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HYDRAULICS OF WELLS

Dean F. Peterson, Jr., Orson W. Israelsen,
and Vaughn E. Hansen

SYNOPSIS

This bulletin is concerned largely with new developments for the

study of steady flow or equilibrium ground-water flow conditions.
Actually it is difficult to develop and maintain steady flow of
ground water. The derivation of nonequilibrium formulas for ground-
water flow by Theils (1935), Jacob (1947), and others in recent years
is recognized as an important contribution to ground-water hydraulics.

A brief summary of the literature on the hydraulics of steady-
flow wells is presented. Several deficiencles of existing formulas
and practices are discussed and suggestions for improvement made.

For unconfined ground-water flow into wells, the existence of
the seepage surface at the well and the relationship of the magnitude
of such a surface to the other elements of the well system are but
little understood. Hansen in 1949 developed dimensionless parameters
which enabled specific test data to be plotted in general terms.

His work has been extended here by adding both the theoretical
solutions made by Yang in 1948 using "relaxation" methods, and the
unpublished data obtained by Zee in 1951 using a combination of the
electrical and membrane analogies. These solutions enable the
investigator to estimate the magnitude of the seepage face for a
wide range of specific cases of unconfined flow into a well.

Dupuit's classical solution for unconfined ground-water flow
into a well is based on the assumption that all of the discharge
flows horizontally into the zone of influence from outside the region
under consideration. For a drainage well to relieve lands waterlogged
by surface irrigation, flow enters the region of influence by vertical
percolation of water falling on or applied to the overlying land
surface so that the flow toward the well increases as it is apf oached.
A theoretical solution is presented herein for this condition. The
geometry of the reglon of influence for this type well of radius, ry,
is the same as for a well of the Dupuit type having the same drawdown
but with a transformed radius, r,', equal to rye™' 4 in which n is the
ratio of the discharge originating from vertical percolation to the
total discharge of the well. With this transformation, the .seepage
surface for the unconfined, vertically-recharged well may be found
by using the same curves as for the horizontally-recharged well.

- Critical evaluation of the commonly-used formulas for confined
and unconfined ground-water flow into wells leads to the conclusion
“that they are indeterminate. They are made detemminate in practice

;by introducing the radius of influence, Ty Usually as an arbitrary
value, a concept which is somewhat vague at best, if not illogical.

-1, See list of symbols and definitions, pages 43-48.
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The variables in these formulas include the soil permeability,
k, the drawdown, Dy, the thickness of water-bearing material, t,
the radius of the well, r,, the discharge, Q, and the radius of
influence, re. The independent variables are D, k, t, and ry.
Q and r, are dependent and mutually interdependent. An additional
independent variable, q, describing the unit rate at which the
influence cone is replenished with water from an external source,
is necessary to complete the analysis. These five independent
variables are sufficient to determine fully the flow into a well
for any particular system.

The discharge of the well may be expressed in the dimension-
less fomm, Q/krw s called the discharge number. Dimensional
analysis shows that the discharge number is functionally related
to the dimensionless quantities Dy/r,, t/ry, q/k. By introducing
certain approximations specific functional relationships between
these quantities are developed for particular types of well
systems. The quantity Q/krw is of special significance since,
as Hansen (1949) has shown, it equals the ratio of the Froude
and Reynolds numbers and therefore expresses the relative im-
portance of the viscous and gravity forces. The discharge number
also describes, in relative terms, the geometry of the flow in
the medium surrounding the well.

Care must be used in calculating the effectiveness as defined
by Wenzel (1942) for wells in unconfined-flow systems or values
much too small will result. If the piezometric head is measured
at the bottom of the permeable stratum instead of at the water
table, reasonable results may be expected. Normal procedure
results In considering the head represented by the height of the
seepage face as lost head, so that wells in unconfined systems
normally appear to be somewhat less effective than similar wells
in confined systems. Actually, other things being equivalent, a
well in an unconfined system is inherently somewhat more efficient
in utilizing available specific energy than a similar well in a
confined system.

Each of the five zones for unconfined flow, four of which
apply to confined flow, have their own important distinguishing
characteristics. Knowledge of the peculiarities of each zone will
enable the practicing engineer to avoid many of the pitfalls en-
countered in a blind use of theoretical formulas.

Seven illustrative numerical examples are given. Dimension-
less quantities presented herein may be used for any system of
units providing the same system is used throughout.
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INTRODUCTION

Pumping ground water for irrigation and drainage and also for do-
mestic water supplles and industrial purposes in the 17 western
arid-region states, is of major importance to the public welfare.
Such remarkable progress has been made in pumping ground water during
the past decade that each year, according to recent estimates, nearly
20 million acre-feet are pumped from the ground-water reservoirs of
the western states.

California farmers and industries pump more than 10 million
acre-feet each year--53 percent of the volume for the 17 states--
Arizona nearly 18 percent; New Mexico and Texas each about 9 percent;
Colorado and Idaho together about 9 percent; and the other 11 western
states combined only 4 percent. Utah's ground-water reservoirs are
used little as yet; the volume of pumped water each year being only
1 percent of the volume pumped in the 17 states. In some Utah areas
pumping ground water for drainage purposes is even more important
than pumping for irrigation. When the water can be pumped for
drainage and used for irrigation, wells become of prime importance.

Western progress in pumping has developed numerous problems
with reference to ground-water reservoir capacities, annual recharge
of pumped water supplies, pumping lifts, and costs. Public interecst
in the hydraulics of wells has substantially increased because of
the basic importance of this branch of science to water economy in
arid regions.

Darcy's Law

The flow of ground water under conditions of saturation has been
widely discussed by many authors including Babbitt and Caldwell (1948),
Casagrande (1937), Gardner and Israelsen (1940), Hansen (1949), Jacob
(1947), Kirkham (1940), Hubbert (1940), Muskat 11946), Taylor Z1948),
and Wenzel (1942). Through isotropic soils the velocity of flow is
expressed by the empirical equation developed by Darcy in 1856,

2. Professor and head of Department of Civil Engineering, Colorado
A & M College. Formerly professor of civil engineering, Utah
State Agricultural College.

3. Professor and head of Department of Irrigation and Drainage, Utah
State Agricultural College.

4, Research assistant professor, Utah Agricultural Experiment Stationj
irrigation engineery Division of Irrigation and Water Conservation,
Soil Conservation Service.
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V= k—}f— (1a)¥/
In the vector form:
V= kgradh = kvh, (1b)
and in the differential form:

ve=k3Sh, (1c)

The ratios h/l, vh, and a2h/as each represent the hydraulic gradient
and V is the velocity of flow.

Soils are usually stratified and therefore the permeability
varies with the direction of flow. Further, both sedimentation and
pressure of overlying soll materials cause flat particles to be
orientated with their longest dimensions horizontal, resulting in
a nonisotropic condition with respect to permeability, even though
ordinary stratification is not present. Often, however, flow will
be parallel to one of the principal directions of permeability,
and in this instance k in equation 1 may be treated as constant if
measured in the direction of flow. In this report only isotropic
cases are treated.

Equation 1 simply states that the direction of flow is parallel
to the direction of greatest hydraulic gradient and that the volume
of discharge through unit area per unit of time is proportional to
the hydraulic gradient.

-

Equation of Continuity and Laplace's Equation

If flow is steady and the fluid is incompressible, from the law of
conservation of matter the net flow into and out of any elementary
volume of space is zero. This may be expressed mathematically by

the equation of continujty:

Q=AV (2a)

or in the differential fom
dVy , BVy Vs -0 2b)
2x T oy T oz (2b)

where X, Y, and Z are the Cartesian coordinatesy or in the vector
forms

divV =0 (2¢)

5. Darcy's equation is sometimes written with a minus sign on the
right, V = -k h/l, to denote that the flow is in the direction
of decreasing head. ’
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Substituting in equation 2 the velocity, V, from equation 1 gives
Laplace's equation which may be applied to isotropic soils and may be
written in the vector form:

= = © 92h=0 (3)

or in the forms

22%h , 2% , 2% .o (4)
%2 T v T 372

For steady flow of ground water toward a well, cylindrical co-
ordinates are more convenient, and equation 4 may be writtens

22, . 1 @h 1 22 , 3% .o (5)
212 * r 9r * 2 202 EYA

where r, 6, and Z are the cylindrical coordinates.

The cylindrical components of velocity are given by:

—kah,Vg“'L—a—g—,andV —glzl_ (6)

If a mathematical function or expression satisfying equation 3 and
reducing to the known values of h and V at the boundaries can be
found, this function will describe the hydraulic head, h, at every
point in the region of flow.

FLOW OF GROUND WATER INTO WELLS
Confined-Flow Systems

If a permeable water-bearing stratum is bounded above and beneath by
impermeable layers (fig. 1), and if the drawdown in the well is less
than the vertical distance from the static water table to the top of
the permeable stratum, the flow is designated as confined flow.

Simple Case Solution

For a simple case the confined system may be readily solved.
Assume

(1) the thickness of the permeable stratum, t, is uniform;
(2) the permeable stratum is horizontalj
(3) the well penetrates the entire depth of the permeable
stratum;
. (4) the elevation of the piezometric surface at the unifomm
. maxlimum radial distance of the region of influence, re,'

. has the constant value, he.
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Confined flow under these assumptions 1is horizontal, radial, and
. symmetrical. There is no component of velocity in either the di-
rection z or 6, and thus 3h/az and 9h/26 and all higher partial deriva-
tives of h with respect to z and © are equal to zero. Consequently,
equation 5 becomes

.

dh , 1 _dh .0 (7)

dr2 T dr

with boundary conditions as followss at r = ry,, h = hy; and at
T =Tgy, h = he.

Equation 7 is in the form of Buler's equation so that when
integrated and boundary values substituted, the result is

h-hy ._he-hy (8)
1n r/xy, In re/1y,
from which
he - hw_ in I
h= hy+ —— o T (9)

At a distance, r, from the well, combining the equation of continuity
in the form Q = AV with that of Darcy yields:

Q= 2mrt k -Sh- (10a)

Differentiating equation 9 with respect to r, and substituting in
equation 10a the value for dh/dr thus obtained, gives

he - h

1n ro/Ty (10b)

Q=2nt k

The same equation can be obtained by integrating equation 10a between
the limits re and ry and hg and hy.

Eliminating (he - hy) frow e¢quations 9 and 10b and solving for
(h - hw) gives

- n—Q  1n_T 11
h hw 2wtk n Ty (11)

Likewise, this same equation can be obtained by integrating equation
10a between the limits r and ry and between h and hy. The total
drawdown, Dy, which equals (he - hy) as obtained from equation 10b
is

-4 b 3
D"‘"-zgrtTln"r'i‘ (12)



12 Utah Agricultural Experiment Station 351

Theoretical Difficulties

Equation 12 presents some theoretical difficulties which are
of considerable practical importance. In order to write equation
12 the investigator must assume that the piezometric surface was
level at elevation h, prior to pumping and that its elevation is
unaffected at distances in excess of r,. Thus, he becomes also the
elevation of the static water level in the well. These assumptions
imply no flow toward the well from beyond the distance rgy, a con-
dition which cannot exist if the flow into the well is steady. The
quantities Dy, k, t, and ry are independent variables, but Q and re
are mutually dependent. Equations 8 and 10a are, therefore, inde-
termminate except by pumping experiment to determine Q, even though
Dws k, t, and r, may be known. They may be used to detemmine k in
the field if measurements of h are taken at one or more values of r
greater than ry. By assuming r, one may estimate Q for a particular
value of Dy by using equation 12 if k, r,, and t are known; conversely
k may be estimated if Q, ry, and t are known. Selection of r, de-
temmines the shape of the cone of depression and its profile in a
vertical plane. These equations ignore a major factor in well
hydraulics; that is the rate at which the region of influence is
replenished. In practice an attempt is made to overcome this de-
ficiency by assuming some arbitrary value, re. Actually the concept
of a radius of influence is fallacious and misleading in practical
well hydraulics.

Unconfined-Flow Systems and the Seepage Surface

If there 1s no impermeable stratum overlying the permeable water-
bearing aquifer (fig. 2), or if the drawdown is greater than the
depth from the static water level to the bottom of the confining
stratum, the flow system may be classified as unconfined or partially
confined. The problem of developing a rational equation to find the
drawdown is much more complicated because the position of the bounda-
ry of the region of flow is unknown. In addition to this difficulty,
the top surface of the flow region intersects the well at an ele-
vation somewhat greater than the elevation of the water in the well.
The necessity for the existence of the resulting seepage surface of
height AB (fig. 2) between the water surface in the well and the

free surface of the flow region AE, is demonstrated by Muskat (1946).
This may readily be inferred from a consideration of Kozeny's so-
lution for a porous dam on impermeable foundation reported by Taylor
(1948) and others which is the corresponding case in Cartesian
coordinates and in which the existence of the seepage surface is
mathematically demonstrated. The universal economy of nature invari-
ably results in dynamic systems involving minimum expenditure of
energy. The development of the free surface at an elevation above
the water level in the well is in accordance with this principle.

A real seepage surface always exists around a well in an unconfined
system while pumping. As the drawdown in the well increases the
seepage surface approaches a maximum as hy approaches zero.

For the symmetrical gravity or unconfined system (Wyckoff 1932)
the following boundary conditions apply (see fig. 2).
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(1) h=h, along BC (r = ry and 0% z % hy)

(2) h=2zalong AB (r = ry and hy % z < hg)

(3) o®h/az = 0 along CD (z = 0 and 1y € T % Tg)

(4) h = hg along DE (r = ro and O % z % hyg)

(5) h=2z, p=0, 2h/aN = O at the plezometric surface, AE,
where hg « z % hg

At any point along the seepage surface, AB, the pressure head
is zero (atmospheric) and the plezometric head equals the elevation
head. This is also true along the free surface, AE. The component
of velocity nommal to the free surface, AE, must be zero which
implies 3h/aN = O where N denotes a direction nomrmal to the surface
AF. Flow along AE must become parallel in direction to the vertical
surface of seepage at point A (fig. 2) (Muskat 1946).

Dupuit Solution

Dupuit, in 1863, introduced the assumptions that flow through
any concentric cylinder at radius, r, was horizontal and that the
hydraulic gradient at all points on the cylinder surface was equal
to the slope of the free surface at its intersection with the
cylinder. Since, for steady flow, the entire discharge of the
well must pass through each concentric cylinder at any radius,
combining the equation of continuity with Darcy's equation yields:’

. dn 8/
Q = 2nrhk 5
which may be integrated to obtain
2 _nr=h2+cC
Tk

By introducing the boundary conditions at r,, the constant may be
evaluated to obtain

2 1n.x_=-hZ2-n? (13)
Tk

Tw
or substituting h = hg when r = rg

—9Q 1nZe = he? - h? (14)
Tk Ty )

Equation 14, while not rigorously correct, has been shown by
experiment (Wyckoff 1932) to give correct values for discharge.

The equation for the free surface

6. Equation 9 cannot be used here for evaluating dh/dr as done before
since it is valid only for confined flow.
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2 he2 - hy? 1 T
B In re/Ty 4 Tw + h? (L)

is obtained by eliminating Q from equations 13 and 14.

The Dupuit solution for the position of the free surface gives
quite accurate results at fairly large distances from the well but is
incorrect in the neighborhood of the well where the assumptions made
in developing equation 13 are less applicable. Perhaps the most
serious objection to this solution is that the seepage surface, AB,
is ignored. Like the solution for the confined case, equations 13,

14, and 15 are indeterminate except by experiment. Again the usual
procedure is to introduce the radius of influence. The same objections
are made to this device as for the confined case.

Recent Solutions and the Discharge Number

Yang (1949) and Hansen (1949) both report the 1932 experiments of
¥yckoff, Botset, and Muskat (1932) using a sand tank and a sector model
of a radial-flow system. These experiments show that equation 15 does
not give the correct location of the free surface. On the other hand,
the distribution of plezometric head on the surface of the underlying
Impermeable stratum, CD, (fig. 2) was found to be accurately represented
by the Dupuit equation. Hansen (1949) demonstrates theoretically that
this must be true. Neglecting flow through the capillary zone, Wyckoff,
Botset, and Muskat found that the Dupuit equation gave the correct dis-
charge. They noted the existence of the seepage face, but no expression
for the position of the free surface was proposed.

Babbitt and Caldwell (1948), using both electrical and sand models,
reached the same general conclusions as Wyckoff, Botset, and Muskat on
the validity of the Dupuit equation. Babbitt and Caldwell plotted the
percent of drawdown of the free surface at any distance, r, to the draw-
down of the free surface at the well, 100(he - h)/(he - hg), against the
ratio r/re and found the shape of the free-surface curve to be inde-
pendent of the physical dimensions of the system. The following equation
was proposed for the position of the free surface:

5,3 B:Cx Te
- h = 1 16)
he T™k he °9 0.1 he (

where Cx is the ratio of the drawdown of the free surface at any distance,
r, to the maximum possible drawdown when the well is discharging at the
maximum. - :

Hansen (1949) proposed the empirical equation

Cx = -0.3 log i (17)
. e

. for values of r/re greater than 0.05. Substituting equation 17 in
. equation 16 gives -

. 0.69Q T T
h, - h) = lo € € 1
( e ) k hg g 0.1 he log T ( 8?
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which indicates that the elevation of the free surface is a linear
function of log r for any value of Q. It should be remembered that
equation 18 is based upon data obtained near the well. Hence, the
free surface can be inferred as being a linear function of log r
only in the vicinity of the well.

The values of Cy given by Babbitt and Caldwell are expressed in
terms of the drawdown of the free surface curve extended to the
center of the well. Yang (1949) points out that the curve must
theoretically become tangent to the well casing at an elevation of
hg above the bottom of the well and cautions against the use of
equation 9 in the region close to the well.

Hansen (1949) conducted additional experiments using sand models
and gave particular attention to correction for the effects of capil-
larity. He points out the desirability of expressing the constant
of integration in terms of the radius of the well instead of the
radius of influence which is an indefinite and hypothetical, value
at best. Hansen gave particular attention to the extent of the
seepage surface and using dimensional analysis developed the relation

- hg by
- (D, o (19)

The fractional parémeters in equation 19 are dimensionless. Using
available experimental data the curves shown by fig. 3 were developed.

Yang (1949) applied a relaxation method of numerical calculation
proposed by Southwell (1940) to theoretical solutions of equation 3 for
six particular cases. A great amount of time is required to complete
a solution by this method which involves successive approximations.

THE SEEPAGE SURFACE FOR UNCONFINED SYSTEMS

By using the results of Yang's work, Hansen's curves may be extended
over a much wider range of values of Q/krw2. Since the Dupuit equation
has been found to be correct for the calculation of discharge, though
not for the free surface, one may write, by rearrangement of equation 14

ﬁT 5 M (20)
w

Iy® 1n re/rw

Equation 20 makes possible the calculations of the discharge number,

Q/krw2, from the theoretical computations of Yang (1949). Values of
hg/Tw and he/ry found by Yang may thus be plotted against Qkry2.

In 1951, C. H. Zee at Colorado A & M College, using the membrzne
analogy to form the free boundary to a water medium and the electri-
cal analogy for fluid flow, determined values of the discharge
number, Q/krw2, and the ratios hg/ry and he/ry for 28 additional
points. These data of Yang and Zee, together with the information
compiled by Hansen, form the basis for the curves of fig. 4. Because
of the wide range of values of Q/kr,2, fig. 4 is plotted on semi-
logarithmic paper. The use of these resulting curves is illustrated
by example 1 presented at the end of the bulletin.
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Fig. 4.
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The helght of the seepage surface, AB, (fig. 2) should be of
particular interest to those designing wells in unconfined aquifers,
especially i1f such wells are for drainage purposes. In the case of
example 1 the 30-foot drawdown at the well results In lowering the
water table a maximum distance of only six feet. However, wells in
unconfined strata are more efficient in utilizing available energy
to cause discharge than wells in confined strata. The maximum ef-
fectiveness of the well of example 1 calculated as proposed by Wenzel
(1942) cannot exceed 6/30 (100), or 20 percent.

UNCONFINED FLOW REPLENISHED BY VERTICAL PERCOLATION

Development of Equations

If a valley fill 1s fully drained by pumped wells, little of the
discharge of the wells comes from water moving horizontally into the
region of influence. Water replenishing the soll pore space within
the cones of depression percolates vertically downward to be inter-
cepted by the influence region of each well,

The flow, Q., through any concentric cylinder at radius r, 1f
the Dupult assumptions are made, 1is

Qr = Q - nay (2 - 1,2) (21)

Since r is large in relatien to r,, equation 21 may be written
Qr=Q"'nC}vr2 (22)

From equation 22 and from the equation of continuity and Darcy's law

Q - 7qy 12 = 2nrhx -Sb
) dr
which may be integrated to give

Q Inr-_ar® _h2+c (23)
Tk 2k

Bvaluating C whenr = r,;, h = h; glves _

Tk

Q - (12 = 1?) o (42 .
1n :w Qy 2}(51—)— (h2 - m?) (24)

and at the radius of influence

£ - 192‘ = 2— 2
2 1n Zo - gy Lz 2kn£)_ (he2 - h2)  (25)

by the approximation

re2 - 1,2 = 12
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and noting that by definition

2
n=IIedy (26)
Q
equation 25 may be written in the forms

s Tk (he? - h,2)
Q 2.303 log re/rwﬂ— (n/2) (27)

and .
nk (he? - hy?)
W = 72,303 log re/tw - (n/2)

(28)

From equations 24 and 26, and ignoring the temm (rw/re)2 because
of 1ts negligible effect, the equation for the drawdown curve will
be given by the relationship

™k (h2 - hy?2)
Q= 3303 log r/Ty -wn/2 (r/re)? (29)

Substituting the value of Q from equation 27 in equation 29
glves

h2 = (he2 - hy2) —2+303 log r/rw - n/2 (x/re)? +h2
* 2.303 log 1o/t - n/2

(30)
Validity of Equations

No experimental data are available for checking the validity of
the equations for the unconfined flow toward a well in a system
replenished by vertical percolation. The seepage surface which
exlsts at the well has been neglected in the theoretical develop-
ment. Also the assumption that the flow 1s entirely horizontal
through a vertical cylinder at distance r has been introduced as
was done in the classical Dupuit analysis. By inference, equation
30 cannot be expected to give rellable results for the position of
the free water surface near the wellj however, equation 27 should
glve reliable values for discharge. Equation 29 may be expected
to give reliable results if the measurements of piezometric head
are made at points where the assumption of horizontal radial flow
through vertical potential surfaces applies. This is true along
the impermeable boundary, CD, (fig. 2) and 1is closely approximated
at greater distances above CD as the radius increases.

Determination of Seepage Surface

Equation 27 may be rewritten
Tk (he? = hy?)

24303 1gg <yl
e (ry)

Q=

(31)
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By the transformation, r, = rw'/en/2, equation 31 reduces to the form
of equation 14. The resulting geometry of the transformed well is
the same as for the Dupuit case having the same discharge but for a
well of radius equal to eV/2 r,. For the case when n equals 1, the
well system is replenished entirely by vertical percolation, and

r,' = 1.643 ry. The experimental curves of fig. 4 may be used for
finding the height (hs - hy) of the seepage surface above the water
surface in the well by introducing the above transformation for the
case of a well in a system replenished by vertical percolation. Use
of the foregoing analysis for the purpose of designing an agricultural
drainage well of this type is illustrated in example 2.

EFFECT OF REPLENISWAENT

A condition of steady flow implies that the total replenishment of
the influence cone equals the discharge of the well. The shape of
tne influence cone and the discharge, Q, for steady flow for any
system for which the well penetrates the full depth of the permeable
stratum, must be, in general, a function of the drawdovm, D,, the well
radius, ry, the permeability, k, the thickness of the water-bearing
stratum, t,Z/ and the rate of replenishment to the influznce cone,

q. These last five variables are sufficient to determine fully the
flow for any particular system. The weakness of existing formulas
for well discharge is that they do not contain the rate of replenish-
ment. They are, therefore, indeterminate unless an actual test is
made. The foregoing statement may be expressed mathematically by

F (Dyy Twy ky ty, g, Q) = 0 (32)
where F designates an unknown function. Equation 32 involves only

the physical dimensions of length (L) and time (T). Choosing r, and
k as repeating variables one obtains by dimensional analysis

2] —t__. _i’ - =
F ( er ’ : _i?_z_q) 0 (33)
or
9 = .&.) t 3 ._g_
kr, F2 ( Tw Tw k ) k25

as a generélized functional relation for flow into a well.

An examination of equation 34 reveals that the dimensionless
parameter, Q/krw2, depends only on the geometry of the well (ry, Dw)
and the hydrology of the ground-water system (k, t, q). In other

7. For confined systems the thickness of the water-bearing stratum
is represented by t. For unconfined systems the value (hg + )/2
is a measure of t. Note that equation 12 reduces to equation 14
by substitution t = (hg + hy)/2,
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words, the combination of the well and its hydrologic environment
determines Q/krw2 which may be considered a measure of the discharge
expressed in dimensionless terms. This parameter, bearing special
importance in the hydraulics of wells, has been demonstrated by
Hansen (1949) to be the ratio of the Froude number to the Reynolds
number. As such it indicates also the ratio of the viscous forces
to the gravity forces. It is here referred to as the discharge
number denoted by the symbol N with appropriate subscripts depending
upon the nature and direction of the flow and the sources of
replenishment.

One should note that consideration of replenishment gives some
reality to the measuring of the radius of influence. It is a
characteristic length describing the area within which the total
replenishment equals the discharge, Q. The following analysis
introduces the rate of replenishment and develops theoretically,
using certain approximations, the functional relations expressed
by equation 34 for the three cases of steady flow discussed
previously. i

Unconfined System Recharged by Horizontal Flow

Denoting the discharge number for the unconfined case by the symbol,
Nyh, and substituting D, = he - hy, equation 34 may be rewritten

Ny = Fa (e e, L) (35)

Equation 20 may be rewritten in the form

2 . 2
M =l g’ - (R (36)

In re/Ty,

so that all length dimensions are expressed in terms of the well
radius, ry. The right side of equation 36 contains only linear
dimensions; thus the numerical value of Nyp defines the shape of

the influence region. The factor q/k may be taken as the natural
slope, i, of the free water table in the region, if no water comes
into the cone of influence by vertical percolation. Under conditions
of steady flow

Q= 2r, k he 1, (37)

Solving equation 37 for r, and substituting in equation 36 yields

ol - )

Nyn (38)

Nuh Ty
2.303 log ( 2 i hg )
In view of the fact that gq/k is inherent in Nyh, equation 38 contains
all of the parameters required by equation 35 and defines the
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function F3 for the case at hand. One may observe that N, depends
upon the radius of the well, the initial and final depths of water

in the well, and the natural slope of the water table. Equation 38

may be solved implicitly for Ny./(he/Tw)?, the well factor, in terms

of in/(he/rw), the replenishment factor, for various ratios of h“/he.g/
The resulting graphs of the functions are plotted in fig. 5.

Large values of Nyn indicate deep, narrow drawdown cones of
influence while small values indicate broad, shallow cones. Both
flows into the zones of influence and low permeability cause the
cones to become narrow and steep, whereas slow replenishment and high
permeability cause them to be broad and shallow in temms of the radius
of the well. ] X : 2:

. =% Confined Systems

The discharge number for the confined system will be designated by
Nc. From equation 10b

N @ _E;SZ_ 21 Dy/Tw) (t/7w) (39)

In ro/Ty

.

where t is the thickness of the permeable stratum. If i, is the
natural slope of the piezometric surface the flow into the zone of
influence is approximated by

Q= 2re ktip (40)

Solving equation‘40 for ro and substituting in equation 39 gives

NCA= . 2TT(Dwt/I\"2) i (41)
2,303 log (—ggziﬁt)

Equation 41 satisfies the functional relationship of equation 34
and makes possible computation of values of i,/(Dw/rw) for various
values of Nc/(Dwt/rw2) to form the curves of fig. 6.

Unconfined System Totally Replenished by Vertical Percolation

Let Nyy = Q/krw2 define the discharge number for this system. Com-
bining equations 26 and 27 for n = 1 yields

™ [(—%3—)2 - (—Irhx—)z]

) I
2.303\ 199. ('—1:;— v—q-%n‘—) -1/2

(42)

8. Algebraic manipulation of equation 38 for the case of zero draw-
down (hw/he = 1.0) yields Q = 2 in k he ry instead of zero. The
value of Q in this instance is the same as for a well with a
radlus of influence equal to the radius of the well.
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Substituting Q = Nyy k r,2 in the denominator gives

=2 - (]

= Ny &
.151 — ) - 1/2
1.151 logy( qvﬂ) 1/

(43)

which satisfies the relationship required by equation 34, Equation
43 may be rewritten in the fom

Nyy - * [1 - (-:&)2]
(—2‘;‘)2 1.151 log [ﬁ’q‘_w_ - g way)/k ] 1/

(7 (-%:—)2

(44)

The ratio he/ry depends entirely on the dimensions of the well
while qy/k is the ratio of the unit replenishment to the permeability.
From equation 44, Ny,/(he/ry)2 can be computed for values of
(qv/k)/(he/rw)? for various drawdown ratios, hy/he. Graphs of the
results are presented in figs. 7a and 7b.

Although the value of gy will no doubt change at various times
during the year and with the seasons, equation 42 should be valuable
in planning the design of a system of drainage wells as well as in
developing the ultimate ground-water supply of a closed ground-water
basin of the unconfined type.

SIGNIFICANCE OF THE DISCHARGE NUMBER

If the value of the discharge number, Q/krw2, is known, the ef-
fective radius of influence may be established by consideration of
the hydrologic factors and the well radius. For the three sources
of ground water and classes of flow discussed herein the following
formulas may be used.

NC = F (Llyel-’ _:;V—' 1n) (45)
Nyh = F (i’ he y in) (46)
Tw Tw
= JTe _9
Ny = F (52 ) (47)
For the confined case, equation 11 can be written as
h -y hw
NcTw 2‘7?—‘———'—1.W
Lo - (48)
2,303 log :

Tw
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This relationship is shown by fig. 8. 1In using fig. 8 enter knovm
values of N.ry,/t with the values of Dy/rw to intersect the graph

for Ncrw/t. The resulting abscissa is re. The value of (h - hy,)/ry
may be found by entering with the value of r and proceeding vertically
to intersect the proper curve for Ncry/t. The resulting ordinate
gives the value of (h - h,)/r . For example, suppose N¢ = 2,640,
t/ry = 30, and Dy/Te = 74. Then Ncry/t = 88. Entering with Dy/re
to intersect Ncry/t = 88 gives re/ry = 190. At r/r, = 110,

(h - hy)/ry = 66.2. Interpolation for intermediate values of

Ncrw/t may be easily done because the value of the ordinate along
the heavy vertical line at r/r, = 524 is equal to the value of
Nerw/t through that point. Thus, to find the line for Ncry/t = 88,
draw a line through the ordinate 88 on the heavy vertical line and
the origin. The relationships for the other two systems are much
more complex and further study is needed in order to present them
fully. :

Examples 3, 4, 5, 6, and 7 illustrate the use of the foregoing
equations and analyses.

EFFECTIVENESS OF. WELLS

The effectiveness of a well is defined by Wenzel (1942) as

_ 100 (he - h¢)
™ he - ) 2

Because of the head loss through the well casing the effectiveness

is less than 100 percent, except for highly developed permeable
materials near the well.

Confined System

For a well in a confined system equation 49 has the quality of well
efficiency because (hg - hc) is actually the power per unit of
weight discharge delivered by the well to the fluid outside of the
well whereas (he - hy) is the power per unit of weight discharge
imparted by the pumps to the water inside the well. The difference
between the two values represents the power loss per unit of weight
discharge through the boundary of the well. Effectiveness of wells
is a widely-used term describing their condition from the point of
view of their efficiency as power-transferring devices. The draw-
down in the well (he - hw) may be quite easily measured; however,
greater difficulty is encountered in the measurements of (he - h¢).
The head loss for the simple, confined case of a radial flow is a
linear function of the logarithm of the radius (equation 11). The
elevation of the piezometric surface observed at various distances
from the well may therefore be plotted against log r and the re-
sulting straight line extended to the casing to determine h¢ of
fig. 9.
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Unconfined System

For the unconfined case considerable care must be exercised in
applying Wenzel's procedure or misleading results will be obtained.
One should clearly realize the distinction between hg and h¢ as
applied to this type of system. The fommer, hg, is a theoretical
value for a fully efficient well in an unconfined system and
differs from hy, because of hydrodynamic considerations resulting
from the minimum energy concept. The latter, hg, is the effective
energy head inside of the well and is equal to hy plus the
hydraulic head losses through the casing and envelope. 1In a
confined flow system h. is equal to the hydraulic or piezometric
head just outside of the well. However, in an unconfined flow
system h. is a hypothetical elevation somewhere between hy and hgj
he = hy only in a fully efficient well. No suitable method for
determining h. for the unconfined system has yet been developed.
If piezometers extend only a short distance into the saturated
medium, the elevations represent the level of the free water
surface. Thus, the value of hg rather than of h; is obtained.

The value of effectiveness as given by hg will, of course, always
be too small.

Two methods for determining the value of h. are suggested:
(1) The piezometer pipes should be unperforated with an open end
and should be extended to within a short distance of the bottom
impermeable stratum. The squares of the differences between the
piezometric level and the elevation of the bottom impermeable
stratum will form a straight line when plotted against the
logarithm of the radial distance from the well if the ends of
the piezometers are in zones of essentially horizontal flow.
The value of he may be found by extending the plotted line to
the position of the well casing. (2) Determine the elevation
of the free water surface at various radii from the well. As
shown by equation 18, this quantity varies linearly as the
logarithm of the radius and may be plotted on semi-logarithmic
paper and extended to the well as illustrated by fig. 9. Call
the resulting elevation hg ‘and enter fig. 4 with he/rw and
Q/krw2 to determine a value of hw/rw. The resulting value of
hy determined by this procedure is actually hc.

Comparison of Unconfined and Confined Systems

The total available energy per unit weight of water for any well
system is equal to Dy or (he - hy). Actually, the unconfined
system is inherently more efficient in utilizing the available
specific energy than is the confined system. This conclusion
may be readily deduced. The available specific energy in a
confined system is, from equation 10b,

he - hy = 210 (re/Tw)

2kt

and in an unconfined system is, from equation 14,
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- - _Q1ln ﬁrg(;w)
) oS KM(he + hy)

For the same value of available energy, permeability, hy, he, hg,
Twy and Tey = .

he + hy
bl (0)
Since h, must be greater than t in order to assure confined
flow, and as hgy is always greater than t, it is evident from equation
50 that the ratio Qu/Qc will always excede unity. The available
energy per unit weight of water causing flow to the unconfined system

is, therefore, more efficiently used and produces a discharge greater
than that from the confined system.

In all of the examples the well is assumed to be 100 percent
effective. If the effectiveness is less than 100 percent, the value
of h. should be used in place of hy in all cases.

NON-STEADY FLOW

Although the steady-flow formulas presented herein have real value
in the design and operation of ground-water development facilities,
it is important to remember that the flow of ground water to
pumped wells is frequently--perhaps usually--non-steady. Theis in
1935, and Jacob in 1940 developed formulas for estimating non-
steady flow and thus made substantial contributions to the advance-
ment of the science of hydraulics of wells.

ZONES OF FLOW IN WELL HYDRAULICS

Ground-water flow to wells should be considered in the light of the
characteristics of the flow in different regions or zones. A clear
understanding of these zones and the nature of the flow within them
will be of value in wisely applying the principles set forth in
this bulletin. These zones, illustrated in fig. 10, will be con-
‘'sidered as follows:

2Zone I: Inside the Well
Within the well, flow parameters are readily measurable and the
measurements made are of value in defining the flow in other zones.
Both of the lengths hy and ry are easily and accurately determined.

Zone II: The Well Casing and Adjacent Soil

Within this zone where the so-called well losses occur, it is

9. To those who are especially interested in ground water and pumped
= wells, a study of the nonequilibrium formulas of Theis and of

. Jacob, as summarized by Ferris in chapter VII of Hydrology by

: Wisler and Brater, will be interesting and valuable.
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extremely difficult to obtain reliable measurements. Furthermore,
because of the high velocities and the accelerating flow, measure-
ments must be exactly located to be of any value. It is in this
zone also where the effect of local nonuniformities is most pro-
nounced. Hence, a given measurement may not be indicative of the
average conditions. Because of these facts, measurements should
not be made in this zone for use in predicting the flow conditions
in any region other than the exact point at which the measurement
was taken.

Zone IIIs Linear Logarithmic Zone

In confined flow, this zone extends from the region near the well
to the so-called radius of influence in region V. In unconfined
flow, this zone applies to the free surface near the well where
the flow is curvelinear. In this zone the elevation of the piezo-
metric surface in confined flow and the free surface in unconfined
flow is proportional to the logarithm of the radius from the well
(h~ln r). In unconfined flow, measurements of the piezometric
head made near the free surface can be used with reliance to
extrapolate the free surface to the well casing in order to de-
termine the height of the seepage zone, hg.

Zone IV: Dupuit Zone for Unconfined Flow

This zone applies only to those regions of unconfined flow where

ths velocity vector is essentially horizontal. Dupuit's equation
(h“~1n r) developed on the assumption of horizontal flow, applies
with increasing accuracy as the flow approaches the horizontal.
Consequently, this zone extends all along the base of the aquifer
where the flow is horizontal, and includes more and more of the

flow as the radius increases, until the so-called radius of influence
is approached. Piezometric heads measured in this region will accu-
rately define flow conditions if the Dupuit equation is used.

Zone V: Radius of Influence Zone

This zone is the least accurately defined of any of the zones of
flow. For wells being recharged horizontally, an actual radius of
influence does not exist. However, for wells receiving their
recharge by vertical percolation, the radius of influence has
tangible meaning. The developments of this bulletin are based
upon assumptions of steady flow; the effects of a departure from
steady flow are most pronounced in the radius of influence zone.
Piezometric heads measured in this region are of value in approxi-
mating the original position of the undisturbed water table. Piezo-
metric heads should not be measured in this zone for the purposes
of predicting either the discharge or the permeability of the
aquifer.
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EXAMPLES
Example 1

Givens A gravity well discharges 2.0 cfs and the permeability of
the material is determined as 10-3 ft./sec. The original depth of
water in the well, hg, is 50 ft. and the drawdown is 30 ft.,
making hy = 20 ft. What will be the height of the seepage surface
(AB, fig. 2) if the well is 24 in. in diameter?

Solutions
Q- 20 = 2,000
k1,2 (0.001) (1)? ’
hw/Tw = 20/1 = 20, and from fig. 4, hg/ry = 45. Therefore, hg =

(1)45 = 45 ft. and the height of the seepage surface is (45 - 20)
or 25 ft. = Ans.

Example 2

Given: Excess irrigation water of 1 ft. depth per year is to be
removed by steady pumping, The diameter of the well is 24 in.
and the subsoil permeability, k, is 10-3 ft./sec. The depth of
the saturated permeable overburden, he, is 50 ft. and the casing
is perforated for the entire depth. What will be the drawdown if
an area of radius 2,000 ft. is to be drained by one well? What
will be the height of the seepage surface?

Solution:

From equation 28 with n =1

2 _ . 1 (2000)2 2000
he? - h? (365) (24) (3600) (0.001) [2.3109 1 1/2]

= (127) [(2.303) (3.301) - 0.500] = 902
h, = 4/2500 - 902 = 39.99 or 40 ft.
.". Drawdown (hg - hy) = (50 - 40) = 10 ft. = Ans.
From equation 26 n = qyPre2/Q

_ (2000)21r -
Q= <365y (24) (3600) (1)~ O4 °fs

I‘w' =1 fe—= 1.643

Q 0.4 hy 40.0
= = 148 m ¥ w 24.4
kr,' (0.001) (1.643)Z * T 1.643
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and from fig. 4, hg/rw = 25.8; therefore, hg = (1.643) (25.8) = 42
ft. and the height of the seepage surface (hg - hy) = 42.3 - 40.0 =
2.3 ft. = Ans.

13

}? Example 3. Yield of Confined-Flow System

Given: A penneable gravel confined aquifer 30 ft. thick at a depth
of 100 to 130 ft. below the ground surface has an estimated permea-
bility of 2 x 10‘3 ft./sec. The natural slope of the piezometric
surface is 0.0l. The water stands at a depth of 20 ft. below the
ground surface in a 12-in. diameter well. Assuming that by pumping
the water surface in the well may be drawn down to a depth of 70 ft.,
what steady water yield may be expected from the well?

Solution:

Equation 41 and the graph of fig. 6 apply.

— =g .00l __ 5,000l 104

Dy/Tw  50/0.5
Nc

and from fig. 6 = 0.764. Hence, No = —Q ___ =
9 Wr s N¢ v

(0.764) _LQ%%_é%gl_ 4584 and Q = (4584) (2) (1073) (0.5) (0.5) =

2.29 cfs = Ans.

Example 4. Permeability of the Confined-Flow System

Given: A confined sand layer 10 ft. thick yields 0.2 cfs steady-flow
discharge when pumped under a drawdown of 30 ft. The natural slope
of the piezometric surface is 5 ft./hundred and the diameter of the
well is 24 in. Estimate the permeability of the sand.

J

~ Solution:
g . 005 _ o007
Dw/tw  30/1 =
and from fig. 6 -
N
= 1.065 N. = 318 = _QT
Dt/ LR kry

0.2 =4
from which k = = 6.29 10 ft./sec. = Ans.
—TSIgj—zisz— x /sec ns

o L Example 5 - =

Drawdown Required to Discharge 1 cfs in Confined-Flow System

Given: The permeability of a 20-ft. gravel stratum is estimated at



38 Utah Agricultural Experiment Station Bulletin 351

1.0 x 1073 ft./sec. The well diameter is 24 in. and i, is 10 ft./
hundred. What drawdown will be required to produce a discharge of
1.0 cfs?

Solution:

This problem may be solved by trial and error using fig. 6.

Ne = = 1.0 = -
c —kg—g— (163 (To)2 = 1000 in = 0.1

Tw

N 1000 in
Try D = 2 H c = = n —_— - O . 005
w/rw 03 Dyt/Ty* (20) (20) 2:5pamd Dw/Tw 2

entering fig. 6 with e e = 2.5, the corresponding value of
Dyt/Tw?

i . e, N _ i . 0.002
-D-j;;-- 0.10. Try Dy/ryw = 50; W-l.o,_ﬁr_w__o.oo,

entering fig. 6 with —Nc . 1.0 gives _ 1 - 0.00106. There-
Dw/Ty Dw/rw

fore, the correct value of D,/r, is between 20 and 50 and much

nearer 50. Try Dy/ry = 405 —Ne . 50 _ o5 _In__ o 0025,

Dw/rw T 40 Eh—\(/lhltl

repeating the preceeding steps gives i,/(D,/ry) = 0.004. The correct
value of Dy/ry appears to be about 45, and the required drawdown is
therefore estimated to be 45 ft. = Ans.

Example 6a. Yield of Unconfined-Flow System

Given: A ground-water survey of an unconfined-flow system aquifer
indicates that: the average depth of water in the permeable layer

is 80 ft.; the permeability is 5 x 10-3 ft./sec.; and the natural
slope of the water table is 2.5 ft./thousand. If the water level

in the well is to be drawn down to 60 ft., what will be the estimated
yield of the 12-in. diameter well? Estimate the desirable well
spacing.

Solutions

- L0025  _ h, 80 - 60
= = ,0000156, ——a_ « S = OV « 0,250, from fig. 5
he/Tw 80/.5 * “he 80 ’ 9

Nuh ._.2__ o= 0,36 Nuh = (0.36) (160)2 - 8,530
( rw)

o8
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.. Q= Nyp tw? k = (8530) (3.5)2 (.005) = 10.6 cfs

v Q - 10.6 = 5300 ft.

g 2k he ip (2) (0.005) (80) (0.0025)

Wells should be spaced somewhat less than every two miles for greatest
economy and full coverage. ’

Exémple 6b

Given: The same data as in example 6a but using the gallon as the
unit of volume and the minute as the unit of time. g

Solutions

In this case k = 2.24 gal./sq. ft./min. corresponds to 5 x 10-3 ft./
sec. As before Nyp = 8,530 and Q = (8530) (0. 5)2 (2.24) = 4,780 gpa.

4780

Example 7. Design of Drainage Well

Given: During the months May to October, an averzge depth of 0.5 ft,
per month of irrigation water percolates to the ground water. This
is to be removed by pumped drainage using 12-in., wells. The depth of
the permeable soil is 65 ft. and the water table is to be maintained
at a depth of 15 ft. or more below the ground surface. The permeability
of the soil materials is estimated at 5 x 1074 ft./sec. In order to
benefit by special power rates pumps will be operated only during the
6-month irrigation season. What discharge may be expected and what
should be the well spacing if the average 1ift (from water surface in
the well to the ground surface) is maintained at 50 ft.?

Solution:
(0.5) (104 50
k = d =SF"=c il =
%/ (30) (3600) (24) (5) * 29 he/Tw = =55~ = 100
. k ‘
¢ 2 = 3.86 x 1078, and hy/h, =

T (hy/r)? T (3) (36) (24) (100)2

0.35%¢ 20
15/50 = 0.3, From fig. 7b (Nyy)/(he/ry)2 = 0075 .°. Nyy = ?ag:e

. 852
Qkry?. .. well discharge, Q, = (40-79? (5) (1074) (0.5)27_:.0..503'@5,
And, since Q = qyTrr2, " —

,FEZ _ [E5) (30) (eoo) (29) (’—— 85/
Te Gy \ (0.5) ™) = ?4:;),00%(3 = 918 ft.




. 40 Utah Agricultural Experiment Station Bulletin 351

- If the spacing of the wells is made 2ry, there will be a
small undrained area because of the circular shape of the influence
s zone. To assure pumping of all of the water that percolates down-

ward, the boundaries of the three circular areas of diameter 2rg
should overlap so that they intersect at a common point. Thus, for
an arrangement of three wells the spacing should be made r .fj_; and
for four wells, res2.

In order to find the height of the seepage surface under the
above conditions, an equivalent well must be assumed. The equiva-
lent radius of the 12-inch wells of this example would, therefore,
be (1.643) (0.5) or 0.821 feet. New values would then be obtained
in the solution as follows:

4

p o ~(30)3600)-(24)(5) 270
z= ~4f g2)? =
/k,(k) /5X/0 ( )

50
N2 — T T
0.821 /6.3
fra= ol
= = 1. 16_7“ =—_-————‘L5 L
be he/m) X , and hy/hga 50**—0:&.-
Nowy—from—fig.7b, Ny o 0.43: :
By (he/Ty)2
.. NGy 0:43)-(60:9)2=-1593 — Q/kry2-and-hyry=—pros==18:37—
3 37 30.2
Now, from fig. 4, hg/ry = 39& <"« hg = (3974 (0.821) = 32:3-ft.
3e0.2 /5 A
The seepage surface is, therefore, (hg - hy) = (32+3 - 15) = 19:3-

ft. high.
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SYMBOLS AND DEFINITIONS
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Force-Length-Time

Definitions

+ Dimensions

hw

Area of influence beneath which ground
water or piezometric surface contours
are modified by pumping, which is
1Tre2 or an equivalent area; also area
of saturated soil at right angles to
direction of water flow

Babbitt-Caldwell variable coefficient

Drawdown or lowering of the water level
caused by pumping

Effectiveness of the well
Base of Naperian logarithms
An unknown function

Hydraulic head, p/w + z; this represents
the elevation above datum of the free
water surface (a piezometric surface)

at any distance, r, from the well.

(A variable)

Elevation above datum of the water
surface in the well plus the loss of
head in flow through the well casing

Elevation of either water surface or
pilezometric surface at maximum radius
of circle of influence

Elevation of water surface just out-
side of a well in an unconfined-
flow system

Elevation of water surface in the
well while pumping

Hydraulic gradient for ground-water
flow, the ratio expressed by h/l or
dh/dl

Natural hydraulic gradient or slope
of either the water table or of the
piezometric surface

L2
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Force-Length-Time
Symbols Definition Dimensions

k Permeability of soils to water L/T
1 Length or distance of ground-water

flow resulting in loss of hydraulic

head, h L
ln Logarithm to base e -
log Logarithm to base 10 -
N A distance in the direction nommal

to the direction of flow I
N¢ Discharge number, Q/krw2, for a

confined system -
Nuh Discharge number, Q/kr,2, for an un-

confined system recharged by hori-

zontal flow -
Nuv Discharge number, Q/krwz, for an un-

confined system recharged by vertical

flow _—
n Ratio of the discharge of water from

vertical percolation to the total

discharge of the well -
p Pressure intensity F/L2
Q Discharge from a well under equilibrium
: conditions L3/t
Q¢ Discharge of the confined-flow system L3/T
Qr Flow radially through a cylindrical

surface of radius r L3/1
Qu Discharge of the unconfined-flow system L3/T
q Flow replenishment for any system,

generalized L/T
Qv Recharge flow per unit horizontal area

for the vertically-replenished system L/T
b Radial distance from axis of well.

(A variable) L



Hydraulics of Wells 45

Force-Length-Time

Symbols Definitions Dimensions
Te Radius of the circle of influence )5 B
Tw Radius of the well G
-rw' Equivalent radius of the well, en/zrw L
St Free surface. The water surface

represented by the cone of depression
when pumping from unconfined ground .

water L2
Ss Seepage surface. The cylindrical

area having a height of (hg - h¢) and

a radius slightly greater than ry L2
t Thickness of water-bearing stratum

for any system, general )6
°] The angle of the planar system of

polar co-ordinates -
v Velocity of ground-water flow (volume

per unit of time per unit gross cross-

sectional area) L/T
w Weight of water per unit volume; specific

weight F/L3
2 Elevation above datum 5

Quantities Related to the Hydraulics of Wells

Many quantities not included in the list of symbols are of interest
in a study of the hydraulics of wells. 3Some of these related
quantities--not all--are defined here for convenience of the reader.
Because of their special interest some of the quantities included
in the list of symbols and definitions are here included with
amplified definitions.

Aquifer - a geologic formation or structure below the land surface
that transmits water in sufficient quantity to supply wells or
springs.

Area of influence - the horizontal area beneath which flow is toward
the well. '

Cone of depression - depression in either the water table in unconfined
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flow or the piezometric surface in confined flow developed around
a well. The periphery of the depression (the ground-water divide)
delineates the zone from which ground water flows toward the well.

Confined-flow system - Grecund water in an aquifer overlain by
material sufficiently impermeable to sever free hydraulic con-
nection with overlying earth materials except at the intake.
Confined water moves as a result of a differential pressure
resulting from differences in elevation between the intake and
discharge areas of the confined water. A confined-flow system
is referred to in some of the literature as artesian flow or
pressure flow.

Discharge number - a new dimensionless parameter, characterizing
the shape of the cone of depression, which depends only on the
geometry of the well and the hydrology of the ground-water system,
The discharge number, Q/kry2, is defined as the ratio of the well
discharge to the product of the permeability of the aquifer times
the square of the well radius. It is also the ratio of the Froude
and Reynolds numbers, F/R; that is, the ratio of the viscous to
gravity forces. Note that inertia forces in F and R cancel.

Drawdown - lowering of the water table in unconfined systems and
the lowering of the piezometric surface in confined systems owing
to the discharge from the well.

Free surface - a surface of atmospheric pressure. If caplllary rise
is negligible, the free surface and water table are identical and can
be considered as the unbounded upper surface of the unconfined flow.

Ground water - the water in the zone of complete saturation below
the water table.

Hydraulic gradient - the rate of change of piezometric or hydraulic
head with distance. Hydraulic gradient of ground water records
the head consumed by friction in the flow in unit distance since
in ground-water flow the velocity heads are generally negligible.

Laminar flow - flow at velocities such that the loss of hydraulic
head is proportional to the velocity; in turbulent flow the loss
of head is more nearly proportional to the velocity squared.
Laminar flow generally occurs at Reynolds numbers less than one.
The potential theory and the Laplace equation apply to laminar
flow.

_ Permeability - the capacity of water-bearing earth materials and
soils to transmit water when saturated. The permeability is the
volume of water flowing through unit cross-section in unit time
under unit hydraulic gradient.

Porosity - the ratio of the volume of interstices to the total
volume of rock, earth materials, soil, etc., without regard to
size, shape, interconnection, or arrangement of openings.
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Radial flow - two dimensional fluid flow toward the axis of a con-
fined well with the velocity increasing as the distance from the.
axis of the well decreases. The vertical velocity at all points is
zero,

Radius of influence - the maximum radius from which water moves
toward the well.

Reynolds number - a dimensionless number, Ng = @Vd/u, consisting of
a ratio of the inertial to viscous forces. The quantities in the
above number are usually defined as follows: © is the density of

the fluid; V is the average or bulk velocity rather than the actual
velocity within the pores; d is the diameter of the particle rather
than the diameter of the pore; and 4« is the viscosity of the fluid.
Reynolds number thus computed is not exact since the porosity would
effect both the actual velocity and the diameter of the pore for

the same values of V and d in the formula, resulting in a possible
different flow state for the same apparent value of Reynolds number.
However, the Reynolds number as defined above does have considerable
utility as a guide in design because of its usefulness in estimating
whether a given condition will produce laminar or turbulent flow

and consequently whether the head loss will be proportional to the
first power of the velocity or more nearly proportional to the second
power,

Seepage surface - the outside portion of the well hole (a cylindrical
area with a vertical central axis) which is bounded on the lower edge
by the water surface in the well and on the upper edge by the inter-
section of the free-water surface, or cone of depression, with the
well casing.

Standing level - the water level in a non-discharging well. The term
is used without regard to whether the well is within or outside the
area of influence of other wells, If outside the area of influence,
the term is equivalent to static level; if within the area of
influence, the standing level registers one point on the cone of
depression of another well.

Steady flow - flow in which fluid velocity at a given point does not
change with tire.

Turbulent flow - flow in which the loss in hydraulic head is more
nearly proportional to the square of the velocity rather than to the
first power of the velocity as in laminar flow. Turbulent flow
generally occurs above a Reynolds number of 10.

Unconfined-flow system - flow through an aquifer underlain by a
stratum of low permeability. The upper surface of the flowing water
Is at atmospheric pressure. The water is not confined above by a
stratum of low permeability.

Water table - in pervious, granular earth materials, the water table
is the upper surface of the body of free water which saturates the
material which is sufficiently permeable to permit percolation. 1In



48 Utah Agricultural Experiment Station Bulletin 351

fractured, impermeable rocks and in solution openings, it is the
surface at the contact between the water in the openings and the
overlying air.



