PROBABILITIES
OF
OBSERVED DROUGHTS

by
Jaime Millan and Vujica Yevjevich

Junc 1971

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY

Fort Collins, Colorado




June 1971

PROBABILITIES OF OBSERVED DROUGHTS

by
Jaime Millan

and

Vujica Yevjevich

HYDROLOGY PAPERS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO 80521

No.

50



ACKNOWLEDGEMENTS

The financial support of the U.S. National Science Foundation under grant GK-11564
(Large Continental Droughts) for the research leading to this Hydrology Paper is
gratefully acknowledged.

The National Center for Atmospheric Research, NCAR, sponsored by the National Science
Foundation, NSF, is also acknowledged for some limited use of its CDC 6600 computer in the
investigations leading to this paper. The Colorado State University CDC 6400 computer was
used most of the time.

Acknowledgement also goes to Dr. D.C. Boes, Associate Professor of Statistics at
Colorado State University, for his advice in connection with some of the statistical
problems.

The cooperation of Mr. Pedro Guerrero, Ph.D. graduate student, in the computing phase

of the study is appreciated.

iii

e

s B L

= R e P ki bdban

e T

=

= SN e

e

o

Tl



Chapter

Acknowledgements . .

List of Figures and Tables

List of Symbols

Abstract , . . . . s
I DERINITION CF ‘PROBLEMS INVESTIGATED i v & W' % 4 % & 4 % % % W% & G v 5 % ¥ 5 %
il ODIEOCTIVES o a0 w0 @ W B0 w W e T T dE e SNTE e B W TR W Sed N O T
1.2 Significance i e
1.3 Statistical Parameters Def1n1ng the Droughts Relevant to thls Study 1
1.4 Runs as an Objective Definition of Droughts . . . . E 5 G W RN R
1.5 Theoretical Background . . . W
1.6 Experimental Approach for Computlng Probab111t1es of Hlstorlc Droughts
II THEORETICAL BACKGROUND AND COMPUTATIONAL METHODS FOR DETERMINING DROUGHT
PROBABILITIES . . . . . f . o oE A w . T
2.1 Selecting Parameters to Use for Investigating Droughts by the Data
Generation Method . . . i % W a I s @
2.2 Mathematical Models and Thelr Est1mated Parameters of sze Sarles
Structure . . . .
2.3 Obtaining the Independent Randnm Numbers by the Data Generatlon Method. g
2.4 Investigated Cases R L L e
2.5 Selecting the Number of Samples to be Generated i b A e A T )
111 DISTRIBUTIONS OF DROUGHT PARAMETERS OBTAINED FROM GENERATED SAMPLES . . . . . .
3.1 Verification that Distributions Obtained by the Experimental Method
Converge to Exact Distributions . . R R
3.2 Sampling Distributions of Drought Descrlptors Obtalned by the
Experimental Method . . . . o
3.3 Correlation Between the Negatlve Run—Lengths and the Negatlua Run Sums
3.4 Fitting Lognormal Probability Distributions to Frequency Distributions
Obtained by the Experimental Method . . . e,
3.5 Relations Between the Parameters of Fitted Lognormal Punctlons and the
Basic Properties of Generated Samples . . . . s Bt 5
3.6 Use of Distributions Presented as Curves in Appendlx II . . .
3.7 Relationship of the Difference Between the Population and Sample "First
Serial Correlation Coefficients to Other Sample Parameters . . . . . .
v EXAMPLES OF COMPUTING PROBABILITIES OF OBSERVED DROUGHTS . . . . . . .
4,1 Representative Drought of a Sample Size . . . . s
4.2 Examples of Computing Probabilities of H15tor1ca1 Droughts “for
Runoff Annual Series . . . .
4.3 Examples of Computing Prcbab111t1es of HlStOTlC&l Droughts for
Annual Series of Precipitation .« . . « v o + o o ¢ 0 o ¢ o« o«

v THE CONCLUSIONS o ¢ % & & a5 o o a5 & o on & 6 on & » % & % 0 @ % 8608 s a8 &l 3
References i % PR YA S IR S PR S B N R R R 8
Appendix 1 Proofs for Equations Given in Chapter II . . . . . . .« ¢ v o v v o v v v @ 0 o v o s
Appendix 2 . . T T T
Appendix 3 s, B 3 5 3 %

.

TABLE OF CONTENTS

iv

Lo 00 B ¥y NN

~1

oo

11

11

14

15

15

15

19

22

23

24

25

46

e —



Figure

10
11

12

Table

LIST OF FIGURES AND TABLES ,f

Definitions of positive and negative runs for a truncation level x, ,
with P(x<x,;) = q , for a discrete (lower graph) and a continuous
{upper: graph] time Sexies o o & e & Wi o 9 W B W Rl G S e e E B ¥R B e FE s

Comparison of the exact sampling distributions (solid lines) and the
experimentally determined frequency distribution (dashed limnes) of the

longest run-length, Ly , of a standard normal independent variable for

the crossing level q = 0.50 and for five sample sizes N = 25, 50,

100, 200, and 500 . . . . . . . . . . . T = T o st N i s e ey T e v iy T Y e i

Distributions of the longest negative run-length for q = 0.50 , p =

0,0, and y = 0.0, and two samples N =25 and N = 200 , (solid

lines), and of the negative run-length for the largest negative run-sum
fdashad TINBAY . & o o 5 sho o oo b 5 8 6 B R R B E R A, & e w e ow d W

Distributions of the largest negative run-sum for q = 0.50 , p = 0.00 ,
¥ = 0.00 , and two samples N = 25 and N = 100 , (solid lines), and
of the negative run-sum for the longest negative run-length (dashed lines) . .

Distributions of the same parameters as in Fig. 3 except for N = 25 ,

p =0.00, vy =0.00 , and two crossing levels, q = 0.50 and q =0.20 .. . . ...

Distributions of the same parameters as in Fig. 4 except for N = 25 ,

p =0.00, y =0.00 , and two crossing levels, q =0.50 and q=0.20 ... . . ...

Fitting the lognormal probability distribution for the largest negative

run-sum for N =25 , q = 0.50 , v = 0.0 , and five cases of (0.1, 0.2,

o T T T L e P s S e i e A
Fitting the lognormal probability distribution functions for the largest

negative run-sum for N = 50 , q = 0.50 , ¥ = 0.0 , and five values of

plls0; Ol Dugy Qa3 8nd Bid) G i 8w 3 nw § 3 @ o % o e v el §d el Wk el e sE
Representative drought for normal variables . . . . . . + . « ¢« ¢ ¢ v 0 v 0w e e
Representative drought for skewness coefficient equal to 0.2 . . . . . . . . . . .

Representative drought for skewness coefficient equal to 0.5 . . . . . . . . . . . .

Representative drought for skewness coefficient equal to 1.0 . . . . . . « v 4 « o

Truncation values, Xy o of standardized variable for four values of q and
PEUr-VALUBE BE% T 0 w5l 0 e x 2m oss # oo B ow 4 B 8 e B A e & e b

Comparison of the expected value, E(x) , of exact distributions and the sample
mean, X , of experimental distributions for longest negative run-length of

independent processes for q = 0.50 .+ . . . . 4 4 s 0 h e e s e e s e 5w e e e s

Kolmogorov-Smirnov tests of proximity between exact and experimental "
distributions of longest negative run-length . . . . . . ¢ ¢ 4 ¢ v v 0 0 00w 0 e

Dependence between drought descriptors, measured by the correlation coefficients . . .

Kolmogorov-Smirnov test of fitting lognormal probability distributions to

frequency distributions of largest run-sum obtained by the experimental method . . . .

Estimated regression coefficients of equation (15) . « + ¢ « v « v ¢ o o v o« 4

Comparisons of probabilities of run-lengths and run-sums obtained by the
experimental method (Pe} and by the linear interpolation of curves in
Appendix II (P;) e W BRAE YR B RN W PR YN RN R A R

Examples of computing return periods, N_ , of historical droughts (longest negative
run-length and largest negative run-sum) for annual flow series -of ten rivers . . .

Examples of computing return periods, N, , of historical droughts (longest negative

run-length and largest negative run-sum) for annual precipitation series of twenty
stations in the upper Missouri basin . . . . . . . . ¢ . . L 4 4o d d e e e e

« 12

. 16

R Uy

. 10

« Lkl

o 13

<« 14

-« 18

SRS SUARRE RSt

P,

i

i
£
!
o
i

*
v

X
Li

SR



LIST OF SYMBOLS

Symbol Meaning

a, b, ¢, d, e Coefficients of multiple regression equations

D Negative run-sum or deficit corresponding to the longest run-length Lm
Dm Largest nmegative run-sum in a sample of size N

D50 Dm for truncation level q equal 0.5

E Expectation

F(x) Probability distribution function of x , also cumulative frequency

distribution of x

Fx,y) . Joint cumulative frequency distribution of x and vy

g Sample skewness coefficient

L Negative run-length corresponding to Dm

L Longest negative run-length in a sample of size N

m Number of squared normal deviates to add in order to get a gamma deviate
my, My, Mg, m, Number of cases in the simulation

m. Sample mean run

N Sample size

Nr Representative sample size

N(0,1) Symbol for a standardized normal variable

0(1) 0f the order of 1

Pe Probability obtained by the experimental method

Pi Probability obtained by linear interpolation from figures of Appendix II
p Probability of drowning an element of kind 0 in a binomial population, also

1 - F(xo) or 1-q

q Probability of drowning an element of kind 1 in a binomial population, also
F(xOJ or 1-7p

q Sample q

R Multiple correlation coefficient

R? Coefficient of determination

T Sample autocorrelation coefficient of log 1

550 Largest positive run-sum at truncation level q = 0.5
tj Symbol for a standardized normal variable, also N(0,1)
u Longest run length in a sample of size N

X, Truncation level

; Sample mean, also ux

Y Skewness coefficient

vi



(aF}max

4q
by
bp

LIST OF SYMBOLS (cont'd)

Meanin

y for 5

y for series x

Independent random component with zero mean and unit variance
Critical deviation for the Kolmogorov-Smirnov test

Maximum deviation for the Kolmogorov-Smirnov test

Difference between ¢ and a

Difference between y and g

Difference between p and r

Coefficient of variation -

n for the distribution of longest negative run-length

n for the distribution of largest negative run-sum

Population mean

Mean of the logarithms, parameter of the log-normal distribution

Sample mean for series x , also x

¥h for the longest negative run-length

Bn for the largest negative run-sum

Degrees of freedom for the chi-squared distribution
Lag one autocorrelation coefficient (population value)
Population standard deviation

Standard deviation of the logarithms

% for the longest negative run-length

Un for the largest negative run-sum

vii



ABSTRACT

A method is presented for computing the probability or recurrence period of historical
droughts by using the longest negative run-length and the largest negative run-sum as basic
parameters of samples of a given size, and by using a given probability of the truncation
level, a given autocorrelation coefficient, and a given skewness coefficient. The applica-
tion of this method to selected annual runoff and precipitation series demonstrate its
feasibility. The statistical experimental method in generating large numbers of samples is
used to compute frequency distributions as the estimates of probability distributions of
the longest negative run-length and of the largest negative run-sum in a sample of size N ,
as descriptors of the largest historical droughts, for normal and nonnormal independent and
dependent stationary stochastic processes which follows the first-order linear autoregressive
model. Experimentally obtained values are checked with theoretical results for the distribu-
tion of the longest negative run-length when the observations are independent. A set of
graphs and a set of tables are presented to make the numerical values readily usable. Good
approximations for practical computations are demonstrated by fitting lognormal probability

distributions to the experimentally obtained frequencies.
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PROBABILITIES OF OBSERVED DROUGHTS

by

Jaime Millan* and Vujica Yevjevich**

Chapter I

DEFINITION OF PROBLEMS INVESTIGATED

1.1 Objectives. The first objective of the
present study is to determine the probabilities of
historic hydrologic droughts. The second objective is
to find the relations of these determined probabilities
to statistics of corresponding hydrologic time series.
This paper presents information in the form of equa-
tions, tables, and graphs that permit drought
probabilities and the relations between drought mag-
nitudes and the statistics estimated from time
series to be quickly determined.

1.2 Significance. In the past, standard
practice for designing reservoirs relied heavily on
the "critical period," defined as that period in
time when the historic record would have been most
critical with respect to water demands required from
a system. It is claimed [1] that design based on a
critical period results in a reservoir storage capacity
equal to the capacity obtained by using the total
length of record. However, to determine this critical
period accurately reliable knowledge of system per-
formance, particularly demand patterns and operational
rules and policies, is required. In the absence of
this knowledge or because of complexity in obtaining
this kind of information, the critical drought period
is usually determined under simplified assumptions.
Even though some current design practices take into
account not only the critical drought period but also
the total deficit of water supply by a reservoir under
study, it still remains that this critical drought
period represents, in most cases, the largest part
of the deficit allowed by these design criteria.

W. Hall and A. T. Askew [1] found for 25
selected rivers across the continental United States
that the dates of the critical periods agree with the
dates of the major droughts in each region. Using
this information, in general, a historic drought is
considered that event for which most designs must
perform satisfactorily. This is based on the assump-
tions that the most severe drought to be observed
during the lifetime of a project will be about the
same as a previously recorded maximum historic drought.
The probability, however, that the critical drought
period observed in the past will be the same as the
critical drought period expected to be observed in
the future is usually small. The probability is large
that a very different drought will be observed.

The sample parameter describing the observed
drought in a period of N years is a random variable
like any sample statistic. Its distribution must be
known before statistical inferences about the proba-
bility of exceedence or nonexceedence of the magnitude
of that drought parameter can be made. The recurrence

interval (return period) of a drought is often derived
from the relative frequencies of historic drought
records. This approach is unreliable because of the
large sampling fluctuation of these frequencies. A
much more accurate method is required for these esti-
mations, one that is based on the properties of the
structural mathematical model of a time series.

Because an unusually large or an unusually small
value of a drought parameter may occur in the data of
the historic sample by chance, the assessment of the
probabilities of such droughts has a practical signi-
ficance. This assessment requires the definition of
a representative drought for a descriptive parameter
of the drought and a given sample size. In this study
the mean value of a drought parameter is defined as
the representative drought.

1.3 Statistical Parameters Defining the Droughts
Relevant to this Study. The definitions of drought
parameters used in this investigation refer to statis-
tics of samples of given sizes and not to the popula-
tions from which samples are derived. Therefore,
interest is in finding the probabilities of exceedence,
or nonexceedence, of a drought descriptor in a sample
time series of size N , for a given type of hydrologic
process. Logically, these probabilities of sample
values of drought parameters are closely related to
population characteristics.

The statistical definitions of droughts refer
only to stationary stochastic processes, or with no
trends, slippages (positive or negative jumps), or
periodicities present in these processes. These
conditions are met only by the homogeneous and con-
sistent (without systematic errors) discrete time
series of annual values of major hydrologic random
variables. As soon as the discrete series refer to
time units smaller than the year, periodicities in
various parameters of these series complicate the
analysis. This case of periodic-stochastic processes
of hydrologic time series is outside the scope of this
study, since the emphasis in this case is only on the
annual time series.

Later in the text it is shown that the exact
probabilities of some particular drought descriptors
to be or not to be exceeded in a sample of size N
may be derived only for independent processes.
However, many hydrologic time series are rather
dependent, either normal dependent or nonnormal inde-
pendent or dependent processes, for which the avail-
able exact probability distributions are not applicable.
Therefore, an experimental statistical (Monte Carlo)
method is used to derive the properties of sample

*Ph.D. graduate student, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.

**professor of Civil Engineering and Professor-in-Charge of Hydrology and Water Resources Program, Civil
Engineering Department, Colorado State University, Fort Collins, Colorado.
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drought parameters of dependent normal and independ-
ent or dependent nonnormal processes. To assess the
reliability of this experimental statistical method,
the known exact probability distributions of a simple
descriptor are compared with the distributions
experimentally determined.

1.4 Runs as an Objective Definition of
Droughts. Runs are an objective definition of
droughts [2]. Runs of the sequence of a stochastic
variable (or a combination of stochastic and deter-
ministic-periodic components constituting a composite
sequence) also may be defined in various ways.

Figure 1 represents a discrete and a continuous
series of a variable x . By selecting an arbitrary
value x_ the continuous series is truncated at many
positive and negative discrete deviations. The
parameter Xx_, or the truncation level, can be any
predetermina?ed level and is usually expressed as a
function of the quantile, q , with q = P[x :_xo] .
This level does not need to be a constant x_,
because it may be a deterministic, a stochas?ic, or

a combined deterministic-stochastic process.

T.
x(t) | )
| B
"
| I
| |
| | ;
Xo
| |
| |
—
T!
j
x{1)

Definitions of positive and negative runs
for a truncation level x5 , with P(x<xy)=q,
for a discrete (lower graph) and a continu-
ous (upper graph) time series.

Fig. 1.

Various definitions of runs have been used in
hydrologic literature, with the two major run defi-
nitions, as descriptors of droughts, evident in
Fig. 1. These runs may be directly associated with
drought properties: (1) the distance between the
successive downcross and upcross as the negative
run-length for a continuous series, or the length of
the uninterrupted sequence of negative discrete
deviations, x, - x_ ; and (2) the integral of

.

negative dev{;tions between the successive downcross
and upcross as the negative run-sum, for a continuous
series, or the sum of negative discrete deviatioms,
X; = X, of an uninterrupted sequence for a discrete
series. The negative run-length can be associated
with the total length or duration of drought measured
with respect to a given x_ , which does not need to
be a constant but must be a function of time. Since
the negative run integral or sum as the measure of
the deficit is of more relevance for water resources
problems, it is given special consideration in this
study.

The critical drought period for a sample of
length N , as it is used by many investigators in
water resources computations, usually coincides with
the largest deficit in record. As a consequence
the largest deficit, as the negative run-integral
or negative run-sum, and the longest negative run-
length during a period of N years as the measure
of the duration of critical drought period, are
random variables whose probability distributions are
of interest to hydrologists, mainly for determining
the recurrence interval of the rare events.

1.5 Theoretical Background. The run-length,
as the descriptor of drought durations, has been
more widely studied because its treatment is simpler.
Saldarriaga and Yevjevich [3] have presented a
review of literature giving the exact properties of
distributions of run-lengths for independent random
variables, showing these probabilities to be inde-
pendent of the underlying distributions. When
observations follow the first-order autoregressive
(Markov) linear model of dependence, the distributions
in the power series expansion form are presented in
reference [3]; then they are integrated in an
approximate form, checked by the experimental statis-
tical method, and finally presented as a series of
graphs and tables.

The distribution of the run-sum (with the run-
sum studied because only the discrete series are
dealt with in the ensuing text) is more complex
to obtain even for the independent normal process.
For this case R. N. Downer, M. M. Siddiqui, and
V. Yevjevich [4] obtained the exact properties of
run-sums by using the cumulants of this process.
The first few moments of the distribution of run-
sums can also be obtained by using the crossing
theory; however, there is no method, known to the
writers of this paper, of obtaining the exact
properties of run-sums for normal dependent or non-
normal independent or dependent random variables.

The distribution of the length and size of the
critical drought period (or the longest run-length
and the largest run-sum for a given x_ in a period
of N vyears) is more difficult to obtain and few
references are available in the literature. Cramer
[5] gives the asymptotic mean of the distribution of

longest run-length in the sample of size N as
. _ log N
E(u) = Tog (T-q) * o) , (1)
in which N is the sample size, q is P[x < x ] ,

u is the longest run-length in the sample, and .
0(1) is the error of the order of one.

The theory of recurrence events as applied to
the computation of the probability distribution of
the longest negative run-length in a sample of size



N for the independent Bernoulli trials is given by
Feller [6, p. 322]. For q the probability of nega-
tive deviations X7 Xy with X5 < xo , and

p = 1-q the probability of positive deviations

Xym Xy with X7 X Feller gives the probability
that the first negative run-length of size r occurs
at the N -th trial, as an approximation,

-1 a-agn, 1 :
R (G s e 2)
with
y = Lepq® + (e+1) (a2 @+ )2 (pa™s ... . 3

According to Feller the probability for no
run of size r+l or greater to occur in N trials
is equivalent to the probability of the (r+l) -th
run occurring for the first time in the sample sizes
of N+#i , i=1,2,...,0 . This probability is then

0o— 8

P(u <r) =

y fypg (r+1) = Fy(x) . (4)

1

By substituting Eq. (2)into Eq.(4), this probability
becomes

_ 1-qy o =4
NG = s oy T g o

()

Though Eqs. (2) through (5) are approximations,
they may serve as the control of how the experimental

statistical approach of the Monte Carlo method
reproduces the probabilities of longest negative run-
lengths of given size r to occur in a sample of
size N, with r <N .

1.6 Experimental Approach for Computing
Probabilities of Historic Droughts. As shown by
Eqs. (1) through (5), even in the case of independent
Bernoulli trials the probabilities of the longest
negative run-length, to occur in the sample of size
N , cannot be obtained exactly but can be only ap-
proximated. The accuracy of computed probabilities
depends on the number of terms in the polynomial of
Eq. (3) taken into computation. When the time series
is dependent, the computation of probability of the
longest run-length, r , to occur in the sample of
size N are not available, to the writers' knowledge,
in an explicit form of successive terms of various
degrees of accuracy, as was done for the independent
Bernoulli trials. The case of a largest run-sum not
to exceed a given value in a sample of size N is
still more complex to compute by an approximate
method in the case of an independent normal process,
and still more complex to determine in the case of
series with various types of normal dependent and
independent or dependent nonnormal processes. When
faced with this difficulty the investigator must
turn to the experimental method to obtain required
results. In the following chapters techniques are
presented for generating experimentally many equally
likely realizations of the stochastic process and
for computing distributions of the statistics of
practical interest.
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Chapter IT

THEORETICAL BACKGROUND AND COMPUTATIONAL METHODS FOR DETERMINING DROUGHT PROBABILITIES

2.1 Selecting Parameters to Use for Investi-
gating Droughts by the Data Generation Method. With
runs accepted as the objective definition of drought
descriptors it remains to choose which particular
runs are of practical interest. As pointed out in
Chapter 1, one objective is to determine the prob-
ability distributions of parameters of the largest
drought in a sample. These drought parameters
usually measure the drought duration (length) and its
total deficit as the sum of negative uninterrupted
deviations. These two parameters and their mutual
relations are investigated subsequently. Since the
total water deficit may be more critical in water
resources problems than the drought duration, it was
decided to investigate deficit as the primary para-
meter, while including both its relation to the
duration parameter and the investigation of duration
parameter itself.

A computer program was set up in such a way
that the joint probability distribution of the longest
run~length and its corresponding run-sum in the sam-
ple is first obtained from the generated samples as
FV(Lmax' D), with Lmax the longest run-length for

a given sample size N , and D the corresponding
deficit of this run-length. Because Lmax is a

discrete variable while D 1is a continuous variable,
class intervals equally spaced as states are used
for D parameter, so that the problem is reduced
to a joint distribution of two discrete variables.

Just as for Hnax and D , the joint probability

distribution of the largest deficit and the corres-
ponding duration are obtained from the generated

samples as FN(Dmax’ L) , with Dmax the largest

run-sum as the deficit for a given sample size N ,
and the corresponding run-length L as the duration.
Again, the continuous variable Dmax is divided

into discrete states as equal class intervals, so
that both Dmax and L are considered as discrete

random variables.

Both distributions, F(me, D) and meax’ L),
which are subsequently designated as F(Hm, D) and
F(Dm, L) respectively for this study, depend on the
selection of four basic selective parameters: (1) q,
the quantile probability (or the corresponding
crossing level, x5 ); (2) N, the sample size;

(3) p , the population first serial correlation
coefficient as the parameter of the assumed first-
order autoregressive linear model, and (4) v , the

population skewness coefficient of a nonnormal
independent or dependent stochastic process.

The two basic joint distributions, F(L_ , D;
q;, N, p, ¥ ) and F(Dml L; q, N, p, ¥ )s Pem?t.l
then, the computation of the following derived
distributions:

s 4 F{Lm; q, N, p, v )}, as the marginal

distribution of the longest run-length or drought
duration;

2. F(Dg; q, N, p, ¥ ), as the marginal
distribution of the largest run-sum or drought
deficit;

3. F(D|Ly; g, N, o, v ), as the conditional
probability of drought deficit given the longest
drought duration;

4. F(D|Ly = 2; q, N, p, v ), as the condi-
tional probability of drought deficit given the
longest run is equal to a given duration, & ;

5. F(L|Dy; q, N, p, v ), as the conditional
probability of the drought duration given the
largest drought deficit;

6. F(L|Dp =d; q, N, p, v ), as the condi-
tional probability of the drought duration given the
largest run-sum is equal to a given drought deficit;

7. F(lLp = &|D =d; q, N, p, v), the condi-
tional probability of Lp being 2 provided the
drought deficit is a value d , and

8. F(Dp=d|L=2;q, N, p, v), as the
conditional probability of the largest drought deficit
being a given value d provided the drought duration
is a value 2 .

The problems at hand would decide which of
these eight marginal and conditional variables and
distributions would be used for a particular practi-
cal case of application.

2,2 Mathematical Models and Their Estimated
Parameters of Time Series Structure. The generation
of new hydrologic samples that preserve population
characteristics (in the form of preserving mathe-
matical models and their statistics of an available
sample as the estimates of population models and
parameters) is well known in hydrologic literature
[7, 8, and others]. In every particular case, it is
necessary to identify the models, and parameters in
the form of sample statistics, that should be pre-
served to determine experimentally the approximate
distributions of runs by the data generation method.

It has been shown [3] that the population
run-length properties for stationary processes are
independent of the mean and the standard deviation,
but they are dependent on the truncation level q ,
the population dependence structure of a series, and
the skewness of a population distribution. The same
cannot be said for the population run-sum properties
except that their magnitude is directly proportional
to the standard deviation of the process. Once the
run sum for the standardized variable (o = 1) is
known, the run sum for any o # 1 can be obtained
by multiplying the run-sums of the standardized
variable by o of the nonstandardized variable.
Therefore, the generated long samples with u =0



and ¢ =1 , having a given truncation level (x,)

and measured by q , a given sample size N , a given
time dependence model measured by p , and a given
skewness coefficient vy , can be used for the analysis
of probability distributions of runs, thus covering
the situations most likely to occur under practical
conditions.

Previous studies [9] support the thesis that
the dependence structure of annual flows of most
rivers in the world can be approximated by the first
order autoregressive linear model. The general model
is

N
B 2y R B e B Nl g 8 5 (8]

in which €, 1is an independent random component with
zero mean afid unit variance, and independent of xit;
My is the population mean; % is the population

variance, and p is the first serial correlation
coefficient of the xi —series.

2.3 Obtaining the Independent Random Numbers
by the Data Generation Method. When the skewness
coefficient is zero and the kurtosis coefficient
three, generating ¢; from a normal population
probability distribution, N(0,1) , preserves the
desired statistics.

When it is necessary to generate the independ-
ent random numbers with the skewness coefficient
different from zero, it is convenient to use
different population probability distributions,
generally either Gamma or lognormal [8]. In choosing
between a Gamma and a lognormal distribution, the
Gamma distribution is used in this study because it
was more convenient than the lognormal distribution.
For values of skewness 0 < y < 0.50 , the approxi-
mation used by Thomas and Fiering [10], as summarized
in Appendix I, is used. This approximation is
identical to the approximation given in the Handbook
of Mathematical Functions [11].

I.£: ty are independent standard random numbers,
N(0,1) , then they can be transformed into dependent
random numbers ¢; , which follow a distribution with
the skewness coefficient v ; this distribution is
almost like the Gamma distribution with the first-
order dependence measured by p . This Gamma trans-
form is

2
R (7

where

3
(1 -07)
Yoo, B s A G
£ (1 - 92)3/2 x

(8)

in which vy, is the skewness to be preserved. For
the proof of this transform see Appendix I. This
approximation is good for yyx < 0.50 . For values

¥x > 0.50 it is necessary to use a much more time
consuming but exact procedure used by Yevjevich [10]:

t (9)
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in which ¢g; “is Gamma distributed with the mean
u = m/2 , with the variance oz = m/2 , the first

serial correlation coefficient p , and t, are
independent standard normal random numbers? N(0,1) .

To generate the standard Gamma dependent
random numbers with the mean zero and the variance
unity, the transformation is

2.4 Investigated Cases. For the four
varying parameters, q, N, p, and vy , it was
necessary to select several cases in the study for
each of them. If the numbers of cases are My, My,

My and m, for each, respectively, then the total
numbér of cases is mg My My om, . Besides, the

number of samples to be generated for each case out
of (ml m, My m4] -- cases must be determined.

In reference to the truncation level, x |,
the level used in the study of droughts is best
expressed in the form of the quantiles of X, s as
the gq -values, with g = P(X < x ) . The sélected
number of q is m =4, with ¢°= 0.50, 0.40, 0.30,
and 0.20 .

The selected number of sample sizes, N , is
m, = 5, or with N = 25, 50, 100, 200, and 500
yeéars. Although the values 25 and 50 cover the
current samples in hydrology, the samples of sizes
100, 200, and 500 are used to determine experimentally
the distributions of run parameters, so that the
unrepresentatively large historical droughts may be

- referred to as samples of a larger size.

The selected number of the first serial
correlation coefficient, p , is mg = 5 , with

p =0.00, 0.10, 0.20, 0.30, and 0.70 . The first
four values are selected because they are the values
most commonly found in practice for annual river
flow series, and the last one was selected to study
the effects of high dependence in series on proper-
ties of run parameters of samples.

The selected number of skewness coefficients,
qp A my = 4 , with y = 0.00, 0.20, 0.50, and

1.00 . It is assumed that annual series have the
population skewness coefficients vy > 0 only. If
a sample has a negative skewness coefficient, it is
assumed that it does not differ significantly from
y = 0 . This range of 0 <y < 1.00 covers most
of the cases for annual time series of hydrologic
variables of interest to drought analysis. In
summary, the total number of cases selected for

the study is my my mgom, = 400 .

For a standardized series with p =0 and
o =1, for an approximate Gamma distribution in
case vy > 0,20 , and a normal distribution
approximation in case 0 <y < 0.20 , Table 1 gives
the variable truncation values, to , for the four

values of q and the four values of vy .
In using the generation of Gamma dependent

random numbers by Eqs. (8) and (9), the value m
in Eq. (8) is m=8 for y = 1.00 for a given p .

The results of the selected 400 cases studied
are presented in a series of graphs. Besides
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covering the situations most often needed for practical | becomes
conditions, the graphs permit an easy interpolation

within the selected ranges of four parameters, as well e (m_-u) v/n s
as a limited range of extrapolation on one or both Pl - LR S SRR ] > 0.95
sides of these ranges. T o= 9 = A=

Putting z = (mr - ur] /ﬁycr , % 1is mormally dis-
tributed, N(0,1) , so that at least

TABLE 1 P(z <~-/n/10) - P(z > /n/10) = 0.95 ,

TRUNCATION VALUES, X, » OF STANDARDIZED VARIABLE

FOR FOUR VALUES OF q AND FOUR VALUES OF v ar
P(z < - /n/10) = 0.025
F 4 0.20 0.30 0.40 0.50
is correct for =~ vn/10 = -1.96 , or n = 400 .
0.00 -0.841 -0.524 -0.253 0.000 . g . ;
0.20% -0.841 ~0.524 -0.253 0.000 Since one value of a given run is obtained from
0.50 -0.8565 ~0.5784 -0.3279 -0.0830 a generated sample of size N , the accuracy in the
1.00 20,8516 ~-0.6161 ~0.3943 -0.1639 determination of the mean run increases with an
increase of the number n of samples. In this way

generating a total of nN observations is necessary.
* For y = 0.20 , the truncation level, t_ , is taken This number nN is selected as a constant, m = nN ,

the same as for vy = 0.00 , with a1l differences in this study and is m = 95,000 . For the selected
being very small. sizes, N , of samples, as N = 25, 50, 100, 200,
and 500 , the number of samples, n , becomes m/N ,
or

2.5 ©Selecting the Number of Samples to be
Generated. The central limit theorem leads to
the conclusion that the distribution of sample mean N 25 S0 100 200 500
run, m_, is asymptotically normal N[ur, Ur/n) %

in which i = E[mr) s O, is the variance of the n 3800 1900 950 475 192

sample run, and n is the number of samples from

which runs and the mean rTun, , are computed.

Since one objective in this stuay is to determine The reason for more samples of size N for

the number n of samples of a given size N to be N = 25, 50, 100, and 200 , results from the need

generated in experiments in such a way that the to generate at least n = 400 samples for N = 200 ,

probability is at least 0.95 for the estimate m and gbout n = 200 for N = 500 . Once the m = nN

to be within the tolerance limits  + ¢ /10 , then random numbers are generated for N = 500 , they are
. ; all used for the smaller values of N in order to

increase the accuracy of estimating distributions of

¥ T
P[(ur - Tﬁa R [Ur * Eﬁa] > 0.95 runs and of their general statistical parameters.




Chapter III

DISTRIBUTIONS OF DROUGHT PARAMETERS

OBTAINED FROM GENERATED SAMPLES

The probabilities of run-lengths and run-sums, as
defined in Chapter I, are obtained by using the
experimental statistical (Monte Carlo) method in gen-
erating a multitude of samples for variables of given
characteristics. The obtained probability frequency
distributions are presented in this chapter and in
Appendix II.

3.1 Verification that Distributions Obtained
by the Experimental Method Converge to Exact
Distributions. It is often convenient to verify how
well the probability distributions of sample statistics
are estimated by their cummulative frequency distribu-
tions obtained by generating a large number of samples
of a given process by the experimental statistical
method (in the subsequent text this method is called
the experimental method).

In the numerical approximate integration of
differential equations, a case is usually selected for
which the exact solution is known so that the results
of the approximate solution can be compared with the
exact solution and thereby verifying the approximation.
Similarly, the experimental method is an approximate
method of estimating properties of sample statistics
in the form of their approximate sampling frequency
distributions. By selecting a known exact probability
distribution of a sample statistic, and by experi-
mentally determining its sampling cummulative
frequency distribution, insight can be obtained on
how well the experimental distribution approximates
the exact distribution for a given number of generated
samples of a process.

The distribution of the longest negative run-
length to occur in a sample of N years for
independent observations can be obtained by using the
exact distributions given in Chapter I. Figure 2
shows the exact probability distribution of the
longest run-length in a sample of size N for the
independent standard normal variable, computed by
Eq. (5) for the crossing level q = 0.50 and five
values of N (25, 50, 100, 200, and 500), and
indicated as solid lines in Figure 2. For the same
five values, and indicated as dashed lines, the cum-
mulative sampling frequency distributions of the
longest run-length to occur in the sample of size N
for q = 0.50 are also given in Figure 2 as the
results of experimental method. The numbers n of
generated samples for N = 25, 50, 100, 200, and 500,
are respectively n = 3800, 1900, 950, 475, and 192.
Visual inspection shows that the exact and experimental-
ly determined distributions are essentially identical,
through, as it should be expected, the deviations
between these distribution curves increase as the
number n of generated samples decreases with an
increase of the sample size, N .

5 10 i1

Comparison of the exact sampling distributions
(solid lines) and the experimentally determined
frequency distribution (dashed lines) of the
longest run-length, L, , of a standard normal
independent variable for the crossing level

q = 0.50 and for five sample sizes N = 25, 50,
100, 200, and 500.

For an objective assessment of the proximity
between the theoretical and experimental distributions,
the means of these distributions are compared in
Table 2.

TABLE 2

COMPARISON OF THE EXPECTED VALUE, E(x), OF EXACT
DISTRIBUTIONS AND THE SAMPLE MEAN, X , OF
EXPERIMENTAL DISTRIBUTIONS FOR LONGEST NEGATIVE RUN-
LENGTH OF INDEPENDENT PROCESSES FOR q = 0.50 .

N E [x] x A% = E(x) - X
25 3.99 3.97 0.02
50 4.99 5.00 -0.01
100 5.99 6.06 -0.07
200 6.98 7.03 -0.05
500 8.30 8.25 0.05
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The differences, 4X = E(x) - X , are very small,
ranging from 0.2-1.2 percent of E(x) , and they in-
crease with an increase of N (or a decrease of n),
as expected.

Kolmogorov-Smirnov tests were performed to
determine the proximity of the theoretical and experi-
mental distributions at the ten percent and one percent
levels of significance. All tests give insignificant
testing statistics, as summarized in Table 3 in which
N is the sample size, [afﬁmax is the maximum

difference of probabilities of the two distribution
curves, and AF's are the critical values of
Kolmogorov-Smirnov statistics for given a -values.

TABLE 3
KOLMOGOROV-SMIRNOV TESTS OF PROXIMITY BETWEEN EXACT

AND EXPERIMENTAL DISTRIBUTIONS OF LONGEST NEGATIVE
RUN-LENGTH.

AF AF
N (&F) for a = 0.10 for o = 1.01
max

25 0.0113 0.01588 0.0265
50 0.0104 0.0280 0.0374
100 0.0368 0.0395 0.0550
200 0.0313 0.0555 0.0748
500 0.0213 0.0867 0.1171

In conclusion, the experimental method of
generating samples of independent stochastic processes
gives very precise results for exact and experimental
longest negative run-lengths, for q = 0.50 and five
different values of sample sizes.

3.2 Sampling Distributions of Drought
Descriptors Obtajined by the Experimental Method. As
stated in Chapted II, several drought descriptors of
practical relevance may be investigated by the
experimental method. In particular, distributions of
eight descriptors have been shown attractive for in-
vestigating droughts by this method. Although this
investigation is attractive, it is not feasible to
graphically present all information obtained for these
eight descriptors, given the number of combinations of
parameters q, N, p, and y . This section shows the
general form of the sampling distributions of
descriptors as outlined in Chapter II. Appendix II
presents graphically the sampling distributions of the
two most relevant descriptors in drought investigations,
the longest negative run-length and the largest
negative run-sum.

Figure 3 shows in a comparative way the sampling
distributions of the longest negative run-length, as
solid lines, and the negative run-length which cor-
responds to the largest negative run-sum, as dashed
lines, for two sample sizes N =25 and N = 100 .

As it is expected, the negative run-length correspond-
ing to the largest negative run-sum is always smaller
than the longest negative run-length for a given
probability. However, as the run-length increases

the two distributions converge. Jfor the short run-
lengths the longest negative run-length is not
necessarily the run-length with the largest deficit.

However, for long run-lengths, the longest negative
run-length will be in general, very close to the
negative run-length of the largest negative run-sum.

1.0

0.5

Distributions of the longest negative run-

length for q = 0.50, p = 0.0, and ¥ = 00,
and two samples N = 25 and N = 200,

(solid lines), and of the negative run-length
for the . largest negative run-sum (dashed
lines).

Figure 4 shows also in a comparative way the
sampling distributions of the largest negative run-
sum, as solid lines, and the negative run-sum which
corresponds to the longest negative run-length, as
dashed lines, for two sample sizes N = 25 and N =
100 . As expected, the negative run-sum corresponding
to the longest negative run-length is always smaller
than the largest negative run-sum for a given
probability. Also in this case, as the probability
increases the two distributions converge.

Figure 5 shows a presentation similar to that
of Fig. 3 for the negative run-length except that the
effect of two truncation levels, q = 0.50 and q =
0.20 , is shown for the sample size of N = 25 ,
instead of the effect of two sample sizes for a given
q . Figure 6 shows a presentation similar to that of
Fig. 4 for the negative run-sum except that the effect
of two truncation levels, q = 0.50 and q = 0.20 ,
is shown for the sample size of N = 25 . The
general conclusions of Figs. 5 and 6 are similar to
those for Figs. 3 and 4. The mean and the variance of
the negative run-length and the largest negative run-
sum increase with an increase of the truncation level,
q , and the distribution for the two parameters and
the same q coverage with an increase of the
probability value.

3.3 Correlation Between the Negative Run-
Lengths and the Negative Run-Sums. To better
represent the relations between the two parameters for
given q, N, p , and v , either between the longest
negative run-length and the corresponding negative
run-sum, or between the largest negative run-sum and
the corresponding negative run-length, the correlation
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Fig. 4. Distributions of the largest negative run-
sum for q = 0,50, p = 0.00, y = 0.00, and
two samples N = 25 and N = 100, (solid
lines), and of the negative run-sum for the
longest negative run-length (dashed lines).

Fig. 5. Distributions of the same parameters as in
Fig. 3 except for N =25, p = 0.00, v =
0.00 , and two crossing levels, q = 0.50
and q = 0.20.
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Fig., 6. Distributions of the same parameters as in
Fig. 4 except for N =25, p = 0.00, vy =
0.00 , and two crossing levels, q = 0.50
and q = 0.20.

coefficients are computed for these two statistics of
all generated samples. Table 4 gives these correla-
tion coefficients for both cases.

The general patterns for both correlated pairs
of sample statistics is as follows. The correlation
coefficients increase for small sample sizes with an
increase of the first serial correlation coefficient,

p , of the first-order autoregressive linear model.
However, as the sample size N increases the differ-
ence between the correlation coefficients becomes less
dependent on ¢ For N = 200 and N = 500 , the
numnber of samples is not sufficient in the experimental
method to clearly discern the patterns of the change of
correlation coefficient with an increase of p . For
all cases, however, the correlation coefficient
decreases with an increase of the sample size. Simi-
arly, the general pattern is that this correlation
coefficient decreases with a decrease of the trunca-
tion level, q , from q = 0.50 to q = 0.20 , for
small N and small p . As p increases this pat-
tern changes, and for p = 0.3 and p = 0.7 the
pattern reverses, so that the correlation coefficients
increase with a decrease of q from 0.50 to 0.20.
However, for large N these two patterns are also
valid, though the sampling variations for N = 500 do
not clearly show the trend of how rapidly the correla-
tion coefficient changes with a change of q for small
values of p . The skewness coefficient (changing

from y = 0.00 , to y = 0.20 , and to y = 0.50)

seems to little affect the correlation coefficient.

The general pattern of correlation between the
above defined negative run-length and negative run-
sum seems to indicate that an increase of sample size
makes the correlation between the studied statistics
less important.
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TABLE 4. DEPENDENCE BETWEEN DROUGHT DESCRIPTORS, MEASURED BY THE CORRELATION COEFFICIENTS

N=25 N=50 N=100 N=200 N=500

q=0.5 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 .4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2

LARGEST NEGATIVE RUN-LENGTH AND CORRESPONDING RUN-SUM

Skewness = 0.0

p=0.0 .387 .365 .370 .304 .329 .289 .314 248 .242 .232 .195 .181 .186 .165 .170 .126 152 .158 .165 .159
=0.1 .409 .400 .418 .384 .354  .328 .360 .304 .253 .249 .253 .229 .202 .178 .l66 .149 .143 164 .190 .141
=0.2 441  .429 .473 .452 .368 .351 .399 .360 .251 .265 .278 .278 196 .200 .209 .176 124 152 .190 .1l46
=0.3 .469 .470 .516 .525 .383 ,374 .424 .421 .256 .303 .287 .302 .187 .212 .253 .249 107 .135 .197 .154
=0.7 .603 .642 .699 .707 .425 .526 .601 .664 .224  .345 .440 .520 .118 .21e .308 .427 .026 .073 .le5 .264

Skewness = 0.2
=0.0 .393 .387 .388 .320 .327 .313 .335 .264 .221 .250 .229 .191 .198 .208 .145 .121 172 .154  .047 .082
=0.1 .419  .427 .447 .416 .345 ,334 .38l .360 L2311 .277 .269 .240 .214  .221 .157 .170 .151 .149 .121 .069
=0.2 .445 .463 .487 .490 .355 .386 .404 .408 .255 .291 .301 .271 .218 .221 .189 .214 137 .155 .169 .092
=0.3 .468 .507 .532 .544 .36l .409 .436 .468 .258 .303 .323 .335 2LXT 22360 206 234 .124  .144 .197 .135
=0.7 .590 .667 .711 .716 417 .504 .600 .679 .244 .340 .455 .575 125 .177 .315 .410 .033 .108 .156 .268
Skewness = 0.5
=0.0 .399 .400 .397 .348 .300 .315 .279 .271 .254 .245 .243 .204 .168 .188 .225 .122 106 .155 .163 .106
=0.1 .416  .432 .448 .434 .319 ,344 .317 .364 .259  .260 .276 .249 183 (173 .226 .174 .141 ,182 .181 .170
=0.2 .443  .461 .502 .507 .362 .366 .358 .419 .274  .279 .329 .308 L206 234 .262 .248 .136 .184 .193 .186
=0.3 .473 .505 .546 .566 .403 .406 .404 .473 .278 .312 .356 .348 .224 228 .261 .293 .134 .165 .193 .228
=0.7 .617 .681 .718 .713 .453 .557 .624 .678 .256 .375 .495 .583 L1333 .235 .341 .446 .050 .111 .157 .301
LARGEST NEGATIVE RUN-SUM AND CORRESPONDING RUN-LENGTH
Skewness = 0.0
=0.0 .433  .423 .425 .380 .371  .360 .393 .358 .283 .282 .303 .281 .209  .224  .264 .216 196,199 .256 .251
=0.1 453 .452 .468 .451 .393 ,387 .428 .400 .287 .280 .333 .335 .221  .225 ,251 .216 177 .200 .243  ,240
=0.2 .479 .483 .525 .507 401 .405 .452 .441 277 285 .343 .366 .214 .229 .278 .264 JA53 .176  .224 .216
=0.3 .506 .514 .568 .576 410 .416 .471 .490 .279 .331 .340 .385 .194  .236 .302 .321 126 .159 .222 .236
=0.7 617 .661 .727 .736 430 .538 .626 .698 .207  .346 .461 .552 .087 .199 .324 .457 011  ,052 .150 .279
Skewness = 0.2
=0.0 .434  .444 .461 .395 .358 .353 .399 .36l .257 .306 .307 .316 L2360 .249  .237 .264 173 197 (127 247
=0.1 .458 .481 .519 .481 .370 .373 .440 .451 .266 .322 .335 .341 254 258 233, 273 .168 .198 .159 .217
=0.2 .482 .508 .551 .547 .381  .425 .461 .488 .281 .328 .346 .382 .240 .261 .226 .313 .130 .188 .200 .225
=0.3 .501 .549 .568 .600 .386 .451 .490 .542 277 .342 .369 .425 .226 .261 .244 .328 119 167 .222 .197
=0.7 .603 .687 .733 .741 .415 .517 .25 .711 .230 ,345 .475 .613 .099 .172 .321 .436 .013 .080 .166 .287
Skewness = 0.5
=0.0 446  .464 .473 .429 .345 .379 .375 .393 .291 .307 .328 .320 .216 .252 .280 .275 127 .19 .228 .231
=0.1 .454 .486 .511 .504 .363  .394  .395 460 .290 .316 .335 .356 .214  .223 .280 .291 170 .211 236 .248
=0,2 .481 .506 .557 .562 .397  .410 .418 .493 L300 .328 .363 .407 .228 .263 .301 .308 154  .212 .226 .244
=0.3 .507 .544 .596 .616 427 447  .462 527 .304 .346 .394 .431 .248 .256 .307 .355 .142 199 ,213 .286
=0.7 .633 .702 .739 .739 .458 .571 .644 708 .250 .384 .514 .6l6 .120 .231 .365 .478 .019 .093 .164 .319




3.4 Fitting Lognormal Probability Distributions
to Frequency Distributions Obtained by the Experimental
Method. The cummulative frequency distributions of
the largest negative run-sum were plotted on lognormal
graph paper, and the Kolmogorov-Smirnov tests for the
goodness of the fit of the lognormal probability
density function was performed. The exact probability
distributions of the largest negative run-sum in
samples of N years seem not to follow a simple
probability function. However, practically for all
cases investigated the Kolmogorov-Smirnov tests gave
good results for fitting the lognormal function.

Appendix III presents the mean, the coefficient
of variation, the mean of logarithms, and the stan-
dard deviation of logarithms for distributions of the
longest negative run-length and the largest negative
run-sum for all cases considered in this study.

Though the longest negative run-length is a
discrete variable (only integers are random events of
this statistic), the fit of a continuous lognormal
variable is considered as an approximation to the
discrete distribution, or, in other words, the proba-
bility densities at the inter variable values
multiplied by the unit time interval represent the
probability mass at the integer variable values.

The mean and the standard deviation of
logarithms, as parameters of the lognormal distribu-
tion, are computed by

y o=z In —t ; (12)

and

o, = [In (a2 + D)2, (13)

in which w, is the mean of logarithms, oy is the
standard deviation of logarithms, u is the mean,
and n

Figures 7 and 8 give examples of the fitted
lognormal probability distribution functions for the
largest negative run-sum, respectively for N = 25
and N = 50 . The five fitted curves are all for
q = 0.50 (the median) and y = 0.0 (normal variable),
and each fitted curve for a different ¢ ( p = 0.0,
0.1, 0.2, 0.3, and 0.7). The general pattern is
that for large values of p (the first serial cor-
relation coefficient) the lognormal function starts
to deviate at the extremes from the frequency distri-
bution obtained by the experimental method.

The results of fitting the lognormal probability
distributions to cummulative frequency distributions
of the largest negative run-sum, obtained by the ex-
perimental method by using the Kolmogorov-Smirnov test
are shown in Table 5. In all cases but p = 7 the
fit of the lognormal distribution passes the
Kolmogorov-Smirnov test even at the o = 0.10 level.
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TABLE 5

KOLMOGOROV-SMIRNOV TEST OF FITTING LOGNORMAL
PROBABILITY DISTRIBUTIONS TO FREQUENCY DISTRIBUTIONS
OF LARGEST RUN-SUM OBTAINED BY THE EXPERIMENTAL METHOD.

is the coefficient of variation of the variable.

N o (8F) . (AF)e=0.10  (F)a=0.01
0=0.0  0.0035 0.0198 0.0265
p=0.1 0.0035

25  p=0.2  0.0030
0=0.3  0.015
p=0.7  0.055
0=0.0  0.005 0.0280 0.0374
p=0.1  0.020

50  p=0.2  0.010
0=0.3  0.020
p=0.7  0.035

3.5 Relations Between the Parameters of Fitted
Lognormal Functions and the Basic Properties of
Generated Samples. It is often useful to develop
experimental relations between the parameters of a
given process and the parameters of distributions of
drought descriptors. The asymptotic value of the mean
of the longest run-length for independent variables,
as given by Cramer [5] and discussed in Chapter I,
suggests a relationship of the form

u=f[lnN, Inq, In vy, In p] . (14)

Stepwise regression analysis was used to per-
form a series of multiple regressions to the relations
of the type of Eq. (l4).

i The independent variables used in this regres-
sion analysis are: q the truncation level, N the
sample size, p the first serial correlation
coefficient, and y the skewness coefficient. The
dependent variables are: u; the mean of the longest
negative run-length Ly , np the coefficient of
variation of Ly, ug the mean of the largest negative
run-sum D, ng the coefficient of variation of Dy ,
(bn)y the mean of logarithms of Ly, (o9n), the
stan&ard deviation of logarithms of Ly, (up)g the
mean of logarithms of Dy, and (o,) the standard
deviation of logarithms of D . The equations
obtained are in the form

u=a+blngq+clnN+dlnp+ e lny (15)

in which u is a dependent variable. Table 6 gives
the estimated regression coefficients. For all regres-
sion equations more than 90 percent of the variance of
the dependent variable is explained by the four
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Fig. 7. Fitting the lognormal probability distribution for the largest negative
run-sum for N =25 , q = 0,50 , vy = 0.0 , and five cases of p (0.1,
0.2, 0.3, and 0.7).
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Fig. 8. Fitting the lognormal probability distribution functions for the largest negative run-

sum for
0.7).

N=350,q=20.50, vy=0.0, and five values of p (0.0, 0.1, 0.2, 0.3, and
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parameters, q, N, p,and y . Regression
coefficients of Table 6 then represent a condensation
of all information on the sampling distribution of
two statistics, the largest negative run-sum and the
longest negative run-length, provided Eq. (15) is
used for the investigated ranges of four parameters,
q,N,p and y . Table 6, examining the multiple
correlation coefficient, shows that the four parame-
ters of logarithms (uplg , (9,)e » (Mp)g » and  (up)g
have a larger explaineﬁ variance in he?ng predicted
by the four independent variables q , N , p , and ¥y
than the parameters (u)y, , (n)y , (W)g , and (n)g

A detailed analysis of regression coefficients
and partial correlation coefficients reveals that the
most significant independent variables are the trun-
cation level q and the sample size N . Next in
importance comes the first serial correlation
coefficient p as the measure of dependence, while
the skewness as a basic variable has the least effect.
As expected, the skewness is more important for the
largest negative run-sum than for the longest negative
run-length. In fact, the longest run-length of an
independent series should not depend on the skewness.

For practical application one may need to know
the representative sample size, N , of given values
q, p , and y , for the longest negative run-length
Ly , observed in a sample of size N . The represen-
tative sample size, N, , is defined when Lp is put
equal to the mean longest negative run-length , ug ,
of Np . The regression analysis then gives

In Np = -2.1125 + 0.68649 uy - (2.82021 In q

+ 0.07962 1ln p + 0.00588 In vy ) , (16)

with up = Ly , or the longest negative run-length of
the available sample of size N is assumed equal to
uy of the representative sample of size N, .
Equation (16) has the multiple regression coefficient
R = 0.9046 , or R? = 0.8183 .

Similarly for the largest negative run-sum the
representative value, N, , is

y

with pg = Dy , or the largest negative run-sum of the
available sample of size N 1is assumed equal to ugq
of the representative sample of size N, . Equation
(17) has the mu1t1ple regression coefficient R =
0.8330 and R? 0.7023.

Equations (16) and (17) show that the predic-
tion of the representative sample size, N, , of the
sample longest negative run-length is samewhat better
(RZ = 0.82) than for the sample largest negative run-
sum (R? = 0.70) . In other words and for this latter
case, the run-sum should have a larger variation than
the run-length, or the linear multiple regression
equation of logarithms is more appropriate for run-
lengths than for run-sums.

3.6 Use of Distributions Presented as Curves
in Appendix II. Probabilities of an observed longest
negative run-length and an observed largest negative
run-sum may be obtained from the graphs presented in
Appendix II. It is necessary, however, to perform the
interpolation between given curves when the parameters
in a practical problem do not coincide with the
parameters corresponding to the curves of the Appendix.
Since there are four parameters for interpolation
(@ , N, p, y) it seems at first glance that the
interpolation procedure may be tedious and inaccurate.
This is not necessarily so, and in most cases, the
simple linear interpolations give the desired prob-
abilities with an accuracy equal to the accuracy which
is limited by both the sampling errors of these curves
and the errors in reading the figure from the curves.

To illustrate the accuracy obtained in interpo-
lating between curves of these graphs, the probability
distribution of the longest negative run-length, Ly ,
and the largest negative run-sum, , are produced
both by using the experimental methog and the linear
interpolations in the curves of Appendix II for the
following parameter values: q = 0.45 , N=40 , p =
0.45 , and y = 0.40 . The comparison between the two
ways of obtaining probabilities P, for the experi-
mental method and P; for the interpolation method is
given in Table 7.

It should be noted that an interpolation
technique more sophisticated than the linear interpola-
tion would add little to the accuracy but would

1n Nr = -1,25358 + 0.65044 ug - (2.82957 In q increase the computations. In summary, the
+0.08039 1n p ) - 0.03641 1n y a7 probability distributions, estimated by the cummulative
TABLE 6

ESTIMATED REGRESSION COEFFICIENTS

OF EQUATION (15)

u a b c d e R
Uy 4.3080 4.1082 1.1920 0.00856 0.1160 0.9562
ny C.6200 ~0.0400 -0.0702 0.00017 0.0023 0.9680
by 4.0556 4.3502 1.0797 -0.05598 0.1236 0.9342
ng 0.7203 -0.0618 -0.0861 -0.00045 0.0073 0.9421
(u ]2 S 0.9024 0.2703 0.00156 0.0237 0.9870
[un)£ 0.5882 -0.0363 -0.0647 0.00015 0.0021 0.9706
[un) 1.1336 1.1876 0.3046 -0.01619 0.0273 0.9796
(UnJ 0.6729 -0.0453 -0.0776 -0.00040 0.0065 0.9490

13



frequency distributions of the experimental method in
generating samples, and presented as curves in Appendix
II, may be used by linear interpolation to obtain the
estimates of probability distributions of run-length
and run-sum for any set of four parameters in the
ranges of their studied variations.

TABLE 7

COMPARISONS OF PROBABILITIES OF RUN-LENGTHS AND RUN-
SUMS OBTAINED BY THE EXPERIMENTAL METHOD (P_) AND
BY THE LINEAR INTERPOLATION OF CURVES IN APPENDIX II
[Pi) .

Parameter Pe Pi apP = ?e = Pi
Lm <4 0.479 0.490 -0.011

Lm <6 0.824 0.830 -0.006

Lm <8 0.946 0.940 +0.006

Dm <4 0.570 0.580 -0.010

D .56 0.863 0.850 +0.013

DIn <8 0.963 0.950 +0.013

3.7 Relationship of the Difference Between the
Population and Sample First Serial Correlation
Coefficients to Other Sample Parameters. The
parameters q , o , and Yy 1in Eqs. (16) and (17) are
Population parameters, N is a selective parameter,
whereas yy and g are the estimates of the E(L;)
and E(D,) , obtained as the means of and Dy
of a large number n of generated samples of size N
with the population values ¢q , p , and Yy . However,
each of n generated samples has different values of
q for given x, , r , and g , with their means
Iq/n , T, and g approximating closely q , o ,
)

and

In practice, only one series of size N is
available from which the drought descriptors are
obtained, with q , r , and g only as estimates for
q, p ,and vy . By using the statistics q , T ,
and g in Eqs. (16) and (17), instead of q , p ,
and vy , the computed N, values have sampling error
because of the sampling Eifferancas q—=4q:3p =T

and vy - g .

As it was shown earlier, the parameter vy does
not significantly affect the values of up , ug , as
estimates of Lp , and Dp . The variation of uj
and pg with a variation of q is more important,
as it is also the effect of variation of p . Two ways
can be considered for estimating or reducing the
differences q-q and p -1 .

First, there may be a dependence of these
differences to sample statistics. If a regression
equation of these differences, as dependent variables
versus the statistics, as independent variables, may
be established, with a relatively high explained
variances of these differences, then the prediction
equations for estimating 4q =q-q , &p =p - T,
and Ay = vy - g , may be considered as best estimates,
so that q +4g , v+ 4p , and g + Ay can be used
in Eqs. (16) and (17) instead of q , r , and g .

Second, the parameters q , p , and y may be
better estimated for a series if the regional analysis
and/or the investigation of physical conditions
produce more information, and thus better estimates,
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than by using Ahe estimates ﬁ , T ,and g from only
the data of a series. The procedure for obtaining
better estimates of q , p , and y for a series
either by the regional information on a hydrologic
variable or by studying the physical conditions is out-
side the scope of this paper.

As an example of the first approach, the study
of the difference p - r is presented. It is assumed
for this analysis that the occurences of unusually
prolonged droughts and prolonged high values, or of
unusually short negative and positive runs, in a small
sample affect all sample statistics or all differences
@ - o of a population parameter o estimated by the
sample statistic a . Particularly these differences
should affect the structure of autocovariances of this
sample series in such a way that high autocorrelation
will be obtained for unrepresentatively long run-
lengths and sever large positive and negative run-sums,
and ‘low or even negative autocorrelation for unrepre-
sentatively short run-lengths and mild positive and
negative run-sums. More specifically, the occurence
of very large or very small runs in a sample will be
directly related to the sample autocorrelation
coefficients. The hypothesis

p-1=1£%f(N, g, D (18)

50° 550]

is the population
r 1is the sample

was tested as an example in which o
first serial correlation coefficient,
first serial correlation coefficient, N is the sample
length, g is the sample skewness, Dgy is the
largest deficit in a sample using the median as the
truncation level with q = 0.50 , and 8§ o 1is the
largest surplus in a sample using the mealan as the
truncation level, also with q = 0.50 .

The linear multiple regression of p - r on
on the other four parameters, N , g , Dsp , and Ssp
gave a multiple coefficient of regression of R = 0.49 ,
or 24.26 percent of the variation of p - r was
explained by the other four parameters. The replace-
ment of N in Eq. 3.7 by 1In N did not improve the
correlation, because R? remained at 24.88 percent.
For the case of p = 0 only, or for 500 values of
of five parameters p -r , N, g , Dsp , and Sg5p ,
the results of regression analysis were significantly
improved, with the variance of p - r explained by
the remaining four parameters for 46.6 percent, or the
multiple correlation coefficient R = 0.68 . The
regression analysis of p - r for only Dsg gave
R? = 0.33 , for only Sgq gave RZ = 0.13 , and for
both Dsg and Sgp gave R2 = 0.38 .

This example shows potential for improving the
estimates of differences q-q , p -T , and vy - g,
provided a sufficient number of pertinant statistics
from the sample are used in developing the prediction
equations for these differences. The detailed analysis
for development of these prediction equations is out-
side the scope of this paper, but any future develop-
ment in this direction will increase the reliability
of applying Eqs.(16) and (17) in determining the
representative sample size , N, for estimating
the return period, N, , of an Sbserved drought in a
sample of size N.

The expectation is legitimate that a future
combination of the first and second approach in im-
proving the estimates Aq =q-q , 4 =p - r and
4y = y - g and through them the parameters of
Eqs. (16) and (17), as q + &q , r + Ap , and g + Ay
may significantly improve the estimates of
probabilities of observed historic droughts in the
already available samples.



Chapter IV

EXAMPLES OF COMPUTING PROBABILITIES OF OBSERVED DROUGHTS

This chapter presents some applications of the
distributions of the longest negative run-length and
the largest negative run-sum. For determining the
recurrence intervals of an observed drought, it is
frequently advocated that a particular drought has a
recurrence period based solely on the length, N ,
of the historical data. The applications presented
in this chapter make use of the principles of computa-
tions of such probabilities or recurrence periods, as
developed so far in this paper.

4.1 Representative Drought of a Sample Size.
The largest drought in a historical record of N
years is only a sample statistic obtained from the
populations of the largest droughts for the given
sample size and the time series structure. If the
probability of this event being or not being exceeded
is 50 percent, this is by definition the median of the
distribution of the largest drought. This median run,
which is either the longest negative run-length or the
largest run-sum, is defined as the ''representative
drought'". In other words, when the historical drought
is close to this representative drought, it is thought
that the occurrence of the historical drought follows
the structure of a particular stochastic process, and
the length of the available time series can be used
for computing the recurrence interval. If, on the
contrary, the probability of exceedence of an observed
drought in a sample of size N 1is either very small
or very large, the largest historical drought is un-
representative of the sample, or it does not behave
according to the mean drought properties for the given
structure and length of a series.

To illustrate this point, several graphs are
presented that give relations among the representative
drought, obtained for the largest negative run-sum,
the sample length, and the structure of a stochastic
process. These relations for observations belonging
to normal variables, y = 0.0 , either independent
or dependent following the first-order autoregressive
linear model, are shown in Fig. 9. For a given first
serial correlation coefficient, p , there is an ap-
proximate linear relation in the semi-log coordinates
between the size of the representative drought, Dy
(the median largest negative run-sum), and the sample
size, N . The slope of the straight line fit
increases with an increase in dependence, or with an
increase of p . Figure 10 demonstrates the same
relation for the skewness coefficient vy = 0.20 . The
patterns are the same as in Fig. 9 but with milder
slopes of fitted lines. The same patterns can be
observed in Fig. 11 for y = 0.50 and in Fig. 12 for
¥y = 1.00 . To summarize the results in Figs. 9
through 12, on the average, the size of the representa-
tive drought in a sample increases exponentially with
the increase of the sample size. The size of the
representative drought increases more rapidly for high
dependences with p large, and more slowly for a
large skewness coefficient.

The fit of straight lines in Figs. 9, 10, 11,
and 12 through the computed points makes it possible
to derive approximate relations of the intercept, a ,
and the slope, b , of these lines to the first serial
correlation coefficient, p , for four values of ¥
(0.0, 0.2, 0.5 and 1.0) . The intercept, a , is
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defined in this case as the values of these straight
line fits at the intersection of a given N , for
example N = 20 . The relations of b to p are
given in Figs. 9, 10, 11 and 12 as separate graphs,
while the relations of a to p are not plotted.

The representative drought statistics, L, or
Dp , and the representative sample size, N, , are
two concepts, but they serve the same purpose. The
representative droughts, as measured by the median
negative run-length, Ly , and the median negative
run-sum, are the droughts that would be exceeded or
not exceeded 50 percent of the time if many samples
of the given size N are generated by using the
structural model of a stochastic process. The
representative sample size, Ny , as defined at the
end of Chapter III, is the size of the sample that
should have the historical drought of a series equal
to the mean of the longest negative run-length or the
mean of the largest negative run-sum for a very large
number of generates samples of this sample size. Both
the representative drought and the representative
sample size serve the purpose of studying the proba-
bilities of historical droughts. It should be noticed
that for q = 0.50 an approximate value of N, can
also be obtained from Figs. 9 through 12, for the
historical drought used as the ordinate and Ny used
along the N -axis.

4.2 Examples of Computing Probabilities of
of Historical Droughts for Runoff Annual Series.
Table 8 displays examples of annual series of ten
river gauging stations, with the probabilities Py
given in the form of the return period (Pp = 1/Ny ,
with Np the representative sample size) for the
historical droughts. The historical droughts are
given by both the longest negative run-length and the
largest negative run-sum for the series available.
First, general parameters are given: N , sample size,
Q the mean river discharge, ¢ the first serial
correlation coefficient, and y the skewness coef-
ficient. Then the longest negative run-length and the
largest negative run-sum of the standardized variables
are obtained from the available samples. By using the
graphs of Figs. 9 through 12, the representative
sample size Ny is determined for the largest nega-
tive run-sum for q = 0.50 . These N, values are
given in Table 8 as the median values of the sampling
distributions of the largest negative run-sum.

The predicted representative values, N, , for
the longest negative run-length and the largest
negative run-sum for four values of q (0.5, 0.4, 0.3,
and 0.2) are computed by Eqs. (16) and (17),
respectively., These representative drought values
are the means of the sampling distributions of the
run-length and run-sum.

Values of N, obtained from Eqs. (16) and (17)
that are greater than 500 must be extrapolated by
these equations. This extrapolation outside the range
of N values that was available for deriving these
equations gives inaccurate results, so that all
computed values of Np greater than Np = 500 are
designated only as >500 . For computing drought
recurrence intervals greater than 500 years, simula-
tion of samples of 1000, 2000, or so years must be
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EXAMPLES

OF COMPUTING RETURN PERIODS, N

T ?

TABLE 8

OF HISTORICAL DROUGHTS (LONGEST NEGATIVE RUN-LENGTH AND LARGEST NEGATIVE RUN-SUM)

FOR ANNUAL FLOW SERIES OF TEN RIVERS

Missouri Rio Grande Guadalupe Nasselle Mekong Cherry Creek Rhine Danube Gota Nemunas
River at River at River near River near River near near Hetch River River at River at kiver at
Fort Benton, El Paso, Guadalupe, Naselle, Vientiane, Hetchy, Cali- at Basle, Orshova, Vaners- Smolininkai
Montana, USA Texas, USA Colombia Washington Laos fornia, USA  Switzerland Rumania purg, Lithuania,
USA Sweden USSR
N, the sample size 65 32 22 31 49 45 150 120 150 132
Q, the mean river
discharge, c.f.s. 7635 585 710 430 162070 368 36253 189455 18921 19253
p, the first serial
Corraiation soAtEiciakt 0.593 0.483 0.290 0.299 0.360 0.013 0.077 0.096 0.463 0.185
the skewnes
N i 0.086 2.269 -1.076 0.019 -0.179 0.211 0.143 0.270 -0.058 0.465
L_, the longest neg- 0.5 13 14 3 7 8 4 5 6 7 5
ative run-length with 0.4 13 7 -] 4 5 4 5 4 6 4
the truncation level 0.3 12 7 3 2 3 3 3 3 6 3
q 0.2 4 4 2 2 3 2 2 2 5 2
Dy, the largest neg-
ative run-sum with 0.5 15.237 11.168 2.848 3.124 6.653 4.032 4.155 5.104 7.494 4.039
truncation level q, 0.4 12.425 5.620 2.596 2.160 4,029 2.367 3.168 2,299 5.982 3.156
for standardized 0.3 7.933 3.391 1.799 1.495 3.197 1.55 2.538 1.683 4.530 2,158
variables 0.2 2.001 2.474 1.340 0.924 2.221 0.869 1.745 1.165 2.776 1.599
N._, the representa-
tive sample size
from pchs Sor di; >500 200 20 15 50 30 30 47 60 27
the largest negative
run-sum for q=0.5
N,., the representa- q
tive sample size ob- 0.5 >500 >500 8 117 237 19 33 64 117 30
tained by Eq. 16 0.4 >500 206 15 28 57 36 62 30 110 29
for L;, the longest 0.3 >500 465 33 16 32 40 35 34 249 32
negative run-length 0.2 189 186 52 50 102 64 110 54 393 51
N_, the representa-
tive sample size ob- 0.5 >500 >500 10 15 119 37 35 64 202 31
tained by Eq. 17 for 0.4 >500 161 16 15 41 23 35 20 142 33
D, the largest neg- 0.3 >500 85 22 22 53 31 51 30 125 39
ative run-sum 0.2 87 148 51 47 89 63 97 67 125 85




added to results of this study. In general, the
computed representative sample sizes, N, , agree
closely for the run-length and the run-sum for a given
level of truncation, ¢ . However, they change from
one q to another. The Missouri and the Rio Grande
rivers show historic droughts as having very rare
occurrence, because the distributions of both the
longest negative run-length and the largest negative
Tun-sum show that the return periods of these historic

droughts are much greater than N, = 500 for gq = 0.50.

The available annual series of the Mekong River
has large runs at truncation levels q = 0.5 and
q = 0.2 but just about the representative drought
lengths at the truncation levels q = 0.4 and q =
0.3 . It should be noticed that the Mekong River has
negative skewness, so it is outside the range of the
validity of the developed graphs and equations. The
question is whether the value of g = -0,179 should
be considered as significantly different from vy = 0 ;
besides, the effect of the skewness is relatively
small on the representative sample size, N, .

The Guadalupe River in Colombia and Cherry Creek
in California have run-lengths that just about produce
the representative sample sizes for all truncation
levels. For the Nasselle River the maximum differences
among the available sample size and the computed
representative sample sizes are less than 70 percent,
and a little more than 100 percent for the Guadalupe
River, both at the truncation level of g = 0.2 . The
drought probabilities of these two rivers can be
adequately represented by the sample size and by using
the parameters of their annual runoff series. The
Rhine River, the Danube River, and the Nemunas River
with the aveilable sample sizes of more than 100 years
have smaller representative sizes of historical
droughts than the sizes of samples available while the
GBta River has just about the same representative
sample size as the sample size of the historical
drought.

Hall, Askew and Yeh [1] considered from a study
of 25 streams in the United States that the historical
critical periods, as defined in Chapter I of this
paper, were ''significantly more severe than would be
predicted by synthetically generated sequences of
flows, using current standard methods." A study of
the data in Table 8 shows which rivers support their
statement and which do not support it by the results
of this study, if the criterion used is that the most
critical design period coincides with the historical
drought. The Missouri and the Rio Grande rivers for
all truncation levels and the Mekong River for the
truncation level of q = 0.5 are within the category
described [1]. However, all the other seven rivers
taken as examples, and by using the first-order
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autoregressive linear model, not only would reproduce
the historical droughts, but would also give, on the
average, either longer or larger representative
droughts for the sample available than the historical
droughts. This statement is well supported by stress-
ing that a value N < N is equivalent to having a
longer or larger historical drought in the available

sample than the sample size would produce if the
representative drought would occur.

Table 8 demonstrates a significant change of
Ny with the truncation level q . In other words,
because of large sampling variations in the lengths,
sums, and shapes of the longest or largest negative
runs, the variation of N, with q should be
expected. Therefore, it is evident that the selection
of the truncation level for defining droughts
represents an important decision in determining the
probabilities (return periods) of historical droughts.

4.3 Examples of Computing Probabilities of

Historical Droughts for Annual Series of Precipitation.

Table 9 presents examples of 20 annual series of
precipitation in the Upper Missouri River Basin the
same analysis that was presented for the runoff series
in the previous section.

Values of N, for the precipitation series
show in general the same pattern as observed for the
runoff series. There are, however, some important
points to emphasize. First, the 20 annual precipita-
tion series may be divided in a rough manner into
long and short series. The only instances for which
the computed values of N, exceed the length of the
historical record by more than 500 percent is when
the historical record is long. For small historical
records the value of Ny never exceeds the historical
sample by more than 100 percent. An explanation for
this pattern is as follows. The short records, those
with less than 40 years of data, have a relatively
smaller mean than they would have were they longer,
because for short records the drought of the 1930's
represents a larger percentage of the total record
than for the long records. This has a significant
effect on the estimate of the truncation level,
because a short record has a much lower truncation
level, x_. , for a given q than a long record. The
smaller tﬁe truncation level for a short record the
smaller are the droughts.

The analysis of N; values in Table 9 shows
similar patterns for precipitation as for rumoff,
namely that for the same q the representative
longest run- kngth and the representative largest
run-sum have close values of N, . However, the
change of Ny is much more variable from one q to
the next.
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TABLE 8
EXAMPLES OF COMPUTING RETURN PERIODS, Nr, OF HISTORICAL DROUGHTS (LONGEST NEGATIVE RUN-LENGTH AND LARGEST

NEGATIVE RUN-SUM) FOR ANNUAL PRECIPITATION SERIES OF TWENTY STATIONS IN THE UPPER MISSOURI BASIN

Ashton Dubois Salmon  Augusta Big Bozeman Butte East Ennis Fair
1daho Wyo. Idaho Montana Sandy Montana Far Anaconda Montana Field
Montana Montana Montana Montana
(1) (2) (3) (4) (s) (6) (7) (8) (9) (10)
N’ sgmp]_e size years 59 39 50 56 37 66 66 55 38 34
P, mean annual preci-
pitation (inch) 16.41 10.90 9.05 14.52 12.02 17.55 12.89 13.58 10.75 11.89
p, the first serial
correlation coefficient -0.0440 -0.1030 -0.0300 0.1300 0.0210 0.2098 0.2962 0.0630 0.4340 -0.0351
Y, the skewness
coefficient 0.117 0.670 0.340 0.340 0.350 0.099 0.205 -0.040 0.087 -0.021
q
Ly, the longest neg- 0.5 6 5 6 10 5 9 8 8 6 4
ative run-length with g 4 3 5 4 10 3 4 8 5 6 4
the truncation level g, 3 3 5 4 3 3 4 5 5 6 3
q 0.2 2 1 El 2 1 2 3 3 2 2
Dy, the largest neg- 9
ative tinisom with 0.8 443 1.67 3.80 8.93 3.06 6.10 7.22 6.13 6.00 4.10
truncation level q, 0.4  1.77 1.18 3.33 6.56 1.68 3.33 5.37 3.24 3.71 3.09
for standardized 0.3 1.26 1.09 2.81 1.67 1.11 2.27 3.27 2.24 1.16 2.34
variables 0.2 0.91 0.96 2.14 0.93 0.86 1.26 1.46 1.35 0.64 1.83
N,., from Figs. 8
thru 12 40 <20 35 >500 <20 100 100 150 400 38
Nr, the representa- .5 39, 55. 110. >500. 36. 473, 231. 273. 57. 29.
tive sample size ob- g 4 26, 103. 52. >500. 19, 29. 433, 65. 107. 55.
tained by Eq. 16 0.3  60. 232. 118. 34. 39. 65. 124. 147, 240. 62.
for Ly, the longest g 5 g4, 46. 369. 53, 51 51, 99. 117. 48. 98.
negative run-length
Ny, the representa- 0.5 70. 13. 48. 500. 19. 112, 231. 98. 98. 44,
: : . 0.4 16, : 5 67. 308. 15. 35. 130. 28. 41. 43.
tive sample size ob
tained by Eq. 17 for 0.3 38. 36. 108. 29, 23. 39, 5 33. 18. 59.
: 0.2 95. 105. 220. 56. 62. 64. 73. 58. 40. 134,

Dy, the largest neg-
ative run-sum
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TABLE 9 (cont'd)

Great Hebgen Helena Holter Lima Morris Virginia West Lamar Yellow-
Falls Dam Mont . Dam Montana Madison City Yellow- Wyo. Stone
Mont. Mont. Mont. Mont. Montana stone Park
Montana Wyo.
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
N, sample size years 68 46 79 55 31 53 66 30 30 72
P, mean annual preci-
pitation (inch) 14.80  25.40 12.38 13.20 10.84 17.70  13.90  21.21 13.43 16.58
p, the first serial
correlation coefficient 0.2430 -0.0740 0.2021 0.4380 -0.0375 0.2469 0.1600 0.0880 0.3142 0.3290
Yy, the skewness
coefficient 0.27 0.735 0.474 0.458 0.807 0.380 0.280 0.060 0.304 0.480
q
Ly, the longest neg- 0.5 4 4 10 10 5 5 9 3 o 10
ative run-length with g 4 3 3 3 8 3 4 5 3 4 7
the truncation level g 3 - 2 3 8 2 a 4 3 3 7
q 0.2 3 i 2 3 2 3 3 2 1 s
Dy, the largest neg- q
ative run-sum with 0.5 3.71 1.88 5.67 7.20 2.60 3.22 4.53 2.42 4.25 7.61
truncation level q, 0.4 3.42 1.47 2.23 5.24 1.23 2.16 3.24 1.86 2.80 4.88
for standardized 0.3 2.53 1.14 1.74 3.03 0.96 1,32 2.41 1.70 1,09 4.36
variables 0.2 1.92 0.96 1.15 1.16 0.70 0.73 1.50 0.59 0.99 292
N., from Figs. 9
thru 12 % 31 <20 50 60 20 <20 30 <20 25 150
Ny, tho representa- g5 15. 28.  >500. >500.  55. 30. 480. 8. s8. >500.
tive sample size ob- g 4 14. 26. 15. 417. 26. 28. 58. 15. 28. 215.
tained by Eq. 16 0.3 31. 30. 32. 5500. 30. 63. 65. 35. 31, 483,
for Lp, the longest g 5 99. 47. 51. 95. 93. 100. 103. 55. 24. 384.
negative run-length
N,, the representa- ~0-5 24. 15. 90. 228. 23. 18. 43, 11. 34, 304.
Hoo concle b- 0.4 37. - 18. 120. 18. 17. 35, 14. 25. 97.
mple size o
tained by Eq. 17 for 9-3 47. 37. 29, 64. 33. 22. 46, 29, 18. 156.
! 0.2 99. 105, 63. 60. 89, 47. 80, 44, 54, 169.

Dp, the largest neg-
ative run-sum




Chapter V

THE CONCLUSIONS

The developed methodology for determining the
probabilities or the return periods of historical
droughts (recurrence intervals given in years) is
presented in this study. The basic statistical
parameters used to describe the largest historical
drought are the longest negative run-length and the
largest negative run-sum in a sample of size N ,

The parameters describing the structure of a stochastic
process for a given probability q of the truncation
level of a series are the first serial correlation
coefficient p measuring the time dependence and the
skewness coefficient y . This study leads to the
following conclusions.

(1) The presented method can be used to
determine when a historical or observed drought is
unrepresentative of the sample size and the stochastic
process for which the sample is observed.

(2) By determining the sample size N, to
which the historical or observed drought should belong
to be representative, the return period or the recur-
rence interval of the drought can be indicated by the
method.

(3) The frequency distributions as the
estimates of sampling probability distributions of the
longest negative run-length and the largest negative
run-sum in the sample of size N are of practical
relevance to water resources and hydrologic investiga-
tions. As such they are presented in Appendices II
and III of this study for five sample sizes N(25, 50,
100, 200, 500), for four values of the probability
2 of the truncation level (0.5, 0.4, 0.3, 0.2), for
five values of the first serial correlation coefficient
o(0.0, 0.1, 0.2, 0.3, 0.7) , and for four values of the
skewness coefficient vy(0.0, 0.2, 0.5, 1.0) .

(4) The sampling probability distribution of
the longest negative run-length for independent
stochastic processes can be obtained theoretically;
however, for dependent stochastic processes following
the first-order Markov linear model and for the
sampling probability distribution of the largest
negative run-sum it was necessary to use the statisti-
cal experimental (Monte Carlo) method in computing
the frequency distributions from a large number of
generated samples.

(5) To check the accuracy of the obtained
results of the experimental method, the exact probabi-
lity of the longest negative run-length was compared
with the frequency distribution of this run-length of
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generated samples. Satisfactory agreements were
obtained at the 0.10 level of significance by using
the Kolmogorov-Smirnov test.

(6) The nonnormality of the underlying
distribution as measured by the skewness coefficient
only slightly effects the probability distribution
of the longest negative run-length, For p = 0.0 it
does not depend on the underlying distribution. For
the largest negative run-sum, however, the nonnormali-
ty has a much greater effect than for the longest
negative run-length.

(7) Although there are reasons to believe that
the theoretical probability distributions for the

" longest negative run-length and the largest negative

run-sum may be very complex mathematical experesions,
the fit of the lognormal probability function with two
parameters to the frequency distributions obtained by
the experimental method is very good considering the
expected complexity.

(8) Because the computation of probabilities
(return periods, or recurrence intervals) of historical
drought depends highly on the best estimates of q ,
o, and y , for a given N , the use of all regional
information for improving the accuracy of these
estimates will produce much more reliable estimates of
these probabilities.

(9) The differences between the population
parameters (q , o , y) and the sample estimates
(@, v, g) are related not only to the population
parameters but also to some other statistics of the
available sample. This properly may be used to
improve the estimates of the sample on which the
probabilities of historical droughts depend.

(10) The application of the method developed
in this study to 10 series of annual runoff and 20
series of annual precipitation indicates that for a
given truncation level the computation of return
periods for the longest negative run-length and the
largest negative run-sum are approximately of the same
order of magnitude. However, the representative
drought, N. , of a series is very sensitive to a
change in the truncation level parametes, q . This
sensitivity indicates the importance of searching for
the most accurate estimation of the probability of a
truncation level.
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APPENDIX I

PROOFS FOR EQUATIONS GIVEN IN CHAPTER II

Approximation to the chi-square distribution
for large v , where v is the number of degrees of
freedom is as follows.

For v > 30

2 o e 213
2 u[l gvftifgv] 1.1

in which ty is the standard normal variable, N(0,1),
and xi is"the corresponding chi-square variable.

The skewness is given by

" ’JE? , (1.2)

so for values of y < J%ﬁ = 0,51 , Eq. (1.1) becomes
) t.Yy13
TS o
xin1f2 [l‘. 36*—6—] (1.3)

which is chi-squared distributed with the mean v
and the variance 2v . To obtain a standardized
deviate x; the mean is subtracted and divided by

Y2y for Eq. (1.3), so that

3
ik X 22
X =3 [1 'Y - w ] g - (1.4)
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For the dependence of the type of the first
order Markov model a further transformation must be
made. Referring to Eq. (6) in Chapter II, the
standardized variable, y. , of the variable following
the first order Markov mo&el, is

R =u)
= __].__X = = 2 1/2
Yi o Yyt (-e) € - (1.5)
By definition E(y;) = E(y;j_;) =0, E(y%) =1, and
E(Yf] = Yy } then Eq. (1.5) gives
1/2

3t 533 - pe 2 y2 201 = no
b il S 3 € (1 nl} P1 Yi t 3 ei(l °l)

3 _ a2v3/2
P¥i * g (1 ol) . (1.6)

Taking the expectation of the terms in Eq. (1.6) then

v, = B0 = o] we Eha - 0D .
From Eq. (1.7) solved for s(sg) =y, » then
Yy, (1 - of)
¥ Bl g 0) * o . of)s 5 (1.8)

The skewness coefficient y_ or Ty is
different from the skewness coeffifient of Y. s
because of the effect of serial correlation.

——— s



APPENDIX II

This appendix gives the plotted cumulative frequency distributions
of the largest negative run-sum and the longest negative run-length in
the sample of length N of the normal and nonnormal independent variables,
with p = 0.0 , and of the dependent variables following the first-order
linear autoregressive model for four vaiues with p = 0.1, 0.2, 0.3, 0.7 . it
The nonnormality was accounted for by generating the one-parameter gamma ;ﬁ
variables that preserve the skewness coefficient, vy = 0.2, 0.5, and
1.0 . Four values q = F{xo} , of the probabilities of truncation levels
X, » 0rqs= 0.50, 0.40, 0.30, and 0.20 , are shown in the first five
pages; pages 26 through 30 present the probabilities for all values of
q,N,p and of y=0.00 and y = 0.20 for the longest negative run-
length, Lm , and pages 31 through 35 present the same probabilities
for values of y = 0.50 and y = 1.00 . Pages 36 through 45 give the
probabilities for the largest negative run-sum, or the deficit Dm y

Each graph is identified by computer symbols Q , R , and G which
correspond to the symbols used in this text, q , p , and y . Five
frequency distribution curves on each graph obtained by the experimental
method, are given for five values of N (25, 50, 100, 200, 500) .
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APPENDIX III

This appendix gives the values of parameters of frequency distributions
presented in Appendix II. Table III-1 shows the mean and standard deviation
of the distributions of the longest negative run-length for five values of
N, (25, 50, 100, 200, 500) , five values of », (0.0, 0.1, 0.2, 0.3, 0.5),
four values of the truncation level probability Q = F{xo), (0:5; 0; 0.8,
0.2) , and three values of the skewness coefficient vy, (0.0, 0.2, 0.5) .
Table III-2 gives the mean and the standard deviation for distributions
of the largest negative run-sum for the same parameter values as in Table
111-1, Tables III-3 and the standard deviation of the logarithms, uy oo
and the standard deviation of the logarithms, 9, » @5 computed by Eqs.

(12) and (13) in Chapter III, for the distributions of the longest negative
run-length and the largest negative run-sum, respectively . These two
parameters refer to the approximate fits of lognormal distributions to

the computed frequency distributions.

46



LY

TABLE III -1
N=25 N=50 N=100 N=200 N=500
q=0.5 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2
LONGEST NEGATIVE RUN LENGTH MEANS
Skewness = 0.0
p=0.0 3.97 3.17 2.38 1.75 5.00 3.86 2.93 2.17 6.06 4.57 3.47 2.57 7.04 5.40 4.01 3.03 8.26 6.30 4.86 3.60
=0.1 4.23 3.38 2.55 1.88 5.35 4.17 3.20 2.36 6.48 4.95 3.80 2.82 7.34 5.84 4.45 3.29 9.06 6.94 5.42 3.96
=0.2 4.51 3.61 2.74 2.04 5.75 4.47 3.47 2.56 7.01 5.43 4.09 3.08 §.10 6.33 4.89 3.67 9.82 7.55 5.97 4.47
=0.3 4.87 3.88 2.94 2.19 6.21 4.85 3.79 2.77 7.60 6.00 4.55 3.38 8.94 7.00 5.38 4.08 10.81 8.28 6.58 4.97
=0.7 7.07 5.8 4.24 3.07 9.75 7.79 6.02 4.38 12,58 10.17 7.63 5.82 15.20 12.22 9.73 7.44 18.70 15.70 12.45 9.62
Skewness = 0.2
=0.0 4.17 3.23 2.45 1.77 5.22 4.04 3.06 2.18 6.11 4.78 3.63 2.57 7.24 5.58 4.23 3.01 8.53 6.73 4.95 3.56
=0.1 4.42 3.43 2.62 1.90 5.56 4.37 3.32 2.38 6.58 5.19 3.99 2.80 7.80 6.12 4.62 3.26 9.30 7.18 5.53 3.91
=0.2 4.69 3.70 2.82 2.04 5.9 4.73 3.58 2.60 7.15 5.59 4.36 3.07 §.49 6.56 5.00 3.62 10.02 7.87 6.13 4.38
=0.3 5.05 4.00 3.04 2.21 6.45 5.17 3.94 2.83 7.76 6.06 4.79 3.41 9.27 7.29 5.52 3.99 11.09 8.77 6.73 4.93
=0.7 7.26 5.81 4.51 3.08 9.97 8.14 6.16 4.34 12.79 10.61 8.07 5.76 16.13 12.78 9.96 7.24 19.68 15.77 13.16 9.30
Skewness = 0.5
=0.0 3.99 3.13 2.38 1.76 4.99 3.86 2.95 2.16 5.98 4.63 3.46 2.62 6.99 5.31 4.02 3.00 8.19 6.48 4.87 3.57
=0.1 4,24 3.35 2.57 1.89 5.30 4.17 3.17 2.35 6.43 5.03 3.79 2.89 7.54 5.77 4.46 3.31 8.90 7.03 5.35 3.99
=0.2 4.52 3.56 2.78 2.03 5.75 4.52 3.45 2.58 6.94 5.50 4.19 3.16 8.17 6.34 4.92 3.78 9.71 7.81 5.91 4.41
=0.3 4.86 3.87 2.99 2.19 6.24 4.95 3.80 2.85 7.67 6.03 4.62 3.51 8.95 7.02 5.38 4.10 10.79 B8.62 6.56 4,99
=0.7 7.07 5.70 4.35 3.06 9.77 7.89 6.12 4.47 12.89 10.31 7.81 5.98 15.66 12.40 9.90 7.35 19.45 16.05 12.47 9.29
LONGEST NEGATIVE RUN LENGTH STANDARD DEVIATIONS
Skewness = 0.0
=0,0 1.58 1.28 1.02 .80 1.76 1.34 1.08 .82 1.85 1.33 1.11 .82 1.83 1.41 1.07 .81 1.88 1.36 1.18 .88
=0.1 1.72 1.40 1.12 .87 1.94 1.50 1.22 .92 2.03 l1.44 1.25 .92 1.97 1.51 1:17 .91 2.05 1.55 1.48 1.02
=0.2 1.89 1.52 1.26 .98 2.10 1.62 1.37 1.02 2.19 1.66 1.32 1.02 2.14 1.65 1.36 .99 2.14 1.58 1861 1.12
=0.3 2.12 1.72 1.40 1.10 2.35 1.80 1.53 1.15 2.41 1.96 1.48 1.16 2.31 1.88 1.57 1.18 2.43 1.76 1.66 1.23
=0.7 3.99 3.33 2.82 2.35 4.43 3.93 3.18 2.54 4.38 4.08 3.28 2.70 4.58 4,21 3.34 2.89 3.75 3.93 3.42 2.85
Skewness = 0.2
=0.0 1.68 1.31 1.04 .80 1.88 1.41 1.14 .83 1.75 1:54 [L.16 .80 1.90 1.56 1.08 .83 2.02 1.43 1.12 .74
=0.1 1.83 1.44 1.15 .89 2.02 1.56 1.28 .95 1.95 1.67 1.28 .88 2.08 1.68 1.14 .88 2.21 1.54 1.24 .85
=0.2 1.97 1.60 1.26 .99 2.16 1.81 1.39 1.07 2.24 1:82 L.41 .99 2.43 1.77 1.32 1.05 2.24 1.66 1.52 1.08
=0.3 2.19 1.82 1.43 1.12 2.37 2.07 1.61 1.22 2.41 1.97 1.59 1.20 2.68 2.05 1.52 1.13 2.61 1.77 1.64 1.27
=0.7 4.00 3.49 3.04 2.39 4.51 3.99 3.28 2.57 4.6l 4.24 3.52 2.76 4.74 3.99 3.44 2.79 3.98 3.98 3.72 2.85
Skewness = 0.5
=0.0 1.58 1.29 1.04 .81 1:65 1.35 1:02 .82 L.77 1.40 1.08 .84 1.76 1.32 1:12 .83 1.60 1.50 1.19 .95
=0.1 1.70 1.43 1.13 .89 1.82 1.49 1.11 .93 1.92 1.51 1.20 .97 1.96 1.39 1.27 .93 1.80 1.60 1.26 1.04
=0.2 1.86 1.54 1.31 1.00 2.10 1.66 1.25 1.05 2.11 1.69 1.41 1.10 2.16 1.76 1.45 1.05 2.09 1,83 1.37 1.23
=0.3 2.07 1.76 1.47 1.15 2.46 1.93 1.47 1.24 2.39 1.90 1.58 1.25 2.59 1.92 1.48 1.25 2.37 2.02 1.64 1.42
=0.7 3.92 3.48 2.9 2.40 4.47 4.06 3.30 2.62 4.81 4.00 3.42 2.88 4.66 4.15 3.43 2.88 3.79 4.27 3.12 2.77
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TABLE III - 2

N=25 N=50 N=100 N=200 N=500

q=0.5 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2
LARGEST NEGATIVE RUN-SUM MEANS

Skewness = 0.0

p=0.0 3.60 2.66 1.92 1.33 4.55 3.32 2.40 1.73 5.55 3.95 2.94 2.80 6.41 4.64 3.42 2.4 7.56 5.54 4.11 2.95
=0.1 3.90 2.87 2.05 1.40 5.01 3.64 2.62 1.84 6.15 4.38 3.26 2.26 7.03 5.16 3.80 2.66 8.64 6.32 4.62 3.29
=0.2 4.22 3.11 2.19 1.47 5.50 4.00 2.86 1.98 6.85 4.90 3.59 2.48 7.95 5.82 4.28 2.95 9,73 7,12 5.22 3.73
=0.3 4.60 3.38 2.35 1.56 6.08 4.43 3.14 2.15 7.70 5.55 3.99 2.74 8.99 6.63 4.80 3.31 11.00 8.12 5.99 4.26
=0.7 6.74 4.90 3.27 2.07 9.99 7.30 5.00 3.22 13.57 10.01 6.94 4.67 17.38 12.84 9.21 6.41 22.34 17.53 12.53 8.81

Skewness = 0.2
=0.0 3.61 2.57 1.8 1.21 4.50 3.26 2.30 1.53 5.3 3.87 2.76 1.85 6.38 4.61 3.28 2.21 7.51 5.44 3.84 2.70
=0.1 3,91 2.78 1.97 1.27 5.00 3.59 2.50 1.65 5.95 4.32 3.06 2.02 7.20 5.21 3.69 2.44 8.51 6.08 4.36 3.02
=0.2 4.24 3.02 2.12 1.35 5.50 3.98 2.76 1.78 6.70 4.82 3.42 2.21 8.14 5.83 4.15 2.74 9.50 6.97 5.00 3.41
=0.3 4,62 3.30 2,29 1.43 6.06 4.44 3.05 1.94 7.47 5.37 3.84 2.45 9.18 6.65 4.64 3.06 10.98 7.99 5.73 3.87
=0.7 6.73 3.83 3.29 1.91 9.92 7.39 4.89 2.95 13.42 9.96 6.89 4.14 17.84 12.78 8.81 5.57 23.50 16.60 12.15 7.60
Skewness = 0.5
=0.0 3.15 2.22 1.53 1.00 385 278 1.92 1I.30 4.81 3:3% ZadD ALT 5.64 3.88 2.69 1.78 6.52 4.71 3.23 2.11
=0.1 3.44 2.42 1.65 1.06 4.34 2.09 2.10 1.40 5.37 3.71 2.51 1.74 6.29 4.38 3.05 2.00 7.37 5.37 3.70 2.44
=0.2 3.72 2.62 1.78 1.13 4.83 3.41 2.31 1.53 5.99 4.19 2.83 1.93 7.59 4.98 3.46 2.26 8.35 6.15 4.26 2.80
=0.3 4.05 2.8 1,92 1.21 5.39 3.80 2.55 1.68 6.77 4.73 3.18 2.14 8.09 5.68 3.92 2.57 9.58 7.02 4.91 3.24
=0.7 5.94 4.19 2.70 1.6l 8.79 6.28 4.12 2.59 12.50 8.73 5.70 3.74 15.69 10.87 7.62 4.88 19.05 15.34 10.31 6.47
LARGEST NEGATIVE RUN-SUM STANDARD DEVIATIONS
Skewness = 0.0
=0.0 1.52 1.13 .88 .68 1.66 1.20 .93 .69 1.75 1.21 .92 .70 1.57 1.15 .97 .67 1.7 1.30 1.06 .72
=0.1 1.76 1.31 1.02 .77 1.97 1.42 1.10 .80 2.04 1.39 1.12 .83 1.88 1.33 1.11 | 2.13 1.54 1.23 .85
=0.2 2.05 1,53 1,20 .88 2.30 1.65 1.30 .94 2.34  1.63 1.32 .08 2.18 1.58 1.35 .91 2.33 1.77 1.40 1.01
=0.3 2.40 1.81 1.41 1.03 2.70 1.96 1.54 1.11 2.79 2.04 1.56 1.17 2.56 1.95 1.63 1.13 2.75 1.98 1.70 1.23
=0.7 5.21 4.03 3.13 2.28 6.18 5.05 3.75 2.70 6.49 5.17 4.01 3.15 7.10 5.64 4.23 3.69 6.90 6.27 4.76 3.68
Skewness = 0.2
=0.0 1.51 1.09 .82 .60 1.62 1.16 .87 .60 1.55 1.19 .87 .61 1.83 1.21 .87 .62 1.82 1.41 .81 .66
=0.1 1.75 1,29 .97 .56 1.89 1.35 1.06 .73 1.79 1.42 1.05 .73 2.16 1.46 1.01 .74 2.14 1.59 .99 .77
=0.2 2.03 1.52 1.14 .81 2.20 1.64 1.26 .88 2.14 1.66 1.24 .B7 2.60 1.68 1.20 .91 2.34 1.78 1.27 .92
=0.3 2.37 1.81 1.34 .95 2,55 1.99 1.53 1.07 2.49 1.97 1.49 1.06 3.0 2.01 1.39 1.14 2.96 2.07 1.57 1.07
=0.7 5.02 4.03 3.13 2.09 5.91 5.10 3.68 2.55 6.52 5.31 3.96 2.94 7.16 5.16 3.91 2.83 8.92 5.52 4.50 2.89
Skewness = 0.5
=0.0 1.30 .96 .68 .49 1.37 1.00 .67 .49 1.47 1.03 .67 .49 1.42 1.04 .77 .49 1.32 1.07 .76 .47
=0.1 1.50 1.16 .81 .58 1.59 1.19 .81 .60 1.69 1.20 .82 .60 1.62 1.18 .93 .60 1.69 1.34 .92 .62
=0.2 1.74 1.31 .97 .68 1.93 1.40 .9 .73 1.99 1.43 1.00 73 2.12 1.47 1.13 T8 1.95 1,53 1.10 .76
=0.3 2.04 1.57 1.15 .81 2.32 1.70 1.17 .89 2.36 1.74 1.22 .89 2.41 1.74 1.34 .90 2.24 1.77 1.30 .94
=0.7 4.40 3.54 2.55 1.75 5.27 4.30 3.01 2.20 6.49 4.40 3.36 2.53 6.45 4.56 3.51 2.63 6.22 5.63 3.29 3.55
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TABLE III - 3

N=25 N=50 N=100 N=200 N=500
LARGEST NEGATIVE RUN-SUM - Uy
Skewness = 0.0
=0.0 1.20 .90 .56 .17 1.45 1.14 .81 A7 1.67 1.35 1.03 .68 1.83 1.50 1.19 .86 2.00 1.69 1.38 1.05
=0.1 1.27 .96 .61 .20 1.54 1.22 .88 B2 1.76 1.43 1.13 .75 1.92 1.61 1.29 .94 2.13 1.82 1.50 1.16
=0.2 135 .03 .65 23 1.62 1.31 .96 .58 1.87 1.54 1.21 .84 2.04 1.73 1.41 1.04 2.25 1.93 1l.62 1.28
=0.3 1.41 .09 .70 26 1.72 1.40 1.04 .65 1.98 1.65 1.31 .92 2.16 1.85 1.51 1.14 2.37 2.07 1.75 1.41
Skewness = 0.2
=0.0 1.20 .86 +52 .08 1.45 1.12 T7 .35 1L.e4 1.31 .97 .56 1.81 1.50 1.15 e 1.99 1.66 1.32 .96
=0.1 4 .93 .57 15 1.54 1.21 .84 .41 1.74 1.41 1.06 .64 1.93 1.61 1.27 .85 2.11 1.77 1.45 1.07
=0.2 1.34 .99 .63 L5 .65 1530 .02 A7 L.85 1.52 1.17 ¥ 2.05 1.72 1.38 .96 2.22 1.91 1.58 1.19
=0.3 1.41 .06 .68 .18 1.72 1.40 1.00 a3 1.96 1.62 1.28 .81 2.16 1.85 1.49 1.05 2.36 2.05 1.71 1.32
Skewness = 0.5
=0.0 LaD7 o1l .33 T 152 .96 .59 .20 E.53 1.15 TT .40 1.70 1.32 .85 .54 1.85 1.52 1:.15 .72
=0.1 Lod% .78 .39 .07 1.41 1.06 .67 .25 L.63 1.26 .87 -50 1.81 1.44 1.07 .65 1.97 1.65 1.28 .86
=0.2 122 .85 .45 .03 1.50 1.15 .76 32 1.74 1.38 .98 .59 1.99 1.56 1.19 W77 2.10 1.79 1.42 .99
=0.3 1.29 i .50 .00 1.60 1.24 .84 .40 1.86 1.49 1.08 .68 2.05 1.69 1.31 .89 2.23 1.92 1.56 1.14
LARGEST NEGATIVE RUN-SUM 2
Skewness = 0.0
=0.0 .41 .41 .44 .48 .35 .35 Y .39 .31 .30 .31 .33 .24 .24 .28 .27 23 .23 .25 .24
=0.1 .43 .44 .47 .52 .38 .38 .40 42 .32 < 33 .36 .26 sahy .29 29 .24 .24 .26 .25
=0.2 .46 .47 84 .5 40 .40 43 .45 .33 e .36 .38 27 27 .31 .30 .24 .24 .26 27
=0.3 .49 .50 .55 .60 42 .42 .46 .49 .35 .36 .38 .41 .28 .29 53 33 + 25 .24 .28 .28
Skewness = 0.2
=0.0 .40 .41 .42 47 A5 «35 .37 .38 .28 .30 231 .32 .28 .26 .26 .28 .24 .26 .21 .24
=0.1 .43 .44 .46 42 .37 BT .40 42 .29 3 b o G .29 .28 27 .30 .25 .26 2 25
=0.2 .45 .47 .50 .55 39 .40 44 .47 =31 .34 .35 .38 .31 .28 .28 o s .24 «25 .25 P
=0.3 .48 .51 .54 .60 .40 .43 A7 .51 .32 .36 .37 .41 32 .29 .29 .36 .27 .26 .27 .27
Skewness = 0.5
=0.0 .40 .41 .43 .46 .34 .35 34 . 36 .30 .30 .29 .31 +25 .26 .28 27 .20 <22 .13 V22
=0.1 .42 .45 .47 .51 .36 w2 Y .41 s .31 .31 33 . 27 .30 +29 .23 .25 25 .25
=0.2 .44 47 51 .56 .38 .39 .40 .45 .31 38 35 &37 27 .29 .31 R 5 23 25 .26 27
=0.3 .48 51 -85 .61 .41 .43 .44 .50 .34 .36 3T .40 .29 .30 .33 .34 .23 .25 .26 .28
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TABLE IIT - 4

N=25 N=50 N=100 N=200 N=500
q=0.5 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2
LONGEST NEGATIVE RUN-LENGTH - un
Skewness = 0.0
p=0.0 1.30 1.08 .78 47 1.5 1,29 1.01 71 1.76 1.48 1.20 .90 1.92 1.65 1.35 1.07 2.09 1.82 1.55 1.25
=0.1 1.37 1.14 .85 .53 1.62 1.37 1.10 .79 1.82 1.56 1.28 .99 1.96 1.73 1.46 1.15 2.18 1.91 1.65 1.34
=0.2 1.43 1.20 .91 .61 1.69 1.44 1.17 .87 1.90 1.65 1.36 1.07 2.06 1.81 1.5 1.27 2.26 2.00 1.75 1.47
=0.3 1.50 1.27 .93 .67 1:76 151 1.:26 .94 1.98 1.74 1l.46 1.16 2.16 1.91 1.64 1.37 2.36 2.09 1.85 1.57
Skewness = 0.2
=0.0 1.35 1.10 .81 .48 1.59 1.34 1.05 il 1.77 1.51 1.24 90 1.5 1.68 1.41 1.07 2al2 1:88 1.57 1o
=0.1 1.41 1.15 .88 .54 1.65 1.42 1.13 .79 1.84 1.60 1.34 .98 2.02 1.78 1.50 1.15 2.20 1.95 1.69 1.34
=0.2 1.46 1.22 85 .61 1.72 1.49 1.20 .88 1.92 1.67 1.42 1.07 2.10 1.85 1.58 1.25 2.28 2.04 1,78 1.45
=0.3 1.53 1.29 1l.01 .68 i.80 1.57 1.29 .95 2.00 1.75 1.51 1.17 2:19 1:95 1.67 1.35 2.38 2.15 1.88 1.56
Skewness = 0.5
=0.0 1.31 1.06 .78 .47 1.56 1.29 1.03 .70 1.75 1.49 1.19 .91 1.91 1.64 1.35 1.06 2.08 1.84 1.55 1.24
=0.1 1.37 1.13 .86 .54 1.6 1.37 1.10 .78 1.82 1.57 1.28 1.01 1.9% 1.72 1.46 1.16 2.17 1,92 1.65 1.35
=0.2 1.43 1.18 .52 .60 1.69 1.45 1.18 .87 1.89 1.66 1.38 1.09 2-07 1.8l 1.55 1.29 2.25 2.03 1.75 1.45
=0.3 1.50 1.26 .99 .66 1.76 1.53% :1.27 .96 1.99 1.75 1.48 1.20 2.15 1.91 1.65 1.37 258 218 A.85 1.57
LONGEST NEGATIVE RUN-LENGTH - Un
Skewness = 0.0
=0.0 .38 .39 .41 .43 .34 .34 .36 .37 .30 .29 .31 .31 .26 .26 .26 .26 22 .21 .24 .24
=0.1 « 39 .40 .42 LA4 +35 - .37 .37 31 «29 .32 . 74 .26 .26 .26 27 22 22 s g .25
=0.2 .40 .40 .44 .45 .36 39 .38 .38 3l .30 .31 o 7 .26 .26 27 27 ~21 .21 .26 .25
=0.3 .42 .42 .45 47 5.y | .36 39 .40 .31 .32 .32 33 .26 .26 .29 .28 22 21 25 .24
Skewness = 0.2
=0.0 .39 .39 .41 .43 ] .34 . 36 vk .28 .31 31 .30 .26 .28 .25 2T i e | .. 21
=0.1 .40 .40 .42 .45 .35 5 .37 .38 .29 31 .31 )k .26 27 .24 27 .24 w21 22 +21
=0.2 .40 .41 .43 .46 .35 BT .38 40 .31 o ] o2 i 3§ .28 .27 .26 .28 .22 w2l 24 .24
=0.3 41 .44 .45 .48 .36 .38 .39 41 .30 . | 52 .34 .28 .28 .27 .28 2D 20 .24 25
Skewness = 0.5
=0.0 .38 .39 .42 44 32 .34 .34 37 .29 .30 .31 .31 .25 .25 a7 o 19 .23 .24 .26
=0.1 .38 .41 .42 45 .53 «&5 .34 .38 .29 .29 4 | 33 .26 .24 .28 .28 .20 wéad 23 .26
=0.2 40 .41 .45 47 .36 .36 .35 .39 .30 .30 .33 .34 .26 .27 .29 .27 .21 .23 .23 .27
=0.3 .41 .43 46 .49 .38 .38 oy .42 .30 2 | o0, %) a5 .28 <27 it a 0] 22 .23 + 2D .28
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