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ABSTRACT 
 
 
 

TARGETING NEUROINFLAMMATION FOR DISEASE MODIFICATION IN MODELS  
 

OF PARKINSONISM 
 
 
 

Chronic inflammation of the central nervous system (CNS) is a large contributing 

factor to neurodegeneration. Neuroinflammation is mediated by cellular communication 

between microglia, astrocytes, neurons and invading leukocytes from the periphery in 

response to neuronal injury. The second most common neurodegenerative disorder, 

Parkinson’s disease (PD), is characterized by progressive loss of dopaminergic (DA) 

neurons from the substantia nigra (SN) and sustained neuroinflammatory activation of 

glial cells in the vicinity of these neurons. One master regulator of glial cell activation is 

transcription factor, NF-kB. NF-kB is ubiquitously expressed throughout the CNS and 

when activated, positively regulates neuroinflammatory genes in glia and induces 

prosurvival/synaptic plasticity genes in neurons. Therefore, targeting cell-specific NF-kB 

is critical for a desirable outcome when intervening with PD pathology. In the present 

studies, we utilized several experimental strategies to target neuroinflammation in 

multiple animal models of parkinsonism. The first utilized an astrocyte-specific NF-kB 

knock-out (KO) mouse model. We showed that KO animals were protected from 

neurotoxin-induced PD pathology and associated behavior, thus supporting the 

importance of astrocyte- NF-kB activation in parkinsonism. The second experimental 

strategy utilized small molecular compound, C-DIM12, which has agonistic properties with 
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orphan nuclear receptor Nurr1 (NR4A2). Nurr1 activation indirectly suppresses NF-kB 

regulated gene expression in glial cells and also positively regulates genes associated 

with the production/release of DA in neurons. Through counter-regulation of NF-kB by 

Nurr1 activation with orally delivered C-DIM12, a neuroprotective effect was conveyed to 

the SN in a similar experimental mouse model of PD. Lastly, an alternative approach to 

modulating neuroinflammation utilized adeno-associated viruses (AAVs) to target specific 

cells of the CNS for transgene expression. Data revealed multiple AAV serotypes differed 

in transduction capacity and by comparison, an optimal serotype was identified for 

astrocyte targeting. Using AAV technology, transgene Nurr1 was overexpressed in 

astrocytes in vitro and in vivo. The preliminary results with AAV-Nurr1 display a protective 

effect against neurotoxicity and a promising direction for future studies. In conclusion, 

these studies investigate the role of neuroinflammation in relation to DA neuronal injury 

and provide disease modification strategies by cell-specifically targeting NF-kB and Nurr1 

signaling pathways.
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CHAPTER 1 
 
 
 

LITERATURE REVIEW 
 
 

 
1.1 PARKINSON’S DISEASE 
 

In 1817, Dr. James Parkinson documented the first report of a malady described 

as ‘paralysis agitans’ in his monograph entitled: An Essay on the Shaking Palsy. The 

study patients were male, between the ages of 55-72 years old, and each suffering from 

an analogous manifestation of motor impairment that was easily noticeable while walking 

down the streets of London. Over time, the malady seemed to progressively worsen and 

cause a shaking palsy or an uncontrollable resting tremor, which made the disorder 

distinguishable from other diseases (Parkinson 1817). This disease is now commonly 

recognized as Parkinson’s disease (PD). 

 Two centuries after the Dr. Parkinson’s discovery, the direct etiology of the disease 

is still unknown. However, research suggests that PD development/progression is heavily 

affected by genetic predisposition, environmental stimuli and ultimate effects of 

senescence. Each of these factors cause PD neuropathology in animals and human 

subjects (Shastry, 2001; Hirsch et al., 2012). The pathology is commonly characterized 

as progressive degeneration of dopamine (DA) neurons residing in the ventral midbrain 

area or substantia nigra pars compacta (SNpc) and the dorsolateral striatum (ST). 

Damage to DA neurons cause an imbalance of thalamic-cortical output, resulting in 

movement symptoms such as bradykinesia, loss of balance and resting tremors. Non-

motor symptoms known as depression/anxiety, loss of smell and GI tract issues also 
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highlight the complexities of PD diagnoses. However, investigating the underlying effects 

of genetic mutations, neurotoxic exposure, and age could uncover new treatments for 

PD.  

1.1.1 GENETIC 

The risk for PD development due to familial history is only 10%, as majority of 

cases are sporadic (C Klein and Westenberger, 2012). Thus far, a library of eight rare 

gene mutations are associated with familial PD. These genes have nomenclature PARK1-

PARK8, although this classification can be misleading to the true function and effect of 

the normal gene. Therefore, specific gene names and function of a select few will be 

described for brevity. 

 The most common coding variant to cause familial form of PD is mutations of 

leucine-rich kinase 2 (LRRK2; PARK8). LRRK2 phosphorylation is associated with crucial 

pathways for neuronal health such as, apoptosis, autophagy and mitochondrial function 

(A Price et al., 2018). Additionally, recent studies associate LRRK2 mutations with 

Crohn’s disease, which could link enteric nervous system pathology to PD (Hui et al., 

2018). Another autosomal-dominant mutation is alpha-synuclein (SNCA; PARK1). 

Normal SNCA function mediates vesicular protein transport from the endoplasmic 

reticulum to the Golgi in neurons (AA Cooper et al., 2006). However, SNCA protein is 

prone to aggregate in the form of fibrils and oligomers which produce neurotoxic 

intracellular protein inclusions known as Lewy bodies (Zhou et al., 2008). Progressive 

seeding and spread of Lewy bodies (LB) throughout the CNS is a hallmark of PD 

pathology (Braak et al., 2004). Mutated form of DJ-1(PARK-7) is an autosomal-recessive 

mutation associated with early-onset of PD. Basal levels of normal DJ-1 provides anti-
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oxidant function by regulating the expression of detoxifying enzyme glutathione (GSH). 

Interestingly, DJ-1 overexpression can remove toxic alpha-synuclein aggregates from 

destressed neurons (Zhou et al., 2011). These described genes are just a few examples 

of how loss of the normal function through hereditary effects can predispose an individual 

to developing PD later in life. Yet, focusing on only one of these genes for monotherapy 

is perhaps a wrong direction due to the low percentage of PD patients whom possess 

these mutations.   

 1.1.2 ENVIRONMENT 

Since the majority of PD patients suffer from sporadic form, environmental 

exposure is suggested to be a primary cause. The discovery of exposures that increase 

the risk or produce neurotoxicity have generated enormous breakthroughs in 

understanding the progression of neurodegeneration. Effects of neurotoxic pesticides, 

heavy metals, traumatic brain injury (TBI), viral and bacterial infection on DA neurons 

have been heavily investigated, since these cues can be easily controlled and tested in a 

laboratory setting.  

 A valuable PD research tool for approximately thirty-five years is 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP). Dr. William Langston discovered MPTP by 

treating patients whom intravenously injected the chemical mistaken for synthetic  heroin 

and quickly developed severe forms of parkinsonism (Langston et al., 1983). The 

metabolite of MPTP, MPP+, causes specific degeneration of DA neurons within the SNpc 

by inhibition of mitochondrial electron transfer at the NADH dehydrogenase-ubiquinone 

junction (complex I) (Ramsay et al., 1991). Due to the consistency of DA neuronal loss 

and induction of PD neuropathology, MPTP is a staple model in mice and non-human 
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primates for pre-clinical drug testing. Other complex I mitochondrial inhibitors used in 

animal models are pesticides paraquat and rotenone. These chemicals can cause SNCA 

formation of fibrils, a precursor to LBs, in rodents (Manning-Bog et al., 2002; Sherer et 

al., 2003) (Uversky et al., 2001).  

 Studies also identify exposures from various heavy metals, such as copper, iron 

and manganese (Mn) predispose individuals to acquire PD. Metal ions are necessary for 

multiple cellular functions and enzymatic processes, however in high levels of exposure, 

metals are neurotoxic. Elevated levels of copper and iron are associated with multiple 

neurological disorders (Lan et al., 2016). Specifically, in PD, increased levels of iron are 

found in degenerating DA neurons of the SNpc (Zhu et al., 2007). Manganese toxicity is 

also evident in occupational work settings, such as welding or mining (Racette et al., 

2017). Severe cases of Mn exposure result in the PD-like disorder, manganism, which 

manifests neurological symptoms such as dystonia, bradykinesia, rigidity, and 

depression. Interestingly, manganese crosses the blood brain barrier (BBB) by iron 

transporter, transferrin, where it accumulates in non-neuronal cells, known as astrocytes 

(Peres et al., 2016).  The specific role of astrocytes in PD and mediating Mn toxicity will 

be discussed later in the dissertation.  

 The brain is considered an “immune-privileged” organ due to formation of the BBB, 

consisting of tight junctions between astrocytes and endothelial cells, which creates a 

selective passage for peripheral cells to the CNS. However, ongoing research suggests 

a sophisticated innate immune system persists within the brain, causing 

neuroinflammation. Neuroinflammation is mediated between the resident immune cells, 

microglia, astrocytes, neurons and invading leukocytes from the periphery in response to 
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infectious pathogens. Interestingly, gram-negative bacteria molecules have been found 

in post-mortem brain tissue from Alzheimer’s patients (AD) (Zhan et al., 2016). Endotoxin 

lipopolysaccharide (LPS) derived from gram-negative bacteria is mainly recognized by 

toll-life receptor 4 (TLR 4) which is expressed on the surface of glial cells and can induce 

a cascade of neurotoxic glial activation and neuronal death (Glass et al., 2010). Viral 

infection is also a potential concern which increases susceptibility to develop PD, as 

studies show peripheral H1N1 influenza virus infection synergizes neurodegenerative 

effects of MPTP and increases microglia activation in mice (Sadasivan et al., 2017). 

Additionally, acute trauma, or TBI acquired by at risk activities such as heavy contact 

sports is an environmental risk factor for developing PD. Initially, TBI causes mechanical 

damage of parenchymal cells and blood vessels following a secondary  injury resulting in 

a buildup of oxidative stress and chronic neuroinflammation that damages neurons over 

time (Impellizzeri et al., 2016; Mettang et al., 2017).  

1.1.3 AGING  

Since the average age of PD diagnosis is over the age of 60 years old, cellular 

aging is another primary factor. Studies show over time, mitochondria lose the capacity 

for necessary adenosine triphosphate (ATP) production which causes large, energy-

dependent DA neurons to die. DA neurons are highly energy dependent upon oxidative 

phosphorylation for ATP production, rather than glycolysis, increasing the demand for 

functional healthy mitochondria (Surmeier et al., 2017). Additionally, the sheer size of DA 

neuron arborizations and travel from SNpc to the striatum (ST), require supplemental 

mitochondrial bioenergetics that only deteriorate with age (Pacelli et al., 2015). 

Mitochondrial dysfunction also overproduce radical oxidative species (ROS) present in 
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the microenvironment (Patel, 2016). ROS and reactive nitrogen species (RNS) increase 

to levels beyond anti-oxidant repair, as result of aging (Dong et al., 2014). DA neurons 

are especially vulnerable to intracellular oxidative stress due to the formation of DA-

quinones during the synthesis of DA. The buildup of DA-quinones is hypothesized to 

cause downstream signaling to reactive glial cells which further accelerates 

neurodegeneration (Kuhn et al., 2006). 

1.2  NEUROINFLAMMATION IN PARKINSON’S DISEASE 

The topic of neuroinflammation has caused speculation over if it could be a 

preceding cause to DA neuronal death or merely a result of brain injury. However, 

depending on the context, more recent evidence points to the former, as we further 

understand the cell specific roles that mediate neuroinflammation. This section will 

explore the immune functions of microglia, astrocytes, and neurons in relation to PD 

pathogenesis. 

1.2.1 MICROGLIA 

Microglia are the resident immune cell of the brain that constantly scan the CNS 

for invading pathogens. Upon encountering a recognized pathogen, microglia change 

from a ramified, resting morphology, to an amoeboid shape for phagocytosis of invaders, 

also known as microglia activation (Glass et al., 2010). Additionally, activated microglia 

provide neurotropic properties, as phagocytic function is necessary for pruning synapses 

of neurons for healthy neurotransmission (Schartz, Wyatt-Johnson, LR Price, Colin, and 

Brewster, 2018b). Therefore, microglia activation could be beneficial or detrimental to the 

host. Microglia derive from myeloid lineage, which polarize into two unique macrophage 

subtypes that determine the level of neuroinflammatory response present in the 
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microenvironment. M1 is a neurotoxic subtype, which express a neuroinflammatory profile 

of cytokines, chemokines, and ROS. M1 microglia release factors such as, tumor necrosis 

factor a (TNFa) interleukins, and chemokine ligands (CCL 2 and 3) that communicate 

with surrounding astrocytes and neurons leading to  neurotoxicity (Hirsch and SP Hunot, 

2009). M2 is a subtype associated with neurotropism, tissue repair and as previously 

mentioned, synaptic pruning (Kirkley et al., 2017; Schartz, Wyatt-Johnson, LR Price, 

Colin, and Brewster, 2018a). Evidence suggests microglia also communicate with 

peripheral infiltrating T-cells at site of lesion. Major histocompatibility complex (MHC) 

class II molecules, identified on microglia from MPTP treated mice, have been shown to 

present endocytosed antigens to CD4+ T-cells (Kurkowska-Jastrzebska et al., 1999). 

Since activated microglia exist as a heterogeneous population, usage of the term 

“activation” is diverse in context to the ultimate outcome. However, for the purpose of the 

dissertation, the term will suggest neurotoxic M1 microglia are investigated.  

1.2.2  ASTROCYTES 

Astrocytes are the most abundant cell type in the mammalian CNS, constituting 

approximately 30% of all cells. Astrocyte metabolism production of energy and amino 

acids is crucial for normal neuronal function. Neurons do not produce pyruvate 

carboxylase, so are dependent on astrocytes for the production of glutamate (Glu) 

(Sidoryk-Wegrzynowicz and Aschner, 2013). Astrocyte-derived Glu is crucial for neuronal 

homeostasis and neurotransmitter production for neural signaling. Additionally, neurons 

rely on astrocytes for normal concentrations of intracellular GSH. GSH activity detoxifies 

a large number of protein-thiols and ROS to protect the neuron from oxidative damage 

(Dringen et al., 1999).   
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Astrocytes also have immune function. As the first line of defense from foreign 

invaders, astrocytic endfeet (glia limitans) create the BBB, excluding peripheral cells that 

produce cytokines and ROS (Liddelow and Ben A Barres, 2017). Also, like microglia, 

astrocytes respond to a multitude of different CNS insults. Astrocytes proliferate to the 

site of lesioning, noticeable by increased numbers of glial fibrillary acidic protein (GFAP+) 

cells, forming a “glial scar” (Wanner et al., 2013; Hammond 2018). GFAP is the most 

common marker for measuring gliosis, however, recent transcriptomic analysis revealed 

new markers for identifying reactive astrocyte phenotypes (Liddelow et al., 2017). Similar 

to the classification of microglia, a heterogeneous population of activated astrocytes 

exists. Liddlelow et al. identified subtypes A1, neurotoxic, or A2, neuroprotective, 

phenotypes by single-cell transcriptional profiling. Upon ischemic stroke in mice, 

astrocytes transformed to a A2 reactive phenotype which repaired and protected neurons 

from further damage. In contrast, LPS injection in mice induced an A1 reactive phenotype, 

which exacerbated neurotoxicity. These studies suggest complement protein, C3, is an 

ideal marker for A1 neurotoxic astrocytes (Liddelow et al., 2017). C3 was originally 

investigated as an essential immune regulator in the peripheral system, by mediating a 

signal cascade for the formation of membrane attack complexes on the surface of 

pathogens (Lian et al., 2016). Interestingly, astrocytes also express C3 in response to 

Interleukin 1, alpha (ILa), TNFa, and complement component subunit 1 q (C1q) which are 

released from activated microglia (Liddelow et al., 2017). This classical complement 

pathway between microglia, astrocytes and neurons may be a new candidate mechanism 

for controlling neuroinflammation (Schartz et al. 2018). Studies also show astrocytes 

communicate with peripheral infiltrating monocytes through a CCL2-CCR2 signaling 
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mechanism in response to MPTP lesioning in mice (Parillaud et al., 2017). Together, 

these findings suggest a crucial astrocyte-driven immune-regulatory system exists in 

neurodegenerative disease.  

1.2.3  NEURONS 

Neuroinflammation and immunity is controlled by neurons as well. MHC class I 

molecules are expressed on the surface of neurons to communicate with invading 

cytotoxic T-cells upon neurotropic viral infection (Chevalier et al., 2011). Neurons express 

pattern recognition receptor TLR3, which binds viral double-stranded RNA and relays 

innate immune responses. Other neuronal cell surface receptors, CCLR and C3aR, 

mediate chemokine and complement protein signaling, respectively, and dictate whether 

neurons will be engulfed by glia cells or repair itself in response to injury (Parillaud et al., 

2017; Schartz et al., 2018). In MPTP mice models, cell surface DA transporters recognize 

MPP+ ions, which downstream induce intracellular oxidative stress and production of 

nitric oxide (NO). NO reacts with super oxide (O2
-) forming peroxynitrite and has high 

binding affinity to amino acid tyrosine causing nitro-tyrosine adducts and neuronal 

dysfunction (Moreno, Streifel, et al., 2009). Neurons can also release NO to the 

extracellular matrix which exacerbates glia activation, resulting in a cyclic loop of neuronal 

damage (Glass et al., 2010). However, the direct link between oxidative stress and 

neuroinflammatory reaction is still not fully understood (McElroy et al., 2017). 

Consequently, by investigating select genes with cell specific transcriptional roles that 

mediate neuroinflammation in the CNS we can under cover their functions in microglia, 

astrocytes and neurons. 
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1.3 CANDIDATE GENES FOR DISEASE MODIFICATION 

To date, prescribed PD drugs only treat the symptoms and do not slow the 

progressive loss of DA neurons. Dopamine replacement therapy, known as levo-dopa (L-

DOPA), improve movement deficits. Yet, a side effect of L-DOPA is dyskinesia, due to an 

overproduction of DA. Transplantation of fetal DA stem cells into the ST is another viable 

DA replacement. Transplantation has shown to improve motor symptoms, but only to the 

same degree as L-DOPA administration (Freed et al., 2011).  Since these treatments do 

not slow the progression of PD and patients still worsen over time, new disease 

modification therapies are necessary. In the following section, two candidate gene 

pathways highly expressed in the CNS that halt neurodegeneration in animal models will 

be discussed in detail.  

1.3.1 NF-kB SIGNALING 

NF-kB transcriptional and posttranslational activity is ubiquitously expressed in 

multiple cell types. There are five mammalian NF-kB nuclear subunits that homo- or 

heterodimerize for transcription: p50, p52, p65 (Rel-A), c-Rel, and Rel B (Kaltschmidt et 

al., 2006).  NF-kB signaling was initially identified as the link between the transcription of 

immunoglobulin light chain genes in the response to LPS treatment in B-cells (Baltimore, 

2009). Currently, studies show NF-kB activation is upregulated in PD (Hirsch and SP 

Hunot, 2009), Huntington’s disease (HD) (Hsiao et al., 2013), and AD (Kaltschmidt et al., 

1997). NF-kB is the master transcriptional regulator of multiple proinflammatory amplifiers 

(e.g IL-1b, TNFa, interleukin-6; IL-6, C3, C1q) in both astrocytes and microglia (Glass et 

al., 2010; Liddelow and Ben A Barres, 2017). Inflammatory insult, such as LPS treatment 

on microglia, induces NF-kB nuclear subunits p65 and p50 to translocate from the 
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cytoplasm to the nucleus and bind to upstream promotor regions of proinflammatory 

genes (De Miranda et al., 2015). Proinflammatory cytokines and chemokines released 

from microglia activate astrocytes which amplify the inflammatory response further back 

to microglia between glia-glia crosstalk (Kirkley et al., 2017). Augmentation of released 

inflammatory mediators are recognized by neurons resulting in induction of apoptosis 

(Hirsch and SP Hunot, 2009).  NF-kB is also a primary regulator of nitric oxide synthase 

2 (NOS2), in both astrocytes and microglia. Upon the induction of NOS2, NO and other 

ROS mediators, are released from glia cells and taken up by DA neurons inducing 

nitrosative stress, apoptosis or necrosis (Moreno et al., 2011). Interestingly, recent 

evidence suggests NF-kB regulates C3 expression primarily in A1, “neurotoxic” 

astrocytes (Lian et al., 2016).  

Despite negative proinflammatory effects regulated by NF-kB in glial cells under 

pathological conditions, NF-kB activation is necessary for synapse formation, neural 

plasticity, and expression of pro-survival genes in neurons (Lian et al., 2016; Liddelow 

and Ben A Barres, 2017). Inhibition of NF-kB in neurons  decreases synaptic plasticity, 

by lack of CREB phosphorylation, resulting in loss of spatial memory in mice (Kaltschmidt 

et al., 2006). Furthermore, loss of subunit p50 in neurons results in enhanced 

susceptibility to hippocampal brain injury (Kassed et al., 2002). Taken together these 

findings, global inhibition of NF-kB in the CNS may be beneficial for alleviating 

neuroinflammation regulated by glia cells, except it may be detrimental by suppression of 

synaptogenesis and regeneration in neurons during PD progression. Therefore, targeting 

NF-kB indirectly through counter regulation could lead to a more cell-specific effect in 

CNS for disease modification. 
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1.3.2 NURR1 SIGNALING 

Nurr1 is predominantly expressed in the ventral midbrain, down regulated in PD 

patients, and critical for DA neuronal development/homeostasis. High cellular energy 

demand makes neurons more susceptible to decreased ATP production by mitochondrial 

failure, which can result from Nurr1-down regulation (Kadkhodaei et al. 2013). There are 

no known endogenous ligands for Nurr1, but the nature of its interactions with DNA 

suggests several modes of dimerization with retinoic acid receptors (RXR) to the 

consensus nerve growth factor binding recognition element (NBRE) (García-Yagüe et al. 

2013; Saijo et al. 2009). The NBRE sequences is recognized in promoter regions of the 

rate-limiting enzyme for DA production, tyrosine hydroxylase (TH), aromatic amino acid 

decarboxylase (AADC) and transporter proteins: vesicular monoamine transporter 2 

(VMAT2) and transmembrane dopamine transporter (DAT) in neurons (Zetterström et al., 

1996; Smits et al. 2003; Sakurada et al. 1999). Recently, our group confirmed that upon 

Nurr1 activation, a dopaminergic phenotype is up regulated by induction of Nurr1 

regulated genes, TH and VMAT2 in neurons. Also, we observed Nurr1 activation provides 

neuroprotection from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in DA 

neuronal cultures (Hammond, 2015). Current experimental models using transgenic mice 

allow for only Nurr1 (+/-) expression, as Nurr1 null mice lack TH expression and die 24 

hours after birth, implicative of Nurr1 significance in DA differentiation (Jiang et al. 2005). 

These studies demonstrate Nurr1 (+/-) DA neurons in mice are more vulnerable to MPTP 

(Le et al. 1999).  

Nurr1 also provides anti-inflammatory effects in glial cells. Constitutive Nurr1 binds 

to nuclear subunits of NF-kB at inflammatory promoter sequences, recruiting co-
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repressor proteins and histone deacetylase (HDAC) responsible for suppression of 

neurotoxic gene expression in both microglia and astrocytes. ROS and NOS produced by 

glial cells are suggested to be under control of the Nurr1-transrepression pathway (Saijo 

et al. 2009). This transcriptional transrepression through Nurr1 activation results in 

counter regulation of NF-kB through an indirect pathway. Additional studies have shown, 

upon Nurr1 overexpression, there is a decrease of mitochondrial pro-apoptotic factors, 

such as Bax proteins (Zhang et al. 2009). Targeting the cell specific functions of Nurr1 

activation that indirectly inhibits NF-kB in glia cells and upregulates dopaminergic gene 

expression in neurons by pharmacologic or gene therapeutics may be a novel approach 

in halting the progression of PD. 

1.4 EXPERIMENTAL STRATEGIES FOR DISEASE MODIFICATION 

1.4.1 TRANSGENIC MOUSE MODELS 

Current in vivo models for genetic modifications in mice include the introduction of 

plasmid genes in utero or neonatal electroporation, intrauterine viral transduction, germ 

line modifications with Cre-directed to lox-mediated recombination, and recently, CRSPR-

Cas9 genome editing with guide RNAs (De Vry et al. 2010; Hashimoto and Mikoshiba 

2003; Zong et al. 2005; Nemudryi et al. 2014). Since a murine genome is approximately 

97.5% similar to human, mice are desirable models for studying human disease. By 

increasing normal WT gene expression, inducing expression of a mutant gene, or 

decreasing WT gene expression, we can further understand the complexities of 

neurodegeneration. In PD research, transgenic mice can replicate the pathology by toxic 

gain of function or loss of neuroprotective function. Two examples of toxic gain of function 

mouse models are the Y39C and A53T mice. Tyrosine-to-cysteine mutant form of human 
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SNCA protein (Y39C) displayed abnormal SNCA aggregation and motor deficits similar 

to PD patients (Zhou et al., 2008). Mutated form of human SNCA, alanine-to-threonine 

mutant (A53T) in mice also developed LB formation similarly seen in PD patients, which 

resulted in paralysis and death (Giasson et al., 2002). However, loss of DA neurons was 

not evident in both of these animal models (Giasson et al., 2002; Zhou et al., 2008). Lack 

of severe PD-like pathology in the midbrain DA neurons could explain a species 

difference between human and mouse or conceivably SNCA overexpression is not the 

only cause of DA neurodegeneration. Loss of neuroprotective function in Nurr1 +/- 

deficient mice can recapitulate PD neurobehavior, have fewer DA neurons in the SNpc, 

and are more susceptible to MPTP induced neurotoxicity. Although, these mice do not 

exhibit pathological hallmark of LB formation (Zetterström et al., 1997). In summary, no 

mouse model is flawless in recapitulating PD pathology, which limits the progress in 

therapeutic development. 

The above mentioned are mouse models heavily focused on neuronal 

mechanisms. As discussed earlier, non-neuronal cells mediate PD neurotoxicity as well, 

which requires investigation of cell-specific genetic modifications in mice. One strategy is 

the Cre-loxP recombination system. Cre-recombinase is a genome-editing enzyme that 

was originally identified in bacteriophage and targets small palindromic sequences known 

as loxP sites (Gorman and Bullock 2000). A gene of interest is flanked by the loxP sites 

on both the 5’ and 3’ ends of the gene. loxP expressing mice are crossed with chimeric 

Cre-expressing mice. Through homologous recombination, Cre excises and deletes the 

gene of interest by targeting the flanking loxP sites. Specific promoters can be inserted 5’ 

of the Cre gene to drive cell specific gene deletion.  Interestingly, an astrocyte-specific, 
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NF-kB hyperactivated transgenic mouse model was generated by Lian et al. 2015. This 

group crossed hGFAP-Cre and loxP-IkBa-loxP mice to specifically knock-out IkBa in 

GFAP+ astrocytes. IkBa is the protein necessary for sequestering the nuclear subunits of 

NF-kB in the cytoplasm. Thereby loss of IkBa induces translocation of the nuclear 

subunits, and constitutive activation of NF-kB in astrocytes. The hyperactivation of 

astrocyte specific-NF-kB exacerbated neurodegeneration and further supports the 

importance of targeting glial-mediated neuroinflammation in PD research (Lian et al., 

2015). In contrast, recently in our work, we generated a knock-out mouse that inactivated 

NF-kB in astrocytes and will be further explained in chapter 2.  

1.4.2 PRE-CLINICAL PHARMACOLOGY 

To halt neurodegeneration, a drug must penetrate to the CNS for site of action. 

Small lipophilic molecular compounds (<400 Da) can cross the BBB by lipid-mediated 

diffusion (Pardridge, 2012). Upon BBB penetration, the drug should target a specific cell 

and pathway in PD pathogenesis. Mechanistic properties are tested pre-clinically in 

animal models and cellular assays. Therefore, the model must closely mimic PD. For 

instance, the anti-inflammatory drug, minocycline, delivered promising results in a 

amyotropic lateral scelerosis (ALS) transgenic mouse model, but worsened ALS patients 

in a phase III clinical trials. The mouse model tested was later suggested to poorly 

recapitulate ALS pathology which caused misleading results (Gordon et al., 2007). 

Additionally, potential drugs must be deemed clinically safe without severe on or off-target 

toxicity. On target toxicity occurs when interaction between drug and molecular target 

creates a toxic effect at the dose necessary for the therapeutic result. Changing the 

disease target may be necessary since the effect is specific to the target and not of the 
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drug itself. In contrast, off-target toxicity can occur if the drug causes undesirable effects 

by interacting with an alternative target or region of tissue (Guengerich, 2011). Therefore, 

altering the derivative or class of compound may be necessary. Drugs that target innate 

immune function also must not suppress normal immune response which increases 

susceptibility to sporadic infections (Glass et al., 2010). The need for specificity in 

targeting neuroinflammation in PD suggests a cell specific delivery system is necessary 

for controlled pharmacologic response. Interestingly, we have demonstrated that a novel 

class of compounds, p-substituted-diindoylymethane (C-DIM) analogs, have high brain 

bioavailability, are considered therapeutically safe in mice and canines and can provide 

anti-inflammatory effects in mouse models of PD (De Miranda et al., 2013; 2014; 

Hammond 2018; Safety data unpublished). Supporting in vitro and in vivo data are 

detailed in chapters 3 and 4, respectively. 

1.4.3 VIRAL MEDIATED GENE THERAPEUTICS 

Gene therapy targeting neurodegeneration is theoretically self-explainable. A gene 

of interest is delivered into a specific region of the brain that should provide some 

therapeutic benefit to the neurons affected by the disease. The first step to consider is 

which vector to use. Genes can be delivered by adenovirus, lentivirus, adeno-associated 

virus (AAV), and transfection or electroporation of nucleic acids (NA) alone. Each vector 

has its advantages and flaws. Adenoviruses package a large cloning capacity and 

transduce neural cells, but lasting expression and cytotoxicity is a concern. Lentiviruses 

also transduce neural cells and integrate into the host genome. However, safety concerns 

persist due to the potential of insertional mutagenesis which causes cancer (Hacein-Bey-

Abina et al., 2003). Nucleic acids delivered by transfection or electroporation have 
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endless cloning capacity, except limited on the delivery efficiency and are diluted by cell 

division. AAVs transduce neural cells and are non-pathogenic in humans and animals, 

although restrictive concerns are also DNA dilution due to the lack of chromosomal 

integration (Manfredsson et al. 2016).  

Regardless of the limiting factors, AAVs are the most commonly used vector for 

gene delivery to the CNS.AAVs are small (20nm), contain a single-stranded DNA genome 

and are a member of the Parvoviridae family within the Dependovirus genus (Kotterman 

and Schaffer, 2014) (Daya and Berns, 2008). Several attempts to treat PD patients with 

AAVs have been made. Safety/feasibility in clinical phases has shown potential gene 

therapy with AAV2- Glial Derived Neurotrophic Factor (GDNF/neurturin) (Kirik et al., 2000; 

Bartus et al., 2013). However, results from a phase 2 randomized trial declared there was 

no significant therapeutic benefit and 3 patients developed tumors (Marks et al., 2010; 

Merienne et al., 2013). Another failed attempt tested AAV2- aromatic L-amino acid 

decarboxylase (AADC) in PD patients, but suggested a new trial was needed to confirm 

efficacy (Mittermeyer et al., 2012). Current clinical trials have predominately only used 

neurotropic serotype AAV2, which do not target astrocytes. Drinkut et al., confirmed 

injection of AAV5-hGFAP(2.2 kb) for astrocyte-specific GDNF overexpression in the 

mouse provided the same neuroprotective efficacy as neuron-derived GDNF, and 

suggests more AAV based therapies should be targeted towards astrocytes (Drinkut et 

al., 2012). A large data set that characterizes specific AAVs which transduce astrocytes 

will be further explored in chapter 6.  

In summary, multiple factors contribute to PD pathogenesis that are not well 

understood and are even less comprehendible when these factors are considered for 
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combinatorial effects. Therefore, a study that investigates the role of astrocyte-NF-kB 

activation as a result of multiple neurotoxic exposures in mice is investigated in the next 

chapter. 
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CHAPTER 2 
 
 
 

JUVENILE MANGANESE EXPOSURE EXACERBATES NEURODEGENERATION IN 
A MPTP “TWO-HIT” ANIMAL MODEL AND IS DEPENDENT ON ASTROCYTE-

DERIVED NF-kB ACTIVATION 
 
 
 

2.1 INTRODUCTION 

Manganese (Mn) is an essential trace element necessary for multiple enzymatic 

processes in the central nervous system (CNS) that accumulates in astrocytes during 

overexposure in adults and children. Transport of Mn into astrocytes occurs 

predominately through divalent metal transporters such as DMT1, ZIP and SLC39A3, 

where it is a required co-factor for glutamine synthetase (GS), the key enzyme regulating 

glutamate-glutamine metabolic shuttling between astrocytes and neurons (Erikson and 

Aschner, 2003; 2006). Mn is also a critical cofactor for superoxide dismutase (Mn-SOD), 

which protects neurons from the damaging effects of oxidative stress (Zidenberg-Cherr 

1983).  

However, abnormally high exposure to Mn is neurotoxic. Epidemiological studies 

correlate elevated levels of Mn in the brain to cognitive and behavioral impairment, to 

which children appear to be particularly sensitive (Rugless et al., 2014; Takser 2003; He 

1994). In more severe cases, Mn exposures from occupational work settings in adults 

(e.g. mining, welding), can cause classical ‘manganism' (RODIER, 1955; Wang et al., 

1989; Racette et al., 2017). The neurological sequelae of manganism consist of cognitive 

and motor deficits similar to Parkinson’s disease (PD), including bradykinesia, dystonia, 

rigidity and depression (RODIER, 1955; Wang et al., 1989; Mergler and Baldwin, 1997; 
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Racette et al., 2017). Although, patients with manganism do not display severe nigro-

striatal dysfunction or resting tremors and are typically non-responsive to levodopa (L-

DOPA) therapy (Guilarte et al., 2006;Peres et al., 2016; Racette et al., 2017). These 

differences are likely due to distinct patterns of neuropathology compared to idiopathic 

PD, causing toxicity primarily in more glial rich regions, such as the globus pallidus (Gp), 

subthalamic nuclei(Sth) and substantia nigra pars reticulata (SNpr) (Guilarte et al., 2006; 

Peres et al., 2016). Whereas PD is characterized by preferential loss of dopamine (DA) 

neurons in the substantia nigra pars compacta (SNpc) and long axonal projections to the 

striatum (ST). Despite these findings, the mechanism by which Mn exposure accelerates 

PD pathogenesis, is largely undefined. 

We previously demonstrated that Mn-induced neurotoxicity results in profound 

activation of astrocytes and microglia and expression of a large number of 

neuroinflammatory genes that potentiate neuronal injury (Moreno et al., 2011; Kirkley et 

al., 2017). Furthermore, we reported that mice pre-exposed to Mn during juvenile 

development had higher levels of gliosis and neuronal dysfunction than mice exposed to 

Mn only as adults (Moreno, Yeomans, et al., 2009). These neurotoxic levels of glial 

activation and neuroinflammation resulting from Mn exposure are heavily controlled by 

the transcription factor, nuclear factor kappa B (NF-kB), a master regulator of innate 

immune responses in lymphoid and myeloid cells, as well as microglia and astrocytes 

(Glass et al., 2010; Kirkley et al., 2017). In vitro, Mn directly activates microglia, which 

release cytokines and signaling molecules that chronically activate astrocytes through a 

NF-kB-dependent mechanism  (Kirkley et al., 2017). NF-kB can be stimulated by 

numerous intra- and intercellular stressors, including reactive oxygen species (ROS), 
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inflammatory cytokines and chemokines, as well as Mn accumulation (Moreno et al. 

2011). NF-kB has distinct functions within different cell types of the CNS, including 

regulation of inflammatory gene expression in glia and induction of pro-survival genes in 

neurons including IAP’s, Bcl2, Bcl-XL and surivin. (Glass et al., 2010).  

To determine the role of NF-kB in regulating the neuroinflammatory effects of Mn, 

we recently developed a novel transgenic model with astrocyte-specific deletion of the 

NF-kB signaling pathway (Kirkley 2018). Mice expressing cre-recombinase under control 

of the human glial fibrillary acidic protein promoter (hGFAP) were crossed with I kappa B 

kinase 2 (IKK2)-loxP mice. Selective deletion of IKK2 in astrocytes provided almost 

complete protection against loss of DA neurons caused by the neurotoxin, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Kirkley 2018). The active metabolite of MPTP, 

MPP+, inhibits mitochondrial complex I and causes severe nigrostriatal dysfunction and 

behavioral deficits in mice similar to those in PD (Jackson-Lewis and Przedborski, 2007). 

Lack of NF-kB function in astrocytes also decreased reactive gliosis by suppressing the 

expression of NOS2 and TNFa, resulting in prevention of MPTP-induced neuronal 

apoptosis (Kirkley 2018). However, it is unknown whether exposure to Mn can exacerbate 

the effects of other dopaminergic neurotoxins such as MPTP by modulating glial reactivity 

and subsequent inflammatory neuronal injury.  

 In the present study, we postulated that Mn exposure during development would 

stimulate NF-κB-dependent intercellular signaling between microglia and astrocytes, 

resulting in ongoing neuroinflammation that enhances susceptibility to neurological 

dysfunction during aging. To test this hypothesis, we used a two-hit neurodegenerative 

model by administering Mn in drinking water to hGFAP-cre+/-/IKK2fl/fl (KO) or hGFAP-cre-
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/-/IKK2fl/fl (WT) mice during juvenile development, followed by exposure to MPTPp (MPTP 

+ probenecid) four-five months later during adulthood. Neurobehavioral analysis was 

conducted during the two-week MPTPp dosing regimen to detect locomotor deficits 

associated with injury to the basal ganglia. Brain tissue from multiple regions was 

collected for determination of Mn, catecholamines, stereological assessment of neuronal 

numbers, glial activation and expression of proteins regulating DA function. In addition, 

we identified high levels of the complement protein, C3, in activated astrocytes that was 

dramatically reduced in KO mice. We also detected a similar pattern of glial activation 

and C3 expression in human brain tissue from individuals highly exposed to Mn in an 

occupational setting. These studies indicate that early exposure to Mn exacerbates glial 

activation and neuronal loss following challenge with a second dopaminergic 

neurotoxicant through neuroinflammatory activation of NF-kB in astrocytes.  

2.2 MATERIALS AND METHODS 

Animals and treatment regimen 

All animals were housed on a 12 hr light/dark cycle in a temperature-controlled room 

(maintained at 22-24°C) and access to standard chow/water ad libitum. Procedures were 

approved by Colorado State University Institutional Animal Care and Use Committee 

(IACUC) and were conducted in compliance of National Institute of Health guidelines. 

hGFAP-cre+/- (Cat#: 004600; Jackson Laboratories) mice were backcrossed on a 

C57/BlJ6 background for twelve generations before crossbreeding with IKK-loxP+/+ 

(acquired from the Karin lab at UC Davis) mice. Four generations of crossbreeding were 

conducted to acquire hGFAP-cre+/-/IKK2fl/fl (KO) or hGFAP-cre-/-/IKK2fl/fl (WT) animals for 

the study. At day P21, mice were administered MnCl2 (50mg/kg/day; Sigma) by 
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monitoring water intake and weight gain for thirty days following. After P51, mice were 

placed back on normal drinking water for a period of three-four months for aging and 

susceptibility to MPTP-HCl solubilized in saline (0.9% NaCl2) by subcutaneous injection 

(s.c.; 20mg/kg; MedchemExpress; Monmouth Junction, NJ) and probenecid by 

intraperitoneal injection (i.p.; 100mg/kg; Sigma) every other day for one week (4 dosages 

total), per our previously published protocol (Hammond 2018). Treated mice were aged 

an additional week before tissue collection. 

Behavioral analysis  

Two weeks before initial behavioral testing, all mice were acclimated to stress handling 

by methods closely adapted to previously established protocols (Gouveia and Hurst, 

2013; Stuart and Robinson, 2015). Open field testing (OFT) was monitored with 

Versamax System (Omnitech Electronics, Inc; Columbus Ohio) as previously described 

by Hammond et al. 2018 (Hammond 2018). Gait measurements of stride length, rate and 

paw intensity were detected by our custom-made in house real-time video gait analysis 

system. Video recordings of mouse gait were conducted as previously reported 

(Hammond 2018).  All behavioral testing was performed before mice were treated on 

days 0, 7 and 14 (no treatment) of the MPTPp dosing regimen. All parameter values were 

subtracted from day 0 for change from baseline measurements. 

Tissue processing 

For immunohistochemical analysis: mice were anaesthetized under deep isoflourane and 

transcardially perfused with 0.1M phosphate buffered saline (PBS)-cacodylate/heparin 

(10 U/ml) and 3% paraformaldehyde/PBS. Following decapitation, whole brains were 

dissected and stored in 3% paraformaldehyde/PBS overnight at 4°C. The next day, 
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samples were transferred to a gradient of 15-30% sucrose/PBS prior to cryosectioning 

and storage in cryoprotectant at -20°C until processed for tissue staining. For 

neurochemical detection of Mn2+ and catecholamines: mice were similarly anaesthetized 

with isoflourane and then rapidly decapitated. Whole brains were dissected and placed 

on a 1 mm brain block for separation of ST, SN, hypothalamus (Hyp), and cortex (Cx). 

Specific brain regions were snap frozen in liquid nitrogen and then stored at -80°C until 

processed for HPLC and ICP-MS. Trunk blood was also collected from decapitated 

animals and centrifuged at (1,500 rpm at 4°C /15 minutes) for plasma fractionation and 

transferred to a fresh tube before storage at -80°C.  

Western Blotting  

ST tissue used for western blotting was homogenized and lysed in RIPA in presence of 

protease inhibitors. Protein concentrations were determined by BCA protein assay 

(ThermoScientific, Pierce Rockford, Il). 23ug/well of protein was separated on 12% SDS-

PAGE gel and transferred to PVDF membranes. Blots were incubated with Anti-TH 

(1:1000; Millipore AB152), anti-VMAT2 (1:750; gift from Dr. Gary Miller’s Laboratory, 

Emory University), anti-DARPP32 (1:1000; Millipore AB10518), anti-pDARPP32-Thr34 

(1:1000; Millipore AB9206), anti-DARPP32-Thr75 (1:1000; Millipore AB9208), and anti-

Beta Actin (1:2000; Sigma A1978) diluted into 5% milk/tris-buffered saline with tween 

(0.1%) blocking buffer. Secondary antibodies used were: anti-Rabbit (Cell signaling 

7076S) or anti-Mouse (Cell Signaling 7074S) diluted in blocking buffer. Chemiluminescent 

imaging was conducted with on a BioRad ChemiDoc MP and raw TIFF files were 

analyzed for mean optical band density with ImageJ analysis software (Schneider et al., 

2012). 
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Immunostaining and automated stereological cell counting for fixed mouse brain 

tissue  

For stereological determination of TH+ neurons within the SN: the entire SNpc was serially 

cryosectioned from the subthalamic nucleus (rostral) to the retrorubal field(caudal) 

regions. Every sixth free-floating section (8 total) was selected from each animal and 

immunostained for anti-TH (1:500; Millipore AB152) and anti-Neuronal Nuclei (NeuN; 

1:250, Millipore; MAB377) by our previously reported protocol (Hammond et al. 2018) 

(Miller et al., 2011). SNpc neurons were automatically quantitated from 10x-objective 

montage images of each immunostained section using a Hammatsu ORCA-Flash4.0 

digital CMOS camera, ProScan III stage controller (Prior, Rockland, MA USA) and 

CellSens Dimension software (version 1.12, Olympus, Center Valley, PA, USA).  For 

automated relative counts of GFAP+, IBA-1+, NeuN+ cells, two sections/animal were 

selected from the same anatomical regions of SN and ST. Primary antibodies for glia 

labeling were anti-GFAP (1:500; DAKO Z0334), anti-IBA1 (1:250; WAKO 016-20001) and 

anti-TH (Abcam 76442) to demarcate the SNpc and SNr nuclei. Region of interest was 

highlighted based on Allen Brain Atlas for reference, following application of an adaptive 

threshold with shape factor and area (m2) object filters for automatic cell detection. 

Detected cell number was divided over the area (µm2) of region. The investigator was 

blinded from all experimental groups during imaging and cell quantitation.  

Immunostaining for post-mortem human brain tissue 

Formalin-fixed paraffin embedded (FFPE) human brain sections mounted on glass slides 

were donated by Dr. Brad Racette at Washington University, St. Louis. All section labeling 

was coded for an unbiased processing/analysis of all experimental groups. 
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Immunofluorescence processing was conducted as follows: 1) slides were incubated at 

55 °C (15 min), 2) cooled to room temperature (15 min), 3) deparaffinization of sections 

by 2X-xylene (5 min); 2X-100% ethanol (EtOH); 1X-95% EtOH (5 min);1X- 70% EtOH (5 

min); 1X-TBS containing 2% Triton X (5 min), 4) antigen retrieval by submersion in 75% 

methanol (10 min) and .01M Na Citrate (20 min), 5) blocked sections in 1% donkey and 

1% goat serum (1 hr), 6) primary antibodies: anti-GFAP (1:100; DAKO Z0334), anti-IBA1 

(1:50; WAKO) and anti-C3 (1:50; Abcam 11871) were diluted in TBS (2% Triton) for 48 

hours at 4°C, 7) sections were washed-4X (10 min), secondary anti-Rabbit alexa flour 

555-IBA1, anti-Rabbit alexa flour 488-GFAP and anti-mouse alexa flour 555-C3 were 

diluted in TBS (2% Triton) at 1:200 (2 hr), 8) tissue sections were washed 2X (5min) and 

1X (5min) with (2% Triton) containing DAPI, 9) sections were mounted with medium with 

glass coverslips and stored at 4°C until imaged.  

Image analysis of microglia morphology and reactive astrocytes 

For detection of microglia morphology, the same sections immunostained for anti-

IBA1/TH as mentioned for automated counting were reimaged on a Zeiss Axiovert 200M 

inverted fluorescent microscope equipped and a Hammatsu ORCA-ER-cooled charge 

coupled device camera using a 10x and 40x air objective with Slidebook imaging software 

(version 5.0, Intelligent Imaging Innovations, Denver CO). Optical fractionator method 

employed counting frame size (150 X 150 μm) and frame spacing (for SN; 250 X 250 μm, 

for ST; 550 X 550 μm). 40x z-stack images of IBA+ cells from the SNpc, and Gp were 

acquired and converted to max projection, following a binary transformation and then 

rendered to a skeletonized image in ImageJ, as previously described in Morrison and 

Filosa et al. 2013(Schneider et al., 2012; Morrison and Filosa, 2013).  To detect C3+ and 
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S100b+ co-localizing cells, same optical fractionator method was applied for imaging. 

Cells were manually quantitated per z-stack images. The investigator was blinded from 

all experimental groups during cell counting. 

High-performance liquid chromatography 

Samples of striatum were processed for high performance liquid chromatography (HPLC) 

coupled with electrochemical detection to quantitate levels of DA, 3, 4-

dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT) and 

metabolite 5-hydroxindoleacetic acid (5-HIAA). The Neurochemistry Core Laboratory at 

Vanderbilt University’s Center for Molecular Neuroscience Research group (Nashville, 

TN) processed all tissue samples from each experimental group with coded labeling for 

unbiased analysis. 

Statistical Analysis 

All data was presented as mean +/- SEM, unless otherwise noted. Experimental values 

from each mean were analyzed with a Grubb’s (α=0.05) test for exclusion of significant 

outliers. Differences between each experimental group were analyzed by a one-way 

ANOVA following a Tukey post hoc multiple comparisons test.  Significance was identified 

as ++P < 0.01, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All statistical analysis 

was conducted using Prism (version 6.0; Graph Pad Software, San Diego, CA). 

2.3 RESULTS 
 
Developmental weights and water consumption over MnCl2 treatment 

At post-natal day (PND) 7 mice were tail clipped for DNA purification and 

identification of KO and WT progeny per our previously published PCR genotyping 

protocol (Kirkley et al. 2018). At PND 21, mice were placed on a 30-day MnCl2 
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(50mg/kg/per day) drinking water regimen during juvenile development following MPTPp-

induced parkinsonism as depicted in Figure 1A. Based on statistical analysis of MnCl2 

water consumption, WT consumption increased 2.19 ± 0.44 (mL) and KO consumption 

increased 2.63 ± 0.78 (mL) from 21-51 PND (n=4-5; no significance difference between 

groups) (Fig 1B). For accurate dosing of MnCl2 and detection in change of body weight, 

mice were weighed every day for the first week of treatment. From 21-27 PND, KO and 

WT animals significantly increased in weight by 10.65 ± 0.97 and 10.86 ± 0.83 (g), 

respectively (n=8/group; ****P < 0.0001). No significant difference in body weight was 

detected between groups treated with MnCl2 (Fig 1C). 

Inhibited astrocyte-NF-kB protects DA neurons from MPTP-induced toxicity in the 

SNpc, but MnCl2 does not exacerbate neuronal loss 

To assess the severity of lesion present in all six experimental groups, SN tissue 

was serially cryosectioned and systematically immunolabeled with anti-TH (greyscale) for 

DA neuronal soma (Fig 2A-F). Estimated mean of total TH+ neurons within the SNpc were 

quantitated for each experimental animal group as follows: WT no treatment (8,024 ± 

637.1), WT with MnCl2 (8,779 ± 777.0), WT with MPTPp (3,759 ± 503.7), WT with MPTPp/ 

MnCl2 (3,867 ± 222.1), KO with MPTPp (7,421 ± 537.2), KO with MPTPp/MnCl2 (6,957 ± 

1,049). Both WT with MPTPp and with MPTPp/MnCl2 displayed a significant ~51-53% 

loss of TH+ neurons compared to control. KO with MPTPp and MPTPp/MnCl2 endured 

only a ~7.5-13.3 loss of TH+ neurons (Fig 2G). For total neuronal nuclei of the SNpc, 

sections were co-labeled with anti-NeuN. Mean estimate of total neuronal nuclei within 

the SNpc were quantitated as follows: WT no treatment (14,034 ± 631.2), WT with MnCl2 

(15,162 ± 609.8), WT with MPTPp (9,778 ± 379.3), WT with MPTPp/MnCl2 (9,636 ± 
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159.0), KO with MPTPp (12,932 ± 1,167), KO with MPTP/MnCl2 (11,695 ± 1,152). 

Comparably, WT with MPTPp and MPTPp/MnCl2 displayed a significant ~30-31% loss of 

total neurons neurons compared to control. KO with MPTPp and MPTPp/MnCl2 only 

sustained a 7.8-16.7% loss of NeuN+ cells which was not significantly different from 

control (Fig 2H) (n=6 animals/per group; **P < 0.01, ***P < 0.001). 

MnCl2/MPTPp induces neuronal death in the globus pallidus and striatum by an 

astrocyte-NF-kB dependent mechanism 

In order to evaluate level of neuronal dysfunction in other areas of the brain, 

anatomically identical cyro-sections of the basal ganglia were selected for quantitation of 

total NeuN+ neurons in the globus pallidus and caudate putamen nuclei. Representative 

10x-objective montage images of sections immunolabeled with anti-NeuN (green) shows 

level of resolution for measurement (Fig 3A). The globus pallidus (Fig 3B) and caudate 

putamen (Fig 3C) were highlighted as a region of interest (ROI) for accurate detection of 

total NeuN+ per area (µm2), notice blue objects dictate individual cell bodies within the 

ROI. Based on quantitation of total NeuN+/µm2, there was an apparent decrease of 

neurons in WT animals treated with only MPTPp or MnCl2 but was not statistically different 

from control. In constrast, WT animals treated with MPTPp/MnCl2 had a ~44.1% loss of 

NeuN+ neurons within the globus pallidus. In contrast, KO animals with dual treatment 

were protected from loss of neurons, with no differences in neuronal numbers detected 

from WT control animals (Fig 3E). Quantitation of NeuN+ cells/µm2 within the caudate-

putamen showed a similar trend as the globus pallidus, however no groups were 

statistically different (Fig 3F). To measure integrity of TH+ presynaptic terminals of the 

caudate-putamen, sections were also co-immunolabeled with anti-TH (red) as depicted 
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in representative image (Fig 3D). A decrease in TH intensity was apparent in WT animals 

treated with MnCl2 or MPTPp individually but were not significantly different from control. 

Dual treatment with both MnCl2 and MPTPp in WT mice increased loss of DA terminals 

to ~62.5% of control animals, whereas KO animals with dual treatment only had a ~20.7% 

loss of terminals compared to control WT mice (Fig 3G) (n=6-7 animals/group; *P < 0.05, 

**P < 0.01, ***P < 0.001). For detection of apoptosis, striatal tissue was collected from 

WT and KO animals treated with MPTPp and immunoblotted for cleaved caspase-3. 

Representative blot of three individual experiments shows an intense band detected in 

WT treated with MPTPp treatment and a suppression of c-caspase 3 protein was evident 

in KO with MPTPp treatment (Fig 3H). 

IKK2 knockout mice are protected against behavioral and neurochemical deficits 

caused by exposure to Mn and MPTPp 

Spontaneous locomotor activity was detected by open field test (OFT) for each 

experimental group. MnCl2-only treatment seemed to only decrease the total distance 

traveled, as all other parameters did not change from baseline (Fig 4A). Whereas dual 

treated WT (with MnCl2/MPTPp) animals displayed hyperactive behavior in multiple 

parameters of OFT analysis. Dual treatment significantly increased levels of margin time 

(Fig 4B), center time (Fig 4C), horizontal movement (Fig 4E), stereotypy movement (Fig 

4F), and ambulatory movement (Fig 4G) compared to MPTPp-only treatment. 

Interestingly, treated KO animals did not display hyperactive behavior and were no 

different from WT control animal behavior as depicted in representative images of total 

trace and pseudocolored time plots of activity over a 5 min interval (Fig 4D) (n=7-10 

animals/group; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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Quantitative analysis of stride length from each experimental animal was 

conducted using a real-time video gait analysis system. WT animals treated with MPTPp 

and MnCl2/MPTPp exhibited an apparent decrease of stride length compared to WT 

control but was not statistically different. However, dual treated KO animals had a 

significantly longer stride length compared to treated WT animals during the course of the 

study (Fig 4H) (n=5-6 animals/group; *P < 0.05). Levels of striatal catecholamines and 

metabolites were detected with HPLC analysis. All MPTPp treated animals with or without 

MnCl2 exhibited a drastic loss of DA and DOPAC. Additionally, a slight increase of DA 

levels was apparent in MnCl2-only treated WT animals but was not statistically different 

from control (Fig 4I, J). Dual treated WT animals also displayed a significantly higher ratio 

of DOPAC/DA compared to control (Fig 4K). Assessment of DA metabolite, HVA, also 

displays MPTPp treatment significantly decreased HVA levels, independent of MnCl2 

treatment and genotype (Fig 4L). Serotonin (5H-T) content showed no statistical 

difference between experimental groups (Fig 4M). However, analysis of the serotonin 

metabolite (5-HIAA) showed a significant increase in both WT and KO dual treated 

animals compared to MPTPp-only treatment (Fig 4N) (n=5-9 animals/group; *P < 0.05, 

**P < 0.01, ***P < 0.001). 

Dual MnCl2/MPTPp treatment intensifies microglia activation in the globus pallidus 

and is suppressed by the intercellular effects of astrocyte NF-kB inhibition 

Relative number of microglia within basal ganglia was detected by immunolabeling 

with anti-IBA1 (green) as depicted in representative images of the Gp and Cp (Fig 5A-

C). Both MPTPp and MPTPp/MnCl2 treatments in WT animals increased number of IBA-

1+ cells/µm2 within the caudate putamen and treated KO animals displayed significantly 
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less as depicted in Figure 5D. Dual treated WT animals also exhibited the most IBA-1+ 

cells/µm2 within the globus pallidus and similarly, KO animals had significantly less (Fig 

5E). There was a significant increase of IBA-1+ cells/µm2 in the SNpc of MPTPp treated 

WT animals and slightly fewer in KO animals, but was not statically different from WT (Fig 

5F) (n=5-6 animals/group; **P < 0.01, ***P < 0.001, ****P < 0.0001). A similar trend of 

IBA-1+ cells/µm2 in the SNpr was apparent, although not statically different between 

groups (Fig 5F). For assessment of microglia morphology, 40x-objective IBA-1 

(greyscale) images of the Cp and Gp were skeletonized to detect for number of branches 

as depicted in representative images in Figure 5H. WT dual treated animals exhibited 

significantly less branches/cell in the Cp (Fig 5I), Gp (Fig 5J), and less junctions/cell in 

the Cp (Fig 5K), and Gp (Fig 5K) compared to dual treated KO animals (n=7 

animals/group; *P < 0.05). 

Dual MnCl2/MPTPp-induced astrocyte proliferation is regulated by NF-kB in the 

basal ganglia 

Expression of IKK2 was determined in hGFAP-cre+/-/IKK2fl/fl mice by co-

immunolabeling with anti-GFAP (red) and anti-IKK2 (green), as depicted in representative 

100x-objective images from the globus pallidus in WT control (Fig 6A), WT dual treated 

(Fig 6B) and KO dual treated (Fig 6C) mice. For assessment of the relative number of 

GFAP+ cells present in multiple nuclei of each experimental group, anatomically 

consistent cyrosections of ST and SN were selected for automated counting of 

GFAP+/µm2. As depicted in representative 10x-objective montage images of the Gp and 

Cp, dual treated WT animals exhibited an amplified proliferation of GFAP+ in both nuclei 

(Fig 6F). Dual treatment significantly increased GFAP+/µm2 over MPTPp-only treatment 
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in WT animals in Gp and KO animals exhibited significantly less independent of treatment 

(Fig 6 D-G). Similarly, increased GFAP+/µm2 was evident in dual treated WT animals in 

the Cp but was not statistically different from MPTPp-only WT treated animals for this 

region (Fig 6H). Comparably, dual treated WT animals exhibited the most amount of 

GFAP+ immunoreactivity in the SNpc and KO animals significantly suppressed 

GFAP+/µm2 to control levels (Fig 6I-L). We also observed an apparent trend of 

GFAP+/µm2 in the SNpr of each experimental group but was not statistically significant 

(Fig 6M) (n=6; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001). 

Complement protein-C3 is highly expressed in reactive astrocytes following 

treatment with MnCl2/MPTPp and down regulated in IKK2 KO mice  

To quantitate number of neurotoxic astrocytes present, anti- complement protein 

C3 (red) was utilized for an additional measurement of astrocyte activation in regions of 

the basal ganglia. Anti-S100b (green) was used to detect total amount of astrocyte cell 

bodies. By randomized sampling of each nuclei and quantitation of astrocytes co-

expressing C3+S100b+ over total number of S100b+ cells, dual MnCl2/MPTPp treated WT 

animals exhibited significantly more neurotoxic astrocytes in the Gp (Fig 7B, D, F), Cp 

(Fig 7B, F, H), SNpc (Fig 7J, L, N), and SNpr (Fig 7J, N, P). Inhibition of astrocyte NF-

kB with same treatment suppressed the number of C3+ present in each region, as 

depicted in representative images in Figures 7C, G, K, O (n=7 animals/group; *P < 0.05, 

**P < 0.01, ***P < 0.001). Immunostaining on test human brain tissue shows expression 

of GFAP (green) and IBA1 (yellow) appear to be specific for glia cells. Anti-C3 (red) was 

also tested for antibody efficiency, which appears to be primarily only expressed in 
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peripheral leukocytes as C3+ cells only in arterioles of control human tissue (Fig 8A-C) 

(images represent replicates of three sections/antibody).  

2.4 DISCUSSION AND CONCLUSIONS 

 Almost two hundred years ago, James Couper described the first case of 

manganism from inhalation of Mn oxide ore dusts in workers who developed gait 

disorders similar to Parkinson’s disease (Couper 1837). Today, the pathological 

mechanisms underlying irreversible neurological damage from Mn exposure are still not 

completely understood. However, neuroinflammatory activation of glial cells is a common 

mechanism underpinning the neurotoxicity of Mn in both humans and in animal models 

of the disease, as we have previously reported (Kirkley et al. 2017; Moreno et al. 2011). 

Accordingly, we demonstrated that PND 20-34 juvenile mice were particularly susceptible 

to Mn-induced neuroinflammation (Moreno et al 2009), potentially due to a critical period 

of striatal development in rodents (Soiza-Reilly and Azcurra, 2009). Recently, we 

characterized a novel astrocyte-IKK2 transgenic animal that prevented the production of 

proinflammatory factors NOS2 and TNFa  and was neuroprotective in a MPTPp animal 

model of PD (Kirkley et al. 2018). The present study expanded on this work and elucidated 

the role of astrocyte activation induced by juvenile Mn intake, which resulted in neuronal 

loss from the globus pallidus, behavioral abnormalities and drastic differences in glia cell 

proliferation. 

 Combined developmental/adult exposure to Mn and MPTPp caused considerably 

different OFT performance compared to the other experimental groups. Spontaneous 

locomotor activity was increased in multiple parameters of total distance (Fig 4A), margin 

time (Fig 4B), center time (Fig 4C), horizontal count (Fig 4E), stereotypy count (Fig 4F), 
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and ambulatory count (Fig 4G), representing an overall hyperactive phenotype. CNS 

activity aberrations such as abnormal neuromuscular function and fine motor deficits have 

been documented in rat models ranging from low (4.8mg/kg) subchronic to high 

(50mg/kg) chronic MnCl2 administration (Witholt et al., 2000) (Beaudin et al., 2016). This 

implies as to which neurotransmitter systems are dysregulated by dual treatment of 

MnCl2/MPTPp to the presented hyperactivity. Pre-synaptic DA neurotransmission is not 

a major system effected since dual MnCl2/MPTPp treatment did not exacerbate DA 

neuronal loss in the SNpc (Fig 2G) or striatal dopamine production (Fig 4H). Or maybe a 

threshold loss of DA and neuronal bodies was exceeded by MPTPp treatment alone 

because there was still a significant loss of TH+ immunoreactivity in the Cp of dual treated 

WT animals compared to control and MPTPp-only treatment (Fig 3G). Low subchronic 

dose of MnCl2 for 5-weeks also demonstrated no further depletion of nigro-striatal DA 

depletion due to MnCl2 treatment (Gwiazda et al., 2002). In contrast, Beudin et al. showed 

chronic administration of 50mg/kg/day from PND 20-460 significantly depleted DA 

(Beaudin et al., 2016). Therefore, if treatment of MnCl2 was extended longer than 30 days 

with the same dose (50mg/kg/day) prior to MPTPp treatment, more severe effects could 

have been observed on DA neurons in the current study. 

 Thus, we investigated MnCl2 effects on Gp neurons, which receive and relay 

primarily inhibitory gamma butyric acid (GABA)-ergic innervation. By quantitation of total 

neuron marker (NeuN), there was an apparent decrease of NeuN+/µm2 in both MnCl2-

only and MPTPp-only treated groups.  Significant depletion was only detected in dual 

MnCl2/MPTPp treated WT animals compared to controls, demonstrative of amplified loss 

neurons in the Gp (Fig 3E). Investigations of Mn-induced neurotransmitter dysregulation 
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in the Gp are variably dependent on the model and dose regimen. For example, chronic 

exposure (10 mg/kg) in non-human primates depleted expression of GS in the Gp, but no 

effect on GABAergic or glutamatergic systems (Burton et al., 2009). Other investigations 

with rats treated with 6 mg/kg/per day led to significant increase of Mn brain levels and 

decrease in GABA (Lai et al 1984). Conversely, another study demonstrated that 20 

mg/kg/day treatments in rats led to a significant increase of both Mn and GABA 

concentrations in the brain (Lipe et al 1999).  

It is interesting to speculate that the observed hyperactive locomotor responses 

observed in Mn-treated mice repesent loss of neurons in the Gp, which would cause less 

GABAergic output to the Sth and therefore increased Glu excitation to the SNpc and 

increased firing of DA neurons to the ST (Erikson and Aschner, 2003). This theory of 

increased DA firing could explain the modest increases in the number of TH+ neurons 

observed in the SNpc (Fig 2G), as well as increases in DA content (Fig 4G), TH 

immunoreactivity in the ST (data not shown) and hyperphosphorylation of the post-

synaptic DA protein DARPP32 (data not shown) in Mn-treated WT animals. Serotonergic 

neurotransmission is also a possible target of juvenile Mn toxicity. Modulation of 

monoamine serotonin (5-HT) cause abnormalities in many physiologic functions, such as 

food intake, motor activity and sleep; which are also symptoms of manganism (Lesch et 

al., 1996). There was significant increase of the 5-HT metabolite (5-HIAA) of the ST from 

both dual treated animal groups, but no differences for 5-HT (Fig 4M). This is coherent to 

a previous report where we observed only juvenile mice treated with MnCl2 exhibited high 

levels of 5-HIAA compared to adult MnCl2 treated animals (Moreno, Yeomans, et al., 

2009). 
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 Irrespective of which neurotransmitter system is most affected by dual treatment, 

neuronal death was controlled by neurotoxic astrocyte activation regulated by NFkB. 

Inhibition of astrocyte-NFkB protected DA neurons from both MPTPp and MnCl2/MPTPp-

induced toxicity by ~90% compared to control within the SNpc (Fig 2G). KO animals also 

did not sustain any loss of neurons in the Gp, terminals of the Cp and were protected 

from apoptotic mechanisms such as activation of cleaved-caspase 3 (Fig 3E-G). Prior 

studies report constitutively active astrocyte-NFkB increased cytokine production in a 

MPTP mouse model of PD and increased amyloid burden and gliosis in a mouse model 

of AD (Oeckl et al., 2012; Lian et al., 2016).  Knock-out of IKK2 in all CNS cells 

demonstrated protection in an auto-immune encephalitis mouse model (van Loo et al., 

2006). However, IKK2/NF-kB signaling in neurons is also necessary for protection against 

traumatic brain injury and synaptic plasticity for memory formation (Mettang et al., 2017; 

Kaltschmidt et al., 2006). Therefore, targeting NF-kB pro-inflammatory function 

specifically in glia cells may be necessary for a desirable outcome. In the current study, 

we are the first to report inhibition of astrocyte-IKK2 protected the CNS from gliosis and 

neuronal death induced by both MnCl2 and MPTPp treatment.   

The astrocyte-specific genotype caused intercellular effects by triggering fewer 

activated microglia to the Gp (Fig 5E, J, L) and Cp (Fig 5D, I, K). Inhibition of microglia 

activation in the Gp of KO animals directly correlated with the preservation of NeuN+ cells 

with dual treatment (Fig 5E, 3E). However, no significant suppression was observed in 

the SNpc or SNr, consistent with the initial characterization of hGFAP-cre+/-/IKK2fl/fl treated 

with MPTPp (Fig 5F-G) (Kirkley 2018). These studies confirmed purified primary 

astrocytes isolated from KO mice exhibited 70% knockdown of IKK2 which was 
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consistently observed in vivo as depicted in representative images of IKK2/GFAP co-

localization in Figure 6A-C. Quantitation of GFAP+/µm2 confirmed that the most affected 

nucleus in WT mice exposed to Mn/MPTPp was the Gp (Fig 6D, F). Interestingly, KO 

animals exhibited significantly less GFAP+/µm2 in the Gp, Cp, SNpc. Albeit no groups 

were different in the SNpr, potentially due to high basal levels present in each 

experimental group prior to treatment (Fig 6D-M). 

Studies of MPTP neurotoxicity demonstrate that astrocytes remain chronically 

activated long after activation of microglia subsides subsequent to DA neuronal death 

(Hirsch and SP Hunot, 2009; Huang et al., 2018). Therefore, we expected that MnCl2 

exposure would prime astrocytes to an activated state which was further enhanced to a 

neurotoxic state by MPTP administration months later through an NF-kB dependent 

mechanism. To specifically detect neurotoxic astrocytes expressing a reactive A1 

phenotype, we immunolabeled for complement protein-C3 in regions that we saw 

induction of gliosis and neuronal death (Fig 7). C3 has been known for decades as a 

major convergent factor of the classical complement pathway that mediates a peripheral 

innate immune response in the presence of pathogens (Ricklin et al., 2016). The 

expression of C3 in the CNS has more recently been identified in astrocytes from patients 

with PD, AD, ALS and even HIV infection (Liddelow et al., 2017; Nitkiewicz et al., 2017). 

Several of these studies demonstrate that astrocyte-C3 expression is regulated through 

NF-kB (Lian et al., 2016; Nitkiewicz et al., 2017). Lian et al. reported that constitutively 

active NF-kB driven by hGFAP in astrocytes promoted an increase of C3 expression in a 

mouse model of AD. Inversely, the present study, the KO animals had significantly less 

C3++S100b+/S100b+ expressing astrocytes in regions lesioned with dual MnCl2/MPTPp 



 39 

treatment compared to the WT animals (Fig 7D, H, L, P). These data suggest that 

astrocyte-NF-kB regulated C3 expression may be a novel mechanism to attract reactive 

microglia, maintain a chronically neurotoxic state of astrocytes and drive 

neurodegeneration at the site of lesion, such as the Gp in this model.  

To determine whether glial activation and expression of C3 in astrocytes was a 

feature of human manganism, we assessed reactive gliosis and C3 expression in post-

mortem human brain tissue isolated from South African miners known to be highly 

exposed to Mn throughout their lifetime. Immunofluorescence staining for anti-GFAP (Fig 

8A), anti-C3 (Fig 8B), and anti-IBA1 (Fig 8C) were performed on control human brain 

tissue to optimize staining efficiency. C3 expression was only expressed in blood cells 

present in the vessels of brain tissue, which is expected since the antibody was purified 

against plasma C3 protein (Fig 8B). However, we predict to see the bulk of C3 expression 

shift to GFAP+ astrocytes when we analyze/process the Mn exposed brains in the final 

data set. If the data we analyzed from mouse tissue is translatable to human samples, 

more C3+-GFAP+/GFAP+ and IBA-1+ cells should be evident in Gp, Cp, and SN from the 

miner brains as compared to control brain tissue (data not shown).  

In conclusion, we have elucidated a novel neuroinflammatory mechanism 

associated with juvenile MnCl2 exposure that exacerbated neurodegeneration from 

MPTPp treatment during adulthood in a transgenic mouse model. Our results reveal that 

the Gp is the most affected basal ganglion nuclei by dual treatment and 

neurodegeneration can be blocked by inhibition of astrocyte-NF-kB. Additionally, we 

provide evidence that MnCl2/MPTPp treatments in mice increase the presence of 

neurotoxic C3+ astrocytes and is highly regulated by astrocyte-NF-kB activation. Ongoing 
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research that targets cell-specific NF-kB in astrocytes could lead to a novel therapeutic 

approach for PD treatments and PD-like disorders, such as manganism. 

2.5 FIGURES 
 
 
 

 
Figure 2.5.1 Two-hit neurodegenerative dosing schematic and monitoring of MnCl2 
intake (A) Depicted dosing schematic applied to both wild-type and knock animals 
Consumption of water containing MnCl2 was monitored over the juvenile development 
period for accurate administration of Mn/50mg/kg/per day (B). Weight measurements 
were also conducted to monitor significant increases of body mass during juvenile 
development (C) (****P < 0.0001; data represented as N=4-5 animals/genotype).  
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Figure 2.5.2 Stereological cell counting for total DA neurons of SNpc Nigral DA 
neurons were immunolabeled with anti-TH (black) and imaged for entire SN region as 
depicted in 10x-objective images of WT control (A), WT + MnCl2 (B), WT + MPTPp (C), 
WT + MnCl2/MPTPp (D), KO + MPTPp (E), KO + MnCl2/MPTPp (F). (G) Quantitative 
assessment of TH+ neurons in the SNpc. (H) Quantitative assessment of total NeuN+ 
neurons in the SNpc (**P < 0.01, ***P < 0.001; N=6 animals/group).  
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Figure 2.5.3 MnCl2/MPTPp induces neuronal loss in Gp by astrocyte-NF-kB 
dependent mechanism (A) Automated total neuronal quantitation of specific brain 
regions were detected with anti-NeuN (green) immunolabeling as depicted in 10x-
objective montage and zoomed in inset of Gp. The Gp (B) and Cp (C) were identified as 
ROIs for automated cell detection (blue). Co-labeling with anti-TH (red) depicts DA pre-
synaptic terminals in the Cp (D). Total NeuN+/µm2 were quantitated for the Gp (E) and Cp 
(F). (G) Mean intensity of TH+ immunoreactivity was also measured for detection of DA 
innervation in the Cp (*P < 0.05, **P < 0.01, ***P < 0.001; N=6-7 animals/group). 
Representative western blot image depicts level of cleaved-caspase 3 protein expression 
from ST tissue isolated from KO and WT animals treated with MPTPp (blot is a 
representation of three individual experiments).  
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Figure 2.5.4. MnCl2/MPTPp induces a hyperactive behavioral phenotype dependent 

on astrocyte-NF-kB Open field test was conducted to detect for change of total distance 
(A), margin time (B), and center time (C) compared to day 0. (D) Representative trace 
plots (top) and pseudocoloring of total time spent (bottom) in position of chamber of 5 min 
intervals are depicted for WT-control, WT + MnCl2/MPTPp and KO + MnCl2/MPTPp 
treated animals. (E) Change in horizontal count, (F) stereotypy count, and ambulatory 
count(G) values were also subtracted from day 0 (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001; N=7-10 animals/group). (H) Real-time video gait analysis was utilized to 
quantitate change of stride length from day 0 (*P < 0.05; N=5-6 animals/group). HPLC 
analysis for detection of DA (I), metabolite DOPAC (J), DOPAC/DA (K), homovanillic acid 
(HVA) (L), serotonin (5-HT) (M), and metabolite 5-HIAA were analyzed for 
neurotransmitter content from ST tissue (*P < 0.05, **P < 0.01, ***P < 0.001; N=5-9 
animals/group).   
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Figure 2.5.5 MnCl2/MPTPp treatment increases microglia activation and by an 

astrocyte-NF-kB dependent mechanism Microglia cell bodies were detected by 
automated quantitation of tissue stained for anti-IBA1 (green) as depicted in 10x-objective 
images of WT-control (A), WT + MnCl2/MPTPp (B), and KO + WT + MnCl2/MPTPp (C) 
treated animals. Total IBA1+/µm2 for the Cp (D), Gp (E), SNpc (F), and SNpr (G) were 
quantitated for all experimental groups (**P < 0.01, ***P < 0.001, ****P < 0.0001; N=5-6 
animals/group).. (H) Image skeletonization of IBA1+(black) cell morphology are depicted 
in representative images of WT-control, WT + MnCl2/MPTPp, and KO + WT + 
MnCl2/MPTPp. Three experimental groups were quantitated for #branches/cell in Cp/Gp 
(I-J), and #junctions/cell in Cp/Gp (K-L) (*P < 0.05; N=7 animals/group). 
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Figure 2.5.6 MnCl2/MPTPp treatment increases astrocyte activation and by an 

astrocyte-NF-kB dependent mechanism 100x-objective representative images of anti-
IKK2 (green), anti-GFAP (red) colocalizing cells (arrowheads) from WT-control (A), WT + 
MnCl2/MPTPp (B), and KO + MnCl2/MPTPp (C) treated animals. Total GFAP+/µm2 were 
quantitated from the Gp (D) and Cp (H) in all experimental groups, as depicted in 10x-
objective montage images of ST with anti-GFAP (red) in three groups (E-G). SNpc and 
SNr was also immunostained for GFAP as depicted in representative 10x-objective 
images in (I-K). Analysis of GFAP+/µm2 in SNpc (L) and SNpr (M) (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.001; N=6). 
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Figure 2.5.7 MnCl2/MPTPp treatment induces neurotoxic astrocyte-C3 expression 

and is controlled by NF-kB Representative 10x-objective montage images of Gp/Cp co-
immunostained for anti-C3 (red), dapi (blue) and S100b (green) from WT-control (A,E), 
WT + MnCl2/MPTPp (B,F), and KO + MnCl2/MPTPp (C,G) treated animals. Bottom inset 
displays 20x-magnification of outlined region with merged channels (E-G). Quantitation 
of C3+S100b+/S100b+ in the Gp (D) and Cp (E), were conducted for three experimental 
groups. Similarly, SNpc/SNpr 10x-objective images of C3 with dapi (I-K) and S100b with 
C3 (M-O) and quantitation of C3+S100b+/S100b+ in SNpc (L) and SNpr (P) (*P < 0.05, 
**P < 0.01, ***P < 0.001; N=7 animals/group). 
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Figure 2.5.8 Preliminary data depicting immunostaining in post-mortem human 
tissue (A) GFAP (green) in astrocytes, (B) C3 (red) in arteriole walls, and (C) IBA1 
(yellow) in microglia (Images representative of three individual experiments). 
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CHAPTER 3 
 
 
 

A NOVEL SYNTHETIC ACTIVATOR OF NURR1 INDUCES DOPAMINERGIC GENE 
EXPRESSION AND PROTECTS AGAINST 6-HYDROXYDOPAMINE 

NEUROTOXICITY IN VITRO1 

 
 

 
3.1 INTRODUCTION 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

worldwide. There are no disease-modifying therapies for PD and patients become 

resistant to current symptomatic treatments as loss of dopaminergic neurons progresses 

(Shastry, 2001). There is considerable interest in the nuclear receptor, NR4A2 (Nurr1), 

as a promising target for control of PD progression. Nurr1 is a member of the 

steroid/thyroid hormone nuclear receptor transcription factor superfamily (Jankovic et al., 

2005) and regulates DA metabolism by inducing expression of tyrosine hydroxylase (TH), 

vesicular monoamine transporter (VMAT2), and aromatic amino acid decarboxylase 

(AADC) (Kadkhodaei et al., 2009; García-Yagüe et al., 2013).  Additionally, Nurr1 is 

important for development of DA neurons and can inhibit expression of 

neuroinflammatory genes in glial cells, suggesting a cell-specific context for the 

transcriptional regulatory effects of the receptor (Zetterström et al., 1997; Saijo et al., 

2009). Ablation of Nurr1 in mature DA neurons recapitulates the progressive pathology 

of PD, with reduced striatal DA, impaired motor behaviors and dystrophic axon/dendrites 

(Kadkhodaei et al., 2013). The endogenous ligand for Nurr1 is unknown but selected 

                                                        

1Reprinted with the permission of Neuroscience Letters. All rights reserved. 
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synthetic lipophilic molecules can enhance the transcriptional activity of Nurr1 in vitro (X 

Li et al., 2012; Smith et al., 2015).  

 We previously demonstrated that one such molecule, 1,1-bis(3’-indolyl)-1-(p-

chlorophenyl)methane (C-DIM12), has neuroprotective efficacy in the subacute 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD (Inamoto et al., 2008; De 

Miranda et al., 2014). C-DIM12 activates Nurr1 in pancreatic cancer and keratinocyte 

epidermal cells (X Li et al., 2012) and also enhances expression of Nurr1 in DA neurons 

in vivo, along with the Nurr1-regulated proteins, tyrosine hydroxylase (TH) and the 

dopamine transporter (DAT) (De Miranda et al., 2014). In the present study, we 

investigated the capacity of C-DIM12 to regulate expression of Nurr1 and Nurr1-regulated 

genes in cultured dopaminergic neuronal cell lines and in primary dopaminergic neurons. 

We found C-DIM12 induced expression of Nurr1-regulated genes in multiple neuronal cell 

lines and increased Nurr1 expression in TH expressing primary neurons. RNAi studies 

show these effects were dependent upon expression of Nurr1. Treatment with C-DIM12 

also preserved cell viability following exposure to the neurotoxin, 6-hydroxydopamine (6-

OHDA). These findings suggest that C-DIM12 is a direct transcriptional activator of Nurr1 

in DA neurons. 

3.2 MATERIALS AND METHODS 
 
Cell culture and Reagents 

Neuro-2a cells (N2A) and MN9D cells were cultured as previously described (García-

Yagüe et al., 2013; W Li et al., 2015). N27 cells were cultured in RPMI1640 medium (Life 

Technologies, Carlsbad, CA) supplemented with 10% FBS and 1X-PSN. Primary 
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dopaminergic neurons were isolated at E18 and cultured as previously described (W Li 

et al., 2015).   

Quantitative PCR and transfections 

qPCR was performed as previously described (De Miranda, Popichak, Hammond, 

Jorgensen, et al., 2015) and total RNA was quantified relative to hypoxanthine-guanine 

phosphoribosyltransferase (N2A) or b-actin (N2A).  The sequences of qPCR primers are 

listed in Supplementary Table 1. Transfections with DsiRNA oligonucletodes or 

expression plasmids was performed as previously described (De Miranda, Popichak, 

Hammond, Jorgensen, et al., 2015). 

Immunoblotting and immunofluorescence  

Immunoblots were performed as described (De Miranda et al., 2014) using the following 

antibodies: rabbit anti-Nurr1 (1:500; Santa Cruz, Dallas, TX), anti-Rabbit HRP (1:5,000; 

Cell Signaling), mouse anti-Beta Actin (1:1,000; Sigma, St. Louis, MO) and anti-mouse 

HRP (1:5,000; Cell Signaling, Danvers, MA). For immunofluorescence staining, N2A cells 

and primary neurons fixed and stained as previously described (W Li et al., 2015). Primary 

antibodies used: rabbit polyclonal anti-Nurr1 (1:250; Santa Cruz, Dallas, TX), chicken 

polyclonal anti-Tyrosine Hydroxylase (1:500; Abcam, Cambridge, MA), rabbit polyclonal 

anti-Flag (1:500; Sigma F-7425). Secondary antibodies used: Alexafluor647 (1:500; 

Invitrogen, Carlsbad, CA) and Alexafluor488 (1:500; Invitrogen). All imaging was 

performed as previously described (De Miranda et al., 2014) 
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Cell Viability Assays 

MN9D and N2A cells were grown on 96-well plates for 24 hrs before treatment with 6-

OHDA and C-DIM12. After 24 hrs, cells were imaged using the PrestoBlue Cell viability 

reagent (Life Technologies, Carlsbad, CA) per the manufacturers protocol.  

Statistical Analysis 

All data are presented as mean +/- SEM. Analyses of multiple experimental groups was 

performed using a one-way ANOVA with a Tukey post hoc test or Dunnett’s multiple 

comparison test. With two group comparisons, an unpaired t-test Welch’s correction and 

two-sided P-value with 95 % comparison interval was used. Statistical significance is 

represented by p < 0.05 (*), p < 0.001 (**), p < 0.001(***), and p < 0.0001 (****). 

Statistical analyses were performed using Prism software (version 6.0; Graph Pad 

Software, San Diego, CA). 

RESULTS 3.3 

Time-dependent expression of Nurr1, TH and VMAT2 was determined in N2A and 

N27 cells (Figure 1). Treatment with 10 μM C-DIM12 increased expression of Nurr1 in 

N2A cells that was maximal at 8 hr (Fig 1A) and remained relatively constant up to 24 

hrs, whereas mRNA expression of TH and VMAT2 in N2A cells was maximal at 4 and 8 

hr, respectively (Fig 1A). In N27 cells, Nurr1 mRNA level was induced at 8 hr, TH was 

increased at 8 and 24 hrs and VMAT2 mRNA levels were significantly elevated at 4 hrs 

(Fig 1B). Dose-dependent expression of Nurr1, TH and VMAT2 was examined in N2A 

(Fig 1C) and N27 (Fig 1D) cells following treatment with 5 – 10 μM C-DIM12. Treatment 

with 10 µM C-DIM12 increased expression of Nurr1, TH and VMAT2 in N2A cells (Fig
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1C), whereas mRNA levels for Nurr1 and VMAT2 were maximally induced by 5 µM C-

DIM12 in N27 cells and TH levels were increased by 10 µM C-DIM12 in N27 cells (Fig 

1D). 

 To determine whether C-DIM12-induced expression of TH and VMAT2 requires 

Nurr1, expression of Nurr1 was knocked down using RNA interference with Dicer 

substrate duplex RNA (DsiRNA) oligonucleotides (Figure 1E-G). Consistent knockdown 

was observed by immunoblotting in siNurr1-transfected cells compared to siScr-

transfected cells (Fig 1E). Cell morphology was unaffected by transfection with RNAi 

oligonucleotides (Fig 1F), as determined by differential interface contrast (DIC) imaging. 

In N2A cells transfected with siScr control RNA oligonucleotides, C-DIM12 significantly 

induced expression of Nurr1 and VMAT2 (Fig 1G). Levels of mRNA for Nurr1, TH and 

VMAT2 were reduced relative to siScr controls in N2A cells transfected with siNurr1 

oligonucleotides. Likewise, Nurr1 RNAi largely abolished the capacity of C-DIM12 to 

increase expression of Nurr1, TH and VMAT2 in N2A cells. A slight increase in C-DIM12-

induced expression of VMAT2 was still observed following Nurr1 RNAi in N2A cells, 

although the overall level of expression VMAT2 was decreased relative to control cells 

transfected with scrambled RNAi oligonucleotides (Fig 1G). 

 To determine the capacity of C-DIM12 to enhance levels of exogenously 

expressed Nurr1, N2A cells were transfected with a plasmid containing FLAG-tagged full 

length human Nurr1 or Gal4 control vector and treated with C-DIM12 for 24 hrs (Figure 2 

A-D). Expression of FLAG was evident 24 hrs after transfection and was localized to the 

nucleus of N2A cells (Fig 2A), identical to the pattern of Nurr1 expression (Fig 2B). 

Treatment with C-DIM12 (10 μM) increased nuclear fluorescence of FLAG (Fig 2C, 
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p<0.05) and Nurr1 (Fig 2D, p<0.0001) relative to DMSO (0.1%) treated controls. No 

expression of FLAG was detected in N2A cells transfected with Gal4 control vector.  

The effect of C-DIM12 on expression of Nurr1 in primary dopaminergic neurons 

was examined in Figure 2, E-G. Neurons were cultured for 1 week until morphologically 

mature and then treated with C-DIM12 (10 µM) or DMSO (0.1%) vehicle control for 24 

hrs. Dopaminergic neurons were identified by expression of TH and Nurr1 expression 

was determined in TH-positive neurons by immunofluorescence (Figure 2E). C-DIM12 

increased expression of both Nurr1 (Fig 2F, p<0.001) and TH (Fig 2G, p<0.0001) 

compared to control cells treated with DMSO (0.1%, vehicle control).  

 To examine the neuroprotective effects of C-DIM12 in both functionally mature 

neurons and undifferentiated neuronal cells, we compared the response of differentiated 

MN9D dopaminergic neurons cells to that of N2A cells following exposure to 6-

hydroxydopamine (6-OHDA) (Figure 3). After five days of differentiation with sodium 

butyrate, MN9D neurons responded to a depolarizing K+ stimulus with robust intracellular 

Ca2+ transients (Fig 3A,B). Relative changes in intracellular Ca2+ were determined by live 

cell imaging using Fluo-4-AM and compared to the baseline image prior to stimulation 

with K+ (F/F0). We next exposed N2A and differentiated MN9D cells to increasing 

concentrations of the neurotoxin, 6-hydroxydopamine (6-OHDA), for 24 hrs and 

determined viability by measuring cellular reducing potential. Treatment with 0.1 – 100 

µM 6-OHDA caused dose-dependent cell death in MN9D and N2A cells, with LD50 values 

of 100 and 10 µM, respectively (Fig 3C,E). Exposure to 6-OHDA for 24 hrs in the presence 

of C-DIM12 (10 µM) significantly increased viability in both cell lines (p<0.01, MN9D; 
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p<0.05, N2A. Fig 3D,F). The protective effect was greater in differentiated MN9D cells 

than in undifferentiated N2A cells. 

3.4 DISCUSSION AND CONCLUSIONS 

Nurr1 DNA binding sequences regulate the transcriptional activity of genes 

necessary for DA production and transport, such as TH, the synaptic dopamine 

transporter (DAT) and the vesicular monoamine transporter (VMAT2) (Sakurada et al., 

1999; Sacchetti et al., 1999). Nurr1 knockout mice fail to develop midbrain dopaminergic 

neurons and die soon after birth, whereas conditional Nurr1 knock-out mice exhibit 

deprecations in the nigro-striatal dopamine system and are more susceptible to alpha-

synuclein toxicity (Zetterström et al., 1997) (Decressac et al., 2012).  Thus, Nurr1 is 

thought to regulate both the development and maintenance of DA neurons, as well as 

protecting DA neurons from neurotoxic insults. Interestingly, transcriptional responses to 

Nurr1 appear to depend both on cell type and on the constitutive level of Nurr1 expression 

(Johnson et al., 2011). For example, Nurr1 strongly induces TH expression in rodent 

neural precursor and differentiated cells, but the inductive effects on TH in human neural 

precursor cells are more modest (Romano et al., 2005) and can even be repressive in 

human neural stem cells (TE Kim et al., 2013). Such varying transcriptional responses to 

Nurr1 may depend on the constitutive level of protein expression. In studies that 

generated a number of neuronal cell lines with graded expression of Nurr1, bioinformatics 

analysis indicated that many transcripts that were induced at low levels of Nurr1 protein 

expression were suppressed at high levels of Nurr1 and vice versa (Johnson et al., 2011). 

Thus, cell- and concentration-specific effects of Nurr1 likely influence the biological 

outcome in a different cell type.  
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In the current study, we noticed differences in the pattern of expression of 

dopaminergic genes between the different neuronal cell lines evaluated, indicated by 

variance in the timeand magnitude of mRNA expression across the time points and 

concentrations of C-DIM12 evaluated in N2A and N27 cells (Figure 1). C-DIM12 treatment 

increased expression of Nurr1 and VMAT2 after 8 hrs of treatment in N2A cells, whereas 

expression of TH maximal at 4hrs, prior to the peak of induction of Nurr1 mRNA  (Figure 

1A), suggesting that expression of TH and VMAT2 depend on the concentration of Nurr1 

or other regulatory factors needed for TH gene transcription. In N27 cells, Nurr1 mRNA 

levels also were moderately induced by C-DIM12 at 8hrs, whereas VMAT2 mRNA was 

significantly increased at 4hrs (1B). These temporal patterns in gene induction in 

response to C-DIM12 could also reflect saturation of Nurr1 binding by the compound. 

Although differences in mRNA responses were evident between cell lines, C-DIM12-

induced expression of the Nurr1-regulated genes TH and VMAT2 was conserved across 

mouse and rat cells, suggesting a common mechanism of regulation. C-DIM12 directly 

activates Nurr1, based on transcriptional reporter assays in bladder cancer cells and 

protein induction studies in epidermal keratinocytes(Inamoto et al., 2008) (Boakye et al., 

2013) and we recently reported that C-DIM12 induced Nurr1 nuclear translocation and 

increased protein expression in dopaminergic neurons in the MPTP/probenecid model of 

PD(De Miranda et al., 2014). Although Nurr1 appears to lack a classic ligand binding 

pocket, a separate region of the LBD site is thought to possess ligand binding affinity at 

the co-activator binding site (Z Wang et al., 2003). Computational modeling and binding 

studies indicated that other C-DIM compounds bind the co-activator binding site of NR4A1 

(Nur77), which is highly homologous to Nurr1 (S-O Lee et al., 2014).  Further studies are 
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now being conducted to investigate whether C-DIM compounds have direct binding 

affinity for Nurr1 at a similar site in the LBD. To test the hypothesis that C-DIM12 requires 

Nurr1 to induce expression of dopaminergic genes in neuronal cultures, the expression 

of Nurr1 was ablated using RNAi in N2A cells (Figure 1E-G). Loss of Nurr1 expression 

prevented the capacity of C-DIM12 to induce expression of the Nurr1-mediated 

mechanism (Figure 1E-G), indicating that Nurr1 is required for the transcriptional 

activation of these genes by C-DIM12. Even in the absence of C-DIM12, expression of 

VMAT2 and TH significantly decreased in Nurr1 siRNA cells compared to siRNA control 

cells, indicating direct regulation of these genes by Nurr1 in N2A cells (Figure 1G). Our 

current findings support the hypothesis that C-DIM12 directly regulates dopaminergic 

gene expression of TH and VMAT2 in N2A cells through a Nurr1-dependent mechanism. 

Nurr1 is down-regulated in patients with PD and polymorphisms in Nurr1 increase the risk 

for a rare familial form of the late onset disease (Liu et al., 2012). Therefore, preservation 

or increased expression of Nurr1 in neurons is a therapeutically desirable outcome in PD 

and related neurodegenerative disorders. In this regard, AAV-mediated gene delivery of 

Nurr1 and the forkhead transcription factor, Foxa2, preserved TH-positive neurons in a 

mouse model of PD (Oh et al., 2015). When we expressed full length human Nurr1 in 

N2A cells (Fig 2A-D), C-DIM12 treatment increased expression of the Flag-tagged 

protein, as determined by immunofluorescence labeling for both Flag and Nurr1. Similarly, 

C-DIM12 increased expression of Nurr1 and TH in primary mouse dopaminergic neurons 

isolated from the ventral midbrain at E18 (Fig 2E-G). The capacity of C-DIM12 to increase 

protein levels of both exogenously expression human Nurr1 as well as to enhance 

expression of native Nurr1 protein in primary DA neurons suggests that C-DIM12 is a 
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direct regulator of Nurr1 in neurons. To the examine the direct neuroprotective effect of 

C-DIM12 in functionally mature neurons compared to undifferentiated neuronal cells, we 

exposed differentiated MN9D cells and undifferentiated N2A cells to increasing 

concentrations of 6-OHDA in the presence and absence of C-DIM12. Differentiated 

MN9D neurons were less sensitive to 6-OHDA than undifferentiated N2A cells, with an 

LD50 of 100 μM 6-OHDA, compared to 10 μM 6-OHDA in N2A cells (Figure 3C,E). This is 

consistent with other studies of 6-OHDA in MN9D cells and with similar studies comparing 

the response of differentiated and undifferentiated neuronal cells to mitochondrial 

toxicants (Polunas et al., 2011). Moreover, undifferentiated N2A cells may share 

phenotypic similarity with other immortalized cell lines, which may render them less 

sensitive to the protective effects of C-DIM12 (X Li et al., 2012). Concurrent treatment of 

MN9D and N2A cells with C-DIM12 and 6-OHDA at the LD50  for each cell type 

significantly increased cell viability, particularly in differentiated MN9D neurons (Figure 

3D,F), indicating that C-DIM12 provides direct neuroprotective benefit, although the 

underlying mechanisms require further investigation. Functionally mature MN9D neurons 

are also more similar to dopamine neurons than undifferentiated N2A cells and may 

therefore be more responsive to the neuroprotective effects of C-DIM12, similar to the 

perseveration of DA neurons we reported in the MPTP/probenecid model of PD, where 

levels of Nurr1 were strongly induced in TH-positive soma in the substantia nigra pars 

compacta (De Miranda, Popichak, Hammond, Jorgensen, et al., 2015). 
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3.5 FIGURES 
 
 
 

 
Figure 3.5.1 C-DIM12 induces expression of Nurr1-regulated genes in dopaminergic 
cell lines by Nurr1 dependent mechanism. Levels of mRNA for Nurr1, VMAT2 and TH 
were measured by qPCR in N2A (A) and N27 cells (B) following treatment with C-DIM12 
(10 µM) for 4, 8 and 24 hrs. Dose-dependent changes in mRNA for Nurr1, VMAT2 and 
TH were measured by qPCR in N2A (C) and N27 cells (D) following treatment with vehicle 
control (DMSO) or C-DIM12 (5 and 10 µM) for 4, 8 and 24 hrs. *p<0.05, **p<0.01, 
****p<0.0001, n=3-4 biological replicates across 3 independent experiments. (E) Protein 
samples collected from N2A cells transfected with scrambled control sequence (siScr) 
and Nurr1 siRNA (siNurr1) were examined for expression of Nurr1 and β-actin as a 
loading control. (F) Morphology of N2A cells was determined following transfection with 
siScr and siNurr1 using differential interference contrast (DIC) imaging. Nuclei were 
counterstained with DAPI and visualized by fluorescence microscopy. Scale bar = 10 μm. 
(G) mRNA levels of Nurr1, TH and VMAT2 were measured by qPCR in N2A cells 
transfected with siScr or siNurr1 in the presence or absence of C-DIM12 for 24 hrs. 
*p<0.05, **p<0.01, ****p<0.0001, n=3-4 biological replicates across 3 independent 
experiments. 
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Figure 3.5.2 C-DIM12 induces expression of tranfected human Nurr1 in N2A cells 
and induces expression of TH in primary dopaminergic neurons. (A, B) N2A cells 
were transfected with FLAG-Nurr1 or vector control and treated with C-DIM12 or DMSO 
for 24 hrs. Fixed cells were stained with anti-FLAG (yellow) and anti-Nurr1 (green) 
counterstained with DAPI (blue) and imaged using DIC and fluorescence microscopy. (C, 
D) Quantification of FLAG and Nurr1 fluorescence intensity in transfected N2A cells 
(arbitrary units, AU). *p<0.05, ****p<0.0001. n=100-200 cells from three biological 
replicates across 3 independent experiments.  (E) Primary mouse dopaminergic neurons 
were treated for 24 hrs with 10 µM C-DIM12 or 0.1% DMSO (vehicle control) and 
immunostained for Nurr1 (cyan), Tyrosine Hydroxylase (TH, green) or MAP2 (red) and 
couterstained with DAPI (blue). Fluorescence images were acquired using a 40X air 
Planapochromat objective with a 1.6X optivar lens (64X total magnification, scale bar = 
10 µm). (F) Nurr1 and (G) TH protein levels were quantified based on fluorescence 
intensity in TH+ cells. ***p<0.001, ****p<0.0001 n=100 – 200 cells per group from three 
biological replicates across 3 independent experiments. 
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Figure 3.5.3 Treatment with C-DIM12 is neuroprotective against 6-
hydroxydopamine in MN9D and N2A cells. (A) Pseudocolor images of Ca2+ influx pre-
treatment (0 seconds) and upon administration of 25mM, 56mM and 75mM KCl (24 
seconds) in live differentiated MN9D cells. 20X objective, Scale bars=10 μm. (B) Trace 
plots of dose dependent KCl induced Ca2+ influx over time, 8-16 cells from n=3 biological 
replicates. Arrow=KCl administration. (C, E) ½ log dosage of 6-OHDA administered to 
differentiated MN9D and undifferentiated N2A cells for LD50 curve, n=6 biological 
replicates. (D, F) Cell viability of differentiated MN9D and N2A cells treated +/- 6-OHDA 
(100 µM) and +/- C-DIM12 (10 µM). *p<0.05. 
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CHAPTER 4 
 
 
 

THE NURR1 LIGAND, 1,1-BIS(3’-INDOLYL)-1-(P-CHLOROPHENYL)METHANE, 
MODULATES GLIAL REACTIVITY AND IS NEUROPROTECTIVE IN  MPTP-INDUCED 

PARKINSONISM 
 
 
 

4.1 INTRODUCTION 
 

Gene expression necessary for the synthesis and regulation of the dopamine (DA) 

in neurons of the substantia nigra pars compacta (SNpc) is controlled by the orphan 

nuclear receptor related 1 (Nurr1 or NR4A2) protein (Zetterström et al., 1996; Sakurada 

et al., 1999). Nurr1 is highly expressed in the ventral midbrain and is down-regulated in 

Parkinson’s disease (PD) patients(Kadkhodaei et al., 2013; Montarolo et al., 2016). The 

homeostatic function of Nurr1 in DA neurons is mediated by nuclear binding to the nerve 

growth factor binding recognition element (NBRE) as monomers, homodimers or 

heterodimers with the co-activator protein retinoic acid receptor (RXR) (Saijo et al., 2009; 

García-Yagüe et al., 2013). NBRE sequences are recognized in the upstream promoter 

regions of DA genes such as tyrosine hydroxylase (TH), vesicular monoamine transporter 

2 (VMAT2), dopamine transporter (DAT) and aromatic amino acid decarboxylase (AADC) 

(Smits et al., 2003). Thus, Nurr1 activity is crucial for DA neuronal differentiation during 

development to maintenance throughout adulthood(Sakurada et al., 1999; Jankovic et 

al., 2005).  

 Homozygous Nurr1 (-/-) mice do not survive past 1 day postnatal and Nurr1 (+/-) 

mice are more susceptible to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- 

induced neurotoxicity (Saucedo-Cardenas et al., 1998; Le et al., 1999).  Inhibition of 
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mitochondrial complex 1 by the active metabolite of MPTP, MPP+
, causes loss of 

dopamine neurons in the nigro-striatal system and is accompanied by significant glial 

activation and neuroinflammation that is thought to exacerbate neuronal injury (Wu et al., 

2003; Glass et al., 2010; Parillaud et al., 2017). Nurr1 is now recognized as a critical 

regulator of inflammatory gene expression in glial cells, where it acts as a tonic regulator 

of NF-κB-regulated inflammatory genes by stabilizing nuclear co-repressor proteins at 

p65/p50 cis-acting promoter elements, thereby limiting expression of inflammatory genes 

(Saijo et al., 2009).  

Despite the known transcriptional regulatory functions of Nurr1 (NR4A2), an 

endogenous ligand for this receptor is yet to be identified. Therefore, like Nur77 (NR4A1) 

and Nor1 (NR4A3), Nurr1 is classified as an orphan nuclear receptor (Safe et al., 2015). 

However, multiple studies have demonstrated modulation of Nurr1 transcriptional activity 

using synthetic compounds (Ordentlich, 2003; X Li et al., 2012; Smith et al., 2015). Our 

previous studies using several phenyl-substituted diindolylmethane (C-DIM) compounds 

demonstrated that selected analogs are structure-dependent activators of NR4A orphan 

nuclear receptors (Inamoto et al., 2008; Safe et al., 2008). One compound from this series 

with high specific activity toward Nurr1, 1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane (C-

DIM12) activates Nurr1 and induces antineoplastic effects in cancer cells (X Li et al., 

2012). We also reported that C-DIM12 inhibits expression of NF-κB-regulated genes in 

glial cells and induces a dopaminergic phenotype in neuronal cell lines (De Miranda, 

Popichak, Hammond, Jorgensen, et al., 2015; Hammond et al., 2015). RNAi knockdown 

of Nurr1 in both glia and neurons ablated the effects of C-DIM12 in each cell type, 

demonstrating that in neural cells C-DIM12 acts through a Nurr1. In vivo, C-DIM12 
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displayed favorable pharmacokinetics and neuroprotective efficacy with oral dosing, 

including high bioavailability and distribution to the CNS, as well as protection against 

loss of dopamine neurons in the SNpc in the MPTP/probenecid (MPTPp) model of PD  

(De Miranda et al., 2013; 2014). These studies demonstrating that C-DIM12 inhibits 

neuroinflammatory activation of microglia and astrocytes and protects against loss of 

dopamine neurons. However, it remains to be determined whether lower doses of C-

DIM12 will have similar pharmacodynamic efficacy during concurrent lesioning with 

MPTPp will provide a similar degree of protection against an ongoing neurotoxic insult 

mimicking the complex I deficits in PD. 

Based on the demonstrated neuroprotective and anti-neuroinflammatory effects of 

C-DIM12, we postulated that this Nurr1 activator would protect against loss of 

dopaminergic neurons during lesioning with MPTPp, despite the neurotoxic stress of 

mitochondrial complex 1 inhibition. To test this hypothesis, C57BL/6 mice were dosed 

with MPTPp twice weekly for two weeks and concurrently given C-DIM12 (25 mg/Kg daily, 

p.o.) once daily throughout the treatment period. Neurobehavioral analysis was 

conducted during the study to detect motor deficits consistent with deprecations in nigro-

striatal dopamine. Brain tissue (SN and ST) was collected to determine pharmacokinetic 

parameters of C-DIM12 at this dose, as well as stereological determination of dopamine 

neuron numbers, glial activation and qPCR array measurement of gene expression for 

inflammatory and cell death pathways. In addition, we conducted transactivation reporter 

studies in neural cell lines, as well as in silico modeling to identify putative binding sites 

for C-DIM12 within the ligand binding domain of human Nurr1. These findings 

demonstrate that C-DIM12 is an activating ligand of Nurr1 that induces an anti-
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inflammatory phenotype in glial cells and preserves dopaminergic soma even during 

concurrent lesioning with MPTPp.  

4.2 MATERIALS AND METHODS 

Chemicals and Reagents  

C-DIM12 was synthesized and obtained by Dr. Stephen Safe’s laboratory at Texas A&M. 

Working concentrations of C-DIM12 were diluted in corn oil and sonicated in hot water 

bath until solubilized. MPTP (Sigma, St. Louis MO) was solubilized at final working 

concentration in saline (0.9% NaCl2). Probenecid (Sigma, St. Louis MO) was prepared in 

5% sodium bicarbonate/MilliQ water to final working concentration (pH 7.5). All additional 

reagents were obtained by Sigma Aldrich (St. Louis MO), unless stated otherwise.  

Animals and Treatment Regimen 

Inbred C57/Bl6 male mice (~24 weeks of age; 25-30 grams in weight) were acquired by 

Charles River Laboratories (Wilmington, MA) and housed on 12-hour light/dark cycles in 

a temperature-controlled room (maintained at 22-24°C) with access to standard chow and 

water ad libitum. Mice were administered C-DIM12 (25mg/kg) or corn oil (vehicle control) 

by oral gavage. Mice were dosed with MPTPp twice weekly for two weeks, with each dose 

delivered 2 days apart. On the day of dosing, probenecid was delivered in the morning 

by intraperitoneal injection (100 mg/kg) and then MPTP (20 mg/kg) or saline (0.9%NaCl) 

was administered 4 hrs later by subcutaneous injection, per our previously published 

protocol (De Miranda et al. 2014). C-DIM12 or corn oil was administered daily by 

intragastric gavage (14 doses total) throughout the treatment period. At the conclusion of 

the study, mice were anesthetized under deep isoflurane anesthesia and transcardially 
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perfused with 0.1M phosphate buffered saline (PBS)-cacodylate/heparin (10 U/mL) and 

3% paraformaldehyde/PBS. Post perfusion, brains 

were dissected and stored in paraformaldehyde at 4 °C overnight, and then stored in 

sodium-cacodlyate-PBS (pH 7.2) containing 15-30% sucrose at 4°C until processed for 

cryo-sectioning.  For neurochemical sample collection, animals were also administered 

deep isoflurane before rapid removal of striatum and ventral midbrain for flash freezing in 

liquid nitrogen. Brain samples were then transferred to -80°C storage until processed for 

RNA, protein and HPLC analysis. 

Real-time video gait analysis and open field behavioral testing. Changes in gait were 

determined by analysis of unrestricted movement along a fixed trackway using a video-

based system constructed in our laboratory. Briefly, mice were allowed to walk along a 2 

m long glass trackway with fixed sides and top that was illuminated with green LED lights 

such that paw placement results in total internal reflection of light downward toward a high 

speed video camera for digital recording. Animals were backlit from above with low power 

red LED lights to distinguish the silhouetted form of the mouse (black) from paw prints 

(green) for digital analysis. Incentive to traverse the trackway was provided by placement 

of the animal’s home cage at the end of the trackway, thereby permitting reliable detection 

of unrestricted gait and motion. Mice were habituated to the trackway once daily for two 

days prior to the onset of the treatment period and a baseline of gait was recorded on the 

first day of the study prior to dosing with MPTPp. Video recording of mouse gait was 

filmed using a GoPro Hero3+ camera at 60 fps, 1080 dpi (GoPro; San Mateo, California) 

and analysis code was written in Matlab (Mathworks; Natick, MA) in conjunction with the 

Department of Electrical and Computer Engineering at Colorado State University.Open 
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field activity parameters were acquired with Versamax System (Omnitech Electronics, 

Inc; Columbus Ohio). Mice were allowed to acclimate to OFT behavioral chambers for 

two days prior to study for measurement of x-, y- and z-planes of activity for a monitoring 

period of 5 minutes under white noise and ambient light. OFT activity was then monitored 

for animals on day 0, 7, and 14 of study. Parameters were analyzed utilizing Fusion 

(Omnitech Electronics, Inc; Columbus Ohio) software for detection of total margin and 

center time activity. All Values were normalized for the difference from day 0 baseline. 

Three-dimensional design-based stereology of neuronal cell bodies and 

assessment of striatal terminal density. Stereological determination for the number of 

neurons in the substantia nigra pars compacta was performed using a 3D design-based 

stereology method as we previously reported (De Miranda et al., 2014). The entire SNpc 

was serially sectioned from rostral to caudal, which was demarcated by the subthalamic 

nucleus to the retrorubal field, respectively.  Every fifth free-floating section (10 total) was 

selected from each animal and immunostained with antibodies against tyrosine 

hydroxylase (TH; Abcam) and MAP2 (Abcam). Stereological counting of both cell markers 

was performed using Slidebook software (version 5.0, Intelligent Imaging Innovations, 

Denver CO). The SNpc boundary was marked on a 10x-objective montage image of 

entire section. Optical fractionator method was employed with randomized 40x-objective 

z-stack image sampling setup frame size (100 X 100μm), frame spacing (200 X 200 μm), 

dissector height (30 μm), and upper guard distance (2 μm). Each z-stack image was 

blindly quantitated for TH+ and MAP2+ cells to calculate a total estimate of neuronal cell 

bodies within the SNpc of each animal. For measurement of TH+ striatal terminals, two 

striatum sections/per animal with similar anatomical landmarks were selected and 
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immunostained for TH. 10x-objective montage images were generated for a masked 

outline of the caudate putamen. Each masked region was normalized for background 

subtraction and quantified for mean intensity fluorescence of TH. 

Immunofluorescence staining  

All brain tissue processed for IF was frozen with OCT on microtome stage and 

sectioned/collected for ST (25 μm in thickness) and SN (40 μm in thickness) regions. 

Tissue sections were stored in cryoprotectant (30% sucrose, 30% ethylene glycol, 0.5M 

phosphate buffer; pH 7.2) at 20°C until selected for immunostaining. IF staining was 

conducted as previously described by Miller et al. 2011, and all antibody dilutions were 

1:500, unless stated otherwise (Miller et al., 2011). For stereology, SN sections were 

immunostained with anti-tyrosine hydroxylase (Millipore AB152) and anti-MAP2 (Abcam 

AB5392). For gliosis, SN and ST sections were immunostained with either anti-IBA1 

(1:250; Wako 016-20001) or anti-GFAP (Dako Z0334) and anti-tyrosine hydroxylase 

(Abcam AB76442). SN tissue was also immunostained with anti-TH and anti-Nurr1 

(1:200; Santa Cruz SC991) for mean intensity measurements of Nurr1. All secondary 

antibodies used for IF were alexa flour 488, 555, and 647 (LifeTech, Carlsbad CA).  

Measurement of Gliosis and Immunofluorescence Imaging 

Quantitation of IBA-1+ and GFAP+ cells bodies was conducted on two sections of the 

SNpc and ST regions/per animal. Optical fractionator method employed was adjusted 

with counting frame size (150 X 150 μm) and frame spacing (for SN; 250 X 250 μm, for 

ST; 550 X 550 μm). Blind quantitation of cell bodies for relative number of glial cells per 

region was conducted on 40x z-stack images of IBA+ cells from the SNpc. Same IBA1+ 

cell images were also converted to a max projection, following a binary transformation 
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and then rendered to a skeletonized image in ImageJ, as previously described in Morrison 

and Filosa et al. 2013(Schneider et al., 2012; Morrison and Filosa, 2013). Images for 

quantitative measurements were all acquired with a Zeiss Axiovert 200M inverted 

fluorescent microscope equipped and a Hammatsu ORCA-ER-cooled charge coupled 

device camera using a 10x and 40x air objective (Hammatsu Pho-tonics, Hammatsu City, 

Japan).  High magnification representative images were generated with a Plan-

Apochromat 100X oil objective lens. High magnification images of three-dimensional 

IBA1+ cells were acquired with a 63X objective lens on a Zeiss LSM 510 laser-scanning 

confocal microscope, using Zen software (Oberkochen, Germany). Z-stack images of 

microglia were surfaced rendered in Imaris software (Bitplane; Zurich, Switzerland) for 

voxel view of morphology. Low magnification montage images of tissue sections were 

acquired with an air 10x-objective lens using a Hammatsu ORCA-Flash4.0 digital CMOS 

camera, ProScan III stage controller (Prior, Rockland, MA USA) and CellSens Dimension 

software (version 1.12, Olympus, Center Valley, PA, USA).  

Western blotting. 

Striatal tissue was homogenized and lysed in RIPA buffer with protease inhibitor for 

western blot analysis. Protein concentration was determined using a BCA protein assay 

kit (ThermoScientific, Pierce Rockford, Il). 30 µg of protein was loaded into a 

polyacrylamide 12% separating and 4% stacking gel. Anti-DAT (1:500; Millipore 

Ab1591P), anti-VMAT2 (1:750; gift from Dr. Gary Miller’s Laboratory, Emory University), 

anti-TH (1:1000; AB152), anti-Nurr1 (1:100; SC991), anti-GFAP (1:1000; Z0334) and anti-

Beta Actin (1:2000; Sigma A1978) were diluted in 5% milk/tris-buffered saline with tween 

(0.1%) blocking buffer. All western blots were imaged on a BioRad ChemiDoc MP imaging 
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system and raw TIFF files were analyzed for mean optical band density with ImageJ 

analysis software (Schneider et al., 2012).  

Pharmacokinetic Analysis of C-DIM12 and Determination of Catecholamine 

Content  

For PK analysis of C-DIM12, male C57/Bl6 mice (27-30g) were administered C-DIM12 

(25 mg/kg) dissolved in corn oil by intragastric gavage. Post administration, mice were 

euthanized at 0, 0.5, 1, 2, 4, 8, and 24 hours (N=4/per time point) by decapitation under 

isofluorane anesthesia. Midbrain tissue samples were rapidly dissected using a 1 mm 

brain block. Plasma samples were collected from trunk blood and centrifuged at 1,500 

rpm for 5 minutes. Frozen brain and plasma samples were then processed for liquid 

chromatography mass spectrometry (LC-MS) by the Pharmacology Core at Colorado 

State University as reported in previous studies from our group (De Miranda et al., 2013). 

Striatal samples from each experimental group were measured for dopamine and DOPAC 

by high performance liquid chromatography (HPLC) coupled with electrochemical 

detection. The Neurochemistry Core Laboratory at Vanderbilt University’s Center for 

Molecular Neuroscience Research group (Nashville, TN) processed all tissue samples 

from each experimental group with coded labeling for unbiased analysis. 

Computational Modeling 

Small molecule docking studies were conducted using Accelrys Discovery Studio 4.5 

(Accelrys Inc., San Diego, CA) and the crystal structure coordinates for the human Nurr1 

(NR4A2) ligand binding domain (PDB ID: 1OVL) (Wang, et al 2003, Nature 423: 555-560) 

were downloaded from the protein data bank (http://www.rcsb.org/pdb). The protein was 

prepared and subjected to energy minimization utilizing the conjugate gradient 
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minimization protocol with a CHARMm forcefield (Brooks et al., 2009) and the 

Generalized Born implicit solvent model with simple switching (GBSW) (Feig et al., 2004) 

that converged to an RMS gradient of < 0.01 kcal/mol. The Flexible Docking protocol 

(Koska et al., 2008), which allows flexibility in both the protein and the ligand during the 

docking calculations, was used to predict the binding of C-DIM12 in the regions of both 

the coactivator and ligand binding pockets of NR4A2. Predicted binding poses were 

energy minimized in situ using the CDOCKER protocol (G Wu et al., 2003) prior to final 

ranking of docked poses via consensus scoring combining the Jain (Jain et al. 1996), 

PLP2 (Parill et al. 1999), and Ludi3 (Böhm et al. 1994) scoring functions. Predicted 

binding energies were calculated using the distance-dependent dielectric model. 

Transfections and luciferase assays 
 
Neuron-like, PC12 cells were plated on 12-well plates at 2.5×105 per well in DMEM/F12 

supplemented with 2.5% charcoal-stripped FBS and were allowed to attach and settle for 

overnight. Luciferase plasmids (UASx5-Luc, NBREx3-Luc and NurREx3-Luc) and 

corresponding expression plasmids (GAL4-NR4A2 or FLAG-NR4A2) were co-transfected 

in cells at 10:1 ratio, i.e., 1000 ng Luc and 100 ng NR4A2 per well. Lipofectamine 2000 

reagent was used for transfection according to the manufacturer’s protocol and all 

plasmids have previously been described (Li et al, 2012). After 6 hr of transfection, cells 

were treated with medium (as above) containing either solvent (DMSO) or the indicated 

concentration of C-DIM12 for 18 hr. Cells were then lysed using a freeze-thaw protocol 

and cell extracts were used for luciferase assays. Luciferase activity values were 

normalized against corresponding protein concentrations determined in a Bradford assay. 
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Luciferase assays were run in triplicate for each determination and results are expressed 

as mean ± SD. 

RNA isolation and RT-qPCR array analysis 

Midbrain tissue samples from each experimental group were homogenized and lysed 

using Qiashredder columns along with on-column and in solution DNase treatment 

(Qiagen; Hilden, Germany). Samples were purified for RNA using an RNeasy kit, eluted 

with RNase-free water and concentrations were determined using a Nanodrop One 

spectrophotometer (ThermoScientifc; Waltham, MA). mRNA was reverse transcribed to 

cDNA with iScript (Biorad, Hercules, CA) reverse transcriptase enzyme for a total of 250 

ng and qPCR reactions were prepared in SYBRgreen mastermix (BioRad; Hercues, CA). 

Samples from each experimental group were amplified using RT2 profiler PCR arrays 

(Qiagen; Hilden, Germany) for NF-κB signaling pathway target genes (PAMM-025ZG-4) 

and Parkinson’s disease associated genes (Cat#: PAMM-124ZG-4) for a total analysis of 

168 genes. Both sets of 384-well pathway array plates were run according the 

manufacturer’s protocol on a Lightcycler 480 real time PCR instrument (Roche; Branford, 

CT, USA). Gene expression fold change was analyzed using the SAbiosciences software. 

Statistical Analysis 

Data was presented as the mean +/- SEM, unless noted otherwise. All experimental 

values from each mean were analyzed with a Grubb’s (α=0.05) test for exclusion of 

significant outliers. Differences between three experimental groups were analyzed with a 

one-way ANOVA followed by a Tukey post hoc multiple comparisons test. Two group 

comparisons for densitometry analysis was conducted with an unpaired student’s t-test 

followed by Welch’s correction. A two-way ANOVA was performed when incorporating 
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‘day’ as an experimental variable for behavioral tests.  Significance was identified as ++P 

< 0.01, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All statistical analyses were 

conducted using Prism (version 6.0; Graph Pad Software, San Diego, CA). 

4.3 RESULTS 

C-DIM12 is highly concentrated in brain tissue 

We previously conducted neuroprotection studies with several C-DIM compounds 

known to activate NR4A1 or NR4A2, using daily oral dosing at 50 mg/kg (De Miranda et 

al. 2014). To determine whether a lower dose would have similar neuroprotective efficacy, 

we first performed a pharmacokinetic study with C-DIM12 (chemical structure in Fig 1A) 

at 25 mg/kg by administering this dose per oral and sampling plasma and brain 

concentrations at 0, 0.5, 1, 2, 4, 8 and 24 hrs.  Plasma and midbrain samples were 

analyzed by LC-MS analysis per our previously published methods (De Miranda 2013 et 

al.). As shown in Figure 1A-C, C-DIM12 reached a maximum concentration (Cmax) at 4 

hrs of 1120.0+/-404.7 ng/ml and 3622.5+/-1430.8ng/g in plasma and brain, respectively. 

The half-life was 249±23 min in plasma and 264±17 min in brain, approximately 15 

minutes longer in brain tissue compared to plasma (Fig.1C). Timing for Cmax and total 

drug clearance is consistent with the previous dosage of 10mg/kg (Fig 1A-B) (N=4 

animals/per time point). 

Daily Administration of C-DIM12 protects against loss of dopaminergic neurons 

during con-current neurotoxic challenge with MPTP/probenecid. 

Brain tissue was collected after 14 days of concurrent dosing with MPTPp and the 

presence or absence of C-DIM12 (25 mg/Kg), as depicted in dosing schematic in Figure 

2A. Immunofluorescence images were generated for number of TH+ cell bodies (red) in 
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the SNpc on tissue from Saline + corn oil (C.O.) (Fig. 2B), MPTPp + C.O. (Fig. 2F), and 

MPTPp + C-DIM12 (Fig. 2J) experimental groups, as depicted in representative images. 

The total number of neurons was determined by staining with the general neuronal 

marker, mitogen-associated protein, MAP2 (green) (Figure 2C, G, K). Based on unbiased 

3D-design based stereological quantitation of the number of TH+ neurons in the SNpc, 

mice treated with MPTPp+C.O. had a 63.75±4.27% loss of TH+ neurons, whereas mice 

treated with MPTPp+C-DIM12 had only a 35.28±8.46% loss of TH+ neurons (Fig. 2N). 

Similarly, loss of MAP2+ cells was 48.00±4.74% in the MPTP+C.O. treatment group, in 

contrast to only 25.50±7.92% loss of total neurons in mice lesioned with MPTPp in the 

presence of C-DIM12 compared to control (Fig 2O) (*P<0.05, **P<0.01,****P <0.0001; 

N=10 animals/group). TH+ fiber innervations of the striatum were also immunostained as 

depicted in representative images of Salinep+C.O. (Fig 2E), MPTPp+C.O.(Fig 2I) and 

MPTPp+C-DIM12 (Fig 2M). Density of TH+ fibers was measured by mean pixel intensity 

of the caudate putamen region and compared back to saline control (set at 100%). Mice 

treated with MPTPp+C.O. had 81.05±1.05% loss of TH+ terminals in the ST compared to 

only a 62.92±6.40% loss of TH+ fibers in mice treated with MPTPp+C-DIM12 (Fig 2P) (*P 

< 0.05; n=12 animals/per group). Thus, treatment with C-DIM12 reduced loss of TH+ 

fibers in the ST but did not completely protect against MPTPp-induced damage to 

innervating dopaminergic fibers projecting from the SNpc. 

Assessment of neurobehavioral deficits associated with PD and neurochemical 

analysis of the nigrostriatal system. 

Neurobehavioral function was assessed by open-field activity testing (OFT) on 

days 0, 7 and 14 during the 2-week study. Mice treated with MPTP+C.O. spent 
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significantly less time in the center of the chamber (dotted line represents baseline 

subtracted from Day 0) compared to controls, whereas the MPTP+C-DIM12 treatment 

group was not significantly different from control or the MPTPp+C.O. group at day 14 

(Fig. 3A). Quantitation of time spent along the margins of the chamber (a measure of 

anxiety) indicated that MPTP+C.O. treated mice spent significantly more time in the 

margin compared to saline controls. Mice treated with MPTPp+C-DIM12 were not 

significantly different from controls or the MPTPp+C.O. group at day 14 (Fig. 3B) (*P < 

0.05; N=19-25 animals/per group). Individual time traces and pseudocolored heat maps 

of activity across area over time (red=most time, blue=least time) plots from day 14 of 

OFT in each treatment group are represented in Figure 3C, demonstrating the trend 

toward decreased center time and increased margin time in MPTPp-treated mice that 

was prevented by concurrent treatment with C-DIM12. To assess locomotor function, we 

utilized a real-time video analysis system to determine stride length along a fixed track to 

measure alterations in gait related to changes in striatal dopamine. Representative 

images of illuminated paw print coordinates generated from video analysis are depicted 

in Fig. 3D. The overall rate of movement along the trackway was analyzed independently 

for left front (LF), right front (RF), left rear (LR) and right rear (RR) paws to identify 

changes in gait for each treatment group (Fig. 3E). An increased number of stop times 

and a correspondingly slower overall traverse rate along the trackway was noted in mice 

treated with MPTPp+C.O., which was largely restored to control levels at day 7 in mice 

treated with MPTPp+C-DIM12. Hind limb stride length analysis at day 7 also indicated a 

significantly shorter stride in the MPTPp+C.O. group and longer stride length in 

MPTPp+C-DIM12 group (*P < 0.05, **P < 0.01; N=6-12/animals/per group) (Fig 3F).  
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MPTPp+C.O. vs. MPTPp+C-DIM12 groups were not significantly different at day 14 and 

the stride length of Salinep + C.O. treated animals was decreased, potentially due to 

either stress or habituation to the trackway by the conclusion of the treatment period. 

High-performance liquid chromatography (HPLC) was performed on ST tissue for 

measurement of dopamine (DA) neurotransmitter content and its metabolite, 3,4-

dihydroxyphenylacetic acid (DOPAC).  Significantly less DOPAC and DA were detected 

in MPTP+C.O. and MPTP+C-DIM12 compared to saline control (Fig 3G-H). Mice treated 

with MPTPp+C-DIM12 showed a trend towards protection against loss of DOPAC and 

DA compared to the MPTPp+C.O. group, but this was not statistically significant. The 

DOPAC/DA ratio was also higher in MPTPp+C.O. compared to control mice and the 

MPTPp+C-DIM12 group showed an intermediate effect that was not different from either 

control or the MPTPp+C.O. group (**P < 0.01, ***P < 0.001; N=9-10 animals/per group) 

(Fig 3I).  Proteins associated with the production and release of DA in ST tissue was also 

measured by western blot. Levels of TH were significantly depleted in both MPTPp+C.O. 

and MPTPp+C-DIM12 compared to saline control (set at 100%) but C-DIM12 treatment 

mitigated loss of TH compared to MPTP-only group (Fig 3J). Correspondingly, the 

amount of vesicular monoamine transporter 2 (VMAT2; P=0.1125), (Fig 3K) and 

dopamine transporter (DAT; *P < 0.05) (Fig 3L) were depleted in MPTPp+C.O. groups 

and higher in C-DIM12 treated animals (N=6-8 animals/per group).  

C-DIM12 suppresses microglial activation and preserves a ramified morphological 

phenotype in the substantia nigra. 

The relative number of microglia in the SN and ST were determined by 

immunostaining for ionized binding adaptor molecule (IBA-1; green), with counterstaining 
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for TH (red) to demarcate each region, as depicted in the representative images in Fig 

4A-C. An increased number of activated microglia compared to control was evident in 

MPTPp-treated SNpc tissue (Fig 4B-C). To quantitate these observations, stereological 

assessment of IBA-1+ cells was performed on SNpc and ST. In the SNpc, an increased 

number of IBA-1+ cells were counted in both MPTP-receiving mice, characterized by 

intense staining for IBA-1 and a change in morphology from a ramified phenotype to a 

more amoeboid shape. C-DIM12 treatment significantly suppressed the number of IBA+1 

cells in the SNpc compared to MPTP+C.O., however, in the ST the number of IBA-1+ was 

not significantly lower than in the MPTPp+C.O. group but also not significantly different 

from the control group (P=0.1162 for MPTPp + C.O. vs. MPTPp + C-DIM12, **P < 0.01, 

****P < 0.0001, N=10 animals/per group for SN and N=12 animals/group for ST) (Fig 4D, 

E). For analysis of a microglia morphological phenotype within the SNpc, the same 40X 

images used for IBA-1 counts were also rendered for skeletonization as depicted in the 

representative images in Fig 4F. Skeletonized images were quantitated for the number 

of branches/cell (Fig 4G), junction voxels/cell (Fig 4H), endpoint voxels/cell (Fig 4I) and 

average branch length/cell (Fig 4J). C-DIM12 increased the number and complexity of 

each morphological parameter, except average branch length/cell, which showed only a 

trend toward increase relative to the MPTPp-treated group (++P < 0.1), whereas all other 

parameters in the MPTPp+C-DIM12 group were increased comparably to the control 

group (**P < 0.01,***P < 0.001 ****P < 0.0001, respectively; N=6 animals/per group).The 

morphology of IBA-1+ cells within the SNpc was also characterized by high-resolution 

confocal microscopy to visualize three-dimensional morphology (Fig 4K, Supplemental 

Videos 1-3). Multiple optical z-planes were acquired and rendered in 3D using Imaris 



 77 

Bitplane software to produce volumetric surface renderings of microglia from each 

treatment group. Microglia in the SNpc of MPTPp-treated mice displayed a loss of 

ramified cytoplasmic processes and a generally amoeboid shape, whereas mice treated 

with MPTPp+C-DIM12 had a cellular morphology more consistent with microglia from the 

control group. Amoeoboid-shaped microglia were also seen phagocytosing TH+ neurons 

in the SNpc in the MPTPp+C.O. group (see Supplemental Video 4).  

C-DIM12 suppresses astrocyte activation during progressive DA neuronal loss. 

Relative activation of astrocytes following MPTPp treatment was measured by 

quantitation of the intermediate filament, glial fibrillary acidic protein (GFAP), in cells in 

the SN and ST. Total levels of GFAP protein levels in the striatum were also analyzed by 

western immunoblotting. SN tissue was immunostained for GFAP (red) and TH (green) 

to delineate the pars compacta region for stereological counts, as depicted in high and 

low magnification representative images (Fig 5A-C).  A basal level of GFAP+ expressing 

cells within the substantia nigra pars reticulata (SNr) was evident in saline control animals 

(Fig 5A) and astrocyte proliferation noticeably increased within the SNpc upon treatment 

with MPTPp (Fig 5B). Based on stereological counts of GFAP+ expressing cell bodies, 

MPTPp+C.O. treated animals exhibited significantly more astrocytes within the SNpc 

compared to saline control. Mice that received MPTPp + C-DIM12 had significantly fewer 

GFAP+ cells within the SNpc compared to MPTP-only treated animals (Fig 5C,D). 

Similarly, C-DIM12 suppressed the number of GFAP+ cells within the ST comparable to 

saline control levels (N=9 animals/per group for SN, N=6 animals/per group for ST; *P < 

0.05, **P < 0.01, ****P < 0.0001) (Fig 5E). GFAP expression levels within the ST were 

also confirmed by western blot analysis, as depicted in Figure 4F. Based on optical 
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density measurements of GFAP protein, compared to control (saline set at 100%), C-

DIM12 significantly decreased total levels of striatal GFAP (*P < 0.05; N=4 animals/per 

group) (Fig 4G). 

C-DIM12 reverses MPTP-induced changes in gene expression related to PD and 

NF-κB signaling. 

To analyze patterns of gene expression in each experimental group, we isolated 

mRNA from midbrain tissue for real-time RT-PCR analysis of 168 genes in PD-associated 

and NF-κB-regulated gene arrays. Heat maps for PD-associated (Fig 6A) and NF-κB (Fig 

6B) gene arrays depict ontology dendrograms indicating that transcript expression in the 

MPTPp+C-DIM12 group clustered with the saline (control) group, whereas mRNA levels 

in the MPTPp+C.O. segregated independently, based on clustergram analysis.  Volcano 

plots for NF-κB regulated (Fig 6C,D) and PD-associated genes (Fig 6E,F) identified a 

number of genes upregulated in the MPTPp+C.O. group relative to control (Fig 6 C,D) 

that were downregulated in the MPTPp+C-DIM12 group (Fig 6D,F). Several unique 

transcripts identified in volcano plots that were significantly altered by MPTPp but not 

different from controls in the MPTPp+C-DIM12 group included the plasma membrane 

Ca2+ transporting atpase (Atp2b2) (Fig 6G), cell death regulator B cell 

leukemia/lymphoma 2 related protein Bcl2a1a (Fig 6H),  motif chemokine ligand Ccl5 

(RANTES) (Fig 6I), hypoxia-inducible factor prolyl hydroxylase 2 (Egln10) (Fig 6J), neural 

plasticity transcription factor early growth factor 1 (Egr1) (Fig 6K), synaptotagmin 1 (Syt1) 

(Fig 6L), tumor necrosis factor (ligand) superfamily, member 10 (Tnfs10) (Fig 6M) and 

TNF receptor associated factor 6 (Traf6) (Fig 6N) (*P < 0.05, **P < 0.01; N=4 animals/per 

group).   
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C-DIM12 maintains nuclear Nurr1 localization in DA neurons and prevents MPTPp-

induced Nurr1 protein expression changes in SNpc and ST. 

To visualize the subcellular localization of NR4A2/Nurr1 shuttling in DA neurons 

after treatment with MPTPp, we immunostained SNpc tissue for TH (green) and Nurr1 

(red) protein expression, as depicted in the representative high-magnification images in 

Figure 7A (white arrows depict subcellular localization). Nuclear Nurr1 in TH+ neurons 

was quantified for mean fluorescence intensity and indicated higher levels of nuclear 

Nurr1 in in DA neurons within the SNpc in mice treated with MPTPp+C-DIM12 compared 

to DA neurons in mice treated with MPTPp+C.O. (*P < 0.05, ****P < 0.0001; N=3 

animals/per group) (Fig 7B). qPCR analysis of mRNA isolated from SN tissue also 

demonstrates a trend for increased expression of Nurr1 mRNA following C-DIM12 

treatment (Fig 7C, P < 0.1081 compared to MPTPp +C.O.; N=4 animals/per group). 

mRNA expression data for the NR4A family member, Nur77 (NR4A1) display a 

2.67±0.79-fold induction with C-DIM12 (P=0.1154 compared to MPTPp + C.O.; N=4 

animals/per group) (Fig 7D). Additionally, total Nurr1 protein from ST tissue was analyzed 

by western blot and demonstrates a 39.5±4.6%depletion of Nurr1 with MPTP+C.O. that 

was prevented by treatment with C-DIM12 to 77.2±14.40% compared to control levels 

(Fig 7E-F). 

C-DIM12 activates Nurr1-dependent transactivation and modeling interactions of 

C-DIM12 with Nurr1.  

C-DIM12 also induced NR4A2-dependent transactivation in PC12 cells transfected 

with a GAL4-NR4A2 chimera (full length human NR4A2 fused to the yeast GAL4 DNA-

binding domain) and a luciferase reporter gene construct containing five GAL4 response 
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elements (UAS-Luc) (Fig 8A). In addition, PC12 cells were transfected with NBRE-Luc 

and NurRE-Luc constructs containing binding sites for NR4A2 monomer and homodimer, 

respectively (Li et al, 2012) (Fig 8B-C). C-DIM12 activated transactivation in PC12 cells 

in all three assay systems with the highest responses observed for the GAL4-

NR4A2/UAS-Luc assay (Fig 8A). To examine the potential for direct binding of C-DIM12 

to Nurr1, we performed computational-based small molecule docking studies to predict 

its possible binding orientation in either the coactivator binding site or the ligand-binding 

site. The modeling results in Figure 8D-F indicated that C-DIM12 was predicted to bind 

with high affinity to the co-activator binding site (binding energy: -73.3 kcal/mol), with the 

chlorobenzene ring buried into the hydrophobic region of the pocket, which includes 

Mse414, Ile587, and Leu591 and the indole moieties participating in hydrogen bond 

interactions with Glu415, pi-anion and pi-sigma interactions with Glu440, and pi-cation 

interactions with Arg418. The only substantive predicted interaction at the ligand binding 

site involved a pi-cation interaction between one of the indole moieties and Arg515 

(binding energy: -12.2Kcal/mol), with the balance consisting of comparatively weak 

hydrophobic interactions with Arg563, Cys563, and Leu570 (Fig 8G-I). 

4.4 DISCUSSION AND CONCLUSIONS 

Efficacy of small molecule therapeutics for neurodegenerative disease is 

dependent on the capacity to penetrate the blood brain barrier. We have previously 

demonstrated that selected C-DIM compounds have excellent structure-dependent 

bioavailability, with C-DIM12 having the greatest area under the curve (AUC) in brain 

compared to other p-phenyl substituted analogs when administered orally 50 mg/Kg daily 

(De Miranda et al., 2013). To assess brain/plasma distribution at the lower dose of 25 
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mg/kg used in the current study, we administered C-DIM12 to mice orally over a 24 hr 

period and observed ~3.5 times greater Cmax at 4 hours compared to our previous 

pharmacokinetic study that examined plasma and brain distribution at 10 mg/kg. At 25 

mg/Kg p.o., the AUC in brain was ~4.2 times higher in brain than in plasma, representing 

a brain:plasma AUC ratio indicative of highly favorable penetrance of the CNS, as 

indicated by the data in Figure 1. This dose-dependent increase in brain levels of C-

DIM12 confirms the utility of this analog for reaching the molecular target in brain as a 

pharmacological modulator of neuroinflammation.   

At the time of diagnosis, an individual with PD has already lost approximately 60% 

of dopaminergic neurons in the SNpc and 70% of striatal dopamine (Marsden, 1982; O 

Cooper et al., 2009). The subacute MPTPp mouse model used in this study conferred 

similar lesioning with approximately 63% loss of SNpc TH+ neurons, 52% loss of SNpc 

MAP2+ neurons and an 81% loss of DA terminals in the ST (Fig 2M-O). Based on 

stereological analysis of neuronal numbers after two weeks of exposure to MPTPp, 

concurrent treatment with C-DIM12 ameliorated neuronal loss to only 35% and 63% for 

DA cell bodies and terminals, respectively, compared to controls. However, C-DIM12 

provided less protection against loss of striatal DA, which is consistent with the use of 

MPTP as a potent toxicant damaging neuronal mitochondria in nerve terminals in 

projecting dopaminergic fibers in the striatum (Giovanni et al., 1994). The protective effect 

of C-DIM12 was consistently observed in MAP2+ neurons in the SNpc in addition to TH+ 

cells, demonstrating that neuroprotection was not confined to dopaminergic neurons only, 

but rather a general protective mechanism consistent with the anti-inflammatory activity 

of C-DIM12. 
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Subacute administration of MPTPp in C57/BL6 mice causes cognitive and 

locomotor dysfunction resembling that seen in PD (Goldberg et al., 2011; XH Wang et al., 

2012; De Miranda et al., 2014) Generally, anxiety-like, thigmotaxis behavior of mice is 

accompanied with reduced exploratory and spontaneous activity (Simon et al., 1994; 

George et al., 2008),  consistent with the trends we observed in open field activity assays 

(Fig 3A-C).  We also noted decreased hind limb stride length in MPTPp-treated mice that 

was prevented by co-treatment with C-DIM12 (Fig 4D,F), indicating protection against 

deprecations in striatal dopamine. However, this effect was not detected at day 14 (Fig 

D-F), possibly due to the characteristically severe loss of DA within the nigrostriatal 

system caused by MPTPp treatment that was partially prevented by C-DIM12 (Fig 3G-I). 

Yet, C-DIM12 preserved protein expression of TH within the striatum, as well as the 

synaptic and vesicular DA transporters, DAT and VMAT2 (P = 0.1125), respectively (Fig 

3J-L). The transporter proteins were induced at higher levels upon C-DIM12 treatment 

compared to TH, suggesting an imbalance of DA transport within the ST or due to 

vulnerability of TH to MPP+ induced oxidation. 

Animal studies suggest that microglial activation could be an etiologic factor in 

pathogenesis as well as a sequela of neurodegeneration due to MPTP exposure (PL 

McGeer and EG McGeer, 2008; Ramsey and Tansey, 2014). Regardless, microglial 

activation exacerbates DA neuronal loss, suggesting that suppressing inflammatory 

activation of microglia could be a viable therapeutic strategy for slowing the progression 

PD. Previous studies with the Nurr1 agonist, SA00025, showed that suppression of 

microglia activation and neuroinflammatory cytokine production was neuroprotective in 

the 6-hydroxydopamine (6-OHDA) rat model of PD (Smith et al., 2015). Similarly, we 
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demonstrated that C-DIM12 blocked neuroinflammatory gene expression in LPS-treated 

BV-2 microglial cells (De Miranda et al., 2014) and suppressed the relative number of 

IBA-1+ cells in the SNpc and ST following treatment with MPTPp in vivo (De Miranda et 

al. 2014). In the current study, microglial numbers were significantly reduced within the 

SNpc by concurrent treatment with C-DIM12, but only slightly in the ST (Fig 4A-E). 

Microglia within the SNpc were further examined to discriminate ramified, resting 

morphology from an amoeboid, activated-like cell type using three-dimensional IBA+ 

morphometric analysis (Fig 4F-K, Supplemental Videos 1-3). Based on the 

morphometry of skeletonized images, MPTPp+C.O. treatment reduced ramification and 

increased the number of phagocytic microglia surrounding dopamine neurons (Fig. 4K 

and Supplementary Video 4). C-DIM12 preserved a ramified morphology in SNpc 

microglia (Fig. 4G-K), indicating that inhibition of inflammatory activation directly 

correlated with preservation of dopaminergic soma. 

Increased astrocyte proliferation and hypertrophy surrounding DA neurons occurs 

at approximately 3-4 days after MPTP exposure in mice (Breidert et al., 2002; Hirsch and 

S Hunot, 2010). Although a certain level of astrogliosis may be neurotropic (Liddelow et 

al., 2017), severe activation leads to neuronal death(Carbone et al., 2008; Liddelow et 

al., 2017)In astrocyte cultures, by neurotoxin-induced nitric oxide synthetase (NOS2), C-

DIM compounds are potently anti-inflammatory and neuroprotective (Tjalkens et al., 2008; 

Carbone et al., 2008). Based on the gliosis quantitation of GFAP+ cells in both the SNpc 

and ST, concurrent C-DIM12 treatment suppressed gliosis in both regions (Fig 5A-E). 

Interestingly, there was greater reduction of striatal GFAP+ astrocytes than striatal IBA-1+ 

microglia (Fig 5E-G, 4E). This cell specific effect of C-DIM12 could be due to an 
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established deficit of striatal IBA-1+ cells by the end of MPTPp treatment regimen, or 

astrocyte activation persists as a  more chronically activated state in PD animal models 

(Hirsch and SP Hunot, 2009). Overall, C-DIM12 appears to modulate both glial cell types 

in MPTPp-induced models, suggesting C-DIM12’s regulatory role of inflammatory gene 

expression to be a promising neuroprotective mechanism. 

Neuroinflammatory gene expression mediated by NF-κB is up-regulated in PD 

post-mortem brain tissue (Hirsch and SP Hunot, 2009)). It is also essential for glial 

crosstalk signaling and has been demonstrated to be effected by multiple Nurr1 agonists 

in in vivo models (Kirkley et al., 2017;Smith et al., 2015; De Miranda et al., 2015). Based 

on heat map analysis of 168 genes from both qRT-arrays, C-DIM12 gene pattern 

expression was clustered similarly to Saline control levels compared to MPTP+C.O. 

treatment (Fig 6A-B). When comparing fold change levels from both gene arrays, NF-κB 

related genes were more prominently regulated by C-DIM12 than genes from the PD 

array (Fig 6C-F). This included Traf-6, Tnfsf10, CCl5, Bcl2a1a, and Egr1. Genes 

differentially regulated by C-DIM12 under the PD array were calcium homeostasis genes 

Atp2B2 and Syt1, as well as the redox sensing transcription factor Egnl1 (Fig 6G-N). 

These data indicate that C-DIM12-Nurr1 transcriptional activation may modulate death 

signaling regulated by NF-κB-dependent gene expression, whether or not these effects 

are from neurons, glia or both remain to be validated by future studies. 

Previous studies show that C-DIM12 induced NR4A2-dependent transactivation in 

pancreatic and bladder cancer cells (Li et al, 2012; Inamoto et al, 2008) and this response 

was consistently observed in neuronal-like PC12 cells (Fig. 8A-C). Additionally, in other 

work, we have observed C-DIM12 induced NR4A2-dependent transactivation in SY5Y 
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cells transfected NBRE-Luc and NurRE-Luc constructs (data not shown). C-DIM analogs 

have strong binding affinity to the ligand binding pockets of the NR4A family member, 

Nur77 (S-O Lee et al., 2014). X-ray crystal studies of the Nurr1 structure revealed that 

the classical ligand binding pocket is blocked by several bulky hydrophobic amino acid 

residues, suggesting that an alternative co-activator domain may allow ligand binding for 

transcriptional activation (Z Wang et al., 2003; Volakakis et al., 2006). Our computational 

modeling results predicted substantial greater binding affinity for C-DIM12 at the 

coactivator site (-73.3 kcal/mol) than to the ligand binding site (-12.2 Kcal/mol) (Fig 8E, 

H). Therefore, C-DIM12 interactions at the coactivator-binding likely modulates 

transcriptional activity. Nuclear import and export sequences (NLS/NES) mediate Nurr1 

shuttling from the nucleus to the cytosol during oxidative stress (García-Yagüe et al., 

2013).  We demonstrated that C-DIM12 maintains Nurr1 nuclear localization in DA 

neurons, which was consistently observed with post-lesion intervention as well (Fig 7A-

B) (De Miranda et al. 2014). Total levels of Nurr1 protein from ST were depleted about 

60% with MPTP+C.O. treatment and significantly restored to ~80% in C-DIM12 treated 

animals (Fig 7C, 7D). Furthermore, by qPCR analysis of Nurr1 expression we 

demonstrated C-DIM12 induces Nurr1 by ~3.5-fold times higher than both control and 

MPTP + C.O. (Fig 7E). There was also a ~2-fold induction of related NR4A member, 

Nur77 as well (Fig 7F). This is consistent to previous studies that confirm C-DIM12 has 

binding affinity to Nur77, albeit to a lesser extent than Nurr1 (S-O Lee et al., 2014). 

In conclusion, we demonstrated that C-DIM12 crosses the blood brain barrier, 

suppresses glial activation, protects against DA neuronal cell body loss, preserves DA 

terminals, improves neurobehavioral function and decreases NF-κB regulated 
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neuroinflammatory gene expression in the MPTPp mouse model of PD by modulating 

transcriptional activity of Nurr1. Given these findings, we conclude that C-DIM12 is a 

functional Nurr1 ligand with distinct effects in neurons and glia that could represent a 

disease-modifying treatment strategy for PD. 
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4.5 FIGURES 
 
 
 

 
Figure 4.5.1 Pharmacokinetic analysis depicts high concentration of C-DIM12 in 
brain tissue. Plasma (A) and brain (B) samples were collected from mice at 24, 8, 4, 2, 
1, .5 and 0 hours after oral gavage of C-DIM12 (25mg/kg; black line, 10 mg/kg; grey line-
De Miranda et al. 2013) and analyzed for C-DIM12 concentration via LC-MS.  (C) Chart 
of AUC, t1/2 and Cmax depict a higher partitioning of C-DIM12 to brain tissue (n=4 
animals/per time point). 
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Figure 4.5.2 C-DIM12 protects DA neuron bodies/terminals from MPTP induced 
degradation. Concurrent dosing schematic with C-DIM12 and MPTPp treatments 
(A). 10X and 100X objective images of SN/ST tissue immunostained for TH (red) and 
MAP2 (green) treated with (B-E) Salinep + C.O., (F-I) MPTPp + C.O., and (J-M) MPTPp 
+ C-DIM12. (N) Stereological counts for TH+ and (O) MAP2+ cells bodies of the SNpc 
demonstrate significantly more neurons in MPTP +C-DIM12 treated group vs. 
MPTP+C.O. group. (P) TH immunoreactivity intensity levels also measured significantly 
more in C-DIM12 treated group (*P < 0.05, ** P < 0.01,****P < 0.0001, N=10-12 
animals/per group).  
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Figure 4.5.3 Neurobehavioral deficits associated with PD are ameliorated and DA 
proteins are preserved with C-DIM12 treatment. Open-field test (OFT) was conducted 
on mice at 0, 7 and 14 days during study. (A) Change from day 0/per min OFT center 
time and (B) margin time was quantitated at day 7 and 14. (C) Trace and pseudo-colored 
time plots represent OFT mouse movement at day 14. (D) Representative image shows 
a real-time video gait analysis system used to detect paw coordinates for quantitative 
measurement. (E) Gait images depict distance vs. time graphs in animals in each group 
at day 7. (F) Graph displays stride length measured with RT-VGAS at day 7 and day 14. 
(G) High performance liquid chromatography (HPLC) was used for measurement of DA 
metabolite, DOPAC, (H) dopamine and (I) ratio of DOPAC/DA from each experimental 
group. Western blot analysis of striatal protein depicts levels of TH (J), VMAT2 (K), and 
DAT (L) (*P < 0.05, **P < 0.01, ****P < 0.0001, N=10-12 animals/per group for behavior, 
N=6-8 animals/per group for WB). 
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Figure 4.5.4 C-DIM12 suppresses microglia proliferation and maintains a ramified 
morphological phenotype. 10X and 100X objective representative images of TH (red) 
and microglia marker, IBA1 (green) in the substantia nigra are depicted for Salinep+C.O. 
(A), MPTPp+C.O. (B) and MPTPp +C-DIM12 (C). (D) Gliosis counts of the substantia 
nigra (SNpc) and (E) ST tissue were conducted for amount of IBA+ cells. To visualize 
microglia morphology changes of IBA+ cells in the SNpc, (F) multiple 40x-objective 
images were also transformed in ImageJ for skeletonization and quantitation of microglia 
(G) branches, (H) junctions, (I) endpoints, and (J) average branch length (++P < 0.1, *P 
<0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; N=12 animals/per group for counts, n=6 
animals/per group for skeletonization). (K) 64x-objective, 3D images of microglia in SNpc 
were surfaced rendered on channel for IBA1 in each experimental group (boxed cells 
from top images with IBA1/TH were selected; See Supplemental Videos 1-4). 
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Figure 4.5.5 Astrocyte activation is suppressed by C-DIM12.10x and 100x, objective 
images of SN tissue sections isolated from (A) Salinep + C.O., (B) MPTPp +C.O., and 
(C) MPTPp + C-DIM12 depict TH+ neurons (green), GFAP+ astrocytes (red). Stereological 
counts of GFAP+ cells in the (D) SNpc and (E) ST demonstrate significantly less astrocyte 
proliferation in C-DIM12 group. (F) Western blot of striatal protein has significantly less 
GFAP with C-DIM12 as quantitated in (G) (*P < 0.05, **P < 0.01, ****P < 0.0001, N=6 
animals/per group). 
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Figure 4.5.6 PD associated/NF-κB regulated gene expression is preserved in 
MPTPp + C-DIM12 mice. (A) Ontology dendrogram heat maps of 84 PD associated 
genes from SNpc RNA depicts a cluster grouping with MPTP+C-DIM12 and Saline 
treated groups. Notice NR4A2 (Nurr1) is lower in MPTP +C.O. treated group. (B) Heat 
map of 84 NF-κB regulated genes analyzed from SNpc RNA. Map depicts a cluster 
grouping to Saline control levels in MPTP+C-DIM12 treated tissue (red=increase, 
green=decrease). Volcano plots from PD (C-D) and NF-κB (E-F) arrays show fold 
changes for MPTP + C.O. and MPTPp + C-DIM12 groups compared back to Saline 
controls (red=min, green=max expression). Graphical display for Atp2b2 (G), Bcl2a1a 
(H), Ccl5 (I), Egln1 (J), Syt1 (G), Tnfsf10 (M) and Traf6 (N) depict significant gene fold 
changes with experimental groups (*P < 0.05.**P < 0.01; N=4-5mice/group). 
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Figure 4.5.7 Subcellular localization and expression of Nurr1 are modified by C-
DIM12 treatment in vivo (A) 100X objective images of TH+ neurons (green) show Nurr1 
(red) is sequestered to the nucleus with C-DIM12 treatment, white arrows depict nuclear 
localization. (B) Mean intensity of TH+ nuclear Nurr1 is significantly higher in C-DIM12 
group compared to MPTP + C.O. (*P <0.05, ****P <0.0001; N=4 animals/group). (C) 
Western blot of Nurr1 protein isolated from ST tissue show C-DIM12 prevents MPTPp-
induced protein changes, (D) as illustrated in quantitative measurement of mean optical 
density (control set to 100%; *P < 0.05,**P < 0.01,***P < 0.001, N=6-8 animals/group). 
qPCR data of mRNA isolated from SNpc for (E) Nurr1 and (F) Nur77 (NR4A1) expression 
show C-DIM12 induces higher levels of NR4A2 (*P=0.05, respectively; N=8 
animals/group).  
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Figure 4.5.8 C-DIM12-dependent transactivation of Nurr1 reporter constructs in 
neuronal cells and putative binding sites within the ligand binding domain of 
human NR4A2. Luciferase expression of PC12 cells co-transfected with UAS-Luc + 
GAL4-Nurr1 (A) NBRE-Luc + FLAG-Nurr1 (B) and NurRE-Luc + FLAG-Nurr1 (C) in the 
presence of 0-20 µM C-DIM12 (*P < 0.05; N=3/experiment). In silico modeling of the 
Nurr1 ligand binding domain displays putative binding sites for C-DIM12 at the co-
activator interface with a calculated binding energy of -73.3 Kcal/mol (D-F) and at the 
ligand binding pocket with a calculated binding energy of -12.2 Kcal/mol (G-I). 
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CHAPTER 5 
 
 
 

CELLULAR SELECTIVITY OF AAV SEROTYPES FOR GENE DELIVERY IN 
NEURONS AND ASTROCYTES BY NEONATAL INTRACEREBROVENTRICULAR 

INJECTION2 

 
 
 

5.1 INTRODUCTION  
 

Adeno-associated viruses (AAVs) are the most commonly used vector for gene 

delivery to central nervous system (CNS). AAVs are small (20nm), non-pathogenic in 

humans and animals, contain a single-stranded DNA genome and are a member of the 

Parvoviridae family within the Dependovirus genus (Kotterman and Schaffer, 2014) (Daya 

and Berns, 2008). Serology of AAVs is an important functional characteristic for cell 

specific transduction efficiency within the CNS. AAV2 was the first serotype cloned into a 

bacterial plasmid and has since been used as a comparison to identify other serotypes. 

Each serotype has a different CNS transduction capacity and does not cross-react with 

naturally-occurring human AAV2-neutralizing antibodies (Samulski et al., 1982). Twelve 

serotypes (AAV1-12) have been tested thoroughly for their ability to transduce specific 

cell types and tissue and differentiated between capsid protein motifs that bind specific 

cell surface receptors for cell attachment [4]. For example, AAV1, AAV4, AAV5, AAV7 

(sialylated glycoproteins), AAV2/AAV3 (heparin sulfate proteoglycans), AAV9 (galactose) 

and AAV8 do not have a known primary receptor, although laminin is a potential co-

receptor for these viruses (Akache et al., 2006). More recently, a universal receptor, 

                                                        

2Reprinted with permission of PLOS ONE. All rights reserved. 
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KIAA0319 or AAVR, has been identified that mediates rapid endocytosis after cell binding 

and attachment for all AAV serotypes (Pillay et al., 2016). AAV hybrid serotypes or 

pseudo-serotypes have been created by viral engineering, which are constructed with 

integrated genome containing (cis-acting) inverted terminal repeats (ITR) of AAV2 and 

capsid genes of other serotypes for increased viral specificity and transduction (Choi et 

al., 2005).  Several studies display AAV serotype transduction differences in vitro and in 

vivo; dependent on cell type specificity, cell toxicity, viral delivery method, viral delivery 

timing, and AAV transgene expression stability over time (RL Klein et al., 1998; Royo et 

al., 2008; Howard et al., 2008; Chakrabarty et al., 2013; Aschauer, Kreuz, and Rumpel, 

2013a). However, some of these studies lack informative, transitional data incorporating 

both hybrid and wild type serotype differences found in neural cell culture preceding 

serotype comparisons in mouse brain.  

Neonatal intracerebroventricular (ICV) injection is a promising delivery technique 

for AAVs in mice that is minimally invasive and displays widespread tropism throughout 

the brain, as opposed to stereotactic injection procedures in adult mice, which are highly 

invasive and localize only to site of injection. Previous studies reported that when AAV2 

is injected directly into the cerebral lateral ventricles at birth, it can circulate through the 

subarachnoid space, disseminate through the ventricle ependymal cell lining and deliver 

viral vector throughout the CNS (Passini and Wolfe, 2001). Transgene expression 

following neonatal ICV injection can persist for at least 12 months, and there are regional 

differences in tropism amongst different AAV serotypes delivered by this method(J-Y Kim 

et al., 2013). Because of the reported variability in serotype-dependent regional tropism 
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amongst different studies, there remain questions as to which serotype is best suited to 

transduce neurons or astrocytes in specific regions of interest within the CNS by ICV. 

In the present study we therefore used multiple AAV serotypes expressing 

fluorescent GFP reporters to examine regional tropism and efficiency in transducing gene 

expression in primary neuron and astrocyte cultures and in vivo. AAVs were administered 

by ICV injection into neonatal P0 mice for delivery to the CNS. Tissue was collected at 3 

and 6 weeks post-ICV injection to compare AAV serotype stability in multiple regions of 

the brain. Previous investigations of AAV serotype differences have predominately 

focused on the localized expression after stereotaxic injection in adult mice for 

intervention in neurodegenerative disease models. Still, few studies have fully 

investigated the capacity of multiple ICV delivered AAVs serotypes to penetrate to deep 

ventral midbrain regions and transduce specific cell types (Chakrabarty et al., 2013; J-Y 

Kim et al., 2013; McLean et al., 2014). Using immunofluorescence and imaging, we report 

different patterns of cell specific AAV serotype tropism in cell culture and in multiple 

regions of mouse brain, including the substantia nigra (SN). Further testing was 

conducted with glial fibrillary acidic protein (GFAP) promoter-driven AAV using the optimal 

serotype to exclusively target astrocytes. These studies identified different AAV serotypes 

that preferentially transduced gene expression in astrocytes or neurons with surprising 

variability in regional tropism, suggesting several suitable serotypes for achieving gene 

expression with the desired regional and cellular selectivity. 
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5.2 MATERIALS AND METHODS 

AAV serotypes  

The following AAV serotypes tested were acquired from Vector BioLabs; AAV1(Cat# 

7002), AAV2/1(Cat# 7071), AAV2/DJ (Cat# 7078), AAV2/DJ8 (Cat# 7118), and 

AAV2/DJ9 (Cat# 7119) and astrocyte-specific, AAVDJ8-GFAP-mCherry-WPRE. AAV8 

and AAV9 were from Virovek.  All pseudo-serotypes incorporated ITRs of wildtype AAV2 

and mRNA stabilizing woodchuck hepatitis virus posttranscriptional regulator elements 

(WPRE). AAV2/1 had capsid protein of wildtype AAV1, AAVDJ was a synthetic serotype 

made from 8 wildtype serotypes, AAVDJ8 was AAVDJ modified to specific residues of 

AAV8, and AAVDJ9 was modified to specific residues of AAV9. Each pseudo-serotype 

also had a CMV/Chicken-beta-actin hybrid promoter and eGFP transgene. Wildtype 

AAV1 had a CMV promoter and an eGFP transgene. All Vector BioLabs serotypes were 

stored in a PBS/glycerol 5% stock at an initial concentration of 1X1013 GC/ml. Serotypes 

acquired from Virovek had a CMV promoter, a GFP reporter and a modified wildtype 

capsid. AAV8 was an initial concentration of 2.14X1013 GC/ml and AAV9 was at 

2.10X1013GC/ml, stored in a PBS/pluronic F-68 0.001% stock, before dilution to working 

concentration. All serotypes were made in aliquots to minimize freeze/thaw cycles and 

stored at -80°C. 

Use of animals 

Timed pregnant female C57BL/6 mice were obtained E16-E19 (Charles River aged 3-4 

months). P0 neonatal mice were ICV injected within ~12 hours post birth. Mice were 

housed in a 12hr-light/dark cycle and temperature-controlled room (maintained 22-24°C) 

with access to standard chow and water ad libitum. All animal procedures were conducted 
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in compliance with National Health Institute guidelines and approved by Colorado State 

University Institutional Animal and Use Committee. Neonatal ICV injections were 

conducted under heavy cyroanesthesia and adult terminal procedures were performed 

under isoflurane anesthesia.  

In vitro AAV transduction experiments and immunostaining 

Primary cortical neurons were isolated from P0 neonatal C57BL/6 mice, as previously 

described, and then seeded on Poly-D-Lysine (Sigma Cat# P6507-5mg) coated 12-mm 

coverslips at a density of 5.0X 104/well(W Li et al., 2015). For live cell fluorescent plate 

reading/imaging, neurons were seeded at 5X103/well in 96-well black-walled plates 

(Thermo Scientific, Waltham MA). Neuronal cultures were allowed to grow for 7 days prior 

to viral treatments. For mixed glial cell isolations, astrocytes were also isolated from P0 

neonatal C57BL/6 mice, as previously described (De Miranda, Popichak, Hammond, 

Jorgensen, et al., 2015). Mixed glia were seeded on FBS coated 12-mm coverslips at 

5.0X 104/well 24 hours prior to viral transductions. All AAV-GFP serotypes were diluted 

to 5X1010GC/ml in Neurobasal Medium (Life Technologies) for primary neurons or serum-

free MEM/EBSS (Hyclone) for astrocyte transductions. Native GFP fluorescence signal 

was monitored at 488nm emission/519nm each day on a Cytation3 Cell Imaging Multi-

Mode plate reader (BioTek Instruments, Winooski, VT). DIV 7 cells were washed with 

phosphate-buffered saline (1X PBS) and replaced growth medium with Fluorobrite DMEM 

(Life Technologies) for GFP and bright-field 20X objective imaging on plate reader, then 

fixed with ice cold methanol for 20 min at -20°. For mixed glia transduction experiments 

with AAVDJ8-GFAP-mCherry, a higher titer of 1.9X1011GC/ml was necessary for 

successful detection of mCherry expression and cells were fixed at DIV 11.. Both cell 
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types were immunostained for chicken polyclonal anti-GFP (1:500; AvesLabs Cat# 1020), 

rabbit polyclonal anti- mitogen associated protein (MAP2) (1:500; Abcam Cat# 32454) for 

neurons and mouse polyclonal anti-GFAP (1:500; Cell Signaling Cat# 3670S) for 

astrocytes and anti-mCherry (1:100; Abcam) for AAVDJ8-GFAP-mCherry transduced 

cultures. Secondary antibodies used were AlexaFluor donkey anti-rabbit 555, goat anti-

chicken 488, and donkey anti-mouse 555 (1:500; Life Technologies). All 12mm-coverslips 

were mounted on glass slides with VectaShield mounting medium containing 4′,6-

diamidino-2-phenylindole (DAPI; Vector, Burlingame, CA) and stored in 4°C until imaged.  

Neonatal Intracerebroventricular injections 

ICV injection procedures were closely adapted from several established protocols by Kim 

et al. 2013 & 2014 and Charkrabarty et al. 2013 (J-Y Kim et al., 2013; 2014). In brief, P0 

neonatal pups were induced with hypothermic anesthesia by placement on a cold 

aluminum plate in ice. Anesthesia was confirmed by neonatal color change from pink to 

purple, squeezing of paw and cessation of movement before injections. ICV injections 

were performed using a 10uL Hamilton micro syringe with a 32 G, 0.5”, 30° bevel RN 

needle. Ventricular injection sites were identified by 2/5 distance from lambda suture to 

eye and 3mm ventral from skin (marked on needle shaft). Working viral solutions were 

diluted in PBS at 1X1010GC/uL, and injected as a 2uL volume/hemisphere, equivalent 

2X1010GC/hemisphere. Injected pups were placed on warming pad and regained 

movement before returned to dam cage.  Juvenile weanlings were terminated at 3 weeks 

for brain collection or weaned/aged for an additional 3 weeks for 6-week post ICV 

injection. 
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Histological Preparation of Tissue and Immunostaining 

AAV injected mice were terminated at 3/6 weeks under deep isoflurane anesthesia and 

decapitated for rapid brain dissection. Dissected brains were stored in 3% 

paraformaldehyde overnight and then stored in cacodlyate-PBS containing 15-30% 

sucrose at 4°C until processed for cryo-sectioning. Brains were then frozen in OCT and 

sectioned at 40µm thickness (coronal/sagittal) on microtome.  Free-floating brain regions 

of interest (ROI) were mounted on glass slides and imaged for AAV-GFP or stored in 

cryoprotectant at -20°C until immunostaining. Immunofluorescent tissue staining was 

conducted as previously described by Miller et al. (Miller et al., 2011), with the addition of 

antigen-retrieval by incubating tissue sections in 0.01 M sodium citrate buffer (pH 8.45) 

for 20 min prior to blocking.  Primary antibodies diluted in 0.1% triton-X containing tris-

base-saline (TBS) are rabbit polyclonal anti-MAP2 (1:500; Abcam Cat# 32454), rabbit 

polyclonal anti-S100β (1:100; Abcam Cat# ab41548), chicken polyclonal anti-GFP (1:500; 

AvesLabs Cat# 1020), and rabbit polyclonal anti-tyrosine hydroxylase (1:500; Millipore 

Cat#: AB152). Sections were stained for DAPI (Sigma) and mounted on glass coverslips 

in VectaShield mounting medium and stored at 4°C until imaging. 

CLARITY tissue-transmutation 

Passive clarification was conducted similarly to protocol established by Tomer et al. 2014 

(Tomer et al., 2014). In brief, brains were embedded in hydrogel (4% acrylamide/0.05% 

Bis-acrylamide) and sectioned at 400um thickness on a cryo-microtome. Sections were 

placed in clearing solution (4% sodium dodecyl sulfate/200mM boric acid, pH 8.5) for 7 

days at 37 °C and 35 rpm. Sections of clarified substantia nigra region were then selected 

for immunostaining. Clearing solution was removed by washing 3 times with TBS and 
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then sections were incubated for immunostaining with chicken polyclonal anti-tyrosine 

hydroxylase (1:200; Abcam Cat# ab76442), rabbit polyclonal anti-GFAP (1:200; DAKO 

Cat# Z0334), anti-GFP (1:200; AvesLabs) or anti-mCherry (1:200; Abcam Cat# 

ab167453). Antibodies were diluted in TBS at 37 °C and incubated with tissue sections 

with an orbital shaker at 35 rpm overnight and then at 4°C for 1 day afterward. Multiple 

washes were performed over 2 days at 37 °C (with orbital shaking at 35 rpm) and then 

cleared sections were placed in TBS containing goat anti-chicken AlexaFluor 647 (1:200; 

Life Technologies) and donkey anti-rabbit AlexaFluor 555 (1:200; Life Technologies) at 

37 °C overnight with orbital shaking (35 rpm). The next day, sections were washed 

several times with TBS and stored at 4°C until imaged. 

Imaging and Cell Counting 

Images of transduced primary cells and all quantitated AAV infected brain regions were 

acquired using a 20X air objective with a Zeiss Axiovert 200M inverted fluorescent 

microscope equipped and a Hammatsu ORCA-ER-cooled charge coupled device camera 

(Hammatsu Pho-tonics, Hammatsu City, Japan). For IF quantitation, multiple random, z-

stack images of approximately 30 μm dissector height for both hemispheres of all brain 

regions (in vivo quantitation) or a single 2D images (for in vitro quantitation) were acquired 

per coverslip/brain region and counted total %GFP cell/image field using Slidebook 

software (version 5.5, Intelligent Imaging Innovations, Denver CO). A background 

subtraction was performed for all IF in vivo images, prior to quantitation. Representative 

high-magnification images were acquired with a Zeiss Plan-Apochromat 100X oil 

objective lens. Representative 10X objective montage images of ROI were acquired with 

a BX51 microscope (Olympus, Center Valley, PA, USA) equipped with a Hammatsu 
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ORCA-Flash4.0 digital CMOS camera, ProScan III stage controller (Prior, Rockland, MA 

USA) and CellSens Dimension software (version 1.12, Olympus, Center Valley, PA, 

USA).  All bright field images of mock-injected brains were acquired with Olympus SZX12 

stereo-dissecting microscope. For enhanced CLARITY fluorescence imaging of AAVDJ8-

GFP, 40X oil objective montage images were acquired using a Fluoview 1200 scanning-

laser confocal microscope to penetrate ~80µm thickness of tissue (Olympus, Center 

Valley, PA USA). CLARITY fluorescent imaging of AAVDJ8-GFAP-mCherry was 

conducted on a Zeiss LSM 510 Laser-scanning confocal microscope to penetrate and 

capture ~180µm thickness of tissue. Both sets of CLARITY images were 3D-rendered in 

ImageJ analysis software (Schneider et al., 2012). Representative images of whole brain 

fluorescence were acquired with ChemiDoc MP imaging system (BioRad). Uninjected 

controls were imaged with each serotype for comparison of background fluorescence 

(Supplemental Fig. 3). 

Statistical Analysis 

All data are expressed as mean ± SEM. Grouped analyses was performed using a Two-

way ANOVA with Sidak’s post hoc test to compare biological replicate means between 

groups. For semi-quantitative representation of GFP+ cells/brain region as depicted in 

Table 1, cell counts were divided into quartiles as follows; +++£55.5 GFP+ cells/image 

field, ++£31.3 GFP+ cells/image field, +£11.6 GFP+ cells/image field and -£5.8 GFP+ 

cells/image field. Statistical significance was identified as *p <0.05, **p <0.01, ***p <0.001, 

****p <0.0001. All statistical analyses were conducted using Prism (version 6.0; Graph 

Pad Software, San Diego, CA).  
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5.3 RESULTS 

Comparison of multiple AAV serotypes in primary astrocyte and neuronal cultures. 

Several wildtype and hybrid serotypes carrying eGFP or GFP fluorescent reporters 

were compared for transduction efficiencies in astrocytes. Mixed glia cultures were 

transduced for 1 week with different serotypes and fixed for double immunofluorescent 

labeling for the astrocyte marker, GFAP (red) and GFP (green) (Fig. 1A, C, E, G, I, K, 

M). Astrocyte (GFP+GFAP+/GFAP) transduction efficiencies (Mean ± SEM; n=3-

7/serotype) were as follows: 4.785%±2.635 for AAV1, ~71%±7.79 for AAV2/1, 

33.17%±9.169 for AAVDJ, 58.49% ±11.43 for AAVDJ8, 46.64%±10.31 for AAV8, 

36.77%±4.749 for AAVDJ9, and 41.88%±11.49 for AAV9 (Fig. 1O). Similarly, primary 

cortical cultures were transduced for 1 week and fixed for double immunofluorescent 

labeling for the neuronal marker, MAP2 (red) and GFP (green) (Fig. 1B, D, F, H, J, L, N).  

Neuron (GFP+MAP2+/MAP2+; n=6-10/serotype) transduction efficiencies were 

quantitated as follows: 40.5%±11.9% for AAV1, 63.5±5.4% for AAV2/1, 49.1±5.0% for 

AAVDJ, 39.2±5.7% for AAVDJ8, 21.4±6.6% for AAV8, 49.6±7.1% for AAVDJ9, 49.2±8.7% 

for AAV9 (Fig. 1P). AAV-GFP fluorescence intensity was also monitored in neuronal 

cultures once per day for 1 week via live cell imaging using a fluorescence microtiter plate 

reader. AAV-GFP expression was noticeable at approximately 3 days post-infection and 

increased every day in vitro (DIV). AAV2/1 displayed a significantly higher fold-change in 

fluorescence intensity compared to all other serotypes at 6 DIV (1.733±0.117) and 7 DIV 

(1.988±0.161) (n=6/serotype/time point; *p<0.05, ***p<0.001) (Fig 1Q). 
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Intracerebroventricular injection of AAV constructs 

To administer several selected AAV serotypes to the murine CNS, ICV injections 

were conducted on P0 neonatal mice (Figure 2). Lateral ventricles were targeted for 

injection on both hemispheres as depicted in the schematic in Fig. 2A. Successful 

injection into ventricle space was confirmed by mock injection of trypan blue/PBS solution 

administered to neonatal P0 mouse brain for visualization of injection distribution and 

imaged on bright field stereo dissecting microscope, arrowheads indicate injection sites 

(Fig. 2B-C). Mock injected brains were incised along coronal and saggital planes to 

visualize sites of viral solution spread from the lateral ventricles (LV), third (3V), 

mesencephalic aqueduct (MA) and fourth ventricle (4V), arrowheads indicate ventricular 

spaces (Fig. 2D, Supplemental 1A-C). For in vivo AAV serotype characterizations, 

AAV2/1, AAVDJ8 and AAV9 were selected based on the capacity to efficiently transduce 

primary neural cultures and the noticeable distribution differences of other serotypes by 

ICV injection (Figure 1, Supplemental Figure 4B-F). Basic plasmid (pAAV) maps of 

each serotype are illustrated in Figure 2E. To monitor AAV tropism throughout the CNS, 

whole brains were ICV injected with AAV2/1 (Fig. 2F), AAVDJ8 (Fig. 2G) and AAV9 (Fig. 

2H) and dissected 3 weeks post-injection or imaging of intrinsic GFP expression. Lateral 

views of each whole brain are shown in the top image in pseudo color (Fig 2F-H). Medial 

intrinsic fluorescence is depicted in representative images of sagittal cross sections 

(bottom), along with serial coronal cross sections rostral to caudal on right of each panel, 

depicting penetrance of each AAV serotype throughout the CNS (Fig 2F-H). 
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Quantitation of AAV2/1-GFP tropism at 3 and 6 weeks post-injection 

To determine degree of AAV2/1-GFP tropism in neurons and astrocytes from 

multiple brain regions at 3 and 6 weeks post ICV injections, anatomical regions including 

the olfactory bulb, striatum, motor cortex, hippocampus and cerebellum were 

immunostained for anti-NeuN (red, neuronal marker) and S100β  (purple, astrocytic 

marker) at 6 weeks post ICV (Fig 3A-E). Mitral cells of the granular layer were primarily 

transduced, with no observed astrocytes in the olfactory bulb (Fig 3A). AAV2/1 had 

modest penetration from ventricular space to striatal neurons, without any GFP+ 

astrocytes observed in the caudate putamen (Fig 3B). Most GFP+ cells in the primary 

motor cortex were in Layer 6a-6b, and fewer GFP+ pyramidal neurons of cortical layers 5 

and 2/3 (Fig 3C). Pyramidal layer neurons of CA1 hippocampus heavily expressed GFP, 

as well as some infected neurons in the molecular layer of the dentate gyrus (Fig 3D).  

Central lobules of the cerebellum had GFP+ Purkinje fiber neurons, no astrocytes were 

observed. Quantitative measurement of AAV2/1-GFP+ cells quantitated for each 

region/time point at 3 and 6 weeks are as follows:  47.5±11.7 and 37.7±17.5 in the 

olfactory bulb; 9.9+/-4.1 and 6.9+/-1.5 in the striatum; 38.2±10.3 and 20.7±6.7 in the 

cortex; 55.467±18.584 and 53.167±17.873 in the hippocampus; 21.8±12.3 and 2.9+/-1.6 

in the cerebellum (n=3/Time point) (Fig 3F).  

Quantitation of AAVDJ8-GFP tropism 3 and 6 weeks post injection 

The tropism of AAVDJ8-GFP in multiple brain regions at 3 and 6 weeks post ICV 

injections was also monitored in the olfactory bulb, striatum, motor cortex, hippocampus 

and cerebellum (Fig 4A-E). At 6 weeks post-ICV mitral layers of the olfactory bulb were 

heavily infected, including some observed AAVDJ8-GFP+ astrocytes (Fig 4A). Striatal 
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neurons and astrocytes of the caudate putamen were primarily infected in the dorsal 

region of the striatum (Fig 4B). High AAVDJ8-GFP infection was observed in all layers of 

the primary motor cortex, with robust signal in pyramidal neurons of layer 5 and astrocytes 

of multiform layer 6 (Fig 4C). AAVDJ8-GFP+ pyramidal neurons of CA1 were observed in 

the pyramidal layer and infected astrocytes were observed in the dorsal hippocampal 

layer and stratum oriens (Fig 4D).  Similar to AAV2/1, central lobules of the cerebellum 

GFP+ Purkinje fiber neurons were transduced but no GFP+ astrocytes were observed (Fig 

4E). AAVDJ8-GFP+ cells quantitated for each region/time point at 3 and 6 weeks are as 

follows: 24.7±6.3 and 29.0+/-2.8 in olfactory bulb; 10.9±1.6 and 12.0±2.1 in the striatum; 

51.7±15.5 and 38.3+/-4.7 in the cortex; 47.1+/-4.6 and 36.7±3.4 in the hippocampus; 

3.78±0.6 and 5.8±1.1 in the cerebellum (n=3/Time point) (Fig 4F).   

Quantitation of AAV9-GFP tropism 3 and 6 weeks post injection  

AAV9-GFP tropism was similarly monitored at 3 and 6 weeks post ICV injection. 

The olfactory bulb displayed comparable tropism to AAV2/1 with mainly infectivity in the 

mitral cells of the granular layer and no observed GFP+ astrocytes (Fig 5A). Minimum 

AAV9-GFP infection was present in the striatum, although infected neurons and 

astrocytes were identified within the caudate putamen region (Fig 5B). Both cell types 

were infected in the primary motor cortex, primarily neurons of layer 5 and astrocytes of 

layers 6a-b (Fig 5C). Neurons and astrocytes were minimally infected within the 

pyramidal layer of CA1 hippocampal region, and AAV9-GFP was noticeably expressed 

within the fiber tracts of the dentate gyrus (Fig 5D). Similar to AAV2/1 and AAVDJ8, 

Purkinje fiber neurons within the central lobules of the cerebellum were primarily infected, 

and no AAV9-GFP (+) astrocytes observed (Fig 5E). Transduction efficiencies of AAV9-
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GFP+ cells quantitated for each region/time point at 3 and 6 weeks are as follows: 9.6±4.2 

and 5.3±1.5 in the olfactory bulb; 8.4±3.0 and 1.7±0.8 in the striatum; 39.1±11.1 and 

6.4±3.3 in the cortex; 12.3±8.2 and 2.4±0.8 in the hippocampus; 11.3+/-2.7 and 5.9±2.8 

in the cerebellum (***p< 0.001; n=3/Time point) (Fig 5F). 

Analysis of AAV serotype-specific variation within the substantia nigra. 

 For further analysis/quantitation of the ventral midbrain region, specifically the 

substantia nigra (SN) was examined. Tissue sections were immunostained for dopamine 

neuron marker, tyrosine hydroxylase (TH), at 3 and 6 weeks post-ICV injection and 

quantitated for number of GFP+ cells. Representative IF images of AAV2/1, AAVDJ8 and 

AAV9 6 week SN tissue immunostained for dopamine neuron marker, tyrosine 

hydroxylase (TH) is depicted in Figure 6A-C. Transduced GFP+ cells quantitated in the 

SNpc at 3 and 6 weeks are as follows: 2.2±14.3 and 0.5±0.16 for AAV2/1; 8.0± 2.6 and 

13.8±2.1 for AAVDJ8; 15.1±5.3 and 5.8±1.8 for AAV9 (*p<0.05, n=3/serotype/time point) 

(Fig 6D). Number of dopaminergic neurons transduced/per image field in the SN pars 

compacta (SNpc) at 6-weeks were measured by counting GFP+/TH+ co-localizing cells 

(Fig 6E). Transduction efficiency of astrocytes was also quantitated by number of 

GFP+/S100β+ co-localizing cells.  AAVDJ8 transduction efficiency measured 56.4±7.5% 

S100β+/per image field cells and 14.9±7.6% and TH+ cells/per image field. AAV9 

transduced 22.3±1.0% S100β+ cells/per field and 45.5±2.8% TH+ cells/per image field 

(*p<0.05, n=3/serotype) (Fig 6E-G). Pearson’s co-localization coefficient was also 

calculated for both cell markers as follows: 0.57±0.06 (GFP+/S100β+) and 0.46±0.04 

(GFP+/TH+) for AAV9; 0.48±0.06 (GFP+/S100β+) and 0.54±0.05 (GFP+/TH+) for AAVDJ8  

(25-42 GFP+ cells/over n=3 animals/serotype; Supplemental Fig. 2A. Mean intensity of 
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GFP fluorescence was also measured for both cell types as accordingly:  295.1±75.5 

AU/per S100B+ cells and 309.6±65.8 AU/per TH+ cells for AAV9; 1207.0±142.2 AU/per 

S100B+ cells and 1157.0±105.9 AU/per TH+ cells for AAVDJ8 (25-42 GFP+ cells/over n=3 

animals/serotype; p<0.0001****; Supplemental Fig 2B-C). CLARITY tissue 

transmutation was performed on SN tissue to visualize AAVDJ8 transduction in 3D 

volumetric space. Clarified tissue was co-immunostained for TH (cyan), GFAP (red) and 

GFP (green), with expression of GFP primarily confined to astrocytes, noted by co-

localization of red and green fluorescence (yellow) (Fig 6H, Supplemental Video 1). 

AAVDJ8-GFAP-mCherry specifically targets astrocytes of SNpc 

 After determining the suitability of AAVDJ8 to transduce astrocytes within the 

SNpc, we used this serotype to express red fluorescent mCherry under the control of a 

truncated version of the astrocyte-specific gfap promoter (0.7kb) that is active and can be 

efficiently cloned into AAV (Fig. 7A).  Strong expression of AAVDJ8-GFAP-mCherry was 

observed in primary cortical astrocyte cultures at 83.2%±6.5 mCherry+/GFAP+ as 

depicted in representative images in Fig. 7B.  AAVDJ8-GFAP-mCherry was also tested 

in vivo by ICV to observe cell-specificity and tropism throughout the brain. By 3 weeks 

post-injection, high levels of mCherry expression were detected within cortical, 

hippocampal, thalamic and midbrain areas, as depicted in whole brain images of sagittal 

cross sections (Fig. 7C). To determine if there was similar penetrance to the SN as 

AAVDJ8-eGFP, we imaged immunostained SN tissue for TH, S100β and mCherry, shown 

in the representative images in Figure 7D. Images of tissue at 3 weeks post-injection 

were quantitated for the number of transduced astrocytes within the SN, indicating 80.3± 

6.3 mCherry+/S100β+ cells/image field. No TH+ neurons were found to express mCherry. 
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Mice injected with AAVDJ8-GFAP-mCherry were also aged for 6-weeks to determine the 

stability of expression with this vector. No significant difference was observed between 

time points; mCherry+cells/image field was quantitated at 7.2±2.3 and 8.8±1.9 at 3 and 6 

weeks respectively (n=3/time point; Fig. 7E). GFAP+-mCherry+ co-localization within the 

vicinity of dopaminergic neurons is visualized similar to AAVDJ8-GFP by a 3D volumetric 

view of the clarified SNpc tissue at ~4.5 times thicker (180µm) than typical tissue sections 

cut for cell quantitation (Fig. 7F; Supplemental Video 2). 

5.4 DISCUSSION AND CONCLUSIONS 

 AAV vectors are valuable tools for transduction of both mitotic and post-mitotic 

cells of the CNS. The high levels of tropism in multiple brain regions permit expression of 

a diverse array of transgenes suitable for mechanistic investigation of basic biological 

function as well as neurological disease. AAV serotype transduction differences have 

been highly studied for primary cell culture and for gene expression in vivo. However, 

there are few studies that provide a systematic approach for selection of AAV serotypes 

to achieve both in vitro and in vivo gene expression in murine neurons and astrocytes in 

a region-specific fashion. By use of multiple different AAV-GFP serotypes with CMV/CAG 

promoters, we demonstrate differences in infectivity and gene expression in primary 

astrocytes and neurons, as well as tropism in multiple regions of the brain, stability of 

AAV-GFP expression between 3-6 weeks post ICV injection and expression of AAV-GFP 

in ventral midbrain areas. In addition, we identified an AAV serotype to transduce 

astrocytes within the SNpc through evaluation of AAVDJ8-GFAP-mCherry.  

Serotype transduction differences have been previously reported in rat primary 

cortical neuronal cultures utilizing naturally occurring serotypes and engineered capsids. 
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Howard et al. found AAV1-CMV-GFP to have the highest expression of GFP compared 

to other naturally occurring serotypes in neuronal cultures (Howard et al., 2008; Royo et 

al., 2008). Accordingly, we screened both the naturally occurring AAV1-CMV-GFP 

serotype in comparison to engineered hybrid serotypes AAV2/1-CAG-eGFP, AAVDJ-

CAG-eGFP, AAV8-CMV-GFP, AAVDJ8-CAG-eGFP, AAV9-CMV-GFP and AAVDJ9-

CAG-eGFP to determine transduction efficiency in both MAP2+ and GFAP+ cells in 

culture. AAV2/1 transduced the most MAP2+ neurons and GFAP+ astrocytes in culture 

based on immunostaining. Additionally, according to daily measurements of GFP in 

cultured neurons, AAV2/1 was the most rapid and highest expressing serotype by DIV 7. 

Hence, AAV2/1 was the most efficient for transducing cells in vitro amongst the serotypes 

tested (Fig. 1). AAV2/1 has been utilized to target neurons for anti-inflammatory effects 

of dominant-negative chemokine CCL2 mutant, interleukin-10 (IL-10) in mouse models of 

Alzheimer’s Disease (AD) and brain-derived neurotrophic factor (BDNF) in rat models of 

Huntington’s Disease (Sadasivan et al., 2017) (Kiyota et al., 2012) (Connor et al., 2016). 

High transduction efficiency has been reported in regions of the basal ganglia in rat and 

non-human primate animal models by stereotaxic injection using AAV2/1 (McFarland et 

al., 2009) (Burger et al., 2004; Dodiya et al., 2009). In comparison to AAV1 sagittal cross-

sections, the patterns of transgene expression were drastically different with ICV delivery. 

AAV1 transduction was limited to the ependymal cells of the choroid plexus, whereas 

AAV2/1-GFP expression was observed throughout the brain (Supplementary Fig. 4C, 

Fig. 2C,).  Restriction of AAV1 to the ventricular epithelia when delivered via ICV is 

consistent with studies by JY Kim et al. 2013 and further supports our findings (J-Y Kim 

et al., 2013). These data suggest the ITR cis-acting elements of AAV2 and CAG promoter 
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within pseudotype AAV2/1 are crucial for transduction efficiency in culture and penetration 

from ventricle to parenchymal space. With these findings, we selected AAV2/1 for further 

quantitative analysis in multiple brain regions.  

AAVDJ8 displayed promising results in glial cultures, comparable to AAV2/1 (Fig. 

1O). Wide distribution and higher levels of GFP expression were noticeable throughout 

the brain compared to AAV8 (Fig. 2D, Supplemental Fig. 4E). It was previously 

demonstrated that the AAVDJ8 pseudo-serotype produces ~10-fold higher titers than 

AAV2/1 and more efficiently drives expression of red fluorescent protein (RFP) in neurons 

of the rat amygdala (Holehonnur et al., 2014). Prior studies have also indicated that 

AAV2/8 is an effective vector for targeting neurons of the nigrostriatal system in 

neurodegenerative studies when administered via stereotaxic injection directly to the 

substantia nigra in rats (McFarland et al., 2009; 2014). Also, AAV8-based vectors have 

shown selective expression in astrocytes of the spinal cord, hippocampus, striatum and 

substantia nigra of adult rats when used with human GFAP promoter to drive transgene 

expression (Lawlor et al., 2009; K Li et al., 2014). Our findings with AAVDJ8-CAG-eGFP 

are consistent with these studies and support the use of the AAVDJ8 serotype to target 

neurons and astrocytes of specific brain regions. Furthermore, AAVDJ8 was a suitable 

serotype for GFAP-mCherry design to restrict transgene expression in astrocytes. 

AAV9 was chosen for further investigation based initially on the ability to transduce 

neurons in vitro and from reports that it can target multiple cell types in vivo(Foust et al., 

2008; Gray et al., 2011; Aschauer, Kreuz, and Rumpel, 2013a; McLean et al., 2014). 

AAV9 and AAVDJ9 had the same efficiency in primary neuronal cultures but AAV9 

transduced 5% more astrocyte than AAVDJ9 in culture (Fig. 1). AAVDJ9 did depict a high 
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level and wide distribution of transgene expression throughout most brain regions 

evaluated, yet had lower levels of penetrance to the ventral midbrain regions when 

compared to AAV9 (Supplemental Fig. 4F, Supplemental Fig. 5A-B). In previous 

studies, AAV9 has been used to target hippocampal neurons when delivered via 

stereotaxic injection in mice(Aschauer, Kreuz, and Rumpel, 2013b). However, it was also 

reported that AAV9 crosses the blood brain barrier when delivered intravascularly and 

targets neurons in neonatal mice but then expresses in astrocytes in adult mice (Foust et 

al., 2008). In contrast, Gray et al. asserted that AAV9 preferentially targets neurons in 

adult mice when utilizing the same delivery method and promoter/GFP reporter(Gray et 

al., 2011). Interestingly, AAV9 has been used to target TH+ neurons of the SNpc under 

control of the human synapsin (hSYN1) promoter to drive GFP expression after neonatal 

delivery via ICV(McLean et al., 2014). Based on these findings and our data, we selected 

AAV9 for further quantitative analysis in multiple brain regions. 

Since initial ICV studies, this method has been tested and optimized for timing of 

injection and serotype comparisons(J-Y Kim et al., 2013; 2014). It was found that when 

injecting at different time points (0-72hrs), AAV2/1 had broadest distribution throughout 

the brain at P0, whereas AAV2/8 and AAV2/9 transduced independently of the age at 

which they were injected (Chakrabarty et al., 2013). For the most efficient viral 

dissemination and consistency, we administered all AAV serotypes at P0. At 3-weeks 

post injection, AAV2/1 transduced the most cells of the olfactory bulb, hippocampus and 

cerebellum (Table 1). AAVDJ8-GFP+ cells were most prevalent in the striatum and cortex; 

and AAV9 transduced the most cells of the substantia nigra (Fig. 3F-5F, Table 1). Based 

on previous studies, ICV-delivered AAVs have been proven to be stable for up to 1-year 
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post injection(Passini et al., 2003; J-Y Kim et al., 2013). Interestingly, we noticed AAV-

GFP expression decreased in many of the regions examined infected at 6-week post 

injection. AAV9-GFP and AAV2/1-GFP lost expression in all brain regions at 6-weeks 

post-ICV, whereas AAVDJ8-GFP expression decreased only in the cortex and 

hippocampus.  The reduction in AAV transgene expression is consistent with other 

studies utilizing CMV-promoter based AAVs(McCown et al., 1996; RL Klein et al., 1998). 

Explanations for the observed loss of AAV transgene expression over time could be 

attributed to cell turnover within the given regions or that CMV promoters are prone to 

transcriptional inactivation by DNA methylation during viral latency (Royo et al., 2008). It 

was also reported that AAV transgene expression and persistence is improved when 

utilizing an endogenously expressed promoter-neuron-specific enolase (NSE)-containing 

construct compared to a CMV-containing construct (RL Klein et al., 1998).  

AAV2/1 had very minimal penetrance to the ventral midbrain area at both time 

points. AAVDJ8 was persistent in expression and AAV9 decreased from ~15 to ~6 

GFP+/image field in the SNpc. In support of our findings, previous studies reported ~46% 

of neurons in the SN were transduced with AAV9-hSyn-GFP at 6 weeks post ICV(McLean 

et al., 2014). Correspondingly, we quantitated ~45% TH+ neurons and ~22% S100β+ 

astrocytes/per field with AAV9 (Figure 6D,H). Also, AAV9 transduced more TH+ neurons 

than AAVDJ8, whereas AAVDJ8 transduced more astrocytes (Fig 6G). Co-localization 

(GFP +TH or S100B) and intensity values of GFP signal were also measured. As 

expected, AAVDJ8 had significantly higher GFP signal in both cell types due to the 

construct containing CAG promoter and eGFP, but Pearson’s colocalization coefficients 

were not significantly different between serotypes, indicating higher GFP signal did not 
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interfere with quantitative analysis (Supplemental Fig 2A). Based on morphological co-

localization studies, we noted a lack of co-localization of GFP with IBA1+ cells using any 

serotype (see Supplementary Figure 6A-B). This is consistent with other reports using 

these AAV vectors, which identified oligodendrocytes as an additional cell type 

transduced by these vectors rather than microglia (Lawlor et al., 2009; Chakrabarty et al., 

2013; Aschauer, Kreuz, and Rumpel, 2013a). Although the levels of AAV infectivity in the 

SNpc by ICV delivery were not as robust compared to the alternative SN stereotaxic 

injection method, there was evident penetration with AAV9 and AAVDJ8 within this region 

of the brain that suggests these two serotypes would be suitable for targeting specific 

cells of the SNpc via ICV administration (Fig 6H).  

Neuroinflammatory mechanisms that cause dopaminergic neuronal loss during PD 

progression are heavily mediated by astrocyte activation (De Miranda et al., 2014). Here, 

we report AAVDJ8 to be a stable serotype to transduce astrocytes of the SNpc by ICV at 

6 weeks (Fig. 6G-H). By use of enhanced CLARITY microscopy, AAVDJ8-eGFP 

expression can be visualized in brain tissue at ~2 times greater z-dimensions primarily in 

GFAP+ astrocytes in a 3D-volumetric view of the SN (Fig 6E, Supplemental Video 1). 

To further limit AAV transgene to astrocytes, we tested the use of truncated 681 bp 

human-gfap (gfaABC1D) promoter in AAVDJ8-GFAP-mCherry constructs by ICV delivery 

(Fig. 7A). The gfaABC1D promoter was previously designed to have two-fold greater 

activity than full-length (2.2kb) promoter and with much smaller size, ideal for the limited 

cloning capacity in AAV vectors(Y Lee et al., 2008). The full-length human-gfap was 

previously validated to transduce astrocytes with AAV2/1 striatal neonatal injections and 

selectivity of the 1.74 kb GFAP promoter has been tested with combined serotype 
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AAV2/5/7/8/9 by cortical injection.  More specifically, gfaABC1D promoter has been used 

with AAV9 via intramuscular delivery (Jonquieres et al., 2013; Meng et al., 2015; Vagner 

et al., 2016).  The data presented here are the first report that AAVDJ8-GFAP-mCherry 

efficiently and selectively expresses in cultured astrocytes and in the SNpc following 

neonatal ICV delivery in mice (Fig 7B, 7D). In culture, longer DIV incubation time and 

higher titer was required for robust mCherry expression, most likely because the GFAP 

promoter is weaker than CAG/CMV in culture. However, in vivo we noticed similar 

distribution patterns of AAVDJ8-GFAP-mCherry compared to AAVDJ8-eGFP in sagittal 

plane views (Fig. 7C, Fig 2G). There was also comparable number of mCherry+ 

cells/image field at 3-6 weeks to GFP+ cells/image field in the SN. AAVDJ8-eGFP had 

slightly higher number of transduced cells in this region at 6 weeks due to observed 

neurons transduced with this vector and no identified TH+/mCherry+ cells with AAVDJ8-

GFAP-mCherry (Fig 6D-G, Fig 7D-F). To fully visualize exclusive astrocyte-specific 

targeting of AAVDJ8-GFAP-mCherry we also conducted CLARITY immunofluorescent 

imaging, this time at ~4.5 times greater z-stack thickness than normal tissue samples for 

a better view of AAV penetrance within the SN (Fig 7F, Supplemental Video 2). Serotype 

differences in vivo were partially attributed to the ability to penetrate into the parenchymal 

space by ICV administration method, however there were differences in brain regions and 

cell specific transduction patterns compared to in vitro results. For example, AAV2/1 had 

the highest transduction efficiency in vitro, but did not virally express as well compared to 

AAV9/AAVDJ8 in the SNpc or was as stable in other regions compared to AAVDJ8 at 6-

weeks. The observed differences of serotype transduction efficacies in vitro compared to 

in vivo are a common issue when determining ideal serotypes for specific brain regions 
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and further supports the rationale to proceed past an initial in vitro assessment if the viral 

models are intended to be used in vivo(Hemphill et al., 2014). Lastly, with selection of the 

appropriate combination of serotype and promoter, targeting specific cell types within the 

SNpc can be accomplished for transgene expression for studies of biological mechanism 

or disease intervention.  

5.5 FUTURE DIRECTIONS AND PRELIMINARY DATA  

The previous data set described optimization of AAV serotype transductions into 

neurons and astrocytes. We therefore were interested in using the identified serotype for 

optimal astrocyte transduction (AAVDJ8-GFAP) to overexpress a transgene that would 

counter-regulate NFkB proinflammatory gene expression and potentially protect DA 

neurons from degeneration in mouse model of PD. Based on our previous results 

described in chapters 2-4, we decided to overexpress the coding sequence of Nurr1, 

specifically in astrocytes of the SN. The vector design for this approach used the 

previously validated backbone AAVDJ8-hGFAP-mCherry with a 2A-peptide linker 

sequence. During translation the 2A-peptide linker allows for a ribosomal skip after the 

last amino acid of the C-terminus end and release of the first fused protein, GFAP-

mCherry, along with most of the 2A peptide (~18 amino acids). The ribosome then 

translates the rest of the open reading frame (ORF), including 1 amino acid fused to the 

N-terminus (NTD) of the second downstream protein, Nurr1. In contrast to IRES 

sequences, the 2A-linker allows for an equimolecular proportion of both proteins, so 

mCherry fluorescent expression should directly correlate to Nurr1 transgene expression 

(de Felipe, 2004; Heinonen et al., 2014). The directionality of this ORF considered the 

location of Nurr1s’ proposed ligand binding domain located at the C-terminus, so mCherry 
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was placed upstream of the 2A-linker to carry the fused ~18 amino acids at the NTD (Fig 

8A).  

 We tested the newly designed AAV-Nurr1 in primary astrocyte cultures (method 

previously described earlier in this chapter). After a week of transduction, we collected 

mRNA and performed qPCR on Nurr1. AAV-Nurr1 induced Nurr1 mRNA ~1000 fold 

higher than AAV-mCherry empty control (Fig. 8B) (N=4/group; ***P < 0.001). Additionally, 

to visualize Nurr1 protein expression, we performed IF with anti-mCherry (red) and anti-

Nurr1 (green) after 1-week of transduction. The AAV-Nurr1 cultures noticeably expressed 

Nurr1 in the nucleus compared to less in AAV-empty (representation of 3 individual 

experiments) (Fig 8C). However, one issue that persisted was the lack of native mCherry 

expression with AAV-Nurr1 (data not shown). This required using anti-mCherry to 

visualize AAV transduced astrocytes and is a potential concern for future studies. 

 A pilot in vivo test was also performed to confirm AAV-Nurr1 efficacy in protecting 

DA neurons from MPTP-induced neurotoxicity. To specifically target the SN in adult mice, 

we tested stereotaxic injections using known coordinates (Oh et al., 2015). As depicted 

in Figure 9A we specifically targeted the left hemisphere with either AAV-Nurr1 or AAV-

mCherry empty control. After 5 days of recovery, the adult mice were challenged with an 

MPTP dosing regimen as previously described in chapter 2 with the absence of 

probenecid treatment (Fig 9B). Brain tissue was then collected for stereological 

assessment of TH+ neurons in both treatment groups. Figure 9C depicts localization of 

AAV-mCherry (red) in the left hemisphere surrounding TH+ neurons (blue). The SN was 

quantitated for total TH+ neurons using similar methods previously described in chapter 

2. Based on the preliminary results, there appears to be a neuroprotective trend with AAV-



 119 

Nurr1 over AAV-mcherry empty control (Fig 9D). However, these data are only an N=2 

and require a larger cohort of mice to fully validate statistical power of this finding.  

In summary, these studies are ongoing and require additional experimentation to 

confirm efficacy of AAV-Nurr1 to slow neurodegeneration in mouse models of PD. 

Additionally, we are in the process of testing another vector without the inclusion of a T2A 

skipping sequence, due to the lack of native mCherry signal that is expressed in the vector 

described in Figure 8A. This will create a fusion protein of mCherry-Nurr1, which is 

currently being tested in vivo. Overall, using AAV technology to overexpress a desirable 

gene candidate could be a promising approach to controlling neuroinflammation regulated 

by astrocytes and perhaps a highly translatable treatment development for PD patients. 
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5.6 FIGURES 

 
 

 
Fig 5.6.1 AAV2/1 is most efficient in primary neuron and astrocyte cultures. Primary 
neuron and astrocyte cultures transduced with multiple AAV serotypes for comparison by 
immunofluorescent analysis with astrocyte marker, GFAP (red; left) and neuronal marker 
MAP2 (red; right), GFP (green) and DAPI (cyan).  Representative images of virally 
transduced GFP reporter are depicted in 20X objective images of (A-B) AAV1, (C-D) 
AAV2/1, (E-F) AAVDJ, (G-H) AAVDJ8, (I-J) AAV8, (K-L) AAV9, (M-N) and AAVDJ9. 
Percent of GFP+ astrocytes (O) and (P) neurons were quantitated by co-localization with 
specific cell marker. (Q) Live cell fluorescence was measured in primary neuronal cultures 
by native GFP detection each day for 7 DIV (n=3-7/serotype; fixed astrocytes, n=6-
10/serotype; fixed neurons, n=6/serotype; live cell; representation of three separate 
experiments; *p<0.05, ***p<0.001). 
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Fig 5.6.2 Intracerebroventricular injection of multiple AAV serotypes in neonatal P0 
mice. (A) P0 neonatal mice were injected directly into the lateral ventricles for widespread 
viral solution as illustrated in cartoon schematic. (B) Mock injection of trypan blue/PBS 
solution was used to test successful target location at 2/5 from bregma suture and eye 
landmark. (C) Black arrows identify injection sites on dissected whole brain and (D) lateral 
ventricles (LV), 3rd ventricle (3V) and 4th ventricle (4V) on gross incised sagittal brain. (E) 
Plasmid AAV (pAAV) vector maps identify specific promoter/reporter elements of selected 
serotypes AAV2/1, AAVDJ8 and AAV9. Lateral plane view pseudo-colored whole brain 
native GFP fluorescence of (top), medial view of 10X objective montage images for 
sagittal cross sections (bottom) and rostral-caudal coronal cross sections (right) of (F) 
AAV2/1, (G) AAVDJ8, and (H) AAV9 injected brains at 3-weeks post injection 
(pseuodocoloring scale of fluorescence: white=highest, black=lowest; all images are 
representation of 3-4 animals/serotype).  
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Fig 5.6.3 Tropism of AAV2/1 in multiple brain regions at 3 and 6 weeks post 
injection. AAV2/1 6-week injected tissue of multiple brain regions were immunostained 
for total neuronal marker MAP2 (red), astrocyte marker S100β (purple) and GFP (green) 
as depicted in representative 10X montage (top) and 100X high magnification images 
(bottom) of the olfactory bulb (A), striatum (B), motor cortex (C), hippocampus (D) and 
cerebellum (E). Notice; red/green co-localize to yellow, green/purple co-localize to cyan. 
(F) Each region was quantitated for GFP+/per 20X objective image field at 3 and 6-weeks 
post AAV2/1 injection (n=3-4/serotype/time point). 
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Fig 5.6.4 Tropism of AAVDJ8 in multiple brain regions at 3 and 6 weeks post 
injection. AAVDJ8 6-week injected tissue of multiple brain regions were immunostained 
for total neuronal marker MAP2 (red), astrocyte marker S100β (purple) and GFP (green) 
as depicted in representative 10X montage (top) and 100X high magnification images 
(bottom) of the olfactory bulb (A), striatum (B), motor cortex (C), hippocampus (D) and 
cerebellum (E). Notice; red/green co-localize to yellow, green/purple co-localize to cyan. 
(F) Each region was quantitated for GFP+/per 20X objective image field at 3 and 6-weeks 
post AAVDJ8 injection (n=3/serotype/time point). 
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Fig 5.6.5 Tropism of AAV9 in multiple brain regions at 3 and 6 weeks post injection. 
AAV9 6-week injected tissue of multiple brain regions were immunostained for total 
neuronal marker MAP2 (red), astrocyte marker S100β (purple) and GFP (green) as 
depicted in representative 10X montage (top) and 100X high magnification images 
(bottom) of the olfactory bulb (A), striatum (B), motor cortex (C), hippocampus (D) and 
cerebellum (E). Notice; red/green co-localize to yellow, green/purple co-localize to cyan. 
(F) Each region was quantitated for GFP+/per 20X objective image field at 3 and 6-weeks 
post AAV9 injection (n=3/serotype/time point; *p<0.05).  
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Fig 5.6.6 AAV9 and AAVDJ8 transduce DA neurons and astrocytes of the 
substantia nigra 10X objective representative images of SN from 6-week tissue 
immunostained for TH (cyan) to visualize viral GFP expression (native) in the SN pars 
compacta (white outline) and SN pars reticulata for AAV2/1 (A), AAVDJ8 (B), and AAV9 
(C) injected brains. (D) Total GFP+ cells/ 20X objective image field were quantitated for 
both 3 and 6-weeks post injection within the SN region (n=3/serotype; *p<0.05). (E) AAV9 
and (F) AAVDJ8 100X objective representative images immunostained for TH and S100β 
(red) within the SNpc. at 6-weeks post ICV. (G) % S100β-GFP+ and TH-GFP+ cells in the 
SNpc were quantitated/per 40X objective image field (n=3/serotype; p<0.05). (H) 
Representative, three dimensional (3D) 40X objective montage image of clarified SN 
tissue from a AAVDJ8–GFP infected brain, immunostained for TH (cyan), GFAP (red) 
and GFP (green) in XYZ and XZ volumetric planes. Video of 3D projection can be found 
in S1 video.  
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Figure 5.6.7 AAVDJ8-GFAP-mCherry targets exclusively astrocytes in the 
Substantia Nigra. (A) Astrocyte-specific promoter, GFAP, was incorporated into suitable 
serotype AAVDJ8 to drive expression of fluorescent reporter, mCherry for targeting 
astrocytes, as depicted in plasmid AAV vector map. (B) Primary astrocyte cultures were 
transduced with AAVDJ8-GFAP-mCherry to confirm astrocyte transduction efficiency in 
vitro as depicted in representative 100X objective images of immunostaining for 
mCherry(red) and GFAP(green), 83.2%±6.5 GFAP+/mCherry+ quantitated . (C) mCherry 
(red) and S100β(green) immunofluorescence is visualized in 10X objective montage 
image of sagittal cross section from AAVDJ8-GFAP-mCherry 3-week infected brain. (D) 
AAVDJ8-GFAP-mCherry expression in 10X objective image of SN region immunostained 
for mCherry (red), S100β(green), and TH (cyan) from 3 week infected brain, 100X 
objective inset images represent colocalization of S100β+/mCherry+ cells. (E) AAVDJ8-
GFAP-mCherry expression levels were quantitated for mCherry+cells/20X objective 
image field at 3 and 6 weeks post ICV (n=3/serotype, groups were not significant). (F) 3D 
volumetric view in XYZ and XY planes for CLARITY immunofluorescent image stained 
for TH (cyan), GFAP (green) and mCherry (red) within the SNpc. AAVDJ8-GFAP-
mCherry infected astrocytes are exclusiveling co-localizing with GFAP+ cells within the 
viscinity of dopaminergic neurons. Video of 3D projection can be found in Supplemental 
Video 2. 
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Figure 5.6.8 AAVDJ8-hGFAP-mCherry-T2A-Nurr1 vector design and transduction 
test in vitro (A) Using AAVDJ8-GFAP to transduce astrocytes we incorporated a 
ribosomal skipping T2A sequence downstream of mCherry reporter for a 1:1 ratio of 
reporter and coding sequence of the murine Nurr1 gene. (B) By qPCR analysis we 
detected ~1000 fold increase of Nurr1 mRNA expression in primary astrocytes cultures 
transduced with AAV-Nurr1 compared to AAV-mCherry empty control (N=4/group; ***P < 
0.001). (C) IF images of anti-mCherry (red) and anti-Nurr1 (green) expression in AAV-
Nurr1 and AAV-empty control transduced cultures (images represent 3 individual 
experiments). 
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Figure 5.6.9. AAV-hGFAP-mCherry-T2A-Nurr1 injection test in vivo and challenge 
with MPTP (A) For adult stereotaxic injections, the left hemisphere was targeted for AAV 
administration into SN as depicted in coordinate map. (B) After stx. Injections mice were 
allowed to recover for 5 days following MPTP administration as depicted in treatment 
schematic. (C) 10x-objection montage image of injected shows anti-mCherry (red) 
expressed in vicinity of TH+ neurons (blue) of left hemisphere. (C) Preliminary 
stereological DA cell counts depict a neuroprotective trend with AAV-Nurr1 compared to 
AAV-empty (N=2).  
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CHAPTER 6 
 
 
 

DISCUSSION AND FINAL CONCLUSIONS 
 
 
 

Since current PD treatments only ameliorate symptoms, a new approach to halt 

irreversible damage to neurons is necessary for patient improvement. Many PD studies 

solely focus on function of the neuron during disease progression and perhaps limits 

discovery for treatment. As described in the dissertation, non-neuronal cells, astrocytes 

and microglia mediate a highly complex network of cellular communication, that should 

not be ignored. This process of communication by glia cells, known as neuroinflammation, 

can result in neurodegeneration, irrespective to the preceding state of the neuron. Thus, 

the studies described in Chapter 2-5, reflect cell-specific strategies for PD treatment by 

modifying only the astrocyte with a transgenic mouse model (Chapter 2), modifying solely 

the neuron in vitro (Chapter 3), targeting all cells in vivo (Chapter 4) or specifically 

targeting the astrocyte with a viral vector (Chapter 5). For a summation of each strategy, 

the following will detail each in reference to corresponding figures. 

Chapter 2 described a novel astrocyte-specific NF-kB knock-out mouse that 

revealed a highly neuroprotective mechanism which improved the neurological and 

pathological outcome of animals treated with both MPTPp and MnCl2 (Figure 1). 

Inhibition of NF-kB in astrocytes resulted in decreased reactivity of both glial cell types 

and astrocyte expression of complement protein C3, demonstrating suppression of a 

crucial innate immune response pathway. This resulted in a 92% protection of DA 

neurons against toxicity and apoptosis. The experimental approach in Figure 1. for 
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neuroinflammatory intervention is interesting, yet only demonstrative in a transgenic 

mouse model, not a translatable approach for PD. Additionally, concerns exist because 

keratinocytes also express GFAP which resulted in an off-target lesioning effect that 

occurred in ~30% of the KO animals, previously described by Kirkley et al 2017 as 

squamous cell carcinoma (Kirkley et al 2017). Therefore, another approach is necessary 

for solely modifying cells of the CNS which can be easily administered to humans. 

The second strategy for disease modification was detailed in chapters 3 and 4. 

Using the small molecular compound, C-DIM12, we demonstrated activation of the 

molecular target, Nurr1 to protect DA neurons in vitro and in vivo. Figure 2. depicts C-

DIM12 targeting all cells in the CNS that express Nurr1. In vivo, we showed that during 

co-current lesioning with MPTP, oral administration of C-DIM12 suppressed gliosis by 

counter-regulating NF-kB. Additionally, the effects of C-DIM12 in neurons can induce 

Nurr1 regulated DA’ergic genes, TH, VMAT2 and DAT. These effects on multiple cell 

types resulted in ~64% protection of DA neurons. Although, as previously mentioned, the 

expression of NF-kB in neurons has been proven beneficial for proper neuronal 

development and synaptogenesis (red text; Figure 2). This raises concern if synaptic 

health is compromised by counter-regulating neuronal NF-kB which remains to be tested 

in future studies.  

 Lastly, the final strategy for modulating neuroinflammation during the progression 

of PD could be a viral-mediated gene therapeutic approach. As described in chapter 5, 

AAVs have powerful capacity to deliver transgenes to both neurons and astrocytes. The 

future directions section of this chapter also discussed preliminary data using a 

recombinant AAV to overexpress Nurr1 specifically into astrocytes of the SN. As depicted 
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in Figure 3, the ongoing studies show that Nurr1 expression is increased in astrocytes 

and NF-kB activity is suppressed (data not shown). However, whether full suppression of 

glial activation and protection of DA neurons from degeneration with AAV-Nurr1 is still not 

known. Astrocyte-specific inhibition of NF-kB in the transgenic mouse model (Figure 1) 

provided more neuroprotection than the global suppression of NF-kB with C-DIM12 

(Figure 2). Potentially, a combinatorial effect with Nurr1 activating drugs, such as C-

DIM12, and AAV-Nurr1 could convey enhanced neuroprotection to DA neurons, rather 

than one monotherapy.  

In summation, the many intricacies that cause DA neuronal loss impel the 

tantalizing difficulties in experimental drug discovery. As neurodegeneration requires 

synergism from multiple causing factors as well as multiple cell types and pathways. 

Combinatorial effects of several drugs may be necessary to alleviate all possible 

contributors to PD pathology. Thus, the more innovative approaches we have for disease 

modification, the closer we will be to overcoming this debilitating disorder.  

  



 132 

6.1 FIGURES  
 
 
 

 
Figure 6.1.1 Astrocyte-specific modulation with transgenic mouse model (detailed 
in chapter 2). 
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Figure 6.1.2 Global strategy for neuroinflammatory modulation (detailed in 
chapters 3-4) 
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Figure 6.1.3 Astrocyte-specific modulation with AAV-Nurr1 (detailed in chapter 5; 
AAV image provided by Kotterman et al. 2014) 
  



 135 

REFERENCES 
 
 
 
Akache B, Grimm D, Pandey K, Yant SR, Xu H, and Kay MA (2006) The 37/67-Kilodalton 

Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9. 
Journal of Virology 80:9831–9836. 

Aschauer DF, Kreuz S, and Rumpel S (2013a) Analysis of Transduction Efficiency, 
Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse 
Brain. PLoS ONE 8:e76310–16. 

Aschauer DF, Kreuz S, and Rumpel S (2013b) Analysis of Transduction Efficiency, 
Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse 
Brain. PLoS ONE 8:e76310–16. 

Baltimore D (2009) Discovering NF-kappaB. Cold Spring Harbor Perspectives in Biology 
1:a000026–a000026, Cold Spring Harbor Lab. 

Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, Turner DA, Stacy 
M, Lang AE, Lozano AM, and Olanow CW (2013) Safety/feasibility of targeting the 
substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80:1698–1701, 
Lippincott Williams & Wilkins. 

Beaudin SA, Strupp BJ, Strawderman M, and Smith DR (2016) Early Postnatal 
Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention 
and Arousal Regulation in Adult Rats. Environ Health Perspect 1–36. 

Boakye CHA, Doddapaneni R, Shah PP, Patel AR, Godugu C, Safe S, Katiyar SK, and 
Singh M (2013) Chemoprevention of Skin Cancer with 1,1-Bis (3′-Indolyl)-1-
(Aromatic) Methane Analog through Induction of the Orphan Nuclear Receptor, 
NR4A2 (Nurr1). PLoS ONE 8:e69519–10. 

Braak H, Ghebremedhin E, Rüb U, Bratzke H, and Del Tredici K (2004) Stages in the 
development of Parkinson's disease-related pathology. Cell Tissue Res 318:121–
134, Springer-Verlag. 

Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, and Hirsch EC (2002) 
Protective action of the peroxisome proliferator-activated receptor-gamma agonist 
pioglitazone in a mouse model of Parkinson's disease. J Neurochem 82:615–624. 

Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, 
Mandel RJ, and Muzyczka N (2004) Recombinant AAV Viral Vectors Pseudotyped 
with Viral Capsids from Serotypes 1, 2, and 5 Display Differential Efficiency and Cell 
Tropism after Delivery to Different Regions of the Central Nervous System. YMTHE 
10:302–317, The American Society of Gene Therapy. 



 136 

Burton NC, Schneider JS, Syversen T, and Guilarte TR (2009) Effects of Chronic 
Manganese Exposure on Glutamatergic and GABAergic Neurotransmitter Markers in 
the Nonhuman Primate Brain. Toxicological Sciences 111:131–139. 

Carbone DL, Popichak KA, Moreno JA, Safe S, and Tjalkens RB (2008) Suppression of 
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Nitric-Oxide Synthase 2 
Expression in Astrocytes by a Novel Diindolylmethane Analog Protects Striatal 
Neurons against Apoptosis. Molecular Pharmacology 75:35–43. 

Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C, Crosby K, Jansen K, 
Borchelt DR, Kim J-Y, Jankowsky JL, Golde TE, and Levites Y (2013) Capsid 
Serotype and Timing of Injection Determines AAV Transduction in the Neonatal Mice 
Brain. PLoS ONE 8:e67680–9. 

Chevalier G, Suberbielle E, Monnet C, Duplan V, Martin-Blondel G, Farrugia F, Le 
Masson G, Liblau R, and Gonzalez-Dunia D (2011) Neurons are MHC Class I-
Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection. PLoS Pathog 
7:e1002393–14. 

Choi VW, McCarty DM, and Samulski RJ (2005) AAV hybrid serotypes: improved vectors 
for gene delivery. Curr Gene Ther 5:299–310. 

Connor B, Sun Y, Hieber von D, Tang SK, Jones KS, and Maucksch C (2016) AAV1/2-
mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Gene 
Ther 23:283–295. 

Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn 
KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, 
Rochet J-C, Bonini NM, and Lindquist S (2006) Alpha-synuclein blocks ER-Golgi 
traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313:324–328, 
American Association for the Advancement of Science. 

Cooper O, Astradsson A, Hallett P, Robertson H, Mendez I, and Isacson O (2009) Lack 
of functional relevance of isolated cell damage in transplants of Parkinson's disease 
patients. J Neurol 256 Suppl 3:310–316. 

Couper, J (1837) The effects of manganese dioxide. Journal of Medicinal Chemistry, 
Pharmacy and Toxicology. 3:223-225. 

 
Daya S, and Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clinical 

Microbiology Reviews 21:583–593, American Society for Microbiology. 

de Felipe P (2004) Genetic Vaccines and Therapy. Genet Vaccines Ther 2:13–6. 

De Miranda BR, Miller JA, Hansen RJ, Lunghofer PJ, Safe S, Gustafson DL, Colagiovanni 
D, and Tjalkens RB (2013) Neuroprotective efficacy and pharmacokinetic behavior of 
novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model 
of Parkinson's disease. J Pharmacol Exp Ther 345:125–138. 



 137 

De Miranda BR, Popichak KA, Hammond SL, Jorgensen BA, Phillips AT, Safe S, and 
Tjalkens RB (2015) The Nurr1 Activator 1,1-Bis(3'-Indolyl)-1-(p-
Chlorophenyl)Methane Blocks Inflammatory Gene Expression in BV-2 Microglial 
Cells by Inhibiting Nuclear Factor κB. Molecular Pharmacology 87:1021–1034. 

De Miranda BR, Popichak KA, Hammond SL, Miller JA, Safe S, and Tjalkens RB (2015) 
Novel Para-Phenyl Substituted Diindolylmethanes Protect Against MPTP 
Neurotoxicity and Suppress Glial Activation in a Mouse Model of Parkinson's Disease. 
Toxicological Sciences 143:360–373. 

Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, and Bjorklund A 
(2012)  -Synuclein-Induced Down-Regulation of Nurr1 Disrupts GDNF Signaling in 
Nigral Dopamine Neurons. Science Translational Medicine 4:163ra156–163ra156. 

Dodiya HB, Björklund T, Stansell J III, Mandel RJ, Kirik D, and Kordower JH (2009) 
Differential Transduction Following Basal Ganglia Administration of Distinct 
Pseudotyped AAV Capsid Serotypes in Nonhuman Primates. YMTHE 18:579–587, 
The American Society of Gene & Cell Therapy. 

Dong C-M, Wang X-L, Wang G-M, Zhang W-J, Zhu L, Gao S, Yang D-J, Qin Y, Liang Q-
J, Chen Y-L, Deng H-T, Ning K, Liang A-B, Gao Z-L, and Xu J (2014) A stress-induced 
cellular aging model with postnatal neural stem cells. Cell Death Dis 5:e1116. 

Dringen R, Pfeiffer B, and Hamprecht B (1999) Synthesis of the antioxidant glutathione 
in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. 
Journal of Neuroscience 19:562–569. 

Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, and Kügler S (2012) Efficient gene 
therapy for Parkinson's disease using astrocytes as hosts for localized neurotrophic 
factor delivery. Mol Ther 20:534–543. 

Erikson KM, and Aschner M (2003) Manganese neurotoxicity and glutamate-GABA 
interaction. Neurochemistry International 43:475–480. 

Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, and Kaspar BK (2008) 
Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat 
Biotechnol 27:59–65. 

Freed CR, Zhou W, and Breeze RE (2011) Dopamine cell transplantation for Parkinson's 
disease: the importance of controlled clinical trials. Neurotherapeutics 8:549–561. 

García-Yagüe ÁJ, Rada P, Rojo AI, Lastres-Becker I, and Cuadrado A (2013) Nuclear 
import and export signals control the subcellular localization of Nurr1 protein in 
response to oxidative stress. Journal of Biological Chemistry 288:5506–5517, 
American Society for Biochemistry and Molecular Biology. 



 138 

George S, van den Buuse M, San Mok S, Masters CL, Li Q-X, and Culvenor JG (2008) 
Alpha-synuclein transgenic mice exhibit reduced anxiety-like behaviour. Experimental 
Neurology 210:788–792. 

Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, and Lee VM-Y (2002) 
Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing 
A53T human alpha-synuclein. Neuron 34:521–533, American Society for 
Biochemistry and Molecular Biology. 

Giovanni A, Sieber BA, Heikkila RE, and Sonsalla PK (1994) Studies on species 
sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine. Part 1: Systemic administration. J Pharmacol Exp Ther 270:1000–
1007. 

Glass CK, Saijo K, Winner B, Marchetto MC, and Gage FH (2010) Mechanisms 
Underlying Inflammation in Neurodegeneration. Cell 140:918–934, Elsevier Inc. 

Goldberg NRS, Hampton T, McCue S, Kale A, and Meshul CK (2011) Profiling changes 
in gait dynamics resulting from progressive 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine-induced nigrostriatal lesioning. J Neurosci Res 89:1698–1706, 
Wiley Subscription Services, Inc., A Wiley Company. 

Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, 
Spitalny GM, MacArthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh 
JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R, Western 
ALS Study Group (2007) Efficacy of minocycline in patients with amyotrophic lateral 
sclerosis: a phase III randomised trial. The Lancet Neurology 6:1045–1053. 

Gorman, C and C Bullock. 2000. “Site-Specific Gene Targeting for Gene Expression in 
Eukaryotes..” Current opinion in biotechnology 11(5):455–60. 

 
Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, and Samulski RJ (2011) 

Preclinical differences of intravascular AAV9 delivery to neurons and glia: a 
comparative study of adult mice and nonhuman primates. Mol Ther 19:1058–1069. 

Guengerich FP (2011) Mechanisms of drug toxicity and relevance to pharmaceutical 
development. Drug Metab Pharmacokinet 26:3–14. 

Guilarte TR, McGlothan JL, Degaonkar M, Chen M-K, Barker PB, Syversen T, and 
Schneider JS (2006) Evidence for cortical dysfunction and widespread manganese 
accumulation in the nonhuman primate brain following chronic manganese exposure: 
a 1H-MRS and MRI study. Toxicological Sciences 94:351–358, Oxford University 
Press. 

Gwiazda RH, Lee D, Sheridan J, and Smith DR (2002) Low cumulative manganese 
exposure affects striatal GABA but not dopamine. Neurotoxicology 23:69–76. 



 139 

Hacein-Bey-Abina S, Kalle Von C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, 
Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen 
JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-
Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre 
E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer 
A, and Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two 
patients after gene therapy for SCID-X1. Science 302:415–419, American 
Association for the Advancement of Science. 

Hammond, S L, Leek, A N, Richman, E H, & Tjalkens, R B (2017). Cellular selectivity of 
AAV serotypes for gene delivery in neurons and astrocytes by neonatal 
intracerebroventricular injection. PLoS ONE, 12(12), e0188830. 
http://doi.org/10.1371/journal.pone.0188830 

 
 Hammond, S L, Popichak, K P, Hunt, Li, X, Hunt, L G, Richman, Richman, E H, 

Damale, P, Chong, E, Backos, D S, Safe, S, Tjalkens, R B (2018) The Nurr1 
ligand,1,1-bis(3’-indolyl)-1-(p-chlorophenyl)methane modulates glial reactivity and is 
neuroprotective in the MPTP model of Parkinson’s disease (under review) 

 
Hammond SL, Safe S, and Tjalkens RB (2015) A novel synthetic activator of Nurr1 

induces dopaminergic gene expression and protects against 6-hydroxydopamine 
neurotoxicity in vitro. Neuroscience Letters 607:83–89. 

He P, Liu H, Zhang, Q (1994) Effects of high-level-manganese sewage irrigation on 
children’s neurobehavior. Zhonghua Yu Fhang Yi Xue Za Zhi 28: 216-218. 

Heinonen A-M, Rahman M, Dogbevia G, Jakobi H, Wölfl S, Sprengel R, and Schwaninger 
M (2014) Neuroprotection by rAAV-mediated gene transfer of bone morphogenic 
protein 7. BMC Neurosci 15:38, BioMed Central Ltd. 

Hemphill DD, McIlwraith CW, Samulski RJ, and Goodrich LR (2014) Adeno-Associated 
Viral Vectors Show Serotype Specific Transduction of Equine Joint Tissue Explants 
and Cultured Monolayers. Sci Rep 4:1–7. 

Hirsch EC, and Hunot S (2010) Editorial. J Neural Transm 117:897–898. 

Hirsch EC, and Hunot SP (2009) Neuroinflammation in Parkinson's disease: a target for 
neuroprotection? The Lancet Neurology 8:382–397, Elsevier Ltd. 

Hirsch EC, Jenner P, and Przedborski S (2012) Pathogenesis of Parkinson's disease. 
Mov Disord 28:24–30. 

Holehonnur R, Luong JA, Chaturvedi D, Ho A, Lella SK, Hosek MP, and Ploski JE (2014) 
Adeno-associated viral serotypes produce differing titers and differentially transduce 
neurons within the rat basal and lateral amygdala. BMC Neurosci 15:28. 



 140 

Howard DB, Powers K, Wang Y, and Harvey BK (2008) Tropism and toxicity of adeno-
associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. 
Virology 372:24–34. 

Hsiao H-Y, Chen Y-C, Chen H-M, Tu P-H, and Chern Y (2013) A critical role of astrocyte-
mediated nuclear factor-κB-dependent inflammation in Huntington's disease. Human 
Molecular Genetics 22:1826–1842. 

Huang D, Wang Z, Tong J, Wang M, Wang J, Xu J, Bai X, Li H, Huang Y, Wu Y, Ma Y, 
Yu M, and Huang F (2018) Long-term Changes in the Nigrostriatal Pathway in the 
MPTP Mouse Model of Parkinson's Disease. Neuroscience 369:303–313. 

Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu N-Y, Chuang L-S, 
Carmi S, Villaverde N, Li X, Rivas M, Levine AP, Bao X, Labrias PR, Haritunians T, 
Ruane D, Gettler K, Chen E, Li D, Schiff ER, Pontikos N, Barzilai N, Brant SR, 
Bressman S, Cheifetz AS, Clark LN, Daly MJ, Desnick RJ, Duerr RH, Katz S, Lencz 
T, Myers RH, Ostrer H, Ozelius L, Payami H, Peter Y, Rioux JD, Segal AW, Scott WK, 
Silverberg MS, Vance JM, Ubarretxena-Belandia I, Foroud T, Atzmon G, Pe'er I, 
Ioannou Y, McGovern DPB, Yue Z, Schadt EE, Cho JH, and Peter I (2018) Functional 
variants in the LRRK2 gene confer shared effects on risk for Crohn“s disease and 
Parkinson”s disease. Science Translational Medicine 10:eaai7795, American 
Association for the Advancement of Science. 

Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, Cuzzocrea S, 
and Esposito E (2016) Traumatic Brain Injury Leads to Development of Parkinson's 
Disease Related Pathology in Mice. Front Neurosci 10:458. 

Inamoto T, Papineni S, Chintharlapalli S, Cho SD, Safe S, and Kamat AM (2008) 1,1-
Bis(3'-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor 
Nurr1 and inhibits bladder cancer growth. Molecular Cancer Therapeutics 7:3825–
3833. 

Jackson-Lewis V, and Przedborski S (2007) Protocol for the MPTP mouse model of 
Parkinson's disease. Nat Protoc 2:141–151. 

Jankovic J, Chen S, and Le WD (2005) The role of Nurr1 in the development of 
dopaminergic neurons and Parkinson's disease. Progress in Neurobiology 77:128–
138. 

Johnson MM, Michelhaugh SK, Bouhamdan M, Schmidt CJ, and Bannon MJ (2011) The 
Transcription Factor NURR1 Exerts Concentration-Dependent Effects on Target 
Genes Mediating Distinct Biological Processes. Front Neurosci 5:135. 

Jonquieres von G, Mersmann N, Klugmann CB, Harasta AE, Lutz B, Teahan O, Housley 
GD, Fröhlich D, Krämer-Albers E-M, and Klugmann M (2013) Glial promoter 
selectivity following AAV-delivery to the immature brain. PLoS ONE 8:e65646. 



 141 

Kadkhodaei B, Alvarsson A, Schintu N, Ramsköld D, Volakakis N, Joodmardi E, 
Yoshitake T, Kehr J, Decressac M, Björklund A, Sandberg R, Svenningsson P, and 
Perlmann T (2013) Transcription factor Nurr1 maintains fiber integrity and nuclear-
encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci 
USA 110:2360–2365, National Acad Sciences. 

Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S-I, 
Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson N-G, 
Olson L, Björklund A, Ichinose H, and Perlmann T (2009) Nurr1 is required for 
maintenance of maturing and adult midbrain dopamine neurons. Journal of 
Neuroscience 29:15923–15932. 

Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prüllage M, Pfeiffer J, Lindecke 
A, Staiger V, Israël A, Kaltschmidt C, and Mémet S (2006) NF-kappaB regulates 
spatial memory formation and synaptic plasticity through protein kinase A/CREB 
signaling. Mol Cell Biol 26:2936–2946. 

Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, and Kaltschmidt C (1997) Transcription 
factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in 
neurons surrounding early plaques from patients with Alzheimer disease. PNAS 
94:2642–2647. 

Kassed CA, Willing AE, Garbuzova-Davis S, Sanberg PR, and Pennypacker KR (2002) 
Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after 
chemical exposure and impairs learning. Experimental Neurology 176:277–288. 

Kim J-Y, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM, and Jankowsky 
JL (2013) Viral transduction of the neonatal brain delivers controllable genetic 
mosaicism for visualising and manipulating neuronal circuits in vivo. European 
Journal of Neuroscience 37:1203–1220. 

Kim J-Y, Grunke SD, Levites Y, Golde TE, and Jankowsky JL (2014) 
Intracerebroventricular viral injection of the neonatal mouse brain for persistent and 
widespread neuronal transduction. J Vis Exp 51863. 

Kim TE, Seo JS, Yang JW, Kim MW, Kausar R, Joe E, Kim BY, and Lee MA (2013) Nurr1 
Represses Tyrosine Hydroxylase Expression via SIRT1 in Human Neural Stem Cells. 
PLoS ONE 8:e71469. 

Kirik D, Rosenblad C, Bjorklund A, and Mandel RJ (2000) Long-term rAAV-mediated gene 
transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral 
transduction promotes functional regeneration in the lesioned nigrostriatal system. 
Journal of Neuroscience 20:4686–4700. 

Kirkley KS, Walton KD, Duncan C, Tjalkens, RB (2017) Spontaneus development of 
cutaneous squamous cell carcinoma in mice with cell-specific deletion of inhibitor of 
kB kinase 2.Comparitive Medicine 67:407-415. 



 142 

Kirkley KS, Popichak KP, Hammond SL, Davies C, Hunt, L, Tjalkens, RB (2018) Genetic 
Suppression of Astrocyte-IKK2/NF-kB reduces neuroinflammation and neuronal loss 
in Parkinson’s disease. (under review)  

Kirkley KS, Popichak KA, Afzali MF, Legare ME, and Tjalkens RB (2017) Microglia amplify 
inflammatory activation of astrocytes in manganese neurotoxicity. 1–18, Journal of 
Neuroinflammation. 

Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, and Ikezu T (2012) AAV 
serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances 
neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19:724–733. 

Klein C, and Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb 
Perspect Med 2:a008888. 

Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N, and King MA (1998) 
Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by 
recombinant adeno-associated virus vectors. Experimental Neurology 150:183–194. 

Kotterman MA, and Schaffer DV (2014) Engineering adeno-associated viruses for clinical 
gene therapy. Nat Rev Genet 1–7, Nature Publishing Group. 

Kuhn DM, Francescutti-Verbeem DM, and Thomas DM (2006) Dopamine quinones 
activate microglia and induce a neurotoxic gene expression profile: relationship to 
methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 1074:31–41. 

Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, and Członkowska 
A (1999) MHC class II positive microglia and lymphocytic infiltration are present in 
the substantia nigra and striatum in mouse model of Parkinson's disease. Acta 
Neurobiol Exp (Wars) 59:1–8. 

 
Lai JC, Leung TK, Lim, L (1984) Differences in the neurotoxic effects of mamnganese 

during development and aging: some observations on brain regional 
neurotransmitter and non-neurotransmitter metabolism in a developmental rat model 
of chronic manganese encephalopathy. Neurotoxicology 5 (1): 37-47. 

 
Lan AP, Chen J, Chai ZF, and Hu Y (2016) The neurotoxicity of iron, copper and cobalt 

in Parkinson's disease through ROS-mediated mechanisms. Biometals 29:665–678, 
Springer Netherlands. 

Langston JW, Ballard P, Tetrud JW, and Irwin I (1983) Chronic Parkinsonism in humans 
due to a product of meperidine-analog synthesis. Science 219:979–980. 

Lawlor PA, Bland RJ, Mouravlev A, Young D, and During MJ (2009) Efficient gene 
delivery and selective transduction of glial cells in the mammalian brain by AAV 
serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702. 



 143 

Le W, Conneely OM, He Y, Jankovic J, and Appel SH (1999) Reduced Nurr1 expression 
increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced 
injury. J Neurochem 73:2218–2221. 

Lee S-O, Li X, Hedrick E, Jin U-H, Tjalkens RB, Backos DS, Li L, Zhang Y, Wu Q, and 
Safe S (2014) Diindolylmethane Analogs Bind NR4A1 and Are NR4A1 Antagonists in 
Colon Cancer Cells. Molecular Endocrinology 28:1729–1739. 

Lee Y, Messing A, Su M, and Brenner M (2008) GFAPpromoter elements required for 
region-specific and astrocyte-specific expression. Glia 56:481–493. 

Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, 
Hamer DH, and Murphy DL (1996) Association of anxiety-related traits with a 
polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–
1531. 

Li K, Nicaise C, Sannie D, Hala TJ, Javed E, Parker JL, Putatunda R, Regan KA, Suain 
V, Brion J-P, Rhoderick F, Wright MC, Poulsen DJ, and Lepore AC (2014) 
Overexpression of the astrocyte glutamate transporter GLT1 exacerbates phrenic 
motor neuron degeneration, diaphragm compromise, and forelimb motor dysfunction 
following cervical contusion spinal cord injury. J Neurosci 34:7622–7638. 

Li W, Liu J, Hammond SL, Tjalkens RB, Saifudeen Z, and Feng Y (2015) Angiotensin II 
regulates brain (pro)renin receptor expression through activation of cAMP response 
element-binding protein. Am J Physiol Regul Integr Comp Physiol 
ajpregu.00319.2014. 

Li X, Lee S-O, and Safe S (2012) Structure-dependent activation of NR4A2 (Nurr1) by 
1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. 
Biochemical Pharmacology 83:1445–1455. 

Lian H, Litvinchuk A, Chiang ACA, Aithmitti N, Jankowsky JL, and Zheng H (2016) 
Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid 
Pathology in Mouse Models of Alzheimer's Disease. Journal of Neuroscience 36:577–
589. 

Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J, 
Taglialatela G, Jankowsky JL, Lu H-C, and Zheng H (2015) NF&kappa;B-Activated 
Astroglial Release of Complement C3 Compromises Neuronal Morphology and 
Function Associated with Alzheimer's Disease. Neuron 85:101–115, Elsevier Inc. 

Liddelow SA, and Ben A Barres (2017) Reactive Astrocytes: Production, Function, and 
Therapeutic Potential. 1–11, Elsevier Inc. 

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett 
ML, Münch AE, Chung W-S, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker 
N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, and 



 144 

Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. 
Nature Publishing Group 541:481–487. 

Lipe GW, Duhart H, Newport GF, Slikker W, Ali SF, (1999) Effect of manganese on the 
concentration of amino acids in different regions of the rat brain. Journal of 
Envrironmental Science and Health Biology 34 (1):199-232. 

Liu H, Wei L, Tao Q, Deng H, Ming M, Xu P, and Le W (2012) Decreased NURR1 and 
PITX3 gene expression in Chinese patients with Parkinson's disease. Eur J Neurol 
19:870–875. 

Manfredsson F (2016)Gene Therapy for Neurological Disorders: Methods and Protocols. 
Methods in Molecular Biology,vol. 1382, DOI 10.1007/978-1-4939-3271-9_1. 

 
Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, and Di Monte DA (2002) 

The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in 
mice: paraquat and alpha-synuclein. J Biol Chem 277:1641–1644. 

Marks WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner 
D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, 
Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, 
Kordower JH, and Olanow CW (2010) Gene delivery of AAV2-neurturin for 
Parkinson's disease: a double-blind, randomised, controlled trial. The Lancet 
Neurology 9:1164–1172. 

Marsden CD (1982) [Functions of the basal ganglia]. Rinsho Shinkeigaku 22:1093–1094. 

McCown TJ, Xiao X, Li J, Breese GR, and Samulski RJ (1996) Differential and persistent 
expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. 
Brain Research 713:99–107. 

McElroy PB, Liang L-P, Day BJ, and Patel M (2017) Scavenging reactive oxygen species 
inhibits status epilepticus-induced neuroinflammation. Experimental Neurology 
298:13–22, Elsevier. 

McFarland NR, Dimant H, Kibuuka L, Ebrahimi-Fakhari D, Desjardins CA, Danzer KM, 
Danzer M, Fan Z, Schwarzschild MA, Hirst W, and McLean PJ (2014) Chronic 
Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine 
Levels but Not α-Synuclein-Induced Neuronal Cell Loss. PLoS ONE 9:e86048–8. 

McFarland NR, Lee J-S, Hyman BT, and McLean PJ (2009) Comparison of transduction 
efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. 
J Neurochem 109:838–845, Blackwell Publishing Ltd. 

McGeer PL, and McGeer EG (2008) Glial reactions in Parkinson's disease. Mov Disord 
23:474–483. 



 145 

McLean JR, Smith GA, Rocha EM, Hayes MA, Beagan JA, Hallett PJ, and Isacson O 
(2014) Widespread neuron-specific transgene expression in brain and spinal cord 
following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection. 
Neuroscience Letters 576:73–78. 

Meng X, Yang F, Ouyang T, Liu B, Wu C, and Jiang W (2015) Specific gene expression 
in mouse cortical astrocytes is mediated by a 1740bp-GFAP promoter-driven 
combined adeno-associated virus2/5/7/8/9. 1–6, Elsevier Ireland Ltd. 

Mergler D, and Baldwin M (1997) Early manifestations of manganese neurotoxicity in 
humans: an update. Environ Res 73:92–100. 

Merienne N, Le Douce J, Faivre E, Déglon N, and Bonvento G (2013) Efficient gene 
delivery and selective transduction of astrocytes in the mammalian brain using viral 
vectors. Front Cell Neurosci 7:106. 

Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, 
Baumann B, and Wirth T (2017) IKK2/NF-κB signaling protects neurons after 
traumatic brain injury. FASEB J fj.201700826R. 

Miller JA, Runkle SA, Tjalkens RB, and Philbert MA (2011) 1,3-Dinitrobenzene-induced 
metabolic impairment through selective inactivation of the pyruvate dehydrogenase 
complex. Toxicol Sci 122:502–511, Oxford University Press. 

Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, 
Forsayeth J, Aminoff MJ, and Bankiewicz KS (2012) Long-term evaluation of a phase 
1 study of AADC gene therapy for Parkinson's disease. Human Gene Therapy 
23:377–381. 

Montarolo F, Perga S, Martire S, Navone DN, Marchet A, Leotta D, and Bertolotto A 
(2016) Altered NR4A Subfamily Gene Expression Level in Peripheral Blood of 
Parkinson“s and Alzheimer”s Disease Patients. Neurotox Res 30:338–344, Springer 
US. 

Moreno JA, Streifel KM, Sullivan KA, Hanneman WH, and Tjalkens RB (2011) 
Manganese-induced NF-kappaB activation and nitrosative stress is decreased by 
estrogen in juvenile mice. Toxicol Sci 122:121–133, Oxford University Press. 

Moreno JA, Streifel KM, Sullivan KA, Legare ME, and Tjalkens RB (2009) Developmental 
exposure to manganese increases adult susceptibility to inflammatory activation of 
glia and neuronal protein nitration. Toxicol Sci 112:405–415. 

Moreno JA, Yeomans EC, Streifel KM, Brattin BL, Taylor RJ, and Tjalkens RB (2009) 
Age-Dependent Susceptibility to Manganese-Induced Neurological Dysfunction. 
Toxicological Sciences 112:394–404. 



 146 

Morrison HW, and Filosa JA (2013) A quantitative spatiotemporal analysis of microglia 
morphology during ischemic stroke and reperfusion. Journal of Neuroinflammation 
10:1–1, Journal of Neuroinflammation. 

Nitkiewicz J, Borjabad A, Morgello S, Murray J, Chao W, Emdad L, Fisher PB, Potash 
MJ, and Volsky DJ (2017) HIV induces expression of complement component C3 in 
astrocytes by NF-κB-dependent activation of interleukin-6 synthesis. Journal of 
Neuroinflammation 14:23, BioMed Central. 

Oeckl P, Lattke M, Wirth T, Baumann B, and Ferger B (2012) Astrocyte-specific IKK2 
activation in mice is sufficient to induce neuroinflammation but does not increase 
susceptibility to MPTP. Neurobiology of Disease 48:481–487. 

Oh S-M, Chang M-Y, Song J-J, Rhee Y-H, Joe E-H, Lee H-S, Yi S-H, and Lee S-H (2015) 
Combined Nurr1 and Foxa2 roles in the therapy of Parkinson's disease. EMBO 
Molecular Medicine 7:510–525. 

Ordentlich P (2003) Identification of the Antineoplastic Agent 6-Mercaptopurine as an 
Activator of the Orphan Nuclear Hormone Receptor Nurr1. Journal of Biological 
Chemistry 278:24791–24799. 

Pacelli C, Giguère N, Bourque M-J, Lévesque M, Slack RS, and Trudeau L-E (2015) 
Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key 
Contributors to the Vulnerability of Dopamine Neurons. Curr Biol 25:2349–2360. 

Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow 
Metab 32:1959–1972. 

Parillaud VR, Lornet G, Monnet Y, Privat A-L, Haddad AT, Brochard V, Bekaert A, de 
Chanville CB, Hirsch EC, Combadière C, Hunot S, and Lobsiger CS (2017) Analysis 
of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against 
neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes. Journal of 
Neuroinflammation 14:60, BioMed Central. 

Parkinson, J (1817) An Essay on the Shaking Palsy. Whittingham and Rowland. 

Passini MA, and Wolfe JH (2001) Widespread gene delivery and structure-specific 
patterns of expression in the brain after intraventricular injections of neonatal mice 
with an adeno-associated virus vector. Journal of Virology 75:12382–12392. 

Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, and Wolfe JH (2003) 
Intraventricular Brain Injection of Adeno-Associated Virus Type 1 (AAV1) in Neonatal 
Mice Results in Complementary Patterns of Neuronal Transduction to AAV2 and Total 
Long-Term Correction of Storage Lesions in the Brains of  -Glucuronidase-Deficient 
Mice. Journal of Virology 77:7034–7040. 

Patel M (2016) Targeting Oxidative Stress in Central Nervous System Disorders. Trends 
Pharmacol Sci 37:768–778. 



 147 

Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, and Aschner 
M (2016) “Manganese-induced neurotoxicity: a review of its behavioral consequences 
and neuroprotective strategies.” BMC Pharmacology and Toxicology 1–20, BMC 
Pharmacology and Toxicology. 

Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, Jae LT, Wosen JE, 
Nagamine CM, Chapman MS, and Carette JE (2016) An essential receptor for adeno-
associated virus infection. Nature Publishing Group 530:108–112. 

Polunas M, Halladay A, Tjalkens RB, Philbert MA, Lowndes H, and Reuhl K (2011) Role 
of oxidative stress and the mitochondrial permeability transition in methylmercury 
cytotoxicity. Neurotoxicology 32:526–534. 

Price A, Manzoni C, Cookson MR, and Lewis PA (2018) The LRRK2 signalling system. 
Cell Tissue Res 72:58–12, Springer Berlin Heidelberg. 

Racette BA, Searles Nielsen S, Criswell SR, Sheppard L, Seixas N, Warden MN, and 
Checkoway H (2017) Dose-dependent progression of parkinsonism in manganese-
exposed welders. Neurology 88:344–351. 

Ramsay RR, Krueger MJ, Youngster SK, and Singer TP (1991) Evidence that the 
inhibition sites of the neurotoxic amine 1-methyl-4-phenylpyridinium (MPP+) and of 
the respiratory chain inhibitor piericidin A are the same. Biochem J 273(Pt 2):481–
484, Portland Press Ltd. 

Ramsey CP, and Tansey MG (2014) A survey from 2012 of evidence for the role of 
neuroinflammation in neurotoxin animal models of Parkinson's disease and potential 
molecular targets. Experimental Neurology 256:126–132. 

Ricklin D, Reis ES, Mastellos DC, Gros P, and Lambris JD (2016) Complement 
component C3 - The “Swiss Army Knife” of innate immunity and host defense. 
Immunol Rev 274:33–58. 

RODIER J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12:21–35, 
BMJ Publishing Group. 

Romano G, Suon S, Jin H, Donaldson AE, and Iacovitti L (2005) Characterization of five 
evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: 
implications for the engineering of a human TH minimal promoter assembled in a self-
inactivating lentiviral vector system. J Cell Physiol 204:666–677. 

Royo NC, Vandenberghe LH, Ma J-Y, Hauspurg A, Yu L, Maronski M, Johnston J, Dichter 
MA, Wilson JM, and Watson DJ (2008) Specific AAV serotypes stably transduce 
primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain 
Research 1190:15–22. 

Rugless F, Bhattacharya A, Succop P, Dietrich KN, Cox C, Alden J, Kuhnell P, Barnas 
M, Wright R, Parsons PJ, Praamsma ML, Palmer CD, Beidler C, Wittberg R, and 



 148 

Haynes EN (2014) Childhood exposure to manganese and postural instability in 
children living near a ferromanganese refinery in Southeastern Ohio. Neurotoxicol 
Teratol 41:71–79. 

Sacchetti P, Brownschidle LA, Granneman JG, and Bannon MJ (1999) Characterization 
of the 5'-flanking region of the human dopamine transporter gene. Brain Res Mol Brain 
Res 74:167–174. 

Sadasivan S, Sharp B, Schultz-Cherry S, and Smeyne RJ (2017) Synergistic effects of 
influenza and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can be 
eliminated by the use of influenza therapeutics: experimental evidence for the multi-
hit hypothesis. npj Parkinson’s Disease 1–2, Springer US. 

Safe S, Jin U-H, Morpurgo B, Abudayyeh A, Singh M, and Tjalkens RB (2015) Nuclear 
receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol, doi: 
10.1016/j.jsbmb.2015.04.016. 

Safe S, Papineni S, and Chintharlapalli S (2008) Cancer chemotherapy with indole-3-
carbinol, bis(3'-indolyl)methane and synthetic analogs. Cancer Lett 269:326–338. 

Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, and Glass 
CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects 
dopaminergic neurons from inflammation-induced death. Cell 137:47–59. 

Sakurada K, Ohshima-Sakurada M, Palmer TD, and Gage FH (1999) Nurr1, an orphan 
nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in 
neural progenitor cells derived from the adult brain. Development 126:4017–4026. 

Samulski RJ, Berns KI, Tan M, and Muzyczka N (1982) Cloning of adeno-associated virus 
into pBR322: rescue of intact virus from the recombinant plasmid in human cells. 
PNAS 79:2077–2081, National Academy of Sciences. 

Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach 
JP, and Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic 
phenotype and the survival of ventral mesencephalic late dopaminergic precursor 
neurons. PNAS 95:4013–4018, National Acad Sciences. 

Schartz ND, Wyatt-Johnson SK, Price LR, Colin SA, and Brewster AL (2018a) Status 
epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the 
hippocampus that correlates with seizure frequency in experimental epilepsy. 
Neurobiology of Disease 109:163–173, Elsevier. 

Schartz ND, Wyatt-Johnson SK, Price LR, Colin SA, and Brewster AL (2018b) Status 
epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the 
hippocampus that correlates with seizure frequency in experimental epilepsy. 
Neurobiology of Disease 109:163–173. 



 149 

Schneider CA, Rasband WS, and Eliceiri KW (2012) NIH Image to ImageJ: 25 years of 
image analysis. Nat Methods 9:671–675. 

Shastry BS (2001) Parkinson disease: etiology, pathogenesis and future of gene therapy. 
Neurosci Res 41:5–12. 

Sherer TB, Kim J-H, Betarbet R, and Greenamyre JT (2003) Subcutaneous rotenone 
exposure causes highly selective dopaminergic degeneration and alpha-synuclein 
aggregation. Experimental Neurology 179:9–16. 

Sidoryk-Wegrzynowicz M, and Aschner M (2013) Role of astrocytes in manganese 
mediated neurotoxicity. BMC Pharmacology and Toxicology 14:23, BioMed Central. 

Simon P, Dupuis R, and Costentin J (1994) Thigmotaxis as an index of anxiety in mice. 
Influence of dopaminergic transmissions. Behavioural Brain Research 61:59–64. 

Smith GA, Rocha EM, Rooney T, Barneoud P, McLean JR, Beagan J, Osborn T, Coimbra 
M, Luo Y, Hallett PJ, and Isacson O (2015) A Nurr1 Agonist Causes Neuroprotection 
in a Parkinson's Disease Lesion Model Primed with the Toll-Like Receptor 3 dsRNA 
Inflammatory Stimulant Poly(I:C). PLoS ONE 10:e0121072. 

Smits SM, Ponnio T, Conneely OM, Burbach JPH, and Smidt MP (2003) Involvement of 
Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic 
neurons. European Journal of Neuroscience 18:1731–1738, Blackwell Science, Ltd. 

Surmeier DJ, Halliday GM, and Simuni T (2017) Calcium, mitochondrial dysfunction and 
slowing the progression of Parkinson's disease. Experimental Neurology 298:202–
209. 

Takser L, Mergler D, Hellier G, Sahuquillo J, and Huel G (2003) Manganese, monoamine 
metabolite levels at birth, and child psychomotor development. Neurotoxicology 
24:667–674. 

Tjalkens RB, Liu X, Mohl B, Wright T, Moreno JA, Carbone DL, and Safe S (2008) The 
peroxisome proliferator-activated receptor-gamma agonist 1,1-bis(3'-indolyl)-1-(p-
trifluoromethylphenyl)methane suppresses manganese-induced production of nitric 
oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. J Neurosci Res 
86:618–629. 

Tomer R, Ye L, Hsueh B, and Deisseroth K (2014) Advanced CLARITY for rapid and 
high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697. 

Uversky VN, Li J, and Fink AL (2001) Pesticides directly accelerate the rate of alpha-
synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Letters 
500:105–108. 



 150 

Vagner T, Dvorzhak A, Wójtowicz AM, Harms C, and Grantyn R (2016) Systemic 
application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI 
Huntington's disease mice. Mol Cell Neurosci 77:76–86. 

van Loo G, De Lorenzi R, Schmidt H, Huth M, Mildner A, Schmidt-Supprian M, Lassmann 
H, Prinz MR, and Pasparakis M (2006) Inhibition of transcription factor NF-kappaB in 
the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat 
Immunol 7:954–961. 

Volakakis N, Malewicz M, Kadkhodai B, Perlmann T, and Benoit G (2006) 
Characterization of the Nurr1 ligand-binding domain co-activator interaction surface. 
Journal of Molecular Endocrinology 37:317–326. 

Wang JD, Huang CC, Hwang YH, Chiang JR, Lin JM, and Chen JS (1989) Manganese 
induced parkinsonism: an outbreak due to an unrepaired ventilation control system 
in a ferromanganese smelter. Br J Ind Med 46:856–859, BMJ Publishing Group. 

Wang XH, Lu G, Hu X, Tsang KS, Kwong WH, Wu FX, Meng HW, Jiang S, Liu SW, Ng 
HK, and Poon WS (2012) Quantitative assessment of gait and neurochemical 
correlation in a classical murine model of Parkinson's disease. BMC Neurosci 13:142. 

Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NPC, and Perlmann 
T (2003) Structure and function of Nurr1 identifies a class of ligand-independent 
nuclear receptors. Nature 423:555–560. 

Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, and 
Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated 
astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent 
mechanisms after spinal cord injury. J Neurosci 33:12870–12886, Society for 
Neuroscience. 

Witholt R, Gwiazda RH, and Smith DR (2000) The neurobehavioral effects of subchronic 
manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol 
Teratol 22:851–861. 

Wu D-C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, and Przedborski 
S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine model of Parkinson's disease. PNAS 100:6145–6150, National 
Acad Sciences. 

Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, and Perlmann T (1997) 
Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250. 

Zetterström RH, Williams R, Perlmann T, and Olson L (1996) Cellular expression of the 
immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory 
role in several brain regions including the nigrostriatal dopamine system. Molecular 
Brain Research 41:111–120. 



 151 

Zhan X, Stamova B, Jin L-W, DeCarli C, Phinney B, and Sharp FR (2016) Gram-negative 
bacterial molecules associate with Alzheimer disease pathology. Neurology 87:2324–
2332. 

Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, and Freed CR (2011) 
Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and 
in animal models of Parkinson disease. Journal of Biological Chemistry 286:14941–
14951. 

Zhou W, Milder JB, and Freed CR (2008) Transgenic mice overexpressing tyrosine-to-
cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of 
diffuse Lewy body disease. J Biol Chem 283:9863–9870. 

Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MBH, and Le W 
(2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine 
neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–
3844, Federation of American Societies for Experimental Biology. 

Zidenburg-Cherr S, Keen CL, Lonnerdal B, Hurley LS (1983) Superoxide dismutase and 
lipid peroxidation in the rat: developmental correlations affected by manganese 
deficiency. Journal of Nutrition 113 (2): 2498-2502.  

 


