29 -87.18 1.406 48.48

SHT-12 -78.16 1.928 59.69 -88.91 1.208 45.25 -81.07 1.719 56.86 -83.93 1.526 53.28
HT-GLS-BLUP -54.42 2.408 61.49 -64.26 1.837 55.42 -56.56 2.243 60.22 -59.10 2.092 58.78

HT-GLS-noBLUP -79.37 2.090 55.43 -89.91 1.305 37.86 -82.26 1.865 51.02 -85.07 1.655 46.90
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Table 4.6: Relative biases of the JK2−B variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 100 and 200 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U -98.85 0.399 14.74 -99.04 0.396 14.43 -98.96 0.391 14.96 -98.96 0.399 15.64
SHT-1 -90.14 1.291 42.59 -93.91 1.002 31.64 -93.23 1.022 35.52 -96.16 0.744 27.09
SHT-2 -87.65 1.331 44.52 -94.61 0.837 31.61 -87.44 1.372 47.29 -87.18 1.406 48.48

SHT-12 -78.16 1.928 59.69 -88.91 1.208 45.25 -81.07 1.719 56.86 -83.93 1.526 53.28
HT-GLS-BLUP -54.42 2.408 61.49 -64.26 1.837 55.42 -56.56 2.243 60.22 -59.10 2.092 58.78

HT-GLS-noBLUP -79.37 2.090 55.43 -89.91 1.305 37.86 -82.26 1.865 51.02 -85.07 1.655 46.90

Table 4.7: Relative biases of the JK1−A variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 500 and 2000 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U 1.51 3.757 86.74 1.23 4.064 94.62 1.47 3.861 91.08 1.66 3.945 93.42
SHT-1 1.67 4.143 92.36 1.41 4.086 94.58 1.74 3.964 92.34 1.89 3.832 92.39
SHT-2 1.96 3.823 87.57 1.36 3.632 92.50 1.83 3.908 91.65 2.18 3.969 93.68

SHT-12 2.09 4.169 92.42 1.50 3.656 92.76 2.10 3.992 92.65 2.43 3.854 92.46
HT-GLS-BLUP 4.96 3.653 79.10 4.74 3.145 79.24 5.37 3.493 79.31 5.59 3.361 79.04

HT-GLS-noBLUP 9.52 4.814 95.44 8.87 4.287 94.94 9.59 4.634 95.33 10.00 4.492 95.26

Table 4.8: Relative biases of the JK2−A variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 500 and 2000 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U 1.46 3.756 86.73 1.19 4.063 94.62 1.43 3.860 91.07 1.61 3.944 93.42
SHT-1 1.59 4.142 92.35 1.33 4.085 94.56 1.65 3.962 92.33 1.80 3.830 92.35
SHT-2 1.88 3.821 87.55 1.28 3.630 92.49 1.75 3.906 91.63 2.10 3.968 93.65

SHT-12 1.98 4.167 92.41 1.38 3.654 92.76 1.98 3.990 92.63 2.31 3.851 92.45
HT-GLS-BLUP 4.77 3.650 79.08 4.53 3.142 79.22 5.17 3.490 79.30 5.39 3.357 79.03

HT-GLS-noBLUP 8.79 4.798 95.37 8.00 4.270 94.73 8.81 4.618 95.21 9.19 4.476 95.13

Table 4.9: Relative biases of the JK1−B variance estimation, average mean lengths and coverages
of 95% confidence interval estimators with a sample size n = 500 and 2000 random groups for the
smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U -98.85 0.399 14.74 -99.04 0.396 14.43 -98.96 0.391 14.96 -98.96 0.399 15.64
SHT-1 -90.14 1.291 42.59 -93.91 1.002 31.64 -93.23 1.022 35.52 -96.16 0.744 27.09
SHT-2 -87.65 1.331 44.52 -94.61 0.837 31.61 -87.44 1.372 47.29 -87.18 1.406 48.48

SHT-12 -78.16 1.928 59.69 -88.91 1.208 45.25 -81.07 1.719 56.86 -83.93 1.526 53.28
HT-GLS-BLUP -54.42 2.408 61.49 -64.26 1.837 55.42 -56.56 2.243 60.22 -59.10 2.092 58.78

HT-GLS-noBLUP -79.37 2.090 55.43 -89.91 1.305 37.86 -82.26 1.865 51.02 -85.07 1.655 46.90
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Table 4.10: Relative biases of the JK2−B variance estimation, average mean lengths and cover-
ages of 95% confidence interval estimators with a sample size n = 500 and 2000 random groups
for the smoothed Horvitz-Thompson estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HT -1.27 4.737 88.00 -1.27 3.980 89.12 -0.56 4.513 88.05 -0.18 4.362 88.56

SHT-U -98.85 0.399 14.74 -99.04 0.396 14.43 -98.96 0.391 14.96 -98.96 0.399 15.64
SHT-1 -90.14 1.291 42.59 -93.91 1.002 31.64 -93.23 1.022 35.52 -96.16 0.744 27.09
SHT-2 -87.65 1.331 44.52 -94.61 0.837 31.61 -87.44 1.372 47.29 -87.18 1.406 48.48

SHT-12 -78.16 1.928 59.69 -88.91 1.208 45.25 -81.07 1.719 56.86 -83.93 1.526 53.28
HT-GLS-BLUP -54.42 2.408 61.49 -64.26 1.837 55.42 -56.56 2.243 60.22 -59.10 2.092 58.78

HT-GLS-noBLUP -79.37 2.090 55.43 -89.91 1.305 37.86 -82.26 1.865 51.02 -85.07 1.655 46.90

As both HT-GLS-BLUP estimator and HT-GLS-NOBLUP estimator from the model with ran-

dom effect are biased, we consider the Hájek estimator instead. The smoothed Hájek estimator is

given by Ŷ SHA =
∑

i∈S ŵiyi/
∑

i∈S ŵi.

Table 4.11 and 4.12 present the relative biases as percentages (RB) and relative efficiencies as

percentages (RE) of the estimators when the sample size is 100 and the sample size is 500, respec-

tively. For variable y1, all the estimators from the model with y1 are unbiased and more efficient

than the Hájek estimator. The model without y1 are biased and less efficient. For the two estimators

with random effect, both HA-GLS-BLUP and HA-GLS-NOBLUP estimators are unbiased. The

HA-GLS-NOBLUP estimator has slight advantage with respect to the relative efficiency compared

to the HA-GLS-BLUP estimator. For variable y2, all the estimators from the model with y2 are un-

biased and more efficient than the Hájek estimator. Both HA-GLS-BLUP and HA-GLS-NOBLUP

estimators are unbiased and more efficient than the Hájek estimator. For variable y3, all smoothed

Hájek estimators are unbiased and more efficient than Hájek estimator. This is because the variable

y3 is weakly correlated with the design variable. For variable y4, the results are identical to y1 as

expected since the two variables are highly correlated.

These results suggest that the bias of the GLS Horvitz-Thompson estimators is readily removed

by switching to a Hájek version. We also see that the NOBLUP is more efficient than the BLUP

for all variables and sample sizes. This makes sense here, because the random intercept is not

related to the y variables, so that integrating it out of the weights improves their behavior with

respect to estimation of y population means. This is different from most applications of mixed
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Table 4.11: Relative biases and relative efficiency results for a sample size n = 100 and 200
random groups for the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HA -0.22 100.00 0.33 100.00 -0.03 100.00 0.11 100.00

SHA-U -5.12 259.62 8.18 581.59 -0.94 35.16 2.55 91.19
SHA-1 0.00 64.48 8.05 566.01 0.04 31.11 -0.01 40.94
SHA-2 -5.00 255.18 0.34 63.76 -0.91 41.88 2.41 91.72

SHA-12 -0.05 66.47 0.37 64.53 0.03 38.54 -0.07 47.63
HA-GLS-BLUP -0.12 71.33 0.33 70.41 -0.02 52.23 0.01 57.27

HA-GLS-noBLUP -0.08 62.63 0.36 60.39 0.02 38.17 -0.05 46.60

Table 4.12: Relative biases and relative efficiency results for a sample size n = 500 and 2000
random groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HA -0.03 100.00 0.08 100.00 -0.03 100.00 0.01 100.00

SHA-U -4.87 1002.74 8.37 2500.09 -0.86 56.77 2.37 268.79
SHA-1 -0.08 58.75 8.32 2474.09 0.14 28.42 -0.03 34.54
SHA-2 -4.83 990.87 0.16 56.36 -0.92 68.71 2.32 265.21

SHA-12 -0.12 60.56 0.20 57.08 0.05 35.56 -0.03 40.30
HA-GLS-BLUP -0.05 66.17 0.13 64.14 0.02 49.79 -0.03 52.04

HA-GLS-noBLUP -0.04 57.33 0.18 54.17 0.07 35.65 -0.07 39.85
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Table 4.13: Relative biases of the JK1 − A variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size n = 100 and 200 random groups
the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA -1.71 0.779 90.39 3.53 0.825 89.08 5.31 0.769 92.67 3.74 0.767 92.42

SHA-U -0.95 0.392 14.11 0.89 0.389 0.12 -0.52 0.385 89.53 -1.09 0.393 64.53
SHA-1 -1.89 0.626 92.95 3.29 0.416 0.85 1.63 0.421 93.70 -0.37 0.481 93.17
SHA-2 -0.16 0.447 25.29 2.92 0.655 92.32 3.17 0.443 90.56 1.31 0.450 72.81

SHA-12 -1.41 0.637 92.86 3.22 0.659 91.94 3.89 0.474 93.96 1.54 0.524 93.55
HA-GLS-BLUP 0.35 0.665 92.46 5.66 0.698 91.39 9.81 0.568 94.02 6.90 0.590 93.66

HA-GLS-noBLUP 4.93 0.638 93.62 10.76 0.660 92.95 4.41 0.473 93.91 3.58 0.523 93.55

model regression, where prediction is most often an emphasis of the model analysis. We expect

this conclusion to change in cases where the random effect variable itself related to the survey

variables, for instance if the random effect corresponds to interactions between them. In such

cases, the BLUP can be expected to be more efficient than the NOBLUP estimator.

We evaluate the JKDAG variance estimators for the Hájek estimators. Table 4.13 through Table

4.20 present the relative biases of the jackknife estimators, average mean lengths and coverages of

95% confidence interval estimators for JK1−A, JK2−A, JK1−B and JK2−B, respectively.

The JK1 − A and JK2 − A have very similar results. For JK − A, all the smoothed Hájek

estimators without random effect have modest biases and the coverages of 95% confidence interval

estimators are good when the mean estimator itself is appropriate. Both HA-GLS-BLUP estimator

and HA-GLS-NOBLUP estimator overestimate the true variance but they have shorter mean length

compared to Hájek estimator. They both provide good coverage for all variables, which is close

to 95%. The same as JK − B for Horvitz-Thompson estimator, JK − B for the Hájek estimator

performed very poorly.
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Table 4.14: Relative biases of the JK2 − A variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size n = 100 and 200 random groups
the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA -1.81 0.778 90.39 3.36 0.824 89.08 5.23 0.769 92.67 3.63 0.767 92.42

SHA-U -0.95 0.392 14.11 0.89 0.389 0.12 -0.52 0.385 89.53 -1.09 0.393 64.53
SHA-1 -1.90 0.626 92.95 3.27 0.416 0.85 1.62 0.421 93.70 -0.38 0.481 93.17
SHA-2 -0.18 0.447 25.29 2.90 0.655 92.32 3.16 0.443 90.55 1.30 0.450 72.81

SHA-12 -1.42 0.637 92.86 3.20 0.659 91.94 3.88 0.474 93.96 1.52 0.524 93.55
HA-GLS-BLUP 0.25 0.665 92.45 5.54 0.698 91.36 9.60 0.567 93.99 6.72 0.589 93.63

HA-GLS-noBLUP 4.70 0.637 93.59 10.53 0.659 92.94 4.37 0.473 93.89 3.47 0.523 93.54

Table 4.15: Relative biases of the JK1 − B variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 100 people and 200 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA -1.71 0.779 90.39 3.53 0.825 89.08 5.31 0.769 92.67 3.74 0.767 92.42

SHA-U -0.95 0.392 14.11 0.89 0.389 0.12 -0.52 0.385 89.53 -1.09 0.393 64.53
SHA-1 -52.66 0.435 80.62 0.91 0.411 0.72 -4.65 0.408 92.79 -23.26 0.422 89.84
SHA-2 -2.01 0.443 24.60 -41.93 0.492 82.92 1.63 0.439 90.33 -0.41 0.446 72.60

SHA-12 -42.89 0.485 83.66 -37.86 0.511 83.65 -2.03 0.461 93.08 -15.60 0.478 91.27
HA-GLS-BLUP -28.44 0.562 87.13 -22.84 0.596 86.27 1.21 0.545 92.92 -7.80 0.547 91.97

HA-GLS-noBLUP -39.84 0.483 84.85 -33.95 0.510 85.00 -1.52 0.460 93.16 -14.21 0.476 91.40

Table 4.16: Relative biases of the JK2 − B variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 100 people and 200 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA -1.81 0.778 90.39 3.36 0.824 89.08 5.23 0.769 92.67 3.63 0.767 92.42

SHA-U -0.95 0.392 14.11 0.89 0.389 0.12 -0.52 0.385 89.53 -1.09 0.393 64.53
SHA-1 -52.66 0.435 80.62 0.91 0.411 0.72 -4.65 0.408 92.79 -23.26 0.422 89.84
SHA-2 -2.01 0.443 24.60 -41.94 0.492 82.92 1.63 0.439 90.33 -0.41 0.446 72.60

SHA-12 -42.90 0.485 83.66 -37.88 0.511 83.65 -2.03 0.461 93.08 -15.60 0.478 91.27
HA-GLS-BLUP -28.45 0.562 87.13 -22.86 0.596 86.25 1.20 0.545 92.92 -7.81 0.547 91.97

HA-GLS-noBLUP -39.85 0.483 84.85 -33.96 0.510 85.00 -1.53 0.460 93.16 -14.22 0.476 91.40

Table 4.17: Relative biases of the JK1 − A variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 500 people and 2000 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA 0.24 0.367 92.67 -1.81 0.391 91.50 -0.14 0.356 93.04 1.64 0.359 93.38

SHA-U 1.27 0.176 0.00 3.06 0.175 0.00 -1.32 0.174 76.49 0.44 0.175 11.95
SHA-1 -0.03 0.280 93.22 3.88 0.182 0.00 -0.62 0.187 93.03 0.74 0.210 93.23
SHA-2 1.74 0.198 0.03 1.24 0.296 92.76 -1.13 0.199 78.42 2.43 0.199 21.71

SHA-12 0.20 0.284 93.07 1.66 0.297 92.62 -0.96 0.211 93.25 1.75 0.228 93.84
HA-GLS-BLUP 1.08 0.299 93.17 1.03 0.317 92.44 1.00 0.252 93.83 4.66 0.263 93.94

HA-GLS-noBLUP 5.32 0.284 93.78 7.22 0.298 93.51 -0.62 0.211 93.34 3.78 0.228 94.20
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Table 4.18: Relative biases of the JK2 − A variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 500 people and 2000 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA 0.22 0.367 92.67 -1.84 0.391 91.50 -0.15 0.356 93.04 1.63 0.359 93.38

SHA-U 1.27 0.176 0.00 3.06 0.175 0.00 -1.32 0.174 76.49 0.44 0.175 11.95
SHA-1 -0.03 0.280 93.22 3.88 0.182 0.00 -0.62 0.187 93.03 0.74 0.210 93.23
SHA-2 1.74 0.198 0.03 1.24 0.296 92.76 -1.13 0.199 78.42 2.43 0.199 21.71

SHA-12 0.19 0.284 93.06 1.66 0.297 92.62 -0.96 0.211 93.25 1.75 0.228 93.84
HA-GLS-BLUP 1.03 0.299 93.17 0.98 0.317 92.44 0.90 0.252 93.83 4.56 0.263 93.93

HA-GLS-noBLUP 5.11 0.284 93.76 7.02 0.298 93.49 -0.64 0.211 93.34 3.70 0.228 94.17

Table 4.19: Relative biases of the JK1 − B variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 500 people and 2000 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA 0.24 0.367 92.67 -1.81 0.391 91.50 -0.14 0.356 93.04 1.64 0.359 93.38

SHA-U 1.27 0.176 0.00 3.06 0.175 0.00 -1.32 0.174 76.49 0.44 0.175 11.95
SHA-1 -53.84 0.190 79.63 3.35 0.182 0.00 -5.54 0.182 92.59 -22.74 0.184 89.67
SHA-2 1.35 0.198 0.03 -43.09 0.222 83.47 -1.47 0.199 78.29 2.11 0.198 21.65

SHA-12 -43.83 0.212 83.65 -39.84 0.229 84.21 -4.45 0.207 92.85 -15.25 0.208 91.40
HA-GLS-BLUP -26.07 0.256 88.31 -24.33 0.274 88.21 -3.71 0.247 93.07 -6.66 0.248 92.32

HA-GLS-noBLUP -40.93 0.213 84.79 -36.66 0.229 85.56 -4.12 0.208 92.89 -13.56 0.209 91.68

Table 4.20: Relative biases of the JK2 − B variance estimation, average mean lengths and cov-
erages of 95% confidence interval estimators with a sample size of 500 people and 2000 random
groups the Hájek estimators.

Estimators Variable y1 Variable y2 Variable y3 Variable y4

RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%) RB (%) AL CR (%)
HA 0.22 0.367 92.67 -1.84 0.391 91.50 -0.15 0.356 93.04 1.63 0.359 93.38

SHA-U 1.27 0.176 0.00 3.06 0.175 0.00 -1.32 0.174 76.49 0.44 0.175 11.95
SHA-1 -53.84 0.190 79.63 3.35 0.182 0.00 -5.54 0.182 92.59 -22.74 0.184 89.67
SHA-2 1.35 0.198 0.03 -43.10 0.222 83.47 -1.47 0.199 78.29 2.11 0.198 21.65

SHA-12 -43.83 0.212 83.65 -39.84 0.229 84.21 -4.45 0.207 92.85 -15.25 0.208 91.40
HA-GLS-BLUP -26.07 0.256 88.31 -24.34 0.274 88.21 -3.72 0.247 93.07 -6.66 0.248 92.32

HA-GLS-noBLUP -40.93 0.213 84.79 -36.66 0.229 85.56 -4.12 0.208 92.89 -13.56 0.209 91.68
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, we considered weighting adjustment methods in survey sampling. In Chap-

ter 2, we considered a new survey estimator under nonresponse. The estimator was obtained using

the estimated response propensity, which the response propensity was estimated through a non-

parametric logistic model. Two variance estimations were considered: reverse approach and the

two-phase sampling. The two approaches showed similar behaviors. From the simulation study,

the new estimator was seen to be consistent. The nonparametric estimator had advantages as

it performed significantly better for inference than the parametric estimator when the response

propensity function was nonlinear. In Chapter 3, we considered a smoothed Horvitz-Thompson

estimator in which the smoothed weights were obtained from the weight model. The asymptotic

distribution of the estimator was derived. We found that the smooth estimator and the model-based

variance estimator performed well when the model was correctly specified. When the model was

misspecified, we found that the smoothed Hájek version of the weight smoothing estimator im-

proved the efficiency of the survey estimators. Combined with jackknife variance estimation, the

confidence interval performed well for inference. In Chapter 4, the results from Chapter 3 were

extended to the case with a random effect weight model. We found that the GLS Hájek estimator

was unbiased and the NOBLUP estimator was more efficient than the BLUP estimator. Together

with the jackknife estimator, the confidence intervals provided good coverages in the simulation

study.

5.2 Future work

In Chapter 3, the nonparametric logistic model was considered. For the simulation study, we

picked three different smoothing parameters: λ = 1, λ = 10 and λ = 200. The choice of the

smoothing parameter λ is critical to the performance of a spline estimate. The larger the smoothing
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parameter, the less flexibility of the model fitting. Future work would include the choice of the

smoothing parameter, which can lead to an unbiased and more efficient survey estimator under

nonresponse. For the random effect weight model in Chapter 5, in the coming study, we will

explore the asymptotic distribution of the estimator, the variance estimation with respect to the

sampling design and the weight model. We compared several different estimators in this chapter.

The selection of the model for the estimators could be a potential research topic as well.
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