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ABSTRACT 

An experimental investigation of the atmospheric boundary-layer 

flow on high roughness was conducted by simulating the flow over a 

forest canopy in a meteorological wind tunnel. The model forest canopy 

used consisted of plastic simulated-evergreen trees. The measure~ 

ments were carried out at constant free-stream veloci!Y and under 

thermally neutral conditions. Two canopy densities were tested to 

explore the effects of the roughness density on the flow. One roughness 

density was half of the other. 

The results indicate that the mean velocity profiles within the 

fully developed flow region can be described by generalized logarithmi~ 

relationships. For the flow in the inner zone, the free-stream velocity 

and the roughness height are the similarity parameters for the velocity 

and the vertical distance, respectively. In the outer zone the free-

stream velocity and the momentum thickness are the scaling parameters. 

The roughness density has a strong influence on the momentum loss and 

the upward flow displacement in the transition region. The shape of the 

roughness element affects the mean velocity distribution inside the 

canopy, i.e., jetting effect. 

The internal boundary-layer thickness was determined based on the 

turbulent shear-stress distribution. It is found that the flow near 

the canopy leading edge has two-dimensional wake-like characteristics. 

The latter are due to the canopy frontal area which is a drastic step 

obstruction. 

The existence of an inertial subrange in the fully developed flow 

region is doubtful although local isotropy occurs for eddies smaller than 
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2% of the total boundary-layer thickness. The evolution of turbulent 

energy associated with various size eddies along the canopy can be 

successfully described by a discretized-energy analysis. 
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1. INTRODUCTION 

The flow characteristics within the atmospheric boundary layer 

vary depending upon the nature and configuration of the ground. 

Particularly, the turbulence features in the atmospheric surface layer 

where the frictional drag force of the ground is dominant depend con-

siderably upon the properties of the ground roughness. The shapes of 

roughness elements, their geometrical arrangement and the roughness 

density are main factors to detennine the velocity field. As roughness 

becomes higher and larger, the turbulent motion is greatly increased. 

The various exchange processes in the resulting turbulent flow are 

governed strongly by the turbulence characteristics. In an urban area, 

the exchange processes are closely related to air-pollution problems. 

In the flow inside and above forest or vegetative canopy the turbulence 

detennines soil erosiort, evaporation and rates of carbon dioxide ~xchange. 

Moreover, large velocity fluctuations cause significant aerodynamic 

effects on buildings and/or structures. Consequently, the study of 

velocity field in the atmospheric boundary layer is of utmost importance 

for a better understanding of various transport processes and wind load-

ing on structures. 

Theoretical analysis of the atmospheric-boundary-layer flow is 

extremely difficult because of the complexity of the interaction between 

the velocity field and the ground roughness. Hence, it is necessary to 

perform detailed experimental studies. Field measurements are inherently 

difficult due to the unsteadiness of weather conditions and the relatively 

high cost involved in setting up measurement stations. On the other hand, 

a suitable wind tunnel can now provide satisfactory conditions for 

simulating the atmospheric boundary layer. The flow conditions can be 
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maintained unchanged over enough time for carrying out adequate investi-

gation. Moreover, suitable instrumentation and measurement technique 

are easily available. 

Studies of air flow inside and above forest and/or vegetative 

canopies have been initiated in the Fluid Dynamics and Diffusion Labora-

tory at Colorado State University. The flow on a forest canopy was 

investigated by using a model forest canopy composed of plastic simulated-

evergreen trees in a meteorological wind tunnel. The measurements were 

performed. at a constant free-stream velocity and under thermally neutral 

conditions. 

The mean velocity within a fully developed turbulent boundary 

layer on small roughness elements, e.g., sand or gravel, is described 

usually by emp loying a power law and/or a logarithmic law. However, 

when roughness elements are relatively high compared with the total 

boundary-layer thickness (10% or more), the flow is highly disturbed. 

The overall flow characteristics must be determined by the momentum 

transport due to the velocity fluctuations and the proc~sses of the 

turbulent energy production and dissipation. Generally, the flow on 

high roughness elements is quite different from that on small elements. 

Therefore, in order to provide a reasonable description of the mean 

velocity distribution on high roughness, the feasibility of the 

aforementioned laws must be examined. A generalized law for describing 

the velocity variation above high roughness elements is sought. Further-

for a close examination of the turbulence structure, it is necessary to 

survey the turbulent shear stress, turbulence intensities and turbulent 

energy. 
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The canopy frontal area, which is a drastic and sudden obstruction, 

has a strong effect on the flow. It is important to investigate the 

flow characteristics in the transition domain to discern how the flow 

attains its fully developed regime. Thus, it is necessary to examine 

the mean velocity evolution along the canopy and the variations in the 

turbulent shear stress, turbulence intensity and turbulent energy with-

in this region. 

The roughness density, as mentioned previously, strongly affects 

the velocity field. In order to explore the influence of the roughness 

density on the flow, two canopy densities were tested. 

Theories related to this work are surveyed in the following section. 

Subsequently, the experimental results and relevant discussions are 

presented. 

The data used in this work are included in Appendix II. 
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2. THEORETICAL CONSIDERATIONS 

The mean vel oc i ty profiles within a turbulent boundary layer over 

a flat plate are usually described by using a power law and/ or a 

logarithmic l aw. 

The powe r law suggested by Prandtl [l] is 

U = (~)1/n 
U o 

00 

(2 .1) 

where U denotes the mean velocity, U designates the free-stream 
00 

vel oc i_ r.y, z is the vertical distance from the wall and 6 stands 

for the local boundary- layer thickness. This power law is based on 

th e ass umpt ion that the local skin-friction coefficient 

T 
0 

C = ---
f 1 u2 2 p 00 

(2.2) 

whe re 1 is the shear st ress at the wall and p denotes the fluid 
() 

den si t y , i s propo rtional to some power of the Reynolds number based on 

6 and U
00

. The value of 1/7 was suggested for the exponent 1/n 

in f.4 . (2 .1). However, it is found that the exponent varies from 

1/10 to 1/ 3 depending upon the Reynolds number [2]. The validity 

of Eq. (2.1 ) is restricted to Reynolds numbers smaller than 105 [l]. 

Jn order to express the dependence of the exponent in Eq. (2. 1) 

on the Reynold s number, the power law was generalized by employing two 

i ntegral characteristic parameters, i.e., momentum thic kness e and 

displ acement thickness 6* [3]. Thus, 



u 
u 

00 

= 

5 

{(~) H-1 } (H-1)/2 
e H(H+l) 

where H designates the shape factor, i.e., o*/6 

(2.3) 

In reality, the Reynolds number often exceeds the aforestated 

range of validity of these power laws. Moreover, analytically, the 

dependence of the exponent in Eq. (2.1) on the Reynolds number is 

not known yet. To overcome these difficulties, the law of wall (or 

the logarithmic law) was introduced on the basis of the mixing-

length concept [4]. In this law, the mixing-length is assumed to be 

proportional to the vertical distance from the wall. In addition, the 

shear stress is postulated to be constant with height. The generalized 

law of wall is expressed by 

_U_ = F[U*Z] 
u \) (2.4) 

00 

where the fricti on velocity denoted by U* is defined as 

(2.5) 

On t he other hand, under the assumption that the mixing-length 

is independent of the magnitude of velocity and the shear stress 

changes linearly with the vertical distance from the wall, a velocity 

defect law was proposed by von Karman [l]. This law is based on the 

similarity assumption of velocity fluctuations. The generalized 

form of the velocity defect law is 

U -U 
00 

= G[~] 0 (2 .6 ) 
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When there is a region, no matter how limited, where l:qs . (2 . :\) 

and (2. 6) are valid simultaneously, the functional form for buth 1 m·: 

of wall and velocity defect law is logarithmic [5]. Then, for a fl oh' 

on a smooth surface, the law of wall is expressed by 

U 1 = °* K 

.,. .,. 
where K is von Karman's constant and c1 is an integration 

constant. The value of the latter is determined by matching the 

velocity distribution to the velocity at the outer edge of the 

viscous sublayer. 

(2. 'i) 

Nikuradse [6] made extensive measurements on the flow in smooth 

and sand-roughened pipes. The numerical value of von Karman's constant 

was found to be 0.4. Moreover, it was observed that the velocity 

profile on the rough surface deviated from that on the smooth wall 

with increasing Reynolds number. This deviation depends upon the 

Reynolds number and the relative scale of roughness h/0, where h 

is the roughness-element height and D is the pipe diameter. \\'hen 

the Reynolds number based on the roughness height and friction velocity, 

i.e., , is larger than 70, the deviation becomes a functior, (If 

the relative scale of roughness alone [3]. In other words, when 

roughness elements are very high, the roughness height is the governing 

factor of the flow pattern. Similar results are reported in Refs. 7, 

8, 9, 10 and 11. In order t o describe the velocity profiles on a r cuf..h 

wall by means of Eq . (2. 7), a roughness function was introdu.:ed l2]. 

T11en, bq. (2. 7) becomes 
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(2.8) 

where ~U/U* is a roughness function which represents the mean velocity 

deviation on rough wall from that on smooth wall. It was shown experi-

mentally that the roughness function for flow on fully rough wall depends 

on the Reynolds number based on the roughness height and friction velocity. 

Thus, the roughness function is [11] 

~u 1 = u: K 
(2.9) 

where c2 is a constant. Substitution of Eq. (2.9) into Eq. (2.8) leads 

to the following logarithmic law 

where C is a positive constant for a given roughness. r 
In the atmospheric surface layer, the wind is affected by 

(2.10) 

various types of roughness elements such as grass, crops, trees, buildings 

and so on. The height of this layer is typically between 20 and 200 m 

[12]. Above the surface layer, with increasing vertical distance, the 

velocity deviation from the geostrophic wind speed disappears gradually. 

The atmospheric boundary !"ayer (or the planetary boundary layer) is 

defined as the distance from the ground where the mean velocity attains 

the geostrophic wind speed. The thickness of this layer is about 500 to 

1000 m depending upon the particular latitude [13). 
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In order to represent the mean velocity profiles within the 

atmospheric surface layer by a logarithmic law, it is assumed that 

the effects of the roughness oh the mixing-length are confined to a 

layer where the vertical distance from the ground and the roughness 

length are comparable [14]. The latter is a length scale which describes 

the influence of the roughness on the flow. When the vertical distance 

is sufficiently large compared with the roughness length, the mean 

velocity profile is written by 

u 
u* 

= .!. R.n 
K Z 

0 

where z denotes the roughness length. 
0 

(2. 11) 

Usually, this relationship is applied to the velocity profiles on 

either bare ground or very short vegetation, e.g., not exceeding a few 

centimeters [13]. To describe the velocity distribution over high 

roughness elements , the aforementioned equation is modified introducing 

a zero-plane displacement [14,15]. The modified logarithmic law is 

u 
u* 

= 1 R.n z-d 
K Z 

0 
(2.12) 

where d stands for the zero-plane displacement. The latter is 

considered as a datum level above which the turbulent exchange processes 

occur. It is noteworthy that the roughness length and the zero-plane 

displacement are interdependent since the logarithmic law is obtained 

by integrating a first order differential equation describing the shear 

stress distribution based on the mixing-length hypothesis. In spite of 
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this fact, Deacon [16] detennined the zero-plane displacement and the 

roughness length independently in order to provide the best fit curve to 

measured velocities. Then, it seems that Eq. (2.12) can represent the 

velocity profiles between 1 and 13 mover area covered with high grass . 

The flow in the atmospheric boundary layer may be simulated by 

the flow within the boundary layer on a flat plate. Thus, it is 

important to examine the eventual equivalence of the two length 

parameters in Eq. (2.11) and (2.12) i.e., z and d, to C and o r 
h in Eq. (2.10). The roughness length in Eq. (2.11) can be expressed 

in terms of the roughness height and a constant 

by the relationship 

z = h/C 
0 0 

C r in Eq . ( 2 . 10 ) 

(2.13) 

where C
0 

= exp(K Cr) . Thus, the roughness length is constant for 

a given roughness. Moreover, since the constant C is positive, r 
the roughness length is smaller than the roughness height. Next, it 

was found that the logarithmic profile represented by Eq. (2.10) 

is universal for either smooth or rough surface if the origin of the 

vertical coordinate is properly selected somewhere between the top 

and bottom of the roughness elements [2,10]. Thus, the zero-plane 

displacement introduced into Eq. (2.12) is considered as an adjust-

ment of the vertical-coordinate origin such that the measured 

velocities are described by the logarithmic law. 

In the turbulent boundary layer on a flat plate, the velocity 

distribution in the lower 10 to 20% of boundary-layer thickness 
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can be described by the logarithmic law [2]. The general fonn of the 

velocity profile throughout the entire boundary layer is expressed by a 

combination of the logarithmic law and the law of the wake [17] 

U 1 U*z ..-fvl 
- = - tn - + c1 + ~Kx w[i] U* K \I u 

(2.14) 

where ,r [x] is a profile parameter. The function w[fl is referred 

to as the law of the wake and supposedly connnon to all two-dimensional 

turbulent boundary-layer flows. Based on existing data, the wake 

function w[fJ is subjected to the following nonnalizing conditions 

w(O) = 0 

w(l) = 2 

and 
1 

J z 1 w d(6) = 
0 

Thus, in tenns of the wake function, the velocity-defect law is 

u - u 
00 

= 1 
K 

. Z Tl' fxl Z 
Zn 6° + (2-w[6]). 

Since Eq. (2.14) satisfies the boundary condition U = U at 
00 

z = o and by the condition (2.15b) the profile parameter can be 

evaluated by 

(2.15a) 

(2.15b) 

(2. lSc) 

(2 .16) 
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1 
K 

in 

where c1 was estimated to be 5.1 [17]. 

(2.17) 
V 

The use of the mixing-length concept in analyzing a turbulent 

boundary-layer flow permits description of the average properties of 

flow, e.g., the mean velocity profiles and the shear stress exerted 

on the wall. However, the turbulent-energy production, transfer and 

dissipation cannot be explained by this concept. In order to account 

for these mechanisms, it is necessary to examine the energy equation 

for both mean flow and turbulehce. Derivation and extensive 

discussion of both mean and turbulent energy equations can be found 

in Refs. 3, 12, and 18. 

The kinetic energy extracted from the mean flow due to its re-

tardation caused by roughness appears in the form of fluctuating energy. 

Through a cascade process [19], the latter is converted into heat by 

direct action of viscous stresses. Generally, this process does not 

occur in the same place since the eddies are conveyed by the mean velocity. 

Consequently, the balance between the energy production and energy 

dissipation is not necessarily a local process. Depending upon their 

relative magnitude, the difference can be made up at some downwind 

position. These mechanisms can be explained by examining the tur-

bulent energy equation in an arbitrary direction a under thermally 

neutral condition [12] 
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ae au au au. au 1 cxcx CX v(~ + --1.) CX --= - u u. ax . - ax. - -u at a J ax. ax p a ax 
J J a J ex 

a ae au. 
( u . cxcx 

a/ ) + -- - e - e u . + \) --+ \) u ax. CLCX J exa J ax. a 
J J a 

where j = 1, 2, 3, the dummy index cx is not to be summed upon 

and e = u2/2 . In this equation, the mean velocity is denoted cxcx ex 
by U and the fluctuating velocity by u. Terms in the final 

(2.18) 

bracket express the energy transfer from one place to another since 

their volume integral vanishes at all points on a sufficiently distant 

surface [12]. The third term on the right-hand side of Eq.(2.18) 

accounts for the transfer of energy among the turbulent velocity 

components by the fluctuating pressure forces. The second term is 

the total rate of work again~t viscous forces in the a-direction 

and represents the energy dissipation directly to heat, i.e., the 

dissipation term. The first term on the right-hand side indicates 

the energy supply from the mean motion to the fluctuating velocity 

and is usually referred to as the production term. The production 

tenn can be rewritten as [12] 

au 
CX u u. -- + ex J ax. 
J 

au a 
U u . = -... - (u u. U ) • 

CX J aX. aX. CX J CX 
J J 

(2.19) 

The term on the right-hand side is the divergence of the fluctuating 

energy transport. Its integration in space is equal to zero. Hence 

the two terms on the left-hand side represent the energy balance. 
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This indicates that the energy extracted from the mean motion in 
au 

the a-direction by -U u. T becomes the fluctuating energy in 
a J x . au 

__J_ a 
the same direction through -u u . --

a J ax . 
J 

All the terms in Eq. (2.18) but the pressure transport term were 

measured within two-dimensional turbulent boundary layer [20,21]. These 

results show that the various transport terms are of secondary importance 

with respect to the production and dissipation terms near the wall. In 

other words, the production and dissipation are nearly in balance, i.e., 

most energy produced locally can dissipate locally [12,18]. As a result, 

near the ground within a two-dimensional turbulent boundary layer, the 

energy balance cah be approximated by 

- au 
- uw az "' e: , (2.20) 

where e: stahds for the energy dissipation and, u and w are the 

fluctuating velocities in the x- and z-direction, respectively. 



14 

3. EXPERIMENTAL APPARATUS 

The objective of the experimental program was to study the flow 

within and, i n particular, above high roughness elements randomly 

dis tributed. This was to be achieved by using a model fores t canopy 

consis ting of plastic simulated evergreen trees in a meteorological 

i-;ind tunne l . The flow within the atmospheric boundary layer changes 

its characteristics depending on t~e shape of prevailing roughness 

e lements, their stiffness and configuration. Therefore, the flow over 

fores t canopies cah hatdiy be studied__from measurements using a single 

tree or a small nUmber of trees. Unfortunately, field measurements do 

not yet yield adequate testilts for a systematic analysis of flow. This 

is due to the continuous variation of weather conditions and the high 

cost in setting up adequate field measurement stations. On the other 

hand, the wind tuhnel flow provides satisfactory conditions to simulate 

the atmospheric boundary layer [22]. The flow conditions can be kept 

unchanged over a long ehough time period for performing adequate measure-

ments. Moreover, suitable instrumentation and measurement techniques 

are easily available. 

Many investigations of flows using various types of trees and 

forest canopies were conducted in wind tunnels and in field [23,24, 25 , 

26 , 27]. The wind-tunne l data show reasonable agreement with fi el d 

data . However, mo s t of these studies are limited to particular aspects. 

Consequently , they do not supply a general picture of the flow field 

caused by high roughness spreading over wide area, such as a fores t 

canopy or any vegetative canopy. Investigation of the flow inside and 

above forest canopies using a wind tunnel was recentl y initiated at th e 

f.l uid Dynamics and Diffusion Laboratory, Colorado State University. 
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First, flexibl e roughness elements were used (28). 

were employed to simulate vegetative canopies (29,30). 

;,-;ext , pe gs 

Following 

that, drag measurements of model trees (31) and preliminary veloci ty 

and diffusion measurements [32,33) were performed by employing simulated 

fo r est canopy. The latter is generally similar to the canopy used in 

the present work . 

Since the f ~0w in the wind tunnel is of different scale than the 

full-sc ale f low, the flow similarity conditions must be satisfied. Thus, 

geometrical, dynamic, kinematic and thermal similarity must be achieved 

(22,34]. For dynamical similarity , the Rossby, Reynolds and Froude 

numbers must be the same for both model and field flow. The model 

forest used in thi s experiment does not have any specific prototype so 

that geometrical similarity is irrelevant. Neither thermal similarity 

nor the Froude number equality needs to be considered since the experi-

ment was carried out under thermally neutral conditions. The condition 

for the Rossby number can be disregarded if the horizontal length scale 

of the full-scal e forest is smaller than about 150 km [22]. 

The Reynolds number equality is of prime importance in the case of 

laminar flow . However, the flow about sharp-edged bodies or tree-like 

roughness is turbulent and, hence, inertially dominated. Flow separa-

tion occurs on each one of the roughness elements. In other words, the 

roughness element acts as vortex generators and counteracts the damping 

effect of the viscosity [3]. Then, it can be assumed that the flow 

pattern is independent of the Reynolds number. Recent experimental 

investigations s eem to indicate that drag coefficient and wake character-

i stics of tree elements are approximately independent of the Reynolds 

number [2 3,24,28 , 30,32,33]. In general, it i s reasonable to assume that 
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t he flow in the atmospheric surface layer is inertially dominated. 

Si milarly, the wind tunnel flow reported herein is inertially dominated. 

Therefore, the flow over model forest can simulate the full-scale forest 

canopy flow although the Reynolds number in the model canopy is smaller 

t han that i n a similar field flow. 

Finally, t o satisfy kinematic similarity, the upstream velocity 

shoul d vary accordi ng to the logarithmic law characteristics of the lower 

atmosphere. Moreover, the model forest canopy is to be placed in a 

t ur bulent boundary layer simulating the atmospheric surface layer. 

Accor dingly, the upstream boundary layer must be artificially thickened. 

3. 1 Model forest canopy 

A model forest canopy 1100 cm long and 183 cm wide was used. A 

s chemat i c diagram of the canopy and of the model tree is displayed 

in Fi g. 3.1. The model tree used is 18 cm high and, roughly, the 

largest diameter of the crown was measured at a height of about 13.5 cm, 

i.e., at 75% of the canopy height. The system of coordinates used and 

al l i mportant dimensions are also shown in this figure. The canopy 

bas e consi s ts of 18 identical aluminum plates 0.5 cm thick. On the 

face of these plates, holes of 0.5 cm in diameter were drilled at 

i ntervals of 1.27 cm. Model trees made from plastic simulated 

evergreen boughs were inserted into these holes. These roughness 

elements were selected based on the results reported in Ref. 32. 

The model trees were randomly distributed so that no definite rows were 

evident. Two roughness densities, i.e., the number of trees per unit 

area, were employed. The first was approximately 1 tree per 46 cm2, 

whereas the ot her was nearly 1 tree per 92 cm2. Hereafter, the former 
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is referred to as full-density canopy or FDC and the latter as 

half-density canopy or HOC. In the former density, the base plates were 

completely covered by the tree crowns. It is, further, possible to 

define a volumetric density number. This was defined as the ratio of 

the volume occupied by the trees to the total volume of the canopy . 

If the trunk is represented by a cylinder and the crown by a cone , 

as shown in Fig. 3.l(d), then the crown volume is about 222 times l arger 

than the trunk volume. Consequently, the latter can be neglected. 

Then , the volumetric density was approximately 0.26 for the full - densi t y 

canopy and 0 .13 for the half-density canopy . 

3.2 Wind tunnel 

The experiment repo rted herein was conducted in the Army 

Meteorological Wind Tunnel [35]. This is a closed circuit wind tunnel 

with a 27 m long t es t section and a cross-section of 183 x 183 cm. I t s 

contraction ratio is 9:1 . Air speed up to about 36 m/sec is generated 

by a. propeller driven by a 250 hp DC motor . The air speed can be changed 

continuously by adjusting the pitch of propeller blades and/or the motor 

speed. A schemati c diagram of the wind tunnel including the system of 

coordinates used and a ll important dimensions is shown in Fig. 3.2. 

The leading edge of the canopy was located 15 m downstream 

of the test section entrance. To satisfy the requirement for 

kinematic similarity, turbulence was generated by gravel installed 

upstream of the entrance, i.e., in the contraction section. However, 

the turbulent boundary layer generated by this roughness was no t thick 

enough at the canopy leading edge. Consequently, an additional turbu-

lence generator was placed along the first 3 m of the wind-tunnel tes t 



18 

section. The turbulence generator was made from flexible plastic strips 

of 10 cm high, 0.63 cm wide and 0 .019 cm thick. Thus, an adequate tur-

bulent boundary layer was obtained. 

The wind tunnel ceiling is sectionally adjustable such that any 

des irable longitudinal pressure gradient can be obtained. For this 

adjustment , eigh t static-pressure taps located 244 cm apart were 

empl oyed. 

An electrically driven traversing mechanism permitted continuous 

movement of various measurement probes in the x, y, and z-directions. 

The position of probes can be controlled within 1 rran. 

A photograph of the full density canopy installed in the wind 

tunnel is displayed in Fig. 3.3. 
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4. EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION 

4.1 Pressure and velocity measurement 

The pressure gradient in the wind direction is negligibly small 

in the atmospheric boundary layer . Consequent l y, the experiment was 

carried out under approximately zero pressure gradient condition. 

The latter was ach i eved by an extensive series of trails in which the 

slope of the wind tunnel ceiling along the model canopy was sectionally 

adjusted. For this purpose, the static pressure taps located along the 

ceiling were utilized. The pressure at the first tap located 900 cm 

downstream of the test section entrance was used as the reference 

static pressure. The difference between the reference pressure and 

the pressure at other taps was adjusted within 0 .002 nun Hg. An 

electronic pressure meter of capacitance type (Trans-Sonic Equibar 

Type 120 A) was employed for the pressure measurement. This meter 

is a differential micromanometer with a range up to 30 nun Hg and a 

resolution of 0.0001 111'11 Hg. 

The experiment was carried out at a constant free-stream velocity 

of 6 m/sec. The freestream veloci ty was measured by means of a Pitot-

static tube located 1 m upstream of the model forest and 1 m above the 

wind tunnel floor. A similar Trans-Sonic pressure meter was utilized to 

monitor the Pitot-static tube reading. A standard Pitot-static tube of 

hemispherical type with an impact orifice of 1/8-in diameter was utilized 

[36] . 

4.2 Mean velocity and turbulence measurement 

The mean velocity distribution within and above the forest canopy 

was measured by a single hot-wire anemometer. Simultaneously , the 
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longitudinal turbulence intensity was also measured. The hot-wire 

anemometer used in this experiment is a new system conceived, designed 

and built at the Fluid Dynamics and Diffusion Laboratory, Colorado State 

University [37] . This is a fully transistorized unit of constant temper-

ature type (CT). The noise level of the unit is less than 200 µv. The 

signal to noise ratio (S/N) is from 4 to 200 depending on the output 

signal . Its frequency response is as high as 100 kHz. A copper-plated 

tungsten wire of 0.00875 nnn in diameter and of an aspect ratio of approxi-

mately 170 was used. 

The hot-wire calibration indicated that the square of -the actual 

voltage drop across the wire E is nearly proportional to the square 

root of the undisturbed velocity U. That is, the so-called King's 

law [38] was found to be reasonably satisfied within the velocity range 

of the present experiment. A typical calibration curve is displayed 

in Fig. 4.1. For practical purposes, the relation between the voltage 

drop and the undisturbed velocity may be written as [39] 

!-.: E2 = E2 + MU 2 
0 

(4 .1) 

where E is the voltage drop in still air (or shielded hot-wire). The 
0 

constant M varies with wire configuration, wire properties and air 

properties. This constant is experimentally detennined from calibra-

tion for each particular wire employed. Moreover, both E and M 
0 

depend on the resistance ratio N. The latter is the ratio of the 

heated-wire resistance under working condition R to its cold resis-w 
tance in still air R wco It is important to note that Eq. (4.1) does 

not hold at very low velocity, say, smaller than 0.10 m/sec (39]. 
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When a hot-wire probe is placed in the turbulent flow, the 

instantaneous effective velocity 

can be expressed by 

U causing the actual voltage drop 
e 

(4.2) 

In the above relationship, U is the mean or time-averaged velocity, 

u is the component of the fluctuating velocity parallel to U and 

w is the lateral component of the fluctuating velocity perpendicular 

to the hot wire. The component parallel to hot-wire axis v contributes 

negligibly to the heat loss of a hot wire [18,40]. Thus, Eq. (4.1) 

becomes 

E2 = E2 + MIJ 2 (4.3) o e 

Under the condition of relatively small fluctuation, w is assumed 

to be negligible compared with (U + u). Thus, Eq. (4.3) reduces to 

(E + e) 2 
1 

= E2 + M(U + u) ~ 
0 (4.4) 

where E is the time-averaged (DC) voltage necessary to balance the 

bridge under steady conditions and e stands for the AC instantaneous 

voltage drop proportional to the fluctuating velocity u. Next, by 

perfonning a binomial expansion, the quadratic and high order tenns 

in e and u can be neglected in Eq. (4.4) on the assumption of small 

fluctuations. Separating the bridge voltage into its DC and AC parts, 

and taking square-root of both fluctuating quantities, the turbulence 
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intensity is given by [39] 

e nns 
E 

( 4. 5 ) 

where the subscript nns denotes square-root of mean square value, 
-!.. -!.. 

i.e., (u2) 2 and le 2J 2 The error in using Eq. (4.5) is at most 10% 

fo r turbulence intensity of 60%. Turbulence intensities of this order 

of magnitude were monitored only at several stations. 

In addition to the condition of small fluctuations, the mean 

velocity must be high enough to satisfy the relation E-E /E > 0.2 
0 0 

for 

Eq. (4.5) to be valid (39]. The measurement of large fluctuations in 

the low velocity range can be carried out by using the method developed 

by Sadeh [39]. This method needs an adequate linearizer uni t. Since 

the measurements in our work were made without a linearizer, the result s 

in the high turbulence intensity region are not so reliable. 

A yawed wire probe was employed for measurements of the vertical 

fluctuating velocity w and the turbulent shear stress uw . When a 

hot wire is placed succe_ssi vely in the x-z plane at two different yaw 

angles, say, 45° and 135°, to the mean flow direction, uw and w2 

are given by the relationships (see Appendix I) 

and 

uw 
u2 = (4.6) 
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u2 

u2 ( 4. 1) 

where e denotes the AC instantaneous voltage drop across the yawed 

wir1 • caused by u and w , and the subscripts 45 and 135 stand for 

Hr:: yaw :ir,slc of the hot wire to the mean flow. In Eq. (4. 7) u2 is 

r)bt .:, ined f-rom a normal wire measurement at the same location. It is 

important to not ice that in deriving Eqs. (4.6) and (4.7), the King's 

l aw is assumed to be valid for a hot wire yawed to the mean flow direc-

t i on. Calibrat ions of a 45°-yawed wire showed that the aforementioned 

assumption i s reasonably satisfied. A sample of the calibration curves 

obt ained is provided by Fig. 4.2. 

The frequency--spectra survey was performed by means of a recording 

wave analy zer (General Radio, Recording Sound and Vibration Analyzer, 

Type 1911 -- A). The fraction of energy at each frequency, i.e., the 

frequency densi t y function, calculated in terms of the mean-square 

output of a wave analyzer is 

F[n] = If- e2 [n,Bw] 
w 

where e 2 [n , B ] is the square of the rms output at any selected w 

frequency n, B stands for the filter bandwidth and n is the w 

(4.8) 

central frequency within the bandwidth. A constant-percentage bandwidth 

of 1/3 octave (23%) was used throughout this survey. In this case, the 
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bias error when changes of the mean-square values are smaller than 

±15 db/oct ave is estimated to be less than 5% [41). 

Both normal and yawed wire were calibrated employing a cal i brator 

(Tnermo-System Calibrator , Model 11 25) . Air velocity i n this cal i brator 

ranges from about 0 . 15 m/sec to 300 m/sec. The accuracy of the repro-

duct ion of velocity in this calibrator is ±2% for velocity larger than 

3 m/sec . At smaller velocity, the accuracy is approximately ±5%. 

Other auxiliar y equipment used in this experiment were: (1) A 

digital DC voltmeter (Hewlett-Packard, Model 3440 A) for monitoring 

of various output voltages; (2) A true root-mean-square meter, TRMS 

(DISA, Type 55D35) f or measurement of rms values; (3) A dual-be am 

oscil lo scope (Tektronix , Type 502A) for quick assessment of the output 

signal pattern, cal i bration and monitoring of instantaneous AC signal ; 

(4) A t ape recorder (Ampex, Model FR 1300) for recording of various 

output ::;ignal for fur ther analys is; (5) An integrator (CSU) for obtai n-

ing the t ime -ave raged value of hot-wire output voltage; (6) An x-y 

recorder (Moseley Autograf, Model 135) for recording TRMS output vol t ages . 

A simplified block di agram of the equipment utilized is shown i n Fi g . 

4 . :-; . A genera l view of the hot-wire anemometer and the additional 

equipment , is provided by Fig. 4.4. 



25 

5. EXPERIMENTAL RESULTS 

The flow within and, particularly, above the model forest canopy 

was investigated. The experiment was performed at constant free-stream 

velocity, i.e., approximately vanishing longitudinal pressure gradient, 

under thermally neutral conditions. The main purposes of the work 

reported herein were: 

(1) To study the mean velocity evolution along the canopy. 

(2) To investigate the turbulence intensity variation along the 

canopy. 

(3) To explore the turbulent energy distribution and turbulence 

structure. 

(4) To examine the high roughness effects on both meµ~ velocity 

and turbulence. 

The system of coordinates used in the presentation of the results 

is portrayed in Figs. 3.1 and 3.2. The origin is at the geometrical 

center of the canopy leading edge. Generally, the results are presented 

in dimens ionl ess form. Dimensionless variables are denoted by a tilde 

placed over the symbols used. The dimensionless coordinates are defined 

by 

x, y, z = x/h, y/h, z/h, (5.1) 

where h is the canopy height, h = 18 cm. The velocities are referred 

to the constant free-stream velocity used in this experiment 

v = -+ 
V/U 00 (5.2) 
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where U = 6 m/sec . If other reference length or velocity is 
00 

utilized, they are mentioned as they are introduced. 

The results for both canopy densities, FDC and HDC, are presented 

simultaneously for the sake of comparison and for assessing the effects 

of canopy density. As the experimental results are presented, relevant 

dis cussions are interspersed wherever it is deemed helpful for proper 

interpretations of the results. 

5.1 Establishment of the flow 

To begin with, longitudinal zero-pressure gradient was obtained by 

adjusting sectionally the wind-tunnel ceiling as described in Sec. 3.2. 

The free-stream velocity which was maintained at 6 m/sec was measured 

at 1 m upstream of the canopy, i.e., at x = -1 min the plane y = 0 

(see Fig. 3.1). Basically, due to the zero-pressure gradient, the free-

stream velocity should remain constant along the model forest. However, 

a slight increase of about 2.5% in its value was monitored up to 1 m 

downst ream of the canopy leading edge, i.e., up to x = 1 m. Beyond 

this point, the variation in the free-stream velocity was negligibly 

small, less t han about 1%. 

It was found that the velocity distribution at x = -1 m, which 

is displayed in Fig. 5.1, is reasonably described by a power law (see 

Eq. (2.1)). In this figure the vertical distance is made dimensionless 

using the local boundary layer thickness o • The numerical value of 

the exponent was found to be approximately 0.18. Field measurements 

also indicate that the velocity profile can be expressed by a power law. 

Generally, the value of the exponent depends on the surface roughness 

[42). For instance, in Ref. 43 a value of 0.28 is suggested for wooded 
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area and Of 0.16 for open coW1try. The value of the exponent for the 

upstream velocity is about 12% larger than the aforementioned value 

for open coWltry. Furthermore, based on field measurements, the value 

of the exponent can vary daily and/or seasonally [42). The seasonal 

variation seems to depend on the location of the measurement probes. 

Simultaneously, it was foWld that the upstream velocity varies 

satisfactorily according to the logarithmic law (see Eq: (2.11)) as shown 

in Fig. 5.2. The estimated value of the friction velocity and of the 

roughness length are about 36 cm/sec and 0.093 cm, respectively. In 

accordance with the suggested value of roughness length for various 

natural surfaces [16], the upstream surface in this experiment would 

corre~pond to a desert area. Consequently, the velocity distribution 

in the atmospheric surface layer over smooth surface was simulated 

adequately by the upstream flow. 

5.2 Mean velocity survey 

The mean velocity in both FDC and HOC cases was measured at 14 loca-

tions along the canopy center line, i.e., along the x-axis in the plane 

y = O, from 1 m upstream of the canopy to 1 m downstream of it. At each 

location, for the FDC case, the measurements along the z-axis were 

carried out at 14 to 17 stations over a height of 119 to 132 cm. On 

the other hand, the measurements for HDC case were performed at 13 to 

16 stations over a height of 102 to 132 cm. Within the canopy height 

the mean velocity was measured at 4 or S stations at each location. 

The measured mean velocity variation for FDC case is shown in Figs. 

5 ,3a and 5.3b whereas for the HOC case in Figs. 5.4a and 5.4b. In both 

cases, a similar velocity variation with height was obtained. When the 
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flow encounters the canopy, the lower part of the flow is deflected 

upward by the canopy frontal area. Hence, in the vicinity of roughness 

a relatively drastic velocity change with height is observed. Away 

from the canopy the velocity increased gradually exhibiting a change 

similar to the upstream velocity. 

In order to examine the mean velocity evolution above the canopy, 

the velocity variation along 6 isoheights for both canopy densities, 

FDC and HOC, is displayed in Fig. 5. 5. The flow retardation due to 

the roughness, which is stronger close to the canopy than far from it, 

is c learly discerned. Most of the velocity deceleration occurs over 

a longitudinal distance of about 15 to 20 roughness heights within a 

region extending approximately up to one roughness height above the 

canopy (z = 2). Beyond 20 roughness heights from the canopy leading 

edge, the velocity change up to about l.Sh above the roughness is 

practically negligible. Away from the roughness, the flow retardation 

extends over longer distances. With increasing height above the canopy, 

a longer adjustment range to the new roughness conditions is needed. 

The region throughout which most of the deceleration develops can be 

defined as a transition region. On the other hand, the fully developed 

fl ow region is arbitrarily defined as the region where the mean velocity 

deviates by les s than 5% from the local mean velocity at x = 45 . Within 

this domain, the flow reaches a state of relative equilibrium. According 

to the above definitions, the extents of the transition and the 

ful ly developed flow regions for both FDC and HOC are shown by the broken 

lines in Fig. S.S. It is important to remark that the transition region 

for FOC stretches over a shorter distance than for HOC. Roughly, it 
-stretches in the former case up to x = 16 to 32 and in the l atter case 
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up to x = 19 to 38 over a height range from z = 1 to S . This is due 

to the dependence of the momentum loss on roughness density. As the 

density is higher, the momentum loss is greater and, hence, the transition 

domain is shorter. Thus, the extent of the transition region depends 

upon the roughness density and increases with height above the canopy. 

Toward the trailing edge of the canopy, a slight acceleration over a 

distance of about Sh was observed. It is due to the flow adjustment 

to the smooth surface leewind of the canopy. 

It is, further, worthwhile to notice the effect of the roughness-

element shape on the velocity variation within the canopy. Recall that 

the trunk extends over 28% of the roughness height and the crown over 

72% of it (see Fig. 3.1). The mean velocity change with height inside 

the canopy at 6 selected stations is shown in Fig. 5.6. Generally, 

higher velocities were monitored along the trunk zone than along the 

crown. As the flow approaches the canopy, it is divided into two 

distinct parts due to crown stagnation effects. An upward flow displace-

ment above the canopy and a downward deflection into the trunk spacing 

arise simultaneously. Accordingly, the largest velocities within 

the canopy were monitored at about 1/2 of the trunk height throughout 

the beginning of the transition region. This region of relatively large 

velocities is called the jet region. On the other hand, the smallest 

velocities were general l y measured at z = 0.7, i.e., at about half 

of the crown height (z = 13.6 cm) . The jetting vanishes gradually as 

x increases . Within the canopy, the fully developed flow region is 

defined as the domain where the jet effect is not discernible. In the 

FDC case the jet ting was observed up to about 1.5 m (x = 8.33) from the 

leading edge while for HOC up to about 2 m (x = 11.11) Once the jetting 
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effect fades, similar velocity profiles were obtained at all measurement 

stations inside the canopy. Furthermore, the velocity along the lower 

half of the canopy is almost constant with height. Near the trailing 

edge of the canopy, due to the flow adjustment to the canopy-leewind 

smooth surface, the flow is displaced downward and repenetrates into the 

canopy. Therefore , a slight jetting redevelops as the canopy trailing 

edge is approached. 

Basically, the flow in the neighborhood of the canopy center line, 

i.e., in the vicinity of the plane y = 0, can be assumed to be 

similar to two-dimensional flow through a channel. Consequently, it 

is important to examine the mean velocity and turbulence intensity 

change off the center line. It should be recalled that the latter was 

measured simultaneously with the former. The results for both FDC and 

HOC cases over a distance of 30 cm off the center line at two stations, 

i .e., x = 16 .66 and 38.88, are portrayed in Figs. 5.7 and 5.8, res-

pectively . In these figures the mean velocity is normalized using the 

free-stream velocity in the plane y = 0 (U
00

c = U
00

(y=O) = 6 m/sec) and 

the longitudinal turbulence intensity (T) u is based on the local mean 

velocity. A lateral variation in the mean velocity of less than 5% is 

discerned. Similarly, the transversal change in the turbulence intensity 

is smaller than about 3% . Thus, in the vicinity of the canopy center 

line, i.e., within about y = ± 30 cm, the flow is practically two-

dimensional. 

The boundary-layer thickness growth for both FDC and HOC cases 

i s depicted in Fig. 5.9 . The boundary between the transition and fullr 

devel oped flow regions is also shown in this figure. The boundary-laye r 

t hickness was defined, as commonly done, as the distance from the wall 
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where U/U = 0.99 . The results indicated, as expected, that the 
(X) 

growth rate in the FDC case is larger than that for the HDC case. This 

is due to the dependence of the upward flow displacement on canopy den-

sity. As the latter is higher, the fonner is larger. The adjustment 

of the boundary-layer thickness downstream of the canopy is also clearly 

discerned in rig. S. 9. 

It is, further, important to examine the variation of the displace-

ment and momentum thickness, 6* and 8 , along the canopy. The results 

for both FDC and HDC are shown in Fig. 5.10. As anticipated, their growth 

rates for FDC case are slightly larger than for HDC. This result is in 

agreement with the boundary-layer thickness change. Due to the drastic 

flow retardation throughout the transition region, a strong increase in 

the momentum thickness is expected to occur within this region. This 

is not substantiated by the obtained momentum thickne~, change. Since 

most of the momentum thickness loss and the flow upward displacement 

are caused by the roughness, it is important to find out the contribu-

tion of the flow within the canopy to total local momentlUII and displace-

ment thicknesses. These results are displayed in Fig. 5.11. In this 

figure, o* and h eh designate the fraction of the displacement and 

momentum thicknesses, respectively, over the canopy height. In the 

transition region, the contribution of the flow inside the roughness to 

the momentum thickness reduces from SO to about 10% over a distance of 

20 to 30h from the canopy leading edge. Hence, the severe flow retarda-

tion is mainly due to the large momentum loss inside the roughness. It 

is inferred that the latter is mainly caused by the stagnation flow 

effects on the canopy frontal area rather than by the friction at the 

canopy surface. Within the fully developed flow region, the contribution 
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of the flow inside the canopy to the momentum thickness levels off to 

about 10%. In this region, the flow is already adjusted to the new 

roughness conditions and the momentum loss is mostly due to friction 

along the canopy fuzzy surface. This result agrees with the drag mea-

surements reported in Ref. 31. It is important to remark that the frac-

tion of momentum thickness within the canopy depends upon its density. 

The contribution in FOC case is always smaller than for HOC case. As 

the roughness is denser, the upward flow displacement is larger. In the 

FOC case, it reduces to 10% at about x = 20 whereas in the HOC case at 
-approximately x = 30. The variation of the roughness contribution to 

the local total displac,ement thickness reveals a similar behavior. It 

diminishes from roughly 60% at the canopy leading edge to about 40% at 
-
X = 30 to 35 Similar to momentum thickness variation, the roughness 

contribution to total displacement thickness throughout the transition 

region is larger for HOC than for FOC. This contribution reduces to about 

40% at -X = 30 for FOC whereas at X = 35 for HOC. Within the fully 

developed flow region, the roughness contribution to the displacement 

thickness occurs more gradually than to the momentum loss. 

In order to examine the roughness effects on the flow displacement 

and momentum loss, it is important to evaluate the shape factor, i.e., 

the ratio of displacement thickness to momentum thickness, (H = o*/8). 

The shape factor variation along the canopy is displayed in Fig. 5.12. 

At the very beginning of the transition region, the shape factor for 

FOC reveals a steeper increase than that for HOC. In the former case 
-it reaches a maximum value of about 3.50 at x = 5.55 while for HOC 

it is approximately 3.35 at x = 10. After the maximum value is attained, 

in both cases the shape factor diminishes gradually to a value of about 
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2.65 in the fully developed fiow region. As the trailing edge is 

approached, the shape factor reduces slightly due to the smooth surface 

downwind of the canopy. 

The shape factor depends upon the wall conditions through the 

friction velocity. It can be expressed by the relationship [11] 

H = (i - (5. 3) 

where C is assumed to be a universal constant for flows without pres-

sure gradient. For flow over both smooth and rough surfaces (fine 

roughness: sand or gravel), the shape factor ranges from 1.4 to 2.6. 

In this case the value of C was estimated to be 6.1 [11]. On the other 

hand, depending upon the particular logarithmic law used to describe 

the velocity distribution, the value of C can vary from 4.88 to 5.4 

[18]. Since ih this work the roughness is relatively high, it is 

important to evaluate the value of C in Eq. (5.3). For the sake of 

comparison, the results at three stations in the fully developed flow 

region for both FDC and HOC cases are summarized below: 

* 

X 

38.88 

47.22 

52. 77 

X 
(m) 

7.0 

8.5 

9.5 

Obtained by interpolation 

FDC 

13.1 

13 . 0* 

15.0 

C 
HDC 

9.8 

9.9 

10.7 
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In computing the values of C the local friction velocity was estimated 

from the shear stress measurement (see Sec. 5.3). The values of C 

obtained are about 1.5 to 2.4 times larger than that for fine roughness, 

viz., 6.1 in Ref. 11 which is the best fitted experimental approximation. 

Hence, the high roughness affects strongly the value of so-called 

universal constant C. Moreover, if the latter valu~ is employed in 

Eq. (5.3), the shape factor would be about 50 to 60% smaller than its 

values shown in Fig. 5.12. When the shape factor is estimated for the 

flow above the roughness, i.e., H = (o*-oh)/(e-eh), its value in the 

fully developed flow is about 1.65. 

Generally, in the fully developed flow region the mean velocity 

above the canopy can be represented by a 1/n-power law and/or a logarith-

mic law (see Eqs. (2 .1) and (2 .11)). The value of the exponent 1/n in 

the power law varies drastically with the flow Reynolds number [2] and, 

hence, the possibility of obtaining a similar velocity distribution 

is limited. Furthermore, the validity of such a representation for flow 

over high roughness elements was not yet adequately investigated. For 

flow over high roughness an adjusted power law where the vertical dis-

tance is measured from the roughness surface was suggested [28]. Thus, 

_ - 1/n 
u = c:- 1) (5.4) 

0-1 
where o = o/h Samples of the velocity distribution in the fully 

developed flow region for both FDC and HDC using Eq. (5 .4) are displayed 

in Fig. 5.13. The values of n were found to be 2.8 and 2.5 for FDC 

and HDC, respectively. Basically, if the exponent is properly evaluated, 

the velocity seems to be satisfactorily described by L4 . (5.4). On the 

other hand, it is practically impossible to determine an adequate value 
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for n since its exact dependence on roughness condition is not known. 

Moreover, the use of Eq. (5.4) in the vicinity of the roughness surface 
- z-1 (z = 1.28 to 1.35 or -_- = 0.05 to 0.07) does not yield r eli ab l e r e -

o-1 
sults. Usually, the measured velocity is larger th an the va l u0 obtaineJ 

from this equation. 

It might be surmised that the use of the power law in t erms of the 

shape factor as given by Eq. (2.3) [3] would eliminate some of the 

difficulties related to the 1/n-power law. In this equation the exponent 

is expressed directly in terms of the shape factor. The latter can be 

easily computed from the measured velocity . When Eq. (2.3) was used 

employing the computed values of H and a significant discrepanci es 

between the caicuiated (based on H) and measured velocities were 

obtained. For instance, within z = 1 to 6 , differences up to 10% were 

obtained. For increasing distance from the canopy the disagreement 

augmented. 

The velocity variation above the roughness depends on the roughness 

element shape and, particularly, on the roughness density and arrange-

-ment. Recall that the crown is largest around z = 0 . 75 and that i n 

all cases a minimum vel oc ity was monitored at z = 0.7. Thus, i t vi a s 

attempted to use Eq. (2.3) when the origin of the vertical coordi nat0 

was selected at z = 0.75. This endeavor did not lead to any ac cept able 

improvement. It is suspected that this disagreement is cause.-1 by tl ,e 

strong dependence of the exponent in Eq.(2.3) on the value of the 

shape factor. Hence, the use of the latter as the single overall 

parameter for flow over high roughness is questionable . 



36 

The logarithmic law in its various fonnulations is widely used for 

describing the velocity within a turbulent boundary layer on rough 

surfaces. This law was proposed as a similarity solution for the 

boundary-layer flow . In the logarithmic law (see Eq. (2.11)), the 

similarity parameters are expressed by the friction velocity and 

roughness length. The former is equal to the square-root of the wall 

shear stress per unit mass which plays a very important role since it 

supplies the energy to the turbulence [2]. Its value and effect depend 

strongly upon the roughness features, i.e., on roughness shape, density 

and distribution . It is, further, important to remark that the direct 

measurement of the wail shear stress is extremely difficult. Con-

sequently, under the assumption of constant shear stress layer [1] 

the friction velocity is usually deduced from the measured velocity 

variation. Similarly, the roughness length which is used as a length 

scale parameter is also estimated from the velocity measurement. In 

using the logarithmic law for rough walls, the vertical coordinate can 

be measured from a virtual surface which lies somewhere between the 

top and bottom of the roughness. Furthermore, this surface is 

presumably unique and experimentally determinable for each given 

roughness (2]. Particularly, in the case of flow on relatively 

high roughness, the adjustment of the vertical-coordinate origin is 

provided by the zero-plane displacement d leading to a modified log-

arithmic law (see Eq. (2.12)) (14,15]. The zero-plane displacement 

is a third similarity parameter characteristic to relatively high rough-

~ess. Its value is numerically evaluated in the same manner as the fric-

tion velocity and roughness length. Such a scheme can lead to erroneous 
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and physically unacceptable negative value for the zero-plane 

displacement [44,451. 

Samples of the results obtained using the logarithmic law 

(d = 0) and the modified logarithmic law (d I 0) for HOC at 

x = 38.88 are shoWh in Fig. 5.14. When the logarithmic law was 

employed, a kink is observed at about z = 2 Thus, two zones of 

logarithmic velocity variation are obtained (curve denoted by 

I in Fig. 5.14). The first extends from z = 0.75 to 2 whereas 

the second above z = 2. Next, this kink can be eliminated by using 

the modified logarithmic law. Thus, it was attempted to encompass 

the entire boundary layer by employing this law. Unfortunately, 

this endeavor led, as expected, to a negative zero-plane displace-
~ ment, i.e., d = -0.7 (curve II in Fig. 5.14). This result is 

physically unacceptable. 

As mentioned earlier, the origin of the vertical coordinate 

used in the logarithmic law ought to be determined experimentally 

and is located somewhere within the roughness [2]. Therefore, it 

is interesting to examine if the origin (or the zero-plane dis-

placement) can be detennined when the friction velocity is known. 

In carrying out this examination, a value of 0.4, as commonly done, was 

used for the so-called universal vbn Karman's constant K . Thus, the 

slope of the modified logarithmic law U*/K is known. The friction 

velocity can be evaluated from the turbulent shear stress measured at the 
1 

roughness surface by means of the relationship U*m = ( JuwJ){ where 

U*m is referred to as the measured friction velocity and (JuwJ) 1 
denotes the value of the shear stress at z = 1. Recall that the log-

arithmic law can express the velocity variation close to the wall, viz., 
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within the inner 10 to 20% of the boundary layer [2]. When the zero-plane 

displacement is adjusted such that the required slope based on the 

measured friction velocity U*m is satisfied, it was found that the 

inner layer extends about 20 to 30% of the boundary layer. Under these 

constraints the veiocity variation obeys the modified logarithmic law 

over the inner 25% of the boundary-layer thickness when d = 0.75. The 

results of this computation are illustrated by curve III in Fig. 5.14. 

A kink is observed at z = 2.1 (or z - d = 1.35). Furthennore, for 

z > 2.1 , the velocity also exhibits a logarithmic variation. On the 

other hand, the friction velocity for a given zero-plane displacement can 

be deduced from the slope of the velocity variations presented according 

to the modified logarithmic law. The friction velocity so obtained is 

referred to as the deduced friction velocity and designated by U*d 

For the sake of comparison, both deduced and measured friction velocities 

for all 
\ 

three cases are tabulated below: 

Case d z u* z 
0 

I 0 [2·0 > z > 0.75 0.146 a.so 
4.8 - ~ > 2.0 0.197 0.73 > z 

~ II -0.7 4.8 > z > 0.75 0.240 1.13 

III 0.75 [2 .o > z > 1.1 0.065t 0.06 
4.8 > z > 2.0 0.163 0.40 

Note that u = U*/U00 
and z = z /h where u = 6 m/sec and * 0 0 00 

h = 18 cm. In carrying out all these computations K = 0.4 was employed. 

In all the aforestated three cases, the mean velocity changes 

according to a logarithmic law within limited zones although their slopes 

are different. Basically, the various combinations of the three 

similarity parameters U* , z
0 

and d can yield a logarithmic 

tMeasured friction velocity. 
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velocity variation. Particularly, since the selection of the zero-plane 

displacement for high roughness is practically arbitrary, different 

values of U* and z 
0 

can be obtained from a single measured velocity 

variation. Thus, it is very difficult to relate them to the roughness 

characteristics. This problem is discussed in Refs. 46 and 47 when 

field data and wind tunnel measurements, respectively, are analyzed. As 

a result, it is impossible to conclude, except in the case of negative 

d, what combination of the three similarity parameters is correct and/or 

what law provides a better representation. 

Due to the relatively large uncertainty in evaluating the similarity 

parameters, it is surmised that the so-called universal constant K 

would reveal a large scattering in its value. From a measured velocity 

profile, the three quantities U*/K, z 
0 

and d can be obtained solving 

three simultaneous equations assuming a logarithmic velocity variation. 

Then, if either U* or K is known, the other can be estimated from any 

combination of z 
0 

and d However, since it is practically impossible 

to relate them properly to the roughness characteristics, various values 

for K are obtained even when U* is measured. As a matter of fact, 

even von Karman found that K lies between 0.37 to ·0.38 [4]. The value 

of 0.4 is commonly accepted on the basis of Nikuradse's experiment [6]. 

Results of several investigations tabulated in Ref. 48 reveal that K 

ranges from 0.34 to 0.49 depending upon the particular source. When the 

field measurements reported in Ref. 49 are analyzed using the logarithmic 

law, the value of K can vary from 0.25 to 0.49 depending on the data 

reduction . On the other hand, a value of 0.41 is employed for K in 

Ref. 49 . In Ref. 17, it is suggested that K lies between 0.39 and 0.41 

when the logarithmic law is used. Values of K outside this range are 
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usually considered as a result from operations or assumptions which 

change the definition of this constant [17]. 

The Jarge uncertainty in the value of von Karman' s constant for flow 

on high roughnes5 elements is illustrated when its value is evaluated 

from wall shear-stress measurement. In Ref. 31, using similar roughness 

elements as in this work, the wall shear stress was measured by means 

of a shear plate. Simultaneously, the velocity change was monitored. 

Based on the data reported in Ref. 31, it was found that the velocity 

variation throughout almost the entire boundary layer in the fully 

developed flow region (x = 5, 6 and 7 m) can be represented by the 

logarithmic law (d = 0). The estimated value of U*/K is 225 cm/sec 

while the sheat plate measurement yielded U* = SO cm/sec. Thus, K = 

0.22. However, if the modified logarithmic law is employed when 

d = 0.7, the vaiue of this constant becomes again 0.4 in the inner zone. 

In this caset a kink is observed at z = 1.85. This result indicates 

clearly that the experimental detennination of K based on either the 

logarithmic law or the modified logarithmic law cannot lead to any 

definite conc.l us ion about the supposed universality of von Karman' s 

constant. 

Further, it is worth pointing out that the constant K was 
l ,,. ,,. 

introduced 1n both Prandtl's mixing-length theory and von Karman's 

similarity hypothesis as an empirical dimensionless coefficient of 

proportionality for the mixing length t . [l]. In the former Q. = KZ 

whereas in the latter t • K(dU)/(d
2
U ). When the shear stress and 

dz dz~ 
velocity variations are measured it is conceivable to evaluate the 

mixing-length change with height using the shear stress relationship 

[l] 
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-uw 

ldU,dU 
dz dz 

(5.5) 

Under the assumption of linear variation of the mixing length with the 

distance from the wall close to the roughness [4], the value of K can 

be computed using the shear-stress data (see Sec. 5.3). This computation 

was carried out in order to compare the value of K for high roughness 

wi th its value for fine roughness (1,6]. Samples of the results of this 

computation within the fully developed flow region at three stations for 

both HOC and FDC cases are shown in Fig. 5.15. In both cases, the mixing 

length exhibits a linear variation with height from z = 0.75 to 2.0. 

Extrapolation of the linear portion leads to z = 0.25 at i = 0 Thus, 

if i is proportional to z it follows that an imaginary wall is 

possibly located at z = 0.25, i.e., i = K(z - 0.25). Based on the 

results presented in Fig. 5.15 and using the aforementioned adjusted re-

lationship for i, it was found that K = 0.19 for HOC and 0.165 for 

FOC. For the sake of comparison, the mixing length variation for 

K = 0.4 is also portrayed in Fig. 5.15. The obtained values of K are 

quite different from the generally accepted value of 0.4. These results 

indicate that von Karm.in's constant K is not a universal constant for 

flow on high roughness elements. The turbulence structure for flow on 

rough walls, particularly, on high roughness elements, is strongly 

affected by the wall roughness. Hence, it is not reasonable to expect a 

similar mixing-length variation with height for all roughnesses. It 

appears that K can be considered as a dimensionless scaling coefficient 

for the friction velocity determined by the particular roughness con-

figuration and distribution. 
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In order to overcome the difficulties related to the estimation 

of zero-plane displacement, it was proposed in Ref. 28 to approximate 

the latter by the roughness height, i.e., d = h, where h denotes 

the roughness height. Then, 

U 1 
U* = K 

z - h ln---z 
0 

(5.6) 

where it is assumed that K = 0.4. Thus, the origin of the vertical 

coordinate is located exactly at the roughness surface. A sample of the 

results using the modified logarithmic law where d = h is displayed in 

Fig . 5.16. In this figure the velocity distribution in the fully 

developed flow region for HOC case is shown. As previously, two zones 

of linear velocity variation with the logarithm of height are observed. 

A kink was obtained at about z = 2.0 Similar results were obtained 

for the FDC case. The friction velocities in two zones were deduced 

from the velocity data assuming K = 0.4. It is interesting to 

compare the computed values of the friction velocity with its measured 

values at the roughness surface. The latter are provided by the shear 
!« stress measurement, i .e., u = 1ffl Cluwl){ (see Sec . 5.3). The deduced 

and measured values of the friction velocity for both FOC and HOC cases 

are summarized below: 

Zo,1e z 

FOC 

I 2 .0 > z > 1.0 0.037 

II z > 2.0 0.122 

HOC 

0.033 

0.138 

X X 

(m) 

38.88 7.0 

52. 77 9.5 

FOC 

0.052 

0.045 

HOC 

0.065 

0.058 
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z = x/h, z/h where 

U
00 

= 6 m/sec and h = 18 cm. No agreement is observed with the measured 

friction velocity in either lower or upper zone. 

The modified logarithmic law, Eq. (2.12), is based on the far-

reaching assumption that the friction velocity is locally constant 

with height. Furthennore, the roughness length and zero-plane dis-

placement are assumed to be detenninable for given roughness and flow 

conditions. Basically, these assumptions are not modified even if 

the zero-plane displacement is replaced by the roughness height. On 

the other hand, due to the arbitrary approximation of d by h, it 

is doubtful if the local constancy of the other two similarity 

parameters is satisfied. Presumably, both Eqs. (2.12) and (5 .. 6) can 

be used to describe the same velocity variation. then, by equating 

these two relationships, the friction velocity· employed in Eq. (5.6) 

is 

(5. 7) 

In this equation the subscript h denotes the similarity parameters 

used in the modified logarithmic law when d is apP,roximated by the 

roughness height . Since both U* and z
0 

are assumed of being 

locally constant in Eq. (2.12), it ensues that U*h is no longer 

locally constant but a function of height. A similar result about 

the r oughness length used in Eq. (5.6) i.e., zoh' is obtained 

employing the same approach. Calculation of both the friction 
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velocity and roughness length by means of Eq. (5.6) over successive 

small intervals (about 1 to 2 cm) substantiated the aforestated 

conclusions (33]. This computation was carried out for flow on 

similar roughness as employed in this investigation. It \vas found 

that both U*h and z
0
h vary drastically with height [33]. When a 

similar computation was performed using Nikuradse's data [6], the 

assumption of local constancy of friction velocity and roughness length 

was satisfied. These results are presented in Ref, 33. Recall that 

the height of the roughness elements utilized in this work and in Ref . 

33 is more than 15% of the boundary layer thickness. Ort the other hand, 

the roughness used in Ref.6 ranged from 0.8 to 6.7% of the latter. 

Hence, the use of the modified logarithmic law under the assumption 

that d is approximated by the roughness height is not feasible for 

flow on high roughness. 

Generally, a turbulent boundary layer on a plate can be viewed 

as a wake-like flow constrained by a wall (17]. As a result, the 

velocity variation throughout the entire boundary layer can be 

described by a linear combination of the logarithmic law (the law 

latter accounts for the departure of the velocity variation from 

the logarithmic law within the outer part of the boundary layer [3]. 

As mentioned earlier, it is suggested to use the logarithmic 

law, particularly, in the inner part of the boundary layer, i.e., 

within the lower 10 to 20% of the boundary layer-thickness (2). 

Thus, the constraints on using the logarithmic law to express the 

velocity variation over high roughness are retained in Eq.(2.14). 
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Consequently, in order to use Eq. (2.14) for flow on high roughness, 

it is necessary to introduce the zero-plane displacement. It follows 

that the latter must be used as the virtual origin of the vertical 

distance for the wake function. Then, the modified law of the wake 

in terms of the velocity defect law is 

UCO- u 1 
= -u:- K 

z-d + 1r(x] (Z -w[z-d]) . ln 6-d K 6-d (5. 8) 

where 1T [x] z-d is the profile parameter and w[TT] denote the modified 

wake function. The normalized conditions for the latter, similar 

to those of the wake function in Ref. 17, are 

w = 0 at z = d , 
and 

w = 2 at z = 6 , 
and 

1 
w d(z-d) J = 1 

0 6-d 

(5 . 9a) 

(5. 9b) 

(5. 9c) 

As previous ly mentioned, d can be approximated based on the shear 

stress measurements (see Sec. 5.3) and using the modified logarithmic 

law (Eq. (2.12)). Since the local friction velocity is known, i.e., 

1-1 ½ U*m = ( uw ) 1 , the slope of the velocity variation in the modified 

logarithmic law is U*m/ K , where it is assumed that K = 0.4 for 

consistency with the results presented in Ref. 17. Then, the zero-plane 

displacement was approximated by successive trials until the linear 
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logarithmic variation agreed reasonably with the required slope. In 

carrying out this procedure, the velocity measured within the inner 

20% of the boundary layer, i.e., i 1 to 1.85 (z = 18 to 33 cm), was 

employed. The result ~ of this computation for both FDC and HOC cases 

within the fully developed flow region are shown in Fig. 5.17. Recall 

that the result of a :;imilar computation for HOC is shown in Fig. 5.14. 
~ It was found that d = 0.85 for FDC and 0.75 for HOC, respectively. 

Now, once d is determined, the modified law of the wake (Eq. (5.8)) 

can be used. The wake function was 

Ref. 17 when the modified argumeht 

computed using the 
z-d t:if was employed. 

table in 

In order to 

present the measured velocity according to Eq. (S.8), the measured friction 

velocity at roughness top, i.e .• u.m = cluwl)i, is used to normalize 

the defect velocity. The vertical distance is made dimensionless 

employing the boundary-layer thickness which is measured from the 

virtual origin. The mean velocities obtained in the fully developed flow 

regions for FDC and HOC cases are shown in Figs. 5.18 and 5.19, respective-

ly. Notice that terms on the right hand-side of Eq. (5.8) except the 

profile parameter n(x] can be evaluated when the boundary-layer thick-

ness and virtual origin are known. Thus, once the normalized defect 

velocity is obtained experimentaily, the profile parameter for the best 

fitting curve to the measured velocity can be evaluated. Next, using 

this evaluated profile parameter, the defect velocity variation throughout 

the entire boundary layer is calculated by means of Eq. (5.8), and is 

displayed by solid line in Figs. 5.18 and 5.19. The computed profile 

parameters for the best fitting are tabulated below. 
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X X 1f [x] 
(m) FDC HOC 

38.88 7.0 1.10 0.92 

47.22 8.5 0.92 

52. 77 9.5 1.32 1.12 

On the other hand, the profile parameter is related to the local 

friction velocity at the wall by Eq. (2.17) . Then, using the nonnalized 

condition of the modified wake function, i.e., Eq. (5.9b), Eq. (2.17) 

becomes 

U (o-d)U* 
= - .!. ln {---}- c1 K U* K V 

(5.10) 

In Eq. (2.17), the constant c1 was detennined empirically to fit the 

velocity data presented in Ref 17 and a value of 5.1 is proposed. 

However, it is questionable to utilize this value for c1 in Eq. (5.10) 

since the roughness elements in this work are extremely high compared 

with those in Ref. 17. As a matter of fact, if c1 = 5.1 is used in 

Eq. (5.10), the profile parameter would become negative. For instance, 

the profile parameter at x = 38.88 (x = 7.0 m) in HOC would be -2.85. 

Therefore, Eq. (5.10) cannot be used to estimate 1r[x]. The profile 

parameter can be also obtained by utilizing the relationship [17] 

cS*U 
1r[x] + 1 = K6tJ 

* 
(5 .11) 

Note that all the quantities in this equation can be evaluated from 
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the velocity measurements, For flow on high roughness, Eq. (5.11) 

is modified due to the virtuai origin of the vertical distance. Thus, 

n[x] + 1 
(6*-o*)U d 

= K (6 - d)U* (5.12) 

where d is the zero-plane displacement, od is the fraction of the 

displacement thickness below the virtual origin (z = 0 to d) and U* 

is approximated by the measured friction velocity at the roughness 
1 

surface U*m = (\uwl)l. The computed profile parameters by means of 

Eq. (5.12) are compared with those computed for the best fitting curves 

in the table below: 

X X FDC HDC 
(m) nl nl/nf nl nl/nf 

38.88 7.0 1.60 1.45 0.86 0.93 

47.22 8.5 0.97 1.05 

52.77 9.5 1.96 1.48 1.47 1.33 

In the above table, n1 denotes the profile parameter calculated by 

means of Eq. (5.12) whereas nf designates the value determined for 

the best fitting to the experimental data. It is important to mention 

that the non-modified relationship for the profile parameter, i.e., 
~ Eq. (5.11), always yields larger value than Eq. (5.12). At x = 38.88 

and 42.77 for HDC, the differences between n1 and nf are negligibly 

small while at the other locations they are rather large. No definite 

trend can be observed. 

Notice that the velocity variation in the fully developed flow 

region are well expressed by means of Eq. (5.8) if the five parameters, 



49 

viz., U
00

; O*, o , d and ~[x], are known. The relationships among 

these five parameters are yet to be found. Moreover, it seems that the 

relationships used to detennine the profile parameter from the velocity 

measurements do not yield acceptable results. Therefore, the use of 

modified law of the wake, i.e., Eq. (5.8), for flow over high roughness 

elements is limited by the relatively large number of undetennined 

parameters. 

The results presented concerning both the logarithmic law and the 

law of the wake indicate clearly the difficulties and uncertainties in 

evaluating the various similarity parameters. Particularly, the estima-

tion of U* and d is most critical. It appears that these short -

comings can preclude their use. Consequently, it is important to 

postulate such similarity parameters which can be easily obtained from 

the veiocity measurement. The evaluation of the zero-plane displacement 

d and; hettte; the iocation of the origin for the vertical distance is 

the most crucial problem. Recall that d was introduced to account for 

the presence of the roughness. In order to overcome this problem, it i s 

suggested tb define the origin of the vertical distance exactly at the 

wall . Obviously, such an approach does not include the effects of the 

roughness on the vertical coordinate. On the other hand, it i s 

expected to account for the roughness through appropriate similarity 

parameters. 

As mentioned previously, the use of a power law to describe the 

velocity within a turbulent boundary layer is commonly accepted and 

experimentally verified. When the origin of the vertical coordinate 

is at the wall, the generalized power law can be written in t he form 
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U B(-z-)n U = L (5.13) 
s s 

and t s 
are the velocity and length scales, 

respectively, which mUst be determined, and B is a coefficient of 

proportionality. The exponent h depends on the flow Reynolds number 

and decreases as the latter increases [1]. On the average, the Reynolds 

number based on U
00 

and o ranges from 200,000 to 300,000. Next, 

expansion of Eq. (5 .1 2) into taylor series with respect to n, when 

quadratic and hi gh order ter1ns are neglected since n is smaller than 

unity, leads to a logarithmic expression, 

u u= 
s 

B + A ln _z_ 
L s 

(5.14) 

where A= nB. This relationship is practically an asymptotic form 

of the power law when the exponent is small enough. 

In order to use such a generalized logarithmic relationship it is 

essential to determine the veiocity and length similarity parameters, 

i.e.' U and L s s To start with, it is postulated to use the free-

stream velocity as the velocity scale. Basically, the free-stream 

velocity can be eas ily measured. As a length scale , it is proposed 

to employ the roughness height which is generally known. The velocity 

distributions in the fully developed flow region using the aforestated 
' , 

scales are shown in Figs. 5.20 and 5.21 for FDC and HDC, respectively. 

At all measurement stations, the velocity profile exhibits a kink. 

Moreover, with increasing downstream distance the kink is monitored 
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at higher elevation above the roughness. For instance, the height of 

the kink zk within the fully developed flow region for both FDC and 

HOC cases is summarized in the table below: 

X X zk 
(m) FDC HOC 

27. 77 5.0 1.6 1.5 

38 . 88 7.0 1.9 2.0 

47.22 8.5 2.4 

52. 77 9.0 1.9 2.7 

Note that ~ zk = zk/h where h = 18 cm. Based on this change in slope, 

the boundary layer is divided into two domains. The zone below the kink 

is called the inner zone where as the zone above it is defined as the 

outer zone. This distinction is solely based on the kink in the mean 

velocity variation. Thus, the inner zone is not related to the so-called 

internal boundary layer (50]. 

Within the inner zone, all the profiles collapse on a single line 

as observed in Figs. 5.20 and 5.21. Therefore, the postulated scales, 

i.e., U
00 

and h, are similarity parameters. Then, in the inner zone 

the generalized logarithmic law is 

(5.15) 

where A. and B. are constants to be detennined. The values of 
l l 

these two constants depend upon the flow conditions, namely, the free-

stream velocity and the roughness structure. In the FDC case A. = 0.312 
l 
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and B. = 0.330 whereas in the HOC case A. 2 0.346 and 
1 1 

B. = 0.260. 
1 

Recall that in both cases the same free-stream velocity was used. 

When the free-stream velocity and roughness length are utilized 

as the similarity parameters for the outer zone, the velocity profiles 

do not coincide on a single curve. At each position a logarithmic 

variation is obtained. Moreover, the velocity profiles at all stations 

possess exactly the same slope as clearly seen in Figs. 5.20 and 5.21. 

This indicates the validity of the free-stream velocity as a similarity 

parameter. On the other hahd, the vertical translation of each velocity 

profile is due to the use of the roughness height as the length scale. 

The roughness height is not a characteristic property of the boundary 

layer. The overall properties of the boundary layer are functions of 

the longitudinal position. Consequently, it is feasible to use one of 

the integral characteristics of the flow as a length scale. The 

momentum thickness depends on the flow above the canopy to a larger 

extent than the displacement thickness as shown in Fig. 5.11. 

Hence, it is suggested to utilize the momentum thickness, which can 

be easily evaluated from velocity measurement, as the length similarity 

parameter. As a result, for the outer zone, the generalized logarithmic 

law becomes 

+ A 
0 

ln e 

where 8 is the .local total momentum thickness, 

(5.16 ) 

and A and B are 
0 0 

constants to be determined. The velocity profiles in the outer zone 

using Eq. (5.16) for both FDC and HDC are shown in Figs. 5.22 and 5.23. 



53 

All the velocity distributions do collapse on a single curve. As 

previously, their values depend on the free-stream velocity and roughness 

structure. The values of A and B in FDC case are 0.424 and 0.176, 
0 0 

respectively. In the HOC case, A is 0.486 and B is 0.076. Thus, 
0 0 

in the outer zone the free-stream velocity and momentum thickness can be 

used as similarity parameters. 

In order to substantiate these results, a similar approach was 

employed using the data for flow over pegs [30). When Eq. (5.15) was 

utili zed, similar velocity variations were obtained for the inner zone. 

The velocity changes ate shown in Fig. 5.24. Within the outer zone, 

the velocity profiles are described by non-coincident parallel lines. 

Thus, a similar result as for the flow over the canopies is obtained. 

Next, using Eq. (5.16) for the outer zone all the velocity profiles 

are represented by a single curve as portrayed in Fig. 5.25. 

The irrrportant aspect of these results is the feasibility of the 

generalized logarithmic relationships. The similarity parameters, 

i.e., free-stream velocity, roughness height and momentum thickness, 

can be easily obtained. One of the problems related to the generalized 

logarithmic relationships is the determination of the two constants A 

and B. These constants can be easily determined experimentally for a 

given roughness. 

5.3 Shear stress and turbulence survey 

The longitudinal fluctuating velocity component, i.e., u and its 

energy spectra were measured using a normal hot wire simultaneously 

with the mean velocity measurements. The lateral and vertical 

fluctuating components, i.e., v and w, and the turbulent shear 
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stress -uw were monitored by means of a yawed hot-wire probe as 

described in Section 4.2. The yawed-wire measurements for the FOC case 

were carried out at 13 locations along the canopy centerline over a 

distance of 12 m (x = -1 to 11 m). At each location, the measurements 

along the z-axis were performed at 11 to 15 stations over a height up to 

7 3-112 cm among ,~hich 4 to 5 stations were located in the canopy. For 

the HOC case, the yawed-wire survey was conducted at 13 locations over 

a distance of 12 m (x =Oto 12 m). At each location, the measurements 

were performed at 11 to 15 stations over a height up to 73-110 cm among 

which 3 to 5 stations were situated inside the roughness. 

The energy extracted from the mean flow is supplied to the 

longitudinal velocity fluctuation through the work of the turbulent 

shear stress. In the energy equation this is expressed by the production 

term, i.e., - au -uw az. Then, by the action of the pressure fluctuation, 

the longitudinal turbulent energy is partly distributed to the vertical 

and lateral components depending upon their dissipation rates (2). 

In order to assess the effect of the canopy on the turbulent shear 

stress the latter is normalized with respect to its value at the top 

of the canopy leading edge, i.e, at x, z = 0,1 denoted by uw[O,l). 

The distributions of the turbulent shear stress along the z-axis are 

displayed in Figs. 5.26a and 5.26b for the FOC case whereas Figs. 5.27a 

and 5.27b represent HOC. At the very beginning of the transition region, 

a drastic amplification of the turbulent shear stress is observed in the 

vicinity of the canopy surface. Up to x = 27.77 (x = 5 m), each tur-

bulent shear stress profile possesses a maximum. The latter is not 

observed beyond x = 27.77. These maxima shift outward as the downstream 

distance increases. The change in the position of the maxima along the 
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x-axis and the longitudinal variation of the maximum shear stress are 

shown by the inserts in Figs. 5.26a and 5.27a. 

Generally, the turbulent shear stress distribution is strongly 

affected by the longitudinal pressure gradient [51]. In boundary-

layer t heory, the vertical pressure variation is usually neglected [l]. 

This experiment was conducted at const~nt pressure in the free stream 

and, hence , the longitudinal pressure gradient in the boundary layer 

should be zero. When the pressure gradient is zero or favorable, the 

maximum shear stress in flow on smooth walls is obtained at the wall 

[51). Then, in flow on rough surfaces maximum stress is expected at the 

roughness top. On the other hand, the measured shear stress indicates 

clearly, as shown in Figs. 5.26a and 5.27a, that its maxim,, , value 

occurred away from the roughness surface. The canopy boundary layer is 

highly turbulent and thick compared with that on fine roughness elements 

(e.g., sands or gravels). Within such a thick boundary layer the fluc-

tuating velocities can affect the vertical pressure gradient and, hence, 

the local lougitudinal pressure gradient, i.e., P(x,z). When an adverse 

pressure gradient exists in flow on smooth walls, the maximum turbulent 

shear stress occurs some place away from the wall [51). Consequently, 

it is surmised that a local adverse pressure gradient exists across the 

boundary layer and, particularly, a relatively large pressure gradient 

prevail s up to x = 30 (within the so-called transition region) although 

the pressure in the freestream flow is presumably constant. 

The pressure variation within the boundary layer can be estimated 

through momentum balance of the equation of motion. The flow in th e 

transition region is not strictly two-dimensional. However, the results 
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shown in Figs. 5.7 and 5.8 indicate that in the neighborhood of the 

canopy centerline (y .::_ !30 cm!) the flow is approximately two-

dimensional. The vertical component of the momentwn equation for two-

dimensional steady flow in a dimensionless form is 

~ aw u~ 
X 

+ W aw= + a~2) , 
az 

(5. 17) 

where Reh denote the Reyno lds number based on the free-stream velocity 

and roughness he i ght. Its value is about 57,000 (v = 0 .189 cm2/sec). 

In this equation , the velocity components are referred to the free-

stream velocity U
00

, the pres sure to the free-stream dynamic pressure. 

Similarly, uw = uw/U 2 
00 

and All the terms in Eq . (5.17) 

but the vertical pressure gradient were computed from the measured data. 

Samples of the momentum balance in the HDC case are provided by Fig. 5.28 

for the transition region and by Fig. 5.29 for the fully developed flow 

region. The momentum balance was computed graphically and nwnerically. 

In these figures the viscous shear stress terms are not shown since it 

was f ound that they are completely negligible with respect to the inertia 

and turbulent contributions, i. e. , less than 1 % of the latter terms . 

Furthermore, in the fully developed flow region (Fig. 5.29) the long-

itudinal gradient of -uw is disregarded be cause it was found to be 

totally insignificant compared wi th the other tenns. The vertical mean 

velocity was evaluated by integrating the t wo-dimensional continuity 

equation graphically. Within the boundary layer, as observed in Fig. 

5.5, the longitudinal gradient of the horizontal velocity U is either 

negative or zero. The former slope is prevalent throughout the transition 

region. In the fully developed region the streamwise gradient of the 
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horizontal velocity is practically zero but slightly negative far away 

from the roughness. Consequently, the vertical component W incr eases 

monotonical l y with hei ght. The vertical velocity computed by this method 

becomes a constant value as the longi tudi nal gradient of U app roaches 

zero. It i s important to remark that W = 0 at the wall. Moreover, for 

suffic~ ently 1 arge <.Li. stance from the boundary layer, where the flow is 

pr esumably uni fonn, the vertical velocity should be zero. The l atter 

conditi on i mpl i es that the strearnwise gradient of U should be positive 

away f rom t !w boundary layer. Thus, it is surmised that the hori zont al 

veloci t y component will increase slightly with downstream distance over 

r ather large vertical distance. The value of the vertical velocity 

component at the outer edge of the boundary layer decreases gradually 

from about 0 . 1 U
00 

in the transit i on region to less than 0.01 U
00 

in 

the fully deve loped flow domain. Hence, the longitudinal gradient of 

W, i.e., aw;az , is finite in the transition region and becomes 

negl igibly small in the fully deve loped flow region. Within the transi-

t ion region, th e verti cal pres sure grad i ent ai>/az. shown by the broken 

l i ne in Fig . 5 . 28 , is mainly balanced by the inertia term U aw/ax i n 

t he outer part of the boundary layer (z > 2) and by the turbulent t enn 

aw 2/ ~i wi t hin i t s i nner part. In the fully developed flow region, the 

v,~rtical pr , ssurc gr adi en t di splayed by the broken line in Fig. 5.29 is 

bal anced by M 2 / 0'< throughout t !ie ent j r ~ boundary layer since the 

inertia term U aW/ dX is negligibly small. Recall that in the 

transi tion r egiol! a dras t i.c increase i n the turbulent shear stress 

occurs be low z == 2 ur t o x = 8.33 as observed in Figs . 5.28 and 

S. 30. There fore . lo assess the ef fect of the pressure on the turbulent 

shtar stress dis t r ibution, the equation of motion can be simplified for 
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bo t h the fully developed flow region and the lower part of the 

transition domain by 

-aP - = aw2 
(5.18) 

az az 

;\ simi lar r el ationship, for thin boundary layer on flat plate based on 

o ~der of magnitude cons i derations, is suggested in Ref. 3. Integr ation 

of Eq . (5.18) when P = P = const. u:, 
at sufficiently 1 arge 

vert i cal di s tance leads to 

~ 
p = p -

00 
(5.19) 

Thus, by differ entiating Eq. (5.19) the longitudinal pressure gradient 

i s 

aP 
ax 

= 

According to this relationship, the local longi tudinal pressure 

(5.20) 

gradient can be evaluated directly from the measured streamwise dis-

tribution of the vertical fluctuating velocity -;i', Samples of t he 

results at five locations in the HOC case are displayed in Fig. 5.30. 

Within the beginning of the transition region, relatively high adverse 

pressure gradient is observed near the roughness surface. With increasing 

vertical distance, the streamwise pressure gradient becomes favorable. 

As the outer edge of the boundary layer is approached the latter 

vanishes gradually. The adverse pressure gradient becomes negligible 
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with downstream distance. These results indicate that the strong adverse 

pressure gradiertt is caused by the roughness which is a drastic step 

obstruction. This pressure gradient leads to local occurrence of 

maximwn turbulent shear stress somewhere away from the roughness top. 

In addition, due to eventual flow separation from each roughness element, 

weak adverse pressure gradient arises in the immediate vicinity of the 

roughness surface. This phenomenon occurs not only in the transition 

region but in the fully developed flow domain. For instance, in the 

latter region, dimensionless adverse pressure gradient of order of 

10- 4 was monitored up to z = 1.75. However, this weak adverse 

pressure gradient may be sufficient to cause the materialization of 

the maximum turbulent shear stress away from the roughness surface. 

Similar distribution of the turbulent shear stress were obtained in 

flow on fine roughness [52]. 

The increase of the turbulent shear stress, which represents the 

rate of turbulent momentum transport, indicates the canopy effect on 

momentum flux (see Figs. 5.26a to 5.27b). Generally, when a fully 

developed turbulent flow encounters a change in surface roughness, the 

effects of the change are felt within a so-called internal boundary 

layer [50]. This layer grows in depth with downstream distance. Most 

of the published studies about the internal boundary layer are based on 

the mean velocity variation. The change in the turbulence character-

istics, particularly, the turbulent shear stress, due to new roughness 

conditions were treated indirectly employing the friction velocity. For 

instance, in Refs. 50 and 53, the internal boundary layer thickness is 

computed assuming logarithmic variation of the mean velocity and using 

von Kafm4n's integral momentwn equation. In Refs . 54 and 55, the 
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displacement of streamlines is used to estimate the gro1,th of the internal 

boundary layer. It is important to remark that the flow within the 

beginning of t he internal boundary layer is in a transitory state. In 

the latter state, both friction velocity and roughnes s length change hith 

downwind distance for a given roughness [33]. Hence, it is questionable 

to employ a logaritilmic velocity distribution for evaluating the internal 

boundary- l;Jyer thickne ss under the assumption that the two aforestated 

scale parame te '. ::. remain unchanged. The concept of the internal boundary 

layer is based on tli c o.-::,um; ,tion that the rate of adjustment of the tur-

bulent shear stress to Liu: 1ww roughness is sufficiently rapid below a 

certain interface [5 3] . J\uuv1.: t '1 is interface, neither velocity no r 

stress has time to change. Consuquc:11tly , i t is theorized that the 

development of the i11t C' rna l boundary layer must be determined on the 

basis of the turbul ent shear stress variation caused by the new roughness. 

The extent of the internal boundary layer is es timated from the shear 

stre ss evolution Jue to the new roughness as compared with the stress 

upstream of t he rou ghness discontinuity. Then, the internal boundary-

layer thickness 6 . can be defined as t he height where the new turbu-
1 

lent shear stress is equal to that at x = 0, i.e., 8. is the height 
l 

where LI\\' [x] /uw (OJ = 1. Accordi ng to this defi nition, the growth of the 

internal boundar y layer is displayed in Fig. 5.31. No difference 

in the grrn, tl: of the int(·rnal boundary layer between FDC and HDC is 

not i ceab l e up t o x = 20, (x = 3.6 m). Beyond the latter, the inten'l l 

boun~dry-layer thickness is about 90% of the total boundary-la/er 

thickness for FDC case and 97% for HDC case. Thus, the internal 

boundary layer thickness is significant up to x = 20. Within this 

region it was found that the internal boundary layer grows proportionally 
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to a power of downstreaJn distance 

~0.54 
~- X 

l 
(5.21) 

where 6. = 6./h and x = x/h. 
l l 

Thus, the internal boundary layer 

grows similarly to the width of a two-dimensional wake which is 

proportional to the square-root of the downwind distance [l]. In Ref. 56, 

assuming a power law variation of mean velocity, i.e., U « z 2
, the same 

result is obtained. This indicates, as previously pointed out, that the 

flow in the transition region has two-dimensional wake-like character-

istics due to the large step obstruction (the canopy). On the other 

hand, in Refs. SO and 53 where the internal boundary layer is detennined 

from the mean velocity profiles based on a logarithmic law, its growth 

is expressed by -0.8 u . X 
l 

for x > 10 3 and x = x/z · 
0 

The origin of x is exactly at the roughness discontinuity and z 
0 

designates the roughness length for the new roughness. Note that this 

variation is not valid in the region close to the roughness change, e.g., 

x < 10 m [SO] . 

It is important to examine the change in the turbulence intensity 

along the canopy. The variation of longitudinal turbulence intensity 

based on the free-stream velocity, i.e., T _ = u /U where U = u- rms co co 

6 m/sec, are shown along seven isoheights in Fig. 5.32 for FDC and in 

Fig. 5.33 for HOC. The variations of turbulence intensity for FDC 

and HOC cases are qualitatively similar. In the inner part (z .::_ 2) 

the turbulence augmentation occurs mostly up to x = 10. In the outer 

portion, the increase is more gradual extending up to x = SO at 
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z = 6. By and large, at the same heights, the fluctuating ve locity is 

smaller in the HDC case than in the FDC case. Below z = 3, the turbu-

lence intensity along isoheights exhibits an oscillatory vari ation. 

The vertical turbulence intensities, i.e., Tw~ = wrms/U~, 

along six isoheights are depicted in Figs. 5.34a and 5.34b for FDC case 

whereas in Fig. 5.35 for HOC. The ovetall variation of the vertical 

turbulence intensity is qualitatively similar to that of the 

longitudinal component. Change is noticeabie up to z = 3. 

The coefficient of anisotropy, which is defined by w /u , is a rms rms 
measure of the anisotropy of turbulenee. The values of the coefficient 

in the fully developed flow region are displayed in Fig. 5.36 for both 

FDC and HOC cases. For the sake of ~omparison, the re!Ults obtained in 

and above a jungle-like forest [57] 1 attd those for a deciduous forest 

[58] are shown in the same figure. A reasonable agreement between the 

wind-tunnel data and field measure~ettts results is observed. 

5.4 Turbulent-energy survey 

The turbulent flow field cannot be described in detail due to its 

inherent randomness. Thus, a statistical description under the assump-

tion of ergodicity [59,60] is necessary to express the characteristics 

of the turbulent flow. It is possible to describe the turbulent motion 

by means of frequency spectral analysis. Through this analysis, the 

kinetic energy of the fluctuating velocity is considered as being the 

sum of the energy associated with each frequency. Since the longitudinal 

tur bulent velocity is predominant the results of the spectrum measure-

ments for it are presented. 
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The one-dimensional wave-number density function ~[k] is defined 

as [18) 

1 = f ~[k)dk (5.22) 
0 

where ~[k]dk is the amount of kinetic energy within the wave number 

from k to k + dk nomalized by the total kinetic energy per unit 

mass u2 This quantity is called the energy-containing spectrum. 

Then, the dimensionless kinetic energy (or the energy-containing 

spectrum) within a wave number interval o to k is expressed by 

k 
I ~[k]dk 
0 

(5.23) 

The turbulent energy spectrum can be obtained experimentally in 

the frequency domain. The frequency spectrum is connected with the 

spacial correlation function by Taylor's hypothesis [61]. In terms of 

the frequency n and the local mean velocity U, the wave number is 

k = 2~n 
u 

and the wave length (or eddy size) is 

u L = n 

(5.24) 

(5.25) 

Hence, the turbulent flow is considered as being composed of infinite 

number of eddies of various sizes. 

At large Reynolds numbers, Kolmogoroff postulated that the turbulent 

motion is locally isotropic independent of the anisotropy of the large 

scale motions, i.e., local isotropy [62). Moreover, for sufficiently 
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high Reynolds numbers, there is a subrange within the energy spectrum 

where the inertial transfer of energy is the dominating process, i.e., 

the inertial subrange [63]. The turbulence within the latter is 

statistically independent of the energy-containing eddies and strong 

dissipation [18]. Under the assumption of local isotropy within the 

inertial subrange, the wave-number density function, by dimensional 

arguments, is [18] 

(5.26) 

since ~[k] as defined in Eq. (5.22) is normalized by u2 In this 

equation, £ stands for the energy dissipation rate whose dimension is 

(length) 2/(time) 3 (see Eq. (5.28)) and is assumed to be a universal 

constant. The latter is about 0.5 [12]. 

The frequency spectra were measured using a recording wave analyzer 

(see Eq. (4.8)). Each spectrum was nonnalized by the mean square value 

of output voltage corresponding to the total kinetic energy per unit 

mass u2 • This nonnalized spectrum is the one-dimensional frequency 

density function which is denoted by f[n]. The one-dimensional wave-

number density function Hk] = (U/2n)f[n] [18]. In the following dis-

cussion, the results in the fully developed flow region at -X = 38.88 

(x = 7 m) are presented. The wave number spectra for FDC case at five 

selected heights and for HDC at four selected heights are displayed in 

Figs. 5.37 and 5.38, respectively. The curve corresponding to k-5/ 3 

is also shown in these figures. Since, at first glance, a k- 5/ 3 curve 

appears to provide a reasonable fit to the measured spectra within most 

parts of the wave number range, it is assumed that each spectrum possesses 
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an inertial subrange. However, it is pointed out in Ref. 64 that the 

Reynolds numbers for common laboratory flows are not sufficiently high 

so that an inertial subrange can occur. Particularly, in the boundary-

layer flow, local isotropy and, hence, inertial subrange may not be 

obtained [18]. Consequently, it is of importance to examine the eventual 

existence of local jsotropy and/or inertial subrange. 

The rate of turbui ,:nt energy dissipation for isotropic turbulence 

in terms of the one-dimensional wave number density function is [64] 

00 

£ = 15v u2 f k2 ~[k]dk 
0 

since ~[k] in Eq. (5.22) is normalized by u2 

(5.27) 

Note that Eq. (5.27) 

is derived from the three-dimensional wave-number dehsity function by 

assuming that $[k] is proportional to k- 7 £or Vel'y large wave numbers 

and $[k] and a$it] are finite as k 0 . ih Eq, (5.27), v is the 

kinematic viscosity and k2$[k] is referred to as the dissipation 

spectrum. The fraction of the normalized energy dissipation within the 

wave number interval O to k is defined as 

£ [k] 
= £fil = I~ k2 ~[k]dk 

£ f00k2~[k]dk 
(5. 28) 

0 

Both energy-containing spectra and dissipation spectra multiplied by 

k, i.e., k~[k] and k3f[k], are portrayed in Fig. 5.39 for the FDC 

case at z = 1.03 and 3.19 (z = 18.5 and 57.5 cm), The areas under 

these curves represent the total turbulent kinetic energy and the rate 

of energy dissipation, respectively, since ~dk = k~d(ink) and 
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k 2~ = k3~d(tnk). The basic condition for the occurrence of an inertial 

subrange is that the contributions within at least one decade range to 

both energy-containing and energy-dissipation spectra are negligibly 

small (64]. In other words, the energy-dissipation range must be widely 

separated from the energy-containing range. The results shown in Fig. 

5 .39 reveal that the aforementioned condition is not adequately satisfied. 

At all heights, for both FDC and HOC cases, similar situations were 

observed. Moreover, as vertical distance increases, both energy-

containing and energy-dissipation ranges shift to smaller wave number 

range (larger eddy size range). For instance, the value of k ~[k] is 

maximum for k -1 = 0.17 cm at 

z = 3.19. The value of k3~[k] 

z = 1.03 and for k = 0.065 cm-lat 

is maximum for k = 10 cm-l at 

z = 1.03 while for k = 7 cm-l at z = 3.19. In order to examine this 

shift, the values of u2 [k] and ~[k] at various heights were cal-

culated by means of Eqs. (5.23) and (5.28), respectively, where the 

integrals were evaluated graphically. The results are portrayed in 

Fig. 5.40 for the FDC case and in Fig. 5.41 for the HOC case. Both 

energy-containing and energy-dissipation ranges shift continuously to-

ward larger eddy size domain with increasing vertical distance. 

It is possible, from Figs. 5.40 and 5.41, to estimate how widely 

the dissipation range is separated from the energy-containing range. For 

this purpose, it is proposed to neglect the last 15% of the total kinetic 

energy in the energy-containing range and the first 15% of the energy 

dissipation in the dissipation range. In other words, only the kinetic 

energy u2 [k] within the wave number range O to k , where e k e 

corresponds to 0.85 of the total kinetic energy, is considered. Similarly, 

the energy-dissipation within the wave number interval O to kd, where 
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kd corresponds to 0.15 of the total energy dissipation, is neglected. 

These limits are shown by broken lines in Figs. 5.40 and 5.41. Thus, 

k is considered as the upper bound of the energy-containing range 
e 

whereas kd as the lower limit of the energy dissipation range. As 

mentioned previously, when kd is separated from k e 
by more than 

one decade, the condition for the existence of an inertial subrange is 

satisfied. The ratios of kd to 

summarized below: 

FDC 
z kd/ke 

1.03 2.15 

2.25 2.17 

4.82 4.25 

k e 
at different heights are 

HOC 
z kd/ke 

1.07 2.7 

2.96 7.8 

4.18 14.1 

At all heights but z = 4.18 for HDC, these two ranges are separated by 

less than one decade. Therefore, the aforestated basic conditions are 

not sufficiently satisfied and the existence of local isotropy is highly 

questionable. Even if the measured spectrum can be approximated by a 

k- 5/ 3 curve, an inertial subrange does not necessarily occur. Such an 

approximation must be made cautiously. Otherwise , it might r esult in 

misleading conclusions. 

It is, further, important to estimate the lower limit of the wave 

number (or the largest eddy size) for the occurrence of local isotropy. 

This limit can be roughly evaluated from the relationship [65) 

k 
u2 f k2$[k]dk >> 

0 

(d~2 
dz (5.29) 

Assuming that u2$[k] can be approximated by Eq. (5. 26), substitution of 
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the latter into inquality (5.29) leads to the condition for the existence 

of local isotropy 

k >> 

dU 2 

4 (dz) 3/4 
3 { 2/3} 

!3£ 
(5.30) 

Next, in the fully developed flow region it can be assumed that the 

energy dissipation is approximately equal to the energy production [12]. 

Then, the inequality (5.30) is written substituting the energy pro-

duction for the energy dissipation. 

k (5.31) 

where k1 is the lower bound of the wave number, and the energy pro-

duction is 

E = -uw p 
dU 
dz (5.32) 

The estimated value of k1 for both FOC and HOC cases are tabulated below: 

FDC HOC 
-1 L (cm) -1 z k1(cm ) k1 (cm ) L (cm) u u 

1.5 0.50 13 0.39 16 

2.0 0.40 16 0.33 19 

3.0 0.30 21 0.33 19 

4.0 0.28 22 0.30 21 
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L designates the eddy size corresponding to the wave u 

number kt (see Eqs. (5.24) and (5.25)), i.e., the largest eddy (or the 

upper limit). According to the relationship (5.31), local isotropy is 

expected to occur for wave numbers much larger than the lower bound kt , 

say, at least one order of magnitude larger. In other words, the tur-

bulence may be locally isotropic when the eddy size is one order of 

magnitude smaller than the upper limit -1 L, e.g., about 1-2 cm(k~3-6 cm ). u 
Thus~ local isotropy may occur within the dissipation range for the eddy 

size smaller than 2% of the boundary-layer thickness even though the 

existence of an inertial subrange is questionable. 

As mentioned previously, in the inner part of the fully developed 

boundary layer, the energy dissipation is assumed approximately equal to 

the energy production. The former, under the assumption of isotropy, 

can be evaluated by means of Eq. (5.27). On the other hand, regardless 

of the isotropy, the turbulent energy production rate can be estimated 

by Eq. (5.32). Hence, by comparing the energy dissipation with the 

energy production in the fully developed flow region, the validity of the 

isotropy assumption can be examined. The variations in the energy dis-

sipation rate and the energy production rate with height are shown in 

Fig. 5.42 for both FDC and HOC cases. In this figure, the ratio of the 

energy dissipation to the energy production is also displayed. It is 

observed that the energy dissipation estimated on the assumption of 

isotropy is much larger than the energy production although the turbulent 

energy is expected to be in balance at least close to the canopy top. 

This result indicates that the validity of the isotropy assumption is 

doubtful . 
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The turbulent energy associated with an eddy of a given size can be 

described by means of a discretized spectral analysis (66). The latter 

is dependent of the existence of local isotropy and/or an inertial sub-

range. Then the turbulent energy at a fixed point is written by 

00 

I 
i=l 

[n.] , 
1 1 

(5.33) 

where u? [n . ) is the portion of the total energy contributed by the 
1 1 

turbulent fluctuation at the specific frequency ni . The discretized 

energy u? [n.] 
1 1 

is proportional to the frequency-density function at each 

particular frequency, i.e., u? (n . ] "'f(n.) . 
1 1 1 00 

Given an eddy size, the 

corresponding frequency at each measurement station can be calculated 

by Eq. (5.25). Then, the discretized kinetic energy at this frequency 

can be obtained from the frequency-spectrum measurements. The variation 

of the discretized energy at four selected eddy sizes, viz., L = 62.8, 

12.6, 3.15 and 0.63 cm -1 (k = 0.1, 0.5, 2 and 10 cm ) were examined . 

These four eddy sizes were selected to cover the whole measured wave 

number range. The first eddy size represents the energy-containing 

range whereas the third one corresponds to the larger eddies in the 

dissipation range . The last size is typical to the eddies within the 

dissipation range. The discretized energies at these four scales are 

displayed in Figs. 5.43a and 5.43b for FDC and in Figs. 5.44a and 5.44b 

for HDC. In these figures, the energy at the eddy size L is denoted 

by u2 [L) and its value at ex, z) = (0, 1) is designated by u2 [L]. 
0 

In consistency with the presentation of the turbulent shear stress, the 

energy is normalized by u2 [L). 
0 

The energy of the smallest eddy 
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(L = 0.63 cm) is affected most strongly by the canopy. In the immediate 

vicinity of the canopy surface (z = 1.5) for both FDC and HOC cases, 

the change in the energy due to the canopy lessens as the eddy si ze 

increases. Near the middle of the boundary-layer thickness (z = 2.5 and 

3.5), the energy amplification at the largest eddy (L = 62.8 cm) is more 

than at the middle size eddies (L = 12.6 and 3.15 cm). With increasing 

vertical distance, overall effects of the canopy on the energy change at 

all four eddies diminish. In the transition region, a drastic increase 

in the energy at the smallest eddy size is observed. This indicates t hat 

the energy dissipation is highly intensified in the transition region. 

At the same height, the amplification of energy associated with all 

eddies is larger in FDC case than in HOC case. 

Consequently, the energy variation associated with different-si ze 

eddies can be described successfully by means of the discretized-energy 

analysis which is independent of local isotropy and existence of inertial 

subrange. 
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6. SUMMARY AND CONCLUSIONS 

The experimental results presented in this work indicate that the 

mean velocity in the fully developed flow region can be described by 

generalized logarithmic relationships. For the flow in the inner 

zone, viz., 30 to 45% of the boundary-layer thickness, the free-stream 

velocity and the roughness height are the scaling parameters for the 

velocity and the vertical distance from the wall, respectively. In 

the outer zone, the free -stream velocity and the momentum thickness 

are the similarity parameters. These scaling parameters can be easily 

determined from the mean velocity measurement. The power laws and/or 

the logarithmic laws examined herein cannot be satisfactorily employed 

to describe the mean-velocity profiles on high roughness elements. 

The use of either the modified logarithmic law or the modified law 

of the wake depends on knowing the friction velocity, roughness length 

and zero -plane displacement. Their dependence on the surface roughness 
, , 

is not known yet. Furthermore, the so-called von Karman's constant 

is not a universal constant but can be considered as a scaling parameter 

of the friction velocity. Its numerical value would vary depending on 

the roughness. 

The mean-velocity distributions inside the canopy within the 

transition region are strongly affected by the shape of the roughness 

e lement. The velocity in the trunk zone is higher than that in the 

crown zone. Particularly, the highest velocities were measured at 

about 1/2 of the trunk height, i.e., the jetting effect. Moreover, 

the drastic flow retardation in the beginning of the transition region 

is attributed to the large momentum loss of the flow inside the canopy. 
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The roughness density affects the upward flow displacement and 

the momentum loss. As the roughness density is higher, both displace-

ment thickness and momentum thickness become larger. Due to greater 

momentum loss, the transition domain for the full-density-canopy case 

is shorter t han for the half-density-canopy case. Since the upward flow 

displucement for denser canopy is larger, the contribution of the flow 

within t he canopy to both total displacement thickness and momentum 

thickness becomes smaller in the full density canopy than in the half 

density canopy. 

The flow characteristics within the fully developed flow region 

are detennined by the flow development throughout the transition region. 

The latter stretches up to 20 to 30 roughness heights downstream of 

the canopy l eadi ng edge. Within the transition region the flow is 

characterized, particularly, by its turbulence structure. The internal 

boundary- layer thickness is defined based on the turbulent shear stress 

but not on the mean velocity. The canopy frontal area which is a drastic 

step obstruct ion has a strong influence on the turbulent shear-stress 

distribution and, hence, the growth of the internal boundary layer. An 

adverse press ure gradient generated by this obstruction leads to local 

occurrence of maximum turbulent shear stress away from the roughness 

top . The flow near the canopy leading edge reveals two-dimensional 

wake-like characteristics. As a result, the growth of the internal boundary 

boundary layer up to 20 roughness heights is similar to the increase of 

the width of a two-dimensional wake . Beyond this distance , the internal 

boundary layer practically merges with the total boundary layer (90 -97% 

of the total boundary-layer thicknes s) . 
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The turbulence in the fully developed flow region may be locally 

isotropic when the eddy size is sufficiently small, e.g., less than 2% 

of the boundarv -layer thickness. However, the existence of an inertial 

subrange is questionable. The approximation of the measured energy 

spectra by a k- 5/ 3 curve must be made cautiously. Otherwise, such 

an approximation might result in a misleading conclusion that both 

local isotropy and inertial subrange exist. In order to assess the 

energy variation associated with different-size eddies, regardless 

of the existence of local isotropy and inertial subrange, the 

discretized-energy analysis can be a satisfactory tool. The results 

of this analysis indicate that a large energy dissipation occurs in the 

transition region. In the fully developed flow region, the turbulent 

energy associated with various-size eddies reaches an equilibrium state. 

It is reported in Ref. 67 that comparisons of the mean-velocity 

data obtained in and above a jungle-like coastal forest with wind-

tunnel results for the full density canopy show a reasonable agreement. 

Moreover, a similar variation in the coefficient of anisotropy with 

height are observed for the wind-tunnel simulated flow and field data. 

Generally, the mean velocity field and overall turbulence features with-

in and above forest canopies can be satisfactorily simulated. The re-

sults presented herein can provide valuable information in studying the 

problems associated with dispersal of agricultural chemicals and seed, 

exchange rates of water vapor and carbon dioxide and, to some extent, 

forest-fire problems. More generally, the canopy flow investigated in 

this work may represent the flow characteristics over high roughness 

elements like buildings and/or structures. Hence, the knowledge can be 
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extended to study the problems related to air pollution over urban areas 

or aerodynamic effects on buildings and structures. 

To summarize, the main conclusions of this investigation are: 

(1) The mean velocity profiles in the fully developed turbulent 

boundary layer above the canopy can be described by generalized loga-

rithmic relationships. 

(2) Inside the canopy within the transition region, the highest 

velocities were measured at about 1/2 of the trunk height, i.e., the 

jet ting effects. 

(3) Flow retardation in the beginning of the transition region is 

mainly due to the momentum loss of the flow inside the canopy. 

(4) The internal boundary layer defined based on the turbulent 

shear stress distribution grows in the nearly same manner as the width 

of a two-dimensional wake. 

(5) The turbulence in the fully developed flow region may be 

locally isotropic for sufficiently small eddies. However, the existence 

of an inertial subrange is doubtful. 

(6) The turbulent energy variation associated with a particular 

size eddy can be analyzed using a discretized-energy method. 

(7) The so-called von Karman's constant can be considered as a 

scaling parameter for the friction velocity. 

(8) As the roughness density is higher, the upward flow displace-

ment becomes larger. 
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When a hot wire is positioned normal to the mean velocity direction 

in a flow with a small velocity fluctuat~on, the fluctuation in hot-wire 

cooling is produced, essentially, by the velocity fluctuation parallel 

t o the mean velocity. On the other hand, if a hot wire is placed at an 

angie to the mean velocity direction, the fluctuation ln the wire cooling 

is caused by both longitudinal and transversal fluctuating velocity 

components. A sketch of a hot wire placed at a yawed angle to the 

mean velocity direction in the x-z plane is depicted in Fig. A.l. The 

instantaneous directions of the fluctuating .velocity components are 

arbitrarily assumed. The yaw angle is measured clockwise from the mean 

velocity direction. The simplified and operational form of the so-called 

King's law for a yawed wire is [18] 

(E + e ) 2 - E2 
lji 0 

!.: = MU 2 
e (A. l) 

wher e U is the effective cooling velocity and M i s a constant. The e 

value of the latter depends on wire configuration and material , the 

selected resistance ratio and the air properties. The time-averaged 

(DC) voltage necessary to balance the bridge under steady conditions is 

denoted by E whereas E
0 

designates the voltage drop in still air 

(at zero velocity). The value of E is constant for chosen operating 
0 

conditions. The instantaneous AC voltage caused by the fluctuating 

velocity for a chosen yaw angle is denoted by elji . 

Generally, according to the cosine law (68,69], the hot wire is 

assumed to be most sensitive to the nonnal component of the resultant 
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velocity. In other words, the latter is considered most effective for 

cooling the hot wire. Furthermore, it is noteworthy that the wire 

cooling is not affected by any small fluctuating velocity component 

perpendicular to the x-z plane, i.e., v-component, as long as the mean 

velocity is large compared with v [40]. Thus, as a first approximation, 

neglecting the v-component, the normal component in the x-z plane is 

considered as the effective cooling velocity. Therefore, (see Fig. A.I) 

U = ut sin Cw+ S) = (U + u) sin~+ w cos~, e xz (A.2) 

where u txz is the total velocity in the x-z plane and u is the mean 

velocity. The fluctuating velocity components in x- and z-directions 

are denoted by u and w, respectively. The angles between the total 

velocity and the mean velocity are designated by S. Substitution of 

Eq. (A.2) into Eq. (A.1) leads, after some manipulation, to the follow-

ing equation: 

(E + e ) 2 - E2 
W · 0 

1: u w 1: 
= M(U sin~) 2 (1 +Cu+ u cot~)) 2

• (A. 3) 

Under the assumption of small fluctuations, i.e., u 2/u2 <<1 and 

w2/U2 <<l, and, hence, e2w/E2 <<l, quadratic and higher order terms in 

the binominal expansions of (E + ew) 2 and 

neglec t ed. Then Eq. (A.3) reduces to 

E e 

u w 1: 
Cl+ Cu+ u cot~)) 2 are 

w u sin + w cos~ = (A. 4) _2 2 4 U sin w E - E 
0 
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!,.; 
where the relationship ]'2 - E2 = M (U sin 1/J) 2 was used for the mean 

0 

values. Taking the mean-square of Eq. (A.4), we obtain 

= u2sin2w + uw sin 2 (A.5) 
16 U2 sin 1/J 

where the overbar denotes time-averaged (or mean) values. Subsequent 

positionings of the wire at the same location at two different yaw angles, 

say, 45° and 135°, respectively, lead to the following relatinships 

for the shear stress and vertical component of the fluctuating velocity 

and 

uw 
u2 = 

s°E2 
---=-----uz (E2 _ E2)2 

0 

( e2 + e2 ) 45 135 
u2 

uz 

(A.6) 

(A. 7) 

The longitudinal turbulence intensity in Eq. (A.7) is obtained by 

employing a normal hot-wire at the very same location. Notice that Eq. 

(A.6) and (A. 7) are based on the assumption that the hot wire at each yaw 

angle monitors the same values of u, w and uw. In other words, i t 

is as sumed that the turbulent flow is uniform over the wire length. To 

satisfy this condition it is desirable to use a hot wire of r elatively 

small aspect ratio. 
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Fig . 3.3 View of the model forest canopy. 
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Fig. 4.4 General view of hot-wire anemometer system and 
additional equipments. 
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TABLES 

1. Mean velocity 

143 

The measured mean velocity along the canopy center line, i.e., 

along the x-axis (see Figs. 3.1 and 3. 2), are summarized in Table 

1-FDC and 1-HDC. The mean velocity variation is shown in Figs. 5.3a 

and 5.3b for the FDC case and in Figs. 5.4a and 5.4b for the HOC case. 

In these tables the dimensionless coordinates are 

x, z = x/h, z/h , 

where h = 18 cm (see Eq. (5.1)). The dimensionless mean velocity is 

U = U/U 
CX) 

where U = 6 m/sec (see Eq. (5.2)). 
CX) 

The downstream extent of the transition region for both FDC and 

HOC cases is tabulated in Table 1-TD. These extents are shown in Figs. 

5.5 and 5.9 by the broken lines. In this table denotes the 

longitudinal extent of the transition region, i.e., the boundary 

between the transition region and fully developed flow domain. 
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l06 . 0 
I IS . O 
130 .0 

3 . 0 

16.66 

0.06 
0. 19 
0. J .: 
0. bi 
0. 86 
l. 06 
l..i9 
1.IB 
.:.r 
3 . 1: 
3.50 
J.1 4 
J .67 
S.53 
6 . 0 i 

O.Ob 
o.,s 
a.so 
u. 78 
1.00 
l.'.?S 
l.69 
.: . 1:-
Z. :"! 
3 . 19 
J .08 
4. -IJ 
-1. 86 
5.36 
S.89 
6.JZ 

u 
(~/ s ec ) 

9.S 

0 , J-l 
0.4~ 
o.: s 
0.53 
1.14 
1.t,9 
.: .59 
l.3l 
J .56 
5 . .>S 
~. i -
6,00 
b . .:o 
6 . 33 
o .H 

52. 77 

u 
(Cl/sec) 

0. :z 
o.: .: 
0. 4 '.? 
1. 09 
1.93 
.:! .04 
2."'7 
3.46 
3.S6 
J . J S 
5,00 
5.3 1 
s.s, 
;_ ;'6 
S.86 
s .::i .s 
o.CO 

o.,s, 
0. ! 60 
0. 24-1 
o.oss 
0 . 087 
O. l 6 2 
0. :" ! I 
o.s .:s 
0 .891 
0.969 
0.980 
0.989 
I .!JOO 
1.000 
1 .000 

o.o-o 
0.066 
0.039 
0.08J 
0.180 
0 . .:'.6 7 
0.J09 
0. 5.:'.3 
0. :..: 1.1 
0.849 
0.90-l 
0.948 
0. 9-9 
1 .000 
1 .000 

0 .037 
0.037 
0.010 
o. 182 
0.32.:'. 
0. JJO 
0. J b.? 
o_5;: 
0.643 
o. i J .! 
0.833 
0.885 
0.9:S 
0.9t,0 
1l.·r7 
0 .990 
I . ,JOO 



0 

' {c•) 1-./ se~ J 
1.0 0.06 .!.lJ O.]SlJ 
7 .0 0. 39 ] .32 O.SS I 

11.2 0.6:! l .b0 U. ti\J0 
16. 5 U.91 4 .01 O,t,t,'J 
11.4 1.1 9 .s .:.8 U. ~ll 
29 .S 1.6-l J .85 0.S09 
l7 .9 2 . II 5. lO O.c8l 
48 . l 2.67 S.60 O.'J.B 
56 .S l.14 s. 7l 0,9S.J 
bl . O l . 44 S.9 .t 0,991 
77.2 6.00 1 .000 
90.0 S.00 S.9,1 0.991 

102.0 S.67 6 . 00 1.000 

1.5 

S. ll 

' (c•J (a/ secJ 
1.0 0.06 1.2:. 0. :.01 
6 . 2 0 .35 0.9() 0 . 159 

11.4 0.64 0.57 O.O'J.J 
16 . 7 0 .93 0.96 0.161 
20.l l. ll l.45 o.:.u 
l7. 1 1.51 2.65 O.HI 
]4. 7 1. 9] 4.04 0 .6 74 
41. 0 l .:.8 -L9 7 U.8.!9 
48.0 2.b 7 5 . 36 O.HJ 
58.2 J.2.l S.65 U.94;;: 
68.3 J . 79 S.9J 0.991 
79.8 •.-n C>.00 1.000 
92 .0 5. l l S.99 0.9•)-J 

10S.S 5.8b 5.99 0.99') 

a ( 11) 7,0 

JS . 88 

' (cm) (11/sec) 
1.0 0.06 0.12 O.UJ6 

'·' 0.41 0.28 0.04 "' 
13.S 0 . 7S 0.84 0.J.IU 
19 .0 1. 06 1.62 0 . .:iO 
24 .5 1.36 2.20 0.3b6 
34 .8 l.9J 2.9 7 0.JllS 
44. 4 2.4 7 J.bb O.bl I 
S3. 3 2.96 -l.lJ 0.6~9 
59 . 0 3. 28 4 . 55 0. 7S8 
6' .5 3 .58 4 .74 0. 790 
75.2 4 .18 5.:1 0.8 79 
86 .2 4 . 79 s.n 0.953 
99. 7 S . SJ 5.89 0.91:1.:: 

11 3.6 6 . 31 6 .00 I .00U 
12 2.S 6.81 6.00 1.000 
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TAILL 1 - HOC 
MEA."1 VELOCITY - Half lJensny C~o py 

0,3 

l.b6 

1.0 0 .0o : . ,,::. 0.,U2 
b.-1 0. J5 -L::.; ll. ,5;: 

1: .s 0.(1') U.Jd 0 . 079 
17 .::. 0 . 9"' O.'J'J tl:166 
:1.: : . :o ,1.09 0 . b8l 
;:,9_ ; l.o5 J .'l : o.a1? 
19 . ; :.. l8 s. :_9 0 . 88:. 
48,S : .69 :,,t,8 0 .94' 
5b.S J . 14 5 . b!I 0.947 
bS.O l.o l i. 67 O.!r9 
7S. 7 -1.:.0 S.9~ 0.9':15 
88. i .1. 93 6,00 1.000 

102.U S.67 b.00 1 ,000 

z 
(cal 

1. 0 
5 .8 

1.::.1 
lt>.2 
19.1 
.::5.1 
34. J 
43.8 
il.7 
i9. 3 
b9.0 
,8 . 9 
9Z.i 

105 ... 
121 . 6 

1.0 
;, .0 

IJ .0 
19.1 
B.8 
32 . : 
J2.: 
so. 4 
SIJ .0 
"'I . S 
:s. s 
88.b 

101. 3 
IIJ.3 
129. S 

:.o 
I I. II 

( a / sec) 

0 .06 0. Sb 
0. 32 0. J8 
0.6.. 0.6 1 
0.90 I . IJ 
I.;Jt, l. 3l 
l. 3~ ::.33 
1.c10 J.8 J 
: .JJ J. 96 
:.S7 3.)5 
3. 29 ). i9 
3 . 83 3. ~8 
J, 3d S .93 
5 . i3 b.00 
s.a; s.i5 
b. :t, S. 97 

8.5 

u 
(11/HC) 

0.06 0 . .:o 
0.39 (). .::6 
J . ·s U.91 
1.06 l. t>J 
1.3:? .:: . .:o 
1.8.:? .:: . 90 
2 . 35 3. J 5 
: .so 3.91 
J . :8 4. 39 
3 . 97 4 . 38 
-L38 5.31 
J .9.:: S.68 
5 .63 3.91 
6.H 5.96 
7 .19 '> . OU 

a(o) 

(cm) 

0.('9J 
U. 08 1 
0 . !02 
0. 189 
o. :ss 
0. 3~9 
0. bld 
0.-i:6 
0 . ~)I 
0. ')3 1 
0 . JdU 
0 . 1:1.:: 
I . .JOO 
u.99 .:: 
0.995 

0.03 -1 
O,\jJJ 
o. 1s: 
u . .: .. J 
0. ;t,· 
O. JS3 
o.:; : 5 
O.t>5.:: 
o . .. 31 
->.S il 
0.8 % 
0.9.&7 
0.985 
0.99 J 
1.000 

1. 0 U. Ob 
6.4 IJ.3'> 

1.: . 1 O.o; 
.:u. 1.11 
:~.: l.f- 2 
J .:.i : .35 
31. :' .z.~: 
59.0 3. 28 
69. 7 1 . 8-
;; .b 4 . JI 
8S.S 4 . :'5 
9J.7 3.:" 

109 . 3 o . o-
1:!J .i b . 9.'.' 

1;;: .0 

66 .66 

' 
1.0 
6.l 

11.8 
16 . 6 
19 . l 
za.a 
JS. 7 
43.0 
60 . 0 
n.6 
8l.3 
99. 7 

110 . 0 

' 
1.0 
6 . 3 

11.9 
IS.7 
19.l 
Z3.: 
28.5 
J7. J 
-'6 .9 
j8,5 
66.S 
-:'J . -1 
87 . 3 

100.8 
116 .5 

' (c:11} 
1.0 
7.3 

14 . 0 
17.8 
22.9 
3 1. l 
42.2 
St.I 
59 .0 
74.0 
80.3 
88.3 
9b.2 

IOS . 4 u, 8 
132.0 

u 

1. 17 
1.S4 
I. 77 
: .38 
2.97 
3. :'3 
4 .!t-
4 . 52 
.s .;:; 
S .2~ 
S.t>6 
S.80 
6.00 
b . 00 

-------- ----------------------

0 .6 1. 0 

3.33 5 .55 

u ' u 
(ca) (11/ sec. } 

0 .06 3 .1 7 O.S2b 1.0 0 . 0b 2. l4 0 . 390 
o. 35 l.39 0.231 6 .1 0 . 34 1.00 0 . 16:' 
0.65 1. 32 0 . 219 11. : 0.62 0. 72 0 . 119 
0.9Z l.2l 0. 204 lb. 2 0.90 0. 9 -1 0 . 157 
1.06 !. 42 O. JOJ 18.6 1.03 1.74 o.~91 
1.60 4 . 78 0. ;99 :!6 . J 1.H 3.45 O. i76 
1.98 5.31 0.896 34 .a 1.94 S.02 0 . 837 
:.39 S.50 0.915 ,IJ,6 2. .t ! 5. 63 0.938 
Z. 33 S .89 0.980 52. 1 2 . 89 5 . 7:? 0.953 
l.98 5.9S 0.992 58.5 J . !S S. 76 0.960 
4. 63 6.00 1 .08 0 59.5 3 . 31 5. 7b 0 . 963 
5.54 6.00 J ,000 67 .1 3. 73 S.83 0 . 971 
6 .11 S .97 0,995 79 . S 4.J 2 5.99 0.999 

92.9 s. 16 6.00 1.000 
107 .0 S.94 6.00 1.000 

3.0 5.0 

16.66 27. 77 

u ' u 
(a/sec} (cm) (.11/ sec) 

0.06 0 . 22 0.037 1.0 0.06 0. 19 0.031 
0. 3S 0.23 0.039 6.3 0.3S 0.30 0.030 
0.66 0.50 0.084 11.7 0.6S 0.61 0. 102 
0.87 0.99 0 . 165 18. l 1.00 1.62 o.,:o 
1.06 J.S8 0. 263 23 . l i. :8 2.0S 0.3Jl 
1.29 2.04 0. 340 29.5 1.6J 2.68 IJ.J.li 
1.58 2 . 69 0.J48 40 . l ! . 23 3. 6i 0. b09 
Z.07 J. 74 0.6.;?4 48 . J ! . b9 J .26 0.i'l0 
Z.61 4.8S 0.808 59.0 3.28 J.91 0.818 
3.25 5. 47 0.912 69.0 J.63 i.J3 o.~os 
J.69 S. 69 0.9J9 '6.S 4. rr s. :-- 0 . 9ol 
4 . 13 5 .89 0.982 85. i J. 7o 5.88 0.9 80 
4 .85 6.00 1.000 95.6 S.31 b.00 l .LlOO 
5.60 5.99 0 . 999 106.2 i.90 S.9: 0.99S 
b .4 7 5.99 0.999 122 .S 6.81 5.98 0 .99~ 

9 ,5 11.0 

S2. 77 61.1 1 
u ' u 

(c•J (a /sec ) 

0.06 0.21 0.036 1.0 0.06 0.50 tJ.0 83 
0 . 41 0.'3 0.038 b, 1 0.34 0.38 0.063 
0 . 78 0. ;4 0.123 10.6 0.59 0 .55 0.09 1 
0. 99 1.39 0. 232 16.9 0.94 1.82 0 . 30J 
1.27 2 . 19 0.365 21.7 1.21 2 . Sl 0 .41 8 
1. 73 2. 76 0.460 31.6 l. 76 2 .90 0.983 
2.35 3.32 0 . 5S4 J2 .4 : . 36 3. 80 0 .633 
2.84 3.19 0.631 so.: 2.82 4 .09 0.6d! 
3.28 4.30 0. 717 59.0 3 . 28 4.ib 0. :'t>O 
4.11 4.97 0 . 8:9 66.0 3.67 4.84 0. 80 · 
4.46 5.13 0.855 H.O 4.11 4.99 0. 832 
4.90 S.55 0.925 81.6 J.53 S.66 0.9H 
5.34 S.71 0.952 89 .J 4 .96 s. 79 0.966 
S .SS S.8S 0.97S 97.6 6.llO 1 .000 
6 .49 S.97 0.994 105 .8 5 . 88 S.98 ll.996 
7 .33 6 .00 1.000 124.0 b,89 S .99 0.999 

0 .194 
U.2Sb 
0.295 
0. 39b 
IJ .J'Jb 
O.t13~ 
U. :'1 1 
0. "5 3. 
0. 788 
0 . 881 
O.!l4J 
0.967 
1.000 
1 . 000 



Full 
z i 

(cm) 

18 1.0 
27 1.5 
36 2.0 
54 3.0 
72 4.0 
90 5.0 
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TABLE 1 - TD 
TRANSITION REGION 

Density Canopy 
xtd xtd 
(m) 

2.80 15.5 
3;42 19.0 
4.40 24.5 
5.40 30.0 
5. 75 32.0 
5.85 32.5 

Half Density Ca~opy 
xtd xtd 
(m) 

3.50 19.5 
4.05 22.5 
5.20 29.0 
6.30 35.0 
6.65 37.0 
6. 75 37.5 
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2. Turbulence intensity 

The measured turbulence intensity in the longitudinal and vertical 

directions, i.e., x and z directions, are summarized in Table 2-x-

FDC, 2-z-FDC, 2-x-HDC and 2-z-HDC. The variations of the longitudinal 

and vertical turbulence intensities for the FDC case are shown in Figs. 

5.32 and 5.34, respectively . For the HOC case the results are displayed 

in Fig. 5.33 and 5.35. In these tables the turbulence intensities 

based on both local velocity and free-stream velocity are tabulated. 

The turbulence intensities based on local velocity are denoted by 

and 

u rms Tu= -U-

T = w 

w rms 
u 

When the turbulence intensities are based on free-stream velocity, 

they are designated by 

and 

where U = 6 m/sec. 
00 

T u 

T w 

00 

00 

u rms 
= --rr-

00 

w rms 
= -u-

00 
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TABLE l . FOC 
LONCITUD l~AL TURBULEN C~ ISTF~~S ITY Fu ll Density Canopy 

-1.0 0.l 0 .6 

~s. ss 1.66 l.ll 

T T T T ' T T ' T u T 
u u - ,. u u . u u - (ca) "· 

1.0 0 .06 0 .166 0 . 09 45 l.U 0.06 0 . :12 0.0917 1.0 0.06 0 .11 4 0.07:?8 1.0 0.06 0. 304 0.081 0 
l.S o. 19 0.150 U.0875 : .; O.lJ 0 . .!IS u.10..10 l . S 0.19 0.124 0.0775 l.0 0.18 0.232 0.0637 
9 . S 0 . Sl 0.129 O. ll885 1.0 0.18 0. 10S 0.1030 6.S 0. 36 0.lll 0.1040 6.0 o.n 0.442 0 . 1140 

11.0 0.6 1 0 .12: U. OS:'0 8.5 o.n 0. I ;"4 0.1000 12.S 0.69 0.208 0. 0330 12.0 0.67 1. 03 0 . 0S98 
17.S 0.97 0. I IS 0.01103 l -' .O 0. :s 0.135 O.O9H 15.S 0.86 0.263 0.0608 16 .0 0.89 0. 78 4 0.0718 
29.0 l.61 0 .103 1,).0583 l b .O 1.00 U. li..l 0.0900 19.0 1.06 0.366 0.1770 :o.s l. 14 0. 321 0 . lll0 
H . S 2.42 0.075 O. Ot,9b :1.0 !. :s 0.114 0.090:" H.S J.l6 o. 134 0.11 20 z:- .s l.Sl 0 . 200 O. lSlO 
S7 . 0 3.17 O.Oli 0.0308 34 .5 1.9.Z ,J.097 0.0885 32 . U 1.78 0.090 0.0810 40.0 2.22 0.094 0.08:?0 
68 . S 3 .81 0 .021 0.0!1:? 46.0 2.56 O.OtJO 0 .0;"83 -1 2.0 2. ll 0.087 0.0795 48 .0 2.67 0.083 0.0782 
7-4.0 , .11 0.01: U.Ol!J 5:' .0 J. 17 0 . 05-1 0.0:i4 1 Sl.0 2.83 0.077 0.0735 S8.0 3.22 0.067 0 . 0683 
86.5 4 .81 0.00':I O. Ou9: c,7.S l. ;s 0.0.!8 o.o : s1 57 . o 3. 17 0.066 0.0667 S9.5 l.l l 0.0-19 0 .0503 
99 . 0 s.so 0 . 008 0 . 0081 7.Z.5 4 .03 0.0:3 0 . 0:31 t>S . O J.61 0.043 o.o,.ss 71.5 l.97 0 . 015 0.0lbO 

109.S 6.08 O.OIJS 0.0075 ;"9 . 0 4 .39 0 . 0 16 0.0168 7l .0 ,.06 0.026 O.OZ6 J 8l.O 4,50 o.ou 0.0148 
120. 0 6.67 0.008 0.00;"8 89.5 J .97 O.O I Z 0.0L!S 84 . 0 4 .67 0.014 0.01s0 97 .0 5.39 0.010 0.0 103 

98.0 s..u o. 10 0 . 0108 97 .s S.42 0.010 0.0I0S 119.0 6.61 0.008 0.0090 
106.0 S.89 0.009 0.009 8 111.0 6. l 7 0 .009 0.0090 
119 .0 6.61 0 .009 0.009l 121.0 6. 7l 0.009 0.0090 

1.0 l.S 2.0 l.0 

s.ss 8.lJ 11.11 16.66 
T u T T u T u T u T u T u T u "• ,., . - , . . 

1. 0 0 . 06 0 . , 10 0.0573 1.0 0.06 0. 869 0.04 20 1.0 0.06 0.565 0 .0462 1.0 0 . 06 o.-:n 0.0510 
l . S 0 . 19 0. 765 O.Ot.SI$ l.O 0.17 0. ib6 0.0370 l.S 0.19 0. 736 0.0416 l.S 0. 19 0. 736 0 . 0515 
7.0 0.19 1. 29 0.0-HO 5.5 0. 31 O.t,68 O.Ol57 8.0 0.44 1 .259 0.0525 7.S 0.42 1.035 0.0432 

10.0 0 . 56 1. 29 0.0410 10 .S o.:;s O.Sb~ O.OJ20 13.0 0. 72 0.951 0.0935 12.0 0 . 67 I . OS:? 0.0955 
15.0 0 . 83 0 . 788 0 , 0933 15.5 U.88 0.839 0.0875 17 .0 0.94 0 .801 0.1230 15.5 0 .86 0. 775 0.1.no 
U.S 1.03 0 . 789 0 . 1:JO 19 .0 1.0b O.bJ9 0.1480 20 . 0 1.11 0. 702 0.1280 19.0 1.06 O.SS.! 0. 1560 
27 .0 I.SO O. l.:!8 o . 1800 ;.i. o 1..).) 0. J70 0.1730 14.5 1.l6 0.474 0.1610 25.0 1.39 0. 397 0.1720 
37 . 5 2.08 0.118 0.11)30 H.O l.~4 o. 2:z O.IUU J-1 .0 L.89 0 .308 0.1720 33.0 1.83 o. 315 0. 1;"30 
48.1 2.67 0.085 O.Oi:'7 Jb.O :.,6 0 . 09 : 0 .08.>l J S .O 2 .so 0.161 0.1190 44 . S 2 . J7 0 . .?OJ O. l 5JO 
17.0 3. 17 0.07.:! 0 . ObB 8 5 .o l. 7 U.07b 0.07!3 s; .o 3.17 0.08b 0,0710 57 .o 3 . 17 0 .1 21 0 . 1090 
6 7.0 J . 72 0.0.S8 0.0-180 b7 . 5 J.;s o.oss 0.05l8 65.5 3.64 0.06S 0.0622 63.0 l.S0 0.086 0.0815 
77 . s 4 . 31 0 .026 0.0265 75.5 J .19 0.035 0.0347 78 . 0 4.33 0 . 0.SZ O.O-H7 74.S 4.14 0.055 0.055 
ss . s 4 . 75 0.016 0.0 163 83.5 4.6-1 0.022 0.02.:!;! 59.0 4.84 0. 016 0.0165 84.0 4,67 0.029 0.0:97 
9S . S s. 31 O.OlZ 0.01.~J 99.0 s.so 0.013 O.OllO 103.S 5. 75 0.009 0.0097 99.S S.ll 0.017 0.01:'8 

111.5 6. 19 0.009 0.0095 I 19.IJ o.61 0.0 10 0 . 0105 120.0 6.67 0.008 0.0078 120 .0 6.67 0.011 0.0113 
120 . 0 6.67 0.009 o.oo,8 

• . o ,.o 7 . 0 9 .S 

21. 22 27. 77 l8.S8 52. 77 

T u T u T u T u T u T u T u T u - - -
1.0 0.06 0. 7b8 0.048:' 1.0 0.06 1.160 0.0483 1.0 0.06 0.914 0 . 0258 1.0 0.06 0.883 0.0l2l 
s.o 0.28 0 . 570 0.03b2 J .S o. :s 1.050 o.o.s o : ,.o 0.28 o. ;93 0 .02 12 ,.s O • .?S 0. ;'84 0.0287 
9.0 o.so I .JOO 0.0338 8.0 0. JJ 0.978 0.tJJ23 9.S O.SJ 0.901 O.OJS 9.0 o.,o 0.188 o.oss: 

14 .0 o. 78 1. 010 0.0?92 12 .0 0.b"' 0.900 0.0735 12.S 0.69 0. 701 0 .0737 14 .0 o. -:s O.S89 0.10;0 
17 .S 0.97 0.656 0.1.;.JO lJ .5 o.a1 0. 707 o. 1:10 16.0 0.89 U.S19 0 . 1190 18.0 l.00 0.JiO 0. 1510 
19 .S 1.08 0. 53S O. lJbO ld.S I.OJ O.SJS 0.1550 18 . S I.Cl 0.385 0.1110 .n.s l.25 a.rs 0 .1180 
26.0 1.44 0 . 337 o. 1s.;o 23.0 1.28 O. J45 O. ISJO 24.0 l.JJ 0 .277 0.1150 30 .5 l.69 o.;:,19 O. l.?90 
38.5 2 . 14 0.260 0. l ScO ll.S I. '.'5 O.l39 0.1510 32 .0 l. i8 0.230 0.11..tO 39.0 2.17 0.2:6 0.1300 
411.5 2 . 69 0.107 0. 1)10 .u .o 2.28 o.:s1 0. 1580 40.S 2 . 25 0.202 0.1150 49 .0 2. 72 0 . 201 o. 1290 
57 .0 3 .1 7 0.162 0.1360 49.S :.:5 O.Z24 0.1540 J9.0 2. 72 0.171 0.1120 57 . s J.19 0.170 0. 1260 
6 2 . S J . 47 0.115 0. 10.:0 SB.I 3 . 25 0. 186 0. IJJO 57.S 3. 19 0.183 0.1430 73.S .S. 08 O.ll.2 0.1100 
74.S 4.14 0.0bS O.Obli ... 2 .S ..t.Ol 0. 103 0.09~l 73.S 4.08 0.129 0.1050 80 .0 4.44 0.119 0. 1060 
83.0 4 .61 0.045 0.0455 82 .0 4 .56 0 . 066 0 . 06.)0 87 .o 4 .83 0 .096 0.086i 87 .5 4 . 86 0.09J 0.0872 
92. S s . 14 0.025 o .oz:;5 9b.0 5 . 33 O.OJl 0 . 0307 95 .s S.ll 0.066 0.0622 96.5 S.36 0.070 0.0672 

102.0 5.67 0.0 1 i 0.01:'3 108.0 b. 00 l1 ,0 17 0. 0 165 103.0 S. 72 0.030 0.0293 106.0 S . 89 0,0..16 0,l)JJ 7 
119 .0 6.61 0.01: 0.01 :8 11 6.U 6.JJ 0.01-1 0.01 ..1 0 114 .o 6.33 0.018 0 .0178 115.0 6. 42 0.013 0.0227 

130.0 7 .22 0.011 O.Ul08 130.0 7 .22 0 . 012 0.0118 130.0 7.22 0.0IS 0.0 1)2 

x(11) 11.0 12.0 

bl 11 66 .66 

' T u T u T u T u em) - ~c• -
1.0 0 .06 0.4!5 0.0Jl8 1.0 0.06 0.S29 0 . 1060 
,.s O.l l 0.93.? 0.098.:! J.S o.:s 0 . 45J 0.11 ... 0 
8 .S 0.47 0 .... 60 0.050'.' 8.1 0.J7 0.,UI 0.1210 

Jl . O 0. :-z O. b6l 0 . 1 h)O 13.0 u.n 0.JbS 0.1310 
14 . S 0.8l 0.608 0.14 ..1 0 19 . 0 1.06 0, 39 1 o.1s:o 
17 .5 0 .97 0.395 0 . 1600 Z6 .0 1.44 0. Z88 0 . IJ20 
ZJ.0 t.n 0.301 0 . 16J O 36 .5 2.03 0.237 0.1260 
lO . S }.t,9 O . .:JS O, IJ60 48.0 2 . 67 0.186 0. 1:00 
,1. 0 2.28 0 . .?07 O.IHO 58.S l . ZS 0 . 156 0.1190 
so.a 2. 78 0.173 0.1310 7'.0 J.17 0 .118 0.0933 
18. 0 3.22 0, Jt,O 0. 1:.;o il-l.S 4.69 0.094 O.OSJ; 
72.0 4 . 00 0. l:'. S 0 .10 ·0 ':1 4. 0 S . .?2 O.OiZ 0 .06i5 
82.0 4.56 0. 109 0.1000 !OJ .0 5 . 78 O.OJ8 0.0-1·1 
9 1 . 0 S.1 7 0.078 0.1.17J; 11 :" .0 b.50 0.0..?3 O.O.'.':: 

102.S S.69 o.o ss O.IJSJO 11: .0 7.33 O.OIJ O. OJJS 
11 5.5 6 • ..1 .: 0.0.:!3 0.0.'.'32 
J;lj ,0 "'.1" O. OIJ 0.01 JS 



149 

TABLE 2 ' FOC 
VERTICA L Ta.lULE.'tC~ 1.,n....,srn Full Denu ty Canopy 

·l.O O. l 0 . 6 

- S. SS 1.66 l. l l 

' T . T .. T . T . ' T . T . ' T . T . 
co) . CO) - {c •} - -

2. 0 O. ll 0.08:? O.U -10 . _; o . .a: u.o:s 0.0 1-1 7 .0 0 . l9 0 260 0 . 0 7S :?O.S 1.14 0. 164 0 . 080 
s.s O. l l 0.U56 o.o.;,; 11.IJ O . t>l 0.008 0.0H 1!.5 0 . 69 0. 156 0 .0!9 27 .0 l.S0 0.098 O.Ob9 
9 . 0 0.50 0 . Ut>l U.JJ .:'. 15.J 0 . 3; 0.0:'2 0.050 I S. O 0 .8l 0.270 o.oss H . S 1.86 0 . 02 1 0.017 

1' . 0 0 . 78 o.~ 1 U,IJH lb.0 U.89 o. o.:is 0.041 19. 0 l. Ob Q,j,2 !1 0. 187 45.0 2.S0 0.012 0 . 020 
19 . S 1. 08 0 .058 0,(J J C, :?l.U I.Ii U.057 0.0.U ll.0 1.28 0 . 181 O. ll9 53.0 2.94 0.03 :? 0.0ll 
26 . S l.4 7 0.0bl 0.05.:'. :.5.0 L io 0.038 0.032 ll.O 1. 72 0. 036 0.032 6l.0 3.50 0.0 H 0.035 
lS . 0 1. 9 4 0.054 0 .049 Ja.O Z.11 0.022 0.0! 1 Jl. 0 2.:8 0.037 0.035 70.S 3.92 0.021 a.on 
44 . S 2 . 47 0 . 038 0 . 030 48 .0 :.66 0.0!:? 0.02: 50 .S 2.8 1 0.0JJ O.Oll 79.S 4 ,39 0.005 0.005 
Sl.S 2.86 0. 0 29 0.0:?8 60.5 .Ll6 I.LOH U.Ol :? S9.S 3 . 31 0.040 0.040 
60. 0 3 . 33 0 .009 0 .009 70 . .i J .92 0.0 15 0.0 15 70 ,0 l . 89 0.026 0. 0 2~ 
73 .0 4 .06 0.007 O.Ut'7 : J . O .a. II O.O IJ 0.0 13 77 .o 4.28 O. OJ.S 0 . 0 16 

31.0 .a . so 0.006 0.006 
9 1.S 5.08 0.003 0 .003 

1.0 I.S 2. 0 l.0 

s.ss 8 . H lJ..11 16.66 

T . T . T r. ' r. T . . T . T . 
cm - t.: ci 

. - (co - . 
29.S l.6-1 0 .15 2 0 . 103 .! b .5 1. i 1 0 .118 0.054 ll.0 1.72 0 . 089 0.043 22.0 1.22 0,067 0 . 024 
34.S 1.92 0 . 131 0.106 32.5 1.8 1 0.205 0. 138 40.0 .? .22 0. 109 0.071 28.S 1.58 0.130 0.064 
42.0 2 .H 0.023 0.0~1 J;.o 2. 00 0 ,200 O. ISi 49.0 z.:-2 0.041 0 . 052 37 .5 .2.08 0. 15S ll .10.! 
Sl.O 2 .53 0 .02S 0.02-l H .O : . .a4 0.100 0.Ub8 61.0 l.l9 0.020 0.018 44.5 2.47 0.132 0.10,) 
6 1. 0 l . 39 0.029 0.0.?6 s:.u 2.S9 0.034 0.032 M.S 3.58 0 . 022 o.ow 49.0 2.,: O.ll-' 0.109 
70 . 0 3 . 89 0.036 0.03b e>t.> l. J 2 U. 032 0.Ull 75, 0 4 .17 0.024 0.0H 58.5 J.2S 0.061 0 .0S 5 
77. 0 4 .28 0 .025 0.025 :.? .5 -L 0l O.OlS 0.01:; 8 7. S 4 . 86 0.014 O.O IJ 67 . 5 3. iS 0.006 0.1.)06 
8S.0 • • 72 0.007 0.007 s.:.s .a .S8 O.O l l 0 . 013 102.0 S.67 0.006 0 . 006 76 .5 J • .?S o.on 0.013 

93.S 5 .19 0.0 11 0.012 8S.S 4 . :s 0.0 14 0 .0 1-J 
94 .S s.:2 0.005 0.00.i 

102 . S S.69 0 . 001 0.001 

, .o s.o 7.0 9.S 

22 .22 18.88 S2 . 77 

T . T . T . T . ' T . T . ' T . T . 
co . cm) . - . 

21 . S 1. 31 0 .1 S8 0.058 13 .5 ll.8<> 0 . lJO O.Ot>.i 10.S 0.58 0 . 295 0.02 1 2 .s O. IJ 0. I H 0 .005 
ll.5 1 .75 0.1 -15 o.o - :; : 1. 0 J. r;" 0.139 0 . (1.iJ 1-1. S 0 . 8 1 0, 408 0.065 '.0 0 .39 0,4 -10 o.ei.: -1 
41.0 2. 28 0 . 119 0.0-9 30.0 1.68 0 . 05 .. 0.026 i!l.S 1. 08 0. 297 0.09 1 11. 0 0 . 61 0 . 59'.' 0 . 0-5 
50. 0 2. 78 o . 109 0.085 .3t>.5 : .03 D.090 0.049 .!6.0 l. 4J o.:4i' 0.101 15 . 5 0,86 o . .:98 0.069 
60. 0 J .33 0. 100 0.08 b I.I .0 :.-1 J ll.127 U.0 81 H.0 1. 83 0.213 0 . 105 19.0 1.06 o.:n 0 . 0'"1 
7Z . 0 .a .oo o.oso 0.0J 8 :iO.O l. :S 0.104 o .,r3 u .o 2. l9 0.141 0 .09'.i n.o I.SO 0 .10.: 0.0 .J-I 
79 . 0 4 , 39 0.0:1 0.027 56 ,; J. l -1 0 .o; tl O.Oc..O Sl. S 2. 86 0.120 0.081 36 . S 2 . 0l o.os:; O. OJS 
89 .0 4 , 94 0.018 (1 , (118 6.1 . :i l.S6 0,llbl o.u;1 t,I.S 3. 4 .? 0.092 0.069 -15 . S ..: .53 ll.095 0.0b0 

-: .z.o .a . 00 0.0 4.1 0.039 7 1. 0 J.94 il.Oi8 o.o.is S2.0 : . S9 o.o~s ll.Oi.: 
81.0 .a .:;o 0 . 0 30 0.028 81.S 4 .53 0 . 005 0.004 t,0.5 3.36 0.095 o.o-.? 
91.0 S .06 O. Ol l 0.01..: 91.0 5 . 06 0.01-1 0.013 62.S l . 47 0.10: 0.0:'9 

10 1 .0 5.6 1 0.013 0.0 12 7 1. 0 l.94 0.0\.19 0.08.! 
82.0 4,S6 0.(81 0.0-2 
9 1. S 5.08 0.06:' 0.063 

11.0 

6 1 . 11 

' T T . . 
co) -

11. S 0 . 64 0.071 0 . 008 
16 .0 0 .9: 0. 262 0.099 
:1.s 1. 19 O. l l.l 0 . 06-1 
2!LS 1. 6 4 0.08.:! 0,0.JS 
40.0 2 . 2! 0.054 0.056 
46 ,0 2. S6 0.08S 0.06 1 
S4. S l. Ol 0.0S0 0.039 
60 . S l .l6 0.057 0 .046 
6 7 . 0 l . 72 0.06: o.os: 
73. 0 4. 0b 0.065 o.os; 
81.S J .S!I 0.0.U 0 .0 40 
91 .5 S.08 0.034 0.032 
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TABLE l ' II IJC 
LONClTUOISA L TURBUU.:<.CE J~TL'i"SI TY Half Den sity Canopy 

x(a) 0 . J 0.6 1.0 

1.66 3.ll s.ss 
T T T T ' T u T T u T u u u . i:: ml u u - (<• u. (CII) . 

1.0 0 .06 O. ZIJ O.tl!L?6 1.0 O,Ot, O. lt,O 0,0 4 07 1.0 0.06 0 . 127 0. 06 71 1.0 0.06 0. 192 0 . 0749 
7 . o 0 . J9 O. lt,J O.,::·vJ ... ll.JS U.JH 0 .18:0 6.2 0 . JS 0.398 0 .0919 6.1 0.34 0.471 1).0786 

11.0 0.62 0 . 143 0.08i8 12 .S O.C:9 O.t,4.,i 0.0S32 11.8 0.65 0 .324 0.0710 11.2 0 .62 0.513 0 .06 10 
16.5 0 .91 0.111 O.UtW9 J1 . 3 0.97 0.585 0.097 1 16 .6 0.9: O.JS7 0 .0728 16.2 0,90 0 .549 0.0862 
21.4 l.19 0. 108 0.0770 : I. 1.:0 0. 190 0.1300 19. l 1.06 O. JS7 0.1440 18,6 I.OJ O.J78 0.1390 
29.S 1.64 0,09! 0.07"4 ::.i , ; l. bS U.080 O.Oc3S 28. 8 l .bO 0.147 0.1170 ::6 . .t 1.47 o.:9o 0.1670 
37 .9 2 . 11 o.oso 0.070b j9, j : . 18 0.0:t, 0.00:-0 35 . 7 l.98 0.080 0.0717 34 .8 1.94 o. 1:1 0.1010 
0.1 2. 67 0.051:i 0,0)- .a J H . ,; :.69 0.0c,; O.U587 43.0 2 .39 0.074 0.0677 43.6 2.42 0 .074 0.0694 
S6.S J . 14 O. Olo U.O.iH :;o.s 3.lJ ~l.04t> O.OH6 60 .0 J.33 0.043 0.0.a::1 S2.J 2 . 89 0.067 0.0639 
62 .0 3. 44 0.010 O.Oi'H t,5 .o l.61 0 .023 o.o:::s 71.6 3.98 0 . 017 0.0169 58.S J.2S 0.053 0. 0S09 
77. 2 4 .29 0.009 0.0090 - 5.1 .i .::o O. Ulu u. 00995 83.J 4.63 0.007 0.0070 S9.5 3 .J l 0.050 0 . 0482 
90 .0 S.00 0.005 O.l.!050 8d. 7 4.93 0.005 0.005 99.1 S.54 0.004 o.oo,p 67 .1 3. 73 0.03.t 0.0330 

102.0 S.67 0 . 004 0.0040 102.0 S.67 l.1.005 U.005 110 . 0 6 . 11 0.003 0.0030 79.S 4.4 2 0.0 12 0.0120 
92.9 s. 16 0.00S 0. 00S0 

107 .0 S.94 o.oo• o.oo.a o 

x(a) l.S 2 .0 J.0 s .o 

8 . ll 11. 11 16.66 21.11 

' T T T u T u T u T u T u T u u u . . co . cm -
1.0 0.06 O.J61 0.0733 1.0 O.Ot> 0.635 0.0597 1.0 0.06 1.000 0.037 1.0 0.06 1.000 0.0310 
6 .2 O.JS 0 . 575 0.U914 S.8 0 . 32 0. ;;1 l.l.0629 •. J 0.35 0 . 946 0.0369 6.J 0.35 0.859 0.0430 

11. 4 0 . 64 o.7H 0.0680 1::.1 0.bi 0. -g I 0.0~9; 11.9 0.66 0.859 0.0721 11. 7 0.65 0.842 0.0859 
16. 7 0.93 0.634 0. 1020 It>.:: 0.90 0.6 10 0.1 150 JS. 7 0.87 0 . 709 0 . 1170 18.1 1.00 a.sos 0 .1 300 
20. l 1.12 0.548 0.1320 19. l l.Ob O.SJ~ O.lJOO 19. l 1.06 0.533 o. 1.aoo 23. l 1.18 0. 397 0.1350 
27 . 1 I.SI 0.350 0.1540 ZS.I 1.39 0 . JOO 0.156() ZJ . 2 1. 29 0 . 427 0.1450 29.S 1.64 0.333 0.1J90 
34. 7 1.93 0 . 222 0. 1500 3J .3 l.':tlO 0 . .'!57 O. l6JO 28.5 1.58 O. l 41 0.153,() 40.1 ::.23 0.253 0.1540 
41.0 2. 28 O. IH 0.1110 H.8 :.n 0. 145 0. 1: t.10 37 .3 2.07 0.2S5 0.1590 48,3 2.69 0. ::02 0.1430 
48 . 0 2.67 0.081 o.o-u s1.- .'!.87 0.03J tJ.0 -JS 46.9 .?.61 0.160 0.1290 59.0 3.28 O. lJ3 O.lliO 
S8.2 J . 2J 0 . 062 O.l.!584 59. J l.:J 0.006 0.0614 58 .S J.,s 0.082 0.0748 69 .0 3.83 0,096 0 .0869 
6S. l l . 79 0.038 O.Ol:'6 b':UJ 3.83 O.OJ3 V.OJ11 o6.5 3.69 0.0S6 0.05.ll 76.8 4.Zi 0,059 0.0567 
79.8 4.43 0.015 0.0150 -:s.9 .I. _;g 0.t.>20 0.0198 74.4 4 .13 0.041 0.0403 85 . ; :. '"6 0.030 0.0290 
92.0 5.11 0.006 0.0060 9:. 3 ) . 13 0,008 0.0080 d7 .3 4.!S 0.017 0 . 0170 9S.6 S.ll 0.016 0.0160 

10S . S S.86 0.004 0.0040 IDS. 7 5.87 v.cos 0.0050 100.8 S.60 0 . 007 0.0070 106.2 S .90 0.009 0.0090 
1:1 .6 6. -6 ~.00 4 0.0040 116.5 6.J7 0.004 0.0040 122.S 6.81 0.006 0.0060 

7.0 ,.s 9 .S 11.0 

38.88 .n .:2 S2. 77 61.11 

Tu T u T u T u z T u T u ' Tu T u <• . (ca) . (ca) . 
1. 0 0 .06 0 . 976 O.Ol50 1.0 O.Ob 0 . 944 0.0320 1.0 0.06 0.834 0.0300 1.0 V.06 0,55.S 0.0 .St>O , .. 0.41 0 .890 0.04:o -.o 0. 39 0 . 333 0.03b0 7 .J 0. 41 0 .830 O. Ol20 6. I 0 . 34 0.076 O.OJ20 

ll.S O. 7S 0. 700 0.0980 14 ,0 0. :-s V. t>9.S 0.1050 14.0 0. 78 0.718 0.0883 10.6 o.s~ 0.596 0.0540 
19 .2 1.06 0.49l O.IHO 19.0 I.Ot, 'J.-192 0.1340 17 .8 0 , 99 O.S64 0.1310 16.9 0,94 0.501 0.1520 
24.5 I. J6 0.374 0.1370 .23.8 1.1: 0.388 0.1.120 .n.9 1.:1 0 . 373 0.1360 21. 7 1.11 0.351 0.1470 
34.8 1.94 0 . 294 0. 14t>U J: . :- l.S Z 0.296 0.1J30 31.l 1. 73 0.298 0.1370 Jl.6 1. 76 0.184 0.1370 
44.C 2.,1 0.237 0.1.l:>O 4:.2 1.35 0.246 0.1410 42.2 2 .3S 0 .254 0.1410 42 . 4 '.J6 0.221 0 . 1400 
SJ.l 2.96 0.198 0. lJOO S0 . .1 l .80 O . ..'.Ot> O.lJJO S1.1 2.84 0.212 0.1340 50. 7 2 . 82 0. 195 0.1330 
59.0 J. 28 0.18S 0.140 S9.0 3.28 0.180 0.1320 59.0 J.l8 0.184 O. ll20 59.0 J.28 0.169 0.1280 
64.S 3 .58 0.1S6 0.1130 :'l.5 3.97 l.l. 1.1 0 O.llJO 74.0 4.11 0.136 0.113,0 66.0 3.67 0 . 151 0.12:0 
75.2 4.18 0.099 0.0870 :'d.8 J .38 o. 110 0 .0975 80. 3 4.46 0.114 0.0975 74 .0 4.11 0.130 0.1080 
86.2 4. 79 0.056 0.0534 86,o 4 .92 0.078 0.0:'40 88.J .a .90 0.081 0.0750 81.6 J .53 0 .1 05 0.0990 
99 . 7 5.54 0,019 0 . 0180 101.3 S.6l 0.030 O.OlOO 96.2 5.34 0.0S8 0 . 0550 89. 3 4.96 O.Oi8 O.Oi50 

11.3.6 6.31 0.010 0 .0100 114, 3 li .lS 0.0 1S 0.01s0 105.4 S.8S 0.027 0.0260 97 . 6 5.42 0.055 0,0550 
122 .5 6.81 0.008 0 . 0080 129.S · 7 .19 1).008 0 .0080 116.8 6 . .S9 0.014 0.0140 105.8 5.88 O.V31 0.0310 

uz.o ;_ JJ 0.009 0. 0090 124.0 6.89 0.01S 0.0150 

1. (11) 12.0 

66 .66 

T T u u <• . 
1.0 0.06 0.-170 0.091 2 ... O.J6 0.409 0. IOSO 

12. 1 0 .67 0. 420 O. l.'!40 
20. 0 1.11 0 . 369 0.1,165 
29.2 1.62 0.273 0.13S0 
42 . 2 2.3S 0.20 1 o. 1::80 
SI. 7 2 .87 0 .1 76 0.1.?S3 
59.0 J.28 0.158 0.1190 
69. 7 J .87 0 . 136 0.10~0 
77 .6 4 .3 1 0 . 114 0. 1000 
85.S 0.089 0.08JO 
94 . 7 5.:?0 0'.061 0.0S90 

109.J ti.07 0.027 0.0270 
124.S 6 . 92 0.013 0 . 013:! 
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TA.BU 2 ' HOC 
VE RTICAL TURBULESCE. l~IESSfTY • H~lf Density Canopy 

•(• ) 0. l 0 . 6 1.0 

1.66 l . ll 5.55 

T T T r. r. T T . T . . . . . -co - '" - ,. -
3 . 5 0.19 o.o:-.a O.OH 20.J Lil 0.118 0.071 12.7 0 . 70 0.140 0.071 1 .9 0.44 0.331 0.045 
9 . 5 O.Sl 0.066 O.Ol8 ll. l 1.:!6 0 . 052 0.037 17. l 0.95 0.295 0.078 12 . l 0.67 0 . 271 O.OlO 

14 . 8 0 . 82 0 . 075 0. 05 1 :a.a l.60 O.USI \J.041 19.6 1.09 0.335 O.1S1 16.0 0.89 0.256 o.o.a1 
U . 7 1.04 O.O-b 0.051 lS.8 l. 99 0.057 0. 1.1 .a<J 22.9 1.27 0.229 0.1.u 18.1 1.01 0. 239 0 .057 
2S. 4 1.41 U.Ut,8 0.0:;2 JS .U 2. 50 0.05-1 0.050 25 .s 1.42 0 . 224 0.159 22.O 1.22 o. 232 0.077 
32.1 l. 79 0.07.t 0 . 0bl SJ. 2 2.<J.) 0 .04b O.O,U 29.0 1.61 0.062 0.049 27 .0 1.50 0.183 0.114 
40.6 2. 26 0.054 0 . 048 62.0 l . 44 0.027 0.02b 36 . l 2.00 0 . 037 O.~l 34. l 1.89 0.056 o.ou 
49.S 2.7S o.o.u 0 .018 &9.9 3 . 88 0 .013 O.O ll 44.9 2. 50 0.045 0.0J! 41.5 2.31 0.040 0.038 
57 . 6 J . 20 0 .028 0.027 7! .0 4.ll 0.007 0 . 007 Sl .8 2 . 99 0.046 0.0.U SI. 7 2.88 o.oso 0 .04 8 
66 .0 l .67 0.0 11 0 . 011 62 . 6 3. 48 0 . 0:9 0.028 62.0 l.44 O.OlS 0 .017 
71.S 4 .08 0 . 009 0.009 71.4 l.97 0.020 0 .020 68.9 l.8l a.on 0.0:2 

80.l 4 . 46 0.008 0.008 1& . 3 4.JS 0 ,007 0 . 007 
87 . 0 4.&l 0.00S 0.005 88 . S 4.92 0. 002 0,002 

x(•) 1.5 2 . 0 3.0 5.0 

8 . ll 11.11 16 .66 27 11 

' T T ' T T . ' T . T . ' T . T . 
(u) 

. . - (c:•J 
. - - (ca) -

9 . 2 0 . 51 0 . 1.!2 O. Oll 15. 7 0.87 o. 216 0 . 038 ll .9 o. 77 0.119 0 .014 9 . l O.S2 0.405 0,0.12 
ll . 8 0 .77 0 . 284 O.Oll 2:: . 0 t.n 0 .1 ;- 4 0 . 04 4 18.8 I.OS 0.245 0.059 14 . S 0.81 0.408 0 . 061 
19.S 1.08 o. 299 O.Of>a ::9. 4 l.63 0 . 160 0 . 08! 29 . 0 I.bl U.199 0.090 19.S 1.08 O. ll6 0.095 
21 . 0 1.28 0. 257 0.082 .18 . S :: . 1" 0. 152 0. 111 40.l 2. 24 0.191 O. IJS 26.8 1.49 0. 238 0.098 
28.0 1.56 iJ.W7 0.09b H.1 l.45 0.092 o.o:-s C.6 2.65 0.146 0.119 37.4 2 .08 0. ZQ,I a.us 
Jl.0 1.&l 0 . ISO 0 . 0~1. 52.6 !.9:! O. OJJ O.O l9 61.0 l. 39 0.07.l 0.067 49. 7 2. 76 0 .1:l o. 1:.1 
41.8 2.32 0 . 048 O.OJO bl. 0 l . .19 0.0.tl 0 .039 71.0 l.94 0 . 03S 0.01 1 bZ .O l.-lJ 0.119 0.101 
Sl. 4 2 . 85 0.0l8 0.035 iO . O l.89 0.035 0.034 81.7 4.54 0.02 1 0.021 02. 7 4.04 0.058 0.054 
64 . 8 J .60 0 . 033 0.032 i: .b 4 .31 a.on 0 .0:1 95.0 5.28 0 . 006 0.006 84 .9 4. 72 0.028 0 .027 
75. 4 4 . 19 0 . 01:- O.O l i 88.0 4.89 0 . 009 0.009 96 . 4 5 . 36 0 .009 0.009 
86. 0 4 . 78 0 .008 0.008 109 . 0 6.06 0.007 0.007 

•C•> 1.0 a.5 9.5 JI 

38.88 47 . 22 S2. 77 61.11 

T . T . ' T . T < ' T . T . T . T . ,. - (ca . (c: • ) - -
15. l 0.84 0. }42 0 .065 14 . 0.80 0 . 07 7 o.o u 14 .7 0.82 0.211 0.034 13.6 0. -:" 6 0.194 0.038 
18.l l.02 o. "~ 0.071 :o. 7 I. I S 0 . 180 0 .05b 18. 7 1.04 0 . 143 0.039 18.2 1.01 0.1S3 0.050 
22.5 1. 25 0. 2.!1 0 . 07.l !9 . 8 l.b6 0.189 0,0;,1 25.2 1. 40 0 . 143 0 .05S 22 . 1 1.:1 0.128 0 .050 
29. 4 1.61 0.? 1" 0.048 39 . 7 2.::1 0.1.&9 0.082 36.0 2 . 00 0.109 0 . 054 29.9 1.66 0. 1:9 0.063 
38. l 2 . 12 0. 108 0 .058 47 .0 .Lbl 0.136 0.08-1 45.0 2 . 50 0 .122 0.0 71 40 .S 2.25 0.1:?l 0.07 2 
48. 7 2 . 71 0.108 o.o:-o iO.S 2. 81 0.124 0. 081 51.0 2.83 0.114 0.0 73 S2.9 2.94 0.072 C.OS I 
S7.2 l.18 0.107 O.U :'9 61.5 l. J .! 0.104 o.o;s 62.0 3 . 44 0.100 0 . 074 61.0 3 . 39 0.0t,6 0.0S1 
61.6 l.Sl o. 105 0. 083 l. 1 J.98 0. 076 O. Oul 75 . 8 4.21 0.076 0 . 065 70.4 l.91 o. o:-o 0.059 
73.8 4 . 10 0.089 0.078 !!4.l 0.04= l.1. 03 8 88.3 4.90 0.055 0 . 051 82 . 1 4.56 0. 061 0 .056 
84.8 4. 71 0 .05Z 0.049 ~6.5 i. 36 O.OlS 0.01 ;- 100.9 5 . 60 0 . 031 0 . 0lO 9 2. 7 S .15 0.040 O.Ol9 
96. 7 S.37 0.0.?l 0.02: 108 . S 6.03 O. Oll 0 . 013 109.0 6 . 06 0.018 0.018 101.5 5.64 0.039 0.019 

108. 5 6.01 0.012 0.011 110.0 6.11 0.028 0.028 

12 

66.66 

T T . ·-, .o 0. 22 0.133 0.030 
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3. Shear Stress 

The measured turbulent shear stress -uw data are summarized in 

Tables 3-FDC and 3-HDC. The results for the FDC case are displayed in 

Figs. 5.26a and 5.26b. For the HDC case the results are shown in Figs. 

5.27a and 5.27b. In these tables the shear stress is made dimensionless 

using -uw [o,1] , i.e., the turbulent shear stress at the top of canopy 

leading edge (at x, z = 0, 1). 
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4. Boundary-layer thicknesses and integral parameters. 

The boundary-layer thickness, displacement thickness, momentum 

th i ckness, shape factor and i nternal boundary-layer thickness data are 

tabulated in Tables 4-FDC and 4-HDC. In these tables the fractions of 

displacement thickness and momentum thickness over the canopy height 

are also summarized. The results are shown in Figs. 5.9, 5.10, 5.11, 

5.12 and 5.31. The dimensionless thicknesses are referred to the 

canopy height h = 18 cm. 
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TABLE ' - FOC 
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7 . 0 la.BS 11' 6 . JS 40.9 2.17 15.7 0 . 87 Z.61 16 . 4 0.91 1.6 0.09 105 . 3 5 . 85 
9.5 S2. 77 115 6.40 41.0 2.,8 1S.8 0 . 88 2 . 60 16.4 0 . 91 1.6 0.09 110 . 7 6 .15 

11.0 61.11 Ill 6 .,5 36 .0 2. 00 16 . 2 0 . 90 2.22 15 . 5 0 . 86 2. 1 0 . 12 109 . 0 6 .05 
12.0 66.66 104 5.80 35.6 l.98 17 . 6 0 .98 2.02 

TABLE 4 HOC 
90l.NDARY-LAYER THJCK.~ESSES A.~0 l~'TEGRAL PAAA."ETERS - Half Oensi ty Canopy . ' ,· i ' ' 'h ,· Sh ijh •1 6i 

(c 11) h ( cm) 

0 72 4.00 U.4 o.80 9,0 0 . 50 l.60 8 . 4 0 . 46 4.1 O.H 
0 . 3 l.66 72 4.00 18. 4 1.02 8.1 0.45 2 .Z6 11.S 0.64 ,.1 0 . 17 16.1 1.45 
0.6 3 , ll 72 4.00 20. 3 1.13 8.1 0 . 45 2.5 1 13.2 0. 73 ,.2 0.18 32.4 l.80 
l.0 S . 55 73 :3 . 8 1.32 8.1 o..a5 2.93 l -L5 O.Sl 2.6 0.15 44.l 2.45 
l.5 1 . 33 74 ·LIO 28.8 1.60 9.0 0 .50 J . 20 15 .3 0.85 2.2 0 . 12 t,3. 0 J . SO 
2.0 11.11 76 4.20 30.2 1. 68 9 . 5 O. S3 3 .17 16.0 0,89 1.8 0. 10 66.6 3. iO 
3.0 16.66 79 4.40 32.8 1.8: 9.9 0 . 55 3.Jl 16.4 0.91 1.3 0.07 79.2 4 .40 
5 . 0 27 . 77 89 4.95 36 . 4 2.02 12 . .? 0 , 68 2 . 97 16 . 4 0 . 91 l.2 0,07 88.2 4 , 90 
1.0 38.88 10, s . 70 39 . 6 .?.20 14 . 4 0 . 80 .!.75 15.8 0 . 88 l.4 0 .08 99.0 5.50 
8 .5 47 .22 106 5 . 90 41.0 2 . 28 15.3 0 .85 2 . 68 16 . 4 0 .91 1.5 0.09 103 . 5 5.75 
9 .5 52 . 77 109 6.05 4 1. 9 2.H 15.8 o.sa 2.65 16.8 0 . 93 1.6 0.09 10S . 3 5 , 85 

11.0 61.11 105 5.85 37 .4 2 .08 14 .9 0.83 2 .51 15 . 7 0 . &7 l.9 0.10 108.9 6.05 
12 . 0 66 .66 103 5 .10 JS. I 1. 95 17.l 0 .95 2.05 
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S. Turbulent energy 

The one-dimensional wave-number density function data at x = 7m 

(x = 38.88) are summarized in Tables 5-FDC and 5-HDC. The results are 

displayed in Figs. 5.37 and 5.38, respectively. 

The energy dissipation and energy production for both canopy den-

sities computed using Eqs. (5.27) and (5.32), respectively, are 

tabulated in Table 5-£E. p 
The discretized energies at four selected wavelengths for the FDC 

and HOC cases are tabulated in Tables 5-DE-FDC and 5-DE-HDC, respectively. 

In these tables the discretized energy is made dimensionless employing 

the energy at same wavelength at the top of the canopy leading edge 

(at x, z = 0,1) denoted by u2 [L]. The results are displayed in 
0 

Figs. 5.43a, 5.43b, 5.44a and 5.44b. 
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TABLE 5 - FDC 
c».E-0UENS10NAL WAVE - NlNER OE.'iSlTY FlliCTl<Jr,I - Full Density Canopy 

7o, .i • 38 .88 

,(ca) 18 .S 24 . 0 40.5 57.5 17 , 0 

1.03 1.33 2.25 3.19 4.U 

• k . k t)k) n k • k n k 
(tu) (c•·l) (co) ( Iii) (Ht} (Hz} (co·1J (co) (Ht) (ca) 

3 . 0 0 . 11 , . 7210 2.9 0.07 l. 7976 3 .0 0.06 5 . 9582 2. 9 0 . 04 4.9212 2 .6 0.03 5.4530 
4 . 2 0 . 15 4.6055 ,.1 0.10 2 . 7958 ,.1 0 .08 S . 8476 4.4 0.06 8 . 5663 4 . 3 0.05 11 . 216.t 
6 . 4 0.24 2.8163 6 . 4 0.16 2.0888 6.2 0.12 2 .8027 6.S 0.09 5 .5S29 6.1 0.07 5 . 9768 
9.1 0 . 36 1.2 142 9.8 0.25 l.26U 9 . 5 0 . 18 1 . 2865 10 . 2 0 . 14 l. 7693 9 . 5 0 . 11 4 , 07l4 

14 .1 0.S1 o. ·nsa 14. l 0 . 36 0 . 6251 13.9 0.26 1,0618 13.8 0.19 0. 9078 13 . 0 0.15 1.,::06 
U . l 0 . 66 0,4S38 ;:1.1 O. :il 0 . 5816 19. 2 O. lS 0.5927 21.1 0 .29 0.8S83 11 . 2 0 . 21 0 .94S9 
22.1 0.81 O.l084 lS .7 0 . 62 O. ls.62 24 .5 0. 4S 0.2901 26.l 0.36 0.6582 20 . 8 0.24 0 .7499 
26 . 4 0.97 0.1 738 35.0 a.as 0.2Jl l ll.l 0.59 0.2442 30.5 0.42 0.4178 46 .7 O. S4 0 . 2370 
29.4 1.07 0.2066 39.0 0.98 0.1524 48 . 0 0.89 0 . 18S4 l9.2 O. S4 0.2661 65. 7 0. 76 0 .1483 
ll . 9 1.24 0.2055 H .8 1.10 0.1080 Sl.5 0 .99 0.1187 57 .4 0 . 79 O. ll22 9J.4 1. 08 0 . 0661 
50 . S 1.85 0.1 297 5-:'.2 1.44 0.0798 64.l 1. 19 0 . 1005 71.2 0.98 0.0853 HJ .5 1.66 0 .0286 
65 . 2 2.31 0.0963 70.8 1. 78 o.o5n 9: .J 1.71 0 .0465 98.0 1.35 O.OS42 19 3 . 7 2.24 0.0118 
77 .5 2 .83 0.0455 139 .2 3. SO 0.0187 140.0 2 .59 0 .0302 111. 8 1.S4 0.0373 278..4 3 .22 0.0059 
91.9 J . .:5 0 . 0269 159.6 .S .01 0.0130 178.8 3.30 0.0160 14S.2 2.00 0.0268 460.0 5 .32 0.0024 

114 . 0 4.98 0 . 0127 205.1 5 . 15 0 . 0075 225. 1 4.16 0.009S 18S.9 2.56 0 . 0200 S70.6 6.60 0.0011 
159. 7 5.83 0 . 0105 2-ll. 4 6 .08 0 . 0047 .!78.6 S.1S 0 . 00S6 243.2 3 . 35 0.0117 703. 8 8.14 0,0006 
197 .9 7.23 0. 0080 318 .7 8. 01 o.oo:a 374. 7 6.92 0.002S 336.9 4 . 64 0 .0083 953 . 7 11.ll 0.0002 
238 . l 8.69 0. 00 22 393. l 9.87 0.0015 451.9 8.35 0.0017 466. 9 6.43 0.0028 
296 . 1 10.84 0 .002 3 465. 8 11 .n 0 . 0008 538 . 7 9 .80 0.0012 582 . 3 8.02 0.0014 
384 . 0 14 . 02 0 .0008 583.2 14.65 0 . 0003 S60 .5 10.35 0.0010 7ll .9 10 .08 0 .000S 
538 .2 19 . 65 0 .0003 613.0 11.32 0.0006 839 . 4 11.56 0. 0003 

813.7 15 . 03 0.0002 

TABLE 5 - HOC 
Oh.°E DIMENSIONAL WAVE SlJ,IBER 0ESSITY FUNC'Tt~ - Ha : f Density Canopy 

X • i • 38 .H 

:r:(ca) 19 . 2 22 .4 SJ . J 75.2 

1.07 1.24 2.96 4 . 18 

n l t(k) n k t(k) n k t(k] n 
(c!- 11 

t(kJ 
(Hi} (ca) (H;) ( c•) (Hz) ( Hz ) (ca) 

2.8 0 .11 3 . 7741 3.2 0.09 7. 71. 07 2.6 0.04 10 .9664 2.S 0.03 16 .1813 
4.4 0 . 17 1.8924 , . 2 0.12 2 . 8697 4 .0 0.06 4.8921 4 .2 0.05 10.2891 
6.5 0.25 1.54!8 6 .0 0.17 1 . 9095 S.9 0 . 09 4 .0829 S.9 0.07 4 .0280 
9.5 0.37 0.8807 9.8 0 .28 l. 1720 10.0 0.1S 2 . 411 2 10.l 0. 12 3. 1897 

14.2 O.S5 0.6134 13 .i 0 . 39 0.11844 14.5 0 . 22 1.5663 14.J 0 .1 7 1. 7070 
18 . l 0. 70 0. 25 34 19 . 3 o.ss 0.4043 20.4 0.31 1.2007 18 . S 0.22 1 .5751 
20.6 0 .80 0 . 1645 24.2 0.69 0.4238 26. 4 0.40 0.3767 21.8 0. 26 0.8581 
24 . 3 0 .94 0 . 1698 33 . 3 0.95 0 . 2571 38.9 0.59 0.2082 26.0 0.31 0 . 4463 
28 . 6 1. 11 0 .1 1-:'0 '4 .S 1.27 O. ll2l 44.8 0.68 0 .1694 31.9 0. JS o.~;01 
12 . 5 1. 26 O. IL? 4 61. 3 1. 7S 0.0780 S2. 7 0.80 0.1086 S3 . 7 0.64 0.1263 
45 .9 1. 78 0.0801 85.8 :?.,s 0.0432 64.6 0 .98 0.0868 69. 7 0.83 0 . 0841 
62.4 2 . 42 0.0626 114.2 l . 62 0.0262 71.9 1.09 0.0642 84 . 8 1.01 0 . 0600 
72.8 2.82 0 . 0.JOZ 189 . 9 5. 42 0.0088 82 . 4 1.25 0.0S07 99.0 1.18 0,0432 
19.5 3 . 4 7 0 .0238 : o8.4 S.95 0.0076 109 .4 1.66 0 . 0399 120 ,0 l.43 0 . 0255 

ll2 . 2 4 . lS 0 .013 1 245,6 7 . 0 1 0.0040 166.8 2.SJ 0.01S0 221.S 2 .64 0 . 0139 
ll2 . 6 S.14 0. 008 1 318.1 9.08 0.0026 245.9 3 . 73 0 . 0094 276.l J,29 0 . 0034 
161.S 6. 26 0.0067 362 .2 10. 34 0.0020 330 . 3 S.01 0.0056 400.3 ' · 71 0.0027 
207 . 2 8.03 o.oon 479.6 13.69 0.0004 39 7 .0 6.02 0 .0038 5S1.4 6 . S7 0 . 0019 
234.0 9.07 0.0034 532.S 1S . 20 0 .0004 490 . 4 7 , 44 0.0026 618.6 7 . 61 0.001S 
2S4,6 9.87 0 . 0017 631.9 18.04 0.0002 600.0 9.10 0.0017 853.S 10.17 0 . 0002 
284.l 11. 02 0.00 12 708. 0 10. 74 0 . 0010 
322 .0 12.48 0 . 0004 79S. 7 12 .07 O .000S 
441. 7 17.12 0.0002 949 .2 14 .40 0.0002 



TABLE S - eE p 
ENERGY DISSIPATION AND ENERGY PRODUCTION 

x = 7m, x = 38.88 

Full Density Canopy Half Density Canopy 

- e/E z z e E z z e 
(cm) (cm2/sec 3) 

p p (cm) (cm2/sec 3) (cm2/sec 3) 
18.5 1.03 30500 11950 2.55 19.3 1.07 73600 
23.9 1. 33 31500 10000 3.15 22.4 1.24 66400 
40.5 2.25 23900 5500 4.35 53.3 2.96 30800 
57.4 3.19 20500 5000 4.10 75.2 4.18 16500 
86.9 4.83 9600 1500 6.40 

v = 0.189 cm2/sec 

e/E E p p 
(cm2/sec 3) 

15000 4.91 
15000 4.43 

8700 3.54 
3000 5.50 

.... 
V1 

'° 



. ; 1 r 
(a) 

u.o 0. 78 
18 .0 1.0 

0 0 l4. 2 1.9 
46 . 8 2 . 6 
57.l J . l7 

IS. S 0.86 

0.3 1.66 19.1 1.06 
32.0 1. 78 
57 . 1 l.17 

12.1 0.67 
20.S 1.14 

0.6 3 . 33 27.S I.SJ 
40.0 2.22 
sa .o l. 22 

18.S 1.03 

1.0 S.S5 
27 .0 1.50 
37.4 2.oa 
57 . 4 3 . 17 

15.S 0.86 
l.S 8 .33 34 . 9 l.94 

57.1 3.17 

l:? . l 0.67 
19 . l 1.06 

3 .0 16.66 25.0 1.39 
44 . S 2 . 47 
63.0 3 .50 

u .s 1.03 

s.o 27. 77 23 .0 1.28 
49.5 l. 75 
72.5 4 .03 

18.5 I.OJ 
23.9 1.33 

7.0 18.88 40 . S 2.:5 
57.4 3 .19 
86.9 C.83 

18.0 1.00 
9 . 5 S2. 77 39.1 2.17 

S7.4 3.19 

17. S 0.97 
22.0 J.22 

11.0 61.11 41. 0 2.28 
58.0 3.22 
82 . 1 4 . 56 

13.0 0. 72 
19.1 1.06 

12.0 66 . 66 36.5 2 .03 
S8.S 3.25 
84 . 6 4 . 70 

~{LJ 
(Ca/HC) 2 
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T.ULE S - DE • FOC 
DISCRETlU:D E."'ERGY - Full Dfflslty Canopy 

62 .I 12.6 

u 2(LJ '!:ill u 2(L) '!:ill 
(cai/ s} 2 

~(LI 
(clll/s) 2 

~ILi 

S0.4 1.07 4.5 o.80 
'1 . 2 1.00 s. 7 1.00 
34.4 0. 73 2.5 0. 41 
16. 7 0.35 1.4 0. 25 
8.1 0.17 o.s 0.01 

36 .2 6.40 
601.0 12. 70 67 .0 1.80 
Sl.6 1.14 5.2 0.92 
35 . 0 0. 74 3.2 0.56 

206 ,0 4.36 SJ. 7 9."9 
l Sl . 0 7 . 46 27 .s 4.86 

89. l 1.19 !. l 1.42 
38.0 0.81 3.7 O.6S 

285 . 0 50. 40 
406.0 8 .60 40.8 7 .2 1 
177 . 0 3.15 10.0 1.71 

17.9 0.38 1.4 0.25 

250.0 44.20 
311.0 6.59 29 . 6 5.2l 

40.S 0.86 3.3 0.58 

244.0 0.10 
197 .6 34.90 

451 .o 9.56 60.S 10. 70 
234 .0 • .96 19 . 6 3.46 

63 . 3 l.JC 4.7 o.u 

92.1 16.lO 
362 . 0 7 .67 62.S 11.00 
255.0 5 .C0 23.3 4.12 
151. 0 3.20 7 . 9 I. 39 

268 5.68 48 . 4 8.SS 
174 3.69 34.3 6.06 
241 5. 11 16 . 7 2.9S 
327 6.93 20. 6 3.64 
142 3.01 8.1 1.43 

25 1 5 . 32 70.9 12.50 
323 6.84 27.0 .. . 77 
261 5.53 15.l 2 . 70 

806 17 .10 60.8 10. 70 
485 10.30 32.1 S . 67 
178 3. 77 :0.3 3.S9 
228 4.U 11.0 1.93 
117 2.48 6.8 1.20 

77 .8 ll. 70 
359 7 .61 75.9 13.40 ,,,. S.64 22 .s J . 98 
174 3.69 14. 7 ?.60 

74 1.57 6.1 1.07 

49 . 6 5.02 

9 .1S 0.63 

u 2(LJ '!:ill ;;I (L) 
(cll/s) 2 

~(LJ 
(cll/s) 2 

~(LJ 

O.S7 1.14 0.0096 1.10 
0.50 l.00 0 . 0087 1.00 
0.27 0.5S 0.0042 0.48 
0 .14 0 .27 0.0011 0.13 
0.02 0.0S 0.0011 O. ll 

6 . 0S 12 . 20 0.0666 7 .66 
5. 78 11.65 0.2810 32.30 
0. 71 1.44 0,0090 I.OJ 
0.24 0.49 0.0045 o.ss 

34. 70 . 70.00 0.5010 57 . 60 
4.93 9.94 0.2180 2S.00 
l . 8S 7. 76 0 . 1170 ll.40 
0 . 78 1.56 0.0162 1.86 
0.24 0.4& 0 , 0040 0.46 

19.lO ll.90 0 . 4 780 54.9 
S.42 10.90 0.3030 34.8 
1.50 3.00 0 . 0?lO 2.64 
0 . 13 0.27 0.0017 0.20 

21.60 Cl.SO 0.3970 -'S .6 
l.12 6.29 0.1630 18. 7 
0.39 0. 79 0.006& 0 . 78 

36 • .!0 74.20 
18 . 80 37 .90 1.0600 122.00 

7.11 14.30 0.2230 !S.60 
2.00 C.03 0 . 0770 8.85 
0.51 1.02 0.0060 0 . 69 

6.95 14 . 00 0.21 70 24.90 
8. 1s 17.60 0 . 2770 31.80 
2.68 5.C0 0 . 0937 10.80 
O.S2 1.04 0.0101 1.16 

5.93 12 . 00 0.1140 13.10 
3.03 6.11 0.0958 11.00 
2.17 4.18 0 . 0665 7.64 
2.30 4.64 0 . 0442 5.08 
a.so 1.01 0.0189 2. 17 

10. 20 20.60 0.1730 19.90 
3.33 6. 71 0 . 0854 9.82 
1.16 l,SS 0.0383 4.40 

6 . 79 13. 70 0. 2030 23. l0 
4.24 8.55 0 . 1360 15.60 
2 .3S •• 74 0.090 10 . 34 
1.57 3.17 0 . 0436 5 . 01 
0. 73 1.47 0.0144 1.66 

8.03 16.20 0 . 2410 27. 70 
7 . 93 16.00 0. 2150 24.70 
2 . 57 5.18 0.1030 11.80 
1.26 2.54 0 .0204 2 .34 
0 .-14 0.90 o. oos 0 . S7 

o.s o. 0093 



L(ca) 

. i ' t 
( • ) (ca) 

11.2 0.62 
0 0 21.4 1.19 

41.1 2.6:' 
S6.S l.14 

17.S 0.97 
O. l l.66 21.I 1.21 

29. 7 1. 65 
56.S J.14 

11.9 0 . 66 
0 . 6 l. ll 19.1 l.06 

28.8 1.60 
43.0 2.39 

11.2 0 . 62 
18.S 1.03 

1.0 s.ss 26. S 1.0 
43.6 2 . 42 
S9.6 l . ll 

11.l 0.63 
20 .2 1.12 

8 . 33 
27.2 1.Sl 

I.S 34.6 1.92 
sa .1 3 .23 
"3 . 2 l. 79 

19.1 1.06 ' 
3. 0 16.66 

l7 .l 2.07 
66. 4 l .69 
74 . l 4 . ll 

l&.O 1.00 

27. 77 
23.0 1.28 

s .o 40. l 2.23 
68.9 l . ll 

19 .J 1.07 
22.4 1.24 

7 .0 l&.U Sl.3 2.96 
7S.2 4.18 
86.2 4 . 79 

17.8 0.99 
Zl.9 1.27 

9.5 S2. 77 31.1 I. 73 
SI.I 2.84 
S9.0 l.28 
&0. 3 4 .46 

16.9 0.94 
21.8 1.21 

11. 0 6 1 .11 42 . S 2.36 
66 .1 J,67 
81.S 4 . Sl 

20.0 1.11 
66.66 Z. 34 

12 . 0 69. 7 l.87 
85.S 4. ;s 

~[LJ 
(cll/sec) 2 
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TAILE S • OE - HOC 
DISCRETIZED ESlRGY - Half Density Canopy 

62.8 12.6 

;;l(L) ?(LI 
~(L) ~IL( 

14S.O 1.4S 16 . 10 1.49 
86.4 O.&:> &.52 o. 79 
63. 2 0."3 1.bl 0.1S 
29.4 0.29 o.5& 0.0S 

99.20 9.11 
162. 4 1.62 19 . 60 l.81 
60.2 0 . 60 l.91 O.l6 
27 .s 0.21 o. 77 0.07 

48.20 4 . 46 
l7l .2 J. 7l SS.50 s.u 
158.0 1.58 18.30 l.69 
51.2 0.Sl 4.21 0.39 

81. 70 7 .56 
1191 .0 11.91 8S.80 7.94 

469 .0 4.69 49 . 70 4.60 
6l . 6 6.l6 3. Sl O.l3 
l2.2 3.22 2.17 0.20 

204.00 18.89 
123 .00 ll.39 

S96.0 S.96 Sl. 70 '· 79 
278.0 2. 78 17 .10 I.SB 
34.S 0.34 2. 74 0.25 
18 . l o.u 0 .96 0.09 

1007 .0 10 .07 9S.00 8.80 
lSS.O l.S5 44 .lO 4.10 

2.: .9 0.23 2 .OJ 0.19 
17 .o 0.17 0.96 0.09 

640.0 6.40 100.00 9.26 
119 .0 l.19 S6.80 S.26 
403 .0 4 . 03 31.90 3.60 
165.0 1.65 12.10 1.12 

678.0 6. 78 109.00 10.09 
179.0 l. 79 58.00 5.37 
309.0 3.09 22.40 2.07 
93.2 0.93 3.l& 0.31 
37.S 0.31 1.31 0.13 

629.0 6.29 76.8 7 .11 
284.0 2.84 63, 7 S.90 
438 .0 4.38 S4."J S.0J 
30S.0 l.OS Jl.4 2 .91 
168 .0 1.68 20.S 1.90 

4 .7 0.44 

488 0 4 .88 74 . 4 6.39 
1111.ll .O 4 .ll 47.1 4.36 
ll.:.O J.22 28.2 2.6 1 
201.0 2.01 11.S 1.06 

76.9 0.77 , .. 0.41 

S90.0 S.90 49 .9 4.t,2 
J.u.o 3.44 23. l 2.14 
180.0 1.80 10.l 0.95 
1:.1 o. 72 3 . 2 0 . 30 

100.0 10.8 

9. lS 0.63 

;;I°(LI -;;J°(Ll 
(ca/s) 2 

~(LI 
(ca/s) 2 

~(l] 

1.4S 1.l& 0 .0204 1.46 
o.aa 0.84 0.0107 o. 76 
0 . 19 o.u 

22.00 20.95 0 . 4S6 12 . S7 
3.12 2.97 0.133 9.50 
0 . 57 0.5S 0.001 a.so 
0 .04 0.04 

S.40 5.14 0.099 7 . 07 
4.41 4 .20 0,209 U.9l 
1.90 1.81 0.054 3.36 
O.S2 a.so 0.007 0.'7 

9.9S 9.48 0.26, 11.86 
7 .06 6. 72 0.228 16.28 
5.SO S.24 0.250 17.86 
0 . 49 0. 47 0.006 0.-0 
0 . 11 0.11 

16.10 IS.lJ 0.25S 18.~I 
s. 72 a.JO 0.291 20. 78 
6.17 s.sa 0,284 20.28 
2.21 2. 17 0.129 9 . 21 
0.22 0.21 0.002 0.14 
0.03 0.0J 

13.60 12.9S 0.227 16 .21 
4.10 3.90 0.228 16 .28 
0.11 0.11 
0.031 0.03 

12.00 11.43 0.2S4 11.14 
6.10 S.11 0.192 ll. 71 
l.11 2.96 0.119 a.so 
1.47 1.40 0.008 O.S7 

10.60 10.10 0.27S 19.M 
6 . 76 6.44 0,183 13.07 
2.2S 2.14 0.101 7.21 
0.31 O.l6 0.005 O.l6 
0.09 0 . 08 

9.S3 9.01 0.29S 21.07 
6.60 6.21 0.214 15.21 
3.33 J.6S 0.162 ll.S7 
2.66 2.S3 0.123 8. 71 
2.S2 2.40 o.oaa 6.28 
o.s1 0 .SS 0. 010 0. 71 

'.90 7 .S2 0.241 17.21 
S.17 4 . 92 0.194 13.86 
l. 72 J,54 0 . 141 10.07 
1.46 l.39 0.032 2.28 
0.56 O.SJ 0.001 0,07 

S.ll s.01 0.2H 16.00 
2.SO 2.38 o. 113 S.07 
1.34 1.28 0.011111 2.93 
0.24 0.23 

I.OS 0.014 
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