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ABSTRACT

An experimental investigation of the atmospheric boundary-layer
flow on high roughness was conducted by simulating the flow over a
forest canopy in a meteorological wind tunnel. The model forest canopy
used consisted of plastic simulated-evergreen trees. The measure-
ments were carried out at constant free-stream velocigy and under
thermally neutral conditions. Two canopy densities were tested to
explore the effects of the roughness density on the flow. One roughness
density was half of the other.

The results indicate that the mean velocity profiles within the
fully developed flow region can be described by generalized logarithmie
relationships. For the flow in the inner zone, the free-stream velocity
and the roughness height are the similarity parameters for the velocity
and the vertical distance, respectively. In the outer zone the free-
stream velocity and the momentum thickness are the scaling parameters.
The roughness density has a strong influence on the momentum loss and
the upwvard flow displacement in the transition region. The shape of the
roughness element affects the mean velocity distribution inside the
canopy, i.e., jetting effect.

The internal boundary-layer thickness was determined based on the
turbulent shear-stress distribution. It is found that the flow near
the canopy leading edge has two-dimensional wake-like characteristics.
The latter are due to the canopy frontal area which is a drastic step
obstruction,

The existence of an inertial subrange in the fully developed flow

region is doubtful although local isotropy occurs for eddies smaller than
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2% of the total boundary-layer thickness. The evolution of turbulent
energy associated with various size eddies along the canopy can be

successfully described by a discretized-energy analysis.
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1. INTRODUCTION

The flow characteristics within the atmospheric boundary layer
vary depending upon the nature and configuration of the ground.
Particularly, the turbulence features in the atmospheric surface layer
where the frictional drag force of the ground is dominant depend con-
siderably upon the properties of the ground roughness. The shapes of
roughness elements, their geometrical arrangement and the roughness
density are main factors to determine the velocity field. As roughness
becomes higher and larger, the turbulent motion is greatly increased.

The various exchange processes in the resulting turbulent flow are
governed strongly by the turbulence characteristics. In an urban area,
the exchange processes are closely related to air-pollution problems.

In the flow inside and above forest or vegetative canopy the turbulence
determines soil erosion, evaporation and rates of carbon dioxide exchange.
Moreover, large velocity fluctuations cause significant aerodynamic
effects on buildings and/or_structures. Consequently, the study of
velocity field in the atmospheric boundary layer is of utmost importance
for a better understanding of various transport processes and wind load-
ing on structures.

Theoretical analysis of the atmospheric-boundary-layer flow is
extremely difficult because of the complexity of the interaction between
the velocity field and the ground roughness. Hence, it is necessary to
perform detailed experimental studies. Field measurements are inherently
difficult due to the unsteadiness of weather conditions and the relatively
high cost involved in setting up measurement stations., On the other hand,
a suitable wind tunnel can now provide satisfactory conditions for

simulating the atmospheric boundary layer. The flow conditions can be



maintained unchanged over enough time for carrying out adequate investi-
gation. Moreover, suitable instrumentation and measurement technique
are easily available.

Studies of air flow inside and above forest and/or vegetative
canopies have been initiated in the Fluid Dynamics and Diffusion Labora-
tory at Colorado State University. The flow on a forest canopy was
investigated by using a model forest canopy composed of plastic simulated-
evergreen trees in a meteorological wind tunnel. The measurements were
performed at a constant free-stream velocity and under thermally neutral
conditions.

The mean velocity within a fully developed turbulent boundary
layer on small roughness elements, e.g., sand or gravel, is described
usually by employing a power law and/or a logarithmic law. However,
when roughness elements are relatively high compared with the total
boundary-layer thickness (10% or more), the flow is highly disturbed.
The overall flow characteristics must be determined by the momentum
transport due to the velocity fluctuations and the processes of the
turbulent energy production and dissipation. Generally, the flow on
high roughness elements is quite different from that on small elements.
Therefore, in order to provide a reasonable description of the mean
velocity distribution on high roughness, the feasibility of the
aforementioned laws must be examined. A generalized law for describing
the velocity variation above high roughness elements is sought. Further-
for a close examination of the turbulence structure, it is necessary to

survey the turbulent shear stress, turbulence intensities and turbulent

energy .



The canopy frontal area, which is a drastic and sudden obstruction,
has a strong effect on the flow. It is important to investigate the
flow characteristics in the transition domain to discern how the flow
attains its fully developed regime. Thus, it is necessary to examine
the mean velocity evolution along the canopy and the variations in the
turbulent shear stress, turbulence intensity and turbulent energy with-
in this region. .

The roughness density, as mentioned previously, strongly affects
the velocity field. In order to explore the influence of the roughness
density on the flow, two canopy densities were tested.

Theories related to this work are surveyed in the following section.
Subsequently, the experimental results and relevant discussions are

presented.

The data used in this work are included in Appendix II.



THEORETICAL CONSIDERATIONS

The mean velocity profiles within a turbulent boundary layer over
a flat plate are usually described by using a power law and/or a

logarithmic law.

The power law suggested by Prandtl [1] is

u _ ,z.1/n
T - (3) > (2.1)

where U denotes the mean velocity, U_ designates the free-stream
velocity, 2z 1s the vertical distance from the wall and ¢ stands
for the local boundary-layer thickness. This power law is based on

the assumption that the local skin-friction coefficient

b3
_ 0
e T T (2.2)
2 P

where 1 is the shear stress at the wall and p denotes the fluid

density, 1s proportional to some power of the Reynolds number based on

6 and Y _. The value of 1/7 was suggested for the exponent 1/n

it bg. (2.1). However, it is found that the exponent varies from

1/i0 to 1/3 depending upon the Reynolds number [2]. The validity

of kEq. (2.1) is restricted to Reynolds numbers smaller than 105 [1].
In order to express the dependence of the exponent in Eq. (2.1)

on the Reynolds number, the power law was generalized by employing two

integral characteristic parameters, i.e., momentum thickness ¢ and

displacement thickness  &* [3]. Thus,
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where H designates the shape factor, i.e., §&*/6 .

In reality, the Reynolds number often exceeds the aforestated
range of validity of these power laws. Moreover, analytically, the
dependence of the exponent in Eq. (2.1) on the Reynolds number is
not known yet. To overcome these difficulties, the law of wall (or
the logarithmic law) was introduced on the basis of the mixing-
length concept [4]. 1In this law, the mixing-length is assumed to be
proportional to the vertical distance from the wall. In addition, the
shear stress is postulated to be constant with height. The generalized

law of wall is expressed by

U
= K5 (2.4)

where the friction velocity denoted by U, is defined as

u, = vt /p . (2.5)

On the other hand, under the assumption that the mixing-length
is independent of the magnitude of velocity and the shear stress
changes linearly with the vertical distance from the wall, a velocity
defect law was proposed by von Karman [1]. This law is based on the

similarity assumption of velocity fluctuations. The generalized

form of the velocity defect law is

Um -U .
U = G[g] ‘ (2.6)




When there is a region, no matter how limited, where Lgs. (2.4)
and (2.6) are valid simultaneously, the functional form for both law
of wall and velocity defect law is logarithmic [5]. Then, for a tlow

on a smooth surface, the law of wall is expressed by

where & is von Karman's constant and C1 is an integration
constant. The value of the latter is determined by matching the
velocity distribution to the velocity at the outer edge of the
viscous sublayer.

Nikuradse [6] made extensive measurements on the flow in smooth
and sand-roughened pipes. The numerical value of von Karman's constant
was found to be 0.4. Moreover, it was observed that the velocity
profile on the rough surface deviated from that on the smooth wall
with increasing Reynolds number. This deviation depends upon the
Reynolds number and the relative scale of roughness h/D, where h
iﬁ the roughness-element height and D is the pipe diameter. When
the Reynolds number based on the roughness height and friction velocity,

[ E%* , is larger than 70, the deviation becomes a function of
the relative scale of roughness alone [3]. In other words, when
roughness elements are very high, the roughness height is the governing
factor of the flow pattern. Similar results are reported in Refs. 7,

8, 9, 10 and 11. In order to describe the velocity profiles on a rough

wall by means of Eq. (2.7), a roughness function was introduced |[2].

Then, kq. (2.7) becomes



v G, =il , (2.8)

where AU/U, is a roughness function which represents the mean velocity
deviation on rough wall from that on smooth wall. It was shown experi-
mentally that the roughness function for flow on fully rough wall depends
on the Reynolds number based on the roughness height and friction velocity.
Thus, the roughness function is [11]

U,h

AU 1
—ﬁ;—z'ﬁn + C

9 (2.9)
where 02 is a constant. Substitution of Eq. (2.9) into Eq. (2.8) leads

to the following logarithmic law

Z
In -+ Cr s (2.10)

where Cr is a positive constant for a given roughness.

In the atmospheric surface layer, the wind is affected by
various types of roughness elements such as grass, crops, trees, buildings
and so on. The height of this layer is typically between 20 and 200 m
[12]. Above the surface layer, with increasing vertical distance, the
velocity deviation from the geostrophic wind speed disappears gradually.
The atmospheric boundary layer (or the planetary boundary layer) is
defined as the distance from the ground where the mean velocity attains
the geostrophic wind speed. The thickness of this layer is about 500 to

1000 m depending upon the particular latitude [13].



In order to represent the mean velocity profiles within the
atmospheric surface layer by a logarithmic law, it is assumed that
the effects of the roughness on the mixing-length are confined to a
layer where the vertical distance from the ground and the roughness
length are comparable [14]. The latter is a length scale which describes
the influence of the roughness on the flow. When the vertical distance
is sufficiently large compared with the roughness length, the mean

velocity profile is written by

i 2 ; (2.11)
* zo

C'.IC
1
A |-

where Z, denotes the roughness length.

Usually, this relationship is applied to the velocity profiles on
either bare ground or very short vegetation, e.g., not exceeding a few
centimeters [13]. To describe the velocity distribution over high
roughness elements, the aforementioned equation is modified introducing

a zero-plane displacement [14,15]. The modified logarithmic law is

T =%2n% : (2.12)
where d stands for the zero-plane displacement. The latter is
considered as a datum level above which the turbulent exchange processes
occur. It is noteworthy that the roughness length and the zero-plane
displacement are interdependent since the logarithmic law is obtained

by integrating a first order differential equation describing the shear

stress distribution based on the mixing-length hypothesis. In spite of



this fact, Deacon [16] determined the zero-plane displacement and the

roughness length independently in order to provide the best fit curve to

measured velocities. Then, it seems that Eq. (2.12) can represent the

velocity profiles between 1 and 13 m over area covered with high grass.
The flow in the atmospheric boundary layer may be simulated by

the flow within the boundary layer on a flat plate. Thus, it is

important to examine the eventual equivalence of the two length

parameters in Eq. (2.11) and (2.12) i.e., z, and d, to Cr and

h in Eq. (2.10). The roughness length in Eq. (2.11) can be expressed

in terms of the roughness height and a constant Cr in Eq. (2.10)

by the relationship

z = h/c0 " (2.13)
where C0 = exp(k Cr) . Thus, the roughness length is constant for
a given roughness. Moreover, since the constant Cr is positive,
the roughness length is smaller than the roughness height. Next, it
was found that the logarithmic profile represented by Eq. (2.10)
is universal for either smooth or rough surface if the origin of the
vertical coordinate is properly selected somewhere between the top
and bottom of the roughness elements [2,10]. Thus, the zero-plane
displacement introduced into Eq. (2.12) is considered as an adjust-
ment of the vertical-coordinate origin such that the measured
velocities are described by the logarithmic law.

In the turbulent boundary layer on a flat plate, the velocity

distribution in the lower 10 to 20% of boundary-layer thickness
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can be described by the logarithmic law [2]. The general form of the
velocity profile throughout the entire boundary layer is expressed by a

combination of the logarithmic law and the law of the wake [17]

U,z
u _1 ¥ n[x] rz
AL e .
where w[x] is a profile parameter. The function m[gﬂ is referred
to as the law of the wake and supposedly common to all two-dimensional

turbulent boundary-layer flows. Based on existing data, the wake

function w[%J is subjected to the following normalizing conditions

w(0) = 0 ; (2.15a)
w(l) = 2 ) (2.15b)
and
1
[ wa@ =1 . (2.15c)
(o]

Thus, in terms of the wake function, the velocity-defect law is

= - é— in % + Elél (2-m[%ﬂ). (2.16)

Since Eq. (2.14) satisfies the boundary condition U = U_ at

z = & and by the condition (2.15b) the profile parameter can be

evaluated by
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==

2nfx] _ "= 1 n
k U, «

U,é

s 1 (2.17)
where Cl was estimated to be 5.1 [17].

The use of the mixing-length concept in analyzing a turbulent
boundary-layer flow permits description of the average properties of
flow, e.g., the mean velocity profiles and the shear stress exerted
on the wall. However, the turbulent-energy production, transfer and
dissipation cannot be explained by this concept. In order to account
for these mechanisms, it is necessary to examine the energy equation
for both mean flow and turbulence. Derivation and extensive
discussion of both mean and turbulent energy equations can be found
in Refs. 3, 12, and 18.

The kinetic energy extracted from the mean flow due to its re-
tardation caused by roughness appéars in the form of fluctuating energy.
Through a cascade process [19], the latter is converted into heat by
direct action of viscous stresses. Generally, this process does not
occur in the same place since the eddies are conveyed by the mean velocity,
Consequently, the balance between the energy production and energy
dissipation is not necessarily a local process. Depending upon their
relative magnitude, the difference can be made up at some downwind
position. These mechanisms can be explained by examining the tur-
bulent energy equation in an arbitrary direction o wunder thermally

neutral condition [12]
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ae _ o J & _ =2 op_
at uauJ ax “[ax " ) 9x . p Yy Bx
] J a
5 BEEG 3u
* B ( - € ; - eauuJ + V=t Vvu §§l ), (2.18)
J J o
where j =1, 2, 3, the dummy index o is not to be summed upon
and e = ui/Z . In this equation, the mean velocity is denoted

by U and the fluctuating velocity by u. Terms in the final
bracket express the energy transfer from one place to another since
their volume integral vanishes at all points on a sufficiently distant
surface [12]. The third term on the right-hand side of Eq.(2.18)
accounts for the transfer of energy among the turbulent velocity
components by the fluctuating pressure forces. The second term is
the total rate of work against viscous forces in the a-direction
and represents the energy dissipation directly to heat, i.e., the
dissipation term. The first term on the right-hand side indicates
the energy supply from the mean motion to the fluctuating velocity
and is usually referred to as the production term. The production

term can be rewritten as [12]

au Ju
o

a - B,
uauj 3;; + Ua uj 5;; = 3xj (uauj Ua) : (2.19)

The term on the right-hand side is the divergence of the fluctuating

energy transport. Its integration in space is equal to zero. Hence

the two terms on the left-hand side represent the energy balance.



13

This indicates that the energy extracted from the mean motion in

du
the «a-direction by —Uu uj —325 becomes the fluctuating energy in
j au
the same direction through -u u. el
aj axj

All the terms in Eq. (2.18) but the pressure transport term were
measured within two-dimensional turbulent boundary layer [20,21]). These
results show that the various transport terms are of secondary importance
with respect to the production and dissipation terms near the wall. In
other words, the production and dissipation are nearly in balance, i.e.,
most energy produced locally can dissipate locally [12,18]. As a result,
near the ground within a two-dimensional turbulent boundary layer, the

energy balance cah be approximated by

- oUW = g, (2.20)

where € stands for the energy dissipation and, u and w are the

fluctuating velocities in the x- and z-direction, respectively.
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3. EXPERIMENTAL APPARATUS

The objective of the experimental program was to study the flow
within and, in particular, above high roughness elements randomly
distributed. This was to be achieved by using a model forest canopy
consisting of plastic simulated evergreen trees in a meteorological
wind tunnel. The flow within the atmospheric boundary layer changes
its characteristics depending on tbe shape of prevailing roughness
elements, their stiffness and configuration. Therefore, the flow over
forest canopies can hardly be studied from measurements using a single
tree or a small number of trees. Unfortunately, field measurements do
not yet yield adequate results for a systematic analysis of flow. This
is due to the continuous variation of weather conditions and the high
cost in setting up adequate field measurement stations. On the other
hand, the wind tunnel flow provides satisfactory conditions to simulate
the atmespheric boundary layer [22]. The flow conditions can be kept
unchanged over a long enough time period for performing adequate measure-
ments. Moreover, suitable instrumentation and measurement techniques
are easily available.

Many investigations of flows using various types of trees and
forest canopies were conducted in wind tunnels and in field [23,24,25,
26,27]. The wind-tunnel data show reasonable agreement with field
data. However, most of these studies are limited to particular aspects.
Consequently, they do not supply a general picture of the flow field
caused by high roughness spreading over wide area, such as a forest
canopy or any vegetative canopy. Investigation of the flow inside and
above forest canopies using a wind tunnel was recently initiated at the

Fluid Dynamics and Diffusion Laboratory, Colorado State University.
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First, flexible roughness elements were used [28]. Next, pegs
were employed to simulate vegetative canopies [29,30]. Following
that, drag measurements of model trees [31] and preliminary velocity
and diffusion measurements [32,33] were performed by employing simulated
forest canopy. The latter is generally similar to the canopy used in
the present work.

Since the flaw in the wind tunnel is of different scale than the
full-scale flow, the flow similarity conditions must be satisfied. Thus,
geometrical, dynamic, kinematic and thermal similarity must be achieved
[22,34]. For dynamical similarity, the Rossby, Reynolds and Froude
numbers must be the same for both model and field flow. The model
forest used in this experiment does not have any specific prototype so
that geometrical similarity is irrelevant. Neither thermal similarity
nor the Froude number equality needs to be considered since the experi-
ment was carried out under thermally neutral conditions. The condition
for the Rossby number can be disregarded if the horizontal length scale
of the full-scale forest is smaller than about 150 km [22].

The Reynolds number equality is of prime importance in the case of
laminar flow. However, the flow about sharp-edged bodies or tree-like
roughness is turbulent and, hence, inertially dominated. Flow separa-
tion occurs on each one of the roughness elements. In other words, the
roughness element acts as vortex generators and counteracts the damping
effect of the viscosity [3]. Then, it can be assumed that the flow
pattern is independent of the Reynolds number. Recent experimental
investigations seem to indicate that drag coefficient and wake character-
istics of tree elements are approximately independent of the Reynolds

number [23,24,28,30,32,33]. In general, it is reasonable to assume that
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the flow in the atmospheric surface layer is inertially dominated.
Similarly, the wind tunnel flow reported herein is inertially dominated.
Therefore, the flow over model forest can simulate the full-scale forest
canopy flow although the Reynolds number in the model canopy is smaller
than that in a similar field flow.

Finally, to satisfy kinematic similarity, the upstream velocity
should vary according to the logarithmic law characteristics of the lower
atmosphere. Moreover, the model forest canopy is to be placed in a
turbulent boundary layer simulating the atmospheric surface layer.

Accordingly, the upstream boundary layer must be artificially thickened.

3.1 Model forest canopy

A model forest canopy 1100 cm long and 183 cm wide was used. A
schematic diagram of the canopy and of the model tree is displayed
in Fig. 3.1. The model tree used is 18 cm high and, roughly, the
largest diameter of the crown was measured at a height of about 13.5 cm,
i.e., at 75% of the canopy height. The system of coordinates used and
all important dimensions are also shown in this figure. The canopy
base consists of 18 identical aluminum plates 0.5 cm thick. On the
face of these plates, holes of 0.5 cm in diameter were drilled at
intervals of 1.27 cm. Model trees made from plastic simulated
evergreen boughs were inserted into these holes, These roughness
elements were selected based on the results reported in Ref. 32.
The model trees were randomly distributed so that no definite rows were
evident. Two roughness densities, i.e., the number of trees per unit
area, were employed. The first was approximately 1 tree per 46 cm?,

whereas the other was nearly 1 tree per 92 cm?2. Hereafter, the former



is referred to as full-density canopy or FDC and the latter as
half-density canopy or HDC. In the former density, the base plates were
completely covered by the tree crowns. It is, further, possible to
define a velumetric density number. This was defined as the ratio of
the volume occupied by the trees to the total volume of the canopy.

If the trunk is represented by a cylinder and the crown by a cone,

as shown in Fig. 3.1(d), then the crown volume is about 222 times larger
than the trunk volume. Consequently, the latter can be neglected.

Then, the volumetric density was approximately 0.26 for the full-density

canopy and 0.13 for the half-density canopy.

3.2 Wind tunnel

The experiment reported herein was conducted in the Army
Meteorological Wind Tunnel [35]. This is a closed circuit wind tunnel
with a 27 m long test section and a cross-section of 183 x 183 cm. Its
contraction ratio is 9:1. Air speed up to about 36 m/sec is generated
by a propeller driven by a 250 hp DC motor. The air speed can be changed
continuously by adjusting the pitch of propeller blades and/or the motor
speed. A schematic diagram of the wind tunnel including the system of
coordinates used and all important dimensions is shown in Fig. 3.2.

The lcading cdge of the canopy was located 15 m downstream
of the test section entrance. To satisfy the requirement for
kinematic similarity, turbulence was generated by gravel installed
upstream of the entrance, i.e., in the contraction section. However,
the turbulent boundary layer generated by this roughness was not thick
enough at the canopy leading edge. Consequently, an additional turbu-

lence generator was placed along the first 3 m of the wind-tunnel test
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section. The turbulence generator was made from flexible plastic strips
of 10 cm high, 0.63 cm wide and 0.019 cm thick. Thus, an adequate tur-
bulent boundary layer was obtained.

The wind tunnel ceiling is sectionally adjustable such that any
desirable longitudinal pressure gradient can be obtained. For this
adjustment, eight static-pressure taps located 244 cm apart were
employed.

An electrically driven traversing mechanism permitted continuous
movement of various measurement probes in the x, y, and z-directions.
The position of probes can be controlled within 1 mm.

A photograph of the full density canopy installed in the wind

tunnel is displayed in Fig. 3.3.
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4. EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION

4.1 Pressure and velocity measurement

The pressure gradient in the wind direction is negligibly small
in the atmospheric boundary layer. Consequently, the experiment was
carried out under approximately zero pressure gradient condition.

The latter was achieved by an extensive series of trails in which the
slope of the wind tunnel ceiling along the model canopy was sectionally
adjusted. For this purpose, the static pressure taps located along the
ceiling were utilized. The pressure at the first tap located 900 cm
downstream of the test section entrance was used as the reference
static pressure. The difference between the reference pressure and

the pressure at other taps was adjusted within 0.002 mm Hg. An
electronic pressure meter of capacitance type (Trans-Sonic Equibar
Type 120 A) was employed for the pressure measurement. This meter

is a differential micromanometer with a range up to 30 mm Hg and a
resolution of 0.0001 mm Hg.

The experiment was carried out at a constant free-stream velocity
of 6 m/sec. The freestream velocity was measured by means of a Pitot-
static tube located 1 m upstream of the model forest and 1 m above the
wind tunnel floor. A similar Trans-Sonic pressure meter was utilized to
monitor the Pitot-static tube reading. A standard Pitot-static tube of

hemispherical type with an impact orifice of 1/8-in diameter was utilized

(36] .

4.2 Mean velocity and turbulence measurement

The mean velocity distribution within and above the forest canopy

was measured by a single hot-wire anemometer. Simultaneously, the
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longitudinal turbulence intensity was also measured. The hot-wire
anemometer used in this experiment is a new system conceived, designed
and built at the Fluid Dynamics and Diffusion Laboratory, Colorado State
University [37]. This is a fully transistorized unit of constant temper-
ature type (CT). The noise level of the unit is less than 200 uv. The
signal to noise ratio (S/N) is from 4 to 200 depending on the output
signal. Its frequency response is as high as 100 kHz. A copper-plated
tungsten wire of 0.00875 mm in diameter and of an aspect ratio of approxi-
mately 170 was used.

The hot-wire calibration indicated that the square of the actual
voltage drop across the wire E is nearly proportional to the square
root of the undisturbed velocity U. That is, the so-called King's
law [38] was found to be reasonably satisfied within the velocity range
of the present experiment. A typical calibration curve is displayed
in Fig. 4.1. For practical purposes, the relation between the voltage

drop and the undisturbed velocity may be written as [39]
!
B2 Eg + MUZ (4.1)

where EO is the voltage drop in still air (or shielded hot-wire). The
constant M varies with wire configuration, wire properties and air
properties. This constant is experimentally determined from calibra-
tion for each particular wire employed. Moreover, both Eo and M
depend on the resistance ratio N. The latter is the ratio of the
heated-wire resistance under working condition Rw to its cold resis-
tance in still air Rico? It is important to note that Eq. (4.1) does

not hold at very low velocity, say, smaller than 0.10 m/sec [39].
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When a hot-wire probe is placed in the turbulent flow, the
instantaneous effective velocity Ue causing the actual voltage drop

can be expressed by

U = [(U+u)?+ w2]li

s (4.2)

In the above relationship, U is the mean or time-averaged velocity,

u is the component of the fluctuating velocity parallel to U and

w is the lateral component of the fluctuating velocity perpendicular

to the hot wire. The component parallel to hot-wire axis v contributes
negligibly to the heat loss of a hot wire [18,40]. Thus, Eq. (4.1)

becomes

1
E2 = E2 + MUZ . (4.3)
(o] e

Under the condition of relatively small fluctuation, w is assumed

to be negligible compared with (U + u). Thus, Eq. (4.3) reduces to
(E + e)? = E2 + M(U + w? o, (4.4)

where E 1is the time-averaged (DC) voltage necessary to balance the
bridge under steady conditions and e stands for the AC instantaneous
voltage drop proportional to the fluctuating velocity u. Next, by
performing a binomial expansion, the quadratic and high order terms

in e and u can be neglected in Eq. (4.4) on the assumption of small
fluctuations. Separating the bridge voltage into its DC and AC parts,

and taking square-root of both fluctuating quantities, the turbulence
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intensity is given by [39]

les 4E 2 ems

U ='E2—E§ T’

(4.5)

where the subscript rms denotes square-root of mean square value,

i.e., (u?-)1é and [egj% . The error in using Eq. (4.5) is at most 10%
for turbulence intensity of 60%. Turbulence intensities of this order
of magnitude were monitored only at several stations.

In addition to the condition of small fluctuations, the mean
velocity must be high enough to satisfy the relation E—ED/EO > 0.2 for
Eq. (4.5) to be valid [39]. The measurement of large fluctuations in
the low velocity range can be carried out by using the method developed
by Sadeh [39]. This method needs an adequate linearizer unit. Since
the measurements in our work were made without a linearizer, the results
in the high turbulence intensity region are not so reliable,.

A yawed wire probe was employed for measurements of the vertical
fluctuating velocity w and the turbulent shear stress uw . When a
hot wire is placed successively in the x-z plane at two different yaw
angles, say, 45° and 1350, to the mean flow direction, uw and ;E

are given by the relationships (see Appendix I)

_ F2 (2 . a2
w _ o (eg5 - efsg) i
u2 (-EZ N EtZ))Z ’

and
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— =202 4 o2 —
w2 8 E“(ejg + 8135)._93
u? ('EZ _ E(.)? ) 2 u2

, (4.7)

where e denotes the AC instantaneous voltage drop across the yawed
wir: caused by u and w , and the subscripts 45 and 135 stand for
the vaw ancle of the hot wire to the mean flow. In Eq. (4.7) ;E is
obtalned fcom a normal wire measurement at the same location. It is
important to notice that in deriving Eqs. (4.6) and (4.7), the King's
law 15 assumed to be valid for a hot wire yawed to the mean flow direc-
tion. Calibrations of a 4S°—yawed wire showed that the aforementioned
assumption is reasonably satisfied. A sample of the calibration curves
obtained is provided by Fig. 4.2.

The frequency-spectra survey was performed by means of a recording
wave analyzer (General Radio, Recording Sound and Vibration Analyzer,
Type 1811-A). The fraction of energy at each frequency, i.e., the
frequency density function, calculated in terms of the mean-square

cutput of a wave analyzer is

-k a2
Fln] = g~ e“[n,B] , (4.8)
w
where ez[n,ﬁw} is the square of the rmms output at any selected
frequency n, Bw stands for the filter bandwidth and n is the
central frequency within the bandwidth. A constant-percentage bandwidth

of 1/3 octave (23%) was used throughout this survey. In this case, the
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bias error when changes of the mean-square values are smaller than
+15 db/octave is estimated to be less than 5% [41].

Both normal and yawed wire were calibrated employing a calibrator
(Thermo-System Calibrator, Model 1125). Air velocity in this calibrator
ranges from about 0.15 m/sec to 300 m/sec. The accuracy of the repro-
ditction of velocity in this calibrator is 2% for velocity larger than
2 m/sec. At smaller velocity, the accuracy is approximately £5%.

Other auxiliary equipment used in this experiment were: (1) A
digital DC voltmeter (Hewlett-Packard, Model 3440 A) for monitoring
of various output voltages; (2) A true root-mean-square meter, TRMS
(DISA, Type 55D35) for measurement of mms values; (3) A dual-beam
oscilloscope (Tektronix, Type 502A) for quick assessment of the output
signal pattern, calibration and monitoring of instantaneous AC signal;
(4) A tape recorder (Ampex, Model FR 1300) for recording of various
output =ignal for further analysis; (5) An integrator (CSU) for obtain-
ing the time-averaged value of hot-wire output voltage; (6) An x-y
recorder (Moscley Autograf, Model 135) for recording TRMS output voltages .
A simplified block diagram of the equipment utilized is shown in Fig.
4.5. A general view of the hot-wire anemometer and the additional

equipment, is provided by Fig. 4.4.
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5. EXPERIMENTAL RESULTS

The flow within and, particularly, above the model forest canopy
was investigated. The experiment was performed at constant free-stream
velocity, i.e., approximately vanishing longitudinal pressure gradient,
under thermally neutral conditions. The main purposes of the work
reported herein were:

(1) To study the mean velocity evolution along the canopy.

(2) To investigate the turbulence intensity variation along the

canopy.

(3) To explore the turbulent energy distribution and turbulence

structure.

(4) To examine the high roughness effects on both mesn velocity

and turbulence.

The system of coordinates used in the presentation of the results
is portrayed in Figs. 3.1 and 3.2. The origin is at the geometrical
center of the canopy leading edge. Generally, the results are presented
in dimensionless form. Dimensionless variables are denoted by a tilde

placed over the symbols used. The dimensionless coordinates are defined
by

X, ¥» z = x/h, y/h, z/h , (5.1)

where h is the canopy height, h = 18 cm. The velocities are referred

to the constant free-stream velocity used in this experiment

V=, , (5.2)
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where U_ = 6 m/sec . If other reference length or velocity is
utilized, they are mentioned as they are introduced.

The results for both canopy densities, FDC and HDC, are presented
simultaneously for the sake of comparison and for assessing the effects
of canopy density. As the experimental results are presented, relevant
discussions are interspersed wherever it is deemed helpful for proper

interpretations of the results.

5.1 Establishment of the flow

To begin with, longitudinal zero-pressure gradient was obtained by
adjusting sectionally the wind-tunnel ceiling as described in Sec. 3.2.
The free-stream velocity which was maintained at 6 m/sec was measured
at 1 m upstream of the canopy, i.e., at x = -1 m in the plane y =0
(see Fig. 3.1). Basically, due to the zero-pressure gradient, the free-
stream velocity should remain constant along the model forest. However,
a slight increase of about 2.5% in its value was monitored up to 1 m
downstream of the canopy leading edge, i.e., up to x = 1 m. Beyond
this point, the variation in the free-stream velocity was negligibly
small, less than about 1%.

it was found that the velocity distribution at x = -1 m, which
is displayed in Fig. 5.1, is reasonably described by a power law (see
Eq. (2.1)). In this figure the vertical distance is made dimensionless
using the local boundary layer thickness &8 . The numerical value of
the exponent was found to be approximately 0.18. Field measurements
also indicate that the velocity profile can be expressed by a power law.
Generally, the value of the exponent depends on the surface roughness

[42]. For instance, in Ref. 43 a value of 0.28 is suggested for wooded
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area and of 0.16 for open country. The value of the exponent for the
upstream velocity is about 12% larger than the aforementioned value
for open country. Furthermore, based on field measurements, the value
of the exponent can vary daily and/or seasonally [42]. The seasonal
variation seems to depend on the location of the measurement probes.

Simultaneously, it was found that the upstream velocity varies
satisfactorily according to the logarithmic law (see Eq. (2.11)) as shown
in Fig. 5.2. The estimated value of the friction velocity and of the
roughness length are about 36 cm/sec and 0.093 cm, respectively. In
accordance with the suggested value of roughness length for various
natural surfaces [16], the upstream surface in this experiment would
correspond to a desert area. Consequently, the velocity distribution
in the atmospheric surface layer over smooth surface was simulated

adequately by the upstream flow.

5.2 Mean velocity survey

The mean velocity in both FDC and HDC cases was measured at 14 loca-
tions along the canopy center line, i.e.,, along the x-axis in the plane
y = 0, from 1 m upstream of the canopy to 1 m downstream of it. At each
location, for the FDC case, the measurements along the z-axis were
carried out at 14 to 17 stations over a height of 119 to 132 cm. On
the other hand, the measurements for HDC case were performed at 13 to
16 stations over a height of 102 to 132 cm, Within the canopy height
the mean velocity was measured at 4 or 5 stations at each location.

The measured mean velocity variation for FDC case is shown in Figs.
5.3a and 5.3b whereas for the HDC case in Figs. 5.4a and 5.4b. In both

cases, a similar velocity variation with height was obtained. When the



flow encounters the canopy, the lower part of the flow is deflected
upward by the canopy frontal area. Hence, in the vicinity of roughness
a relatively drastic velocity change with height is observed. Away
from the canopy the velocity increased gradually exhibiting a change
similar to the upstream velocity.

In order to examine the mean velocity evolution above the canopy,
the velocity variation along 6 isoheights for both canopy densities,
FDC and HDC, is displayed in Fig. 5.5. The flow retardation due to
the roughness, which is stronger close to the canopy than far from it,
is clearly discerned. Most of the velocity deceleration occurs over
a longitudinal distance of about 15 to 20 roughness heights within a
region extending approximately up to one roughness height above the
canopy (z = 2). Beyond 20 roughness heights from the canopy leading
edge, the velocity change up to about 1.5h above the roughness is
practically negligible. Away from the roughness, the flow retardation
extends over longer distances. With increasing height above the canopy,
a longer adjustment range to the new roughness conditions is needed.
The region throughout which most of the deceleration develops can be
defined as a transition region. On the other hand, the fully developed
flow region is arbitrarily defined as the region where the mean velocity
deviates by less than 5% from the local mean velocity at X = 45. Within
this domain, the flow reaches a state of relative equilibrium. According
to the above definitions, the extents of the transition and the
fully developed flow regions for both FDC and HDC are shown by the broken
lines in Fig. 5.5. It is important to remark that the transition region
for FDC stretches over a shorter distance than for HDC. Roughly, it

stretches in the former case up to X = 16 to 32 and in the latter case
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up to X = 19 to 38 over a height range from z =1 to 5 . This is due

to the dependence of the momentum loss on roughness density. As the
density is higher, the momentum loss is greater and, hence, the transition
domain is shorter. Thus, the extent of the transition region depends

upon the roughness density and increases with height above the canopy.
Toward the trailing edge of the canopy, a slight acceleration over a
distance of about 5h was observed. It is due to the flow adjustment

to the smooth surface leewind of the canopy.

It is, further, worthwhile to notice the effect of the roughness-
element shape on the velocity variation within the canopy. Recall that
the trunk extends over 28% of the roughness height and the crown over
72% of it (see Fig. 3.1). The mean velocity change with height inside
the canopy at 6 selected stations is shown in Fig. 5.6. Generally,
higher velocities were monitored along the trunk zone than along the
crown. As the flow approaches the canopy, it is divided into two
distinct parts due to crown stagnation effects. An upward flow displace-
ment above the canopy and a downward deflection into the trunk spacing
arise simultaneously. Accordingly, the largest velocities within
the canopy were monitored at about 1/2 of the trunk height throughout
the beginning of the transition region. This region of relatively large
velocities is called the jet region. On the other hand, the smallest
velocities were generally measured at z = 0.7, i.e., at about half
of the crown height (z = 13.6 cm). The jetting vanishes gradually as
x increases. Within the canopy, the fully developed flow region is
defined as the domain where the jet effect is not discernible. 1In the
FDC case the jetting was observed up to about 1.5 m (x = 8.33) from the

leading edge while for HDC up to about 2 m (x = 11.11) . Once the jetting
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effect fades, similar velocity profiles were obtained at all measurement
stations inside the canopy. Furthcrmore, the velocity along the lower
half of the canopy is almost constant with height. Near the trailing
edge of the canopy, due to the flow adjustment to the canopy-leewind
smooth surface, the flow is displaced downward and repenetrates into the
canopy. Therefore, a slight jetting redevelops as the canopy trailing
edge is approached.

Basically, the flow in the neighborhood of the canopy center line,
i.e., in the vicinity of the plane y = 0 , can be assumed to be
similar to two-dimensional flow through a channel. Consequently, it
is important to examine the mean velocity and turbulence intensity
change off the center line. It should be recalled that the latter was
measured simultaneously with the former. The results for both FDC and
HDC cases over a distance of 30 cm off the center line at two stations,
ijes., x = 16.66 and 38.88, are portrayed in Figs. 5.7 and 5.8, res-
pectively. In these figures the mean velocity is normalized using the
free-stream velocity in the plane y =0 (Uonc = U_(y=0) = é m/sec) and
the longitudinal turbulence intensity (Tu) is based on the local mean
velocity. A lateral variation in the mean velocity of less than 5% is
discerned. Similarly, the transversal change in the turbulence intensity
is smaller than about 3%. Thus, in the vicinity of the canopy center
line, i.e., within about y = £ 30 cm, the flow is practically two-
dimensional.

The boundary-layer thickness growth for both FDC and HDC cases
is depicted in Fig. 5.9. The boundary between the transition and fully
developed flow regions is also shown in this figure. The boundary-layer

thickness was defined, as commonly done, as the distance from the wall
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where U/U_, = 0.99 . The results indicated, as expected, that the
growth rate in the FDC case is larger than that for the HDC case. This
is due to the dependence of the upward flow displacement on canopy den-
sity. As the latter is higher, the former is larger. The adjustment

of the boundary-layer thickness downstream of the canopy is also clearly
discerned in Fig. 5.9.

It is, further, important to examine the variation of the displace-
ment and momentum thickness, &é* and 6 , along the canopy. The results
for both FDC and HDC are shown in Fig. 5.10. As anticipated, their growth
rates for FDC case are slightly larger than for HDC. This result is in
agreement with the boundary-layer thickness change. Due to the drastic
flow retardation throughout the transition region, a strong increase in
the momentum thickness is expected to occur within this region. This
is not substantiated by the obtained momentum thickners change. Since
most of the momentum thickness loss and the flow upward displacement
are caused by the roughness, it is important to find out the contribu-
tion of the flow within the canopy to total local momentum and displace-
ment thicknesses. These results are displayed in Fig. 5.11. 1In this
figure, Sﬁ and ah designate the fraction of the displacement and
momentum thicknesses, respectively, over the canopy height. In the
transition region, the contribution of the flow inside the roughness to
the momentum thickness reduces from 50 to about 10% over a distance of
20 to 30h from the canopy leading edge. Hence, the severe flow retarda-
tion is mainly due to the large momentum loss inside the roughness. It
is inferred that the latter is mainly caused by the stagnation flow
effects on the canopy frontal area rather than by the friction at the

canopy surface. Within the fully developed flow region, the contribution



of the flow inside the canopy to the momentum thickness levels off to
about 10%. In this region, the flow is already adjusted to the new
roughness conditions and the momentum loss is mostly due to friction
along the canopy fuzzy surface. This result agrees with the drag mea-
surements reported in Ref. 31. It is important to remark that the frac-
tion of momentum thickness within the canopy depends upon its density.
The contribution in FDC case is always smaller than for HDC case. As
the roughness is denser, the upward flow displacement is larger. In the
FDC case, it reduces to 10% at about x = 20 whereas in the HDC case at
approximately X = 30 . The variation of the roughness contribution to
the local total displacement thickness reveals a similar behavior. It
diminishes from roughly 60% at the canopy leading edge to about 40% at

X = 30 to 35 . Similar to momentum thickness variation, the roughness
contribution to total displacement thickness throughout the transition

region is larger for HDC than for FDC. This contribution reduces to about

30

40% at X = 30 for FDC whereas at x = 35 for HDC. Within the fully
developed flow region, the roughness contribution to the displacement
thickness occurs more gradually than to the momentum loss.

In order to examine the roughness effects on the flow displacement
and momentum loss, it is important to evaluate the shape factor, i.e.,
the ratio of displacement thickness to momentum thickness, (H = 6*/8).
The shape factor variation along the canopy is displayed in Fig. 5.12.
At the very beginning of the transition region, the shape factor for
FDC reveals a steeper increase than that for HDC. In the former case
it reaches a maximum value of about 3.50 at x = 5.55 while for HDC
it is approximately 3.35 at x = 10. After the maximum value is attained,

in both cases the shape factor diminishes gradually to a value of about
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2.65 in the fully developed flow region. As the trailing edge is
approached, the shape factor reduces slightly due to the smooth surface
downwind of the canopy.

The shape factor depends upon the wall conditions through the

friction velocity. It can be expressed by the relationship [11]

Uy .4

H=(10==—) ™, (5.3)

U

o0

where C 1is assumed to be a universal constant for flows without pres-
sure gradient. For flow over both smooth and rough surfaces (fine
roughness: sand or gravel), the shape factor ranges from 1.4 to 2.6.

In this case the value of C Wwas estimated to be 6.1 [11]. On the other
hand, depending upon the particular logarithmic law used to describe

the velocity distribution, the value of C can vary from 4.88 to 5.4
[18]. Since in this work the roughness is relatively high, it is
important to evaluate the value of C in Eq. (5.3). For the sake of
comparison, the results at three stations in the fully developed flow

region for both FDC and HDC cases are summarized below:

X X c
(m) FDC HDC
38.88 7.0 13.1 9.8
47.22 8.5 13.0* 9.9
52.77 9.5 15.0 10.7

*
Obtained by interpolation
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In computing the values of C the local friction velocity was estimated
from the shear stress measurement (see Sec. 5.3). The values of C
obtained are about 1.5 to 2.4 times larger than that for fine roughness,
viz., 6.1 in Ref. 11 which is the best fitted experimental approximation.
Hence, the high roughness affects strongly the value of so-called
universal constant C. Moreover, if the latter value is employed in

Eq. (5.3), the shape factor would be about 50 to 60% smaller than its
values shown in Fig. 5.12. When the shape factor is estimated for the
flow above the roughness, i.e., H = (6*—63)/(6-6h), its value in the
fully developed flow is about 1.65.

Generally, in the fully developed flow region the mean velocity
above the canopy can be represented by a 1/n-power law and/or a logarith-
mic law (see Eqs. (2.1) and (2.11)). The value of the exponent 1/n in
the power law varies drastically with the flow Reynolds number [2] and,
hence, the possibility of obtaining a similar velocity distribution
is limited. Furthermore, the validity of such a representation for flow
over high roughness elements was not yet adequately investigated. For
flow over high roughness an adjusted power law where the vertical dis-
tance is measured from the roughness surface was suggested [28]. Thus,

~ . 1/n
U= [-_ » (5.4)

where 6 = &/h . Samples of the velocity distribution in the fully
developed flow region for both FDC and HDC using Eq. (5.4) are displayed
in Fig. 5.13. The values of n were found to be 2.8 and 2.5 for FDC
and HDC, respectively. Basically, if the exponent is properly evaluated,
the velocity seems to be satisfactorily described by Ly. (5.4). On the

other hand, it is practically impossible to determine an adequate value
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for n since its exact dependence on roughness condition is not known.
Moreover, the use of Eq. (5.4) in the vicinity of the roughness surface
(2 =1.28 to 1.35 or %:l‘= 0.05 to 0.07) does not yield reliable re-
sults. Usually, the mg;;ured velocity is larger than the valuc obtained
from this equation.

It might be surmised that the use of the power law in terms of the
shape factor as given by Eq. (2.3) [3] would eliminate some of the
difficulties reldted to the 1/n-power law. In this equation the exponent
is expressed directly in terms of the shape factor. The latter can be
easily computed from the measured velocity. When Eq. (2.3) was used
employing the computed values of H and 6 significant discrepancies
between the calculated (based on H) and measured velocities were
obtained. For instance, within 2z = 1 to 6 , differences up to 10% were
obtained. For increasing distance from the canopy the disagreement
augmented.

The velocity variation above the roughness depends on the roughness
element shape and, particularly, on the roughness density and arrange-
ment. Recall that the crown is largest around z = 0.75 and that in
all cases a minimum velocity was monitored at 2z = 0.7. Thus, it was
attempted to use Eq. (2.3) when the origin of the vertical ccordinate
was selected at z = 0.75. This endeavor did not lead to any acceptable
improvement. It is suspected that this disagreement is caused by the
strong dependence of the exponent in Eq.(2.3) on the value of the
shape factor. Hence, the use of the latter as the single overall

parameter for flow over high roughness is questionable.
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The logarithmic law in its various formulations is widely used for
describing the velocity within a turbulent boundary layer on rough
surfaces. This law was proposed as a similarity solution for the
boundary-layer flow. In the logarithmic law (see Eq. (2.11)), the
similarity parameters are expressed by the friction velocity and
roughness length. The former is equal to the square-root of the wall
shear stress per unit mass which plays a very important role since it
supplies the energy to the turbulence [2]. Its value and effect depend
strongly upon the roughness features, i.e., on roughness shape, density
and distribution. It is, further, important to remark that the direct
measurement of the wall shear stress is extremely difficult. Con-
sequently, under the assumption of constant shear stress layer [1]
the friction velocity is usually deduced from the measured velocity
variation. Similarly, the roughness length which is used as a length
scale parameter is also estimated from the velocity measurement. In
using the logarithmic law for rough walls, the vertical coordinate can
be measured from a virtual surface which lies somewhere between the
top and bottom of the roughness. Furthermore, this surface is
presumably unique and experimentally determinable for each given
roughness [2]. Particularly, in the case of flow on relatively
high roughness, the adjustment of the vertical-coordinate origin is
provided by the zero-plane displacement d leading to a modified log-
arithmic law (see Eq. (2.12)) [14,15]. The zero-plane displacement
is a third similarity parameter characteristic to relatively high rough-
ness. Its value is numerically evaluated in the same manner as the fric-

tion velocity and roughness length. Such a scheme can lead to erroneous
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and physically unacceptable negative value for the zero-plane
displacement [44,45].

Samples of the results obtained using the logarithmic law
(d = 0) and the modified logarithmic law (d # 0) for HDC at
x = 38.88 are showh in Fig. 5.14. When the logarithmic law was
employed, a kink is observed at about z = 2 . Thus, two zones of
logarithmic velocity variation are obtained (curve denoted by
I in Fig. 5.14). The first extends from z = 0.75 to 2 whereas
the second above z = 2 . Next, this kink can be eliminated by using
the modified logarithmic law. Thus, it was attempted to encompass
the entire boundary layer by employing this law. Unfortunately,
this endeavor led, as expected, to a negative zero-plane displace-
ment, i.e., d = -0.7 (curve II in Fig. 5.14). This result is
physically unacceptable.

As mentioned earlier, the origin of the vertical coordinate
used in the logarithmic law ought to be determined experimentally
and is located somewhere within the roughness [2]. Therefore, it
is interesting to examine if the origin (or the zero-plane dis-
placement) can be determined when the friction velocity is known.
In carrying out this examination, a value of 0.4, as commonly done, was
used for the so-called universal von Karman's constant « . Thus, the
slope of the modified logarithmic law U,/kx is known. The friction
velocity can be evaluated from the turbulent shear stress measured at the
roughness surface by means of the relationship Upm = ( |Gﬁ])? where
Usm is referred to as the measured friction velocity and (|uw|),
denotes the value of the shear stress at z = 1. Recall that the log-

arithmic law can express the velocity variation close to the wall, viz.
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within the inner 10 to 20% of the boundary layer [2]. When the zero-plane
displacement is adjusted such that the required slope based on the
measured friction velocity U,p is satisfied, it was found that the
inner layer extends about 20 to 30% of the boundary layer. Under these
constraints the velocity variation obeys the modified logarithmic law
over the inner 25% of the boundary-layer thickness when d =0.75. The
results of this computation are illustrated by curve III in Fig. 5.14.

A kink is observed at z = 2.1 (or z - d = 1.35). Furthermore, for

z > 2.1, the velocity also exhibits a logarithmic variation. On the
otaer hand, the friction velocity for a given zero-plane displacement can
be deduced from the slope of the velocity variations presented according
to the modified logarithmic law. The friction velocity so obtained is
referred to as the deduced friction velocity and designated by U,.q .

For the sake of comparison, both deduced and measured friction velocities

for all.three cases are tabulated below:

]
t
]
¢

Case d z U, z
p 6 2.0 >z >0.75 0.146 0.50
4.8>%>2.0 0.197 0.73
II  -0.7 4.8>z>0.75 0.240 1.13
2.0>%>1.1  0.065+ 0.06
L 013 [4.3 >7>2.0 0.163 0.40
Note that U, = U,/U_ and io =z /h where U_ = 6 m/sec and

h = 18 cm. In carrying out all these computations « = 0.4 was employed.
in all the aforestated three cases, the mean velocity changes
according to a logarithmic law within limited zones although their slopes

are different. Basically, the various combinations of the three

similarity parameters U, , Z, and d can yield a logarithmic

tMeasured friction velocity.
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velocity variation. Particularly, since the selection of the zero-plane
displacement for high roughness is practically arbitrary, different
values of U, and Z, can be obtained from a single measured velocity
variation. Thus, it is very difficult to relate them to the roughness
characteristics. This problem is discussed in Refs. 46 and 47 when
field data and wind tunnel measurements, respectively, are analyzed. As
a result, it is impossible to conclude, except in the case of negative
d, what combination of the three similarity parametérs is correct and/or
what law provides a better representation.

Due to the relatively large uncertainty in evaluating the similarity
parameters, it is surmised that the so-called universal constant «
would reveal a large scattering in its value. From a measured velocity
profile, the three quantities U,/x, z, and d can be obtained solving
three simultaneous equations assuming a logarithmic velocity variation.
Then, if either U, or « is known, the other can be estimated from any
combination of z, and d . However, since it is practically impossible
to relate them properly to the roughness characteristics, various values
for x are obtained even when U, is measured. As a matter of fact,
even von Karman found that « lies between 0.37 to 0.38 [4]. The value
of 0.4 is commonly accepted on the basis of Nikuradse's experiment [6].
Results of several investigations tabulated in Ref. 48 reveal that «
ranges from 0.34 to 0.49 depending upon the particular source. When the
field measurements reported in Ref. 49 are analyzed using the logarithmic
law, the value of « can vary from 0.25 to 0.49 depending on the data
reduction. On the other hand, a value of 0.41 is employed for « in
Ref. 49. 1In Ref. 17, it is suggested that «k 1lies between 0.39 and 0.41

when the logarithmic law is used. Values of « outside this range are
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usually considered as a result from operations or assumptions which
change the definition of this constant [17].

The large uncertainty in the value of von Karman's constant for flow
on high roughness elements is illustrated when its value is evaluated
from wall shear-stress measurement. In Ref. 31, using similar roughness
elements as in this work, the wall shear stress was measured by means
of a shear plate. Simultaneously, the velocity change was monitored.
Based on the data reported in Ref. 31, it was found that the velocity
variation throughout almost the entire boundary layer in the fully
developed flow region (x = 5, 6 and 7 m) can be represented by the
logarithmic law (d = 0). The estimated value of U,/k is 225 cm/sec
while the shear plate measurement yielded U, = 50 cm/sec. Thus, « =
0.22. However, if the modified logarithmic law is employed when
d = 0.7, the value of this constant becomes again 0.4 in the inner zone.
In this case, a kink is observed at z = 1.85. This result indicates
clearly that the experimental determination of «k based on either the
logarithmic law or the modified logarithmic law cannot lead to any
definite conclusion about the supposed universality of von Karman's
constant.

Further, it is worth pointing out that the constant « was
introduced in both Prandtl's mixing-length theory and von Karman's
similarity hypothesis as an empirical dimensionless coefficient of
proportionality for the mixing length &. [1]. In the former & = kz
whereas in the latter & = KE%%JZ(EEHEJ. When the shear stress and

z

velocity variations are measured it is conceivable to evaluate the

mixing-length change with height uéing the shear stress relationship

(1]



41

22 - -uw

(5.5)
Faly
Under the assumption of linear variation of the mixing length with the
distance from the wall close to the roughness [4], the value of k can
be computed using the shear-stress data (see Sec. 5.3). This computation
was carried out in order to compare the value of « for high roughness
with its value for fine roughness [1,6]. Samples of the results of this
computation within the fully developed flow region at three stations for
both HDC and FDC cases are shown in Fig. 5.15. In both cases, the mixing
length exhibits a linear variation with height from 2z = 0.75 to 2.0.
Extrapolation of the linear portion leads to 2z = 0.25 at £ = 0 . Thus.,
if % is proportional to 2z it follows that an imaginary wall is
possibly located at z =0.25, i.e., & = K(E - 0.25). Based on the
results presented in Fig. 5.15 and using the aforementioned adjusted re-
lationship for &, it was found that «x = 0.19 for HDC and 0.165 for
FDC. For the sake of comparison, the mixing length variation for
k = 0.4 is also portrayed in Fig. 5.15. The obtained values of « are
quite different from the generally accepted value of 0.4. These results
indicate that von Karman's constant & is not a universal constant for
flow on high roughness elements. The turbulence structure for flow on
rough walls, particularly, on high roughness elements, is strongly
affected by the wall roughness. Hence, it is not reasonable to expect a
similar mixing-length variation with height for all roughnesses. It
appears that « can be considered as a dimensionless scaling coefficient
for the friction velocity determined by the particular roughness con-

figuration and distribution.
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In order to overcome the difficulties related to the estimation
of zero-plane displacement, it was proposed in Ref. 28 to approximate
the latter by the roughness height, i.e., d = h, where h denotes

the roughness height. Then,

(5.6)

where it is assumed that « = 0.4. Thus, the origin of the vertical
coordinate is located exactly at the roughness surface. A sample of the
results using the modified logarithmic law where d = h 1is displayed in
Fig. 5.16. In this figure the velocity distribution in the fully
developed flow region for HDC case is shown. As previously, two zones
of linear velocity variation with the logarithm of height are observed.
A kink was obtained at about z = 2.0 . Similar results were obtained
for the FDC case. The friction velocities in two zones were deduced
from the velocity data assuming « = 0.4. It is interesting to

compare the computed values of the friction velocity with its measured
values at the roughness surface. The latter are provided by the shear
stress measurement, i.e., Uy = (|Eﬁ|)? (see Sec. 5.3). The deduced
and measured values of the friction velocity for both FDC and HDC cases

are summarized below:

Zoae z

c

xd X X

(=t
*
s

FDC HDC (m) FDC HDC
I 2.0> 2z > 1.0 0.037 0.033 38,88 7.0 0.052 0.065

I1 z>2.00.122 0.138 52.77 9.5 0.045 0.058
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Note that ﬂ*d 5 ﬁ*m = U,4q/U, » U,m/U, and x , z = x/h, z/h where
U, =6m/sec and h = 18 cm. No agreement is observed with the measured
friction velocity in either lower or upper zone.

The modified logarithmic law, Eq. (2.12), is based on the far-
reaching assumption that the friction velocity is locally constant
with height. Furthermore, the roughness length and zero-plane dis-
placement are assumed to be determinable for given roughness and flow
conditions. Basically, thesé assumptions are not modified even if
the zero-plane displacement is replaced by the roughness height. On
the other hand, due to the arbitrary approximation of d by h, it
is doubtful if the local constancy of the other two similarity
parameters is satisfied. Presumably, both Eqs. (2.12) and (5.6) can
be used to describe the same velocity variation. Thén, by equating
these two relationships, the friction velocity employed in Eq. (5.6)
is

z -d

In(

)
(o]
U*h= U*w . (5.7)
zoh

Z

In this equation the subscript h denotes the similarity parameters
used in the modified logarithmic law when d is approximated by the
roughness height. Since both U, and z, are assumed of being
locally constant in Eq. (2.12), it ensues that U,; is no longer
locally constant but a function of height. A similar result about
the roughness length used in Eq. (5.6) i.e., Zh is obtained

employing the same approach. Calculation of both the friction
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velocity and roughness length by means of Eq. (5.6) over successive
small intervals (about 1 to 2 cm) substantiated the aforestated
conclusions [33]. This computation was carried out for flow on
similar roughness as employed in this investigation. It was found
that both U*h and Zoh

similar computation was performed using Nikuradse's data [6], the

vary drastically with height [33]. When a

assumption of local constancy of friction velocity and roughness length
was satisfied. These results are presented in Ref. 33. Recall that
the height of the roughness elements utilized in this work and in Ref.
33 is more than 15% of the boundary layer thickness. On the other hand,
the roughness used in Ref.6 ranged from 0.8 to 6.7% of the latter.
Hence, the use of the modified logarithmic law under the assumption
that d is approximated by the roughness height is not feasible for
flow on high roughness.

Generally, a turbulent boundary layer on a plate can be viewed
as a wake-like flow constrained by a wall [17]. AS a result, the
velocity variation throughout the entire boundary layer can be
described by a linear combination of the logarithmic law (the law
latter accounts for the departure of the velocity variation from
the logarithmic law within the outer part of the boundary layer [3].
As mentioned earlier, it is suggested to use the logarithmic
law, particularly, in the inner part of the boundary layer, i.e.,
within the lower 10 to 20% of the boundary layer-thickness [2].
Thus, the constraints on using the logarithmic law to express the

velocity variation over high roughness are retained in Eq.(2.14).
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Consequently, in order to use Eq. (2.14) for flow on high roughness,
it is necessary to introduce the zero-plane displacement. It follows
that the latter must be used as the virtual origin of the vertical
distance for the wake function. Then, the modified law of the wake
in terms of the velocity defect law is

U,- U
U,

ST .1 e =D I (5.8)

where w[x] 1is the profile parameter and m[%fgﬂ denote the modified
wake function. The normalized conditions for the latter, similar

to those of the wake function in Ref. 17, are

w=0 at z=d, (5.9a)
and
w=2 at z=6, (5.9b)
and
} wdEY =1 . (5.9¢)
o} §-d

As previously mentioned, d can be approximated based on the shear
stress measurements (see Sec. 5.3) and using the modified logarithmic
law (Eq. (2.12)). Since the local friction velocity is known, i.e.,

Ui = (|E§1)% , the slope of the velocity variation in the modified
logarithmic law is U,p/x , where it is assumed that « = 0.4 for
consistency with the results presented in Ref. 17. Then, the zero-plane

displacement was approximated by successive trials until the linear
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logarithmic variation agreed reasonably with the required slope. In
carrying out this procedure, the velocity measured within the ipner
20% of the boundary layer, i.e., z =1 to 1.85 (z = 18 to 33 cm), was
employed. The result: of this computation for both FDC and HDC cases
within the fully developed flow region are shown in Fig. 5.17. Recall
that the result of a =imilar computation for HDC is shown in Fig. 5.14.
It was found that d = 0.85 for FDC and 0.75 for HDC, respectively.

Now, once d is determined, the modified law of the wake (Eq. (5.8))
can be used. The wake function was computed using the table in
Ref. 17 when the modified argument %{%— was employed. In order to
present the measured velocity according to Eq. (5.8), the measured friction
velocity at roughness top, i.e., U, = ([Eﬁ|)? , is used to normalize
the defect velocity. The vertical distance is made dimensionless
employing the boundary-layer thickness which is measured from the
virtual origin. The mean velocities obtained in the fully developed flow
regions for FDC and HDC cases are shown in Figs. 5.18 and 5.19, respective-
ly. Notice that terms on the right hand-side of Eq. (5.8) except the
profile parameter w[x] can be evaluated when the boundary-layer thick-
ness and virtual origin are known. Thus, once the normalized defect
velocity is obtained experimentally, the profile parameter for the best
fitting curve to the measured velocity can be evaluated. Next, using
this evaluated profile parameter, the defect velocity variation throughout
the entire boundary layer is calculated by means of Eq. (5.8), and is
displayed by solid line in Figs. 5.18 and 5.19. The computed profile

parameters for the best fitting are tabulated below.
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-~

X X m[x]
(m) FDC HDBC
38.88 7.0 1.10 0.92
47.22 8.5 -—— 0.92
52.77 9.5 1.32 1.12

On the other hand, the profile parameter is related to the local
friction velocity at the wall by Eq. (2.17). Then, using the normalized
condition of the modified wake function, i.e., Eq. (5.9b), Eq. (2.17)

becomes

u, (8-d)U
2_“[51 = ——— = = 1In '[——t-}- C
K U,

—

(5.10)

Pt
<
-

In Eq. (2.17), the constant C, was determined empirically to fit the

1
velocity data presented in Ref 17 and a value of 5.1 is proposed.
However, it is questionable to utilize this value for C1 in Eq. (5.10)
since the roughness elements in this work are extremely high compared
with those in Ref. 17. As a matter of fact, if C1 = 5.1 is used in

Eq. (5.10), the profile parameter would become negative. For instance,
the profile parameter at x = 38.88 (x = 7.0 m) in HDC would be -2.85.
Therefore, Eq. (5.10) cannot be used to estimate w[x]. The profile
parameter can be also obtained by utilizing the relationship [17]

§*U
m[x] + 1 = «g U (5.11)

Note that all the quantities in this equation can be evaluated from
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the velocity measurements. For flow on high roughness, Eq. (5.11)

is modified due to the virtual origin of the vertical distance. Thus,

& (6*_6a)u 5.12
ﬁ[x]+1_KT5_—_dW.*_ s (5.12)

where d 1is the zero-plane displacement, Ga is the fraction of the
displacement thickness below the virtual origin (z = 0 to d) and U,
is approximatcd by the measured friction velocity at the roughness

surface U, = (lﬁﬁl)? . The computed profile parameters by means of

Eq. (5.12) are compared with those computed for the best fitting curves

in the table below:

X X FDC HDC
(m) ™ ﬂlfnf ™ ﬂllnf
38.88 7.0 i.60 1.45 0.86 093
47.22 8.5 --- -—- 0.97 1.05

52.77 9:5 1.96 1.48 1.47 1.33

In the above table, L5 denotes the profile parameter calculated by
means of Eq. (5.12) whereas Te designates the value determined for
the best fitting to the experimental data. It is important to mention
that the non-modified relationship for the profile parameter, i.e.,
Eq. (5.11), always yields larger value than Eq. (5.12). At x = 38.88
and 42.77 for HDC, the differences between T and Te are negligibly
small while at the other locations they are rather large. No definite
trend can be observed.

Notice that the velocity variation in the fully developed flow

region are well expressed by means of Eq. (5.8) if the five parameters,
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viz., U_, U, , & ,d and m[x], are known. The relationships among
these five parameters are yet to be found. Moreover, it seems that the
relationships used to determine the profile parameter from the velocity
measurements do not yield acceptable results. Therefore, the use of
modified law of the wake, i.e., Eq. (5.8), for flow over high roughness
elements is limited by the relatively large number of undetermined
parameters.

The results presented concerning both the logarithmic law and the
law of the wake indicate clearly the difficulties and uncertainties in
evaluating the various similarity parameters. Particularly, the estima-
tion of U, and d is most critical. It appears that these short-
comings can preclude their use. Consequently, it is important to
postulate such similarity parameters which can be easily obtained from
the velocity measurement. The evaluation of the zero-plane displacement
d and; hefice; the location of the origin for the vertical distance is
the most crucial problem. Recall that d was introduced to account for
the presence of the roughness. In order to overcome this problem, it is
suggested to define the origin of the vertical distance exactly at the
wall. Obviously, such an approach does not include the effects of the
roughness on the vertical coordinate. On the other hand, it is
expected to account for the roughness through appropriate similarity
parameters.

As mentioned previously, the use of a power law to describe the
velocity within a turbulent boundary layer is commonly accepted and
experimentally verified. When the origin of the vertical coordinate

is at the wall, the generalized power law can be written in the form
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U - —
T*" B( , (5.13)

In this relationship US and Ls are the velocity and length scales,
respectively, which mtist be determined, and B is a coefficient of
proportionality. The exponent n depends on the flow Reynolds number
and decreases as the latter increases [1]. On the average, the Reynolds
number based on U  and & ranges from 200,000 to 300,000. Next,
expansion of Eq. (5.12) into Taylor series with respect to n, when
quadratic and high order terms are neglected since n is smaller than

unity, leads to a logarithmic expression,

) z
U-“—B‘I-Aln-—l"—, (514}

s s
where A = nB. This relationship is practically an asymptotic form
of the power law when the exponent is small enough.

In order to use such a generalized logarithmic relationship it is
essential to determine the velocity and length similarity parameters,
i.e.; Us and L5 . To start with, it is postulated to use the free-
stream velocity as the velocity scale. Basically, the free-stream
velocity can be easily measured. As a length scale, it is proposed
to employ the roughness height which is generally known. The velocity
distributions in the fully developed flow region using the aforestated
scales are shown in Figs. 5.20 and 5.21 for FDC and HDC, respectively.
At all measurement stations, the velocity profile exhibits a kink.

Moreover, with increasing downstream distance the kink is monitored
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at higher elevation above the roughness. For instance, the height of
the kink z, within the fully developed flow region for both FDC and

HDC cases is summarized in the table below:

X X z.k
(m) FDC HDC
2777 5.0 1.6 1.5
38.88 7.0 1.9 2.0
47.22 8.5 - 2.4
52.77 9.0 1.9 Zd

Note that

Ek = 2, /h where h =18 cm. Based on this change in slope,
the boundary layer is divided into two domains. The zone below the kink
is called the inner zone whercas the zone above it is defined as the
outer zone. This distinction is solely based on the kink in the mean
velocity variation. Thus, the inner zone is not related to the so-called
internal boundary layer [50].

Within the inner zone, all the profiles collapse on a single line
as observed in Figs. 5.20 and 5.21. Therefore, the postulated scales,

i.e., U_ and h, are similarity parameters. Then, in the inner zone

the generalized logarithmic law is

U 2
T~ =B *A Int, (5.15)

oo

where Ai and Bi are constants to be determined. The values of
these two constants depend upon the flow conditions, namely, the free-

stream velocity and the roughness structure. In the FDC case A, = 0.312
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and B, = 0.330 whereas in the HDC case A = 0.346 and B, = 0.260.
Recall that in both c#dsés the same free-stream velocity was used.

When the free-stream velocity and roughness length are utilized
as the similarity parameters for the outer zone, the velocity profiles
do not coincide on a single curve. At each position a logarithmic
variation is obtained. Moreover, the velocity profiles at all stations
possess exactly the same slope as clearly seen in Figs. 5.20 and 5.21.
This indicates the validity of the free-stream velocity as a similarity
parameter. On the other hahd, the vertical translation of each velocity
profile is due to the use of the roughness height as the length scale.
The roughness height is not a characteristic property of the boundary
layer. The overall properties of the boundary layer are functions of
the longitudinal position. Consequently, it is feasible to use one of
the integral characteristics of the flow as a length scale. The
momentum thickness depends on the flow above the canopy to a larger
extent than the displacement thickness as shown in Fig. 5.11.
Hence, it is suggested to utilize the momentum thickness, which can
be easily evaluated from velocity measurement, as the length similarity

parameter. As a result, for the outer zone, the generalized logarithmic

law becomes

U .
U—- = BO + AO ln e 3 (5'16)

where 6 1is the local total momentum thickness, and Ao and Bo are
constants to be determined. The velocity profiles in the outer zone

using Eq. (5.16) for both FDC and HDC are shown in Figs. 5.22 and 5.23.
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All the velocity distributions do collapse on a single curve. As
previously, their values depend on the free-stream velocity and roughness
structure. The values of AO and B0 in FDC case are 0.424 and 0.176,
respectively. In the HDC case, Ao is 0.486 and Bo is 0.076. Thus,
in the outer zone the free-stream velocity and momentum thickness can be
used as similarity parameters.

In order to substantiate these results, a similar approach was
employed using the data for flow over pegs [30]. When Eq. (5.15) was
utilized, similar velocity variations were obtained for the inner zone.
The velocity changes are shown in Fig. 5.24. Within the outer zone,
the velocity profiles are described by non-coincident parallel lines.
Thus, a similar result as for the flow over the canopies is obtained.
Next, using Eq. (5.16) for the outer zone all the velocity profiles
are represented by a single curve as portrayed in Fig. 5.25.

The important aspect of these results is the feasibility of the
generalized logarithmic relationships. The similarity parameters,

i.e., free-stream velocity, roughness height and momentum thickness,
can be easily obtained. One of the problems related to the generalized
logarithmic relationships is the determination of the two constants A
and B. These constants can be easily determined experimentally for a

given roughness.

5.3 Shear stress and turbulence survey

The longitudinal fluctuating velocity component, i.e., u and its
cnergy spectra were measured using a normal hot wire simultaneously
with the mean velocity measurements. The lateral and vertical

fluctuating components, i.e., v and w, and the turbulent shear
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stress -uw were monitored by means of a yawed hot-wire probe as
described in Section 4.2. The yawed-wire measurements for the FDC case
were carried out at 13 locations along the canopy centerline over a
distance of 12 m (x = -1 to 11 m). At each location, the measurements
along the z-axis were performed at 11 to 15 stations over a height up to
73-112 cm among which 4 to 5 stations were located in the canopy. For
the HDC case, the yawed-wire survey was conducted at 13 locations over
a distance of 12 m (x = 0 to 12 m). At each location, the measurements
were performed at 11 to 15 stations over a height up to 73-110 cm among
which 3 to 5 stations were situated inside the roughness.

The energy extracted from the mean flow is supplied to the
longitudinal velocity fluctuation through the work of the turbulent
shear stress. In the energy equation this is expressed by the production
term, i.e., -uw %g . Then, by the action of the pressure fluctuation,
the longitudinal turbulent energy is partly distributed to the vertical
and lateral components depending upon their dissipation rates [2].

In order to assess the effect of the canopy on the turbulent shear
stress the latter is normalized with respect to its value at the top
of the canopy leading edge, i.e, at x, z = 0,1 denoted by uw[0,1].
The distributions of the turbulent shear stress along the z-axis are
displayed in Figs. 5.26a and 5.26b for the FDC case whereas Figs. 5.27a
and 5.27b represent HDC. At the very beginning of the transition region,
a drastic amplification of the turbulent shear stress is observed in the
vicinity of the canopy surface. Up to x = 27.77 (x = 5m), each tur-
bulent shear stress profile possesses a maximum. The latter is not
observed beyond ; = 27.77. These maxima shift outward as the downstream

distance increases. The change in the position of the maxima along the
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x-axis and the longitudinal variation of the maximum shear stress are
shown by the inserts in Figs. 5.26a and 5.27a.

Generally, the turbulent shear stress distribution is strongly
affected by the longitudinal pressure gradient [51]. In boundary-
layer theory, the vertical pressure variation is usually neglected [1].
This experiment was conducted at constant pressure in the free stream
and, hence, the longitudinal pressure gradient in the boundary layer
should be zero. When the pressure gradient is zero or favorable, the
maximum shear stress in flow on smooth walls is obtained at the wall
[S1]. Then, in flow on rough surfaces maximum stress is expected at the
roughness top. On the other hand, the measured shear stress indicates
clearly, as shown in Figs. 5.26a and 5.27a, that its maxini value
occurred away from the roughness surface. The canopy boundary layer is
highly turbulent and thick compared with that on fine roughness elements
(e.g., sands or gravels). Within such a thick boundary layer the fluc-
tuating velocities can affect the vertical pressure gradient and, hence,
the local longitudinal pressure gradient, i.e., P(x,z). When an adverse
pressure gradient exists in flow on smooth walls, the maximum turbulent
shear stress occurs some place away from the wall [51]. Consequently,
it is surmised that a local adverse pressure gradient exists across the
boundary layer and, particularly, a relatively large pressure gradient
prevails up to x = 30 (within the so-called transition region) although
the pressure in the freestream flow is presumably constant.

The pressure variation within the boundary layer can be estimated
through momentum balance of the equation of motion. The flow in the

transition region is not strictly two-dimensional, However, the results
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shown in Figs. 5.7 and 5.8 indicate that in the neighborhood of the
canopy centerline (y < |30 cm|) the flow is approximately two-
dimensional. The vertical component of the momentum equation for two-
dimensional steady flow in a dimensionless form is

oW P 1 3% %W Buw _ w2

P e EE+ 2D - =L, (5.17)
3z 3 Rep ax2 22 ax 3z

=T
xqg,

where Reh denote the Reynolds number based on the free-stream velocity
and roughness height. Its value is about 57,000 (v = 0.189 cm?/sec).

In this equation, the velocity components are referred to the free-
stream velocity U_ , the pressure to the free-stream dynamic pressure.
Similarly, ﬁi - ﬁﬁ]ui and w = ;E}Ui . All the terms in Eq. (5.17)
but the vertical pressure gradient were computed from the measured data.
Samples of the momentum balance in the HDC case are provided by Fig. 5.28
for the transition region and by Fig. 5.29 for the fully developed flow
region. The momentum balance was computed graphically and numerically.
In these figures the viscous shear stress terms are not shown since it
was found that they are completely negligible with respect to the inertia
and turbulent contributions, i.e., less than 1% of the latter terms.
Furthermore, in the fully developed flow region (Fig. 5.29) the long-
itudinal gradient of -uw is disregarded because it was found to be
totally insignificant compared with the other terms. The vertical mean
velocity was evaluated by integrating the two-dimensional continuity
equation graphically. Within the boundary layer, as observed in Fig.
5.5, the longitudinal gradient of the horizontal velocity U is either
negative or zero. The former slope is prevalent throughout the transition

region. In the fully developed region the streamwise gradient of the
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horizontal velocity is practically zero but slightly negative far away
from the roughness. Consequently; the vertical componenf W increases
monotonically with height. The vertical velocity computed by this method
becomes a constant value as the longitudinal gradient of U approaches
zero. It is important to remark that W = 0 at the wall. Moreover, for
sufficiently large distance from the boundary layer, where the flow is
presumably uniform, the vertical velocity should be zero. The latter
condition implies that the streamwise gradient of U should be positive
away from the boundary layer. Thus, it is surmised that the horizontal
velocity component will increase slightly with downstream distance over
rather large vertical distance. The value of the vertical velocity
component at the outer edge of the boundary layer decreases gradually
from about 0.1 U in the transition region to less than 0.01 U_ in

the fully developed flow domain. Hence, the longitudinal gradient of

W, i.e., OW/3z , is finite in the transition region and becomes
negligibly small in the fully dcvelope@ flow region. Within the transi-
tion region, the vertical pressure gradicnt oP/3z shown by the broken
line in Fig. 5.28, is mainly balanced by the inertia term U aﬁ/ai in

the outer part of the boundary layer (z > 2) and by the turbulent temm

_—~—

ow?/%z within its inner part. In the fully developed flow region, the

vertical prossurc gradient displayed by the broken line in Fig. 5.29 is

—

balanced by ne’/ex  throughout tlie entire boundary layer since the
inertia term U aﬁ/ai is negligibly small. Recall that in the
transition region a drastic increasc in the turbulent shear stress
occurs below 2z = 2 up to X = 8.33 as observed in Figs. 5.28 and

5.30. Therefore. to assess the effect of the pressure on the turbulent

shear stress distribution, the equation of motion can be simplified for
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both the fully developed flow region and the lower part of the

transition domain by

- = - — . (5.18)
9z 9z

A similar relationship, for thin boundary layer on flat plate based on
o.der of magnitude considerations, is suggested in Ref. 3. Integration

of Eq. (5.18) when P =P = const. and w2= 0 at sufficiently large

vertical distance leads to

P=P -w2 . (5.19)

w

Thus, by differentiating Eq. (5.19) the longitudinal pressure gradient

is

: )
o 2 (5.20)
90X ax

According to this relationship, the local longitudinal pressure

gradient can be evaluated directly from the measured streamwise dis-
tribution of the vertical fluctuating velocity -;5. Samples of the
results at five locations in the HDC case are displayed in Fig. 5.30.
Within the beginning of the transition region, relatively high adverse
pressure gradient is observed near the roughness surface. With increasing
vertical distance, the streamwise pressure gradient becomes favorable.

As the outer edge of the boundary layer is approache& the latter

vanishes gradually. The adverse pressure gradient becomes negligible
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with downstream distance. These results indicate that the strong adverse
pressure gradient is caused by the roughness which is a drastic step
obstruction. This pressure gradient leads to local occurrence of
maximum turbulent shear stress somewhere away from the roughness top.

In addition, due to eventual flow separation from each roughness element,
weak adverse pressure gradient arises in the immediate vicinity of the
roughness surface. This phenomenon occurs not only in the transition
region but in the fully developed flow domain. For instance, in the
latter region, dimensionless adverse pressure gradient of order of

10-4 was monitored up to z = 1.75. However, this weak adverse
pressure gradient may be sufficient to cause the materialization of

the maximum turbulent shear stress away from the roughness surface.
Similar distribution of the turbulent shear stress were obtained in

flow on fine roughness [52].

The increase of the turbulent shear stress, which represents the
rate of turbulent momentum transport, indicates the canopy effect on
momentum flux (see Figs. 5.26a to 5.27b). Generally, when a fully
developed turbulent flow encounters a change in surface roughness, the
effects of the change are felt within a so-called internal boundary
layer [50]. This layer grows in depth with downstream distance. Most
of the published studies about the internal boundary layer are based on
the mean velocity variation. The change in the turbulence character-
istics, particularly, the turbulent shear stress, due to new roughness
conditions were treated indirectly employing the friction velocity. For
instance, in Refs. 50 and 53, the internal boundary layer thickness is
computed assuming logarithmic variation of the mean velocity and using

von Kafmdn's integral momentum equation. In Refs. 54 and 55, the
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displacement of streamlines is used to estimate the growth of the internal
boundary layer. It is important to remark that the flow within the
beginning of the internal boundary layer is in a transitory state. In
the latter state, both friction velocity and roughness length change with
downwind distance for a given roughness [33]. Hence, it is questionable
to employ a logaritumic velocity distribution for evaluating the internal
boundary-layer thickness under the assumption that the two aforestated
scale parameters remain unchanged. The concept of the internal boundary
layer is based on the ¢ssum,tion that the rate of adjustment of the tur-
bulent shear stress to thw new roughness is sufficiently rapid below a
certain interface [53]. Abuve tiis interface, neither velocity nor
stress has time to change. Conseyuently, it is theorized that the
development of the internal boundary layer must be determined on the
basis of the turbulent shear stress variation caused by the new roughness.
The extent of the internal boundary layer is estimated from the shear
stress evolution due to the new roughness as compared with the stress
upstream of the roughness discontinuity. Then, the internal boundary-
layer thickness 51 can be defined as the height where the new turbu-
lent shear stress is equal to that at x=0, Y84y Gi is the height
where uw[x]/uv[0] = 1. According to this definition, the growth of the
internal boundary layer is displayed in Fig. 5.31. No difference

in the growth of the internal boundary layer between FDC and HDC is
noticesble up to x = 20, (x = 3.6 m). Beyond the latter, the intern:l
bounuary-tayer thickness is about 90% of the total boundary-layer
thickness for FDC case and 97% for HDC case. Thus, the internal

boundary layer thickness is significant up to X = 20. Within this

region it was found that the internal boundary layer grows proportionally
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to a power of downstream distance

5« ;0.54

; (5.21)
1 B

where 51 = 6,/h and x = x/h . Thus, the internal boundary layer
grows similarly to the width of a two-dimensional wake which is
proportional to the square-root of the downwind distance [1]. In Ref. 56,
assuming a power law variation of mean velocity, i.e., U = z% , the same
result is obtained. This indicates, as previously pointed out, that the
flow in the transition region has two-dimensional wake-like character-
istics due to the large step obstruction (the canopy). On the other
hand, in Refs. 50 and 53 where the internal boundary layer is determined
from the mean velocity profiles based on a logarithmic law, its growth
is expréssed by Si « ;0.8 for x > 103 where 81 = éi/zo and x = xfzo-
The origin of x is exdctly at the roughness discontinuity and N
designates the roughness length for the new roughness. Note that this
variation is not valid in the region close to the roughness change, e.g.,
x < 10 m [50].

It is important to examine the change in the turbulence intensity
along the canopy. The variation of longitudinal turbulence intensity
based on the free-stream velocity, i.e., Tuco = ums/Uno where U_ =
6 m/sec, are shown along seven isoheights in Fig. 5.32 for FDC and in
Fig. 5.33 for HDC. The variations of turbulence intensity for FDC
and HDC cases are qualitatively similar. In the inner part (z <2)

the turbulence augmentation occurs mostly up to x = 10. In the outer

portion, the increase is more gradual extending up to x = 50 at
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z = 6. By and large, at the same heights, the fluctuating velocity is
smaller in the HDC case than in the FDC case. Below z = 3, the turbu-

lence intensity along isoheights exhibits an oscillatory variation.

The vertical turbulence intensities, i.e., Twoo = wms;’UOD g
along six isoheights are depicted in Figs. 5.34a and 5.34b for FDC case
whereas in Fig. 5.35 for HDC. The overall variation of the vertical
turbulence intensity is qualitatively similar to that of the
longitudinal component. Change is noticeable up to z = 3.

The coefficient of anisotropy, which is defined by w_ _/u___, is a

ms’ “rms
measure of the anisotropy of turbulence. The values of the coefficient
in the fully developed flow region are displayed in Fig. 5.36 for both
FDC and HDC cases. For the sake of ¢omparison, the results obtained in
and above a jungle-like forest [57]; ahd those for a deciduous forest

[58] are shown in the same figure. A feasonable agreement betweén the

wind-tunnel data and field measuremefits results is observed.

5.4 Turbulent-energy survey

The turbulent flow field cannot be described in detail due to its
inherent randomness. Thus, a statistical description under the assump-
tion of ergodicity [59,60] is fiecessary to express the characteristics
of the turbulent flow. It is possible to describe the turbulent motion
by means of frequency spectral analysis. Through this analysis, the
kinetic energy of the fluctuating velocity is considered as being the
sum of the energy associated with each frequency. Since the longitudinal
turbulent velocity is predominant the results of the spectrum measure-

ments for it are presented.
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The one-dimensional wave-number density function ¢[k] is defined
as [18]

1= [ ¢[Kldk , (5.22)
o

where ¢[k]dk is the amount of kinetic energy within the wave number
from k to k + dk normalized by the total kinetic energy per unit
mass u? . This quantity is called the energy-containing spectrum.

Then, the dimensionless kinetic energy (or the energy-containing

spectrum) within a wave number interval o to k is expressed by

=~ k
wZ(k] = Skl o kK (5.23)
u o}

The turbulent energy spectrum can be obtained experimentally in
the frequency domain. The frequency spectrum is connected with the
spacial correlation function by Taylor's hypothesis [61]. In terms of
the frequency n and the local mean velocity U, the wave number is

ko= 280 (5.24)

U

and the wave length (or eddy size) is

S|

(5.25)

Hence, the turbulent flow is considered as being composed of infinite
number of eddies of various sizes.

At large Reynolds numbers, Kolmogoroff postulated that the turbulent
motion is locally isotropic independent of the anisotropy of the large

scale motions, i.e., local isotropy [62]. Moreover, for sufficiently
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high Reynolds numbers, there is a subrange within the energy spectrum
where the inertial transfer of energy is the dominating process, i.e.,
the inertial subrange [63]. The turbulence within the latter is
statistically independent of the energy-containing eddies and strong
dissipation [18]. Under the assumption of local isotropy within the
inertial subrange, the wave-number density function, by dimensional
arguments, is [18]

852/3k—5/3,

¢[k] = (5.26)

1
u?

since ¢(k] as defined in Eq. (5.22) is normalized by u? . In this
equation, € stands for the energy dissipation rate whose dimension is
(length)?/(time) 3 (see Eq. (5.28)) and B is assumed to be a universal
constant. The latter is about 0.5 [12].

The frequency spectra were measured using a recording wave analyzer
(see Eq. (4.8)). Each spectrum was normalized by the mean square value

of output voltage corresponding to the total kinetic energy per unit

mass u® . This normalized spectrum is the one-dimensional frequency
density function which is denoted by f[n]. The one-dimensional wave-
number density function ¢[k] = (U/2m)f[n] [18]. In the following dis-
cussion, the results in the fully developed flow region at x = 38.88
(x = 7 m) are presented. The wave number spectra for FDC case at five
selected heights and for HDC at four selected heights are displayed in
Figs. 5.37 and 5.38, respectively. The curve corresponding to k-s/3

is also shown in these figures. Since, at first glance, a k—5/3 curve

appears to provide a reasonable fit to the measured spectra within most

parts of the wave number range, it is assumed that each spectrum possesses
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an inertial subrange. However, it is pointed out in Ref. 64 that the
Reynolds numbers for common laboratory flows are not sufficiently high
so that an inertial subrange can occur. Particularly, in the boundary-
layer flow, local isotropy and, hence, inertial subrange may not be
obtained [18]. Consequently, it is of importance to examine the eventual
existence of local isotropy and/or inertial subrange.

The rate of turbui.nt energy dissipation for isotropic turbulence
in terms of the one-dimensional wave number density function is [64]

e =15v u? [ k? ¢[k]dk , (5.27)
o]

since ¢[k] in Eq. (5.22) is normalized by u? . Note that Eq. (5.27)
is derived from the three-dimensional wave-number denhsity function by

assuming that ¢[k] is proportional to k_7

for very large wave numbers
and o[k] and 22IKl are finite as k>0 . InEq (5.27), v is the
kinematic viscosity and k2¢[k] is referred to as the dissipation

spectrum. The fraction of the normalized energy dissipation within the

wave number interval 0 to k is defined as

i % K24 [Kk]dk
e [K] = E£51 e RS (5.28)

[7x2¢ [k]dk
0
Both energy-containing spectra and dissipation spectra multiplied by
k, i.e., k¢[k] and k3¢[k], are portrayed in Fig. 5.39 for the FDC
case at z = 1.03 and 3.19 (z = 18.5 and 57.5 c¢m). The areas under
these curves represent the total turbulent kinetic energy and the rate

of energy dissipation, respectively, since ¢dk = k¢d(&nk) and
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k%6 = k3¢d(2nk). The basic condition for the occurrence of an inertial
subrange is that the contributions within at least one decade range to
both energy-containing and energy-dissipation spectra are negligibly

small [64]. In other words, the energy-dissipation range must be widely
separated from the energy-containing range. The results shown in Fig.
5.39 reveal that the aforementioned condition is not adequately satisfied.
At all heights, for both FDC and HDC cases, similar situations were
observed. Moreover, as vertical distance increases, both energy-
containing and energy-dissipation ranges shift to smaller wave number
range (larger eddy size range). For instance, the value of k ¢[k] is

maximum for k = 0.17 cm'l at E = 1.03 and for k = 0.065 cm'1 at

z = 3.19. The value of k3¢[k] is maximum for k = 10 em ! at

Z

1.03 while for k = 7cm™’ at z = 3.19. In order to examine this

shift, the values of ;;tk] and e[k] at various heights were cal-
culated by means of Eqs. (5.23) and (5.28), respectively, where the
integrals were evaluated graphically. The results are portrayed in
Fig. 5.40 for the FDC case and in Fig. 5.41 for the HDC case. Both
energy-containing and energy-dissipation ranges shift continuously to-
ward larger eddy size domain with increasing vertical distance.

It is possible, from Figs. 5.40 and 5.41, to estimate how widely
the dissipation range is separated from the energy-containing range. For
this purpose, it is proposed to neglect the last 15% of the total kinetic
energy in the energy-containing range and the first 15% of the energy
dissipatign in the dissipation range. In other words, only the kinetic
energy ;Z[k] within the wave number range 0 to ke , where k
corresponds to 0.85 of the total kinetic energy, is considered. Similarly,

the energy-dissipation within the wave number interval 0 to kd , where
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kd corresponds to 0.15 of the total energy dissipation, is neglected.
These limits are shown by broken lines in Figs. 5.40 and 5.41. Thus,
ke is considered as the upper bound of the energy-containing range
whereas kd as the lower limit of the energy dissipation range. As

mentioned previously, when k, is separated from ke by more than

d

one decade, the condition for the existence of an inertial subrange is

satisfied. The ratios of kd to ke at different heights are

summarized below:

. FDC _ HDC

z ky/kg z ky/k,
1.03 2.15 1.07 2.7
2.25 2.17 2.96 7.8
4.82 4.25 4.18 14.1

At all heights but z = 4.18 for HDC, these two ranges are separated by
less than one decade. Therefore, the aforestated basic conditions are
not sufficiently satisfied and the existence of local isotropy is highly
questionable. Even if the measured spectrum can be approximated by a
k'sl3 curve, an inertial subrange does not necessarily occur. Such an
approximation must be made cautiously. Otherwise, it might result in
misleading conclusions.

It is, further, important to estimate the lower limit of the wave
number (or the largest eddy size) for the occurrence of local isotropy.
This 1limit can be roughly evaluated from the relationship [65]

— %k 5
u? [ k2¢[k]dk >> (%%) : (5.29)
0

Assuming that u®¢[k] can be approximated by Eq. (5.26), substitution of
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the latter into inquality (5.29) leads to the condition for the existence

of local isotropy

(—dU )2
4 \dz 3/4
k > 3 {Fz =) . (5.30)

Next, in the fully developed flow region it can be assumed that the
energy dissipation is approximately equal to the energy production [12].
Then, the inequality (5.30) is written substituting the energy pro-

duction for the energy dissipation.

———} =k, » (5.31)

where kjl is the lower bound of the wave number, and the energy pro-

duction is
E = -uw — . (5.32)

The estimated value of kE for both FDC and HDC cases are tabulated below:

FDC HDC
o5 -1 -1
z ki(cm ) Lu(cm) kltcm ) Lu(cm)
1.5 0.50 13 0.39 16
2.0 0.40 16 0.33 19

3.0 0.30 21 0.33 19

4.0 0.28 22 0.30 21
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In this table, Lu designates the eddy size corresponding to the wave
number kg (see Eqs. (5.24) and (5.25)), i.e., the largest eddy (or the
upper limit). According to the relationship (5.31), local isotropy is
expected to occur for wave numbers much larger than the lower bound k. ,
say, at least one order of magnitude larger. In other words, the tur-
bulence may be locally isotropic when the eddy size is one order of
magnitude smaller than the upper limit Lu’ e.g., about 1-2 cm(k=3-6 cm_l).
Thus, local isotropy may occur within the dissipation range for the eddy
size smaller than 2% of the boundary-layer thickness even though the
existence of an inertial subrange is questionable.

As mentioned previously, in the inner part of the fully developed
boundary layer, the energy dissipation is assumed approximately equal to
the energy production. The former, under the assumption of isotropy,
can be evaluated by means of Eq. (5.27). On the other hand, regardless
of the isotropy, the turbulent energy production rate can be estimated
by Eq. (5.32). Hence, by comparing the energy dissipation with the
energy production in the fully developed flow region, the validity of the
isotropy assumption can be examined. The variations in the energy dis-
sipation rate and the energy production rate with height are shown in
Fig. 5.42 for both FDC and HDC cases. In this figure, the ratio of the
energy dissipation to the energy production is also displayed. It is
observed that the energy dissipation estimated on the assumption of
isotropy is much larger than the energy production although the turbulent
energy is expected to be in balance at least close to the canopy top.
This result indicates that the validity of the isotropy assumption is

doubtful.
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The turbulent energy associated with an eddy of a given size can be
described by means of a discretized spectral analysis [66]. The latter
is dependent of the existence of local isotropy and/or an inertial sub-
range. Then the turbulent energy at a fixed point is written by

uz =

s
] w?[n,] , (5.33)

It~ 8

i

where ;? [ni] is the portion of the total energy contributed by the
turbulent fluctuation at the specific frequency n, . The discretized
energy zgtni] is proportional to the frequency-density function at each
particular frequency, i.e., ;g [ni] v f(ni)w . Given an eddy size, the
corresponding frequency at each measurement station can be calculated

by Eq. (5.25). Then, the discretized kinetic energy at this frequency
can be obtained from the frequency-spectrum measurements. The variation
of the discretized energy at four selected eddy sizes, viz., L = 62.8,
12.6, 3.15 and 0.63 cm (k = 0.1, 0.5, 2 and 10 cn™}) were examined.
These four eddy sizes were selected to cover the whole measured wave
number range. The first eddy size represents the energy-containing
range whereas the third one corresponds to the larger eddies in the
dissipation range. The last size is typical to the eddies within the
dissipation range. The discretized energies at these four scales are

displayed in Figs. 5.43a and 5.43b for FDC and in Figs. 5.44a and 5.44b

for HDC. In these figures, the energy at the eddy size L is denoted

by uz[L] and its value at (x, 2z) = (0,1) is'designated by ug[L].

In consistency with the presentation of the turbulent shear stress, the

energy is normalized by ug[L]. The energy of the smallest eddy
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(L = 0.63 cm) is affected most strongly by the canopy. In the immediate
vicinity of the canopy surface (z = 1.5) for both FDC and HDC cases,
the change in the energy due to the canopy lessens as the eddy size
increases. Near the middle of the boundary-layer thickness (z = 2.5 and
3.5), the energy amplification at the largest eddy (L = 62.8 cm) is more
than at the middle size eddies (L = 12.6 and 3.15 cm). With increasing
vertical distance, overall effects of the canopy on the energy change at
all four eddies diminish. In the transition region, a drastic increase
in the energy at the smallest eddy size is observed. This indicates that
the energy dissipation is highly intensified in the transition region.
At the same height, the amplification of energy associated with all
eddies is larger in FDC case than in HDC case.

Consequently, the energy variation associated with different-size
eddies can be described successfully by means of the discretized-energy
analysis which is independent of local isotropy and existence of inertial

subrange.
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6. SUMMARY AND CONCLUSIONS

The experimental results presented in this work indicate that the
mean velocity in the fully developed flow region can be described by
generalized logarithmic relationships. For the flow in the inner
zone, viz., 30 to 45% of the boundary-layer thickness, the free-stream
velocity and the roughness height are the scaling parameters for the
velocity and the vertical distance from the wall, respectively. In
the outer zone, the free-stream velocity and the momentum thickness
are the similarity parameters. These scaling parameters can be easily
determined from the mean velocity measurement. The power laws and/or
the logarithmic laws examined herein cannot be satisfactorily employed
to describe the mean-velocity profiles on high roughness elements.

The use of either the modified logarithmic law or the modified law

of the wake depends on knowing the friction velocity, roughness length
and zero-plane displacement. Their dependence on the surface roughness
is not known yet. Furthermore, the so-called von Karman's constant

is not a universal constant but can be considered as a scaling parameter
of the friction velocity. Its numerical value would vary depending on
the roughness.

The mean-velocity distributions inside the canopy within the
transition region are strongly affected by the shape of the roughness
element. The velocity in the trunk zone is higher than that in the
crown zone. Particularly, the highest velocities were measured at
about 1/2 of the trunk height, i.e., the jetting effect. Moreover,
the drastic flow retardation in the beginning of the transition region

is attributed to the large momentum loss of the flow inside the canopy .
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The roughness density affects the upward flow displacement and
the momentum loss. As the roughness density is higher, both displace-
ment thickness and momentum thickness become larger. Due to greater
momentum loss, the transition domain for the full-density-canopy case
is shorter than for the half-density-canopy case. Since the upward flow
displacement for denser canopy is larger, the contribution of the flow
within the canopy to both total displacement thickness and momentum
thickness becomes smaller in the full density canopy than in the half
density canopy.

The flow characteristics within the fully developed flow region
are determined by the flow development throughout the transition region.
The latter stretches up to 20 to 30 roughness heights downstream of
the canopy leading edge. Within the transition region the flow is
characterized, particularly, by its turbulence structure. The internal
boundary-layer thickness is defined based on the turbulent shear stress
but not on the mean velocity. The canopy frontal area which is a drastic
step obstruction has a strong influence on the turbulent shear-stress
distribution and, hence, the growth of the internal boundary layer. An
adverse pressure gradient generated by this obstruction leads to local
occurrence of maximum turbulent shear stress away from the roughness
top. The flow near the canopy leading edge reveals two-dimensional
wake-like characteristics. As a result, the growth of the internal boundary
boundary layer up to 20 roughness heights is similar to the increase of
the width of a two-dimensional wake. Beyond this distance, the internal

boundary layer practically merges with the total boundary layer (90-97%

of the total boundary-layer thickness).
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The turbulence in the fully developed flow region may be locally
isotropic when the eddy size is sufficiently small, e.g., less than 2%
of the boundarv layer thickness. However, the existence of an inertial
subrange is questionable. The approximation of the measured energy
spectra by a k_S/3 curve must be made cautiously. Otherwise, such
an approximation might result in a misleading conclusion that both
local isotropy and inertial subrange exist. In order to assess the
energy variation associated with different-size eddies, regardless
of the existence of local isotropy and inertial subrange, the
discretized-energy analysis can be a satisfactory tool. The results
of this analysis indicate that a large energy dissipation occurs in the
transition region. In the fully developed flow region, the turbulent
energy associated with various-size eddies reaches an equilibrium state.

It is reported in Ref. 67 that comparisons of the mean-velocity
data obtained in and above a jungle-like coastal forest with wind-
tunnel results for the full density canopy show a reasonable agreement.
Moreover, a similar variation in the coefficient of anisotropy with
height are observed for the wind-tunnel simulated flow and field data.
Generally, the mean velocity field and overall turbulence features with-
in and above forest canopies can be satisfactorily simulated. The re-
sults presented herein can provide valuable information in studying the
problems associated with dispersal of agricultural chemicals and seed,
exchange rates of water vapor and carbon dioxide and, to some extent,
forest-fire problems. More generally, the canopy flow investigated in
this work may represent the flow characteristics over high roughness

elements like buildings and/or structures. Hence, the knowledge can be
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extended to study the problems related to air pollution over urban areas
or aerodynamic effects on buildings and structures.

To summarize, the main conclusions of this investigation are:

(1) The mean velocity profiles in the fully developed turbulent
boundary layer above the canopy can be described by generalized loga-
rithmic relationships.

(2) Inside the canopy within the transition region, the highest
velocities were measured at about 1/2 of the trunk height, i.e., the
jetting effects.

(3) Flow retardation in the beginning of the transition region is
mainly due to the momentum loss of the flow inside the canopy.

(4) The internal boundary layer defined based on the turbulent
shear stress distribution grows in the nearly same manner as the width
of a two-dimensional wake.

(5) The turbulence in the fully developed flow region may be
locally isotropic for sufficiently small eddies. However, the existence
of an inertial subrange is doubtful.

(6) The turbulent energy variation associated with a particular
size eddy can be analyzed using a discretized-energy method.

(7) The so-called von Karman's constant can be considered as a
scaling parameter for the friction velocity.

(8) As the roughness density is higher, the upward flow displace-

ment becomes larger.
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APPENDIX I
YAWED HOT WIRE

When a hot wire is positioned normal to the mean velocity direction
in a flow with a small velocity fluctuation, the fluctuation in hot-wire
cooling is produced, essentially, by the velocity fluctuation parallel
to the mean velocity. On the other hand, if a hot wire is placed at an
angle to the mean velocity direction, the fluctuation in the wire cooling
is caused by both longitudinal and transversal fluctuating velocity
components. A sketch of a hot wire placed at a yawed angle ¢ to the
mean velocity direction in the x-z plane is depicted in Fig. A.l. The
instantaneous directions of the fluctuating velocity components are
arbitrarily assumed. The yaw angle is measured clockwise from the mean
velocity direction. The simplified and operational form of the so-called

King's law for a yawed wire is [18]
(E + ew)il - Eg = MU!: , (A.1)

where Ue is the effective cooling velocity and M 1is a constant. The
value of the latter depends on wire configuration and material, the
selected resistance ratio and the air properties. The time-averaged
(DC) voltage necessary to balance the bridge under steady conditions is
denoted by E whereas E0 designates the voltage drop in still air

(at zero velocity). The value of Eo is constant for chosen operating
conditions. The instantaneous AC voltage caused by the fluctuating
velocity for a chosen yaw angle is denoted by ew :
Generally, according to the cosine law [68,69], the hot wire is

assumed to be most sensitive to the normal component of the resultant
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velocity. In other words, the latter is considered most effective for
cooling the hot wire. Furthermore, it is noteworthy that the wire
cooling is not affected by any small fluctuating velocity component
perpendicular to the x-z plane, i.e., v-component, as long as the mean
velocity is large compared with v [40]. Thus, as a first approximation,
neglecting the v-component, the normal component in the x-z plane is

considered as the effective cooling velocity. Therefore, (see Fig. A.1l)

Ue = Utszin (¢ + B) = (U+u) sin y +wecos ¢ , (A.2)

where Utxz is the total velocity in the x-z plane and U 1is the mean

velocity. The fluctuating velocity components in x- and z-directions
are denoted by u and w, respectively. The angles between the total
velocity and the mean velocity are designated by B . Substitution of

Eq. (A.2) into Eq. (A.1) leads, after some manipulation, to the follow-

ing equation:
o 1 1
(E + eq})2 - E2 = M(U sin P2+ (—‘L'T + % cot ¥)) 2. (A.3)

Under the assumption of small fluctuations, i.e., u2/U? <<1 and

w2/U? <<1, and, hence, e?y/E? <<1, quadratic and higher order terms in
the binominal expansions of (E + e‘p)2 and (1 + G% + % cot l{:})l/2 are
neglected. Then Eq. (A.3) reduces to

_usin ¢ + wcos ¢

g B . ’
B - Eo 4 U sin ¢

(A.4)
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- 1
where the relationship E2 - Eﬁ =M (U sin ¢)* was used for the mean

values. Taking the mean-square of Eq. (A.4), we obtain

;; _ u?sin?y + uw sin 2+ w2cos? y
(5% -~ B21% ¥ 16 U2sin ¥

-E'Z

,  (A.5)

where the overbar denotes time-averaged (or mean) values. Subsequent
positionings of the wire at the same location at two different yaw angles,
say, 45° and 135°, respectively, lead to the following relatinships

for the shear stress and vertical component of the fluctuating velocity

w42 5
el Bl (- - e ) (A.6)
2 T R2y2 45 135
2 (B2 - EY) _
and
w2 _ B8E2 ]
UZ % (Ez E2)2 (345 + 3135) 2 U_2 (A.?)

The longitudinal turbulence intensity in Eq. (A.7) is obtained by
employing a normal hot-wire at the very same location. Notice that Eq.
(A.6) and (A.7) are based on the assumption that the hot wire at each yaw
angle monitors the same values of u, w and uw. In other words, it

is assumed that the turbulent flow is uniform over the wire length. To
satisfy this condition it is desirable to use a hot wire of relatively

small aspect ratio.
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Fig. 3.3 View of the model forest canopy.
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Fig. 4.4 General view of hot-wire anemometer system and
additional equipments.
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- APPENDIX II
TABLES

1. Mean velocity

The measured mean velocity along the canopy center line, i.e.,

along the x-axis (see Figs. 3.1 and 3.2), are summarized in Table
1-FDC and 1-HDC. The mean velocity variation is shown in Figs. 5.3a
and 5.3b for the FDC case and in Figs. 5.4a and 5.4b for the HDC case.

In these tables the dimensionless coordinates are x
;, ; = x/h, z/h,
where h = 18 cm (see Eq. (5.1)). The dimensionless mean velocity is
u=um,
where U_= 6 m/sec (see Eq. (5.2)).

The downstream extent of the transition region for both FDC and

HDC cases is tabulated in Table 1-TD. These extents are shown in Figs.

5.5 and 5.9 by the broken lines. In this table x denotes the

td
longitudinal extent of the transition region, i.e., the boundary

between the transition region and fully developed flow domain.
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TABLE | - FIC
MEAN VELOCITY - Full Density Canopy
i(m) -1 L] 0.3 0.6
M +5.55 9 1.66
£ H u u 3 3 u u z H u z H
\cm) (n/sec) fza) (m/sec) {cm) (m/sec) _lem)
1.0 0.06 3.4, u.3 (Y] 1.0 0.06 3,84 0D.614 1.0 0.08
3.5 0.19 3.5 0. &5 3.5 0.19 3.74 0.598 3.0 0.17
9.5 0.5% 4. 0. 5.0 6.5 0.3 .00 0.320 6.0 0.33
1.0 0.61 4. a. 8.5 .5 0.89 0.95 0.152 12.0 0.67
17.5 a.97 4. . 1.0 15.5 2.5 .Y o2 16.0 0.89
9.0 1.6l 3. 0, 15.0 19.0 1.08 2.89  0.402 0.5 1.14
43.5 .42 5. u. 25.0 4.5 .3 5.02 0.8203 g 1 ] 1.53
57.0 37 5 0. .5 2.0 1.79 3.45  0.369 10.0 Seda
68.5 381 5. o, in.d 41.0 2.33 5.48 0,877 48.0 .67
140 4.1l 6. 1. 3 51.0 2,83 5.69  0.910 38.0 3y
86.5 4.51 o, | 18 u 57.0 3.17 6.03  0.965 59.5 3.
99.0 5.50 b [ by 3 5.0 3.8l 6.13  0.984 7l.5 3.7
109.5 6.08 b, 1.s T30 3.0 4.08 6.5 954 81.0 4.50
120.0 6.67 6. 1. 89.3 BL.0 4.67 6.5 -000 7.0 5.59
5.0 97.5 5.42 6.15  1.000 119.0 6.6l
106.0 111.0 07 6.25 1.000
119.0 121.0 &.72 0.2 1.000
z(e) t.o .0 3.0
x 5.5 1.1 16.66
z E u u z : : ] ] z z 1]
(cm) {='sec) [ {em) fm/sec) fea) iz/sec)
1.0 0.08 0.7 0,114 .0 1.0 0.06 0.49  0.080 1.0 0.0%0
3.5 0.1% 0.51 0.087 A0 3.5 0.19 0.4  0.056 3.5 0.066
7.0 0.3 0.1% 0.051 5 8.0 0.4 0,25  0.041 1.8 0.039
10.0 0.56 0.19  0.051 .5 15.0 0.72 0.59  0.0%% 12.0 0,084
i5.0 0.43 0.71  0.114 =5 17.0 0,94 0.91 0.150 15.5 0.180
18.5 1.03 0.4 0.151 -0 20.0 1 1.09 0.178 3.0 0.267
7.0 1.50 3.29 0.5 ] 4.5 138 2,04 0.333 25.0 0.109
1.5 2.08 3.24 0,841 .0 34.0 1.39 5.35 0.54% 3.0 0.52%
48,1 2.67 5.45 0.3%0 A 5.0 2.50 4.45 0.7 415 [ Pl 1}
57.0 3.17 5.74 0.821 7.0 317 4.95 0,808 57.0 0.849
7.0 3T 5.934  0.980 85.3 3.64 3.70  0.950 &3.0 0.904
77.5 4.5 6.10 0.973 75.5 T80 4.33 5.91 0.964 4.5 0.948
85.5 4.73 6.2 1.0u0 B5.5 83.0 4,94 b.06  0.959 84.0 0.979
95.5 5.5 &.23  1.000 9.0 wi.s 375 6. 13 1.000 93.5 1.000
1.5 6.19 [ 1.u00 1%.v 1209 t.67 6.13  l.000 1200 1.u00
120.0 6.67 6.l 1.000
x(m) a0 5.0 7.0 9.5
i .28 m 38.88 52.77
z H u : : 1] ] ] H ] t : u ]
(cm) (=/sec) (cm) imisec) (em) {n/sec) {em) (m/sec)
1.0 0.08 0.3 0.063 .0 0.25  D.U82 1.0 0.06 0.7 0.0l8 1.0 0.06 Q.22
5.0 0.28 0.3%  0.063 3 0.23  0.038 5.0 n.28 0.16  0.027 4.5 U.d 0.22
3.0 0.50 0.23  0.038 A 0.26  W.Uua3 3.5 0.53 0.30  0.050 9.0 0.50 0.42
4.0 0.78 0.59  0.093 N 0.49  v.0s2 12.5 0.89 0.863  0.103 4.0 v.78 1.09 .
17.5 0.97 1.25 0.1 -3 .04 0.173 16.0 0.89 1.3 0.2 18.0 1.00 1.93 %
19.5 1.08 1.53 0.292 3 I.72 0.190 18.5 1.03 1.72 0287 2.5 1.2 2.04 .
0.0 i.44 .72 0.430 0 .06 0.343 .0 1.33 .50 0.417 30.5 1.69 .17 0
38.5 .14 3.85 0.5 e 2.6%  0.445 2.0 1.78 2.96  0.4583 .0 =17 3.46 0.377
48.5 1,69 4,39 0.693 0 3.75 0.6M 40.5 2.2 3.40  0.567 43.0 2.72 3.86  0.843
57.0 3.17 5.13  0.510 5 4,12 0.087 19.0 il 2 ] 3.94  0.857 57.5 3.19 4.45  0.742
62.5 3.47 5.31 0.838 5 F.28 4.56 0,7 57.5 .19 4.56 . 760 3.5 4.08 3.00 0,833
45 4.14 5.88 0.8 - 4.03 5.3 0.893 7.5 4.08 4.88 0.813 80.0 4,44 5.31 0.385
83.0 4.61 600 0,947 0 4.50 3.69  0.948 a%T.0 4.83 5.43  0.905 B7.5 1.8 5.57 0.913
92.5 5.14 6,20 0.978 -0 5.33 5.85  0.973 5.5 5.31 5.66 0.913 9.5 3.36 3.76  0.900
w0 5.67 b, 20 0978 .0 b.00 5.95 0.992 i03.0 T2 5.83 0972 106.0 .89 5.86  0.977
119.0 661 6.33 1.000 -0 5. 14 500 L.0ug 114.0 6,33 5.93  0.98% 115.0 6.42 5.94  0.9%90
. Tz b.0U 1.00u 130.0 7.2 6.00 L.oow 130.0 R u.00 .00
x(m) 1.0 12.0
1 61,11 66,66
: i u o z i u [
fcm) imfyec) 1ce) im/sec)
1.0 0.0% 0.59  0.094 1.0 0.06 1.2 0.203%
5.5 0.31 a4.51  0.051 4.5 0.25 1.55 0.263
8.5 0.47 0.40 0063 5.5 0.47 l.ed  0.278
150 0.72 1,00 0. l6d I3.0 0.72 1.5 0.2d8
14.5 0.81 1.4 0.232 9.0 1.0&6 2.3} 0.395
17.5% 0.97 243 0.3 6.0 1.48 290 0,502
2.0 .22 3,28 0,555 6.5 2.03 3.0 0.542
30.5 .69 3.57 D.53% 8.0 S.E7 3.88  0.658
al.0 .28 3.8%  0O.e33 38.5 3,25 1,58 0.77¢
50.0 2,78 1,54 0.74) T5.0 .17 4.75 0,306
55.0 22 4.0 0.°34 345 .69 5.3 09512
1.0 1. 5.13 0.8 4.0 5.2 5.59  0.947
82,0 1.3 5.30 0,897 104.0 3,78  5.85  0.98%
93.0 5.17 52k 0.931 - .50 5.90 L.000
102.5 5,89 5.93  0,.3" 1320 =.35 0 5,90 1.000
115.5 b4 L 1 B
129.0 0 b 0.l L.ow
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TABLE 1 - HUC
MEAN VELOCITY - Half Lensity Canopy

z(m) o 0.3 0.6 1.0
x 0 3.33 5.55
z u 1 T : u u T s u u
(em) imfsec) {cm) ) (m/sec) (cm) (a/sec)
1.0 0.08 +.33  0.388 1.0 1.0 Q.08 3.17  0.526 1.0 0.08 .34 0.350
7.0 0.39 .32 0.558 6.4 8,2 0.35 1.3 0.231 6.1 0.34 1.00 0.1e7
1.2 0.62 3.60  U.oud 12.3 11.8 0.65 1.32 0.219 11.2 0.6l 0.72 0.119
16.5 0.91 4.01 0609 7.3 6.8 0.92 1.2 0.204 8.2 0.90 0,94 0.157
21.4 i.19 4.2 [ g 1 e b 18.1 1.08 1.42  0.403 188 1.03 .74 0.291
29.5 1.64 1.85  0.309 9.7 8.8 1.80 4.78 0.7 6.4 1.47 3.45 0.576
37.9 .11 5.30  0.uA3 39.35 35.7 1.98 5.31 0.896 348 1.9 5,01 0.837
48.1 .67 5.60  0.933 48.5 43.0 .39 5.50 0,915 43,5 2.42 5.63 0,938
56.5 3.4 £.73 0,934 .5 0.0 2.35 5.89 0.980 52.1 2.89 5.7 0.953
62.0 544 5.94  0.991 85.0 .6 398 5.95 0.992 38.5 .35 576 0,980
1.2 4.29 5,00 .000 75.7 83.3 4.63 6.00 1.080 59.5 Ly 5.7 0.983
90.0 5.00 5.99  0.931 85.7 99.7 5.54 5.00 1.000 87.1 3.73 5.8 0.971
w020 5.67 6.00 1.000 1.0 io.0 611 5.97 0.995 79.5 4.42 5.99  0.999
92.9 5.16 6,00 1.000
107.0 5.94 &.00 1.000
z{m)} 1.5 2.0 3.0 5.0
x 8.33 11.11 16. 68 .77
z i ] u 1 i u U z : 0 z H u 0
()] in/sec) (eal [&/5ec) {ca (m/sec) {cm) (=fsec)
1.0 0.08 1.27 0.203 1.8 0.08 0.3 0091 1.0 0.06  0.22 0.0%7 1.0 09.06 0.1% 0.08
6.2 0.35 0.9 0.159 5 u.3 0.48  0.08] 6.3 0.35 0.23  0.039 6.3 0.35 0.30  0.050
1.4 0.64  0.37 0.0% 121 0.7 0, 0. 102 11.9 0.66  0.50 0.084 11,7 0.65 0.81 0.102
16.7 0.93 0.9 .16l 8.2 0.30 i, 0.189 15.7 U.87 0.99 0.165 18.1 .00 1.2 0.2%0
0.1 1.12 1.45  0.241 19.1 .06 0,255 19.1 1.08 1.58 0.263 3.1 1.28 2.05 0.3
7.1 1.51 2,65 0.341 5.1 1.33 2 0.359 2%.2 1.29 .04 0.390 29.5 1.84 2.68  0.437
4.7 1.93 4.04 0,674 4.3 1.3 3. 0.e38 8.5 1.58 1.69 0,438 40.1 iy 5.65 0.00%
41.0 2.8 197 0,829 43,8 .43 4.0 0.426 37,3 2,07 LT4 0.5 48.3 3. 4.26  0.710
45.0 .67 5.3  0.433 LT 2.87 3 0.53] 6.9 .61 4.35 0,808 59.0 kN 4.91 0.818
58.2 3.2 5.685 w940 3.3 5.9 3.3 0.231 8.5 3.25 5,47 0.912 69.0 3.3 5,43 0.205
68.3 379  5.94 0.99] v3.0 3.83 5.38 0,280 6.5 3,89 5.6 0.949 6.4 427 5.7 0.9
79.8 443 b.00 1000 TE.9 4.3 5. 0.932 4.4 4,13 5.89 0.982 85.7  4.70 588 0.9%0
92.0  5.11  5.39  0.999 33 5y e 1,000 87.3 4.85  6.00 1.000 95.6  5.31 5.00 1.000
105.5 S.86  5.99  0.999 105, .87 5. u.992 100.8 3.60 5.39 0.999 106.2  3.90  5.97 0.93§
121.4 6.6 5. 0.495 118.5 ©.47 5.99 099 121.5 6.81 5.98 0.997
x(a) 7.0 8.5 9.5 1.0
x 38.88 47.22 52.77 6111
t : u u : u u : u v H T u 1l
(cm) (m/sec) =/ see) {m/sec) (em} {m/sec)
1.0 0.06  0.12 0.03 0.06 0.034 « 0.06 0.2l 0,03 1.0 0.06 0,50 0,083
7.4 0.4l 0.28 0.047 0.3 0.013 : 0.41 0.23  0.038 5.1 0.3  0.38  0.083
13.5 0.75 0.84 0.0 4.78 2,152 .0 0.78 0.7 0.12 10.8 9.59 0.55 0.091
1.0 1.06 1.63  0.270 1.0 0.273 .8 0.99 1.3 0.232 16.9  0.94 1.82 0.304
4.5 1.3 2.0  0.3a 1.3 0. 3" 9 .27 2.19  0.365 1.7 1.21 2.51  0.418
34.8 1.94 2.97  0.495 1.82 0.453 .1 L.73 .76 0.460 1.6 1.76 2.90 0.983
44.4 2.47 J.ee 0.0l 21.35 0.575 Fir 1.35 3.31 0,554 42.4 .3 3.80 0.833
§3.3 2.96  4.13 0.689 2 0,652 N 2.84 3.79  0.831 50, 2,82 4.09  0.582
59.0 3.28 4.55  0.758 3.28 0.73 .0 3.28 4.3 0717 59.0 3.28 4,50 0.700
64,5 358 474 0.790 397 9.813 .0 4.1l 497 0,829 66.0 3.67 484 0.807
75.2 4.18 .27 0.87 1.38 0.85 L3 1.46 5.13  0.855 74.0 4.11 4.99 0.332
86.2 479 5.72  0.953 4,92 0.947 28,3 490 5.55 0.925 1.6 4,53 5.66 0.043
99.7  5.54 5.59  0.98 $.63 0.985 96.2 5.34 5.70  0.952 89.3 436 5.79  0.%4
113.6  6.31  6.00 l.000 6,33 0.993 105.4 5.85 5.85 0.975 97.6  5.42 6.00  1.000
122.5 6.81 6,00 1.000 T 1.000 LI & 6.49 5.97 0.994 105.8 5.88 5,98 (.99
132.0 7.33 8.00 1.000 124.0  &.89  5.99 0.999
x(m) 12.0
z bb .66
2 i u U
(em) {m/sec)
1.0 U.0e 1.17 U194
6.4 WM 1.54 0,258
12.3 O.ui .77 0,295
2.3 .11 <.38 0. 306
.2 162 397 9. 4u0
4.l 2.35 373 0.u3d
5.7 ) (I B
59.0 28 4 0.753
69.7 3.87 4.73 0.748
.0 4.31 5.9 0,531
85.5  4.73 5.66 0.934
24.7 3.8 5.80 0.967
109.3  e.07 6.00 1.000
1245 0.9 ©.00 1.000
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TABLE 1 - TD
TRANSITION REGION

Full Density Canopy Half Density Canopy
z 7 Xed X d X g X d
(cm) t t _ t t

(m) (m)

18 1.0 2.80 15.5 3.50 19.5
27 15 3.42 19.0 4.05 22.5
36 2.0 4.40 24.5 5.20 29.0
54 3.0 5.40 30.0 6.30 35.0
72 4.0 5.75 32.0 6.65 37.0
90 5.0 5.85 32.5 6.75 375
X h = 18 cm

td = Xea/hs
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2. Turbulence intensity

The measured turbulence intensity in the longitudinal and vertical
directions, i.e., x and =z directions, are summarized in Table 2-x-
FDC, 2-z-FDC, 2-x-HDC and 2-z-HDC. The variations of the longitudinal
and vertical turbulence intensities for the FDC case are shown in Figs.
5.32 and 5.34, respectively. For the HDC case the results are displayed
in Fig. 5.33 and 5.35. In these tables the turbulence intensities

based on both local velocity and free-stream velocity are tabulated.

The turbulence intensities based on local velocity are denoted by

Urms
Tu =0 2
and
Wrms
Tw = U -

When the turbulence intensities are based on free-stream velocity,

they are designated by

YUrms
T
u U 5
- -] oo
d Yrms
T =
W U g
=] o

where U_ = 6 m/sec.
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TABLE 2 - x - FDC

LONGLTUDINAL TURBULENCE INTENSITY - Full Density Canopy
x(e) -1.0 ] 0.3 0.6
i -5.55 [ 1.66 3.33
T ] T T : : T T : x T T £ H T Ty
(< ¢ e (c8) " s (ca) ol e lca) d
1.0 0.06 0,166 0.0945 Lo 1.0 0.00  0.114 0.0728 1.0 0.06 0,304 0.0810
3.5  0.19 0,150 0.087% rih 3.5 0.19 0.1 0.0775 30 0.18  0.232 0.0637
9.5  0.53  0.129 0.0885 5.0 8.5 0.36  0.313 0.1040 6.0  0.33 0,442 0.1140
11.0 0.6 0.12) v.0870 8.5 12.5 0.69  ©.208 0.0330 12.0  0.67 1.03 0.0598
7.8 0.97  0.115 0.0903 4.0 15.5 0.86  0.263 0.0608 1.0  0.89 0.784 0.0718
29.0 1.6} 0.103 0.0883 18.0 19.0 1.06  0.366 0.1770 0.5 114 0.321 0.1230
43.5 2.4 0075 0.06% 3.0 4.5 1,36 0.134 0.1120 2%.8 1.53  0.200 0.15%
$7.0 317 0.032 0.0308 H.3 320 1,78 0,090 0.0810 40.0  2.22  0.094 0.082
68.5 3.8l 0.0 0.0M12 6.0 4.0 2,33 0.087 0.0795 48.0 2.7 0,083 0.0782
74.0 401 0,012 0.0123 5.0 51.0 .83 0.077 0.0735 58,0 3.22  0.067 0.0683
86,5 4.8] 0.009 0.0092 vl.5 57.0 3.17  0.066 O0.0687 59.5 3.3 0.049 0.0503
99.0 5.50 0.008 0.0082 725 65.0 3.6l 0,043 0.0445 7.5 597 0,015 0.01e0
109.5 6.08 0.098 0.0075 79.0 730 4.06  0.026 0.0163 81.0 4.50 0.014 0.0148
1200 6.67  0.008 0.0078 39.5 84.0 4,67  0.014 0.0150 97.0 5.3%  0.010 0.0l08
98.0 97.5 5.42  0.010 0.0105 119.0  6.61  0.008 0.0090
106.0 1.0 6.17  0.009 0.00%
9.0 121.0 6,72 0.009 0.0090
z(m) 1.0 1.5 .0 3.0
z 5.55 5.33 11.11 16.66
: T T T 3 T T {1 T T T t z T T
(c=) u u, u u, e u u, (cm u L
1.0 0.06  0.470 0.0573 0.us 1.0 0.06  0.565 0.0482 1.0 0.06 0,777 0.0570
3.5  0.19 0,765 0.0638 0.17 3.5 9.19  0.736 0.0418 3.5 0.19  0.736 0.0515
7.0 0.3 129 0.0110 0.31 8.0 0.44  1.259 0.0535 7.5 0,42 1.035 0.0432
10.0 0.5  1.29 0.0410 0.58 13.0 0.7 0.951 0.0935 12,0 0.67 1,082 0.0955
15.0  0.83  0.788 0.0933 U.38 170 0.94  0.801 0.1230 15,5 0.86  0.775 0.1470
18.5  1.03  0.789 0.130 1.06 20.0 1,11 0.702 0.1280 19.0  1.06  0.551 0.1560
7.0 1.50  0.328 0.1800 1.33 4.3 1.3 0.47¢ 0.1810 3B.0 1.3 0,397 0.1720
37.5 2.0 0.8 0.10%0 134 34.0 1.89  0.308 0.1720 33,0 1.8 0.315 0.1730
48,1 2.67  0.085 0.07°7 2.5 15,0 250 0.181 0.11%0 44,5 2,47 0,203 0.1540
57.0  3.17  0.072 0.00ds 317 7. 5.17  0.086 0.0710 §7.0 3.7 0.1 0.1090
67.0  3.72  0.048 0.0480 3,55 65.5 3.64  0.085 0.0822 63.0  3.50  0.085 0.0815
77.5 4.3 0,026 0.0285 4.19 8.0 433 0.042 0.0017 4.5 414 0,055 0,055
85.5  4.75  0.016 0.04e3 464 2 89,0 4.8¢  0.016 0.0185 84.0  4.67 0,029 0.0297
95.5 5.3l 0,002 0.0133 5.50 : 103.5 5.15 0. 0.0097 99.5  5.53 0,017 0.0178
1.5 6.19  0.009 0.0095 ©.61  0.010 0.0105 120.0 6.67  0.008 0.0078 1200 6.67  0.011 0.0113
120.0  6.67  0.008 0.00%8
x(=) 4.0 5.0 7.0 9.5
i 22,22 27,77 38.38 52.77
N 1 T. T z : T T : H T T z 1 T T
l‘_‘) u '} (‘_!J u u_ {e!] u u, ':.‘.!1 u u,
1.0 0.06  0.7¢8 0.048° 1.0 006 L. 1.0 0.06  0.914 0.0258 1.0 0.06  0.%835 0.0323
5.0 0.28 0,570 0.0%2 45 0.2 I 5.0 0.28  0.793 0.0212 4.5 0.5 0.784 0.0287
9.0 0.50 1,400 0.0538 89 0,44 0, 9.5 0.53  0.901 0.045 9.0 0.50 0,788 00552
4.0 0.78  1.010 0.0992 12,0 087 D, 12.5 0.68  0.701 0.0737 140 0.73 0,589 0.1070
17.5  0.97 0,656 0.1340 4.5 ¢80, 16.0 0.89  0.519 0.1190 18.0 1.00  0.370 0.1510
15.5  1.08  0.535 0.1360 18.5  1.03 0. 8.5 1,08 0.385 0.1110 2.5 1.25  0.3°8 0.1280
6.0 1.44  0.337 0.1550 5.0 .28 0. 4.0 1.33 0.277 0.1150 30.5 .69 0.279 0.1290
38.5 2.4 0.260 0,130 N5 15 0. 3.0 1.78  0.230 0.1140 9.0 .17 0.2 D0.1300
48.5  2.69  0.207 0.1510 0.0 L8 0. 0.5 2,25 0.202 0.1130 9.0 .72 0.201 0.1290
§7.0  3.17  0.08I 0.1380 49.5 .73 0. 49.0 .72 0.171 0.1120 57.5 319  0.170 0.1%80
62.5  3.47 0,115 0,100 58,5 3.5 0. 37.5 319 0.188 0.1430 735 4.08  0.132 0.1l00
74,5 4.04 0,065 0.0637 2.5 403 0. 755 4.08  0.129 0.10%0 80.0  4.44  0.119 0.1060
83.0  4.61  0.045 0.0433 L0 ase 0.4 87.0 4.83 0,096 0.0867 87.5 4.8  0.054 0.0872
92,5  5.14 0,035 0.0355 96.0  3.3% 0. 95.5 5.31  0.066 0.062 96.5 5.3 0,070 0.0672
102.0  5.67  0.017 0.0173 080  e00 0. 103.0 5.72 0.030 0.029% 106.0  5.89  0.046 0.0447
119.0 6,61 0.017 0.0128 HEW 843 Q. 114.0 6.33  0.018 0.0178 15,0  6.42  0.033 0.0227
1.0 T2 0. 130.0 .22 0.012 0.0M18 130.0  T.22 0.015 0.0152
x(a) 110 12.0
i &1.11 6. 66
z 3 T, T, z : T T
(cm) - icm) 2
1.0 o 0.0418 Lo 0.06  0.529 0.1060
5.5 0 0.0982 1.5 0.2 0,454 0.1170
.5 0. 0.0507 8.5 0.47  0.441 0.1210
e 0 9.1100 13.0 9.72 0.463 0.1310
4.5 0. 0.1430 19.0 1.06  0.391 0.152
17.5 0. 0. 1600 2.0 1.44  0.288 0.1420
2o 1 0.1640 36.5 2,03 0.237 0.1260
3.5 1.9 0.1460 8.0 2.67  0.186 0.1200
a0 2.1 0.1340 58.5 3.2 0.156 ©0.1190
50.0 2.7 0.1310 5.0 4.17 0118 0.0933
8.0 3. 0.1230 44,5 4.9 0.09% 0,0842
7.0 4.00 0.10% 4.0 5.22  0.072 0.067
8.0 438 0.1000 104.0 5.7 0.048 0.04°2
$3.0 5.7 0.u742 .o 650 0.023 0,002
102.5 5.69 v, 0540 132.0 T.33 0 0.00% 0.0135
115.5 6,42 0.0232
1.0 Car 0.0133
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TABLE - 2 - ¢ - FOIC
YVERTICAL TURBULENCE INTENSITY - Full Density Canopy

x(m) 1.0 0 0.3 0.6
¥ -5.55 0 1.66 3.33
H T T T ] H T T : i T T
‘;] L - v. LS 1— i. (ﬂ]_ - I- _‘w - '-
2.0 a1l Q.08 0D.ude 0.42 a.014 1.0 0.39 o X 0.075 0.5 .14 0.164 0.080
5.5 0.31  0.Us6 0.035 0.8t 0.043 3.5 0.69  D.I56 0.029 7.0 1.50  0.098 0.069
9.0 0.50 O.ved 0,010 0.83 0.050 15.0 0.83  0.270 0.055 33,5 1.86  0.021 0.017
140 0.78  0.0ul 0045 9.89 0.04) 19.0 1,06 0.328 0.187 450  2.50 0.022 0.020
19.5  1.08  0.058 u.udb 117 0.014 3.0 1.28  0.181 0.139 531.0 294  0.032 0.031
6.5 1.47 D061 0.052 1.58 0.032 3.0 1.72 0.036 0.082 63.0 3.50 0.034 0.035
35.0 194 Q.03 0.ud 11 0.02 a0 2.3 0.057 0.035 70.5 .92 0,001 0.022
4.5 247 0.038 0.036 168 0.022 50.5% 2.81  0.034 0.033 79.5 4.3 0.005 0.005
S5 2.86  0.029 0.08 3.3 0.032 59.5 3.31  0.080 0.040
60.0  3.33  0.009 0.009 3.92 0.015 0.0 5.89  0.028 0.08%
T30 406 0.007 0.7 a1 0.013 7.0 4.28  0.015 0.018
4.50 0.006
5.08 0.003
() (R ] 1.5 1.0 3.0
i 5.55 4.33 (1Y 16.66
: z T T : T T z H 1 T z : T T
cn = - v, 18} £ - . & L] . (ca). w L
9.5 L4 0.152 0.103 6.5 147 0108 0.054 3.0 1.72 0.089 0.043 2.0 1,22 0.087 0.0
3.5 1.927  0.132 0.106 3.5 (81 0.105 0.138 40.0 .21 0.109 0.071 8.5 1.58  0.130 0.084
42.0 1.33 0.02% 0.0l 7.0 2 0.200 0.135 4.0 2.72 0.041 0,032 3.5 .08 0.155 Q.002
51.0 2.81 0.025 0.023 4.0 2.4 0.100 O.uvss &l1.0 3.39 0.020 0.018 44,5 .47 0.132 0.100
6.0 3.3  0.029 0.02% 5.0 2, 0.034 0.032 4.5 158 0.032 0.020 9.0 2.7 0,134 0.1
70.0  3.89 0.036 0.038 eld 542 0,012 0.0l 5.0 117 0.0 0.02 58.5 525 0.081 0.053
7.0 4.28 0.025 0.015 1.5 4.05 0.035 0.035 ar.5 4.86 0.014 0.014 67.5 3.75 0,008 0.008
#5.0 4.7 0.007 0.007 8.5 4.5 0.013 0.013 102.0 5.67  0.006 0.006 76.5 4.2 0.015 0.013
95.5 5.19 0012 0.012 B5.5 4.75 9.014 0.013
94.5 .22 0.005 0.003
102.5 5.69 9.001 0.001
x(s) Lo 5.0 7.0 9.5
x 2331 i7.37 38,88 52,77
1 i T T z H T T 2 i T T 2 i T T
(=) L . {cm) n e [cal - e {c=) N .
3.5 LM 0.158 0.0s8 15.5 .86 0.330 0.063 10.5 0.58  0.295 0.021 2.5 0.4 0. 005
3.5 175 0.145 0,07 M0 LT 0,139 U043 4.5 0.81 0,408 0.065 7.0 039 0. 034
L0 .28 0.119 0079 .0 1.68  0.057 0.0% 19.5 1.08  0.297 0.091 1.0 0.81 0. 075
50.0 .78 0.109 0.045 3.5 103 0.090 0.049 6.0 1.4 0.747 0.101 15.5 ©0.% 0. 089
60.0  3.33  0.100 0.08s .0 L4 01 0.081 33.0 1.83  0.213 0.105 190 1.06 O, 071
12.0 4,00 0.050 0,048 v 2.78 Q.0 0073 43.0 .39 0,141 0.083 27.0 1.50 0. 034
9.0 439 0.037 0.007 56.5 3.4 0.0TH 0.0u0 51.5 1.86  0.120 0.081 3.5 .08 0. 045
89.0 4.94 0.0l o.018 B3 3.58 .ol 0.051 61.5 3.4 0.092 0.069 45.5 53 0. 060
T1e 400 0.044 0.039 7.0 3.94  0.058 0.048 52.0 .89 0. sz
810 4.50 0.030 0.08 8.5 4.5%  0.005 0.004 80.5 5.3 0. *z
91.0 5.06 0.013 0.012 91.0 5.06 0.014 0.013 062.5 347 0. 079
101.0 5.61  0.013 0.012 7.0 3.9 0. L082
82.0 456 0. 072
831.5 5.08 ., b3
i(m) 1.0
x 8l.11
t 1 T T
(co) _ = i
1.5 0.84 0.071  0.006
16.0 0.92 0.202 0.099
.5 LI 0.133  0.064
2.5 1.64 0.082 0.048
we 2.1 0.054  0.036
6.0 2.56 0.085 D.0s6l
54.5 3,03 0.050  0.039
60.5 3.3 0.057 0.046
7.0 72 0.062  0.052
73.0 4.06 0,065 0.057
8.5 4.58 0n.0as 0.040
91.5 5.08 0,058 3.052
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TABLE 2 - x - HIC
LONGITUDINAL TURBULLNCE INTENSITY - Half Density Canopy

x(m} '] 0.3 0.6 1.0
L 0 1.66 3.33 5.55
z z  } z z T T z z T T : : T T
(en u N, &) u u_ (cx) u u_ (e} u u_
1.0 0.06 0.213 w.0826 1.0 0.0¢ U160 0.0707 1.0 0.06 1.0 0.06 0.192 0.0749
1.0 0.3 0.163 0..703 6.4 .35 0,24 0.1820 6.2 0.35 6.1 0.34 0.471 0,078
1.0 0.62 0.143 0.uv858 12.5 vty v.e™4 0.0532 11.8 0.865 11.2 0.82 0.513 0.08l0
16.5 0.91 0.121 0,089 7.5 0.97 0.58% 0.0971 16.6 0.92 6.2 0.%0 0.549 0.0882
1.4 1.19 0.108 0.0770 bl .20 g.190 0.1300 19.1 1.08 18.6 1.03 0.478 0,15390
9.5 1.64 0.09) 0.07T44 e’ 3 1.85 U.080 0,083 8.8 1.00 26.4 L.47 0.290 0.1670
31.9 .11 0.U80 D.0700 39.3 2.18 0,07 O0.0870 35.7 1.98 4.8 1.9 6,121 0.1010
48.1 2.67 0,058 C.034) 48,3 -.89 0.062 0.0587 43.0 .3 43.6 .42 0.074 0.0694
56.5 5.4 0,036 0.0543 36.5 Ll 9,040 0.0436 60.0 3.33 52.1 2.89 0.067 0.0639
82.0 144 0.020 0.0lvs 3.0 5.81 0,023 0.0025 .6 3.98 58.5 3.25 0.055 0.0509
7.2 4.19 0.009 U.0090 5.7 4.20 G.uly 0.00995 83.3 4.863 9.5 L3 0.050 0.0482
90.0 5.00 0.005 0.0050 84.7 4.93 0.005 0,005 9.7 5.54 67, 3.73 0.034 0.03%0
10i1.0 5.67 0.004 0.0u40 w20 5.87 U005 0.005 110.0 6.1l 9.5 4,42 0.012 0.0120
92.9 5.16 0.005 0.0050
107.0 5.8 0.004 0.0040
x(m) 1.5 2.0 3.0 5.0
x 8.33 11.11 16. 66 2.1
: ] z T T H 1 T T, z ] T T 1 : T T
{’E-*] ' II. L‘-J u II‘ {w u Il. (5!) u \'-
1.0 0.0 0.31 0.0733 i.e 0.0 0.635 0.0397 1.0 0.06 1.000 0.037 1.0 0.06 1.000 0.0310
6.2 0.35 0.575 D.u9l4 5.8 0.32 (1] 6.3 0.35 0.946 0.03489 6.3 0.3 0.850 0.0430
11.4 0.64 0.723 0.0680 12.1 0.87 0.781 0.07%7 1558} 0.66 0.859 0.0721 1.7 0.65 0.847 0.0859
16.7 0.93 0,634 0.1020 18,2 0.90 0.610 0.1150 15.7 .87 0.7 0.1170 8.1 1.00 0.505 0.13%30
0.1 1.2 0,344 0.1320 19.1 l.0& 0.344 0.1400 19.1 1.06 0.533 0.1400 23,1 1.29 0.3%7 0.1350
7.1 1.51 0.350 0.1540 5.1 1.58 0,400 0.1580 5.2 1.29 0,427 0.1450 9.5 1.64 0,333 0.1430
347 1.93 0.282 0.1500 3.3 1.90 0.257 0.18d0 8.5 1.58 0. M1 0.1530 40.1 ..23 U.253 0.1540
41.0 2.28 0.134 0.1110 3.8 Pt b § 0.143 0.1J00 37.3 2.07 0.255 0.1590 8.3 2.69 0.202 0.1430
48.0 2.67 0.081 0.0723 517 .87 0034 J.0748 46.9 2.61 0l 0.12%0 59.0 3.28 0.143 0.1170
58.2 3.23 0.062 0.0584 33,3 3.2 J.00b 0.0614 58.5 3.25 0.082 0.0748 63.0 3.83 0.09 0.0859
68.3 3.1 0.038 0.0378 [T H] .83 0.043  0.0401 08,5 3.69 0.056 0.0531 76.8 .27 0.039 0.0567
79.8 4.43 0.015 0.015 T8.9 4,55 0,02 0.0198 T4.4 4.13 0.041 0.0403 B85.7 4.7 0.030 0.0290
9.0 5.11 0.006 ©.0060 2.3 5.13 0.008 0.0080 ar.3 4.85% 0.017 0.0170 95.6 5.3 o.o0le 0.0160
105.5 5.88 0.004 0.0040 108.7 5.47 0.005 0.0050 100.8 5.60 0.007 0.0070 1086.2 5.90 0.009 0.0030
1218 b.78 2,004 0.0040 118.5 847 0.004 0.0030 122.5 6.81 0.006 0.0060
x(m) 7.0 5.5 9.5 il.0
x 38.88 47,33 52.77 61,11
2 t T T z z T T z H T T z z T T
(cu u u_ (ca) u u, (en) u u_ (ca) u u_
1.0 0.06 0.976  0.0350 1.0 0,00 0,944 0.050 1.0 0.8} 0.0300 1.0 06 0.553 0.0400
T4 0.41 0.830 0.0420 =0 0.33 0,333 0.0350 7.3 0.830 0.0320 6.1 M 0.67¢ 0,0420
13.5 0.75 0.700 ¢.0980 4.0 0.78 d.683  0.1050 4.0 0.718 0.0883 10.8 .53 0.596 0.0540
19.2 1.06 0.453 0.133 19.0 1.06 0,482 D.1340 17.8 0.564 0.1310 6.9 94 0.501 0,150
4.5 1.3 0.37¢ 01370 3.8 .52 0.388 D.1420 2. 0.375 0.1360 20.7 .21 0.351 0.1470
4.8 1.94 0.294 0.14e0 32,7 | £ 4 0.296 0.1430 .l 0.298 0.1370 3.6 . ) 0.284 0.1370
4.4 2.47 0.237 0.1450 . J 2.35 0.2% D0.l410 42,2 0.254 0,1410 4.4 & 0.221 0.1400
53.3 2.9¢6 0.198 0.1360 50.4 2.80 0.2 0.1340 51.4 0.213 0.1340 50.7 a2 0,195 9.1330
59.0 3.8 0.185 0.140 59.0 3.8 a. 0.1520 9.0 0.184 0.1320 59.0 3.2 0.1e9 ©.1280
6.5 3.58 0.156 0.1230 L5 3.97 o, 0.1140 4.0 0.136 0.1130 66.0 3.67 0.151 0.1
5.2 4.18 0.099 0.0870 ta.8 4.8 o 0.0975 40.3 0.114 0.097% 740 a1l 0.130 0,1080
6.2 4.79 0.056 0.058 8.0 4.92 0.07 0.0740 B3.3 0.081 0.0750 1.6 4.53 0.105 0.09%0
99.7 5.54 0.019 0.018s 101.% 5.63 0. 0.0300 98,2 0.058 0.0550 89,3 4,56 0.07 0.0750
113.8 6.31 0.010 0.0100 114.3 6. 35 0. 0.0150 105.4 0.027 0.0260 9.6 5.42 0,055 0.0550
122.5 6.81 0,008 0.0080 129.5 7.19 5 0.0080 116.8 0.014 0.0140 105.8 5.58 0.031 O0.080
132.0 0.009 0.00%0 124.0 689 0.015 0.0150
xlm) 1z.0
x b6 .66
z i T T
t‘_-_l_ “ ll.
1.0 0.08 0.470 0.0912
b4 0.3 0.4089 0.1050
2.1 0.67 0.420 0.1240
0.0 1.1 0.369 0. 1485
9.7 1.82 0.273 0.1330
2.2 2.35 0.201 0.1280
51.7 2.87 0.1% 0.12583
59.0 3.28 0.158 0.1190
69,7 3.8 0.136 0.10%0
7.6 4.31 0.114 0.1000
85.5 4.75 0.089 0.0840
94.7 5.3 o.oel 0.0590
109.3 &.07 0.027 0.0270
124.5 6.92 o.013 0.0132
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TABLE 2 - & - HIC
VERTICAL TURBULENCE INTENSITY - Half Density Canopy

2(m) L] 0.3 0.6 1.0
H ] 1.66 3.33 5.55
i T T : H T T H i T T T i T T
:. - ", (cn) - . {ca) Ll v, (cn) - N
3.5 0.19  0.07¢ 0,034 113 0.118 0.071 12.7 0.70  0.340 0.0M 7.9 0.44  0.331 0.045
9.5 0.53  0.066 0,038 1.26  0.052 0.037 171 0.95  0.295 0.078 12.1 0.67  0.271 0.030
4.8 0,82 0.078 D.051 8 L.t 0.U51 w04l 19.6 1.09  0.335 0.151 16,0 0.89  0.256 0.041
18.7  L.04  0.07v 0.053 35.8  1.99  0.057 0.udy 2.9 1.27  0.229 0.144 18.1 1,00 0.239 0.057
5.4 141 u,0e8 0,032 35,0 2,30 0.034 0.050 5.5 1,42 0.224 0.159 2.0 1.22  0.232 0.077
32,1 1.7%9 0,074 0.06) 53.8 2,95  0.046 0.044 29.0 1.61  0.062 0.049 22, 1.50  0.183 0.114
40.6 2,26 0.054 0.048 52.0  3.44  0.027 0.026 36.1 2.00  0.037 0.483 34.1 1.89  0.056 0.084
9.5 .75 0.041 0.038 69.9 3,88 0.013 0.013 4.9 2,50  0.045 0.042 4.5 .31 0.040 0.038
57.6  3.20 0,028 0.027 8.0 4,33 0.007 0,007 53.8 2.99  0.046 0.034 51.7  2.88  0.050 0.048
66.0  3.67  0.011 0.011 62.6 3.48  0.029 0.028 62.0 3.44  0.038 0.057
75.5  4.08  0.009 0.009 7.4 3.97  0.020 0,020 68.9  3.83  0.022 0.022
80.3 4.46  0.008 0.008 78.3  4.35  0.007 0.007
87.0 4.83  0.005 0.005 $8.5  4.92  0.002 0.002
x(m) 1.5 .0 3.0 5.0
i 8.33 1.1 16.66 .1
- > = T i T T
T T 'l'_. t T 'I"- l:ll L i v (:.] z o .
0.51  0.122 0.013 0.87  0.216 0.038 13.9 0.77  0.113 0.014 9.3 0.5  0.405 0.032
0.77  0.284 0.031 122 0.178 0.044 18.8 1.05  0.245 0.059 14.5  0.81  0.408 0.08l
1.08  0.299 0.064 1.63  0.160 D.082 3.0 161 U.159 0.090 19.5  1.08  0.336 0.095
1,28 0.257 0.082 214 0,152 0.1 20.3 .24 0.193 0.135 2.8  1.49  0.138 0.098
1.56  0.207 0.0% 1.45  0.092 0.073 4.8 .85 0.148 0.119 37.4  1.08  0.204 O.LI5
1.83  0.150 0.092 .97 0.043 0.039 61.0 3.39  0.073 0.067 /.7 176 0,171 0123
2.32  0.048 0.040 3,39 0.041 0.039 7.0 3.94  0.038 0.037 82.0  3.44  0.119 0.101
2.85  0.038 0.035 3.89  0.035 0.034 81.7 4.54  0.021 0.021 72,7 4.04  0.058 0,054
3.60  0.033 0.032 431 0.023 0.033 95.0 5.28  0.006 0.006 84.59 4,72 0.028 0.027
419 0.017 0.017 4.89  0.009 0.009 96.4 5.3  0.009 0.008
4.78  0.008 0.008 109.0  6.06  0.007 0.007
x(m) 7.0 8.5 9.5 1
i 38,88 47.22 52.77 61,11
H i ) 3 T t i T, T, 1 H T, T H i T, T,
_{co) I )| s (cm) b _(em) -
15.1  0.84  0.342 0.065 14.3 080 0.077 0,012 14.7 0.82  0.211 0.034 136 0.76  0.194 0.038
18.3  1.02 0.272 0.07% 0.7 115 0.180 0.058 18.7 1.04  0.143 0.039 18,2 100 0.153 0.950
22.5 1.25 0.2 0.07% 9.8 1.66  0.189 0.073 5.2 1.40  0.143 0.055 22,1 1.2%  0.128 0.050
29.4 1.6 0.114 0.038 39.7 .21 0.149 0.082 3.0 2.00  0.109 0.054 29.9 1,66  0.119 0.063
38,1 2.12  0.lu8 0.038 47.0 2.6l 0.136 0.084 45.0 2.30  0.122 0.071 40.5 2,25 0.1 .07
48.7  2.71  0.108 0.070 50.5  2.81  0.124 0.081 51.0 2.83  0.114 0.073 2.9 2.9 0,072 0.051
$7.2  3.18  0.107 0.uT9 61.5 3.1 0.104 0.u78 62.0 3.44  0.100 0.074 61.0 3,39  0.0v6 0.05!
63.6 3.5 0.105 0.083 "l,Y LuE 0.076 0.0u3 75.8 4.21  0.076 0.065 70.4 3,91  0.070 0.059
73.8 4.10 0.089 0.075 4.1 4.67 Q.04 0,038 83,3 4.90 0.055 0.051 82.1 4.58 .06l 0.0%
B84.8 471 0.052 0.049 96.5  3.36  0.018 0.017 100.9 5.80  0.031 0.030 92.7  5.15  0.040 0.039
96.7  5.87  0.023 0.012 108.5  6.03  0.013 0.013 109.0 6.06  0.018 0.018 101.5  5.64  0.039 0.039
108.5  6.03  0.012 0.012 y 110.0 6.1l 0.028 0.02
X(m) 12
x 66,66
3 z T T
E‘-? - N-
w0 022 0.133  0.030
9.4 0.5 0.102  0.029
16.6  0.92 0.146  0.05)
2.4 124 0.188  0.077
32.5 1.80 0.144 0,075
4.0 244 0.140  0.088
52.5 .92 0.116  0.081
631 3.51 0.092  0.072
73,7 4.0 0.069  0.060
8.7 4T 0.048  0.045
95.3 5.9 0.043  0.042

10,5 614 0.022  o0l02
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3. Shear Stress

The measured turbulent shear stress -uw data are summarized in
Tables 3-FDC and 3-HDC. The results for the FDC case are displayed in
Figs. 5.26a and 5.26b. For the HDC case the results are shown in Figs.
5.27a and 5.27b. In these tables the shear stress is made dimensionless
using -uw [o,1] , i.e., the turbulent shear stress at the top of canopy

leading edge (at x, z = 0, 1).
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TABLE 3 - FDC
TURBULENT SHEAR STRESS - Full Density Canopy

<Ge[0,1] = 1020 {ca/sec)?

2(m) -1.0 ] 0.3 0.6
2 -5.55 0 1.66 3.33
1 1 Bre nfs,z] z i i W a,z) T H -uw Uwx,: H -uw W la,]
(ca) /) oty | tem tars)t o) (ea) ews)? oy | e temrs)?  T10 1)
2.0 0.11 7 .28 30 0.7 830 0.62 0 o1 582 0.57 3.0 0.167 70 0.07
5.8 0.31 32 0.32 7.5 0.42 511 0.50 1.0 0.39 Nl 0.30 5.5 0,36 125 0.12
9.0 0.50 w2 0.29 1.0 0.81 800 0.78 12.5  0.89 [ 0.07 12.5  0.69 0 0.02
14.0 0.78 Al 0.41 15.0  0.83 966 0.95 15.0  0.83 31 0.03 16.0 0.89 6 0.01
19.5 1.08 490 0.48 16.0  0.89 969 0.95 19.0  1.06 6732 6.66 0.5 1.4 212 1.7
26.5 1.47 530 0.82 L0 17 1081 1.08 30 1.28 323 1.2 7.0 1.50 1671 1.64
35.0 1.94 462 0.45 8.0 136 1047 1.03 3.0 1.7 517 0.57 33,5 1.8 472 0.66
44,5 2.47 253 0.2 33,0 .11 89 0.7 a0 228 700 0.69 wo 217 an 0.46
51.5 2.8 137 0.13 45.0  2.66 454 0.45 50.5 2.8l 570 0.586 45,0 2.50 493 0.48
60.0 3.3 7 0.07 60.5 3.3 256 0.25 59.5 .31 439 0.43 53.0  2.94 491 0.48
3.0 4.06 9 0.01 70.5  3.92 86 0.06 0.0 3.89 130 0.13 63.0  3.50 342 0.34
74.0 4.1 37 0.036 7.0 4.28 73 0.07 70.5  3.92 157 0.15
8.0 4.50 11 0.01 9.5 4.9 4 0.04
91.5  5.08 6 0 *
x(m) 1.0 15 2.0 3.0
x 8.33 1.1 16.66
z z z U uwix, 2 H H U ﬂjl.ll 1 z -uw X, %
(em) (cm) (eats)? ‘_*_:l%i' (em) (eass)? =0, | . )t Tt
3.5 0.19 2.5 0.14 6 0.01 35 0.19 1 0 .0 0.1l 1 [
1.0 0.39 6.0 0.33 4 0 6.5 0.3 2 0.02 7.0 0.39 27 0.03
1.5 0.64 9.0 0.30 19 6.02 0.0 0.56 28 0.03 11.0 0.61 112 0.12
14.0 0.78 12.5 0.49 ™ 0.07 16.0  0.89 204 0.20 15.0  0.83 955 0.94
18.0 1.00 16.0 0.92 368 0.38 19.5  1.08 s12 0.31 2,0 1,22 1512 1.48
3.0 1.28 0.0 1.11 726 0.71 3.5 L3 M0 0.92 .5 1,58 1848 1.81
9.5 164 6.5 1.47 1583 1.55 3.0 LL72 1630 1.62 37.5  2.08 2320 Pl
34.5 1.92 32.5 1.81 2508 1.46 0.0 22 1554 1.52 4.5 247 2271 1.23
4.0 2.33 37.0 2.06 2765 2.7 9.0 2.72 657 0.64 9.0 .72 2382 1.3
51.0 2.83 4.0 .04 1406 1.38 61.0  3.39 210 0.21 58.5  3.25 1000 0.98
61.0 3.3 52.0 .89 512 0.30 84,5 .58 228 0.22 67.5  3.75 06 0.30
0.0 3.89 6i.5 3.42 309 0.30 75.0 4.7 185 0.18 7.5  4.2% 17 0.17
7.0 4.28 12.5 4.03 2 0.22 875 4.8 i 0.05 85.5 4.7 7% 0.07
85.0 “n 2.4 .58 55 0.05 02,0 5.87 1 0 94.5  5.22 W 0.03
93.5 5.19 9 0.01 102.5  5.69 ] 0
x(m) 5.0 7.0 9.5
i 27.17 38,88 $2.77
T i z i R L | H i jr ™ [x,2 1 i S uw[x,:
(cm) tes) /s o) (em) e/} gy | (em) {eass)? =07
2.0 0.11 2.0 0.11 a1 0.04 2.0 0.1 0 2.5 0.4 20 0.02
5.5 0.36 6.5 0.3 32 0.03 .5 0.36 5 0 7.0 0.3 45 0.04
1.5 0.64 10.5 0.58 44 0.24 10.5  0.58 168 0.16 1.0 0.61 a4 0.42
15.0 0.83 15.5 0.6 1081 1.06 14.5 0.8 684 0.67 15.5  0.86 1195 1.17
18.0 1.00 .0 147 1160 1.14 19.5  1.08 854 0.84 19.0  1.06 640 0.63
3.5 1.31 30.0 1.68 1219 1.20 6.0 1.4 1103 1.08 7.0 1.50 11 0.70
3.8 1.75 36.5 2.03 1282 1.26 30 1. 500 0.88 36.5  2.03 784 0.77
41.0 2.28 44.0 1.44 1791 1.76 43.0  2.39 838 0.82 45.5  1.53 922 0.90
50.0 2.78 50.0 2:78 2043 2.00 51.5  2.86 1049 1.03 52.0  2.89 07 0.69
60.0 3.33 56.5 LN 1733 1.70 6.5 .42 1122 1.10 60.5  3.36 1018 1.00
72.0 4.00 64,5 .58 1351 1.2 7.0 3.94 846 0.33 62,5  3.47 1180 1.16
9.0 3 72.0 4.00 622 0.61 BL.S  4.53 855 0.64 7.0 3.94 1035 1.01
89.0 494 8.0 4.30 303 0.30 9.0 5.06 320 0.31 a2 4.56 788 0.77
91.0 5.00 72 0.07 101.0 5.6l 69 0.07 91.5  5.08 701 0.69
103.0 5,72 207 0.2
x(w) 1.0
x 61,11
i z -uw “"I'!‘I
(ca) (em/s)? =
mie,1]
2.0 0.11 17 0.02
6.5 0.36 19 0.02
1.5 0.64 189 0.20
16.0 0.92 119 2.07
1.8 1.19 1063 1.04
3.5 1.64 762 0.75
40.0 .1 01 0.69 N
#6.0 2.56 68 0.48
54.5 3.03 815 0.0
60.5 3.3 883 0.67
67.0 5.2 952 0.93
3.0 4.00 803 0.7
82.5 4.58 590 0.59
91.5 5.08 439 0.43
100.5 5.58 288 0.29
112.0 6.22 58 0.06
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TABLE 3 - HDC
TURBULENT SHEAR STRESS - Half Density Canopy

-un[0,1] = 850 (cm/sec)?

i) 0 0.3 0.6 1.0
x L] 1.66 3.33 5.55
t e Geln,z) L] i - wx,z] : i v wx,z] ] i i awfx,2]
(cm) (emis)? W1y | (¥ feals)®  Ton) tea) ea/s)? gy | (em) )t o il
3.5 0.19 Jod 0.43 4.0 0.2 53 0.06 3.5 0.19 B8l 0.096 4.0 0.22 158 a.18
9.5 0.53 632 0.74 2.0 0.50 2 0.026 8.3 0.46 121 0.142 7.9 0.44 194 0.46
14.8 0.82 817 0.96 13.2 0.73% 24 0.028 12.7 0.7 97 0.114 12.1 0.67 4
18.7 1.04 Ble 0.97 0.3 1.13 BO& 0.9 17.1 0.95 731 0.86 16.0 0.39 354 0.42
5.4 1.41 1354 1.59 3.1 1.28 149 1.7 19.8 1.09 3047 3.58 18.1 1.01 B58 1.01
3z 1.79 830 0.98 5.8 1.80 624 9.73 22.9 1.27 4041 4.75 2.0 1.2 1813 2.13
40.8 2.26 498 0.59 35.8 1.99 629 0.74 5.5 L.42 FEI Y 3.19 7.0 1.50 792 3.2
48.5 .75 387 0.43 45.0 2.50 505 0.59 9.0 1.6 1094 1.29 M.l 1.89 1010 L.19
51.é 3.20 146 0.17 53.2 2.95 343 0.40 3601 2.00 473 056 41.5 2.3 419 0.49
5.0 3.67 39 0.08 62.0 344 125 0.1% 4.9 2.50 497 0.58 §1.7 1.88 422 0.5
3.5 4.08 I 0.01 9.9 3.88 37 0.04 53.8 2.9 365 0.43 62.0 3.4 35 0.28
78.0 4.13 ] 0.01 62.6 3.48 132 0.16 68.9 3. 1 0.138
7.4 3.97 120 0.14 78.3 4,35 15 0.02
80.3 4.46 2 0.03 88.5 4.92 7 0.0l
B87.0 4.83 7 0.01
2(a) I8 2.0 3.0 5.0
z 5.55 11.11 16.66 7.1
3 i By v (x,1] : i - G [a,: t : -uw uw[x,2] z i fry T lx,2
(ea) (ea/s)? = 0,11 (e=) tears)® o 0.1 (em) (ca/s)? =o.] | W (cass)? (0.1
3.5 0.1 T4 0.9 3.0 0.17 5n o0.04 3.0 0.17 0 0.02 4.0 0.22 i 0.0l
9.2 0.51 114 0.1% 9.7 0.54 187 Q.13 10.0 0.56 38 0.12 9.3 o0.52 168 0.20
15.8 0.77 233 0.27 15.7 0.87 637 0.75 13.9  0.77 a1l 0.48 4.5 0.81 509 1.07
19.5 1.08 207 1.07 2.0 1.22 164l 1.93 18.8 1.05 981 1.18% 19.5 1.08 1255 1.48
3.0 1.28 1673 1.87 9.4 1.63 1878 .5 9.0 1.81 1851 1.4 6.0 1.45 1452 1.7
8.0 1.56 1895 2.23 38.5 .14 1920 2.6 40.3 2.2 a4l 2.87 it 2.08 21T 2.5%
330 1.83 1z .50 44, 2.45 942 L.l 47.6 1.65% 1583 1.8 49.7 2.76 2236 .83
41.8 . 723 0.8% 32.8 .9 417 0.49 61.0 3.3 626 0.74 62.0 3.4 1387 1.80
51.4 2.85 404 0.48 61.0 3.39 16 0.25 7.0 3.94 180 0.21 72.1 404 574 0.68
4.8 3.60 nr 0.28 70.0 3.8 127 Q.15 BlL.7 4.54 50 0.06 84.9 4.72 124 0.15%
75.4 419 92 0.11 7.6 4.31 &0 0.07 95.0 5.28 3 0 96,4 5.36 14 0.02
86.0 478 6 0.01 85.0 a8 " 0.01 109.0  6.06 3 0.004
x(m) 7.0 8.5 9.5 1.0
x 38.88 a.22 52,77 61,11
T 3 -y IIUIK!SI H H - z H - Il‘:! z z - I’ﬁlﬁltl
(em) (eafs)? =(o,1] Lem) feass)? (em) teais)! Tty | tem ) =t
4.5 0.25 18 0.21 3s 19 L] 0.01 3.5 0.19 1 L] 3.0 0.17 2 ]
9.8 0.55 194 0.23 3.0 50 L] 0.08 8.9 0.50 12 0.02 8.3 0.46 72 0.08
15.1 0.84 1042 1.2% 14.5 80 75?7 0.89 14.7 0.82 803 0.5 13.6 0.76 98 0.84
18,3 1.02 1301 1.53 0.7 15 305 1.06 18.7 1.04 1068 1.26 18,2 1.01 1081 1.27
2.5 1.2% 1541 1.81 9.4 £ 1197 1.41 5.2 1.40 951 1.12 421 1.2 928 1.09
9.4 1.83 T2 1.38 3.7 21 1508 L7 36.0 2.00 1295 1.52 9.9 1.66 825 0.97
3.1 2.12 1554 1.83 47.0 &l 1836 .18 5.0 1.50 1361 1.60 40.5 2.25% 1230 1.45
48.7 .71 1655 1.95% 50.5 L1} 1303 1.53 51.0 1.83 1288 1.52 51.9 .94 787 0.93
57.2 3.18 1478 1.7 61.5 @ 1515 1.78 62.0 3.8 1325 1.56 61,0 339 871 1.02
63.6 3.53 1336 1.57 7.7 98 178 1.38 5.8 4.21 954 1.17 70.4 3.9 1N 1.38
73.8 4.l0 BiS 0.97 B4.1 87 594 0.70 88.1 4.90 636 0.75 12.1 4.56 625 0.74
848 471 405 0.48 96.5 36 114 0.13 100.9  5.60 121 0.14 92,7  5.15 340 0.40
96.7 5.37 41 0.05 108.5 .03 42 0.05 108.0 6.06 53 0.06 101.5 5.84 122 0.26
106.5 6.03 1 0.02 10,0 6.1 104 012
z(a) 12.0
i 66.66
£ z -uw uwix,2
@ @m S
4.0 0.2 02 0,24
9.4 0.52 485 0.57
16.6 0.82 843 0.99
2.4 1.24 1320 1.55
2.5 1.80 885 1.04
44.0 .44 1168 .37
52.5% .92 9 1.17
63.1 3.51 1012 1.19
3.7 4.10 1049 1.2
847 a7 575 0.68
95.3 5.29 251 0.30
110.5 6.14 0 0.04
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4. Boundary-layer thicknesses and integral parameters.

The boundary-layer thickness, displacement thickness, momentum
thickness, shape factor and internal boundary-layer thickness data are
tabulated in Tables 4-FDC and 4-HDC. In these tables the fractions of
displacement thickness and momentum thickness over the canopy height
are also summarized. The results are shown in Figs. 5.9, 5.10, 5.11,
5.12 and 5.31. The dimensionless thicknesses are referred to the

canopy height h = 18 cm.
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TABLE 4 - FDC

BOUNDARY - LAYER THICKNESSES AND INTEGRAL PARAMETERS - Full Density Canopy
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S. Turbulent energy

The one-dimensional wave-number density function data at x = 7m
(i = 38.88) are summarized in Tables 5-FDC and 5-HDC. The results are
displayed in Figs. 5.37 and 5.38, respectively.

The energy dissipation and energy production for both canopy den-
sities computed using Eqs. (5.27) and (5.32), respectively, are
tabulated in Table S-EEp.

The discretized energies at four selected waveleﬁgths for the FDC
and HDC cases are tabulated in Tables 5-DE-FDC and 5-DE-HDC, respectively.
In these tables the discretized energy is made dimensionless employing
the energy at same wavelength at the top of the canopy leading edge
(at x, z = 0,1) denoted by EE[L]. The results are displayed in

Figs. 5.43a, 5.43b, 5.44a and 5.44b.
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TABLE 5 - FDC
ONE-DIMENSIONAL WAVE-NUMBER DENSITY FUNCTION - Full Density Canopy

x s %a, x>+ 38.88

t(ca) 18.5 4.0 40.5 57.5 £7.0
i 1.03 1,38 2.15 3.19
n k #lx] 8 k #lx) n k #[x] n k #k] n
(Hz) (col)  (cm) (Hz} (em=l)  (cm) (Hz} (ea~ly (cm) (Hz) tea"d)  (cm) (Hz)
3.0 0.1 470 2.9 0. 3.7978 3.0 0.06  5.9582 2.9 0.04 49712 1.6 i
4.2 0.15  4.6033 4.1 0. 27,7958 4.1 0.08 5.8476 ' 0.06  8.5663 a3 .
6.4 0.24  2.8163 6.4 0. 1.0888 5.2 0.12 2.8027 6.5 0.09  5.5529 6.1 7
9.8 0.3 1.2142 9.8 0. 1.2683 9.5 0.18 1.2865 10.2 0.14  1.7693 9.5 :
14.1 0.51  0.9258 4.3 0. 0.6251 13.9 0.26 1.0618 13.8 0.19  0.9078 13.0 5
18.1 0.66  0.4538 1.1 0. 0.3816 19,2 0.35 0.5927 1.1 0.29  0.8583 18.2 0.21 0.9459
2.1 0.8  0.3084 5.7 0. 0.3562 4.5 0.45 0.2901 6.1 0.3  0.6582 0.8 0.24 0.7499
26.4 0.97  0.1738 35.0 0. 0.2311 3.8 0.59 0.2442 30.5 0.42 = 0.3178 4.7 0.54 0.2370
9.4 1.07  0.2066 39.0 0. 0.1524 48.0 0.89 0.1854 9.2 0.54 * 0.2661 85.7 0.76 0.1483
33.9 1.24 0.205% 43.8 1. 0.1080 53.5% 0.99 0.1187 57.4 0.79 0.1322 93.4 1.08 0.0661
50.5 1.85 01297 5.2 1. 0.0798 64.3 1.19 0.1005 n.2 0.98  0.0853 143.5 1.66 0.02
5.2 .38 0.0963 0.8 1.3 0.052 1.3 1.71 0.0485 98.0 1.3 0.0542 193.7 .24 0.0118
T1.5 21.83 0.0455 139.2 LR o.0187 l40.0 2.59 0.0302 111.8 1.54 0.0373 274.4 .22 0.0059
91.9 3..5  0.0269 159.6 1. 0.0130 178.8 3.30 0.0160 135.2 2,00 0.0268 460.0 5.32 0.0024
134.0 4.98 o.0127 205.1 L1 0.0075 225.1 416 0.0095 185.9 2.56 0.0200 570.6 6.60 0.0011
159.7 5.83  0.0105 2414 6. 0.0047 78,6 5.15 0.0056 3.2 3.35  0.0117 703.8 814 0.0006
197.9 7.23  0.0080 38.7 8. 0.0028 .7 £.92 0.0025 336.9 4.64  0.0083 953.7 11.13 0.0002
238.1 8.69  0.0022 3931 1 0.0015 451.9 8.35 0.0017 466.9 6.43  0.0028
296.8  10.84  0.0023 465.8 1177 0.0008 538.7 9.80 0.0012 582.3 8.02  0.0014
384.0 14.02 0.0008 583.1 14, a.0003 560.5 10.38 o.0010 731.9 10.08 0. 0005
$38.2 19,65  0.0003 613.0  11.32 0.0006 839.4  11.56  0.0003
813,7 15,03  0.0002
TABLE 5 - HDC
ONE DIMENSIOMAL WAVE NUMBER DENSITY FUNCTION - Half Density Canopy
xeTa, x= 3888
2(cs) 19.2 2.4 § 53.3 5.2
i 1.07 1.24 2.96 4.18
n 3] n k wlk) n 13 [103] n Ky olk]
(iz) en!) (eal (#:] fea”l) (ce) (He) (ea~d) (en) (Hz) (en™) (cm)
2.8 0.11 37741 3.2 0.09 7.7407 .6 0.04 10.9664 2.5 0.03 16.1813
‘4 0.17 1.8924 4.2 0.12 2,8697 6.0 0.06 4.8921 4.2 0.05 10.2891
6.5 0.25 1.5428 6.0 0.17 1.9095 5.9 0.09 40829 5.9 0.07 4.0280
9.5 0.37 0.8807 3.8 0.28 1.iT20 10.0 0.15 2.4112 10.1 0.12 3.1897
14.2 0.58 0.6134 13.7 0.39 0.8844 14.5 0.22 1.5663 14.3 0.17 1.7070
18.1 0.70 0.2534 193 0.55 0.4043 0.4 0.31 1.2007 18.5 0.22 1.5751
0.6 0.80 0. le45 24.2 0.69 0.4238 26.4 0.40 0.3767 21.8 0.26 0.8581
4.3 0.54 0. 1698 338 0.95% 0.2571 38.9 0.59 0.2082 26.0 0.3
8.8 1.11 0.1170 44.5 1,27 0.1321 4.8 0.68 0.1694 31.9 0.38
32.5 1.26 0.1124 61.3 1.75 0.0780 52.7 0.80 0.1086 53.7 0.64
45.9 1.78 0.0801 85.4 2.45 0.0432 6.6 0.98 D.0888 69.7 0.8% 0.084]
61.4 2.42 0.0626 114.2 1.62 0.0262 7.9 1.09 0.0642 B4.8 1.01 0.0600
12.8 1.82 0.0302 189.9 5.42 0.0088 82.4 1.25 0.0507 99,0 1.18 0.0432
89.5 3.a7 0.0238 I08.4 5.95% 0.0076 108.4 1.66 0.0399 120.0 1.45 0.0255
2 4.35 0.0131 5.6 7.01 0.0040 166.8 2.53 0.0150 218 .64 0.0139
132.6 5.14 0.0081 318.1 9.08 0.0026 45.9 3.1 0.0094 276.1 3.29 0.0034
161.5 6.26 0.0067 362.2 10.34 0.0020 330.3 5.01 0.0056 400.3 4.1 0.0027
207.2 8.03 0.0072 79,6 13.69 0.0004 397.0 6.02 0.0033 551.4 £.57 0.0019
3.0 9.07 0.003. 532.5 15.20 0.0004 490.4 T.44 0.0026 638.6 7.81 0.0015%
254.8 9.87 0.0017 631.9 15.04 0.0002 800.0 9.10 0.0017 853.5 10.17 0.0002
284.3 11.02 0.0012 708.0 10.74 0.0010
322.0 12.48 0.000¢ 795.7 12.07 0.0005
w417 17.12 0.0002 949.2 14.40 0.0002




TABLE S5 - EEP
ENERGY DISSIPATION AND ENERGY PRODUCTION
x =7m, X = 38.88

Full Density Canopy

Half Density Canopy

7 z € Ep E/Ep z z € Ep e/Ep
(cm) (cm?/sec?) (cm?/sec?) (cm) (cm?/sec?) (em?/sec3)

18.5 1.03 30500 11950 2.55 19.3 1.07 73600 15000 4.91
23.9 1.33 31500 10000 3.15 22.4 1.24 66400 15000 4.43
40.5 2.25 23900 5500 4.35 53.3 2.96 30800 8700 3.54
57.4 3.19 20500 5000 4.10 75.2 4.18 16500 3000 5.50
86.9 4.83 9600 1500 6.40

v = 0.189 cm?/sec

6S1
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5 - DE - FOC

TABLE
DISCRETIZED ENERGY - Full Demsity Canopy

Lica) 62.8 12.6 2.15 0.83
x A x Y o) : Ty ; WLl i 2 =i WL ; i
(m) (em) (ca/s) (em/s) ;:-lhl (em/s) L] (enfs) :sll-l
1.0 0.78 50.4 a5 0.80 0.57 L4 0.0098 1.10
15.0 1.0 472 5.7 1.00 0.50 1.00 0.0087 1.00
[} 0 34.2 1.8 4.4 25 0.43 0.27 0.55 0.0042 0.48
6.8 2.8 18.7 1.4 0.25 0.14 0.27 0.0011 0.13
57.1 317 51 0.5 0.08 0.02 0.05 0.0011 0.13
15.5 0.86 36.2 6.40 6.05 12.20 0.0666 7.88
% LG 19.1 1.08 801.0 12.70 67.0 1.80 5.78 11.65 0.2810 12,30
: : 32.0 1.78 53.6 114 5.2 0.92 0.71 1.44 0.0090 1.03
57.1 17 35.0 0.74 32 0.56 0.24 0.49 0.0048 0.55
121 0.67 4.0 70.00 0.5010 57.60
2005 1.14 206.0 0.3 53.7 9.49 4,93 9,94 0.2180 25.00
0.6 3.33 7.5 1.53 352.0 7.46 s 4.86 385 7.76 0.1170 13.40
40.0 2.22 59,1 1.89 E 1.42 0.78 1.56 0.0162 1.8
58.0 3.2 8.0 0.81 7 0.85 0.24 0.48 0.0040 0.46
185 1.08 285.0 50.40 19.30 38,90 0.4780 54,9
- o 27.0 1.50 406.0 5,60 40,5 7.21 5.42 10.90 0.3030 34,8
. : 3.4 208 177.0 3.1 10.0 1.77 1.50 3.00 0.0230 .64
57.4 317 17.9 0.38 1.4 0.25 0.13 0.27 0.0017 0.20
15.5 0.86 250.0 44,20 21,60 43.50 0.3970 15,
1.5 533 349 1.94 11,0 .59 2906 5.23 312 6.29 0.1630 18,7
57.1 37 0.5 0.88 3.3 0.58 0.39 0.79 0.0068 0.7
12.1 0.67 244.0 45,10 16.80 74,20
19.1 1.06 197.6 34.90 1880 37.50 1.0600 122.00
3.0 16,66 500 1.39 451.0 .56 60.5 10.70 7.1 18,30 0.2230 15.80
415 2.47 2340 1.5 198 346 2.00 4.03 0.0770 8.85
63.0 5.50 83.3 1.4 17 0.83 0.51 1.02 0.0060 0.69
18.5 1.03 92.1 16.30 6.95 14.00 0.2170 24.90
-~ 1 23,0 1.28 2.0 7.67 62.5 11.00 8.75 17.60 0.27170 31.80
. . 49.5 2.78 255.0 5.40 3.3 a2 2,68 5.40 0.0937 10.80
72.5 4.03 151.0 3.20 7.9 1.39 0.52 1.04 o.0101 1.16
18,5 1.08 268 5.68 48.4 855 5.93 12.00 0.1140 13.10
3.9 1.33 178 169 34.3 5.06 3.03 811 0.0958 11.00
7.0 38.88 0.5 13 241 5.1 16.7 .95 217 a3 0.0665 7,64
57.4 118 32 5.93 0.6 364 2.0 .64 0.0442 5.08
8.9 18 162 .01 a1 1.43 0.50 1.01 0.0189 217
18.0 51 5.32 70.9 12.50 10.2 20.60 0.1730 19.90
9.5 52.77 39.1 17 323 6.8 7.0 77 3.33 .71 0.0854 9.82
57.4 19 261 5.53 15.3 2.7 1.7 3.55 0.0383 440
17.5 0.97 0e 17.10 60.8 10.70 5,70 13.70 0.2030 21,30
22.0 1.22 485 10.30 2.1 5.67 a2 B.55 0.1360 15.60
11.0 61.11 41.0 2.28 178 7 0.3 3.59 2.35 174 0.0%0 10.34
58,0 w2 228 483 1.0 1.93 1.57 317 0.0436 5.01
2.1 456 17 2048 5.8 1.20 0.73 1.47 0.0144 1.66
13.0 0.72 7.8 13.70 8.05 16,20 0.2410 .70
19.1 1.06 359 1,61 5.9 13.40 7.93 16.00 0.2150 .7
12.0 66.66 36.5 2.08 2 5,64 2.5 308 2.57 5.18 0.1030 11,80
8.5 325 174 3.69 1.7 2, 1.26 2054 0.0204 1.3
86 470 N 1.57 6.1 1.07 0.44 0.90 0.005 0.57
E{L] FERY 5.02 0.5 0.0093
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TABLE 5 - DE - HDC
DISCRETIZED ENERCY - Half UDensity Canopy

Licm) 62.8 12,8 9.15 0.63
. : : T T I Wl i i) Vo dqy
(m) fcm) (a3} (em/5)* q"_] (ea/s) “?,U-l (em/s) "é["]
11 n.62 145.0 .45 16.10 L.49 1.45 1.38 0.0204 1.48
0 o 2.4 1.19 6.4 0.85 8.52 0.79 0.88 0.84 o.olo7 o.76
48.1 .87 68,2 0.68 1.6l 0.15 0.19 o0.18
56.5 LR L] 9.4 0.29 0.58 0.05
17.5 0.97 99,20 9.18 22.00 20.95 0.456 32.57
0.3 1.66 1.8 1.21 162.4 1.62 19.60 1.81 312 2.97 0.133 9.50
9.7 1.85 0.2 0.60 3.9 0.38 0.57 0.55 0.007 0.50
56.5 3.4 7.5 0.2 0.77 0.07 0.04 0.04
a
11.9 0.66 48.10 4.46 5.40 5.14 0.09% 7.07
0.6 3,38 19.1 1.06 373.2 3,73 55.50 5,14 4.41 4.20 0,209 14.93
8.8 1.60 158.0 1.58 18.3 1.69 1.90 1.81 0.054 .88
43.0 2.39 51.2 0.5l 421 0.39 0.52 0.50 0.007 0.47
11.2 0.62 BL.70 7.58 9.95 .48 0.264 18.86
18.5 1.03 1191.0 11.81 B5.80 T.94 7.06 6.72 0.228 1s5.28
1.0 5.88 2.5 1.47 49,0 469 .70 4.60 5.50 5.4 0.250 17.86
43.6 .42 bi.e 6.3 3.53 0.33 0.49 0.47 0.006 0.43
59.6 in 32.2 . .17 0.30 0.1 0.1
11.3 .83 04.00 15.89 16.10 15.33 0.255 18.21
0.2 L2 123.00 .3 8.72 8.30 0.291 20.78
i .88 7.2 1.51 596.0 5.96 51.70 479 6.17 5.80 0.284 20.28
1. * 3.8 1.92 278.0 .7 17.10 1.58 .28 2.17 0.1 9.21
58.1 3.23 345 0.34 .74 0.25 0.22 0.1 0.002 0.14
68.2 3.79 18.3 0.18 0.96 0.09 0.03 0.03
19.1 1.06 1007.0 10.07 95.00 8.80 13.60 12,95 0.227 16.21
° 16,66 37.3 .07 355.0 3.55 44 30 4.10 4.10 3.90 0.225 16.28
3. o oh .4 3.69 22.9 9.23 2.03 0.19 0.11 0.11
T43 4.13 17.0 0.17 0.96 0.09 0.031 0.03
18.0 1.00 B40.0 &40 100.00 9.26 12.00 11.43 0.254 18.14
3 S5 3.0 1.28 319.0 319 56.80 5.26 6.10 5.81 0.152 1.7
5. * 40,1 2.23 403.0 4.03 38.%0 3.60 3.11 1.9 0.11% 8.50
68,9 3.83 165.0 1.65 12.10 1.12 1.47 1.40 0.008 0.57
19.3 1.07 78,0 678 109.00 10.09 10.60 10.10 0.275 19.64
2.4 1.24 379.0 3.1 58.00 5.37 6.786 L 0.183 13.07
7.0 35.88 53.3 .96 309.0 3.0 22.40 .07 2.2% .14 0.101 .21
5.2 4.18 3.2 0.93 3.3 0.31 0.38 0.38 0.005 0.36
86.2 ] 37.5 0.38 1.38 a.13 0.09 0.08
1.8 0.99 629.0 5.29 76.8 7.1 9.53 9.08 0.295
2.9 1.2? 284.0 .84 83.7 5.90 6.60 6.28 0.214
9.5 52.77 5. 1.73 438.0 4 54,3 5.03 3.83 35.65 0.162
51.1 .84 305.0 3.05 3.4 .91 2.66 1.53 0.123
59.0 3.28 168.0 1.68 0.5 1.90 1.52 2.40 0.088
80.3 4.46 4.7 0,44 0.58 0.55 0.010
16.9 0.94 489 0 188 744 6.89 7.90 7.52 0.241 1.21
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