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Abstract
Prices for some real world tradable assets, for instance natural gas

and oil, are correlated, and the price dynamics for those assets are
di¤erent in di¤erent economic environments. In this paper we ex-
tend the mean reverting model to multi-assets and model correlation
between prices. Our model also allows the means and the mean revert-
ing factors to switch between di¤erent regimes by including a Hidden
Markov chain which models the di¤erent economic environments, or
"states of the world". We then obtain approximate estimates for the
parameters by applying �lters and the EM algorithm. Approximate
derivative prices are also given.

Keywords: Mean Reverting, Commodity Markets, Regime Switching,
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1 Introduction

After the publication of the Black and Scholes (1973)[1] paper on option pric-
ing, Geometric Brownian Motion has become a standard tool for modelling
�nancial assets. However, over the last two decades, much attention has
been paid to the modeling of commodities, and researchers have found that
commodity markets are di¤erent from �nancial markets because of physi-
cal constraints. The price dynamics for commodities clearly exhibit strong
mean reversion and seasonality characteristics. Therefore, mean reverting
models are often used to describe the behavior of asset prices, particularly
commodity prices.
Some work has been done by combining regime switching and mean re-

version into one model. Elliott et al. (1999)[4] developed a mean revert-
ing and regime switching model by allowing the long term means and the
mean reverting factors to switch between di¤erent states. Wu and Elliott
(2005)[6] proposed a regime switching model with mean reversion and jumps
and estimate all the parameters using the Expectation Maximization (EM)
algorithm.
It is well known that the prices of some commodities are highly correlated,

for instance natural gas and crude oil. However, previous models consider
only the spot prices for a particular commodity, instead of modeling the
spot prices of a group of correlated commodities together. To integrate the
correlations between the prices of multi-assets, we generalize one factor mean
reverting models to a multi-asset situation by including correlations between
the prices of assets. Moreover, it is known that price dynamics di¤er under
di¤erent economic environments. We introduce a hidden Markov chain to
represent the "states of the world", or of the economy. We derive approximate
expressions for all the parameters by applying the �ltering techniques and the
EM algorithm. We also obtain approximate formulas for derivative prices.
The paper is organized as follows. In section two, we give the spot price

dynamics. We derive approximate expressions for forward and option prices
in section three. All the parameters are estimated by applying the EM algo-
rithm in section four. Section �ve concludes the paper and proposes further
research topics.
The authors would like to thank the anonymous referee for his/her helpful

comments. Robert Elliott is graterful for the �nancial support from the Social
Sciences and Humanities Research Council.
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2 Spot Price Dynamics

Prices of tradable assets are often highly correlated. Therefore, we shall
model the prices of a number of assets together.
Suppose we work on a complete probability space (
;F ;P) ; where P is

a real-world probability measure. We wish to price Q correlated assets, for
instance natural gas, futures on natural gas, crude oil, and futures on crude
oil. It is clear there are correlations between all these prices. Let the price
process for the asset i be Si = Si(t); for 0 � t � T , 1 � i � Q.
We suppose the logarithm of the price of the i-th asset, Ri(t) = logSi(t)

follows a mean-reverting di¤usion process,

dRi(t) = �i(t)(�i(t)�Ri(t))dt+
QX
j=1

�i;jdBj(t): (1)

Here �i(t) is a mean reverting factor, �i(t) is the long-term equilibrium mean
for the i-th asset, and Bj; (1 � j � Q), are Q independent Brownian mo-
tions. Therefore, the price of the i-th individual asset is described by a mean
reverting process and also depends on its correlations with the other assets.
Since we observe mean reverting behavior in energy markets, and also the
mean reverting behavior may di¤er in di¤erent economics, we introduce a
Markov Chain fXt; 0 � t � Tg with a �nite state space B to represent the
di¤erent "states of the world". Without loss of generality we can identify B
with the set of unit vectors:

S = fe1; e2; :::; eNg; where ei = (0; :::; 1:::; 0)0 2 RN :

Suppose X has a transition rate matrix ~A = pji 2 RN�N . Let FX
T be the

�-algebra generated by the hidden Markov Chain process up to time T , that
is, FX

T = �fXs; 0 � s � Tg. As shown in Elliott et al. (1993)[3], we can
write the dynamics of Xt as

Xt = X0 +

Z t

0

~AXudu+Mt;

whereMt 2 RN and E[MtjFX
s ] =Ms 2 RN , soM is a martingale. Of course,

X de�nes the martingale M and in turn M determines the dynamics of X.
We assume the �i(t) and �i(t) for all 1 � i � Q take di¤erent values in
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di¤erent "states of the world". Therefore, we let the (�i(t); �i(t)) take values
in a �nite set B = f(�ni ; �ni ) : 1 � i � Q; 1 � n � Ng, that is,

�i = (�
1
i ; �

2
i ; : : : ; �

N
i )

0;

�i = (�
1
i ; �

2
i ; : : : ; �

N
i )

0:

Then we suppose,

�i(t) = h�i; Xti;
�i(t) = h�i; Xti:

The solution to (1) is:

Ri(t) = e
�ai(t)

"
Ri(0) +

Z t

0

eai(s)�i(s)�i(s)ds+

QX
j=1

�i;j

Z t

0

eai(s)dBj(s)

#
;

(2)
where we write ai(t) =

R t
0
�i(s)ds, 0 � t � T .

If FX
T and the initial value Ri(0) are given, Ri(T ) is a Gaussian random

variable with conditional mean

�i(T ) = E[Ri(T )jFX
T _Ri(0)]

= e�ai(T )
�
Ri(0) +

Z T

0

eai(s)�i(s)�i(s)ds

�
;

and variance

�i(T ) = V ar[Ri(T )jFX
T _Ri(0)]

= E
�
(Ri(T )� E[Ri(T )jFX

T _Ri(0)])2
�

= E

24"e�ai(T ) QX
j=1

�i;j

Z T

0

eai(s)dBj(s)

#2
jFX
T _Ri(0)]

35
= e�2ai(T )

QX
j=1

�2i;j

Z T

0

e2ai(s)ds:

Although we have the expressions for both the conditional mean and
the variance, they involve the behavior of X over the time interval [0; T ] :
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We have to estimate the terms e�2ai(T );
R T
0
eai(s)�i(s)�i(s)ds; and

R T
0
e2ai(s)ds

to obtain estimates for the values of the conditional mean and variance.
Then we can estimate the statistical behavior of the spot price dynamics and
price forwards and options. We �rst introduce the following Lemma which
simpli�es the expressions. The lemma connects the mean reverting factors
with the occupation time, the amount of time that the Markov chain spends
in a state up to a point of time t.

Lemma 1 Write the occupation time for Xt in state j up to time t as
Oj
t =

R t
0
hXs; ejids: Then ai(t) =

R t
0
h�i; Xsids = h�i;Oti; where Ot =

(O1
t ;O2

t ; : : : ;ON
t )

0:

Proof. By de�nition

Xs =
NX
j=1

hXs; ejiej:

Then

ai(t) =

Z t

0

h�i; Xsids =
NX
j=1

Z t

0

h�i; ejihXs; ejids = h�i;Oti:

�
From Lemma 1,

�i(T ) = e
h��i;OT i

�
Ri(0) +

Z t

0

eh�i;Osih�i � �i; Xsids
�
; (3)

and

�i(T ) = e
h�2�i;OT i

QX
j=1

�2i;j

Z T

0

eh2�i;Osids: (4)

Here �i � �i = (�1i�1i ; �2i�2i ; : : : ; �Ni �Ni )0. The only remaining random terms
are terms related to eh�i;Oti: The next result gives a general expression for
calculating these.

Lemma 2 For u = (u1; u2; : : : ; uN) 2 RN , write Du = diag(u1; u2; : : : ; uN);
and de�ne Z(t) = ehu;OtiXt: Then

E[Z(t)jFX
s ] = e

( ~A+Du)(t�s)Z(s):
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Proof. Consider
Z(t) = ehu;OtiXt; (5)

where, as before,

Ot =(O1
t ;O2

t ; : : : ;ON
t )

0

=(

Z t

0

hXs; e1ids;
Z t

0

hXs; e2ids; : : : ;
Z t

0

hXs; eNids)0:

Di¤erentiating equation (5), we obtain

dZ(t) =ehu;OtidXt +Xtde
hu;Oti

=( ~AXtdt+ dM(t))e
hu;Oti

+Xte
hu;Oti (u1hXt; e1idt+ � � �+ uNhXt; eNi) dt:

That is,

Z(t) =Z(s) +

Z t

s

~AXre
hu;Oridr +

Z t

s

ehu;OridM(r)

+

Z t

s

Xre
hu;Ori(u1hXr; e1i+ � � �+ uNhXr; eNi)dr:

Because the integral with respect to M is a martingale,

E[Z(t)jFX
s ]

= Z(s) +

Z t

s

~AE[Z(r)jFX
s ]dr +

Z t

s

diag(u1; : : : ; uN)E[Z(r)jFX
s ]dr:

Writing
E[Z(t)jFX

s ] = t 2 RN ;
the previous equation is

t = Z(s) +

Z t

s

( ~A+Du)rdr; (6)

where Du = diag(u1; u2; : : : ; uN):
Therefore,

t = e
( ~A+Du)(t�s)Z(s): 2 RN ;
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and,
E[Z(t)jFX

s ] = e
( ~A+Du)(t�s)Z(s):

�
By applying this Lemma, we can estimate the means and variances for

individual assets after we obtain the estimates for the parameters in section
4. In the next section we estimate prices of forwards and options on those
assets. Since forwards and options on commodities are frequently traded,
these expressions are useful.

3 Derivative Prices

In energy markets, forward contracts, futures and various types of options
are traded daily. The introduction of future contracts and the mechanism of
marking to market have been considered two of the most important break-
throughs in modern �nance. Although there are future contracts whose safety
is guaranteed by the clearing houses, forward contracts are still heavily traded
in over-the-counter markets. Below, we shall estimate prices of forwards and
options whose underling is an asset whose spot price follows the dynamics
given in the previous section.

3.1 Forward Prices

Forwards are particularly important in energy markets as prices are volatile.
An oil re�ner may enter into a forward contract to secure crude oil for its
future operations and so to avoid both volatility in spot oil prices and the
need to store oil for extended periods. Theoretically speaking, the price for
a forward contract is just the expectation of the spot price at a �xed future
date. However, it is not easy to price a forward contract when the correlations
between the related assets are taken into consideration as the computation
becomes very complicated and usually there are not closed form expressions.
Suppose we want to price a forward contract whose underlying is the i-th

asset. The forward price, for 0 � t � T , is then

Fi(T; t) = E[Si(T )jRi(0)]:

That is, the value of the forward is the expectation of the spot price at time
T conditional on the initial price, which is usually observable at the time

7



when the forward contract is agreed. As, given FX
T and the initial value

Ri(0); Ri(T ) is conditionally Gaussian:

Fi(T; t) =E[e
Ri(T )jRi(0)]

=E[E[eRi(T )jFX
T _Ri(0)]jRi(0)]

=E[exp(�i(T )�
1

2
�i(T ))jRi(0)]:

Writing K = �i(T ) � 1
2
�i(T ); and �K = E[�i(T ) � 1

2
�i(T )jRi(0) _ X0];

this becomes Fi(T; t) = E[eK jRi (0)_X0]: Although we can not evaluate this
exactly, we can obtain an approximation using a Taylor expansion around
�K:

E[eK jRi (0) _X0] = E[e
�KeK�

�K jRi (0) _X0]

= e
�KE

�
1 + (K � �K) +

(K � �K)2

2!
+ o(K � �K)2jRi (0) _X0

�
� e �K

 
1 +

E
�
(K � �K)2jRi (0) _X0

�
2!

!
: (7)

Now we have to compute e �K andE
�
(K � �K)2jRi (0) _X0

�
: SinceE[(K�

�K)2jRi (0) _X0] = E[K
2jRi (0) _X0] � �K2 we shall calculate the following

terms: �K = E [KjRi (0) _X0], E[K2jRi (0) _ X0]; and �K2: The following
lemmas give the values of these terms.

Lemma 3 The value of �K = E [KjRi (0) _X0] = E[�i(T )� 1
2
�i(T )jRi (0)_

X0] is given by:

�K = he( ~A�D�i )TX0; 1iRi(0)

+

Z T

0

h(e( ~A0�D�i )(T�s)1)� �i � �i; e
~AsX0ids

� 1
2

QX
j=1

�2i;j

Z T

o

he( ~A0�2D�i )(T�s)e ~A0s1; X0ids:
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Proof. We �rst notice that

K = �i(T )�
1

2
�i(T )

= e�ai(T )Ri(0) +

Z T

0

eai(s)�ai(T )�i(s)�i(s)ds�
1

2

QX
j=1

�2i;j

Z T

0

e2(ai(s)�ai(T ))ds:

To simplify the expression we write

I1 = e
�h�i;OT iRi(0); (8)

I2 =

Z T

0

eh�i;Os�OT ih�i � �i; Xsids; (9)

and

I3 = �
1

2

QX
j=1

�2i;j

Z T

o

e2h�i;Os�OT ids: (10)

Then K = I1 + I2 + I3; and

�K = E [KjRi (0) _X0] = E [I1jRi (0) _X0]+E [I2jRi (0) _X0]+E [I3jRi (0) _X0] :

From Lemma 2 we know E[Z(t)jRi (0) _X0] = e
( ~A+Du)tX0, for a general

process Z(t) = ehu;OtiXt; and s = 0, therefore,

E[hZ(t); 1ijRi (0) _X0]

= hE[Z(t)jRi (0) _X0]; 1i
= he( ~A+Du)tX0; 1i
= E[ehu;OtihXt; 1ijRi (0) _X0]:

Here, 1 = (1; 1; 1; � � � ; 1)0. That is,

E[ehu;OtijRi (0) _X0] = he(
~A+Du)tX0; 1i:

Thus, we have

E[I1jRi (0) _X0] = he(
~A�D�i )TX0; 1iRi(0);

where D�i = diag(�i).
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Now we turn to the computation of E[I2jRi (0) _X0] :

E[I2jRi (0) _X0] =

Z T

0

E
�
E
�
eh�i;Os�OT ih�i � �i; XsijFX

s

�
jRi (0) _X0

�
ds

=

Z T

0

E
�
E
�
e�h�i;OT ijFX

s

�
eh�i;Osih�i � �i; XsijRi (0) _X0

�
ds:

Notice that

E[e�h�;OT iXT jFX
s ] = e

( ~A+D�i )(T�s)e�h�;OsiXs;

so,

E[e�h�;OT ijFX
s ] = e

�h�;Osihe( ~A+D�i )(T�s)Xs; 1i
= e�h�;Osihe( ~A0+D�i )(T�s)1; Xsi:

Thus, we obtain

E[I2jRi (0) _X0] =

Z T

0

E
h
e�h�i;Osihe( ~A0+D�i )(T�s)1; Xsieh�i;Osih�i � �i; XsijRi (0) _X0

i
ds

=

Z T

0

h(e( ~A0�D�i )(T�s)1)� �i � �i; e
~AsX0ids:

Similarly,

E[I3jRi (0) _X0] = E

"
�1
2

QX
j=1

�2i;j

Z T

o

e2h�i;Os�OT idsjRi (0) _X0

#

= �1
2

QX
j=1

�2i;j

Z T

o

he( ~A0�2D�i )(T�s)1; e ~AsX0ids:

Then �nally,

�K =he( ~A�D�i )TX0; 1iRi(0)

+

Z T

0

h(e( ~A0�D�i )(T�s)1)� �i � �i; e
~AsX0ids

10



�1
2

QX
j=1

�2i;j

Z T

o

he( ~A0�2D�i )(T�s)e ~A0s1; X0ids:

�
Lemma 3 gives us the expression of �K; so the computation of e �K and �K2

is just straightforward. The only remaining term is E[K2jRi (0) _X0]:

Lemma 4 The value of E[K2jRi (0) _ X0]; conditional on the initial value
of the Markov Chain, is given by

E[K2jRi (0) _X0]

= he( ~A�2D�i )TX0; 1iR(0)2

+ 2

Z T

0

Z s

0

he( ~A0�D�i )(s�r)[e( ~A0�2D�i )(T�s)1� �i � �i]� �i � �i; e
~ArX0idrds

+
1

2
(

QX
j=1

�2i;j)
2

Z T

0

Z s

0

he( ~A0�4D�i )(T�s)1; e( ~A�2D�i )(s�r)e ~ArX0idrds

+ 2R(0)

Z T

0

h(e( ~A0�2D�i )(T�s)1)� �i � �i; e(
~A�D�i )sX0ids

�
 

QX
j+1

�2i;j

!
R(0)

Z T

0

he( ~A0�3D�i )(T�s)e( ~A�2D�i )sX0; 1ids

�
 

QX
j+1

�2i;j

!Z T

0

Z s

0

he( ~A0�D�i )(s�r)[e( ~A0�3D�i )(T�s)1]� �i � �i; e
~ArX0idrds

�
 

QX
j+1

�2i;j

!Z T

0

Z s

0

he( ~A0�2D�i )(s�r)[e( ~A0�3D�i )(T�s)1]� �i � �i; e
~ArX0idrds:

Proof. We have
K = I1 + I2 + I3;

where I1, I2, and I3 are de�ned in equation (8� 10) ; respectively. Thus

K2 = (I1 + I2 + I3)
2 = I21 + I

2
2 + I

2
3 + 2I1I2 + 2I1I3 + 2I2I3:

We write the six terms in the formula as Mi; (1 � i � 6), therefore,

K2 =M1 +M2 +M3 +M4 +M5 +M6:
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Now

E[K2jRi (0) _X0] = E[M1jRi (0) _X0] + E[M2jRi (0) _X0] + E[M3jRi (0) _X0]

+ E[M4jRi (0) _X0] + E[M5jRi (0) _X0] + E[M6jRi (0) _X0]:

All these six terms can be computed explicitly as follows:

E[M1jRi (0) _X0] = he(
~A�2D�i )TX0; 1iR(0)2:

E[M2jRi (0) _X0] = 2

Z T

0

Z s

0

he( ~A0�D�i )(s�r)[e( ~A0�2D�i )(T�s)1� �i � �i]� �i � �i; e
~ArX0idrds:

E[M3jRi (0) _X0] =
1

2
(

QX
j=1

�2i;j)
2

Z T

0

Z s

0

he( ~A0�4D�i )(T�s)1; e( ~A�2D�i )(s�r)e ~ArX0idrds:

E[M4jRi (0) _X0] = 2R(0)

Z T

0

h(e( ~A0�2D�i )(T�s)1)� �i � �i; e(
~A�D�i )sX0ids:

E[M5jRi (0) _X0] = �
 

QX
j+1

�2i;j

!
R(0)

Z T

0

he( ~A0�3D�i )(T�s)e( ~A�2D�i )sX0; 1ids:

and,

E [M6jRi (0) _X0]

= �
 

QX
j+1

�2i;j

!Z T

0

Z s

0

he( ~A0�D�i )(s�r)[e( ~A0�3D�i )(T�s)1]� �i � �i; e
~ArX0idrds

�
 

QX
j+1

�2i;j

!Z T

0

Z s

0

he( ~A0�2D�i )(s�r)[e( ~A0�3D�i )(T�s)1]� �i � �i; e
~ArX0idrds:

See the Appendix A for details of the computation of E[M2jRi (0)_X0], and
the computations of the others are similar. �
Lemmas 3 and 4 give expressions for all the terms we need to obtain an

approximate forward price as:

Fi(T; t) � e
�K

 
1 +

E
�
(K � �K)2

�
2!

!
: (11)
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3.2 Option Prices

The price C(Si(T )) of a European call on the i-th asset is given by

C(Si; t; T ) = E[(Si(T )�Ki)
+jX0]

= E[E[(Si(T )�Ki)
+jFX

T ]jX0];

where Ki is the exercise price. Knowing the history FX
T of X; the inner

expectation is a European call written on a mean-reverting asset Si which is
log-normally distributed with the mean (3) and the variance (4). Therefore,
the Black-Scholes type option pricing formula can be applied.
Clewlow and Strickland (1999)[2] proposed the following formula for the

price of a European option:

E[(Si(T )�Ki)
+jFX

T ] = e
�r(T�t)[Fi (t; T )N(hi)�KN(hi �

p
�i)];

Here Fi(t; T ) is the forward price on asset i; 1 � i � Q at time t; and r is
the risk-free interest rate,

hi =
ln(Fi(t; T )=Ki) +

1
2
�ip

�i
; (12)

and

�i = e
�2ai(T )

QX
j=1

�2i;j

Z T

0

e2ai(s)ds:

Therefore, using our estimates in our switching model the price of a European
option is approximately:

C(Si; t; T ) = EQ[EQ[CCH(Si; t; T )jX0]]

= e�r(T�t)EQ[Fi(t; T )N(hi)�KiN(hi �
p
�i)jX0]

= e�r(T�t) fFi(t; T )E[N(hi)jX0]�KiEQ[N(hi �
p
�i)jX0]g :

(13)

Therefore, we must estimate EQ [N (hi) jX0] ; and EQ[N(hi�
p
�i)jX0]: To

do this we use the approximationsN
�
E [hijX0]�

p
E[�ijX0]

�
for EQ[N(hi�

p
�i)jX0]; and N (EQ [hijX0]) for EQ [N (hi) jX0] : From equation (12), we
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have

EQ [hijX0] = EQ

�
ln(Fi(t; T )=Ki) +

1
2
�ip

�i
jX0

�
' ln(Fi(t; T )=Ki)p

E[�ijX0]
+
1

2

q
EQ[�ijX0]:

We notice that EQ[�ijX0] can be computed as following,

EQ[�ijX0] = EQ

"
e�2h�i;OT i

QX
j=1

�2i;j

Z T

0

e2h�i;OsidsjX0

#

=

QX
j=1

�2i;j

Z T

0

EQ[EQ[e
�2h�i;OT ijFX

s ]e
2h�i;OsijX0]ds:

By applying Lemma 2, this becomes

=

QX
j=1

�2i;j

Z T

0

EQ[e
�2h�i;Osihe( ~A�2D�i )(T�s)Xs; 1ie2h�i;OsijX0]ds

=

QX
j=1

�2i;j

Z T

0

he( ~A�2D�i )(T�s)e ~AsX0; 1i]ds:

Inserting these approximations in the equation (13), we can estimate the
price of an European option.

4 Filtering and Estimation

In the previous sections, we have derived closed form expressions for forward
prices and approximate expressions for option prices. In this section, we shall
use �lters and the EM algorithm to estimate the parameters in the spot price
dynamics from historical data. We only observe the dynamics of spot prices,
but not the hidden Markov Chain, Xt: We suppose the logarithm of returns
of the Q assets follow the dynamics (1) :
Observing the discrete time spot prices, we use the following discrete time

forms for the dynamics.

14



We suppose that X has discrete time dynamics

Xk+1 = AXk +Mk+1; with A = aji 2 RN�N :

and R follows:

R(k + 1) = �(k + 1) + �(k + 1)R(k) + 
W (k + 1):

Here

A = I + ~A;

R(k) = (R1(k); R2(k); : : : ; RQ(k))
0 2 RQ;

�(k + 1) = (1; 2; : : : ; Q)
0

= (h(��)1; Xki; : : : ; h(��)Q; Xki)0 2 RQ;
(��)i = (�

1
i�

1
i ; �

2
i�

2
i ; : : : ; �

N
i �

N
i )

0 2 RN ;
�(k + 1) = diag(�1; �2; : : : ; �Q);

= diag(1� h�1; Xki; : : : ; 1� h�Q; Xki) 2 RQ�Q;
W (k + 1) = (!1(k + 1); : : : ; !Q(k + 1)) 2 RQ;

!i(k) � N(0; 1); i:i:d::


 is the variance-covariance matrix (�i;j) 2 RQ�Q, which we assume to
be non-singular.
Write FX

k = �fX0; : : : ; Xkg for the �-�eld generated by X0; : : : ; Xk: Sim-
ilarly,

Rk = �fR(1); R(2); : : : ; R(k)g;
and

Gk = �fX0; X1; : : : ; Xk; R(1); R(2); : : : ; R(k)g:
Then the �ltrations

�
FX
k

	
; fRkg and fGkg model histories of the state

process X, the observation return processes R and fX;Rg, respectively.

4.1 Change of measure

A basic technique for �ltering is the change of measure technique. We work
under a reference measure for which the processes have nice properties, and
change back to the real world space to obtain the estimates for the parame-
ters.

15



The density function of a multivariate normal distribution Y � N(0; I)
is

�(y1; y2; : : : ; yQ) =
1

(2�)Q=2
e�

1
2
Y 0Y :

Suppose under a reference probability measure �P , R = fR(k); k = 0; 1; 2; : : : g
is a sequence of independent normally distributed random variables each with
R(k) � N(0; I), and X is a Markov chain with transition matrix A:
De�ne

�0 = 1; �k = j
�1j
�(W (k))

�(R(k))
For k > 1;

�t =
tY

k=1

�k;

where
W (k) = 
�1[R(k)� �(k)��(k)R(k � 1)]:

We then de�ne the measure P by setting dP=dP jFX
k = �k. The following

lemma tells us that P is the �real world�probability.

Lemma 5 Under P , the fW (k)g is a sequence of independent N(0; I) ran-
dom variables and X remains a Markov chain with transition matrix A:

Proof. See Appendix B. �
In the �real world�, we only observe the processes of spot prices R. We

estimate X using the conditional expectation, E[XkjRk]. By Bayes�theorem
this can be expressed in terms of �P :

E[XkjRk] =
E [�kXkjRk]

E [�kjRk]
:

Write E[�kXkjRk] = qk 2 Rn. We shall derive a recursive estimate for qk(�),
and consequently obtain a estimator for X.

Lemma 6 q satis�es the recurrence qk = D�Aqk�1;where

D� = diag(�
j); 1 � j � n;

�j =
j
�1j�(
�1(R(k)� �j ��jR(k � 1))

�(R(k))
: (14)

16



Here �j and �j are respectively the values of � and � under the state j; that
is, when Xk = ej.

Proof.

qk = E [�kXkjRk]

=
NX
j=1

E
�
�k�1�

jhXk; ejiejjRk

�
=

NX
j=1

E
�
�k�1�

jhAXk�1 +Mk; ejiejjRk

�
=

NX
j=1

�jhAqk�1; ejiej = D�Aqk�1;

where D� = diag(�
j); 1 � j � n: �

The following corollary gives the optimal estimate for the state variable.

Corollary 1 The optimal estimate for the state variable is given by:

E[XkjRk] =
qk

hqk; 1i
: (15)

For estimating the parameters, we need the following quantities:

1. The number of jumps from er to es up to time k;

J rs
k =

kX
t=1

hXt�1; erihXt; esi: (16)

2. The occupation time at the state er, up to time k;

Or
k =

NX
i=1

kX
t=1

hXt�1; erihXt; eii

=

kX
t=1

hXt�1; eri:

17



Before calculating recursive estimates of the these two dynamics, we con-
sider the more general process:

Zrsk =
kX
t=1

hXt�1; erihXt; esiF (Rj(t))G(Rj(t� 1)): (17)

Here F (Rj(t)) and G(Rj(t� 1)) are functions of Rj(t) and Rj(t� 1) respec-
tively, for 1 � j � Q. The following Lemma gives a recursive estimate for
this general dynamic.

Lemma 7 De�ne E[�(k)Zrsk XkjRk] = �rsk :Then the following formula up-
dates �rsk :

�rsk = D�A�
r;s
k�1 + F (Rj(k))G(Rj(k � 1))h�kqk�1; eriasrer:

Proof.

E [�kZrsk XkjRk]

= E [�k�k�1Zrsk XkjRk]

= E
�
�k�k�1[Zrsk�1 + F (R(k))G(R(k � 1))hXk�1; erihXk; esiXkjRk

�
= E

�
�k�k�1Zrsk�1(AXk�1 +Mk)jRk

�
+ E [F (Rj(k))G(Rj(k � 1))�k�k�1hXk�1; erihXk; esiXkjRk]

=
NX
i=1

E
�
�i�k�1Zrsk�1hXk�1; eiijRk

�
Aei

+ E [F (Rj(k))G(Rj(k � 1))h�k�k�1Xk�1; eriasrerjRk]

=

NX
i=1

hE
�
�i�k�1Zrsk�1Xk�1jRk

�
; eiiAei

+ F (Rj(k))G(Rj(k � 1))hE [�k�k�1Xk�1jRk] ; eriasrer:

Here �i is as de�ned as equation (14) in Lemma 5. Thus

�r;sk =

NX
i=1

h�i�r;sk�1; eiiAei + hF (Rj(k))G(Rj(k � 1))�kqk�1; eriasrer

= D�A�
r;s
k�1 + F (Rj(k))G(Rj(k � 1))h�kqk�1; eriasrer:

18



This is a recurrence for �r;sk : �
Write F (Rj(k)) = G(Rj(k�1)) = 1 in Zrsk :We then obtain the following

Corollaries.

Corollary 2 Write E[�(k)J rs
k XkjRk] = �r;sk :Then the following formula

updates �r;sk :
�r;sk = D�A�

rs
k�1 + h�kqk�1; eriasrer:

Corollary 3 The optimal estimate of J rs
k is: bJ rs

k =
h�r;sk ; 1i
hqk; 1i

:

Similarly, we de�ne

N r
k =

kX
t=1

hXt�1; eriF (Rj(t))G(Rj(t� 1)); (18)

where F (Rj(t)) and G(Rj(t � 1)) are two functions of Rj(t) and Rj(t � 1)
respectively. We obtain the following result.

Lemma 8 De�ne E[�(k)N r
kXkjRk] = �r

k:Then the following formula up-
dates �k :

�r
k = D�A�

r
k�1 + F (Rj(k))G(Rj(k � 1))hA�kqk�1; erier:

Corollary 4 De�ne E[�(k)Or
kXkjRk] = 	

r
k:Then the following formula up-

dates 	k :
	rk = D�A	

r
k�1 + h�kqk; erier:

Corollary 5 The optimal estimate of Or
k is: bOr

k =
h	rk; eri
hqk; 1i

:

4.2 Parameter Estimates

We shall use the EM algorithm to estimate the parameters. Write the para-
meters of our model as

� := faji;�;�;
; 1 � i; j � Ng ;

where aji � 0;
NP
j=1

aji = 1: The basic idea of the EM algorithm is:
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� We start with appropriate initial values �̂0 for

� := faji;�;�;
; 1 � i; j � Ng ;

which satisfy constraints for the parameters.

� After some observations of R, we compute new estimates.

� Using these values, we re-estimate the parameters iteratively until some
stopping criterion is satis�ed.

� After more observations we repeat the process again.

Since the EM algorithm improves the estimates monotonically, the ex-
pected log-likelihood increases with each re-estimation. In this section, we
apply this algorithm to obtain the estimates for all the parameters recur-
sively.

4.2.1 Estimate of aji

We �rst estimate the entries of the transition matrix for the Markov Chain
by applying the change of measure technique.

Lemma 9 De�ne �0 = 1 and �k =
Qk
l=1

�PN
j;i=1(

âji
aji
) hXl; eji hXl�1; eii

�
:

( If aji = 0, take âji = 0 and
âji
aji

= 1. ) De�ne P�̂ by setting
dP�̂
dP�

jRk = �k:

Then under the new measure P�̂, X is a Markov Chain with transition A =
(âji).

Lemma 10 Given Rk and parameter set � := faji;�;�;
; 1 � i; j � Ng,
the EM estimates of aji are given by

âji =
bJ ji
kbOi
k

=
h�jik ; 1i
h	ik; 1i

:

Proof. As above we de�ne P�̂ by:

dP�̂
dP�

jRk = �k =
kY
l=1

 
NX

i;j=1

(
âji
aji
) hXl; eji hXl�1; eii

!
:
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Then

log
dP�̂
dP�

jRk =
kX
l=1

NX
i;j=1

hXl; eji hXl�1; eii (log âji � log aji)

=
NX

i;j=1

J ij
k log âji + i(a);

where i(a) does not depend on âji: Then

L(�̂) = E

�
log

dP�̂
dP�

jRk

�
=

NX
i;j=1

Ĵ ij
k log âji + i(a): (19)

Recall that
PN

j=1 âji = 1, and
PN

j=1 J
ij
k = Oi

k. Then, the optimal estimate
of âji is the value that maximizes the right side of (19), and subject toPN

j=1 âji = 1. Let c be the Lagrange multiplier and put

L(P̂ ; �) =
NX

i;j=1

Ĵ ij
k log âji + i(a) + c(

NX
j=1

âji � 1):

Di¤erentiating in âji and c and equating the derivatives to 0, we obtain two
equations. By solving the equations, we have:

c = �Ôi
k;

and

âji =
Ĵ ij
k

Ôi
k

:

This provides estimates for the elements of the transition matrix. �

4.2.2 Estimate of �;� and 


Lemma 11 The estimate for the parameter �, at time k, �̂ is given by

�̂r =
�r;1
k ��r�r;2

k

Ôr
k

;
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where

�r = r;�
r = �r;

�r;1
k = (�r;1

k;1; : : : ;�
r;1
k;Q); �

r;2
k = (�r;2

k;1; : : : ;�
r;2
k;Q);

�r;1
k;j = D�A�k�

r;1
k�1;j +Rj(k)hA�kqk; erier;

�r;2
k;j = D�A�k�

r;2
k�1;j +Rj(k � 1)hA�kqk; erier:

Proof. The density which changes � to �̂ is given by

�k =
dP�̂
dP�

=
kY
t=1

�(Ŵ (t))

�(W (t))
;

where

W (t) = 
�1[R(t)� �(t)��(t)R(t� 1)];
Ŵ (t) = 
�1[R(t)� �̂(t)��(t)R(t� 1)];
�̂(t) : = (̂1; ̂2; : : : ; ̂Q)

0

= (h(�̂�̂)1; Xt�1i; : : : ; h(�̂�̂)Q; Xt�1)0 2 RQ;
(�̂�̂)i = (�̂

1
i �̂

1
i ; �̂

2
i �̂

2
i ; : : : ; �̂

N
i �̂

N
i )

0 2 RN

1 � i � Q;

�(Ŵ (t)) =
1

2�Q=2
e�

1
2
Ŵ (t)0Ŵ (t):

Then

E
�
log �kjFX

k

�
= E

"
kX
t=1

�1
2
Ŵ (t)0Ŵ (t)jFX

k

#
+ L(�;�;
)

=
NX
r=1

E

"
kX
t=1

�1
2
hXt�1; eriŴ r(t)0(Ŵ r(t))jFX

k

#
+ L(�;�;
);

where Ŵ r(t) denotes the value of Ŵ (t) under state r and

Ŵ r(t) = 
�1(R(t)� �̂r ��rR(t� 1)):
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To maximize E
�
log �kjFX

k

�
, we di¤erentiate it against �̂r; 1 � r � N;

and let the �rst derivative equal zero. That is,

E

"
kX
t=1

hXt�1; eri(R(t)� �̂r ��rR(t� 1))jFX
k

#
= 0:

Thus,

�̂r =
E
hPk

t=1hXt�1; eri(R(t)��rR(t� 1))jFX
k

i
E
hPk

t=1hXt�1; erijFX
k

i =
�r;1
k ��r�r;2

k

Ôr
k

;

Here

�r;1
k = (�r;1

k;1; : : : ;�
r;1
k;Q) = E

"
kX
t=1

hXt�1; eriRj(t)jFX
k

#
;

�r;2
k = (�r;2

k;1; : : : ;�
r;2
k;Q) = E

"
kX
t=1

hXt�1; eriRj(t� 1)jFX
k

#
:

By Lemma 8, we have

�r;1
k;j = D�A�k�

r;1
k�1;j +Rj(k)hA�kqk; erier;

�r;2
k;j = D�A�k�

r;2
k�1;j +Rj(k � 1)hA�kqk; erier:

Therefore,

�̂r =
�r;1
k ��r�r;2

k

Ôr
k

:

�
Similarly we have the following two Lemmas.

Lemma 12 The estimate for the parameter �, at time k, �̂ is given by

�̂r =
�
�r;1
k � Ôr

k�̂
r
� �
�r;2
k

��1
:
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Lemma 13 The estimate for the parameter 
 at time k, 
̂ is given by


̂2 =
1

k

NX
r=1

E

"
kX
t=1

hXt�1; eriẐr(t)(Ẑr(t))0jFX
k

#
:

Proof. The density which changes 
 to 
̂ is given by

�k =
dP
̂
dP


=
kY
t=1

0@ j
j���
̂��� �(Ŵ (t))�(W (t))

1A ;
where

W (t) = 
�1[R(t)� �(t)��(t)R(t� 1)];
Ŵ (t) = 
̂�1[R(t)� �(t)��(t)R(t� 1)];

�(Ŵ (t)) =
1

2�Q=2
e�

1
2
Ŵ (t)Ŵ (t)0 :

Then

log �k = �k log
���
̂���� 1

2

kX
t=1

Ŵ (t)Ŵ (t)0 + L(�;�;
)

E
�
log �kjFX

k

�
= E

"
�k log

���
̂���� 1
2

kX
t=1

Ŵ (t)0Ŵ (t)jFX
k

#
+ L(�;�;
)

= �k log
���
̂���� NX

r=1

E

"
kX
t=1

1

2
hXt�1; eriŴ r(t)0(Ŵ r(t))jFX

k

#
+ L(�;�;
)

= �k log
���
̂���� 1

2

NX
r=1

E

"
kX
t=1

hXt�1; eriẐr(t)0
̂�2(Ẑr(t))jFX
k

#
+ L(�;�;
);

where we write
Ẑ(t) = [R(t)� �(t)��(t)R(t� 1)]:
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To maximize E
�
log �kjFX

k

�
, we di¤erentiate it against 
̂; 1 � r � N; and

let the �rst derivative equal zero. That is,

�k
�

̂�1

�
+ 
̂�3

NX
r=1

E

"
kX
t=1

hXt�1; eriẐr(t)(Ẑr(t))0jFX
k

#
= 0:

Therefore


̂2 =
1

k

NX
r=1

E

"
kX
t=1

hXt�1; eriẐr(t)(Ẑr(t))0jFX
k

#
:

�
Lemmas 10 to 13 give recursively updated estimates for all the para-

meters. We can apply these Lemmas to real world data to estimate the
parameters. For large Q and N, the computation might be expensive, but
for small numbers, it is not too hard or time-consuming.

5 Conclusions

In this paper, we have presented a mean reverting model for several assets
by including correlations between the assets and allowing the parameters of
the spot price dynamics to switch between �nite regimes. We have derived
estimates for forwards and European Options on an individual asset whose
spot prices follow the speci�ed dynamics. The parameters in the model can
be estimated recursively by applying the Lemmas of section 4. A possible
extension of the model is to add jumps into the model. A convenience yield
could also be included in the mean reverting terms. To our knowledge, this
is the �rst model which considers both the correlations between the prices of
several assets, and the regime switching features of real world dynamics.
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A Calculation of E[M2]

E[M2jRi (0) _X0]

=E

"�Z T

0

e�h�i;OT�Osih�i � �i; Xsids
�2#

=2E

�Z T

0

Z s

0

�
e�h�i;OT�Orih�i � �i; Xridr

�
e�h�i;OT�Osih�i � �i; XsidsjRi (0) _X0

�
=2

Z T

0

Z s

0

E
��
e�h�i;OT�Orih�i � �i; Xri

�
e�h�i;OT�Osih�i � �i; XsijRi (0) _X0

�
drds

(0 � r � s � T )

=2

Z T

0

Z s

0

E[E[E
�
e�2h�i;OT ieh�i;Osih�i � �i; XsijFX

s

�
eh�i;Orih�i � �i; XrijFx

r ]jX0]drds

=2

Z T

0

Z s

0

E[E[e�2h�i;Osihe( ~A�2D�i )(T�s)Xs; 1ieh�i;Osih�i � �i; Xsi

eh�i;Orih�i � �i; XrijFx
r ]jRi (0) _X0]drds

=2

Z T

0

Z s

0

E[h(e( ~A0�2D�i )(T�s)1)� �i � �i; E[e2h�i;OsiXsjFX
r ]i

eh�i;Orih�i � �i; XrijRi (0) _X0]drds

=2

Z T

0

Z s

0

E[h(e( ~A0�2D�i )(T�s)1)� �i � �i; e(
~A�2D�1 )(s�r)e�h�i;OriXri

eh�i;Orih�i � �i; XrijRi (0) _X0]drds

=2

Z T

0

Z s

0

E[h(e( ~A0�2D�i )(T�s)1)� �i � �i; e(
~A�D�i )(s�r)Xrih�i � �i; XrijX0]drds

=2

Z T

0

Z s

0

he( ~A0�D�i )(s�r)[(e( ~A0�2D�i )(T�s)1)� �i � �i]�i � �i; e
~ArX0idrds:
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B Proof of Lemma 5

Proof. To Under P , the fW (k)g is a sequence of independent N(0; I) ran-
dom variables, we must show that for any measurable function f (Yk) :

E [f(W (k))jGk�1] =
Z 1

�1
�(W (k))f(W (k))dW (k):

Using Bayes�theorem, for a measurable function f(W (k)), we have

E[f(W (k))jFX
k�1] =

E[�kf(W (k))jFX
k�1]

E[�kjFk�1]
(20)

=
E[�k�k�1f(W (k))jFX

k�1]

E[�k�k�1jFX
k�1]

=
E[�kf(W (k))jFX

k�1]

E[�kjFX
k�1]

:

Notice that

E[�kjFX
k�1]

=E

�
j
�1j�(W (k))

�(R(k))
jFX
k�1

�
=E

�
j
�1j�(


�1(k)[R(k)� �(k)��(k)R(k � 1)])
�(R(k))

jFX
k�1

�
=

Z +1

�1
j
�1j�(W (k))

�(R(k))
�(R(k))dR(k)

=

Z +1

�1
j
�1j�(W (k))dR(k):

Recall that W (k) = 
�1[R(k)� �(k)��(k)R(k � 1)].
Using the Jacobian to change the vector variables of integration, we have

dR(k) = j
j
QQ
i=1 dWi(k) = j
jdW (k), and the equation becomes:Z +1

�1
j
�1j�(W (k))j
jdW (k) =

Z +1

�1
�(W (k))dW (k) = 1:
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Similarly, we consider the numerator of equation 20:

E[�kf(W (k))jFX
k�1]

=E

�
j
�1j�(W (k))

�(R(k))
f(W (k))jFX

k�1

�
=

Z +1

�1
j
�1j�(W (k))

�(R(k))
�(R(k))f(W (k))dR(k)

=

Z +1

�1
�(W (k))f(W (k))dW (k):

That is, under P , the W (k) is a sequence of independent N(0; I) random
variables, and P is the real world probability measure.
Now we show that under P , X remains a Markov chain with transition

matrix A :
Using Bayes�theorem, we have

E[XkjRk�1] =
E[�kXkjRk�1]

E[�kjRk�1]
(21)

=
E[�kXkjRk�1]

E[�kjRk�1]
:

We already know E[�kjRk�1] = 1: Now,

E[�kXkjRk�1]

= E

�
j
�1j�(


�1(k)[R(k)� �(k)��(k)R(k � 1)])
�(R(k))

XkjRk�1

�
= E

�
j
�1j�(


�1(k)[R(k)� �(k)��(k)R(k � 1)])
�(R(k))

AXk�1 +Mk�1jRk�1

�
= E

�
j
�1j�(


�1(k)[R(k)� �(k)��(k)R(k � 1)])
�(R(k))

AXk�1jRk�1

�
= E

�
j
�1j�(


�1(k)[R(k)� �(k)��(k)R(k � 1)])
�(R(k))

jGk�1
�
AXk�1

= E[�kjGk�1]AXk�1 = AXk�1:

Thus, from equation (21) ; we have E[XkjGk�1] = AXk�1: That is under
P; X remains a Markov chain with transition matrix A: �
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