Technical Report ECOM C-0423-10

Wind Tunnel Studies and Simulations of Turbulent Shear Flows Related to Atmospheric Science and Associated Technologies

TECHNICAL REPORT

AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS

TASK I: STUDY OF AIRFLOW IN SIMULATED TEMPERATE AND TROPICAL FOREST CANOPIES

FORT HUACHUCA

by T. KAWATANI* and W. Z. SADEH**

Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado

> Prepared jointly for U. S. Army Electronics Command Contract No. DAAB07-68-C-0423

> > and

Office of Naval Research Contract No. N0014-68-A-0493-0001. August 1971

CER71-72TK-WZS3

*Research Assistant. Presently Assistant Professor, Department of Civil Engineering, Kobe University, Kobe, JAPAN. **Associate Professor of Engineering.

ACKNOWLEDGEMENTS

This work was supported by Atmospheric Science Laboratory, U.S. Army Electronic Command (Contract DAAB07-68C-0423) under the supervision of Dr. J. H. Shinn. This support, together with support in preparing this report by project THEMIS under the supervision of Mr. R. D. Cooper (Fluid Dynamics Branch, Office of Naval Research, Contract N00014-A-0393-0001) is gratefully acknowledged.

ABSTRACT

An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tunnel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other.

The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness height are the similarity parameters for the velocity and the vertical distance, respectively. In the outer zone the freestream velocity and the momentum thickness are the scaling parameters. The roughness density has a strong influence on the momentum loss and the upward flow displacement in the transition region. The shape of the roughness element affects the mean velocity distribution inside the canopy, i.e., jetting effect.

The internal boundary-layer thickness was determined based on the turbulent shear-stress distribution. It is found that the flow near the canopy leading edge has two-dimensional wake-like characteristics. The latter are due to the canopy frontal area which is a drastic step obstruction.

The existence of an inertial subrange in the fully developed flow region is doubtful although local isotropy occurs for eddies smaller than

ii

2% of the total boundary-layer thickness. The evolution of turbulent energy associated with various size eddies along the canopy can be successfully described by a discretized-energy analysis.

LIST OF SYMBOLS

A, A _i , A _o	Constant
B, B _i , B _o	Constant
B _w	Filter bandwidth
c, c _o , c ₁ , c ₂ , c _r	Constant
°f	Local skin friction
D	Pipe diameter
d	Zero-plane displacement
E	Mean voltage
Eo	Mean voltage in still air
Е _р	Rate of turbulent-energy production per unit mass (L^2/T^3)
e	Voltage fluctuation
e ₄₅ , e ₁₃₅	Voltage fluctuations for yaw-angle of 45° and 135°
e _{αα}	Turbulent kinetic energy per unit mass in α -direction (L ² /T ²)
F(n)	Frequency density function
f(n)	One-dimensional frequency density function
Н	Shape factor
h	Roughness height
k	Wave number
^k d	Wave number corresponding to lower limit of energy-dissipation range
^k e	Wave number corresponding to upper bound of energy-containing range
k _l	Lower bound of wave number for the existence of local isotropy

L	Wavelength (eddy size)
Ls	Length scale
Lu	Upper limit of the eddy size for the existence of local isotropy
r	Mixing length
М	Constant
n	Frequency, exponent in Eq. (2.1)
P	Static pressure
₽ _∞	Static pressure in the free stream
р	Pressure fluctuation
T _u , T _w	Turbulent intensity based on local mean velocity in x- and z-directions
T _u , T _w	Turbulent intensity based on the free- stream velocity in x- and z-directions
t	Time
U, W	Local mean velocity in x- and z- directions
Ue	Instantaneous effective velocity for hot-wire cooling
U _s	Velocity scale
U _w	Free-stream velocity
U*	Friction velocity
U _{*h}	Friction velocity for $d = h$
ΔU	Velocity deviation on rough wall from that on smooth wall
u,w	Velocity fluctuation in x- and z- directions
u ² [k]	Turbulent kinetic energy per unit mass within a wave number interval 0 to k (L^2/T^2)
u ² [L]	Turbulent kinetic energy per unit mass at eddy size L

ł

9.

v

u ² _i [n _i]	Discretized turbulent kinetic energy per unit mass at frequency n_i
u ₀ ² [L]	$u^{2}[L]$ at $(\tilde{x}, \tilde{z}) = (0, 1)$
Ŷ	Velocity vector
x	Longitudinal distance (downstream distance) from the canopy leading edge
у	Lateral distance from the canopy center line
z	Vertical distance from the wall
^z k	Height of the kink in logarithmic velocity profile
^z o	Roughness length
^z oh	Roughness length when $d = h$
β	Constant
δ	Boundary-layer thickness
δ*	Displacement thickness
δ* d	Displacement thickness for the flow below $z = d$
δ* h	Displacement thickness for the flow within the canopy
δ _i	Internal boundary-layer thickness
3	Rate of turbulent-energy dissipation per unit mass (L^2/T^3)
ε[k]	Rate of turbulent-energy dissipation per unit mass within a wave number interval 0 to k
θ	Momentum thickness
θ _h	Momentum thickness for the flow within the canopy
к	von Kármán's constant
ν	Kinematic viscosity (L^2/T)
π	Profile parameter

π1	Profile parameter calculated by Eq. (5.11)							
πf	Profile parameter for the best fitting to experimental data							
ρ	Fluid density							
τ _o	Wall shear stress							
φ[k]	One-dimensional wave number density function							
ω	Wake function .							
Superscripts								
*	Dimensionless							
	Time-averaged							
Subscripts								
d	Deduced from experimental data (friction velocity)							
m	Measured (friction velocity)							
j	j direction							
rms	Root mean square							
α	a direction							

LIST OF FIGURES

Figure

3.1	Sketch of the model forest canopy and model tree element	85
3.2	Overall view of the Meteorological Wind Tunnel	86
3.3	View of the model forest canopy	87
4.1	Typical normal hot-wire calibration curve	88
4.2	Typical yawed hot-wire calibration curve	89
4.3	Block diagram of hot-wire anemometer measuring system	90
4.4	General view of hot-wire anemometer system and additional equipment	91
5.1	Power law representation of upstream velocity profile	92
5.2	Logarithmic law representation of upstream velocity profile	93
5.3a	Mean velocity profiles within and above the canopy for FDC case	94
5.3b	Mean velocity profiles within and above the canopy for FDC case	95
5.4a	Mean velocity profiles within and above the canopy for HDC case	96
5.4b	Mean velocity profiles within and above the canopy for HDC case	97
5.5	Mean velocity variation along isoheights above the canopy; FDC and HDC	98
5.6	Mean velocity profiles inside the canopy at 6 selected stations; FDC and HDC	99
5.7	Lateral variation in the mean velocity and turbulent intensity for FDC case over a distance	
	of 30 cm off the center line	00

Figure

Page

5.8	Lateral variation in the mean velocity and turbulent intensity for HDC case over a distance of 50 cm off the center line
5.9	Boundary-layer thickness growth and the boundary between the transition and fully developed flow regions; FDC and HDC
5.10	Growth of displacement thickness and momentum thickness along the canopy; FDC and HDC 103
5.11	Variation of the ratios of the displacement and momentum thicknesses within the canopy to the local total displacement and momentum thicknesses along the roughness; FDC and HDC
5.12	Variation in the shape factor along the canopy; FDC and HDC
5.13	Power law variation of the mean velocity above the canopy within the fully developed flow region; FDC and HDC
5.14	Change in logarithmic law velocity representation with the zero-plane displacement; HDC case 107
5.15	Variation of the mixing length with height; FDC and HDC
5.16	Sample of modified logarithmic law description of the mean velocity profiles above the canopy within the fully developed flow region for HDC case 109
5.17	Modified logarithmic law description of the mean velocity within the inner zone (z = 1.0 to 1.85); FDC and HDC
5.18	Defect velocity profiles within the fully developed flow region in terms of the modified wake function; FDC case
5.19	Defect velocity profiles within the fully developed flow region in terms of the modified wake function; HDC case
5.20	Mean velocity profiles above the canopy within the fully developed flow region according to the generalized logarithmic law; FDC case

Figure

D	2	a	0
1	а	ĸ	C

5.21	Mean velocity profiles above the canopy in the fully developed flow region according to the generalized logarithmic law; HDC case	114
5.22	Mean velocity profiles in the outer zone within the fully developed flow region described by the generalized logarithmic law; FDC case	115
5.23	Mean velocity profiles in the outer zone within the fully developed flow region described by the generalized logarithmic law; HDC case	16
5.24	Mean velocity profiles above a peg canopy within the fully developed flow region according to the generalized logarithmic law	117
5.25	Mean velocity profiles above a peg canopy in the outer zone within the fully developed flow region described by the generalized logarithmic law 1	18
5.26a	Turbulent shear-stress distributions within and above the canopy; FDC case	19
5.26b	Turbulent shear-stress distribution within and above the canopy; FDC case	20
5.27a	Turbulent shear-stress distributions within and above the canopy; HDC case	21
5.27b	Turbulent shear-stress distributions within and above the canopy; HDC case	22
5.28	Momentum balance in the transition region; HDC case	23
5.29	Momentum balance in the fully developed flow region; HDC case	24
5.30	Longitudinal pressure gradient above the canopy; HDC case	25
5.31	Growth of the internal and total boundary layer thicknesses 1	.26
5.32	Variation in longitudinal turbulent intensity above the canopy along isoheights; FDC case	27

Figure

5.33	Variation in longitudinal turbulent intensity above the canopy along isoheights; HDC case
5.34	Variation in vertical turbulent intensity above the canopy along isoheights; FDC case
5.35	Variation in vertical turbulent intensity above the canopy along isoheights; HDC case
5.36	Coefficient of anisotropy for the model forest canopy and for real forests
5.37	Wave-number spectra above the canopy; FDC case 132
5.38	Wave-number spectra above the canopy; HDC case 133 $$
5.39	Variation of energy-containing spectrum and energy-dissipation spectrum at two selected heights; FDC case
5.40	Variation in turbulent kinetic energy and energy dissipation as function of the wave number; FDC case
5.41	Variation in turbulent kinetic energy and energy dissipation as function of the wave number; HDC case
5.42	Variations in energy dissipation, energy production and their ratio as function height; FDC and HDC
5.43a	Variation in the discretized energy at four eddy sizes; FDC case
5.43b	Variation in the discretized energy at four eddy sizes; FDC case
5.44a	Variation in the discretized energy at four eddy sizes; HDC case
5.44b	Variation in the discretized energy at four eddy sizes; HDC case
A.1	Hot wire yawed to the mean flow

TABLE OF CONTENTS

										Page
1.	INTR	DUCTION	•	•	•	•	•	•	•	1
2.	THEO	RETICAL CONSIDERATIONS	•	•	•	•	٠	•	•	4
3.	EXPE	RIMENTAL APPARATUS	•		•	•	•			14
	3.1	Model forest canopy		•	•	•	•	•	•	16
	3.2	Wind tunnel		•	•	•	•		•	17
4.	EXPE	RIMENTAL TECHNIQUE AND INSTRUMENTATION		•	•	•	•	•		19
	4.1	Pressure and velocity measurement		•	•	•	•	٠		19
	4.2	Mean velocity and turbulence measurement			•	•	•		÷	19
5.	EXPE	RIMENTAL RESULTS		•		•	•			25
	5.1	Establishment of the flow			•	•	•	ŧ		26
	5.2	Mean velocity survey			•	٠	•			27
	5.3	Shear stress and turbulence survey	•	•	•	•	•	•	•	53
	5.4	Turbulent-energy survey			•	•				62
6.	SUMM	ARY AND CONCLUSIONS				•				72
APP	ENDIX	I - YAWED HOT WIRE		•		•	٠	•		76
REF	ERENC	S			٠	•	•			79
FIG	URES				•	•	•			85
APP	ENDIX	II - TABLES			•	•	•	2		143

Xii

1. INTRODUCTION

The flow characteristics within the atmospheric boundary layer vary depending upon the nature and configuration of the ground. Particularly, the turbulence features in the atmospheric surface layer where the frictional drag force of the ground is dominant depend considerably upon the properties of the ground roughness. The shapes of roughness elements, their geometrical arrangement and the roughness density are main factors to determine the velocity field. As roughness becomes higher and larger, the turbulent motion is greatly increased. The various exchange processes in the resulting turbulent flow are governed strongly by the turbulence characteristics. In an urban area, the exchange processes are closely related to air-pollution problems. In the flow inside and above forest or vegetative canopy the turbulence determines soil erosion, evaporation and rates of carbon dioxide exchange. Moreover, large velocity fluctuations cause significant aerodynamic effects on buildings and/or structures. Consequently, the study of velocity field in the atmospheric boundary layer is of utmost importance for a better understanding of various transport processes and wind loading on structures.

Theoretical analysis of the atmospheric-boundary-layer flow is extremely difficult because of the complexity of the interaction between the velocity field and the ground roughness. Hence, it is necessary to perform detailed experimental studies. Field measurements are inherently difficult due to the unsteadiness of weather conditions and the relatively high cost involved in setting up measurement stations. On the other hand, a suitable wind tunnel can now provide satisfactory conditions for simulating the atmospheric boundary layer. The flow conditions can be

maintained unchanged over enough time for carrying out adequate investigation. Moreover, suitable instrumentation and measurement technique are easily available.

Studies of air flow inside and above forest and/or vegetative canopies have been initiated in the Fluid Dynamics and Diffusion Laboratory at Colorado State University. The flow on a forest canopy was investigated by using a model forest canopy composed of plastic simulatedevergreen trees in a meteorological wind tunnel. The measurements were performed at a constant free-stream velocity and under thermally neutral conditions.

The mean velocity within a fully developed turbulent boundary layer on small roughness elements, e.g., sand or gravel, is described usually by employing a power law and/or a logarithmic law. However, when roughness elements are relatively high compared with the total boundary-layer thickness (10% or more), the flow is highly disturbed. The overall flow characteristics must be determined by the momentum transport due to the velocity fluctuations and the processes of the turbulent energy production and dissipation. Generally, the flow on high roughness elements is quite different from that on small elements. Therefore, in order to provide a reasonable description of the mean velocity distribution on high roughness, the feasibility of the aforementioned laws must be examined. A generalized law for describing the velocity variation above high roughness elements is sought. Furtherfor a close examination of the turbulence structure, it is necessary to survey the turbulent shear stress, turbulence intensities and turbulent energy.

The canopy frontal area, which is a drastic and sudden obstruction, has a strong effect on the flow. It is important to investigate the flow characteristics in the transition domain to discern how the flow attains its fully developed regime. Thus, it is necessary to examine the mean velocity evolution along the canopy and the variations in the turbulent shear stress, turbulence intensity and turbulent energy within this region.

The roughness density, as mentioned previously, strongly affects the velocity field. In order to explore the influence of the roughness density on the flow, two canopy densities were tested.

Theories related to this work are surveyed in the following section. Subsequently, the experimental results and relevant discussions are presented.

The data used in this work are included in Appendix II.

2. THEORETICAL CONSIDERATIONS

The mean velocity profiles within a turbulent boundary layer over a flat plate are usually described by using a power law and/or a logarithmic law.

The power law suggested by Prandtl [1] is

$$\frac{U}{U_{\infty}} = \left(\frac{z}{\delta}\right)^{1/n} , \qquad (2.1)$$

where U denotes the mean velocity, U_{∞} designates the free-stream velocity, z is the vertical distance from the wall and δ stands for the local boundary-layer thickness. This power law is based on the assumption that the local skin-friction coefficient

$$c_{f} = \frac{\tau_{o}}{\frac{1}{2} \rho U_{\infty}^{2}}$$
, (2.2)

where τ_0 is the shear stress at the wall and ρ denotes the fluid density, is proportional to some power of the Reynolds number based on δ and U_{∞} . The value of 1/7 was suggested for the exponent 1/n in Eq. (2.1). However, it is found that the exponent varies from 1/10 to 1/3 depending upon the Reynolds number [2]. The validity of Eq. (2.1) is restricted to Reynolds numbers smaller than 10⁵ [1].

In order to express the dependence of the exponent in Eq. (2.1) on the Reynolds number, the power law was generalized by employing two integral characteristic parameters, i.e., momentum thickness θ and displacement thickness δ^* [3]. Thus,

$$\frac{U}{U_{\infty}} = \{ \left(\frac{z}{\theta} \right) \frac{H-1}{H(H+1)} \}^{(H-1)/2} , \qquad (2.3)$$

where H designates the shape factor, i.e., δ^*/θ .

In reality, the Reynolds number often exceeds the aforestated range of validity of these power laws. Moreover, analytically, the dependence of the exponent in Eq. (2.1) on the Reynolds number is not known yet. To overcome these difficulties, the law of wall (or the logarithmic law) was introduced on the basis of the mixinglength concept [4]. In this law, the mixing-length is assumed to be proportional to the vertical distance from the wall. In addition, the shear stress is postulated to be constant with height. The generalized law of wall is expressed by

$$\frac{U}{U_{\infty}} = F\left[\frac{U \star z}{v}\right] , \qquad (2.4)$$

where the friction velocity denoted by U_{\star} is defined as

$$U_{\star} = \sqrt{\tau_0/\rho} \quad . \tag{2.5}$$

On the other hand, under the assumption that the mixing-length is independent of the magnitude of velocity and the shear stress changes linearly with the vertical distance from the wall, a velocity defect law was proposed by von Karmán [1]. This law is based on the similarity assumption of velocity fluctuations. The generalized form of the velocity defect law is

$$\frac{U_{\infty} - U}{U_{\star}} = G\left[\frac{z}{\delta}\right] \quad . \tag{2.6}$$

When there is a region, no matter how limited, where Eqs. (2.4) and (2.6) are valid simultaneously, the functional form for both law of wall and velocity defect law is logarithmic [5]. Then, for a flow on a smooth surface, the law of wall is expressed by

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{zU_{\star}}{v} + C_{1} , \qquad (2.7)$$

where κ is von Karman's constant and C_1 is an integration constant. The value of the latter is determined by matching the velocity distribution to the velocity at the outer edge of the viscous sublayer.

Nikuradse [6] made extensive measurements on the flow in smooth and sand-roughened pipes. The numerical value of von Kármán's constant was found to be 0.4. Moreover, it was observed that the velocity profile on the rough surface deviated from that on the smooth wall with increasing Reynolds number. This deviation depends upon the Reynolds number and the relative scale of roughness h/D, where h is the roughness-element height and D is the pipe diameter. When the Reynolds number based on the roughness height and friction velocity, i.e., $\frac{hU_x}{v}$, is larger than 70, the deviation becomes a function of the relative scale of roughness alone [3]. In other words, when roughness elements are very high, the roughness height is the governing factor of the flow pattern. Similar results are reported in Refs. 7, 8, 9, 10 and 11. In order to describe the velocity profiles on a rough wall by means of Eq. (2.7), a roughness function was introduced [2]. Then, Eq. (2.7) becomes

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{U_{\star}z}{v} + C_{1} - \frac{\Delta U}{U_{\star}} , \qquad (2.8)$$

where $\Delta U/U_*$ is a roughness function which represents the mean velocity deviation on rough wall from that on smooth wall. It was shown experimentally that the roughness function for flow on fully rough wall depends on the Reynolds number based on the roughness height and friction velocity. Thus, the roughness function is [11]

$$\frac{\Delta U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{U_{\star}h}{\nu} + C_2 , \qquad (2.9)$$

where C_2 is a constant. Substitution of Eq. (2.9) into Eq. (2.8) leads to the following logarithmic law

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{z}{h} + C_{r} , \qquad (2.10)$$

where C_r is a positive constant for a given roughness.

In the atmospheric surface layer, the wind is affected by various types of roughness elements such as grass, crops, trees, buildings and so on. The height of this layer is typically between 20 and 200 m [12]. Above the surface layer, with increasing vertical distance, the velocity deviation from the geostrophic wind speed disappears gradually. The atmospheric boundary layer (or the planetary boundary layer) is defined as the distance from the ground where the mean velocity attains the geostrophic wind speed. The thickness of this layer is about 500 to 1000 m depending upon the particular latitude [13]. In order to represent the mean velocity profiles within the atmospheric surface layer by a logarithmic law, it is assumed that the effects of the roughness on the mixing-length are confined to a layer where the vertical distance from the ground and the roughness length are comparable [14]. The latter is a length scale which describes the influence of the roughness on the flow. When the vertical distance is sufficiently large compared with the roughness length, the mean velocity profile is written by

$$\frac{U}{U_*} = \frac{1}{\kappa} \ln \frac{z}{z_0} , \qquad (2.11)$$

where z denotes the roughness length.

Usually, this relationship is applied to the velocity profiles on either bare ground or very short vegetation, e.g., not exceeding a few centimeters [13]. To describe the velocity distribution over high roughness elements, the aforementioned equation is modified introducing a zero-plane displacement [14,15]. The modified logarithmic law is

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{z-d}{z_0} , \qquad (2.12)$$

where d stands for the zero-plane displacement. The latter is considered as a datum level above which the turbulent exchange processes occur. It is noteworthy that the roughness length and the zero-plane displacement are interdependent since the logarithmic law is obtained by integrating a first order differential equation describing the shear stress distribution based on the mixing-length hypothesis. In spite of this fact, Deacon [16] determined the zero-plane displacement and the roughness length independently in order to provide the best fit curve to measured velocities. Then, it seems that Eq. (2.12) can represent the velocity profiles between 1 and 13 m over area covered with high grass.

The flow in the atmospheric boundary layer may be simulated by the flow within the boundary layer on a flat plate. Thus, it is important to examine the eventual equivalence of the two length parameters in Eq. (2.11) and (2.12) i.e., z_0 and d, to C_r and h in Eq. (2.10). The roughness length in Eq. (2.11) can be expressed in terms of the roughness height and a constant C_r in Eq. (2.10) by the relationship

$$z_{0} = h/C_{0}$$
 , (2.13)

where $C_0 = \exp(\kappa C_r)$. Thus, the roughness length is constant for a given roughness. Moreover, since the constant C_r is positive, the roughness length is smaller than the roughness height. Next, it was found that the logarithmic profile represented by Eq. (2.10) is universal for either smooth or rough surface if the origin of the vertical coordinate is properly selected somewhere between the top and bottom of the roughness elements [2,10]. Thus, the zero-plane displacement introduced into Eq. (2.12) is considered as an adjustment of the vertical-coordinate origin such that the measured velocities are described by the logarithmic law.

In the turbulent boundary layer on a flat plate, the velocity distribution in the lower 10 to 20% of boundary-layer thickness

can be described by the logarithmic law [2]. The general form of the velocity profile throughout the entire boundary layer is expressed by a combination of the logarithmic law and the law of the wake [17]

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{U_{\star}z}{\nu} + C_1 + \frac{\pi[x]}{\kappa} \omega[\frac{z}{\delta}] \qquad (2.14)$$

where $\pi[x]$ is a profile parameter. The function $\omega[\frac{z}{\delta}]$ is referred to as the law of the wake and supposedly common to all two-dimensional turbulent boundary-layer flows. Based on existing data, the wake function $\omega[\frac{z}{\delta}]$ is subjected to the following normalizing conditions

$$\omega(0) = 0$$
 , (2.15a)
 $\omega(1) = 2$, (2.15b)

and

$$\int_{0}^{1} \omega d(\frac{z}{\delta}) = 1 . \qquad (2.15c)$$

Thus, in terms of the wake function, the velocity-defect law is

$$\frac{U_{\infty} - U}{U_{\star}} = -\frac{1}{\kappa} \ln \frac{z}{\delta} + \frac{\pi[x]}{\kappa} \left(2 - \omega[\frac{z}{\delta}]\right). \qquad (2.16)$$

Since Eq. (2.14) satisfies the boundary condition $U = U_{\infty}$ at $z = \delta$ and by the condition (2.15b) the profile parameter can be evaluated by

$$\frac{2\pi[\mathbf{x}]}{\kappa} = \frac{\mathbf{U}_{\infty}}{\mathbf{U}_{\star}} - \frac{1}{\kappa} \ln \frac{\mathbf{U}_{\star}\delta}{\nu} - \mathbf{C}_{1} , \qquad (2.17)$$

where C_1 was estimated to be 5.1 [17].

The use of the mixing-length concept in analyzing a turbulent boundary-layer flow permits description of the average properties of flow, e.g., the mean velocity profiles and the shear stress exerted on the wall. However, the turbulent-energy production, transfer and dissipation cannot be explained by this concept. In order to account for these mechanisms, it is necessary to examine the energy equation for both mean flow and turbulence. Derivation and extensive discussion of both mean and turbulent energy equations can be found in Refs. 3, 12, and 18.

The kinetic energy extracted from the mean flow due to its retardation caused by roughness appears in the form of fluctuating energy. Through a cascade process [19], the latter is converted into heat by direct action of viscous stresses. Generally, this process does not occur in the same place since the eddies are conveyed by the mean velocity. Consequently, the balance between the energy production and energy dissipation is not necessarily a local process. Depending upon their relative magnitude, the difference can be made up at some downwind position. These mechanisms can be explained by examining the turbulent energy equation in an arbitrary direction α under thermally neutral condition [12]

$$\frac{\partial \overline{e}_{\alpha\alpha}}{\partial t} = -\overline{u_{\alpha}u_{j}} \frac{\partial U_{\alpha}}{\partial x_{j}} - \nu(\overline{\frac{\partial u_{\alpha}}{\partial x_{j}}} + \frac{\partial u_{j}}{\partial x_{\alpha}}) \frac{\partial u_{\alpha}}{\partial x_{j}} - \frac{1}{\rho} \overline{u_{\alpha}} \frac{\partial p}{\partial x_{\alpha}} + \frac{\partial u_{\alpha}}{\partial x_{\alpha}} + \frac{\partial u_{\alpha}}{\partial x_{\alpha}} \frac{\partial u_{\alpha}}{\partial x_{\alpha}} + \frac{\partial u_{\alpha}}{\partial x_{\alpha}} \frac{\partial u_{\alpha}}{\partial x_{\alpha}} + \frac{\partial u_{\alpha}}{\partial x_{\alpha}} + \frac{\partial u_{\alpha}}{\partial x_{\alpha}} \frac{\partial u_{\alpha}}{\partial x_{\alpha}}$$

where j = 1, 2, 3, the dummy index α is not to be summed upon and $e_{\alpha\alpha} = u_{\alpha}^2/2$. In this equation, the mean velocity is denoted by U and the fluctuating velocity by u. Terms in the final bracket express the energy transfer from one place to another since their volume integral vanishes at all points on a sufficiently distant surface [12]. The third term on the right-hand side of Eq.(2.18) accounts for the transfer of energy among the turbulent velocity components by the fluctuating pressure forces. The second term is the total rate of work against viscous forces in the α -direction and represents the energy dissipation directly to heat, i.e., the dissipation term. The first term on the right-hand side indicates the energy supply from the mean motion to the fluctuating velocity and is usually referred to as the production term. The production term can be rewritten as [12]

$$\overline{u_{\alpha}u_{j}} \frac{\partial U_{\alpha}}{\partial x_{j}} + U_{\alpha} \overline{u_{j}} \frac{\partial u_{\alpha}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \overline{(u_{\alpha}u_{j} U_{\alpha})} . \qquad (2.19)$$

The term on the right-hand side is the divergence of the fluctuating energy transport. Its integration in space is equal to zero. Hence the two terms on the left-hand side represent the energy balance.

This indicates that the energy extracted from the mean motion in the α -direction by $-U_{\alpha} u_{j} \frac{\partial u_{\alpha}}{\partial x_{j}}$ becomes the fluctuating energy in the same direction through $\frac{\partial U_{\alpha}}{\partial u_{j}} \frac{\partial U_{\alpha}}{\partial x_{j}}$.

All the terms in Eq. (2.18) but the pressure transport term were measured within two-dimensional turbulent boundary layer [20,21]. These results show that the various transport terms are of secondary importance with respect to the production and dissipation terms near the wall. In other words, the production and dissipation are nearly in balance, i.e., most energy produced locally can dissipate locally [12,18]. As a result, near the ground within a two-dimensional turbulent boundary layer, the energy balance can be approximated by

$$-\overline{uw}\frac{\partial U}{\partial z}\simeq \varepsilon$$
, (2.20)

where ε stands for the energy dissipation and, u and w are the fluctuating velocities in the x- and z-direction, respectively.

3. EXPERIMENTAL APPARATUS

The objective of the experimental program was to study the flow within and, in particular, above high roughness elements randomly distributed. This was to be achieved by using a model forest canopy consisting of plastic simulated evergreen trees in a meteorological wind tunnel. The flow within the atmospheric boundary layer changes its characteristics depending on the shape of prevailing roughness elements, their stiffness and configuration. Therefore, the flow over forest canopies can hardly be studied from measurements using a single tree or a small number of trees. Unfortunately, field measurements do not yet yield adequate results for a systematic analysis of flow. This is due to the continuous variation of weather conditions and the high cost in setting up adequate field measurement stations. On the other hand, the wind tunnel flow provides satisfactory conditions to simulate the atmospheric boundary layer [22]. The flow conditions can be kept unchanged over a long enough time period for performing adequate measurements. Moreover, suitable instrumentation and measurement techniques are easily available.

Many investigations of flows using various types of trees and forest canopies were conducted in wind tunnels and in field [23,24,25, 26,27]. The wind-tunnel data show reasonable agreement with field data. However, most of these studies are limited to particular aspects. Consequently, they do not supply a general picture of the flow field caused by high roughness spreading over wide area, such as a forest canopy or any vegetative canopy. Investigation of the flow inside and above forest canopies using a wind tunnel was recently initiated at the Fluid Dynamics and Diffusion Laboratory, Colorado State University.

First, flexible roughness elements were used [28]. Next, pegs were employed to simulate vegetative canopies [29,30]. Following that, drag measurements of model trees [31] and preliminary velocity and diffusion measurements [32,33] were performed by employing simulated forest canopy. The latter is generally similar to the canopy used in the present work.

Since the flow in the wind tunnel is of different scale than the full-scale flow, the flow similarity conditions must be satisfied. Thus, geometrical, dynamic, kinematic and thermal similarity must be achieved [22,34]. For dynamical similarity, the Rossby, Reynolds and Froude numbers must be the same for both model and field flow. The model forest used in this experiment does not have any specific prototype so that geometrical similarity is irrelevant. Neither thermal similarity nor the Froude number equality needs to be considered since the experiment was carried out under thermally neutral conditions. The condition for the Rossby number can be disregarded if the horizontal length scale of the full-scale forest is smaller than about 150 km [22].

The Reynolds number equality is of prime importance in the case of laminar flow. However, the flow about sharp-edged bodies or tree-like roughness is turbulent and, hence, inertially dominated. Flow separation occurs on each one of the roughness elements. In other words, the roughness element acts as vortex generators and counteracts the damping effect of the viscosity [3]. Then, it can be assumed that the flow pattern is independent of the Reynolds number. Recent experimental investigations seem to indicate that drag coefficient and wake characteristics of tree elements are approximately independent of the Reynolds number [23,24,28,30,32,33]. In general, it is reasonable to assume that

the flow in the atmospheric surface layer is inertially dominated. Similarly, the wind tunnel flow reported herein is inertially dominated. Therefore, the flow over model forest can simulate the full-scale forest canopy flow although the Reynolds number in the model canopy is smaller than that in a similar field flow.

Finally, to satisfy kinematic similarity, the upstream velocity should vary according to the logarithmic law characteristics of the lower atmosphere. Moreover, the model forest canopy is to be placed in a turbulent boundary layer simulating the atmospheric surface layer. Accordingly, the upstream boundary layer must be artificially thickened.

3.1 Model forest canopy

A model forest canopy 1100 cm long and 183 cm wide was used. A schematic diagram of the canopy and of the model tree is displayed in Fig. 3.1. The model tree used is 18 cm high and, roughly, the largest diameter of the crown was measured at a height of about 13.5 cm, i.e., at 75% of the canopy height. The system of coordinates used and all important dimensions are also shown in this figure. The canopy base consists of 18 identical aluminum plates 0.5 cm thick. On the face of these plates, holes of 0.5 cm in diameter were drilled at intervals of 1.27 cm. Model trees made from plastic simulated evergreen boughs were inserted into these holes. These roughness elements were selected based on the results reported in Ref. 32. The model trees were randomly distributed so that no definite rows were evident. Two roughness densities, i.e., the number of trees per unit area, were employed. The first was approximately 1 tree per 46 cm², whereas the other was nearly 1 tree per 92 cm². Hereafter, the former

is referred to as full-density canopy or FDC and the latter as half-density canopy or HDC. In the former density, the base plates were completely covered by the tree crowns. It is, further, possible to define a volumetric density number. This was defined as the ratio of the volume occupied by the trees to the total volume of the canopy. If the trunk is represented by a cylinder and the crown by a cone, as shown in Fig. 3.1(d), then the crown volume is about 222 times larger than the trunk volume. Consequently, the latter can be neglected. Then, the volumetric density was approximately 0.26 for the full-density canopy and 0.13 for the half-density canopy.

3.2 Wind tunnel

The experiment reported herein was conducted in the Army Meteorological Wind Tunnel [35]. This is a closed circuit wind tunnel with a 27 m long test section and a cross-section of 183 x 183 cm. Its contraction ratio is 9:1. Air speed up to about 36 m/sec is generated by a propeller driven by a 250 hp DC motor. The air speed can be changed continuously by adjusting the pitch of propeller blades and/or the motor speed. A schematic diagram of the wind tunnel including the system of coordinates used and all important dimensions is shown in Fig. 3.2.

The leading edge of the canopy was located 15 m downstream of the test section entrance. To satisfy the requirement for kinematic similarity, turbulence was generated by gravel installed upstream of the entrance, i.e., in the contraction section. However, the turbulent boundary layer generated by this roughness was not thick enough at the canopy leading edge. Consequently, an additional turbulence generator was placed along the first 3 m of the wind-tunnel test

section. The turbulence generator was made from flexible plastic strips of 10 cm high, 0.63 cm wide and 0.019 cm thick. Thus, an adequate turbulent boundary layer was obtained.

The wind tunnel ceiling is sectionally adjustable such that any desirable longitudinal pressure gradient can be obtained. For this adjustment, eight static-pressure taps located 244 cm apart were employed.

An electrically driven traversing mechanism permitted continuous movement of various measurement probes in the x, y, and z-directions. The position of probes can be controlled within 1 mm.

A photograph of the full density canopy installed in the wind tunnel is displayed in Fig. 3.3.

4. EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION

4.1 Pressure and velocity measurement

The pressure gradient in the wind direction is negligibly small in the atmospheric boundary layer. Consequently, the experiment was carried out under approximately zero pressure gradient condition. The latter was achieved by an extensive series of trails in which the slope of the wind tunnel ceiling along the model canopy was sectionally adjusted. For this purpose, the static pressure taps located along the ceiling were utilized. The pressure at the first tap located 900 cm downstream of the test section entrance was used as the reference static pressure. The difference between the reference pressure and the pressure at other taps was adjusted within 0.002 mm Hg. An electronic pressure meter of capacitance type (Trans-Sonic Equibar Type 120 A) was employed for the pressure measurement. This meter is a differential micromanometer with a range up to 30 mm Hg and a resolution of 0.0001 mm Hg.

The experiment was carried out at a constant free-stream velocity of 6 m/sec. The freestream velocity was measured by means of a Pitotstatic tube located 1 m upstream of the model forest and 1 m above the wind tunnel floor. A similar Trans-Sonic pressure meter was utilized to monitor the Pitot-static tube reading. A standard Pitot-static tube of hemispherical type with an impact orifice of 1/8-in diameter was utilized [36].

4.2 Mean velocity and turbulence measurement

The mean velocity distribution within and above the forest canopy was measured by a single hot-wire anemometer. Simultaneously, the

longitudinal turbulence intensity was also measured. The hot-wire anemometer used in this experiment is a new system conceived, designed and built at the Fluid Dynamics and Diffusion Laboratory, Colorado State University [37]. This is a fully transistorized unit of constant temperature type (CT). The noise level of the unit is less than 200 μ v. The signal to noise ratio (S/N) is from 4 to 200 depending on the output signal. Its frequency response is as high as 100 kHz. A copper-plated tungsten wire of 0.00875 mm in diameter and of an aspect ratio of approximately 170 was used.

The hot-wire calibration indicated that the square of the actual voltage drop across the wire E is nearly proportional to the square root of the undisturbed velocity U. That is, the so-called King's law [38] was found to be reasonably satisfied within the velocity range of the present experiment. A typical calibration curve is displayed in Fig. 4.1. For practical purposes, the relation between the voltage drop and the undisturbed velocity may be written as [39]

$$E^2 = E_0^2 + MU^{\frac{1}{2}}$$
, (4.1)

where E_0 is the voltage drop in still air (or shielded hot-wire). The constant M varies with wire configuration, wire properties and air properties. This constant is experimentally determined from calibration for each particular wire employed. Moreover, both E_0 and M depend on the resistance ratio N. The latter is the ratio of the heated-wire resistance under working condition R_w to its cold resistance in still air R_{wco} . It is important to note that Eq. (4.1) does not hold at very low velocity, say, smaller than 0.10 m/sec [39].

When a hot-wire probe is placed in the turbulent flow, the instantaneous effective velocity U_e causing the actual voltage drop can be expressed by

$$U_{e} = \left[(U + u)^{2} + w^{2} \right]^{\frac{1}{2}} .$$
 (4.2)

In the above relationship, U is the mean or time-averaged velocity, u is the component of the fluctuating velocity parallel to U and w is the lateral component of the fluctuating velocity perpendicular to the hot wire. The component parallel to hot-wire axis v contributes negligibly to the heat loss of a hot wire [18,40]. Thus, Eq. (4.1) becomes

$$E^{2} = E_{0}^{2} + MU_{e}^{\frac{1}{2}} . (4.3)$$

Under the condition of relatively small fluctuation, w is assumed to be negligible compared with (U + u). Thus, Eq. (4.3) reduces to

$$(\overline{E} + e)^2 = E_0^2 + M(U + u)^{\frac{1}{2}}$$
, (4.4)

where \overline{E} is the time-averaged (DC) voltage necessary to balance the bridge under steady conditions and e stands for the AC instantaneous voltage drop proportional to the fluctuating velocity u. Next, by performing a binomial expansion, the quadratic and high order terms in e and u can be neglected in Eq. (4.4) on the assumption of small fluctuations. Separating the bridge voltage into its DC and AC parts, and taking square-root of both fluctuating quantities, the turbulence intensity is given by [39]

$$\frac{u_{\rm rms}}{U} = \frac{4E^2}{E^2 - E_0^2} - \frac{e_{\rm rms}}{E}, \qquad (4.5)$$

where the subscript rms denotes square-root of mean square value, i.e., $(\overline{u^2})^{\frac{1}{2}}$ and $(\overline{e^2})^{\frac{1}{2}}$. The error in using Eq. (4.5) is at most 10% for turbulence intensity of 60%. Turbulence intensities of this order of magnitude were monitored only at several stations.

In addition to the condition of small fluctuations, the mean velocity must be high enough to satisfy the relation $E-E_o/E_o > 0.2$ for Eq. (4.5) to be valid [39]. The measurement of large fluctuations in the low velocity range can be carried out by using the method developed by Sadeh [39]. This method needs an adequate linearizer unit. Since the measurements in our work were made without a linearizer, the results in the high turbulence intensity region are not so reliable.

A yawed wire probe was employed for measurements of the vertical fluctuating velocity w and the turbulent shear stress \overline{uw} . When a hot wire is placed successively in the x-z plane at two different yaw angles, say, 45° and 135°, to the mean flow direction, \overline{uw} and $\overline{w^2}$ are given by the relationships (see Appendix I)

$$\frac{\overline{uw}}{u^2} = \frac{4\overline{E}^2 (e_{45}^2 - e_{135}^2)}{(\overline{E}^2 - E_0^2)^2} , \qquad (4.6)$$

and

$$\frac{\overline{w^2}}{u^2} = \frac{8 \overline{E^2} (e_{45}^2 + e_{135}^2)}{(\overline{E^2} - E_0^2)^2} - \frac{\overline{u^2}}{u^2} , \qquad (4.7)$$

where e denotes the AC instantaneous voltage drop across the yawed wire caused by u and w, and the subscripts 45 and 135 stand for the yaw angle of the hot wire to the mean flow. In Eq. (4.7) $\overline{u^2}$ is obtained from a normal wire measurement at the same location. It is important to notice that in deriving Eqs. (4.6) and (4.7), the King's law is assumed to be valid for a hot wire yawed to the mean flow direction. Calibrations of a 45[°]-yawed wire showed that the aforementioned assumption is reasonably satisfied. A sample of the calibration curves obtained is provided by Fig. 4.2.

The frequency-spectra survey was performed by means of a recording wave analyzer (General Radio, Recording Sound and Vibration Analyzer, Type 1911-A). The fraction of energy at each frequency, i.e., the frequency density function, calculated in terms of the mean-square cutput of a wave analyzer is

$$F[n] = \frac{1}{B_{w}} e^{2}[n, B_{w}] , \qquad (4.8)$$

where $e^2[n,B_w]$ is the square of the rms output at any selected frequency n, B_w stands for the filter bandwidth and n is the central frequency within the bandwidth. A constant-percentage bandwidth of 1/3 octave (23%) was used throughout this survey. In this case, the
bias error when changes of the mean-square values are smaller than ± 15 db/octave is estimated to be less than 5% [41].

Both normal and yawed wire were calibrated employing a calibrator (Thermo-System Calibrator, Model 1125). Air velocity in this calibrator ranges from about 0.15 m/sec to 300 m/sec. The accuracy of the reproduction of velocity in this calibrator is $\pm 2\%$ for velocity larger than 3 m/sec. At smaller velocity, the accuracy is approximately $\pm 5\%$.

Other auxiliary equipment used in this experiment were: (1) A digital DC voltmeter (Hewlett-Packard, Model 3440 A) for monitoring of various output voltages; (2) A true root-mean-square meter, TRMS (DISA, Type 55D35) for measurement of rms values; (3) A dual-beam oscilloscope (Tektronix, Type 502A) for quick assessment of the output signal pattern, calibration and monitoring of instantaneous AC signal; (4) A tape recorder (Ampex, Model FR 1300) for recording of various output signal for further analysis; (5) An integrator (CSU) for obtaining the time-averaged value of hot-wire output voltage; (6) An x-y recorder (Moseley Autograf, Model 135) for recording TRMS output voltages. A simplified block diagram of the equipment utilized is shown in Fig. 4.3. A general view of the hot-wire anemometer and the additional equipment, is provided by Fig. 4.4.

5. EXPERIMENTAL RESULTS

The flow within and, particularly, above the model forest canopy was investigated. The experiment was performed at constant free-stream velocity, i.e., approximately vanishing longitudinal pressure gradient, under thermally neutral conditions. The main purposes of the work reported herein were:

- (1) To study the mean velocity evolution along the canopy.
- (2) To investigate the turbulence intensity variation along the canopy.
- (3) To explore the turbulent energy distribution and turbulence structure.
- (4) To examine the high roughness effects on both mean velocity and turbulence.

The system of coordinates used in the presentation of the results is portrayed in Figs. 3.1 and 3.2. The origin is at the geometrical center of the canopy leading edge. Generally, the results are presented in dimensionless form. Dimensionless variables are denoted by a tilde placed over the symbols used. The dimensionless coordinates are defined by

$$x, y, z = x/h, y/h, z/h$$
, (5.1)

where h is the canopy height, h = 18 cm. The velocities are referred to the constant free-stream velocity used in this experiment

$$\vec{\vec{V}} = \vec{\vec{V}}/U_{\infty} , \qquad (5.2)$$

where $U_{\infty} = 6$ m/sec. If other reference length or velocity is utilized, they are mentioned as they are introduced.

The results for both canopy densities, FDC and HDC, are presented simultaneously for the sake of comparison and for assessing the effects of canopy density. As the experimental results are presented, relevant discussions are interspersed wherever it is deemed helpful for proper interpretations of the results.

5.1 Establishment of the flow

To begin with, longitudinal zero-pressure gradient was obtained by adjusting sectionally the wind-tunnel ceiling as described in Sec. 3.2. The free-stream velocity which was maintained at 6 m/sec was measured at 1 m upstream of the canopy, i.e., at x = -1 m in the plane y = 0(see Fig. 3.1). Basically, due to the zero-pressure gradient, the freestream velocity should remain constant along the model forest. However, a slight increase of about 2.5% in its value was monitored up to 1 m downstream of the canopy leading edge, i.e., up to x = 1 m. Beyond this point, the variation in the free-stream velocity was negligibly small, less than about 1%.

It was found that the velocity distribution at x = -1 m, which is displayed in Fig. 5.1, is reasonably described by a power law (see Eq. (2.1)). In this figure the vertical distance is made dimensionless using the local boundary layer thickness δ . The numerical value of the exponent was found to be approximately 0.18. Field measurements also indicate that the velocity profile can be expressed by a power law. Generally, the value of the exponent depends on the surface roughness [42]. For instance, in Ref. 43 a value of 0.28 is suggested for wooded

area and of 0.16 for open country. The value of the exponent for the upstream velocity is about 12% larger than the aforementioned value for open country. Furthermore, based on field measurements, the value of the exponent can vary daily and/or seasonally [42]. The seasonal variation seems to depend on the location of the measurement probes.

Simultaneously, it was found that the upstream velocity varies satisfactorily according to the logarithmic law (see Eq. (2.11)) as shown in Fig. 5.2. The estimated value of the friction velocity and of the roughness length are about 36 cm/sec and 0.093 cm, respectively. In accordance with the suggested value of roughness length for various natural surfaces [16], the upstream surface in this experiment would correspond to a desert area. Consequently, the velocity distribution in the atmospheric surface layer over smooth surface was simulated adequately by the upstream flow.

5.2 Mean velocity survey

The mean velocity in both FDC and HDC cases was measured at 14 locations along the canopy center line, i.e., along the x-axis in the plane y = 0, from 1 m upstream of the canopy to 1 m downstream of it. At each location, for the FDC case, the measurements along the z-axis were carried out at 14 to 17 stations over a height of 119 to 132 cm. On the other hand, the measurements for HDC case were performed at 13 to 16 stations over a height of 102 to 132 cm. Within the canopy height the mean velocity was measured at 4 or 5 stations at each location.

The measured mean velocity variation for FDC case is shown in Figs. 5.3a and 5.3b whereas for the HDC case in Figs. 5.4a and 5.4b. In both cases, a similar velocity variation with height was obtained. When the

flow encounters the canopy, the lower part of the flow is deflected upward by the canopy frontal area. Hence, in the vicinity of roughness a relatively drastic velocity change with height is observed. Away from the canopy the velocity increased gradually exhibiting a change similar to the upstream velocity.

In order to examine the mean velocity evolution above the canopy, the velocity variation along 6 isoheights for both canopy densities, FDC and HDC, is displayed in Fig. 5.5. The flow retardation due to the roughness, which is stronger close to the canopy than far from it, is clearly discerned. Most of the velocity deceleration occurs over a longitudinal distance of about 15 to 20 roughness heights within a region extending approximately up to one roughness height above the canopy $(\tilde{z} = 2)$. Beyond 20 roughness heights from the canopy leading edge, the velocity change up to about 1.5h above the roughness is practically negligible. Away from the roughness, the flow retardation extends over longer distances. With increasing height above the canopy, a longer adjustment range to the new roughness conditions is needed. The region throughout which most of the deceleration develops can be defined as a transition region. On the other hand, the fully developed flow region is arbitrarily defined as the region where the mean velocity deviates by less than 5% from the local mean velocity at \tilde{x} = 45. Within this domain, the flow reaches a state of relative equilibrium. According to the above definitions, the extents of the transition and the fully developed flow regions for both FDC and HDC are shown by the broken lines in Fig. 5.5. It is important to remark that the transition region for FDC stretches over a shorter distance than for HDC. Roughly, it stretches in the former case up to $\tilde{x} = 16$ to 32 and in the latter case

up to $\tilde{x} = 19$ to 38 over a height range from $\tilde{z} = 1$ to 5. This is due to the dependence of the momentum loss on roughness density. As the density is higher, the momentum loss is greater and, hence, the transition domain is shorter. Thus, the extent of the transition region depends upon the roughness density and increases with height above the canopy. Toward the trailing edge of the canopy, a slight acceleration over a distance of about 5h was observed. It is due to the flow adjustment to the smooth surface leewind of the canopy.

It is, further, worthwhile to notice the effect of the roughnesselement shape on the velocity variation within the canopy. Recall that the trunk extends over 28% of the roughness height and the crown over 72% of it (see Fig. 3.1). The mean velocity change with height inside the canopy at 6 selected stations is shown in Fig. 5.6. Generally, higher velocities were monitored along the trunk zone than along the crown. As the flow approaches the canopy, it is divided into two distinct parts due to crown stagnation effects. An upward flow displacement above the canopy and a downward deflection into the trunk spacing arise simultaneously. Accordingly, the largest velocities within the canopy were monitored at about 1/2 of the trunk height throughout the beginning of the transition region. This region of relatively large velocities is called the jet region. On the other hand, the smallest velocities were generally measured at $\tilde{z} = 0.7$, i.e., at about half of the crown height (z = 13.6 cm). The jetting vanishes gradually as x increases. Within the canopy, the fully developed flow region is defined as the domain where the jet effect is not discernible. In the FDC case the jetting was observed up to about 1.5 m ($\tilde{x} = 8.33$) from the leading edge while for HDC up to about 2 m (\tilde{x} = 11.11) . Once the jetting

effect fades, similar velocity profiles were obtained at all measurement stations inside the canopy. Furthermore, the velocity along the lower half of the canopy is almost constant with height. Near the trailing edge of the canopy, due to the flow adjustment to the canopy-leewind smooth surface, the flow is displaced downward and repenetrates into the canopy. Therefore, a slight jetting redevelops as the canopy trailing edge is approached.

Basically, the flow in the neighborhood of the canopy center line, i.e., in the vicinity of the plane y = 0, can be assumed to be similar to two-dimensional flow through a channel. Consequently, it is important to examine the mean velocity and turbulence intensity change off the center line. It should be recalled that the latter was measured simultaneously with the former. The results for both FDC and HDC cases over a distance of 30 cm off the center line at two stations, i.e., x = 16.66 and 38.88, are portrayed in Figs. 5.7 and 5.8, respectively. In these figures the mean velocity is normalized using the free-stream velocity in the plane y = 0 ($U_{\infty c} = U_{\infty}(y=0) = 6$ m/sec) and the longitudinal turbulence intensity (T_{11}) is based on the local mean velocity. A lateral variation in the mean velocity of less than 5% is discerned. Similarly, the transversal change in the turbulence intensity is smaller than about 3%. Thus, in the vicinity of the canopy center line, i.e., within about $y = \pm 30$ cm, the flow is practically twodimensional.

The boundary-layer thickness growth for both FDC and HDC cases is depicted in Fig. 5.9. The boundary between the transition and fully developed flow regions is also shown in this figure. The boundary-layer thickness was defined, as commonly done, as the distance from the wall

where $U/U_{\infty} = 0.99$. The results indicated, as expected, that the growth rate in the FDC case is larger than that for the HDC case. This is due to the dependence of the upward flow displacement on canopy density. As the latter is higher, the former is larger. The adjustment of the boundary-layer thickness downstream of the canopy is also clearly discerned in Fig. 5.9.

It is, further, important to examine the variation of the displacement and momentum thickness, δ^* and θ , along the canopy. The results for both FDC and HDC are shown in Fig. 5.10. As anticipated, their growth rates for FDC case are slightly larger than for HDC. This result is in agreement with the boundary-layer thickness change. Due to the drastic flow retardation throughout the transition region, a strong increase in the momentum thickness is expected to occur within this region. This is not substantiated by the obtained momentum thickner; change. Since most of the momentum thickness loss and the flow upward displacement are caused by the roughness, it is important to find out the contribution of the flow within the canopy to total local momentum and displacement thicknesses. These results are displayed in Fig. 5.11. In this figure, δ_h^\star and θ_h designate the fraction of the displacement and momentum thicknesses, respectively, over the canopy height. In the transition region, the contribution of the flow inside the roughness to the momentum thickness reduces from 50 to about 10% over a distance of 20 to 30h from the canopy leading edge. Hence, the severe flow retardation is mainly due to the large momentum loss inside the roughness. It is inferred that the latter is mainly caused by the stagnation flow effects on the canopy frontal area rather than by the friction at the canopy surface. Within the fully developed flow region, the contribution

of the flow inside the canopy to the momentum thickness levels off to about 10%. In this region, the flow is already adjusted to the new roughness conditions and the momentum loss is mostly due to friction along the canopy fuzzy surface. This result agrees with the drag measurements reported in Ref. 31. It is important to remark that the fraction of momentum thickness within the canopy depends upon its density. The contribution in FDC case is always smaller than for HDC case. As the roughness is denser, the upward flow displacement is larger. In the FDC case, it reduces to 10% at about $\tilde{x} = 20$ whereas in the HDC case at approximately $\tilde{x} = 30$. The variation of the roughness contribution to the local total displacement thickness reveals a similar behavior. It diminishes from roughly 60% at the canopy leading edge to about 40% at x = 30 to 35. Similar to momentum thickness variation, the roughness contribution to total displacement thickness throughout the transition region is larger for HDC than for FDC. This contribution reduces to about 40% at \tilde{x} = 30 for FDC whereas at \tilde{x} = 35 for HDC. Within the fully developed flow region, the roughness contribution to the displacement thickness occurs more gradually than to the momentum loss.

In order to examine the roughness effects on the flow displacement and momentum loss, it is important to evaluate the shape factor, i.e., the ratio of displacement thickness to momentum thickness, $(H = \delta^*/\theta)$. The shape factor variation along the canopy is displayed in Fig. 5.12. At the very beginning of the transition region, the shape factor for FDC reveals a steeper increase than that for HDC. In the former case it reaches a maximum value of about 3.50 at $\tilde{x} = 5.55$ while for HDC it is approximately 3.35 at $\tilde{x} = 10$. After the maximum value is attained, in both cases the shape factor diminishes gradually to a value of about 2.65 in the fully developed flow region. As the trailing edge is approached, the shape factor reduces slightly due to the smooth surface downwind of the canopy.

The shape factor depends upon the wall conditions through the friction velocity. It can be expressed by the relationship [11]

$$H = (1 - C \frac{U_{\star}}{U_{\star}})^{-1} , \qquad (5.3)$$

where C is assumed to be a universal constant for flows without pressure gradient. For flow over both smooth and rough surfaces (fine roughness: sand or gravel), the shape factor ranges from 1.4 to 2.6. In this case the value of C was estimated to be 6.1 [11]. On the other hand, depending upon the particular logarithmic law used to describe the velocity distribution, the value of C can vary from 4.88 to 5.4 [18]. Since in this work the roughness is relatively high, it is important to evaluate the value of C in Eq. (5.3). For the sake of comparison, the results at three stations in the fully developed flow region for both FDC and HDC cases are summarized below:

x	x	С		
	(m)	FDC	HDC	
38.88	7.0	13.1	9.8	
47.22	8.5	13.0*	9.9	
52.77	9.5	15.0	10.7	

Obtained by interpolation

In computing the values of C the local friction velocity was estimated from the shear stress measurement (see Sec. 5.3). The values of C obtained are about 1.5 to 2.4 times larger than that for fine roughness, viz., 6.1 in Ref. 11 which is the best fitted experimental approximation. Hence, the high roughness affects strongly the value of so-called universal constant C. Moreover, if the latter value is employed in Eq. (5.3), the shape factor would be about 50 to 60% smaller than its values shown in Fig. 5.12. When the shape factor is estimated for the flow above the roughness, i.e., $H = (\delta^* - \delta_h^*)/(\theta - \theta_h)$, its value in the fully developed flow is about 1.65.

Generally, in the fully developed flow region the mean velocity above the canopy can be represented by a l/n-power law and/or a logarithmic law (see Eqs. (2.1) and (2.11)). The value of the exponent l/n in the power law varies drastically with the flow Reynolds number [2] and, hence, the possibility of obtaining a similar velocity distribution is limited. Furthermore, the validity of such a representation for flow over high roughness elements was not yet adequately investigated. For flow over high roughness an adjusted power law where the vertical distance is measured from the roughness surface was suggested [28]. Thus,

$$\tilde{U} = \left(\frac{\tilde{z}-1}{\tilde{\delta}-1}\right)^{1/n} , \qquad (5.4)$$

where $\tilde{\delta} = \delta/h$. Samples of the velocity distribution in the fully developed flow region for both FDC and HDC using Eq. (5.4) are displayed in Fig. 5.13. The values of n were found to be 2.8 and 2.5 for FDC and HDC, respectively. Basically, if the exponent is properly evaluated, the velocity seems to be satisfactorily described by Eq. (5.4). On the other hand, it is practically impossible to determine an adequate value for n since its exact dependence on roughness condition is not known. Moreover, the use of Eq. (5.4) in the vicinity of the roughness surface $(\tilde{z} = 1.28 \text{ to } 1.35 \text{ or } \frac{\tilde{z}-1}{\tilde{\delta}-1} = 0.05 \text{ to } 0.07)$ does not yield reliable results. Usually, the measured velocity is larger than the value obtained from this equation.

It might be surmised that the use of the power law in terms of the shape factor as given by Eq. (2.3) [3] would eliminate some of the difficulties related to the 1/n-power law. In this equation the exponent is expressed directly in terms of the shape factor. The latter can be easily computed from the measured velocity. When Eq. (2.3) was used employing the computed values of H and θ significant discrepancies between the calculated (based on H) and measured velocities were obtained. For instance, within $\tilde{z} = 1$ to 6, differences up to 10% were obtained. For increasing distance from the canopy the disagreement augmented.

The velocity variation above the roughness depends on the roughness element shape and, particularly, on the roughness density and arrangement. Recall that the crown is largest around $\tilde{z} = 0.75$ and that in all cases a minimum velocity was monitored at $\tilde{z} = 0.7$. Thus, it was attempted to use Eq. (2.3) when the origin of the vertical coordinate was selected at $\tilde{z} = 0.75$. This endeavor did not lead to any acceptable improvement. It is suspected that this disagreement is caused by the strong dependence of the exponent in Eq.(2.3) on the value of the shape factor. Hence, the use of the latter as the single overall parameter for flow over high roughness is questionable.

The logarithmic law in its various formulations is widely used for describing the velocity within a turbulent boundary layer on rough surfaces. This law was proposed as a similarity solution for the boundary-layer flow. In the logarithmic law (see Eq. (2.11)), the similarity parameters are expressed by the friction velocity and roughness length. The former is equal to the square-root of the wall shear stress per unit mass which plays a very important role since it supplies the energy to the turbulence [2]. Its value and effect depend strongly upon the roughness features, i.e., on roughness shape, density and distribution. It is, further, important to remark that the direct measurement of the wall shear stress is extremely difficult. Consequently, under the assumption of constant shear stress layer [1] the friction velocity is usually deduced from the measured velocity variation. Similarly, the roughness length which is used as a length scale parameter is also estimated from the velocity measurement. In using the logarithmic law for rough walls, the vertical coordinate can be measured from a virtual surface which lies somewhere between the top and bottom of the roughness. Furthermore, this surface is presumably unique and experimentally determinable for each given roughness [2]. Particularly, in the case of flow on relatively high roughness, the adjustment of the vertical-coordinate origin is provided by the zero-plane displacement d leading to a modified logarithmic law (see Eq. (2.12)) [14,15]. The zero-plane displacement is a third similarity parameter characteristic to relatively high roughness. Its value is numerically evaluated in the same manner as the friction velocity and roughness length. Such a scheme can lead to erroneous

and physically unacceptable negative value for the zero-plane displacement [44,45].

Samples of the results obtained using the logarithmic law (d = 0) and the modified logarithmic law $(d \neq 0)$ for HDC at $\tilde{x} = 38.88$ are shown in Fig. 5.14. When the logarithmic law was employed, a kink is observed at about $\tilde{z} = 2$. Thus, two zones of logarithmic velocity variation are obtained (curve denoted by I in Fig. 5.14). The first extends from $\tilde{z} = 0.75$ to 2 whereas the second above $\tilde{z} = 2$. Next, this kink can be eliminated by using the modified logarithmic law. Thus, it was attempted to encompass the entire boundary layer by employing this law. Unfortunately, this endeavor led, as expected, to a negative zero-plane displacement, i.e., $\tilde{d} = -0.7$ (curve II in Fig. 5.14). This result is physically unacceptable.

As mentioned earlier, the origin of the vertical coordinate used in the logarithmic law ought to be determined experimentally and is located somewhere within the roughness [2]. Therefore, it is interesting to examine if the origin (or the zero-plane displacement) can be determined when the friction velocity is known. In carrying out this examination, a value of 0.4, as commonly done, was used for the so-called universal von Karman's constant κ . Thus, the slope of the modified logarithmic law U_*/κ is known. The friction velocity can be evaluated from the turbulent shear stress measured at the roughness surface by means of the relationship $U_{*m} = (|\overline{uw}|)_1^{\frac{1}{2}}$ where U_{*m} is referred to as the measured friction velocity and $(|\overline{uw}|)_1$ denotes the value of the shear stress at $\tilde{z} = 1$. Recall that the logarithmic law can express the velocity variation close to the wall, viz.,

within the inner 10 to 20% of the boundary layer [2]. When the zero-plane displacement is adjusted such that the required slope based on the measured friction velocity U,m is satisfied, it was found that the inner layer extends about 20 to 30% of the boundary layer. Under these constraints the velocity variation obeys the modified logarithmic law over the inner 25% of the boundary-layer thickness when $\tilde{d} = 0.75$. The results of this computation are illustrated by curve III in Fig. 5.14. A kink is observed at $\tilde{z} = 2.1$ (or $\tilde{z} - \tilde{d} = 1.35$). Furthermore, for z > 2.1, the velocity also exhibits a logarithmic variation. On the other hand, the friction velocity for a given zero-plane displacement can be deduced from the slope of the velocity variations presented according to the modified logarithmic law. The friction velocity so obtained is referred to as the deduced friction velocity and designated by $U_{\star d}$. For the sake of comparison, both deduced and measured friction velocities for all three cases are tabulated below:

	Case	ã	~ Z	Ũ*	~ z _o	
	I	0	$ \begin{cases} 2.0 \geq \tilde{z} \geq 0.75 \\ 4.8 \geq \tilde{z} \geq 2.0 \end{cases} $	0.146 0.197	0.50 0.73	(é)
	II	-0.7	$4.8 \ge \tilde{z} \ge 0.75$	0.240	1.13	
	III	0.75	$\begin{cases} 2.0 \geq \tilde{z} > 1.1 \\ 4.8 \geq \tilde{z} \geq 2.0 \end{cases}$	0.065† 0.163	0.06	
Note that	Ũ* =	U_*/U_∞ and	nd $\tilde{z}_0 = z_0/h$ when	re U _∞ =	6 m/sec an	nd
h = 18 cm.	In c	arrying o	out all these compu	ations	κ = 0.4 wa	as employed.

In all the aforestated three cases, the mean velocity changes according to a logarithmic law within limited zones although their slopes are different. Basically, the various combinations of the three similarity parameters U_* , z_0 and d can yield a logarithmic

⁺Measured friction velocity.

velocity variation. Particularly, since the selection of the zero-plane displacement for high roughness is practically arbitrary, different values of U_{\star} and z_{0} can be obtained from a single measured velocity variation. Thus, it is very difficult to relate them to the roughness characteristics. This problem is discussed in Refs. 46 and 47 when field data and wind tunnel measurements, respectively, are analyzed. As a result, it is impossible to conclude, except in the case of negative d, what combination of the three similarity parameters is correct and/or what law provides a better representation.

Due to the relatively large uncertainty in evaluating the similarity parameters, it is surmised that the so-called universal constant κ would reveal a large scattering in its value. From a measured velocity profile, the three quantities U_*/κ , z_0 and d can be obtained solving three simultaneous equations assuming a logarithmic velocity variation. Then, if either U_* or κ is known, the other can be estimated from any combination of ${\rm z}_{_{\rm O}}$ and d . However, since it is practically impossible to relate them properly to the roughness characteristics, various values for κ are obtained even when U_* is measured. As a matter of fact, even von Karman found that κ lies between 0.37 to 0.38 [4]. The value of 0.4 is commonly accepted on the basis of Nikuradse's experiment [6]. Results of several investigations tabulated in Ref. 48 reveal that K ranges from 0.34 to 0.49 depending upon the particular source. When the field measurements reported in Ref. 49 are analyzed using the logarithmic law, the value of κ can vary from 0.25 to 0.49 depending on the data reduction. On the other hand, a value of 0.41 is employed for κ in Ref. 49. In Ref. 17, it is suggested that K lies between 0.39 and 0.41 when the logarithmic law is used. Values of κ outside this range are

usually considered as a result from operations or assumptions which change the definition of this constant [17].

The large uncertainty in the value of von Karman's constant for flow on high roughness elements is illustrated when its value is evaluated from wall shear-stress measurement. In Ref. 31, using similar roughness elements as in this work, the wall shear stress was measured by means of a shear plate. Simultaneously, the velocity change was monitored. Based on the data reported in Ref. 31, it was found that the velocity variation throughout almost the entire boundary layer in the fully developed flow region (x = 5, 6 and 7 m) can be represented by the logarithmic law (d = 0). The estimated value of U_*/κ is 225 cm/sec while the shear plate measurement yielded U₂ = 50 cm/sec. Thus, κ = 0.22. However, if the modified logarithmic law is employed when d = 0.7, the value of this constant becomes again 0.4 in the inner zone. In this case, a kink is observed at $\tilde{z} = 1.85$. This result indicates clearly that the experimental determination of κ based on either the logarithmic law or the modified logarithmic law cannot lead to any definite conclusion about the supposed universality of von Karman's constant.

Further, it is worth pointing out that the constant κ was introduced in both Prandtl's mixing-length theory and von Karman's similarity hypothesis as an empirical dimensionless coefficient of proportionality for the mixing length & [1]. In the former $\& = \kappa z$ whereas in the latter $\& = \kappa (\frac{dU}{dz})/(\frac{d^2U}{dz^2})$. When the shear stress and velocity variations are measured it is conceivable to evaluate the mixing-length change with height using the shear stress relationship [1]

$$\ell^2 = \frac{-\overline{uw}}{\left|\frac{dU}{dz}\right|\frac{dU}{dz}}$$
(5.5)

Under the assumption of linear variation of the mixing length with the distance from the wall close to the roughness [4], the value of κ can be computed using the shear-stress data (see Sec. 5.3). This computation was carried out in order to compare the value of κ for high roughness with its value for fine roughness [1,6]. Samples of the results of this computation within the fully developed flow region at three stations for both HDC and FDC cases are shown in Fig. 5.15. In both cases, the mixing length exhibits a linear variation with height from $\tilde{z} = 0.75$ to 2.0. Extrapolation of the linear portion leads to $\tilde{z} = 0.25$ at l = 0. Thus, if l is proportional to z it follows that an imaginary wall is possibly located at $\tilde{z} = 0.25$, i.e., $\ell = \kappa(\tilde{z} - 0.25)$. Based on the results presented in Fig. 5.15 and using the aforementioned adjusted relationship for l, it was found that $\kappa = 0.19$ for HDC and 0.165 for FDC. For the sake of comparison, the mixing length variation for $\kappa = 0.4$ is also portrayed in Fig. 5.15. The obtained values of κ are quite different from the generally accepted value of 0.4. These results indicate that von Karman's constant K is not a universal constant for flow on high roughness elements. The turbulence structure for flow on rough walls, particularly, on high roughness elements, is strongly affected by the wall roughness. Hence, it is not reasonable to expect a similar mixing-length variation with height for all roughnesses. It appears that κ can be considered as a dimensionless scaling coefficient for the friction velocity determined by the particular roughness configuration and distribution.

In order to overcome the difficulties related to the estimation of zero-plane displacement, it was proposed in Ref. 28 to approximate the latter by the roughness height, i.e., d = h, where h denotes the roughness height. Then,

$$\frac{U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{z - h}{z_0}$$
, (5.6)

where it is assumed that $\kappa = 0.4$. Thus, the origin of the vertical coordinate is located exactly at the roughness surface. A sample of the results using the modified logarithmic law where d = h is displayed in Fig. 5.16. In this figure the velocity distribution in the fully developed flow region for HDC case is shown. As previously, two zones of linear velocity variation with the logarithm of height are observed. A kink was obtained at about $\tilde{z} = 2.0$. Similar results were obtained for the FDC case. The friction velocities in two zones were deduced from the velocity data assuming $\kappa = 0.4$. It is interesting to compare the computed values of the friction velocity with its measured values at the roughness surface. The latter are provided by the shear stress measurement, i.e., $U_{wm} = (|\overline{uw}|)_1^{\frac{1}{2}}$ (see Sec. 5.3). The deduced and measured values of the friction velocity for both FDC and HDC cases are summarized below:

Zone			ĩ				Ũ _{* d}	ñ	х		Ũ∗ m
						FDC	HDC		(m)	FDC	HDC
I	2.0	>	\tilde{z}	>	1.0	0.037	0.033	38.88	7.0	0.052	0.065
II			ž	>	2.0	0.122	0.138	52.77	9.5	0.045	0.058

Note that $\tilde{U}_{\star d}$, $\tilde{U}_{\star m} = U_{\star d}/U_{\infty}$, $U_{\star m}/U_{\infty}$ and \tilde{x} , $\tilde{z} = x/h$, z/h where $U_{\infty} = 6$ m/sec and h = 18 cm. No agreement is observed with the measured friction velocity in either lower or upper zone.

The modified logarithmic law, Eq. (2.12), is based on the farreaching assumption that the friction velocity is locally constant with height. Furthermore, the roughness length and zero-plane displacement are assumed to be determinable for given roughness and flow conditions. Basically, these assumptions are not modified even if the zero-plane displacement is replaced by the roughness height. On the other hand, due to the arbitrary approximation of d by h, it is doubtful if the local constancy of the other two similarity parameters is satisfied. Presumably, both Eqs. (2.12) and (5.6) can be used to describe the same velocity variation. Then, by equating these two relationships, the friction velocity employed in Eq. (5.6) is

$$U_{\star h} = U_{\star} \frac{\ln(\frac{z - d}{z_0})}{\ln(\frac{z - h}{z_{oh}})} .$$
 (5.7)

In this equation the subscript h denotes the similarity parameters used in the modified logarithmic law when d is approximated by the roughness height. Since both U_* and z_0 are assumed of being locally constant in Eq. (2.12), it ensues that U_{*h} is no longer locally constant but a function of height. A similar result about the roughness length used in Eq. (5.6) i.e., z_{oh} , is obtained employing the same approach. Calculation of both the friction velocity and roughness length by means of Eq. (5.6) over successive small intervals (about 1 to 2 cm) substantiated the aforestated conclusions [33]. This computation was carried out for flow on similar roughness as employed in this investigation. It was found that both $U_{\star h}$ and z_{oh} vary drastically with height [33]. When a similar computation was performed using Nikuradse's data [6], the assumption of local constancy of friction velocity and roughness length was satisfied. These results are presented in Ref. 33. Recall that the height of the roughness elements utilized in this work and in Ref. 33 is more than 15% of the boundary layer thickness. On the other hand, the roughness used in Ref.6 ranged from 0.8 to 6.7% of the latter. Hence, the use of the modified logarithmic law under the assumption that d is approximated by the roughness height is not feasible for flow on high roughness.

Generally, a turbulent boundary layer on a plate can be viewed as a wake-like flow constrained by a wall [17]. As a result, the velocity variation throughout the entire boundary layer can be described by a linear combination of the logarithmic law (the law latter accounts for the departure of the velocity variation from the logarithmic law within the outer part of the boundary layer [3]. As mentioned earlier, it is suggested to use the logarithmic law, particularly, in the inner part of the boundary layer, i.e., within the lower 10 to 20% of the boundary layer-thickness [2]. Thus, the constraints on using the logarithmic law to express the velocity variation over high roughness are retained in Eq.(2.14).

Consequently, in order to use Eq. (2.14) for flow on high roughness, it is necessary to introduce the zero-plane displacement. It follows that the latter must be used as the virtual origin of the vertical distance for the wake function. Then, the modified law of the wake in terms of the velocity defect law is

$$\frac{U_{\infty}^{-} U}{U_{\star}} = \frac{1}{\kappa} \ln \frac{z-d}{\delta-d} + \frac{\pi[x]}{\kappa} \left(2 - \omega[\frac{z-d}{\delta-d}]\right) .$$
 (5.8)

where $\pi[x]$ is the profile parameter and $\omega[\frac{z-d}{\delta-d}]$ denote the modified wake function. The normalized conditions for the latter, similar to those of the wake function in Ref. 17, are

$$\omega = 0 \quad \text{at} \quad z = d , \quad (5.9a)$$

and

$$\omega = 2 \quad \text{at} \quad z = \delta , \qquad (5.9b)$$

and

$$\int_{0}^{1} \omega d\left(\frac{z-d}{\delta-d}\right) = 1 \qquad (5.9c)$$

As previously mentioned, d can be approximated based on the shear stress measurements (see Sec. 5.3) and using the modified logarithmic law (Eq. (2.12)). Since the local friction velocity is known, i.e., $U_{\star m} = (|\overline{uw}|)_{1}^{l_{2}}$, the slope of the velocity variation in the modified logarithmic law is $U_{\star m}/\kappa$, where it is assumed that $\kappa = 0.4$ for consistency with the results presented in Ref. 17. Then, the zero-plane displacement was approximated by successive trials until the linear logarithmic variation agreed reasonably with the required slope. In carrying out this procedure, the velocity measured within the inner 20% of the boundary layer, i.e., $\tilde{z} = 1$ to 1.85 (z = 18 to 33 cm), was employed. The results of this computation for both FDC and HDC cases within the fully developed flow region are shown in Fig. 5.17. Recall that the result of a similar computation for HDC is shown in Fig. 5.14. It was found that $\tilde{d} = 0.85$ for FDC and 0.75 for HDC, respectively.

Now, once d is determined, the modified law of the wake (Eq. (5.8)) can be used. The wake function was computed using the table in Ref. 17 when the modified argument $\frac{z-d}{\delta-d}$ was employed. In order to present the measured velocity according to Eq. (5.8), the measured friction velocity at roughness top, i.e., $U_{*m} = (|\overline{uw}|)_1^{\frac{1}{2}}$, is used to normalize the defect velocity. The vertical distance is made dimensionless employing the boundary-layer thickness which is measured from the virtual origin. The mean velocities obtained in the fully developed flow regions for FDC and HDC cases are shown in Figs. 5.18 and 5.19, respectively. Notice that terms on the right hand-side of Eq. (5.8) except the profile parameter $\pi[x]$ can be evaluated when the boundary-layer thickness and virtual origin are known. Thus, once the normalized defect velocity is obtained experimentally, the profile parameter for the best fitting curve to the measured velocity can be evaluated. Next, using this evaluated profile parameter, the defect velocity variation throughout the entire boundary layer is calculated by means of Eq. (5.8), and is displayed by solid line in Figs. 5.18 and 5.19. The computed profile parameters for the best fitting are tabulated below.

ñ	x	π[x]		
	(m)	FDC	HDC	
38.88	7.0	1.10	0.92	
47.22	8.5		0.92	
52.77	9.5	1.32	1.12	

On the other hand, the profile parameter is related to the local friction velocity at the wall by Eq. (2.17). Then, using the normalized condition of the modified wake function, i.e., Eq. (5.9b), Eq. (2.17) becomes

$$\frac{2\pi[\mathbf{x}]}{\kappa} = \frac{U_{\infty}}{U_{\star}} - \frac{1}{\kappa} \ln \left\{ \frac{(\delta - d)U_{\star}}{\nu} \right\} - C_{1} \quad . \tag{5.10}$$

In Eq. (2.17), the constant C_1 was determined empirically to fit the velocity data presented in Ref 17 and a value of 5.1 is proposed. However, it is questionable to utilize this value for C_1 in Eq. (5.10) since the roughness elements in this work are extremely high compared with those in Ref. 17. As a matter of fact, if $C_1 = 5.1$ is used in Eq. (5.10), the profile parameter would become negative. For instance, the profile parameter at $\tilde{x} = 38.88$ (x = 7.0 m) in HDC would be -2.85. Therefore, Eq. (5.10) cannot be used to estimate $\pi[x]$. The profile parameter can be also obtained by utilizing the relationship [17]

$$\pi[\mathbf{x}] + 1 = \kappa \frac{\delta^* \mathbf{U}}{\delta \mathbf{U}_*} \quad . \tag{5.11}$$

Note that all the quantities in this equation can be evaluated from

the velocity measurements. For flow on high roughness, Eq. (5.11) is modified due to the virtual origin of the vertical distance. Thus,

$$\pi[x] + 1 = \kappa \frac{(\delta^* - \delta_d^*) U}{(\delta - d) U_*} , \qquad (5.12)$$

where d is the zero-plane displacement, δ_d^* is the fraction of the displacement thickness below the virtual origin (z = 0 to d) and U_{*} is approximated by the measured friction velocity at the roughness surface $U_{*m} = (|\overline{uw}|)_1^{\frac{1}{2}}$. The computed profile parameters by means of Eq. (5.12) are compared with those computed for the best fitting curves in the table below:

x	х	FI	DC	HDC		
	(m)	^π 1	$\pi_{1}^{/\pi}f$	π1	$\pi_{1}^{/\pi}f$	
38.88	7.0	1.60	1.45	0.86	0.93	
47.22	8.5			0.97	1.05	
52.77	9.5	1.96	1.48	1.47	1.33	

In the above table, π_1 denotes the profile parameter calculated by means of Eq. (5.12) whereas π_f designates the value determined for the best fitting to the experimental data. It is important to mention that the non-modified relationship for the profile parameter, i.e., Eq. (5.11), always yields larger value than Eq. (5.12). At $\tilde{x} = 38.88$ and 42.77 for HDC, the differences between π_1 and π_f are negligibly small while at the other locations they are rather large. No definite trend can be observed.

Notice that the velocity variation in the fully developed flow region are well expressed by means of Eq. (5.8) if the five parameters,

viz., U_{∞} , U_{\star} , δ , d and $\pi[x]$, are known. The relationships among these five parameters are yet to be found. Moreover, it seems that the relationships used to determine the profile parameter from the velocity measurements do not yield acceptable results. Therefore, the use of modified law of the wake, i.e., Eq. (5.8), for flow over high roughness elements is limited by the relatively large number of undetermined parameters.

The results presented concerning both the logarithmic law and the law of the wake indicate clearly the difficulties and uncertainties in evaluating the various similarity parameters. Particularly, the estimation of U_* and d is most critical. It appears that these shortcomings can preclude their use. Consequently, it is important to postulate such similarity parameters which can be easily obtained from the velocity measurement. The evaluation of the zero-plane displacement d and, hence, the location of the origin for the vertical distance is the most crucial problem. Recall that d was introduced to account for the presence of the roughness. In order to overcome this problem, it is suggested to define the origin of the vertical distance exactly at the wall. Obviously, such an approach does not include the effects of the roughness on the vertical coordinate. On the other hand, it is expected to account for the roughness through appropriate similarity parameters.

As mentioned previously, the use of a power law to describe the velocity within a turbulent boundary layer is commonly accepted and experimentally verified. When the origin of the vertical coordinate is at the wall, the generalized power law can be written in the form

$$\frac{U}{U_s} = B\left(\frac{z}{L_s}\right)^n , \qquad (5.13)$$

In this relationship U_s and L_s are the velocity and length scales, respectively, which must be determined, and B is a coefficient of proportionality. The exponent n depends on the flow Reynolds number and decreases as the latter increases [1]. On the average, the Reynolds number based on U_{∞} and δ ranges from 200,000 to 300,000. Next, expansion of Eq. (5.12) into Taylor series with respect to n, when quadratic and high order terms are neglected since n is smaller than unity, leads to a logarithmic expression,

$$\frac{U}{U_s} = B + A \ln \frac{z}{L_s}, \qquad (5.14)$$

where A = nB. This relationship is practically an asymptotic form of the power law when the exponent is small enough.

In order to use such a generalized logarithmic relationship it is essential to determine the velocity and length similarity parameters, i.e., U_s and L_s . To start with, it is postulated to use the freestream velocity as the velocity scale. Basically, the free-stream velocity can be easily measured. As a length scale, it is proposed to employ the roughness height which is generally known. The velocity distributions in the fully developed flow region using the aforestated scales are shown in Figs. 5.20 and 5.21 for FDC and HDC, respectively. At all measurement stations, the velocity profile exhibits a kink. Moreover, with increasing downstream distance the kink is monitored at higher elevation above the roughness. For instance, the height of the kink z_k within the fully developed flow region for both FDC and HDC cases is summarized in the table below:

$\tilde{\mathbf{x}}$	x	ž		
	(m)	FDC	HDC	
27.77	5.0	1.6	1.5	
38,88	7.0	1.9	2.0	
47.22	8.5		2.4	
52.77	9.0	1.9	2.7	

Note that $\tilde{z}_k = z_k/h$ where h = 18 cm. Based on this change in slope, the boundary layer is divided into two domains. The zone below the kink is called the inner zone whereas the zone above it is defined as the outer zone. This distinction is solely based on the kink in the mean velocity variation. Thus, the inner zone is not related to the so-called internal boundary layer [50].

Within the inner zone, all the profiles collapse on a single line as observed in Figs. 5.20 and 5.21. Therefore, the postulated scales, i.e., U_{∞} and h, are similarity parameters. Then, in the inner zone the generalized logarithmic law is

$$\frac{U}{U_{\infty}} = B_{i} + A_{i} \ln \frac{z}{h}, \qquad (5.15)$$

where A_i and B_i are constants to be determined. The values of these two constants depend upon the flow conditions, namely, the freestream velocity and the roughness structure. In the FDC case $A_i = 0.312$ and $B_i = 0.330$ whereas in the HDC case $A_i = 0.346$ and $B_i = 0.260$. Recall that in both cases the same free-stream velocity was used.

When the free-stream velocity and roughness length are utilized as the similarity parameters for the outer zone, the velocity profiles do not coincide on a single curve. At each position a logarithmic variation is obtained. Moreover, the velocity profiles at all stations possess exactly the same slope as clearly seen in Figs. 5.20 and 5.21. This indicates the validity of the free-stream velocity as a similarity parameter. On the other hand, the vertical translation of each velocity profile is due to the use of the roughness height as the length scale. The roughness height is not a characteristic property of the boundary layer. The overall properties of the boundary layer are functions of the longitudinal position. Consequently, it is feasible to use one of the integral characteristics of the flow as a length scale. The momentum thickness depends on the flow above the canopy to a larger extent than the displacement thickness as shown in Fig. 5.11. Hence, it is suggested to utilize the momentum thickness, which can be easily evaluated from velocity measurement, as the length similarity parameter. As a result, for the outer zone, the generalized logarithmic law becomes

$$\frac{U}{U_{\infty}} = B_0 + A_0 \ln \frac{z}{\theta} , \qquad (5.16)$$

where θ is the local total momentum thickness, and A_0 and B_0 are constants to be determined. The velocity profiles in the outer zone using Eq. (5.16) for both FDC and HDC are shown in Figs. 5.22 and 5.23.

All the velocity distributions do collapse on a single curve. As previously, their values depend on the free-stream velocity and roughness structure. The values of A_0 and B_0 in FDC case are 0.424 and 0.176, respectively. In the HDC case, A_0 is 0.486 and B_0 is 0.076. Thus, in the outer zone the free-stream velocity and momentum thickness can be used as similarity parameters.

In order to substantiate these results, a similar approach was employed using the data for flow over pegs [30]. When Eq. (5.15) was utilized, similar velocity variations were obtained for the inner zone. The velocity changes are shown in Fig. 5.24. Within the outer zone, the velocity profiles are described by non-coincident parallel lines. Thus, a similar result as for the flow over the canopies is obtained. Next, using Eq. (5.16) for the outer zone all the velocity profiles are represented by a single curve as portrayed in Fig. 5.25.

The important aspect of these results is the feasibility of the generalized logarithmic relationships. The similarity parameters, i.e., free-stream velocity, roughness height and momentum thickness, can be easily obtained. One of the problems related to the generalized logarithmic relationships is the determination of the two constants A and B. These constants can be easily determined experimentally for a given roughness.

5.3 Shear stress and turbulence survey

The longitudinal fluctuating velocity component, i.e., u and its energy spectra were measured using a normal hot wire simultaneously with the mean velocity measurements. The lateral and vertical fluctuating components, i.e., v and w, and the turbulent shear

stress -uw were monitored by means of a yawed hot-wire probe as described in Section 4.2. The yawed-wire measurements for the FDC case were carried out at 13 locations along the canopy centerline over a distance of 12 m (x = -1 to 11 m). At each location, the measurements along the z-axis were performed at 11 to 15 stations over a height up to 73-112 cm among which 4 to 5 stations were located in the canopy. For the HDC case, the yawed-wire survey was conducted at 13 locations over a distance of 12 m (x = 0 to 12 m). At each location, the measurements were performed at 11 to 15 stations over a height up to 73-110 cm among which 3 to 5 stations were situated inside the roughness.

The energy extracted from the mean flow is supplied to the longitudinal velocity fluctuation through the work of the turbulent shear stress. In the energy equation this is expressed by the production term, i.e., $-\overline{uw} \frac{\partial U}{\partial z}$. Then, by the action of the pressure fluctuation, the longitudinal turbulent energy is partly distributed to the vertical and lateral components depending upon their dissipation rates [2].

In order to assess the effect of the canopy on the turbulent shear stress the latter is normalized with respect to its value at the top of the canopy leading edge, i.e, at \tilde{x} , $\tilde{z} = 0,1$ denoted by $\overline{uw}[0,1]$. The distributions of the turbulent shear stress along the z-axis are displayed in Figs. 5.26a and 5.26b for the FDC case whereas Figs. 5.27a and 5.27b represent HDC. At the very beginning of the transition region, a drastic amplification of the turbulent shear stress is observed in the vicinity of the canopy surface. Up to $\tilde{x} = 27.77$ (x = 5 m), each turbulent shear stress profile possesses a maximum. The latter is not observed beyond $\tilde{x} = 27.77$. These maxima shift outward as the downstream distance increases. The change in the position of the maxima along the x-axis and the longitudinal variation of the maximum shear stress are shown by the inserts in Figs. 5.26a and 5.27a.

Generally, the turbulent shear stress distribution is strongly affected by the longitudinal pressure gradient [51]. In boundarylayer theory, the vertical pressure variation is usually neglected [1]. This experiment was conducted at constant pressure in the free stream and, hence, the longitudinal pressure gradient in the boundary layer should be zero. When the pressure gradient is zero or favorable, the maximum shear stress in flow on smooth walls is obtained at the wall [51]. Then, in flow on rough surfaces maximum stress is expected at the roughness top. On the other hand, the measured shear stress indicates clearly, as shown in Figs. 5.26a and 5.27a, that its maximum value occurred away from the roughness surface. The canopy boundary layer is highly turbulent and thick compared with that on fine roughness elements (e.g., sands or gravels). Within such a thick boundary layer the fluctuating velocities can affect the vertical pressure gradient and, hence, the local longitudinal pressure gradient, i.e., P(x,z). When an adverse pressure gradient exists in flow on smooth walls, the maximum turbulent shear stress occurs some place away from the wall [51]. Consequently, it is surmised that a local adverse pressure gradient exists across the boundary layer and, particularly, a relatively large pressure gradient prevails up to $\tilde{x} = 30$ (within the so-called transition region) although the pressure in the freestream flow is presumably constant.

The pressure variation within the boundary layer can be estimated through momentum balance of the equation of motion. The flow in the transition region is not strictly two-dimensional. However, the results

shown in Figs. 5.7 and 5.8 indicate that in the neighborhood of the canopy centerline $(y \le |30 \text{ cm}|)$ the flow is approximately twodimensional. The vertical component of the momentum equation for twodimensional steady flow in a dimensionless form is

$$\tilde{U} \frac{\partial \tilde{W}}{\tilde{x}} + \tilde{W} \frac{\partial \tilde{W}}{\partial \tilde{z}} = - \frac{\partial \tilde{P}}{\partial \tilde{z}} + \frac{1}{\operatorname{Re}_{h}} \left(\frac{\partial^{2} \tilde{W}}{\partial \tilde{x}^{2}} + \frac{\partial^{2} \tilde{W}}{\partial \tilde{z}^{2}} \right) - \left(\frac{\partial \tilde{u} W}{\partial \tilde{x}} + \frac{\tilde{u}}{\partial \tilde{z}} \right), \quad (5.17)$$

where Re, denote the Reynolds number based on the free-stream velocity and roughness height. Its value is about 57,000 ($v = 0.189 \text{ cm}^2/\text{sec}$). In this equation, the velocity components are referred to the freestream velocity U_{m} , the pressure to the free-stream dynamic pressure. Similarly, $\widetilde{\overline{uw}} = \overline{uw}/U_{\infty}^2$ and $\tilde{w} = w^2/U_{\infty}^2$. All the terms in Eq. (5.17) but the vertical pressure gradient were computed from the measured data. Samples of the momentum balance in the HDC case are provided by Fig. 5.28 for the transition region and by Fig. 5.29 for the fully developed flow region. The momentum balance was computed graphically and numerically. In these figures the viscous shear stress terms are not shown since it was found that they are completely negligible with respect to the inertia and turbulent contributions, i.e., less than 1% of the latter terms. Furthermore, in the fully developed flow region (Fig. 5.29) the longitudinal gradient of -uw is disregarded because it was found to be totally insignificant compared with the other terms. The vertical mean velocity was evaluated by integrating the two-dimensional continuity equation graphically. Within the boundary layer, as observed in Fig. 5.5, the longitudinal gradient of the horizontal velocity U is either negative or zero. The former slope is prevalent throughout the transition region. In the fully developed region the streamwise gradient of the

horizontal velocity is practically zero but slightly negative far away from the roughness. Consequently, the vertical component W increases monotonically with height. The vertical velocity computed by this method becomes a constant value as the longitudinal gradient of U approaches zero. It is important to remark that W = 0 at the wall. Moreover, for sufficiently large distance from the boundary layer, where the flow is presumably uniform, the vertical velocity should be zero. The latter condition implies that the streamwise gradient of U should be positive away from the boundary layer. Thus, it is surmised that the horizontal velocity component will increase slightly with downstream distance over rather large vertical distance. The value of the vertical velocity component at the outer edge of the boundary layer decreases gradually from about 0.1 U in the transition region to less than 0.01 U in the fully developed flow domain. Hence, the longitudinal gradient of W, i.e., $\partial W/\partial \tilde{z}$, is finite in the transition region and becomes negligibly small in the fully developed flow region. Within the transition region, the vertical pressure gradient $\partial \tilde{P}/\partial \tilde{z}$ shown by the broken line in Fig. 5.28, is mainly balanced by the inertia term $\tilde{U} \partial \tilde{W} / \partial \tilde{x}$ in the outer part of the boundary layer $(\tilde{z} > 2)$ and by the turbulent term $\partial w^2/\partial z$ within its inner part. In the fully developed flow region, the vertical pressure gradient displayed by the broken line in Fig. 5.29 is $3w^2/3x$ throughout the entire boundary layer since the balanced by inertia term $\tilde{U} = \partial \tilde{W} / \partial \tilde{x}$ is negligibly small. Recall that in the transition region a drastic increase in the turbulent shear stress occurs below $\hat{z} = 2$ up to $\tilde{x} = 8.33$ as observed in Figs. 5.28 and 5.30. Therefore, to assess the effect of the pressure on the turbulent shear stress distribution, the equation of motion can be simplified for

both the fully developed flow region and the lower part of the transition domain by

$$\frac{\partial \tilde{P}}{\partial \tilde{z}} = -\frac{\partial \tilde{w}^2}{\partial \tilde{z}} \quad . \tag{5.18}$$

A similar relationship, for thin boundary layer on flat plate based on order of magnitude considerations, is suggested in Ref. 3. Integration of Eq. (5.18) when $P = P_{co} = \text{const.}$ and $\overline{w^2} = 0$ at sufficiently large vertical distance leads to

$$\tilde{P} = \tilde{P}_{\infty} - \frac{\tilde{w}^2}{w^2} \quad . \tag{5.19}$$

Thus, by differentiating Eq. (5.19) the longitudinal pressure gradient is

$$\frac{\partial \tilde{P}}{\partial \tilde{x}} = -\frac{\partial \tilde{w}^2}{\partial \tilde{x}} \quad . \tag{5.20}$$

According to this relationship, the local longitudinal pressure gradient can be evaluated directly from the measured streamwise distribution of the vertical fluctuating velocity $\overline{w^2}$. Samples of the results at five locations in the HDC case are displayed in Fig. 5.30. Within the beginning of the transition region, relatively high adverse pressure gradient is observed near the roughness surface. With increasing vertical distance, the streamwise pressure gradient becomes favorable. As the outer edge of the boundary layer is approached the latter vanishes gradually. The adverse pressure gradient becomes negligible with downstream distance. These results indicate that the strong adverse pressure gradient is caused by the roughness which is a drastic step obstruction. This pressure gradient leads to local occurrence of maximum turbulent shear stress somewhere away from the roughness top. In addition, due to eventual flow separation from each roughness element, weak adverse pressure gradient arises in the immediate vicinity of the roughness surface. This phenomenon occurs not only in the transition region but in the fully developed flow domain. For instance, in the latter region, dimensionless adverse pressure gradient of order of 10^{-4} was monitored up to $\tilde{z} = 1.75$. However, this weak adverse pressure gradient may be sufficient to cause the materialization of the maximum turbulent shear stress away from the roughness surface. Similar distribution of the turbulent shear stress were obtained in flow on fine roughness [52].

The increase of the turbulent shear stress, which represents the rate of turbulent momentum transport, indicates the canopy effect on momentum flux (see Figs. 5.26a to 5.27b). Generally, when a fully developed turbulent flow encounters a change in surface roughness, the effects of the change are felt within a so-called internal boundary layer [50]. This layer grows in depth with downstream distance. Most of the published studies about the internal boundary layer are based on the mean velocity variation. The change in the turbulence characteristics, particularly, the turbulent shear stress, due to new roughness conditions were treated indirectly employing the friction velocity. For instance, in Refs. 50 and 53, the internal boundary layer thickness is computed assuming logarithmic variation of the mean velocity and using von Kafmán's integral momentum equation. In Refs. 54 and 55, the
displacement of streamlines is used to estimate the growth of the internal boundary layer. It is important to remark that the flow within the beginning of the internal boundary layer is in a transitory state. In the latter state, both friction velocity and roughness length change with downwind distance for a given roughness [33]. Hence, it is questionable to employ a logarithmic velocity distribution for evaluating the internal boundary-layer thickness under the assumption that the two aforestated scale parameters remain unchanged. The concept of the internal boundary layer is based on the assumption that the rate of adjustment of the turbulent shear stress to the new roughness is sufficiently rapid below a certain interface [53]. Above this interface, neither velocity nor stress has time to change. Consequently, it is theorized that the development of the internal boundary layer must be determined on the basis of the turbulent shear stress variation caused by the new roughness. The extent of the internal boundary layer is estimated from the shear stress evolution due to the new roughness as compared with the stress upstream of the roughness discontinuity. Then, the internal boundarylayer thickness o; can be defined as the height where the new turbulent shear stress is equal to that at $\tilde{x} = 0$, i.e., δ_{i} is the height where $\overline{uw}[x]/\overline{uw}[0] = 1$. According to this definition, the growth of the internal boundary layer is displayed in Fig. 5.31. No difference in the growth of the internal boundary layer between FDC and HDC is noticeable up to $\tilde{x} = 20$, (x = 3.6 m). Beyond the latter, the internal boundary-layer thickness is about 90% of the total boundary-layer thickness for FDC case and 97% for HDC case. Thus, the internal boundary layer thickness is significant up to $\tilde{x} = 20$. Within this region it was found that the internal boundary layer grows proportionally

to a power of downstream distance

$$\tilde{\delta}_{i} \propto \tilde{x}^{0.54}$$
, (5.21)

where $\tilde{\delta}_i = \delta_i/h$ and $\tilde{x} = x/h$. Thus, the internal boundary layer grows similarly to the width of a two-dimensional wake which is proportional to the square-root of the downwind distance [1]. In Ref. 56, assuming a power law variation of mean velocity, i.e., $U \ll z^{\frac{1}{2}}$, the same result is obtained. This indicates, as previously pointed out, that the flow in the transition region has two-dimensional wake-like characteristics due to the large step obstruction (the canopy). On the other hand, in Refs. 50 and 53 where the internal boundary layer is determined from the mean velocity profiles based on a logarithmic law, its growth is expressed by $\tilde{\delta}_i \propto \tilde{x}^{0.8}$ for $\tilde{x} > 10^3$ where $\tilde{\delta}_i = \delta_i/z_0$ and $\tilde{x} = x/z_0$. The origin of x is exactly at the roughness discontinuity and z_0 designates the roughness length for the new roughness. Note that this variation is not valid in the region close to the roughness change, e.g., x < 10 m [50].

It is important to examine the change in the turbulence intensity along the canopy. The variation of longitudinal turbulence intensity based on the free-stream velocity, i.e., $T_{u^{\infty}} = u_{TMS}^{}/U_{\infty}^{}$ where $U_{\infty} =$ 6 m/sec, are shown along seven isoheights in Fig. 5.32 for FDC and in Fig. 5.33 for HDC. The variations of turbulence intensity for FDC and HDC cases are qualitatively similar. In the inner part ($\tilde{z} \leq 2$) the turbulence augmentation occurs mostly up to $\tilde{x} = 10$. In the outer portion, the increase is more gradual extending up to x = 50 at \tilde{z} = 6. By and large, at the same heights, the fluctuating velocity is smaller in the HDC case than in the FDC case. Below \tilde{z} = 3, the turbulence intensity along isoheights exhibits an oscillatory variation.

The vertical turbulence intensities, i.e., $T_{w\infty} = w_{TMS}/U_{\infty}$, along six isoheights are depicted in Figs. 5.34a and 5.34b for FDC case whereas in Fig. 5.35 for HDC. The overall variation of the vertical turbulence intensity is qualitatively similar to that of the longitudinal component. Change is noticeable up to $\tilde{z} = 3$.

The coefficient of anisotropy, which is defined by w_{rms}/u_{rms} , is a measure of the anisotropy of turbulence. The values of the coefficient in the fully developed flow region are displayed in Fig. 5.36 for both FDC and HDC cases. For the sake of comparison, the results obtained in and above a jungle-like forest [57], and those for a deciduous forest [58] are shown in the same figure. A reasonable agreement between the wind-tunnel data and field measurements results is observed.

5.4 Turbulent-energy survey

The turbulent flow field cannot be described in detail due to its inherent randomness. Thus, a statistical description under the assumption of ergodicity [59,60] is necessary to express the characteristics of the turbulent flow. It is possible to describe the turbulent motion by means of frequency spectral analysis. Through this analysis, the kinetic energy of the fluctuating velocity is considered as being the sum of the energy associated with each frequency. Since the longitudinal turbulent velocity is predominant the results of the spectrum measurements for it are presented.

The one-dimensional wave-number density function $\phi[k]$ is defined as [18]

$$1 = \int_{0}^{\infty} \phi[k] dk , \qquad (5.22)$$

where $\phi[k]dk$ is the amount of kinetic energy within the wave number from k to k + dk normalized by the total kinetic energy per unit mass u^2 . This quantity is called the energy-containing spectrum. Then, the dimensionless kinetic energy (or the energy-containing spectrum) within a wave number interval o to k is expressed by

$$\frac{\tilde{u}^{2}[k]}{\tilde{u}^{2}[k]} = \frac{\tilde{u}^{2}[k]}{\tilde{u}^{2}} = \int_{0}^{k} \phi[k] dk . \qquad (5.23)$$

The turbulent energy spectrum can be obtained experimentally in the frequency domain. The frequency spectrum is connected with the spacial correlation function by Taylor's hypothesis [61]. In terms of the frequency n and the local mean velocity U, the wave number is

$$k = \frac{2\pi n}{U} , \qquad (5.24)$$

and the wave length (or eddy size) is

$$L = \frac{U}{n} \quad . \tag{5.25}$$

Hence, the turbulent flow is considered as being composed of infinite number of eddies of various sizes.

At large Reynolds numbers, Kolmogoroff postulated that the turbulent motion is locally isotropic independent of the anisotropy of the large scale motions, i.e., local isotropy [62]. Moreover, for sufficiently high Reynolds numbers, there is a subrange within the energy spectrum where the inertial transfer of energy is the dominating process, i.e., the inertial subrange [63]. The turbulence within the latter is statistically independent of the energy-containing eddies and strong dissipation [18]. Under the assumption of local isotropy within the inertial subrange, the wave-number density function, by dimensional arguments, is [18]

$$\phi[k] = \frac{1}{u^2} \beta \varepsilon^{2/3} k^{-5/3}, \qquad (5.26)$$

since $\phi[k]$ as defined in Eq. (5.22) is normalized by u^2 . In this equation, ε stands for the energy dissipation rate whose dimension is $(length)^2/(time)^3$ (see Eq. (5.28)) and β is assumed to be a universal constant. The latter is about 0.5 [12].

The frequency spectra were measured using a recording wave analyzer (see Eq. (4.8)). Each spectrum was normalized by the mean square value of output voltage corresponding to the total kinetic energy per unit mass $\overline{u^2}$. This normalized spectrum is the one-dimensional frequency density function which is denoted by f[n]. The one-dimensional wave-number density function $\phi[k] = (U/2\pi)f[n]$ [18]. In the following discussion, the results in the fully developed flow region at $\tilde{x} = 38.88$ (x = 7 m) are presented. The wave number spectra for FDC case at five selected heights and for HDC at four selected heights are displayed in Figs. 5.37 and 5.38, respectively. The curve corresponding to $k^{-5/3}$ is also shown in these figures. Since, at first glance, a $k^{-5/3}$ curve appears to provide a reasonable fit to the measured spectra within most parts of the wave number range, it is assumed that each spectrum possesses

an inertial subrange. However, it is pointed out in Ref. 64 that the Reynolds numbers for common laboratory flows are not sufficiently high so that an inertial subrange can occur. Particularly, in the boundarylayer flow, local isotropy and, hence, inertial subrange may not be obtained [18]. Consequently, it is of importance to examine the eventual existence of local isotropy and/or inertial subrange.

The rate of turbulent energy dissipation for isotropic turbulence in terms of the one-dimensional wave number density function is [64]

$$\varepsilon = 15\nu \quad \overline{u^2} \quad \int_{0}^{\infty} k^2 \phi[k] dk , \qquad (5.27)$$

since $\phi[k]$ in Eq. (5.22) is normalized by u^2 . Note that Eq. (5.27) is derived from the three-dimensional wave-number density function by assuming that $\phi[k]$ is proportional to k^{-7} for very large wave numbers and $\phi[k]$ and $\frac{\partial \phi[k]}{\partial k}$ are finite as $k \neq 0$. In Eq. (5.27), v is the kinematic viscosity and $k^2\phi[k]$ is referred to as the dissipation spectrum. The fraction of the normalized energy dissipation within the wave number interval 0 to k is defined as

$$\tilde{\epsilon} [k] = \frac{\epsilon[k]}{\epsilon} = \frac{\int_{0}^{k} k^{2} \phi[k] dk}{\int_{0}^{\infty} k^{2} \phi[k] dk} .$$
(5.28)

Both energy-containing spectra and dissipation spectra multiplied by k, i.e., $k\phi[k]$ and $k^3\phi[k]$, are portrayed in Fig. 5.39 for the FDC case at $\tilde{z} = 1.03$ and 3.19 (z = 18.5 and 57.5 cm). The areas under these curves represent the total turbulent kinetic energy and the rate of energy dissipation, respectively, since $\phi dk = k\phi d(lnk)$ and

 $k^2\phi = k^3\phi d(lnk)$. The basic condition for the occurrence of an inertial subrange is that the contributions within at least one decade range to both energy-containing and energy-dissipation spectra are negligibly small [64]. In other words, the energy-dissipation range must be widely separated from the energy-containing range. The results shown in Fig. 5.39 reveal that the aforementioned condition is not adequately satisfied. At all heights, for both FDC and HDC cases, similar situations were observed. Moreover, as vertical distance increases, both energycontaining and energy-dissipation ranges shift to smaller wave number range (larger eddy size range). For instance, the value of $k \phi[k]$ is maximum for $k = 0.17 \text{ cm}^{-1}$ at $\tilde{z} = 1.03$ and for $k = 0.065 \text{ cm}^{-1}$ at $\tilde{z} = 3.19$. The value of $k^{3}\phi[k]$ is maximum for $k = 10 \text{ cm}^{-1}$ at $\tilde{z} = 1.03$ while for $k = 7 \text{ cm}^{-1}$ at $\tilde{z} = 3.19$. In order to examine this shift, the values of $u^2[k]$ and $\tilde{\epsilon}[k]$ at various heights were calculated by means of Eqs. (5.23) and (5.28), respectively, where the integrals were evaluated graphically. The results are portrayed in Fig. 5.40 for the FDC case and in Fig. 5.41 for the HDC case. Both energy-containing and energy-dissipation ranges shift continuously toward larger eddy size domain with increasing vertical distance.

It is possible, from Figs. 5.40 and 5.41, to estimate how widely the dissipation range is separated from the energy-containing range. For this purpose, it is proposed to neglect the last 15% of the total kinetic energy in the energy-containing range and the first 15% of the energy dissipation in the dissipation range. In other words, only the kinetic energy $\mathbf{u}^2[\mathbf{k}]$ within the wave number range 0 to \mathbf{k}_e , where \mathbf{k}_e corresponds to 0.85 of the total kinetic energy, is considered. Similarly, the energy-dissipation within the wave number interval 0 to \mathbf{k}_d , where

 k_d corresponds to 0.15 of the total energy dissipation, is neglected. These limits are shown by broken lines in Figs. 5.40 and 5.41. Thus, k_e is considered as the upper bound of the energy-containing range whereas k_d as the lower limit of the energy dissipation range. As mentioned previously, when k_d is separated from k_e by more than one decade, the condition for the existence of an inertial subrange is satisfied. The ratios of k_d to k_e at different heights are summarized below:

FDC		HDC	
ž	k _d /k _e	Z	k _d /k _e
1.03	2.15	1.07	2.7
2.25	2.17	2.96	7.8
4.82	4.25	4.18	14.1

At all heights but $\tilde{z} = 4.18$ for HDC, these two ranges are separated by less than one decade. Therefore, the aforestated basic conditions are not sufficiently satisfied and the existence of local isotropy is highly questionable. Even if the measured spectrum can be approximated by a $k^{-5/3}$ curve, an inertial subrange does not necessarily occur. Such an approximation must be made cautiously. Otherwise, it might result in misleading conclusions.

It is, further, important to estimate the lower limit of the wave number (or the largest eddy size) for the occurrence of local isotropy. This limit can be roughly evaluated from the relationship [65]

$$\overline{u^2} \int_{0}^{k} k^2 \phi[k] dk >> \left(\frac{dU}{dz}\right)^2 .$$
 (5.29)

Assuming that $\overline{u^2\phi}[k]$ can be approximated by Eq. (5.26), substitution of

the latter into inquality (5.29) leads to the condition for the existence of local isotropy

$$k \gg \frac{4}{3} \left\{ \frac{\left(\frac{dU}{dz}\right)^2}{\beta \epsilon^{2/3}} \right\}^{-3/4}$$
 (5.30)

Next, in the fully developed flow region it can be assumed that the energy dissipation is approximately equal to the energy production [12]. Then, the inequality (5.30) is written substituting the energy production for the energy dissipation.

$$k >> \left\{\frac{4}{3} \frac{\left(\frac{dU}{dz}\right)^2}{\beta E_p^{2/3}}\right\}^{3/4} = k_{\ell} , \qquad (5.31)$$

where $\,\boldsymbol{k}_{l}^{}\,$ is the lower bound of the wave number, and the energy production is

$$E_{\rm p} = -\overline{\rm uw} \quad \frac{\rm dU}{\rm dz} \ . \tag{5.32}$$

The estimated value of $~k_{\rm g}~$ for both FDC and HDC cases are tabulated below:

FDC			HDC	
ž	$k_{\ell}(cm^{-1})$	L _u (cm)	$k_{\ell}(cm^{-1})$	L _u (cm)
1.5	0.50	13	0.39	16
2.0	0.40	16	0.33	19
3.0	0.30	21	0.33	19
4.0	0.28	22	0.30	21

In this table, L_u designates the eddy size corresponding to the wave number k_g (see Eqs. (5.24) and (5.25)), i.e., the largest eddy (or the upper limit). According to the relationship (5.31), local isotropy is expected to occur for wave numbers much larger than the lower bound k_g , say, at least one order of magnitude larger. In other words, the turbulence may be locally isotropic when the eddy size is one order of magnitude smaller than the upper limit L_u , e.g., about 1-2 cm(k \approx 3-6 cm⁻¹). Thus, local isotropy may occur within the dissipation range for the eddy size smaller than 2% of the boundary-layer thickness even though the existence of an inertial subrange is questionable.

As mentioned previously, in the inner part of the fully developed boundary layer, the energy dissipation is assumed approximately equal to the energy production. The former, under the assumption of isotropy, can be evaluated by means of Eq. (5.27). On the other hand, regardless of the isotropy, the turbulent energy production rate can be estimated by Eq. (5.32). Hence, by comparing the energy dissipation with the energy production in the fully developed flow region, the validity of the isotropy assumption can be examined. The variations in the energy dissipation rate and the energy production rate with height are shown in Fig. 5.42 for both FDC and HDC cases. In this figure, the ratio of the energy dissipation to the energy production is also displayed. It is observed that the energy dissipation estimated on the assumption of isotropy is much larger than the energy production although the turbulent energy is expected to be in balance at least close to the canopy top. This result indicates that the validity of the isotropy assumption is doubtful.

The turbulent energy associated with an eddy of a given size can be described by means of a discretized spectral analysis [66]. The latter is dependent of the existence of local isotropy and/or an inertial subrange. Then the turbulent energy at a fixed point is written by

$$\overline{u}^{2} = \sum_{i=1}^{\infty} \overline{u}_{i}^{2}[n_{i}] , \qquad (5.33)$$

where $\overline{u_i^2}$ [n_i] is the portion of the total energy contributed by the turbulent fluctuation at the specific frequency n_i . The discretized energy $u_i^2[n_i]$ is proportional to the frequency-density function at each particular frequency, i.e., $\overline{u_i^2} [n_i] \circ f(n_i)_{\infty}$. Given an eddy size, the corresponding frequency at each measurement station can be calculated by Eq. (5.25). Then, the discretized kinetic energy at this frequency can be obtained from the frequency-spectrum measurements. The variation of the discretized energy at four selected eddy sizes, viz., L = 62.8, 12.6, 3.15 and 0.63 cm (k = 0.1, 0.5, 2 and 10 cm⁻¹) were examined. These four eddy sizes were selected to cover the whole measured wave number range. The first eddy size represents the energy-containing range whereas the third one corresponds to the larger eddies in the dissipation range. The last size is typical to the eddies within the dissipation range. The discretized energies at these four scales are displayed in Figs. 5.43a and 5.43b for FDC and in Figs. 5.44a and 5.44b for HDC. In these figures, the energy at the eddy size L is denoted by $u^2[L]$ and its value at $(\tilde{x}, \tilde{z}) = (0,1)$ is designated by $u_0^2[L]$. In consistency with the presentation of the turbulent shear stress, the energy is normalized by $\overline{u_0^2}[L]$. The energy of the smallest eddy

(L = 0.63 cm) is affected most strongly by the canopy. In the immediate vicinity of the canopy surface $(\tilde{z} = 1.5)$ for both FDC and HDC cases, the change in the energy due to the canopy lessens as the eddy size increases. Near the middle of the boundary-layer thickness $(\tilde{z} = 2.5 \text{ and } 3.5)$, the energy amplification at the largest eddy (L = 62.8 cm) is more than at the middle size eddies (L = 12.6 and 3.15 cm). With increasing vertical distance, overall effects of the canopy on the energy change at all four eddies diminish. In the transition region, a drastic increase in the energy at the smallest eddy size is observed. This indicates that the energy dissipation is highly intensified in the transition region. At the same height, the amplification of energy associated with all eddies is larger in FDC case than in HDC case.

Consequently, the energy variation associated with different-size eddies can be described successfully by means of the discretized-energy analysis which is independent of local isotropy and existence of inertial subrange.

6. SUMMARY AND CONCLUSIONS

The experimental results presented in this work indicate that the mean velocity in the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, viz., 30 to 45% of the boundary-layer thickness, the free-stream velocity and the roughness height are the scaling parameters for the velocity and the vertical distance from the wall, respectively. In the outer zone, the free-stream velocity and the momentum thickness are the similarity parameters. These scaling parameters can be easily determined from the mean velocity measurement. The power laws and/or the logarithmic laws examined herein cannot be satisfactorily employed to describe the mean-velocity profiles on high roughness elements. The use of either the modified logarithmic law or the modified law of the wake depends on knowing the friction velocity, roughness length and zero-plane displacement. Their dependence on the surface roughness is not known yet. Furthermore, the so-called von Karman's constant is not a universal constant but can be considered as a scaling parameter of the friction velocity. Its numerical value would vary depending on the roughness.

The mean-velocity distributions inside the canopy within the transition region are strongly affected by the shape of the roughness element. The velocity in the trunk zone is higher than that in the crown zone. Particularly, the highest velocities were measured at about 1/2 of the trunk height, i.e., the jetting effect. Moreover, the drastic flow retardation in the beginning of the transition region is attributed to the large momentum loss of the flow inside the canopy.

The roughness density affects the upward flow displacement and the momentum loss. As the roughness density is higher, both displacement thickness and momentum thickness become larger. Due to greater momentum loss, the transition domain for the full-density-canopy case is shorter than for the half-density-canopy case. Since the upward flow displacement for denser canopy is larger, the contribution of the flow within the canopy to both total displacement thickness and momentum thickness becomes smaller in the full density canopy than in the half density canopy.

The flow characteristics within the fully developed flow region are determined by the flow development throughout the transition region. The latter stretches up to 20 to 30 roughness heights downstream of the canopy leading edge. Within the transition region the flow is characterized, particularly, by its turbulence structure. The internal boundary-layer thickness is defined based on the turbulent shear stress but not on the mean velocity. The canopy frontal area which is a drastic step obstruction has a strong influence on the turbulent shear-stress distribution and, hence, the growth of the internal boundary layer. An adverse pressure gradient generated by this obstruction leads to local occurrence of maximum turbulent shear stress away from the roughness top. The flow near the canopy leading edge reveals two-dimensional wake-like characteristics. As a result, the growth of the internal boundary boundary layer up to 20 roughness heights is similar to the increase of the width of a two-dimensional wake. Beyond this distance, the internal boundary layer practically merges with the total boundary layer (90-97% of the total boundary-layer thickness).

The turbulence in the fully developed flow region may be locally isotropic when the eddy size is sufficiently small, e.g., less than 2% of the boundary layer thickness. However, the existence of an inertial subrange is questionable. The approximation of the measured energy spectra by a $k^{-5/3}$ curve must be made cautiously. Otherwise, such an approximation might result in a misleading conclusion that both local isotropy and inertial subrange exist. In order to assess the energy variation associated with different-size eddies, regardless of the existence of local isotropy and inertial subrange, the discretized-energy analysis can be a satisfactory tool. The results of this analysis indicate that a large energy dissipation occurs in the transition region. In the fully developed flow region, the turbulent energy associated with various-size eddies reaches an equilibrium state.

It is reported in Ref. 67 that comparisons of the mean-velocity data obtained in and above a jungle-like coastal forest with windtunnel results for the full density canopy show a reasonable agreement. Moreover, a similar variation in the coefficient of anisotropy with height are observed for the wind-tunnel simulated flow and field data. Generally, the mean velocity field and overall turbulence features within and above forest canopies can be satisfactorily simulated. The results presented herein can provide valuable information in studying the problems associated with dispersal of agricultural chemicals and seed, exchange rates of water vapor and carbon dioxide and, to some extent, forest-fire problems. More generally, the canopy flow investigated in this work may represent the flow characteristics over high roughness elements like buildings and/or structures. Hence, the knowledge can be

extended to study the problems related to air pollution over urban areas or aerodynamic effects on buildings and structures.

To summarize, the main conclusions of this investigation are:

(1) The mean velocity profiles in the fully developed turbulent boundary layer above the canopy can be described by generalized logarithmic relationships.

(2) Inside the canopy within the transition region, the highest velocities were measured at about 1/2 of the trunk height, i.e., the jetting effects.

(3) Flow retardation in the beginning of the transition region is mainly due to the momentum loss of the flow inside the canopy.

(4) The internal boundary layer defined based on the turbulent shear stress distribution grows in the nearly same manner as the width of a two-dimensional wake.

(5) The turbulence in the fully developed flow region may be locally isotropic for sufficiently small eddies. However, the existence of an inertial subrange is doubtful.

(6) The turbulent energy variation associated with a particular size eddy can be analyzed using a discretized-energy method.

(7) The so-called von Karman's constant can be considered as a scaling parameter for the friction velocity.

(8) As the roughness density is higher, the upward flow displacement becomes larger.

APPENDIX I

YAWED HOT WIRE

When a hot wire is positioned normal to the mean velocity direction in a flow with a small velocity fluctuation, the fluctuation in hot-wire cooling is produced, essentially, by the velocity fluctuation parallel to the mean velocity. On the other hand, if a hot wire is placed at an angle to the mean velocity direction, the fluctuation in the wire cooling is caused by both longitudinal and transversal fluctuating velocity components. A sketch of a hot wire placed at a yawed angle ψ to the mean velocity direction in the x-z plane is depicted in Fig. A.1. The instantaneous directions of the fluctuating velocity components are arbitrarily assumed. The yaw angle is measured clockwise from the mean velocity direction. The simplified and operational form of the so-called King's law for a yawed wire is [18]

$$(\overline{E} + e_{\psi})^2 - E_0^2 = MU_e^{\frac{1}{2}}$$
, (A.1)

where U_e is the effective cooling velocity and M is a constant. The value of the latter depends on wire configuration and material, the selected resistance ratio and the air properties. The time-averaged (DC) voltage necessary to balance the bridge under steady conditions is denoted by \overline{E} whereas E_o designates the voltage drop in still air (at zero velocity). The value of E_o is constant for chosen operating conditions. The instantaneous AC voltage caused by the fluctuating velocity for a chosen yaw angle is denoted by e_{ib} .

Generally, according to the cosine law [68,69], the hot wire is assumed to be most sensitive to the normal component of the resultant

velocity. In other words, the latter is considered most effective for cooling the hot wire. Furthermore, it is noteworthy that the wire cooling is not affected by any small fluctuating velocity component perpendicular to the x-z plane, i.e., v-component, as long as the mean velocity is large compared with v [40]. Thus, as a first approximation, neglecting the v-component, the normal component in the x-z plane is considered as the effective cooling velocity. Therefore, (see Fig. A.1)

$$U_{e} = U_{txz} \sin (\psi + \beta) = (U + u) \sin \psi + w \cos \psi , \qquad (A.2)$$

where U_{txz} is the total velocity in the x-z plane and U is the mean velocity. The fluctuating velocity components in x- and z-directions are denoted by u and w, respectively. The angles between the total velocity and the mean velocity are designated by β . Substitution of Eq. (A.2) into Eq. (A.1) leads, after some manipulation, to the following equation:

$$(\overline{E} + e_{\psi})^2 - E_0^2 = M(U \sin \psi)^{\frac{1}{2}} (1 + (\frac{u}{U} + \frac{w}{U} \cot \psi))^{\frac{1}{2}}$$
 (A.3)

Under the assumption of small fluctuations, i.e., $u^2/U^2 <<1$ and $w^2/U^2 <<1$, and, hence, $e^2\psi/\overline{E^2} <<1$, quadratic and higher order terms in the binominal expansions of $(\overline{E} + e_{\psi})^2$ and $(1 + (\frac{u}{U} + \frac{w}{U} \cot \psi))^{\frac{1}{2}}$ are neglected. Then Eq. (A.3) reduces to

$$\frac{\overline{E} e}{\frac{\psi}{\overline{E}^{2} - E_{0}^{2}}} = \frac{u \sin \psi + w \cos \psi}{4 U \sin \psi}, \qquad (A.4)$$

where the relationship $\overline{E}^2 - E_0^2 = M (U \sin \psi)^{\frac{1}{2}}$ was used for the mean values. Taking the mean-square of Eq. (A.4), we obtain

$$\frac{\overline{E}^2}{(\overline{E}^2 - E_0^2)^2} \overline{e_{\psi}^2} = \frac{\overline{u^2 \sin^2 \psi + uw \sin 2 + w^2 \cos^2 \psi}}{16 \ U^2 \sin \psi}, \quad (A.5)$$

where the overbar denotes time-averaged (or mean) values. Subsequent positionings of the wire at the same location at two different yaw angles, say, 45° and 135°, respectively, lead to the following relatinships for the shear stress and vertical component of the fluctuating velocity

$$\frac{\overline{uw}}{U^2} = \frac{4\overline{E}^2}{(\overline{E}^2 - E_0^2)^2} \quad (\overline{e_{45}^2} - \overline{e_{135}^2}) \quad , \tag{A.6}$$

and

$$\frac{\overline{u^2}}{\overline{u^2}} = \frac{8\overline{E}^2}{(\overline{E}^2 - E_0^2)^2} \quad (\overline{e_{45}^2} + \overline{e_{135}^2}) - \frac{\overline{u^2}}{\overline{u^2}} \quad . \tag{A.7}$$

The longitudinal turbulence intensity in Eq. (A.7) is obtained by employing a normal hot-wire at the very same location. Notice that Eq. (A.6) and (A.7) are based on the assumption that the hot wire at each yaw angle monitors the same values of u, w and \overline{uw} . In other words, it is assumed that the turbulent flow is uniform over the wire length. To satisfy this condition it is desirable to use a hot wire of relatively small aspect ratio.

REFERENCES

- Schlichting, H., <u>Boundary Layer Theory</u>, McGraw-Hill Book Co., Inc., New York, 4th ed. (1960).
- Clauser, F. H., "The turbulent boundary layer," Advances in Applied Mechanics, (Dryden, H. L. and von Kármán, Th., editors), Academic Press Inc., Publishers, New York, N.Y., Vol. 4, 1-51 (1956).
- 3. Rotta, J. C., "Turbulent boundary layers in incompressible flow," <u>Progress in Aeronautical Sciences</u>, (Ferri, A., et al., editors), <u>The Macmillan Company</u>, New York, N.Y., Vol. 2, 1-219 (1962).
- Prandtl, L., "The mechanics of viscous fluids," Div. G., <u>Aerodynamic Theory</u>, (Durand, W. F., editor), Dover Publications, <u>Inc., New York, N.Y.</u>, Vol. 3, 34-208 (1963).
- Millikan, C. B., "A critical discussion of turbulent flows in channels and circular tubes," Proc. Fifth Intern. Congress Appl. Mech., Harvard Univ., Cambridge, Mass., 386-392 (1938).
- Nikuradse, J., "Laws of flow in rough pipes," NACA TM 1292 (1950).
- Ludwieg, H. and Tillmann, W., "Investigation of the wallshearing stress in turbulent boundary layers," NACA TM 1285 (1950).
- Klebanoff, P. S. and Diehl, Z. W., "Some features of artificially thickened fully developed turbulent boundary layers with zero pressure gradient," NACA TN 2475 (1951).
- 9. van Driest, E. R., "On turbulent flow near a wall," Journal of the Aeronautical Sciences, 23, 1007-1011 (1956).
- Moore, W. L., "An experimental investigation of the boundary layer development along a rough surface," Ph.D. Dissertation, The State University of Iowa, Iowa City, Iowa (1951).
- Hama, F. R., "Boundary layer characteristics for smooth and rough surfaces," Trans. Soc. Nav. Arch. and Marine Engrs., <u>62</u>, 333-358 (1954).
- 12. Lumley, J. L. and Panofsky, H. A., <u>The Structure of Atmospheric</u> Turbulence, Interscience Publishers, New York, N.Y. (1964).
- Sutton, O. G., <u>Micrometeorology</u>, McGraw-Hill Book Co., Inc., New York, N.Y. (1953).

- Rossby, C. G. and Montgomery, R. B., "The layers of frictional influence in wind and ocean currents," Papers in Physical Oceanography and Meteorology, MIT and Woods Hole Oceanographic Institution, 3, No. 3 (1935).
- 15. Tan, H. S. and Ling, S. C., "Quasi-steady micro-meteorological atmospheric boundary layer over a wheat field," Lemon, E. R. (editor), "The energy budget at the earth's surface," Part II, U.S. Dept. of Agric. Res. Serv., Prod. RR72 (1963).
- 16. Deacon, E. L., "Vertical profiles of mean wind in the surface layers of the atmosphere," Geophys. Mem. 11, 91 (1953).
- 17. Coles, D., "The law of the wake in the turbulent boundary layer," Journal of Fluid Mechanics, 1, 2, 191-226 (1956).
- Hinze, J. O., Turbulence: An Introduction to its Mechanism and Theory, McGraw-Hill Book Co., Inc., New York (1959).
- Corrsin, S., "Turbulent flow," American Scientist, <u>49</u>, 3, 300-325 (1961).
- Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, England (1956).
- 21. Klebanoff, P. S., "Characteristics of turbulence in a boundary layer with zero pressure gradient," NACA TN 3178 (1954).
- 22. Cermak, J. E., Sandborn, V. A., Plate, E. J., Binder, G. H., Chuang, H., Meroney, R. N. and Ito, S., "Simulation of atmospheric motion by wind-tunnel flow," Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, TR CER66JEC-VAS-EJP-GHB-RNM-SI-17 (1966).
- Iizuka, H., "On the width of a windbreak," Bulletin of the Government Forest Experiment Station, No. 56, Tokyo, Japan (1952).
- Woodruff, N. P. and Zingg, A. W., "Wind tunnel studies of fundamental problems related to windbreaks," U.S.Dept. of Agric., Soil Cons. Service, Rep. SCS-TP-112 (1952).
- 25. Hirata, T., "Fundamental studies of the formation of cutting series on the center pressure, the drag coefficient of a tree and one effect of shelter belts," Bulletin of Forest., 45, 61-87, Tokyo University (1953).
- Walshe, D. E. and Fraser, A. I., "Wind tunnel tests on a model forest," NPL, Teddington, Middlesex, England, Aero. Rep. 1078 (1963).
- Lai, W., "Aerodynamic drag of several broadleaf tree species," U.S. Dept. Agric., Forest Service, Internal TR AFSWP-863 (1955).

- Plate, E. J. and Quaraishi, A. A., "Modeling of velocity distributions inside and above tall crops," Journal of Applied Meteorology, 4, 400-408 (1965).
- 29. Yano, M., "The turbulent diffusion in a simulated vegetative cover," Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado (1966).
- 30. Kawatani, T. and Meroney, R. N., "Turbulence and wind speed characteristics within a model canopy flow field," Agricultural Meteorology, 7, 143-158 (1970).
- 31. Hsi, G. and Nath, J. H., "Wind drag within a simulated forest canopy," Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, TR CER 68-69GH-JHN6 (1968).
- Meroney, R. N., "Characteristics of wind and turbulence in and above model forests," Journal of Applied Meteorology, 7, No. 5, 780-788 (1968).
- Sadeh, W. Z., Cermak, J. E. and Kawatani, T., "Flow over high roughness elements," Boundary-Layer Meteorology, <u>1</u>, 3, 321-344 (1971).
- 34. McVehil, G. E., Ludwig, G. R. and Sundaram, T. R., "On the feasibility of modeling small-scale atmospheric motions," Cornell Aero. Lab., Buffalo, New York, TR ZB-23228-P-1 (1967).
- 35. Plate, E. J. and Cermak, J. E., "Micrometeorological wind tunnel facility," Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, TR CER63EJP-JEC9 (1963).
- Pankhurst, R. C. and Holder, D. W., Wind Tunnel Technique, Sir Issac Pitmand & Sons, Ltd., London (1952).
- Sadeh, W. Z. and Finn, C. L., "A new hot-wire anemometer system," (to be published).
- 38. King, L. V., "On the convection of heat from small cylinders in a stream of fluid," Phil. Trans. Roy. Soc., London, A., 214, 373-432 (1914).
- 39. Sadeh, W. Z., Maeder, P. F. and Sutera, S. P., "A hot wire-method for low velocity with large fluctuations," The Review of Scientific Instruments, 41, 9, 1295-1298 (1970).
- Sandborn, V. A., "Metrology of fluid mechanics," College of Engineering, Colorado State University, Fort Collins, Colorado, Rep. CER66-67VAS32 (1966).

- Rasmussen, C. G., "Measurement of turbulence characteristics," DISA Inf. Bul., 3 (1966).
- Geiger, R., The Climate near the Ground, Harvard University Press, Cambridge, Massachusetts (1966).
- Davenport, A. G., "The relationship of wind structure to wind loading," Proc. Symposium on Wind Effects on Buildings and Structures, Teddington, Middlesex, England, 1, 53-102 (1963).
- 44. Kung, E., "Deviation of roughness parameter from wind profile data above all vegetation," Studies of the Three-dimensional Structure of the Planetary Boundary Layer, University of Wisconsin, Madison, Wisconsin, 27-35 (1961).
- 45. Robinson, S. M., "A method for machine computation of wind profile parameters," Studies of the Three-dimensional Structure of the Planetary Boundary Layer, University of Wisconsin, Madison, Wisconsin, 63-70 (1961).
- Hanna, S. R., "Turbulence and diffusion in the atmospheric boundary layer over urban areas," Notes of Seminar presented at Syracuse University (1970).
- Perry, A. E., Schofield, W. H. and Joubert, P. N., "Rough wall turbulent boundary layers," Journal of Fluid Mechanics, 37, 2, 383-413 (1969).
- Thwaites, B., (editor), <u>Incompressible Aerodynamics</u>, Oxford at the Clarendon Press, p. 57 (1960).
- Rider, N. E., "Eddy diffusion of momentum, water vapour, and heat near the ground," Philosophical Transactions of the Royal Society of London, A., 246, 481-501 (1954).
- Elliot, W. P., "The growth of the atmospheric internal boundary layer," Transactions of American Geophysical Union, <u>39</u>, 6, 1048-1054 (1958).
- Schubauer, G. B. and Klebanoff, P. S., "Investigation of separation of the turbulent boundary layer," NACA TR 1030 (1951).
- 52. Kung, R. J. and Plate, E. J., "Boundary layer development over equally spaced fences," Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, TR CER69-70RJK-EJP-33 (1970).
- 53. Panofsky, H. A. and Townsend, A. A., "Change of terrain roughness and the wind profile," The Quarterly Journal of the Royal Meteorological Society, <u>90</u>, 384, 147-155 (1964).

- 54. Townsend, A. A., "The response of a turbulent boundary layer to abrupt changes in surface conditions," Journal of Fluid Mechanics, 22, 4, 799-822 (1965).
- 55. Townsend, A. A., "The flow in a turbulent boundary layer after a change in surface roughness," Journal of Fluid Mechanics, 26. 2, 255-266 (1966).
- 56. Antonia, R. A. and Luxton, R. E., "The response of a turbulent boundary layer to an upstanding step change in surface roughness," Transactions of the ASME, Journal of Basic Engineering, Paper No. 70-FE-17 (1970).
- 57. Shinn, J. H., "Analysis of wind data from a South Carolina Coastal Forest," U.S. Army Electronics Command, Atmos. Sci. Lab., Res. Div., Fort Huachuca, Arizona, RD TR ECOM-6036 (1969).
- 58. Tourin, M. H. and Shen, W. C., "Deciduous forest diffusion study," Applied Science Division, Litton Systems, Inc., Minneapolis, Minnesota, Rep. 3004, Vol. 1 (1966).
- 59. Batchelor, G. K., Homogeneous Turbulence, Cambridge University Press (1967).
- 60. Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw-Hill Book Co., Inc., New York (1965).
- Taylor, G. I., "The spectrum of turbulence," Proc. Royal Society, A, 164, 476-490 (1938).
- 62. Kolmogoroff, A., "The local structure of turbulence in incompressible viscous fluid for very large Reynolds' number," Compt. rend. Acad. Sci. U.R.S.S., 30, 301-305 (1941).
- 63. Lin, C. C., <u>Statistical Theories of Turbulence</u>, Princeton University Press, Princeton, N.J. (1961).
- Grant, H. L., Stewart, R. W. and Moilliet, A., "Turbulence spectra from a tidal channel," Journal of Fluid Mechanics, <u>12</u>, 2, 241-263 (1962).
- 65. Pond, S., Stewart, R. W., and Burling, R. W., "Turbulence spectra in the wind over waves," Journal of the Atmospheric Sciences, 20, 319-324 (1963).
- 66. Sadeh, W. Z., Sutera, S. P. and Maeder, P. F., "An investigation of vorticity amplification in stagnation flow," Zeitschrift für angewandte Mathematik und Physik (ZAMP), <u>21</u>, 5, 717-742 (1970).

- 67. Shinn, J. H., "Steady-state two-dimensional air flow in forests and the disturbance of surface layer flow by a forest wall," Ph.D. Dissertation, The University of Wisconsin, Madison, Wis. (1971).
- Champagne, F. H., Sleicher, C. A. and Wehrmann, O. H., "Turbulence measurements and inclined hot-wires," Part 1, Journal of Fluid Mechanics, 28, 1, 153-175 (1967).
- Champagne, F. H. and Sleicher, C. A., "Turbulence measurements with inclined hot-wires," Part 2, Journal of Fluid Mechanics, 28, 1, 177-182 (1967).

Fig. 3.1 Sketch of the model forest canopy and model tree element.

All Dimensions in Centimeters

Fig. 3.2 Overall view of the Meteorological Wind Tunnel.

Fig. 3.3 View of the model forest canopy.

Fig. 4.1 Typical normal hot-wire calibration curve.

Fig. 4.2 Typical yawed hot-wire calibration curve.

Fig. 4.3 Block diagram of hot-wire anemometer measuring system.

Fig. 4.4 General view of hot-wire anemometer system and additional equipments.

Fig. 5.1 Power law representation of upstream velocity profile.

Fig. 5.2 Logarithmic law representation of upstream velocity profile.

Fig. 5.3a Mean velocity profiles within and above the canopy for FDC case.

Fig. 5.3b Mean velocity profiles within and above the canopy for FDC case.

Fig. 5.4a Mean velocity profiles within and above the canopy for HDC case.

Fig. 5.4b Mean velocity profiles within and above the canopy for HDC case.

Fig. 5.5 Mean velocity variation along isoheights above the canopy; FDC and HDC.

Fig. 5.6 Mean velocity profiles inside the canopy at 6 selected stations; FDC and HDC.

Fig. 5.7 Lateral variation in the mean velocity and turbulent intensity for FDC case over a distance of 30 cm off the center line.

Fig. 5.8 Lateral variation in the mean velocity and turbulent intensity for HDC case over a distance of 30 cm off the center line.

Fig. 5.9 Boundary-layer thickness growth and the boundary between the transition and fully developed flow regions; FDC and HDC.

Fig. 5.10 Growth of displacement thickness and momentum thickness along the canopy; FDC and HDC.

Fig. 5.11 Variation of the ratios of the displacement and momentum thicknesses within the canopy to the local total displacement and momentum thicknesses along the roughness; FDC and HDC.

Fig. 5.12 Variation in the shape factor along the canopy; FDC and HDC.

Fig. 5.13 Power law variation of the mean velocity above the canopy within the fully developed flow region; FDC and HDC.

Fig. 5.14 Change in logarithmic law velocity representation with the zero-plane displacement; HDC case.

Fig. 5.15 Variation of the mixing length with height; FDC and HDC.

Fig. 5.17 Modified logarithmic law description of the mean velocity within the inner zone (z = 1.0 to 1.85); FDC and HDC.

Fig. 5.18 Defect velocity profiles within the fully developed flow region in terms of the modified wake function; FDC case.

Fig. 5.19 Defect velocity profiles within the fully developed flow region in terms of the modified wake function; HDC case.

Fig. 5.20 Mean velocity profiles above the canopy within the fully developed flow region according to the generalized logarithmic law; FDC case.

Fig. 5.21 Mean velocity profiles above the canopy in the fully developed flow region according to the generalized logarithmic law; HDC case.

Fig. 5.22 Mean velocity profiles in the outer zone within the fully developed flow region described by the generalized logarithmic law; FDC case.

Fig. 5.23 Mean velocity profiles in the outer zone within the fully developed flow region described by the generalized logarithmic law; HDC case.

Fig. 5.24 Mean velocity profiles above a peg canopy within the fully developed flow region according to the generalized logarithmic law.

Fig. 5.25 Mean velocity profiles above a peg canopy in the outer zone within the fully developed flow region described by the generalized logarithmic law.

Fig. 5.26a Turbulent shear-stress distribution within and above the canopy; FDC case.

Fig. 5.27a Turbulent shear-stress distributions within and above the canopy; HDC case.

Fig. 5.27b Turbulent shear-stress distributions within and above the canopy; HDC case.

Fig. 5.28 Momentum balance in the transition region; HDC case.

Fig. 5.29 Momentum balance in the fully developed flow region; HDC case.

Fig. 5.30 Longitudinal pressure gradient above the canopy; HDC case.

Fig. 5.31 Growth of the internal and total boundary layer thicknesses.

Fig. 5.32 Variation in longitudinal turbulent intensity above the canopy along isoheights; FDC case.

Fig. 5.33 Variation in longitudinal turbulent intensity above the canopy along isoheights; HDC case.

Fig. 5.34 Variation in vertical turbulent intensity above the canopy along isoheights; FDC case.

Fig. 5.35 Variation in vertical turbulent intensity above the canopy along isoheights; HDC case.

Fig. 5.36 Coefficient of anisotropy for the model forest canopy and for real forests.

Fig. 5.37 Wave-number spectra above the canopy; FDC case.

Fig. 5.38 Wave-number spectra above the canopy; HDC case.

Fig. 5.39 Variation of energy-containing spectrum and energy-dissipation spectrum at two selected heights; FDC case.

Fig. 5.40 Variation in turbulent kinetic energy and energy dissipation as function of the wave number; FDC case.

Fig. 5.41 Variation in turbulent kinetic energy and energy dissipation as function of the wave number; HDC case.

Fig. 5.42 Variations in energy dissipation, energy production and their ratio as function height; FDC and HDC.

Fig. 5.43a Variation in the discretized energy at four eddy sizes; FDC case.

Fig. 5.43b Variation in the discretized energy at four eddy sizes; FDC case.

Fig. 5.44a Variation in the discretized energy at four eddy sizes; HDC case.

Fig. 5.44b Variation in the discretized energy at four eddy sizes; HDC case.

Fig. A.1 Hot wire yawed to the mean flow.

APPENDIX II

TABLES

1. Mean velocity

The measured mean velocity along the canopy center line, i.e., along the x-axis (see Figs. 3.1 and 3.2), are summarized in Table 1-FDC and 1-HDC. The mean velocity variation is shown in Figs. 5.3a and 5.3b for the FDC case and in Figs. 5.4a and 5.4b for the HDC case. In these tables the dimensionless coordinates are .

$$x, z = x/h, z/h$$
,

where h = 18 cm (see Eq. (5.1)). The dimensionless mean velocity is

$$\tilde{U} = U/U_{\infty}$$
 ,

where $U_{\infty} = 6 \text{ m/sec}$ (see Eq. (5.2)).

The downstream extent of the transition region for both FDC and HDC cases is tabulated in Table 1-TD. These extents are shown in Figs. 5.5 and 5.9 by the broken lines. In this table x_{td} denotes the longitudinal extent of the transition region, i.e., the boundary between the transition region and fully developed flow domain.

TABLE 1 - FDC MEAN VELOCITY - Full Density Canopy

x (m)		-1	. u				0			0	. 3				0.6	
1		-5	.55	ů			0	ů			.66	ň		- :	3.33	ù
	(cB)		(n/sec)		(:a)		(m/sec)		(cm)	•	(n/sec)		(cm)		(#/sec)	
	3.5	0.06	3.42	0.343	2.5	0.14	2.92	0.415	1.0	0.06	3.84	0.598	1.0	0.06	1.60	0.252
	9.5	0.53	4.17	0.681	5.0	0.15	3.01	0.482	6.5	0.36	2.00	0.320	6.0	0.33	1.55	0.244
	17.5	0.97	4.72	0.*80	14.0	0.78	4.18	0.669	15.5	0.86	1.39	0.222	16.0	0.89	0.55	0.087
	43.5	2.42	5.62	0.331	25.0	1.28	4.77	0.763	24.5	1.36	5.02	0.803	27.5	1.53	4.58	0.721
	57.0	3.17	5.95	0.952 0.983	34.5 46.0	2.56	5.47	0.875	32.0	1.79	5.43	0.869	40.0	2.22	5.24	0.825
	74.0	4.11	6.03	1.000	57.0	3.1"	6.03	0.964	51.0	2.83	5.69	0.910	38.0 50 5	3.22	6.15	0.969
	99.0	5.50	6.03	1.000	72.5	4.03	6.25	1.000	65.0	3.61	6.15	0.984	71.5	3.97	6.28	0.989
	120.0	6.67	6.05	1,000	89.5	4.39	6.25	1.000	73.0 84.0	4.05	6.25	1,000	97.0	4.50 S.39	6.35	1.000
					98.0 106.0	5.44	6.25	1.000	97.5	5.42	6.25	1.000	119.0	0.61	6.35	1.000
					119.0	6.61	6.25	1.000	121.0	6.72	6.25	1.000				
x(m)		1	.0				1.5			2	.0			3	.0	
x		5	.55	2			8.33	- 2 -		. 11	.11	2		16	.66	
	(cm)		(a/sec)	u	(ca)		(a/sec)		2 (do)		(sec)		2 (cm)		(m/sec)	U
	1.0	0.06	0.51	0.114 0.087	1.0	0.06	0.29	0.047	1.0 3.5	0.06	0.49 0.34	0.080	1.0	0.06	0.44	0.070
	7.0	0.39	0.19	0.031	5.5	0.31	0.32	0.032	8.0	0.44	0.25	0.041	7.5	0.42	0.25	0.039
	15.0	0.83	0.71	0.114	15.5	0.56	0.39	0.096	17.0	0.94	0.92	0.150	15.5	0.86	1.14	0.180
	27.0	1.50	3.29	0.328	24.0	1.33	2.21	0.361	24.5	1.36	2.04	0.333	25.0	1.39	2.59	0.409
	37.5	2.67	5.48	0.841 0.650	46.0	1.94	4,34	041	34.0 45.0	1.89	3.35	0.346	33.0	1.83	3.34	0.523
	57.0	3.17	5. 4	0.921	57.0	3.1*	5.88	0.931	57.0 65.3	3.17	4.95	0.808	57.0 63.0	3.17 3.50	5.38	0.849
	77.5	4.31	6.10	0.979	75.5	4.19	5.98	0.976	78.0	4.33	5.91	0.964	74.5	4.14	6.00	0.948
	95.5	5.31	6.23	1.000	99.0	5.30	6.13	1.000	103.5	5.75	6.13	1.000	92.5	5.53	6.33	1.000
	111.5	6.67	6.23	1.000	119.0	0.01	6.15	1.000	120.0	6.67	6.13	1.000	120.0	6.67	6.33	1.000
x(m)			4.0				5.0			7	.0				9.5	
1		- 2	2.22			2				38	.88	- 2		5	2.77	A.
	(cm)		(m/sec)	U	(ca)		(m/sec)		(cm)		(n/sec)		2 (cm)		(m/sec)	U
	1.0	0.06	0.38	0.063	1.0	0.00	0.25	0.042	1.0	0.06	0.17	0.028	1.0	0.06	0.22	0.037
	9.0	0.50	0.23	0.038	8.0	0.44	0.26	0.043	9.5	0.53	0.30	0.050	9.0	0.50	0.42	0.070
	17.5	0.97	1.23	0.194	14.5	0.81	1.04	0.173	16.0	0.89	1.38	0.230	18.0	1.00	1.93	0.322
	26.0	1.44	2.72	0.430	23.0	1.28	2.06	0.343	24.0	1.33	2.50	0.417	30.5	1.69	2.77	0.462
	38.5	2.14 2.69	3.65	0.576	31.5	2.28	2.6*	0.445	32.0 40.5	1.78	2.96	0.493	39.0 49.0	2.17	3.46	0.577
	57.0	3.17	5.13	0.810	49.5	2.75	4.12	0.687	49.0	2.72	3.94	0.657	57.5	3.19	4.45	0.732
	74.5	4.14	5.86	0.925	72.5	4.03	5.36	0.893	73.5	4.08	1.38	0.813	80.0	4.44	5.31	0.885
	92.5	5.14	6.20	0.978	96.0	5.33	5.85	0.975	95.5	5.31	5.66	0.943	96,5	5.36	3.76	0.960
	102.0	5.67	6.33	1.000	108.0	6.00	6.00	1.000	103.0	5.72	5.85	0.972	106.0	5.89	5.86	0.977
					130.0	7.22	6.00	1.000	130.0	7.22	6.00	1.000	130.0	7.22	6.00	1.000
				x	(m)	1	1.0			1	2.0					
				-	2	i	U	Ŭ	2	i	U	Ú				
				-	(cm) 1.0	0.06	(m/sec) 0.59	0.096	(cn) 1.0	0.06	im/sec)	0.203	<u></u>			
					5.5	0.31	0.51	0.051	4.5	0.25	1.55	0.263				
					13.0	0.72	1.00	0.163	13.0	0.72	1.69	0.286				
					14.5	0.81	1.42	0.232	19.0	1.06	2.33	0.395 0.502				
					22.0	1.22	3.28	0.535	36.5	2.03	3.20	0.542				
					41.0	2.28	3.88	0.633	58.5	3.25	4.58	0 6				
					\$8.0	3.22	4.02	0. 34	84.5	4.69	5,38	0,912				
					72.0	4.50	5.13 5.50	0.837	94.0 104.0	5.22	5.59	0.947				
					93.0	5.17	5.71	0.931	117.0	6.50	5.90	1.000				
					115.5	6.42	6.10	0.995			- # 10 #N	1.000				
					1.9.0	1.447	0.1.7	1.100								

TABLE 1 - HUC MEAN VELOCITY - Half Density Canopy

x(m)			0			0.	3				0.6				1.	0	
x			0	ň		1.	06	û.			3.33		ñ		<u>s</u> .	55	ů
	(cn)		(m/sec)	U	(cm)	÷.	(n/sec)			(cm)	<u>.</u> *	(a/sec)		(cm)		(a/sec)	
	1.0	0.06	2.33	0.388	1.0	0.00	2.65	0.442		1.0	0.06	3.17	0.526	1.0	0.06	2.34	0.390
	11.2	0.62	3.60	0.600	12.5	0.69	0.48	0.079		11.8	0.65	1.32	0.219	11.2	0.62	0.72	0.119
	16.5	0.91	4.01	0.009	17.5	0.97	0.99	0.166		16.6	0.92	1.23	0.204	16.2	0.90	1.74	0.157
	29.5	1.64	4.85	0.309	29.7	1.05	4.92	0.819		28.8	1.60	4.78	0.799	26.4	1.47	3.45	0.576
	37.9	2.11	5.50	0.883	39.3	2.18	5.29	0.882		35.7	1.98	5.31	0.896	34.8	1.94	5.02	0.837
	56.5	3.14	5.73	0.954	56.5	3.14	5.68	0.947		60.0	2.33	5.89	0.980	52.1	2.89	5.72	0.953
	62.0	3.44	5.94	0.991	65.0	3.01	5.87	0.979		71.6	3.98	5.95	0.992	58.5	3.25	5.76	0.960
	90.0	5.00	5.94	0.991	88.7	4,93	6.00	1.000		99.7	5.54	6.00	1.000	67.1	3.73	5.83	0.971
	102.0	5.67	6.00	1.000	102.0	5,67	6.00	1.000		110.0	6.11	5.97	0.995	79.5	4,42	5.99	1.000
														107.0	\$.94	6.00	1.000
x(m)		1.	5			2.	0				3.0				5.	0	
x		8.	33			. 11.	11				16.60	·			27.	77	
	2 (cm)	1	(s/sec)	U	(cn)	:	U (a/sec)	U		(cm)	2	U (m/sec)	U	2 (cm)	1	(m/sec)	U
	1.0	0.06	1.22	0.203	1.0	0.06	0.56	0.094		1.0	0.06	0.22	0.037	1.0	0.06	0.19	0.031
	11.4	0.64	0.96	0.094	12.1	0.67	0.48	0.102		11.9	0.66	0.50	0.039	11.7	0.65	0.61	0.102
	16.7	0.93	0.96	0.161	16.2	0.90	1.14	0.189		15.7	0.87	0.99	0.165	18.1	1.00	1.62	0.270
	27.1	1.51	2.65	0.441	25.1	1.39	2.33	0.359		23.2	1.29	2.04	0.340	29.5	1.64	2.68	0.147
	34.7	1.93	4.04	0.674	34.3	1.90	3.83	0.638		28.5	1.58	2.69	0.448	40.1	2.23	5.65	0.609
	48.0	2.67	5.36	0.829	31.7	2.87	4.90	0.521		46.9	2.61	4.85	0.808	59.0	3.28	4,91	0.818
	58.2	3.23	5.65	0.942	59.5	3.29	5.59	0.931		38.5	3.25	5.47	0.912	69.0	3.63	5.43	0.905
	79.8	4.43	5.94	1,000	78.9	4.38	5.95	0.992		74.4	4.13	5.89	0.949	85.7	4.76	5.88	0.950
	92.0	5.11	5.99	0.999	92.3	5.13	0.00	1.000		87.3	4.85	6.00	1.000	95.6	5.31	6.00	1.000
	103.3	3+80	3.77	0.775	121.6	6.76	5.97	0.995		116.5	0.47	5.99	0.999	122.5	6.81	5.98	0.997
x(8)		7	.0			8.	5				9.5	5			11.	.0	
×		38	.88			47.	22	i.			52.	77	ù		61.	.11	ñ
-	(cm)	· · ·	(m/sec)		(cm)	-	(m/sec)			(cm)		(m/sec)		(cn)		(m/sec)	
	1.0	0.06	0.13	0.036	1.0	0.06	0.20	0.034 0.043		7.3	0.06	0.21	0.036	1.0	0.06	0.50	0.083
	1.4	0.41	0.28	0.047	7.0	N					0.78		2.2.2.2		· · · · · ·		0.091
	13.5	0.41 0.75	0.28	0.140	7.0 14.0	0.78	0.91	0.152		14.0	0.10	0.74	0.123	10.6	0.59	0.55	
	13.5 19.0 24.5	0.41 0.75 1.06 1.36	0.28 0.84 1.62 2.20	0.140 0.270 0.356	7.0 14.0 19.1 23.8	0.78	U.91 1.64 2.20	0.152 0.273 0.367		14.0 17.8 22.9	0.99	0,74 1,39 2,19	0.123 0.232 0.365	10.6 16.9 21.7	0.59 0.94 1.21	0.55	0.418
	13.5 19.0 24.5 34.8	0.41 0.75 1.06 1.36 1.94	0.28 0.84 1.62 2.20 2.97	0.140 0.270 0.366 0.495	7.0 14.0 19.1 23.8 32.7	0.78 1.06 1.32 1.82	0.91 1.64 2.20 2.90	0.152 0.273 0.367 0.483		14.0 17.8 22.9 31.1	0.99 1.27 1.73	0,74 1,39 2,19 2,76	0.123 0.232 0.365 0.460	10.6 16.9 21.7 31.6	0.59 0.94 1.21 1.76	0.55 1.82 2.51 2.90	0.304 0.418 0.983
	13.5 19.0 24.5 34.8 44.4 53.3	0.41 0.75 1.06 1.36 1.94 2.47 2.96	0.28 0.84 1.62 2.20 2.97 3.66 4.14	0.04 0.140 0.270 0.356 0.495 0.611 0.689	7.0 14.0 19.1 23.8 32.7 42.2 50.4	0.78 1.06 1.32 1.82 2.35 2.80	0.91 1.64 2.20 2.90 3.45 3.91	0.152 0.273 0.367 0.483 0.575 0.652		14.0 17.8 22.9 31.1 42.2 51.1	0.99 1.27 1.73 2.35 2.84	0.74 1.39 2.19 2.76 3.32 3.79	0.123 0.232 0.365 0.460 0.554 0.631	10.6 16.9 21.7 31.6 42.4 50.7	0.59 0.94 1.21 1.76 2.36 2.82	0.55 1.82 2.51 2.90 3.80 4.09	0.304 0.418 0.983 0.633 0.682
	13.5 19.0 24.5 34.8 44.4 53.3 59.0	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55	0.140 0.270 0.356 0.495 0.611 0.689 0.758	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0	0.35 1.06 1.32 1.82 2.35 2.80 3.28	0.91 1.64 2.20 2.90 3.45 3.91 4.39	0.152 0.273 0.367 0.483 0.575 0.652 0.731		14,0 17.8 22.9 31.1 42.2 51.1 59.0	0.99 1.27 1.73 2.35 2.84 3.28	0.74 1.39 2.19 2.76 3.32 3.79 4.30	0.123 0.232 0.365 0.460 0.554 0.631 0.717	10.6 16.9 21.7 31.6 42.4 50.7 59.0	0.59 0.94 1.21 1.76 2.36 2.82 3.28	0.55 1.82 2.51 2.90 3.80 4.09 4.56	0.304 0.418 0.983 0.633 0.682 0.760
	13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.27	0.047 0.140 0.270 0.356 0.495 0.611 0.689 0.758 0.758 0.790 0.879	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8	J.78 1.06 1.32 1.82 2.35 2.80 3.28 3.97 4.38	0.91 1.64 2.20 3.45 3.91 4.39 4.38 5.31	0.152 0.273 0.367 0.483 0.575 0.652 0.731 0.813 0.836		14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46	0.74 1.39 2.19 2.76 3.32 3.79 4.30 4.97 5.13	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0	0.59 0.94 1.21 1.76 2.36 2.82 3.28 3.67 4.11	0.55 1.82 2.51 2.90 3.80 4.09 4.56 4.84 4.99	0.304 0.418 0.983 0.633 0.682 0.760 0.807 0.832
	13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.27 5.72	0.047 0.140 0.270 0.366 0.495 0.611 0.689 0.758 0.758 0.790 0.879 0.953	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6	J.78 1.06 1.32 1.82 2.35 2.80 3.28 3.97 4.38 4.92	0.91 1.64 2.20 3.45 3.91 4.39 4.38 5.31 5.68	0.152 0.273 0.367 0.483 0.575 0.652 0.731 0.813 0.886 0.947		14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90	0,74 1,39 2,19 2,76 3,32 3,79 4,30 4,97 5,13 5,55	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6	0.59 0.94 1.21 1.76 2.36 2.82 3.28 3.67 4.11 4.53	0.55 1.82 2.51 2.90 3.80 4.09 4.56 4.84 4.99 5.66	0.304 0.418 0.983 0.633 0.682 0.760 0.807 0.832 0.945
	13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.31	0.28 0.84 1.62 2.20 3.66 4.14 4.55 4.74 5.27 5.72 5.72 5.89	0.047 0.140 0.270 0.356 0.495 0.611 0.689 0.758 0.790 0.879 0.953 0.982 1.000	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6 101.3 114.3	0.378 1.06 1.32 2.35 2.80 3.28 3.97 4.38 4.92 5.63 5	0.91 1.04 2.20 3.45 3.91 4.39 4.38 5.58 5.91 5.68 5.91	0.152 0.273 0.367 0.483 0.575 0.652 0.731 0.813 0.886 0.947 0.985 0.993		14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3 96.2 105.4	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85	0.74 1.39 2.19 2.76 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925 0.952 0.952	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6	0.59 0.94 1.21 1.76 2.36 3.28 3.67 4.11 4.53 4.96 5.42	0.55 1.82 2.51 2.90 4.09 4.56 4.84 4.99 5.66 5.79 6.00	0.304 0.418 0.983 0.633 0.682 0.760 0.807 0.832 0.943 0.943 0.966 1.000
	1.3.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	$\begin{array}{c} 0.41\\ 0.75\\ 1.06\\ 1.36\\ 1.94\\ 2.47\\ 2.96\\ 3.28\\ 4.18\\ 4.79\\ 5.54\\ 6.31\\ 6.81 \end{array}$	0.28 0.84 1.62 2.20 3.66 4.14 4.55 4.74 5.72 5.89 6.00 6.00	0.04 / 0.140 0.270 0.366 0.495 0.611 0.689 0.758 0.790 0.953 0.982 1.000 1.000	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6 101.3 114.3 129.5	0.78 1.06 1.32 1.82 2.35 2.80 3.28 3.97 4.38 4.92 5.635 7.19	0.91 1.64 2.20 2.30 3.31 4.39 4.39 4.38 5.68 5.91 5.96 6.00	0.152 0.273 0.367 0.483 0.575 0.652 0.731 0.813 0.836 0.947 0.985 0.993 1.000		14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3 96.2 105.4 116.8 132.0	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.34 5.649 7.33	0.74 1.39 2.19 2.76 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85 5.97 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925 0.952 0.952 0.952 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.82 3.28 3.67 4.11 4.53 4.96 5.42 5.83 6.89	0.55 1.82 2.90 3.80 4.05 4.56 4.99 5.66 5.79 6.00 5.98 5.99	0.304 0.418 0.983 0.633 0.682 0.760 0.807 0.832 0.945 1.000 0.996 0.999
	13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.18 4.79 5.54 6.31 6.81	0.28 0.84 1.62 2.207 3.66 4.14 4.55 4.74 5.27 5.89 6.00 6.00	0.04 0.140 0.270 0.356 0.495 0.611 0.689 0.758 0.758 0.879 0.953 0.982 1.000 1.000	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6 101.3 114.3 129.5	J. 75 J. 75 J. 06 J. 32 J. 82 Z. 35 Z. 80 J. 28 J. 97 J. 38 J. 66 J. 32 J. 82 Z. 35 J. 80 J. 32 J. 82 J. 83 J. 84 J. 82 J. 85 J. 84 J. 85 J. 85 J. 80 J. 82 J. 85 J. 84 J. 85 J. 85	0.91 1.64 2.20 3.45 3.91 4.39 4.38 5.31 5.68 5.91 5.96 6.00	0.152 0.273 0.483 0.575 0.652 0.731 0.813 0.886 0.947 0.947 0.993 1.000	12.0	14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3 96.2 105.4 116.8 132.0	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33	0,74 1,39 2,76 3,32 3,79 4,30 4,97 5,13 5,55 5,71 5,85 5,97 6,00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925 0.952 0.975 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 55.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.82 3.67 4.11 4.53 4.96 5.42 5.88 6.89	0.55 1.82 2.90 3.80 4.09 4.56 4.84 4.99 5.66 5.79 5.98 5.99	0.304 0.418 0.633 0.633 0.682 0.760 0.807 0.837 0.943 0.945 1.000 0.999 0.999
	7.5 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.58 4.18 6.31 6.81	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.75 4.75 5.72 5.72 5.80 6.00 6.00	0.044 0.140 0.270 0.366 0.495 0.611 0.689 0.758 0.758 0.758 0.953 0.953 0.953 1.000 1.000	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6 101.3 114.3 129.5	J. 75 1.06 1.32 1.82 2.35 2.80 3.28 3.97 4.38 4.92 5.63 7.19 x (m)	0.91 1.04 2.200 3.45 3.31 4.38 5.31 5.96 5.90 5.90	0,152 0,273 0,367 0,483 0,575 0,652 0,731 0,813 0,847 0,947 0,947 0,947	12.0	14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3 96.2 105.4 116.8 132.0	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33	0,74 1,39 2,19 2,76 3,32 3,79 4,30 4,97 5,15 5,55 5,71 5,85 5,71 5,85 5,71 5,85 6,00	0.123 0.365 0.460 0.631 0.717 0.829 0.952 0.952 0.952 0.952 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.362 3.28 3.67 4.11 4.53 4.96 5.42 5.83 6.89	0.55 1.82 2.51 2.90 3.00 4.09 4.56 4.84 4.94 5.66 5.79 6.00 5.99	0.304 0.418 0.983 0.633 0.663 0.862 0.360 0.837 0.945 0.945 0.945 0.996 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.31 6.81	0.28 0.84 1.62 2.20 2.97 3.14 4.55 4.74 5.27 5.89 6.00 6.00	0.04 0.14 0.270 0.366 0.495 0.689 0.758 0.758 0.879 0.879 0.982 1.000 1.000	7.0 14.0 19.1 23.8 32.7 42.2 50.4 59.0 71.5 75.8 88.6 101.3 114.3 129.5	J.75 1.06 1.32 1.82 2.85 2.80 3.28 3.97 4.38 4.92 5.63 6.35 7.19 x(m) x	2.30 1.04 2.20 3.45 3.91 4.39 4.38 5.08 5.91 5.96 6.00 2.90 2.90 4.38 5.91 5.96 6.00	0.152 0.273 0.367 0.483 0.575 0.483 0.552 0.731 0.836 0.947 0.985 0.993 1.000	12.0	14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 88.3 96.2 105.4 116.8 132.0	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33	0,74 1,59 2,19 2,76 3,379 4,30 4,30 4,30 4,30 5,13 5,55 5,71 5,78 5,97 6,00	0.123 0.365 0.460 0.631 0.717 0.855 0.925 0.952 0.975 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.82 3.67 4.11 4.53 4.96 5.42 5.83 6.89	0.55 1.82 2.51 2.50 4.09 4.54 4.84 4.99 5.60 5.79 6.00 5.99	0.304 0.418 0.983 0.633 0.662 0.760 0.807 0.832 0.966 1.000 0.996 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.31 6.81	0.28 0.64 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.27 5.89 6.00 6.00	0.04 0.14 0.270 0.366 0.495 0.689 0.758 0.758 0.758 0.879 0.953 0.982 1.000 1.000	7.0 14.0 13.1 23.8 51.7 50.4 59.0 71.5 75.8 6101.5 114.5 129.5	J.75 1.06 1.32 2.35 2.80 3.28 4.38 4.92 5.63 6.35 7.19 x (m)	2 0.91 1.64 2.20 2.90 3.45 3.91 4.59 4.59 5.91 5.96 6.00 2. (cm) 1.0 6.4	0.152 0.273 0.367 0.483 0.575 0.575 0.552 0.751 0.813 0.845 0.947 0.985 0.993 1.000	12.0 66.66	14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 86.3 96.2 105.4 116.8 1352.0 U (m/sec) 1.17 1.54	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33 Ú Ú	0.74 1.39 2.19 2.76 3.52 3.79 4.30 4.30 4.30 4.30 5.13 5.75 5.75 5.97 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925 0.952 0.952 0.974 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.82 3.67 4.11 4.55 4.96 5.42 5.88 6.89	0.55 1.82 2.51 2.90 4.09 4.56 4.84 4.99 5.60 5.79 6.00 5.79 5.99	0.304 0.418 0.983 0.635 0.760 0.807 0.945 0.945 0.945 1.000 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.31 6.81	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.87 5.80 6.00 6.00	0.04 0.140 0.270 0.456 0.451 0.611 0.689 0.758 0.758 0.758 0.957 0.982 1.000	7.0 14.0 19.1 23.8 32.7 42.2 73.5 73.8 80.0 101.5 114.5 129.5	J.75 1.06 1.32 2.35 2.80 3.280 3.97 4.38 4.92 5.63 6.35 7.19 x (m) <u>x</u>	2.00 2.90 3.91 4.59 4.39 4.39 5.91 5.96 6.00 2. (cm) 1.0 6.4 12.1	0.152 0.273 0.367 0.487 0.575 0.575 0.552 0.731 0.836 0.947 0.983 0.993 1.000 2 2	12.0	14.0 17.8 22.9 31.1 42.2 51.1 51.1 51.1 51.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33 Ú U 0.194 U.256 0.295	0.74 1.39 2.19 2.19 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85 5.71 5.85 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.855 0.925 0.952 0.952 0.974 0.995	10.6 16.9 21.7 31.6 31.6 42.4 50.7 55.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 3.67 4.11 4.53 4.96 5.42 5.88 9	0.55 1.82 2.51 2.90 4.56 4.84 4.84 4.84 5.98 5.66 5.98 5.99	0.304 0.418 0.983 0.633 0.663 0.863 0.760 0.853 0.945 0.945 1.000 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.81	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.72 5.890 6.00	0.04 0.140 0.270 0.495 0.495 0.495 0.495 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.953 1.000 1.000	7.0 14.0 19.1 23.8 32.7 42.2 74.5 9.0 71.5 75.8 610.3 114.3 129.5	J.78 1.06 1.32 2.35 2.35 2.35 2.35 2.35 3.28 3.97 4.32 5.63 6.35 7.19 x (e) x	2 0.91 1.04 2.20 2.90 3.35 3.31 4.38 5.91 5.96 6.00 2.00 2.00 1.0 6.4 1.2 1.0 5.4 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	0.152 0.273 0.467 0.487 0.575 0.575 0.552 0.731 0.836 0.947 0.985 0.947 0.985 0.947 0.985 0.997 1.000	12.0	14.0 17.8 22.9 31.1 42.2 51.1 50.0 74.0 80.3 88.3 96.2 105.4 105.4 116.8 116.8 116.8 116.8 116.8 117 1.54 1.17 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54	0.99 1.27 1.73 2.35 2.84 3.28 4.11 4.46 4.90 5.34 5.85 6.49 7.33 0.194 0.256 0.295 0.396 0.496	0.74 1.39 2.19 2.19 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85 5.71 5.85 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.925 0.925 0.925 0.975 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 64.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.36 3.67 4.15 3.496 5.88 6.89	0.55 1.82 2.51 2.90 4.09 4.56 4.84 4.84 4.84 5.66 5.79 6.00 5.98 5.99	0.304 0.418 0.983 0.632 0.760 0.807 0.837 0.965 1.000 0.999
<u>19-000000000000000000000000000000000000</u>	7.4 13.5 19.0 24.5 34.8 44.4 53.0 59.0 59.0 54.5 75.2 99.7 5.2 99.7 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.81	0.28 0.84 1.62 2.20 2.97 3.66 4.75 4.75 5.57 5.72 6.00 6.00	0.04 0.140 0.270 0.456 0.451 0.651 0.758 0.758 0.758 0.758 1.000 1.000	7.0 14.0 13.8 32.8 32.7 42.7 42.7 50.4 59.0 4 59.0 4 59.0 11.5 75.8 88.0 101.3 114.3 129.5	J.75 1.06 1.32 2.35 2.80 3.28 3.97 4.38 4.92 5.63 6.35 7.19 x (m) x	2.20 2.90 2.30 2.31 4.39 5.31 5.96 5.91 5.96 6.00 2.20 (cm) 1.0 6.4 1.0 5.1 2.1 2.0.3 2.9.2 4.2.2	0.152 0.273 0.367 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.947 0.947 0.947 0.993 1.000	12.0	14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 86.3 96.2 105.4 115.4 115.4 1152.0 U (m/sec) 1.17 1.54 1.54 1.54 1.54 1.54 1.54	0.99 1.27 1.27 2.35 2.84 4.11 4.10 5.35 6.49 7.33 0.194 0.295 0.396 0.255 0.396 0.439	0.74 1.39 2.19 2.76 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85 5.97 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.829 0.925 0.925 0.925 0.995 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.36 2.36 3.67 4.15 3.496 5.88 6.89	0.55 1.82 2.51 2.51 4.56 4.56 4.84 4.84 4.84 4.84 5.79 5.66 5.79	0.304 0.418 0.983 0.632 0.760 0.857 0.943 0.995 1.000 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 59.0 59.0 59.0 59.0 59.0 122.5	0.41 0.75 1.06 1.94 2.47 2.96 3.28 3.58 4.18 4.79 5.53 6.81	0.28 0.84 1.62 2.20 2.97 3.66 4.14 4.55 4.74 5.72 5.89 6.00 6.00	0.04 0.140 0.270 0.456 0.491 0.611 0.687 0.758 0.758 0.953 0.953 0.953 1.000 1.000	7.0 14.0 23.8 33.7 42.7 50.4 59.0 71.5 75.8 88.6 101.3 1129.5	J.75 1.06 1.35 2.35 2.30 3.28 3.97 4.38 4.92 5.30 6.35 7.19 x (e)	20091 1.04 2.20 2.30 3.45 3.91 4.38 5.31 5.96 6.00 2.20 1.0 6.4 120.0 2.92 2.2 5.2 5.96	0.152 0.273 0.367 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.985 0.985 0.985 0.985 0.993 1.000	12.0	14.0 17.8 22.9 31.1 51.1 59.0 74.0 59.0 74.0 59.0 74.0 59.0 74.0 59.0 74.0 59.0 74.0 59.0 74.0 59.0 74.0 105.4 116.4 116.4 112.0 111	0.99 1.27 1.27 2.35 2.85 4.11 4.10 5.35 6.49 7.33 0.194 0.256 0.396 0.499 0.194 0.256 0.396 0.439 0.711 0.639	0.74 1.39 2.19 2.76 3.32 3.79 4.30 4.97 5.13 5.55 5.71 5.85 5.97 6.00	0.123 0.232 0.365 0.460 0.554 0.651 0.855 0.925 0.925 0.995 0.995 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.76 2.36 2.32 3.67 4.11 4.55 4.96 5.42 5.88 9	0.55 1.82 2.51 3.80 4.56 4.84 4.84 4.84 4.84 5.66 5.99 5.00 5.99	0.304 0.418 0.983 0.633 0.760 0.807 0.832 0.945 0.945 0.945 0.945 0.996 0.9999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 99.7 113.6 122.5	0.41 0.75 1.06 1.34 2.47 2.96 3.28 3.58 4.18 4.79 5.54 6.31 6.81	0.28 0.48 1.62 2.20 3.66 4.14 4.55 4.74 5.77 5.72 5.89 6.00 6.00	0.04 0.140 0.270 0.456 0.495 0.611 0.681 0.758 0.799 0.879 0.953 0.953 0.953 1.000	7.0 14.0 19.1 23.8 53.7 42.2 50.4 59.0 71.5 75.8 6 101.5 1129.5	x (a)	2.30 2.30 2.30 2.30 3.45 3.31 4.38 5.31 5.68 5.31 5.68 5.31 5.68 5.31 5.68 6.00 2.00 1.00 1.00 5.45 6.00 2.00 5.45 5.31 1.45 5.31 5.35 5.31 1.45 5.32 1.45 5.35 5.35 1.45 5.35 5.35 1.45 5.45 5	0.152 0.273 0.367 0.485 0.552 0.652 0.856 0.945 0.985 0.985 0.985 0.985 0.985 0.993 1.000 2.2 2.2 2.2 2.87 3.28 3.87	12.0 66.66	14.0 17.8 22.9 31.1 42.2 51.1	0.999 1.27 1.27 2.35 2.84 3.28 4.11 4.46 4.90 6.34 5.85 6.49 7.33 0.194 0.194 0.256 0.295 0.396 0.496 0.495 0.496 0.496 0.496 0.711 0.788	0.74 1.39 2.19 2.19 3.52 3.53 4.30 4.97 4.97 5.55 5.71 5.85 5.97	0.123 0.232 0.365 0.460 0.554 0.654 0.717 0.829 0.925 0.925 0.925 0.925 0.975 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.76 2.36 2.32 3.67 3.62 3.28 3.67 5.82 5.83 6.89	0.55 1.82 2.51 2.90 3.80 4.56 4.56 4.99 5.66 5.79 6.00 5.79 6.08 5.99	0.304 0.418 0.983 0.633 0.663 0.760 0.807 0.833 0.945 1.000 0.996 1.000 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 96.2 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.47 3.28 3.28 4.18 4.79 5.54 6.31 6.81	0.28 0.84 1.62 2.20 3.66 4.74 4.55 4.74 5.77 5.72 5.89 6.00 6.00	0.04 0.140 0.270 0.456 0.495 0.611 0.689 0.756 0.790 0.875 0.955 0.982 1.000	7.0 14.0 19.1 23.8 53.7 42.2 50.4 59.0 71.5 75.8 6101.5 114.5 129.5	x (a)	2.091 1.04 2.20 2.45 3.94 4.35 5.31 5.96 6.00 2.00 2.45 5.96 6.00 1.0 6.4 1.21 1.20 2.2 2.2 5.21 2.2 5.21 2.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.152 0.273 0.367 0.483 0.555 0.655 0.655 0.9836 0.985 0.985 0.985 0.985 0.983 1.000 2.35 0.657 0.993 1.000 2.35 0.657 1.11 1.62 2.35 3.28 3.28 3.28 3.28 4.53	12.0 66.66	14.0 17.8 22.9 31.1 42.2 51.1 51.2 51.5 5	0.999 1.273 1.73 2.58 3.284 3.284 3.284 4.11 4.460 5.53 6.499 7.33 0.194 0.256 0.396 0.396 0.395 0.3496 0.395 0.3496 0.395 0.3496 0.395 0.3496 0.395 0.3496 0.355 0.3496 0.355 0.3496 0.355 0.3496 0.355	0.74 1.39 2.19 2.76 3.52 3.79 4.30 4.97 4.30 4.97 5.13 5.57 1 5.85 5.71 5.85 6.00	0.123 0.232 0.365 0.460 0.554 0.631 0.717 0.855 0.952 0.952 0.975 0.995 0.995	10.6 16.9 21.7 31.6 31.6 42.4 50.7 55.0 66.0 74.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.76 2.82 3.28 3.28 3.28 3.28 3.28 3.4.96 5.42 4.11 4.53 4.96 5.42 8.89	0.55 1.82 2.51 3.80 4.56 4.84 4.99 5.66 5.79 6.00 5.79 6.00 5.99	0.304 0.418 0.983 0.633 0.6632 0.760 0.887 0.887 0.943 0.943 0.996 1.906 0.999
	7.4 13.5 19.0 24.5 34.8 44.4 53.0 64.5 59.0 64.5 75.2 86.2 96.2 96.2 113.6 122.5	0.41 0.75 1.06 1.36 1.94 2.96 3.28 4.18 4.79 5.54 4.79 5.54 6.31	0.28 0.84 1.62 2.20 3.66 4.74 4.55 4.74 5.77 5.77 5.77 5.89 6.00 6.00	0.04 0.140 0.270 0.495 0.495 0.495 0.495 0.495 0.495 0.758 0.758 0.758 0.758 0.758 0.982 1.000 1.000	7.0 14.0 13.1 23.8 53.7 42.2 50.4 59.0 71.5 75.8 8010.3 114.5 129.5	x (a) 3.73 1.06 1.32 2.35 2.35 2.38 3.28 3.28 3.28 5.63 6.35 7.19 x (a) x	2.00 2.00 2.30 3.31 4.35 5.31 5.96 6.00 2.00 2.30 5.96 6.00 2.00 2.00 2.30 2.30 5.96 6.00 1.0 5.96 1.0 1.0 5.9 5.96 5.96 5.96 5.96 5.96 5.96 5.96	0.152 0.273 0.367 0.483 0.483 0.485 0.485 0.485 0.485 0.485 0.985 0.985 0.985 0.985 0.993 1.000 2.367 0.485 0.993 1.000 2.35 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.4	12,0 66.66	14.0 17.8 22.9 31.1 42.2 59.0 74.0 80.3 88.3 96.2 105.4 115.4 115.0 1.17 1.54.8 115.0 1.17 1.57 2.38 4.22 4.22 4.22 5.297 3.73 4.22 4.22 5.297	0.999 1.273 1.73 2.35 2.84 3.284 3.284 3.284 3.284 3.284 3.25 6.499 7.33 0.194 0.194 0.256 0.295 0.396 0.639 0.753 0.753 0.881 0.881 0.881 0.967 0.967 0.067	0.74 1.39 2.19 2.76 3.52 3.79 4.30 4.97 5.13 5.57 1 5.85 5.71 5.85 6.00	0.123 0.265 0.365 0.460 0.554 0.631 0.717 0.855 0.952 0.952 0.975 0.994 1.000	10.6 16.9 21.7 31.6 42.4 50.7 59.0 64.0 81.6 89.3 97.6 105.8 124.0	0.59 0.94 1.21 1.76 2.82 3.67 4.11 4.53 4.96 6.89	0.55 1.82 2.51 2.51 4.56 4.84 4.99 5.66 5.79 6.00 5.99 5.99	0.304 0.418 0.983 0.633 0.663 0.760 0.807 0.837 0.943 0.9964 1.000 0.3996 0.999

TABLE 1	- TD
TRANSITION	REGION

	Fu	11 Density Car	пору	Half Densit	y Canopy
z (cm)	ž	x _{td} (m)	\tilde{x}_{td}	x _{td} (m)	x _{td}
18	1.0	2.80	15.5	3.50	19.5
27	1.5	3.42	19.0	4.05	22.5
36	2.0	4.40	24.5	5.20	29.0
54	3.0	5.40	30.0	6.30	35.0
72	4.0	5.75	32.0	6.65	37.0
90	5.0	5.85	32.5	6.75	37.5

 $\tilde{x}_{td} = x_{td}/h$, h = 18 cm

2. Turbulence intensity

The measured turbulence intensity in the longitudinal and vertical directions, i.e., x and z directions, are summarized in Table 2-x-FDC, 2-z-FDC, 2-x-HDC and 2-z-HDC. The variations of the longitudinal and vertical turbulence intensities for the FDC case are shown in Figs. 5.32 and 5.34, respectively. For the HDC case the results are displayed in Fig. 5.33 and 5.35. In these tables the turbulence intensities based on both local velocity and free-stream velocity are tabulated. The turbulence intensities based on local velocity are denoted by

and

$$T_u = \frac{u_{rms}}{U}$$
,

$$T_w = \frac{w_{rms}}{U}$$

When the turbulence intensities are based on free-stream velocity, they are designated by

$$T_{u_{\infty}} = \frac{u_{rms}}{U_{\infty}} ,$$
$$T_{w_{\infty}} = \frac{w_{rms}}{U_{\infty}} ,$$

and

where $U_{\infty} = 6 \text{ m/sec}$.

x(m)			1.0			0))			().3			(0.6	
	2 ((m)	i	Tu	т _{и_}	:	i	Tu	T _{u_}	1	ì	Tu	τ	2	î	Ťu	T _u
	(cm) 1.0 3.5 9.5 11.0 17.5 29.0 43.5 57.0 68.5 74.0 86.5 99.0 109.5 120.0	0.06 0.19 0.53 0.61 0.97 1.61 2.42 3.17 3.81 4.11 4.81 5.50 6.08 6.67	0.166 0.150 0.129 0.122 0.115 0.032 0.021 0.012 0.009 0.008 0.008 0.008	0.0945 0.0885 0.0885 0.0885 0.0905 0.0905 0.0308 0.0212 0.0123 0.0082 0.0082 0.0082 0.0075 0.0078	(cm) 1.0 2.5 5.0 8.5 14.0 18.0 23.0 46.0 57.0 67.5 79.0 89.5 79.0 106.0 119.0	$\begin{array}{c} 0.06\\ 0.14\\ 0.28\\ 0.47\\ 0.78\\ 1.00\\ 1.28\\ 1.92\\ 2.56\\ 3.17\\ 3.75\\ 4.03\\ 4.39\\ 4.39\\ 5.44\\ 5.89\\ 6.61\\ \end{array}$	0.212 0.215 0.205 0.174 0.135 0.124 0.114 0.097 0.080 0.053 0.028 0.023 0.016 0.012 0.10 0.009 0.009	2 0.0917 0.1040 0.1030 0.0900 0.0900 0.0907 0.0885 0.0785 0.0237 0.0283 0.0237 0.0168 0.0108 0.0108 0.0108 0.0108	(cm) 1.0 3.5 6.5 12.5 15.5 19.0 24.5 32.0 42.0 51.0 57.0 65.0 73.0 84.0 97.5 111.0 121.0	$\begin{array}{c} 0.06\\ 0.19\\ 0.36\\ 0.69\\ 0.36\\ 1.06\\ 1.36\\ 1.36\\ 2.33\\ 2.83\\ 3.17\\ 3.61\\ 4.06\\ 4.67\\ 5.42\\ 6.17\\ 6.72\\ \end{array}$	$\begin{array}{c} 0.114\\ 0.124\\ 0.313\\ 0.208\\ 0.263\\ 0.366\\ 0.134\\ 0.090\\ 0.087\\ 0.077\\ 0.066\\ 0.043\\ 0.026\\ 0.014\\ 0.010\\ 0.009\\ 0.009\\ 0.009 \end{array}$	0.0728 0.0775 0.1040 0.0330 0.0608 0.1770 0.1120 0.0810 0.0795 0.0735 0.0645 0.0445 0.0263 0.0445 0.0155 0.0105 0.0105 0.0090	1.0 3.0 6.0 20.5 27.5 40.0 48.0 58.0 59.5 71.5 81.0 97.0 119.0	0.06 0.18 0.33 0.67 0.89 1.14 1.53 2.22 2.67 3.22 3.31 3.97 4.50 5.39 6.61	0.304 0.232 0.442 1.03 0.784 0.321 0.200 0.094 0.083 0.067 0.049 0.015 0.014 0.010 0.008	0.0810 0.0637 0.1140 0.0593 0.1230 0.1230 0.0782 0.0683 0.0782 0.0663 0.0503 0.0160 0.0148 0.0103 0.0090
x(m)		1	.0			1.	.5				2.0				3.0	
	2 (cm)	1	т _и	Т.,	:	:	т _и	T _u	: (c=)	z	т.,	т	2 (cm)	2	T _u	τ
	1.0 3.5 7.0 16.0 15.0 18.5 27.0 37.5 48.1 57.0 67.0 77.5 85.5 95.5 111.5 120.0	$\begin{array}{c} 0.06\\ 0.19\\ 0.39\\ 0.83\\ 1.03\\ 1.50\\ 2.08\\ 2.67\\ 3.17\\ 3.72\\ 4.31\\ 4.75\\ 5.31\\ 6.19\\ 6.67\\ \end{array}$	0.470 0.765 1.29 1.29 0.789 0.328 0.118 0.085 0.072 0.048 0.026 0.016 0.012 0.009	$\begin{array}{c} 0.0573\\ 0.0688\\ 0.0410\\ 0.0933\\ 0.1240\\ 0.1800\\ 0.1800\\ 0.1050\\ 0.0777\\ 0.0688\\ 0.0480\\ 0.0265\\ 0.0163\\ 0.0265\\ 0.0163\\ 0.095\\ 0.0095\\ 0.0088 \end{array}$	1.0 3.0 5.5 10.5 15.5 19.0 24.0 35.0 46.0 57.0 67.5 75.5 83.5 99.0 119.0	0.06 0.17 0.31 0.38 1.06 1.53 1.94 2.56 3.17 3.75 4.19 4.64 5.50 0.61	0.869 0.766 0.668 0.869 0.869 0.470 0.222 0.092 0.076 0.055 0.055 0.055 0.025 0.035 0.025 0.013	$\begin{array}{c} 0.0420\\ 0.0370\\ 0.0357\\ 0.0420\\ 0.0875\\ 0.1480\\ 0.1730\\ 0.1680\\ 0.0725\\ 0.0558\\ 0.0372\\ 0.0558\\ 0.0327\\ 0.0222\\ 0.0130\\ 0.0105 \end{array}$	1.0 3.5 8.0 13.0 24.5 34.0 45.0 57.0 65.3 78.0 89.0 103.5 120.0	$\begin{array}{c} 0.06\\ 0.19\\ 0.44\\ 0.72\\ 0.94\\ 1.11\\ 1.36\\ 1.89\\ 2.50\\ 3.17\\ 3.64\\ 4.33\\ 4.84\\ 5.75\\ 6.67\end{array}$	0.565 0.736 1.259 0.951 0.702 0.474 0.308 0.161 0.086 0.065 0.042 0.016 0.009 0.008	0.0462 0.0416 0.0525 0.0935 0.1230 0.1610 0.1720 0.1190 0.0710 0.0622 0.0417 0.0165 0.0097 0.0078	1.0 3.5 7.5 12.0 15.5 19.0 25.0 33.0 44.5 57.0 63.0 74.5 84.0 99.5 120.0	$\begin{array}{c} 0.06\\ 0.19\\ 0.42\\ 0.67\\ 0.86\\ 1.06\\ 1.39\\ 1.83\\ 2.47\\ 3.17\\ 3.17\\ 3.50\\ 4.14\\ 4.67\\ 5.53\\ 6.67\\ \end{array}$	0.777 0.736 1.035 1.082 0.755 0.552 0.397 0.315 0.203 0.121 0.086 0.055 0.029 0.017 0.011	0.0570 0.0515 0.0432 0.0955 0.1470 0.1560 0.1720 0.1730 0.1540 0.090 0.0815 0.0297 0.0178 0.0113
x(=)		4.	.0			5	.0				7.0			3	9.5	
x		22.	.22 T	T	2	27	.77 T	T			38.88 T	T	1	5. ž	2.77 T	T
	(cm) 1.0 5.0 9.0 14.0 17.5 26.0 38.5 26.0 38.5 57.0 62.5 57.0 62.5 83.0 92.5 102.0 119.0	0.06 0.28 0.50 0.78 0.97 1.08 1.44 2.14 2.69 3.17 3.47 4.14 4.61 5.67 6.61	0,768 0,768 0,570 1,400 1,010 0,656 0,335 0,260 0,207 0,165 0,207 0,165 0,025 0,015 0,025 0,017 0,012	0.0487 0.0362 0.0538 0.0992 0.1340 0.1550 0.1550 0.1510 0.1510 0.1510 0.1020 0.0637 0.0435 0.0255 0.0173 0.0128	(cm) 1.0 4.5 8.0 12.0 14.5 23.0 31.5 23.0 49.5 58.5 52.5 82.0 96.0 105.0 116.0 1130.0	$\begin{array}{c} 0.06\\ 0.25\\ 0.44\\ 0.67\\ 0.81\\ 1.28\\ 1.75\\ 2.28\\ 3.25\\ 4.03\\ 4.56\\ 5.33\\ 6.00\\ 6.44\\ 7.22 \end{array}$	1.160 1.050 0.978 0.900 0.707 0.535 0.445 0.339 0.251 0.224 0.186 0.103 0.065 0.017 0.011	0.0483 0.0402 0.0423 0.0735 0.1530 0.1530 0.1530 0.1530 0.1580 0.1580 0.1540 0.1540 0.0923 0.0630 0.0923 0.0630 0.0140 0.0108	(cm) 1.0 9.5 12.5 16.0 18.5 24.0 32.0 49.0 57.5 73.5 87.0 95.5 103.0 114.0 130.0	0.06 0.28 0.53 0.69 0.89 1.03 1.33 1.73 2.25 2.72 3.19 4.08 4.83 5.31 5.72 6.33 7.22	0.914 0.793 0.901 0.519 0.355 0.277 0.230 0.202 0.171 0.188 0.129 0.096 0.066 0.030 0.030	0.0258 0.0212 0.045 0.0737 0.1190 0.1110 0.1150 0.1150 0.1150 0.1150 0.1150 0.1150 0.1150 0.0150 0.0867 0.0622 0.0293 0.0218	(cm) 1.0 4.5 9.0 14.0 18.0 22.5 39.0 49.0 57.5 73.5 80.0 87.5 96.5 106.0 115.0 130.0	$\begin{array}{c} 0.06\\ 0.25\\ 0.50\\ 0.73\\ 1.00\\ 1.25\\ 2.17\\ 2.72\\ 3.19\\ 4.08\\ 4.44\\ 4.86\\ 5.89\\ 6.42\\ 7.22\\ \end{array}$	0.883 0.784 0.788 0.589 0.470 0.279 0.226 0.201 0.152 0.119 0.094 0.094 0.094 0.023 0.015	0.0323 0.0235 0.0552 0.1070 0.1280 0.1280 0.1280 0.1280 0.1290 0.1260 0.1290 0.1260 0.1260 0.1000 0.1000 0.1000 0.0872 0.0672 0.0447 0.0227 0.0152
				x (B)	8	11	.0				12.0					
				x	z (cm)	61 1	. <u>11</u> т _и	т.,	1	i	66.66 Т _и	т.,				
					1.0 5.5 8.5 11.0 14.5 17.5 22.0 30.5 41.0 50.0 50.0 50.0 50.0 50.0 82.0 93.0 102.5 115.5 129.0	0.06 0.31 0.47 0.72 0.81 0.97 1.22 1.69 2.28 2.28 3.22 4.00 4.56 5.17 5.69 6.42 7.17	0.425 0.932 0.760 0.661 0.608 0.395 0.501 0.245 0.207 0.173 0.160 0.125 0.109 0.078 0.023 0.023	0.0418 0.0982 0.0507 0.1100 0.1440 0.1640 0.1310 0.1310 0.1310 0.1310 0.1000 0.1000 0.1000 0.0742 0.0742 0.0252 0.0138	1.0 4.5 8.5 13.0 19.0 36.3 48.0 58.5 75.0 34.5 94.0 104.0 117.0	0.06 0.25 0.47 1.06 1.44 2.03 2.67 3.25 4.17 4.69 5.22 5.78 6.50 7.33	0.529 0.454 0.441 0.288 0.237 0.186 0.156 0.156 0.118 0.094 0.094 0.023 0.048 0.023	0.1060 0.1170 0.1210 0.1520 0.1420 0.1260 0.1260 0.1200 0.1200 0.0933 0.0542 0.0675 0.0472 0.0222 0.0135	-			

TABLE 2 - x - FDC LONGITUDINAL TURBULENCE INTENSITY - Full Density Canopy

 $\log \frac{1}{2}$

x(m)		-1.	0			C)				0	. 3			(0.6	
ż		-5.	\$5			0)				1	.66			3	5,33	
	: (cm)	ż	τ.,	T	: (cm)	ż	τ_	т.,		1 (cm)	i	т,	۳	2 (cm)	î	τ.,	т <u>.</u>
	2.0 5.5 9.0 14.0 19.5 26.5 35.0 44.5 51.5 60.0 73.0	0.11 0.31 0.50 0.78 1.08 1.47 1.94 2.47 2.47 2.86 3.33 4.06	0.082 0.056 0.063 0.061 0.058 0.061 0.058 0.061 0.038 0.029 0.009 0.007	0.046 0.035 0.042 0.045 0.055 0.046 0.055 0.049 0.056 0.028 0.009 0.007	7.5 11.0 15.0 21.0 28.0 48.0 60.5 70.5 74.0 81.0 91.5	0.42 0.61 0.83 0.89 1.17 1.36 2.11 2.66 3.36 3.92 4.11 4.50 5.08	0.025 0.068 0.072 0.038 0.057 0.038 0.022 0.022 0.032 0.015 0.015 0.015 0.015	$\begin{array}{c} 0.014\\ 0.043\\ 0.050\\ 0.041\\ 0.032\\ 0.021\\ 0.022\\ 0.032\\ 0.015\\ 0.015\\ 0.006\\ 0.003 \end{array}$		7.0 12.3 15.0 19.0 23.0 31.0 41.0 50.5 59.5 70.0 77.0	0.39 0.69 0.83 1.06 1.28 1.72 2.38 2.81 3.31 3.89 4.28	0 260 0.156 0.270 0.328 0.181 0.036 0.037 0.034 0.040 0.026 0.015	0.075 0.029 0.055 0.187 0.139 0.032 0.035 0.033 0.040 0.02 0.016	20.5 27.0 33.5 45.0 53.0 63.0 70.5 79.5	1.14 1.50 1.86 2.50 2.94 3.50 3.92 4.39	0.164 0.098 0.021 0.022 0.032 0.034 0.021 0.005	0.080 0.069 0.017 0.020 0.051 0.035 0.022 0.005
x(m)		1.	0			1.	5				2	.0				5.0	
×		5.	55			8.	33				11	.11	-		10	5.66	
	z (cm)	ż	T.	т.,	: (cm)	ż	т.,	т.,		z (cn)	1	т.	Tw_	z (cm)	2	T _N	т _{и_}
	29.5 34.5 42.0 51.0 61.0 70.0 77.0 85.0	1.64 1.92 2.33 2.83 3.39 3.89 4.28 4.72	0.152 0.132 0.023 0.025 0.029 0.036 0.025 0.007	0.103 0.106 0.021 0.024 0.025 0.036 0.025 0.007	26.5 32.5 37.0 44.0 52.0 61.5 72.5 82.5 93.5	1.47 1.81 2.06 2.44 2.59 3.42 4.03 4.58 5.19	0.118 0.205 0.200 0.100 0.034 0.012 0.035 0.013 0.012	0.054 0.138 0.155 0.088 0.032 0.031 0.035 0.013 0.012		31.0 40.0 49.0 61.0 64.5 75.0 87.5 102.0	1.72 2.22 2.72 3.39 3.58 4.17 4.86 5.67	0.089 0.109 0.041 0.020 0.022 0.024 0.014 0.006	0.043 0.071 0.032 0.018 0.020 0.023 0.014 0.006	22.0 28.5 37.5 44.5 49.0 58.5 67.5 85.5 94.5 102.5	1.22 1.58 2.47 2.72 3.25 3.75 4.25 5.29	0.067 0.130 0.155 0.132 0.134 0.061 0.006 0.015 0.014 0.005 0.001	0.024 0.064 0.102 0.103 0.109 0.055 0.006 0.015 0.014 0.005 0.001
x(n)	_	4.	0			5	.0				7	.0			5	2.5	
x		22	22			27.	.77				38	. 88			52	2.77	
_	2 (cm)	i	T _w	Tw.,	: (cm)	2	τ.	٦.,		2 (cm)	ì	τ	τ	2 (cn)	ì	r,	т.,
	23.5 31.5 41.0 50.0 60.0 72.0 79.0 89.0	1.31 1.75 2.28 3.33 4.00 4.39 4.94	0.158 0.145 0.119 0.109 0.100 0.050 0.027 0.018	0.058 0.075 0.055 0.085 0.088 0.048 0.048 0.027 0.018	15.5 21.0 30.0 36.5 44.0 50.0 56.5 64.5 72.0 81.0 91.0	0.86 1.17 1.68 2.03 2.41 2.41 3.58 4.00 4.30 5.06	0.330 0.139 0.057 0.090 0.127 0.104 0.078 0.061 0.044 0.050 0.013	0.063 0.044 0.026 0.049 0.049 0.049 0.049 0.049 0.073 0.049 0.025 0.040 0.051 0.039 0.028 0.012		10.5 14.5 19.5 26.0 33.0 43.0 51.5 61.5 71.0 81.5 91.0 101.0	0.58 0.81 1.08 1.44 1.83 2.39 2.86 3.42 3.94 4.53 5.06 5.61	0.295 0.408 0.297 0.247 0.213 0.141 0.120 0.092 0.058 0.005 0.014 0.013	0.021 0.065 0.091 0.101 0.105 0.085 0.081 0.069 0.048 0.004 0.013 0.012	2.5 7.0 11.0 15.5 19.0 27.0 36.5 52.0 60.5 62.5 62.5 71.0 82.0 91.5	$\begin{array}{c} 0.14\\ 0.39\\ 0.61\\ 0.86\\ 1.06\\ 1.50\\ 2.03\\ 2.53\\ 2.59\\ 3.36\\ 3.47\\ 3.94\\ 4.56\\ 5.08 \end{array}$	0.133 0.440 0.597 0.298 0.253 0.102 0.085 0.095 0.075 0.095 0.102 0.099 0.081 0.067	$\begin{array}{c} 0.005\\ 0.024\\ 0.075\\ 0.069\\ 0.071\\ 0.044\\ 0.045\\ 0.060\\ 0.052\\ 0.072\\ 0.072\\ 0.072\\ 0.065\\ 0.065\\ \end{array}$
						x(m)			11.0			1					
						x			61.11			-					
							2 (cm)	2		T _w	· · ·						
							11.5 16.0 21.5 29.5 40.0 46.0 54.5 67.0 73.0 82.5 91.5	0.64 0.92 1.19 1.64 2.22 2.56 3.03 3.36 3.72 4.06 4.58 5.08		0.071 0.262 0.133 0.082 0.054 0.085 0.050 0.057 0.062 0.065 0.044 0.034	0.008 0.099 0.064 0.036 0.061 0.039 0.046 0.052 0.057 0.040 0.052						

TABLE - 2 - z - FDC VERTICAL TURBULENCE INTENSITY - Full Density Canopy

TABLE 2 - x - HDC LONGITUDINAL TURBULENCE INTENSITY - Half Density Canopy

x(m)		0					0.3				0	.6			1	.0	
x		i	Ť.,,	τ.,	1	ž	1.66 T	τ.			i	.33 T	T.	1	i	.55 T.	Τ.,
	(cm) 1.0 7.0 11.0 16.5 21.4 29.5 37.9 48.1 56.5 62.0 77.2 90.0 102.0	0.06 0.39 0.62 0.91 1.19 1.64 2.11 2.67 3.14 3.44 4.29 5.00 5.67	0,213 0,163 0,143 0,121 0,108 0,092 0,050 0,058 0,036 0,020 0,009 0,005 0,004	0.0826 0.0203 0.0858 0.0809 0.0770 0.0744 0.0744 0.0744 0.0541 0.0541 0.0543 0.0198 0.0090 0.0050 0.0050	(cm) 1.0 6.4 12.5 17.5 21.7 39.3 43.5 56.5 55.7 88.7 102.0	0.06 0.35 0.69 0.97 1.20 1.65 2.18 2.69 3.14 3.61 4.20 4.93 5.67	0,160 0,242 0,6*4 0,585 0,190 0,076 0,062 0,046 0,023 0,010 0,005 0,005	0.0707 0.1820 0.0532 0.0971 0.1300 0.0635 0.0670 0.0587 0.0436 0.0225 0.00995 0.005 0.005		(cm) 1.0 6.2 11.8 16.6 19.1 28.8 35.7 43.0 60.0 71.6 83.3 99.7 110.0	0.06 0.35 0.65 1.60 1.98 2.39 3.33 3.98 4.63 5.54 6.11	0.127 0.398 0.324 0.357 0.357 0.147 0.080 0.074 0.043 0.017 0.007 0.004 0.003	0.0671 0.0919 0.0710 0.0728 0.1440 0.0717 0.0677 0.0421 0.0169 0.0070 0.0040 0.0030	(cm) 1.0 6.1 11.2 16.2 18.6 26.4 34.8 43.6 52.1 58.5 59.5 67.1 79.5 92.9	0.06 0.34 0.62 0.90 1.03 1.47 1.94 2.42 2.89 3.25 3.31 3.73 4.42 5.16	0.192 0.471 0.513 0.549 0.478 0.290 0.121 0.074 0.067 0.055 0.050 0.034 0.012 0.005	u_ 0.0749 0.0786 0.0610 0.0862 0.1390 0.1670 0.1670 0.0639 0.0509 0.0482 0.0350 0.0482 0.0350 0.0482 0.0350
														107.0	5.94	0.004	0.0040
x(m)		8.1	1			3	.0				16	.0					
-	I	ì	Tu	T,	:	1	T _u	T _u	11000011	2	i	T _u	Tu		1	Ťu	Tu
	(cm) 1.0 6.2 11.4 16.7 20.1 27.1 34.7 41.0 48.0 58.2 68.3 79.8 92.0 105.5	0.06 0.35 0.64 0.93 1.12 1.51 1.93 2.28 2.67 3.23 3.79 4.43 5.11 5.86	0.361 0.572 0.723 0.634 0.548 0.568 0.222 0.134 0.081 0.062 0.038 0.015 0.006	0.0733 0.0914 0.0660 0.1020 0.1320 0.1540 0.1500 0.1110 0.0723 0.0584 0.0376 0.0150 0.0060 0.0040	(CE) 1.0 5.8 12.1 16.2 19.1 25.1 34.3 43.8 51.7 59.3 59.0 78.9 92.3 105.7 121.6	$\begin{array}{c} 0,06\\ 0,32\\ 0,67\\ 0,90\\ 1,06\\ 1,39\\ 1,90\\ 2,43\\ 2,87\\ 3,29\\ 3,83\\ 4,38\\ 5,13\\ 5,87\\ 6,76 \end{array}$	$\begin{array}{c} 0.635\\ 0.777\\ 0.781\\ 0.610\\ 0.548\\ 0.460\\ 0.257\\ 0.145\\ 0.034\\ 0.066\\ 0.045\\ 0.045\\ 0.005\\ 0.005\\ 0.004\end{array}$	0.0597 0.0629 0.0797 0.1150 0.1400 0.1560 0.1640 0.0748 0.0614 0.0614 0.0198 0.0080 0.0050 0.0050 0.0040		(cm) 1.0 6.3 11.9 15.7 19.1 25.2 28.5 37.3 46.9 58.5 56.5 74.4 87.3 100.8 116.5	$\begin{array}{c} 0.06\\ 0.35\\ 0.66\\ 0.87\\ 1.06\\ 1.29\\ 1.58\\ 2.07\\ 2.61\\ 3.25\\ 3.69\\ 4.13\\ 4.85\\ 5.60\\ 6.47 \end{array}$	1.000 0.946 0.859 0.709 0.533 0.427 0.541 0.255 0.160 0.082 0.056 0.041 0.017 0.007 0.004	0.037 0.0369 0.0721 0.1170 0.1400 0.1450 0.1530 0.1590 0.1290 0.0748 0.0531 0.0403 0.0170 0.0070	(cm) 1.0 6.3 11.7 18.1 23.1 29.5 40.1 48.3 59.0 76.8 85.7 95.6 106.2 122.5	$\begin{array}{c} 0.06\\ 0.35\\ 0.65\\ 1.00\\ 1.28\\ 1.64\\ 2.23\\ 2.69\\ 3.28\\ 3.83\\ 4.27\\ 4.76\\ 5.31\\ 5.90\\ 6.81 \end{array}$	1.000 0.852 0.505 0.397 0.535 0.252 0.202 0.143 0.096 0.059 0.039 0.016 0.009 0.006	0.0310 0.0430 0.0859 0.1360 0.1350 0.1350 0.1430 0.1430 0.1430 0.1430 0.1430 0.0869 0.0290 0.0290 0.0290 0.0900
x(n)		7.0	1			5.	s				9	.5			11.	0	
<u>x</u>		38.1	18 T	т		47.	22 T	T			52 i	.77 T	T		61. i	11 T	т
	(cm) 1.0 7.4 13.5 19.2 24.5 34.8 44.4 53.3 59.0 64.5 75.2 86.2 99.7 113.6 122.5	$\begin{array}{c} 0.06\\ 0.41\\ 0.75\\ 1.06\\ 1.36\\ 2.47\\ 2.96\\ 3.28\\ 3.58\\ 4.18\\ 4.79\\ 5.54\\ 6.31\\ 6.81\\ \end{array}$	0.976 0.890 0.700 0.493 0.374 0.294 0.237 0.198 0.185 0.156 0.099 0.056 0.019 0.010	0.0350 0.0420 0.0980 0.1330 0.1460 0.1450 0.1450 0.1450 0.140 0.1230 0.0870 0.0534 0.0186 0.0180 0.0080	(cm) 1.0 0 14.0 19.0 23.8 32.7 42.2 50.4 59.0 71.5 78.8 88.6 101.3 114.3 129.5	$\begin{array}{c} 0.06\\ 0.39\\ 0.78\\ 1.06\\ 1.32\\ 1.82\\ 2.35\\ 2.50\\ 3.28\\ 3.97\\ 4.38\\ 4.92\\ 5.63\\ 5.65\\ 7.19\end{array}$	0.944 0.835 0.935 0.388 0.296 0.246 0.206 0.140 0.140 0.110 0.078 0.030 0.015 0.008	0.0320 0.0360 0.1050 0.1340 0.1420 0.1440 0.1440 0.1340 0.1340 0.1340 0.1320 0.0140 0.0975 0.0740 0.0050 0.0050		(cm) 1.0 7.3 14.0 17.8 22.9 31.1 42.2 51.1 59.0 74.0 80.3 96.2 105.4 115.8 132.0	$\begin{array}{c} 0.06\\ 0.41\\ 0.78\\ 0.99\\ 1.27\\ 1.73\\ 2.35\\ 2.84\\ 3.28\\ 4.11\\ 4.46\\ 4.90\\ 5.34\\ 5.85\\ 6.49\\ 7.33\\ \end{array}$	0.834 0.830 0.718 0.564 0.254 0.254 0.254 0.136 0.114 0.081 0.058 0.027 0.014 0.009	0.0300 0.0320 0.0883 0.1310 0.1360 0.1370 0.1410 0.1320 0.1320 0.1320 0.1320 0.0750 0.0750 0.0750 0.0250 0.0260 0.0260 0.0140	(cm) 1.0 6.1 10.6 16.9 21.7 31.6 42.4 50.7 59.0 66.0 74.0 81.6 89.3 97.6 97.5 105.8 124.0	$\begin{array}{c} 0.06\\ 0.34\\ 0.59\\ 0.94\\ 1.21\\ 1.76\\ 2.36\\ 2.82\\ 3.28\\ 3.67\\ 4.11\\ 4.53\\ 4.96\\ 5.42\\ 5.88\\ 6.89\\ \end{array}$	0.554 0.676 0.501 0.351 0.221 0.195 0.169 0.151 0.130 0.105 0.078 0.055	0.0460 0.0420 0.0540 0.1520 0.1470 0.1300 0.1280 0.1280 0.1280 0.1280 0.1280 0.0500 0.0550 0.0550 0.0550
		2.000				x(8)			12.0								
						ż			66.66			-					
						-	2 (cm)	I		T _u	. "u	2					
							1.0 6.4 12.1 20.0 29.2 42.2 51.7 59.0 69.7 77.6 85.5 94.7 109.3 124 5	0.06 0.36 1.11 1.62 2.35 2.87 3.28 3.87 4.31 4.75 5.20 6.07 6.92		0.470 0.409 0.420 0.369 0.273 0.201 0.176 0.158 0.136 0.114 0.089 0.061 0.027	0.0912 0.1050 0.1240 0.1465 0.1350 0.1280 0.1253 0.1190 0.1070 0.1070 0.1000 0.0840 0.0590 0.0270						

x(m)		0				0.	3	_			0.	5			1.	0	
ż		0				1.	66				3.	33			5.	\$5	
	1 (cm)	i	т _w	T.,	: (cm)	i	τ.,	T.,		2 (ca)	1	т.,	т _{*-}	1 (cm)	ì	т,	т. _{ч.}
	3.5 9.5 14.8 18.7 25.4 32.1 40.6 49.5 57.6	0.19 0.53 0.82 1.04 1.41 1.79 2.26 2.75 3.20	0.074 0.066 0.078 0.076 0.076 0.074 0.054 0.054 0.041 0.028	0.034 0.038 0.051 0.053 0.052 0.061 0.048 0.038 0.027 0.011	20.3 23.1 28.8 35.8 45.0 53.2 62.0 69.9 78.0	1.13 1.26 1.60 1.99 2.30 2.95 3.44 3.88 4.33	0.118 0.052 0.051 0.057 0.054 0.046 0.027 0.013 0.007	$\begin{array}{c} 0.071\\ 0.037\\ 0.041\\ 0.049\\ 0.050\\ 0.044\\ 0.026\\ 0.013\\ 0.007\\ \end{array}$		12.7 17.1 19.6 22.9 25.5 29.0 36.1 44.9 53.8 62.6	0.70 0.95 1.09 1.27 1.42 1.61 2.00 2.50 2.99 3.48	0.340 0.295 0.335 0.229 0.224 0.062 0.037 0.045 0.045 0.046 0.029	0.071 0.078 0.151 0.144 0.159 0.049 0.033 0.042 0.042 0.014 0.028	7.9 12.1 16.0 18.1 22.0 27.0 34.1 41.5 51.7 62.0	0.44 0.67 0.89 1.01 1.22 1.50 1.89 2.31 2.88 3.44	0.331 0.271 0.256 0.239 0.232 0.183 0.056 0.040 0.050 0.038	0.045 0.030 0.041 0.057 0.077 0.114 0.044 0.038 0.048 0.057
	73.5	4.08	0.009	0.009						71.4 80.3 87.0	3.97 4.46 4.83	0.020 0.008 0.005	0.020 0.008 0.005	68.9 78.3 88.5	3.83 4.35 4.92	0.022 0.007 0.002	0.022 0.007 0.002
x(m)		1	.5			2	0				3	.0			5	.0	
ż			. 33	_		11	11				16	.66			27	77	
	z (cm)	ì	т _ж	т.,	2 (cm)	i	T.	۳.		1 (cm)	ĩ	ты	т _{м.}	2 (cm)	ĩ	τ _w	т.,
	9.2 13.8 19.5 23.0 28.0 33.0 41.8 51.4 64.8 75.4 86.0	0.51 0.77 1.08 1.28 1.56 1.85 2.32 2.85 3.60 4.19 4.78	0, 122 0, 284 0, 299 0, 257 0, 207 0, 150 0, 048 0, 038 0, 033 0, 017 0, 008	0.013 0.031 0.068 0.082 0.096 0.092 0.040 0.035 0.032 0.017 0.008	15.7 22.0 29.4 38.5 44.1 52.6 61.0 70.0 77.6 88.0	0.87 1.22 1.63 2.14 2.45 2.92 3.39 3.89 4.31 4.89	$\begin{array}{c} 0.216\\ 0.174\\ 0.160\\ 0.152\\ 0.092\\ 0.043\\ 0.041\\ 0.035\\ 0.023\\ 0.009\end{array}$	$\begin{array}{c} 0.038\\ 0.044\\ 0.082\\ 0.111\\ 0.075\\ 0.039\\ 0.039\\ 0.034\\ 0.023\\ 0.009 \end{array}$		13.9 18.8 29.0 40.3 47.6 61.0 71.0 81.7 95.0	0.77 1.05 1.61 2.24 2.65 3.39 3.94 4.54 5.28	0.119 0.245 0.199 0.193 0.146 0.075 0.038 0.021 0.006	0.014 0.059 0.090 0.135 0.119 0.067 0.037 0.021 0.006	9.3 14.5 19.5 26.8 37.4 49.7 62.0 72.7 84.9 96.4 109.0	0.52 0.81 1.08 1.49 2.08 2.76 3.44 4.04 4.72 5.36 6.06	0.405 0.408 0.336 0.238 0.204 0.171 0.119 0.058 0.028 0.009 0.007	0.032 0.061 0.095 0.098 0.115 0.125 0.101 0.054 0.027 0.009 0.007
x(m)			7.0			8	.5				9	.5			11		
ż		38	8,88			47	22				52	.77			61	.11	14
	2 (cm)	,	1.	1	(cn)	1	14	·*.		2 (cm)	1	14	·	1 (cm)	1	۳.,	"
	15.1 18.3 22.5 29.4 38.1 48.7 57.2 63.6 73.8 84.8 96.7 108.5	0.84 1.02 1.25 1.63 2.12 2.71 3.18 3.53 4.10 4.71 5.37 6.03	0.342 0.272 0.221 0.114 0.108 0.108 0.107 0.105 0.089 0.052 0.023 0.012	0.065 0.071 0.073 0.048 0.058 0.070 0.058 0.079 0.085 0.079 0.085 0.079 0.049 0.049 0.022 0.012	14.5 20.7 29.8 39.7 47.0 50.5 61.5 71.7 \$4.1 96.5 108.5	0.80 1.15 1.66 2.21 2.61 3.42 3.98 4.67 5.36 6.03	0.077 0.180 0.189 0.149 0.156 0.124 0.104 0.076 0.042 0.013	0,012 0,056 0,074 0,082 0,084 0,081 0,078 0,063 0,063 0,017 0,013	51	14.7 18.7 25.2 36.0 45.0 51.0 62.0 75.8 88.3 100.9 109.0	0.82 1.04 1.40 2.50 2.83 3.44 4.21 4.90 5.60 6.06	0.211 0.143 0.143 0.109 0.122 0.114 0.100 0.076 0.055 0.031 0.018	0.034 0.039 0.055 0.054 0.071 0.073 0.074 0.065 0.051 0.051 0.030 0.018	13.6 18.2 22.1 29.9 40.5 52.9 61.0 70.4 82.1 92.7 101.5 110.0	0.76 1.01 1.23 1.66 2.25 2.94 3.39 3.99 4.56 5.15 5.64 6.11	0.194 0.153 0.128 0.129 0.121 0.072 0.066 0.070 0.061 0.040 0.039 0.028	0.038 0.050 0.063 0.072 0.051 0.059 0.059 0.059 0.059 0.039 0.039 0.039
						X(m)			12								
						x		;	66.66	T	T	8					
						-	(cn)	0.11				82					
							4.0 9.4 16.6 22.4 32.5 44.0 52.5 63.1 73.7 84.7 95.3 110.5	0.22 0.52 0.92 1.24 1.80 2.44 2.92 3.51 4.10 4.71 5.29 6.14		0.133 0.102 0.146 0.188 0.144 0.140 0.140 0.016 0.092 0.048 0.048 0.043 0.022	0.030 0.029 0.051 0.077 0.075 0.088 0.081 0.072 0.060 0.045 0.042 0.022						

TABLE 2 - : - HDC VERTICAL TURBULENCE INTENSITY - Half Density Canopy

3. Shear Stress

The measured turbulent shear stress $-\overline{uw}$ data are summarized in Tables 3-FDC and 3-HDC. The results for the FDC case are displayed in Figs. 5.26a and 5.26b. For the HDC case the results are shown in Figs. 5.27a and 5.27b. In these tables the shear stress is made dimensionless using $-\overline{uw}$ [0,1], i.e., the turbulent shear stress at the top of canopy leading edge (at \tilde{x} , $\tilde{z} = 0$, 1).

		TABLE 3 -	FDC		
TURBULENT	SHEAR	STRESS - 8	Full	Density	Canopy

-UW[0	.1] = 10	20 (cm/s	ec) ²													
x(m)			1.0			0				0.3				0.6		
X	t (cm)	i	-uw (cm/s) ²	<u>uw[x.2]</u> uw[0.1]	: (cm)	ĩ	-uw (cm/s) ²	<u>uw[x,z]</u> uw[0,1]	I (cm)	i.66	-uw (cn/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	: (cm)	i 3.3	-uv (cm/s) ²	<u>uw[x,z]</u> uw[0,1]
	2.0 5.5 9.0 14.0 19.5 26.5 35.0 44.5 51.5 60.0 73.0	0.11 0.31 0.50 0.78 1.08 1.47 1.94 2.47 2.86 3.33 4.06	287 326 292 416 490 530 462 253 137 73 9	0.28 0.32 0.29 0.41 0.48 0.62 0.45 0.25 0.13 0.07 0.01	3.0 7.5 11.0 15.0 16.0 21.0 28.0 38.0 48.0 60.5 70.5 74.0 81.0 91.5	0.17 0.42 0.61 0.83 0.89 1.17 1.36 2.11 2.66 3.36 3.92 4.11 4.50 5.08	630 \$11 800 966 969 1081 1047 789 454 256 66 37 11 6	0.62 0.50 0.78 0.95 1.06 1.03 0.77 0.45 0.25 0.06 0.036 0.01 0	2.0 7.0 12.5 15.0 19.0 23.0 31.0 41.0 50.5 59.5 70.0 77.0	0.11 0.39 0.69 0.83 1.06 1.28 1.72 2.28 2.81 3.31 3.89 4.28	582 311 68 31 6732 2323 577 700 570 439 130 73	0.57 0.30 0.07 0.03 6.66 2.28 0.57 0.69 0.56 0.43 0.13 0.07	3.0 6.5 12.5 16.0 20.5 27.0 33.5 39.0 45.0 63.0 70.5 79.5	0.167 0.36 0.69 0.89 1.14 1.50 1.86 2.17 2.50 2.94 3.50 3.92 4.39	70 125 20 6 2212 1671 471 493 491 342 157 41	0.07 0.12 0.02 0.01 2.17 1.64 0.46 0.46 0.48 0.48 0.48 0.34 0.15 0.04
x(m)		1	.0			1	.5			2.0)			3.0		
ż		5	. 55				. 33			11.1	1			16.6	6	
	1 (cm)	ì	-uw (ca/s) ²	<u>uw[x,z]</u> uw[0,1]	: (cs)	i	-ūw (cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	: (cm)	1	-uw (cm/s) ²	<u>uw[x,z]</u> uw[0,1]	(cm)	i	-uw (cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>
	3.5 7.0 11.5 14.0 18.0 23.0 29.5 34.5 42.0 51.0 70.0 77.0 85.0	0.19 0.39 0.64 0.78 1.00 1.28 1.64 1.92 2.33 2.83 3.39 3.89 4.28 4.72	1 4 25 60 1055 2869 4830 1435 448 388 334 233 101 33	0 0.02 0.06 1.03 2.81 4.74 1.41 0.44 0.38 0.33 0.23 0.10 0.03	2.5 6.0 9.0 12.5 16.0 20.0 26.5 32.5 37.0 44.0 52.0 52.0 52.5 82.5 93.5	0.14 0.33 0.69 0.92 1.11 1.47 1.81 2.06 2.44 2.44 2.44 3.42 4.03 4.58 5.19	6 4 19 76 368 726 1583 2508 2765 1406 512 309 222 55 9	0.01 0.02 0.07 0.36 0.71 1.55 2.46 2.71 1.38 0.50 0.30 0.22 0.05 0.01	3.5 6.5 10.0 19.5 23.5 31.0 40.0 61.0 64.5 75.0 87.5 102.0	0.19 0.36 0.56 1.08 1.31 1.72 2.22 2.72 3.39 3.58 4.17 4.86 5.67	2 21 28 204 312 940 1650 1655 657 210 228 185 46 1	0 0.02 0.03 0.20 0.31 0.92 1.62 1.52 0.64 0.21 0.22 0.18 0.05 0	2.0 7.0 11.0 22.0 28.5 37.5 44.5 49.0 58.5 67.5 85.5 94.5 102.5	0.11 0.39 0.61 0.83 1.22 1.58 2.47 2.72 3.25 3.75 4.25 4.25 4.75 5.22 5.69	2 27 112 955 1512 1848 2320 2271 2382 1000 306 170 76 30 4	0 0.03 0.12 0.94 1.48 1.81 2.27 2.23 2.34 0.98 0.30 0.17 0.07 0.03 0
x(m)		4	1.0			5	.0			7	.0			9	.5	
ż		23	2.22			27	1.77			38	.88			\$2	.77	
	1 (cs)	1	-uw (cm/s) ²	<u>uw[x,:]</u> <u>uw[0,1]</u>	: (cm)		-uw (cs/s) ²	UW[X,2] UW[0,1]	1 (cm)		-uw (cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	2 (cm)	:	-uw (cm/s) ²	<u>uw[x,:]</u> <u>uw[0,1]</u>
	2.0 6.5 11.5 15.0 18.0 23.5 31.5 41.0 50.0 60.0 72.0 79.0 89.0	0.11 0.36 0.64 0.83 1.00 1.31 1.75 2.28 2.78 3.33 4.00 4.39 4.94	35 46 55 339 772 805 1461 1881 2290 979 478 247 110	0.03 0.05 0.05 0.33 0.76 0.79 1.43 1.84 2.25 0.96 0.47 0.24 0.11	2.0 6.5 10.5 15.5 21.0 30.0 36.5 44.0 50.0 56.5 64.5 72.0 81.0 91.0	0.11 0.36 0.58 0.86 1.17 1.68 2.03 2.44 2.78 3.14 3.58 4.00 4.50 5.06	41 32 244 1081 1160 1219 1282 1793 2043 1733 1251 622 303 72	0.04 0.03 0.24 1.06 1.14 1.20 1.26 1.76 2.00 1.70 1.23 0.61 0.30 0.07	2.0 6.5 10.5 14.5 19.5 26.0 33.0 43.0 51.5 61.5 71.0 81.5 91.0 101.0	0.11 0.36 0.58 0.81 1.08 1.44 1.83 2.39 2.86 3.42 3.94 4.53 5.06 5.61	0 168 684 854 1103 900 835 1049 1122 846 655 320 69	0 0.16 0.67 0.84 1.08 0.88 0.82 1.03 1.10 0.83 0.64 0.31 0.07	2.5 7.0 11.0 15.5 19.0 27.0 36.5 45.5 52.0 60.5 62.5 71.0 82.0 91.5 103.0	$\begin{array}{c} 0.14\\ 0.39\\ 0.61\\ 0.86\\ 1.06\\ 1.50\\ 2.03\\ 2.53\\ 2.89\\ 3.36\\ 3.47\\ 3.94\\ 4.56\\ 5.08\\ 5.72\\ \end{array}$	20 45 424 1195 640 711 784 922 707 1018 1180 1035 788 701 207	0.02 0.04 0.42 1.17 0.63 0.70 0.77 0.90 0.69 1.00 1.16 1.01 0.77 0.69 0.20
						x(0)		11.0								
						ż		61.1	1	-	-					
						-	(cm)		(cm/s) ²	Uw[0,1						
							2.0 6.5 11.5 29.5 40.0 54.5 67.0 73.0 82.5 91.5 100.5 112.0	0.11 0.36 0.64 0.92 1.19 1.64 2.22 2.22 3.03 3.36 5.72 4.06 4.58 5.58 6.22	19 189 2119 1063 762 701 468 815 883 952 803 590 439 288 58	0.02 0.20 2.07 1.04 0.75 0.69 0.46 0.67 0.93 0.67 0.93 0.67 0.93 0.59 0.43 0.29 0.06		э				

z cm) 3.5 9.5 4.8 8.7 5.4 2.1 0.6 9.5 7.6 6.0	ž 0.19 0.53 0.82 1.04 1.41 1.79 2.26	0 -uw (cm/s) ² 364 632 817 826	<u>uw[x,z]</u> <u>uw[0,1]</u> 0.43 0.74	I (cm)	0 1 2	. 66			3.3	53			5.5	5	
z cm) 3.5 9.5 4.8 8.7 5.4 2.1 0.6 9.5 7.6 6	ž 0.19 0.53 0.82 1.04 1.41 1.79 2.26	-(JW (cm/s) ² 364 632 817 826	<u>uw[x,z]</u> <u>uw[0,1]</u> 0.43 0.74	r (cm)	i	.00			3	55			3.5	2	
3.5 9.5 4.8 8.7 5.4 2.1 0.6 9.5 7.6 6 0	0.19 0.53 0.82 1.04 1.41 1.79 2.26	364 632 817 826	0.43			(cm/s)2	uw[x,z]	2 (cm)	î	-uw (ca/s) ²	<u>uw[x,z]</u> uw[0,1]	I (cm)	ž.	-UW (cm/5) ²	Uw[x,1]
3.5	2.75 3.20 3.67 4.08	1354 850 498 367 146 39 6	0.96 0.97 1.59 0.98 0.59 0.43 0.17 0.05 0.01	4,0 9,0 13,2 20,3 23,1 28,8 35,8 45,0 53,2 62,0 69,9 78,0	0.22 0.50 0.73 1.13 1.28 1.60 1.99 2.50 2.95 3.44 3.88 4.33	53 22 24 806 149 629 505 343 125 37 6	0.06 0.026 0.028 0.95 1.75 0.73 0.74 0.59 0.40 0.15 0.15 0.04 0.01	3.5 8.3 12.7 17.1 19.6 22.9 25.5 29.0 36.1 44.9 53.8 62.6 71.4 80.3 87.0	0.19 0.46 0.70 0.95 1.09 1.27 1.42 1.61 2.00 2.50 2.99 3.48 3.97 4.46 4.83	81 121 97 731 3047 4041 2711 1094 473 497 365 132 120 22 7	0.096 0.142 0.114 0.86 3.58 4.75 3.19 1.29 0.56 0.58 0.43 0.16 0.14 0.03 0.01	4.0 7.9 12.1 16.0 18.1 22.0 34.1 41.5 51.7 62.0 68.9 78.3 88.5	0.22 0.44 0.67 0.89 1.01 1.22 1.50 1.89 2.31 2.88 3.44 3.83 4.35 4.92	156 394 4 858 1813 2792 1010 419 422 235 111 15 7	0.18 0.46 0 0.42 1.01 2.13 3.28 1.19 0.49 0.50 0.28 0.13 0.02 0.01
	1	1.5				2.0				5.0			5	.0	
		5.55			1	1.11			16	.66			27	.77	
1 ca)	1	-uw (cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	z (cm)	1	(cm/s)2	<u>uw[x,1]</u> <u>uw[0,1]</u>	2 (cm)	2	-uw (cm/s) ²	uw[x,z] uw[0,1]	r (cm)	:	(cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>
3.5 9.2 3.8 9.5 3.0 8.0 3.0 1.8 1.4 4.8 5.4 6.0	0.19 0.51 0.77 1.08 1.28 1.56 1.83 2.32 2.85 3.60 4.19 4.78	74 114 233 907 1673 1895 2123 723 404 217 92 6	0.09 0.13 0.27 1.07 2.23 2.50 0.85 0.48 0.26 0.11 0.01	3.0 9.7 15.7 22.0 29.4 38.5 44.1 52.6 61.0 70.0 77.6 88.0	0.17 0.54 0.87 1.22 1.63 2.14 2.45 2.92 3.39 3.89 4.31 4.89	31 167 637 1643 1976 1920 942 417 216 127 60 8	0.04 0.19 0.75 1.93 2.32 2.26 1.11 0.49 0.25 0.15 0.07 0.01	3.0 10.0 13.9 18.8 29.0 40.3 47.6 61.0 71.0 81.7 95.0	0.17 0.56 0.77 1.05 1.61 2.24 2.65 3.39 3.94 4.54 5.28	20 98 411 1651 2441 1583 626 180 50 3	0.02 0.12 0.48 1.15 1.94 2.87 1.86 0.74 0.21 0.06 0	4.0 9.3 14.5 19.5 26.8 37.4 49.7 62.0 72.7 84.9 96.4 109.0	0.22 0.52 0.81 1.08 1.49 2.08 2.76 3.44 4.04 4.72 5.36 6.06	11 168 909 1255 1452 2170 2236 1357 574 124 14 3	0.01 0.20 1.07 1.48 1.71 2.55 2.63 1.60 0.68 0.15 0.02 0.004
	1	7.0			6	.5			9.	.5			11.	0	
	3	8.88			47	.22			52	.77			61.	11	
т св)	1	(cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	[cm)	2	(cm/s) ²	<u>uw[x.z]</u> <u>uw[0,1]</u>	2 (cm)	1	-uw (cm/s) ²	<u>uw[x,z]</u> <u>uw[0,1]</u>	2 (cm)	z	-uw (cm/s) ²	uw[x,z] uw[0,1]
4.5 9.8 5.1 8.2 9.4 8.7 7.6 8.7 7.6 8.7 7.6 8.7 5.8 8.7 5.8 8.7 5.8 8.5 7.6 8.5	0.25 0.55 0.84 1.02 1.25 1.63 2.12 2.71 3.18 3.53 4.10 4.71 5.37 6.03	18 194 1049 1301 1541 1172 1554 1655 1478 1336 825 405 41 14	0.21 0.23 1.23 1.53 1.81 1.83 1.95 1.74 1.57 0.97 0.48 0.05 0.02	3.5 9.0 14.5 20.7 29.8 39.7 47.0 50.5 61.5 71.7 84.1 96.5 108.5	0.19 0.50 0.80 1.15 1.66 2.21 2.61 2.81 3.42 3.98 4.67 5.36 6.03	8 66 757 905 1197 1508 1836 1303 1515 1176 594 114 42	0.01 0.08 0.89 1.06 1.41 1.77 2.16 1.53 1.78 1.38 0.70 0.13 0.05	3.5 8.9 14.7 18.7 25.2 36.0 45.0 51.0 62.0 75.8 88.3 100.9 109.0	0.19 0.50 0.82 1.04 1.40 2.00 2.50 2.83 3.44 4.21 4.90 5.60 6.06	1 18 803 1068 951 1295 1361 1288 1325 994 636 121 53	0 0.02 0.94 1.26 1.12 1.52 1.60 1.52 1.56 1.17 0.75 0.14 0.06	3.0 8.3 13.6 18.2 22.1 29.9 40.5 52.9 61.0 70.4 82.1 92.7 101.5 110.0	$\begin{array}{c} 0.17\\ 0.46\\ 0.76\\ 1.01\\ 1.23\\ 1.66\\ 2.25\\ 2.94\\ 3.39\\ 3.91\\ 4.56\\ 5.15\\ 5.64\\ 6.11\\ \end{array}$	2 728 798 1081 928 825 1230 787 871 1170 625 340 222 104	0 0.08 0.94 1.27 1.09 0.97 1.45 0.93 1.02 1.38 0.74 0.40 0.26 0.12
					x(n)		12.0								
					x		66.66								
						(cn)	•	(cm/s) ²		,1]					
						4.0 9.4 16.6 22.4 32.5 44.0 52.5 63.1 73.7 84.7 95.3 110.5	0.22 0.52 0.92 1.24 1.80 2.44 2.92 3.51 4.10 4.71 5.29 6.14	202 485 843 1320 885 1168 991 1012 1049 575 251 30	0.2 0.5 0.9 1.5 1.0 1.3 1.1 1.1 1.2 0.6 0.3 0.0	4 7 9 5 5 4 7 7 9 9 5 8 8 0 0 4					
	: m) :.5 :.6 :.0 :.6 :.0 :.4 :.4 :.4 :.4 :.5 :.5 :.4 :.5 :.4 :.5 :.4 :.5 :.4 :.5 :.4 :.5 :.4 :.5 :.5 :.4 :.5 :.5 :.5 :.5 :.5 :.5 :.5 :.5	i 2 iii) 2 iiii) 2 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

TABLE 3 - HDC TURBULENT SHEAR STRESS - Half Density Canopy

4. Boundary-layer thicknesses and integral parameters.

The boundary-layer thickness, displacement thickness, momentum thickness, shape factor and internal boundary-layer thickness data are tabulated in Tables 4-FDC and 4-HDC. In these tables the fractions of displacement thickness and momentum thickness over the canopy height are also summarized. The results are shown in Figs. 5.9, 5.10, 5.11, 5.12 and 5.31. The dimensionless thicknesses are referred to the canopy height h = 18 cm.

TABLE 4 - FDC BOUNDARY-LAYER THICKNESSES AND INTEGRAL PARAMETERS - Full Density Canopy

x (=)	i	6 (cm)	8	د» (ca)	8.	9 (cm)	ð	н	(cm)	č,	(cm)	^ē n	ši (c∎)	ė,
-1.0	-5.55	72	4.00	10.8	0.60	7.7	0.43	1.40						
0	0	72	4.00	13.5	0.75	9.0	0.50	1.50	8.1	0.45	4.4	0.24		
0.3	1.66	72	4.00	18.4	1.02	8.1	0.45	2.27	12.2	0.67	3.4	0.19	3.15	1.75
0.6	3.33	73	4.15	24.8	1.38	8.1	0.45	3.06	15.4	0.85	2.1	0.12	36.0	2.00
1.0	5.55	77	4.30	28.4	1.58	8.1	0.45	3.51	16.5	0.92	1.2	0.07	44.1	2.45
1.5	8.33	79	4.40	29.7	1.65	9.0	0.50	3.30	17.2	0.96	1.2	0.07	63.0	3.50
2.0	11.11	86	4.75	35.6	1.98	10.8	0.60	3.30	16.7	0.93	1.3	0.07	66.6	3.70
3.0	16.66	90	5.00	33.8	1.88	11.3	0.63	3.00	15.5	0.86	1.4	0.08	75.6	4.20
5.0	27.77	106	5.90	38.7	2.15	14.2	0.79	2.73	16.6	0.92	1.5	0.08	92.7	5.15
7.0	38.88	114	6.35	40.9	2.27	15.7	0.87	2.61	16.4	0.91	1.6	0.09	105.3	5.85
9.5	52.77	115	6.40	41.0	2.28	15.8	0.88	2.60	16.4	0.91	1.6	0.09	110.7	6.15
11.0	61.11	113	6.25	36.0	2.00	16.2	0.90	2.22	15.5	0.86	2.1	0.12	109.0	6.05
12.0	66.66	104	5.80	35.6	1.98	17.6	0.98	2.02						

TABLE 4 - HDC BOUNDARY-LAYER THICKNESSES AND INTEGRAL PARAMETERS - Half Density Canopy

x (a)	ż	6 (cm)	8	6" (cm)	3.	4 (cm)	ā	н	⁸ h (cm)	š [*] _h	en (cm)	ē _h	6i (cm)	ði
0	0	72	4.00	14.4	0.80	9.0	0.50	1.60	8.4	0.46	4.1	0.23		
0.3	1.66	72	4.00	18.4	1.02	8.1	0.45	2.26	11.5	0.64	3.1	0.17	26.1	1.45
0.6	3.33	72	4,00	20.3	1.13	8.1	0.45	2.51	13.2	0.73	3.2	0.18	32.4	1.80
1.0	5.55	73	4.05	23.8	1.32	8.1	0.45	2.93	14.5	0.81	2.6	0.15	44.1	2.45
1.5	8.33	74	4.10	28.8	1.60	9.0	0.50	3.20	15.3	0.85	2.2	0.12	63.0	3.50
2.0	11.11	76	4.20	30.2	1.68	9.5	0.53	3.17	16.0	0.89	1.8	0.10	66.6	3,70
3.0	16.66	79	4.40	32.8	1.82	9.9	0.55	3.31	16.4	0.91	1.3	0.07	79.2	4.40
5.0	27.77	89	4.95	36.4	2.02	12.2	0.68	2.97	16.4	0.91	1.2	0.07	88.2	4,90
7.0	38.88	103	5.70	39.6	2.20	14.4	0.80	2.75	15.8	0.88	1.4	0.08	99.0	5.50
8.5	47.22	106	5.90	41.0	2.28	15.3	0.85	2.68	16.4	0.91	1.5	0.09	103.5	5.75
9.5	52.77	109	6.05	41.9	2.33	15.8	0.88	2.65	16.8	0.93	1.6	0.09	105.3	5.85
11.0	61.11	105	5.85	37.4	2.08	14.9	0.83	2.51	15.7	0.87	1.9	0.10	108.9	6.05
12.0	66.66	103	5.70	35.1	1.95	17.1	0.95	2.05					1.1.2	

5. Turbulent energy

The one-dimensional wave-number density function data at x = 7m($\tilde{x} = 38.88$) are summarized in Tables 5-FDC and 5-HDC. The results are displayed in Figs. 5.37 and 5.38, respectively.

The energy dissipation and energy production for both canopy densities computed using Eqs. (5.27) and (5.32), respectively, are tabulated in Table $5-\epsilon E_p$.

The discretized energies at four selected wavelengths for the FDC and HDC cases are tabulated in Tables 5-DE-FDC and 5-DE-HDC, respectively. In these tables the discretized energy is made dimensionless employing the energy at same wavelength at the top of the canopy leading edge (at \tilde{x} , $\tilde{z} = 0,1$) denoted by $\overline{u_0^2}[L]$. The results are displayed in Figs. 5.43a, 5.43b, 5.44a and 5.44b.

	1	TABLE 5 -	FDC			
ONE-DIMENSIONAL	WAVE-NUMBER	DENSITY	FUNCTION	Full	Density	Canopy

t(cs)	18.5			24.0			40.5			\$7.5			87.0	
ī	1.03			1.33			2.25			3.19			4.83	
n (Hz)	k (cm-1)	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	n (Hz)	k (cm-1)	9[k] (cm)	n (Hz)	k (cm ⁻¹)	\$[k] (cm)	n (Hz)	(cm ⁻¹)	<pre> (k] (cm) </pre>	n (Hz)	k (cm ⁻¹)	♦[k] (cm)
3.0	0.11	4.7210	2.9	0.07	3.7976	3.0	0.06	5.9582	2.9	0.04	4.9212	2.6	0.03	5.4530
4.2	0.15	4.6035	4.1	0.10	2.7958	4.1	0.08	5.8476	4.4	0.06	8.5663	4.3	0.05	11.2164
6.4	0.24	2.8163	6.4	0.16	2.0888	6.2	0.12	2.8027	6.5	0.09	5.5529	6.1	0.07	5.9768
9.8	0.36	1.2142	9.8	0.25	1.2683	9.5	0.18	1.2865	10.2	0.14	1.7693	9.5	0.11	4.0734
14.1	0.51	0.9258	14.3	0.36	0.6251	13.9	0.26	1.0618	13.8	0.19	0.9078	13.0	0.15	1.4206
18.1	0.66	0.4538	21.1	0.53	0.5816	19.2	0.35	0.5927	21.1	0.29	0.8583	18.2	0.21	0.9459
22.1	0.81	0.3084	25.7	0.62	0.3562	24.5	0.45	0.2901	26.1	0.36	0.6582	20.8	0.24	0.7499
26.4	0.97	0.1738	35.0	0.88	0.2311	31.8	0.59	0.2442	30.5	0.42	0.4178	46.7	0.54	0.2370
29.4	1.07	0.2066	39.0	0.98	0.1524	48.0	0.89	0.1854	39.2	0.54	0.2661	65.7	0.76	0.1483
33.9	1.24	0.2055	43.8	1.10	0.1080	53.5	0.99	0.1187	57.4	0.79	0.1322	93.4	1.08	0.0661
50.5	1.85	0.1297	57.2	1.44	0.0798	64.3	1.19	0.1005	71.2	0.98	0.0853	143.5	1.66	0.0286
65.2	2.38	0.0963	70.8	1.78	0.0522	92.3	1.71	0.0465	98.0	1.35	0.0542	193.7	2.24	0.0118
77.5	2.83	0.0455	139.2	3.50	0.0187	140.0	2.59	0.0302	111.8	1.54	0.0373	278.4	3.22	0.0059
91.9	3.25	0.0269	159.6	4.01	0.0130	178.8	3.30	0.0160	145.2	2.00	0.0268	460.0	5.32	0.0024
134.0	4.98	0.0127	205.1	5.15	0.0075	225.1	4.16	0.0095	185.9	2.56	0.0200	570.6	6.60	0.0011
159.7	5.83	0.0105	242.4	6.08	0.0047	278.6	5.15	0.0056	243.2	3.35	0.0117	703.8	8.14	0.0006
197.9	7.23	0.0080	318.7	8.01	0.0028	374.7	6.92	0.0025	336.9	4.64	0.0083	953.7	11.13	0.0002
238.1	8.69	0.0022	393.1	9.87	0.0015	451.9	8.35	0.0017	466.9	6.43	0.0028			
296.8	10.84	0.0023	465.8	11.77	0.0008	538.7	9.80	0.0012	582.3	8.02	0.0014			
384.0	14.02	0.0008	583.2	14.65	0.0003	\$60.5	10.35	0.0010	731.9	10.08	0.0005			
\$38.2	19.65	0.0003				613.0	11.32	0.0006	839.4	11.56	0.0003			
						813.7	15.03	0.0002						

TABLE 5 - HDC ONE DIMENSIONAL WAVE NUMBER DENSITY FUNCTION - Half Density Canopy x = 7a, \tilde{x} = 38.88

z(cm)	19.2	~		22.4			\$3.3			75.2	
ì	1.07			1.24		÷	2.96			4.18	
n (Hz)	k (cm ⁻¹)	*[k] (cm)	n (H2)	(cm ⁻¹)	0[k] (cm)	n (Hz)	k (cm ⁻¹)	¢[k] (cm)	n (Hz)	(cm ⁻¹)	\$[k] (cm)
2.8	0.11	3.7741	3.2	0.09	7.7407	2.6	0.04	10.9664	2.5	0.03	16.1813
4.4	0.17	1.8924	4.2	0.12	2,8697	4.0	0.06	4.8921	4.2	0.05	10.2891
6.5	0.25	1.5428	6.0	0.17	1.9095	5.9	0.09	4.0829	5.9	0.07	4.0280
9.5	0.37	0.8807	9.8	0.28	1.1720	10.0	0.15	2.4112	10.1	0.12	3.1897
14.2	0.55	0.6134	13.7	0.39	0.8844	14.5	0.22	1.5663	14.3	0.17	1.7070
18.1	0.70	0.2534	19.3	0.55	0.4043	20.4	0.31	1.2007	18.5	0.22	1.5751
20.6	0.80	0.1645	24.2	0.69	0.4238	26.4	0.40	0.3767	21.8	0.26	0.8581
24.3	0.94	0.1698	33.3	0.95	0.2571	38.9	0.59	0.2082	26.0	0.31	0.4463
28.6	1.11	0.1170	44.5	1.27	0.1321	44.8	0.68	0.1694	31.9	0.38	0.2703
32.5	1.26	0.1124	61.3	1.75	0.0780	52.7	0.80	0.1086	\$3.7	0.64	0.1263
45.9	1.78	0.0801	85.8	2.45	0.0432	64.6	0.98	0.0868	69.7	0.83	0.0841
62.4	2.42	0.0626	114.2	3.62	0.0262	71.9	1.09	0.0642	84.8	1.01	0.0600
72.8	2.82	0.0302	189.9	5.42	0.0088	82.4	1.25	0.0507	99.0	1.18	0.0432
89.5	3.47	0.0238	208.4	5.95	0.0076	109.4	1.66	0.0399	120.0	1.43	0.0255
112.2	4.35	0.0131	245.6	7.01	0.0040	166.8	2.53	0.0150	221.5	2.64	0.0139
132.6	5.14	0.0081	318.1	9.08	0.0026	245.9	3.73	0,0094	276.1	3.29	0.0034
161.5	6.26	0.0067	362.2	10.34	0.0020	330.3	5.01	0.0056	400.3	4.77	0.0027
207.2	8.03	0.0072	479.6	13.69	0.0004	397.0	6.02	0.0038	551.4	6.57	0.0019
234.0	9.07	0.0034	532.5	15.20	0.0004	490.4	7.44	0.0026	638.6	7.61	0.0015
254.6	9.87	0.0017	631.9	18.04	0.0002	600.0	9.10	0.0017	853.5	10.17	0.0002
284.3	11.02	0.0012				705.0	10.74	0.0010			
322.0	12.48	0.0004				795.7	12.07	0.0005			
441.7	17.12	0.0002				949.2	14.40	0.0002			

	TABL	Ξ 5	- εΕ _ρ	
ENERGY	DISSIPATION	AND	ENERGY	PRODUCTION

x = 7m, $\tilde{x} = 38.88$

		Full Density Ca	anopy	Half Density Canopy							
z (cm)	ž	ϵ (cm ² /sec ³)	Ep (cm ² /sec ³)	ε/E _p	z (cm)	ž	ε (cm ² /sec ³)	Ep (cm ² /sec ³)	ε/E p		
18.5	1.03	30500	11950	2.55	19.3	1.07	73600	15000	4.91		
23.9	1.33	31500	10000	3.15	22.4	1.24	66400	15000	4.43		
40.5	2.25	23900	5500	4.35	53.3	2.96	30800	8700	3.54		
57.4	3.19	20500	5000	4.10	75.2	4.18	16500	3000	5.50		
86.9	4.83	9600	1500	6.40							

 $v = 0.189 \text{ cm}^2/\text{sec}$

	TABLE	5	-	DE -	FDC	
DISCRETIZED	ENERG	Υ,		Full	Density	Canopy

		L(c=)	62	.8	12	.6	9.	15	0.	63
x (m)	ž	1 (cm)	Y	u ² [L] (cm/s) ²	$\frac{\overline{u^2}(L)}{\overline{u^2_0}(L)}$	u ² [L] (cm/s) ²	$\frac{\overline{u^2}[L]}{\overline{u^2}[L]}$	u ² [L] (cm/s) ²	$\frac{\overline{u^2}[L]}{\overline{u_0^2}[L]}$	u ² [L] (cm/s) ²	<u>u²[L]</u> u ₀ ² [L]
0	0	14.0 18.0 34.2 46.8 57.1	0.78 1.0 1.9 2.6 3.17	50.4 47.2 34.4 16.7 8.1	1.07 1.00 0.73 0.35 0.17	4.5 5.7 2.5 1.4 0.5	0.80 1.00 0.43 0.25 0.08	0.57 0.50 0.27 0.14 0.02	1.14 1.00 0.55 0.27 0.05	0,0096 0,0087 0,0042 0,0011 0,0011	1.10 1.00 0.48 0.11 0.11
0.3	1.66	15.5 19.1 32.0 57.1	0.86 1.06 1.78 3.17	601.0 53.6 35.0	12.70 1.14 0.74	36.2 67.0 5.2 3.2	6.40 1.80 0.92 0.56	6.05 5.78 0.71 0.24	12.20 11.65 1.44 0.49	0.0666 0.2810 0.0090 0.0048	7.6 32.3 1.0 0.5
0.6	3.33	12.1 20.5 27.5 40.0 58.0	0.67 1.14 1.53 2.22 3.22	206.0 352.0 89.1 38.0	4.36 7.46 1.89 0.81	53.7 27.5 8.1 3.7	9.49 4.86 1.42 0.65	34.70 4.93 3.85 0.78 0.24	70.00 9.94 7.76 1.56 0.48	0.5010 0.2180 0.1170 0.0162 0.0040	\$7.60 25.00 13.44 1.80 0.40
1.0	5.55	18.5 27.0 37.4 57.4	1.03 1.50 2.08 3.17	406.0 177.0 17.9	8.60 3.75 0.38	285.0 40.8 10.0 1.4	\$0.40 7.21 1.77 0.25	19.30 5.42 1.50 0.13	38.90 10.90 3.00 0.27	0.4780 0.3030 0.0230 0.0017	54.9 34.8 2.6 0.2
1.5	8.33	15.5 34.9 57.1	0.86 1.94 3.17	311.0 40.5	6.59 0.86	250.0 29.6 3.3	44.20 5.23 0.58	21.60 3.12 0.39	43.50 6.29 0.79	0.3970 0.1630 0.0068	45.6 18.7 0.7
3.0	16.66	12.1 19.1 25.0 44.5 63.0	0.67 1.06 1.39 2.47 3.50	451.0 234.0 63.3	9.56 4.96 1.34	244.0 197.6 60.5 19.6 4.7	43.10 34.90 10.70 3.46 0.83	36.80 18.80 7.11 2.00 0.51	74.20 37.90 14.30 4.03 1.02	1.0600 0.2230 0.0770 0.0060	122.0 25.6 8.8 0.6
5.0	27.77	18.5 23.0 49.5 72.5	1.03 1.28 2.75 4.03	362.0 255.0 151.0	7.67 5.40 3.20	92.1 62.5 23.3 7.9	16.30 11.00 4.12 1.39	6.95 8.75 2.68 0.52	14.00 17.60 5.40 1.04	0.2170 0.2770 0.0937 0.0101	24.9 31.8 10.8 1.1
7,0	38.88	18.5 23.9 40.5 57.4 86.9	1.03 1.33 2.25 3.19 4.83	268 174 241 327 142	5.68 3.69 5.11 6.93 3.01	48.4 34.3 16.7 20.6 8.1	8.55 6.06 2.95 3.64 1.43	\$.93 3.03 2.17 2.30 0.50	12.00 6.11 4.38 4.64 1.01	0,1140 0,0958 0,0665 0,0442 0,0189	13.1 11.0 7.6 5.0 2.1
9.5	52.77	18.0 39.1 57.4	1.00 2.17 3.19	251 323 261	5.32 6.84 5.53	70.9 27.0 15.3	12.50 4.77 2.70	10.20 3.33 1.76	20.60 6.71 3.55	0.1730 0.0854 0.0383	19.9 9.8 4.4
11.0	61.11	17.5 22.0 41.0 58.0 82.1	0.97 1.22 2.28 3.22 4.56	806 485 178 228 117	17.10 10.30 3.77 4.83 2.48	60.8 32.1 20.3 11.0 6.8	10.70 5.67 3.59 1.93 1.20	6.79 4.24 2.35 1.57 0.73	13.70 8.55 4.74 3.17 1.47	0.2030 0.1360 0.090 0.0436 0.0144	23.3 15.6 10.3 5.0 1.6
12.0	66.66	13.0 19.1 36.5 58.5 84.6	0,72 1.06 2.03 3.25 4.70	359 266 174 74	7.61 5.64 3.69 1.57	77.8 75.9 22.5 14.7 6.1	13.70 13.40 3.98 2.60 1.07	8.03 7.93 2.57 1.26 0.44	16.20 16.00 5.18 2.54 0.90	0.2410 0.2150 0.1030 0.0204 0.005	27.7 24.7 11.8 2.3 0.5
		<u></u>	[L]	49	6		02	0.	5	0.0	093

(cm/sec)2

	TABLE	5	DE -	HDC	
DISCRETIZED	ENER	n	Half	Density	Салору

		L	cm)	63	2.8	12	.6	9.	15	0.63		
x - (n)	ž	t (cm)	ĩ	u ² [L] (cm/s) ²	$\frac{\overline{u^2}(L)}{\overline{u^2}(L)}$	u ² [L] (cm/s) ²	$\frac{\overline{u^2}(L)}{\overline{u_0^2}(L)}$	u ² [L] (cm/s) ²	<u>u²[L]</u> u ² (L)	u ² [L1 (cm/s) ²	<u>u²[L</u> <u>u²[L</u>	
0	o	11.2 21.4 48.1 56.5	0.62 1.19 2.67 3.14	145.0 86.4 68.2 29.4	1.45 0.85 0.68 0.29	16.10 8.52 1.61 0.58	1.49 0.79 0.15 0.05	1.45 0.88 0.19	1.38 0.84 0.18	0.0204 0.0107	1.4	
0.3	1.56	17.5 21.8 29.7 56.5	0.97 1.21 1.65 3.14	162.4 60.2 27.5	1.62 0.60 0.28	99.20 19.60 3.91 0.77	9.18 1.81 0.36 0.07	22.00 3.12 0.57 0.04	20.95 2.97 0.55 0.04	0.456 0.133 0.007	32.5 9.5 0.5	
0.6	3.33	11.9 19.1 28.8 43.0	0.66 1.06 1.60 2.39	373.2 158.0 51.2	3,73 1,58 0,51	48.20 55.50 18.30 4.21	4.46 5.14 1.69 0.39	5.40 4.41 1.90 0.52	5.14 4.20 1.81 0.50	0.099 0.209 0.054 0.007	7.0 14.9 3.8 0.4	
1.0	5.55	11.2 18.5 26.5 43.6 59.6	0.62 1.03 1.47 2.42 3.31	1191.0 469.0 63.6 32.2	11.91 4.69 6.36 3.22	81.70 85.80 49.70 3.53 2.17	7.56 7.94 4.60 0.33 0.20	9.95 7.06 5.50 0.49 0.11	9.48 6.72 5.24 0.47 0.11	0.264 0.228 0.250 0.006	18.8 16.2 17.8 0.4	
1.5	8.33	11.3 20.2 27.2 34.6 58.1 68.2	0.63 1.12 1.51 1.92 3.23 3.79	596.0 278.0 34.5 18.3	5.96 2.78 0.34 0.18	204.00 123.00 51.70 17.10 2.74 0.96	18.89 11.39 4.79 1.58 0.25 0.09	16.10 8.72 6.17 2.28 0.22 0.03	15.33 8.30 5.88 2.17 0.21 0.03	0.255 0.291 0.284 0.129 0.002	18.2 20.7 20.2 9.2 0,1	
3.0	16.66	19.1 37.3 66.4 74.3	1.06 2.07 3.69 4.13	1007.0 355.0 22.9 17.0	10.07 3.55 0.23 0.17	95.00 44.30 2.03 0.96	8.80 4.10 0.19 0.09	13.60 4.10 0.11 0.031	12.95 3.90 0.11 0.03	0.227 0.228	16.2 16.2	
s.0	27.77	18.0 23.0 40.1 68.9	1.00 1.28 2.23 3.83	640.0 319.0 403.0 165.0	6.40 3.19 4.03 1.65	100.00 56.80 38.90 12.10	9.26 5.26 3.60 1.12	12.00 6.10 3.11 1.47	11.43 5.81 2.96 1.40	0.254 0.192 0.119 0.008	18.1 13.7 8.5 0.5	
7.0	36.88	19.3 22.4 53.3 75.2 86.2	1.07 1.24 2.96 4.18 4.79	678.0 379.0 309.0 93.2 37.5	6.78 3.79 3.09 0.93 0.38	109.00 58.00 22.40 3.38 1.38	10.09 5.37 2.07 0.31 0.13	10.60 6.76 2.25 0.38 0.09	10,10 6,44 2,14 0,36 0,08	0.275 0.183 0.101 0.005	19.6 13.0 7.2 0.3	
9.5	52.77	17.8 22.9 31.1 51.1 59.0 80.3	0.99 1.27 1.73 2.84 3.28 4.46	629.0 284.0 438.0 305.0 168.0	6.29 2.84 4.38 5.05 1.68	76.8 63.7 54.3 31.4 20.5 4.7	7.11 5.90 5.03 2.91 1.90 0.44	9.53 6.60 3.83 2.66 2.52 0.58	9.08 6.28 3.65 2.53 2.40 0.55	0.295 0.214 0.162 0.123 0.088 0.010	21.0 15.2 11.5 8.7 6.2 0.7	
11.0	61.11	16.9 21.8 42.5 66.1 81.5	0.94 1.21 2.36 3.67 4.53	488 0 433.0 322.0 201.0 76.9	4.88 4.33 3.22 2.01 0.77	74.4 47.1 28.2 11.5 4.4	6.89 4.36 2.61 1.06 0.41	7.90 5.17 3.72 1.46 0.56	7.52 4.92 3.54 1.39 0.53	0.241 0.194 0.141 0.032 0.001	17.2 13.8 10.0 2.2 0.0	
12.0	66.66	20.0 42.1 69.7 85.5	1.11 2.34 3.87 4.75	590.0 344.0 180.0 72.1	5.90 3.44 1.80 0.72	49.9 23.1 10.3 3.2	4.62 2.14 0.95 0.30	5.33 2.50 1.34 0.24	5.08 2.38 1.28 0.23	0.224 0.113 0.041	16.0 8.0 2.9	
		<u>.</u>	(L)	10	0.0	10	8		05	0	014	

(cm/sec)²

Security Classification Security classification at life, body of abstract and indexing avoidance must be entered when the averall report is classified) Security classification at life, body of abstract and indexing avoidance must be entered when the averall report is classified) Colorado State University Fort Collins, Colorado 80521 J. REPORT TALE AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS - Obscent trutle AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS - Obscent trutle - Obscent t	Unclassified			
OUCLARY INCLUSED AND IN THE AND AND IN THE AREA AND IN THE AREA AND INCLUSED AND IN THE AREA AND AND INCLUSED AND IN THE AREA AND AND AND AND AND AND AND AND AND AN	Security Classification	POL DATA P	8 D	
I ONIGHATHIG ACTIVITY (COMMAN AURAL) Colorado State University Fort Collins, Colorado 80521 I REPORT SECURITY CLASSIFICATION Fort Collins, Colorado 80521 I REPORT SECURITY CLASSIFICATION Fort Collins, Colorado 80521 I REPORT SECURITY CLASSIFICATION A INVESTIGATION OF FLOW OVER HIGH ROUGHNESS I DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical report A UTHORIS! (First damm, and michains dates) Technical report A UTHORIS! (First damm, and michains dates) Technical report A UTHORIS! (First damm, and W. Z. Sadeh I AUTHORIS! (First damm, and W. Z. Sadeh I AUTHORIS! (First damm, and W. Z. Sadeh I AUTHORIS! (Fort dama and N. Z. Sadeh I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I AUTHORIS! (Any other numbers that may be assigned in report no. (CER71-72TK-WZS3) I A BUTHORIS! (Any other numbers	Security classification of title, body of abstract and indexing	nonatation must be	ntered when the	overall report is classified)
Colorado State University Fort Collins, Colorado 80521 AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS - DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical report - AUTHORIS (First same, middle milled, last name) T. Kawatani and W. Z. Sadeh - REPORT DATE August , 1971 - AUTHORIS (First same, middle milled, last name) T. Kawatani and W. Z. Sadeh - REPORT DATE August , 1971 - AUTHORIS (First same, middle milled, last name) T. Kawatani and W. Z. Sadeh - REPORT DATE August , 1971 - CERTI-72TK-WZS3 - CERTI-72TK-WZS3 - CERTI-72TK-WZS3 - Distribution of this document is unlimited - Supplementary notes - Supplementary notes - Supplementary notes - Supplementary notes - An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner Zone, the free-stream velocity and the roughness beicht are to civile the and the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the Inner Source velocity and the roughness beicht are beich canophic mean velocity and the company of the civil continue mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the Inner Zona be described by generalized logarithmic relationships. For the flow in the Inner Zona be described by generalized logarithmic rel	1 ORIGINATING ACTIVITY (Corporate author)		28. REPORT SE	CURITY CLASSIFICATION
Fort Collins, Colorado 80521 28. GROUP AREPORT TITLE AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS A DESCRIPTIVE NOTES(Type of report and inclusive dates) Technical report * DESCRIPTIVE NOTES(Type of report and inclusive dates) Technical report * AUTHORIS/(First dame, middle multal, last name) T. Kawatani and W. Z. Sadeh * REPORT DATE August , 1971 * AUTHORIS/(First dame, middle multal, last name) DAABO7-68-C-0423 and NO0014-68-A-0493-0001 b. PROJECT NO. *. ONIGINATOR'S REPORT NOUSER(S) *. ONIGINATOR'S REPORT NOUSER(S) *. ONIGNATOR'S REPORT NOUSER(MILLIARY ACTIVITY Distribution of this document is unlimited *. OUSTRIBUTION STATEMENT Distribution of the atmospheric boundary-layer flow on high roughness *. A experimental investigation of the atmospheric boundary-layer flow on high roughness *. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner velocity and the roughness height are toright ande constructen beight are to civit and the roughness heis	Colorado State University			
AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS	Fort Collins, Colorado 80521		25. GROUP	
1. REPORT TITLE AN INVESTIGATION OF FLOW OVER HIGH ROUGHNESS * DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical report * AUTHORISI (First name, middle initial, last name) T. Kawatani and W. Z. Sadeh * REPORT DATE August , 1971 * CONTRACT ON CRANT NO. DAABO? - C68-C-0423 and N 00014-68-A-0493-0000 b. ORIGINATOR'S REPORT NUMBER(S) DAABO?-68-C-0423 and N 00014-68-A-0493-0000 b. ORIGINATOR'S REPORT NUMBER(S) DAABO?-68-C-0423 and N 00014-68-A-0493-0000 c. c. d. 10. DISTRIBUTION STATEMENT Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. ATTRY Materiel Command, Washington, D.C. 13. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergeen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the enverture to be civil universe.				
A DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical report LauTHOR(S)(First Jame, middle initial, last name) T. Kawatani and W. Z. Sadeh (a) (b) REPORT DATE August , 1971 (c) (c	AN INVESTIGATION OF FLOW OVER HIGH ROUGH	NESS		
1 Identical report 5 AUTHOR(3) (First mem dide initial last mamp) T. Kawatani and W. Z. Sadeh 6 REPORT CATE August , 1971 142 142 69 5 REPORT CATE August , 1971 142 5 69 5 Contract on GRANT NO. DAAB07-68-C-0423 and N00014-68-A-0493-0001 5 PROJECT NO. 6. CER71-72TK-WZS3 c. Distribution of this document is unlimited 10 DISTRIBUTION STATEMENT Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed	4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
T. Kawatani and W. Z. Sadeh S. REPORTOATE August, 1971 72. TOTAL NO. OF PAGES 142 75. NO. OF REFS 69 S. CONTRACTOR GRANTNO. DAABO7-68-C-0423 and N 00014-68-A-0493-0001 72. ORIGINATOR'S REPORT NUMBER(3) DAABO7-68-C-0423 and N 00014-68-A-0493-0001 72. ORIGINATOR'S REPORT NUMBER(3) DAABO7-68-C-0423 and N 00014-68-A-0493-0001 72. ORIGINATOR'S REPORT NUMBER(3) D. PROJECT NO. CER71-72TK-WZS3 c. 73. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 74. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 75. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 75. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 75. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 75. OTHER REPORT NO(3) (Any other numbers that may be assigned this report) d. 75. SPONSORING MILLITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 75. SPONSORING MILLITARY ACTIVITY 13. ADSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tur- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocit	Iecnnical report		-	
S. REPORT DATE August , 1971 72. TOTAL NO. OF PAGES 142 72. NO. OF REFS 69 Magust , 1971 142 69 Magust , 100 150 160 Magust , 1971 142 142 Magust , 1971 142 142 Magust , 100 150 160 Magu	T. Kawatani and W. Z. Sadeh	8		
 SPROJECT NO. DAABO7-68-C-0423 and N 00014-68-A-0493-0001 DROJECT NO. CER71-72TK-WZS3 C. CER71-72TK-WZS3 C. CER71-72TK-WZS3 C. Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 13. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tunnel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the constant free base density are the cibil are the cibil density are the cibil density are the cibil density are the cibil are the cibil are the cibil density are the cibil are the cibil density are the cibil a	August, 1971	78. TOTAL NO. 01 142	F PAGES	76. NO. OF REFS 69
CER71-72TK-WZS3 CER71-	88. CONTRACT OF GRANT NO. DAAR07-68-C-0423 and N.00014 68 A 0407 000	98. ORIGINATOR	REPORT NUME	BER(S)
c. d. 10. DISTRIBUTION STATEMENT Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 13. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness beight are the circle rick and the roughness density on the flow in the	b. PROJECT NO.	CER71-721	K-WZS3	
d. 10. DISTRIBUTION STATEMENT Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 13. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness beight are the circlerity arean	c.	96. OTHER REPOR	RT NO(S) (Any of	her numbers that may be assigned
 Distribution statement Distribution of this document is unlimited Distribution of this document is unlimited SUPPLEMENTARY NOTES ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tunnel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow in the inner zone, the free-stream velocity and the roughness height are the circlentity neutral constited by generalized logarithmic relationships. For the flow in the fully developed flow in the inner zone, the free-stream velocity and the roughness height are the circlentity neutral constited by generalized logarithmic relationships. 	d.			
Distribution of this document is unlimited 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 13. ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness baset are the circlerity areas	10. DISTRIBUTION STATEMENT			
 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY U.S. Army Materiel Command, Washington, D.C. 13. ABSTRACT 14. The model investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness height are the circitarity means 	Distribution of this document	is unlimite	d	
U.S. Army Materiel Command, Washington, D.C.	11- SUPPLEMENTARY NOTES	12. SPONSORING	ALLITARY ACTIV	VIT V
¹³ ABSTRACT An experimental investigation of the atmospheric boundary-layer flow on high roughness was conducted by simulating the flow over a forest canopy in a meteorological wind tun- nel. The model forest canopy used consisted of plastic simulated-evergreen trees. The measurements were carried out at constant free-stream velocity and under thermally neutral conditions. Two canopy densities were tested to explore the effects of the roughness density on the flow. One roughness density was half of the other. The results indicate that the mean velocity profiles within the fully developed flow region can be described by generalized logarithmic relationships. For the flow in the inner zone, the free-stream velocity and the roughness height are the similarity second		U.S. Army Washington	Materiel C , D.C.	Command,
eters for the velocity and the vertical distance, respectively. In the outer zone the free-stream velocity and the momentum thickness are the scaling parameters. The rough- ness density has a strong influence on the momentum loss and the upward flow displacement in the transition region. The shape of the roughness element affects the mean velocity distribution inside the canopy, i.e., jetting effect. The internal boundary-layer thickness was determined based on the turbulent shear- stress distribution. It is found that the flow near the canopy leading edge has two- dimensional wake-like characteristics. The latter are due to the canopy frontal area which is a drastic step obstruction. The existence of an inertial subrange in the fully developed flow region is doubtful although local isotropy occurs for eddies smaller than 2% of the total boundary-layer thickness. The evolution of turbulent energy associated with various size eddies along	An experimental investigation of the atmo- was conducted by simulating the flow over a nel. The model forest canopy used consisten- measurements were carried out at constant in neutral conditions. Two canopy densities were roughness density on the flow. One roughness region can be described by generalized loga inner zone, the free-stream velocity and the eters for the velocity and the vertical dis free-stream velocity and the momentum thick ness density has a strong influence on the in the transition region. The shape of the distribution inside the canopy, i.e., jett The internal boundary-layer thickness was stress distribution. It is found that the dimensional wake-like characteristics. The which is a drastic step obstruction. The existence of an inertial subrange in although local isotropy occurs for eddies a thickness. The evolution of turbulent ener	ospheric bou a forest can ed of plasti free-stream were tested ess density ity profiles arithmic rel he roughness stance, resp kness are th momentum lo e roughness ing effect. s determined flow near t e latter are the fully d smaller than rgy associat	ndary-laye opy in a m c simulate velocity a to explore was half o within th ationships height ar ectively. e scaling ss and the element af based on he canopy due to th eveloped f 2% of the ed with va	er flow on high roughness neteorological wind tun- ed-evergreen trees. The and under thermally the effects of the of the other. The fully developed flow the similarity param- In the outer zone the parameters. The rough- the upward flow displacement ffects the mean velocity the turbulent shear- leading edge has two- ne canopy frontal area flow region is doubtful total boundary-layer prious size eddies along

DD FORM 1473

Unclassified

14.			LINKA		LINKB	
	RET WORDS		ROLE	* -	ROLE	*
		8				
A	tmospheric Modeling					

Forest Canopies Turbulence Simulation

Wind Tunnel Fluid Mechanics

Forest Meteorology

Unclassified Security Classification LINK C

* *

**

DEPARTMENT OF DEFENSE

- 101 Defense Documentation Center Attn: DDC-TCA Cameron Station (Bldg. 5)
- *20 Alexandria, Virginia 22314
- 102 Director of Defense Research & Engineering Attn: Technical Library Rm 3E-1039, The Pentagon 1 Washington, D. C. 20301
- 103 Joint Chiefs of Staff Attn: Spec. Asst. Environmental Services 1 Washington, D. C. 20301
- 106 Defense Intelligence Agency Attn: DIAAP-10A2 1 Washington, D. C. 20301
- 108 Director, Defense Atomic Support Agency Attn: Technical Library 1 Washington, D. C. 20305

DEPARTMENT OF THE NAVY

- 201 Naval Ships Systems Command Attn: Code 20526 Tech. Lib. Main Navy Bldg. Rm 1528 1 Washington, D. C. 20325
- 205 Director
 U. S. Naval Research Laboratory Attn: Code 2027
 2 Washington, D. C. 20390
- 206 Commanding Officer and Director
 U. S. Navy Electronics Laboratory
 Attn: Library
 1 San Diego, California 92152
- 207 Commander
 U. S. Naval Ordinance Laboratory Attn: Technical Library
 1 White Oak, Silver Springs, Maryland 20910
- 208 Officer in Charge Navy Weather Research Facility Bldg. R-48, Naval Air Station 1 Norfolk, Virginia 23511
- 210 Commandant, Marine Corps HQ. U. S. Marine Corps Attn: Code A04C 1 Washington, D. C. 20380
- 211 Commandant, Marine Corps HQ. U. S. Marine Corps Attn: Code A02F 1 Washington, D. C. 20380
- 212 Marine Corps Development and Educ. Comd. Development Center Attn: C-E Division 1 Quantico, Virginia 22134
- 213 Commander U. S. Naval Weapons Laboratory Attn: KXR 1 Dahlgren, Virginia 22448
- * Increase to 50 copies if releasable to CFSTI. See para 6e(1) (b), ECOMR 70-31, for types of reports not to be sent to DDC.

- 214 Commander, Naval Air Systems Command Meteorological Division (Air-540) Washington, D. C. 20360 1 216 Commander Naval Weather Service Command Washington Navy Yard (Bldg. 200) Washington, D. C. 20390 1 DEPARTMENT OF THE AIR FORCE 302 Air Force Cambridge Research Labs Attn: CREU L. G. Hanscom Field Bedford, Massachusetts 01730 1 303 Air Force Cambridge Research Labs Attn: CREW L. G. Hanscom Field 1 Bedford, Massachusetts 01730 Air Force Cambridge Rsch. Labs. 304 Attn: CRH L. G. Hanscom Field 1 Bedford, Massachusetts 01730 Air Force Cambridge Rsch. Labs. 305 Attn: CRER L. G. Hanscom Field 1 Bedford, Massachusetts 01730 306 Electronic Systems Div. (ESSIE) L. G. Hanscom Field Bedford, Massachusetts 01730 1 Electronic Systems Division (ESTI) 307 L. G. Hanscom Field 2 Bedford, Massachusetts 01730 RFCON Central/AVRS. 310 AF Avionics Laboratory 1 Wright-Patterson AFB, Ohio 45433 HQ. Air Weather Service Attn: AWVAS/TF (R. G. Stone) 311 1 Scott Air Force Base, Illinois 62225
- 312 U. S. Air Force Security Service Attn: TSG
- 1 San Antonio, Texas 78241
- 313 Armament Development & Test Center Attn: ADBPS-12
 1 Eglin Air Force Base, Fla. 32542
- 314 HQ. Air Force Systems Command Attn: SCTSE 1 Andrews AFB, Maryland 20331
- 319 Air Force Weapons Laboratory Attn: WLIL
 - 1 Kirtland AFB, New Mexico 87117

DEPARTMENT OF THE ARMY

401 OFC of Asst. CH. of Staff for DS-SSS Department of the Army Rm. 3C466, The Pentagon 1 Washington, D.C. 20315

Distribution List (Continued)

- 402 Asst. Ch. of Staff for Force Development CRR Nuclear Operations Directorate Department of the Army 1 Washington, D.C. 20310
- 405 Ofc. Asst. Sec. of the Army (R&D) Attn: Asst. for Research Room 3-E-373, The Pentagon 1 Washington, D.C. 20310
- 406 Chief of Research and Development Department of the Army 2 Washington, D.C. 20315
- 407 Chief of Research and Development Department of the Army Attn: CRD/M 1 Washington, D.C. 20310
- 409 Commanding General U.S. Army Materiel Command
 - Attn: AMCMA-EE 1 Washington, D.C. 20315
- 414 Commanding General U.S. Army Materiel Command Attn: AMCRD-TV 1 Washington, D.C. 20315
- 416 Commanding General U.S. Army Materiel Command Attn: AMCRD-TV 1 Washington, D.C. 20315
- 418 Commanding General U.S. Army Missle Command Attn: AMSMI-RRA, Bldg. 5429 1 Redstone Arsenal, Alabama 35809
- 421 CT. U.S. Army Missle Command Redstone Scientific Info. Center Attn: Chief, Document Section
- 3 Redstone Arsenal, Alabama 35809 427 Commanding General
- U.S. Army Combat Developments CMD Combat Support Group 2 Fort Belvoir, Virginia 22060
- 428 Commanding General U.S. Army Combat Developments Command Attn: CDCMR-E 1 Fort Belvoir, Virginia 22060
- 430 Commanding Officer USACDC CBR Agency Attn: Mr. N. W. Bush 1 Fort McClellan, Alabama 36201
- 432 Commanding Officer USACDC Artillery Agency 1 Fort Sill, Oklahoma 73503
- 435 Commanding General U.S. Army Test & Eval. Command Attn: AMSTE-EL, -FA, -NBC 3 Aberdeen Proving Ground, Md 21005
- 436 Commanding General U.S. Army Test & Eval. Command Attn: NBC Directorate
 - 1 Aberdeen Proving Ground, Md 21005

- 437 Commanding General U.S. Army Munitions Command Attn: AMSMU-RE-R 1 Dover, New Jersey 07801
- 438 Commanding General U.S. Army Munitions Command Operations Research Group 1 Edgewood Aresenal, MD 21010
- Commanding General 439 U.S. Army Munitions Command Attn: AMSMU-RE-P 1 Dover, New Jersey 07801
- 442 Commanding Officer Harry Diamond Laboratories Attn: Library 1 Washington, D.C. 20438
- 445 Commanding General U.S. Army Natick Laboratories Attn: AMXRF-EG 1 Natick, Mass. 01760
- 448 Commanding Officer Picatinny Arsenal Attn: SMUPA-TV1 1 Dover, New Jersey 07801
- 449 Commanding Officer Picatinny Arsenal Attn: SMUPA-V46, Bldg. 59 2 Dover, New Jersey 07801
- 453 Commanding Officer Fort Detrick Attn: SMUFD-AS-S 1 Frederick, Maryland 21701
- 454 Commanding Officer Fort Detrick Attn: Tech Library SMUFD-AE-T 1 Frederick, Maryland 21701
- 459 Commanding Officer Edgewood Arsenal Attn: SMUEA-TSTI-TL 1 Edgewood Arsenal, Maryland 21010
- 460 Commanding Officer U.S. Army Nuclear Defense Lab. Attn: Library 2 Edgewood Arsenal, Maryland 21010
- 463 President
- U.S. Army Artillery Board 1 Fort Sill, Oklahoma 73503
- 464 Commanding Officer Aberdeen Proving Ground Attn: Technical Library, Bldg. 313 2 Aberdeen Proving Ground, Md. 21005
- 469 Commanding Officer U.S. Army Ballistics Rsch. Labs. Attn: Tech. Information Division 1 Aberdeen Proving Ground, Md. 21005
- 470 Commanding Officer U.S. Army Ballistic Research Labs. Attn: AMXBR-B & AMXBR-1A
 - 2 Aberdeen Proving Ground, Md. 21005

Distribution List (Continued)

- 472 Commanding Officer U.S. Army Limited Warfare Lab. Attn: CRDLWL-7C
 - 1 Aberdeen Proving Ground, Md. 21005
- 475 Commanding Officer
 USA Garrison
 Attn: Technical Reference Division
 1 Fort Huachuca, Arizona 85613
- 483 Commander
 U.S. Army Research Office (Durham)
 Box CM-Duke Station
 1 Durham, North Carolina 27706
- 488 USA Security Agency Combat Dev. Actv. Attn: IACDA-P(T) and IACDA-P(L) Arlington Hall Station, Bldg. 420
- 2 Arlington, Virginia 22212
- 489 U.S. Army Security Agency Proc. Ctr. Attn: TAVAPC-R&D Vint Hill Frams Station 1 Warrenton, Virginia 22186
- 490 Technical Support Directorate Attn: Technical Library Bldg. 3330
 1 Edgewood Arsenal, Maryland 26010
- 491 Commandant
 U.S. Army Chemical Center & School
 Micrometeorological Section (Chem. Br.)
 1 Fort McClellan, Alabama 36201
- 492 Commandant
 U.S. Army Air Defense School
 Attn: C&S Dept. MSL Science Division
 1 Fort Bliss, Texas 79916
- 493 Director
 U.S.A. Engr. Waterways Exper. Station Attn: Research Center Library
 2 Vicksburg, Mississippi 39180
- 495 CG, Deseret Test Center Attn: STEDO-TT-ME(S) MET Div. Bldg. 103, Soldiers Circle 1 Fort Douglas, Utah 84113
- 496 Commanding General USA CDC Combat Arms Group
 1 Ft. Leavenworth, Kansas 66027
- 497 Commanding Officer
 USA Aviation Materiel Lab.
 Attn: Technical Director
 1 Fort Eustis, Virginia 23604
- 503 Director U.S. Army Advanced Matl. Conc. Agency Attn: AMXAM 1 Washington, D.C. 20315
- 596 Commanding Officer U.S. Army Combat Dev. Command Communications-Electronics Agency
 - 1 Fort Monmouth, New Jersey 07703
- 597 Commandant U.S. Army Signal School Attn: Meteorological Department 0 7707
 - 1 Fort Monmouth, New Jersey 07703

U.S. ARMY ELECTRONICS COMMAND

- *604 U.S. Army Liaison Office MTT. Bldg. 26, Rm. 131 77 Massachusetts Avenue 1 Cambridge, Mass. 02139
- 605 U.S. Army Liaison Office MTT-Lincoln Laboratory, Rm. A-210 P. O. Box 73 1 Lexington, Mass. 02173
- 606 Headquarters
 U.S. Army Combat Dev. Command Attn: CDCLN-EL
 1 Fort Belvoir, Virginia 22060
- 607 Commanding General U.S. Army Tank-Automotive Command Attn: AMSTA-Z, Mr. R. McGregor 1 Warren, Michigan 48090
- 608 USAECOM Liaison Office, Stanford University Solid State Electronics Lab. McCul. Bldg.
 1 Stanford, California 94305
- 613 Chief, Atmos. Sciences Res. Div. ASL, USAECOM, Attn: AMSEL-BL-RD 1 Fort Huachuca, Arizona 85613
- 680 Commanding General U.S. Army Electronics Command Fort Monmouth, N.J. 07703
 - 1 AMSEL-EW 1 AMSEL-ME-NMP-PS 2 AMSEL-TD-TI 1 AMSEL-RD-MT 1 AMSEL-XL-D 1 AMSEL-NL-D 1 AMSEL-VL-D

*Unclassified, unlimited reports only. **Or number specified in contract. Add COTR's mail symbol

(5) Commanding Officer Atmospheric Sciences Laboratory US Army Electronics Command White Sands Missile Range, N.M. 88002

OTHER RECIPIENTS

- 504 Commanding General U.S. Army Materiel Command Attn: AMCRD-R (H. Cohen) 1 Washington, D.C. 20315
- 702 Institute of Science and Technology The University of Michigan P.O. Box 618, (Iria Library)
 1 Ann Arbor, Michigan 48107
- 703 NASA Scientific & Tech. Information Fac. Attn: Acquisitions Branch (5-AK/DL) P.O. Box 33
 - 2 College Park, Maryland 20740
- 707 Target Signature Analysis Cen. Willow Run Labs-Inst. of Sci. & Tech. University of Michigan, P.O. Box 618 1 Ann Arbor, Michigan 48107

Distribution List (Continued)

- 709 Battele-Defender Information Center Battele Memorial Institute 505 King Avenue 1 Columbus, Ohio 43201
 - 1 001411043, 0110 40201
- 714 Infrared Information & Analysis Center University of Michigan Institute of Science and Technology Box 618
 - 1 Ann Arbor, Michigan 48107
- 721 Vela Seismic Information Center University of Michigan Box 618
 - 3 Ann Arbor, Michigan 48107
- Note: Distribute only unclassified reports to the following addresses. Consider intent of distribution statement.
- 901 Head, Atmospheric Sciences Sect. National Science Foundation 1800 G. Street, N.W.
 - 1 Washington, D.C. 20550
- 902 Director, Systems R&D Service Federal Aviation Administration 800 Independence Avenue, S.W. 1 Washington, D.C. 20590
- 903 Atmospheric Sciences Library Environmental Science Svcs Admin.
 - 1 Silver Spring, Maryland 20910

- 904 Division of Meteorology & National c/o Air Pollution Control Administration 3820 Merton Drive 1 Raleigh, N.C. 27609
- 905 U.S. Department of Agriculture Attn: William A. Main University of Minnesota 1 St. Paul, Minnesota 55101
- 907 Chief, Fallout Studies Branch Division of Biology and Medicine Atomic Energy Commission 1 Washington, D.C. 20545
- 908 NASA Headquarters Meteorology & Sounding Br. (Code SAM) Space Applications Programs 1 Washington, D.C. 20546
- 910 Director Atmospheric Physics & Chemistry Lab R31 ESSA-Department of Commerce 1 Boulder, Colorado 80302
- 911 National Center for Atmospheric Research NCAR Library, Acquisitions-Reports 1 Boulder, Colorado 80302
- 912 OCE, Bureau of Reclamation Attn: D755, Bldg. 67 1 Denver, Colorado 80225
- 913 National Oceanographic Data Center Code 2220 Building 160, WNY 1 Washington, D.C. 20390