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ABSTRACT 

A SYSTEMS ENGINEERING APPROACH TO COMMUNITY MICROGRID 

ELECTRIFICATION AND SUSTAINABLE DEVELOPMENT IN PAPUA NEW GUINEA 

Electrification of remote communities worldwide represents a key necessity for sustainable 

development and advancement of the 17 United Nations Sustainable Development Goals (SDGs). 

With over 1 billion people still lacking access to electricity, finding new methods to provide safe, 

clean, reliable, and affordable energy to off-grid communities represents an increasingly dynamic 

area of research. However, traditional approaches to power system design focused exclusively on 

traditional metrics of cost and reliability do not provide a sufficiently broad view of the profound 

impact of electrification. Installation of a single microgrid is a life-changing experience for 

thousands of people, including both residents who receive direct electricity service and numerous 

others who benefit from better education, new economic opportunities, incidental job creation, and 

other critical infrastructure systems enabled by electricity. Moreover, an electrification microgrid 

must directly satisfy community needs, be sensitive to local environmental constraints, mitigate 

possible risks, and plan for at least a decade of sustainable operations and maintenance. These 

considerations extend beyond the technical and optimization problems typically addressed in 

microgrid design. 

An enterprise system-of-systems framework for microgrid planning considering technical, 

economic, environmental, and social criteria is developed in response to the need for a 

comprehensive methodology for planning of community electrification projects. This framework 

spans the entire systems engineering discipline and incorporates elements from project 
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management, risk management, enterprise architecture, numerical optimization, and multi-criteria 

decision-making, and sustainable development theory. 

To support the creation of the systems engineering framework, a comprehensive survey of 

multi-objective optimization formulations for planning and dispatch of islanded microgrids was 

conducted to form a baseline for further discussion. This survey identifies that all optimizations 

studies of islanded microgrids are based on formulations selecting a combination of 16 possible 

objective functions, 14 constraints, and 13 control variables. A sufficient group of decision-making 

elicitees are formed from the group of nearly 250 publications surveyed to create a comprehensive 

optimization framework based on technical, economic, environmental, and social attributes of 

islanded microgrids. This baseline enables the formulation of a flexible, computationally 

lightweight methodology for microgrid planning in consideration of multiple conflicting 

objectives using the simple multi-attribute ranking technique exploiting ranks (SMARTER).  

Simultaneously, the identified technical, economic, environmental, and social decision 

criteria form a network of functional, operational, and performance requirements in an enterprise 

system-of-systems structure that considers all stakeholders and actors in the development of 

community electrification microgrids. This framework considers community capacity building and 

sustainable development theory as a hierarchical structure, where each layer of the hierarchy is 

mapped both to a set of organizational, financial, and physical subsystems and to a corresponding 

subset of the 17 SDGs. The structure presents the opportunity not only to integrate classical project 

management and risk management tools, but also to create a new lifecycle for planning, funding, 

executing, and monitoring multi-phase community infrastructure projects.  
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Throughout the research, a case study of the Madan Community in Jiwaka Province, Papua 

New Guinea is used to demonstrate the systems engineering concepts and tools developed by the 

research. The community is the center of multi-phase community capacity building project 

addressing critical needs of the deep rural community, including electricity, education, water, 

sanitation, healthcare, and economic opportunities. The researcher has been involved as a pro-

bono consultant for the project since 2013 and helped raise over $1M USD in infrastructure 

materials, equipment, and consulting. The structure of the community-based organization and 

numerical optimization of a series of islanded microgrids are used to illustrate both the system-of-

systems hierarchy and microgrid planning techniques based on both single-objective optimization 

using linear programming and the SMARTER methodology for consideration of multiple 

qualitative and quantitative decision criteria. 
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CHAPTER 1 

INTRODUCTION 

1.1.Motivation 

The motivation of this research is to develop, quantify, and demonstrate the effectiveness 

of an enterprise system-of-systems (SoS) approach to community electrification, capacity 

building, and sustainable development. Worldwide, over 1 billion people still lack access to 

electricity, which is a prerequisite for numerous critical infrastructure systems. Safe, reliable, and 

affordable energy serves as a catalyst for creating numerous economic development opportunities 

that can help eradicate poverty for remote communities across the globe. As a result, it is important 

that the planning, design, optimization, construction, and commissioning of community power 

systems consider not only technical parameters, but also economic, social, and environmental 

parameters as well. 

The effects of electrification can be observed in many sectors, including agriculture, 

healthcare, education, water, sanitation, and information & communications technologies (ICT). 

These positive impacts can be best examined within the United Nations (UN) 17 Sustainable 

Development Goals (SDGs), which were adopted in 2015.  Table 1, included at the end of this 

section, lists several of the targets associated with the first eight SDGs and how those targets are 

directly addressed by community electrification. For the sake of brevity, the numerical indicators 

adopted by UN for each sustainable development target are omitted [1]. 
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Table 1: Impact of electrification on the 17 UN SDGs and associated targets 

 

UN SDG Targets from 2030 Agenda  [1] Contribution of Electrification 

Goal 1: “End poverty in all its 
forms everywhere” 

Target 1.1: “By 2030, eradicate extreme 
poverty for all people everywhere, currently 
measured as people living on less than $1.25 
a day” 

Create new income sources directly (power 
system installation, operation, and maintenance) 
and indirectly (new jobs and businesses enabled 
by energy access) 

Target 1.4: “By 2030, ensure that all men and 
women, in particular the poor and the 
vulnerable, have equal rights to economic 
resources, as well as access to basic services, 
ownership and control over land and other 
forms of property, inheritance, natural 
resources, appropriate new technology and 
financial services, including microfinance” 

Support other critical infrastructure  
 
Provide energy required by ICT systems to 
enable electronic records, mobile banking, and 
financial transaction 

Goal 2: “End hunger, achieve 

food security and improved 

nutrition and promote 

sustainable agriculture” 

 

Target 2.3: “By 2030, double the agricultural 
productivity and incomes of small-scale food 
producers, in particular women, indigenous 
peoples, family farmers, pastoralists and 
fishers, including through secure and equal 
access to land, other productive resources and 
inputs, knowledge, financial services, markets 
and opportunities for value addition and non-
farm employment” 

Enable electrically-powered agricultural 
equipment for processes including grain 
grinding, preservation and packaging of food, 
refrigeration of perishable items 
 
Accelerate market access through electric 
transportation, digital financial services, and 
online aggregated bidding for supply contracts 
through community cooperatives 

Goal 3: “Ensure healthy lives 
and promote well-being for all 

at all ages” 

 

 

Target 3.1: “By 2030, reduce the global 
maternal mortality ratio to less than 70 per 
100,000 live births” 

Provide reliable power for lighting, vaccine 
refrigeration, medical scopes, powered tools, 
and other medical equipment requiring 
electricity 
 

Target 3.2: “By 2030, end preventable deaths 
of newborns and children under 5 years of 
age, with all countries aiming to reduce 
neonatal mortality to at least as low as 12 per 
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1,000 live births and under-5 mortality to at 
least as low as 25 per 1,000 live births” 

Provide access to digital patient education, 
reference libraries for medical staff, and AI-
powered diagnostics assistance 
 
Provide ICT for digital medical records, 
national-scale patient health information, and 
supporting patient services 

Target 3.4: “ By 2030, reduce by one third 
premature mortality from non-communicable 
diseases through prevention and treatment and 
promote mental health and well-being” 

Target 3.9: “By 2030, substantially reduce 
the number of deaths and illnesses from 
hazardous chemicals and air, water and soil 
pollution and contamination” 

Significantly reduce indoor air pollution by 
eliminating  kerosene, candles, and wood fires 
used for lighting and cooking 

Goal 4: “Ensure inclusive and 

equitable quality education and 

promote lifelong learning 

opportunities for all” 

 

Target 4.1: “By 2030, ensure that all girls and 
boys complete free, equitable and quality 
primary and secondary education leading to 
relevant and effective learning outcomes” 

Provide lighting, digital classroom 
technologies, electronic copies of government 
textbooks / curricula, and supplemental learning 
materials 

Target 4.4: “By 2030, substantially increase 
the number of youth and adults who have 
relevant skills, including technical and 
vocational skills, for employment, decent jobs 
and entrepreneurship” 

Supply power for lighting, ICT, light industrial 
equipment, and other loads for technical, 
vocational, and entrepreneurial training 
programs  

Goal 5: “Achieve gender 
equality and empower all 

women and 

girls” 

 

Target 5.b: Enhance the use of enabling 
technology, in particular information and 
communications technology, to promote the 
empowerment of women” 

Deliver power for homes, mobile phones, 
communications networks, and digital 
education centers 

Target 6.1: “By 2030, achieve universal and 
equitable access to safe and affordable 
drinking water for all” 

Support electric pumps for wells, header tanks, 
and water distribution systems 
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Goal 6: “Ensure availability 
and sustainable management of 

water and sanitation for all” 

 

Target 6.2: “By 2030, achieve access to 
adequate and equitable sanitation and 
hygiene for all and end open defecation, 
paying special attention to the needs of 
women and girls and those in vulnerable 
situations” 

Provide lighting, power for safely managed 
sanitation centers 
 
Enable digital education of water, sanitation, 
and hygiene (WASH) practices 

Goal 7: “Ensure access to 
affordable, reliable, sustainable 

and modern energy for all” 

 

Target 7.1: “By 2030, ensure universal 
access to affordable, reliable and modern 
energy services” 
 

Supply electricity to homes, business, schools, 
and other shared community infrastructure and 
services  

Target 7.2: “By 2030, increase substantially 
the share of renewable energy in the global 
energy mix” 

Eliminate kerosene, candles, and other fossil 
fuels used in lamps and portable generators 

Goal 8: “Promote sustained, 

inclusive and sustainable 

economic growth, full and 

productive employment and 

decent work for all” 

 

Target 8.2: “Achieve higher levels of 
economic productivity through 
diversification, technological upgrading and 
innovation, including through a focus on 
high-value added and labor-intensive 
sectors” 

Supply electricity and ICT needed for lighting, 
power tools, refrigeration, and other electrical 
process equipment 
 

Target 8.3: “Promote development-oriented 
policies that support productive activities, 
decent job creation, entrepreneurship, 
creativity and innovation, and encourage the 
formalization and growth of micro-, small- 
and medium-sized enterprises, including 
through access to financial services” 

Foster creation of micro-scale entrepreneurial 
businesses within the community through 
access to critical  infrastructure and financial 
services 
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Target 8.6: By 2020, substantially reduce 
the proportion of youth not in employment, 
education or training 
 

Provide electricity and ICT for K-12 education, 
as well as technical, vocational, and 
entrepreneurial training 

Target 8.9: “By 2030, devise and implement 
policies to promote sustainable tourism that 
creates jobs and promotes local culture and 
products” 

Create village homestay businesses with 
electricity and internet to attract tourists 
interested in preserving local environments and 
cultures 
 
Enable local artisans and entrepreneurs access 
to the global market through local marketplaces 
and online distribution 
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As can be observed from Table 1, community electrification has a much broader scope and 

impact than simply eliminating kerosene or providing a certain number of kWh of electricity. As 

a result, it is important that the planning, design, optimization, construction, and commissioning 

of community power systems include not only technical aspects, but also social, environmental, 

and economic components. Inclusion of the positive social impacts and additional opportunities 

created by access to safe, reliable, and affordable energy will enable designers, engineers, project 

managers, funding agencies, and local stakeholders to understand the electrification process in a 

more holistic manner. Additionally, it could create a new category of interdisciplinary studies, 

technical designs, and research areas focused on maximization of the social benefits and 

opportunities for cross-cutting between SDGs and infrastructure programs.  

However, the success of an electrification project does not depend just on if a power system 

was properly designed, correctly installed, and commissioned in a timely manner. For it truly to 

achieve sustainability, it is critical that the entire life cycle of the project be considered, including 

operation, maintenance, replacement, and disposal of the system. Furthermore, there exist 

numerous non-technical factors that determine whether an electrification project will succeed. The 

first is that any humanitarian technology transfer must respond directly to the needs, potential 

opportunities, and desires of the target community. This is best facilitated by requiring local 

community NGOs and entrepreneurs to shape the strategy, vision, and planning of the project. This 

includes the second factor that the community must be an equal participant in “co-design” of the 

project, which enables local technicians to operate, maintain, and replicate the system. Thirdly, 

technical knowledge and skills must be transferred to the community through train-the-trainer and 

other capacity building processes. Creation of the socio-economic and organizational framework 

for management of the project represents the fourth component, which enables the project to 
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develop the financial, technical, administrative, and human resources needed to holistically 

sustainable. Finally, the project must create a steady revenue stream through customer billing and 

energy tariffs that will enable the operators of the power system to pay for staff, fuel (if the system 

includes thermal backup generation), replacement parts, and maintenance of the system for at least 

a decade. 

To the best of the researcher’s knowledge, a comprehensive framework for modeling and 

analysis of community electrifications systems from a holistic standpoint has not be developed to 

this date. Although several studies have attempted to create standardized methods for the technical 

design process, none of these address the social, environmental, and economic factors involved. 

The research is examined in the context of a case study of a community electrification 

project in rural Papua New Guinea (PNG). The PNG project represents the current phase of a 15 

year ongoing community empowerment and capacity building program centered at the Madan 

Community, located on the border between Jiwaka and Western Highlands Provinces. The 

program was founded in 2003 by retired orthopedic surgeon Dr. Larry Hull as medical mission to 

provide critically-needed healthcare services for infectious diseases in PNG, including malaria, 

tuberculosis, hepatitis, typhoid, cholera, and a generalized HIV epidemic. In 2007, the Hulls built 

the Madan Medical Clinic and Birthing Center, which has expanded over the decade to provide 

not only medical services, but a broad range of community needs, including adult literary, 

women’s empowerment, family counseling, and K-12 education. 

Recognizing the need for a means to provide a means to finance the local healthcare 

initiative (including salaries for nurses, travel for humanitarian doctors, vaccines, and other 

medical supplies), Dr. Hull and his wife purchased a nearby coffee and tea farm, establishing a 
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social business using the classic “triple bottom line” of “people, planet, and profits” to subsidize 

the medical outreach and provide fair wages to hundreds of community members. In 2016, the 

coffee farm was certified by Rainforest Alliance as the fourth greenest in the world. 

The social infrastructure and organization capacity created by the Madan Medical Clinic, 

coffee farm, and series of partnering non-governmental organizations (NGOs) enabled the launch 

of a community-wide water and sanitation project funded by a series of Global Grants by The 

Rotary Foundation. A detailed community-based survey was organized and facilitated in early 

2013 by volunteers from Rotary Clubs in Western Highlands Province, PNG; Washington State, 

USA; and Queensland, Australia.  The survey examined the status, stakeholders, and institutions 

in a 10 km radius, serving approximately 40,000 people and 30 schools with an average of 275 

children each. The results were assembled into a Rotary program planning and performance (PPP) 

evaluation report, which served as a baseline for creating an overall community development 

strategy [2], [3]. 

The author of this dissertation, hereinafter called the researcher, joined the program in 

2013, serving as a design engineer assisting with the design, fundraising, and procurement tasks 

associated with the construction of a rainwater harvesting and distribution system providing over 

one million liters of clean water per year to 5000 people in the Madan Community. The system 

was constructed in a series of phases from 2014 to 2016, providing piped water service to the 

medical clinic and new community centers. The installation was complemented by pilot 

installations of water and sanitation systems at several schools in close proximity to the medical 

clinic, as well as a community sanitation center at one of the community centers. 
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In 2015, Dr. Hull and the researcher developed the concept for a community-wide 

electrification program to help solve the critical need for access to safe, reliable, and affordable 

power throughout PNG. Across the country, over 90% of the population lack any form of electric 

grid connection, with over 99% of population lacking access in some provinces, as can be seen 

from Table 2.  

Table 2: Electricity access in Papua New Guinea, by province [4] 
 

Province 
Population with 

Electricity 

Population 

without 

Electricity 

Percentage of 

Population 

without 

Electricity 

Autonomous Region of 
Bougainville 

570 174,590 99 % 

Central 3,182 180,801 98 % 

East New Britain 6,496 213,637 97 % 

East Sepik 2,380 340,801 99 % 

Eastern Highlands 5,445 427,527 98 % 

Enga 1,396 293,635 99 % 

Gulf 411 106,487 99 % 

Madang 3,297 361,809 99 % 

Manus 3,353 40,034 92 % 

Milne Bay 1,340 209,072 99 % 

Morobe 12,136 527,268 97 % 

National Capital Dist. 41,766 212,392 84 % 

New Ireland 1,202 117,148 98 % 

Oro 961 132,104 99 % 

Sandaun 1,070 184,671 99 % 

Simbu 1,721 257,982 99 % 

Southern Highlands 1,131 545,134 99 % 

West New Britain 1,982 182,526 99 % 

Western 652 152,652 99 % 

Western Highlands 6,175 433,850 98 % 
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Figure 1: Map of generators and transmission lines in Papua New Guinea, taken from [4] 
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As a result, the majority of communities subside on kerosene, candles, fuelwood, and 

disposable batteries to supply their energy needs. For the few customers with access to the national 

grid, blackouts can last for weeks due to generation capacity shortages and transmission-related 

events. The PNG power grid is composed of 19 diesel microgrids and three islanded networks 

serving the highlands, capital city, and island of New Britain, which are depicted in Figure 1. The 

combined generation capacity of all systems is 580 MW, which is far less than the amount needed 

to serve the country’s 8.1 million residents. 

Despite the presence of abundant oil, solar, hydro, and coastal wind energy resources, 

energy projects in PNG have demonstrated mixed success, and unfortunately, reports of failed 

projects can be found throughout the literature. Challenges to project success largely stem from 

the high cost of transmission and distribution systems due to rugged terrain across the country, a 

shortage of engineers and technicians, and a lack of organizations capable of operating and 

maintaining power systems.  

As a result, it was determined necessary to develop a combined socio-economic and 

technical framework that could create a practical model for community-based projects that could 

be replicated across the country to provide access to electricity and other critical infrastructure. 

The need for a comprehensive analytical and numerical model formed the motivation for this 

dissertation work. 

1.2. Objective 

The objective of this research is to develop an enterprise SoS methodology for planning 

electrification projects, designing community microgrids with maximal social impact, siting and 

sizing renewable generation, evaluating electrical network topologies in regard to their ability to 
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support other critical infrastructure, and optimizing the system with respect to both qualitative and 

quantitative criteria reflecting the actual needs and desires of the community. The anticipated result 

is that the developed framework could serve as a template for successful community capacity 

building projects across the globe for resource-constrained communities without access to reliable 

electricity. 

A related set of objectives focus on implementing the developed framework for guiding 

the ongoing electrification program in the Madan Community in PNG. To advance the combined 

system of infrastructure systems (including electricity, education, water, sanitation, and 

healthcare), a new community-based organization was created, PNG Community Transformation 

Centres, Inc. This new NGO is now employing the conceptual framework described in this work 

to create the social, technical, financial, and organizational structure needed to commission, 

operate, maintain, and expand the installations funded by IEEE Smart Village with contributions 

of $120,000 USD from the IEEE Nuclear & Plasma Sciences Society, $50,000 USD in education 

equipment from the IEEE Power & Energy Society, and an equivalent of $250,000 of pro-bono 

consulting and in-kind services provided by the project team and local community members.  

Coupled closely with the conceptual and administrative research objectives described 

above is the goal to create a modeling environment for translating design, functional, and 

performance requirements (expressed in both qualitative and quantitative terms) into a series of 

optimization techniques for planning and operating the installed systems. This numerical objective 

aims to satisfy the observed need for method for optimal design, sizing, and siting of electrification 

microgrids from a broader perspective than that offered by traditional power system optimization 

methods focused on levelized cost of energy (LCOE) and reliability. 
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In summary, the objectives of this research are to 

 Develop a framework for describing community capacity building programs as 

an enterprise SoS hierarchy, composed of multiple layers of physical 

infrastructure and organizational structures 

 Translate factors in technical design and project planning affecting the success 

of the community electrification project into quantitative and qualitative criteria 

 Formulate a set of numerical objective functions expressing the benefits and 

costs of design decisions with respect to technical, social, economic, and 

environmental considerations 

 Demonstrate the application of these design methodologies to optimize a series 

of islanded power systems of varying sizes, load profiles, nominal voltages, and 

topologies for pilot installations in the Madan Community, PNG. 

1.3.Scope 

The scope of this research comprises a combination of conceptual analyses and numerical 

studies focused on the development of the framework for planning community-based 

electrification projects that consider the broader impact of energy access upon capacity building 

and advancement of the other UN SDGs. Due to the array of factors influencing the design of a 

holistically sustainable program, a systems engineering approach is chosen to model the problem. 

Consequently, the themes of the Systems Engineering discipline were selected to set the bounds 

of the dissertation scope. 
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However, a brief introduction of the wider scope of the Systems Engineering discipline 

will be included before further discussion of the scope of this research. Systems Engineering is a 

broad discipline that not only includes elements of electrical, mechanical, and civil engineering, 

but also integrates technical design with social, management, human, regulatory, and business 

domains. It provides a holistic perspective, which is needed to guide the analysis, design, testing, 

integration, and deployment of complex systems formed from numerous interrelated components 

working together to achieve a common goal – arguably a description of any power system. In 

Systems Engineering, the traditional project management definition of success in terms of scope, 

schedule, and budget is expanded to provide a balanced viewpoint seeking an optimal tradeoff 

between performance, cost, customer satisfaction, stakeholder requirements, business 

opportunities, and individual technical attributes. Systems engineering simultaneously extends the 

engineering design process to include client needs, use cases, operational scenarios, technological 

maturity, risk analysis, functional requirements, performance specifications, subsystem interfaces, 

production, deployment, operations, maintenance, and disposal.  

Meanwhile, the scope of this dissertation work can be divided into two complementary 

components, which represent the qualitative and quantitative aspects of community electrification. 

The first area of focus develops an enterprise SoS life cycle to model the stages, requirements, 

considerations, documentation, and processes involved in bringing a community electrification 

program from the concept stage to being a sustainable, scalable, region-wide program capable of 

bring socio-economic empowerment to thousands of people. The discussion is framed around a 

series of factors which have been identified as critical elements to the success of a project. In this 

context, one of the most salient characteristics is that initiatives focusing on humanitarian 

technology transfer must be organized as locally-owned entrepreneurial businesses that derive 
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revenue from utility service tariffs, as well as productivity increases and value added to products 

created by village industries. Structured as social enterprises, profits from utility tariffs are 

reinvested into the community to provide social services and expand the population served. The 

combined financial, organizational, and physical structure of the conceptual village program is 

demonstrated to form a hierarchical SoS 

Subsequently, the numerical components of the research translate the technical, social, 

economic, and environmental impact of the project into a series of objectives that may be 

implemented in a multi-objective optimization problem created to provide a holistic view of 

electrification. The foundation for the numerical work is established through a comprehensive 

literature survey of objective functions, constraints, optimization variables, renewables forecasting 

techniques, and multi-criteria decision-making methods for islanded microgrids. The results form 

the basis for optimization studies for three microgrid installations in the Madan Community. 

The first examines the simplest case of a single DC microgrid powering community center 

comprising a digital classroom and charging kiosk. The system consists of a single solar array, 

battery energy storage system, and set of loads connected by inverters and DC-DC converters, 

without any significant distribution network. However, it is demonstrated that even systems of 

such a small scale can benefit from optimization studies. The second is a hybrid PV-diesel 

industrial microgrid to supply critical agricultural processing loads of the community coffee mill 

during frequent, extended blackouts of the PNG power grid. A timeline for the publications and 

presentations related to this research is presented in Figure 2. 
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Legend: 

Figure 2: Timeline of publications and presentations relevant to the scope of the dissertation work. 
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1.4.Tools 

Since this dissertation work integrates aspects from project management and technical 

design, a combination of conceptual, analytical, and numerical tools is selected. The research first 

examines the organization and administrative framework needed to develop an enterprise SoS 

hierarchy and new lifecycle model for planning, deployment, commissioning, and expansion of 

community electrification projects. The developed framework provides the structure for multi-

objective optimization of microgrid systems considering technical, social, economic, and 

environmental objectives, which are prioritized and combined using multi-criteria decision-

making (MCDM) tools, including the simple multi-attribute rating technique exploiting ranks 

(SMARTER). Numerical studies are conducted for three pilot installations in the Madan 

Community using multiple analytical and software tools. 

The remainder of this dissertation is organized as follows: Chapter 2 provides a 

comprehensive review of optimization of optimization formulations for islanded microgrids, 

including objective functions, constraints, and optimization variables. Chapter 3 continues the 

survey with forecasting techniques, conflicts between optimization functions, and MCDM 

techniques (including both utility theory and outranking methods). Chapter 4 develops the 

conceptual management framework and enterprise SoS hierarchy for community capacity building 

programs. Chapter 5 presents a system planning study and capacity optimization for one of the 

Madan community centers with a digital classroom and battery charging kiosk. Chapter 6 applies 

the results of Chapters 2 and 3 to build a generalized framework for microgrid planning 

optimization using the SMARTER technique, which is demonstrated through a generation 

planning case study for the Madan Coffee Mill, which is a 100kW industrial microgrid that serves 

as the economic hub for the Madan Community. Chapter 7 summarizes future work.  
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CHAPTER 2 

A COMPREHENSIVE REVIEW OF ENERGY MANAGEMENT AND PLANNING OF 

ISLANDED MICROGRIDS – PART 1: OPTIMIZATION FORMULATIONS 

This survey paper provides the first comprehensive, critical overview of optimization 

formulations for planning and operation of islanded microgrids, including optimization objectives, 

constraints, control variables, forecasting techniques, socio-economic factors, and multi-criteria 

decision making. The optimization approaches reviewed address methods both for increasing the 

resiliency of advanced distribution systems and electrification of remote communities.  This paper 

is organized into two parts: Part 1 examines over 120 individual optimization studies and discovers 

that all optimization studies of islanded microgrids are based on formulations selecting a 

combination of 16 possible objective functions, 14 constraints, and 13 control variables. Each of 

the objectives, constraints, and variables are discussed exhaustively both from the perspective of 

their importance to islanded microgrids and chronological trends in their popularity. Part 2 builds 

on the results of part 1, first briefly discussing forecasting methods for supplying load and 

renewables data needed for both planning and dispatch studies. It then continues to examine 

conflicts between the objectives identified in Part 1, socio-economic utility functions, and multi-

criteria decision making (MCDM) techniques required to create multi-objective optimization 

formulations combining numerical criteria with social, environmental, and human factors 

parameters. 

This chapter is a verbatim copy of an article submitted by the researcher for publication in 

the Journal of Power and Energy Systems and is currently under review.  
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2.1. Introduction 

Within the fifteen years since the emergence of the microgrid concept, a large amount of 

literature has been dedicated to optimization of these systems. Likewise, multiple review papers 

[1] – [20] have been written to summarize advances in optimization algorithms. However, these 

reviews have each focused on only a few of the aspects necessary for building an optimized energy 

management system for microgrids. A summary of previous literature surveys is presented in 

Table 3. 

As can be observed from Table 3, a comprehensive literature survey covering all aspects 

of optimization and multi-criteria decision making for islanded microgrids has not been published. 

This paper aims to fulfill this need by providing a systematic overview of objective functions, 

constraints, control variables, solvers, forecasting, and multi-criteria decision making methods 

used in operation of islanded microgrids.   

This paper is organized as follows: Section 2.2 provides an overview of microgrid control 

and topologies. Section 2.3 examines the two categories of problems that are solved in 

optimization of islanded microgrids. Section 2.4 surveys common objective functions and their 

formulation. Sections 2.5 and 2.6 outline constraints that must be enforced and optimization 

variables commonly used in both planning and dispatching problems.  

Reference [21] presents Part 2 of this paper, which continues with a discussion of 

forecasting methods used for loads and renewables, pairwise relationships between the most 

common objective functions found in multi-objective optimization, and  multi-criteria decision 

making methods suitable for combining numerical and social criteria. 



20 

   

Table 3: Summary of topics covered in current literature reviews 

 

Ref Year Type of Review  Configuration  Focus 

  OF  CR  CV SR SW FT MCDM APP  Island Grid  Sched Plan 

[1] 2018  – – – – – –   –    – 
[2] 2018 – – – –   – –   –  –  
[3] 2017  – –  – – – –      – 
[4] 2017 – – – – – –  –  – –  –  
[5] 2017   –  – – – –  –     
[6] 2017 – – –  –  – –  – –   – 
[7] 2017 – – – – – –  –  – –  –  
[8] 2016 – – – – –  –   –    – 
[9] 2016 –  –  – – –       – 
[10] 2016   –   – – –      – 
[11] 2015  –  – – – – –  – –    
[12] 2015 – – –  – – –   – –  –  
[13] 2015  – –  – – – –  – –  –  
[14] 2014    –  – –      –  
[15] 2014 – – – – –  –   –    – 
[16] 2011 – – –  – – –   – –  –  
[17] 2011 – – – – – – –   –   – – 
[18] 2010 – – – – –  –   – –   – 
[19] 2009 – – – – – –  –  – –  – – 
[20] 2004 – – – – – –  –  – –  –  

 
OF = Objective functions, CR = Constraints, CV = Control variables, SR = Solver, SW = Software, FT = Forecasting, MCDM = 
Multi-criteria decision making, APP = Applications, Island = Islanded, Grid = Grid-connected, Sched = Scheduling / operations, 
Plan = Planning 
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2.2. Microgrid Topologies and Control 

First proposed by [22], [23], a microgrid can be defined as a smaller scale version of an 

electric power system containing its own generation, distribution, and loads integrated into a 

decentralized structure with numerous distributed generators (DG), energy storage systems (ESS), 

controllable loads, reconfigurable network topology, and hierarchical control. Depending on 

whether the microgrid is connected to the main power grid at a point of common coupling (PCC), 

the microgrid is classified as either grid-connected or islanded.  

Grid-connected microgrids use the main power grid to supply any power mismatches 

between loads and local distributed energy resources (DER), which include DGs, ESS, and 

renewable generation. The grid coupling is also used to regulate the voltage and frequency of the 

distribution network. Multiple grid-connected microgrids can be connected at a medium voltage 

(MV) feeder to form an advanced distribution network, or multi-microgrid. 

Islanded microgrids usually appear in two use cases. The first is isolated operation of a 

typically grid-connected system by opening the PCC switch during major system disturbances or 

for economic reasons. The second is electrification of remote communities, for which small 

autonomous power systems have been the preferred method for decades, typically through scalable 

fossil-fuel generation [24] and more recently, renewables [3].  

In both islanded operating scenarios, the energy management system (EMS) is responsible 

for matching generation to load, controlling voltage and frequency, and ensuring that system 

constraints are not violated. As a result, the EMS of an islanded microgrid is responsible for 

primary, secondary, and tertiary control of the system. 
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Primary control is typically handled by distributed generators, smart inverters, energy 

storage, and loads with high-speed autonomous controllers driven by power electronics. Secondary 

control and automatic generation control (AGC) are commonly performed in a distributed manner 

by local droop controls [25]. Tertiary control and reliability related tasks are handled by an energy 

management system and microgrid central controller responsible for active and reactive power 

flow, economic dispatch, renewables forecasting, unit commitment, and network topology 

reconfiguration. In multi-microgrids and larger advanced distribution networks, an intermediate 

controller may be introduced to regulate each feeder branch. 

2.3. Microgrid Optimization Problems 

Microgrid optimization problems can be classified into two categories: scheduling and 

planning. Scheduling problems examine optimum dispatch of DER within the microgrid – and 

occasionally network topology reconfiguration – to minimize various objectives, such as cost, peak 

load, emissions, and losses. Planning problems examine siting and sizing of new DG and ESS 

units to accomplish various objectives, including minimum cost and maximum reliability. 

Frequently, objectives selected are mutually conflicting, resulting in a multi-dimensional 

optimization problem requiring use of MCDM methods discussed later. The remainder of this 

section will next discuss each of the common applications of microgrid optimization for scheduling 

and planning in detail. 

2.3.1. Scheduling: Economic Dispatch 

Economic dispatch describes the process of minimizing the cost of generation in a power 

system by optimizing the power output of each generator. In the operation of a typical power 

system using fossil fuel generation, the cost of each generator is approximated as a quadratic 
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function of its power production. As a result, economic dispatch is usually treated as a classic 

Lagrangian multiplier problem [26]. The economic dispatch formulation is typically solved every 

five to fifteen minutes during real-time operations, and also as part of day-ahead unit commitment 

decisions (to be discussed in the next section). 

However, in a microgrid with high penetration of distributed renewables, this 

straightforward approach is no longer effective. The variability of renewable generation must be 

considered, requiring accurate forecasting techniques to be included in the optimization. The 

presence of energy storage capacity introduces another variable: The microgrid can choose to buy 

or generate extra power for use during periods of peak loads and higher market prices. Finally, the 

transition from grid-connected to islanded modes may represent a significant topological change, 

and so the microgrid central controller may solve two different optimization problems depending 

on the status of the PCC [27]. 

2.3.2. Scheduling: Unit Commitment 

If the economic dispatch problem is expanded to consider startup and shutdown of 

generators, the optimization is termed unit commitment (UC). UC problems can be classified as 

security-constrained unit commitment (SCUC) and price-based unit commitment (PBUC). SCUC 

optimizations are typically performed by an independent system operator (ISO) or microgrid 

distribution network operator (DNO) to ensure that sufficient generation and spinning reserve are 

online to ensure secure operation of the power system in the event of loss of the largest generator 

and other contingencies [26], [28]. Meanwhile, operators of individual generators will often 

perform a PBUC optimization to determine whether it will be profitable to bring a particular 

generator online based on load and price forecasts [26]. SCUC formulations for microgrids with 
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high penetration of wind typically require accurate day-ahead forecasts of wind speed, wind power, 

and load to provide estimates of the amount of conventional generation needed to meet load and 

compensate for wind variations [29]. 

2.3.3. Planning: DER Siting and Sizing 

In the planning stage of a microgrid, optimal siting and sizing of DG units is essential to 

ensure secure, economic, and reliable operations, as well as decreased losses, greater reliability, 

and improved voltage profiles in the network.  

Siting problems address the impact of generator location within the microgrid. Unlike 

traditional radial distribution feeders, microgrids often have a meshed network topology with 

power flows that can reverse direction depending on renewable generation profiles. As a result, 

the location of new DG units can have a significant impact on the losses and reliability of the 

system. Sizing optimization considerations are highly dependent on the location and renewable 

resource distribution of the microgrid, and so will not be emphasized in this review. 

Sizing problems determine the optimum amount of generation needed to meet load and the 

desired level of reliability. Typically, the goal is to determine an optimum mix of different 

generation options including wind, solar, thermal (diesel and microturbine), and combined heat 

and power (CHP) units, considering capital costs, operations, emissions, and reliability. 

Frequently, the sizing problem is converted into a scheduling optimization that is solved over a 

rolling time horizon using seasonal forecasts of loads and generation. 

Multiple commercial tools, such as HOMER, DER-CAM, EAM, RETScreen, H2RES, and 

HYBRID2, have been developed and utilized widely for siting and sizing optimizations [10], [12], 
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[14]. Most of these software tools, especially HOMER, focus on rendering the sizing results in an 

understandable graphic user interface, but use simple first degree linear equations for system 

components that decrease the accuracy of the results [30]. Most of these tools use proprietary 

algorithms that are hidden in “black box” code.  

2.3.4. Planning: ESS Siting and Sizing 

Proper planning of ESS is essential for secure, reliable, and economic operation of islanded 

microgrids. ESS resources are able to significantly reduce energy costs due to the ability of the 

ESS to be dispatched, provide ancillary services, absorb the variability in renewable generation, 

reduce governor wear and fuel costs associated with ramping of thermal units [69].  

As with DG units, the location of ESS within the system plays a significant role in its 

effectiveness, and many studies have been dedicated to comparing the benefits of central versus 

distributed storages. Likewise, proper sizing of ESS is necessary to establish an optimum trade-

off between reliability and capital cost [113] [147]. 

2.4.Objective Functions 

As discussed in the previous section, there exists a common set of objective functions and 

formulations that are used throughout optimization of islanded microgrids. Each of the objective 

functions commonly used throughout the literature is summarized in Table 4 and discussed in 

detail below. 
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Table 4: Summary of common objective functions used in scheduling and planning optimization problems 

Objective 

Function 

Components 

/ 

Formulation 

2013 and 

prior 

2014 2015 2016 2017 2018 – 2019 

Minimize cost / 

Maximize 

profit 

Fuel cost of 
thermal units 

[27] [31] –  
[40] 

[28] [41] –  
[45] 

[46] – [52] [53] – [64] [65] – [83] [84] – [102]  

Renewable 
DG costs 

[25] [27] 
[103] 

[104] [105] 
[106] 

[49] [107] 
[108] 

[54] [109] 
[110]  [111] 

[66] [71] [75] 
[81] [82] [83] 

[86] [86] [91] 

Startup / 
shutdown 
costs 

[25] [27] [31]   
[36] [39] 

[41] [46] [49] [51] 
[52] 

[53] [55] [57] 
[62] [64] 

[69] [71] [75] 
[79] – [81] 

[89] [90] [98]  
[99] [100] 
[112] 

O & M costs [27] [33] [35] 
[37] 

[44] [105] 
[106] 

[47] [48] [113] [55] 
[63] [110] 

[68] [69] [70] 
[71] [73] [83] 
[114] 

[85] [88] [95] 
[101] [102] 

Reserve 
costs 

 [104] [52] [108] [64] [75] [81]  [83] 
[114] 

[91] [92] [94] 
[102] 

ESS cost [25] [27] [31]  
[37] [103] 
[115] 

[41] [105] 
[106] 

[47] [51] 
[116] 

[113] [55] 
[57] [63] 
[117] [118] 

[69] [66] [78]  
[79] [82]  [83] 
[114] 

[92] [94] [98]  
[99] [101] 
[102] [119] 

Load 
shedding  / 
DR costs 

[27] [31] [36] 
[38] [103] 
[120] [121] 

[28] [105] [46] [47] [49]  
[52] [108] 
[122] 

[56] [57] [62] 
[63] 

[66] [68] – 
[70] [72] [73] 
[75] [79] [81] 
– [83] [123] 

[86] [89] [91]   
[93] [99]  
[101] [102] 
[112] 

Revenue 
from loads 

[32] [40]   [111] [56] 
[117] 

[70] [73] [75] [91] [124] 
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Installation 
capital cost 

[35] [37] 
[120] [125] 

[44] [105] 
[106]  [126] 

[47] [48] 
[122] 

[113] [58] 
[61] [63] 
[109] [110] 
[117] 

[68] [69] [70] 
[73] [83] 

[86] [88] [95]  
[97] [102] 
[119] 

Cost of 
losses 

[120] [43] [48] [50] [51] 
[116] [122] 
[127] [128] 

[109] [59] 
[129] 

[66] [77] [83] 
[130] [131] 

[95] [97] 
[102] [132]  

Minimize 

voltage 

deviations 

 [133] [134] [135] [48] [50] [59] [111] 
[129] [136] 

[83] [137] 
[138] [139] 

[102] [132] 

Minimize 

frequency 

deviations 

 [121] [104] [140] [49] [107] [113] [53] 
[60] [61] 
[136] 

[77] [83] [87] [89] 
[102] 

Minimize 

emissions 

 [25] [31]  [43] [44] [48] [107] [58] [61] 
[109] [110] 

[67] [68] [70] 
[71]  [83] 
[130] 

[85] [93] [95] 
[96] [102] 

Minimize 

renewable 

curtailment 

 [38] [115]  [46] [57] [61] 
[118] 

[65] [83] [93] [99] 
[101] [102] 

Maximize load 

served 

 [121] [42] [141]  [111] [130] [131]  
[141] – [143] 

[93] [119] 
[144] 

Maximize 

reliability 

 [37] [115] 
[146] 

[106] [126] 
[122] [146] 

[47] [50] [46] [61] [63] 
[110] 

[72] [73] [87] [95] 
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2.4.1. Minimization of cost or maximization of profit 

 A majority of work to date has been based on variations of the cost-based optimization. 

The objective function is expressed as the sum of all the individual components of generation cost, 

including direct fuel costs, capital recovery costs of DER investments, and penalties for emissions, 

ramping, and losses. 

2.4.1.1. Fuel cost of thermal units 

The optimization problem related to nearly all microgrids with a diesel generator or 

microturbine will include an expression for minimizing the cost of operating the generator [31] – 

[77], [87] expressed as a linear or quadratic function of the power output, multiplied by the heat 

rate and fuel cost. 

Fuel cost is rarely used as the only objective function, except in scenarios when the only 

the available generation is from thermal units [45]. All other microgrid optimization formulations 

in recent literature combine the generation cost with other objectives, either as a multi-objective 

formulation, such as cost versus emissions [43], [44], [67], or combined into a single objective 

function composed of multiple types of costs, such as fuel cost and load shedding cost [27], [28], 

[46], [47], [56], [68], [70], [72]. 

2.4.1.2. Power from renewable DER 

DERs can be treated as either dispatchable or non-dispatchable resources. As a result, 

optimization studies can be grouped into two categories depending on which classification is used. 
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The first group of studies include all DER (especially wind turbines) as dispatchable units 

that have a different cost of generation [25], [27], [54], [83], [109] – [111]. This approach assumes 

that although the output of these units cannot be ramped up to supply additional load, photovoltaic 

(PV) and wind generators can be curtailed and held below full output to enable load-following 

control.  

The second category of optimization studies treat all DER as non-dispatchable units whose 

output cannot be controlled, leaving thermal units and ESS the responsibility of AGC and 

frequency control [33], [46], [66], [72]. Some formulations set the price of DER power at zero 

cost, so that power from these units is dispatched first [41], [46], [72].  

2.4.1.3. Startup and shutdown costs 

If the optimization formulation considers unit commitment, in which the binary states of 

generator online/offline status is included, the objective function will generally include the startup 

and shutdown cost of DGs [25], [27], [69], [31], [33], [41], [53], [55], [81], [91]. Startup and 

shutdown costs are additional costs incurred by the DG owner in bringing the unit online (or taking 

it offline), and include the cost of auxiliary power, fuel, and special operations, as well as capital 

recovery costs for the impact on generator lifespan from cycling and additional maintenance [148]. 

Similar to startup and shutdown costs, ramping costs are an additional cost above the 

simple cost of fuel to recover the capital and maintenance costs of cycling the plant to follow load. 

The costs of ramping tend to be ignored and rather modeled as a constraint representing the 

maximum rate at which the output of DGs can be ramped up or down. Minimization of DG 

ramping occasionally appears as a separate objective function, as in [145]. 
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2.4.1.4. Cost of ESS 

Energy storage systems represent a substantial portion of the construction cost of a 

microgrid, and so numerous formulations included capital recovery costs or methods for measuring 

the impact of ESS cycling. The cost of battery storage can be based on an hourly capital recovery 

cost [83], [117], [149], the depth of discharge reached during a load cycle [27], [55], [66], [71], or 

the expected lifespan of the ESS [55], [102]. 

2.4.1.5. Cost of demand response and load shedding 

Load shedding and demand response (DR) represent two philosophies that are necessary 

for reliable and economic operations. DR programs compensate consumers for the ability of the 

distribution EMS to control the consumption of loads through the use of Smart Grid technologies. 

In this regard, customer loads can be broken down into three categories [57]:  

 Controllable or curtailable loads include heating ventilation and air conditioning 

(HVAC), refrigeration, lighting, and household appliances [150]. These loads can be 

reduced through DR control systems to reduce power consumption for a certain time 

period. 

 Deferrable loads, such as electric vehicle charging, can be shifted to a later time period 

as long as the consumer receives the same total amount of energy by a stipulated time 

[66]. 

 Critical or must-run loads must be supplied their full power demand during all grid 

conditions, even at the expense of load shedding in other parts of the system. Examples 

include hospitals, communications, emergency services, and data centers [123]. 
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Controllable and deferrable loads allow the system to match load to forecast generation 

[79], as well as respond to variations in renewable generation without the need to bring high cost 

and typically “dirty” generation online. Meanwhile, load shedding is used to resolve more 

significant mismatches between load and the capacity of generation and ESS, such as when the 

microgrid is islanded unexpectedly or a significant drop in generation exceeds the ESS inverter 

limits and the ramp rates of thermal units [123].  Load shedding can be performed manually or by 

under-frequency load shedding (UFLS) protection schemes. Loads interrupted by demand 

response or UFLS are typically treated as an additional cost formed from DR incentives paid by 

the utility [66], [102], customer comfort level [102] (or alternatively, customer nuisance cost [38]), 

or a penalty based on the priority of load shed [111], or the value of lost load (VOLL)  [49], [91], 

[93], [102], [112]. 

2.4.1.6. Revenue from loads 

An alternative to minimization of generation cost is maximization of the profit of the 

microgrid. In such formulations, the objective function is expressed as the difference between 

revenue obtained from serving customer loads and the cost of generation, storage, emissions, etc. 

[32], [40], [56], [70], [73], [111] [91]. Inclusion of load revenue in the optimization enables the 

use of a transactional market structure  with tiered customer pricing based on ability-to-pay and 

other demand-side bidding strategies [52], [75], [117]. 

2.4.1.7. Cost of Reserves 

In order for the microgrid to respond to variations in load, fluctuations in DER output, and 

possible loss of any generating units, it is necessary that online generators have a certain amount 

of margin by which they can increase or decrease their output. Otherwise, if all generators in the 
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microgrid are operating at the maximum output, load shedding will be necessary to resolve any 

increases in load or decreases in output from non-dispatchable units. This margin is referred to as 

system reserves, and can be classified as spinning and non-spinning. 

Spinning reserve is defined as the total available generation from all synchronized units, 

minus the power consumed by loads and losses [151], and can be provided by fast-responding ESS 

[39] [52] or dispatchable generators [75] synchronized to the system. Non-spinning reserve 

consists of quick-start thermal generators (such as diesel and microturbine units), most hydro units, 

and power electronics-based DGs, which can be synchronized and brought to full capacity within 

minutes.  

Due to the importance of reserve for regulation of system voltage and frequency [51], 

[102], the cost of spinning and non-spinning reserves is sometimes included in objective function 

formulations as an ancillary service provided by generator operators. The objective is typically 

formulated as the amount of spinning reserve provided by each unit multiplied by a linear cost 

factor [52], [64], [75], [104], [108], [91], [114]. A small amount of renewable curtailment can also 

be used so that the curtailed amount can be treated as spinning reserve to increase system security 

[28]. 

2.4.1.8. Capital cost of installation 

Capital cost of equipment is a primary consideration in many studies involving planning 

[70] or expansion [73] of power systems. Typical costs include the purchase and installation of 

thermal generation, PV and wind DGs, energy storage, inverters, controllers, feeders, and 

substation equipment [34], [55]. The capital cost can be converted into an hourly amortized cost 

through the use of a depreciation rate based on the lifetime of the system [44], [68], [86], [95], [97] 
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or a desired payback period [117]. Alternatively, the cost of installation can be expressed as a 

separate objective, formulated as the total cost of all components [125]. 

2.4.2. Minimization of voltage deviations 

Optimizations that expand the unit-commitment / economic dispatch problem into a full 

optimal power flow sometimes consider the voltage profile of the network. Significant voltage 

deviations can result in unsatisfactory operation of equipment, tripping of protective relays, and 

circulating reactive power flows in the network [146]. Simultaneously, the ability of the system to 

keep all nodes within desired voltage limits (such as those set in ANSI C84.1-2016 [152]) is 

affected by line flows, DG reactive power capabilities, and network topology [34], [137].  

Unlike grid connected systems that benefit from reactive control devices (such as static var 

compensators or shunt capacitors/reactors [153]) or tap-changing transformers [154], at the MV 

substation level, islanded microgrids must rely on generation dispatch, voltage setpoints [71], and 

droop characteristics of local DGs to control voltages within the network [155].  

Although minimization of voltage deviations is most often addressed in control studies of 

droop-based inverters [134], [156], it can be expressed as an independent function in a multi-

objective economic dispatch problem, as the sum of either the absolute value [59], [111], [129], 

[133], [137] or square [48], [50], [138] of the deviation of voltage from 1.00 pu across all nodes 

in the network. 

Related objectives are optimization of the voltage stability index (VSI) [59] and voltage 

unbalance factor (VUF) [134], [139], which represent the voltage stability of the overall system 
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and imbalance of the dq voltage components at a particular node, respectively. These two 

objectives are considered both in dispatch [129] and control [134], [138] problems.  

2.4.3. Minimization of frequency deviations 

Depending on whether the line impedances of the islanded microgrid are primarily reactive 

or resistive, mismatches between generation and load will result in either frequency or voltage 

deviations, respectively. For primarily reactive networks, minimization of frequency deviations is 

a central concern for management of load shedding [121]. Minimization of frequency variations 

can also appear as an objective included in optimization formulations to supplement automatic 

generation control (AGC) if large imbalances between generation and load exist, including 

immediately after the transition from grid-connected to islanded modes [27], or when the actual 

renewable output deviates significantly from the forecasted values [118]. Frequency deviations 

can be resolved through generation dispatch, demand response [104], load shedding [121], or ESS 

sizing [113]. 

Frequency deviation can be treated as a penalty cost [60] or as a separate objective 

formulated as either the difference between actual and nominal frequency [49], [121], [104] or the 

MW generation-load mismatch [61], [140]. Minimization of frequency deviations can also be 

examined from the standpoint of small signal stability analysis, in which the optimization objective 

is to minimize the any real positive eigenvalues and maximize the damping coefficient of all other 

eigenvalues [87]. 
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2.4.4. Maximization of load served 

Closely related to the concept of frequency and voltage deviation minimization is the 

maximization of load served. Islanded systems have limited dispatchable generation capacity, 

especially if the microgrid has a high penetration of renewables. Maximization of load served 

appears in optimization problems related to both planning [131] and operations [42], [130]. It is 

typically formulated as the weighted sum of each load’s power consumption and priority ranking 

[141], [142]. 

In planning, one of the concerns is the amount of the load that can be served without 

causing voltage collapse. This problem can be addressed through optimal placement of generators 

[131], sizing of ESS, network topology reconfiguration [34], or examination of the loadability of 

particular buses [42], [130], [142], [144].  

In operations, mismatches between generation and load will require frequency excursions 

and possible load shedding, as a result of forecasting errors, insufficient reserves, or sudden 

islanding of the system [111]). It can also be used as an objective in system restoration after the 

occurrence of various contingencies to energize loads in order of priority [141], [143]. 

Maximization of load served (or conversely, minimization of energy not served (ENS) 

[72], [83], [102], [121], [144]) can be used as an objective function in a multi-criteria formulation 

[42] to provide more detailed information on the impact of load on system performance than a 

simple constraint stating that all critical loads must be served. It can also appear when dealing with 

design and construction of actual systems that are subject to budget constraints [72]. As a result, 

designers of rural electrification systems are faced with the objective of trying to electrify the 
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maximum number of customers without exceeding the maximum construction cost available to 

the project. 

2.4.5. Minimization of emissions and pollutants 

 One of the widely recognized benefits of microgrids is their potential ability to reduce 

emissions through a high a penetration of renewable DER [14]. As a result, many optimization 

formulations seek to minimize the emissions and pollutants emitted by the power system [67] – 

[71]. Commonly considered emissions include carbon dioxide (CO2), sulfur dioxide (SO2), and 

nitrogen oxides (NOX). 

Typically, two approaches are taken to modeling emissions of thermal DGs used in the 

microgrid. The first is to measure emissions directly in tons per unit time (or an equivalent rate) 

[25], [43], [44], [107], [110], and subsequently use this value as a separate objective that is 

minimized through a multi-objective optimization. The second method is to convert DG emissions 

into a penalty function that is treated as an additional cost based on the output of thermal units 

[67], [68], [83], [95], [102].  

2.4.6. Minimize curtailment of renewables 

Following the same emphasis on the environmental benefits of microgrids are objectives 

seeking to maximize the use of renewables. Common formulations include adding curtailed 

generation as an additional penalty cost [38], [46], [57], [65], [83], [93], [99], [101], [102], [118], 

or minimizing it as a separate objective function [37], [61]. Another approach [41], [72] is to set 

the cost of renewables to zero so that the cost optimization will accept all renewable generation 

first in both UC and ED problems. 
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2.4.7.  Minimization of network losses 

Optimization formulations that expand the economic dispatch problem into a full optimal 

power flow (by including an AC power flow calculation) may include minimization of network 

losses as one of the objective function components [77], [83], [102]. In microgrids, losses in the 

distribution network are affected not only by generation output [131], but also by network topology 

[141] and the locations of DER [129]. As a result, minimization of losses is found both in planning 

[48], [120], [129], [131] and operations settings [59]. Network losses can be expressed as a 

separate objective [43], [48], [131], but are typically not expressed as a cost objective since it is 

already included in the cost of generation. Some formulations with a strong emphasis on ESS units 

in the microgrid will include the losses involved in charging and discharging the ESS [41], [51], 

[46]. 

2.4.8. Maximization of reliability 

System reliability is a frequent consideration in microgrid planning studies, and several 

technical indices have been used. In most cases, the optimization is built as a cost-vs-reliability 

tradeoff study to determine the optimum system configuration given various economic and 

technical constraints.  

The first group of reliability indices are those derived from reliability studies of 

conventional power systems. The first is expected energy not served (EENS), which is the total 

amount of energy that would have been consumed if the interruption had not occurred [34], [50], 

[72], [105], [95]. The system average interruption frequency index (SAIFI) and system average 

interruption duration index (SAIDI) are another pair of measures, expressed as the total number of 

customer interruptions over a certain time period divided by the total number of customers and as 
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the total duration of customer interruptions divided by the total number of customers, respectively  

[50], [146]. Another popular index is loss of load probability (LOLP) or loss of load expectation 

(LOLE), defined as probability that available generation output will be less than demand, and load 

shedding will be necessary [61], [95], [99], [110], [115], [146]. 

However, it has been pointed out [157] that some traditional reliability indices (such as 

SAIFI and SAIDI) are not as useful for islanded systems, or lead to unnecessary oversizing of 

designs [126]. As a result, special reliability indices specific to islanded microgrids have been 

introduced, including loss of power supply probability (LPSP) [37], [106], [56] and energy 

shortfall probability (ESP) [126]. 

2.5.Constraints 

Nearly all optimization formulations include a set of constraints that model the physical 

and technical limitations of microgrid equipment. Safe, secure, and economic operation of the 

system requires that all constraints relevant to equipment damage, system collapse, or disruption 

of service to critical loads are respected. All commonly used constraints are discussed in detail 

below and summarized in Table 5. 

2.5.1. Power balance and power flow 

The most common set of constraints found across nearly all optimization formulations are 

those for power balance and power flow. The first constraint states that the total amount of real 

power consumed by all loads in the islanded system must be equal to the sum of the real power 

supplied by all DER and total network losses. This constraint is found in most optimization 

formulations [53] – [59], [64] – [76], [85] – [89], except those studying load shedding [105] or 

frequency regulation [60], [61], [77], [83], [102], [107], [140]. 
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Table 5: Summary of common constraints  used in scheduling and planning optimization problems 

Constraints 2013 and prior 2014 2015 2016 2017 2018 – 2019  

Power balance [25] [27] [31] 
[33] [36] [38] 
[39] [103] 

[28] [42] [43] 
[104] [140] 
[141] 

[47] [49] [51] 
[52] [108] [127]  
[128] 

[53] – [59] [63] 
– [65] [111] 

[69] [66] – [70] 
[72] – [76] [78] 
– [81] [145] 

[85] – [89] [92] 
–  [97] [100] 
[101] [112] 
[144] 

Generator 

limits 

[25] [27] [31] 
[33] [35] [40] 
[103]  

[28] [41] – [44] 
[104] [140] 
[141] 

[46] – [51] [108] [53] – [57] [61] 
[64] [111] 

[65] – [71] [74] 
– [77] [80] [81] 

[85] [86] [88] –   
[98] [100] [144] 

DER VAr 

limits 

[25] [43] [50] [59] [111] [67] [71] [74] 
[142] 

[85] [86] [93]   
[96] [97] [132] 
[144] 

Generator 

ramp rates 

[27] [38] [28] [41] [104] 
[140] 

[46] [49] [51] 
[52] 

[53] [57] [58] 
[62] – [64] 

[65] [66] [67] 
[69] [71] [82] 
[145] 

[90] [93] 

Generator min 

on / off times 

[38] [41] [104] [46] [49] [51] 
[52] 

[53] [55] [57] 
[58] [62] [64] 

[69] [67] [71] 
[80] – [82] 

[90] [98] [102] 

ESS state-of-

charge limits 

[27] [35] [38]   
[40] [103] [115] 

[41] [44] [106] 
[140] 

[46] [47] [51] [53] – [55] [57] 
[58] [61] [63] 

[65] – [69] [73] 
[78] [79] [80] 
[82] [145] 

[86] [90] [92]   
[93] [94] [96]   
[100] [112] 
[124] 

ESS 

(dis)charging 

power limits 

[35] [38] [39] 
[40] [103] [115] 

[43] [44] [140]  
[156] 

[47] [51] [113] [53] [55] 
[57] [58] [62] 
[63] 

[66] [68] [69] 
[74] [78] [79] 
[80] [145] 

[88] [90] [92] –  
[96] [112] [101] 
[124] 

Critical loads / 

DR limits 

[27] [38] [121] [28] [105] [140]  [56] [63] [66] [69] [73] 
[75] [81] 

[89] [93] [112] 
[101] 
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Voltage limits [25] [34] [120] [42] [43]  [105] 
[156] 

[46] [48] [50]  
[122] 

[56] [59] [62] 
[111] 

[71] [74] [80] 
[83] [142] 

[87] [88] [93]  
[96] [97] [102] 
[112]  [132] 
[144] 

Frequency 

limits 

[121] [104] [107]  [128] [113] [74] [83] [142] [88] [89] [97]   
[98]  [102] [132] 
[144] 

Line thermal 

ratings 

[25] [34] [120] [105] [52] [127] [128] [57] [59] [74] [76] [142] [85] [87] [89] 
[97]  [102] [112] 
[144] 

Reserve (spin 

& non-

spinning)  

[31] [38] [39] 
[149] 

[104] [49] [51] [53] [55] [58] 
[62] [64] 

[69] [65] [67] 
[68] [75] [79] 
[81] 

[88] [90]  [92]   
[94] [98] [112] 

Emissions 

limits 

[31] [104] [49]  [70] [85] 

Total system 

cost 

[34]  [47]  [69] [68] [70] 
[72]  

 

System 

reliability 

[31] [35] [37] 
[146] 

[42] [106] [47] [63] [68] [124] 
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The second related constraint is that the classic power flow equations must solve. This 

constraint is found in all optimal power flow (OPF) formulations [52], [57], [59], [63], [74], [76], 

[85], [97], [120], [128], [142] and all problems considering voltage violations as an objective or 

constraint [25], [34], [42] [43],  [46], [48], [50], [87], [88], [93], [96], [97], [102], [105] [112], 

[120], [122], [132], [144], [156] 

2.5.2. Generator limits 

The second constraint that is nearly universally found in microgrid optimization is that the 

real power output of DGs must stay between the unit’s minimum and maximum operating limits 

[46] – [51], [53] – [57], [64] – [76], [92] – [98]. If spinning reserve is considered, then the 

constraint should state that the sum of scheduled output and spinning reserve from a particular unit 

must be within the unit’s rating [68], [75]. Inverter-based DER may specify the limit in terms of 

current injection capabilities of the inverter, rather than power output of the generator [27], [35], 

[66], [142]. 

A related constraint that is increasing in popularity is that DERs must also stay within 

reactive power generation / absorption limits. This constraint can be expressed in terms of the DG 

real-reactive capability curve [25] or a fixed minimum and maximum [43], [50], [59], [67], [71], 

[74], [85], [86], [93], [96], [97], [111], [132], [142], [144]. 

2.5.3. Generator ramp rates 

The ability of a microgrid to respond to variations in load and output from non-dispatchable 

DER is significantly affected by the rate which controllable generators are able to increase or 

decrease their power output. This ability is defined as the ramp rate of the DG (measured in 
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MW/min or kW/min) and set by the physical operating restrictions of each generator [158]. 

Generally, hydro plants and new gas turbine units have the fastest ramp rates (up to 100 MW/min), 

while steam-boiler plants have the lowest rates (less than 5% of capacity per min).  

The ramping capability of dispatchable generators can be subdivided into two categories 

for scheduling optimizations [63]. The first is for load following, in which the all controllable DG 

and ESS units are ramped to an optimized value, based on hourly load and availability of 

renewables forecasts. The second is frequency regulation, which is determined by the units’ ability 

to provide 1 minute ramping to match short-term deviations in generation and load, in addition to 

ramping to meet the overall schedule. 

Ramp rates are specified as ramp-up and ramp-down limits for each unit that must be 

followed by the optimization [27], [28], [69], [38], [41], [46], [49], [51] – [53], [57], [62], [63], 

[65] – [67], [71], [104], [140], [145]. If the change in load or renewable generation is greater than 

the ramp rate of DGs and ESS, then the microgrid must shed load or curtail renewables to maintain 

generation-load balance [28].   

2.5.4. Generator minimum online / offline times 

The final set of constraints related to the physical operation restrictions of DGs is the 

minimum time that a unit can be online or offline before it can be shut down or started again, 

respectively. This constraint is usually only found in UC formulations [69], [38], [41], [46], [49], 

[51] – [53], [55], [57], [58], [62], [64], [67], [71], [104]. 
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2.5.5. ESS state of charge limits 

The lifetime of ESS units is strongly correlated to the depth of discharge experienced on a 

regular basis: the lower the state of charge (SOC) experienced by the ESS, the shorter the lifespan 

of the battery will be. Additionally, ESS units have limited storage capacity and cannot be charged 

beyond 100% SOC without incurring damage to the unit. As a result, minimum and maximum 

SOC limits are found in numerous optimization formulations, and are typically set near 50% for 

the minimum and 100% for the maximum SOC [27], [69], [35], [38], [40], [41], [44], [46], [47], 

[51], [53] – [58], [61], [63], [65] – [68], [73], [79], [103], [106], [115], [140], [145]. Additionally, 

the SOC at the end of a scheduling horizon (such as a daily load cycle) may be required to be equal 

to the SOC at the start of the cycle [88]. 

2.5.6. ESS charging / discharging power limits 

The second common constraint applied to ESS is the maximum amount of charging and 

discharging current that can be applied to the unit without causing damage to the internal cells. 

This constraint is found in both planning [69], [113], [35], [44], [47], [58], [63], [68] and operations 

[40], [43], [51], [53], [55], [57], [62], [66], [74], [79], [145] problems. The maximum power that 

can be supplied from the unit strongly affects the cost of the ESS [113] and its suitability for 

providing frequency regulation [63]. 

2.5.7. Critical loads and DR / shedding limits 

As discussed earlier, microgrid loads can be categorized into critical loads (which cannot 

be interrupted except during a system blackout), deferrable loads (which can rescheduled to a later 

time), and curtailable loads that can be interrupted without significant impact on consumers. 
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Optimizations that include load shedding and demand response (DR) as parameters often 

place constraints on the maximum amount or percentage of controllable loads that can be 

interrupted [27], [28], [69], [63], [73], [75], [81], [105] or deferred [38], [66] and the requirement 

that critical loads must be satisfied [56], [57]. 

2.5.8. Voltage limits 

To prevent possible equipment damage and voltage collapse, the microgrid energy 

management system must maintain the voltage magnitude of all buses within acceptable limits. 

This requirement is typically expressed as an inequality constraint that the per-unit voltage of each 

bus must remain between a minimum and maximum value [25], [42], [43], [46], [48], [50], [56], 

[59], [62], [71], [74], [105], [97], [111], [120], [122], [142], [156]. 

2.5.9. Frequency limits 

If the islanded system includes microturbine generators or other equipment that could be 

damaged by frequency excursions, then minimum and maximum limits on system frequency can 

be added as additional constraints [113], [74], [104], [97], [107], [121], [142] [144]. However, in 

islanded systems, larger frequency swings are permissible than in grid-connected systems [89]. 

2.5.10. Thermal ratings of lines 

Optimal power flow (OPF) formulations that consider the power flow through the 

microgrid network may include thermal ratings of feeders and lines. The constraint typically states 

that the flow of real power [52], [57], [63], [76], apparent power [97], [120], or current [59], [74], 

[85], [102], [128], [142] on a particular path between two buses (as calculated by the classic power 

flow equations) must stay below the rated value of the line. 
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2.5.11. Spinning and non-spinning reserve 

Sufficient spinning and non-spinning reserves are essential for system security, for reasons 

discussed earlier in this paper. The minimum amount of spinning reserve required to cover 

fluctuations in load and DER output are set as a constraint that can be expressed as:  

 5% of overall load [31]  

 10% of load [38], [53], [103] 

 20% of load [51], [68] 

 20% of load + PV output [55], [58], [79] 

 Error / uncertainty in loads and DER [69], [49], [64], [94] 

 Loss of largest generator [39], [65] 

 Load, PV, and wind output [62], [67] 

As can be observed from the list of common formulations, the amount of PV and wind 

generation is frequently included as part of the reserve requirement. This reflects the trend that 

higher levels of renewable penetration and greater forecasting uncertainty require larger amounts 

of spinning reserve to maintain grid stability. 

2.5.12. Total system cost 

The design and construction of actual systems (as opposed to research on theoretical test 

cases, such as the IEEE distribution test feeders [159]) must consider the construction cost of the 
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system and budget constraints. System cost constraints typically state that the sum of the cost of 

all microgrid components must be less than a fixed maximum amount [69], [47], [68], [70], [72]. 

2.5.13. System reliability 

Finally, the system may be constrained to provide a minimum level of system reliability, 

which may be expressed through a number of measures, including loss of load probability (LOLP) 

[31], [35], [42], [47] [63] [68], loss of power supply probability (LPSP) [35], [37], [106], [124], 

and the margin from dynamic instability [146] or voltage collapse [42]. 

2.6.Optimization Variables 

Optimization variables, also referred to as control variables and decision variables, 

represent the set of parameters that are varied by the solution algorithm to determine the optimal 

or near-optimal DER schedules or system configuration that satisfies all constraints. A summary 

of commonly used optimization variables is presented in Table 6.  

2.6.1. Power output of generating units 

In microgrids with diesel, microturbine, or other thermal generating units [31] – [79], the 

power output of each thermal unit is taken as an optimization variable that can be varied between 

the minimum and maximum capacities of the unit. If ramp rates are considered [62] – [67], then 

the available range over which the output can be varied is the product of the maximum ramp rate 

and scheduling interval. If renewable generators are considered dispatchable, then the power 

scheduled from wind and PV units will be treated as an additional optimization variable [25], [27], 

[28], [43], [53], [54], [67], [71], [74], [75], [104] – [111], [145]. 
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Table 6: Summary of common optimization variables used in scheduling and planning optimization problems 

Optimization 

Variables 

2013 & prior 2014 2015 2016 2017 2018 – 2019 

Power output 

of thermal 

units 

[27]  [31] - [35] 
[36] –  [40] 

[28] [41] – [45] [46] – [52] [53] – [64] [65] – [79] [90] – [92]  [94] 
[96] [97] [100] 

Power output 

of renewables 

[25] [27] [33] [43] [28] [104] 
[105] 

[107] [108] [50] [53] [54] [109] 
[110] [111] 

[67] [68] [71] 
[74] [75] [145] 

[97] [98] 

Curtailment of 

renewables 

[38]  [47] [57] [69] [73] [83] 
[145] [65] 

[93] [99] [101] 
[102] 

Operating state 

(on/offline)  

[25] [27]  [31] 
[33] [36] [38] 
[39] 

[41] [104] [46] [49] [51] 
[52] 

[53] [55] [57] 
[58] [62] [64] 

[67] [69]  [71] 
[74] [75] [81] 

[91] [90] [100] 

Spinning 

reserve 

 [104] [52] [108] [64] [69] [75] [81] 
[114] 

[91] [92] [94] 
[98] 

DR & load 

shedding 

[27] [37] [38] 
[121] 

[28] [104] [46] [57] [63] [65] – [67] [69] 
[73] [74] [123]   

[89] [112] 

ESS power 

output 

[38] [39] [40] 
[103] 

[41] [105] [46] [47] [51] [113] [63] [53] 
[62] 

[66] [74] [78] 
[79]  [83] [145] 

[90] [92] [94]  
[97] [98] [102] 
[112] 

DG voltage 

setpoints 

[27] [41] [42] [46] [111] [59] [74] [83] [142] [102] [144] 

Droop constant  [42] [134] [156] [127] [128] [53] [59] [83] [139] [87] [96]  [102] 
[132] 
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Thermal 

generation 

capacity 

 [44] [47] [61] [63] [110] [68] [72] [86] [88] [119] 

Installed solar 

generation 

capacity 

[35] [37] [44] [106] [126]  [58] [61] [110] [68] [72] [86] [119] 

Installed wind 

generation 

capacity 

[35] [37]  [125] [44] [106] [47] [61] [110] [68] [72] [86] 

Installed ESS 

capacity 

[35] [37] [115] 
[125] 

[44] [105] [106] 
[126] 

[46] [113] [58] [61] 
[63] 

[68] [69] [72] 
[73] 

[86] [88] [119] 
[124] 
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2.6.2. Operating state of generators 

Unit commitment formulations [25], [27], [69], [31], [33], [36], [38], [39], [41], [46], [49], 

[51] – [55], [57], [58], [62], [64], [67], [71], [74], [75], [104], which examine the impact of 

generator startup and shutdown, include a set of binary state variables to represent whether a 

particular unit is scheduled to provide power during a particular hour. This parameter is typically 

set to a value of one if the unit is online and zero if offline, and causes the objective function to 

become discrete, rather than continuous.  

2.6.3. Renewable curtailment 

If renewable generation is greater than load and the charging ability of ESS units, then the 

excess generation will need to be curtailed. In formulations that seek to maximize use of 

renewables or explicitly model the amount of curtailment, this parameter will be included as an 

optimization variable that can be varied between zero and the total output from renewable DER 

[69], [38], [57], [65], [73], [83], [101], [102], [145]. Alternatively, curtailment can be expressed 

as the amount of power directed to a sink or dump load [33], [35], [47], [57]. 

2.6.4. DR and load shedding 

Conversely, if renewable output is less than demand at any time, then either thermal 

generation will need to be dispatched or load can be curtailed. This choice is reflected through two 

optimization variables related to DR and load shedding, namely the quantity of load shed or 

deferred and the priority of the load. Some optimization problems choose to use the product of 

load quantity and priority  [141] – [143], but the majority use the total real power deferred or 

interrupted. 
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2.6.5. ESS charging / discharging power  

 Since ESS units are fully controllable, the real power absorbed or supplied by each storage 

unit is common control variable [113], [38] – [41], [46], [47], [51], [53], [62], [63], [66], [74], 

[79], [105], [103], [145] used to achieve optimal operations, considering both current and 

forecasted demand and generation. Some formulations [38], [51], [66], [79] choose to introduce 

an additional set of binary state variables to indicate whether the ESS is charging or discharging.  

2.6.6. Voltage setpoints and droop constants of DGs 

Optimization studies that include network voltage deviations [27], [83], [102], [105], [111], 

reactive power flow [41], [46], voltage stability [59], and system load limits [42], [142], [144] may 

select the voltage setpoint of DERs as a control variable. By adjusting the terminal voltages of DG 

and ESS units, the microgrid EMS is able to provide reactive power support to heavily loaded 

feeders and adjust power flows in networks with P-V/Q-f droop characteristics. This variable lies 

at the secondary control layer and is adjusted through a control signal issued by the microgrid 

controller [142]. Related optimization variables are DG reactive power output [41], [74], optimum 

placement of shunt capacitors [120], and droop controller gains [42], [53], [59], [83], [87], [102], 

[127], [128], [134], [139], [156]. 

2.6.7. Installed generation capacity 

Generally, planning problems seek to determine the optimum size and location of DER 

assets [70]. As a result, the capacity of generation units is an optimization variable in many 

formulations. The capacity parameter for thermal [44], [68], [110] and renewable DGs is typically 

expressed in terms of the optimal rated kW capacity of the generator [44], [47], [68], wind rotor / 
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PV surface area [106], or in terms of the number of individual solar panels and wind turbines [35], 

[37], [68], [110]. 

2.6.8. Installed ESS capacity 

Similarly, nearly all optimization problems involving planning and installation of ESS will 

include the capacity of each unit as a decision variable, which can be expressed in terms of the 

kWh or Ah capacity [69], [113], [44], [46], [106], [115], kW power rating [69], [113], [44], [47], 

[115], or the number of individual batteries [35], [37], [68], [105]. 

2.7. Discussion 

This paper provides a detailed examination of all the aspects of common optimization 

formulations for islanded microgrids, including objective functions, constraints, and variables. The 

papers surveyed have been classified both by the particular set of modeling decisions and 

chronologically. This approach enables the reader to gather valuable insight into both different 

approaches, but also trends as certain criteria have increased in popularity significantly within the 

last few years.  

Objective functions based on cost are by far the most popular approach: Of the 120 

individual optimization studies of islanded microgrids reviewed, 103 chose an objective function 

formed from the sum of various costs. Within that category, fuel cost of thermal DGs is easily the 

most popular cost component with 74 papers (about 2/3 of all papers) selecting this objective. 

There are no significant changes chronologically in popularity between different types of costs, 

with all usage of all 8 types of costs growing equally as the number of microgrid optimization 

papers published each year rises. A summary of the popularity of each objective function over the 

last ten years is presented in Figure 3. 
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In contrast, there is a much more even distribution of preference for optimization 

constraints. Power balance and generator output limits stand out as the two most popular limits 

since they represent fundamental operating requirements that a planning or dispatch algorithm 

must find a way to supply load demands and must also not exceed the maximum or minimum 

output settings of all DGs. A close second in popularity are SOC and output limits of ESS units 

since violating these constraints will significantly reduce the lifespan or even damage the ESS. 

Two constraints that have received an exponential increase in interest are voltage and frequency 

limits. As can be observed from Table 5, voltage limits were considered by four papers in 2016, 

five papers in 2017, and nine papers in 2018. Likewise, frequency limits were considered by one 
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Figure 3: Number of papers dealing with islanded microgrids using each category of objective 

function over the last 10 years. Note that most papers use multi-objective formulations, as in the 

case of cost-based objectives (illustrated in blue shades) which were selected 291 times by 103 

papers (out of a total of 120 individual optimization studies reviewed). 
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paper in 2016, three papers in 2017, and seven papers in 2018. A possible explanation for this 

trend is the growing awareness that the frequency of islanded microgrids can be allowed to wander 

over a much greater range, especially in small systems that lack of any steam turbines or gas 

turbines that could be damaged by frequency deviations. In these small systems, it is possible to 

simply let voltage and frequency swing slightly out of bounds in the event of a generation-load 

mismatch, rather than shedding load or curtailing renewables. A summary of the number of papers 

using each of optimization constraints examined in Section 2.4 is presented in Figure 4.  

Finally, a few interesting trends can be observed in preference for solution variables. Basic 

variables (such as power dispatched from thermal DGs, unit commitment on/off states, and ESS 

output) have been used at a relatively constant rate in the past decade. Also of note is that variables 

that are used by both planning and scheduling optimization problems (such as ESS output and DG 
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output) are used much more extensively than variables exclusive to planning problems, such as 

DG and ESS capacity. All of the variables discussed earlier are summarized in Figure 5. 

 

2.8. Conclusion 

This chapter provides several key findings regarding optimization of islanded microgrids. 

All referenced papers selected formulations from a combination of 8 categories of objective 

functions, 15 types of constraints, and 13 possible solution variables. Each choice of objective, 

constraint, and solution variable was discussed exhaustively earlier in this paper, with a list of 

common formulations as selected by each group of previous works in the literature.  

It is anticipated that this survey will be useful to several groups of researchers, including 

developers of off-grid electrification microgrids, power systems engineers examining methods for 

increasing the resiliency of islanded microgrids during emergency operation of advanced 

Figure 5: Number of papers dealing with islanded microgrids using each solution variable 
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distribution networks, and students studying optimization problems. In the author’s opinion, 

community electrification is the most urgent and rewarding application of this paper, especially 

when complemented by the social impact factors discussed in Part 2 [21]. With around 1 billion 

people worldwide still lacking access to electricity, islanded renewables-based microgrids stand 

out as the most viable solution from the standpoints of sustainability, cost-effectiveness, 

scalability, and reliability. The urgent need for more research in this area is reflected by the targets 

of United Nations Sustainable Development Goal (SDG) #7 and related target indicators of 

ensuring universal access to affordable and reliable energy to all people by the year 2030. In the 

past, any electric service in remote communities was delivered by dirty, inefficient diesel 

generators. However, billions of US dollars of funding are now available through numerous public-

private-venture capital partnerships to create solar-powered “mini-grids” ranging from 20 to 

200kW of PV generation capacity. Planning and installation of these microgrids will require 

development of new, more effective planning and optimization tools for siting and sizing of PV 

and ESS resources, as well as smarter dispatch algorithms focused on providing a balance of 

reliability, operating cost, and level of electric service provided. Moreover, the demands of many 

communities are rapidly growing past simple lighting needs, and are focusing on equipment related 

to productive uses of energy.  

This survey is continued in Chapter 3, which will focus on techniques for renewables 

forecasting and load forecasting, as well as methods for identifying and resolving conflicts 

between technical, economic, social, and environmental objective functions. Nearly all multi-

objective optimization problems will contain some individual objectives which complement each 

other and some which directly conflict. Moreover, obtaining a holistic view of the transformative 

impact of microgrids (both for off-grid communities and critical loads in advanced distribution 
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grids) requires consideration of a wide variety of factors beyond levelized cost of energy, such as 

land use, noise, job creation, and social benefits. However, a set of specialized tools are needed in 

order to combine both technical and human factors into a single optimization problem. 
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CHAPTER 3 

A COMPREHENSIVE REVIEW OF ENERGY MANAGEMENT AND PLANNING OF 

ISLANDED MICROGRIDS: PART 2 – RENEWABLE ENERGY FORECASTING AND 

MULTI-CRITERIA DECISION MAKING 

This survey paper provides the first comprehensive, critical overview of optimization 

formulations for planning and operation of islanded microgrids, including optimization objectives, 

constraints, control variables, forecasting techniques, socio-economic factors, and multi-criteria 

decision making. The optimization approaches reviewed address methods both for increasing the 

resiliency of advanced distribution systems and electrification of remote communities.  This paper 

is organized into two parts: Part 1 examines over 120 individual optimization studies and discovers 

that all optimizations studies of islanded microgrids are based on formulations selecting a 

combination of 16 possible objective functions, 14 constraints, and 13 control variables. Each of 

the objectives, constraints, and variables are discussed exhaustively both from the perspective of 

their importance to islanded microgrids and chronological trends in their popularity. Part 2 builds 

on the results of part 1, first briefly discussing forecasting methods for supplying load and 

renewables data needed for both planning and dispatch studies. It then continues to examine 

conflicts between the objectives identified in Part 1, socio-economic utility functions, and multi-

criteria decision making (MCDM) techniques required to create multi-objective optimization 

formulations combining numerical criteria with social, environmental, and human factors 

parameters. 
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This chapter is a verbatim copy of an article submitted by the researcher for publication in 

the Journal of Power and Energy Systems and is currently under review.  

3.1. Introduction 

Within the fifteen years since the emergence of the microgrid concept, a large amount of 

literature has been dedicated to optimization of these systems. Likewise, multiple review papers 

[1] – [20] have been written to summarize advances in optimization algorithms. However, these 

reviews have each focused on only a few of the aspects necessary for building a complete 

optimization formulation. A summary of previous literature surveys is presented in Table 7, 

repeated from Part 1 of this survey [21]. As can be observed from Table 7, a comprehensive 

literature survey covering all aspects of optimization and multi-criteria decision making for 

islanded microgrids has not been published.  

Additionally, fundamental modeling differences exist between islanded and grid-

connected systems, most importantly that islanded systems cannot use the point of common 

coupling (PCC) for voltage / frequency stabilization and balancing. As a result, islanded systems 

must resort to load shedding and curtailment of renewables, which are control strategies typically 

not implemented in grid-connected systems. Consequently, results and techniques from surveys of 

optimization of grid-connected microgrids cannot be transferred to islanded systems. An extensive 

discussion of microgrid topologies and control schemes is provided in Part 1 [21], along with a 

comprehensive discussion of the different types of optimization problems encountered in planning 

and dispatch of islanded microgrids.  

This paper aims to fulfill this need by providing the first systematic overview of all tools 

and techniques required to create a holistically formulated optimization problem considering the 
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transformative impact of electrification, which is not reflected by traditional approaches to power 

system design focused on cost and reliability criteria. Furthermore, the economic sustainability 
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Table 7: Summary of topics covered in current literature reviews 

 

Ref Year Type of Review  Configuration  Focus 

  OF  CR  CV SR SW FT MCDM APP  Island Grid  Sched Plan 

[1] 2018  – – – – – –   –    – 
[2] 2018 – – – –   – –   –  –  
[3] 2017  – –  – – – –      – 
[4] 2017 – – – – – –  –  – –  –  
[5] 2017   –  – – – –  –     
[6] 2017 – – –  –  – –  – –   – 
[7] 2017 – – – – – –  –  – –  –  
[8] 2016 – – – – –  –   –    – 
[9] 2016 –  –  – – –       – 
[10] 2016   –   – – –      – 
[11] 2015  –  – – – – –  – –    
[12] 2015 – – –  – – –   – –  –  
[13] 2015  – –  – – – –  – –  –  
[14] 2014    –  – –      –  
[15] 2014 – – – – –  –   –    – 
[16] 2011 – – –  – – –   – –  –  
[17] 2011 – – – – – – –   –   – – 
[18] 2010 – – – – –  –   – –   – 
[19] 2009 – – – – – –  –  – –  – – 
[20] 2004 – – – – – –  –  – –  –  

 
OF = Objective functions, CR = Constraints, CV = Control variables, SR = Solver, SW = Software, FT = Forecasting, MCDM = 
Multi-criteria decision making, APP = Applications, Island = Islanded, Grid = Grid-connected, Sched = Scheduling / operations, 
Plan = Planning 
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and social benefits provided by a microgrid power system strongly depend on numerous socio-

economic factors that bracket the engineering design process. 

Part 1 of this paper provided several key findings regarding optimization of islanded 

microgrids. All referenced papers selected formulations from a combination of 8 categories of 

objective functions, 15 types of constraints, and 13 possible solution variables. Each choice of 

objective, constraint, and solution variable was discussed with a list of common formulations as 

selected by each group of previous works in the literature. A summary of the results of Part 1 is 

provided in Table 8. 

The classification of surveyed papers both chronologically and by shared characteristics in 

Part 1 [21] of this paper enabled identification of several trends in microgrid optimization 

formulations. The first was a significant increase in attention given to management of VAr / 

reactive power capabilities of DGs and inverters, along with a substantial increase in the number 

of publications considering the voltage and frequency of islanded microgrids as both optimization 

objectives and constraints. A second was a trend towards hybrid AC-DC microgrids and multi-

microgrids with planning and scheduling tasks treated by multi-objective optimization, often with 

separate objectives for each portion of the microgrid and with conflicting objectives requiring 

resolution through various multi-criteria decision making methods, which will be discussed in 

detail in this paper. 

Part 2 of this survey focuses on techniques for renewables forecasting, as well as methods 

for identifying and resolving conflicts between technical, economic, social, and environmental 

objective functions. Nearly all multi-objective optimization problems contain some individual 

objectives which complement each other and some which directly conflict. Moreover, obtaining a  
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Table 8: Summary of common optimization objectives, constraints, and variables 

reviewed in Part I [21] 

Objective 

Functions 
  Constraints Solution Variables 

Minimize cost / Maximize 
profit 

   

Fuel cost of thermal units  Power balance 
Power output of 
thermal units 

Renewable DG costs  Generator limits 
Power output of 
renewables 

Startup / shutdown costs  DER VAr limits 
Curtailment of 
renewables 

O & M costs  Generator ramp rates 
Operating state 
(on/offline)  

Reserve costs  Generator min on / off times Spinning reserve 

ESS cost  ESS state-of-charge limits DR & load shedding 

Load shedding  / DR costs  
ESS (dis)charging power 
limits 

ESS power output 

Revenue from loads  Critical loads / DR limits DG voltage setpoints 

Installation capital cost  Voltage limits Droop constant 

Cost of losses  Frequency limits 
Thermal generation 
capacity 

Minimize voltage deviations  Line thermal ratings 
Installed solar 
generation capacity 

Minimize frequency 
deviations 

 
Reserve (spin & non-
spinning)  

Installed wind 
generation capacity 

Minimize emissions  Emissions limits Installed ESS capacity 

Minimize renewable 
curtailment 

 Total system cost  

Maximize load 
served 

  System reliability  

Minimize 
ramping 

    

Maximize 
reliability 
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holistic view of the transformative impact of microgrids (both for off-grid communities and critical 

loads in advanced distribution grids) requires consideration of a wide variety of factors beyond 

levelized cost of energy, such as land use, noise, job creation, and social benefits. However, a set 

of specialized tools are needed in order to combine both technical and human factors into a single 

optimization problem. 

3.2.Forecasting Methods for Renewables 

Accurate forecasting of PV and wind generation is essential for energy management of 

islanded systems since ESS and thermal units must supply any differences between renewable 

generation and demand. Excessively large forecasting errors can lead to thermal units reaching 

their ramp rates [22], as well as ESS units and inverters reaching SOC and charging / discharging 

current limits. Simultaneously, forecast-based dispatch can reduce the cost of generation in 

islanded systems by 2% to 7%, depending on the accuracy of the forecast [23]. Forecasting 

techniques and historical weather data are commonly integrated into several types of optimization 

problems, as illustrated in Figure 6, which provides a spatiotemporal comparison of common 

applications. 

Common methods used for modeling the uncertainty of weather on planning and 

scheduling include probability density functions (PDF) [24], numerical weather prediction (NWP) 

[25], artificial neural networks (ANN) [26], time series models [27], scenarios based on historical 

data [28], and fixed approximations of the maximum error [29]. Figure 7 arranges these forecasting 

methods by their applicability to various spatial resolutions and time frames.  
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Figure 6:  Comparison of common applications requiring forecasting or historical data of 

renewables output, arranged by increasing scales of forecast time period and network 

topology 
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Figure 7:  Comparison of common forecasting techniques and their application to 

optimization problems, arranged by spatial and temporal usage 
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3.2.1. Classification by forecast timeframe 

Long-term forecasts are used to predict the amount of wind generation in the one day to 

one week timeframe [30]. The results are used for making decisions concerning maintenance 

schedules, reserve requirements, and approximate unit commitment. 

Medium-term forecasts estimate wind speed and power generation in a six hour to one day 

window [18]. These predictions are used in day-ahead power market bids, as well as security-

constrained and price-based unit commitment decisions.  

Short-term forecasts are valid for a half-hour to six hour period, and constitute the majority 

of models created [30]. Statistical models (ANN and time-series models) are the most popular due 

to their simplicity, ease of computation, and accuracy of results. However, a number of new 

techniques, such as fuzzy logic networks, are gaining traction.   

Finally, very-short-term forecasts estimate power production within a period of a few 

seconds to half an hour. The benchmark for all models in this range is the persistence method, 

which states the wind speed and generation output will remain at their current value. Statistical 

and hybrids methods (e.g. neuro-fuzzy models) can provide absolute errors of less than 4% [18]. 

3.2.2. Classification by forecasting method 

3.2.2.1.Physical models 

NWP methods use computational fluid dynamic simulations using measured weathered 

data, such as temperature pressure, relative humidity, locations of fronts, storm systems, and 
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geographic topology to produce predictions of relevant weather parameters, such as wind speed, 

wind direction, precipitation, temperature, and humidity [8]. Common models are the MM5, 

Global Forecasting System (GFS) [25], [31], and European Centre for Medium Range Weather 

Forecasts (ECMWF) [18].  

Disadvantages of NWP methods are complexity, computational cost, introduction of large 

errors by time shifts in data, and ineffectiveness for short term forecasting [32]. Additionally, 

physical models cannot provide detailed predictions at the very small resolution corresponding to 

geographic footprint of an islanded microgrid. For this reason, few examples of NWP methods 

[25] implemented in actual microgrid optimization tasks can be found in the literature. 

3.2.2.2.Time Series Models 

Time series models use historical data to predict future trends using statistical methods. 

The most common of these techniques are autoregressive (AR), moving average (MA), and 

combinations of these two techniques, such as autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) methods [8], [33]. Due to the simplicity of 

these models, they are frequently used for dispatch of both islanded microgrids [27], [34]  and 

grid-connected systems [35], [36]. Historical data is used to develop a relationship between 

parameters representing time, autoregression, moving average, and the order of the autocorrelation 

function. 

Another statistical tool with increasing popularity for dispatch studies is Markov chains 

[37] – [40], which represent renewable output or customer loads as a finite set of states that change 

in discrete time steps. These models work can reproduce the probability density function (PDF) 

for long tem predictions with a high degree of accuracy [41], [42]. However, these models 
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consistently under-estimate the amount of energy storage required for wind-based microgrids [41]. 

Markov chains can also be used to model outages of DGs and other equipment [39]. 

3.2.2.3.Artificial Neural Networks 

ANN models simulate the operation of the human brain, with many nodes operating in 

paralleled and communicating through connecting synapses [8]. ANNs have been successfully 

developed for very short-, short-, medium-, and long-term forecasts of renewable output [26], [38], 

[43], [44]. ANN networks have also been used for control of wind turbine real / reactive power, 

pitch control, max power point tracking, voltage / frequency control, power quality, and transient 

stability studies [44].  

As with time series models, ANN networks require extensive training with a data set whose 

size is optimized to yield the least error. Comparative studies, such as [45], have found that neural 

networks can achieve lower mean square errors than ARMA techniques. 

3.2.2.4.Probability density functions 

An additional tool used for modeling wind speed variability in stochastic scheduling and 

planning problems is simply the probability density function of the site’s wind speeds. Typically, 

a Rayleigh or Weibull [24], [46] – [48] and beta [49] – [51] distributions are used for wind and 

solar forecasts, respectively. These methods can provide fairly accurate results, such as the 

multivariate Gaussian regression of [52], which give a root mean square error of 0.0208 for 1 

minute ahead forecasts, or about 10% better than the persistence method for the wind data 

analyzed. 
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Probability distributions for renewable output can be converted into a randomly generated 

scenario using a Monte Carlo simulation that creates a random walk for simulating the output of 

each renewable resource, [24], [53], [54]. A similar method is the roulette wheel mechanism, in 

which a series of levels of renewable output or forecasting error are assigned to the sectors of a 

roulette wheel in accordance with the forecast probability distribution function [47]. 

3.2.2.5.Historical Data 

Scenarios built from historical data gathered from the microgrid site are perhaps the most 

common approach to replicating wind forecast data for development of optimization techniques 

[22], [25], [28], [37], [48], [53], [55] – [71]. This approach is especially common for system 

planning studies of actual systems, in which the design must consider the unique site conditions 

and availability of renewable resources for the planned microgrid. 

3.3.Relationships between Objective Functions 

A complex set of conflicting and mutually supporting relationships exist between the 

objective functions discussed exhaustively in Part I of this review [21]. In comparing the results 

of optimizing with respect to one objective function versus another, the relationship between any 

two objective functions can be classified as conflicting, weakly conflicting, mutually supporting, 

and not related.  

An example of directly conflicting objectives is maximum reliability and minimum 

installation cost. Maximization of system reliability can be achieved through installation of more 

generation capacity, parallel, alternate transmission paths, and larger energy storage. All of these 

options directly increase the installation cost of the system. Meanwhile, an example of mutually 

supporting objectives is minimization of network losses and minimization of operations cost since 
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decreases in the losses of the network generally translate to decreases in fuel use by thermal DGs, 

and in turn lower generation cost.  

Figure 8 presents a summary of the pairwise relationships between all the objective 

functions discussed earlier. The remainder of this section will examine the relationships between 

the most popular pairs of objective functions, which were summarized in Table 8. A detailed 

discussion of the other objective functions (resulting in over 120 pairwise combinations) will be 

omitted from this paper for the sake of brevity. 

3.3.1. Operating cost vs installation cost 

Generally, the hourly generation cost of a system can be decreased through the installation 

of distributed renewables and ESS, thereby decreasing the need for thermal generation and 

associated fuel, operations / maintenance, and startup / shutdown costs. However, this objective 

directly conflicts with the objective of minimizing the purchase, installation, and commissioning 

costs of the microgrid [24], [50], [60], [65], [67], [72] – [77]. 

3.3.2. Operating cost vs ESS SOC 

Scheduling problems may seek to maximize the lifespan of ESS units by restricting the 

depth of discharge through an objective cost function related to the minimum SOC during a 

particular time interval, [27], [49], [54], [78]. This objective conflicts with the goal of minimizing 

operating costs since higher cost thermal units will be dispatched more often to maintain a higher 

value of SOC. 
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Legend:  Conflicting  Weakly conflicting  Mutually supporting  No relationship 

 

Figure 8: Relationships between common microgrid planning and scheduling objective functions. Whether two objectives are 

conflicting or supporting can be read from the square at the intersection of the diagonals corresponding to each optimization 

objective. 
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3.3.3. Operating cost vs voltage or frequency deviations 

Minimization of voltage [74], [79], [80] and frequency [61], [76], [81] – [85] deviations in 

joint scheduling–control problems conflicts with the objective of minimizing operating costs since 

more generation will need to be dispatched (or curtailed in over-frequency situations) and provide 

fast ramping for real-reactive regulation. 

3.3.4. Operating cost vs reliability 

Maximization of reliability requires that as much generation be dispatched as necessary to 

meet all demand [24], [53], [67], [73], [76], [77], [79]. This conflicts with the goal of the 

minimizing operating costs, which may prefer load shedding to startup of high cost peaker units. 

Maximization of reliability also conflicts with minimization of installation cost [24], [67] [71], 

[76], [77], [86], [87], since increasing the desired level of reliability increases the amount of 

generation and ESS capacity required, which increases the capital cost of the system. 

3.3.5. Operating cost vs emissions 

Minimization of emissions and operating cost is one of the most popular multi-objective 

formulations for scheduling problems [88], [37], [59], [64] – [78], [85], [89]. If the incremental 

cost of renewable DER is less than that of thermal generation, then the two objectives can be 

mutually supporting, and the solution will be that which maximizes use of low-cost non-polluting 

DGs. Otherwise, the two objectives will conflict. Conflicts between emissions and operating cost 

/ installation cost also appear in planning problems seeking to add renewable generation to isolated 

microgrids [60], [74] – [76], [86] [90]. 



72 

3.4.Multi-Criteria Decision Making 

As can be observed from the optimization studies surveyed [88] – [91], most formulations 

have expanded beyond traditional single parameter economic dispatch problems [92] to combine 

several objectives (such as operating costs, installation costs, emissions, and reliability). 

Additionally, microgrid planning and scheduling directly affects many parties, and so it is essential 

that the optimization considers the needs, interests, and criteria of all stakeholders in an energy 

project [93]. To help resolve these issues, a series of multi-criteria decision making (MCDM) 

methods have been developed. 

MCDM techniques are a branch of operations research models designed for resolving 

conflicting objectives and criteria under high uncertainty, and can be defined in two categories [4]. 

Multi-attribute decision making (MADM) methods focus on choices between a small number of 

discrete alternatives, typically evaluated against a set of attributes that are difficult to quantify [93]. 

Meanwhile, multi-objective decision making (MODM) techniques search for an optimal solution 

within a set of continuous alternatives constrained by limits placed on decision variables and 

related system parameters. MODM is also known as multi-objective programming. Multi-criteria 

decision making generally follows five basic steps [93]: 

1) Definition of the problem, alternatives, and criteria 

2) Assignment of criteria weights 

3) Construction of an evaluation matrix formed from the criteria, weights, and alternatives 

4) Selection of an MCDM method 

5) Ranking of the alternatives 
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MCDM techniques can be classified into  

 Utility theory methods, including the Analytical hierarchy process (AHP), multi-attribute 

utility theory (MAUT), and simple multi-attribute rating technique (SMART) 

 Outranking methods, such as elimination et choices expressing reality (ELECTRE) or 

preference ranking organization method for enrichment evaluation (PROMETHEE) 

 Miscellaneous techniques, such as discrete choice experiment (DCE), discrete compromise 

programming (DCP), and technique for order of preference by similarity to ideal solution 

(TOPSIS).  

The remainder of this section will describe the advantages, disadvantages, implementation 

process, and applications in microgrid optimization for each MCDM method. Common techniques 

and their application in optimization of islanded and grid-connected microgrids is summarized in 

Table 9. 

3.4.1. Weighted Sum 

The weighted sum technique is the most straightforward method and is effective for one-

dimensional optimization [20]. The overall objective function is the sum of the individual criteria 

multiplied by a weight assigned to each criterion. The optimization solution is the best alternative 

that maximizes (or minimizes) the weighted sum objective function. Since the additive utility of 

the weighted sum is violated if applied to multi-dimensional problems, all criteria to be included 

in the objective function need to be expressed in the same units [20]. 
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Table 9: Summary of common MCDM techniques used in optimization of islanded and grid-connected microgrids 

MCDM 

Method 

2013 & prior 2014 2015 2016 2017 2018 – 2019 

Weighted sum [88] [94] [60] [95] [79] [75] [96] [76] 
[97] 

[64] [98] [99] [100] [101] 
[102] 

MAUT [103] [104]  [105] [106] [107] [108] [109] 

AHP [110] [111] [79]   [112] [113] 

SMART [114] [115]  
[116] 

[117]   [118] [119]  

DCE [120] [121] 
[122] 

  [123] [124] [125] [126] 
[123] [127] 

[125] 

ELECTRE [110] [128] 
[129]  

[130]  [131] [132]   

PROMETHEE [110] [116] [111]  [133]  [134] [135] [136] [137] 

TOPSIS [115] [73] [116]  [138]  [139] [140] [141] [113] 

DCP     [214]  

Pareto-front [143] [73] [144] [59] [87] [74] [75] [80] [86] [80]  [64] [66] [140] [89] [141] 
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As a result, weighted sum methods can only be applied either to cost-based optimization 

formulations (in which all objectives are direct or penalty costs) or to objective functions that have 

been normalized by dividing the objective by a base value (such as total system load or a similar 

parameter with the same units). Due to its simplicity, the weighted sum approach has become 

increasingly popular, as evidenced below. 

Reference [60] minimizes the weighted sum of three normalized objective function with 

generation cost, use of renewables, and emissions. The emissions objective is formed from the 

weighted sum of the microgrid’s CO2, CO, SO2, NOX emissions, and dust pollutants. The weights 

for the first objective function are chosen arbitrarily and are varied in the interval [0, 1/3, 1/2, 1]. 

Reference [63] creates a ranking of lines for network topology configuration using the 

weighted sum of the normalized power loss in the line and risk of the line being unavailable.  

Reference [64] compares results obtained from 1) a single objective of operating cost, 2) 

cost of emissions, 3) the sum of fuel and emissions, 4) a pareto-optimal solution between fuel cost 

versus emissions, and 5) the weighted sum of the deviation of cost and emissions from ideal values. 

The last two methods achieve the best tradeoff between cost and emissions. 

 Reference [75] adjusts the weights for three objective functions (operating cost, capital 

cost, and emissions) to determine a pareto-front solution using an adaptive direct search algorithm.  

Reference [76] presents a two level optimization in which the first objective function is the 

sum of fuel cost, emissions cost, and a penalty for real power imbalance. The second objective 

function is the weighted sum of LOLP, renewable curtailment (expressed as a percentage of total 

load), and installation cost. 
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Reference [79] combines a pair of weighted sums. The first is a reliability objective 

function formed from the sum of the EENS and SAIFI reliability indices, with the weights 

determined using AHP. This objective function, in turn, is used in a weighted sum composed of 

reliability, operations cost, network losses, and voltage deviations.  

Reference [86] obtains a set of pareto-optimal solutions with respect to installation cost, 

emissions, and LOLP. The results are then evaluated using a decision function formed from the 

weighted sum of the three individual objectives. The weights are chosen based on objective 

preference, as determined by non-numerical ranking.  

Reference [88] presents an objective function formulated as the weighted sum of 

dispatchable DG costs, emissions, and ESS use. The effect of different objective weightings are 

examined by creating nine sets of weights for use in each simulation scenario. 

Reference [95] examines technical, economic, environmental, social, and institutional 

factors with multiple evaluation criteria in each category that are summed to create a score in each 

category that is subsequently combined with a second set of weighted sums to evaluate multiple 

electrification options for communities in the Brazilian Amazon. Weighting factors for each 

criteria and the overall category weights were determined by surveys of community members.  

Reference [96] sums the real power of DR-adjustable loads, load shedding, curtailed 

renewables diverted to a dump load, and ESS SOC. The weights of each objective are chosen 

arbitrarily. 

Reference [97] uses equal weights to form an objective function with the power output 

rating and installation cost of an ESS unit. 
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Reference [99] treats the sum of revenue obtained from serving customers, cost of 

generation and EENS, and risk of system security violations as the objective function. 

Reference [100] applies two sets of weighted sums to a day-ahead dispatch optimization. 

The first sum ranks the priorities of customer loads for demand response. The result forms a term 

in a second weighted sum combining fuel cost, renewables curtailment, VOLL, and emissions. 

Reference [114] combines the power losses in the network and the square of voltage 

deviation at each bus to determine optimal droop coefficients for DGs placed throughout the 

network for voltage and frequency support 

3.4.2. Multi-attribute utility theory 

Utility theory describes the set of relationships between the costs and utility of a particular 

decision, and can be extended to decisions involving multiple objectives, criteria, and alternatives. 

The preference given to various attributes is expressed in the form of a utility function that varies 

between zero and one to reflect the level of satisfaction of a particular criterion [20]. Common 

criteria found in MCDM energy problems are summarized in Table 10 

The utility function reflects the importance of criteria under uncertain conditions by 

assigning function values so that more preferable criteria will have a higher utility than less 

preferable ones. The utility function is also able to indicate the decision-maker’s tolerance of risk: 

linear functions indicate neutral risk, convex functions indicate a preference for risk, and concave 

functions indicate risk aversion [93]. The best alternative is then chosen by either adding or 

multiplying the utility function scores for each of the alternatives, and the alternative with the 

overall highest utility score is selected. 
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Table 10: Common criteria used in MCDM energy planning problems 

Category Criterion Reference 

Technical Reliability [73] [93] [95] [112] [114] – [117] [124] – 
[126] [145] – [147]  

Safety [108] [117] 

Technical maturity [110] [112] [117] [133] 

Energy efficiency / losses [110] [112] [114] [116] [117]  [134] 

Resource potential [95] [110] [111]  [132] [133] [135] [147] [137] 

Scalability [95] [112] [133]  

Economic Fuel / operations cost [73] [93] [95] [103] [104] [112] [117] [119] 
[133] [140] [147]  

Installation cost [93] [103] [104] [110] – [112] [116] [117] 
[120] [122] [132] – [135] [137] [147] 

Maintenance cost [93] [95] [103] [104] [109] [112]  [115] – 
[117] [120] [132] – [135] [137] 

Equipment lifespan [109] [112] [117] [116] [119] [140] 

Customer monthly cost [93] [120] [121] [122] [123]  [124] [145] [146]  

Payback period [93] [122] [132] 

 Financing [95] [132] [147] 

Environmental CO2 emissions [103] [104] [109] [115] – [117]  [119] [122] 
[123] [133] [135] [134] [148] 

SO2 emissions [117] [148] 

NOx emissions [103] [104] [134] [148] 

Other emissions [95] [112] [116] [117] [132] [147] 

Noise [117] 

Environmental [95] [108] [111] [114] [117] [132] [133] [147]   

Land use [95] [109] [112] [115] [116] [123] [133] [134] 
[147]  

Renewables utilization [73] [121] 

Social Social acceptability [93]  [112] [117] [134] 

Jobs creation [93] [95] [109] [112] [117] [132]–[135] [147] 

Ease of use / maintenance [117] [133] 

User (in)convenience [112] [119] [120] [125] [126]  

Community services provided [95] [112] [133] [147]  

Energy policy [133] [135] [137] 

Socio-economic benefits [93] [95] [111] [133] [135] [137] [147] 
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Unlike AHP (discussed next), MAUT methods are able to consider uncertain factors in the 

decision analysis in a consistent manner [103]. Uncertainties can be classified as external (which 

can affect the decision outcome) and internal (relating to the decision-maker’s preferences). 

Common uncertainties in energy system planning include physical conditions (such as technology 

assets and consumer demand), economic variables (fuel prices and installation costs), and 

regulatory policy.   

Due to the complexity of formulating utility functions and computing scaling constants, 

MAUT is applied much less frequently than AHP and other MCDM methods for planning and 

scheduling problems [20].  

 References [103] and [104] consider operating cost, investment cost, CO2 emissions, NOx 

emissions, and wasted heat as five attributes to evaluate different system expansion alternatives. 

The formulation uses an exponential utility function with overall utility scores as the weighted sum 

of each alternative’s satisfaction of possible user. Criteria weights are determined by 

questionnaires asking the decision-maker’s priorities regarding various evaluation criteria. 

Reference [105] creates a MAUT-based platform to assist selection of new DGs for 

inclusion in microgrids using a combination of economic, environmental, and social criteria. 

Reference [106] examines a decision making process for distribution line restoration 

considering four main goals: minimize travel of the line crew to the next fault location, complete 

repairs as soon as possible, restore higher priority loads first, and minimize impacts of other 

contingencies on the repair process. The utility function of each possible repair is formulated as 

the sum of binary values corresponding to whether a particular line crew is able to perform the 
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repairs alone. The order of restoration is then determined while seeking to minimize two objective 

functions of minimizing total repair time and minimizing total lost load. 

3.4.3. Simple multi-attribute rating technique (SMART) 

To overcome the difficulty in applying MAUT, SMART was introduced by in the 1970’s 

[149], [150]. SMART uses linear approximations of utility functions and an additive aggregation 

model for weighted sums of utility values [117]. Criterion weights are ranked in order of 

importance, and successively more points are assigned to each attribute with ten points for the least 

important criterion. The final weights are then obtained by normalizing the values so that all 

individual weights sum to unity [151].  

Errors in the original SMART formulation from the need to consider the range of utility 

values were corrected with swing weights (SMARTS) and justifiable rank weights (SMARTER) 

[151]. The overall process in applying this MCDM method follows nine steps [151]:  

1) Identify decision makers’ objectives 

2) Create a value tree of criterion hierarchy 

3) Determine objects of evaluation using attribute structure and elicitation results 

4) Formulate matrix of alternatives and criteria. Entries are scores, preferably physical 

measures.  

5) Eliminate dominated alternatives, often through visual inspection 

6) Convert matrix entries of performance scores to single–dimension utility function values 

ranging from 0 (relative worst) to 1 (relative best)  
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7) Choose swing weighting of criteria considering both importance and the range of utility 

function values (not a relative 0-1 ranking). 

8) Calculate multi-attribute utilities / rank order centroid (ROC) of alternatives 

9) Select alternative with best weighted sum utility 

Despite its ease of use and high applicability to the combined social, economic, and 

technical aspects of power systems, SMART has found relatively little use in microgrid planning 

and operations optimization.  

Reference [117] considers eight alternatives for renewable generation (hydro, PV, wind, 

biogas, fuel cell, geothermal, and wave) with respect to 15 attributes covering technical, economic, 

environmental, and social parameters. Decision weights are based on a subjective ranking of 

criterion preferences, which is then normalized into ROC weights and then overall weighted sum 

multi-attribute utility scores using the nine step SMARTER process discussed above. 

Reference [114] applies SMART to resolve equipment overloads for a distribution system 

in Kenya using the criteria of capacity constraints, reliability, energy losses, and environmental 

impact.  

References [115] and [116]  examine optimal sizing of grid-tied PV and wind DGs for 11 

configurations of PV and wind. The alternatives are evaluated against the criteria of power supply 

probability (LPSP), capacity factor, emissions, share of renewables, installation cost, maintenance 

cost, land use, and social acceptance. Objective weights are formulated as the weighted sum of the 

scores obtained from SMARTER and the more objective entropy weighting method. The results 
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are then compared to those from the TOPSIS [115], ELECTRE, and PROMETHEE [116] 

methods. 

Reference [119] optimizes DR planning in five cities of the northwest USA with 

SMARTER, achieving elicitation of user preferences with better accuracy and speed than AHP 

and DCE [118]. The study seeks to minimize thermal discomfort, energy cost, emissions, user 

inconvenience, and equipment degradation. Ranking of weighting factors was determined by 

online user preference surveys regarding the relative importance of six evaluation criteria: carbon 

emissions, adequacy of hot water, financial savings, delay of clothes washing, delay of 

dishwashing, and air temperature. 

3.4.4. Analytical Hierarchy Process (AHP) 

AHP decomposes complex problems into a hierarchy with the overall goal at the top, 

decision criteria (and sub-criteria) at the next lower level, and available alternatives at the bottom 

of the structure [20]. Alternatives are compared in a bottom-up pairwise manner to create relative 

rankings based on the decision-maker’s information and experience [152]. AHP generally follows 

a four step process [93]: 

1) Arrangement of the goal, criteria, and alternatives into a hierarchical structure 

2) Determination of criteria weights through pairwise comparisons and computation of the 

consistency index of the decision-maker’s preferences from the maximum eigenvalue of the 

weighting matrix 

3) Compilation of a matrix of performance scores of the alternatives for each criterion 
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4) Calculation of the final priorities of the alternatives as the weighted sum of each performance 

score, multiplied by the local priority of the corresponding criterion 

The primary advantage of AHP is a straightforward ranking that is mathematically and 

rationally justifiable, especially with a small number of criteria and decision makers, incorporating 

all viewpoints of decision maker [110]. However, scaling depends on the elements compared, 

ordering can be erroneously introduced when none actually exists, and indifferent criteria (i.e. 

criteria for which all alternatives score equally) can disrupt aggregated priorities.   

AHP is widely used for energy planning, possibly due to its simple hierarchy, flexibility, 

intuitive structure, and ability to handle both qualitative and quantitative criteria simultaneously 

[20]. An exhaustive survey of its use for microgrids is presented in [152]. 

3.4.5. Discrete Choice Experiment 

Based on theory of demand, welfare theory, and consumer theory, DCE methods are very 

effective in modeling choices of consumers. Individuals complete a survey with 𝑛 discrete 

alternatives, and consumer will pick 1 alternative which maximizes his/her utility function (i.e. 

personal preference) [153]. DCE provides a high level of detail for modeling uncertain choices of 

consumers by breaking down selection of alternatives into two parts: 1) a systematic component 

related to characteristics of alternatives and 2) random variations in preferences [154]. DCE finds 

extensive use in the early planning stage of power system design as a tool to determine user 

requirements and willingness-to-pay (WTP) for electricity:  

References [125] and [126] examine WTP of 22 rural communities in Uttar Pradesh, India 

for various levels of reliability and electric service from a solar microgrid. It is observed that 
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customer satisfaction is much greater from an islanded PV system than for grid power, and that 

customer criteria for service are (in decreasing priority) the amount of energy provided (measured 

in hours of appliance use), reliability, and overall price. 

Reference [120] studies consumer choice and customer WTP for micro-generation 

technologies based on the criteria of capital cost, maintenance cost, monthly savings, contract 

length, and inconvenience. 

Reference [127] examines customer WTP for difference sources of energy on the basis of 

regional location and percentage of renewables among 780 German households, with highest 

customer preference for a mix of hydro and solar electricity generated locally within each region. 

Reference [123] summarizes an EPRI study on the factors relating to adoption of residential 

PV systems using a DCE survey that can be implemented by utilities. Pretesting of the tool 

determined that supplier, ownership method (purchase/lease/community-based), location, monthly 

payment, cost savings, and emissions were the primary drivers of customer choice. Peer effects, 

discounts, and appearance did not strongly affect consumer preferences. Similar DCE studies were 

conducted by [155] of 835 owners of PV systems in the Italian market, by [121]  of customers in 

Spain, and by [122] of households in Canada.  

Other applications of DCE include customer WTP for system reliability [124] – [146] 

through surveys ranking various levels of energy pricing with frequency, duration, and time of 

interruptions, and preferences of 259 steam plant operators regarding boilers and cogeneration 

[156].  
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3.4.6. Preference ranking organization method for enrichment evaluation (PROMETHEE) 

Unlike the utility theory MCDM techniques discussed above, PROMETHEE is an 

outranking method. Although outranking methods also perform pairwise comparisons, they differ 

from AHP in that pairs of alternatives are compared against each other or a fixed standard [157], 

rather than pairwise comparisons of the evaluation criteria. Additionally, the comparisons are 

directly used to create a ranking of optimal alternatives, rather than just a set of weights indicating 

the relative importance.  PROMETHEE II applies the outranking strategy using a five step process 

[93]: 

1) Definition of the decision maker’s preference function, categorizing evaluation criteria into 

six types 

2) Pairwise comparisons of alternatives and calculation of the preference index for each pair 

3) Assembly of comparisons into a decision matrix and outranking graph with two variables, 

incoming and outgoing flow. The larger the former, the more a particular alternative 

dominates the others; the smaller the latter, the less the alternative is dominated. 

4) Partial ranking preordering alternatives by which other alternatives they outrank, are 

indifferent to, or are incomparable. 

5) Final ranking using the difference of the incoming and outgoing flows for each alternative 

Advantages of PROMETHEE include the ability to accept poorly shaped stakeholder 

inputs, handle both qualitative and quantitative data, and separate incomparable alternatives [133]. 

It is most effective on problems with a finite number of alternatives using several criteria, although 

modifications have been made to improve its suitability for other problems, as can be seen from 

the list of versions presented in Table 11. 
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Due to its main suitability to discrete problems, PROMETHEE is typically applied to 

energy planning rather than scheduling optimizations, as illustrated below. 

Reference [110] considers three alternatives (a grid-connected PV system with subsidies, 

a grid-connected PV system without subsidies, and an islanded PV microgrid with subsidies) using 

the criteria of technology maturity, installation cost, efficiency, local potential, and social 

acceptance. Results are compared from ELECTRE, PROMETHEE, and AHP. 

Reference [111] ranks five possible locations for a new substation in Bangladesh using 

PROMETHEE II using 13 technical, economic, social, and environmental criteria identified using 

the Delphi method and structured using AHP. Incoming and outgoing flows are evaluated using 

seven different preference functions to evaluate the impact of varying DM preferences. 

Reference [133] studies ten sites of large electrification microgrids in India using micro-

hydro, wind, PV, and biogas generation. Ten socio-technical and economic criteria were ranked in 

priority through stakeholder surveys. The results were evaluated with PROMETHEE II, which 

Table 11: Advances in PROMETHEE techniques [103] 

Version Characteristics 

PROMETHEE I Partial ranking 

PROMETHEE II Complete ranking 

PROMETHEE III Interval-based ranking 

PROMETHEE IV Continuous problems 

PROMETHEE V Integer linear programming 

PROMETHEE VI Human brain characteristics 

  



87 

ranked micro-hydro and biogas plants as the most suitable technologies for village-scale 

electrification.  

Reference [134] compares geothermal, solar, wind, hydro, biomass, nuclear, and 

conventional thermal generation for electrification of a hypothetical country using cost, efficiency, 

social, and environmental criteria. PROMETHEE II is observed to give nearly identical results as 

TOPSIS and is easier to use than ELECTRE since none of the generation alternatives can be 

eliminated.  

Reference [135] examines optimal integration of rooftop solar in Zhejiang, China using ten 

socio-technical criteria and four preference functions. Incoming and outgoing flows are 

determined for ten alternative installation sites, and the final decision is made with a genetic 

algorithm search.  

Reference [136] evaluates the sustainability and economic value of energy investment 

portfolios using PROMETHEE II with criteria including net present value, risk, and employment 

provided. 

Reference [137] applies PROMETHEE II to create an optimized portfolio of investments 

in rooftop solar installations considering renewable resource availability, economic viability, risks, 

and carbon reduction. The selected criteria were ranked in priority using AHP and subsequently 

used to evaluate ten project alternatives.  

Reference [138] formulates an economic dispatch problem seeking to minimize fuel cost, 

emissions, distance of DGs, and line loading using a fuzzy AHP process to rank the priority of the 

four objectives. 
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3.4.7. Elimination et choices expressing reality (ELECTRE) 

Another outranking method is ELECTRE, designed to compare a large number of 

alternatives using just a few criteria [110]. Its main advantages are the ability to compare 

alternatives with no clear preference and that an alternative with a particularly high score for one 

criterion will not dominate others. However, the decision algorithm is complicated and intuitively 

appealing elements (such as thresholds) may not have physical significance [110]. A 

comprehensive review of ELECTRE and its applications is provided by [157].  

The popularity of ELECTRE for energy optimization problems peaked in the 2000’s, 

especially among European researchers. Prior to 2010, it was applied to policy strategy and large 

scale renewables site planning in Greece [128] – [158], Armenia [159], Italy [160], [161], Turkey 

[162], and France [163], as well as to manufacturing of thin-film solar panels [129]. However, its 

popularity has dropped significantly in the past decade. Since 2012, it has only been implemented 

in two study to determine optimal planning of a solar farm in Spain [130], [131] and wind farm in 

China [132] using technical, economic, and environmental criteria. 

3.4.8. Technique for order of preference by similarity (TOPSIS) 

Like AHP and SMART, the TOPSIS method also uses subjective rankings to build criteria 

weights. The approach is based on the concepts of an ideal alternative (with the best scores for all 

criteria) and negative ideal alternative (with the worst possible scores) [19]. The alternative 

selected will have the longest geometric distance to the negative ideal alternative and the shortest 

distance to the positive ideal, as shown in Figure 9. It can be observed that the approach is closely 

related to the concept of the Pareto-front, and the two methods are often applied together [73], 

[140].  



89 

Reference [73] evaluates six design alternatives of an islanded system using fuzzy TOPSIS 

using the criteria of operating cost, installation cost, unmet load, and renewable curtailment. 

Objective weights are varied to examine the sensitivity to the effect of decision-maker preferences.  

Reference [140] approaches optimal scheduling of a PV-wind-diesel microgrid, seeking to 

minimize the conflicting constraints of diesel cost and ESS degradation cost. The positive and 

negative ideals are taken as the corners opposite the pareto front with the minimum and maximum 

values of battery and fuel cost, in a method similar to the hypothetical TOPSIS solution shown in 

Figure 9. The weightings of the two objectives are varied to create a ranking of the different 

alternatives. 
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Figure 9: Hypothetical example of TOPSIS illustrating positive and negative ideals. 
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References [139] and [115] apply TOPSIS to solve daily dispatch and sizing problems for 

grid-connected systems with a high penetration of wind, seeking to minimize total operating cost 

and emissions.  

3.4.9. Pareto-front optimization 

Although not an MCDM method, a survey of multi-objective optimization would not be 

complete without a discussion of pareto-front optimization, which is one of the most commonly 

used techniques for resolving conflicting objectives. Unlike MCDM techniques that combine 

multiple criteria and goals into a single objective function (such as the weighted sum method), 

pareto-front optimization keeps each objective function intact and seeks the set of solutions for 

which variation of any parameter to improve one objective results in a decrease in optimality of 

one or more objective functions. This set of solutions is known as the Pareto front [164]. 

Pareto based techniques are applied both in planning and scheduling problems for 

microgrids, seeking optimal tradeoffs between two or three conflicting objectives including 

 Fuel cost vs emissions [64] 

 Fuel cost vs emissions vs energy loss [59]  

 Fuel cost vs emissions vs installation cost [74] 

 Fuel cost vs installation cost vs reliability [73] 

 Fuel cost vs load served [144] 

 Fuel cost vs voltage deviation [80] 

 Installation cost vs emissions [75] 

 Installation cost vs reliability [66], [86] 
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 Installation vs emissions vs reliability [87] 

 Load shedding vs frequency deviations [143] 

3.5.Discussion 

This paper provides a detailed examination of additional tools and techniques needed to 

create complete optimization formulations for islanded microgrids. The focus is not just on 

numeric objective functions, but expanding the scope of the optimization formulation to include 

the full range of technical, economic, environmental, and social benefits provided by islanded 

microgrids, both for increasing the resiliency of existing distribution systems constraints and for 

providing new electric service to off-grid communities. The papers surveyed have been classified 

both by the particular set of modeling techniques and chronologically. This approach enables the 

reader to gather valuable insight into both different approaches, but also trends as certain criteria 

have increased in popularity significantly within the last few years.  

The first observation is that historical data is the most popular method for including the 

impact of variable renewable output, as can be seen from Figure 10. This method provides accurate 

results if local weather data is available for the microgrid site. However, it is important that 

seasonal variations are taken into consideration.  

Each of the renewables forecasting techniques for islanded microgrids used by the 

individual optimization studies reviewed in Part 1 [21] of this survey seem to be used equally. An 

exception is numeric weather prediction, which is likely the result that NWP forecasts cover an 

entire region cannot provide the level of detail needed by an islanded microgrid affected by local 

variations in renewable generation.  
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Among the qualitative technical decision criteria for microgrid planning, reliability was the 

most popular measure, as illustrated in Figure 11. This statistic correlates to the trend of upgrading 

distribution systems to enable formation of islanded microgrids is to provide greater reliability for 

critical loads or feeders frequently affected by outages and sever weather. Secondly, installation 

cost and maintenance cost were the most frequently chosen economic criteria. This reflects the 

fact that any real-world project is limited in the amount of funding available, and that project 

management decisions often use a cost-to-benefit analysis. Moreover, installation cost and 

maintenance cost are arguably the two largest factors in determining the net present value (NPV) 

of a project. Thirdly, emissions were chosen by over half of studies considering the environmental 

impact of microgrids. Renewable DERs play a major role in microgrid design, and emissions are 
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Figure 10: Number of paper using each forecasting method. About half of the papers reviewed 

in Part 1 [21] inlcuded renewables forecasting or historical data as part of the optimization 

formulation. 
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one of the easiest measures of the environmental benefit, both in urban and off-grid sites. 

Simultaneously, land use represents one of the major environmental drawbacks, and so is 

frequently an issue. Finally, jobs creation represents one of the most transformative impacts of 

islanded microgrids for community electrification. In the past, any electric service in remote 

communities was delivered by inefficient, expensive, polluting diesel generators. However, 

billions of US dollars of funding are now available through numerous public-private-venture 

capital partnerships to create solar-powered “mini-grids” ranging from 20 to 200kW of PV 

generation capacity. As the electrical demands of many communities are rapidly growing past 

simple lighting needs, many microgrid projects are now focusing on powering equipment related 

to productive uses of energy and job creation. 

Number of Papers using each Technical, Economic, Environmental, or Social 

Decision Criterion 

Figure 11: Number of papers using each category of technical, economic, environmental, 

and social impact criterion as part of an optimization formulation including both qualitative 

and quantitative objectives. 
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The last portion of this survey examined tools available to combine the quantitative criteria 

discussed in Part 1 [21] and qualitative technical, economic, environmental, and social decision 

criteria summarized in Table 10. The analytical hierarchy process (AHP) is by far the most popular 

method, with dozens of studies and entire survey papers [152] dedicated to application of this 

technique to microgrid optimization.  

As a result, the concluding discussion will focus on the other less common MCDM 

techniques (summarized in Figure 12) as there still exists space for new contributions and 

innovations. The weighted sum process is the easiest of these methods, and does not require any 

special analysis once weighting factors are chosen. Utility theory techniques (such as MAUT, 

SMART, and AHP) present great flexibility in combining both numerical and qualitative decision 

criteria. However, some of the analyses required to determine relationships and priority between 
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objectives can be quite arduous. DCE and PROMETHEE provide an excellent framework when 

choosing between discrete alternatives, such as siting options, microgrid investment portfolios, 

and customer preferences. TOPSIS and Pareto-front optimization can be applied together, and seek 

a compromise between directly conflicting objective functions, such as those listed in Figure 8. 

3.6.Conclusion 

This paper surveys the key components of multi-objective optimization for planning and 

operation of islanded microgrids, including objective functions, constraints, control variables, 

solvers (covered in Part 1 [21]), forecasting, relationships between objectives, and multi-criteria 

decision making techniques (covered in Part 2). Optimization tools and evaluation criteria relating 

to technical, economic, social, and environmental considerations are discussed in the context of 

microgrids both for electrification of rural communities and for reinforcement of existing 

distribution systems that may be separated from the rest of grid during major disturbances. 

This survey also provides some insight into areas of open research, such as the need for 

further study of effective ways of integrating social impact indices into optimization problems to 

provide a more comprehensive view than that provided by traditional measures, such as levelized 

cost of energy or system reliability. Additionally, some of the MCDM techniques discussed (such 

as SMARTER) have found relatively little use in microgrid optimization formulations despite their 

applicability. Integration of more accurate forecasting tools for both renewable generation and 

customer loads is an area where faster and more accurate models may benefit both power system 

planning and operations. Interconnection of islanded microgrids and formation of multi-microgrid 

distribution networks is an emerging field, which will require extensive study of potential conflicts 

between different microgrid controllers with different control and optimization objectives. Finally, 

additional tools must be developed to help accelerate electrification of the last billion people 
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worldwide that lack safe, reliable, and clean electricity, and for whom access to renewables-based 

microgrids will be a life-changing experience. The authors anticipate this survey to serve as 

reference for research in all of these fields.  
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CHAPTER 4: 

AN ENTERPRISE SYSTEMS ENGINEERING APPROACH TO ELECTRIFICATION 

A holistic framework to modeling community electrification projects is presented in this 

chapter, introducing a new life cycle model for the planning, design, funding, construction, 

commissioning, operation, and expansion of community microgrids. The discussion the details of 

each phase in the systems life cycle, including needs analysis, concept development, community 

validation, decision analysis, deployment planning, in-field demonstration evaluation, engineering 

design, integration & verification, production & deployment, operations & support, and expansion 

of the project to reach additional communities. An enterprise system-of-systems hierarchy is also 

introduced, in which a community-based management structure is broken down into 5 layers 

spanning the administrative, social, technical, and physical components of a community 

development program. Each of the layers is also associated with a set of UN Sustainable 

Development Goals. 

This chapter is a verbatim copy of an article published by the researcher for IEEE 

Electrification Magazine under the same title. A copyright waiver is provided in Appendix A.1. 
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4.1.Introduction 

Electrification of remote communities worldwide represents a key necessity for sustainable 

development and advancement of the 17 United Nations Sustainable Development Goals (SDGs). 

Additionally, it is a prerequisite to creation of numerous other infrastructure and economic 

systems, including agriculture, healthcare, education, clean water, sanitation, transportation, and 

telecommunications. With over 1 billion people still lacking access to electricity, finding new 

methods to provide safe, clean, reliable, and affordable energy to off-grid communities deserves 

to be a dynamic area of research. It is for this reason that numerous papers discussing the design, 

optimization, and construction of electrification microgrids can be found throughout the literature.  

However, traditional approaches to power system design focused on cost and reliability 

criteria do not provide a sufficiently broad view of the profound impact of electrification. 

Installation of a single microgrid is a life-changing experience for thousands of people, including 

both residents who receive direct electricity service and numerous others who benefit from better 

education, new economic opportunities, incidental job creation, and other critical infrastructure 

systems enabled by electricity. Numerous socio-economic factors, which span the engineering 

design process in terms of both scale and scope, determine whether the power system will be able 

to provide these benefits and operate sustainably. 

For an electrification program to succeed, the project team must work with the community 

to satisfy their needs directly, be sensitive to local environmental constraints, mitigate possible 

risks, and plan for at least ten years of sustainable operations and maintenance. These 

considerations extend beyond the technical and optimization problems typically addressed in 

microgrid design. To address this need, a systems engineering life cycle is introduced and 
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discussed in the context of an IEEE Smart Village regional electrification program in the highlands 

of Papua New Guinea.  

4.2.Papua New Guinea Case Study 

Located just 300km north of Australia, Papua New Guinea (PNG) is a unique country with 

8.1 million residents, 840 languages, and several thousand separate communities. Despite strong 

growth in the oil, mining, and agricultural commodity sectors, 82% of the population survives on 

subsistence agriculture in remote villages. The widespread lack of critical infrastructure has 

stymied growth throughout the country: only 41% of the population has access to proper sanitation, 

31% to clean water, 10% to electricity, and 3% to internet connectivity.  

Although the only national electricity provider, PNG Power Ltd, is attempting to expand 

the power grid through installation of small-hydro and thermal plants, progress has been limited 

by the country’s rugged terrain and lack of supporting infrastructure. Three islanded networks and 

nineteen diesel microgrids account for the country’s total generation capacity of 580 MW, 

composed of 300 MW controlled by PNG Power and 280 MW owned by independent power 

producers (IPPs). The mainland of PNG is served by the Ramu System in the highlands and Port 

Moresby System in the capital city, as depicted in Figure 13. Although the capacity of the Ramu 

System is planned with expansion of the Ramu Hydro plant from 75 MW to 273 MW nameplate 

capacity along with upgrades to a few other smaller units, it is unlikely that the distribution system 

will be expanded farther than a range of several kilometers from the Highlands Highway 

connecting Mount Hagen to Lae. Service to the limited number of customers connected to the grid 

is highly unreliable, as illustrated in Figure 14, with some customer outages lasting weeks. For this 

reason, islanded renewables-based electrification microgrids still remain the most viable method 

for providing safe, affordable, and reliable electricity to all the residents of PNG. 
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Figure 13: The Port Moresby and Ramu power systems that provide service to the 

capital and highlands. Not shown is the 42 MW system powering the island of New Britain. 
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Figure 14: Ramu system reliability statistics for Lae, a seaport on the east coast of 

PNG. About 60% of generation-related interruptions are caused by system under-

frequency events. Reliability figures for customers in the Highlands are even lower. (data 

source: JICA Study Team) 
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About 30 km east of Mt Hagen is the Madan Community, which is the center of a capacity 

building program by PNG CTC, Inc. (a local NGO) and Transform International to provide access 

to electricity, intranet, education, safe water, proper sanitation, and community empowerment 

programs. Within the initial 10 km project radius, there are seven tribes with an estimated 44,000 

people and 35 schools with an average of 275 students each. The majority of schools lack critical 

resources including safe drinking water, electricity, sanitation, desks, books, teaching supplies, or 

access to the government curriculum. 

The Madan CTC program builds upon 15 years of capacity building work focused initially 

on the critical healthcare needs of PNG, which has both the highest infant and child mortality rate 

and highest HIV incidence rate in the Pacific. To address these needs, the community and late Dr. 

Larry Hull, MD built the Madan Medical Clinic and Birthing Center in 2007, which is entirely off-

grid and serves over 10,000 patient visits, 5000 vaccinations, and hundreds of births every year. 

In 2013, the community launched the current sustainable development program, which has made 

great progress in creating the community capacity to build, install, maintain, operate, and expand 

infrastructure systems. A series of Rotary Global Grants has successfully constructed a set of 

rainwater harvesting and distribution systems providing a million liters of clean water a year and 

safe sanitation to 5000 people in the community. The program has also provided over 175,000 

textbooks to local schools and established three new community centers that function as hubs for 

Figure 15: Community members gather to celebrate the construction of a new water and 

sanitation facility at Papen Elementary School in the Madan Community. 
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ongoing adult literacy, women’s empowerment, and vocational training programs. In collaboration 

with IEEE Smart Village, the program will also provide electricity, community intranet, digital 

education, and entrepreneurial opportunities with regional expansion planned to reach all 700,000 

residents of Jiwaka and Western Highlands Provinces.  

4.3.IEEE Smart Village Approach to Sustainability and Scalability 

IEEE Smart Village (ISV) is the member-led, not-for-profit, humanitarian outreach 

program of IEEE and one of the four priority initiatives of the IEEE Foundation. ISV enables 

community entrepreneurs to empower their communities through capacity building projects 

focused on three pillars of energy, education, and enterprise. With a focus on field implementation 

of the Sustainable Development Goals, ISV has created a network of experienced partners and 

village leaders engaged in community micro-utility infrastructure projects, humanitarian 

technology transfer, community-based education, and holistically sustainable enterprise. ISV aims 

to empower 50 million people by 2025 with plans for expansion in Africa, India, South America, 

and Asia.  

ISV has been acting as the catalyst for socio-economic and technological change with eight 

years of successful projects by simultaneously taking bottom-up and top-down participatory 

development strategies. Each new project builds upon an on-the-ground network of partners and 

village leaders who have previously led community infrastructure projects addressing other 

Sustainable Development Goals, including clean water, proper sanitation, affordable healthcare, 

quality education, sustainable agriculture, and gender equality. Access to safe, clean, secure, and 

affordable sources of electricity have been the limiting factor in economic growth and poverty 

eradication. 
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The ISV business model is based on establishment of long-term collaboration with in-

country community entrepreneurs, who in turn are expected to build relationships at both the local 

and national level with financial, social, and governmental institutions. This approach eliminates 

conflicts of interest with national utilities, raises awareness and support for ISV initiatives, enables 

creation of complementary infrastructure, and promotes opportunities for increasing the prosperity 

of villages surviving on less than $2 USD per day of per capita income. Open sharing and 

standardization of technology, business models, education, vocational training, community-wide 

enterprise, and approaches to funds leveraging have allowed the ISV model to be implemented 

worldwide, reaching over 100,000 people in 2017 with a 50% annual growth rate. 

4.4.Achieving Sustainability 

Success of electrification projects extends far beyond the design, installation, and 

commissioning of a microgrid. To provide real benefits to a community, a power system must also 

be complemented by an equally complex array of social infrastructure and community-based 

organizations that will assure that the system and its components are properly maintained, 

operated, and replaced at the end of their lifespan. Prior to the start of the design process, a network 

of local stakeholders, customer user-groups, financial mechanisms, and community organizations 

must be established. During the installation and commissioning phase, it is essential that the 

community is an equal participant and that core knowledge is transferred to full-time staff through 

train-the-trainer processes.  

In creating a holistically sustainable electrification program, arguably only 20% of the 

work is technology; the remaining 80% is development of community relationships, inclusive 

education, and business development practice. Due to the complexity of the process required to 
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create a truly sustainable project, advanced design and project management tools are necessary 

and can be found in the discipline of systems engineering. 

4.5.Systems Engineering  

Systems engineering is a broad discipline that not only includes elements of electrical, 

mechanical, and civil engineering, but also integrates technical design with social, management, 

human, regulatory, and business domains. It provides a holistic perspective, which is needed to 

guide the analysis, design, testing, integration, and deployment of complex systems formed from 

numerous interrelated components working together to achieve a common goal – arguably a 

description of any power system. 

The traditional project management definition of success in terms of scope, schedule, and 

budget is expanded to provide a balanced viewpoint seeking an optimal tradeoff between 

performance, cost, customer satisfaction, stakeholder requirements, business opportunities, and 

individual technical attributes. Systems engineering simultaneously extends the engineering 

design process to include client needs, use cases, operational scenarios, technological maturity, 

risk analysis, functional requirements, performance specifications, subsystem interfaces, 

production, deployment, operations, maintenance, and disposal. This sequence of analyses and 

considerations leads to the development of a systems engineering life cycle, of which the project 

management life cycle is a subset. 

A number of standards have been developed to model the activities involved in systems 

engineering, including MIL-499B, IEEE-1220, EIA-632, and ISO-15288. The first three standards 

in this list focus more on individual processes and systems analysis/control, and so are of less 

relevance to the current discussion. However, ISO-15288 integrates technical processes with a set 
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of enterprise management and project planning tasks. Although these elements are not presented 

in sequential order, they form a foundation for creating a life cycle for electrification systems. 

4.6.Community System-of-Systems Enterprise 

Although a microgrid typically represents a single system, it actually forms part of a 

system-of-systems hierarchy spanning social, economic, and technical levels, not unlike Maslow’s 

hierarchy of needs. Arguably, the final mission of electrification projects is to increase the quality 

of life for the residents of the community, which can be represented by community enterprise. This 

abstraction integrates all the elements that contribute to eradicating poverty in a community and 

can be expressed through the 17 UN SDGs, as depicted in Figure 16.  

More specifically, community enterprise represents the organizations, entrepreneurs, 

processes, systems, technologies, stakeholders, community members, and other resources that 

contribute to the holistically sustainable development of the community. The scale of community 

enterprise is far broader than merely providing electricity service. Creation of reliable access to 

electricity enables information communications technology (ICT), water, and other critical 

infrastructure that will transform the previously remote community into a regional hub that attracts 

new businesses, education programs, and further investment. The goal of community 

empowerment and capacity building drives the enterprise development and management strategy, 

including infrastructure, services, business opportunities, training, ICT investments, and 

operations.  
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Figure 16: Hierarchy of elements forming the community infrastructure system-of-systems, with a mapping of UN Sustainable 

Development Goals corresponding to each system level (i.e. system, subsystem, component, etc.) 
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A community infrastructure program is composed of a series of partially interdependent 

projects and systems forming a system-of-systems (SoS) that cooperate to support and promote 

sustainable economic growth and social empowerment throughout the community. The second 

layer of the enterprise systems hierarchy represents the interfaces and collaboration between a 

microgrid and other water, sanitation, electrical, information technology, and wireless 

telecommunications systems that may be present. The lower layers of the hierarchy represent 

multiple businesses that may be providing the same service (such as multiple islanded microgrids 

or service kiosks), individual systems, and their respective components.  

The SoS structure of a community electrification and infrastructure can be explained in 

terms of the seven characteristics of SoS originally outlined by Sage and Cuppan: 

 Operational Independence: An electrification microgrid forms the foundation for other 

infrastructure systems and community services that are independent and individually 

useful. 

 Managerial Independence: The microgrid and other community systems not only can be, 

but typically are operated and managed independently. The entities responsible for design, 

construction, operation, and maintenance of various systems (including electricity, water, 

or communications technologies) may be unrelated, but contribute towards the overall 

mission of the SoS.  

 Geographic Distribution: The systems typically are dispersed over a wide region of a 

community. Through advancement of communications access and Internet of Things (IoT) 

humanitarian technologies, exchange of information between systems is becoming 

increasingly common. 
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 Emergent Behavior: The overall goal of the SoS to enable sustainable development and 

capacity building is not related to the direct functions of an individual microgrid or other 

system 

 Evolutionary Development: The development of the community SoS evolves continuously, 

with each new system not only changing the structure, mission, and role of the SoS, but 

also enabling the addition and modification of other systems. 

 Self-Organization: The SoS represents a dynamic organization structure that is able to 

respond in an agile manner to its environment and objectives of the community program. 

 Adaptation: The entire community enterprise (at the pinnacle of the SoS) is itself 

responsive to changing community needs, technological acceptance, success of current 

projects, stakeholder inputs, and an array of socio-economic factors. 

In the case of the Madan program, the highest level of community-based infrastructure 

enterprise is organized and guided by the Madan CTC management authority (the local non-profit 

responsible for construction, maintenance, and managerial oversight of the program) and small 

entrepreneurial businesses supported by the new infrastructure. The Madan CTC is additionally 

responsible for providing the forum for community members, sponsors, and other stakeholders to 

establish the continuous feedback loop necessary to keep the community enterprise SoS agile and 

adaptive.  

The community centers and maintenance monitoring staff operate at the second level, 

ensuring proper coordination of operations and maintenance of the systems. At the third level are 

the individual systems and their operators who run small entrepreneurial businesses providing safe 

drinking water, charging services for cell phones, operation of portable battery kits, collection of 

waste, and distribution of tablets and computers to community workshop participants at schools 
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and community centers. Finally, at the lowest two levels are the individual solar-power, digital 

classroom, community intranet, water, and sanitation subsystems and the individual components 

of each system, such as solar panels, batteries, computers, and wireless routers.  

4.7.Electrification Systems Engineering Life Cycle 

Several life cycles have been created for the development of defense technologies, 

software, and other complex projects, including the waterfall, spiral, agile, rapid prototyping, and 

incremental models. Although models derived for other applications share many of the same 

phases as those of an electrification program, the primary emphasis of most models is initially 

upon development of specifications and subsequently upon integration and testing since these 

phases are essential for successful deployment and production of new technologies and software. 

However, these phases are of less importance for the success of community electrification 

programs. Few microgrid projects implement unproven, cutting edge technologies (as are required 

for defense systems), but rather focus on design and operation of robust, durable, and reliable 

commercially-off-the-shelf (COTS) generation, energy storage, and controller components that 

have already been integrated and tested by the manufacturer. Likewise, the extreme differences 

between various custom software systems are not seen in the functional and performance 

requirements between one microgrid and another.  The complexity of community electrification 

lies in attaining financial, technical, and operational sustainability of the microgrid so that it can 

successfully reach its 20 year design lifespan.  
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Figure 17: Spiral of community-based infrastructure: this systems life cycle model has been developed to address the 

unique challenges and considerations involved in electrification projects  
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To address the need for a simple description of the process for establishing the technical, 

financial, and organizational support subsystems needed, a new electrification systems engineering 

life cycle is proposed. This model targets project planners, pro-bono consultants, and in-country 

engineers seeking to collaborate with a series of communities to establish a community-based 

infrastructure program capable of regional scaling. The life cycle proposed follows a spiral pattern, 

as shown in Figure 17, due to the cyclical nature of building successive infrastructure programs 

within a single community and when expanding to additional communities. Each of the phases of 

the lifecycle will be discussed and illustrated using the Madan community empowerment program. 

4.8.Needs Analysis and Concept Development 

The needs analysis process is possibly the most important step for understanding the 

required project scope, establishing a relationship with the community based on mutual trust, and 

creating the foundation for a successful regional program. This phase comprises far more than a 

simple survey of how many people in a village lack electricity, what they are willing to pay, and 

how much kerosene they burn. It is a comprehensive process that includes 

 establishing relations with community leaders  

 identifying potential local technical contributors 

 categorizing key stakeholders 

 recognizing factors that have limited electricity access 

 researching publications and records of prior project successes and failures 

 evaluating availability of supporting information/communications technology 

 assessing access to education and vocational training 

 gauging the familiarity of the community with microgrid technologies 
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 appraising past records of maintenance, operation, and materials availability 

 compiling community income generation sources and local access to finance 

 estimating new jobs and entrepreneurial opportunities that will be created by electrification 

 mapping existing assets for infrastructure and shared community services 

 selecting candidate sites for preliminary in-field demonstration systems 

A detailed assessment covering the technical, social, geographical, financial, cultural, and 

organizational aspects of the community enables the development of a project baseline justifying 

the need in both qualitative and quantitative terms. The needs analysis phase is concluded by an 

operations analysis that defines the general approach, value delivered to the community, and list 

of operational objectives for the planned electrification program. 

  

Figure 18: Madan community members, who had never seen a tablet computer before, 

gather around a Rotary volunteer conducting a site survey. (Photo courtesy Aarlie Hull) 
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The subsequent concept development phase focuses on converting the identified 

community needs into a set of candidate enterprise system concepts. The first process is functional 

analysis, which identifies which new products, services, or features would be delivered to the 

community by the considered electrification plan. The goal is to translate the operational objectives 

previously identified into a list of functions to be performed, which are assigned to subsystems. 

The analysis also identifies operational interfaces both between internal subsystems and with 

external stakeholders. These interfaces can be summarized in a context diagram, as depicted in 

Figure 20.  

Figure 19: A typical household in the PNG Highlands (Photo Courtesy Maureen Yalde) 
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Figure 20: A context diagram depicting some of the interfaces of the electrification enterprise system with its internal subsystems 

and external stakeholders.  
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A complete functional analysis enables the identification of the operational, functional, 

performance, and physical requirements for the system, leading to the creation of a detailed 

concept of operations. A useful systems engineering tool for this process is the triumvirate of 

conceptual design, which is illustrated in Figure 21. The operational context, operational scenarios 

and system requirements are answers to seven simple interrogatives (why, what, how much, who, 

how, where, and when) and form the overall electrification enterprise system concept. It is 

important that community leaders and key stakeholders are closely involved in this process to 

ensure that the resulting concept of operations is relevant to community needs, culturally 

acceptable, and actually feasible. 

In the case of the Madan project, the needs analysis process (conducted in 2015) resulted 

in three parallel operational concepts for the first set of electrification systems that would serve as 

technology demonstration platforms and provide maximum initial social impact. The operational 

concepts focused on electrification of existing shared community infrastructure, starting with 

Figure 21: The triumvirate of conceptual design is a useful tool for 

defining the concept of operations and system requirements as answers to 

seven simple interrogatives. 
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1) formation of digital learning and empowerment hubs at the three Rotary community centers 

2) creation of electricity and education access for the 35 schools within the project radius 

3) electrification of the Madan Medical Clinic for vaccine refrigeration and power of critical 

medical equipment 

4) improvement of electric supply reliability at the community coffee mill, which provides 

fair employment to 800 workers and was certified as the world’s fourth greenest coffee 

operation by Rainforest Alliance. 

The operational concept created for the Madan community consisted of a community-based 

organization following the proven enterprise model of a rural electric cooperative that would be 

responsible for stakeholder management, customer relations, commissioning, operation, and 

maintenance of the electrification infrastructure. The local micro-utility would also be responsible 

for training of community members, both as staff and as customers. The community organization 

would continue to manage the Madan water, sanitation, and education infrastructure as separate 

components of its micro-utility project portfolio. Program management, oversight, and funding 

would be provided through Transform International, an NGO based in USA and Canada. Costs of 

staffing, operations, maintenance, upgrades, and expansion would funded by revenue derived from 

residential and commercial electric service, battery charging services, and technology delivery fees 

assessed from schools receiving electrification / digital education packages.  

The micro-utility operational concept and functional analysis was subsequently translated 

into a functional series of functional, operational, and performance requirements, which are 

summarized for the community center deployment strategy in Table 12. The associated concept of 

operations is depicted in Figure 22.  
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Figure 22: Concept of operations for electric service at the three community centers 
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Table 12: Concept development results for community center electrification in Madan, 

one of four parallel operational concepts developed for the program 

Functional 
Requirements 

Scalable, robust systems to provide reliable electricity for  

 LED lighting 

 digital classroom technologies (computer, projector, camera, 
digital content server, Android tablets, printer, Wi-Fi router) 

 paid cell phone charging.  

 charging of portable battery kits (PBK) for home electrification 

Operational 
Requirements 

 Sufficient lighting for operations after dusk and during periods of 
heavy rain 

 Delivery of power with sufficient quality and capacity for IT 
equipment and electronics for digital classrooms 

 Ability to store sufficient energy to provide at least two days of 
power during monsoons 

 Sufficient capacity for cell phone charging  

 Ability to expand system to allow charging of PBK  

 Ability to power both AC and DC loads 

Performance 
Requirements 

 Ability to power at least 10 LED light bulbs per room with  
minimum luminosity of 300 lumens each 

 Ability to power a computer, projector, Wi-Fi modem, and 
intranet receiver with a maximum power consumption of 50 W 
each 

 Ability to operate the system at maximum power for at least 12 
hours a day 

 Ability to charge at least 30 Android tablets with a maximum 
power use of 10 W for use 3 hours per day 

 Ability to charge at least 100 cell phones per day with a cell 
phone battery capacity of 2 Ah each 

 Ability to charge up 5 laptops per day with a battery capacity of 
50 Ah each 
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4.9.Validation, Optimization, and Planning 

The next set of phases in the enterprise systems life cycle bring the initiative from concept 

to an actionable plan for deployment and operation of the electrification systems. The third phase, 

Community Validation, evaluates and verifies whether the proposed concept of operations and 

requirements are not only feasible, but also whether the system will satisfy the needs of the 

community and sustainable development objectives of the project. The deliverables from this 

phase are an initial infrastructure and enterprise development plan, as well as a fully defined 

community capacity building concept. 

The validation process must involve all local community stakeholders to assure that the 

concept will be relevant, acceptable, and practical. An example of a local review meeting with 

stakeholders is depicted in Figures 23 and 24. If a small amount of ICT access (e.g. 3G cellular 

service) is available to community leaders, then it is possible to expand the validation phase into a 

continuous feedback process through email and video-conferencing software. Hosting virtual 

meetings can enable the involvement of a global team of pro-bono consultants, provide answers to 

site-specific questions without the need for international travel of experts, and reduce the delay in 

receiving feedback and project status updates from months to merely hours. 

Figure 23: Drafting of system requirements 

by Madan micro-utility managers with 

engineering volunteers from USA and Australia 

Figure 24: Community validation review 

with community leaders, local teachers, 

installers, and other stakeholders 
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The next phase in the life cycle addresses preliminary optimization of the system and 

decision analysis for the electric services to be provided, as well as initial microgrid siting and 

sizing issues. From the SoS standpoint, the broad community impact and empowerment 

opportunities created by electrification require a much broader perspective than that offered by 

traditional power system optimization approaches based on levelized cost of energy and system 

reliability. Fortunately, systems engineering offers a set of tools that have been adapted to 

modeling, simulation, optimization, and decision analysis of complex systems with both 

quantitative and qualitative attributes. 

Optimal siting and sizing of distributed energy resources in a community microgrid is 

required to ensure secure, economic, and reliable operations. Unlike traditional radial distribution 

feeders, electrification microgrids may often have a meshed network topology with frequent power 

flow reversals depending on variations in renewable generation and load. Suboptimal siting of 

distributed generators (DGs) and energy storage systems (ESS) can result in higher network losses, 

unsatisfactory voltage profiles, and poor generator performance due to the unique topology and 

renewable resource distribution of every site. Optimal DG and ESS sizing is also critical to 

achieving a balance between system reliability and installation cost.  

Optimization for microgrid planning often focuses on solving an economic dispatch or unit 

commitment problem over a daily, weekly, or seasonal cycle using historical data and predictions 

of renewable generation and load growth. Multiple software tools, such as HOMER, have also 

been developed to handle these planning tasks. However, these methods do not have the ability to  
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include non-quantitative measures of system performance that affect the sustainability and 

scalability of community electrification programs. 

Multi-criteria decision making (MCDM) methods are an evaluation tool used in systems 

engineering for trade-off analyses and selection of system configurations using both quantitative 

and qualitative decision criteria. The most popular MCDM methods are based on utility theory and 

include the analytical hierarchy process (AHP), multi-attribute utility theory (MAUT), and the 

simple multi-attribute rating technique (SMART). Utility theory allows the relation between the 

costs and benefits (or “utility”) of a particular decision to be expressed in terms of multiple 

objectives, criteria, and alternatives. The amount of preference given to a particular attribute is 

expressed in terms of a utility function that varies between zero and one. Utility functions and 

MCDM methods enable a wide variety of technical, economic, environmental, and social  

Table 13: Select criteria that can be used in multi-objective optimization of microgrids 

considering the capacity building and empowerment possibilities of electrification 

 

Technical Economic Environmental Social 

Reliability Fuel / operations cost Greenhouse gas 
emissions 

Social acceptability 

Safety Installation cost Land use Ease of maintenance 

Technical maturity Maintenance cost Renewables 
utilization 

Ease of training 

Energy efficiency Revenue / profit Component toxicity Jobs creation 

Renewable resource 
potential 

Customer monthly 
cost 

Other environmental 
degradation 

Community services 
provided 

Scalability Payback period Noise Energy policy 

Equipment lifespan Financing Support of other 
nearby infrastructure  

Relevance to 
community needs 
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objectives to be included in the optimization and decision making process. Table 13 presents a 

short list of criteria that can be used in evaluation of candidate microgrid configuration alternatives. 

Completion of the preliminary optimization process leads to the creation (or revision) of a 

detailed project management plan that will guide the project through the remaining stages of 

design, production, installation, commissioning, and training. An effective planning document will 

include many of the elements of a traditional project management plan, including a project scope, 

schedule, budget, statement of work, business case, deliverables to the community, work 

breakdown structure (WBS), organization breakdown structure, risk management plan, supplier 

management plan, and communications plan. 

For the Madan project, a set of detailed optimization studies were performed for each of 

the parallel microgrid demonstration projects at the three Madan community centers, eight pilot 

Table 14: Configurations of the Initial Set of Microgrid Installations in Madan  
 

Installation PV Capacity ESS Capacity Voltage Site 

Community 
Centers 

2 kW 5 kWh 24V DC 

 

Medical Clinic  5 kW 10 kWh 
48V DC 

220V AC, 1ϕ  
 

Madan Mill & 
Business Center 

20 kW 50 kWh 
48 or 380V DC 

415V AC, 3ϕ (Δ)  
 

Pilot Schools 0.5 kW 1 kWh 12V DC 

 

Standalone 
Sunblazers 

2.2 kW 5 kWh 24V DC 
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schools, medical clinic, and coffee mill considering the factors listed in Table 13. The selected 

configurations for each system is summarized in Table 14. 

4.10. Demonstration, Design, and Integration 

The theme of the next three phases of the electrification enterprise systems lifecycle is risk 

mitigation. Total system breakdown shortly after a successful “intervention” in a community is 

unfortunately a very common occurrence worldwide, which can be attributed to failures in earlier 

phases of the project, such as incomplete needs analysis, lack of community engagement, and the 

absence of an organizational structure to operate and maintain the commissioned system. 

However, even if all the planning and validations steps are followed, there still exist a vast array 

of risks to successful project deployment and long-term sustainability. A sample risk matrix with 

a few of the risk events considered for the first phase of the Madan electrification project is 

presented in Table 15. 

One of the most effective tools for risk management in sustainable development is the 

deployment of a series of small-scale demonstration systems that enable evaluation of candidate 

technologies in the actual community, which is impossible to simulate. Development, deployment, 

Table 15: Sample risk matrix for the Madan project 

Impact Low Medium High 

Likelihood 
Monsoon, 
earthquake 

Random vandalism 
Theft of electrical & 
ICT equipment  

High 

Medium 
Late Delivery from 
Suppliers 

Inability to build 
ICT support systems 
for operations 

Inability of 
community to 
maintain system 

Low  Misuse of 
Technology 

Inability to hire / 
train qualified staff 
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and evaluation of scaled prototype of the actual systems and critical components are essential to 

gauge whether the defined system concepts and preliminary designs will be technically feasible, 

cost-effective, and socially acceptable.  

Consequently, a series of demonstration systems will be constructed in Madan prior to the 

design and deployment of the full electrification program in the 10 km project radius. These 

demonstration systems will be located at the three community centers and will test the 

effectiveness of portable battery kits, wired distribution, prepaid smart meters, and other 

technologies. Simultaneously, the ability of local schools to operate digital classroom technologies 

will be evaluated using the innovative EmpowerPack digital electrification education system 

developed by the authors, depicted in Figures 25 and 26. Each of the EmpowerPack systems will 

provide instantly deployable solutions for schools, community centers, and other community 

Figure 25: The EmpowerPack electrification education system developed by the authors 

provides a portable, instantly deployable system for a school, medical clinic, or community center 

with the latest ICT and power technologies 
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facilities with solar power, computing, internet connectivity, access to government curricula, adult 

vocational training resources, and means for local content development. 

 

After the successful deployment and evaluation of the demonstration systems in Fall 2018, 

a full engineering design will be created for interconnecting nearby demonstration systems, 

electrifying all remaining schools, and deploying home electrification systems throughout the 

community with a combination of wired distribution systems and portable battery kits. A map of 

the first multi-microgrid interconnection in Madan is presented in Figure 27. All of the elements 

will subsequently be assimilated into the community-based micro-utility enterprise system, which 

will be responsible for final integration and validation of all system functions.  

Figure 26: An EmpowerPack Standard solar ICT kit for a single classroom, capable of 

bringing the latest digital education technologies to off-grid settings 
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4.11. Towards Regional Deployment and Sustainable Operations 

The last set of phases in the electrification enterprise life cycle focus on the transition of 

the program from a set of pilot demonstration project into a cohesive regional infrastructure 

system-of-systems. The process involves an even wider range of stakeholders and considerations, 

including the establishment of dedicated equipment supply chains, staff training programs, 

operating procedures, maintenance schedules, customer relations teams, and financial 

mechanisms. As the Madan CTC progresses towards this phase as an adaptive enterprise system, 

changes in even the micro-utility organization structure may be necessary, such as the transition 

from its current rural electricity cooperative model to a community-based independent system 

operator (ISO) with transactive market mechanisms capable of coordinating a broad network of 

interconnected islanded and grid-tied microgrids. A conceptual framework for this future model is 

presented in Figure 28.  
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–– Existing PNG grid 
–– Existing 220V line 

–– Planned expansion, Fall 2018 

1 km 

Figure 27: Planned interconnection of Madan pilot demonstration systems and initial 

distribution system expansion 
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Figure 28: Conceptual framework for a future multi-microgrid 

transactive market in PNG. 
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CHAPTER 5 

CAPACITY OPTIMIZATION OF A COMMUNITY MICROGRID FOR RURAL 

ELECTRIFICATION 

An algorithm is developed for optimization of photovoltaic and energy storage capacity of 

small community microgrids for rural electrification without diesel or other thermal backup. The 

developed algorithm is applied to a case study of the Madan Community in Jiwaka Province, Papua 

New Guinea. A series of community microgrids are being installed to provide electricity, high 

speed intranet, and digital education in community centers, schools, and homes. The optimization 

results will be used to create a set of standardized designs based on the IEEE Smart Village 

microgrid topology for electrification of communities throughout Jiwaka Province. 

This chapter is a verbatim copy of a paper of the same titled published by the researcher in 

the 2017 IEEE PowerAfrica Conference. A copyright waiver form is provided in Appendix A.1. 
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5.1. Introduction 

Electrification indisputably stands as one of the most effective ways to confront global 

poverty–a prerequisite to meeting the critical needs of billions of people who currently lack clean 

water, sanitation, and access to education, medical services, communications technologies, and 

entrepreneurial opportunities [63]. Furthermore, reliable electric supply can create a foundation 

for creating community-based infrastructure, sustainable business opportunities, and vocational 

training programs. Photovoltaic-based microgrids are one of the most successful methods for 

providing reliable electricity to communities in peri-urban, rural, and deep-rural communities 

worldwide [177].  

Optimization of generation and storage capacity installed in a microgrid is essential for 

secure and cost-effective operations. As a result, many approaches to optimal planning were 

developed; these are classified into three categories [14]. The first seeks to optimize the size and 

type of generation with respect to cost (expressed as installation cost, cost of energy and 

operations, or payback-period of investment), environmental impact, and reliability [178] - [179]. 

The second approach solves an economic dispatch problem using anticipated load and renewable 

generation profiles [180] - [181], seeking a compromise between conflicting objective functions 

of maximizing profit, minimizing emissions, and maximizing reliability using pareto-optimization 

[182], discrete compromise programming [183], or a multi-criteria decision making algorithm 

[184] [185]. 
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The majority of such studies focus on optimal capacity and location of distributed 

generation and ESS in a distribution-scale network, rather than small DC microgrids typical of 

electrification in rural and deep-rural communities. However, optimization of the installed capacity 

is nevertheless important even for islanded DC systems less than 5 kW, especially if the power 

system will not include any fossil-fuel backup generation. Additionally, the literature does not 

include any optimization methods for systems using portable battery kits (such as shown in Figure 

29 b) for electrification of homes where wired distribution or solar home systems are not practical. 

As a result, it was determined necessary to develop a method for capacity optimization of 

PV microgrids using the IEEE Smart Village Sunblazer configuration, which is depicted in Figure 

30. In this paper, a planning approach for determining optimal photovoltaic and battery energy 

storage capacity is developed. Two objective functions are presented for 1) maximizing 

operational profits using time varying generation pricing and tiered load pricing, and 2) 

minimizing the installation cost of the system. PV and ESS capacity configurations are evaluated 

by a steady-state simulator of the DC power system that also determines the solution space 

boundaries set by inequality constraints.  Both optimization formulations are solved using linear 

Figure 29: a) A rooftop solar array being installed at the Madan Medical Clinic in Papua 

New Guinea. b) Energy entrepreneurs in Haiti demonstrate the first generation portable battery 

kit. Images courtesy Larry Hull, Na Wokabaut and Ray Larsen, IEEE Smart Village. 
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programming. The rest of the paper is organized as follows: Section 5.3 examines a case study of 

Madan Community in Papua New Guinea (PNG); sections 5.4, 5.5, and 5.6 define the load 

modeling, optimization problem, and solution techniques; section 5.7 presents the optimization 

re1sults for both optimization objectives. 

Figure 30: Concept-of-operations of the community center microgrid supplying PBK 

charging, cell phone charging, and AC digital classroom loads. Residents rent a fully charged 

PBK from a community center, power DC appliances, and return the PBK when it is 

discharged. 
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5.2. Case Study: Papua New Guinea 

Located 200 km north of Australia, Papua New Guinea has 7.46 million residents, of whom 

80% live in rural subsistence-level conditions and 40% on less than a US dollar a day. With the 

highest child and infant mortality rate in the Pacific and an adult literacy rate of 58%, development 

throughout rural PNG is stymied by the absence of critical infrastructure, including electricity 

(90% of the population lacks reliable access), water and sanitation (68% lacks access), and internet 

(97% lacks access) [63]. 

Community-based initiatives stand out as the most viable solution to stable community 

growth and creation of critical infrastructure. A case in point is the Madan Community in Jiwaka 

Province (lat. -5.807°, long. 144.402°), where a series of community microgrids are being built by 

a project involving tribal leaders, Transform International, IEEE Smart Village, The Rotary 

Foundation, Na Wokabaut, and Highlands Arabicas Ltd (a social business operating the Madan 

Coffee Mill).  

The project builds upon the success of a previous initiative [186] that constructed a 

community rainwater system supplying over a million liters of clean water a year. In spring and 

summer of 2017, a series of pilot microgrids (depicted in Figure 31) will be established at three 

Rotary community centers in Madan and Kuri villages, eight primary schools, and the Madan 

Medical Clinic, which serves 10000 patient visits and provides 5000 vaccinations a year.  
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The project will also construct a multi-microgrid interconnecting five microgrids operating 

in both grid-connected and islanded modes. The resulting power system comprises the Madan 

Coffee mill (25 kW PV, 90 kW diesel), Madan Village (5 kW PV), community intranet base station 

(5 kW PV), Pin River water pump (10 kW PV), and a point of common coupling to PNG power 

grid.  By interconnecting the individual microgrids [63], the power system achieves greater 

reliability, reduces capacity requirements, shares peak loads, and enables more economic 

operations.  

The first set of demonstration projects at the Kuri Rotary Community Center and Madan 

Medical Clinic use the IEEE Smart Village Sunblazer topology and operational structure, which 

Figure 31: Map of the Madan community and pilot community microgrid installations at 

three community centers and eight primary schools. Also depicted is the multi-microgrid 

interconnecting the Madan Mill, Village, Medical Clinic, community intranet base station, 

and Pin River solar pump. 

CLTC Elementary 

Madan Mill & 

Community Center 
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is shown in Figure 30. The system can be divided into a 0.5 kW AC section powering a digital 

classroom for use by community workshops and empowerment programs, a 24 V DC bus for PV 

and BESS units, and two lower voltage (14 V and 5V) connected by DC-DC converters for 

charging of cell phones and 12 V portable battery kits (PBK). 

Throughout Jiwaka Province, the majority of the population lives in small groups of huts 

built from grass or bush materials and are frequently scattered beyond the practical service range 

of a microgrid using traditional power distribution technologies. Additionally, above ground 

distribution lines frequently become the target of power tapping, while underground cables in other 

Papua New Guinea projects have failed due to ants eating the PVC insulation [187]. Consequently, 

electrification of homes is to be accomplished by means of portable battery kits (PBK) developed 

by IEEE Smart Village, thereby bypassing the challenges of wired distribution lines. A small PBK 

with a capacity of 120 Wh is shown in Fig 29(b) on the first page and can support LED lighting 

and charging of small electronics of a single household for a few days. 

PBKs are rented on a monthly basis by the community micro-utility to local women 

entrepreneurs who are trained to become energy traders and resell the electrical energy throughout 

their communities. Micro-utilities are established throughout the region on a franchise system and 

use the generated revenues to expand their services to additional communities and fund 

maintenance and operation of the system. Using this model, the project is anticipated to reach at 

least 200000 customers in Jiwaka Province and possibly up to a million people throughout PNG. 
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5.3.Load Modeling 

5.3.1. PBK Charging: 

12 V lithium-iron-phosphate (LiFePO4) batteries with 25 Ah capacity are chosen for use in 

the PBK system for home electrification. With an energy density of up to 130 Wh/kg and long life 

cycle (up to 80% of original capacity after 4500 cycles [188]), a typical PBK would weigh less 

than 3 kg and provide a service lifetime of at least 15 years. 

The charging profile of LiFePO4 batteries typically comprises two constant-current periods 

followed by a short constant-voltage period to allow the battery to cool, [188] [189], as shown in 

Figure 32. 

Figure 32: Charging profile of a 12 V, 25 Ah LiFePO4 portable battery with two constant-

current and one constant-voltage components.  
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The power required for PBK charging is obtained by combining the load profile of an 

individual battery (shown in Figure 32(d)) with the anticipated arrival profile. The frequency 

distribution of PBK arrivals is modeled by two normal distributions centered at 08:00 and 17:00 

whose areas sum to one fourth the number of PBKs currently rented by the micro-utility. The 

resultant load profile is shown in Figure 26 as a function of number of PBKs charged per day and 

the time. 

 

 

Figure 33: Charging profile of PBKs over a typical load cycle as a function of the number of 

batteries brought per day. 
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5.3.2. Cell phone charging: 

Cell phones charged at the community center have a charging profile similar to that of the 

PBKs, but a capacity of only 1.5 Ah (or 5.5 Wh at 3.7 V). The community center will charge 30 

to 50 cell phones per day.  

5.3.3. AC digital classroom loads: 

Equipment included in each digital classroom include 200W of LED lighting, a 30W laptop 

computer, 200W LED projector, 50W printer, 5W Ligowave DLB-5 WiFi long distance (WiLD) 

radio receiver, 5W local WiFi router, and 30 android tablet computers. The three load profile 

components and resulting total AC and DC load are shown in Figure 34.  

 

Figure 34: PBK charging, cell phone charging, AC digital classroom, and resultant total 

load profiles over a typical daily cycle. 



140 

5.4.Optimization Problem Formulation 

5.4.1. Maximization of Operational Profit 

The first optimization formulation focuses on maximization of profit obtained from 

providing electric services. This is formulated as the revenue obtained from energy sales less the 

costs of photovoltaics, energy storage, and lost load due to insufficient capacity. In the PNG case 

study, revenue sources are PBK charging, cell phone charging, and digital classroom power, which 

are each billed at different rates.  

Constraints on operation of the power system include power balance, limits of power 

dispatched from or absorbed by the energy storage; power flow through DC-AC and DC-DC 

converters; SOC of the ESS; and network voltages. Line flow constraints are neglected in this 

optimization since the microgrid is spatially contained within the community center, and wire 

harness design is based on the maximum expected current draw of all loads. Since the topology 

does not include any backup thermal generation, an additional constraint is added such that at the 

end of a load cycle, the final ESS SOC is at least 95% of the initial SOC: 

𝑚𝑎𝑥: ∑ (𝐹𝑝ℎ(𝑃𝑝ℎ) + 𝐹𝑝𝑏𝑘(𝑃𝑝𝑏𝑘) + 𝐹𝑐𝑙(𝑃𝑐𝑙)) − (𝐹𝑃𝑉(𝑃𝑃𝑉) + 𝐹𝐸𝑆𝑆(𝑃𝐸𝑆𝑆)) − 𝐹𝑙𝑙(𝑃𝑙𝑙)𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑃𝑃𝑉 + 𝑃𝐸𝑆𝑆 = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠 

𝐼𝐸𝑆𝑆,𝑚𝑖𝑛 ≤ 𝐼𝐸𝑆𝑆,𝑐ℎ𝑟𝑔 ≤ 𝐼𝐸𝑆𝑆,𝑚𝑎𝑥 

𝐼𝐸𝑆𝑆,𝑚𝑖𝑛 ≤ 𝐼𝐸𝑆𝑆,𝑑𝑠𝑔 ≤ 𝐼𝐸𝑆𝑆,𝑚𝑎𝑥 

𝑃𝑐𝑜𝑛𝑣,𝑚𝑖𝑛 ≤ 𝑃𝑙𝑜𝑎𝑑 ≤ 𝑃𝑐𝑜𝑛𝑣,𝑚𝑎𝑥 

(1) 

(2b) 

(2c) 

(2d) 

(2a) 
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𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  
𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) ≥ 0.95 𝑆𝑂𝐶(𝑡𝑠𝑡𝑎𝑟𝑡) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝐸𝑆𝑆 ≤ 𝑉𝑚𝑎𝑥 

The energy cost of PV and ESS are expressed as a variable rate depending on the capital 

recovery cost (𝐹𝑐𝑟), power balance, and ESS SOC: 

 𝐹𝑃𝑉,𝐸𝑆𝑆 = 𝐹𝑐𝑟 ( 200𝑆𝑂𝐶 + 100) (∑ 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑏𝑎𝑠𝑒𝑃𝑃𝑉 + 𝑃𝑏𝑎𝑠𝑒 ) 𝑃𝑃𝑉,𝐸𝑆𝑆 ,  
where 𝑃𝑏𝑎𝑠𝑒 is the system base kVA value and is included to scale the energy price to the capital 

recovery cost when load and generation are equal or zero.  

𝐹𝑐𝑟 is expressed as the quotient of the annualized capital cost and actual annual energy 

production or actual energy cycled through the ESS during a load cycle: 

𝐹𝑐𝑟,𝑃𝑉 = 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡(𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑘𝑊ℎ) 𝑟(1 + 𝑟)𝑛(1 + 𝑟)𝑛 − 1  
𝐹𝑐𝑟,𝐸𝑆𝑆 = 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡(𝑡𝑜𝑡𝑎𝑙 𝑘𝑊ℎ 𝑐𝑦𝑐𝑙𝑒𝑑) 𝑟(1 + 𝑟)𝑛(1 + 𝑟)𝑛 − 1  , 

where 𝑟 and 𝑛 are the depreciation rate and desired payback period of the system. The behavior of 

the energy cost formulation is summarized in Table 16 below. 

Table 16: Energy price characteristics 

 

Change in Microgrid 

Environment 

Impact on Optimization Parameters 

Available Energy Energy Cost 

PV Generation Increases Decreases 

Load Decreases Increases 

ESS SOC Increases Decreases 

3) 

(2e) 

(2f) 

(2g) 

(3) 

(4) 

(5) 
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5.4.2. Minimization of Installation Cost 

The next objective to be examined is minimization of the installation cost of the system, 

which is expressed as the sum of the installed costs of PV, energy storage, and miscellaneous 

equipment including regulators, inverters, and other controllers, subject to the same constraints as 

the first optimization formulation, listed in (2a) - (2g): 

   minimize:  𝐹𝑃𝑉(𝑄𝑃𝑉) + 𝐹𝐸𝑆𝑆(𝑄𝐸𝑆𝑆) + 𝐹𝑚𝑖𝑠𝑐 + 𝐹𝐼𝑛𝑠𝑡𝑎𝑙𝑙  , 
where the costs of generation and storage are assumed to be linear functions of the installed 

capacity 𝑄𝑃𝑉 and 𝑄𝐸𝑆𝑆: 

𝐹𝑃𝑉(𝑄𝑃𝑉) = 𝐹𝑝𝑢 ∙ 𝑄𝑃𝑉 + 𝐹𝑠ℎ𝑖𝑝 

 𝐹𝐸𝑆𝑆(𝑄𝐸𝑆𝑆) = 𝐹𝑝𝑢 ∙ 𝑄𝐸𝑆𝑆 + 𝐹𝑠ℎ𝑖𝑝. 
5.5.Solution Technique 

A simple steady-state simulator is used to model the behavior of each system configuration 

and determine the time-varying pricing of energy from PV and ESS. The structure of the simulator 

is outlined in the flowchart depicted in Figure 35. 

Photovoltaic generation is treated as a non-dispatchable unit whose output is proportional 

to the solar irradiation. For the PNG case study, seasonal variations are negligible due to the 

country’s near equatorial location. The average daily insolation is 4.5 kWh/m2/day throughout the 

year.  

The power flow through the ESS is determined from the power balance equality constraint 

(2a) to determine the current and power absorbed by or dispatched from the ESS: 

(6) 

(7) 

(8) 
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𝑖𝐸𝑆𝑆 = 1𝑉𝐸𝑆𝑆 (𝑃𝑃𝑉 − 𝑃𝑙𝑜𝑠𝑠 − ∑ 𝑃𝑙𝑜𝑎𝑑), 
where positive current represents charging of the ESS, and negative current represents discharging. 

Subsequently, the SOC is determined recursively by 

𝑆𝑂𝐶(𝑡 + Δ𝑡) = 𝑆𝑂𝐶(𝑡) + 𝑖𝐸𝑆𝑆 Δ𝑡𝑄𝐸𝑆𝑆  

If the ESS is fully drained, the SOC is set at zero, and the lost load is calculated as the 

difference between the total load and the power supplied by the PV and ESS. Similarly, if the ESS 

is fully charged, the SOC is set at its maximum value of 100, and the curtailed PV generation is 

determined.  

At the end of the simulation period, the SOC and current over the time period are examined 

for violations of the inequality constraints (2b) – (2f) were violated during the load cycle. If not, 

the two objective function are calculated using (1) and (6) using the actual amount of solar 

generation dispatched and energy cycled through the ESS, as determined by the simulation.  

The simulation results for a sample configuration charging 50 PBKs and 50 cell phones a 

day with a 4kW photovoltaic array is depicted in Figure 36. For ESS capacities less than 2 kWh, 

the microgrid enters periods of generation curtailment and load shedding, which is seen as the 

vertical surfaces in subplots a), c), and d). The effect of low SOC values corresponds to spikes in 

the time-varying pricing of energy 

The process is repeated for each configuration of PV and ESS capacities under evaluation. 

(9) 

(10) 
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Figure 35: Simulation algorithm for evaluating the performance of different microgrid configurations and determining the 

boundaries on the solution set by the inequality constraints of the ESS state-of-charge and current limitations 
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.  

Figure 36: Simulation results for microgrid configurations with 4kW of PV Capacity: a) 

battery current, b) state-of-charge, c) energy cost of photovoltaics, d) energy cost of ESS 

and lost load, e) revenue derived from charging services, and f) resultant operational 

profit. Note areas of photovoltaic and load curtailment between hours for ESS capacities 
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As can be seen from plots of the two objective functions shown in Figures 37 and 38, the 

operational profit given by (1) and installation cost given by (6) demonstrate monotonic behavior 

with respect to both PV and ESS capacity within the available solution space. As a result, a linear 

Figure 37: Daily operational profit as a function of installed PV and ESS capacity. For the 

load profile of 50 PBK and 50 cell phones charged daily, the objective function is maximized 

by a configuration with 4.6 kW of photovoltaics and 10 kWh of ESS, resulting in a profit of 

$18.4 per day. 
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programming is applied to determine the optimum capacity configuration. The simulation 

algorithm determines the intersections of the solution space boundaries set by constraints (2b) – 

(2g). Both objective functions are then evaluated for each PV and ESS configuration 

corresponding to a corner of the solution space for which no constraint violations occur. The 

objective function values are compared by a sorting algorithm to yield the solution that maximizes 

(1) or minimizes (6).  

Figure 38: Installation cost as a function of installed PV and ESS capacity. For the load 

profile of 50 PBK and 50 cell phones charged daily, the objective function is minimized by a 

configuration with 5 kW of photovoltaics and 5.6 kWh of ESS, with a system cost of $7800 USD.  
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5.6.Optimization Results 

5.6.1. Maximization of Operational Profit 

The hourly operational cost of each configuration is summed to produce the first objective 

function given by (1), which is plotted as a function of the installed PV and ESS capacities. The 

objective is observed to increase monotonically with decreasing PV and increasing ESS values. 

This behavior is attributed to the inverse relation between SOC and cost of PV and ESS energy, 

which causes the algorithm to associate higher ESS capacities with greater operational profits. For 

the community centers examined in the PNG case study charging 50 PBK and 50 cell phones a 

day, the operational profit for the possible configurations is plotted in Figure 37 as a function of 

the installed PV and ESS capacity, along with the boundary constraints set by the SOC and ESS 

current inequality constraints (2b) – (2g). For the studied scenario, the operational profit is 

maximized by a system to a value of $18.4 USD / day with 4.6 kW of PV generation and 10 kWh 

of battery storage. 

5.6.2. Minimization of Installation Cost  

Optimization results for the three community microgrids of the case study for loads ranging 

from 50 to 100 PBKs per day are presented in Table 17. 

Table 17: Optimization results for varying system load sizes 

Daily 

PBKs 

Optimized Microgrid Configuration 

PV Capacity (kW) ESS Capacity (kWh) Installation Cost ($USD) 

50 5.0 5.6 7800 

60 5.7 6.5 9000 

70 6.5 7.4 10100 

80 7.3 8.2 11200 

90 8.0 9.0 12200 

100 8.8 9.9 13400 
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5.7.Conclusion 

A method for optimization of generation and storage capacity for planning of small 

microgrids using the IEEE Smart Village topology is developed. Two objectives of maximization 

of operational profit and minimization of installation cost, of the microgrid are solved by linear 

programming. The developed techniques were applied to determine the optimum configuration of 

a pair of community microgrids in the Madan Community of Papua New Guinea.  

Areas of future work include expansion of the algorithm to include additional types of 

generation such as wind energy, quantitative measures of system reliability, and expansion of the 

developed algorithm into an optimal power flow formulation with interconnection of multiple 

community microgrids into a hybrid AC-DC distribution network. 
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CHAPTER 6 

A SMARTER APPROACH TO MICROGRID PLANNING 

An optimization framework for microgrid planning based on discrete multi-criteria 

decision making is proposed using the simple multi-attribute rating technique exploiting ranks 

(SMARTER) technique. The approach offers greater flexibility in formulating numerical 

optimization of generation and energy storage capacity, and discrete alternatives of generation 

mix, controller setpoints, and siting of distributed resources. The proposed technique enables the 

use of both quantitative and qualitative attributes in planning. The methodology is demonstrated 

for a simple example and a detailed case study seeking to improve the reliability of a small 

industrial microgrid in a rural village of Papua New Guinea. Simulations of discrete alternatives 

are run over a one year horizon, which is then used as input to provide decisions on any set of 

technical, economic, environmental, or social criteria. 

An abridged version of this chapter has been submitted by the researcher for publication in 

the Journal of Power and Energy Systems and is currently under review.  
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6.1. Introduction 

Since the concept of the microgrid was first proposed by [1], [2], a vast number of 

optimization tools, techniques, and methodologies have been developed for both planning and 

dispatch problems. Planning problems examine siting and sizing of new distributed energy 

resources (DER) and changes to network topology to accomplish various objectives such as 

minimizing costs, maximizing reliability, or minimizing losses. Dispatch problems seek an optimal 

schedule of DER in the microgrid to minimize objectives such as costs, emissions, and deviations 

in voltage and frequency in the network.    

The majority of optimization studies in the literature uses a multi-objective formulation 

seeking to maximize or minimize several objective functions related to costs, reliability, and 

environmental impact [3]. If all the objectives are formulated to use the same dimensions then a 

single objective is formed from the sum of each individual objective. Otherwise, conflicts between 

different objectives must be resolved through pareto-front optimization or multi-criteria decision 

making (MCDM) techniques [4]. Once formulated, the optimum value of the objective function is 

found by using optimization solvers such as linear programming, dynamic programming, genetic 

algorithm, and swarm optimization; some reviews of optimization solvers are given in [5] – [7]. 

This paper presents an alternative to traditional optimization approaches that is based on a 

nine-step process focused on stakeholder engagement and maximization of technical, economic, 

environmental, and social benefits. Based on the simple multi-attribute rating technique (SMART), 

the methodology used here – simple multi-attribute rating technique exploiting ranks (SMARTER) 

– is computationally lightweight and scales linearly with the size of the solution space and number 

of decision criteria. By redefining the optimization functions into elicited attributes and converting 

the multi-dimensional solution space into a vector of discrete attributes, we can combine multiple 
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conflicting optimization objectives, and include both qualitative and quantitative indicators of the 

importance of various benefits to key stakeholders and the decision maker. 

The rest of this paper is organized as follows: Section 6.2 introduces multi-attribute utility 

theory (MAUT). Section 6.3 introduces the SMARTER framework for microgrid planning and 

demonstrates the nine-step process with a simple example. Section 6.4 outlines the numerical case 

study. Section 6.5 integrates the SMARTER methodology with simulation output to provide rapid 

decision-making capabilities for any number of technical, economic, environmental, and social 

objectives. Section 6.6 concludes. 

6.2. Multi-Attribute Utility Theory 

Originating from game theory and economic theory, utility theory is based on the concept 

of a utility function that expresses the value of an alternative among a set of choices. The decision-

maker(s) use their preference ranking to select an optimum with the maximum utility among the 

list of available alternatives. Utility functions are non-dimensional expressions with values ranging 

from either zero to one or zero to 100, reflecting the extent to which the alternative satisfies the 

decision-maker’s preference for the corresponding decision criterion [8]. The utility function is 

also able to indicate the decision-maker’s tolerance of risk: concave functions indicate risk 

aversion, convex functions indicate a preference for risk, and linear functions indicate neutral risk 

[9]. 

MAUT combines multiple utility functions using either a weighted sum or product to yield 

the overall utility. The alternative with the highest overall utility is then selected. However, MAUT 

is seldom applied directly to microgrid optimization problems due to the complexity of formulating 
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utility functions and computing scaling constants. Instead, it is typically used as a basis for 

formulation of other approaches, such as the analytical hierarchy process (AHP) and SMARTER  

6.3.Simple Multi-Attribute Rating Technique 

SMART was developed in the 1970s to address the formulation difficulties of MAUT and 

uses linear approximations of utility functions and an additive aggregation model to calculate the 

overall utility of each alternative as the weighted sum of utility values [10] – [12]. Shortly 

afterwards, the concept of swing weights was introduced to correct a conceptual error in the 

original SMART framework, which failed to recognize the impact of the range of values on the 

meaningfulness of the utility function [13]. Subsequently, justifiable rank weights were developed 

to yield the SMARTER process, which removed the burden of determining weighting factors from 

the decision maker [13]. 

6.3.1. Prior SMART Formulations for Power Systems Problems 

Despite its simplicity and ability to consider both technical and socio-economic objectives, 

SMART has been used by surprisingly few studies of power system optimization. 

Reference [14] applies SMARTER to determine an optimal demand response (DR) strategy 

in five cities of northwestern Unites States, with a goal of minimizing thermal discomfort, energy 

cost, emissions, user inconvenience, and equipment degradation. The study also observed that 

SMARTER achieved elicitation of user preferences faster and more accurately than AHP or a 

discrete choice experiment (DCE) [15]. 



154 

Reference [12] examines generation mix study considering hydro, photovoltaics (PV), 

wind, biogas, fuel cell, geothermal, and wave energy with respect to 15 attributes covering 

technical, economic, environmental, and social parameters.  

References [16] and [17]  optimize the capacity of grid-tied wind and solar generation for 

11 possible configurations. The alternatives are evaluated against the criteria of loss of power 

supply probability (LPSP), capacity factor, emissions, share of renewables, installation cost, 

maintenance cost, land use, and social acceptance. 

Reference [18] resolves equipment overloads for a distribution system in Kenya while 

considering capacity constraints, reliability, losses, and environmental impact. 

6.3.2. Implementation of the SMARTER Process 

As can be seen from the scope of the literature using SMARTER, a systematic framework 

for applying this technique to microgrid planning has not yet been developed. This section will 

expand the original nine-step SMARTER decision process with a simple technique for converting 

microgrid optimization problems into an MCDM formulation integrating all the objectives, 

constraints, and solution variables selected by the decision-maker. To help illustrate each of the 

steps in the process, a running example will be used throughout this section. The example will use 

a subset of the solution space, simulation results, and decision criteria for the case study to be 

discussed in detail in Section 6.4.  

6.3.2.1.Identification of decision makers and their goals 

The first step is identification of the purpose of the decision making process (value 

elicitation) and key stakeholders (elicitees) involved in the decision process. An explicit and 
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exhaustive list of elicitees is essential for generating a satisfactory list of decision criteria.  For the 

purpose of creating a general process for microgrid optimization using SMARTER, an exhaustive 

literature survey was conducted by the authors in [3], [4] to acquire a comprehensive list of 

decision criteria. Nearly 250 papers on optimization formulations for planning and dispatch of 

islanded microgrids were surveyed to form an acceptable list of elicitees. We found that 

optimization studies of islanded microgrids are based on formulations selecting from 16 possible 

objective functions, 14 constraints, and 13 control variables. 

6.3.2.2.Creation of a value tree 

The second step is to ask the elicitees to create a list of attributes (criteria) that are relevant 

to them in the decision-making process. A common structure and set of labels must be agreed upon 

by all elicitees participating in the value elicitation process. The criteria submitted by all the 

elicitees must then be combined into a single list with all duplicates eliminated and overlapping 

labels merged. Note that the elicitees are not deciding the ranking between criteria; but are 

generating a comprehensive list of attributes relevant to the decision. 

It is recommended by [13] that the total number of attributes be limited to 12 by combining 

related attributes, redefining attributes that are too specific, and omitting unimportant attributes. 

After all attributes are categorized, they are combined into a value tree that depicts all the elicited 

attributes in a simple graphical format. 

In creating the microgrid optimization framework proposed by this paper, the optimization 

objectives, constraints, solution variables, and decision criteria from the papers surveyed by the 

authors in [3], [4] were categorized, labeled, and tabulated, as shown in Figures 39 and 40, as well 

as in the value tree depicted in Figure 41. The authors anticipate that the value tree presented in 
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Figure 41 will provide a comprehensive set of attributes from which other microgrid designers can 

select decision criteria for microgrid planning formulations using the SMARTER framework.  

 

  

Figure 39: Available objectives and their popularity as observed by [3] in the literature for 

microgrid optimization 
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Reliability 
Safety 
Technical Maturity 
Energy Efficiency 
Resource Potential 
Equipment Lifespan 
Scalability 
 

Technical Criteria 

Installation Cost 
Maintenance Cost 
Fuel Cost 
Monthly Cost 
Payback Period 
Financing Availability 

Economic Criteria 

CO2 Emissions 
SO2 Emissions 
NOx Emissions 
Other Emissions 
Environmental Impact 
Land Use 
Renewables Use 
Noise 

Environmental Criteria 

Social Acceptability 
Jobs Creation 
Ease of Use 
User Convenience 
Community Services 
Energy Policy 
Social Benefits 

 

Social Criteria 

Figure 40: Available technical, economic, environmental, and social criteria and their popularity as observed by the authors in 

[4] in the literature for microgrid optimization 
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Figure 41: Value tree of microgrid attributes available for use in SMARTER formulations 
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For the example problem used in this section, five of the available attributes are chosen 

and presented in Table 18. The formulation and significance of these criteria will be explained in 

detail during the discussion of the larger case study in Section 6.4 and 6.5. 

TABLE 18: SELECTED DECISION CRITERIA FOR THE EXAMPLE PROBLEM 

Label Category Criterion Dimensions 

C1 Technical Reliability MWh not served 

C2 Economic Operations cost USD 

C3 Economic Installation cost USD 

C4 Environmental CO2 emissions tons/yr 

C5 Social Socio-economic benefits HDI 
 

6.3.2.3.Objects of evaluation  

Here we identify the objects of evaluation, i.e. the set of available options from which the 

decision or solution is chosen. In the case of microgrid optimization, this represents the set of 

optimization variables and the range of available values for each variable forming the solution 

space. Each combination of discrete values of the selected solution variables within the solution 

space represents an alternative. 

We observe in [3], [4] that all islanded microgrid formulations use 13 possible optimization 

variables, which are listed graphically along with their popularity in the literature in Figure 42. 

For the simple example problem, three solution variables are chosen: solar generation 

capacity, energy storage system (ESS) capacity, and usage of existing thermal capacity. A solution 

space is formed by varying the above variables on the intervals [0, 25, 50 kW], [0, 25, 50 kWh], 

and [Yes, No], respectively. The solution space is then converted into 15 discrete, feasible 

alternatives labeled A0 through A14, shown in Table 19, where A0 represents the “do-nothing” 

option of keeping the existing system without making any changes to the microgrid topology. 
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Table 19: Selected alternatives forming optimization solution space for the example 

problem 

Label 
PV Capacity (kW 

peak) 
ESS Capacity (kWh) 

Existing 

Diesel? 

A0 0 0 Y 

A1 0 25 Y 

A2 0 50 Y 

A3 0 25 N 

A4 0 50 N 

A5 25 0  Y 

A6 25 25 Y 

A7 25 50 Y 

A8 25 25 N 

A9 25 50 N 

A10 50 0 Y 

A11 50 25 Y 

A12 50 50 Y 

A13 50 25 N 

A14 50 50 N 

Thermal DG Output 

Unit Commitment State 

ESS Output 

Renewable DG Output 

ESS Capacity 

Demand Response 

Droop Constant 

Renewables Curtailment 

Spinning Reserve 

PV Capacity 

DG Voltage Setpoints 

Wind Capacity 

Thermal DG Capacity 

Figure 42: Available objects of evaluation and their popularity as optimization variables as 

observed by [3] in the literature for microgrid optimization 
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6.3.2.4.Objects-by-attributes matrix 

The next step is to create a table or matrix whose rows and columns represent the available 

alternatives and decision criteria, respectively. At this point, a comprehensive set of simulations 

are performed for each alternative. The physical quantities or attribute scores obtained from 

simulations are then tabulated to form the objects-by-attributes matrix.  

For the example problem, simulations of each microgrid configuration are performed over 

a one year time period. For the sake of continuity of discussion, the details of the simulation 

software, load profile, and other numerical details will not be discussed he re, but later in Section 

6.5. The direct outputs of the simulation software, including total MWh not served (C1), monthly 

operating cost (C2), overall installation cost (C3), annual CO2 emissions (C4), and human 

development index (HDI) (C5) are tabulated in Table 20. The computational method used to obtain 

each of the physical simulation scores are discussed in Section 6.4. 

Table 20: Objects-by-attributes matrix comparing alternatives and decision criteria for 

the example problem 

  C1 (kWh/yr) C2 (USD) C3 (USD) C4 (kg/yr) C5 

(HDI) 

A0 3282 21,077 0 33380 0.0000 

A1 537 19,076 19,750 20393 0.1816 

A2 0 19,128 33,500 16298 0.0908 

A3 9962 16,344 -250 0 0.0000 

A4 5498 18,361 13,500 0 0.0000 

A5 2856 14,628 22,250 24079 0.4678 

A6 470 12,626 39,000 12336 0.4227 

A7 0 12,780 32,750 9406 0.4100 

A8 4967 10,949 19,000 0 0.4041 

A9 2117 12,064 32,750 0 0.4041 

A10 2605 10,916 41,500 18969 0.5335 

A11 347 9,179 55,250 9303 0.5139 

A12 0 9,544 69,000 7784 0.5127 

A13 3089 7,170 35,250 0 0.5058 

A14 1602 7,819 49,000 0 0.5058 
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6.3.2.5.Elimination of dominated alternatives 

Dominated alternatives can often be eliminated by visual inspection. This step is optional 

since dominated options will be eliminated in course of the subsequent analysis. However, this 

step is useful if elimination of dominated alternatives reduces the range of one or more evaluation 

criteria. If the difference between the maximum and minimum values of a criterion is reduced to a 

small range, then that attribute should be eliminated as well. 

Although not a step in the original SMARTER formulation proposed by [13], it is 

recommended that microgrid planners also use this step to enforce technical constraints on the 

optimization problem. Alternatives whose simulation results violate any constraint should also be 

eliminated. A comprehensive list of technical constraints found in microgrid optimization 

problems is provided in Figure 43. 

 

Figure 43: Available constraints and their popularity as observed by [3] in the literature for 

microgrid optimization 

Power Balance 

Generator kW Limits 

ESS SOC Limits 

ESS Power Limits 

Voltage Limits 

Ramp Rate Limits 

Spinning Reserve 

Run Time Limits 

Line Thermal Ratings 

Demand Response Limit 

Generator VAr Limits 

Reliability Indices 

Total System Cost 

Emissions Limits 



163 

6.3.2.6.Conversion to non-dimensional utilities 

The next step is the conversion of the physical measures and scores of each alternative into 

non-dimensional utility functions. This is performed for each criterion by finding the alternative 

with the worst score for that single criterion and assigning it a utility of zero. Then, the alternative 

with the best score for that attribute is assigned a utility of either one or 100. If the decision maker 

feels that the range of values presented by the alternatives does not correctly represent the best and 

worst possible alternatives, then it is possible to adjust the bounds of the attribute. The importance 

of the range of values of the attribute will be discussed further in the next step, which will focus 

on determining the swing weights for the utility scores determined in the current step. A key 

assumption is that the relationship between the utility of an attribute and range of scores is linear 

or at least conditionally monotonic. Specifically, [13] has identified four types of relationships: i) 

linearly increasing, so that more of an attribute results in a higher utility to the decision-maker; ii) 

linearly decreasing, so that less of an attribute is better, and the smallest amount possible results 

in the highest utility; iii) an uncommon situation where a particular value results in the highest 

utility, and higher or lower amounts of the attribute are less preferable; and iv) strictly judgmental 

utilities with no underlying single physical variable. 

The assumption of linearity is justified for all the attributes listed in the value tree of Figure 

41. Moreover, all of the microgrid attributes identified in Figure 41 correspond to the first and 

second type of relationships listed above, with all optimization formulations seeking to strictly 

minimize or maximize a particular physical score. For example, the utility function of fuel cost 

decreases linearly since an alternative with the least fuel consumption has the highest utility, while 

an alternative with the most fuel consumption has the lowest utility. Likewise, an alternative with 

the longest equipment lifespan has the highest utility, while an alternative with the shortest 
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equipment lifespan has the lowest utility. A similar analysis can be made for the attributes listed 

in Figure 41. Note that the discussion of utility linearity only applies to the relationship between 

one utility function and one criterion or physical attribute, with the values of all other attributes 

held constant.  

The objects-by-attributes matrix presented in Table 20 for the example problem is now 

converted into non-dimensional utility scores, using the process described above. The resulting in 

the matrix of utility values is illustrated in Table 21. The utility function values can be best 

understood by examining alternative A0 (the existing system of a diesel generator with no solar 

and no battery storage). The five utility scores represent that this alternative lies in the middle of 

the range of options for reliability (C1), is the worst option for operating cost (C2), is the best 

option for installation cost (C3), and is the worst option for both the emissions (C4), and is the 

worst option for and the social benefits (C5). 

 

Table 21: Non-dimensional utility matrix for the example problem 

  C1 C2 C3 C4  C5  

A0 67.06 0.00 100.00 0.00 0.00 

A1 94.61 9.50 71.38 38.91 34.04 

A2 100.00 9.25 51.45 51.17 17.02 

A3 0.00 22.46 100.00 100.00 0.00 

A4 44.81 12.89 80.43 100.00 0.00 

A5 71.33 30.60 67.75 27.86 87.68 

A6 95.28 40.10 43.48 63.04 79.23 

A7 100.00 39.37 52.54 71.82 76.86 

A8 50.14 48.05 72.46 100.00 75.75 

A9 78.75 42.76 52.54 100.00 75.75 

A10 73.85 48.21 39.86 43.17 100.00 

A11 96.51 56.45 19.93 72.13 96.34 

A12 100.00 54.72 0.00 76.68 96.11 

A13 68.99 65.98 48.91 100.00 94.82 

A14 83.91 62.90 28.99 100.00 94.82 



165 

6.3.2.7.Rank ordering of swing weights 

Swing weights are a correction developed in response to a formulation error in the original 

SMART framework which ignored the relationship between the importance of an attribute  and 

the range of values between alternatives [13]. This intellectual error was resolved by the 

development of simple multi-attribute rating technique with swing weights (SMARTS) shortly 

after publication of the original formulation [13]. 

The term “swing” refers to the process of “swinging” the utility values for each attribute 

over a range of scores, typically from zero to 100. For the process, a hypothetical alternative is 

used, which has the worst possible utility for all the criteria. Subsequently, the elicitees are asked 

to choose a single attribute for which they could swing the utility score from 0 to 100. Next, the 

respondents are told that they can swing the utility score for any attribute except the one they chose 

and are asked to select their next preference. The last step is repeated until all the decision criteria 

have been ranked from most preferred to least preferred for a swing of the utility score of the worst 

possible alternative. This ranking of preference establishes the basis for determining the swing 

weights. 

For the example of this section, it is determined that for the hypothetical worst possible 

alternative, swinging reliability to the best available value would yield the best overall utility since 

the microgrid operator incurs large financial losses during power interruptions. The process is 

repeated to determine that the ranking of decision criteria from most important to least important 

is reliability, installation cost, operations cost, social benefits, and emissions. 
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6.3.2.8.Rank order centroid weighting 

The core difference between the SMARTS and SMARTER MCDM techniques is that the 

former requires the decision-maker to determine the numerical weight given to each decision 

criteria, while SMARTER presents a framework for assigning weights automatically using the 

concept of the rank order centroid (ROC).  

The convention for weights in any weighted sum formulation is that the sum of all the 

weights must equal one. The simplest possible method is to assign all the decision criteria equal 

weights. Consequently, the point representing equal weighting is the centroid of the hyperspace 

simplex of all weighting variables possible. The SMARTER framework modifies this concept by 

adding a ranking of importance among the decision criteria. When the geometric coordinate points 

of the simplex are specified with knowledge of ranking, it is possible to determine the resulting 

centroid. The resulting weights have a rather convenient computational form. For the series of 

weights where 𝑤1 corresponds to the highest priority criterion and 𝑤𝑛 to the lowest priority 

criterion, then 

𝑤1 = (1 + 12 + 13 + ⋯ + 1𝑛) (1𝑛) 

𝑤2 = (0 + 12 + 13 + ⋯ + 1𝑛) (1𝑛) 

𝑤3 = (0 + 0 + 13 + ⋯ + 1𝑛) (1𝑛) 

𝑤𝑛 = (0 + 0 + 0 + ⋯ + 1𝑛) (1𝑛) 

(11a) 

(11b) 

(11c) 

(11d) 
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Multiple numerical studies surveyed by [13] have found that the total loss in overall utility 

from using ROC weights rather than those determined by manual elicitation is less than 2%.  

6.3.2.9.Decision based on highest multi-attribute utility 

The last step is calculating the weighted sum of all utility scores multiplied by the 

associated ROC swing weights to yield the overall multi-attribute utility of each alternative. The 

alternative with highest overall utility is the best choice. For the short example used in this section, 

alternative A7 has the highest utility and is selected as the solution best satisfying all five decision 

criteria. 

 

Table 22: Final multi-attribute utility scores for example problem 

 Alternative Multi-attribute Utility Score   Alternative Multi-attribute Utility Score 

A0 56.30  A8 59.85 

A1 67.64  A9 66.97 

A2 63.90  A10 62.24 

A3 33.28  A11 69.59 

A4 47.13  A12 65.96 

A5 63.77  A13 66.94 

A6 70.61  A14 68.15 

A7 75.11    

 

6.4.Case Study: An Industrial Microgrid in the Madan Community, Papua New Guinea 

Located 300km north of Australia, Papua New Guinea (PNG) is largely unelectrified with 

a population of over 8.1 million but only 580 MW of generation capacity from three islanded 

transmission networks and 19 diesel microgrids [19]. Over 90% of the country has no access to 

any form of electricity, and consequently, the majority of communities subside on kerosene, 

candles, fuelwood, and disposable batteries to supply their energy needs. For the few customers 
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with access to the national grid, blackouts can last for weeks due to generation capacity shortages 

and transmission-related events. 

The Western Highlands province is one of the few partially electrified provinces with a 

population of over 440,000 and 6,175 customers served by a 66kV transmission line running along 

the Highlands Highway [19]. About 20 km east of the provincial capital of Mt. Hagen is the Madan 

Community, which has been the center of a multi-year capacity building and social empowerment 

program, funded in part by profits from the Madan Community Coffee Mill. In the past five years, 

the project has focused on creation of community infrastructure, including digital classrooms in 

10 schools, safe sanitation systems, a medical clinic serving over 10,000 patient visits per year, 

and construction of a rainwater harvesting and distribution system providing over a million liters 

of clean water annually. 

The Madan Community Coffee Mill processes the coffee grown in the Madan Community 

and by small-holder farmers in neighboring villages. The mill contains a series of large three phase, 

delta-connected machines that are grouped into a wet mill (pulping the fresh coffee cherries to 

extract the beans inside), a dry mill (hulling, sorting, and bagging the dry coffee beans), and a 

water pump in the pin river that supplies water for the wet mill and serves a backup source for the 

new community water system during times of drought. The mill and pump are located near the 

Highlands Highway and have access to the PNG national grid. However, operation of the mill 

equipment and river pump are severely disrupted by frequent power interruptions and prolonged 

blackouts. A 90kW diesel backup generator was installed, but fuel shortages result in frequent 

spoilage of the coffee cherries. As a result, a concept was developed to convert the mill into an 

industrial microgrid supplied by a mix of grid power, local PV arrays, battery storage, and diesel 

generation [20]. 
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6.4.1. Modeling of Demand Profile 

Since the only available data from which the model is to be constructed are the electric 

bills and diesel fuel expenditures over the course of the year 2014 [21], it will be necessary to 

interpolate and extrapolate this data to create the demand profile. Data from 2015 is excluded from 

the analysis due to a record drought that ruined the year’s harvest and caused extensive failures of 

the power grid. 

Table 23: Grid energy consumption of Madan in 2014 [20] 

Date 
Days in Billing 

Cycle 
Bill (Kina) 

Daily Cost 

(Kina/day) 

Daily Energy Use 

(kWh/day) 

01/28/14 56 3200 57.14 87.91 

02/25/14 28 1548 55.29 85.05 

03/25/14 28 1632 58.29 89.67 

04/22/14 28 3426 122.36 188.24 

07/14/14 76 7688 101.16 155.63 

09/09/14 64 1943 30.36 46.71 

10/07/14 28 2791 99.68 153.35 

10/21/14 14 1314 93.86 144.40 

12/02/14 42 2193 52.21 80.33 

01/13/15 42 2271 54.07 83.19 

 

  

Table 24: Diesel consumption of Madan, 2014 [20] 

Date 
Days in Billing 

Cycle 

Bill  

(Kina) 

Daily Cost 

(Kina/day) 

Daily Fuel Use 

(L/day) 

Daily Energy Use 

(kWh/day) 

01/14/14 28 3400 121.43 50.60 202.38 

02/11/14 28 3400 121.43 50.60 202.38 

03/11/14 28 3420 122.14 50.89 203.57 

04/22/14 28 4230 151.07 62.95 251.79 

05/06/14 28 4960 177.14 73.81 295.24 

06/17/14 42 3888 92.57 38.57 154.29 

09/09/14 84 3500 41.67 17.36 69.44 

12/02/14 84 3987 47.46 19.78 79.11 
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Tables 23 and 24 summarize the total expenditure on grid energy and diesel fuel over a 

year. These costs are used to create an estimated monthly load profile by converting the billed 

costs to daily costs, which are then modeled by spline interpolation, and finally summed and 

converted to monthly averages. The process is depicted graphically in Figure 44. 

 

 

  

Figure 44: The billed energy costs of the Madan Mill (a) are averaged to yield the daily 

energy costs (b), which fitted to produce continuous functions that can be summed to yield the 

total daily energy use over the course of the year (c), which is averaged to yield monthly 

averages of the daily energy consumption (d). 
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Since the power is unavailable from the grid for an average of 20 to 30 working hours per 

week, a large portion of the electric demand is provided by a 90 kW diesel genset installed at the 

mill. Although the fuel curve of the genset is unknown, the total power generation can be 

approximated from the total diesel fuel expenditure and the power curve of a standard 100 kW 

diesel generator, which increases linearly from 4 L/hr at idle to 27 L/hr at full output. 

The average daily energy consumption can be converted into an hourly demand profile 

corresponding to the approximate hours of operation of the mill, which are five days a week, from 

8 am to 4 pm for most of the year. In the harvest season (March – June), the mill operates seven 

days a week during all daylight hours. This increase in operating times is reflected by the spike in 

energy consumption, especially for April and May. The estimated hourly demand profile can be 

plotted for each month of the year, as shown in Figure 45. 

 

Figure 45: Estimated hourly load profile for each month of the year 
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6.4.2. Microgrid Modeling in HOMER 

HOMER is a commercial software commonly used for solving optimization problems 

related to microgrid planning. Although the modeling and logic of HOMER are less detailed than 

that of other microgrid simulators (such as PV-DesignPro or PV*Sol), the software includes a 

broad array of generation and fuel sources, load profiles, and operation characteristics. HOMER 

offers three analysis modes: 

 Power system simulations in which the software runs a simulation of all possible 

configurations of the microgrid to analyze feasibility and life-cycle cost over a one year 

horizon using a one hour time step 

 Optimization of the DER configuration to determine the solution that minimizes the 

levelized cost of energy (LCOE) 

 Sensitivity analysis of the design to uncertainty of various parameters beyond the control 

of the system designer. 

When simulating a power system including energy storage, there are two different 

economic dispatch methods used by HOMER. The first is load-following, in which the ESS is only 

charged by renewable generation, while the output of generators simply follows the load demand 

curve. The second economic dispatch strategy is cycle-charging, in which the energy storage 

system is charged by all available generators. Use of the latter dispatch strategy enables the 

simulations to include the strategy of buying grid power when it is available and then using the 

stored energy during grid outages. The latter operating scheme is selected for the simulations to 

be discussed in Section 6.5. 

At the end of each set of simulation runs, HOMER returns aggregated results categorized 

into groups of economic, environmental, and technical indices sorted by equipment type.  
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6.4.3. Modeling of Existing System in HOMER 

The current system topology consists of the intermittent power grid, the 90 kW diesel 

genset, and the load. Due to the lack of a net metering policy, the microgrid is modeled as an 

islanded system with the PNG Power grid treated as a generator with a fixed cost of 0.23 

USD/kWh. The intermittency of grid supply is modeled in HOMER as forced maintenance outages 

at randomly selected times that sum to a power outage of 20 to 30 hours per week. The schedule 

of grid outages is depicted in Figure 46. Meanwhile, the diesel genset is only operated during the 

working hours of the mill, and so a daily outage is scheduled from 5 am to 7 am. 

As can be observed from Table 25, the simulation results from HOMER match the actual 

operating parameters from 2014 closely with a maximum error of 0.5%.  

Table 25: Comparison of HOMER base case simulation and 2014 actual operations 

 
Grid Energy Usage 

(kWh) 

Diesel Fuel Usage 

(L) 

Operating Cost 

(USD) 

HOMER Result 43,062 12,843 21,078 

Actual 2014 Value 43,086 12,827 21,165 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Randomly Scheduled Grid Outages 

Figure 46: Generator outages scheduled in HOMER to replicate the unreliability of the PNG 

Power grid. 
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6.5.Combined HOMER-SMARTER Technique 

6.5.1. Optimization and Decision-Making Formulation 

The nine step process described in Section 6.3 is now combined with the ability of HOMER 

to perform high speed simulations for discrete alternatives of system topologies, resulting in a 

versatile tool for microgrid planning. 

6.5.1.1.Identification of decision-makers 

Key stakeholders for the case study are the owners of Madan Mill, management of the local 

community-based organization, tribal leaders, and potential project funding agencies. For the 

optimization process, first author, who has firsthand knowledge of the system and community, 

serves as the decision-maker. 

6.5.1.2.Creation of a value tree 

The general microgrid planning value tree shown in Figure 41 is sufficient for the decision-

making process. Six objectives are selected to represent the key interests of each group of 

stakeholders. The mill owners are interested in 1) reducing losses of raw coffee cherries due to 

outages (maximize reliability) and 2) reducing payments made for diesel fuel and grid power 

(minimize operating cost). The funding agency desires the solution with lowest installation cost 

(minimize initial capital cost) and longest lifespan (maximize ESS lifespan). The community-based 

organization and tribal leaders desire the greatest social benefit (maximize HDI) and lowest 

environmental impact (minimize CO2 emissions). 

For social benefits, human development index (HDI) is used instead of job creation since 

a reliable measure of job creation as function of microgrid capacity has not yet been published. A 
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new set of detailed indices will be released by the World Bank in 2020 with a focus on the impact 

of productive uses of energy in previously unelectrified communities. Portions of the draft 

document were distributed to select peer reviewers from IEEE Power & Energy Society (including 

the primary author), but the full report was not available at the time of paper submission. As a 

result, the older metric of HDI as a function of kWh per person is used. HDI is an index ranging 

from zero to one that represents the life expectancy, education, and income of the population. The 

relationship between HDI and electric consumption was developed in [21] using human 

development data collected by the United Nations Development Program from 60 countries, 

including Papua New Guinea:  

𝐻𝐷𝐼 = 0.091 ln(𝑘𝑊ℎ) + 0.0724 

For the analysis, it is assumed that all excess generation capacity will be made available 

for the social benefit of the community through charging of portable battery kits and/or wired 

distribution to the nearby homes of approximately 250 full-time workers at the mill. 

6.5.1.3.Objects of evaluation 

 The solution space is formed from five solution variables representing the PV installed 

capacity, ESS installed capacity, ESS battery chemistry, ESS maximum depth of discharge (DoD), 

and usage of the existing diesel genset. Each of the capacity parameters are varied between 0 and 

50 kW or 0 and 50 kWh in increments of 5 kW or 5 kWh. The resulting solution space is converted 

into 682 discrete alternatives, as summarized in Table 26. 

 

(12) 
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Table 26: Selected alternatives forming optimization solution space for the Madan Mill 

case study 

Label 
PV Capacity (kW 

peak) 

Li-Ion ESS 

(kWh) 

Lead-Acid ESS 

(kWh) 

ESS Max DoD 

(%) 

Existing 

Diesel? 

A0 –
A120 

 [0 : 5: 50]   [0 : 5: 50]  No  80  Yes 

A121 – 

A230 
 [0 : 5: 50]  No  [0 : 5: 50]  40  Yes 

A231 – 

A340 
 [0 : 5: 50]  No  [0 : 5: 50]  60  Yes 

A341 – 

A461 
 [0 : 5: 50]  [0 : 5: 50]  No  80  No 

A462 – 

A572 
 [0 : 5: 50]  No  [0 : 5: 50]  40  No 

A572 – 

A682 
 [0 : 5: 50]  No  [0 : 5: 50]  60  No 

 

6.5.1.4.Objects-by-attributes matrix 

HOMER simulations are performed for all 682 alternatives over a one year rolling horizon 

using a 1 hour time step. Sample plots of the simulation results for five of the decision criteria are 

presented in Figure 47. Conflicts between the objectives can be observed from the scores of 

alternative A120, which has the best physical simulation scores for unmet load, operating cost, and 

emissions. Simultaneously, A120 has the worst score for initial capital cost. The conflicts between 

the selected attributes illustrates the need for the SMARTER process since it is impossible to select 

an optimal solution merely by inspection. 
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A0 

A120 

A120 

A11 

A67 

A0 

Figure 47:  Plots of the direct physical simulation scores for alternatives A0 through A120 for 

five of the six decision criteria. ESS lifespan is not depicted since the Li-ion battery lifespan is a 

fixed 15 years and not affected by depth of discharge or capacity. Observe that the plot is not a 

continuous surface, but rather a sequence of discrete alternatives traversing the solution space. 
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6.5.1.5.Elimination of dominated attributes 

Simulations are performed for all 682 alternatives over a one year rolling horizon using a 

one hour time step using the HOMER commercial software package. Sample plots of the 

simulation results for five of the decision criteria are given in Figure 47. Conflicts between the 

objectives can be observed from the  scores of alternative A120, which has the best physical 

simulation scores for unmet load, operating cost, and emissions. Simultaneously, A120 has the 

worst score for initial capital cost. The conflicts between the selected attributes illustrates the need 

for the SMARTER process since it is impossible to select an optimal solution merely by inspection. 

6.5.1.6.Conversion to non-dimensional utilities 

The minimum and maximum values of the physical simulation scores for an attribute are 

determined by searching the associated column in the objects-by-attributes matrix. The results are 

converted into the linear utility functions (Figure 48). The original optimization problem seeks to 

minimize unmet load, operation cost, capital cost, and emissions. So, the corresponding utility 

functions decrease linearly with the minimum value for any alternative in the solution space 

assigned a utility of 100, and the maximum value assigned a utility of zero. The optimization 

problem seeks to maximize ESS lifespan and HDI, and so the associated utility functions increase 

linearly. The entries in the objects-by-attributes matrix are then converted into non-dimensional 

utilities by the process described earlier in Section 6.3.  
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6.5.1.7.Rank ordering of swing weights 

Using the elicitation process described earlier, it is determined that the preference ranking 

of attributes from most important to least important is reliability > initial capital cost > operating 

cost > ESS lifespan > HDI > CO2 emissions. 

  

Figure 48: Utility functions for each of the technical, economic, environmental, and social 

attributes considered in the decision-making process 
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6.5.1.8.Rank order centroid weighting 

The decision process uses six attributes, and consequently the ROC weights for each 

decision criterion are as shown in Table 27. 

 

6.5.1.9.Decision maximizing overall utility 

The overall utility for the alternatives is calculated as the weighted sum of the utility scores 

for each alternative using the ROC weights presented in Table 28. Figure 49 shows the overall 

utility for alternatives A0 through A340. A simple search of the vector of overall utilities reveals 

that alternative A51 (35kW of PV generation, 20 kWh of ESS storage, and continued use of the 

diesel genset) has the highest overall utility. 

 

Table 28: Comparison of the existing system vs selected configuration  

  C1 

(kWh/yr) 

C2 (USD) C3 (USD) C4  

(yr) 

C5 

(kg/yr) 

C6 

(HDI) 

A0 3282 21,077 0 
 

33380 0.0000 

A51 637 10,199 42,750 15 12438 0.1816 

  

Table 27: ROC weights for each decision criterion 

Label Category Criterion ROC Weight 

C1 Technical Reliability 0.4083 

C4 Economic Capital cost 0.2417 

C3 Economic Operations cost 0.1583 

C2 Technical ESS lifespan 0.1028 

C6 Social HDI 0.0611 

C5 Environmental CO2 emissions 0.0278 
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6.6.Conclusion 

This paper has proposed and demonstrated the use of a new framework for formulating and 

solving optimizations problems for microgrid planning using the SMARTER process. The core 

concepts of the nine-step process are redefining optimization functions into elicited attributes, 

converting the multi-dimensional solution space into a vector of discrete attributes, and selecting 

the alternative that maximizes the overall utility. 

The proposed methodology is computationally lightweight and scales linearly with the size 

of the solution space and number of decision criteria, as shown in Table 29. Computation times 

are for a machine running MATLAB R2019a with an i7 CPU @ 2.8 GHz and 32GB RAM. 

 

Figure 49: Plots of the overall utility of alternatives A0 through A340, which traverse 

the solution space of installed PV, Li-ion, and lead-acid capacity. 
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Table 29: Computation time vs number of alternatives  

Number of alternatives HOMER simulation 

time 

SMARTER decision 

analysis time  

15 (25kW resolution) 0.3 s 0.0044 s 

682 (5 kW resolution) 12.7 s 0.0048 s 

2200 (2.5 kW resolution) 42.0 s 0.0229 s 

4400 (1 kW resolution) 92.4 s 0.0502 s 

 

It is anticipated that the SMARTER framework proposed in this paper will lay the 

foundation for a broad array of future research topics. The ability to combine multiple conflicting 

quantitative optimization objectives with numerous qualitative technical, economic, 

environmental, and social attributes will enable the creation of microgrid planning problems that 

provide much deeper insight into the transformative impact of energy access. Furthermore, the 

conversion of the solution space into discrete alternatives suggests the framework can be easily 

extended to consider DER siting, network topology, switch configurations, and load selection 

considering community capacity building through productive uses of energy. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

The problem of microgrid planning for community electrification has been examined in 

detail from multiple standpoints offered by the Systems Engineering discipline.  

The initial survey of microgrid optimization formulations and multi-criteria decision 

making presented by nearly 250 papers paved a path for creating a set of organizational 

management techniques and numerical optimization approaches based on a common set of 

technical, economic, environmental, and social decision criteria. In Chapter 2, the survey identified 

that all optimization studies of islanded microgrids are based on formulations selecting a 

combination of 16 possible objective functions, 14 constraints, and 13 control variables. Each of 

the objectives, constraints, and variables were discussed exhaustively both from the perspective of 

their importance to islanded microgrids and chronological trends in their popularity. Subsequently, 

Chapter 3 examined the set of pairwise relationships between each of identified objective functions 

and classified these relationships as mutually supporting, weakly conflicting, and directly 

conflicting. Available techniques for combining multiple objectives were also examined with 

detailed discussions of the combinations of objectives selected by each of the surveyed microgrid 

optimization studies implementing a particular MCDM method. MCDM techniques based on 

utility theory (MAUT, SMART, AHP) and outranking methods (PROMETHEE, ELECTRE, 

TOPSIS) were also compared from the perspective of their applicability and chronological 

popularity for microgrid optimization. 
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Next, a holistic framework for modeling community electrification projects was developed 

in Chapter 4, introducing both a hierarchical enterprise system-of-systems (SoS) framework and a 

new life cycle model for the planning, design, funding, construction, commissioning, operation, 

and expansion of community microgrids as part of multi-phase community capacity-building 

programs. Each of the tiers in the pyramid of organizational, financial, and physical subsystems 

was mapped to a set of the 17 United Nations Sustainable Development Goals and explained in 

terms of the seven characteristics of a SoS (operational independence, managerial independence, 

geographic distribution, emergent behavior, evolutionary development, self-organization, and 

adaptation). An operational implementation of the proposed hierarchy was illustrated using the 

structure of the Madan CTC, which is responsible for managing ongoing water, sanitation, 

education, and healthcare projects, as well as the planned electrification program. Subsequently, a 

new systems engineering lifecycle was developed to help describe the complex process of 

planning, funding, executing, and monitoring portfolios of multi-phase community-based critical 

infrastructure projects. The life cycle identified 10 steps within an expanding cycle, including 

needs analysis, concept development, community validation, decision analysis, deployment 

planning, in-field demonstration evaluation, engineering design, integration and verification, 

production and deployment, operations and support, and lastly, expansion of the project to reach 

additional communities. Finally, a set of systems engineering tools and operational context 

diagrams were presented to illustrate the organization management, project management, and risk 

management approaches recommended to improve the sustainability of community electrification 

projects.  

Chapter 5 argued the necessity of application of microgrid optimization techniques for not 

only larger microgrids, but also stand-alone energy kiosks providing electricity access in deep rural 
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communities where wired distribution systems are impractical for economic, environmental, or 

social reasons. A combination of the cost-based objective functions identified in Section 2.4.1 were 

applied to determine the optimum capacity of PV generation and battery storage as a function of 

the total number of customers served. A daily dispatch problem was solved using real-time pricing 

based upon a transactive energy market considering change in PV generation, load, and ESS state 

of charge.  

Chapter 6 combined the contributions of the previous chapters to create a generalized 

microgrid optimization framework considering not only the entire set of objective functions, 

optimization constraints, and solution variables, but also decision criteria based on technical, 

economic, environmental, and social benefits of the microgrid. A key innovation of methodology 

was redefinition of objective functions into elicited attributes and conversion of the optimization 

solution space into a vector of discrete alternatives. This approach enabled inclusion of multiple 

conflicting optimization objectives, and include both qualitative and quantitative indicators of the 

importance of various benefits to key stakeholders and the decision maker. The resulting 

framework was demonstrated to be computationally lightweight and linearly scalable with the 

number of discrete alternatives considered. Finally, a generic MATLAB code was presented to 

apply the SMARTER decision-making technique automatically to the simulation results generated 

by the HOMER commercial microgrid simulation software. The included code was able to 

generate a satisfactory decision using an arbitrary set of decision criteria within tens of 

milliseconds for solutions spaces using thousands of discrete alternatives.  
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7.2. Future Work 

It is anticipated that the contributions of this research will find numerous future 

applications, for the planning and dispatch of both electrification microgrids and advanced 

distribution systems. The enterprise SoS hierarchy is highly replicable and can be applied to 

sustainable development initiatives across the globe, not only for community electrification 

projects, but also for other capacity-building programs addressing the array of critical 

infrastructure needed to eradicate poverty for over a billion people. Likewise, the flexibility of the 

SMARTER approach to microgrid optimization enables consideration of numerous discrete 

alternatives, including selection of equipment manufacturers, locations of DERs, routes of 

distribution lines, operating setpoints of controllers, and types of customer loads.  

For the sake of brevity, the following discussion of future work will be limited to three 

immediate areas building on expansion of the SMARTER process and the next phase of the Madan 

Community infrastructure program.  

7.2.1. Decision-Making Considering Productive Uses of Energy 

Funding for community electrification projects has recently demonstrated a significant 

shift from basic energy services (such as lighting and phone charging) to productive uses of energy 

(PUE). Field practice has demonstrated that providing access to electricity does not immediately 

result in increased economic prosperity. Consequently, microgrid planners must actively consider 

potential entrepreneurial businesses that can be created through electrification.  
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Several categories of PUE have been identified by IEEE Smart Village through the seed-

funding process of a series of community-based entrepreneurs who have established electrification 

micro-utilities and training centers developing micro-businesses in several PUE categories [1]: 

 Artisan Crafts – beadmaking, embroidery, leather work, sewing 

 Construction – brickmaking, carpentry, greenhouse construction, manufacturing, welding 

 Electrical Wiring – CCTV installation, home wiring 

 Electronics Assembly  - assembly of LED light bulbs, repair of small electronics 

 Electric Transportation – market-garden produce delivery, mobile water pumping, 

portable battery kit delivery, taxi services 

 IT Services – electronics maintenance and repair, internet cafes, IT outsourcing (photo 

tagging, media editing, etc.), programming and software development 

 Retail Services – barbershops, cell-phone charging, refrigeration, grocery stands  

 Sustainable Agriculture – agricultural processing, construction and repair of agricultural 

equipment, water pumping, mushroom farming, beekeeping, dairy farming, and animal 

husbandry 

 Tourism – homestays, managerial team building, training of environmental stewards 

The flexibility of the SMARTER decision-making process for microgrid optimization will 

enable microgrid planners to consider the types of PUE businesses that could be created through 

electrification considering technical, economic, environmental, and social criteria. Technical 
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impacts of various PUE include shifting of demand curves, higher reliability requirements, and 

possible power quality issues related to the high startup current of single-phase induction motors. 

From an economic standpoint, PUE significantly increase the community’s willingness and ability 

to pay for electric service; simultaneously, if the microgrid operator includes some PUE businesses 

within its own organization, then it is possible to use retained earnings to reduce the payback period 

of the microgrid by several years. Additionally, elimination of large polluting diesel engines 

frequently used to power agricultural processing machines in Africa (Figure 50) can provide 

substantial environmental benefits to the community. Finally, the social benefits provided by job 

creation through PUE are far greater than those from providing solar home systems or street 

lighting. 

 

Figure 50: Diesel engines replaced by a solar microgrid in Niger State, Nigeria by GVE in 

2018 using seed-grant funding from IEEE Smart Village and private venture capital [2] 
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7.2.2. SMARTER Optimization using Real-Time Transactive Pricing and Demand Response 

The numerical analysis in Chapter 6 used a smooth daily load curve derived from 

aggregated energy usage over a one year period. However, the load profile of the Madan Mill 

consists of about 20 delta-connected three-phase machines (Figure 51 and 52) with a total 

nameplate capacity of 108 kW, which are listed in Table 30. As a result, the load profile for the 

mill grows in a stepwise manner as each machine is brought online over the course of the day. 

Modeling of the individual motors enables the hourly economic dispatch algorithm to decide which 

machines to energize in a transactive market framework. Real-time pricing for loads will include 

the priority of the load and the potential income generated (or lost). Generation and storage will 

use the pricing mechanism introduced in Chapter 5.   

Figure 51: One of the agricultural processing machines at the Madan Mill [3]. 

(image courtesy Joanna Gentili, Madan CTC) 
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Figure 52: A few of the motor nameplates gathered by the project team to refine the results of the optimization presented in 

Chapter 6 [3]. (image courtesy Larry Hull, Madan CTC) 
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Table 30: List of motor nameplates at the Madan Mill 

Motor 

Application 

Voltage (V) Current (A) 
Power 

(kW) 

Power 

Factor  

(pf) RPM Qty 

Total kW Estimated 

Elec power 

(kW) 

Total 

kVA Δ-connected Δ-connected (mechanical) 

Separator 415 3.40 1.50 0.79 1415 1 1.50 1.93 2.44 

Elevator 415 3.09 0.75 0.80 1420 7 5.25 12.44 15.55 

Dust Remover 415 4.40 1.50 0.82 1415 1 1.50 2.59 3.16 

De-stoner Main 415 7.97 4.00 0.84 1425 1 4.00 4.81 5.73 

De-stoner Engine 415 3.09 0.75 0.80 1420 1 0.75 1.78 2.22 

Huller 1 415 21 11.25 0.86 1455 1 11.25 12.98 15.09 

Huller 2 415 21 11.25 0.86 1440 1 11.25 12.98 15.09 

Huller 3 415 38.8 22.00 0.80 1450 1 22.00 22.31 27.89 

Huller 4 415 38.8 22.00 0.80 1450 1 22.00 22.31 27.89 

Huller 5 415 3.26 1.50 0.82 1440 1 1.50 1.92 2.34 

Grader 1 415 9.00 4.00 0.77 1440 1 4.00 4.98 6.47 

Grader 2 415 3.70 1.50 0.79 1400 1 1.50 2.10 2.66 

Dismantling 
Table 

415 7.97 4.00 0.84 1425 1 4.00 4.81 5.73 

          

Dry Mill Total 90.5 108 132 
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7.2.3. DER Siting and Microgrid Distribution Planning 

The second optimization study will examine a larger scale distribution microgrid to provide 

electricity to over 250 homes, as well as small businesses, churches, schools, and other demands 

around the Madan Medical Clinic. The system is located outside the range of the PNG national 

grid, and will be served by PV generation with lithium battery ESS located at the Madan Medical 

Clinic. Overhead AC lines will be used to serve larger loads within a cost-effective radius of the 

Clinic; PBKs will serve homes outside the range of the grid. A multi-objective optimization, also 

using SMARTER, will consider the technical, social, economic, and environmental objectives 

presented earlier in Table 13. The problem will be formulated as an economic dispatch problem 

solved over daily and weekly schedules using MATLAB and/or HOMER. If desired, the problem 

could then be expanded to an optimal power flow considering issues including conductor sizing, 

voltage profile, and network topology using Open-DSS, GridLab-D, or Xendee. Detailed maps of 

the system site prepared by community members are presented in Figures 53 through 55. The 

microgrid will be arranged with two or three feeders and an optional interconnection to the 

microgrid at the Madan coffee mill about 1km away, as depicted in Figure 56. 
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Figure 53: A detailed map of the electrification site prepared by one of the local community 

members (image courtesy Amos Dalton, Madan CTC) 
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Figure 54: A detailed map of the Lgatep Village electrification site prepared by one of the 

local community members (image courtesy Amos Dalton, Madan CTC) 
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Figure 55: A detailed map of the Golgmulgi Village electrification site prepared by one of 

the local community members (image courtesy Amos Dalton, Madan CTC) 
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–– Existing PNG grid 
–– Existing 220V line 

–– Planned expansion 

1 km 

Figure 56: Planned interconnection of Madan pilot demonstration systems and initial 

distribution system expansion 

Golgmulgi Village 
Lgatep Village 
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A.2. SMARTER MATLAB Code 

function 
[best,best_score,utilities]=SMARTER_for_HOMER(homer_data,homer_criteria,custom_criteria,priority,constraint
s) 
% Automatically perform a SMARTER decision process for HOMER simulations 
%  
%% Syntax 
% 
%   
[best,best_score,utilities]=SMARTER_for_HOMER(homer_data,homer_criteria,custom_criteria,priority,constraint
s) 
% 
%% Input Arguments 
% 
% The function takes five input arguments, homer_data, homer_criteria, 
% custom_criteria, priority, and contraints. 
% 
% homer_data is a table array created by importing the HOMER simulation 
% results CSV file into MATLAB as a workspace variable. An additional 
% column named Alternative may be added to serve as an index of the 
% discrete alternatives. If homer_data.Alternative is not inlcuded, 
% alternative names will be generated automatically by the function 
% 
% homer_criteria is an n x 2 cell array. The first column 
% constains char type names representing each of the physical simulation 
% outputs used a decision criterion. The criterion names are case-senstive 
% and must match the column names used in the workspace variable passed to 
% the function. The second column of the array is either 'min' or 'max' 
% depending on whether it is desired to maximize or minimize a particular 
% criterion. 
% 
% custom_criteria is an n x 4 cell array. The first is a character string 
% for the name of the criteria. The second The second column of the array 
% is either 'min' or 'max' depending on whether it is desired to maximize 
% or minimize a particular criterion. The third is the homer simulation 
% output attribute used as the input for custom criterion. The last is a 
% function handle specifying the criterion as a function of the simulation 
% result. At this time, only one simulation output variable can be used as 
% an argument for each custom criterion. 
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% 
% priority is an n x 1 cell array listing of the priority ranking of 
% decision criteria from most preferred (highest weight) to least preferred 
% (lowest weight). Criteria weights are calculated automatically using the 
% Rank Order Centroid method used by the SMARTER process. 
% 
% constraints is an nx3 cell array. The first is a string for 
% the name of the homer criterion to be enforced as the constraint. The 
% second is the type of constraint, expressed as a string. Currently 
% supported constraint types are 'max' and 'min'. The third column of the 
% cell array is numerical value to be used as the maximum or minimum 
% acceptable value. 
% 
%% Output Arguments 
% 
% The function returns three arguments representing the best alternative, 
% its corresponding overall utility score, and the non-dimensional utility 
% scores for all alternatives not eliminated due to constraint violations 
%% Example 1: 
%   homer_criteria={'CostNPC','min';'CostInitialcapital','min';'SystemCOkgyr','min'}; 
%   custom_criteria={}; 
%   priority={'CostInitialcapital';'CostNPC';'SystemCOkgyr'}; 
%   constraints={'CostInitialcapital','max',50000;'SystemCOkgyr','max',25000;'SystemRenFrac','min',15}; 
%   
[best,best_score,utilities]=SMARTER_for_HOMER(homer_data,homer_criteria,custom_criteria,priority,constraint
s); 
% 
%% Example 2: 
%   homer_criteria={'CostOperatingcostyr','min';'CostInitialcapital','min'; 
%       'SystemCOkgyr','min';'SystemUnmetloadkWhyr','min'}; 
%   custom_criteria={'HDI','max','SystemExcessEleckWhyr',@(x)max(0.091*log(x/250)+0.0724,0)}; 
%   priority={'SystemUnmetloadkWhyr';'CostInitialcapital';'CostOperatingcostyr';'HDI';'SystemCOkgyr'}; 
%   constraints={'CostInitialcapital','max',50000;'SystemCOkgyr','max',25000;'SystemRenFrac','min',15}; 
%   
[best,best_score,utilities]=SMARTER_for_HOMER(homer_data,homer_criteria,custom_criteria,priority,constraint
s); 
  
%% Initialize variables 
total_alternatives=size(homer_data,1); 
eliminated_alternatives=strings(total_alternatives,1); 
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if ~ismember('Alternative', homer_data.Properties.VariableNames) 
    homer_data.Alternative=string([repmat('A',total_alternatives,1),num2str((0:total_alternatives-1)')]);  
end 
%% Calculate Custom Criteria / Attributes 
for counter=1:size(custom_criteria,1) 
    func_handle=cell2mat(custom_criteria(counter,4)); 
    homer_data.(cell2mat(custom_criteria(counter,1)))=func_handle(... 
        homer_data.(cell2mat(custom_criteria(counter,3)))); 
end 
  
%% Enforce Constraints 
index1=1;  
% Iterate through each row of constraints and eliminate alternatives 
% violating that constraint 
for counter=1:size(constraints,1)  
    switch cell2mat(constraints(counter,2)) 
        case 'max' 
            eliminate=find(homer_data.(cell2mat(constraints(counter,1)))>cell2mat(constraints(counter,3))); 
        case 'min' 
            eliminate=find(homer_data.(cell2mat(constraints(counter,1)))<cell2mat(constraints(counter,3)));  
    end 
    % Index eliminated alternatives 
    total_eliminated=length(eliminate); 
    eliminated_alternatives(index1:index1+total_eliminated-1)=homer_data.Alternative(eliminate,:); 
    index1=index1+total_eliminated; 
     
    % Eliminate alternatives from data set 
    homer_data(eliminate,:)=[]; 
end 
  
%% Convert to non-dimensional utilities 
  
% Determine best and worst single-attribute scores 
% criteria using HOMER simulation results 
  
utilities=table('Size',[size(homer_data,1),length(priority)+2],... 
    'VariableTypes',["string";string(repmat('double',length(priority)+1,1))], 
     'VariableNames',[{'Alternative'};priority;{'Overall'}]); 
utilities.Alternative=string(homer_data.Alternative); 



263 

  
for counter=1:size(homer_criteria,1) 
    % Identify highest and lowest single physical scores 
    highest=max(homer_data.(cell2mat(homer_criteria(counter,1)))); 
    lowest=min(homer_data.(cell2mat(homer_criteria(counter,1)))); 
    switch cell2mat(homer_criteria(counter,2)) 
        case 'min' 
            utilities.(cell2mat(homer_criteria(counter,1)))=100*(1-... 
                (homer_data.(cell2mat(homer_criteria(counter,1)))-lowest)/(highest-lowest)); 
        case 'max' 
            utilities.(cell2mat(homer_criteria(counter,1)))=100*(... 
                (homer_data.(cell2mat(homer_criteria(counter,1)))-lowest)/(highest-lowest)); 
    end 
end 
  
for counter=1:size(custom_criteria,1) 
    % Identify highest and lowest single physical scores 
    highest=max(homer_data.(cell2mat(custom_criteria(counter,1)))); 
    lowest=min(homer_data.(cell2mat(custom_criteria(counter,1)))); 
    switch cell2mat(custom_criteria(counter,2)) 
        case 'min' 
            utilities.(cell2mat(custom_criteria(counter,1)))=100*(1-... 
                (homer_data.(cell2mat(custom_criteria(counter,1)))-lowest)/(highest-lowest)); 
        case 'max' 
            utilities.(cell2mat(custom_criteria(counter,1)))=100*(... 
                (homer_data.(cell2mat(custom_criteria(counter,1)))-lowest)/(highest-lowest)); 
    end 
end 
  
 %% Calculate ROC Weights 
  ROC=zeros(length(priority),1); 
 for counter=length(ROC):-1:1; ROC(1:counter)=ROC(1:counter)+1/counter; end; ROC=ROC/length(ROC); 
  
 %% Calculate Overall Utility 
  utilities.Overall=table2array(utilities(:,2:length(priority)+1))*ROC; 
 [best_score,best]=max(utilities.Overall); 
 best=utilities.Alternative(best)


