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ABSTRACT 

 

 

 

NEAR-CLOUD AEROSOL RETRIEVAL AND THREE-DIMENSIONAL RADIATIVE 

TRANSFER USING MACHINE LEARNING 

 

According to the most recent report of the Intergovernmental Panel on Climate Change, 

aerosols remain one of the largest sources of uncertainty in estimating and interpreting the 

Earth’s changing energy budget. To reduce the uncertainty, an advanced understanding of 

aerosol optical properties and aerosol-cloud interaction is needed, which has largely relied on 

(but is not limited to) passive satellite observations. Current aerosol retrieval methods require a 

separation between cloud-free and cloudy regions, but this separation is often ambiguous. Three-

dimensional (3D) cloud radiative effects can extend beyond the physical boundaries and enhance 

the reflectance in adjacent cloud-free regions as far as 10 km from clouds. Aerosol optical 

properties cannot be accurately retrieved without considering the 3D cloud radiative effect in this 

so-called “twilight” or “transition” zone, which denotes the area between cloud-free and cloudy 

regions. Indeed, most contemporary retrievals discard these regions, making it impossible to 

estimate the aerosol radiative effects in this zone. To help break the deadlock, 3D cloud radiative 

effects must be incorporated into the retrieval methods, and two approaches are proposed in this 

work, both leveraging machine learning techniques.  

The first approach accounts for 3D cloud radiative effects by building a 3D shortwave 

radiative transfer emulator as the forward model for the retrieval methods. Our emulator was 

trained by cumulus scenes generated from large eddy simulations and radiation fields calculated 

from 3D radiative transfer, to predict downward and upward flux profiles at a 500 m horizontal 
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resolution and 30 m vertical resolution. From a case drawn from the testing dataset, our emulator 

captures the spatial pattern of the surface downwelling flux (e.g., shadows and illuminations), 

and the associated PDF has a remarkable similarity to the synthetic truth. In addition, compared 

to 1D calculation, our 3D emulator improves the root-mean-square-error by a factor of 6. For the 

flux and heating rate profiles, our emulator is much superior to the 1D calculation for the cloudy 

column. The application of this 3D radiative transfer emulator to numerical weather modeling or 

large-eddy simulations type of model is beyond the scope of the current work to develop an 

aerosol retrieval algorithm, but the possibility exists to do so. 

While the promising results from the emulator make it possible to conduct 3D RT 

retrieval methods, this approach still faces ambiguity in separating cloud-free and cloudy pixels. 

Here, we present a new retrieval algorithm for aerosol optical depth (AOD) in the vicinity of 

clouds which contains two unique features. First, it does not require pre-separation of aerosols 

and clouds. Second, it incorporates 3D radiative effects, allowing us to provide accurate aerosol 

retrievals near clouds. The AOD retrieval uncertainty of this method in the cloud-free region is 

(0.0004 ± 4% AOD), which is much better than the (0.03 ± 5% AOD) retrieval uncertainty in 

NASA Aerosol Robotic Network (AERONET). This method shows skill of predicting AOD over 

the near-cloud regions, and its validity was confirmed by using one of the explainable artificial 

intelligence methods to demonstrate that the model’s decisions are supported by radiative 

transfer theory. Finally, a case study using MODIS observations shed light on how this new 

method can be applied to real world observation, possibly leading to new scientific insight on 

aerosol structure and aerosol-cloud interaction. 
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CHAPTER 1: INTRODUCTION 

1.1. Overview 

Clouds are a critical component of Earth’s climate system for determining the radiation 

budget and hydrological cycle. The complexity of their nature and interactions with aerosols, 

precipitation, and radiation remains a large source of uncertainty in quantifications of cloud 

feedback and aerosol radiative forcing (Forster, et al., 2021). As pointed out by the 2017 NASA 

Decadal Survey (ESAS, 2017; S-6 and Page 3-59), to reduce the uncertainty in climate change 

predictions, knowledge of clouds and aerosol properties and processes needs to be advanced. 

 To date, observations of clouds and aerosols have largely relied on passive satellite 

measurements. Specifically, daytime shortwave reflectance measurements from satellites have 

played an important role in providing optical depth and particle size retrievals of clouds and 

aerosols. These retrievals require a separation between cloud-free and cloudy regions, which are 

often performed through sophisticated cloud screening procedures. Such separations, however, 

are ambiguous (Charlson et al, 2007; see Figure 1.1). Additionally, Koren et al. (2007) showed 

that the optical influence of clouds, due to three-dimensional (3D) radiative effect, can extend far 

beyond the cloud physical boundaries (see Figure 1.2c). Their optical influence is also evident in 

10-year measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) over 

a region of the Northeast Atlantic Ocean, showing that clouds can enhance reflectance in cloud-

free regions as far as 10 km from clouds (Várnai and Marshak, 2009). Since most retrieval 

methods are one-dimensional (1D) and thus ignore 3D radiative effects, they cannot account for 

the enhancement in reflectance. Consequently, pixels influenced by 3D cloud radiative effects 

are discarded for retrievals of both clouds and aerosols. The region between cloud-free and 
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cloudy areas, in which these discarded pixels are located, is referred to as the “twilight” or 

“transition” zone in Koren et al. (2007). 

 

Figure 1.1. Probability density functions (PDFs) of albedo at 480 nm from large eddy 

simulations for (a) trade cumulus with 7% cloud cover during the Barbados Oceanographic 

Meteorological Experiment (BOMEX), (b) marine stratocumulus with 100% cloud cover during 

the Atlantic Stratocumulus Transition Experiment (ASTEX), (c) average of BOMEX and 

ASTEX cloud fields, and (d) trade cumulus with ~54% cloud cover during the Atlantic Trade 

wind EXperiment (ATEX). Since (c) is the average of (a) and (b), the resulting cloud cover is 

about 53%, which is nearly the same as that in (d). Although cloud covers in (c) and (d) are the 

same, their albedo PDF are distinctly different. (c) has a clear bimodal distribution, easy to 

separate nearly cloud-free and cloudy regions, while (d) has a rather continuous distribution and 

lacks a clear cut for separating cloud-free and cloudy regions. This figure is taken from Charlson 

et al (2007). 

 

 

Figure 1.2. (a) A picture of a cloud. (b) is the same as (a) but blocking out the background light. 

(c) is the same as (b) but further obscuring strong scattered light from the cloudy part. As shown 

in (c), the surrounding areas near clouds are brighter than those far away clouds, demonstrating 

the optical influence of clouds beyond their physical boundaries. This figure is taken from Koren 

et al. (2007). 

  

(b) 

(a) (c) 

(d) 

(a) (b) (c) 
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Transition zones are ubiquitous in real-world 3D environments; Várnai and Marshak 

(2011) estimated that ~50% of cloud-free pixels over ocean are within 4–5 km of low-topped 

clouds, based on measurements from MODIS and Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP). Near clouds, aerosol properties can be distinctly different from those far 

from clouds due to hygroscopic growth, new particle formation, and chemical processing of 

solutes in clouds that dissipate (Hoppel et al., 1986; Twohy et al., 2002, 2009). Based on aircraft 

measurements over the Indian subcontinent, Konwar et al. (2015) reported that the concentration 

of near-cloud aerosols can be enhanced by 81% and their effective diameter can increase by a 

factor of 2 due to the high humidity environment near clouds. Similarly, Várnai et al. (2017) also 

showed a 30–50% increase in aerosol optical depth (AOD) in cloudier regions from satellite 

observations, and Tackett and Di Girolamo (2009) found that an aerosol size distribution with 

reduced aerosol concentration, increased median radius, and reduced width would best explain 

the observed enhancement near clouds in backscatter signals of CALIOP. While the finding in 

enhanced AOD near clouds appears robust, the change in aerosol particle size depends on the 

underlying processes. For example, using measurements from the NASA Aerosol Robotic 

Network (AERONET), Eck et al. (2014) observed a size increase in fine mode aerosols in some 

cases, due to humidification and/or cloud processing, but also a size decrease in other cases due 

to new particle formation and/or cloud processing.  

Since there is no appropriate aerosol retrieval near clouds in passive satellite products, it 

is challenging to quantify the radiative effects of the transition zone. Eytan et al. (2021) and 

Jahani et al. (2021) bypassed the need for knowledge of aerosol and cloud properties, calculating 

the longwave radiative effects by comparing radiation measurements between cloud-free regions 

and the transition zone. They used broadband flux measurements from the Clouds and the 
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Earth’s Radiant Energy System (CERES) sensor and infrared radiance from MODIS, 

respectively, and in each case found a ~0.8 W m–2 of longwave radiative effects for the transition 

zone. The positive value suggests that the transition zone has a warming effect on the Earth, 

likely because the enhanced AOD increases absorption, raises the emission height, and then 

reduces the outgoing emission to space. Based on the recent effective radiative forcing estimate 

of 2.16 ± 0.26 W m–2 (IPCC AR6) for a change in CO2 concentrations from 278 ppm in 1750 

(pre-industrial) to 410 ppm in 2019 (at present), 0.8 W m–2 is equivalent to the radiative forcing 

from increasing CO2 concentrations by ~50 ppm, which is ~37% of the CO2 concentration 

increase since the pre-industrial period. Thus the transition zone effect of aerosols should not be 

ignored. 

Up to now, there are very few attempts to estimate the shortwave (SW) radiative effects 

of the transition zone. Twohy et al. (2009) combined properties of humidified aerosols from 

aircraft measurements with statistics of the distance of cloud-free regions to clouds from 

CALIOP observations, finding that the SW aerosol direct radiative effect of the transition zone 

can be 35–65% larger than cloud-free regions far from clouds. These estimates have been mainly 

focused on the humidification effects on aerosols. Similarly, if the enhanced reflectance in 

passive satellite observations is attributed entirely to humidified aerosols, the reflected SW flux 

at top of the atmosphere (TOA) is larger by ~6 W m–2 in the cloud-free regions within 5 km from 

clouds, compared to those far away from clouds (Várnai and Marshak, 2014). In contrast, if the 

enhanced reflectance is entirely attributed to undetected cloud droplets, the increase in reflected 

SW flux is ~3.4 W m–2, which is reduced by a factor of ~2 compared to the first attribution. 

Unfortunately, the estimates in Várnai and Marshak (2014) are not the same as the radiative 
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effect of the transition zone, because the reflectance enhancement due to 3D radiative effects has 

not been removed.  

1.2. Research in this thesis 

To improve understanding of aerosol properties in the transition zone and better 

quantifying their SW radiative effects. 3D radiative transfer (RT) is the key, which forms the two 

main work chapters for this thesis.  

1.2.1. 3D Radiative transfer emulator 

First, as concluded by Stap et al. (2016) and Spencer et al. (2019), the 3D radiation 

interactions between clouds and the surrounding clear air and aerosols appear to be the main 

source for the enhanced reflectance near clouds, and a retrieval method must account for 3D 

cloud radiative effects to substantially improve aerosol retrievals near clouds. Incorporating 3D 

radiative effects, however, is not trivial. To understand this issue, let us briefly explain how 

existing aerosol retrieval methods work. Typically, AOD retrieval methods use a few predefined 

aerosol models. Based on these models, lookup tables of reflectance are pre-calculated for a 

range of AOD under a set of sun-viewing geometry and surface reflectance conditions using 1D 

RT model. Retrievals are then made by searching the best estimate that corresponds to the best 

agreement between the observed reflectance and the value in lookup tables considering all the 

available wavelengths of observation simultaneously. For convenience, we call these lookup 

tables used in existing retrieval methods as 1D RT lookup tables.  

There are generally two approaches to account for 3D effects in this type of retrieval 

framework. The first approach assumes 1D RT but tries to account for the 3D effect by 

estimating and removing it from the measurements before interrogating the 1D RT lookup tables. 

For example, aerosol retrievals can be improved by using spectral reflectance ratios that are less 
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susceptible to 3D effects (Kassianov et al., 2009), but this method does not explicitly remove 3D 

effects and still cannot work for pixels near clouds. In contrast, Wen et al. (2013, 2016) 

estimated the 3D radiative effects by calculating the reflectance enhancement induced by near-by 

clouds and their interactions with the molecular layer above, and then subtracted the 3D effects 

from the observed reflectance for aerosol retrieval. Since the kind of correction is based on a 

simple set up, the method requires prior information on cloud height and does not account for 

more complex morphology situations, e.g., aerosol layers above clouds.  

The second retrieval approach is to incorporate 3D RT in the forward model. This 

method requires iterations during the process of finding the best estimate of aerosol properties, 

with 3D RT calculations required at each iteration. Since 3D RT is extremely expensive, 

numerical methods of computational speed acceleration are necessary. To account for the 

horizontal inhomogeneity of clouds, earlier studies (e.g., Gabriel and Evans, 1996; Várnai and 

Davies, 1999) calculated the radiative transfer using a tilted column along the direct solar beam. 

This change correct the first-order errors introduced by the independent column approximation 

(ICA; called independent pixel approximation (IPA) in Cahalan et al., 1994), in which 1D plane-

parallel RT is applied to individual columns. These methods, however, are still not a true 3D RT, 

because they do not consider horizontal photon transport. As shown in Marshak et al. (1995), 

horizontal photon transport leads to a cloud radiance field that is smoother than the 

corresponding cloud field on small scales, so-called “radiative smoothing process”. To 

incorporate the effects of horizontal photon transport so that the observed radiance field can be 

properly reproduced, Marshak et al. (1998) proposed a “Nonlocal Independent Pixel 

Approximation”, and applied a smoothing kernel to the radiance field computed from ICA. 

These methods and concepts are further combined by Wapler and Mayer (2008) and Wissmeier 
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et al. (2013), showing good results in surface solar flux calculations for numerical weather 

prediction (NWP) and Large Eddy Simulation (LES) models. In general, the error is improved by 

a factor of 4 compared to the 1D RT for an oblique solar zenith angle of 60 degrees. 

Unlike the methods above that consider a smoothing kernel, Hogan and Shonk (2013) 

introduce explicit terms that represent the photon exchanges laterally between the clear and 

cloudy regions in the two-stream radiative transfer scheme. Another major advance was made by 

Jakub and Mayer (2015), expanding the treatment of diffuse radiation from two-streams to ten-

streams, and three streams for direct radiation. When coupling individual homogeneous grid 

points to form a set of equations for this ten-stream system, the coefficients of the equations are 

pre-calculated to improve the speed of the solver dramatically. Overall, the ten-stream scheme 

improves the errors of heating rates by a factor of five compared to ICA, but the increase in 

computational time by a factor of 15 compared to ICA two-stream scheme remains a concern for 

operational uses. 

In this thesis, we explore the potential of machine learning techniques for 3D RT. The 

use of machine learning for accelerating RT is not a new concept. In fact, many other machine-

learning based emulators have been built (Chevallier et al., 1998, 2000; Krasnopolsky et al., 

2005, 2006, 2010; Belochitski et al., 2011; Pal A et al., 2019; Reichstein et al., 2019; Roh and 

Song, 2020) for weather forecast and climate models, but they are all 1D based.   

In Chapter 2, we introduce our own 3D SW RT emulators based on machine learning 

techniques. We have built emulators for computing radiance and flux but will focus only on 

results in downward and upward fluxes at all layers and heating rate profiles in this thesis. 

Specifically, we address the following questions:  
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 How well do 3D SW RT emulators capture the spatial distribution of surface 

radiation for a highly inhomogeneous cumulus regime?  

 What are the errors in predictions of flux and heating rate? How are these errors 

compared to those from 1D RT calculations?  

 

1.2.2. A machine-learning based method for retrieving aerosol properties near clouds 

While the work in Chapter 2 makes it possible to directly incorporate 3D RT in AOD 

retrievals, these methods will eventually face the same ambiguity in separating cloud-free and 

cloudy pixels. Although machine learning techniques have been increasingly used in satellite 

observations for cloud screening (Wang et al., 2020), the nature of ambiguity has not changed, 

and the resulting classification will suffer from the same issue. Motivated by Okamura et al. 

(2017) who applied Convolution Neural Network (CNN) to 3D cloud retrievals, we aim to build 

a machine-learning based method for retrieving aerosol properties, particularly near clouds. The 

flexibility of CNN allows us to incorporate not only 3D effects, but also potential humidification 

effects on aerosol properties. Specifically, we plan to address the following questions: 

 How well does the machine-learning based method retrieve AOD, particularly in the 

vicinity of clouds?    

 Are results from explainable AI techniques for near-cloud AOD predictions supported 

by our understanding of radiative transfer?  

 How well does the machine-learning based method perform in real world 

applications, compared to exiting operational products? 
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1.3. Outline of the thesis 

The thesis is organized as follows. In Chapter 2, we detail how our 3D emulators were 

built. The components include the input cloud and aerosol fields from LES outputs, the radiative 

transfer used to compute broadband SW fluxes, and the configuration of the CNN. Performance 

in snapshots of surface downwelling flux are discussed. Overall error statistics of downwelling 

and upwelling fluxes at all layers and the corresponding heating rate profiles are presented and 

compared to those from the existing fast 3D RT schemes.  

In Chapter 3, we detail our new retrieval method for AOD. A prototype CNN is presented 

to prove the concept. Importantly, it is used to explain what the CNN learns for AOD predictions 

near clouds. Additionally, the prototype CNN will be applied to MODIS observations for a case 

study. Since current MODIS retrievals work well for cloud-free pixels far away from clouds, 

they serve as a reference for evaluating our CNN.  

Finally, in Chapter 4, key findings from the two work chapters will be summarized, and 

thoughts on future work will be provided.  
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CHAPTER 2: 3D SHORTWAVE RADIATIVE TRANSFER EMULATOR  

The magnitude of 3D cloud effects depends on several factors including solar zenith 

angle (SZA), cloud types, cloud distribution, and the underlying surface reflectance. As shown in 

Fig. 2.1., the 3D cloud effects at TOA increase with increasing SZA and are most significant for 

cumulus clouds. Hence, the 3D RT emulators introduced in this chapter are specifically designed 

for such conditions and cloud types in mind. 

 

 

Figure 2.1. The effect of 3D radiative transfer on shortwave TOA cloud radiative forcing (CRF) 

versus solar zenith angle for cumulus clouds and contrails, using full 3D radiative transfer codes 

(symbols) and the scheme described in Hogan and Shonk (2013). CRF is defined as the 

difference between the clear-sky and cloudy-sky upwelling shortwave radiation at TOA, which is 

negative except over very reflective snow-covered surfaces. The “small cumulus” results are 
from Benner and Evans (2001) and the “large cumulus” from Pincus et al. (2005). The contrail 
results are from Gounou and Hogan (2007). Adpated from Hogan and Shonk (2013). 
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2.1. Cloud and radiation fields for emulators   

The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) user 

facility recently initiated the Large-Eddy Simulation ARM Symbiotic Simulation and 

Observation (LASSO) activity. LASSO has routinely provided simulations at the Southern Great 

Plains (SGP) site in Oklahoma for days that meet the criteria for a shallow convection regime 

(Gustafson et al., 2020). The regime was chosen because shallow cumuli play an important role 

in regulating both the thermodynamic and kinematic atmospheric structure (Drueke et al., 2020), 

per Fig. 2.1, and are challenging for models to simulate (Nam et al., 2012). Simulations were 

performed with various forcing datasets, resolutions, and cloud microphysics schemes using 

either the Weather Research and Forecasting (WRF) Model (Skamarock et al., 2008) or the 

System for Atmospheric Modeling (SAM) (Khairoutdinov and Randall, 2003). Although 

simulations are not reality, they provide a wide range of possible cloud scenes, required for 

characterizing 3D cloud radiative effects. These simulations serve as input to the 3D emulator. It 

would be ideal to establish an input dataset from observations, but there is no routine 3D cloud 

observation dataset yet and such a dataset would also contain retrieval uncertainty.  

LASSO provides 30 cases in April–September 2017. Each simulation started early 

morning to late afternoon and produced 3D cloud fields every 10 min. For each day, simulations 

were compared to ARM vertically pointing cloud observations, and the corresponding skills 

were computed for various model configurations. Specifically, we used 

“cloud_mask_2d_net_skill” that combines information on the relative mean bias and the Taylor 

skill score to select the best set of simulations for emulators. We have found that simulations 

from the Thompson microphysics scheme tend to have higher scores consistently, and thus have 

only included simulations from this specific scheme. Since shallow cumulus at SGP typically 



12 

 

initiates around 10–11 am local time, we excluded scenes prior to 10 am. We also excluded 

scenes with cloud fractions less than 0.2 or larger than 0.8, since their 3D effects tend to be 

small. Following these selection rules, we collected 279 snapshots from those 30 cases. 

However, we only managed to run 127 snapshots for the emulator since we have used up all the 

free resources (see Appendix B for more detail).  

Each snapshot has a domain size of 25 km x 25 km x 4.5 km. Examples of snapshots in 

Figure 2.2 illustrates the variety of cloud sizes. For example, Figure 2.2a represents a field with 

scattered small cumulus clouds (i.e., thickness less than 300 m), while Figure 2.2b represents a 

field with larger cumulus. Based on a snapshot-by-snapshot basis (see Figure 2.3), the mean 

cloud geometric thickness ranges between 80 and 360 m, and cloud base and cloud top heights 

vary significantly among all the snapshots.  

LASSO cloud fields provide information on liquid water content. For radiation 

calculations, cloud droplet size information is also needed. Assuming a lognormal cloud droplet 

size distribution, cloud water content relates to effective radius via the following equation:  

𝑊𝑐 = 4𝜋𝜌𝑤3 𝑁𝑐𝑟𝑒3𝑒𝑥𝑝(−3𝜎2), (2.1)  
 

where 𝑊𝑐 is the cloud water content, 𝑁𝑐 is the cloud droplet number concentration, 𝑟𝑒 is the 

cloud effective radius, 𝜎 is the geometric standard deviation of the size distribution, and 𝜌𝑤 is 

water density. Based on in-situ measurements at SGP, we assume 𝑁𝑐 of 400 cm–3 (Vogelmann et 

al., 2012; Lim et al., 2016) and 𝜎 of 0.3 (Miles et al., 2000). The resulting distribution of 𝑟𝑒 peaks 

at 4–7 µm, which is typical for the SGP site (Kim et al., 2003; Sengupta et al., 2003).    
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 Figure 2.2. Examples of snapshots for cloud fields with (a) scattered shallow cumuli and (b) 

large cumuli. Cloud water content is plotted as grey iso-surface. Downwelling shortwave 

broadband flux at surface is plotted in color, in which yellow represents higher fluxes associated 

with clear sky and blue represents lower fluxes associated with shadows cast by clouds.   

 

Figure 2.3. Snapshot-based statistics. Histograms of (a) mean cloud thickness, (b) maximum 

cloud thickness, (c) minimum cloud base height, and (d) maximum cloud top height.  

 

The upwelling and downwelling fluxes in the SW were computed using the Spherical 

Harmonic Discrete Ordinate Method (SHDOM; Evans, 1998) under a 3D environment. Details 

of several key components are provided here. First, we used the solar spectral irradiance of 1361 

W m–2 (Matthes et al., 2017). The solar azimuth angle is 180° clockwise from the north (i.e., the 

(a) (b) 

(b) (a) 

(c) (d) 
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sun is in the south), and we include two runs with SZA of 0° and 60° to ensure that the emulators 

work as expected for both cases. Second, Rayleigh (molecular) scattering is included, and a 

Lambertian surface is assumed with an albedo of 0.05. A homogeneous sulfate aerosol layer with 

AOD of 0.15 at 550 nm from the surface to 2 km height is included based on the climatology 

reported in Wu et al. (2021) for the SGP site. Third, since the maximum cloud top is lower than 

4.5 km in our snapshots (Figure 2.3d), we took LASSO output up to 4.5 km (i.e., 150 levels with 

a vertical resolution of 30 m), and then added six more layers in SHDOM to incorporate surface 

information and atmospheric information above 4.5 km to 15 km for RT calculations. The 

temperature and water vapor profiles are taken from LASSO output and averaged over a 

snapshot, while O3 concentration is based on the standard mid-latitude summer atmospheric 

profile.  

Finally, the component that requires most consideration is the gas absorption, mainly 

because of the required computation. Gas absorption is incorporated through so-called correlated 

k-distribution. SHDOM has coupled with two commonly used k-distribution schemes: one is 

from the Rapid Radiative Transfer Model for GCMs (RRTMG; Mlawer et al., 1997) and the 

other is from Fu and Liou code (Fu and Liou, 1992). For the SW from 0.2 µm to 4 µm, RRTMG 

has 14 bands with 112 spectra intervals in total, while the Fu-Liou code has 6 bands with a total 

of 54 spectral intervals. Recently, Wu et al. (2021) demonstrated that the derived surface 

radiation using Fu-Liou code agrees well with ARM observations. Since Fu-Liou code also has 

fewer spectral intervals compared to RRTMG, which is great advantage for computational 

purposes, we have used Fu-Liou code in our RT calculations. Additionally, following the 

recommendation of Q. Fu (personal communication) and the changes made in the NASA 
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Langley version of code, we divided the first band further to ten bands to calculate the Rayleigh 

scattering more accurately. 

Our 3D calculations were compared to Monte Carlo calculations (provided by J. Gristey) 

using a LASSO case in 2015 (Gristey et al., 2020). Figure 2.4 shows that the spatial pattern from 

two methods agree well. Additionally, both show a bimodal PDF, in which the mode with a 

higher value corresponds to clear skies, and the other corresponds to cloudy skies. There is a 

difference of 10 W m–2 in the peak associated with clear skies, which is about 1% error and can 

be attributed to the different treatment in Rayleigh scattering and interpolations of cloud optical 

properties between grid points.  

 
Figure 2.4. Comparisons of our SHDOM calculations to Monte Carlo calculations. (a) and (b) 

are respectively the downwelling and upwelling fluxes from Monte Carlo. (c) and (d) are the 

same but from SHDOM calculations.     
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Figure 2.5. PDFs of surface downwelling shortwave flux, calculated from Montel Carlo (red) 

and SHDOM (blue).     

 

2.2. 3D Convolutional Neural Network  

The cloud and radiation fields generated in Section 2.1 were used to generate our training 

and testing dataset. As mentioned, both cloud water content and effective radius are critical for 

determining SW radiation. Hence, our input includes two 3D data pillars – one for cloud water 

content and the other for effective radius, as shown in Figure 2.6. Since the desired horizontal 

resolution of the output flux for the emulator is on the scale of 500 m (with the footprint size of 

MODIS type of sensors and LES model resolution in mind), the input domain needed to be 

larger than 500 m. Considering that most cloud heights were around 2 – 2.5 km in our input 

cloud scenes (Figure 2.3), we chose an input size of 7.5 km x 7.5 km x 4.5 km to allow for cloud 

inhomogeneity along the direct beam to be fully incorporated in emulators especially for a given 

SZA of 60°. Then, we randomly selected 1,600 pillars with a domain size of 7.5 km x 7.5 km x 

4.5 km from the 127 scenes. The resulting sample size was 0.4 M and randomly split into 80% 

for training and 20% for testing.    
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Our 3D CNN was built as two convolution layers having 64 and 128 filters, respectively, 

followed by eight fully connected layers with 1,024 nodes in each layer (see Appendix A for 

more detail). The convolution calculation was performed only for the two data pillars (i.e., cloud 

water content and effective radius). Unlike cloud fields, the gas profile is domain-averaged; it is 

1D and thus does not need to be included in convolution layers. The gas profile was input into 

the network before the fully connected layers (see Figure 2.6). We used ReLU (Agarap, 2019) as 

the activation function at each node across all layers. The input and output values were scaled 

using the mean normalization (i.e., subtracting the average and then dividing by the dynamical 

range of the values). Additionally, the training of the network was performed by the Adam 

optimizer with the loss function defined as the mean squared error between the true value and the 

prediction.  

 

Figure 2.6. A diagram showing the configuration of our 3D shortwave radiative transfer 

emulator. The domain size is labelled in black, while the corresponding number of grid points is 

labelled in red.  
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2.3. Evaluation metrics  

The performance of our 3D emulators is based on the following metrics, which represent 

the general performance among all the pixels from all testing samples:  

Error (%) = 1𝑁 [∑ 𝐹𝑝𝑟𝑒𝑑,𝑖 − 𝐹𝑡𝑟𝑢𝑒,𝑖𝐹𝑡𝑟𝑢𝑒,𝑖 × 100%𝑁
𝑖=1 ]  (2.2)  

Absolute Error (%) = 1𝑁 [∑ |𝐹𝑝𝑟𝑒𝑑,𝑖 − 𝐹𝑡𝑟𝑢𝑒,𝑖𝐹𝑡𝑟𝑢𝑒,𝑖 | × 100%𝑁
𝑖=1 ]  (2.3)  

Absolute Error (W 𝑚−2) = 1𝑁 [∑|𝐹𝑝𝑟𝑒𝑑,𝑖 − 𝐹𝑡𝑟𝑢𝑒,𝑖|𝑁
𝑖=1 ]  (2.4) 

RMSE (W 𝑚−2) = [1𝑁 ∑(𝐹𝑝𝑟𝑒𝑑,𝑖 − 𝐹𝑡𝑟𝑢𝑒,𝑖)2𝑁
𝑖=1 ] 12     (2.5) 

RMSE (%) = 1𝐹𝑡𝑟𝑢𝑒̅̅ ̅̅ ̅̅  [1𝑁 ∑(𝐹𝑝𝑟𝑒𝑑,𝑖 − 𝐹𝑡𝑟𝑢𝑒,𝑖)2𝑁
𝑖=1 ] 12  ,   (2.6)  

where the subscript “true” and “pred” represent the truth and the predicted value, respectively. 

The subscript “i” denote the ith sample, while 𝑁 is the total number of samples. Finally, 𝐹𝑡𝑟𝑢𝑒̅̅ ̅̅ ̅̅   is 

the average of the true flux from all the samples. 

2.4. Results 

2.4.1. Performance of shortwave downwelling flux at the surface  

We first examined whether the 3D RT emulator could reproduce the spatial pattern of 

surface radiation and the associated PDF. Figure 2.7 shows an example of a scattered cumulus 

field with cloud fraction of 0.13 at a SZA of 60°. Clouds are located at 1.4 – 2.4 km altitudes 

with a domain-mean liquid water path (LWP) of 47 g m–2. For comparison, surface radiation 

using 1D RT was included in Figure 2.7b. 
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 Since each pixel (or column) is independent in the 1D setup, all the shadows cast by 

clouds occur directly beneath the clouds, i.e., the pixels with large LWPs in Figure 2.7a are 

collocated with the small surface fluxes in Figure 2.7b. In contrast, the 3D RT results in Figure 

2.7c show that the shadows are shifted toward the north. In 3D, the shadows appear to be darker, 

consistent with Figure 2.8 showing that the probability of low fluxes (e.g., 100 W m–2) increases. 

Additionally, the inter-cloud regions areas surrounding the shadows appear to be brighter than 

those in 1D. This leads to a hump at ~ 500 W m–2 in the PDF, which is a common feature of 3D 

radiative effects. The hump is due to the mechanism of downward escape, as illustrated in Figure 

2.9. In 1D, photons could only travel up or down in the vertical; in 3D, photons can travel 

horizontally, allowing them to escape from cloud sides. Since cloud droplets scatter light 

strongly in the forward direction, the escaped photons move downward and thus enhance surface 

radiation, as shown in Figures 2.7 and 2.8. The combination of the enhanced downward escape 

and the increased path introduced by an oblique SZA leads to an increased attenuation in direct 

beams, which makes the shadows darker in 3D than 1D.  

   Note that even with the enhanced downward escape, the domain-mean fluxes between 

1D and 3D are similar for SZA of 60°; the difference is only about 3 W m–2. This behavior is 

similar to the finding in Várnai (2010), showing that 60° is close to the point where the sign of 

the difference in downwelling SW surface fluxes between 3D and 1D changes from positive to 

negative with increasing SZA, which explains the small difference in domain mean fluxes in our 

cases.    

Compared to the truth 3D radiation field (Figure 2.7c), the prediction from our 3D 

emulator captures the spatial pattern (Figure 2.7d) and the associated PDF has remarkable 

similarity to the truth (Figure 2.8c). Additionally, compared to 1D calculations, the error 
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statistics shown in Table 2.1 suggests that our 3D emulator reduced the errors by a factor of 6 

to14 depending on the metric used in evaluations.  

         
 

           

Figure 2.7. An example illustrating the performance of our 3D RT emulator in downwelling 

surface flux. (a) is the liquid water path in the scene. The positive x-direction points to the East, 

and the positive y-direction points to the North. (b) is the surface fluxes computed from SHDOM 

in a 1D setup, while (c) is the 3D counterpart with the Sun shining from the South and a SZA of 

60°. (d) is the prediction from our 3D emulator.  

 

 

 

(a) (b) 

(c) (d) 
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Figure 2.8. The probability density function of surface shortwave downwelling fluxes calculated 

from (a) 1D RT, (b) 3D RT, and (c) the prediction from our 3D emulator for SZA of 60° and an 

azimuth angle of 0°. The blue, black, and red dashed lines represent the 25th, 50th, and 75th 

percentiles of the data. The corresponding percentiles (in their own colors) and the means (in 

grey) are provided in each subplot. 

 

Figure 2.9. A schematic illustration of the so-called “downward escape” mechanism. The white 

square represents clouds, while the black area underneath is the resulting shadow. Arrow at right 

indicates how photons travel in 1D calculations. Arrow at left represents that photons are 

scattered and escaped from cloud side, and then move downward reaching the surface. The 

escaped photons illuminate the surface adjacent to cloud shadows, as shown in light gray in 

contrast to the dark grey background. Adapted from Hogan and Shonk (2013). 

  

422 W m-2  497 W m-2  513 W m-2 

mean = 448 W m-2 

455 W m-2  476 W m-2  476 W m-2 

mean = 445 W m-2 

425 W m-2  501 W m-2  515 W m-2 

mean = 448 W m-2 

(a) 

(b) 

(c) 



22 

 

Table 2.1. Domain mean error statistics in surface downwelling flux for the scene shown in 

Figure 2.7.  

 Error  

(%) 

Absolute Error 

(%) 

Absolute error 

(W m–2) 

RMSE  

(W m–2) 

RMSE  

(%) 

Solar zenith angle = 60° 

1D RT 14 34 95 138 31 

3D Emulator 0 5 16 22 5 

Solar zenith angle = 0° 

1D RT 0.42 8 68 83 8 

3D Emulator 0.09 1 12 17 2 

      

We also tested our 3D emulator for a SZA of 0° (i.e., sun directly overhead). Similarly, 

the emulator reproduced the spatial pattern and the PDF of surface downwelling fluxes (Figures 

2.10 and 2.11). The prediction errors were generally reduced by a factor of 4–6 (see Table 2.1). 

Comparing Figure 2.11b and 2.11c, the locations of the shadows are the same between 1D and 

3D results, because the sun is overhead and thus clouds do not cast shadows laterally. It is 

evident that the areas surrounding the shadows are enhanced in 3D, due to the downward escape 

mechanism. The enhanced downward radiation leads to an increase of 22 W m–2 in domain-

average flux in 3D and was well captured by our 3D emulator. 
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Figure 2.10. Same as Figure 2.7 but for SZA of 0°.  

 

Figure 2.11. Same as Figure 2.8 but for SZA = 0°.  

  

 

(a) 

(b) 

(c) 

1044 W m-2  1070 W m-2  1070 W m-2 

mean = 1017 W m-2 

1060 W m-2  1115 W m-2  1137 W m-2 

mean = 1039 W m-2 

1053 W m-2  1115 W m-2  1140 W m-2 

mean = 1040 W m-2 
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2.4.2. Performance of flux profiles  

Figures 2.12 and 2.13 show examples of flux and heating rate profiles for a cloudy 

column and a cloud-free column, respectively. In general, the 3D emulator performs well for the 

cloudy pixel, capturing the variations of the downwelling flux and heating rate profile. In 

contrast, flux and heating profiles from 1D calculations fail to reproduce the variation in fluxes 

and the peaks in heating rate profiles. The predicted heating rate profile from our 3D emulator is 

noisy at altitudes above 1.8 km when the heating rate is small. This noisy behavior is also 

evident in the cloud-free condition as shown in Figure 2.13.  

 

 

Figure 2.12. An example profile of (a) downwelling flux, (b) upwelling flux, and (c) heating rate 

under solar zenith angle of 60° for a cloudy column. 

 

 

(a) (b) (c) 
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Figure 2.13. Same as Figure 2.12 but for a clear-sky column. 

 

 

The error statistics for these two cases are listed in Table 2.2–2.4. For RMSE in W m–2, 3D 

emulators improve the flux profile prediction dramatically both downwelling and upwelling, 

especially for cloud columns. 3D emulators also reduce the RMSE in heating rate by a factor of 

~3 for the cloudy column. Note that since the vertical resolution used here is 30 m, the 

magnitude of the heating rate is large. RMSE of predictions for atmospheric heating rate from 

the ten-stream method (Jakub and Mayer, 2015) is about 33–64 K day–1, which is comparable 

with our RMSE of 11.5 K day–1. Figure 2.14 illustrates the link between the error in radiative 

flux predictions and the error in heating rate predictions. Taking the two layers associated with 

the largest heating rate error in the cloudy column case, we learned that if the two layers have 

opposite trend in prediction compared to the truth, e.g., the prediction in dowelling flux is 

smaller in the upper layer and larger in the lower layer, that could result in a very different net 

(a) (b) (c) 
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flux divergence between the truth and the prediction. In this case, the heating rate difference is 

about 30 K/day. 

Table 2.2. Errors in downwelling flux at all levels for profiles shown in Figures 2.12 and 2.13.  

 Error  

(%) 

Absolute error  

(%) 

Absolute error 

(W m–2) 

RMSE  

(W m–2) 

RMSE  

(%) 

Cloudy column 

1D RT 56 58 72 137 30 

3D Emulator -2 4 12 14 3 

Clear column 

1D RT -1.01 1.01 5.25 8.32 1.49 

3D Emulator -1.00 1.10 6.22 7.35 1.32 

 

Table 2.3. Same as Table 2.2 but for upwelling flux.  

 Error  

(%) 

Absolute error  

(%) 

Absolute error 

(W m–2) 

RMSE  

(W m–2) 

RMSE  

(%) 

Cloudy column 

1D RT 41 49 38 46 65 

3D Emulator 3 4 2 3 4 

Clear column 

1D RT -13 13 11 14 22 

3D Emulator -1 3 2 2 3 

 

Table 2.4. Same as Table 2.2, but for heating rate. 

 Error  

(%) 

Absolute error  

(%) 

Absolute error 

(K day–1) 

RMSE  

(K day–1) 

RMSE  

(%) 

Cloudy column 

1D RT -151 230 20 38 11899 

3D Emulator 72 652 8.07 12 3638 

Clear column 

1D RT -55 600 0.75 0.93 147 

3D Emulator -239 618 1.78 2.28 360 

 

Figure 2.14. A diagram illustrates the link between radiative flux error and the heating rate error 
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2.4.3. Error statistics for all grid points 

Tables 2.5 and 2.6 summarize the prediction errors from our 3D emulators for all grid 

points in the testing dataset. The prediction errors from 1D RT are also listed to demonstrate how 

much improvement the 3D emulators have made. Overall, our 3D emulator outperforms 1D RT 

for downwelling and upwelling fluxes in all error statistics and both solar zenith angles. The 

difference between our emulator and the 1D RT is larger under a more oblique solar position 

(i.e., SZA is 60 degrees), which the horizontal transport of radiation plays a bigger role 

compared to when the sun is overhead. The error distributions in our emulator for both 

downwelling and upwelling are symmetric to zero, meaning there is no tendency to overestimate 

or underestimate the predictions. The absolute error and RMSE for the downwelling predictions 

are larger than the upwelling predictions but smaller in the percentage error statistics for both 

solar positions. Since downwelling includes both direct and diffuse radiation and upwelling is 

only diffuse radiation, it indicates that our model has a hard time fitting the relationship between 

cloud field and diffuse radiation.  

Our emulator does not substantially reduce the error in heating rate compared to 1D. 

More work is needed to improve heating rate predictions to make our emulator useful for the 

modeling community. 
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Table 2.5. Statistics of prediction errors from 1D RT and 3D CNN for scenes with SZA of 60°.    

 Error (%) Absolute error (%)  Absolute error  

(W m–2)  

*(K day–1) 

RMSE 

(W m–2)  

*(K day–1) 

 1D 3D CNN 1D 3D CNN 1D 3D 

CNN 

1D 3D 

CNN 

Downwelling 0.76 0.24 10.30 2 41 9 80 16 

Upwelling -9 0.56 22 5 22 4 31 6 

*Heating rate 198 149 483 1320 9 9 23 14 

 

Table 2.6. Same as Table 2.2 but for SZA of 0°.    

 Error (%) Absolute error (%) Absolute error 

(W m–2) 

*(K day–1) 

RMSE 

(W m–2)  

 *(K day–1) 

 1D 3D CNN 1D 3D CNN 1D 3D 

CNN 

1D 3D 

CNN 

Downwelling 0.74 0.08 4.06 0.80 33 7 54 12 

Upwelling 2.01 0.13 37 2.53 61 3.43 109 6 

*Heating rate -396 76 885 1117 3.85 6.19 7.02 9.18 

 

  



29 

 

CHAPTER 3: RETRIEVING AEROSOL OPTICAL DEPTH IN THE VICINITY OF CLOUDS 

USING MACHINE LEARNING TECHNIQUES 

 

 

In this chapter, we introduce a new retrieval algorithm for aerosol properties in the 

vicinity of clouds using machine learning techniques trained by outputs of large eddy simulations 

in marine shallow cumulus regimes. The performance of our machine learning model will be 

discussed and what the machine learned will be explored using explainable AI techniques.  

 

3.1. The Prototype Convolutional Neural Network 

3.1.1. The training and configuration 

The goal of our machine learning model is to predict AOD over a 2.5 km x 2.5 km 

domain at a 100-m horizontal resolution from an input scene of reflectance values at TOA. The 

resolution is assigned based on the native spatial resolution of training dataset. Because of 3D 

effects, reflectance values directly above this domain are influenced not only by aerosol and 

cloud properties underneath, but also by neighboring pixels. To incorporate surrounding 

information for appropriate AOD predictions, the input reflectance scene size must be larger than 

2.5 km x 2.5 km. Following the study of Okamura et al. (2017) for cloud retrievals, we have 

chosen an input scene of 4.5 km x 4.5 km, i.e., extending 1 km on all sides compared to the 

output domain. 

To capture the complexity of the input reflectance scene, we used a Convolutional Neural 

Network (CNN), which is particularly useful for recognizing spatial patterns of images. Our 

CNN model for the retrieval method is similar to that used in 3D radiative transfer emulators. 

For example, we used ReLU, the same normalization method, and the Adam optimizer with the 

same loss function. However, they are different in the following ways. First, the CNN used here 

is 2D instead of 3D. Second, the size of the filters is different. Third, we only use one fully-
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connected layer instead of eight layers. Finally, the input is reflectance, and the output is AOD. 

Details about the CNN configuration can be found in Section 2.2.  

Our training and testing datasets were built from LES output. To diversify aerosol 

conditions and cloud morphology in our training dataset, four datasets of LES output were used 

and summarized in Table 1. All datasets had a domain size of 48 km x 48 km x 5 km with a 

horizontal resolution of 100 m and vertical resolution of 40 m. The first two datasets were 

generated using the forcing data collected from the Rain In Cumulus over Ocean (RICO) 

campaign (Rauber et al., 2007). They were taken from the same series of simulations with an 

initial aerosol concentration of 200 cm–3, but at different output times. In contrast, Datasets 3 and 

4 were generated for a much cleaner environment with an initial aerosol concentration of 35 cm–

3, using a forcing data that was based on ship measurements and reanalysis data over the Sulu 

Sea in the Philippines, (Yamaguchi et al., 2019). Additionally, Dataset 3 was generated without 

wind shear, while Dataset 4 was generated with wind shear. The wind-shear condition in Dataset 

4 led to clouds more clustered than those in Dataset 3, as shown in Figure 3.1a–3.1d. Datasets 3 

and 4 also have fewer precipitating cumulus clouds and slightly lower cloud fractions compared 

to Datasets 1 and 2.  
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Table 3.1. Summary of key information on LES outputs used to build the training and testing 

datasets. Aerosol optical depth statistics are calculated using all grid points, while liquid water 

paths are based on cloudy grid points, defined by the associated liquid water content exceeding 

or equal to 0.01 g m–3. 
 

ID Forcing Output 

time (hr) 

Aerosol optical 

depth  

Cloud fraction Liquid water path 

(g m–2) 

1 RICO 50 0.56 ± 0.04 0.26 135 ± 352 

2 RICO 54 0.56 ± 0.03 0.20 145 ± 384 

3 7SEASa 50 0.10 ± 0.01 0.13 80 ± 172 

4 7SEASb 50 0.10 ± 0.01 0.16 75 ± 169 
 

a The environment has no wind shear. 

b The environment has a vertical wind shear of 6 m s–1 from 0 to 6 km. 

 
Figure 3.1.  Snapshots of liquid water paths (a–d) and aerosol optical depths (e–h) for Datasets 

1–4 (left to right, respectively). Enhanced AODs near cloud boundaries (indicated by black lines 

in (e)–(h)) are evident. 
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Cloud and aerosol optical properties in these four snapshots were calculated using the 

Mie theory. The aerosol type used in LES was sulfate, following a lognormal size distribution 

with a mean of 0.2 µm and a geometric standard deviation of 1.5 in dry conditions. With 

increasing humidity near clouds, the index of refraction of aerosol particles changes and their 

effective radius increases due to water uptake. At a given relative humidity (RH), the index of 

refraction of hydrated particles is computed by (Zieger et al., 2010): 

𝑚𝑤𝑒𝑡 = 𝑚𝑑𝑟𝑦 + 𝑚𝑤𝑎𝑡𝑒𝑟(𝑔3 − 1)𝑔3     (3.1) 

where 𝑚𝑤𝑒𝑡, 𝑚𝑑𝑟𝑦, and 𝑚𝑤𝑎𝑡𝑒𝑟 are the index of refraction for hydrated aerosol, dry aerosol, and 

water, respectively. 𝑔 is the diameter growth factor that describes the hygroscopic diameter 

growth of the particle due to water update with respect to its dry diameter 𝐷𝑑𝑟𝑦, defined as: 

𝑔(RH) = 𝐷𝑤𝑒𝑡(RH)𝐷𝑑𝑟𝑦 .    (3.2) 

For the sulfate particles used in our training dataset, 𝑔(RH), calculated from the changes in 

aerosol size bins in LES outputs, is shown in Figure 3.2.  

 

Figure 3.2.  Diameter growth factor of sulfate particles as a function of relative humidity.  
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As a result, AOD is enhanced near cloud edges as shown in Figure 3.1e–3.1h. Even with 

these enhanced AODs near clouds, the range of the AODs from each dataset remains narrow as 

shown by the small standard deviations of AOD in Table 1. Hence, the distinct difference in the 

initial aerosol concentrations used in simulations introduces a large gap in AOD. Such a gap is 

not ideal for a training dataset, because the machine learning algorithm would not see any AOD 

values in between, which may lead to large errors in predictions. To alleviate this issue, we 

perturbed the aerosol mass concentration fields homogeneously everywhere by a factor ranging 

between 0.05–1.0 in the RICO snapshots, and by a factor ranging between 0.5–5.0 in the 7SEAS 

snapshots. These factor ranges were chosen to ensure that there is some AOD overlap between 

RICO and 7SEAS snapshots. These perturbations led to a total of 50 snapshots, 30 from RICO 

and 20 from 7SEAS. 

From these 50 snapshots at their native resolutions, we then calculated the corresponding 

TOA reflectance fields at 870 nm wavelength. This wavelength was chosen to allow us to omit 

gas absorptions in the current setup and focus on assessing the configuration and performance of 

the CNN. The radiative transfer calculations were performed using the Spherical Harmonic 

Discrete Ordinate Method (SHDOM; Evans, 1998) under a 3D environment, assuming a solar 

zenith angle of 50°, a solar azimuth angle of 30°, and a viewing zenith angle of 0°. Rayleigh 

scattering were included, and ocean surface reflectance values were computed with an assumed 

wind speed of 6 m s–1. Once the pairs of AOD and reflectance fields are ready for all 50 

snapshots, we randomly sample a 4.5 km x 4.5 km scene to generate the training and testing 

datasets. This led to 0.2 M scenes, which were further split by 80% and 20% for training and 

testing, respectively.  
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3.1.2. The performance 

Figure 3.3 shows performance of our CNN on retrieving AOD at 870 nm for one of the 

testing scenes. Using the retrieval uncertainty of (0.03 ± 5% AOD) in NASA Aerosol Robotic 

Network (AERONET) products (Giles et al., 2019) as the benchmark, all pixels agree to better 

than 0.03 with the truth. Importantly, the enhanced AODs near clouds are well predicted by the 

CNN. Considering the entire testing dataset, the scatter plots in Figure 3.4 indicate that 99.8% of 

the pixels in cloud-free regions fall within the benchmark uncertainty, and the corresponding 

mean error is ~0.7% (as shown in Figure 3.4b). The retrieval uncertainty is estimated as (0.0004 

± 4%AOD).  

  

Figure 3.3. The performance of the CNN on a testing scene. (a) is the truth aerosol optical depth, 

and (b) is the prediction from the CNN. Cloudy skies are in white. 

To understand the sources of information for the CNN to predict AOD near clouds, we 

conducted Layer-wise Relevance Propagation (LRP) analyses (Bach et al., 2015). Specifically, 

we used the method called LRPz that has shown promising results regarding regression problems 

in geoscience (Mamalakis et al., 2021). The relevance is calculated starting from the uppermost 

layer in CNN and then propagated backward, layer-by-layer, to the input layer, i.e.,  
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𝑅𝑖(𝑙) = ∑ 𝑅𝑖←𝑘(𝑙,𝑙+1)𝑘: 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∈ (𝑙+1) 𝑎𝑛𝑑ℎ𝑎𝑣𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑖
,    (3.3) 

where 𝑅𝑖(𝑙)
 represents the relevance of neuron 𝑖 at Layer 𝑙 to the prediction of interest, and 𝑅𝑖←𝑘(𝑙,𝑙+1)

 represents the relevance propagated backward from Layer 𝑙 + 1 to Layer 𝑙, from neuron 𝑘 to neuron 𝑖. At Layer 𝑙 + 1, any neuron that has received input from neuron 𝑖 should be 

counted in calculations of 𝑅𝑖(𝑙)
, which is indicated by the summation in equation (3.3).  

Now, let us discuss how to calculate 𝑅𝑖←𝑘(𝑙,𝑙+1)
 for equation (3.3). For the relevance of 

neuron 𝑘, we can decompose it using the contributing components from the previous layer as: 

𝑅𝑘(𝑙+1) = ∑ 𝑅𝑘(𝑙+1) 𝑥𝑖𝑤𝑖𝑘∑ 𝑥𝑖𝑤𝑖𝑘𝑖𝑖: neurons ∈ (𝑙) andhave provided input to 𝑘
, (3.4)    

(a) (b) 

  
 

Figure 3.4. Plots of the predicted AOD vs. the truth for (a) all cloud-free pixels in the testing 

dataset, (b) is the corresponding relative error (%) distributions. The blue, black, and red dashed 

lines, respectively, represent the 25th, 50th, and 75th percentiles of the data. The corresponding 

errors for these lines are denoted in each subplot in their own color. The mean error (%) ± the 

mean absolute deviation (%, using the mean as the center point) are also denoted in gray.  

-3%   

-1%   

2% 

(-0.7±3.8) % 
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where 
𝑥𝑖𝑤𝑖𝑘∑ 𝑥𝑖𝑤𝑖𝑘𝑖  is the relative contribution from neuron 𝑖, based on the input 𝑥𝑖 and the weight 𝑤𝑖𝑘 

between the neurons 𝑖 and 𝑘. Based on the conservation of relevance, the following must hold,  

𝑅𝑘(𝑙+1) = ∑ 𝑅𝑖←𝑘(𝑙,𝑙+1)𝑖: neurons ∈ (𝑙) andhave provided input to 𝑘
.   (3.5) 

Comparing the right-hand side of equation (3.4) and (3.5), we then get  

𝑅𝑖←𝑘(𝑙,𝑙+1) = 𝑅𝑘(𝑙+1) 𝑥𝑖𝑤𝑖𝑘∑ 𝑥𝑖𝑤𝑖𝑘𝑖 ,    (3.6) 

where the neuron 𝑖 belongs to Layer 𝑙 and has provided input to the neuron 𝑘. In short, the 

relevance can be thought as the local contribution to the prediction. Since ReLU has been used as 

the activation function, the attribution from LRPz is equivalent to the product of input pixel 

value and the gradient of the CNN at the input pixel. The sign of the relevance is positive if the 

local contribution of the neuron has the same sign as the sum of the contribution from all input 

neurons. In contrast, the sign of the relevance is negative if the signs of the local contribution and 

the aggregated contribution are different.   

Figure 3.5 shows some examples of the relevance heat maps for a selected testing scene. 

For convenience, the input reflectance field for the scene is also shown to relate the pixels of 

interest to cloud locations. A few findings are noted here. 

 For all example pixels, relevance from Cloud A and B is evident no matter whether the 

pixel of interest is relatively far from clouds or near clouds. Considering that the optical 

influence of clouds is beyond their physical boundaries and can enhance cloud-free sky 

pixels as far as 5 km (Várnai and Marshak, 2011), which is comparable with our input 
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domain dimension, this relevance result is reasonable and matches our understanding of 3D 

radiative transfer. 

 Figures 3.5b and 3.5c show that the relative relevance of Cloud A and B vary depending on 

the location of pixel of interest. When the pixel of interest moves from the left to the right, 

the relevance of Cloud B fades away and the relevance of Cloud A becomes stronger. The 

relevance of Cloud B remains weak for all other pixels that are further away. 

 For pixels that are relatively far from clouds (Figures 3.5d and 3.5f), we see strong 

influence surrounding the pixel of interest with a negative sign. Recall that the negative 

sign indicates that the contribution has a different sign from that of the aggregated 

contribution. Since pixels far from clouds typically have the lowest AOD and reflectance 

compared to other areas that are influenced by humidity and clouds, the local contribution 

needs to lower AOD to match what has been observed in the training dataset. The strong 

negative local relevance fades away when moving the pixel of interest toward clouds, since 

the influence from cloudy pixels becomes more significant.  

Although results from LRPz analyses generally match our understanding of radiative 

transfer, the relatively small contributions in clear-sky pixels to AOD retrievals at near-cloud 

pixels are a concern. As explained above, the attribution from LRPz can largely depend on the 

input pixel value; hence, the generally small contributions from clear-sky pixels can be the 

consequence of the LRPz technique itself, and the role of near-cloud reflectance remains unclear. 

Based on the large contributions from cloudy pixels shown in LRPz results, we propose two 

hypotheses to explain how our CNN predicts AOD. The first hypothesis is that the CNN 

identifies cloud locations, retrieves AOD for pixels far away from clouds, and then interpolates 

AOD based on the relationships between AOD and distances to nearest clouds. In this 
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hypothesis, the CNN does not need to actively account for 3D radiative effects in observed 

reflectance values and hence the contributions of pixels in the transition zone are minimum. The 

second hypothesis is that the CNN does actively correct the 3D radiative effects in observed 

reflectances and uses the corrected reflectance field to retrieve AOD. To test which hypothesis is 

correct, we conducted an experiment as explained below. 

  Using the scene shown in Fig. 3.3, we applied the same input reflectance field, except 

reflectance in cloud-free regions to a constant that corresponds to the reflectance with a 

background AOD of 0.49 (Fig. 3.6a). If the first hypothesis is correct, i.e., the CNN only minds 

the cloud locations and the background reflectance value, then the retrieved AOD field will still 

show the enhancement near clouds, even though there is no enhancement in the input reflectance 

field. Such false AOD enhancement should be found all around the clouds, no matter whether 

pixels are located on the illuminated or shadowing side. However, if the second hypothesis is 

correct, i.e., the CNN actively accounts for 3D radiative effects, then the CNN will tend to make 

a larger reflectance correction in near-cloud regions than in regions far from clouds. As a result, 

the trend of AOD versus distance to nearest clouds should disappear or even reverse. 

Additionally, since the reflectance on the shadow side is supposed to be lower than the 

illuminated side at a given AOD, the CNN will need to account for the shadowing effect during 

the prediction process. Hence, if the CNN indeed recognizes the sun-viewing geometry, then our 

manipulated constant reflectance field will lead to a higher AOD on the shadowing side than the 

illuminated side given the same reflectance on both sides.  

   Figure 3.6b shows the retrieved AOD field from the manipulated reflectance input. The 

retrievals show no evidence of AOD enhancement. Instead, the retrievals on the shadowing side 

are ~15% larger than those on the illuminated side. These findings suggest that the second 
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hypothesis is much more plausible. Hence, our CNN likely actively accounts for 3D cloud 

radiative effects and correct them in the input reflectance for predicting AOD. In short, it is not 

surprising that the LRPz technique made a large attribution to cloudy pixels in AOD predictions, 

since the largest contribution in reflectance enhancement comes from clouds (Várnai and 

Marshak, 2011). However, cautions should be exercised in interpreting the small attributions in 

clear-sky regions. Our test suggests that the reflectances in the transition zone remain important 

for the CNN to retrieve AOD after accounting for 3D cloud radiative effects.     

       

          

Figure 3.5. (a) Input reflectance field for the testing scene used in Figure 3.2. (b)–(i) the 

corresponding heat maps of relevance based on our prototype CNN for selected pixels. The 

pixels of interest are marked using red boxes and pointed out by the red arrows. Note that each 

heat map has been normalized by the corresponding maximum absolute relevance within each 

map, making the range to always fall between -1 (blue) to 1 (red). 
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Figure 3.6. (a) An input reflectance field for the CNN to predict AOD. The scene is same as Fig. 

3.3., but with a fixed reflectance value in cloud-free regions. (b) The corresponding AOD 

predictions. Gridded pixels indicate the presence of clouds. 

 

3.2. A case study using MODIS observations 

In this section, we apply our CNN approach to an Aqua satellite overpass near Bermuda 

at ~17:25 UTC on 22 October 2010 and compare our predicted AOD to the MODIS operational 

Level 2 Collection 6 aerosol products. We selected a ~20-km wide and ~500-km long scene that 

is over ocean, away from sun-glint, and composed of scattered shallow cumuli (see Figure 3.7a) 

that could be challenging for the MODIS operational algorithm to retrieve AOD. The range of 

solar zenith angles is between 47° to 51°, and the solar azimuth angle is ~210° clockwise from 

the north. The viewing zenith angle is within 1° from the nadir. 

The operational product (MYD04_3K) has a horizontal resolution of 3 km with retrieval 

uncertainty of 0.03 ± 5% AOD. For pixels over ocean, the retrieval is based on the Dark Target 

algorithm (Tanré et al., 1997; Remer et al., 2005, 2013; Levy et al., 2013). In their algorithm, 

500-m resolution pixels influenced by clouds or ocean sediments are discarded, and then 25% of 

the darkest and 25% of the brightest pixels in a 3 km x 3 km domain are also discarded. After 

this screening, reflectances over the remaining pixels are averaged and then compared to pre-

calculated lookup tables to find the best matched AOD. The lookup tables used in the Dark 
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Target algorithm were built using pre-defined fine-mode and coarse-mode aerosol models in 

various ocean wind conditions. If the remaining pixels in a 3 km x 3 km domain are fewer than 

5, the algorithm will not be performed, and a missing retrieval will be reported. For the selected 

scene, 50% of the areas lack AOD retrievals due to being near clouds or in clouds, as shown in 

Figure 3.7b.  

To retrieve AOD, we regenerated our training dataset and retrain the CNN because the 

sun-viewing geometry of this scene is different from the proof-of-concept case in Section 3.1. As 

a result, we built 49 sets of training datasets and the corresponding CNNs to cover the variation 

of SZA, using the same LES outputs but with the following changes. First, we use MODIS pre-

defined aerosol models to minimize the comparison discrepancy introduced by the difference in 

aerosol models, since we aim to investigate whether our predictions agree with MODIS retrievals 

in clear-sky regions far from clouds. For the selected scene, most MODIS retrievals suggest that 

the dominant fine mode is wet water-soluble particles, and the dominant coarse mode is sea salt. 

The fine mode fraction varies from 0.3 to 0.7. For simplicity, we used a fine mode fraction of 0.5 

when rebuilding our training dataset. Second, the diameter growth factor of the wet water-

soluble particles as a function of humidity is set to be same as that used in the proof-of-concept 

case. But for sea salt, the growth factor function is taken from Zieger et al. (2017). Based on their 

growth factors, the refractive index is calculated based on a volume weighting between aerosol 

particles and water, as shown in Zeiger et al. (2010). Finally, we assigned a wind speed of 6 m s–

1 in calculations of ocean surface reflectance, based on the 3-Hourly NCEP North American 

Regional Reanalysis (NARR) Composites.  

As shown in Figures 3.7b and 3.7c, our CNNs predict a similar spatial pattern to the 

MODIS product throughout the scene. To perform comparisons, we aggregate our CNN 
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predictions from 500 m to 3 km. In the clear-sky regions (e.g., 60–120 km along the track), the 

AOD difference between two retrieval sets is generally within MODIS retrieval uncertainty 

(Figure 3.7d). Considering that these two methods are based on different radiative transfer 

calculations (3D vs 1D), and that some pixels are based on different aerosol models and fine 

mode fractions, the agreement within the expected MODIS retrieval uncertainty in the clear-sky 

regions suggest that our CNNs work well. Near clouds, the AOD difference between two is 

generally within the MODIS retrieval uncertainty; only a few pixels are associated with larger 

difference.  

 

 
Figure 3.7. (a) Reflectance at 857 nm wavelength observed from MODIS onboard the Aqua 

Satellite at 17:25 UTC on 22 October 2010. (b) and (c) are the corresponding AOD retrievals at 

857 nm from the MODIS operational product and our CNN, respectively. The AOD difference in 

(d) is calculated by subtracting MODIS retrievals from CNN retrievals that are averaged to 3 km 

resolution. White areas in (b) and (d) represent the regions in which the AOD cannot be retrieved 

by the dark target algorithm. Note that (a) and (c) are plotted with a pixel resolution of 500 m, 

while (b) and (d) are with pixel resolution of 3 km. The regions marked with crosses in (d) 

indicate the difference between the CNN retrievals and the MODIS retrievals exceed the MODIS 

retrieval uncertainty. 

  

(a) (b) (c) (d) 
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CHAPTER 4: SUMMARY AND FUTURE WORK 

4.1. Summary 

This thesis set out to tackle an outstanding issue in aerosol remote sensing, namely the 

lack of observations of aerosol properties near clouds due to 3D radiative effects. The optical and 

microphysical properties of aerosols near clouds are distinctly different from those far from 

clouds. Neglecting near-cloud aerosols is not only a missed opportunity to have a rich dataset for 

understanding aerosol-cloud interactions, but may also have a significant impact on existing 

estimates of aerosol radiative forcing.  

Capitalizing on recent advance in machine learning techniques, we have developed 3D 

shortwave radiative transfer emulators that are fast and accurate and can be used in existing 

retrieval methods for aerosols or in models for predicting fluxes. The emulators are built based 

on 3D Convolutional Neural Network (CNN). They require input of 1D atmospheric profiles and 

3D cloud water content and cloud effective radius over a 7.5 km x 7.5 km x 4.5 km domain, and 

provide flux predictions in a 0.5 km x 0.5 km x 4.5 km domain. To address questions listed in 

Section 1.2.1, our key findings are summarized below:  

 How well do 3D SW RT emulators capture the spatial distribution of surface radiation 

for highly inhomogeneous cumulus regime?  

We have trained our emulators using scenes with shallow cumuli. For such highly 

inhomogeneous clouds, the emulators well predict the spatial patterns and the PDF of 

surface downwelling fluxes – the errors in domain average flux for SZA of 60° and for 

overhead sun were negligible and 1W m–2 (less than 0.1%), respectively.   
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 What are the errors in predictions of flux and heating rate? How are these errors 

compared to those from 1D RT calculations?  

The root-mean-square-error for flux and heating rate predictions were 16 W m–2 for 

downwelling, 6 W m–2 for upwelling, and 14 K day–1 for heating rate The performance of 

CNN predictions is found to be consistent across all the scene regardless cloudiness, 

although the prediction tends to be noisy when the heating rate is small. Compared to 1D 

RT calculations, 3D emulators reduced the errors in flux and heating rate by a factor of 4 

and 1.5, respectively. 

We have also applied CNN to develop a new method for retrieving AOD without the 

need of cloud screening or corrections of 3D radiative effect. This method requires input of 2D 

fields of reflectance measurements over a 4.5 km x 4.5 km domain and provides AOD retrievals 

over a 2.5 km x 2.5 km domain. The finest resolution that the method can accommodate is 100 

m. To address questions listed in Section 1.2.2, key findings are summarized below:  

 How well does the machine-learning based method retrieve aerosol optical depth, 

particularly in the vicinity of clouds?    

The retrieval uncertainty is (0.0004 ± 4% AOD) for cloud-free areas, including the 

vicinity of clouds. Based on our designed experiment, we have found that the AOD is 

retrieved by accounting for 3D cloud radiative effects in reflectance measurements, rather 

than by a simple inversion. The performance of the CNN also appears consistent 

regardless of pixels being on the illuminated or showing side.  
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 Are results from explainable AI techniques for near-cloud AOD predictions supported by 

our understanding of radiative transfer?  

To understand what information the CNN has largely relied on for retrieving near-cloud 

AOD, we have conducted Layer-wise Relevance Propagation analyses. The first striking 

finding is that cloudy pixels have large influence in AOD retrievals for all pixels in the 

2.5 km x 2.5 km scene. This is consistent with the expectations from radiative transfer 

since cloud’s influence can extend at least 5 km away from its boundary. We have also 

found that AOD retrievals near clouds and are highly relevant to cloudy pixels, not the 

background cloud-free pixels. This is encouraging because the relevance may have 

implications in future studies in aerosol-cloud interactions.   

 How well does the machine-learning based method perform in real world applications, 

compared to exiting operational products? 

W applied our retrieval method to MODIS observations over oceans. Since current 

operational products work best over dark oceans for pixels far from clouds, we use their 

AOD retrievals taken from that specific condition as reference for evaluations. Results 

from a case study demonstrate that the agreement for pixels far from clouds is generally 

within 0.03, the retrieval uncertainty of our CNN.  
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4.2. Future work 

In Chapter 2, we explored the feasibility of using machine learning techniques to build 

the 3D shortwave radiative transfer emulator. While the emulators nicely replicated the 3D 

radiative effects of clouds, more work is needed to generalize this framework.  

The generalization includes extensions in cloud type, background aerosol properties, sun-

viewing geometry, and surface reflectance treatment. The emulators are currently designed for 

low clouds. To build emulators for mixed-phase clouds or ice clouds, the input domain size 

needs to be sufficiently large to capture the paths of direct beam, since these types of clouds tend 

to develop to or locate at higher altitudes. Additionally, establishing a representative training 

dataset for these cloud types can be challenging. Observations for mixed-phase clouds mainly 

reply on ground-based radar measurements, which have large uncertainty, especially in ice 

number concentration and particle size that are crucial for determining shortwave radiation. One 

can build the training dataset from model output (similar to our current approach), but needs to 

recognize that many ice processes such as ice number production and riming remain highly 

uncertain in ice microphysics schemes.  

Compared to extension to different cloud types, extensions regarding aerosols and sun-

viewing geometry are more straightforward to handle. In CNN, aerosol properties may be able to 

input in the manner similar to gases. For sun-viewing geometry, one can build emulators for 

various viewing angles, and solar zenith and azimuth angles, and then interpolate output to any 

given combination of sun-view geometry. An alternative approach is to allow CNN to learn the 

sun-viewing dependence directly.  

The difficulty of surface reflectance treatment depends on applications. For model 

applications, the assignment of shortwave surface reflectance typically follows fixed values or 
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simple empirical relationships. The emulators can be built using the same assignment for 

consistency.  For remote sensing applications, it may be best to incorporate surface reflectance 

models directly to allow CNN to calculate the corresponding surface reflectance given the input 

parameters, e.g., wind speed and chlorophyll-a concentration for ocean albedo. 

In this thesis, we present one of possible CNN configurations for predicting 3D radiation 

predictions. Currently, the ratio of the number of trainable parameters in the CNN to the number 

of training samples is large and may not be necessary. The large errors in heating rate also 

warrant improvement in the current CNN. We will systematically reduce the number of the fully 

connected layers to identify the least complex network that has similar performance to the 

current CNN. We will also implement regularization techniques (e.g., batch normalization or 

dropout) and apply physical constraints by making heating rate in the cost function of the 

network to improve predictions of heating rate.  

Similar to the 3D emulators, the aerosol retrieval method presented in Chapter 3 is also 

designed only for warm clouds, certain aerosol models and single wavelength. Since spectral 

information provides critical information on aerosol type and particle size, we plan to extend the 

work to the wavelengths ranging from 440 nm to 1640 nm. Unlike most existing retrieval 

methods that have several aerosol models and find the best-fit mixture of fine and coarse modes, 

our CNN needs to pre-specify aerosol models for training. To meet operational retrieval 

purposes, the CNN needs to incorporate mixtures of fine and coarse aerosols, ideally, similar to 

the database used for the multi-angle imaging spectroradiometer (MISR) operational algorithm 

(Kahn and Gaitley, 2015). Extensive analyses will be needed to understand how the CNN handle 

a variety of mixtures. 
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Following the case study shown in Section 3.2, aerosol direct radiative effects of the 

transition zone in the SW spectral region can be calculated to quantify its relative importance 

compared to the current estimates. Although not all aerosol types have significant hydroscopic 

growth as sea salt, we expect that incorporating hydrated aerosols will lead to a more negative 

value in radiative forcing estimate, and the relative contributions of various aerosol types to the 

total forcing may change once hydration effects are included. 
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APPENDIX A 

Table A1. Model summary of the 3D shortwave radiative transfer emulator in chapter 2. 

Layer Output shape Param # Connected to Other information 

Input_1 (None, 75, 75, 150, 2) 0 - - 

Conv3d_1 (None, 69, 69, 2, 64) 940,928 Input_1 64 filters with the size of (7, 7, 150) 

; stride is (1, 1, 1), and no padding 

Conv3d_2 (None, 67, 67, 2, 12) 147,712 Conv2d_1 128 filters with the size of (3, 3, 1) 

; stride is (1, 1, 1), and no padding 

Flatten_1 (None, 1149184) 0 Conv2d_2 - 

Dense_1 (None, 128) 147,095,680 Flatten_1 128 neurons 

Dense_2 (None, 128) 16,512 Dense_1 128 neurons 

Dense_3 (None, 128) 16,512 Dense_2 128 neurons 

Dense_4 (None, 128) 16,512 Dense_3 128 neurons 

Dense_5 (None, 128) 16,512 Dense_4 128 neurons 

Dense_6 (None, 128) 16,512 Dense_5 128 neurons 

Dense_7 (None, 128) 16,512 Dense_6 128 neurons 

Dense_8 (None, 128) 16,512 Dense_7 128 neurons 

Dense_9 (None, 300) 38,700 Dense_8 reshape the output into two profiles 

(downwelling and upwelling) 

 

Total parameters: 148,338,604; trainable parameters: 148,338,604; non-trainable parameters: 0 

 

We used Glorot uniform initializer for the weights and zero initializer for the biases. The batch 

size for training is 64 samples, and the model learns the relationship between inputs and outputs 

by fitting the entire training dataset 50 times (i.e., epoch is 50). The testing loss continued to 

lower down throughout the entire training process (i.e., no sign of overfitting), so no 

regularization techniques were implemented. This specific architecture is based a series of trial-

and-error as well as some fundamental knowledge of 3D radiative transfer (e.g., the output 

domain has to be smaller than the input domain). 
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Table A2. Model summary of the new aerosol retrieval method in chapter 3. 

Layer Output shape Param # Connected to Other information 

Input_1 (None, 45, 45, 1) 0 - - 

Conv2d_1 (None, 41, 41, 64) 1664 Input_1 64 filters with the size of (5, 5) 

; stride is (1,1), and no padding 

Conv2d_2 (None, 39, 39, 128) 73856 Conv2d_1 128 filters with the size of (3, 3) 

; stride is (1,1), and no padding 

Flatten_1 (None, 194688) 0 Conv2d_2 - 

Dense_1 (None, 1024) 199361536 Flatten_1 1024 neurons 

Dense_2 (None, 625) 640625 Dense_1 reshape the output into a  

25-by-25 2D map  

 

Total parameters: 200,077,681; trainable parameters: 200,077,681; non-trainable parameters: 0 

 

We used Glorot uniform initializer for the weights and zero initializer for the biases. The batch 

size for training is 64 samples, and the model learns the relationship between inputs and outputs 

by fitting the entire training dataset 50 times (i.e., epoch is 50). The testing loss continued to 

lower down throughout the entire training process (i.e., no sign of overfitting), so no 

regularization techniques were implemented. 
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APPENDIX B 

 1D Radiative transfer calculation has been known to be notoriously expensive in the 

modeling community, and is even more under a 3D environment. In our study, to calculate the 

shortwave broadband flux for a single snapshot and one single solar position with 16 cores of 

CPU takes about 3 days (equivalent to ~1000 core hours). With 279 snapshots and two solar 

positions in mind, that is a total of ~0.5M core hours, and no single cluster that I was aware of 

can afford this amount of computing. We sought different resources (Asha owned by College of 

Engineering at CSU, Summit owned by University of Colorado at Boulder, Stratus owned by 

Atmospheric Radiation Measurement under the Department of Energy, Casper and Summit 

owned by National Center for Atmospheric Research; a total of 5 clusters) to complete the task, 

but still fall short eventually given the limited time I have for my Master degree.  


