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ABSTRACT 

 

DYNAMIC RESOURCE MANAGEMENT IN HETEROGENEOUS SYSTEMS: 

MAXIMIZING UTILITY, VALUE, AND ENERGY-EFFICIENCY 

 

The need for high performance computing (HPC) resources is rapidly expanding throughout 

many technical fields, but there are finite resources available to meet this demand. To address this, 

it is important to effectively manage these resources to ensure that as much useful work as possible 

is completed. In this research, HPC systems executing parallel jobs are considered with and 

without energy constraints. Additionally, the case where preemption is available is considered for 

HPC systems executing only serial jobs. Dynamic resource management techniques are designed, 

evaluated, and compared in heterogeneous environments to assign jobs to HPC nodes. These 

techniques are evaluated based on system-wide performance measures (value or utility), which 

quantify the amount of useful work accomplished by the HPC system. Near real-time heuristics 

are designed to optimize performance in specific environments and the best performing techniques 

are combined using intelligent metaheuristics that dynamically switch between heuristics based on 

the characteristics of the current environment. Resource management techniques also are designed 

for the assignment of unmanned aerial vehicles (UAVs) to surveil targets, where performance is 

characterized by a value-based performance measure and each UAV is constrained in its total 

energy consumption.  
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Chapter 1 

Introduction and Overview 

 

The use of high performance computing (HPC) systems is rapidly increasing in many technical 

fields. This includes the need for results from large-scale meteorological models for predicting 

climate changes or local weather patterns and bioinformatics pipelines that can be used to 

understand DNA sequences that are too complex to process without the aid of HPC resources. 

Because HPC resources produce such important results, it is critical to ensure that they are used as 

efficiently as possible. This is accomplished using resource management techniques for HPC 

systems, which must assign jobs to HPC nodes and schedule their execution in ways that maximize 

the amount of useful work completed. To do this, it is necessary to define metrics that can represent 

the amount of useful work completed by a system. In this research, value-based and utility-based 

metrics are used to quantify the worth of completing individual jobs. This is used for the 

comparison, analysis, and evaluation of intelligent resource management techniques. 

Balancing the performance needs of users with the energy efficiency desired by HPC system 

owners is problematic because improving user performance often costs more energy. To address 

this, a Value of Service (VoS) metric is defined in Chapter 2, which combines value functions of 

completion time after arrival and energy consumption to obtain a single system-wide performance 

measure. The value of energy consumption is modified based on the time of day to capture the 

increased need for energy efficiency when usage is at its peak in the middle of the day. Value-

based heuristics are designed and compared against common heuristics from the literature using 

both simulations and experiments. 
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In the dynamic energy-constrained environments is Chapter 3, utility earned by jobs must be 

maximized while also saving energy for possible future jobs that have not yet arrived. This requires 

making intelligent trade-offs between utility earned and energy consumed. A variety of heuristics 

are designed, analyzed, and compared in energy-constrained environments and it is shown that 

certain heuristics perform well in tightly energy-constrained environments, while others perform 

best when energy is not a significant concern. Based on this, two metaheuristics that intelligently 

switch between energy-efficient and utility-focused behavior are designed. Additionally, even with 

energy-efficient heuristics, it is possible that energy would be consumed too quickly in tightly 

constrained environments. To address this, energy filtering techniques are also considered, which 

limit the options available to the heuristics to prevent energy from being consumed too quickly 

before the day ends. Simulation results demonstrate that the energy filtering techniques help 

significantly in tightly constrained environments and that the metaheuristics perform well 

regardless of the energy-constraint, which means that system owners do not need to determine if 

their system requires energy-efficient heuristics or heuristics that prioritize utility because the 

metaheuristic handles both cases effectively. 

Sometimes, HPC systems will have urgent jobs of high importance. When a system is 

oversubscribed, it may be necessary to preempt running jobs to meet the needs of the urgent jobs. 

Chapter 4 explores adjusting utility functions to capture the urgency and importance of these jobs. 

New preemption-capable heuristics are designed, which are evaluated and compared with 

simulations against utility-based heuristics that are known to perform well in environments where 

preemption is not possible. It is shown that the best preemption-capable heuristics always perform 

at least as well as the heuristics that do not consider preemption, but in some cases where the 

deadlines of urgent jobs would be missed, having preemption available results in significantly 
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more system utility earned. An important finding for deciding whether to deploy a preemption-

capable scheduler is that the maximum amount of time high priority jobs will need to wait before 

nodes become idle should be considered. If an environment where users are submitting large 

batches of similar jobs all at once, it will be possible for all nodes to be busy until a batch finishes, 

resulting in a need for preemption. If job start times are distributed more evenly, then new nodes 

will frequently become available allowing high priority jobs to avoid long queue times without 

preemption. 

Resource management is also critical in fields outside of HPC. For example, in active 

battlefield scenarios, the creation of mission schedules that assign unmanned aerial vehicles 

(UAVs) to surveil specific targets is an area of increasing interest. Like the HPC environments, it 

is important to determine a useful metric for these problems to allow comparison of possible 

solutions. 

A new value-based performance measure is applied to a UAV surveillance mission scheduling 

problem in Chapter 5. To study this problem, it is necessary to develop a realistic model for UAV 

surveillance of targets in addition to a framework for generating realistic scenarios to examine with 

simulations. This enables accurate and precise comparison and evaluation of mission scheduling 

techniques. In the design of these techniques, many of the lessons learned from HPC resource 

management can be applied. This includes the creation of a modified version of the metaheuristics 

from Chapter 3, which balances the energy consumption of individual UAVs with the system-wide 

surveillance value performance measure. This metaheuristic is further modified using a 

preemption technique, which allows UAVs to surveil important targets more readily, and a filtering 

technique. This filtering technique has similarities in concept to the energy filtering in Chapter 3; 

however, instead of relying on an empirically determined and static leniency factor, it calculates a 
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dynamic threshold of value divided by energy for each UAV. This dynamic threshold is designed 

to control the rate at which a UAV consumes its energy while also ensuring that the UAV spends 

all of its energy before the end of the day. The simulation results show excellent performance of 

the improved metaheuristic relative to comparison techniques. 

Overall conclusions of the research presented in this work are detailed in Chapter 6. In Chapter 

7, other directions for potential future research based on this research are discussed. 
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Chapter 2 

Value of Service Based Resource Management for Large-

Scale Computing Systems1 

 

2.1. Introduction 

Management of large-scale computing systems (e.g., clusters, public and private cloud 

systems, industry and government large scale data centers) requires balancing the performance 

demand of the end-users and the operational cost for the service provider. It is expected that the 

energy consumption of a large scale data center with 50,000 computing nodes may go beyond 100 

million kwh/year resulting in more than the yearly electricity consumption of an urban population 

of 100,000’s [1-3]. The International Energy Agency states that the total data center electricity 

consumption is projected to increase to approximately 140 billion kwh/year by 2020, the 

equivalent annual output of 50 power plants, costing American businesses $13 billion per year in 

electricity and causing the emission of nearly 150 million metric tons of carbon pollution annually 

[4, 5]. If cloud resources are managed efficiently, it is expected that the data center electricity 

consumption could be reduced by 40% [6]. Furthermore, for exascale computing, the power limit 

is expected to have an upper bound of 20 MW, which requires at least an order-of-magnitude 

 

1The material in this chapter appeared in [57]. This work was done jointly with former Ph.D. student Bhavesh 
Khemka. The full list of co-authors for this work is at [57] and preliminary versions of this work appeared in [20, 21]. 
This work was partly supported by National Science Foundation (NSF) research projects NSF CNS-1624668, SES-
1314631, CCF-1302693, and DUE-1303362. Furthermore, this work utilized Colorado State University’s ISTeC Cray 
system, which is supported by the NSF under grant number CNS-0923386. 
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improvement in energy efficiency and resource management techniques [7]. Consequently, for 

large scale systems, energy efficiency without performance loss is a major goal. Considering the 

complexity and diversity of such systems and their applications, there is a strong interest in the 

development of new resource management strategies that are performance driven, energy efficient, 

scalable, and integrate all system components [7]. 

In this paper, we present a time dependent Value of Service (VoS) metric for resource 

management algorithms that consider the task submission time (e.g., task arrival during peak 

versus non-peak periods) in evaluating task’s performance value and task’s energy consumption 

value. We define the system VoS for a given workload to be the sum of the values for all tasks 

executed during a given period of time. The resource utilization of large scale systems typically 

vary during the day. The electricity consumption of a Google Internet Data Centers (IDC) varies 

during the day showing peak period or non-peak (idle-periods) [8]. During non-peak periods (such 

as midnight) the resources are expected to be idle or lightly loaded, whereas during peak times 

(such as during work hours), resources are expected to be highly utilized. Therefore, the schedulers 

are typically designed to operate under a worst-case scenario where the system is assumed to be 

oversubscribed. From the cloud service provider perspective, to reduce the operational cost, one 

approach is to execute fewer tasks during peak hours than the number of tasks that run during non-

peak hours. As an example, Amazon recently introduced a new pricing scheme where the virtual 

machines (VMs) are discounted up to 75% during the non-peak time periods to increase the system 

utilization [9]. For some applications, the operational cost is not the main concern because 

obtaining fast timely results is more critical than the cost of the service, while for other applications 

postponing the execution of their tasks until the non-peak period is acceptable. For example, a 

financial application that attempts to predict in real-time stock market trends requires low latency 
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and high throughput performance when the market is open for trading. Consequently, the scheduler 

should take these requirements into consideration when allocating resources to applications that 

maximize the VoS of the overall system operations. 

In this paper, we present a novel scheduling methodology that is based on the VoS metric that 

will be used to guide the assignment of resources to the workload tasks during a given period of 

time. In our environment, the goal of the scheduler is to allocate the appropriate VM configuration 

for each task with respect to the number of cores and amount of memory (i.e., one of the allowable 

resource configurations) that maximizes the VoS for the overall system. To predict the execution 

time and energy consumption of each task type running on a VM, we use statistical and data mining 

techniques to model the execution time and energy consumption. We consider an environment 

where the system workload changes over time to model real-life operational scenarios; during 

nighttime hours, the system experiences low-utilization, and during daytime hours the system 

experiences high-utilization (the system can be oversubscribed during peak time periods). Energy 

costs vary throughout these different periods. Due to the continuous changes in the system 

utilization and energy costs, it is not guaranteed that all tasks can begin execution immediately 

upon arrival or all tasks can meet their completion time and energy requirements. 

The major contributions of the paper are as follows: 

• A time-of-use dependent value based metric to enable scheduling algorithms that take into 

the value of task completion and energy consumption for a given arrival time period. We 

combine these task values to form the system VoS performance metric. 

• We design a set of resource management heuristics based attempt to maximize the time-

of-use system VoS performance metric. 

• We evaluate and compare these heuristics using a simulation environment. 
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• We verify the relative performance of some of these heuristics on a real-testbed using IBM 

HS22 blade servers. 

• A data-driven energy model based on VM resource usage is created to accurately predict 

the task energy consumption with low computational overhead. 

The remaining sections of the paper are organized as follows. In Section 2.2, we discuss the 

system model and, in Section 2.3, we explain the VoS based scheduling methodology. We describe 

the VoS metric and scheduling algorithms (resource management heuristics) in Section 2.4. We 

demonstrate our simulation based evaluation of the performance of the heuristics in Section 2.5. 

In Section 2.6, we present our experimental environment and results. We review related work in 

Section 2.7. Finally, Section 2.8 summarizes the paper results. 

2.2. System Model 

In our model, we target large-scale computing systems composed of homogenous clusters. 

Tasks are parallel applications and they arrive dynamically with user-specified soft and hard 

completion thresholds. We couple the completion thresholds with soft and hard energy 

consumption thresholds imposed by the service provider. The service provider then uses a value 

function for determining the total value earned depending on these predefined performance and 

energy consumption thresholds. 

Each task can be executed on different VM resource configurations, where a configuration is 

defined by the number of cores and the amount of memory assigned to the VM. We assume there 

are fixed number of task types and for each task type, there is a set of allowable resource 

configurations. For each of these allowable resource configurations, we assume that there is a 

known estimated task execution time and estimated task energy usage that have been benchmarked 
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a priori. It is common in the resource management literature to assume the availability of such 

information, e.g., [10-13]. 

2.3. Value of Service (VoS) 

Utility functions ([14-19]) have been shown to be effective metrics in resource management, 

especially in oversubscribed environments. A primary difference of our VoS metric from utility 

techniques is the fact that the value metric allows us to consider the value of performing resource 

management at a particular time of the day or night as well as the actual operational costs of using 

the allocated resources at a given time. In addition, the VoS metric considers performance and 

energy efficiency at the same time.  

We define the value of a task as a monotonically-decreasing function of a resource 

management objective (e.g., completion time or energy consumption reduction) that specifies the 

value earned by completing a task during a given period of time. For example, the energy value 

earned by reducing energy consumption during a peak energy consumption period is significantly 

larger than the energy reduction value earned during the idle period. The shape of a particular 

value function for a given task depends on a set of parameters determined by the end-user in 

conjunction with the service provider. We illustrate these parameters in Figure 1. The soft 

threshold parameter specifies the limit on an objective (𝑇ℎ𝑠𝑜𝑓𝑡) until which the value earned by a 

task 𝑗 (𝑇𝑎𝑠𝑘𝑗) is maximum (𝑣𝑚𝑎𝑥). Beyond the soft threshold, the value starts decreasing until the 

objective reaches the hard threshold. The hard threshold (𝑇ℎℎ𝑎𝑟𝑑) specifies a limit for the (𝑣𝑚𝑖𝑛) 

to be valid, beyond which zero value is earned. The linear function shown in Figure 1 that models 

the value change between 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 is considered in this study. However, the linear function 

model can be replaced by other functions based on the user requirements and the operational costs 

associated with a given data center. In our analysis, we modeled two value functions for two 
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resource management objectives: (a) completion time (i.e., performance) value function (Figure 

2), and (b) energy value function (Figure 3). 

The performance value function for a task depends on the completion time during a given 

period of time. The user defines the soft and hard thresholds for the task completion time. The soft 

threshold (𝑝𝑠𝑜𝑓𝑡), as shown in Figure 2, specifies the limit on task completion time until which the 

performance value earned by the task is maximum. Beyond the soft threshold, the performance 

 

Figure 1. General formulation for value versus objective and thresholds [14]. 

 

 

 

Figure 2. Performance value versus completion time [14]. 
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value starts decreasing until the task completion time reaches the hard threshold (𝑝ℎ𝑎𝑟𝑑). The hard 

threshold specifies a limit on the completion time, beyond which zero performance value is earned. 

Similarly, the energy value function of a task depends on the energy consumption for its 

execution during a given period of time as shown in Figure 3 (both Figure 3.a and 3.b). The soft 

threshold (𝑒𝑠𝑜𝑓𝑡) specifies the limit on energy consumed by a task until which the energy value 

earned by task is maximum. Beyond soft threshold, the energy value starts decreasing until the 

energy consumed by the task reaches the hard threshold. The hard threshold (𝑒ℎ𝑎𝑟𝑑) specifies the 

 

(a) 

 

(b) 

Figure 3. Energy value versus energy consumed. (a) Peak time. (b) Non-peak time. 
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limit on the energy consumed by the task, beyond which zero energy value is earned. Both 

thresholds can be defined by the service provider. During the peak time period (i.e., high utilization 

period), the cloud provider goal is to reduce the operational cost by reducing energy consumption. 

The difference in energy values for peak (𝑡𝑝𝑒𝑎𝑘) and non-peak (𝑡𝑛𝑜𝑛−𝑝𝑒𝑎𝑘) periods are shown in 

Figure 3.a and Figure 3.b, respectively. As mentioned before, other functions can be used 

depending on the user requirements and the operational cost of data center resources as a function 

of time. 

If either the performance value or the energy value becomes equal to 0, then the value of the 

task will also be zero.  

We model the VoS as the sum of weighted performance and energy values refined by a relative 

importance factor among tasks. In this paper, the value function is defined as follows: 

• The value (𝑣(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) represents the value for completing task “𝑗”, which is submitted 

at time 𝑡, with respect to a given objective (e.g., completion time or energy consumption). 

• The maximum value (𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) represents the maximum value that can be achieved 

by completing task “𝑗.” This maximum value will change depending on the submission 

time 𝑡 of that task.  

• The soft threshold (𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) defines the limit on the objective value for task “𝑗” 

to gain the maximum possible value (𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡)). 

• The hard threshold (𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) defines the maximum limit on the objective value 

for task “𝑗” to gain the minimum value (𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡)). After that limit, the value earned 

by task will be zero.  
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• The min value (𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡) represents the minimum positive value that can be achieved 

by completing the task “𝑗” that is submitted at time 𝑡 when the objective is equal to the 

hard threshold (𝑇ℎ𝐻𝑎𝑟𝑑).  

• The objective (𝑂𝑏𝑗(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) represents the completion time or energy consumption of a 

task “𝑗” that is submitted at time 𝑡.  

If task “𝑗” does not complete its execution by the 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) then the value given for 

task “𝑗” drops to zero. In between 𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡) and 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡), the value for task “𝑗” 

decreases linearly from 𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) to 𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡).  
In Figure 1, a fixed value is gained till the soft threshold (𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡)), which is defined 

by 𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) (Equation (1)(a)). The task value after the hard threshold (𝑇ℎ𝐻𝑎𝑟𝑑(𝑡𝑗)) is zero 

(Equation (1)(c)). In between these two thresholds, the rate of reduction in the value is defined by 

Equation (1)(b). Here, we note that for soft and hard threshold constraints and for the performance 

and energy value functions described below, the measurement units are task completion time 

(seconds) and energy consumption (Joules), respectively. Table 1 shows the task threshold and 

performance and energy values.  

Table 1. Value function parameters for performance and energy. 

Value function 

parameters 

Performance value 

function parameters 

Energy value function 

parameters 𝑂𝑏𝑗(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑝(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑒(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑝𝑠𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑒𝑠𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑝ℎ𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑒ℎ𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣(𝑇𝑎𝑠𝑘𝑗), 𝑡 𝑣𝑝(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑒(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑝𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑒𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑝𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 𝑣𝑒𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡) 
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Task value (𝑉(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) represents the total value earned by completing task j submitted at 

time 𝑡. It is the weighted sum of earned performance and energy values, as shown in Equation 2. 

The 𝑤𝑝 and 𝑤𝑒 coefficients are used for adjusting the weight given to the performance and energy 

values. The importance factor 𝛾(𝑇𝑎𝑠𝑘𝑗) expresses the relative importance among tasks. Also, as 

mentioned earlier, if either the performance function or energy function is 0, the VoS is 0. 

Therefore, the task value can be calculated as follow (Equation 2): (𝑇𝑎𝑠𝑘𝑗 , 𝑡) = 𝛾(𝑇𝑎𝑠𝑘𝑗)(𝑤𝑝 ∗ 𝑣𝑝(𝑇𝑎𝑠𝑘𝑗 , 𝑡) + 𝑤𝑒 ∗ 𝑣𝑒(𝑇𝑎𝑠𝑘𝑗 , 𝑡)). (2) 

Figure 4 shows an example how the value earned by the system for energy consumption can 

change over a 24 hour period. In Figure 4, the x-axis represents the time interval when the task is 

submitted, while the y-axis shows the individual task energy consumption (normalized, i.e. the 

lowest and highest energy consumption vary between 0-1). By using a time aware value 

function, we can model the fact that gives higher energy values for energy reduction during peak 

𝒂) 𝑖𝑓 (0 ≤  𝑂𝑏𝑗(𝑇𝑎𝑠𝑘𝑗 , 𝑡) ≤ 𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡)) 𝑡ℎ𝑒𝑛 𝑣(𝑇𝑎𝑠𝑘𝑗 , 𝑡) = 𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡), 𝒃) 𝑖𝑓 (𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) >  𝑂𝑏𝑗(𝑇𝑎𝑠𝑘𝑗 , 𝑡) > 𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡))  𝑡ℎ𝑒𝑛  
𝑣(𝑇𝑎𝑠𝑘𝑗 , 𝑡) = (𝑂𝑏𝑗(𝑇𝑎𝑠𝑘𝑗 , 𝑡) − 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡))

∗  𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡)  − 𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡)𝑇ℎ𝑆𝑜𝑓𝑡(𝑇𝑎𝑠𝑘𝑗 , 𝑡) − 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡) + 𝑣𝑚𝑖𝑛(𝑡𝑗), 
𝒄) 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑂𝑏𝑗(𝑡𝑗) ≥ 𝑇ℎ𝐻𝑎𝑟𝑑(𝑇𝑎𝑠𝑘𝑗 , 𝑡))  𝑡ℎ𝑒𝑛, 𝑣(𝑇𝑎𝑠𝑘𝑗 , 𝑡) = 0. (1) 
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hours than the values given for non-peak periods. For example, the value for reducing energy 

during the peak time (e.g., between 12 PM to 6 PM) is four times more important than reducing 

the same amount of energy during non-peak period (e.g., 12 AM to 5 AM).  

The VoS can be defined as the total value gained by a workload of 𝑛 tasks that are completed 

during a given time interval 𝑇 as in Equation 3, where 𝑡𝑗 represents the submission time of each 

task executed during the given interval. 

𝑉𝑜𝑆 (𝑇) =  ∑ 𝑉(𝑇𝑎𝑠𝑘𝑗 , 𝑡𝑗)𝑛
𝑗=1 . (3) 

2.4. VoS Based Resource Scheduling 

2.4.1. Data Driven Energy Modeling 

As described in our system model (Section 2.2), each task runs on a separate VM. However, 

the power/energy consumption of the individual VMs running on a physical machine cannot be 

measured directly, especially when there are multiple VMs operating concurrently. Therefore, we 

use a data-driven approach to model the task power consumption. Initially, we collect a wide range 

 

 

Figure 4. Submission time interval variant energy value. 
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of parameters associated with CPU and memory operations that are the primary contributors to the 

overall VM power consumption as shown in [22, 23]. We use the Perf tool for tracking hardware 

performance counters for VMs launched on a hypervisor [24]. First we start with a large set of 

possible profiling attributes to model the power consumption; however, not all the attributes are 

highly correlated with the power consumption (An example of a highly correlated attribute is 

number of cycles. Page faults and context switches have relatively less effect on the power 

consumption.). Hence to identify the set of performance counters that are highly correlated with 

power consumption, we generate two sets of micro benchmarks: The first set involves integer and 

floating point arithmetic operations, such as summation, multiplication, and division, for 

identifying only CPU intensive parameters. During the arithmetic operations, the memory 

operations are kept to a minimum. The second set involves memory read and write operations over 

various sizes of memory blocks. We collect performance counters and power consumption of the 

VM based on these two sets of micro benchmarks. Then we use our information theory based 

approach to identify the most relevant parameters for characterizing the power consumption [25]. 

Table 2 lists the parameters selected for modeling and predicting power consumption. For the CPU 

attributes, we have observed that the number of cycles, L1 data and instruction cache operations 

(loads, stores, and misses), data translation lookaside buffer (dTLB) operations (store, load, and 

store misses), and branch loads have the highest correlation with the power consumption compared 

to the other attributes. Similarly, for the memory attributes, we have observed that cache misses, 

CPU and task clock, L1 data cache store and prefetches, instruction loads, last level cache (LLC) 

operations (load, store, store misses), and dTLB stores with branch loads have higher correlation 

than other memory attributes. 
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In our task power modeling running on the VMs, we mainly focus on the profiling of the 

allocated VM resources rather than checking the resource utilization percentages. Contrarily, the 

power models introduced in [22, 23] use resource utilization percentages which is a high level 

approach; unfortunately, such methods cannot capture the actual operations (number of cycles 

executed, the cache operations, branch instructions, just to name a few) and result in a high error 

rate. Therefore, we utilize performance monitor counters for tracking power consumption of 

individual VMs by incorporating not only low level cache misses but also loads, stores, and pre-

fetches along with branch loads.  

Once the features have been selected, we can use them to model the power consumption of 

individual VMs based on the selected performance parameters. We first discretize power values 

into multiple power levels of 5 Watts each and in the range from 0 to 100 Watts. Discretization at 

a 5 Watts level reduces the computation complexity of the training process, with small error in 

power estimates. Based on the data obtained from the micro benchmarks, we model each power 

level as a function of the performance parameters using the JRip classifier [26]. JRip is a classifier 

implementation based on the RIPPER algorithm. The RIPPER algorithm starts with an empty rule 

set and adds new rules as they satisfy the targeted parameter until no new rule can be added. Figure 

5 shows an example of a rule generated by the JRip classifier algorithm. 

Table 2. Selected value function parameters. 

CPU only filtered 
parameter set 

cycles, L1-dcache-loads, L1-dcache-stores, L1-dcache-store-misses, 
L1-icache-loads, L1-icache-load-misses, dTLB-loads, dTLB-stores, 
dTLB-store-misses, branch-loads, Power 

memory only 
filtered parameter 
set 

cache-misses, cpu-clock (msec), task-clock (msec), L1-dcache-stores, 
L1-dcache-prefetches, L1-icache-loads, LLC-load-misses, LLC-
stores, LLC-store-misses, dTLB-stores, branch-loads, Power 
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if (($L1_icache_loads <= 1036016) && ($L1_dcache_stores >= 379085720) && 

($dTLB_stores <= 379613809) ) { 

  $Power_ Level = 8;  

}  

else if (($L1_dcache_loads <= 759961592) && ($L1_dcache_loads >= 705610449) && 

($cycles <= 2657633671) && ($L1_dcache_stores <= 379008640)&& 

($dTLB_store_misses >= 563)) { 

  $Power_ Level = 8;  

}  

…  

else { 

  $Power_Level = 9;  

} 

Figure 5. Sample rule for the power level 8 (40 Watts). 

 

In our earlier work on dynamic resource allocation for the individual VMs in cloud computing 

systems, we used a similar approach for characterizing the workload behavior and resource 

requirements [27, 28, 29]. In this study, we use the same approach in identifying the task power 

consumption. We train the model based on micro benchmarks and evaluated its accuracy based on 

NAS-NPB benchmarks [30]. Our model predicts power consumption of the VMs running these 

benchmarks with 90% accuracy. We discuss these benchmarks in further details in Section 2.6. 
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1.4.2. Value per Total Resource 

Our resource management heuristic algorithm is based on the allocation choices that provide 

the highest task value divided by the amount of resources used, to better utilize the resources. We 

introduce a resource management heuristic called Maximum Value-per-Total Resource (Maximum 

VPTR). The framework for this greedy heuristic is based on the concept of the Min-Min technique 

[31, 32, 33], but with a very different set of conditions. The Maximum VPTR heuristic selects the 

choice of resources based on maximizing “task value earned / total amount of resources allocated.” 

We define the total resources for task 𝑖 as: 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =  𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗[(% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑟𝑒𝑠 𝑢𝑠𝑒𝑑) +(% 𝑜𝑓 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝐴𝑀 𝑢𝑠𝑒𝑑)].  (4) 

In general, each of these percentages can be weighted for a given system, depending on factors 

such as the relative cost of cores and memory or relative demand for cores versus memory among 

applications in typical workloads. For this study, we assumed an equal weighting. 

Our heuristic (shown in Algorithm 1) operates as follows. Each task has an associated set of 

allowable VM configurations (number of cores and amount of memory). Specifically, for each 

task type, there is a set of allowable resource configurations, which are resource configurations 

for which it is possible for tasks of that type to achieve non-zero value if their execution could start 

immediately. We define a mapping event as the time when resource management decisions are 

made; here we assume that mapping event occurs in one-minute intervals. All tasks that have 

arrived in the system by the time of the mapping event, have not started execution yet, and have 

not been dropped, are considered as mappable tasks. For each possible mappable task (a task that 

can earn non-zero value), first, all allowable VM configurations are checked to find out the earliest 

time these resources (number of cores and the memory amount specified for the allowable VM 



20 
 

configuration) are available. Then, based on the historical completion time and the historical 

energy consumption, the VPTR for each allowable configuration for that task is calculated, and 

the VM configuration that provides the highest task VPTR is selected. If there is no configuration 

for a mappable task that results in a non-zero value, that task is dropped as it cannot contribute any 

value to the VoS measure. Then, among all mappable task and VM pairs, the pair that has the 

maximum VPTR is selected and assigned. If there are multiple task and VM pairs resulting in the 

highest task VPTR, the first available mappable task and VM pair is chosen.  

For the case that the VM resource is not immediately available for the mappable task, an 

allocation in the future needs to be done; hence, we create a place-holder for such tasks. Place-

holders are temporary reservations introduced in our earlier work [14] to better allocate resources 

compared to permanent reservations for dynamically arriving tasks.  

The system state information is updated based on the assignment of the task and VM pair or 

created place-holder, and the task is removed from the list of mappable tasks. This process is then 

repeated from the beginning until no more mappable tasks exist. Place-holders are removed at the 

beginning of the next mapping event so they do not block a new task that may provide higher 

value. It is possible that a task that had a place-holder removed may be reassigned the same 

resources in the next mapping event. For example, if the task with the first place-holder is the first 

choice in the next mapping event, it is reassigned those resources.  

If there are multiple choices for the VM configurations that have the earliest start time for a 

given task, we select the cores with the VM selection procedure based on our prior work in [14]. 

Given the cores are homogeneous, a task’s execution time will be the same irrespective of which 

cores are assigned. Because of this, finding the earliest possible completion time for a task (which 

maximizes the performance value) is equivalent to finding the task’s earliest possible start time. 
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When the earliest possible starting time for a task is found, it is possible that there will be multiple 

sets of cores that can be used. We use two criteria to choose a set to use. The first of these criteria 

is to pick cores that cause the smallest number of idle voids in the system (i.e., sections of idle 

time between the executions of two tasks). The second criterion is to compare the size of the idle 

voids into which the task would be inserted, and to choose the nodes with the smallest voids. Please 

see [14] for details. The motivation for these criteria is to reduce the overall fragmentation of the 

schedule to give future tasks a better chance of being backfilled [14]. 

Algorithm 1. Pseudo-code for the Max VPTR heuristic. 

1. while the set of mappable tasks is not empty  
2. for each task in the set of mappable tasks 
3. find the allowable VM configuration maximizing task VPTR 
4. select task/VM pair that gives the highest VPTR 
5. if selected task can start execution immediately  
6. then 
7. assign selected task to VMs 
8. else 
9. create a place-holder for selected task using its resource allocation choice 
10. remove selected task from mappable tasks 
11. end while 

 

In our work, the VM resource allocation heuristic considers task arrival time (i.e., submission 

time). During a day, Figure 6 shows the energy consumption distribution of a general cloud 

computing system [34]. An increase in energy consumption is seen (which is the typical energy 

consumption throughout the world [34]) until somewhere between noon and afternoon. Then, the 

peak energy consumption is observed Energy consumption starts decaying as a working day comes 

to an end. The energy consumption is at its lowest level around midnight and starts increasing 

again early in the morning. The energy curve can be directly correlated with the arrival rate of 

tasks over a period of 24 hours. We use Figure 6 in our design of Table 3, discussed below, to 

emulate a real life cloud computing environment. 
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There are multiple ways to capture the arrival time interval impact on value functions. One 

way is to assign a task type different energy value functions, as shown in Figure 3. Another way 

is to use Table 3 to adjust the relative weights of performance and energy in the VoS equation 

depending on the execution characteristics of a task type and the time of day it was submitted. In 

our simulation studies and experiments, we use the Table 3 approach. 

Our Maximum VPTR (Max VPTR) heuristic uses the performance energy tuples (listed in 

Table 3) in scheduling its decisions. In our simulations and experiments, tasks are divided into 

three categories: (1) regular tasks, (2) tasks with a high performance requirement, and (3) tasks 

that are energy conservative. Furthermore, the arrival time of a task is divided into three categories: 

low (midnight), medium (morning and evening), and high (around noon) as shown in Figure 6. 

For a task, the performance and energy weights (𝑤𝑝, 𝑤𝑒) are shown using the 

<performance, energy> format in Table 3. During the period when the system resource usage is 

low (e.g. midnight), both the maximum performance and maximum energy value weights are the 

 

Figure 6. Daily distribution behavior of energy consumption (higher means more 

energy consumption). 
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same (𝑤𝑝 = 𝑤𝑒 = 1). However, during the peak period, the resources are highly utilized and 

energy consumption reduction is highly desired for large scale computing systems (such as cloud 

computing systems) for providers to reduce the operational costs hence, the <1, 4> weighting is 

used for regular tasks. In addition, some tasks with high performance requirements (e.g., disaster 

recovery applications such as image processing of the environment after an earthquake) are heavily 

weighted towards performance because energy consumption cost is not as important for these tasks 

(a weighting of <10, 1> for tasks with high performance requirements in Table 3). In contrast, for 

tasks that do not require high performance (e.g., creating a report during afterhours), the energy 

cost reduction would play a more important role regardless of the time the task was submitted (the 

<10, 1> weightings in Table 3). Even though we have chosen the given weights in Table 3, the 

constants in the decision making can be adapted for the requirements of a specific system.  

In our simulations, we considered comparing against four variants of the Max VPTR heuristic. 

These heuristics are: (a) Max Value, which prioritizes tasks based on the value that they earn; (b) 

Max Value-per-Time, which prioritizes tasks based on their value divided by their execution time; 

(c) Max Value-per-Compute-Resource, which prioritizes tasks based on their value divided by the 

product of their execution time and number of system cores they use; and (d) Max Value-per-

Memory-Resource, which prioritizes tasks based on their value divided by the product of their 

execution time and the amount of memory they use. Because Max VPTR prioritizes tasks based 

on their value divided by the total amount of resources that are used (including execution time, 

number of cores, and amount of memory as defined in Equation 4), it uses all information that is 

considered by any one of the variations listed above. For this reason, it performed better than or 

comparable to all of the above heuristics in every scenario we examined. Thus, results with these 

four variants of Max VPTR are not shown in this paper. 
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For comparison to the Max VPTR heuristic, we considered the Simple heuristic, which assigns 

the mappable tasks in a random order. For each task, it chooses randomly one of its allowable VM 

configurations, and assigns the task to the earliest possible time. If a task is unable to start 

executing immediately, then a permanent reservation is created for it on those resources instead 

[14]. If there are multiple options for the set of cores that have the earliest start time for a given 

task, Simple just uses the cores with the smallest “id” numbers rather than using the core selection 

procedure above for Max VPTR. The task is then removed from the set of mappable tasks. This 

process, shown in Algorithm 2, is repeated until there are no more mappable tasks. We designed, 

implemented, evaluated, and compared three additional variations of this heuristic. The first, 

Simple w/ dropping, does not make assignments that would earn zero value (it drops the task 

instead). Simple w/ place-holders uses place-holders instead of permanent reservations. Finally, 

Simple w/ dropping and place-holders includes the concepts of place-holders and dropping. 

Having these three variations shows the benefits of dropping and place-holders. 

 

Table 3. Performance and energy decision table fordifferent 

system usage time and tasks (<performance, energy>). 

task\system usage low medium high 

regular task <1, 1> <1, 2> <1, 4> 

task with high 

perf. req. 

<10,1> <10,1> <10,1> 

energy 

conservative task 

<1, 10> <1, 10> 
<1, 

10> 
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Algorithm 2. Pseudo-code for the Simple heuristic. 

1. while the set of mappable tasks is not empty 
2. select a random task in the set of mappable tasks 
3. randomly choose a VM configuration choice for selected task 
4. if selected task can start execution immediately with that allocation choice 
5. then 
6. assign selected task to that allocation choice 
7. else 
8. create a reservation for selected task using that allocation choice 
9. remove task from mappable tasks 
10. end while 

 

2.5. Simulation Results 

2.5.1. Simulation Setup 

We simulate 26 hours of task arrivals and designate the first two hours as warm-up period. 

Statistics are collected starting from the third hour until the end (24 hours in total). If a task begins 

execution but does not complete during that interval or finishes execution during the interval but 

starts its execution prior to the beginning of the interval, then the system will earn a prorated of 

the task’s value. We model ten different system environments. In five, the system memory is fixed 

at 256 GB and the number of cores is varied between 128 and 384. In the other five, the number 

of cores is fixed at 256 and system memory is varied from 128 to 384 GB.  

We simulate 48 different scenarios with by varying number of tasks, the tasks’ type, and the 

tasks type characteristics (i.e., the allowable resource configurations and associated execution 

times and energy needs). The number of tasks arriving for each simulation scenario is varied 

between 1,300 and 1,500 tasks, where each task belongs to one of 30 to 40 task types. The range 

used for the number of tasks was selected to ensure that the system is oversubscribed. The number 

of tasks and task types are determined by a uniform distribution and task inter-arrival follows a 

sinusoidal pattern. The task types are uniformly distributed as regular tasks, tasks with high 
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performance requirements, and energy conservative tasks as shown in Table 3. Each task has its 

own performance and energy value functions. The performance and energy value of each task is 

also weighted based on Table 3. In our simulations, we define system usage for the decision table 

based on the daily distribution of energy consumption shown in Figure 6. The low usage period is 

from midnight until 4:00 AM. The medium usage periods are from 4:00 AM until 10:00 AM and 

from 6:00 PM until midnight. We define the high usage period as 10:00 AM until 6:00 PM. 

The method to determine execution times for task types for the simulation studies were based 

on the COV method used in [35]. Each task type has a number of allowable resource configurations 

specifying from 4 to 32 cores and from 6 to 40 GB of memory. We create a base case for each task 

type that defines its execution characteristics given a single core and one GB of memory. The 

system base case values for a scenario are sampled using Gaussian distributions with means of 150 

minutes for execution time and 100 joules for energy consumption. The COV (coefficient of 

variation) of both distributions is 0.1. For each task type, the base case values are generated with 

Gaussian distributions that use the system base case value as the mean and a COV of 0.2. If a 

sampled value falls outside of 40% to 160% of the system base case value, then it is set to the 

minimum or maximum of this range, respectively. The execution times of the allowable resource 

configurations are scaled from these base case values of that task type by using the Downey model 

for the speedup of parallel programs [36], with a uniformly sampled Downey sigma value between 

4 and 10. In addition, we scale the resulting execution time based on the amount of memory that 

is specified in the resource configuration. The energy consumption that corresponds to each 

resource configuration for a task type is linearly scaled using the number of cores and memory 

allocated.  
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Each task type has an importance (𝛾) between 1 and 10 that is sampled from a Gaussian 

distribution with a mean that is correlated directly with the task type’s base case single core 

execution time and a COV of 0.2. Each value function has a 𝑣𝑚𝑎𝑥(𝑇𝑎𝑠𝑘𝑗 , 𝑡) value of 1 and a 𝑣𝑚𝑖𝑛(𝑇𝑎𝑠𝑘𝑗 , 𝑡) value distributed uniformly over the range 0 to 1. The hard threshold for the 

performance value function is created using a Gaussian distribution with a COV of 0.2 and a mean 

equal to the maximum possible execution time for any VM configuration of the task. The hard 

threshold for the energy value is generated in a similar way, where the mean is set to the maximum 

possible energy consumption for any allocation of the task. If the generated value for the hard 

threshold is less than the corresponding maximum values, the distribution is resampled. The soft 

thresholds have a COV of 0.2 and a mean equal to the minimum execution time over all VM 

configurations and minimum energy consumption over all configurations, plus 0.05 times the 

difference between the minimum and maximum values. A soft threshold is resampled if it is greater 

than the corresponding hard threshold. 

2.5.2. Simulation Results 

The results in this section were averaged over 64 simulation scenarios and are shown with 95% 

confidence intervals. To better compare the performance of heuristics, we plot their total value 

earned as a percentage of the maximum VoS possible for that scenario. We define the maximum 

VoS as the VoS earned by the system if all tasks started execution when they arrived in the system 

with (a) the execution time of their fastest VM configuration allocation choice and (b) the energy 

consumption of their allocation choice with the lowest energy usage. These values usually come 

from different VM configuration allocation choices, but they are used to ensure that an upper 

bound on VoS is calculated in all cases. 
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Figures 7 and 8 show the percentage of maximum VoS earned by each of the heuristics. Figure 

7 shows the system memory fixed at 256 GB with the number of cores varied between 128 and 

384. Figure 8 shows the system with number of cores fixed at 256 and system memory varied from 

128 to 384 GB. The Simple heuristic has very poor performance in all environments, but its 

performance improves when dropping or place-holders are used with it. This demonstrates the 

advantages of using dropping and place-holders. 

Our value-based Max VPTR heuristic utilizes additional information to choose tasks and 

resource configurations that may result in better system performance. Figures 7 and 8 show that 

the value-based heuristic is able to earn higher value than the Simple heuristic. When the system 

has a limited number of cores (i.e., 128) or a limited amount of memory (i.e., 128 GB) available, 

the heuristic is able to perform well because it takes the execution time of and number of cores or 

amount of memory allocated to a task into account to choose allocation choices that utilize the 

limited resources (cores or memory) efficiently. 

These simulations show that using place-holders and dropping allows the Simple and Max 

VPTR heuristics to perform well in a variety of environments. The Max VPTR heuristic is able to 

outperform the Simple heuristic using place-holders and dropping in all of the environments that 

were simulated. The advantage of the Max VPTR heuristic is that it incorporates the resources 

needed to execute tasks, and in all our studies of oversubscribed systems at least one of the number 

of nodes or the amount of memory is a limitation on system performance. 

In the following section, we validate the simulation results based on experiments carried out 

on a physical testbed. We choose the Simple with dropping and placeholder as the baseline 

heuristic and evaluate the relative performance of the Max VPTR approach for various workload 

scenarios.  
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Figure 7. The percentage of maximum VoS earned by the heuristics in 

environments where the number of cores in the system is varied from 128 to 

384 and the amount of memory is fixed at 256 GB. 

 

 

Figure 8. The percentage of maximum VoS earned by the heuristics in 

environments where the amount of memory in the system is varied from 128 to 

384 GB and the number of cores is fixed at 256. 
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2.6. Experimental Results 

2.6.1. Experimental Testbed  

We verify the simulation results with experimental results on a real testbed. We use an IBM 

HS22 blade server with four nodes. Each node consists of two Intel Xeon X5650 6-core processors 

(2.67 GHz), with 24 threads (two threads per core) and 24 GB RAM. We treat each of the 24 

threads as an individual CPU and allocate 20 of them for VMs and the remaining threads are left 

for the services, programs, and local controllers running on the physical machines. Each node runs 

the Kernel-based Virtual Machine (KVM) hypervisor [37] and the Perf tool [24]. We have chosen 

KVM and Perf tool because Perf tool is able to profile KVM based VM resources [24]. We record 

the power consumption of each node using IBM Advanced Management Module [38].  

A VM is assigned to a specific number of cores and amount of memory on a single node in our 

blade server (i.e., allowable VM configurations). A VM cannot be split across multiple nodes, but 

a single node can have multiple VMs. Each task is assigned to a specific VM and a task cannot be 

split across multiple VMs. Resource allocation for a VM on a particular node is limited by the 

node’s physical resources available at that point of time and VMs do not share hardware resources. 

Hence, on a node, if two out of four cores are not assigned to any VM during resource allocation, 

then those two idle cores can be assigned to another VM only if the core count requirement is less 

than or equal to two for a new task. 

2.6.2. Workload and Generation 

We model our workload as a set of independent tasks that arrive dynamically. To represent 

such a workload scenario, we use the following four kernels from the MPI based NAS-NPB [30] 

benchmarks where each kernel is a task type as follows:  
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• FT - discrete 3D fast Fourier Transform 

• IS - Integer Sort, random memory access 

• EP - Embarrassingly Parallel 

• LU - Lower-Upper Gauss-Seidel solver 

This benchmark suite allows users to adjust the problem size, ranging from class A (smallest) 

to F. For example, for a FT kernel, class A processes a 256x256x128 matrix, whereas class F 

processes a 4096x2048x2048 matrix. For the experiments, we use class C which processes a matrix 

of 512x512x512 for FT kernel because of its data size and computational requirements. 

We generate a workload trace for simulating the task arrival and store it in a queue that is being 

monitored by the scheduler. Each generated task is associated with a task type (i.e., NAS-NPB 

kernel type), its arrival time, and soft and hard thresholds for completion time to represent the 

performance requirement of each task. The task type is chosen using a uniform distribution. During 

the workload trace generation, we used similar method to the simulation environment. For the soft 

completion time thresholds of the submitted tasks, we used a COV of 0.2 and mean equal to the 

minimum execution time over all VM configurations. For the soft energy consumption threshold, 

we used minimum energy consumption over all configurations, plus 0.05 times the difference 

between the minimum and maximum values. The hard thresholds are created using Gaussian 

distributions with a COV of 0.2 and means equal to the highest execution time in the historical 

data.  

The difference between arrival times of two consecutive tasks is sampled from using a 

Gaussian distribution. The inter-arrival time of tasks are sampled such that the system is 

oversubscribed for high utilization periods. Inter-arrival rate (number of tasks) for the medium and 
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low utilization periods have reduced 30% and 60% compared to highly utilized period. 

Additionally, in the experimental results, we assume that each task has the same importance (𝛾).  

2.6.3. Overall Architecture  

Figure 9 illustrates the overall scheduler architecture. Our scheduler design consists of a queue, 

the resource manager, and the cloud system. When a task is submitted by the user, the following 

information is provided: task type, arrival time (i.e., when the task is submitted to the system), and 

its completion time thresholds information. The resource manager applies the allocation heuristic. 

Based on the user submitted information and the information generated by the resource allocation 

heuristic, tasks are stored in the queue with the following information regarding each task: TaskID 

(i.e., task sequence number), task type, arrival time, soft and hard thresholds (please note that while 

the user is interested in the execution time, the service provider is interested mainly in energy 

consumption to reduce the operational cost and hence the energy thresholds are imposed by the 

service provider), and task execution information (e.g., which host it will be running on and with 

what VM resources, when its execution starts and ends, and if the task has been scheduled or not).  

Each heuristic under investigation uses the Estimated Time to Compute (ETC) matrix and the 

Estimated Energy Consumption (EEC) matrix to determine VM allocations and scheduling. From 

historical data, we create the ETC matrix, where 𝐸𝑇𝐶(𝑖, 𝑗) is the estimated time to compute a task 

of type 𝑖 on a VM configuration of type 𝑗. Similarly, we create the EEC matrix, where 𝐸𝐸𝐶(𝑖, 𝑗) 

is the estimated amount of energy consumed during execution by task of type 𝑖 on a VM 

configuration of type 𝑗 (i.e., amount of allocated resources in terms of the number of cores and 

amount of memory) when no other VM is scheduled on the cluster. Using historical data is a 

common approach in large scale computing scheduler studies as shown in [10, 11]. Please note 

that to reduce the complexity of our model the entries in the ETC and EEC matrices include the 
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overhead time and energy for spawning a VM to run the task. In our environment, the number of 

cores that can be allocated for a VM is #𝑐𝑜𝑟𝑒𝑠 =  {1, 4, 8, 16} and the amount of RAM that can 

be allocated is 𝑚𝑒𝑚𝑜𝑟𝑦 =  {1, 2, 4, 8, 16}𝐺𝐵. 

 

Figure 9. Overall scheduler architecture. 

 

Depending on the resource manager assignments, a local controller, which resides on each 

node, generates the required VM, starts the Perf tool on the physical host machine (to profile the 

VM resource usage), and executes its assigned task on the VM. The algorithm of the local 

controller is shown in Algorithm 3. To avoid VM generation overhead, we generated a set of VMs 

ready to be launched with the required executables. The function create_VM allocates the assigned 

resources for the VM, if these resources are available. Upon successful VM start, the IP of the VM 

is retrieved using the Address Resolution Procotol (ARP) cache [55, 56]. When the task is 

completed, the value of all the monitored performance counters along with task execution time are 

used to calculate energy consumption using the power model introduced in Section 2.4.1. After 
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the termination of the VM, the local controller updates the task queue indicating the completion of 

task execution. 

 

We calculate the value earned by the system after completing each task using Equation 2. The 

earned values for all the tasks are accumulated into workload’s VoS at the end of the experiment. 

We use the VoS metric for comparing the performance of the heuristics for each workload type 

(trace). 

2.6.4. Experimental Results 

In this section, we evaluate our Max VPTR approach and compare its performance with respect 

to the Simple heuristic with dropping and placeholder (shown as Simple w/ d&p) in terms of the 

tasks’ total execution time, total energy consumption, and total system VoS earned. We have used 

two workload cases for our evaluations. The first workload is six hours long and it mimics the 

daily utilization behavior of the large-scale systems, shown in Figure 6, such a way that the tasks’ 

arrival time changes in the following order: low utilization, medium utilization, high utilization, 

Algorithm 3. Pseudo-code for the local controller 

1. local_controller (input: task, #core, #memory) 
2. VM_IP = create_VM (#core, #memory) 
3. if(!VM_IP) 
4. update queue (task cannot be run)  
5. execute Perf on host for task 
6. VM_execute(VM_IP, task) 
7. stop Perf 
8. kill VM 
  
1.  function create_VM (input: #core, #memory) 
2. check if #core & #memory available 
3. $VM = find_idle_VMs(template VMs); 
4.  configure_VM($VM, #core, #memory) 
5. create_VM($VM) 
6. $VM_IP =get _IP (VM) 
7. return VM_IP 
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high utilization, medium utilization, and then low utilization, creating a complete cycle. For the 

second workload, we assume that the system resource usage is always at its peak (high utilization) 

during its execution of three hours. We evaluate and compare the task scheduling algorithms for 

the first workload using results shown in Figures 10 through 14 and for the second workload using 

results shown in Figures 15 through 17. In our experimental evaluation, we varied the total number 

of cores available to be 20, 40, and 80 and varied the number of tasks proportionally. Please note 

that for the execution time of individual task, we use the difference of the task execution time and 

completion time and for the energy consumption of a task, we use the VM resource usage and the 

power model discussed in Section 2.4.1. In addition, for workload 1, the weights of the 

performance and energy values (𝑤𝑝 and 𝑤𝑒 in Equation 2), are chosen based on the values shown 

in Table 3.  

Figure 10 shows the total task execution time (sum of the execution times measured upon 

completion, for all tasks) for the Max VPTR and Simple w/ d&p methods. Figure 11 shows the 

total energy consumption for all the tasks associated with workload 1. The total execution time 

and the total energy consumption are the accumulation of the measured results for the scheduled 

tasks that complete. Hence, as we increase the number of cores, we observe that the total execution 

time increases for both heuristics because the number of tasks arriving to the system and complete 

within the six hour time window increases with more cores.  

In these experiments, we can see that the Max VPTR approach performs better than the Simple 

w/ d&p algorithm with respect to both performance (i.e., total execution time) and total energy 

consumption. This is because the Max VPTR heuristic makes informed decision in resource 

allocation by taking energy and execution time into account during the resource scheduling. On 

the other hand, Simple w/ d&p applies a random resource scheduling resulting in higher total 
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execution time and energy consumption. On the other hand, Simple w/ d&p algorithm randomly 

maps the VM resources as long as the hard thresholds for performance and energy are met. 

 

Figure 10. Total task execution time for workload 1 (thousand seconds). 

 

 

Figure 11. Total energy consumption by the executed tasks for workload 1 (in mega joules). 

 

In Figure 12 and Figure 13, we show the total performance value and total energy value earned, 

respectively, by both heuristics. Total performance value is the sum of the performance values of 
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all tasks completed. Total energy value is defined similarly. For the comparison, we plot the total 

value earned as a percentage of the maximum possible VoS that can be earned if all the submitted 

tasks complete before their soft completion thresholds and energy thresholds, as in Section 2.5.2. 

The experimental results show that the Max VPTR has better results in terms of performance (up 

to 82% improvement in the best case) and energy (up to 110% improvement in the best case) 

values gained for the workload 1 when compared to the Simple w/ d&p heuristic method.  

 

Figure 12. The percentage of maximum performance value earned by the heuristics for workload 1. 

 

In Figure 14, we show the percentage of the maximum VoS obtained by both heuristics for 

workload 1. For the VoS calculation, Equation 3 is used and the percentage of the maximum 

theoretical earnable VoS is calculated as was discussed in Section 2.5.2. The results show that the 

VPTR method achieves better results consistently by providing up to 77% more value when 80 

cores are used, 36% for 40 cores, and 32% for 20 cores. During our experiments, we have observed 

that both Simple w/ d&p and Max VPTR were able to show a close behavior in terms of energy 

consumption due to the limited available resources resulting in similar resource mappings. While 
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the available resources increase (80 cores, as an example), Max VPTR algorithm can make more 

effective resource mapping for tasks.  

 

 

Figure 13. The percentage of maximum energy value earned by the heuristics for workload 1. 

 

 

Figure 14. The percentage of maximum VoS earned by the heuristics for workload 1. 
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Our observations on the experimental results are in agreement with the simulation results 

shown in Section 2.5. The Max VPTR method outperforms the Simple w/ d&p in both simulation 

and experimental results. In Figure 7, we observe that the Max VPTR results are up to 49% higher 

than the Simple w/ d&p (for the best case). However, we observe a higher difference in the 

experimental results. Because each physical system is limited to 20 cores for the VM environment, 

the Max VPTR algorithm outperforms the Simple w/ d&p algorithm by managing the resources 

more effectively and this difference can be better seen when there are more tasks submitted to the 

system. 

On a real testbed, the completion time and energy consumption of a task can vary because of 

overall system usage from other tasks, their interference to the other tasks (because the physical 

hardware is shared among all the VMs running tasks), services running in the background, and so 

on. Therefore, we observe differences between the historical data (ETC and EEC matrices) used 

by the heuristics in the experiments and the actual measured performance and energy consumption 

values. Furthermore, the simulation studies use execution characteristics that are independent of 

the overall system usage. This is one of the root causes for observing variations in percentage 

difference between the two heuristics over simulation and experimental results. In addition, there 

are the differences between the simulation and the experimental environments such as the task 

inter-arrival time, the allowable resource configurations, and the use of variations in the 

importance of the tasks (𝛾) in the simulations but not the experiments.  

For the second workload type (where we assume we are always at high system usage), we have 

allocated different number of cores and adjusted the task inter-arrival times. In Figures 15 and 16, 

we present the performance and energy value percentages earned by both Max VPTR and Simple 

w/ d&p heuristics. The experimental results show similar behavior with the experimental results 
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of workload 1 with respect to Max VPTR getting higher percentages than Simple w/ d&p. For the 

configuration with 80 cores, Max VPTR achieved an increase of almost 100% in performance 

value and 84% in energy value. 

 

Figure 15. The percentage of maximum performance value earned by the heuristics for workload 2. 

 

 

Figure 16. The percentage of maximum energy value earned by the heuristics for workload 2. 

 

Similar to Figure 14, we have calculated the VoS for workload 2 (Figure 17). The results show 

similar behavior to the workload 1 with Max VPTR outperforming the Simple w/ d&p heuristic 
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method. In this case, however, we see a higher gap between the values of the two heuristics and 

the gap increases as we increase the resources. Because workload 2 involves high system usage, 

the Simple w/ d&p heuristic is not able to make efficient decisions in utilizing the resources, 

resulting Max VPTR having up to 91% higher VoS. Due to the randomness of the Simple w/ d&p 

heuristic when considering the amount of resources to be allocated for each task (i.e., the VM 

configurations), while the number of cores increases, the percent of maximum VoS reduces. In 

contrast, the Max VPTR heuristic utilizes the resources effectively considering the limited 

available resources.  

 

Figure 17. The percentage of maximum VoS earned by the heuristics for workload 2. 

 

2.7. Related Work 

There is a large body of work on resource management strategies for cloud computing systems 

targeting various metrics such as system resource utilization, task execution time, total 

power/energy consumption, and system resources. Most of the resource management algorithms 

for parallel tasks utilized the backfilling ([14, 39-45]) approach for improving resource utilization 

and average execution time. Utility functions have been shown to be an effective performance 
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measure for resource management in an oversubscribed environment. However, utility functions 

have been mainly defined only as time varying utility of completing a task for the user. “Value 

function” based methods ([45-48]) that rely on monotonically decreasing value measurements are 

similar to the utility based methods for resource management. A primary difference of our work 

from these studies is the fact that the VoS metric considers a weighted combination of the value 

of energy reduction and the task completion time. Furthermore, the weights for performance versus 

energy are a function of category of task type and the time of day task is submitted (Table 3). As 

discussed before, the value of reducing energy at peak consumption has much higher value than 

the period for low energy consumption. 

For example, the value function introduced in [14] quantified the useful work done in an 

oversubscribed system in terms of total value accumulated by completing tasks in a timely fashion. 

The new heuristics proposed in [14] outperform the Conservative Backfilling and EASY 

(Extensible Argonne Scheduling sYstem) Backfilling algorithms. However, the value function 

took only task completion time into account. Furthermore, its system model did not consider VMs 

and the impact of configurations that consist of number of cores and amount of memory allocated. 

The utility based heuristic introduced in [16] allowed scheduling only the tasks that did not 

violate the allotted energy budget within a given time period. Utility maximization was also studied 

in [17] under an energy constraint during oversubscription by prioritizing the scheduling of tasks 

with the highest magnitude of utility per unit energy at a particular instant of time. These 

techniques did not consider the time at which the resource scheduling is performed (during peak 

or non-peak periods), and only considered an energy constraint rather than an energy value. 

Furthermore, these works did not consider VMs and the impact of configurations that consist of 

number of cores and amount of memory allocated. 
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A power aware job scheduling approach was presented in [49] for HPC systems by treating 

scheduling as a 0/1 knapsack problem. Jobs were scheduled to maximize the resource utilization 

without exceeding a given power budget. However, this method did not consider the importance 

of total energy consumption of a task, as well as not considering the time of day a task is submitted. 

Their system model also did not consider using VMs for tasks. 

In [50], task scheduling has been applied to reduce the power consumption while considering 

the system thermal state, fan speeds, and network operations. They first determined that the load 

across a data center was not fairly distributed causing some CPUs highly loaded and some almost 

idle. This resulted in an imbalance in the power consumption of the other components as well. 

Hence, the authors suggested that by reducing the imbalance across the power consumption of the 

system components, it was possible to achieve a 12% reduction in power consumption. However, 

they did not consider the individual task requirements (i.e., number of cores and memory amount) 

and focused on balancing the CPU load only. And, they did not consider a virtualized environment 

as well. Laszewski et al. [51] presented a power aware clustering algorithm where they applied 

DVFS. But the proposed approach only used DVFS and did not include the core and memory 

requirements. In [3] Tang et al. proposed an energy aware scheduling algorithm for the 

optimization of the energy savings using only DVFS technique for the heterogeneous systems. 

Their approach distributed the parallel applications to meet the required deadline while reducing 

energy consumption. They demonstrated their approach using CloudSim simulator only. In [52], 

Ding et al. allocated VMs to physical hosts based on performance-power ratio and their idle cores 

by finding an optimal frequency to run a VM. They also migrated the active VMs to the physical 

hosts with higher performance-power ratio to reduce the energy and increase the processing 

capacity. Their simulation results showed over 20% reduction of energy and 8% increase of 
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processing capacity in the best cases, compared to the algorithm defined in [51]. Their work can 

be complementary to our approach for the heterogeneous environment; however, they did not 

consider multiple task type and their performance and energy requirements with soft and hard 

thresholds and they only provided simulation based results that simplified many issues such as 

overhead.  

In [53], task scheduling was applied for green data centers where mainly solar energy is used. 

They predicted both the workload requirements and the amount of available solar energy so that 

low priority workloads can run with the solar energy and for the workloads that should run with 

the electrical grid, they try to assign them during the periods when the cost of electricity is less 

than other periods. This work can be a complementary approach to reduce the operational cost; 

nevertheless, by applying a finer grain task scheduling approach (e.g., this work), it is possible to 

further reduce the power consumption resulting in reduction in overall cost.  

A profit- and penalty-aware scheduling algorithm introduced in [18] associated a task with two 

different Time Utility Functions (TUFs): a profit TUF and penalty TUF. The profit TUF was 

defined as the utility earned by a system based on timely completion of a task. Penalty TUF is 

defined in terms of utility lost by dropping the task or missing its completion deadline. In our 

approach, we do not apply penalty utility to the tasks that were not completed. Instead, we schedule 

a task only if it can earn any value, and once scheduled a task cannot not be dropped. Also, for 

[18], the earlier task completion provided the highest utility, while our approach includes a 

relaxation to the problem with soft and hard thresholds for the performance and energy functions. 

Finally, our approach also considers the energy consumption upon a task completion. 

In [54], the authors proposed new heuristics for an energy-constrained environment with 

parallel tasks. These techniques were shown to outperform existing FCFS-based techniques in the 
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parallel environment. However, this work optimized for performance while obeying the energy 

constraint instead of considering a metric that combines performance and energy as we do in this 

work. In addition, [54] did not model the memory assigned to tasks, evaluated the proposed 

heuristics through simulations only, and did not verify the simulations through experiments on real 

systems. Finally, in [54], resources were allocated for the case where each task has a single choice 

for its resource configuration (i.e., the number of cores) in each heterogeneous cluster. Our work 

considers multiple resource configurations (i.e., both the number of cores and amount of memory) 

in a single homogeneous cluster. 

2.8. Conclusion 

Large scale computing systems and data centers typically follow a resource utilization pattern 

that is low during times such as midnight and high during the mid-day hours. Therefore the job 

submission time plays an important role in the resource management for these systems. In this 

paper, we presented the Value of Service (VoS) metric to measure the total value earned by 

completing the tasks during a given time interval and also based on the energy consumption of 

each task. We model the value of energy reduction and performance of task completion for peak 

and non-peak periods. We use several cases where the system demands change over time and the 

VoS metric is used to balance the user requirements as well as the cloud service provider objective 

to reduce operational cost. We show how we can weigh the impact of performance versus energy 

in calculating the VoS depending on the category of a task (e.g., high performance, energy 

conservative) and the time of day when it is submitted. 

We develop a system model based on VM configurations. Each VM configuration is specified 

by the number of cores and amount of memory that will be assigned to a task type. We design a 

set of resource management heuristics that attempt to maximize the time-of-use system VoS 
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metric. We evaluate and compare these heuristics, first by simulation and then validate the main 

simulation result with experiments on an IBM HS22 blade server. In particular, we show in our 

simulations that Max Value-per-Total Resource (Max VPTR) outperforms the Simple with 

dropping and placeholder algorithm and its variations. We then compare the best Simple variation 

with Max VPTR with experimentation on an IBM based testbed. Our simulation and experimental 

results showed the effectiveness of our Max VPTR approach when compared with the Simple with 

dropping and placeholder heuristic approach. 
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Chapter 3 

Utility-Based Resource Management in an 

Oversubscribed Energy-Constrained Heterogeneous 

Environment Executing Parallel Applications2 

 

3.1. Introduction 

High performance computing (HPC) environments are commonly used to execute 

computationally intensive tasks. These tasks are often parallel, meaning that they utilize multiple 

cores within an HPC environment to reduce the time required to complete the computational work 

 

2 The material in this chapter appeared in [38]. This work was done jointly with former Ph.D. student Bhavesh 

Khemka and Christopher Blandin. The full list of co-authors for this work is at [38]. This manuscript has been 

administered by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. 

The United States Government retains and the publisher, by accepting the article for publication, acknowledges that 

the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or 

reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. 

The Department of Energy will provide public access to these results of federally sponsored research in accordance 

with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research used resources 

of the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL), supported by the 

Extreme Scale Systems Center at ORNL, which is supported by the Department of Defense (DoD). This research was 

also supported by the National Science Foundation (NSF) under grant number CCF-1302693. This work utilized 

CSU's ISTeC Cray system, which is supported by NSF under grant number CNS-0923386. 
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of the task. It is necessary to have resource managers that execute the workload arriving into the 

system in a way that attempts to maximize the amount of useful work that the system accomplishes. 

This is especially important when the system is oversubscribed, e.g., the system cannot begin 

executing each task as soon as the task arrives in the system. 

The heterogeneous HPC environments that we modeled in this study are based on those being 

investigated by the Extreme Scale Systems Center (ESSC) at Oak Ridge National Laboratory 

(ORNL). The ESSC is part of a collaborative effort between the Department Of Energy (DOE) 

and the Department of Defense (DoD) to perform research and deliver tools, software, and 

technologies that can be integrated, deployed, and used in HPC environments in both DOE and 

DoD. 

Many systems use metrics such as “utilization” of machines to measure the performance of the 

system's resource manager. Because we consider an oversubscribed heterogeneous environment, 

utilization is not an effective performance measure. This is because assigning a task to the node 

types that take longer to complete the task (i.e., node types that are not as effective for that task) 

will still result in high system utilization, but provide delayed results for that task. Furthermore, 

because the system is oversubscribed, we would expect to always have near 100% utilization. 

To effectively model the performance of an oversubscribed heterogeneous system, for this 

study we employ the concept of utility functions [1], which are appropriate for modeling the needs 

of DOE and DoD. Utility functions are monotonically-decreasing with time and represent the 

importance and urgency of a task. They define the utility earned by a task at the time of its 

completion. The performance of the overall computing system is measured by the total utility 

earned from completing tasks in a given period of time. We refer to this as the system utility. 
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Energy is an expensive and potentially limited resource required to operate HPC systems (e.g., 

[2-5]). It has been found that attempting to scale up current systems to achieve an exascale system 

would result in energy and power requirements that are currently not feasible. For example, the 

power requirement would be greater than a gigawatt [5]. In some environments, there is a limit on 

the amount of energy that is available in some interval of time [4, 6]. In this study, we constrained 

the amount of energy available to the HPC system each day. The general problem of mapping 

tasks onto a set of resources is known to be NP-hard [7]. It is not possible for an algorithm to find 

optimal solutions to NP-hard problems for a realistic system in a reasonable amount of time. To 

effectively maximize system utility while satisfying this energy constraint, heuristics are needed. 

We also created a new energy filtering technique to improve the energy efficiency of our heuristics. 

We designed four utility-aware resource allocation heuristics: Max Utility, Max Utility-per-

Time, Max Utility-per-Resource, and Max Utility-per-Energy. We compared these to four 

approaches from the literature: Conservative Backfilling, EASY Backfilling, FCFS (first-come, 

first-served) with Multiple Queues, and Random [8, 9]. In addition, we designed two 

metaheuristics that switch between the Max Utility-per-Resource and Max Utility-per-Energy 

heuristics depending on how energy constrained the system is at the time of the task’s mapping. 

Many heuristics for the resource allocation of parallel tasks in HPC environments schedule 

using permanent reservations to allow for allocations of nodes to tasks in the future (e.g., [8, 9]). 

Because permanent reservations can be restrictive, we developed the concept of using temporary 

place-holders when scheduling. This provides additional flexibility by allowing newly arriving 

tasks of high utility to replace tasks that have reserved resources with place-holders. 

The novel contributions of this work include: 
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• the design of utility-aware heuristics and an energy-per-resource filtering technique with 

the goal of maximizing utility earned by parallel tasks while obeying an energy constraint 

in heterogeneous oversubscribed HPC environments; 

• the design of new metaheuristics that make use of the strengths of different utility-based 

heuristics; 

• the validation of the relative performance of the heuristics derived by the simulator through 

the use of an experiment on a physical testbed system for one scenario. 

Preliminary versions of portions of this material appear in the 2015 Metaheuristics 

International Conference [10] and the 2016 Heterogeneity in Computing Workshop [11]. The 

differences between this work and the preliminary versions include: (a) the design, analysis, and 

evaluation of two new metaheuristics that in general result in improved performance; (b) the 

simulation of many more environments, which is used to further analyze the performance of the 

heuristics and the effect that different parameters have on the heuristics; and (c) experiments on a 

physical testbed are used to further evaluate the heuristics. 

This paper is organized as follows. In Section 3.2, we define the HPC environment and problem 

we are addressing. Section 3.3 explains the resource management techniques that are utilized. The 

setup for our simulated environment is detailed in Section 3.4. The simulation analyses and 

comparisons are presented in Section 3.5. An experiment that we performed on a testbed system 

has its setup and results shown in Section 3.6. In Section 3.7, we discuss related work. Finally, in 

Section 3.8 we conclude and discuss future work. 
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3.2. Environment and Problem Description 

3.2.1. Compute System Model 

We modeled an environment where the compute system is composed of heterogeneous clusters 

of nodes, as shown in Figure 18. A node is the atomic unit of resource allocation in this model. 

Each node is composed of one or more cores. The nodes that form each cluster are homogeneous, 

meaning that they are identical (and therefore have the same number and type of cores). The node 

architecture varies among clusters and each cluster can have different numbers of cores per node. 

We modeled cores that utilize dynamic voltage and frequency scaling (DVFS) to switch among 

multiple performance states (P-states), where each P-state provides different power consumption 

and execution speed [12]. 

3.2.2. Workload and Environment Characteristics 

Tasks arrive dynamically and may be required to execute on multiple nodes concurrently (i.e., 

parallel execution). Because the environment is oversubscribed, it is not possible for all tasks to 

earn their maximum utility due to the delay in their completion time. In this study, we do not allow 

a task to be assigned across nodes in separate clusters. Our model assumes that tasks are 

independent (potentially submitted by different users) and therefore do not communicate with one 

another. We make the assumption that tasks cannot be preempted (i.e., once they begin executing, 

they execute to completion). 
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Task types in this environment have estimated execution characteristics (execution time and 

energy consumed) that are deterministic and known to the system resource manager. We assume 

that this information is available through historical and experimental data. This assumption is a 

common practice in research for resource allocation (e.g., [13-15]). Tasks with similar execution 

characteristics belong to the same task type. Whenever a task arrives to the system it specifies its 

task type, the number of nodes that it will need depending on the cluster it is assigned to, and its 

utility function (tasks of the same type do not necessarily have the same utility function). Because 

the environment is heterogeneous, cluster A may be faster (or more energy efficient) than cluster 

B for one task type, but not for all task types. 

When a task is assigned to execute in the system, it is assigned to a set of nodes in one of the 

clusters. All nodes in this set will use the same P-state. Within each cluster, execution 

characteristics are defined by an Estimated Time to Compute (ETC) matrix and an Average Power 

Consumption (APC) matrix [6]. The ETC matrix is used to specify the execution time of tasks for 

Figure 18. A compute system composed of C clusters. Cluster 1 has n 

nodes and cluster C has m nodes. 
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each task type, cluster type, and P-state combination for some number of nodes. Because nodes 

within a cluster are homogeneous, the ETC only needs to reference the number of nodes that a task 

type will use in a given cluster. An example of part of an ETC matrix, where the cluster and P-

state have already been selected, is shown in Table 2. It is assumed that from past executions or 

experiments we have entries for certain levels of parallelism, i.e., for certain numbers of nodes. In 

some cases, a task type's execution time may increase (instead of decrease) with an increased 

number of nodes due to increased communication and synchronization overheads. In our 

simulations, if the number of nodes the task needs is not listed in the ETC matrix then its execution 

time is assumed to be between two values listed in the matrix, and we calculate its execution time 

using linear interpolation. We assume that all tasks require a number of cores between the 

minimum and maximum values provided in the ETC matrix. 

The APC matrix defines the average power consumption of the nodes that a task will utilize 

and is structured similarly to the ETC matrix. We can calculate an estimate of the total energy that 

any task will consume by multiplying its execution time and average power consumption value. 

In Figure 19, the interaction between the different components of the modeled system is shown. 

Tasks arrive dynamically and are sent to the resource manager. The resource manager will use the 

ETC and APC information, in addition to the utility function of the task, to map the tasks to nodes 

in one of the clusters. 

3.2.3. Utility Functions 

Our performance metric is based on utility, a flexible measure of the importance of a task. 

Utility functions [1] are monotonically decreasing functions that define the utility that a task earns 

upon completion, and depend on the amount of time that has passed since the task was submitted 

to the system as depicted in Figure 20. In this study, utility functions are defined by three 
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parameters: priority, urgency, and a utility class. The priority of a utility function is equal to its 

starting utility (the maximum it can possibly earn). Urgency is used to define the rate at which the 

utility function will decay. The utility for functions with a higher urgency value will decrease at a 

faster rate than those with a lower value. The utility class defines the shape of the utility function, 

and is scaled using the priority and urgency. Each task has an associated utility function that may 

differ from the utility functions of other tasks. 

3.2.4. Problem Statement 

We defined the system utility earned over a day as the sum of utility earned by all tasks that 

are completed by the system during that day. This also includes a portion of the utility earned by 

each task if the task would be partially completed during that day. This can occur when the task 

has an execution time greater than the amount of time remaining in the day when its execution 

begins and it has not yet finished its execution when the day reaches its end. For example, if a task 

were to complete 70% of its total execution time during day 𝑖 and 30% of its total execution time 

during day 𝑖 + 1, then the utility earned for this task during day 𝑖 would be 70% of the task's final 

utility and the utility earned during day 𝑖 + 1 would be the remaining 30% of the task's final utility. 

The system is oversubscribed, and has an energy constraint, which is the maximum amount of 

energy that it can consume each day. The goal of our resource manager was to maximize the utility 

earned by the system subject to the energy constraint of the system. 

Table 2. An example of an ETC matrix that specifies execution time for task type and number of nodes for 

a given cluster and p-state. 

task type number of nodes above execution time 

1 
1 2 4 16 32 

100 70 50 25 30 

2 
256 512    

300 200    

3 
8 16 64   

100 80 70   
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3.3. Resource Management 

3.3.1. Mapping Events 

Mapping is the process of assigning and scheduling tasks to the nodes of the HPC system. 

When a task arrives to the system, it is added to the set of mappable tasks. Once a task is mapped 

to nodes, it is removed from this set. During a mapping event, the resource manager makes 

allocation decisions for some or all mappable tasks in the system. In each mapping event, three 

techniques are used to assist in maximizing system utility. First, some of the tasks are dropped to 

tolerate oversubscription (described in Subsection 3.3.3). Next, energy filtering (detailed in 

Subsection 3.3.8) attempts to improve energy efficiency by limiting the allocation options for 

tasks. Finally, one of the heuristics defined in Subsections 3.3.4, 3.3.5, or 3.3.6 is used to make the 

final resource management decisions. In the environment we considered, mapping events occur 

every 60 seconds, but this can be changed depending on factors such as task arrival rates and the 

average execution time of tasks. 

Figure 19. Flow for the proposed resource manager. Tasks enter the resource manager and are 

mapped to the nodes of clusters. Each task is mapped to the nodes of a single clusters. 
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3.3.2. Permanent Reservations and Place-holders 

A permanent reservation marks the resources that will be allocated to a task at some point in 

the future. The number of cores allocated to a task is equal to the number of nodes that are 

allocated to the task multiplied by the total number of cores on each node (even if only a subset of 

the cores in a node are used by the task). Throughout this paper, we refer to the resources allocated 

to a task as the amount of time that the task will take to execute multiplied by the number of cores 

that are allocated to that task: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 𝑐𝑜𝑟𝑠𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑. (1) 

If a task cannot begin executing immediately on available nodes, a permanent reservation can 

be made for the task so that it can begin executing at a future time. This is done so that the resource 

manager is aware of tasks that cannot begin executing immediately due to required resources being 

unavailable. Permanent reservations cannot be removed or moved, i.e., they ensure that the 

reserved task will start execution on those resources at that future time. We created place-holders 

as an alternative to permanent reservations. A place-holder is similar to a permanent reservation, 

except that all place-holders are removed from the system at the beginning of the next mapping 

event. This creates opportunities for newly arriving tasks to begin execution sooner if those tasks 

would earn more utility than the tasks originally scheduled to those resources during the last 

mapping event. 
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3.3.3. Task Dropping 

At the start of a mapping event, we calculate the amount of utility that each task can earn if it 

were to start execution immediately in the cluster that allows the shortest execution time for the 

task. This calculated value is an upper bound on the utility that the task can earn and may be more 

than is realistically achievable. If this amount of utility is lower than a preset dropping threshold, 

then the task is dropped from the system. This is done so that tasks that are unable to earn a 

significant amount of utility are removed from the set of mappable tasks. This is particularly 

important when dealing with permanent reservations because, without dropping, reservations for 

tasks that earn little utility can be made far into the future. This can be a poor use of the system's 

resources in terms of earning little utility for the reserved task, and can also result in reduced utility 

being earned for the tasks that arrive in the future due to the delay caused by these reservations. 

Determining the optimal dropping threshold may be accomplished through simulations. 

Figure 20. An example of a utility function for task 1. If task 1 

completes at time 15, it earns 5.18 utility. If task 1 complete at time 40, 

it earns 2.84 utility. 
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3.3.4. Comparison Heuristics 

3.3.4.1. Overview 

Four of the heuristics we considered were for the purpose of comparison to our utility-aware 

resource management techniques. Three of these heuristics are commonly used in parallel 

scheduling. In addition, we consider a Random heuristic as an additional point of comparison. The 

process used by these heuristics to select a subset of nodes within a cluster is described in 

Subsection 3.3.7. 

3.3.4.2. Random 

This heuristic takes the tasks in order of arrival and assigns a task to a random cluster with a 

random P-state. This process is repeated until all mappable tasks have been assigned to some 

cluster, or until no more assignments are possible. 

3.3.4.3. Conservative Backfilling 

This heuristic, described in [9], considers tasks in order of arrival and assigns each task to a 

cluster where it can start execution immediately. If there is no cluster where the task can start 

execution, then the heuristic makes a permanent reservation for the task on a cluster where the task 

can start execution as soon as possible. This process is repeated until each task is executing or has 

a permanent reservation, or it is not possible to assign any more tasks to the system because there 

is no availability in the system to start the task before the end of the day being simulated. This 

heuristic employs backfilling, the process of assigning tasks to the voids (gaps in node usage) in 

the schedule that can occur when reservations are made for a future time. A backfilled task may 

be able to start execution immediately or may create another reservation. This heuristic was 

designed for homogeneous clusters and an environment that does not consider utility or energy. 

The heuristic always used 0 as the P-state, indicating the highest performance for a given node. 
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3.3.4.4. EASY Backfilling 

Extensible Argonne Scheduling sYstem (EASY Backfilling), from [8], is a common heuristic 

for scheduling parallel tasks. It initially works in the same way as Conservative Backfilling. The 

major difference is in how it handles permanent reservations. It makes a permanent reservation for 

a single task that cannot start execution immediately such that the task will start execution as soon 

as possible, but will not make reservations for any tasks if a reservation already exists. Similar to 

Conservative Backfilling, it will still continue to search for backfilling opportunities for other 

tasks, as long as they can start execution immediately without delaying the single reservation. This 

heuristic was designed for homogeneous clusters and an environment that does not consider utility 

or energy. The heuristic always uses P-state 0. 

3.3.4.5. FCFS with Multiple Queues 

The FCFS (first come, first served) with multiple queues heuristic, designed to model systems 

such as CSU's ISTeC Cray [16], is another comparison heuristic. It is similar to the Conservative 

Backfilling heuristic, except that it uses multiple queues instead of a single FCFS queue. The 

purpose of these queues is to separate the tasks based on their expected resource usage. The three 

queues used in this study are labeled small, medium, and large. Based on the information available 

in the ETC matrix, it is possible to determine the amount of resources (based on Equation (1)) that 

any task will be allocated, averaged over the clusters. This average amount of resources is then 

used to determine onto which queue that task will be appended. The tasks are added to queues in 

order of their arrival. Tasks that consume less than a lower threshold of resources will be added to 

the “small” queue. Tasks that consume more than an upper threshold of resources will be added to 

the “large” queue. The rest will added to the “medium” queue. In our simulation study, the lower 

threshold was set to 30% of the average resources of the task that needs the most resources in the 
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system and the higher threshold was set to 60% of the average. The rest of the execution of the 

heuristic is identical to Conservative Backfilling, except that instead of taking one task at a time 

from the single queue, the heuristic will cycle through the three queues in a round robin manner 

such that within each cycle, at most one large task is assigned, at most four medium tasks are 

assigned, and finally at most eight small tasks are assigned. The specific lower threshold, upper 

threshold, and the number of tasks assigned from each queue in each iteration are examples of 

what may be used in a system. Implementations of this heuristic on other systems may use different 

values for these parameters. The motivation for this heuristic is to attempt to balance the tasks 

being assigned to the system based on resources needed. 

3.3.5. Utility-Aware Heuristics 

3.3.5.1. Overview 

We have designed four utility-aware heuristics that can be used with permanent reservations 

or with place-holders. All of these heuristics use a framework that is based on the concept of the 

Min-Min scheduling technique from [17], which has been used successfully in many environments 

(e.g., [18, 19]), but has not been explored in an oversubscribed energy constrained environment 

with parallel tasks. All of these utility-aware heuristics have a similar structure that defines their 

execution, but each utilizes a different objective measure. 

3.3.5.2. Heuristic Objective Measures 

We utilized four objective measures for our heuristics. These are Utility (Util), Utility-per-

Time (UPT), Utility-per-Resource (UPR), and Utility-per-Energy (UPE): 𝑈𝑡𝑖𝑙 = value of the task′s utility function at completion (2) 𝑈𝑃𝑇 = 𝑈𝑡𝑖𝑙 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘′𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒⁄  (3) 𝑈𝑃𝑅 = 𝑈𝑡𝑖𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘⁄  (4) 
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𝑈𝑃𝐸 = 𝑈𝑡𝑖𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘⁄  (5) 

We defined four heuristics, Max Util, Max UPT, Max UPR, and Max UPE using the objective 

measures listed in Equations (2)-(5), respectively. Max Util, Max UPT, and Max UPE were used 

in our work in [1, 6] with an energy constraint, but only for serial tasks. Thus, the work presented 

in this study is significantly different because the heuristics are designed for parallel tasks that are 

assigned to sets of nodes. 

3.3.5.3. Maximizing the Objective Measure for Each Task 

The first phase of these heuristics involves finding the maximum value of the heuristic's 

objective measure for each mappable task. This is done by selecting an allocation of nodes within 

each cluster that maximizes this objective measure (varying the P-state as needed to achieve this 

maximum). This is shown for the Max UPE heuristic in Algorithm 4, lines 2–4. 

3.3.5.4. Assigning Tasks to Resources 

Once a maximum objective measure allocation has been found for each unmapped task, the 

task that has the highest maximum objective measure is assigned to its selected resources (defined 

Algorithm 4. Pseudo-Code for Max Util 

1. while the set of mappable tasks is not empty and a mappable task exists that can be 
scheduled to begin executing during the current day based on energy remaining do 

2.  for each task in the set of mappable tasks do 
3.   find nodes/cluster/P-state combination that maximizes UPE for the task 
4.  end for 

5.  select task from the set of mappable tasks with nodes/cluster/P-state 
 combination that has the highest maximum UPE 

6.  if selected task can start execution immediately 
 with that nodes/cluster/P-state combination then 

7.   assign selected task to that nodes/cluster/P-state combination 
8.  else 
9.   create a permanent reservation for selected task 

  on that nodes/cluster/P-state combination 
10.  end if 
11.  remove task from the set of mappable tasks 
12. end while 
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by a cluster, nodes, a P-state, a start time, and a finish time). This may create a permanent 

reservation if necessary (i.e., when the task cannot start execution at the current time). The task is 

removed from the set of mappable tasks. This process of greedily assigning tasks to resources is 

repeated until no more unmapped tasks exist in the system, or until it is not possible to assign any 

more tasks due to running out of energy or reaching the end of the day. This is shown in 

Algorithm 4 for the Max UPE heuristic in lines 5–11. This algorithm also can use place-holders 

instead of permanent reservations, by replacing “permanent reservations” with “place-holders” in 

line 11 of Algorithm 4. 

3.3.6. Metaheuristics 

3.3.6.1. Overview 

In some cases, none of the heuristics described are well suited to a particular environment. In 

this situation, a strategy based on a concept in [20], permits switching between heuristics 

depending on the current state of the system. We designed two metaheuristics to achieve good 

performance regardless of the energy constraint. These metaheuristics switch between Max UPE 

and Max UPR depending on conditions defined below. 

3.3.6.2. Event-Based Metaheuristic 

The Event-Based metaheuristic chooses one of Max UPE and Max UPR at the start of each 

mapping event and uses that heuristic for the entire mapping event. At any given time during the 

day, we define a “goal energy,” which is the energy that should be consumed up to a specific point 

of the day. This goal energy could also be determined using known task arrival data to potentially 

improve the metaheuristic, but because the environment in this study has an unknown dynamic 

task arrival pattern, we consider the case where the goal is to consume energy at a constant rate so 

that tasks arriving at any point during the day will have energy to use. At the start of each mapping 



68 
 

event, we calculate the sum of energy consumed since the beginning of the day and the energy that 

will be consumed if all tasks in the current mapping also execute (i.e., currently executing tasks 

and tasks with reservations or place-holders). If this energy is greater than the goal energy, the 

Event-Based metaheuristic will use Max UPE because the system has been consuming energy at 

a rate above the goal. Otherwise, the metaheuristic will select Max UPR. 

3.3.6.3. Task-Based Metaheuristic 

The Task-Based metaheuristic will initially select Max UPE or Max UPR using the same 

strategy as the Event-Based metaheuristic described above. If the metaheuristic chooses to use 

Max UPR, it will use the heuristic to assign tasks one by one. As tasks are assigned, the sum of 

energy consumed since the beginning of the day and the energy that will be consumed if all tasks 

in the current mapping also execute is updated. Once this sum reaches the goal energy, the heuristic 

will switch to Max UPE and will finish the mapping event by assigning tasks with Max UPE. 

3.3.7. Finding Allocation Options for a Task 

We designed a technique to select a node allocation for a task within a cluster (line 5 of 

Algorithm 4). Given that nodes in a cluster are homogeneous, the maximum value of any heuristic's 

objective function for each task/P-state combination (e.g., Max UPE) within each cluster is 

achieved when that task finishes execution as soon as possible in that cluster with that P-state. The 

execution time of a task will be the same irrespective of which nodes in a cluster it uses. Because 

of this, finding the earliest possible finish time for a task is equivalent to finding the earliest 

possible start time for the task. The allocation options that are considered for a task are the earliest 

possible start time for each P-state/cluster combination. This strategy was used for all of the 

heuristics that we present in this paper (i.e., the comparison heuristics discussed in 
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Subsection 3.3.4, the utility-aware heuristics detailed in Subsection 3.3.5, and the metaheuristics 

described in Subsection 3.3.6). 

When the earliest possible starting time for a task is found within a cluster, it is possible that 

there will be a set of nodes to choose from that contains more nodes than are requested by the task. 

In this case, we use two criteria to attempt to pick the best subset of nodes. The first of these criteria 

is to pick nodes that cause the smallest number of idle voids in the system (i.e., sections of time 

between the executions of two tasks on node). The second criterion, which is only applied if there 

is a tie in the first criterion, is to compare the size of the idle voids into which the task would be 

inserted, and to choose the nodes with the smallest voids. An example of this process is shown in 

Figure 21a, where a task t is requesting three nodes. The earliest time when three nodes are 

available is a time when four nodes (n3, n4, n5, and n6) are available and we use this algorithm to 

select three nodes out of the four. In this example, n6 and n5 are selected in that order using the 

first criterion, and then n3 is selected using the second criterion (the red arrows in Figure 21 show 

the size of the idle voids being compared in this step). The node n4 is not selected. The motivation 

for these criteria is to reduce the overall fragmentation of the schedule to give future tasks a better 

chance of being backfilled. 

3.3.8. Energy Filtering 

3.3.8.1. Overview 

We have designed energy filtering techniques to improve the effectiveness of our utility-aware 

heuristics under an energy constraint. An energy filter is used to remove allocation options that 

exceed a notion of “fair share” of energy consumption. The motivation for energy filtering is to 

limit the rate at which energy is consumed by the resource manager until the energy constraint is 

reached at the end of the day. Without energy filtering, many heuristics will use up their energy 
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part way through the day, which could result in lost utility due to the inability to execute potentially 

high utility tasks that arrive after the energy constraint has been reached. This is just a heuristic 

approach and its effectiveness will need to be evaluated to determine what is suitable for a typical 

expected environment. 

3.3.8.2. Energy-per-Task Filtering 

We calculate the energy-per-task budget for a task as the fair share of energy that the task is 

permitted to consume. This budget, extended from our serial version of this energy filter in [6] to 

apply to parallel tasks, is calculated using the energy remaining in some interval of time (such as 

a day), and the estimated number of tasks that will be executed in that same interval: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =  𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑖 × 𝑐𝑜𝑟𝑒𝑠 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑖,  (6) 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =  𝑚𝑖𝑛 ( 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑠𝑒𝑑 , 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔), (7) 

𝑒𝑛𝑒𝑟𝑔𝑦-𝑝𝑒𝑟-𝑡𝑎𝑠𝑘 𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑙𝑒𝑛𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 . (8) 

Figure 21. An example of a mapping on a cluster with ten nodes. The colored rectangles represent different 

tasks, and the rounded rectangles represent voids where new tasks can be inserted. (a) State of a cluster 

before assigning task where the first time available to schedule the task is shown. (b) the selected nodes for 

task t Note that n4 is not chosen due to the second tiebreaking criteria described in Subsection 3.3.7. 
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A leniency factor is included that can be used to adjust the filter. As the leniency factor is 

increased, the filter will allow more options for each task. In our simulations, we set this factor by 

performing a parameter sweep to find the best possible leniency value. Any task allocation options 

where the task would consume energy greater than the energy budget are not considered by 

heuristics. 

3.3.8.3. Energy-per-Resource Filtering 

In our previous work, there were only serial tasks resulting in a one-to-one mapping between 

a single task and a single resource. In contrast, here we are considering parallel tasks that can use 

different numbers of resources. We need to consider the resources needed when designing the 

energy filter. We present a new energy-per-resource filter that provides better performance in an 

environment with parallel tasks. We calculate the energy-per-resource budget as the fair share of 

energy-per-resource that a task is permitted to consume. This energy-per-resource budget is 

calculated by dividing the energy remaining in the day by the unallocated resources remaining in 

the system during the day: 𝑒𝑛𝑒𝑟𝑔𝑦-𝑝𝑒𝑟-𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑙𝑒𝑛𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 . (9) 

Again, we multiply by a leniency factor determined by simulations to improve the results of 

this filter. We can then calculate the energy-per-resource of any task allocation as the amount of 

energy that the allocation will consume, divided by the resources allocated to the task, as defined 

in Equation (1). If the energy-per-resource of some task allocation exceeds the energy-per-resource 

budget, then that allocation is not considered by the heuristics. 
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3.4. Simulation Setup 

3.4.1. Overview 

The simulation setup described in this section was designed based on discussions with 

researchers from ORNL and DoD. We generated 48 simulation trials as described in 

Subsection 3.4.2. We simulated a total of 28 hours, but only analyzed the results for the last 24 

hours of each simulation. The first four hours ensure that the simulated system does not begin with 

all nodes in an idle state. 

3.4.2. Generation of Compute System and a Synthetic Workload 

3.4.2.1. Compute System 

The compute system we simulated is composed of 100,000 cores that are distributed across six 

heterogeneous clusters. Of the clusters, four are general-purpose and two are special-purpose. 

Special-purpose clusters are clusters with specialized hardware that are designed to execute only 

specific tasks. For example, the nodes of a special-purpose cluster may have GPUs available and 

would only execute tasks that can utilize the GPUs. It is assumed that each special-purpose cluster 

will have more cores on average than the individual general-purpose clusters. The difference 

between general-purpose and special-purpose clusters is the type of tasks they are able to execute. 

4.2.2. Workload 

In our simulations, two workloads were considered. The first has a mean of 5,000 parallel tasks 

arriving per day and the other has a mean of 10,000 parallel tasks arriving per day. Each of the 

tasks belongs to one of 100 task types that we generate for each simulation trial with different ETC 

values and APC values. Of these 100 task types, 60 are tasks that can execute on general-purpose 

clusters and 40 are tasks that execute on special-purpose clusters. General-purpose tasks can only 
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run on the general-purpose clusters. Of the tasks that execute on special-purpose clusters, 20 types 

can execute only on one of the special-purpose clusters and the other 20 types can only execute on 

the other special-purpose cluster. Because they cannot execute on the same clusters, the only 

interaction between the tasks that execute on general-purpose clusters and the tasks that execute 

on special-purpose clusters is the shared system energy constraint. 

4.2.3. Utility Functions 

To describe a task's utility function, we used three parameters: priority, urgency, and utility 

class [1]. The priority (or starting utility) and urgency parameter for the utility function of each 

task type was generated using the distribution of priority and urgency shown in Table 3 (from [1]). 

The actual starting utility value was chosen uniformly from the starting utility range associated 

with each priority level. For each task of a task type, a utility class (defined in Subsection 3.2.3) is 

randomly selected from one of 20 that we generated for our simulation studies in [1]. 

4.2.4. Single Core Execution Time 

The execution time for each task type on a single core for one of the clusters is sampled from 

a Gaussian distribution. Because we assumed there is a correlation between the single core 

execution time of a task and the starting utility value, the mean of the Gaussian distribution is 

selected based on the starting utility of the task type. This was because, in our intended 

environment, longer running tasks are generally of higher importance. The perfectly correlated 

values for starting utility and single core execution time were defined such that task types with the 

Table 3. Priority and urgency table 

priority level 
starting utility 

range 

urgency rate 

0.6 0.2 0.1 0.01 

critical (6, 8] 2% 2% 0.05% 0% 

high (4, 6] 3.45% 5% 1.5% 3% 

medium (2, 4] 0% 10% 10% 10% 

low [1, 2] 0% 0% 20% 33% 
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minimum possible single core execution time (set to 1 hour) had the minimum possible starting 

utility (set to 1). Similarly, task types with the maximum possible single core execution time (set 

to 18 hours) had the maximum possible starting utility (set to 8). The perfectly correlated values 

are obtained through linear interpolation using these perfectly correlated end points. The perfectly 

correlated values were used as the mean values for the Gaussian distribution described above for 

determining the single core execution time for each task type. The correlation between the single 

core execution time of a task type and the starting utility of a task that we use for the 100 task types 

in the 48 simulation scenarios can be seen in Figure 22. This correlation was generated by using a 

coefficient of variation (COV) value of 0.15 for the Gaussian distribution described above. The 

execution time on other clusters (i.e., the heterogeneity) was modeled using the COV method from 

[21] with a COV parameter of 0.3. To generate this heterogeneity using the COV method, the 

execution time on each other cluster is sampled from a gamma distribution with the COV of 0.3 

and a mean equal to the correlated single core execution time described above. The entries of the 

APC matrix were generated using the COV method for generating ETC matrices [21]. The power 

consumption on one of the clusters is generated by sampling a gamma distribution with a mean 

power consumption of 133 watts and a COV of 0.2. The power consumption for each of the other 

clusters is then sampled from a new gamma distribution with a COV of 0.2 and a mean equal to 

the power consumption obtained for the first cluster. 

4.2.5. Individual Task Arrivals 

Once we had the completed set of task types, individual tasks were generated for each task 

type. We defined a mean number of total tasks to generate an equal mean number of tasks for each 
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task type. From this mean number of tasks, the mean rate of task arrival is calculated by dividing 

the mean number of tasks of each type by the duration of a day (24 hours).  

We sample the uniform distributions obtained from Table 4 to determine that the number of 

cores that each task of a task type will use. The values in this table, which were used for our 

simulation study, were based on typical DOE and DoD environments. Next, we generated the 

arrival pattern for a task type. If the task type requires fewer than or equal to 4096 cores, then its 

tasks will arrive with a sinusoidal pattern throughout the 24-hour period. All other tasks will 

instead arrive with a high rate during work hours (i.e., between 9:00 AM and 6:00 PM) and a low 

rate at other times during the day. This is done to model the expected arrival patterns for workloads 

of interest to DOE and DoD. The high rate is equal to two times the mean rate of the task type and 

the low rate is set below the mean rate so that the average arrival rate over the day is still equal to 

the mean rate.  

Figure 22. The correlation between single core execution time and starting utility for the 48 simulation 

scenarios, each with 100 task types, for a total of 4,800 points. 
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4.2.6. Parallel Execution Time Scaling 

The execution time for parallel tasks in our simulations is determined from the single core 

execution times using the Downey model for the speedup of parallel programs [22]. We use the 

high variance model, which is defined in terms of two parameters 𝐴 (the average degree of 

parallelism for the program) and 𝜎 (the COV of the parallelism for the program). The 𝜎 value used 

in our simulations is sampled uniformly between 4 and 10 for each task type and 𝐴 is equal to the 

average number of nodes requested by the task type. This model represents tasks that have a 

sequential component of length 𝜎 and a parallel component with an execution time of 1 when the 

task is given its maximum parallelism. The parallel component has a maximum parallelism of 𝐴 +𝐴𝜎 − 𝜎. The execution time of a task in terms of the number of nodes, 𝑛, allocated to it is then 

defined as: 

 𝑇(𝑛) = {    𝜎 + 𝐴+𝐴𝜎−𝜎𝑛 ,   1 ≤ 𝑛 ≤ 𝐴 + 𝐴𝜎 − 𝜎    𝜎 + 1,                       𝑛 > 𝐴 + 𝐴𝜎 − 𝜎 (10) 

4.2.7. P-states 

Cores may have many P-states. For our simulation study, we assumed they each had three P-

states. This provides for a choice between the lowest P-state, an intermediate P-state, and the 

highest P-state. We also ran simulations with fifteen P-states and found that the relative 

performance of the heuristics was the same as using three P-states. Because of this, we consider 

three P-states to be a good sample for modeling the advantages that can be gained from having 

multiple P-state options. This allows for energy-aware heuristics and techniques to improve energy 

Table 4. Core distribution of tasks. 

percentage of tasks min max 

20% 2 4 

20% 5 256 

40% 257 4096 

19% 4097 max cores of cluster − 1 

1% max cores of cluster max cores of cluster 
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efficiency while keeping the search space for allocations tractable. All cores in each node must 

always have the same active P-state. For our simulations, the differences among P-states for the 

same node type were defined using a “power scaling factor” for each P-state. This factor was used 

to scale the average power usage and execution time of each task for that P-state. The three P-

states have power scaling factors of 1.0, 0.75, and 0.5. A “randomness factor” also was used so 

that the power scaling factor is not the same for all combinations of task types and clusters. Each 

randomness factor was generated by sampling a gamma distribution with a mean of 1, and a COV 

of 0.3 for general-purpose tasks and 0.2 for special-purpose tasks. The power consumption scaling 

for each of the three P-states is determined by sampling from one of three gamma distributions 

(each P-state has a different distribution). These gamma distributions have means equal to the 

power scaling factor associated with that P-state multiplied by a randomness factor (generated as 

described above). In addition, the gamma distributions have a COV of either 0.03 for general-

purpose tasks or 0.02 for special-purpose tasks. The execution time scaling for each P-state was 

determined in a similar way to the power scaling. The execution time scaling for each of the three 

P-states is determined by sampling from one of three gamma distributions (each P-state has a 

different distribution). These gamma distributions have means equal to the square root of the 

product of the power scaling factor associated with that P-state and a randomness factor [6]. The 

final execution time scaling was found by taking the reciprocal of this value so that the execution 

time of the task type is increased when there is less power. 

3.4.3. Generating a Workload from a Real System Trace 

We also simulated a system that used a workload of tasks generated from the log of the Curie 

Supercomputer in France from Dror Feitelson's Parallel Workloads Archive [24, 24]. We used the 

“clean” version of the Curie trace and selected 48 days from the trace for our simulations. Because 
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we simulate 28 hours in total, we use the last four hours from the previously simulated day as the 

first four hours of the 28 hours. In addition, we removed any tasks that requested more than 4,096 

cores from the trace to keep the size of the simulations tractable. Over the 48 days of log data, this 

resulted in the removal of 1,114 tasks out of 92,298 tasks in total (1.2% of the tasks). 

From this trace, we took each task's arrival time, execution time, and the number of cores that 

were allocated to it. Unlike the environment we considered in this study, the data we took from 

the Curie trace was for a homogeneous system. To generate a workload for a heterogeneous 

system, we use the execution time as the task's execution time on one of the clusters of the 

simulated system and generate values for the other clusters using the method described above in 

Subsection 3.4.2. In addition, the size of the simulated system in cores is equal to a fraction of the 

92,160 cores of the Curie system. This fraction is varied between 10% and 80% of the cores in our 

simulations. We always use a fraction of the cores to ensure that the system is oversubscribed (all 

tasks in the Curie trace started and finished execution on the real Curie system). All other aspects 

of the workload and system are generated using the same methods described above in 

Subsection 3.4.2. 

3.4.4. Resource Management Parameters 

3.4.4.1. Dropping Threshold 

The dropping threshold for our resource manager was set to 0.5 for the majority of our 

simulations. We also simulated scenarios where there was no dropping or a dropping threshold of 

0, 0.1, or 0.3. Using a dropping threshold of 0.5 means that tasks that could no longer earn utility 

greater than 0.5 if they were to start execution immediately in their fastest cluster were dropped 

from the system. We selected this threshold value because it gives all tasks the opportunity to 

execute (i.e., because all tasks arrive with a starting utility of at least 1.0, it is possible for them to 
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be mapped to nodes in the system). Lower dropping thresholds resulted in all heuristics earning 

less or equal utility than they did with a dropping threshold of 0.5. In actual practice, the threshold 

can be set based on simulations modeling the real system environment to be used. Dropping may 

also be disabled entirely, but this could greatly decrease system performance in terms of utility 

earned depending on which heuristic is used. 

3.4.4.2. Energy Filter Leniency Factors 

We define the maximum system utility as the utility that would be earned if all tasks began 

execution at the time that they were submitted to the system. This is an upper bound on how much 

utility can be earned, i.e., the system utility, but is unobtainable in an oversubscribed environment 

because by definition all tasks cannot earn their individual maximum utility values (as discussed 

in Subsection 3.2.3). The leniency factors for the two energy filters were both selected empirically 

using simulations, by varying the energy leniency factor for the Max UPR heuristic with place-

holders as seen in Figure 23 and Figure 24 for a mean of 5,000 tasks arriving per day. The 95% 

mean confidence intervals are based on the 48 simulation trials. The leniency factor that performed 

the best was then used for all utility-based heuristics that were not energy-aware (i.e., Max Util, 

Max UPT, and Max UPR) with permanent reservations and with place-holders. Using these results, 

a leniency factor of 2.0 was chosen for the energy-per-task filter and a leniency factor of 4.0 was 

chosen for the energy-per-resource filter. The energy leniency factors for a mean of 10,000 task 

arrivals were determined using the same method. In practice, the leniency factors can be set based 

on the results of simulations modeling the real system environment to be used. 
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4.4.3. Energy Constraint 

We set the energy constraint by running simulations without an energy constraint and 

observing how much energy the best heuristics consumed. We then set the energy constraint to a 

fraction of the energy that the best heuristic consumed to show the advantages of the energy-aware 

approaches. 

The energy constraint for our simulations for a mean of 5,000 tasks arriving was initially set 

to 70% of the energy consumption for the Max Util with place-holders heuristic (and no energy 

constraint) because this heuristic earned the highest mean percentage of maximum utility. This 

resulted in an energy constraint of 12 gigajoules, which was used for most of our simulations. This 

provided a good starting point to ensure that the system would be constrained in terms of energy. 

In addition, we varied the energy constraint for this system from 8 gigajoules to 18 gigajoules to 

study a wider range of constraints. For our study of the workload generated using the Curie trace, 

we varied the energy constraint from 8 gigajoules to 26 gigajoules. 

Figure 23. A range of energy leniency factors using energy-per-task filtering for the Max UPR with 

place-holders heuristic. 
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When the level of oversubscription of the system was increased by modeling a mean of 10,000 

task arrivals per day, and there was no energy constraint, Max UPR with place-holders was the 

best heuristic. The energy constraint for a mean of 10,000 tasks arriving per day was set to 70% 

of the energy consumed by the Max UPR with place-holders heuristics equal to 15 gigajoules. In 

a real system, the energy constraint would be set by the system administrator. 

3.5. Simulation Results 

3.5.1. Comparing 5,000 and 10,000 Tasks per Day 

In Figure 25a, the percentage of maximum system utility earned in an energy constrained 

environment for a mean of 5,000 tasks is shown. Here, the utility-based heuristics made use of task 

dropping. In addition, results are shown for simulations where the utility-based heuristics used no 

energy filtering, energy-per-task filtering, and energy-per-resource filtering. The energy 

consumption for these results can be seen in Figure 25b with an energy constraint of 12 gigajoules. 

Results using the energy filters are not shown for the UPE heuristic because they had identical 

Figure 24. A range of energy leniency factors using energy-per-resource filtering for the Max UPR 

with place-holders heuristic. 
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performance in this environment. Using either energy filtering technique allows the other utility-

based heuristics to operate with a higher level of energy efficiency. This allows them to earn 

significantly more utility than they did when an energy constraint was set with no energy filtering. 

The confidence intervals in Figure 25 are based on the 48 simulation trials. The set of comparison 

heuristics (Random, Conservative Backfilling, EASY Backfilling, and Multiple Queues) did not 

use the energy filters because they are not applied to these heuristics in the literature. 

The utility-aware heuristics (Max Util, Max UPT, Max UPR, and Max UPE) that we proposed 

to solve this problem are able to earn significantly more utility than the comparison heuristics from 

the literature that do not consider utility and make permanent reservations instead of using place-

holders (EASY Backfilling, Conservative Backfilling, and Multiple Queues). Because the system 

is oversubscribed and these comparison heuristics attempt to execute tasks in their FCFS arrival 

order, they will often run tasks that have had significant decay in their utility functions, resulting 

in less overall utility. The comparison heuristics obtain close to 35% of the maximum system 

utility on average, while the worst performing utility-aware heuristics earn an average of 55% of 

the maximum system utility. Finally, the best performing heuristics have an average utility of 

around 73% of the maximum system utility. 

The energy-per-resource filter that we designed during this study outperformed the energy-

per-task filter, earning 8% more utility on average in the case of Max UPR with place-holders, as 

seen in Figure 25a and Figure 25b for a mean of 5,000 task arrivals. This is due to the increased 

ability of the energy-per-resource filter to execute tasks that have a higher amount of resources 

allocated to them (see Equation (1)). Recall that tasks that have longer execution time in general 

have higher starting utility values (see Figure 22). The energy-per-task filter will almost always 

remove all options for these tasks because of the large amount of energy that they consume due to 
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the increased amount of resources allocated to them (Equation (1)). We also examined how the 

energy-per-resource filter performs with a higher level of oversubscription created by a mean of 

10,000 task arrivals per day. The results with this higher level of oversubscription can be seen in 

Figure 26. The relative performance of Max UPR with place-holders and Max UPE with place-

(a) 

(b) 

Figure 25. Results for a mean of 5,000 tasks arriving per day. The utility-based heuristics utilize task 

dropping with a dropping threshold of 0.5, and the utility-based heuristics that are not energy-aware are 

also shown with and without the energy-per-task and energy-per-resource filters. (a) The percentage of 

maximum utility earned with 95% confidence intervals. (b) The energy consumption of each heuristic 

with 95% confidence intervals. 
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holders is comparable to the results for a mean of 5,000 task arrivals per day, but the performance 

of Max UPT with place-holders has degraded such that the other place-holder heuristics perform 

better with no overlapping 95% confidence intervals, obtaining up to 50% more utility in the case 

of Max UPR with place-holders. Max UPT does poorly because it prioritizes tasks tasks with 

shorter execution times (it does not consider the number of nodes a task is assigned to). Tasks that 

are parallelized over many nodes will often have the shortest execution times. Max UPT will 

prioritize these tasks, which is inefficient in terms of resources. This results in especially poor 

performance because of the high level of oversubscription in this environment. 

The performance of the comparison heuristics from the literature became significantly worse 

with this increase in oversubscription. With so many tasks arriving, it is more common for these 

heuristics to schedule tasks that earn insignificant amounts of utility. The permanent reservations 

for these tasks can extend far into the future preventing newly arriving tasks from running quickly. 

When Figure 26a is compared with the results in Figure 25a, the difference between the 

performance of the heuristics that earn the most utility (Max UPR with place-holders and Max 

UPE with place-holders, which have 49.5% and 48.7% of the maximum utility on average, 

respectively) and the comparison heuristics from the literature such as Conservative Backfilling 

and EASY Backfilling, which obtain averages of only 15.3% and 7.1% of the maximum utility, 

respectively, has become more significant. 

Even though the Max UPR with place-holders heuristic using the energy-per-resource filter is 

able to earn comparable utility to the Max UPE with place-holders heuristic for multiple levels of 

oversubscription, shown in Figure 25a and Figure 26a, the Max UPE with place-holders heuristic 

consumes less energy as seen in Figure 25b and Figure 26b, where the average energy consumed 

by Max UPR with placeholders increases by 20% when compared to Max UPE with place-holders. 
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We consider Max UPE with place-holders to be the best heuristic that we have designed for use in 

energy constrained environments because it is able to earn utility comparable with all other high 

performing heuristics, while consuming less energy. 

(a) 

(b) 

Figure 26. Results for a mean of 10,000 tasks arriving per day. The utility-based heuristics utilize energy-

per-resource filtering and task dropping with a dropping threshold of 0.5. (a) Percentage of maximum 

utility earned with 95% confidence intervals. (b) Energy consumption of each heuristic with 95% 

confidence intervals. 
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We do not expect the overhead of our heuristics to be prohibitive when running on a typical 

computing environment's frontend or scheduling node. A single mapping event for the Max UPE 

with place-holders heuristic took 0.1 seconds on average when simulating the results shown in 

Figure 25. If the number of P-states were increased to 15, our simulations showed that the Max 

(a) 

(b) 

Figure 27. Results for a mean of 5,000 tasks arriving per day. A comparison of the two metaheuristics with 

the heuristics from Subsection 3.3.6, where the utility-based heuristics all use place-holders and all 

heuristics use a dropping threshold of 0.5. (a) Percentage of maximum utility earned with 95% confidence 

intervals. (b) Energy consumption of each heuristic with 95% confidence intervals. 
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UPE with place-holders heuristic would only take 0.3 seconds to execute on average. In addition, 

with 15 P-states the performance of the heuristic in terms of utility earned and energy consumed 

is similar. When considering the larger number of tasks shown in Figure 26, the Max UPE with 

place-holders heuristic took less than two seconds to execute. A single mapping event for the Max 

UPR with place-holders and energy-per-resource filtering took three seconds on average when 

simulating the results shown in Figure 25 and the Max UPR with place-holders heuristic with 

energy-per-resource filtering took 80 seconds in the larger simulations shown in Figure 26. With 

the smaller number of tasks, both of these heuristics complete well within the scheduling interval 

of a typical cluster scheduler (usually approximately 60 seconds). Max UPE with place-holders 

continues to execute well within this scheduling interval even for larger numbers of tasks. 

3.5.2. Evaluation of the Metaheuristics 

We also designed two metaheuristics that combine Max UPR and Max UPE. Results 

comparing these heuristics to the other heuristics are shown in Figure 27. In these results, all 

heuristics utilize a dropping threshold of 0.5 and results are not shown for the utility-based 

heuristics with permanent reservations because permanent reservations never performed better 

than place-holders in any of our simulations. These results show that the metaheuristics are able 

to use the entire energy budget for the day while earning an average utility that is comparable to 

Max UPE. The advantage of the metaheuristics over Max UPE is discussed in Subsection 3.5.4. 

Because the Event-Based metaheuristic requires simpler operations, it runs faster than the Task-

Based Metaheuristic, but their performance in terms of utility earned is the same, therefore we 

consider the Event-Based metaheuristic to be a better metaheuristic. Another significant advantage 

to the metaheuristics over Max UPR is that they perform well even without the use of an energy 

filter. In our simulations, using an energy filter resulted in a significant increase in the execution 
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time of the heuristics. Because the metaheuristics do not use an energy filter, the overhead of 

running these heuristics is significantly lower than Max UPR with place-holders and the energy-

per-resource filter. The Event-Based Metaheuristic completes mapping events in the simulations 

used to generate Figure 27 with an average execution time of 0.1 seconds compared to an average 

execution time of three seconds for Max UPR with place-holders and the energy-per-resource 

filter. 

3.5.3. The Effects of Varying the Dropping Threshold 

The dropping threshold was varied for the 5,000 task environment to obtain the results shown 

in Figure 28. The figure shows the percentage of maximum utility earned by all of the heuristics 

for each dropping threshold. In this environment, the energy constraint is 12 gigajoules. These 

results demonstrate the effect of various dropping thresholds below the minimum starting utility 

of any task in the system. For the utility-based heuristics, dropping does not have a significant 

effect on performance. For the comparison heuristics other than Random, there is a significant 

increase in performance when the dropping of tasks is enabled and the dropping threshold is greater 

than 0. For example, when increasing dropping threshold from 0 to 0.1, Conservative Backfilling, 

EASY Backfilling, and Multiple Queues see increases of 28%, 20%, and 28% in their average 

utility earned, respectively. This is because these heuristics do not normally consider utility and 

consider the tasks in FCFS order. This means that the oldest tasks, which are the most likely to 

have a large decay in their utility functions, will be scheduled first. Using dropping with these 

heuristics ensures that all tasks that get scheduled by the heuristic will earn some utility. This effect 

is not as significant for the Random heuristic (there is an increase of 5% when increasing the 

dropping threshold from 0 to 0.1) because it often skips over some of the tasks that would not earn 

a significant amount of utility. 
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3.5.4. Energy Constraint Analysis 

In Figure 29a, the percentage of maximum system utility earned in eleven energy constrained 

environments for a mean of 5,000 tasks is shown. Here, all heuristics employed task dropping. The 

energy consumption for these results can be seen in Figure 29b. The confidence intervals in Figure 

29 are based on the 48 simulation trials. 

It can be seen in Figure 29a that for environments that have a tight energy constraint, the Max 

UPE heuristic and both metaheuristics (Event-Based and Task-Based) are able to earn the most 

utility. On average, they earn 60% of the maximum system utility in the case with an 8 gigajoule 

energy constraint. The reason for this is because these heuristics consider the energy consumption 

of tasks when making mapping decisions. Max UPE will always choose the most energy efficient 

Figure 28. Results for a mean of 5,000 tasks arriving per day, where the dropping threshold 

is varied, the energy constraint is 12 gigajoules, and none of the heuristics utilize the energy 

filtering techniques. The percentage of maximum utility earned for each environment with 

95% mean confidence intervals is shown. 
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option for any task while the metaheuristics will attempt to use energy at a constant rate throughout 

the day so that tasks arriving later in the day have the opportunity to execute. 

In the environments with a loose energy constraint, the Max Util heuristic, Max UPR heuristic, 

and the metaheuristics are able to earn the most utility. In the case with an 18 gigajoule energy 

(a) 

(b) 

Figure 29. Results for a mean of 5,000 tasks arriving per day where the energy constraint is varied from 8 

gigajoules to 18 gigajoules. None of the heuristics utilize the energy filtering techniques. (a) Percentage of 

maximum utility for a variety of energy constraints with no energy filter with 95% mean confidence 

intervals. (b) Energy consumption for a variety of energy constraints with no energy filter with 95% mean 

confidence intervals. 
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constraint, they earn almost 80% of the maximum system utility on average. This is because in 

these environments energy is not a significant constraint and it is more important to use the system 

resources efficiently by selecting the tasks that would earn the highest utility. In addition, the 

metaheuristics behaved similarly to Max UPR because with a loose energy constraint they rarely 

(a) 

(b) 

Figure 30. Results for a mean of 5,000 tasks arriving per day where the energy constraint is varied from 8 

gigajoules to 18 gigajoules. All of the heuristics make use of the energy-per-resource filter with a leniency 

factor of 4.0. (a) Percentage of maximum utility earned for each environment with 95% mean confidence 

intervals. (b) Energy consumption for each environment with 95% mean confidence intervals. 
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select Max UPE. The utility-aware heuristics that do not consider energy also see a very significant 

drop-off in terms of utility earned as the energy constraint becomes tighter. 

For the cases with intermediate energy constraints, the metaheuristics earn the highest utility. 

In the environment with a 15 gigajoule energy constraint, the metaheuristics get 79% of the 

maximum system utility while the Max UPE and Max UPR heuristics obtain 74% of the maximum 

system utility on average and the corresponding 95% confidence intervals do not overlap. This is 

because they are energy-aware, but do not always choose the most energy efficient option for a 

task if a task with higher utility is available. In these environments, Max UPE will maximize its 

energy efficiency, resulting in reduced utility earned due to not using the entire energy constraint. 

3.5.5. Impact of Integrating an Energy Filter 

Results for the same set of environments using the energy-per-resource filter are shown in 

Figure 30. Figure 30a shows the percentage of maximum system utility earned by each of the 

heuristics with this filter. This filter improves the utility earned by the utility-based heuristics when 

their energy consumption without an energy constraint is greater than the energy constraint. In all 

cases, the Event-Based metaheuristic earns utility that is comparable to the other best performing 

heuristics. The leniency factor used in these simulations was the one found in Section 3.4 for the 

case with a 12 gigajoule energy constraint. Figure 30b shows the energy consumption for each of 

the heuristics. These results suggest that it is only worth spending time determining the best 

leniency factor for very tight energy constraints because the metaheuristics are able to earn the 

highest utility for the more the forgiving constraints without energy filtering.  
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3.5.6. Analyses with Curie Workload Arrival Trace 

3.5.6.1. Results without an Energy Constraint 

Figure 31a shows the percentage of maximum system utility earned in 15 environments using 

the workload generated from the Curie system trace. The different cases shown for each heuristic 

(a) 

(b) 

Figure 31. Results when tasks are based on a trace from the Curie supercomputer and there is no energy 

constraint. In these environments, the size of the system is varied from 10% to 80% of the original Curie 

system. (a) Percentage of maximum utility earned for each environment with 95% mean confidence 

intervals. (b) Energy consumption for each environment with 95% mean confidence intervals. 
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represent different system sizes. The size of each system is given as a percentage of the size in 

cores of the actual Curie system associated with the trace. Here, all heuristics made use of task 

dropping. The energy consumption for these results can be seen in Figure 31b. The confidence 

intervals in Figure 31 are based on the 48 simulation trials. 

Figure 31a shows that the utility earned by the metaheuristics, Max UPT, and Max UPR is the 

highest among the heuristics. This makes sense because this environment is not energy constrained 

and the heuristics that do not consider the energy consumed by a task perform the best. The reason 

for the poor performance of Max Util is likely because there are periods in this trace where very 

large numbers of small tasks arrive to the system needing to be mapped. Because the maximum 

utility given to a large task is eight, if it is possible to execute more than eight small tasks that 

would earn one utility in that time then the larger task should not be executed. Max Util 

underperforms in comparison to the other heuristics for these task arrival cases because it only 

considers maximizing the utility earned by each task. The other utility aware heuristics are able to 

account for this (by considering time or resources) and select the smaller tasks instead. Max UPE 

is able to achieve high performance in these scenarios because tasks with a very short execution 

time use less energy than the tasks with a long execution time. 

3.5.6.2. Results with an Energy Constraint 

Figure 32 shows the performance in the Curie trace environment for a simulated system with 

80% of the total number of cores of the actual Curie system. These results are shown for a range 

of energy constraints. The 95% mean confidence intervals in these results are larger than in the 

other results because variance between task arrival patterns on different days of the trace can 

significantly affect the performance of the heuristics. The heuristic that earns the highest average 

utility for the tighter energy constraints, as seen in Figure 32a, is Max UPE. This is because the 



95 
 

Max UPE heuristic always chooses the most energy efficient mapping option for each task. The 

metaheuristics still perform well relative to every utility-aware heuristic except for Max UPE. 

However, they do not perform as well in some of these environments because they attempt to keep 

the rate of energy consumption constant throughout the day. In this environment, there are often 

very large bursts of tasks that arrive all at once. This means that the rate of energy consumption 

(a) 

(b) 

Figure 32. Results when tasks are generated using a trace from the Curie supercomputer and there is a 

varied energy constraint. In these environments the size of the system is equal to 80% of the original Curie 

system. (a) Percentage of maximum utility earned for each environment with 95% mean confidence 

intervals. (b) Energy consumption for each environment with 95% mean confidence intervals. 
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throughout the day should not be assumed to be constant and energy should be saved for the 

periods when a large set of tasks is arriving. The arrival pattern of the tasks is not known in advance 

because the environment is dynamic. If the arrival pattern was known, then the metaheuristics 

could be modified to consume energy at a rate consistent with the rate of arriving tasks in the 

system, which may result in increased performance. This arrival pattern could also be 

approximated through the use of historical data. The other utility-aware heuristics do not perform 

as well as Max UPE or the metaheuristics, but still perform better than the comparison heuristics 

(Random, Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues). Similar 

to the results with a fully synthetic workload, the energy consumption (shown in Figure 32b) is 

lowest for the Max UPE heuristic. The other heuristics have energy consumption that stays closer 

to the energy constraint. 

3.5.7. Discussion of Results 

The results shown in this section indicate that: (a) the use of place-holders results in more 

utility earned than permanent reservations; (b) utility-based heuristics earn more utility than the 

comparison heuristics; (c) in most environments, the Event-Based Metaheuristic and Task-Based 

Metaheuristic earn the highest utility; (d) the energy filtering techniques are only beneficial when 

the energy constraint is very tight; and (e) when the Max UPE heuristic earns utility equal to the 

other best performing heuristics it often consumes significantly less energy. Based on these results, 

it is clear that the best heuristics for these HPC environments are Max UPE and the Event-Based 

Metaheuristic. In addition, it can be beneficial to add the energy-per-resource filter (which was 

shown to be better than the energy-per-task filter) to these heuristics if the energy constraint is 

tight, as shown in the difference between Figure 29 and Figure 30. We also evaluated and 

compared several of our heuristics on a testbed system as discussed in the next section. 
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3.6. Experiment 

3.6.1. Experimental Setup 

We conducted an experiment on a testbed system, where we implemented several of our 

heuristics. We used an IBM HS22 blade server with four homogeneous clusters. Each cluster 

consists of two Intel Xeon X5650 six core processors (2.67 GHz), with 24 threads (two threads 

per core) and 24GB RAM (memory). Each cluster runs the Kernel-based Virtual Machine (KVM) 

hypervisor [25]. We treated each of the 24 threads as an individual CPU for a virtual machine 

(VM). A VM in the experimental setup corresponds to a node in the simulation environment. For 

consistent use of terminology in this paper, we referred to VM as a node in the experimental study. 

We recorded the power consumption of each node using the IBM Advanced Management Module 

[26]. The nodes in a given cluster have the same pre-determined configuration (core count and 

RAM allocation). However, the node configuration across the clusters shows heterogeneity as 

illustrated in Table 5 (columns 2−4). The allocation of cores and RAM varies across clusters to 

emulate a heterogeneous environment. 

We used a subset of NAS-NPB MPI benchmarks [27] for the experimental evaluations. This 

subset included an integer sort (IS), Poisson equation solver (MG), and conjugate gradient (CG). 

Similar to the simulation study, we assumed that each benchmark had a fixed number of required 

cores, e.g., the IS.8 is an eight thread task with the requirement of eight cores.  

Table 5. Cluster configuration showing heterogeneity. 

cluster 
cores per 

node 

Ram size (GB) 

per node 

total number of 

nodes 

maximum allowable 

operating frequency (MHz) 

maximum 

C-state 

cluster 1 1 1 16 1596 C1 

cluster 2 2 1 8 1862 C6 

cluster 3 4 1.5 4 2261 C1 

cluster 4 8 2 2 2660 C6 
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Each node on cluster 4 has more cores than the nodes of the other clusters. This means that 

applications scheduled on cluster 4 will often have less inter-node communication than the other 

clusters. For example, a task that requires eight cores will be able to run entirely on one node in 

cluster 4 and would have no inter-node communication. On the other clusters, it would need to use 

additional nodes and may have to communicate between them. Because of this, if the memory 

requirement (i.e., the minimum amount of memory required to execute the benchmark without 

significant slowdown due to swapping) is met for a given benchmark by all the clusters, then 

cluster 4 will always have better execution time than the others. In the simulation study, the 

purpose behind the heterogeneity across the clusters was to have best execution time for different 

task type on different clusters. For our experimental study, where we emulate heterogeneity, this 

is only feasible if certain benchmarks are selected such that their memory requirements may not 

be satisfied by all the clusters but only a few. IS_CG.8 is an eight core customized task created by 

combining IS and CG benchmarks. The memory requirements for IS and CG are 2GB and 1GB, 

respectively. The combined memory requirement for the IS_CG is 3GB. This task has minimum 

execution time on cluster 3, because 3GB memory is available for eight cores (two nodes). Cluster 

4 provides only 2GB memory for eight cores (one node), which leads to accessing of swap memory 

and increase in the execution time. Table 6 shows the estimated time to compute (ETC) matrix for 

our benchmarks. MG.8 has a minimum memory requirement of 3.5 GB. Therefore, execution of 

MG.8 on clusters 3 and 4 is not feasible due to unavailability of minimum required memory with 

eight cores. 
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Even after addressing the heterogeneity issue for clusters and benchmark execution time, we 

still observed that the maximum power consumption was approximately same for a given 

benchmark on all the clusters. Therefore, the dynamic energy consumption for a benchmark 

became linearly proportional to its execution time and preference of resource allocation for this 

benchmark was same for the UPR and UPE heuristics. This created a challenge for differentiating 

the UPE from UPR. To overcome this challenge, we set the maximum limit on P-states (operating 

frequency) and maximum possible C-states (sleep states) for each cluster as shown in the last two 

columns of Table 5. By setting a limit to the maximum P-state, we were able to vary the maximum 

dynamic power consumption for a given benchmark across the clusters. With lower range on C-

states, we were able to increase the idle power consumption on clusters 1 and 3, and this gave us 

more flexibility in varying the dynamic power consumption for each task across all the clusters. 

Table 7 represents the estimated energy consumption to compute (EEC) for all the benchmarks on 

different clusters. In our experimental study, each benchmark represents a task. 

Table 6. Estimated time to compute (ETC) matrix. 

task 
core 

requirement 

execution time on 

cluster 1 (sec) 

execution time on 

cluster 2 (sec) 

execution time on 

cluster 3 (sec) 

execution time on 

cluster 4 (sec) 

IS.8 8 1675 750 552 430 

MG.8 8 1100 712 n.a. n.a. 

MG.16 16 702 500 380 326 

IS_CG.8 8 1039 900 700 1366 

Table 7. Estimated energy to compute (EEC) matrix. 

task 
energy on 

cluster 1 (J) 

energy on 

cluster 2 (J) 

energy on 

cluster 3 (J) 

energy on 

cluster 4 (J) 

IS.8 25,962 35,250 17,388 28,380 

MG.8 27,500 41,296 n.a. n.a. 

MG.16 34,398 55,000 30,400 50,530 

IS_CG.8 23,897 47,700 27,650 105,865 
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3.6.2. Workload Generation, Experimental Flow, and Data Collection 

Our synthetic workload was designed such that at a regular interval of 120 seconds (on 

average) a new task arrived with a probability of 40% for the task being IS.8, 40% for the task 

being IS_CG.8, 10% for the task being MG.16, and 10% for task being MG.8. The task inter-

arrival time was selected as 120 seconds (experimentally determined) so that the system could 

achieve non zero utility for more than 98% of the tasks. IS.8 and IS_CG.8 were given a higher 

probability because they required fewer core count than MG.16 and provided more options for 

cluster selection compared to MG.8. We generated a workload based on these constraints for a 

duration of three hours. Each task was associated with a utility function. For each task, maximum 

utility value was randomly selected in the integer range of one to four with uniform probability. 

For each task the maximum utility was set to decay after 2.5 times of task's minimum execution 

time. The utility function was set to reach 0 at four times of task's minimum execution time. 

Our experimental setup consisted of a centralized scheduler (CS) and four local schedulers 

(LS) (one per cluster). We used the CS for running heuristics on the input workload, and tracking 

the total utility earned by the scheduler and the energy consumption of the whole system. We used 

the LS to collect the list of tasks from the CS, schedule them on the available nodes, monitor their 

progress, and collect cluster power consumption. We used the internal clock of the CS to compare 

the time stamp of each task in the workload. Inside CS, each mapping event occurs at a regular 

time interval of 50 seconds. On each mapping event, we updated the waiting task queue with the 

new tasks, and monitored the status of pre-scheduled tasks by communicating with LS of each 

cluster. Upon the completion of a task, we updated the total system utility earned since the last 

mapping event. Based on the state of the nodes (available or busy) and the wait queue, we ran the 
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heuristics to identify the next set of tasks for scheduling. We considered dynamic energy as the 

energy metric for all the heuristics. 

3.6.3. Experimental Results 

The duration for each experiment was set to 180 minutes to utilize the generated three hour 

workload. We repeated the experiment four times for each of the heuristics using the same 

workload. We then calculated the average utility for each heuristic. We calculated the maximum 

limit on dynamic energy by running the Max UPR heuristic for 180 minutes. We defined an energy 

constrained environment by setting a new threshold relative to the maximum limit on dynamic 

energy. We used 85% and 70% as the two thresholds to compare the behavior of all the heuristics 

under different energy constraints. We terminated the experiment when either the time limit 

reached the 180 minute mark or dynamic energy consumption exceeded the energy constraint set 

for the experiment.  

Figure 33. Utility earned versus energy constraint, as percent of maximum allowed, where 

maximum is 2.8 megajoules. The standard deviation is shown for each bar. 
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Figure 33 shows the plot of utility earned for the EASY Backfilling, Max UPR, Max UPE, and 

the Event-Based Metaheuristic under three energy constraints. Task selection criterion for the 

EASY Backfilling is independent from the utility of the task. Therefore, the utility earned by the 

EASY Backfilling is less than the utility based heuristics for all energy constraint levels. With 

100% energy constraint, we see the utility earned by Max UPR, Max UPE, and the Event-Based 

Metaheuristic is approximately the same. As the energy constraint becomes tighter, fewer tasks 

get completed resulting in a reduction in the total utility earned by all heuristics. Max UPE and the 

Event-Based Metaheuristic (switches between Max UPR and Max UPE), under tighter energy 

constraints, behaved similarly and resulted in around 20% and 18% increase in total utility earned 

compared to the Max UPR heuristic for the 85% and 70% energy constraints, respectively. With 

the 100% energy constraint, Max UPR, the Event-Based Metaheuristic, and EASY Backfilling 

consumed approximately all of the allocated energy budget, but Max UPE consumes only 92% of 

the energy budget. 

We performed simulations for a system with only one P-state option for each cluster to better 

match these experiments. In these simulations, the relative performance of the heuristics was very 

similar to these experimental results. For example, in an unconstrained system the simulations 

showed that Max UPE, Max UPR, and the Event-Based Metaheuristic earned similar utility. When 

an energy constraint was added, Max UPE and the Event-Based Metaheuristic earned the most 

utility. The similarity of these results suggests that the assumptions we made in designing our 

simulations (e.g., deterministic execution times) do not significantly alter our results and that our 

conclusions about the relative performance of each heuristic from these results apply to actual 

systems. 
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3.7. Related Work 

Many heuristics and techniques for resource management have been designed to operate in 

parallel dynamic HPC environments. Many of them, however, are designed for metrics that are 

not applicable to our oversubscribed, utility-based environment because they use fairness and time-

based objectives as their performance measure (e.g., [8, 9, 28−30]). When designing resource 

managers for parallel resource allocation, it is common to start with Conservative Backfilling or 

EASY Backfilling and modify one of them to generate an improved heuristic. In [28], the authors 

designed an iterative Tabu search algorithm to improve the fairness of Conservative Backfilling. 

The Conservative Backfilling heuristic was also modified in [29] to create a heuristic that improves 

the average turnaround time of tasks. One of the reasons that our work differs from these is that 

we use the total utility earned over an interval of time as our performance measure. 

Other authors have determined that utility functions are an effective metric for measuring the 

performance of resource managers in oversubscribed environments (e.g., [31, 32]). This is done 

through surveying the literature in [31] and through the development of a framework for measuring 

supercomputer productivity in [32]. Our work extends these efforts by designing a resource 

manager that attempts to maximize utility earned while obeying an energy constraint. 

Monotonically decreasing functions, such as “value functions”, also have been used to measure 

the performance of resource managers in various HPC environments and behave similarly to utility 

functions [33−36]. Differences between these works and ours include that [33, 34, 36] do not 

consider heterogeneity and [36] does not consider parallel tasks. 

The authors of [37] model a resource manager for a computing system where heterogeneous 

computing sites that are similar to our clusters are used, but they do not consider utility functions 

or energy consumption in their study. In addition, they measure the performance of their resource 
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manager using utilization and average turnaround time. This is very different from our 

oversubscribed environment, which uses utility functions, total utility earned as a performance 

measure, and has an energy constraint. 

Genetic algorithms are sometimes used to solve resource management problems because they 

are able to find very good solutions if they are given enough time to run. Utility was maximized 

using a genetic algorithm in [34], where the genetic algorithm was able to earn more utility than 

EASY Backfilling, Conservative Backfilling, and a Priority-FIFO heuristic. The drawback of 

genetic algorithms is that they require a significant amount of execution time to produce good 

results (e.g., the genetic algorithm in [34] had an average execution time of 8,900 seconds). When 

compared with our best heuristics, which take significantly less than a minute to execute on 

average, this long execution time is a major drawback of genetic algorithms. Being able to generate 

solutions to resource management problems quickly is very important in a dynamic environment. 

This is because nodes can be idle while the resource manager is making decisions and no work 

would be accomplished on those nodes during that time. 

In [4], a technique called Incremental Static Voltage Adaption (ISVA) is proposed and 

evaluated. This technique attempts to minimize makespan under an energy constraint. First, ISVA 

builds a schedule (using any scheduling technique) without an energy constraint using the 

minimum voltage possible to execute each task. This schedule is then modified by increasing the 

voltage used to execute specific tasks to reduce the makespan. This work differs from ours in 

several significant ways. First, this work considers a static DAG scheduling problem, while our 

study focuses on scheduling dynamically arriving tasks with no precedence constraints. In 

addition, this work does not consider utility, and instead uses makespan as the performance 

measure. 
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3.8. Conclusion and Future Work 

We designed and evaluated the performance of several utility-aware resource allocation 

heuristics (Max Util, Max UPT, Max UPR, Max UPE, and two metaheuristics), and associated 

dropping and filtering techniques. Performance was measured in terms of the total system utility 

that was earned from the completion of parallel tasks in an oversubscribed HPC environment with 

an energy constraint. The novel concept of place-holders that we presented, in addition to our new 

energy-per-resource filtering technique, allowed our utility-based heuristics to achieve 

significantly higher system utility than popular scheduling techniques from literature that do not 

consider utility functions and heterogeneity. Due to energy filtering, our Max UPR with place-

holders heuristic was able to earn utility comparable to our energy-aware Max UPE with place-

holders heuristic, although Max UPE with place-holders is much more energy efficient. In 

addition, both of our metaheuristics, the Event-Based Metaheuristic and the Task-Based 

Metaheuristic, were able to earn utility greater than or equal to all other heuristics in environments 

where there was a steady rate of task arrivals regardless of the energy constraint. In environments 

with a highly variable task arrival pattern, the Max UPE heuristic performed best in the energy 

constrained environment. In addition, it is worth noting that although energy consumption is 

limited by a constraint in this work and is not a goal for optimization, the Max UPE heuristic often 

earns utility equal to the other best performing heuristics while consuming significantly less 

energy. 

A topic that we are interested in exploring in the future is employing the concept of preemption 

in an environment where the system performance measure is based on a time varying utility. We 

expect that having a resource manager that supports preemption will allow for improvement in the 

execution of critical tasks, in particular when there has been a period of low utility task arrivals 
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that may fill up many of the nodes within an environment, which can cause high utility tasks 

arriving later to wait. This is especially important for an environment where tasks arrive 

dynamically (i.e., information about tasks that arrive in the future is not known). The most 

significant difficulty of designing and analyzing techniques and heuristics that utilize preemption 

is to limit the potential complexity of the problem. Similar to how it is not possible to explore all 

possible solutions of this scheduling problem in reasonable time, we cannot consider preempting 

every task individually to optimize the schedule. To limit this complexity, we will need to 

determine what type of task should be able to cause preemption among currently executing tasks, 

and will consider techniques for effectively selecting which tasks to preempt in a reasonable 

amount of time. Working with preemption may also require studying techniques for saving the 

state of a task so that the task can resume execution at a later point in time. 

The energy filters presented in this paper could be used to dynamically control the energy 

consumption of the system by adjusting the energy budget or energy-per-resource budget 

throughout the day. This could be used to more effectively manage system resources in 

environments with time-of-use pricing (i.e., environments where energy prices change throughout 

the day). 

Our metaheuristics that switch between Max UPR and Max UPE perform well in environments 

where tasks arrive at a steady rate, but when the task arrival rate varies significantly throughout 

the day the metaheuristics do not perform as well as Max UPE when there is a tight energy 

constraint. Currently, the metaheuristics attempt to guide the system to consume energy at a 

constant rate throughout the day. It would be interesting to modify the metaheuristics so that the 

goal for the system's rate of energy consumption is the same as the expected arrival pattern of 
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tasks. This may result in performance of the metaheuristics that matches the best of Max UPR or 

Max UPE in all environments instead of just environments where tasks arrive at a steady rate. 
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Chapter 4 

Preemptive Resource Management for Dynamically 

Arriving Tasks in an Oversubscribed Heterogeneous 

Computing System3 

 

4.1. Introduction 

We study resource management for high performance computing (HPC) environments. The 

workload of such a system can be dynamic, i.e., the arrival pattern of tasks in the system is not 

known in advance. In addition, HPC systems are often oversubscribed, i.e., there are not enough 

resources in the system to begin executing each task as soon as it arrives. These systems also often 

have many different kinds of resources resulting in heterogeneity in the system, where different 

tasks have different execution characteristics on different resources. 

To create strategies for effective resource management, it is necessary to define performance 

measures for the system. In some systems, these measures include utilization, fairness, or 

 

3 The material in this chapter appeared in [31]. The full list of co-authors for this work is at [31]. This manuscript 
has been administered by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of 
Energy. The United States Government retains and the publisher, by accepting the article for publication, 
acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to 
publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government 
purposes. The Department of Energy will provide public access to these results of federally sponsored research in 
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-publicaccessplan). This research used 
resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL), supported 
by the Extreme Scale Systems Center at ORNL, which is supported by the Department of Defense (DoD); and by NSF 
Grant CCF-1302693. This work also utilized CSU’s ISTeC Cray system, which is supported by the National Science 
Foundation (NSF) under grant number CNS-0923386. 
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makespan (e.g., the systems studied in [17, 19, 25, 26]). In an oversubscribed HPC system, 

utilization is not an effective metric because the system should always be close to 100% utilization. 

In addition, many environments have tasks that have differing relative importance, making fairness 

an ineffective performance measure. Finally, makespan is not a good performance measure in 

oversubscribed environments where some tasks may not be executed. For example, if no tasks are 

executed then the makespan will be zero. 

To quantify the performance of an oversubscribed heterogeneous system, we make use of 

utility functions that are monotonically decreasing in value based on task completion time [15]. 

We consider tasks with the highest possible starting utility to be critical tasks and all other tasks to 

be non-critical tasks. For example, users could pay to have higher utility for their tasks or in 

military environments, certain tasks are considered more “mission critical.” The performance of 

the system is then measured by considering the total utility earned by each task over a period of 

time. Because the utility earned over this period can be significantly affected by the percentage of 

critical tasks that are executed, the design of heuristics that are able to more effectively prioritize 

execution of these tasks is essential. 

Because the system is dynamic and oversubscribed, critical tasks may have their execution 

delayed or prevented by less important non-critical tasks that were already in the workload before 

the critical tasks arrived. These non-critical tasks would not have been scheduled if the resource 

manager had been aware that critical tasks would be arriving to the system before completion of 

the non-critical tasks. In addition, choosing to not execute the non-critical tasks is not an ideal 

solution because they may not result in the delay of critical tasks (i.e., they may finish executing 

before any critical tasks arrive in the system). An effective way to address this issue is to allow the 

preemption of tasks that are already executing in the system. In an environment with preemption, 
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critical tasks can start executing quickly even if the system is already completely allocated to non-

critical tasks. 

In this work, we study an environment where the workload is comprised of serial tasks with 

short execution times (average of 50 minutes for most tasks). Such environments exist in some 

DoD (Department of Defense) and DOE (Department Of Energy) systems. Preemption is 

commonly used in these and similar environments, such as those used for MapReduce where an 

application is split into many similar small serial tasks [6]. In addition, the preemption overhead 

of serial tasks with short execution times is insignificant compared to the overhead that would 

occur when preempting resource intensive parallel tasks with much larger memory requirements 

[3].  

Another environment where a large number of serial jobs could occur is an enterprise 

datacenter. In HPC environments designed for parallel tasks, it is often the case that multiple tasks 

are not assigned to the same node (even in cases where many cores on the node will be idle). This 

assumption was used in [21], where resource management heuristics were designed for a similar 

environment with parallel tasks and no preemption. Because utilizing fewer than the total number 

of cores in a node is inefficient, it is logical to have a separate system where scheduling is done at 

a core-level to execute only serial tasks when a large number of serial tasks is expected in the 

workload. 

The specific systems that we consider in this study are designed to model production 

environments that exist in military, government, and industrial situations. These systems were 

constructed based on discussions with researchers from Oak Ridge National Laboratory (ORNL) 

and the United States DoD. ORNL and DoD are examining an implementation of the resource 
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management heuristics proposed in this paper and have environments with serial tasks like the 

ones simulated in this study. 

There are many environments that can be considered when studying resource allocation for 

HPC systems. In any given HPC environment, (a) tasks may be parallel or serial and may have 

dependencies on one another; (b) tasks may have varying importance; (c) preempting and resuming 

tasks may require significant overhead; (d) there may be homogeneity or heterogeneity among 

clusters of the system and each cluster may contain homogeneous or heterogeneous nodes; (e) the 

workload may cause the system to be oversubscribed; (f) tasks may arrive dynamically or may be 

given to the scheduler in a single batch; and (g) the execution time of tasks may not be known in 

advance. The parameters described above only cover a subset of the total problem space of 

resource management HPC environments. To make this study tractable, we focused on a specific 

environment of ORNL and DoD interest. The techniques proposed in this study were designed 

specifically for this environment and may not apply to other environments. 

A specific set of important assumptions made in this paper includes that: (a) tasks are 

independent and serial; (b) some tasks are significantly more important than others; (c) the 

overhead of preempting and resuming a task is insignificant compared to the execution time of 

tasks; (d) the compute system is made up of heterogeneous clusters where each cluster is comprised 

of homogeneous nodes; (e) the system is oversubscribed; (f) tasks arrive dynamically throughout 

the day and the scheduler does not have future knowledge of the set of tasks that will arrive; and 

(g) an estimate of the execution time of each task type on a node of each of the clusters is known 

to the scheduler. 

We designed and implemented three preemption techniques that can be applied to previously 

studied utility-aware heuristics. These heuristics are Max Utility and Max Utility-per-Time, which 
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have been studied in a serial environment without preemption [15]. These heuristics are evaluated 

with preemption and without preemption in this study. They are also compared with the Random 

and FCFS heuristics. The primary contributions of this work are: 

• The design and implementation of multiple techniques for applying preemption to utility-

aware heuristics that have been effective in similar environments without preemption. 

• An extensive analysis of the effectiveness of the proposed preemption techniques in many 

different simulated environments. 

The rest of this paper is organized as follows. In Section 4.2, we define the studied environment 

and problem in detail. The proposed heuristics with preemption and other resource management 

techniques used in this study are detailed in Section 4.3. Section 4.4 describes the procedure that 

was used to generate the specific systems and workloads that were simulated and Section 4.5 

presents the results of those simulations. Related work is discussed in Section 4.6. Finally, we 

conclude and discuss ideas for future work in Section 4.7. 

4.2. Environment Description  

4.2.1. System Model 

The environment is one where the compute system is composed of heterogeneous clusters of 

compute resources. The architecture of cores varies across clusters, but each cluster has a fixed 

number of homogeneous cores. The execution characteristics of a task are identical on any cores 

of the same cluster. In this study, each serial task is assigned to a single core in one of the clusters. 

4.2.1.1. System Workload Characteristics 

The system workload is made of up of serial tasks that arrive dynamically. The environment 

is oversubscribed, meaning that it is not possible for every task to earn its maximum utility because 



116 
 

some tasks will be delayed due to the number of tasks competing for resources. We assume that 

the tasks are independent (i.e., there is no communication between different tasks). For this study, 

we assume that memory interference between two tasks executing on the same multi-core node is 

negligible. In this workload, tasks arrive in bursts. Each burst consists of a number of tasks with 

the same task type. This is meant to model an environment where users often submit many similar 

jobs to the system at once, such as found in some ORNL and DoD environments. 

Each task has a task type that is known when it arrives. A task type is used to group tasks with 

similar characteristics together. Each task specifies its task type, its utility function, a flag that 

states whether it can be preempted, and a flag that states whether it can preempt other tasks. The 

execution time of each task type is defined using an Estimated Time to Compute (ETC) matrix [5, 

23]. This matrix specifies the estimated execution time of each task type on a core of each cluster 

type. The ETC values can be based on user supplied information, experimental data, or task 

profiling and analytical benchmarking (e.g., [1, 9, 10, 16, 24, 30]). Determination of ETC values 

is a separate research problem; the assumption of such ETC information is a common practice in 

resource allocation research (e.g., [4, 10, 16, 18, 27, 29]). For environments such as those found 

in many ORNL and DoD systems, this matrix can be populated using historical data or experiments 

for each task type. This assumption is true, in general, for many production environments such as 

military, government, and industrial. These execution times are assumed to be deterministic for 

this study. An example of an ETC matrix that shows the execution time of task types in minutes 

for three clusters and four task types can be seen in Table 8. Task type 2 has its fastest execution 

on cluster A, task types 3 and 4 have their fastest execution times on cluster B, and task type 1 has 

its fastest execution time on cluster C. This type of heterogeneity where one of the clusters is not 
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the best for all task types is called inconsistent heterogeneity [5, 16]. In this study, the 

heterogeneity of our simulated systems is inconsistent. 

4.2.2. Utility Functions 

Utility functions are a flexible measure of the importance of tasks. Utility functions are 

monotonically decreasing functions of a task’s completion time that are used to define the utility 

that a task earns upon completing its execution. This is because in this problem domain the later 

that information is delivered the less useful it is. An example of a possible utility function is shown 

for some task 1 in Figure 34. In this case, the utility function has a starting utility of 8, and decays 

to zero over approximately 60 minutes after the arrival of task 1. This utility function is generated 

using the model for utility functions presented in [15]. In many cases, it is suitable to simplify 

these potentially complex utility functions by using simple functions such as step functions or ones 

with linear decay [22]. 

4.2.3. Preemption 

Each task that arrives in the system has two flags specifying its behavior involving preemption 

to the resource manager. One of the flags determines whether or not the task can be preempted by 

other tasks. The other flag determines whether a task can preempt other tasks. These flags act as a 

constraint on the resource manager. In addition, we do not limit the number of times a task can be 

preempted. Tasks are not preempted unless higher utility can be earned for another task. Any 

“starvation” of tasks is done intentionally to increase the utility earned by the system. This includes 

Table 8. An Estimated Time to Compute (ETC) Matrix 

task 

type 

execution time (minutes) 

cluster A cluster B cluster C 

1 50 56 37 

2 43 51 85 

3 12 6 23 

4 51 45 96 
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cases where the scheduler drops a task with high starting utility due to missing its deadline. 

Because the system is oversubscribed, there may be situations where it is not possible for the 

optimal schedule to complete all critical tasks before their deadlines. 

When a task is preempted, we assume that its progress is saved and that it can be resumed at a 

later point on any core in the same cluster. The task cannot be resumed in another cluster because 

it can only be resumed on a core of the same architecture and where any task-specific data is 

available. We assume that the overhead for preempting and resuming a task is negligible. We make 

this assumption because all tasks in this system are serial and are assumed to have small memory 

requirements. The amount of memory allocated to a task is a significant factor in determining the 

amount of overhead that is needed to suspend and resume it [8]. This is because the majority of 

the overhead of preemption comes from the time needed to send a task’s state to storage. We 

confirmed this with tests performed at ORNL. In some HPC systems, a task can only access the 

memory that is a part of the compute nodes that are assigned to the task. In these environments, 

such as the one we consider here, serial tasks may not have access to the amount of memory that 

would be required to generate a significant preemption overhead [3]. The techniques we designed 

can be built upon to add consideration of any non-negligible overhead. One way to add support 

 

Figure 34. An example of a utility function for task 1. If task 1 were to finish its execution at time 15, it 

would earn 5.18 utility. If its execution completes at time 40, it will earn 2.84 utility. This figure was taken 

from our previous work [21]. 
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for this would be for the preemption-capable heuristics to consider any expected overhead due to 

preempting a task as a part of the execution time of the preempting task. In addition, any overhead 

due to resuming a preempted task would be considered a part of the execution time of the resuming 

task. 

4.2.4. Problem Statement 

The resource manager has complete information about the tasks that are currently executing 

on the clusters as well as a list of the tasks that are waiting to be assigned. For each executing task, 

the resource manager can use the ETC matrix and the start time of each task to determine the 

estimated finish time of that task, which allows the heuristic to determine the estimated utility 

earned by that task. This information allows our resource manager to make intelligent allocation 

decisions using one of the heuristics described in Section 4.3. 

We define the system utility earned during an interval of time as the sum of the utility earned 

by tasks that execute during that interval. In our simulations, a task will earn utility for an interval 

if any portion of the task executes during the interval. If only part of a task’s execution occurs 

during this interval, then only a portion of the task’s utility will be earned for that interval. For 

example, if a task were to complete 70% of its execution during an interval A and 30% of its 

execution during interval B, then 70% of the task’s utility will be added to the system utility earned 

for interval A. The goal of our resource manager is to maximize the system utility earned by 

completing serial tasks over some interval of time. 
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4.3. Resource Management 

4.3.1. Mapping Events 

The set of mappable tasks contains all tasks that have arrived in the system excluding the tasks 

that have completed execution and that are currently executing. Any task in this set can be mapped 

to the available cores of the system. Mapping a task refers to the process of assigning, scheduling, 

or preempting the task to or from cores in the system. During a mapping event, the resource 

manager makes decisions for mappable tasks in the system. In this study, we consider the case 

where mapping events occur in one minute intervals, which is based on discussions with ORNL 

and DoD. At each mapping event, tasks are dropped (described in Subsection 4.3.2) and then one 

of the heuristics (described in Subsections 4.3.3, 4.3.4, and 4.3.5) is used to create a mapping of 

the tasks to the cores. Finally, this mapping is used to preempt and assign tasks. 

4.3.2. Task Dropping 

Our resource manager will not assign tasks to cores if they will earn zero utility. If at any point 

a task can never earn non-zero utility with any assignment, it is removed from the system. The 

resource manager will not assign a task to a core if that assignment will earn zero utility for that 

task. 

4.3.3. Comparison Heuristics 

4.3.3.1. Overview 

For comparison, we consider two simple heuristics (Random and FCFS). These heuristics do 

not consider utility functions or the heterogeneity of the system.  
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4.3.3.2. Random 

The Random heuristic begins with the set of mappable tasks and places them in a random 

ordering. It then iterates through the mappable tasks assigning each of them to a random idle core 

with the constraint that the task must earn non-zero utility on the randomly chosen core, or else a 

different random core is selected. If this is not possible, the task is left in the mappable set. After 

this assignment, the task is removed from the set of mappable tasks. This process is repeated until 

the set of mappable tasks is empty or no more assignments are possible. 

4.3.3.3. FCFS 

The FCFS (first come first served) heuristic places the mappable tasks in an order based on 

arrival time (i.e., the task with the earliest arrival time is considered first and the task with the most 

recent arrival time is considered last). It then takes each task in order and assigns it to an arbitrary 

idle core with the constraint that the task must earn non-zero utility. If this is not possible, the task 

is left in the mappable set. After this assignment, the task is removed from the set of mappable 

tasks. This process is repeated until the set of mappable tasks is empty or no more assignments are 

possible. 

4.3.4. Utility-Aware Heuristics 

4.3.4.1. Overview 

All of our utility-aware heuristics are based on the two-phase concept of the Min-Min heuristic 

[11], a concept that has been used successfully in many heterogeneous environments (e.g., [5, 23]). 

The heuristics described in this section operate without preemption. The preemption techniques 

that we apply to them are described in Subsection 4.3.5. 
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4.3.4.2. Objective Functions 

The task execution characteristics used by the objective functions in this study are the 

completion time (CT) and remaining execution time (RET) of a given assignment for a task. For a 

task that has not been previously executing in the system, RET is equal to the ETC entry for that 

task. If the task is currently executing or was previously preempted, its RET is equal to the ETC 

entry for the task minus the amount of time it has spent executing. Our heuristics attempt to 

greedily maximize either Utility (Util): 

 Util = utility of the task at its CT,  (1) 

or Utility-per-Time (UPT): 

 UPT = Util / RET.  (2) 

We use these objective functions to define two utility-aware heuristics called Max Utility (Max 

Util) and Max Utility-per-Time (Max UPT). These heuristics were applied successfully in our 

previous work without preemption [15, 21]. 

4.3.4.3. Maximum Util 

Max Util, shown in Algorithm 5, operates in two phases. In the first phase (lines 2-4 of 

Algorithm 5), the heuristic considers each task individually and finds the idle core that maximizes 

its Util with the constraint that the task earns utility above the dropping threshold. This can be 

Algorithm 5. Pseudo-Code for Max Util 

1. while mappable tasks is not empty and there is a valid 
assignment for a task in the mappable tasks: 

2.  for each task t in mappable tasks: 
3.   find idle core that maximizes Util for t; 
4.   select task from mappable tasks with task/core 

  combination that has the highest maximum Util; 
5.   assign selected task to that core; 
6.   remove task from mappable tasks; 
7. end while 
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achieved by considering a single idle core in each cluster because all of the cores in each cluster 

are homogeneous. The second phase of the heuristic (lines 5-6 of Algorithm 5) chooses the 

task/core pair from the first phase with the highest overall Util. The chosen task is then assigned 

to the chosen idle core to begin executing and is removed from the set of unmapped tasks. The 

heuristic then repeats, executing phase one and phase two until the unmapped tasks set is empty 

or there are no more possible assignments to make. 

4.3.5. Preemption Techniques 

4.3.5.1. Overview 

As a part of this study, we designed and implemented three preemption techniques. All of these 

preemption techniques work by modifying how the heuristics described in Subsection 4.3.4 

Algorithm 6. Pseudo-Code for Max Util Preempt Greedy 

1. while mappable tasks is not empty and there is a valid assignment for a task in the 
mappable tasks: 

2.  for each task t in mappable tasks: 
3.   if task t can preempt other tasks: 
4.   then  
5.    find cores that maximize Util for t that are idle or are executing a preemptible  

   task where t has higher Util than the preemptible task; 
6.    if an idle core was selected for t: 
7.    then 

8.     choose the idle core; 
9.    else 

10.     choose the core that is executing 
    a task with the minimum Util; 

11.   else  
12.    find idle cores that maximizes Util for t; 
13.    select task from mappable tasks with task/core 

   combination that has the highest maximum Util; 
14.  if the core is not idle:  
15.  then  
16.   preempt the task it is executing and add it to the set of mappable tasks; 
17.  assign selected task to that core; 
18.  remove task from mappable tasks; 
19. end while 
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interact with tasks that can preempt and tasks that are preemptible. We found no heuristics in the 

literature that used preemption in a heterogeneous environment. 

4.3.5.2. Maximum Util Greedy Preemption 

The Maximum Objective Function Greedy Preemption (Max Util Preempt Greedy) technique 

is similar to the Max Util technique (with no preemption) described above, except that it also 

considers all possible preemptions for each task in addition to idle cores. This technique is shown 

in Algorithm 6. Specifically, during the first phase of the heuristic (lines 2-12 of Algorithm 6) each 

task is considered individually. The core that maximizes its Util is found. If the core being 

considered is idle, then the same method used in the Max Util heuristic is used. If the core is 

executing a preemptible task, the task that is being considered can preempt other tasks, and the 

Util of the task being considered is greater than the Util of the currently executing task, then that 

pair represents a valid preemption. The Util of this pair is defined as the Util of the preempting 

task. The currently executing task’s Util is only considered if during the first phase multiple pairs 

of task/core mappings are found that have the same Util for the preempting task. If multiple pairs 

are found during this first phase with the same Util, then the following strategy is used to select 

one. If any pair has an idle core, that pair is chosen. If there are multiple pairs with idle cores, one 

is chosen arbitrarily. If any pair does not use an idle core, choose the pair with the core that has 

the smallest Util for its preemptible task. After the best pair is found for each task, this technique 

has a phase two (lines 13-18 of Algorithm 6) where the pair with the highest overall Util is chosen 

and an assignment is made for the task/core pair (any necessary preemptions for this assignment 

will occur). This process repeats until there are no more unmapped tasks or there are no more valid 

pairs selected in the first phase. 
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4.3.5.3. Maximum Util Difference Preemption 

The Util Difference is equal to the difference in Util of a preempting task and the task that is 

being preempted (when considering an idle core the Util and Util Difference are the same for the 

task being considered). The Maximum Util Difference preemption technique (Max Util Preempt 

Diff) attempts to greedily maximize the Util Difference for a task. It is identical to the Max Util 

Preempt Greedy technique except that all instances of Util are replaced with Util Difference 

throughout the execution of the heuristic. This heuristic is identical to the first technique in a 

homogeneous system, but may make different decisions in terms of which cluster to assign a task 

to in a heterogeneous system. For example consider a heterogeneous system with two cores: c1 

Algorithm 7. Pseudo-Code for Max Util Preempt Pair 

1. while mappable tasks is not empty and there is a valid assignment for a task in the 
mappable tasks: 

2.  for each task t in mappable tasks: 
3.   if task t can preempt other tasks: 
4.   then  
5.    for each core c that is executing a preemptible task r: 
6.     choose the ordering of t and r on c that results in the highest net Util; 
7.     choose the (t,r) ordering among all cores 

    that has the overall maximum net Util; 
8.     find the idle core that maximizes Util for t; 
9.     if the net Util of the (t,r) ordering on the core found above is greater than 

    the net utility of t on the idle core and r on its current core: 
10.     then  
11.      choose the (t,r) ordering; 
12.     else 

13.      choose the idle core for t; 
14.   else  

15.    find idle cores that maximizes Util for t; 
16.  select task t from mappable tasks with task/core 

 combination that has the highest maximum Util for t; 
17.  if t is part of a (t,r) pair and r should execute first: 
18.  then  
19.   do nothing with t; 
20.  else  
21.   assign t to that core (preempting if needed); 
22.  remove t from mappable tasks; 
23. end while 
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and c2. A task t1 is currently executing on core c1 and will earn 2.0 Util if it finishes its execution. 

The resource manager is choosing an assignment for a task t2, which can either (a) preempt task 

t1 and start executing on core c1 where it will earn 2.5 Util or (b) start executing on an idle core 

c2 where it will earn 1.0 Util (It will take longer for t2 to complete on c2 than c1). The Max Util 

Preempt Diff heuristic will choose to start executing the task on c2 because the Utility Difference 

is larger for that core (1.0 instead of 0.5 for c1). The Max Util Preempt Greedy heuristic would 

have chosen to assign task t2 to core c1 (preempting task t1) because it will get more utility for t2. 

4.3.5.4. Maximum Util Pair Preemption 

The Maximum Util Pair preemption technique (Max Util Preempt Pair) tries to greedily 

maximize the net Util earned by two tasks at once to choose which task should be assigned next. 

This technique is shown in Algorithm 7. The motivation for this heuristic is to consider the amount 

of utility that would be lost in the currently executing task if a preemption were to occur. 

 In the first phase of this heuristic there are two cases. The first is used for all tasks that can 

preempt other tasks. In this case (lines 3-13 of Algorithm 7), two possible orderings of the tasks 

are considered for each core executing a preemptible task. The first ordering is where the 

preempting task preempts the executing task, finishes its execution, and then the preempted task 

resumes and finishes its execution on the same core. (The preempted may not actually resume on 

this core; this rule is just to guide the heuristic.) The second ordering is where no preemption 

occurs and the executing task finishes its execution before the task that is being considered is 

assigned to the core and finishes its own execution. If the second ordering results in higher Util, 

preemption is not considered for that core. For each core, the ordering with the highest combined 

Util is chosen. Among all cores, the ordering with the highest overall combined Util is selected to 

be compared with running the task on idle cores. 
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Next, the heuristic considers the idle cores by finding the idle core that has the highest Util for 

the task. The heuristic considers pairing the task executing on this idle core with its best pair that 

was found when considering preemption. The net Util of this pair would be the Util of the task 

being considered on the idle core plus the Util of the currently executing task on some core in the 

system (the best pair found above). This process of considering an idle core is shown on lines 7-

10 of Algorithm 7. This is done to ensure that idle cores are treated fairly alongside cores with 

preemptible tasks. 

Tasks that cannot preempt other others use the same method for choosing an idle core as the 

Max Util heuristic (without preemption). This is shown on lines 14-15 of Algorithm 7. During the 

second phase of this heuristic (shown on lines 16-22 of Algorithm 7), the task with the overall 

maximum Util for its allocation is selected. Only the Util of the task being assigned is considered. 

Otherwise, tasks that cannot preempt other tasks would be at a disadvantage to those that can 

preempt other tasks. This is because tasks that cannot preempt other tasks would not be paired with 

any task in the first phase. If the task that is selected in the second phase chose a pair during the 

first phase where it is the second task to be executed on some core, then do nothing with it during 

this mapping event (it will be considered in the next mapping event). Otherwise, the task is 

assigned to the core and is removed from the set of mappable tasks, and the preempted task is 

added to the set of mappable tasks. This heuristic repeats until the set of mappable tasks is empty 

or there are no more valid assignments for tasks in the set of mappable tasks. 

4.3.6. Heuristics with Utility-per-Time 

All of the heuristics described in this section used Util as an objective function. These heuristics 

can be modified to utilize UPT by replacing all instances of Util in the heuristic descriptions with 

UPT. A common concern with preemption is that it becomes difficult to execute long running jobs 
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because they execute during a greater number of mapping events creating more chances for the 

task to be preempted. When used with Max UPT, our preemption techniques alleviate this issue 

because the calculated UPT values are larger for tasks that have already started executing. This is 

because as a task executes, its remaining execution time will decrease, while the utility that it will 

earn remains constant. This results in a situation where preemption of tasks that have already 

completed most of their execution is less likely than when the task first started executing in the 

system. Preemption of long running jobs is thus unlikely unless a task of high importance arrives 

in the system. In addition, using UPT increases that chance that a preempted task will be quickly 

resumed once there are opportunities to continue its execution. 

4.4. Simulation Setup 

4.4.1. Overview 

The environment parameters detailed in this section were selected based on discussions with 

researchers from ORNL and DoD. Some of the parameters described in this section are varied in 

Section 4.5. Our simulations of this environment take place over 28 simulated hours. The first four 

hours populate the idle system with tasks. This allows data for the subsequent 24 hours of 

execution to be collected with the system in a steady state of execution. For each environment, we 

generate 64 simulation trials using the procedure described in the rest of Section 4.4. 

4.4.2. System Generation 

The cluster environment is constructed from five heterogeneous clusters with an average of 

160 cores each. Although this is a small system relative to many HPC systems today, it allows us 

to easily experiment with a large variety of workloads. 
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4.4.3. Workload Generation 

In this environment, tasks include two main types: critical tasks and non-critical tasks. Critical 

tasks have a starting utility of eight and non-critical tasks have a starting utility of one. For the 

experimental results shown in this paper, 20% of tasks are critical tasks and 80% of the tasks are 

non-critical tasks. In one of the experiments shown in Section 4.5, the starting utility values of 

critical tasks were also varied. 

Each task type has an associated execution time. If the task type is used for critical tasks, each 

task has an average execution time of ten minutes. Otherwise, the task type represents a non-critical 

task and has an average execution time of 50 minutes. The execution time of each individual task 

type on one of the clusters is determined by sampling a gamma distribution with a coefficient of 

variation (COV) of 0.1. In our experiments, the execution time of all task types was varied. 

The heterogeneity over the three clusters is defined using the method from [2] with a COV 

parameter of 0.3. Specifically, this means that the execution time generated above for one of the 

clusters is used as the mean for another gamma distribution. This gamma distribution has a COV 

of 0.3 and is sampled to get the execution time of the task on the other two clusters. These execution 

times are then used to populate the ETC matrix that is used by the resource manager. 

The size of the workload for this system is determined experimentally to ensure that the system 

remains oversubscribed during the 24 hours of its steady state execution. To achieve this, an 

average of 75 tasks need to arrive for each core in the system. For this system, this requires an 

average of 60,000 tasks arriving over a 24 hour period. 

For each task, a utility function is generated. In this study, we consider a variety of utility 

function classes. One of these classes models utility functions using step functions. For tasks with 

the highest urgency, this step function has a width equal to the average execution time of the task 
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where the task will earn its starting utility. After this period, the utility function drops to zero. Non-

critical tasks have a constant interval width equal to ten times their mean execution time and then 

drop to zero immediately after this interval. We also experimented with the set of 20 utility classes 

similar to those in Figure 34 from our past work in [15]. In addition, we defined a “decaying utility 

class” where all tasks have a constant interval equal to their average execution time at the 

beginning of the utility function and the rest of the utility function is a single period of decay 

defined using the model in [15] with an urgency parameter of 0.3 and a length of 200 minutes. The 

utility functions obtained from this utility class are shown for critical tasks in blue and non-critical 

tasks in red in Figure 35. 

Tasks in the workloads of this study are assumed to arrive in bursts. Each burst consists of a 

number of tasks of the same task type with identical utility functions that arrive at the same time. 

We define the burst size of the system as the average number of tasks that arrive in each burst. For 

most of our experiments, the burst size parameter is 64, but this is varied in some experiments. 

The exact number of tasks arriving in each burst can vary by up 50% of the mean, i.e., for our 

average burst size of 64 tasks the number of tasks arriving in any burst is between 32 and 96, 

 

Figure 35. Two utility functions generated using the 

decaying utility class described in Section 4.4.3. The blue 

function is generated for critical tasks and the red 

function is generated for non-critical tasks. 
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inclusive. This value is determined by sampling an integer from a uniform distribution. Bursts of 

the same task type are spread out throughout the day using a sinusoidal arrival rate (the number of 

bursts arriving for a task type will be more frequent during some periods of the day than others). 

The actual distribution of a task type’s burst arrival times are randomly generated using a Poisson 

process from the task’s arrival rate. 

The majority of the results shown in Section 4.5 assume that all tasks are preemptible and all 

tasks can be preempted. We will also show one set of results in Section 4.5 where we experimented 

with these preemption flags. 

4.5. Results 

All results shown are averaged over 64 simulation trials and are shown with 95% mean 

confidence intervals. In each trial, the environment is generated as described in Section 4.4. 

Because of the presence of randomness in some parts of the system, the exact values of many 

characteristics of the environment vary between simulation trials (e.g., the number of tasks arriving 

and the execution time of each task type). We define the maximum system utility as the utility 

earned if all tasks started executing immediately upon arrival in their fastest cluster and earned 

utility equal to their starting utility. In most cases, this maximum utility is unobtainable because 

the system is oversubscribed. In all of the results, the execution time of the best performing 

heuristics is insignificant in comparison to the simulated execution times of the tasks and the 

mapping event interval of one minute. In our simulations, all of the heuristics except for Max Util 

Preempt Pair and Max UPT Preempt Pair took approximately seven seconds to execute each 

mapping event in the worst case. The Max Util Preempt Pair and Max UPT Preempt Pair heuristics 

took over a minute to execute in the worst case, meaning that these preemption heuristics would 

not be feasible to use in a system with this size. However, the best performing heuristics could be 
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implemented in a real system with a mapping event interval of one minute without delaying the 

assignment of tasks during each mapping event. 

In Figure 36, the percentage of maximum system utility is shown for workloads where the type 

of utility function is varied between step functions, a single decaying utility class, and 20 different 

utility classes. These types of utility functions were described in Subsection 4.4.3. These results 

show that utility-based heuristics outperform Random and FCFS. The preemption-capable 

heuristics always improve upon the utility earned by Max Util and Max UPT. This is because the 

preemption-capable heuristics are able to earn utility from the critical tasks even when the utility 

function of the critical task require that they start executing almost immediately upon arrival. This 

is especially important in the step function case.  

 

Figure 36. The percentage of maximum system utility is shown for workloads where the utility class used to 

determine utility functions is varied from step functions, a single decaying utility class, and 20 utility classes 

as described in Subsection 4.4.3. The results are shown with 95% mean confidence intervals. 
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In Figure 37, the percentage of maximum system utility is shown for workloads that have burst 

sizes of 1, 16, 32, 64, and 128. When the burst size is 1, there are no bursts of tasks arriving in the 

system. In the Figure 37 results, the 20 utility classes described in Subsection 4.4.3 are used. These 

results show that as the burst size of the workload increases, Max Util and Max UPT see a 

significant decrease in performance. This is because it becomes more difficult to assign the critical 

tasks as they arrive because a large group of critical tasks will arrive while only some cores in the 

system are idle or will become idle soon. The Max Util Preempt Greedy, Max UPT Preempt 

Greedy, and Max Util Preempt Diff, and Max UPT Preempt Diff heuristics see a much smaller 

decrease in performance as the burst size increases because they can preempt non-critical tasks to 

immediately start executing the newly arrived burst of critical tasks. In the case where the burst 

size is 128, the best performing preemption techniques are able to improve the utility earned by 

Max UPT by up to 20%. 

In Figure 38, the percentage of tasks that can preempt and can be preempted is varied over 0%, 

20%, 40%, 60%, 80%, and 100%. When each task is generated, both of the preemption flags are 

set to true with a probability equal to that percentage. This probability is considered separately for 

the two preemption flags (e.g., a task may be able to preempt other tasks but it may not be 

preemptible by other tasks). When these percentages are 0%, the preemption-capable heuristics 

are identical to their counterparts that are not preemption-capable. In the Figure 38 results, the 20 

utility classes described in Subsection 4.4.3 are used. The heuristics that are not preemption-

capable do not change over these different workloads because the preemption flags do not affect 

their execution. As the percentage of tasks that can preempt and can be preempted increases, the 

performance of most of the preemption-capable heuristics improves linearly with the percentage. 

The Max UPT Preempt Pair heuristic does not improve linearly because the UPT of a task that has 
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almost finished its execution becomes high relative to the other tasks. This high UPT can result in 

a preemption of that task having a large net UPT value, which results in the Max UPT Preempt 

Pair heuristic preempting these tasks more frequently than is ideal. These results show that 

enabling both preemption flags for all tasks does not result in a decrease in overall system 

performance. 

In Figure 39, the percentage of maximum system utility is shown for workloads that have an 

average execution time for critical tasks equal to 10, 30, and 50 minutes. In the Figure 39 results, 

the 20 utility classes described in Subsection 4.4.3 are used. As the execution time of critical tasks 

becomes longer, the system will become more oversubscribed because the average execution time 

of all tasks has increased. Because of this, all of the heuristics have a slight decrease in their 

 

Figure 37. The percentage of maximum system utility earned by each of the heuristics for five different 

workloads where the burst sizes of tasks arriving are 1, 16, 32, 64, and 128. The results are shown with 95% 

mean confidence intervals. 
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performance because they cannot execute as many tasks due to the increased oversubscription. In 

addition, it can be seen that the best preemption-capable heuristics earn more utility than the other 

heuristics in all cases. 

In Figure 40, the percentage of tasks that are completed by each of the heuristics is shown for 

the same workloads in Figure 39 where the average execution time for critical tasks is equal to 10, 

30, and 50 minutes. This is not our performance measure, but this shows that in addition to earning 

more utility, the utility-based heuristics are also able to complete more tasks. In addition, the Max 

UPT heuristics are able to complete more tasks than the Max Util heuristics because the Max UPT 

heuristics are better able to consider the heterogeneity of the system because they consider task 

execution time when making scheduling decisions. Given a set of tasks with the same utility 

function, the Max UPT heuristic would be able to assign each of those tasks to the cluster able to 

execute it in the least amount of time. 

Across all of the results in Figure 36, Figure 37, Figure 38, and Figure 39, the percentage of 

maximum system utility is shown for a variety of workloads. These results show that utility-based 

heuristics are more effective than the comparison heuristics at maximizing utility. In addition, it 

can be seen that the Max UPT heuristic (regardless of the preemption technique used with it) 

outperforms the Max Util heuristic in all of these environments for the reasons described above.  

When comparing the preemption techniques, it can be seen that the Max Util Preempt Greedy, 

Max UPT Preempt Greedy, and Max Util Preempt Diff, and Max UPT Preempt Diff heuristics 

tend to have close to identical performance because in most instances they make the same 

allocation decisions. The Max Util Preempt Pair and Max UPT Preempt Pair heuristics perform 

worse than the other preemption techniques in all of these environments. This is likely because 

this preemption technique attempts to make decisions about what should occur at future mapping 
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events. Because the tasks in this system arrive dynamically, these decisions made by the heuristic 

may not be carried out when new potentially high utility tasks arrive before the next mapping 

event. It can also be seen that the Max Util Preempt Pair heuristic performs better relative to the 

other Max Util heuristics than Max UPT Preempt Pair does relative to the other Max UPT 

heuristics. This is because the UPT of a task that has almost finished its execution becomes high 

relative to the other tasks, which can result in this heuristic preempting these tasks more frequently 

than is ideal. 

The Max Preemption and Max Difference Preemption heuristics are the best performing 

heuristics overall and are able to significantly improve the utility earned by our utility-aware 

heuristics in many environments. Further, they never result in reduced utility earned relative to 

 

Figure 38. The percentage of maximum system utility earned by each of the heuristics for six different 

workloads where the percentage of tasks that can preempt and the percentage of tasks that can be 

preempted are varied over 0%, 20%, 40%, 60%, 80%, and 100%. The results are shown with 95% mean 

confidence intervals.  
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any of the other heuristics. These preemption techniques also have an insignificant execution time 

overhead that is comparable on these systems to the overhead of running any of the utility-aware 

heuristics without preemption. 

4.6. Related Work 

Preemption in scheduling is commonly seen in the literature, but it is rarely the main focus of 

the research it appears in and there is often limited analysis of it. One area with a considerable 

amount of research on preemption is scheduling for systems that are running the tasks of 

MapReduce applications. For example, the research in [6] proposes a new strategy for using 

preemption to quickly execute high priority jobs. In that study, the proposed scheduler (Global 

Preemption) attempts to improve the performance of the system by attempting to avoid undesirable 

preemptions (e.g., avoid preempting jobs that have already been executing for a long period of 

time). This is similar to the effect that is provided by our Max UPT preemption heuristics, but this 

work does not consider utility, considers only a homogeneous system (unlike our heterogeneous 

environment), and considers a set of tasks that is very different from ours in terms of arrival pattern 

and execution characteristics. 

In [7], a small homogeneous parallel environment with a single 32 node cluster is studied. 

Tasks in this study have simple linearly decaying “value functions,” which fit our definition of a 

utility function. This study had a similar distribution of tasks to ours where 80% of the tasks were 

“low value” and 20% of the tasks were “high value” with the “high value” tasks having an average 

of 100 times the importance relative to a “low value” task. The simple preemption technique 

applied in this study would make a preemption whenever swapping a running job with the first 

task in the queue would increase the total value earned. In addition, there was a constraint that 

each task could be preempted at most once. In the best case (i.e., when tasks were had utility 
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functions that decayed to zero the fastest) this resulted in an improvement of around 20% in terms 

of value earned. Our work differs from [7] because that study did not consider heterogeneity and 

used only one type of utility function. 

The authors of [14] propose a preemption-aware heuristic called “Selective Preemption” for 

scheduling parallel jobs. They considered workload traces from real systems and showed that their 

technique outperformed some existing scheduling techniques because it was able to obtain good 

performance for all tasks regardless of their resource requirements. In comparison, the existing 

techniques either had trouble executing large tasks (i.e., tasks with long execution times that are 

parallelized across many cores) or small tasks (i.e., tasks with short execution times parallelized 

over only a few cores) effectively. This work differs from ours because it studies a parallel 

environment, and uses metrics such as turnaround time and slowdown to measure performance. In 

 

Figure 39. The percentage of maximum system utility earned by each of the heuristics for three different 

workloads where the average execution times of critical tasks are 10, 30, and 50 minutes. Recall that the 

execution time of non-critical tasks is 50 minutes. The results are shown with 95% mean confidence 

intervals. 
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our environments, the metric of performance is utility and it is unimportant if a certain class of 

tasks has trouble executing as long as the overall utility earned is maximized. 

Scheduling is studied for an environment with value functions that can decay to negative values 

(this is a penalty for failing to schedule a task) in [12]. Here, a significant difference from our work 

is that the scheduler only selects (and is only penalized for) tasks that it decides to accept (the 

purpose of penalties is to encourage that the tasks get executed by the site that accepts them). The 

authors show that their scheduling technique outperforms several existing strategies for 

maximizing value earned in such an environment. 

Utility has been used as a performance measure in a variety of serial and parallel environments, 

(e.g., [13, 15, 20, 21, 22, 28]). Our work differs from these because none of them consider the 

possibility of preemption to improve system performance. In addition, [13, 20, 22, 28] do not 

consider heterogeneity. 

In addition to simple heuristics that can be used to quickly make scheduling systems, it is 

common to study the use of more time consuming techniques such as genetic algorithms. Given 

enough time, a genetic algorithm can find very good solutions to scheduling problems. In a parallel 

environment, a genetic algorithm was applied in [20] and was able to outperform common parallel 

scheduling techniques such as EASY Backfilling. Unfortunately, this genetic algorithm had an 

average execution time of 8,900 seconds. In an environment like the one studied in our work, 

where mapping decisions must be made every minute, it is not possible to use a resource manager 

with that level of execution overhead.  
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4.7. Conclusions and Future Work 

We designed and evaluated six different preemption-capable heuristics. In environments where 

preemption is possible, we have shown that these heuristics are able to significantly outperform 

Random and the common FCFS scheduling technique. In addition, the preemption-capable 

heuristics were able to outperform the utility-aware heuristics without preemption (Max Util and 

Max UPT). Detailed analyses of the differences in performance were described for a variety of 

environments. 

An important and significant extension of this work would be to consider the preemption of 

parallel tasks executing on oversubscribed HPC systems. Our previous work has shown that utility-

aware heuristics are still very effective in parallel environments [21, 22]. Because parallel tasks 

 

Figure 40. The percentage of tasks completed by each of the heuristics for three different workloads where 

the average execution times of critical tasks are 10, 30, and 50 minutes. Recall that the execution time of 

non-critical tasks is 50 minutes. The results are shown with 95% mean confidence intervals. 
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are common in most HPC systems, designing a resource manager that is capable of efficiently 

scheduling parallel tasks is an important problem for the HPC community to consider. An 

environment with parallel tasks would add additional challenges to this problem because it would 

no longer be realistic to consider the overhead of suspending or resuming a task to be negligible. 

In addition, it would be much more computationally expensive to consider every possible 

preemption for each task against different sets of smaller tasks. Thus, different, more complex, 

and more time-consuming heuristics will need to be designed and analyzed. 

Another possible extension to this work is the consideration of energy. Because of the growing 

need for energy efficient HPC systems, it is important that any scheduler be aware of system 

energy use resulting from its scheduling decisions.  
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Chapter 5 

Surveillance Mission Scheduling with Unmanned Aerial 

Vehicles in Dynamic Heterogeneous Environments4 

 

5.1. Introduction 

Unmanned aerial vehicles (UAVs) are used in many environments to gather information, such 

as in active battlefields scenarios. An example of such a scenario is shown in Figure 41. In this 

example, seven UAVs are being used to gather information about nine targets. We assume that a 

UAV can only surveil a single target at a time, so this is an oversubscribed scenario because there 

are more targets than UAVs and it will not be possible to surveil all targets simultaneously with 

the fleet of UAVs. To gather as much useful information about the targets as possible, it is 

necessary to conduct mission planning and scheduling to determine how the UAV fleet should 

effectively surveil the targets. 

As both the number of UAVs that are active simultaneously and the number of targets available 

in an environment increases, it becomes necessary to reduce the amount of human control and 

human scheduling required to operate them effectively [1]. This can be accomplished by designing 

and deploying heuristic techniques that can find effective mission scheduling solutions. 

In this study, our focus is on the design of mission scheduling techniques capable of working 

in dynamic environments that are suitable for determining effective mission schedules in real-time. 

 

4 This work was done jointly with former Ph.D. student Ryan Friese. The full list of co-authors for this work is 
at [24]. Preliminary versions of this work appeared in [21, 22, 23]. 
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Because scheduling problems of this type are, in general, known to be NP-Hard, finding optimal 

solutions is not feasible [2]. Due to this, we consider fast heuristic techniques to find mission 

schedules and evaluate their performance compared to other heuristics. These techniques find 

mission schedules for our scenarios in less than a second on average. 

To effectively compare and evaluate these techniques, we measure system-wide performance 

using a new metric called surveillance value. Surveillance value measures the overall performance 

of all information gathered by the UAVs, based on parameters such as the number of surveils that 

occur, the quality of information gathered by each surveil (e.g., image resolution), the importance 

of each target, and the relevance of the information obtained for a specific target. The novel 

contributions in this work include: 

• the design of new mission scheduling heuristics that are used to dynamically determine 

which UAVs and sensors should be used to surveil each target; 

• the modification of the heuristics using preemption and filtering techniques that enable 

more efficient utilization of the UAVs in a fleet; 

• the construction of a model for UAVs surveilling targets in energy-constrained, dynamic 

scenarios where the value of each surveil can be quantified; 

• the development of a novel system-wide performance measure of the information 

gathered by all UAVs considering multiple factors; 

• the creation of a model for randomly generating scenarios defined by a set of UAVs and 

targets for the purpose of evaluating mission scheduling techniques, such as the 

heuristics considered in this work; 

• the analysis and comparison of heuristics across many varied simulated scenarios. 
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This paper is organized as follows. In Section 5.2, the system model and environment are 

described. The methods used by both the novel mission scheduling heuristics and the comparison 

heuristics evaluated in this study are presented in Section 5.3. Section 5.4 contains the specific 

process used to generate the scenarios we use in our simulations. In Section 5.5, we show the 

results of the simulations and use the results to analyze and compare the behavior and performance 

of the heuristics. Related work is discussed in Section 5.6 and finally in Section 5.7 we conclude 

and discuss possible future work. 

5.2. System Model 

5.2.1. Overview 

The system considered in this study consists of a heterogeneous set of UAVs (with varying 

sensor and energy characteristics) and a heterogeneous set of targets (with varying surveillance 

requirements). These sets of UAVs and targets are dynamic, meaning that UAVs and targets can 

be added or removed from the sets at any time. Additionally, specific characteristics of the UAVs 

 

Figure 41. An example scenario with seven UAVs and nine targets. Arrows drawn from a UAV to a target 

signify that the target is currently under surveillance by the UAV. 
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and targets can change dynamically at any time. We make a simplifying assumption that every 

UAV is always close enough to every target and has an unobstructed view of every target so that 

any sensors available to a UAV can surveil any target at any time. 

Because UAVs cannot stay airborne indefinitely, this work considers mission scheduling 

strategies for a single day. At the end of the day, all UAVs would be able to return to their base of 

operations to refuel or recharge. In this study, a UAV can only surveil a single target at any given 

time. The problem space we explore primarily consists of oversubscribed systems, which means 

that there are fewer UAVs than targets. This will prevent all available targets from being surveilled 

simultaneously. While the majority of the environments in this study are oversubscribed, the 

techniques we design and evaluate are still applicable to undersubscribed systems. 

Because UAVs cannot stay airborne indefinitely, this work considers mission scheduling 

strategies for a single day. At the end of the day, all UAVs would be able to return to their base of 

operations to refuel or recharge. The energy needed for the UAV’s fixed flight plan is not included in the 

energy available to the sensors in our model. In this study, a UAV can only surveil a single target at any 

given time. The problem space we explore primarily consists of oversubscribed systems, which 

means that there are fewer UAVs than targets. This will prevent all available targets from being 

surveilled simultaneously and 100% of desired surveils will not occur. While the majority of the 

environments in this study are oversubscribed, the techniques we design and evaluate are still 

applicable to undersubscribed systems. 

5.2.2. Target and UAV Characteristics 

In our environment, each UAV has a single energy source with a fixed amount of total energy 

available to it. In our subsequent discussions, we normalize this value so that the maximum amount 

of energy available to any UAV is less than or equal to 1.0. Every UAV is equipped with one or 
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more sensors that can be used to surveil targets. The sensor types considered in this work are 

visible light sensors (VIS), infrared light sensors (IR), synthetic-aperture radars (SAR), and light 

detection and ranging systems (LIDAR). Each UAV cannot have more than one sensor of a given 

type, which is a simplifying assumption in this work. The heuristics presented in this study will 

function in environments with multiple sensors with the same type. Each sensor available to a 

UAV also has an associated sensor quality value ranging from 1 (worst) to 10 (best) and a rate of 

energy consumption, which is normalized to the total energy available to the UAV and ranges from 

0.0 to 1.0 normalized units of energy per hour. All sensors available to a UAV use the same energy 

source. The energy needed for the UAV’s fixed flight plan is not included in the energy available 

to the sensors in our model. An example of UAV characteristics is shown in Table 9 for a fleet of 

four UAVs. 

Targets represent locations of interest to be potentially surveilled by UAVs. A priority value 

is assigned to each target, which represents the overall importance of surveilling the target. Priority 

values are positive integers between 1 and 10, where higher numbers represent more important 

targets. Each target has a surveillance time, which specifies the number of hours that a UAV should 

spend surveilling the target in a single surveil. Because the kind of information that is useful for 

each target may vary, targets have a set of allowed sensor types, which constrains which sensors 

can surveil the target. Each of these allowed sensor types has an associated sensor affinity value, 

which range from 1 (worst) to 10 (best) and measures how useful or relevant the information 

gained from that sensor type is for the target. Table 10 contains target characteristics for an 

example set of six targets. Additionally, each target has a set of surveillance intervals, representing 

the time intervals in which a single surveil of the target should occur. 
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5.2.3. Dynamic Events 

Characteristics of the UAVs and targets in a scenario can change dynamically during the day. 

For example, changes in the weather may affect the quality of information collected by certain 

sensor types, which can be modeled in this study by a change in the sensor affinity value for targets 

affected by this change in weather. We model this as a change in sensor affinity because the 

weather would be local to one or more targets and would affect the sensors of all UAVs surveilling 

that target. 

The dynamic changes that we model for UAVs are: (a) adding and removing UAVs from the 

scenario, (b) removing sensor types from UAVs, and (c) modifying the sensor quality for sensors 

of the UAVs. The set of targets can also dynamically change: (a) new targets can be added or 

removed from the scenario, (b) priority of targets can be adjusted, (c) time that a target should be 

surveilled in a single surveil can be modified, (d) allowed sensor types can be added or removed 

from the target, and (e) sensor affinities for each allowed sensor type can be altered. 

In this study, we assume that any dynamic changes are unexpected and that the techniques that 

assign UAVs to surveil targets have no information about (a) when the changes will happen, (b) 

Table 9. UAV characteristics 

characteristics UAV 1 UAV 2 UAV 3 UAV 4 
total energy 1.0 0.5 0.8 0.8 
sensor type VIS SAR | IR VIS | IR SAR | LIDAR 

energy 
consumption/hour 0.05 0.15 | 0.08 0.1 | 0.05 0.15 | 0.05 

sensor quality 7 7 | 5 9 | 3 7 | 4 

 Table 10. Target characteristics 

characteristics target 1 target 2 target 3 target 4 target 5 target 6 
priority 3 4 5 6 8 10 

surveillance time 0.97 hours 3.02 hours 1.77 hours 2.73 hours 1.27 hours 2.52 hours 
allowed sensors SAR VIS | IR SAR | IR | LIDAR VIS | IR | LIDAR VIS | SAR | IR | 

LIDAR VIS | IR 
sensor affinity 6 7 | 4 2 | 8 | 5 3 | 1 | 8 9 | 2 | 5 | 4 8 | 6 
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which UAVs and targets will have their characteristics changed, and (c) which specific 

characteristics will be changed. Additionally, the specific intervals of time during the day when 

each target can be surveilled are not known in advance. 

f the UAVs and targets in a scenario can change dynamically during the day. For example, 

changes in the weather may affect the quality of information collected by certain sensor types, 

which can be modeled in this study by a change in the sensor affinity of targets affected by this 

change in weather. 

The dynamic changes that we model for UAVs are: (a) adding and removing UAVs from the 

scenario, (b) removing sensor types from UAVs, and (c) modifying the sensor quality for sensors 

of the UAVs. The set of targets can also dynamically change: (a) new targets can be added or 

removed from the scenario, (b) priority of targets can be adjusted, (c) time that a target should be 

surveilled in a single surveil can be modified, (d) allowed sensor types can be added or removed 

from the target, and (e) sensor affinities for each allowed sensor type can be altered. 

In this study, we assume that any dynamic changes are unexpected and that the techniques that 

assign UAVs to surveil targets have no information about (a) when the changes will happen, (b) 

which UAVs and targets will have their characteristics changed, and (c) which specific 

characteristics will be changed. Additionally, the specific intervals of time during the day when 

each target can be surveilled are not known in advance. 

5.2.4. Surveillance Value 

To evaluate the performance of different techniques for assigning UAVs to targets, it is necessary 

to measure the worth of individual surveils by a UAV on a target. For a UAV (u), target (t), and 

used sensor type (s) the value of a surveil (𝜎(𝑢, 𝑠, 𝑡)) is given by the product of the priority (ρ), 

sensor affinity (α), and sensor quality (γ): 
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 value(𝜎(𝑢, 𝑠, 𝑡)) = 𝜌(𝑡) ∗ 𝛼(𝑡, 𝑠) ∗ 𝛾(𝑢, 𝑠). (1) 

The total surveillance value earned over an interval of time is then defined by the sum of values 

earned by all surveils performed by UAVs in that interval of time: 

 surveillance value = ∑ value(𝜎).𝜎∈ surveils performed  (2) 

If a surveil is not fully completed, then a partial value will be earned for that surveil, which is 

directly proportional to the fraction of the surveil that was completed. A partial surveil can occur 

when the target’s surveillance interval ends, the UAV runs out of energy, there are dynamic 

changes in the environment that stop the surveil, or a heuristic preempts the surveil. 

In the case where a characteristic of the target or UAV that affects the value of the surveil 

changes during the surveil, then the value of the surveil before the change is calculated as a partial 

surveil that ends when the change occurs. The value of the surveil after the change is similarly 

calculated as a partial surveil using the remaining time until the end of the surveil or until another 

characteristic that would affect the value changes. For example, if during a five-hour surveil the 

priority of a target is doubled after three hours, then the value earned for the first three hours would 

be calculated as 60% of a full surveil using the initial priority and the value earned for the last two 

hours would be calculated as 40% of a full surveil using the doubled priority. 

5.2.5. Problem Statement 

The goal of our proposed scheduling heuristics is to maximize surveillance value obtained over 

a day. This problem is constrained by the total energy available to each UAV. In this study, this 

constraint is only applied to the energy consumed by a UAV’s sensors. Additionally, each UAV 

can only surveil one target and only operate one of its sensors at any time; similarly, at any point 

in time, each target can only be surveilled by one UAV. These are simplifying assumptions used 

in this study. 



153 
 

5.3. Mission Scheduling Techniques 

5.3.1. Mapping Events 

Mapping UAVs to targets refers to the process of determining which UAVs will surveil which 

targets, which sensors will be used for surveils, and when the surveils will occur. When preemption 

is not considered, a UAV is an available UAV to be mapped if it is not currently surveilling targets 

and has energy remaining, and a target is an available target to be mapped if it is not currently 

being surveilled and it is eligible for being surveilled based on its surveillance intervals. A sensor 

of a UAV is said to be a valid sensor type for a given target if that sensor type is also in the target’s 

list of allowed sensor types. If a UAV has a valid sensor type for a target, it is called a valid UAV 

for that target. Only valid UAVs are considered for mapping to a given available target. 

The instant when a mapping of available UAVs to available targets occurs is called a mapping 

event. At a mapping event, a mission scheduling technique is used to assign available UAVs to 

surveil available targets based on the current state of the system. In this study, all techniques 

presented are real-time heuristics to allow mapping events to be completed in less than a second 

on average for the problem sizes we consider. There are different techniques for deciding when a 

mapping event should be initiated, e.g., at fixed time intervals or due to changes in the 

environment. In this study, we consider the case where mapping events occur with a fixed time 

interval. Most of our simulations use a fixed time interval of five minutes. We examined the impact 

of this interval as a part of our simulations and found that other time intervals do not significantly 

improve performance. In a real-world implementation, this interval of time can be derived based 

on empirical evaluations of the characteristics of the actual system. 
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5.3.2. Comparison Techniques 

5.3.2.1. Random 

At a mapping event, the Random technique considers available targets in a random order. For 

each target, a random available valid UAV and a random valid sensor type of that UAV are 

selected. The selected UAV and sensor type are assigned to surveil the target. This results in both 

the target and the UAV becoming unavailable for new assignments until this new surveil 

completes. If there is no available UAV that has a valid sensor type for the target, then no UAV is 

assigned to the target. This repeats with the next target in the random ordering until there are no 

more assignments of UAVs to targets possible in the current mapping event. 

5.3.2.2. Random Best Sensor 

The Random Best Sensor heuristic is similar to the Random technique, except that it uses 

knowledge about the sensor quality of UAVs and the sensor affinity of targets to make decisions 

that are likely to result in higher surveillance value. Like the Random heuristic, available targets 

are considered in a random order and a UAV with a valid sensor type for this target is selected at 

random. Instead of selecting a random valid sensor type from the UAV, this heuristic chooses the 

sensor type with the maximum product of the UAV’s sensor quality and the target’s sensor affinity. 

Because both values are directly used along with the target’s priority in the calculation for the 

value of a surveil, this strategy will often select higher value surveils compared to the Random 

heuristic. Next, the same process used by the Random heuristic occurs: the UAV is assigned to 

surveil the target with this sensor type and the heuristic continues with the next randomly ordered 

target until no more assignments are possible. 
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5.3.3. Value-Based Heuristics 

5.3.3.1. Overview 

The value-based heuristics in this study are designed to search through valid combinations of 

UAVs, targets, and sensor types to greedily assign UAVs to surveil targets based on the 

surveillance value performance measure. A valid combination is represented by an available target, 

a valid available UAV for that target, and a valid sensor type of the UAV for the target. 

5.3.3.2. Max Value 

At a mapping event, the Max Value heuristic starts by finding a valid combination of a UAV, 

target, and sensor type that results in the maximum possible value for a single surveil. If there are 

multiple valid combinations with the same maximum possible value, then one of these 

combinations is selected arbitrarily. The heuristic then assigns the UAV from the selected 

combination to surveil the selected target with the selected sensor type. This process of finding the 

maximum value combination and starting a surveil based on the combination repeats until no more 

assignments of available UAVs to available targets are possible in the current mapping event. 

 

Figure 42. A visualization of the decision-making process employed by the Metaheuristic. If the current energy 

consumption during the day of a UAV is below the linear energy consumption line, then Max Value is used for 

the UAV at the current mapping event. Otherwise, Max Value Per Energy (Max VPE) is used. 
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5.3.3.3. Max Value Per Time 

The Max Value Per Time heuristic is identical to Max Value except for one difference. Instead 

of selecting the valid combination that results in the maximum possible value for a surveil, Max 

Value Per Time instead selects the valid combination that results in the maximum possible value 

divided by surveillance time of the target (based on a complete surveil of the target). 

5.3.3.4. Max Value Per Energy 

The Max Value Per Energy heuristic is identical to Max Value except that instead of selecting 

the valid combination that results in the maximum possible value for a surveil, Max Value Per 

Energy instead selects the valid combination that results in the maximum possible value per energy 

(VPE), equal to value divided by the projected energy consumed by the UAV for that surveil. The 

projected energy consumption can be easily calculated from the energy consumption rate of the 

selected sensor type and the surveillance time of the selected target (based on a complete surveil 

of the target). We have used the general concept of performance per unit time and performance 

per unit of energy in prior work in a high-performance computing environment, e.g., [3], [4]. 

5.3.4. Metaheuristic 

The value-based heuristics described in Section 5.3.3 are designed to perform well in specific 

situations and using the wrong heuristic for a scenario could result in poor performance. Because 

there may be insufficient information to predict which heuristic should be used, we design a 

metaheuristic to intelligently combine the best performing value-based heuristics. This does not 

include the Max Value Per Time heuristic because in the scenarios we consider, Max Value Per 

Time never performs better than either Max Value or Max Value Per Energy on average. The 

Metaheuristic uses a two-phase process to find good surveillance options. The general strategy 

employed by this metaheuristic is illustrated in Figure 42. The metaheuristic keeps track of the 
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historical rate of energy consumption of each UAV and will use either Max Value or Max Value 

Per Energy depending on whether the historical rate of energy consumption is above or below a 

linear rate of energy consumption that would result in running out of energy at the end of the 24-

hour period we consider. 

In the first phase, the Metaheuristic selects a candidate target and valid sensor type for each 

UAV. The fraction of the day that has passed (δ) and the fraction of the UAV’s energy that has 

been consumed (ε) are used to determine if the strategy used by the Max Value or Max Value per 

Energy heuristic would be most effective. If δ > ε, energy is being consumed slowly and Max 

Value is used. Otherwise, the UAV has been consuming energy at a relatively high rate and the 

strategy from Max Value Per Energy can be used to make energy-efficient decisions. Based on 

this choice, either the valid combination using the UAV that results in the maximum possible value 

or the maximum possible value divided by energy consumed is selected as the best candidate 

combination for the current UAV. The first phase ends when every UAV has a candidate 

combination selected. Note that multiple UAVs can select the same target as their candidate. 

The second phase is used to determine which UAV from the first phase should be assigned to 

its candidate target and sensor type. Unlike the first phase, it is unnecessary to use strategies from 

multiple value-based heuristics in the second phase. This is because energy is a constraint for 

individual UAVs and not for the overall system. At the system level, all that is relevant to 

maximizing surveillance value is the value of each surveil. Thus, we choose the UAV with a 

candidate combination that results in the maximum possible value earned by its corresponding 

surveil. This chosen UAV is assigned to surveil its target. This process of selecting candidates in 

the first phase and making an assignment of the best candidate in the second phase is repeated until 
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no more assignments are possible in the current mapping event. An example of a mapping 

produced by the Metaheuristic is shown in Figure 43. 

5.3.5. Heuristic Modifications 

5.3.5.1. Overview 

We consider two modifications that can be applied to any of the previously described 

heuristics. One of these modifications allows the heuristics to preempt surveils and the other limits 

the options available to a heuristic to improve the chance that the heuristic makes optimal 

decisions. 

5.3.5.2. Preemption 

Preemption is a modification to a heuristic that increases the number of choices available. 

Specifically, in addition to assigning available UAVs to available targets, the heuristic can stop 

 

Figure 43. The mapping produced by the Metaheuristic for our example scenario in Table 9 and Table 10. This 

mapping earns a total value of 5,660 during the 24 hours we consider. The red lines represent the percentage 

of remaining energy for each UAV. Light green regions represent the surveillance intervals for each target and 

when a UAV has energy remaining. White regions represent when a UAV or target is not available. Dark green 

(UAV 1), purple (UAV 2), yellow (UAV 3), and blue (UAV 4) regions represent when a surveil is active using 

each specific UAV. 
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any surveil that is currently in progress, which will cause the affected UAV and target to become 

immediately available. Because we assume that all UAVs are always able to begin surveilling any 

target immediately (see Subsection 5.2.1), we do not consider any overhead time due to preempting 

the surveils. 

This modification adjusts the greedy heuristics described in this section so that the set of 

available targets and UAVs includes all targets and UAVs as long as the new combination that 

will preempt an existing surveil is better in terms of the metric used by the heuristic (e.g., a surveil 

is better for Max Value if it earns more value). 

5.3.5.3. Filtering 

Filtering is a modification to a heuristic that reduces the number of choices available. 

Specifically, this modification is designed to control the rate of energy consumption of each UAV 

so that it will run out of energy close to the end of the day. An example of the benefits of filtering 

is shown in Figure 44. In this example, using the Max Value heuristic on its own would use up all 

the energy of the UAV before the first 12 hours have passed. After the first surveil using Max 

Value has ended, the filtering technique detects that the UAV has been consuming energy quickly 

 

Figure 44. A visualization of the decision-making process employed by the filtering technique. This modification 

is designed to prevent UAVs from using all of their energy quickly, which is useful when high priority targets 

would be available late in the day. 
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and will run out of energy before the end of the day and begins aggressively removing options 

from the heuristic, resulting in the UAV doing nothing. Near the end of the day, a high priority 

target arrives and there is still energy remaining to surveil the new target. 

The first step of filtering is to calculate the fraction of the day that has passed (δ) and the 

fraction of the UAV’s energy that has been consumed (ε). We define the threshold factor (Ϝ) to be 

the unitless value ε / δ. The base VPE threshold (τ) is equal to the average VPE of all surveils so 

far for the UAV. Finally, the VPE threshold (Τ) is equal to τ × Ϝ. At a mapping event, only surveils 

with VPE > Τ are considered for each UAV. 

With filtering, there will be some mapping events where a UAV will have all of its options 

removed. This is intentional, as sometimes there is benefit to doing nothing when none of the 

targets available for a UAV to surveil are efficient options. In those cases, it is usually better to 

wait for an efficient option to appear and to leave the available targets for other UAVs that may 

have sensors that are a better fit for the sensor affinities of the targets. The effects of combining 

 

Figure 45. The mapping produced by the Metaheuristic with Preemption and Filtering for our example 

scenario in Table 9 and Table 10. This mapping earns a total of 7,374 value during the 24 hours we consider. 

This mapping combines the benefits of Preemption to quickly switch to high priority targets and the benefits 

of Filtering by conserving energy until later in the day compared to Figure 43. The red lines represent the 

percentage of remaining energy for each UAV. Colors in this figure have the same meaning as in Figure 43. 
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preemption and filtering are demonstrated in Figure 45. When compared to Figure 43, preemption 

and filtering allow the UAVs to spend most of the day surveilling the most efficient targets. For 

example, UAV 1 is not significantly constrained by energy and spends almost all of its time 

surveilling the high priority target 6; and UAV 3 is significant constrained by energy and spends 

most of the day surveilling target 5, which is efficient in terms of value per unit of energy 

consumed. 

5.4. Simulation Setup 

5.4.1. Generation of Baseline Set of Randomized Scenarios 

5.4.1.1. Effect of Energy Consumption Rate 

Each scenario that we use to evaluate the heuristics is defined by a set of UAV characteristics 

and a set of target characteristics. To compare and evaluate the heuristics, we consider a wide 

variety of scenarios to understand the kinds of scenarios for which each heuristic is most effective. 

We generate 10,000 baseline scenarios by sampling from probability distributions for the 

number of UAVs and targets in a scenario in addition to the value for each characteristic of the 

UAVs and targets. In each case, distributions are selected to attempt to model distributions of 

parameters that may occur in real-world environments. The details of these distributions are as 

follows. 

5.4.1.2. Generating UAVs 

The number of UAVs available during the 24-hour period of a scenario is sampled from a 

Poisson distribution with the Poisson parameter λ = 9. The characteristics of each UAV are then 

generated. The total energy available to the UAV is sampled from a beta distribution with a mean 

of 0.8 and a standard deviation of 15% of the mean. We use beta distributions for many parameters 



162 
 

in this work because many of our UAV and target characteristics are fixed between a minimum 

and a maximum value. The energy consumption rate for each sensor is sampled from a beta 

distribution with a mean of 0.05 and a standard deviation of 50% of the mean. The total energy 

and energy consumption rates are sampled in this way so that UAVs can be expected to operate 

for an average of 16 hours. 

The number of sensors available to each UAV is generated by using a Rayleigh distribution 

with a scale parameter of 2. Any values below 1 are increased to 1 and any values above 4 are 

decreased to 4. The sensor type for each sensor is selected using probabilities of 0.5, 0.2, 0.2, and 

0.1 for the VIS, SAR, IR, and LIDAR sensor types, respectively. Because each UAV can only 

have one sensor of each type, a sensor type that has been selected for a UAV is no longer a 

candidate for that UAV and the next sensor is chosen among the remaining sensors types after 

normalizing their probabilities so that the sum is 1.0. The quality of each sensor is found using a 

beta distribution with a mean of 0.6 and a standard deviation of 40% of the mean. This value is 

then truncated to an integer and is clamped between 1 and 10, inclusive, such that all UAVs have 

a sensor quality between 1 (worst) and 10 (best). 

5.4.1.3. Generating Targets 

The number of targets available to surveil during the 24-hour period is obtained using a Poisson 

distribution with λ = 14. Because the number of UAVs was generated with λ = 9, these scenarios 

in general will be oversubscribed. The priority of each target is first sampled from a gamma 

distribution with a mean of 4 and a standard deviation of 60% of the mean. The same method 

described above for sensor qualities is then used to get integers between 1 (worst) and 10 (best). 

A gamma distribution was used here because the positive skew results in a slightly larger number 

of high priority targets instead of the highest priority having the smallest number of occurrences. 
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To obtain the required surveillance time for each target, we use a uniform distribution ranging 

from 1 to 3 hours. 

Differing from what was used for UAVs, we obtain the number of allowed sensor types for 

each target by adding 1 to the value obtained from a binomial distribution with p = 0.5 and n = 3. 

The allowed sensor types selected to match this number are uniformly selected from VIS, SAR, 

IR, and LIDAR. To get the sensor affinity for each sensor type, we use a beta distribution with a 

mean of 0.7 and a standard deviation of 30% of the mean and use the same method described above 

for sensor qualities to get integers between 1 (worst) and 10 (best). 

Surveillance intervals are arranged such that the average duration of an interval is three hours 

and the average time between two intervals is one hour. Starting from time 0, the start time of the 

first interval is found by sampling an exponential distribution with a mean of one hour and the end 

of the interval is found by sampling from a gamma distribution with a mean of three hours and a 

standard deviation of 20% of the mean. This same process is then repeated from the end of the first 

interval and continues until the next interval would start after the end of the day (24 hours). Note 

that although these intervals are generated statically in advance, they are dynamic in our system 

model as described in Subsection 5.2.3 and the heuristics are not aware of where the future 

intervals will be. 

Table 11. Dynamic event rates 

event type rate (events per day) 
add a UAV 1 

remove a UAV 1 

remove a sensor from a UAV 0.5 

modify sensor qualities of a UAV 0.5 

add a target 2 

remove a target 2 

change the priority of a target 4 

change the surveillance time of a target 6 

add allowed sensor types to a target 6 

remove allowed sensor types from a target 6 

modify sensor affinities of a target 2 
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5.4.1.4. Generating Dynamic Events 

We utilize Poisson processes to generate the dynamic events for our scenarios. Poisson 

processes are commonly used to model the occurrences of independent events with a known mean 

rate. In our baseline set of scenarios, the expected rate of each type of dynamic event is shown in 

Table 11. For each of the dynamic event types, we model an independent Poisson process where 

the time between each occurrence of an event of that type is sampled from an exponential 

distribution with λ equal to the expected rate of events of that type from Table 11. 

Each dynamic event that occurs uses methods similar to those described earlier in this section 

to determine the specific dynamic changes that will occur. If a UAV or target is to be added to the 

scenario, then a new UAV or target is generated as described in Subsection 5.4.1.2 or 5.4.1.3, 

respectively. The other event types will affect existing UAVs or targets. For these event types, the 

UAV or target that is affected is selected randomly (using a uniform distribution). 

If a sensor type would be removed from a UAV, that sensor type is selected randomly from 

the set of sensor types available on the UAV (using a uniform distribution). If the UAV only has 

one sensor type available, then this is equivalent to removing the UAV from the scenario. When 

the sensor qualities of a UAV are dynamically changed, they are resampled as described in 

Subsection 5.4.1.2 as if a new UAV were being created. 

The process for changing the characteristics of a target is similar. If the event would affect the 

sensor affinity or allowed sensor types of a target, these are handled in the same way as sensor 

quality and sensor types for a UAV, except that new allowed sensor types may be added to a target 

if it does not already allow all four sensor types that we model. When a new type is added, it is 

randomly selected from the sensor types that are currently not allowed on the target (using a 

uniform distribution). When this is done, a sensor affinity for that type is also sampled for the type 
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as described in Subsection 5.4.1.3. Finally, events that dynamically change either the priority or 

surveillance time of a target simply resample the quantities as described in in Subsection 5.4.1.3. 

5.4.2. Generation of Additional Scenarios for Parameter Sweeps 

Because the baseline set of 10,000 scenarios in Subsection 5.4.1 may have characteristics that 

are favorable to the performance of individual heuristics, we use parameter sweeps to evaluate the 

heuristics in a diverse set of environments. We generate 20 sets of 10,000 scenarios each for the 

parameter sweeps of six characteristics of the environment. The characteristics we vary are the 

mean number of targets in a scenario (two sets in addition to the baseline), the mean number of 

UAVs in a scenario (two sets in addition to the baseline), the mean rate of energy consumption for 

sensors (three sets in addition to the baseline), the mean rate at which dynamic events occur (three 

sets in addition to the baseline), the standard deviation of the priority of targets (four sets in 

addition to the baseline), and the fixed interval at which mapping events occur (five sets in addition 

to the baseline). The number of sets for each characteristic were selected such that the impact of 

each characteristic on the performance of the heuristics is clearly demonstrated. 

We examine the effect of varying the number of targets and number of UAVs by generating 

scenarios for the cases with λ values of 10, 14, and 18 for the number of targets, and 5, 9, and 13 

for the number of UAVs. We vary the mean energy consumption of sensors with scenarios where 

the mean is 0.05, 0.1, 0.15, and 0.2. The rate of dynamic events is varied by multiplying the rates 

given in Table 11 by 0, 1, 4, and 16. The coefficient of variation of target priority is varied between 

0.2, 0.4, 0.6, 0.8, and 1.0. Finally, to analyze the effect of the mapping interval, we consider 

mapping intervals of 1, 5, 10, 30, 60, and 120 minutes. 
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5.4.3. Generation of Large-Scale Scenarios 

We also generate a baseline set of 500 scenarios in the same way as the 10,000 described in 

Subsection 5.4.1, except that the scenario is ten times as large on average. Specifically, all 

characteristics of the scenario are generated as described in Subsection 5.4.1, except that there is 

an average of 90 UAVs and 140 targets. In addition, the dynamic events are generated as described 

in Subsection 5.4.1.3, but with expected rates of events that are ten times as high as listed in Table 

11. This baseline set of scenarios is then expanded following the same process described in 

Subsection 5.4.2 with the number of targets and UAVs scaled up by ten times. This set of scenarios 

is used to explore how effectively the heuristics scale when large scenarios are considered. 

 

Figure 46. A violin plot showing the difference between the surveillance value earned by each heuristic and the 

Random heuristic for the set of 200,000 small scenarios described in Subsections 5.4.1 and 5.4.2. The mean 

difference for each heuristic is indicated by the black marker in each distribution. 
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5.5. Simulation Results 

5.5.1. Results for Randomized Set of Small Scenarios 

5.5.1.1. Overview 

As described in Subsection 5.4.2, the results shown in this section consist of parameter sweeps 

where the means of the distributions described in Subsection 5.4.1 are varied. Figure 46 is a violin 

plot, which shows the overall performance of each heuristic in all 200,000 of the scenarios we 

generated in Subsections 5.4.1 and 5.4.2. This overview of our results indicates that the 

Metaheuristic is among the best value-based heuristics without preemption or filtering 

modifications. Additionally, when modified with preemption or filtering, the average performance 

of the Metaheuristic improves significantly. 

5.5.1.2. Effect of Energy Consumption Rate 

In Figure 47, the subset of results where we vary the rate of energy consumption is shown. 

When the rate of energy consumption is low, the preemption modification results in heuristics that 

perform significantly better than the others. This is because in scenarios where UAVs can surveil 

targets for the entire day without running out of energy, it is most important to ensure that surveils 

on high priority targets begin as soon as possible with the UAVs that have high quality sensors 

with the best affinity for those targets. With preemption, heuristics can immediately start 

surveilling those targets with the optimal UAVs with no delay. When the rate of energy 

consumption increases, preemption still brings significant benefits, but the filtering modification 

becomes more effective than preemption because it is also important to ensure that the energy of 

the UAVs that are best for high priority targets later in the day is conserved. 
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When the rate of energy consumption is low (e.g., in the case with a mean energy consumption 

rate of 0.05 units of energy per hour), the filtering technique is less effective than preemption. A 

reason for this is because filtering causes the UAVs to sometimes not surveil any target to conserve 

energy and when the rate of energy consumption is very low, this can be counterproductive. 

These results appear very different from Figure 46 because Figure 46 displays the distribution 

of results from all 200,000 of the small scenarios, while the scenarios shown in Figure 47 are only 

40,000 of those scenarios. The remaining 160,000 scenarios use a mean rate of energy 

consumption of 0.05 units of energy per hour, which matches the first set of bars in Figure 47. 

When comparing this first set of bars to the overall results in Figure 46, the pairwise relative 

performance of all heuristics appears similar. 

 

Figure 47. A comparison of the percentage increase in surveillance value earned when compared to the 

Random heuristic in 10,000 small randomized scenarios. The mean rate of energy consumption per hour is 

varied from the baseline set of scenarios with a rate of 0.05 normalized units of energy per hour. Except for 

the rate of energy consumption, the other characteristics of the scenario use the values from the baseline case 

described in Subsection 5.4.1. The 95% mean confidence intervals are shown for each bar. 
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5.5.1.3. Effect of Number of UAVs and Targets 

When the number of UAVs is varied as shown in Figure 48, our results show that the 

Metaheuristic with preemption performs among the best heuristics in all cases. When there are 

many UAVs, energy is not a significant constraint because there will be unused UAVs still 

available when some UAVs start running out of energy, which results in similar relative 

performance of heuristics to the cases with a low rate of energy consumption shown in Figure 47. 

5.5.1.4. Effect of Coefficient of Variation of Target Priorities 

As the coefficient of variation of target priorities increases for the results in Figure 49, there 

are three notable characteristics of the surveillance value earned by the heuristics. First, the 

Random and Random Best Sensor heuristics perform equally for all five values of the coefficient 

of variation that we considered (0.2, 0.4, 0.6, 0.8, and 1.0). This is expected because these 

heuristics select targets without considering priority. All value-based heuristics perform better as 

 

Figure 48. A comparison of the percentage increase in surveillance value earned when compared to the Random 

heuristic in 10,000 small randomized scenarios. The mean number of UAVs is varied from the baseline set of 

scenarios with a mean of 9 UAVs. Except for the number of UAVs, the other characteristics of the scenario use 

the values from the baseline case described in Subsection 5.4.1. The 95% mean confidence intervals are shown 

for each bar. 
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the coefficient of variation increases with the preemptive heuristics performing the best overall in 

all cases. The preemption and filtering modifications improve the most in performance when the 

variance in priority increases because they help to ensure that all high priority targets are surveilled. 

However, the Metaheuristic with preemption is still among the best overall heuristics because it is 

more likely that high priority targets will become available while low priority targets are being 

surveilled in the scenarios with a higher coefficient of variation. 

5.5.2. Results for Randomized Set of Large Scenarios 

The results in this subsection were generated using the set of large scenarios detailed in 

Subsection 5.4.3. As shown in Figure 50, the most significant differences between the overall 

results when compared to the smaller scenarios shown in Figure 46 are that: (a) the Metaheuristic 

with both preemption and filtering is the best overall heuristic, (b) the filtering modification 

performs equal to preemption on its own when applied to the Metaheuristic, and (c) the 

performance of all value-based heuristics relative to Random has increased. Preemption performs 

 

Figure 49. A comparison of the percentage increase in surveillance value earned when compared to the 

Random heuristic in 10,000 small randomized scenarios. The coefficient of variation is varied from the baseline 

set of scenarios with coefficient of variation of 0.6. Except for this coefficient of variation, the other 

characteristics of the scenario use the values from the baseline case described in Subsection 5.4.1. The 95% 

mean confidence intervals are shown for each bar. 
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well for the same reasons given in Section 5.5.1. The filtering modification performs significantly 

better in the larger scenarios because there is a larger number of UAVs and targets. This increases 

the chance that there are targets that have characteristics that are highly efficient for each UAV, 

which means it is more important to save energy to surveil those targets. 

5.5.3. Discussion of Results 

The results in Subsections 5.5.1 and 5.5.2 indicate that depending on the scenario, either Max 

Value or Max Value Per Energy is an effective real-time heuristic for maximizing surveillance 

value. The Metaheuristic combines the strengths of both heuristics and is effective in all scenarios. 

When considering scenarios where the energy of UAVs will not be fully consumed during the day, 

Max Value Per Energy is ineffective. Based on these results, our proposed Metaheuristic is the 

best option to use in all cases where the characteristics of the scenario may change unexpectedly. 

Additionally, the results demonstrate that both of our proposed modifications for the heuristics, 

preemption and filtering, improve performance of the Metaheuristic on average. The preemption 

 

Figure 50. A violin plot showing the difference between the surveillance value earned by each heuristic and the 

Random heuristic for the set of 10,000 large scenarios described in Subsection 5.4.3. The mean difference for 

each heuristic is indicated by the black marker in each distribution. 
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modification always results in significant improvement in average surveillance value earned 

because it allows immediate response when options that would result in higher value surveils 

become available. For example, UAVs can immediately begin surveilling high priority targets 

without completing their currently active surveil first. The filtering modification performs 

extremely well in scenarios where a significant portion of the UAVs have options in the scenario 

that are significantly more efficient than others in terms of value earned per unit of energy 

consumed. This is because filtering conserves some of the energy for each UAV until later in the 

day when these efficient options that result in high surveillance value may be available. 

In our simulations, mapping events for the slowest heuristic, the Metaheuristic with both 

preemption and filtering, took an average of less than 10 milliseconds for each mapping to 

complete for the small set of scenarios and an average of less than 1 second each for the large set 

of scenarios. This demonstrates that any of these heuristics can be used to find mission schedules 

in real-time. 

5.6. Related Work 

Developing a complete mission schedule for UAVs involves solving multiple problems, many 

of which have been studied in the past such as planning the specific routes used by UAVs, which 

we do not consider in this study, and assigning specific tasks to UAVs. Some studies solve these 

problems through time-consuming optimization techniques such as mixed integer linear 

programming (MILP), while others use techniques ranging from time-intensive metaheuristics like 

genetic algorithms (GAs) to fast and efficient greedy heuristics to find effective solutions. 

In [5], mission planning is divided into two subproblems: task scheduling and route planning. 

The task scheduling problem is the one we consider in our study. The task scheduling problem is 

solved using an MILP approach to minimize the completion time of all tasks as opposed to our 
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work that aims to maximize surveillance value. Similarly, in [6] a swarm of UAVs is also 

optimized to perform tasks while minimizing total completion time using an MILP approach. In 

[7], UAVs are assigned to attack and attempt to destroy clusters of targets through expressing three 

objective measures into one weighted measure (the success probability of the attack, the cost of 

the attack as a function of fuel consumption and risk to the UAV, and how well the timing of the 

attack will match a desired window), which is used to apply integer programming methods to find 

a solution. No-fly zones are considered in [8], which compares MILP and heuristic techniques to 

solve a task assignment problem where UAVs must complete a sequence of tasks. A solution here 

is represented by a directed acyclic graph (DAG). In [9], possible solutions for mapping a UAV to 

any combination of targets is represented by a decision tree, where moving from the root to a node 

represents assigning the UAV to the target corresponding to that node. A best first search (BFS) 

method is used to find solutions to this problem. In [10], a fleet of UAVs must be used to provide 

continuous 5G network coverage to the region of interest. The goal of this work is to determine 

both the required number of UAVs to guarantee coverage and to create a mission schedule for 

these UAVs. This is accomplished through a brute-force combinatorial technique to find the 

optimal solution, which is applicable in this case due to the size of problems considered. The most 

significant difference between these studies and our work is that we consider scenarios where 

decisions must be made in real-time throughout the day in a dynamic environment based on a 

mathematical model of a performance metric. 

Mission planning for UAVs is sometimes studied as an orienteering problem [11], [12]. For 

example, in [11] the authors utilize a model where UAVs originate from a depot and gain profit 

from traveling a path through nodes and back to the depot. Robust optimization techniques are 

used to maximize profit while taking uncertainty into account to avoid running out of fuel early. 
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This work differs significantly from ours because distance between targets and UAVs is considered 

and the focus is on optimization of UAV movement instead of sensing. In [12], UAVs again depart 

from a depot, but before departure they can select a specific set of sensors, which will impact their 

weight and the information they can gather. The authors solve this problem using both an MILP 

approach when ample time is available for finding solutions and several heuristic techniques for 

larger problem sizes that cannot be solved in a reasonable amount of time using the MILP 

approach. Our work differs significantly from these studies in part because a full mission plan is 

generated by the MILP approach and it is not modified during the day. In our work, the heuristics 

dynamically schedule UAVs to assign targets many times throughout the day and these decisions 

depend on the current state of the scenario. Additionally, our work considers the energy 

consumption of each sensor, which can greatly impact scheduling decisions. 

Some studies have a greater focus on motion planning of the UAVs, which is outside the scope 

of our contribution in this work [13]–[20]. Our focus is on characterizing UAVs, sensors, and 

targets to develop a mathematical model that can be used as a system-wide performance measure 

that quantifies the success of surveils. We use this model as a basis for designing, evaluating, and 

comparing various dynamic mission scheduling heuristics through extensive simulation studies. 

5.7. Conclusions and Future Work 

We created a novel metric to quantity system-wide performance of UAVs surveilling targets 

in dynamic scenarios. To effectively compare mission schedules using simulations, we also 

detailed a model for generating randomized scenarios where a heterogeneous set of UAVs surveils 

a set of heterogenous targets. 

We designed a set of value-based heuristics used to conduct mission planning for UAV 

surveillance of a set of targets (Max Value, Max Value Per Time, Max Value Per Energy, and the 
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Metaheuristic). We conducted a simulation study to evaluate, analyze, and compare these 

heuristics in a variety of scenarios. We found that while Max Value and Max Value Per Energy 

are each good heuristics for a subset of the scenarios considered, the Metaheuristic found solutions 

with among the highest surveillance value for all scenarios. 

In addition, we developed two modifications to these heuristics to improve their performance 

(preemption and filtering). Our simulations demonstrate that both preemption and filtering can 

significantly improve the performance of our heuristics and can be combined to take advantage of 

the benefits provided by both modifications. We found that preemption is effective in all 

environments we considered and performs better than filtering on average; however, in 

environments where there is little energy available to the UAVs, the filtering modification 

performs much better than the preemption modification. These results make it clear that it is an 

effective choice to always employ the preemption modification and that filtering should also be 

included in energy-constrained environments. 
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Chapter 6 

Conclusion 

 

This research explored resource management for HPC systems and surveillance mission 

planning problems. The contributions can be divided into three main categories. First, system-wide 

metrics and system models were designed and improved for each environment. Without 

meaningful metrics and models, meaningful analysis of techniques to solve the problems is not 

possible. Accurately modeling each environment is important because characteristics of the 

environment that may otherwise be overlooked can have a significant impact. Finally, simulators 

were developed for each environment to allow analysis, comparison, and evaluation of novel and 

existing techniques used to solve each problem. 

A Value of Service (VoS) metric was developed, which measures total value earned as a 

function of energy consumption for each task in addition to when a task is completed. This metric 

allows fine-tuning of the impact of performance versus energy when calculating the VoS for each 

category of a tasks and the time of day when tasks is submitted. Tasks were allocated to virtual 

machine (VM) configurations, which specified the number of cores and amount of memory that 

will be assigned to a task type. Resource management heuristics were designed that attempt to 

maximize the system-wide VoS metric. These heuristics were evaluated and compared in a variety 

of environments using simulations, which were then validated with focused experiments on an 

IBM HS22 blade server. The simulations and experiments both showed that Max Value-per-Total 
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Resource (Max VPTR) outperforms the Simple with dropping and placeholder heuristic and its 

variations. 

Resource management for high performance computing (HPC) environments was explored in 

an energy-constrained environment where tasks are parallel and execute on multiple cores at once. 

Utility-aware resource allocation heuristics (Max Util, Max UPT, Max UPR, Max UPE, and two 

metaheuristics) were designed and evaluated along with dropping and filtering techniques that 

were applied to the heuristics. Performance was measured in terms of the total system utility earned 

from the completion of parallel tasks in an oversubscribed HPC environment with an energy 

constraint. The novel concept of place-holders was presented and the new energy-per-resource 

filtering technique allowed the utility-based heuristics to achieve significantly higher system utility 

than popular scheduling techniques from literature that do not consider utility functions and 

heterogeneity. The Max UPR with place-holders heuristic and energy filtering earned utility 

comparable to the energy-aware Max UPE with place-holders heuristic, demonstrating that energy 

filtering can improve the energy-efficiency of heuristics designed to greedily maximize utility 

earned. In addition, both metaheuristics, the Event-Based Metaheuristic and the Task-Based 

Metaheuristic, earned the highest utility in all environments where there was a steady rate of task 

arrivals. When the task arrival pattern has significant variance, the Max UPE heuristic performed 

best in the most energy-constrained environments that were considered. 

Preemption-capable resource management heuristics were considered for HPC environments 

with urgent serial tasks of high importance. To model these environments, realistic patterns where 

tasks arrive in bursts were considered and utility functions were modified to capture the urgency 

of the important tasks. To meet the needs of these tasks, six preemption-capable heuristics were 

designed and were shown to significantly outperform Random and the common FCFS scheduling 
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technique. In addition, the preemption-capable heuristics were able to outperform the utility-aware 

heuristics without preemption (Max Util and Max UPT). 

A UAV surveillance mission scheduling problem was studied, in which a novel metric that 

quantifies the system-wide performance of UAVs surveilling targets in dynamic scenarios was 

created. Multiple factors are considered for each surveil to obtain a value for that surveil, including 

the quality of information gathered (e.g., image resolution), the importance of the surveilled target, 

and the relevance of the information obtained for that target. The values for each surveil are 

combined into the single system-wide performance measure called surveillance value. A novel 

Metaheuristic was developed, which can be enhanced with a combination of preemption and 

filtering techniques. A probabilistic model for generating randomized scenarios was designed, 

which enabled analysis, comparison, and evaluation of mission scheduling techniques through an 

extensive simulation study. This study demonstrated that the Metaheuristic with preemption and 

filtering found schedules with among the highest surveillance value for all scenarios. 
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Chapter 7 

Suggested Future Work 

 

There are many possible directions for extensions of the research described in the previous 

chapters. One possible extension is the applications of popular optimization techniques such as 

reinforcement learning could be applied to resource management for any of the environments 

described in this report. 

The metaheuristics and filtering techniques in Chapters 3 and 5 are limited because they 

assume that the optimal rate of energy consumption would be a linear rate of consumption 

throughout the day. These techniques could be extended to support other patterns where the rate 

of energy consumption varies throughout the day. For example, many HPC systems will usually 

have specific times where more newly submitted jobs are expected, which would significantly 

increase the potential rate of energy consumption at those times. 

Chapter 4 has room for improvement by extending the preemption-capable heuristics and 

models to support parallel jobs, which significantly increases the computational complexity of 

finding which combinations of assignments and preemptions should occur, especially when 

considering reservations and place-holders that extend far into the future. Additionally, it is 

important to consider the amount of overhead required due to suspending and resuming jobs when 

studying preemption-capable resource management techniques. 

The work in Chapter 5, in which dynamic heuristics are used to maximize the surveillance 

value gained by UAVs surveilling targets, could be enhanced by considering the relative positions 
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of all UAVs and targets. This includes dynamically moving the UAVs to the targets that will be 

surveilled and modeling the energy consumption of the UAVs due to flight in addition to the 

energy consumption of the UAVs’ sensors. If targets move throughout the day, this will require 

adjustments to the mission schedule to account for this. This could also include modeling depots 

where the UAVs start and finish each day, allowing for UAVs to return to the depot early to refuel. 

This will require new characteristics for UAVs, such as their current position, the velocity at which 

they can travel between targets and the rate of energy consumption consumed by flight, and how 

much time it takes to refuel the UAV. Additionally, there would be new characteristics for targets, 

such as their position, how quickly the targets can move, and whether there are constraints on when 

they can move. 


