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ABSTRACT 

 

 

METHODS TO DETECT AND ANALYSE VOLATILE ORGANIC CARBONS  

USING LOW COST REAL-TIME SENSORS 

 

 

VOCs are ubiquitous and can be found not only as vapors in the air but also as soil gas 

and dissolved in ground water. Vapor intrusion occurs when volatile organic compounds from 

contaminated soil or groundwater migrate upwards toward the ground surface and into overlying 

buildings or surfaces through gaps and cracks in the ground.  

In this thesis I have detailed several statistical analysis techniques and used these 

techniques on data that I obtained from active real-time soil gas and ground water quality 

monitoring sensors placed around an abandoned oil and gas well in Longmont, Colorado, to see 

if there were VOCs still being released from the site.  

The main goal of this study was to develop a more precise setup for real-time VOC 

release monitoring and help regulate fracking sites more efficiently and to analyze the data 

collected faster and more accurately. Another goal of this study was to bridge the gap between 

laboratory sampling and real-time on-site testing. From the results, we were able to analyze the 

movement of the contaminant plume using real time sensing and were also able to identify most 

of the constituents of the contaminants using in-situ data according to EPA method 18. 
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CHAPTER 1: INTRODUCTION 
 

 

 

1.1 Background 

Volatile organic compounds, or VOCs are organic chemical compounds whose composition 

makes it possible for them to evaporate under normal atmospheric conditions of temperature and 

pressure (1). This is the general definition of VOCs that is used in the scientific literature and is 

consistent with the definition used for air quality analysis. Though there are a lot of discrepancies 

on which gases should be measured and considered as VOCs since there is no clear and 

universally accepted definition of VOC as each agency employs its own definitions and 

exceptions to the list. The following are some of the definitions of VOCs: 

1. EPA definition - Volatile organic compounds means any compound of carbon, excluding 

carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates and 

ammonium carbonate, which participates in atmospheric photochemical reactions.  

 

2. NPI (Australia) VOC definition: Total VOC are defined as any chemical compound based on 

carbon chains or rings with a vapour pressure greater than 0.01 kPa at 293.15 K (i.e. 20°C), 

that participate in atmospheric photochemical reactions. (Specifically excluded are:  carbon 

monoxide;  methane;  acrylamide;  benzene hexachloro;  biphenyl;  chlorophenols; 

 n-dibutyl phthalate;  ethylene glycol;  di-(2-ethylhexyl) phthalate (DEHP);  4,4-

methylene bis 2,4 aniline (MOCA);  Methylenebis;  Phenol; and  toluene-2,4-

diisocyanate). (2) 
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3. The European Union uses the boiling point, rather than its volatility in its definition of 

VOCs. A VOC is any organic compound having an initial boiling point less than or equal to 

250° C measured at a standard atmospheric pressure of 101.3 kPa. Since the volatility of a 

compound is generally higher the lower its boiling point temperature, the volatility of organic 

compounds are sometimes defined and classified by their boiling points.  

 

VOCs are produced both naturally, by plants, animals, microbes, volcanoes and forest fires, 

and anthropogenically in the form of fuels, paints, refrigerants, cleaning products, adhesives, 

personal care products and aerosol sprays. The results of an American Geophysical Union study 

show total global anthropogenic VOC emissions of about 110 Tg/yr in 2012. This estimate is 

about 10% lower than global VOC inventories developed by other researchers. The study 

identifies the United States as the largest emitter (21% of the total global VOC), followed by the 

(former) USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning 

were among the largest VOC emission sources, accounting for over 35% of the total global VOC 

emissions. The production and use of gasoline, refuse disposal activities, and organic chemical 

and rubber manufacturing were also found to be significant sources of VOC emissions. (3) 

  

On the other hand global emissions of BVOCs are estimated to be about 1150 teragrams of 

carbon per year (TgC year–1, 1 teragram = 10�� g), which exceeds those of their anthropogenic 

counterparts by about a factor of 10. Typically, BVOCs have much shorter atmospheric lifetimes 

than anthropogenic VOCs due to faster reaction rates with OH. (4) 
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Many VOCs form ground-level ozone by “reacting” with sources of oxygen molecules 

such as nitrogen oxides (NOx), and carbon monoxide (CO) in the atmosphere in the presence of 

sunlight. However, only some VOCs are considered “reactive” enough to be of concern.  Some 

VOCs, such as styrene and limonene, can react with nitrogen oxides or with ozone to produce 

new oxidation products and secondary aerosols, which can cause sensory irritation symptoms. 

VOCs contribute to the formation of tropospheric ozone and smog. (5) 

 

The ability of organic chemicals to cause health effects varies greatly from those that are 

highly toxic, to those with no known health effects. As with other pollutants, the extent and 

nature of the health effect will depend on many factors including level of exposure and length of 

time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and 

memory impairment are among the immediate symptoms that some people have experienced 

soon after exposure to some organics. At present, not much is known about what health effects 

occur from the levels of organics usually found in homes. Many organic compounds are known 

to cause cancer in animals; some are suspected of causing, or are known to cause, cancer in 

humans. (6) 
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1.2 Problem statement 

Since there is no universally agreed definition hence there is no well-defined detection 

technique which detects all the VOC compounds of importance. There is also no low-cost sensor 

currently in the market that can accurately identify and quantify all the VOCs of interest. 

Portable Gas Chromatograph enables us to analyze specific VOCs (volatile organic compounds) 

in soil, in the field with the same quality of results obtained from a laboratory but this instrument 

is highly expensive and hence it is not feasible to use multiple gas chromatographs in the field 

for spatial and temporal analysis. This poses a problem to regulatory boards and city officials 

since they cannot efficiently measure, control, and verify if individuals or organizations are 

going over the safe permissible limit and affecting others around them. Hence there is a need for 

analysis techniques using low-cost sensors to better estimate the release of VOCs. 

 

Most industrial emissions of VOCs in the United States are regulated and controlled at 

the source, either as part of ozone reduction or as a hazardous air pollutant. Other sources of 

VOCs include traffic, mobile equipment, area sources such as wastewater lagoons, and some 

natural sources. In a study reported by USA Today in 2008, it was reported that 435 schools 

across the country had been identified as being potentially exposed to dangerous levels of toxic 

industrial chemicals. (7) It was also reported that over half of the nation`s schools are located “in 

what the government calls ‘vulnerable zones’ – areas close to industrial sites that they could be 

affected by an accident”. This widespread awareness of the surrounding potential sources of 

toxic chemicals, as well as all contaminants of concern, when evaluating the cleanliness and 

dependability of the ambient air surrounding new construction sites is necessary. (8)    



6 

 

 

In this thesis I have detailed several statistical analysis techniques and used these 

techniques on real time data that I obtained from soil gas and ground water quality monitoring 

sensors placed around an abandoned oil and gas well in Longmont, Colorado, to see if there were 

VOCs still being released from the site. I performed spatial and temporal analysis on the data 

obtained from low-cost sensors and was able to identify a contaminated underground plume and 

over time was able to identify and trace the movement of the plume spatially by trend analysis 

and event detection techniques. Samples were collected at the site as well and tested in-situ to 

determine the composition of contaminated plume and collaborate the results of the on-site tests. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

 

2.1 Multiple definitions of the term VOCs  

Every regulatory agency has its own definitions of VOCs, some of the various definitions 

from regulatory agencies for VOCs have been described in the table below. 

Table 2.1.  Definition of VOCs and its related compounds by various regulatory organizations 

(Source: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality) 

 

Some agencies like ASTM consider volatility while other agencies like WHO consider 

boiling point of compounds for defining VOCs. In general, liquids with higher vapor pressures 

will have lower boiling points. However, exceptions do exist as described in the example below. 
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 Antoine Equation, an empirical relation between vapor pressure and temperature. Plotting 

the Antoine equation for a set of liquids lets one visualize the relationship between vapor 

pressure and temperature very quickly; these plots are called Cox charts. For example, examine 

the Cox chart below: 

 

Figure 2.1. Cox chart vapor pressure plots (A.S. Foust et al., Principles of Unit Operations [1960])  

 

 Now look at the relationship between ethanol and benzene. At 50 F, benzene has a higher 

vapor pressure than ethanol. At pressures below ~10 psi, the general trend holds, and benzene 

has a lower boiling point. However, the lines for benzene and ethanol cross at ~10 psi, so above 

~10 psi benzene has a higher boiling point than ethanol. 
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Most regulatory boards, including the EPA, CARB and NPI, do not consider methane in 

their list of VOCs. Methane is excluded in air-pollution contexts because it is not harmful. Its 

low reactivity and thus long life-time in the atmosphere, however, makes it an important 

greenhouse gas. Non-methane volatile organic compounds (NMVOCs) are a large variety of 

chemically different compounds, such as benzene, toluene, xylene, formaldehyde, cyclohexane, 

trichloroethane. NMVOCs are volatile organic compounds, but with methane excluded. An 

important subset of NMVOCs are the non-methane hydrocarbons (NMHCs). Sometimes 

NMVOC is also used as a sum parameter for emissions, where all NMVOC emissions are added 

up per weight into one figure called TVOC (total volatile organic carbon). (9)  

 

2.2   Sensors to detect VOCs 

Detecting VOCs is highly dependent on the method used for its detection. This depends on 

the sensors used for its detection and the VOC’s that it is capable of detecting. The most popular 

real-time sensors currently commercially available for the measurement of volatile organic 

compounds (VOCs) in outdoor and indoor air are classified into:  

• Electrochemical Sensor (EC) 

• Metal Oxide Semiconductor (MOS) 

• Photoionization Detectors (PID) 

• Nondispersive infrared sensors (NDIR)  

• Pellistor sensors 
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The working principles of each of these sensors is described in the following sections and the 

sensitivity of each of these sensors is shown in the diagram below:  

 

 

 

 

 

 

 

 

Figure 2.2 Commercially available sensors and its detectable concentration ranges of VOC. (11) 

 

2.2.1 EC—Electrochemical Sensors: 

Principles of Operation: Electrochemical sensors usually contain an acid electrolyte, 

sensing electrode, counter electrode, third reference electrode, and a gas-permeable membrane. 

As the air diffuses into the cell, certain gases oxidize on the sensor and a voltage differential is 

produced. The current produced by the chemical reaction is proportional to the concentration 

level of the reacting gas. The sensing electrode is designed to catalyze a specific reaction. (12) 

 

Advantage: The cost of sensors is comparatively cheaper compared to other sensor types 

and can be used to detect certain reactive gases. 
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Disadvantages: While this technology is somewhat specific, other common gases will 

react at different levels and be detected, resulting in false positives and false alarms. These 

sensors have a limited lifetime and deplete over a period of time. The depletion rate is primarily 

determined by the sensor’s exposure to the reactant gases. Deciding when to recalibrate these 

sensors to maintain a specific accuracy can be a problem. On average, most equipment 

manufacturers using electrochemical sensors recommend recalibration every three months, but 

this is influenced by the sensor’s reactant gas exposure and the required accuracy level. 

Electrochemical sensors will also degrade when exposed to high humidity conditions. 

 

Table 2.2. Example of detection limits and reactivity with other chemicals other than VOCs of an 

Electrochemical Sensor by Environment sensor co. (12) 

    

 

 

 

 

 

As you can see from the table above, this particular sensor is affected by ammonia, CO as 

well as other common gases, which makes it really unsuitable for accurate readings.  
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2.2.2 MOS—Metal Oxide Semiconductor 

Principles of Operation: MOS sensors consist of a metal oxide semiconductor such as 

tin dioxide, on sintered alumina ceramic located inside a flame arrestor. Sensitivity to specific 

gases may be altered by changing the temperature of the sensing element. (13) 

 

Advantage: MOS sensors will detect gases at lower ppm levels than NDIR and 

pellistors. 

 

Disadvantage: These sensors are less gas specific than electrochemical sensors and react 

to many types of gases, producing many more false positives and false alarms. MOS sensors are 

also extremely sensitive to humidity, temperature and pressure. 

 

2.2.3 PID—Photoionization Detectors 

Principle of Operation: The photoionization sensors ionize (decay into charged 

particles) neutral molecules of chemical compounds. When diffusing VOCs molecules enter the 

region of UV lamp impact, they are ionized by photons. Then formed ions are directed between 

two polarized electrodes. The ions move towards the electrodes in an electric field generated by 

an electrometer. In this way a current flow is generated, which is then converted into voltage 

signal. This signal is proportional to concentration of the compounds subjected to ionization. The 

photoionization sensors utilize electrodeless ultraviolet lamps (wavelength 10–400 nm). 

Operation of the lamp consists in excitation of the filling gas (most often krypton, xenon, radon) 
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via the impact of external electromagnetic field. (14) This type of sensor is most frequently 

applied for measurement of summary concentration of volatile organic compounds.  

A schematic of the photoionization sensor is shown below.  

 

 

 

 

 

 

 Figure 2.3. Schematic diagram of a PID sensor (14) 

 

Advantage: Moderately low cost, ease of operation and near-instantaneous results 

coupled with its acceptance by regulation agencies makes this a very suitable option for use in 

analysis of VOCs. It can also detect VOCs at low ppm level. 

 

Disadvantage: Contamination such as dust particles settling on the sensor lenses and 

humidity can affect the sensors results and effective working capability. 
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2.2.4 NDIR—Nondispersive infrared sensors 

Principle of Operation: Flammable gases and vapors from the VOCs group are 

subjected to characteristic absorption of radiation from the infrared range. The ranges of 

oscillation frequency (wave number) characteristic for selected functional groups of VOCs are 

presented in the figure below. The principle of operation of this type of sensor consists in 

arranging a source of infrared radiation along an optical line with a detector. When an analyzed 

gas appears in a measurement chamber, it absorbs radiation of a particular wavelength and, 

following the Lambert-Beer law, there is a decrease in radiation reaching the detector, which is 

converted into electrical signal. Intensity of infrared radiation is diminished as it passes through 

the measurement cell. This reduction of light intensity is proportional to concentration of the 

gases or flammable vapors subjected to detection. An important element of the sensor is an 

optical filter, which passes absorbed light of defined wavelength, thus providing selectivity of 

particular sensor. Some designs possess additional (reference) chamber, which is filled with non-

absorbent gas (typically nitrogen). In this case the signal is generated based on a difference in 

readings from the detectors of both chambers. (15) 

 

 

 

 

 

 Figure 2.4. Ranges wave number characteristics for selected functional groups of VOCs  
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Advantage: Longer lifetime when compared to other sensors due to no sensor burn out 

nor any sensor deterioration with exposure to gases. 

 

Disadvantage:  A high detection limit, spectral interference and false readings caused by 

multiple C-H bonds reduce the effectiveness of this sensor.  

 

2.2.5 PELLISTOR—Thermal sensor. 

Principle of Operation: A phenomenon of explosion can be initiated in a mixture of 

flammable gas and air only within precisely defined concentration range. Lower explosion limit 

(LEL) determines the minimum concentration of the substance, which can react in a rapid 

combustion process. Upper explosion limit (UEL) describes the maximum amount of the fuel, at 

which the mixture contains enough oxidizer to initiate the explosion. The values of LEL and 

UEL differ for various substances and are usually expressed with respect to air. Concentrations 

of explosive substances below LEL and above UEL allow for safe operation. Table 2.3. Presents 

the values of LEL for selected substances from the VOCs group. The principle of operation of 

this type of sensor consists in diffusion of a mixture of air and particular flammable compound 

through porous sinter towards porous sensor surface. The porous element contains miniature coil 

made of platinum wire. Electric current flows through a coil made of platinum wire and heats the 

pellistor up to a few hundred degrees Celsius. The reaction at the catalytic surface releases heat, 

which increases temperature of the platinum coil, inducing an increase in its resistance. The 

pellistor is most commonly implemented as one arm of the Wheatstone bridge, the output of 

which is the final signal. In the case of temperature changes the output bridge signal is 
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proportional to heat of reaction. Increase in temperature is a measure of concentration of 

flammable gas substance. (16) 

 

Advantage:  Safety applications of these sensors are mainly interested in % LEL 

measurements which is provided accurately by this sensor. 

 

Disadvantage:  Prone to permanent poisoning by lead, sulphurs, chlorinated or silicone 

compounds and must be calibrated frequently. 

 

Table 2.3 Lower explosion limits of selected VOCs (16) 
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The following tables show the applications of the various types of sensors currently available for 

the measurement of VOCs.  

 Table 2.4. Applications and compounds identified by the various types of sensors (17)  

 

 

 

 

 

 

 

 

 

2.2.6 Other classification methods for sensors: 

 Other than the classification method mentioned above, the sensors can also be 

categorized, or sub categorized by the following classifications: 

 

2.2.6.1  Active vs Passive 

An active sensor is a sensing device that requires an external source of power to operate 

while passive sensors simply detect and respond to some type of input from the physical 
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environment. Active sensors are also widely used in manufacturing and networking 

environments for example to monitor industrial machines or data center infrastructure, so 

anomalies can be detected and components can be repaired or replaced before they break and 

shut everything down. 

 

Examples of other active sensor-based technologies include: scanning electron 

microscopes, LiDAR, radar, GPS, x-ray, sonar, and infrared. However, as can be the case with 

some sensors, infrared light sensors exist in both active and passive forms. 

 

2.2.6.2  Real-time vs sample-based sensors 

 Real-time sensors take a reading of the site continuously while sample-based sensors rely 

on capturing the gas from the test site at a monthly or annual basis then testing them off site 

mostly in a laboratory with a gas chromatograph. For the purpose of our analysis we focus on 

real-time sensors or sample-based sensors with a practically small sample time period such that it 

can be considered practically real-time for all intents and purposes  

 

2.2.6.3  In situ vs Ex Situ 

 In situ can refer to where a measurements or remediation of a polluted site is performed 

in the actual site, contrary to ex situ where samples are examined elsewhere, off site mostly in a 

laboratory. 
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2.2.6.4  Digital vs Analog 

 There are different types of sensors that produce continuous analog output signal and 

these sensors are considered as analog sensors. This continuous output signal produced by the 

analog sensors is proportional to the measured substance.  

 

 Electronic sensors or electrochemical sensors in which data conversion and data 

transmission takes place digitally are called as digital sensors. These digital sensors are replacing 

analog sensors as they can overcome the drawbacks of analog sensors. The digital 

sensor consists of majorly three components: senor, cable, and transmitter. In digital sensors, the 

signal measured is directly converted into digital signal output inside the digital sensor itself. 

And this digital signal is transmitted through cable digitally.  

 

 

2.2.6.5  Low-cost vs High Cost 

 Gas chromatographs cost tens of thousands of dollars to buy and hence they are not 

feasible to have multiple sensors in the site and are considered high cost sensors. While PID and 

NDIR sensors cost a few thousand dollars and hence more of these sensors could be used on the 

site when compared to gas chromatographs. EC, MOS and pellistors are much lower in cost 

when compared to the other sensors and are hence considered low-cost sensors. Low cost sensors 

lose specificity, accuracy, maybe reliability but gains spatial coverage (since more sensors could 

be used at the same cost) and potentially temporal coverage.  
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2.3  Methods to detect VOCs 

 There are several guidelines provided by the regulatory boards on how to detect VOCs 

and which type of sensors to use. Since every sensor has different detection limits and other 

various limitations, each sensor type provides a different value of VOCs detected. 

 

 VOC detection and quantification are highly method dependent. A given sampling and 

analysis system cannot capture or fully respond to all the VOCs present in any indoor 

environment or in the test chamber for a given material. The term total is thus misleading as 

previously explained. Initially Molhave used the term TVOC to describe a specific set of 22 

individual compounds, but Molhave and Nielsen warned about misinterpretation of the term. 

(17) The European Commission (EC 1997a) advocated the inclusion of 67 compounds in the 

reporting pf TVOCs. Other groups report TVOCs as simply the total of what their particular 

analytical system permits them to measure. In addition, the detectors utilized by any particular 

analytical system respond differently to individual compounds. The effect of this is that, if 

lumped together and reported as a single value, the final result will likely have a significant error 

attached to it. Summing individual peaks is also error prone unless calibration of the system is 

performed using pure standards for each detected compound. (18) 

 

 The different guidelines/standards for detecting and measuring VOCs in indoor air are 

mentioned for their respective agencies in the table below.  
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Table 2.5. Indoor Air quality guidelines for VOCs. (Source: https://www.epa.gov/indoor-air-quality-

iaq/technical-overview-volatile-organic-compounds) 
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2.4 Sources of VOCs 

VOCs are ubiquitous and are produced both anthropogenicaly as well as naturally. VOC 

can be found not only as vapors in the air but also as soil gas and dissolved in ground water. 

Vapor intrusion occurs when volatile organic compounds from contaminated soil or groundwater 

migrate upwards toward the ground surface and into overlying buildings or surfaces through 

gaps and cracks in foundation slabs or basement walls. The route VOCs take from a subsurface 

source to the air is referred to as the vapor intrusion pathway. (10) 

 

VOCs are emitted by a variety of common household products as indicated in the table 

below. 

Table 2.6. Examples of secondary VOC emissions from common building products and 

equipment. (19) 
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The exact quantity and name of chemical compounds which is present even within the 

indoor air is hard to estimate in a laboratory setting since there are multiple real-world factors 

and reactions taking place that influence the quality of the indoor air. There are plenty of 

opportunities for the VOCs to form and transform into more complex compounds as indicated in 

the table below.  

 

Table 2.7 Possible reaction products in indoor air with potential emission sources and 

reactants (20) 
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For the purpose of this analysis we are concerned with VOCs released from oil and gas 

sites such as benzene, toluene, ethyl benzene, xylene, dichloroethane, trichloroethane, 

trichloroethene, tetrachloroethane, styrene, chlorobenzene, carbon tetrachloride and other such 

VOCs. 

 

2.5  Thesis objectives 

 

There were multiple objectives for this project. The first objective was to see if the abandoned 

fracking site was still releasing VOCs from the soil into the atmosphere. We used low-cost, real-

time sensors to ascertain if the site was releasing VOCs. Once we were able to ascertain without 

a doubt that the site was releasing VOCs, we used a combination of real-time sensors and 

laboratory tests to determine the quantity and composition of the VOCs being released. We 

placed multiple sensors around the site and used spatial and temporal analysis techniques to 

determine the movement of the VOC and the contaminant plume underground. We also 

measured other environmental factors such as ground water quality and weather conditions such 

as temperature, humidity, winds, atmospheric pressure, etc. and used regression analysis to see 

how these environmental factors affect the release of VOCs. We used multiple analysis 

techniques to see which of these techniques were suitable and try to determine a methodology to 

use multiple low-cost sensors instead of a single high cost sensor to get more valuable data. The 

method of analysis and analysis techniques used are mentioned and explained in the following 

sections. 
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CHAPTER 3: METHODS 

 

 

 

3.1 Description of the assigned site  

 There are currently tens of thousands of wells where massive hydraulic fracturing is 

performed routinely producing natural gas and condensate in the Denver Basin of 

central Colorado. This field is known as the Wattenberg gas field and it covers more than 2,000 

square miles between the cities of Denver and Greeley as indicated in yellow boundary in the 

map below. This field was discovered in the 1970s and has had fracking being conducted 

regularly since then. The Wattenberg gas field lies in a 8hr Ozone Nonattainment Area. A 

Nonattainment Area is defined as any area that does not meet the national primary or secondary 

ambient air quality standard which in this case is ozone levels. 

 

Figure 3.1. Map of the study area (Source https://cogccmap.state.co.us/cogcc_gis_online/) 
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We were assigned a plugged and abandoned well named ‘Rider-1’ (as indicated in Figure 

3.1) by the city of Longmont to investigate if it was still releasing VOCs into the atmosphere and 

ground water. The site lies within the west edge of the Wattenberg gas field and was operational 

between the August 1998 to October 2016. The well is located in Boulder county at latitude 

40.1791 and longitude -105.05879 and was at least 10,000 feet deep. The soil type of the site is  

shown in Figure 3.2 and the chemical properties of the soil are indicated in table 3.1. 

 

Figure 3.2 Soil type of the area of study (Source: https://websoilsurvey.nrcs.usda.gov/) 
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There are 2 types of soils found in the region, namely Colby silty clay loam (CsB) to the 

north and Weld loam (WlB) to the south. After a depth of a foot the soil is completely alkaline 

with a moderately high cation-exchange capacity. 

 

Table 3.1 Chemical properties of the soil in the area of study  

(Source: https://websoilsurvey.nrcs.usda.gov/app/) 

Soil 

name 

Depth Cation-

exchange 

capacity 

Soil 

reaction 

Calcium 

carbonate 

Salinity Sodium 

adsorption 

ratio 

  In meq/100g pH % mmhos/cm   

CsB—

Colby 

silty clay 

loam, wet 

 

0-12 10-20 6.6-7.3 5-10 0 0 

12-40 5.0-20 7.4-8.4 5-10 0 0 

40-60 10-25 7.4-9.0 5-10 0.0-2.0 0 

WlB—

Weld 

loam 

 

0-8 18-21 6.6-7.8 0-2 0.1-1.0 0 

8-12 29-37 6.6-7.8 0-2 0.1-1.0 0 

12-15 27-34 7.4-7.8 0-2 0.1-1.0 0 

15-28 18-21 7.9-8.4 2-10 0.1-2.0 0-2 

28-60 21-26 7.9-9.0 5-14 0.1-2.0 0-5 

 

 The City of Longmont suspected that there was a contaminated plume in the soil but 

were unsure of the location, composition and extent of the plume and had asked us to investigate 

it in more detail. To find out the location, extent and quantity of VOCs being released into the 

atmosphere and to trace the movement of the plume in the ground, we placed 3 soil gas VOC 

sensors and 3 ground water quality monitoring sensors. We used laboratory analysis using gas 

chromatograph to figure out the composition of the VOCs being released. 
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A map of the site is shown below, the larger circles indicate the location of the soil gas 

sensors and the smaller blue dots indicate the locations of the ground water monitoring stations. 

The grey box near the top left corner with the white pipelines, used to be the Rider 1 site. 

 

Figure 3.3. Map of the monitoring stations 
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We chose these sites based on the land allotted to us by the city of Longmont and 

availability previously dug areas for underground pipes for soil gas monitoring and deployment 

of groundwater sensors. 

 

3.2  Description of soil gas VOC sensor used 

 We chose to use NDIR sensors for our analysis since infrared gas detection is a well-

developed measurement technology. Infrared gas analyzers had a reputation for being 

complicated, cumbersome, and expensive. However, recent technical advancements, including 

the availability of powerful amplifiers and associated electronic components, have opened a new 

frontier for infrared gas analysis. The gases to be detected are often corrosive and reactive with 

most sensor types, the sensor itself is directly exposed to the gas, often causing the sensor to drift 

or die prematurely. The main advantage of IR instruments is that the detector does not directly 

interact with the gas (or gases) to be detected. 

 

We used 3 NDIR sensors from Metrologics LLC, capable of pumping soil gas, sensing it 

and transmitting the data and placed them around the abandoned fracking site. A schematic of 

the NDIR sensor used is shown in figure 3.4. These sensors pumped soil gas from 6-10 feet 

under the ground using an in-built pump and air pipes attached to the sensor and extending all 

the way underground through larger pipelines. The air was pumped at 1 hour intervals into the 

sensor and tested in the NDIR chamber and the results of the tests were sent wirelessly to a cloud 

based server. 
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Figure 3.4. Schematic of NDIR soil gas sensor 

 

The device consists of a battery with enough capacity to be active for 3 months and 

support all the activities. Most of the battery power was used to power the air pumps followed by 

the actual NDIR sensor and hence we chose 1-hour intervals for pumping to conserve the battery 

life of the sensor. The device also houses the NDIR sensing chamber and a data storage and 

transmission chips. The NDIR sensors were capable of detecting carbon and hydrogen bonds but 
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could not detect the exact type and quantity of VOC being released. We used the data received 

from the sensors to determine the change in quantity of VOCs being released over time and 

space and the laboratory results to determine the exact type and quantity of VOCs being released.  

 

Following is a list of common gases that are detected by this detector:  

1. Alkanes or saturated hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, 

and heptane, etc.  

2. Cycloalkanes such as cyclopropane, cyclohexane, methyl cyclohexane, etc.  

3. Alkenes or unsaturated hydrocarbons such as ethylene, propylene, butene, pentene, hexene, 

octene, etc. Acetylene has absorption at 3.1 microns which is not detectable.  

4. Cycloalkenes such as cyclohexene and pinene.  

5. Aromatics such as benzene, toluene, and xylene.  

6. Alcohols such as methanol, ethanol, propanol, and allyl alcohol.  

7. Amines such as dimethyl amine, trimethyl amine, butanamine, cyclopropanamine, and 

pyridines.  

8. Ethers such as dimethyl ether, ethyl ether, n-propyl ether, methylvinyl ether, vinyl ether, 

ethylene oxide, tetrahydrofuran, furan, and 1,4-dioxane.  

9. Ketones such as acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone and 

heptanone.  
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10. Aldehydes that have a central wavelength mostly at the 3.55 micron region and generally 

have a weak detection signal at 3.4 microns. 

 

 Though the results from these sensors do not accurately represent the exact quantity or 

speciate the VOCs being tested, instead they provide us with the change in concentration of 

VOCs temporally and spatially. We used laboratory analysis to speciate the VOCs and get the 

exact composition and interpolated these values with the real-time analysis. Samples of the soil 

gas in were collected in Tedlar bags before and after setting up the NDIR sensors and tested 

these samples in a laboratory using a gas chromatograph in accordance with EPA`s method 18.  

 

3.3  Description of ground water quality monitoring sensor 

There was no information available on the groundwater quality of the area, but the 

groundwater table was at a height of about 11 feet below the ground from historical data 

obtained from USGS. 

 

We setup 3 ground water monitoring sensors from In-Situ Inc. and placed them around 

the abandoned fracking site at depths of about 10-12 feet. The sensors were capable of detecting 

groundwater pH, conductivity, ORP, DO and temperature. The specifications of the sensor and 

its measurement capabilities are shown in table 3.2. These sensors were also capable of 

transmitting the data to the cloud-based server. A picture of the sensor used is shown figure 3.5. 
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Figure 3.5. In-Situ AQUATROLL 400 sensor 

 

Table 3.2.  Specifications for Aquatroll 400 
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3.4  Data Collection 

The area of study consisted of 3 ground-water monitoring sites (namely MW 02, MW 03, 

MW 05) and 3 soil-vapor gas monitoring sites (namely SVP 01, SVP 02, SVP 03). We 

conducted hourly measurements of VOCs using NDIR sensors pumped from a depth of about 6-

7 feet. Ground water quality parameters such as pH, conductivity, ORP and temperature every 

quarter hour from a depth of about 10-11 feet for the period of 23rd of October 2017 till the 15th 

of May 2018. Along with that we also performed base line sampling before the sensors were 

placed in the monitoring wells and performed in-situ tests on the gas captured from these wells 

after the real time sensors were removed from the wells. 

 

We were getting very high values in SVP01 so we interchanged the NDIR sensors at that 

site with the ones at SVP02 and SVP03 at different instances to check for sensor-drift and got the 

same high readings at SVP01. We calibrated the water quality sensors but the NDIR sensors 

came precalibrated and were not calibrated during the duration of the testing period. 

 

After enough data was collected we analyzed the data using various analysis techniques 

as detailed in the following section. I wanted to see the change in concentration over time and 

hence I used trend analysis and time series analysis on the data. I also wanted to correlate the soil 

gas data with the other environmental factors such as ground water and climate data hence I used 

correlation and regression analysis techniques on the data.   
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CHAPTER 4: DATA ANALYSIS 

 

 

 

 Any observed data representing a physical phenomenon can be broadly classified as 

being either deterministic or non-deterministic. Deterministic data are those that can be described 

by an explicit mathematical relationship. There are many physical phenomena in practice which 

produce data that can be represented with reasonable accuracy by explicit mathematical 

relationships. However, there are many other physical phenomena which produce data that are 

not deterministic. For example, the acoustic pressure generated by air rushing through a pipe, or 

the electrical output of a noise generator, the height of waves in a confused sea represent data 

which cannot be described by explicit mathematical relationships. There is no way to predict an 

exact value at a future instant of time. These data are random in character and must be described 

in terms of probability statements and statistical averages rather than explicit equations. The 

same statistics can be used to describe VOC data released into the atmosphere from the soil gas.  

 

4.1  Summary of Raw Data: 

4.1.1  Soil Gas Data 

The soil gas samples were pumped from a depth of about 6 feet and measured hourly on 

site in an infra-red sensor which was set to detect methane and other chain hydrocarbon. Other 

VOCs are detected by the NDIR sensor as well and hence the results are represented as a 

surrogate for total percentage of VOC. The raw total VOC detected in the soil gas in each site is 

shown in figures 4.1 - 4.3.  
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4.1.1.1  SVP 01 

 The soil gas sensor at SVP 01 had a high and pretty constant VOC content of about 

4.78% as can be seen in the raw data graph and interval plot below. There were a few drops in 

the magnitude of values, but it is predominantly high and this monitoring station was most likely 

the closest survey point to the source of the pollutant. The graph below shows quantity of 

TVOCs detected (In our case single chain hydrocarbons) vs time in hours. The extremely high 

quantity of TVOCs detected is because the NDIR sensors used for this analysis is calibrated for 

methane, other hydrocarbons with higher number of single chain hydrocarbon will provide 

higher values which cause the sensors to provide a false reading. Hence these readings on its 

own do not provide accurate quantitative measurements of the VOCs present but since we take 

near real-time readings and with multiple sensors, we can get valuable insight from the 

comparative values between the sensors. Also, these results coupled with the in-situ tests results 

can help predict the more exact quantitative values of the contaminant over time.  

 

An interval plot shows a 95% confidence interval for the mean of each group. An interval 

plot works best when the sample size is at least 10 for each group. Usually, the larger the sample 

size, the smaller and more precise the confidence interval.  The interval plot below shows that 

the mean of VOC values at SVP 01 is 4.78% with a statistical 95% confidence the mean of being 

between 4.764 to 4.798 %. 
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Figure 4.2 Interval plot of VOC concentration at SVP 01 

 

4.1.1.2  SVP 02 

 The VOC sensor at SVP 02 has a lot of spikes ranging from 1.5 – 5 % but the background 

or most common values is around 0.075 % as can be seen from the interval plot and raw data 

graph below. There is a quiet period from the mid of January till the middle of April when no 

spikes are observed, this is most likely due to sub surface water freezing due to the weather 

conditions in Colorado during that period. We start seeing the spikes again when the weather and 

ground water temperature increases. 

 

From the interval plot below, we can say with 95% confidence that the mean 

concentration of VOC in the soil gas at SVP 02 is between 0.059 to 0.084 %. 
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Figure 4.4 Interval plot for VOC concentration at SVP 02 

 

4.1.1.3  SVP 03 

 SVP 03 follows a similar pattern to SVP 02 but with a few key differences. The spikes do 

not go as high as SVP 02 but instead max out at about 1.5 – 2 %. There are also few spikes 

during the SVP 02`s quiet period of mid Jan to mid Apr. These spikes occur usually on warmer 

days. I hypothesize that the reason for the spikes in SVP 03 during the quiet period is due to the 

soil type. SVP 03 has a sandy layer of soil below while SVP 02 has clay soil covering and below 

it. Hence SVP 03 spikes on hotter weather while SVP 02 spike when the ground water and 

resulting sub surface heated up.  

 

 From the box plot below, we can say with 95% confidence that the mean of the VOC 

concentration in soil gas at SVP 03 is between 0.031 to 0.043 %.   
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Figure 4.6 Interval plot of VOC concentration at SVP 03 

 

4.1.2  Ground water Data 

 The Ground water data was collected from 3 sites at depths of about 10 – 12 feet. There 

were a lot of errors and issues with the ORP and DO data hence I considered only ground water 

temperature, pH and conductivity data for the purpose of my analysis. We used the company In-

Situ Inc.`s water quality sondes Aqua Troll 400 to detect, log and transmit our data. 

 

4.1.2.1  MW02 

 This was the closest ground water monitoring site to SVP 01. As can be seen from the 

graphs below the temperature constantly drops till the middle of April after which it starts to rise 

again. The pH constantly keeps increasing during the same period indicating that the pollutant 

level may be increasing in the ground water. 
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Figure 4.7. Graph of ground water temperature and pH vs time at MW 02 

 

4.1.2.2  MW03 

 MW03 is the closest ground water monitoring site to SVP 03. Similar to MW02, we can 

see that the ground water temperature constantly keeps dropping till the middle of April after 

which it starts to rise again, and the pH is also constantly rising for the period of the study. The 

conductivity varies during the period and both the conductivity and pH indicate a rise in the 

pollutant levels in the ground water. 
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Figure 4.8. Graph of ground water temperature, pH and conductivity at MW 03 

 

4.1.2.3  MW05 

 MW05 is the closest ground water monitoring station to SVP 02 and follows the similar 

falling and rising temperature and rising pH levels to that of the other two monitoring stations as 

shown in the graph below. 
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Figure 4.9. Graph of ground water temperature and pH at MW 05 

 

4.2 Data Validation 

 The Raw data undergoes a process of data validation before any analysis is performed on 

it. During this process all blank and obviously erroneous values are removed for example pH 

values below 3 and negative values from the soil gas sensors. All the quarter hour ground water 

data is converted to hourly data by taking averages. This data along with the weather data is 

synced with hourly soil gas data and verified if all the points and the number of data match for 

all the columns.  
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4.3  Trend Analysis 

 Trend analysis is a statistical procedure performed to evaluate hypothesized linear and 

nonlinear relationships between two quantitative variables. Typically, it is implemented either as 

an analysis of variance for quantitative variables or as a regression analysis. It is commonly used 

in situations when data have been collected over time or at different levels of a variable; 

especially when a single independent variable, or factor, has been manipulated to observe its 

effects on a dependent variable, or response variable (such as in experimental studies). The 

means of a dependent variable are observed across conditions, levels, or points of the 

manipulated independent variable to statistically determine the form, shape, or trend of such 

relationship. Data over time which allows the use of statistical data to demonstrate deviations 

and conformance to established limits. 

 

4.3.1  Linear trend analysis 

 Linear trend forecasting is used to impose a line of best fit to time series historical data. It 

is a simplistic forecasting technique that can be used to predict variation and is an example of a 

time series forecasting model. Linear trends show steady, straight-line increases or decreases 

where the trend-line can go up or down and the angle may be steep or shallow. Linear trend 

estimation expresses data as a linear function of time. There are various ways to do so, but the 

most usual choice is a least-squares fit. This method minimizes the sum of the squared errors in 

the data series. Given a set of points in time and data values observed for those points in time, 

values of and are chosen so that is minimized. Here Yt= at + b is the trend line, so the sum of 
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squared deviations from the trend line is what is being minimized. This can always be done in 

closed form since this is a case of simple linear regression. (36) 

 

4.3.1.1  Linear trend analysis of SVP01 

 From the linear trend plot below we can see that there is a positive coefficient of 2.3 x 10-

5 associated with ‘t’ time indicating an increase in the quantity of VOCs at SVP 01 over time. 

Which implies that there might be an overall slight increase in the concentrations of VOCs in 

SVP 01 over the period of the study. 

 

Figure 4.10. Linear trend plot of VOCs at SVP 01 
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4.3.1.2  Linear trend analysis of SVP02 

  From the linear trend plot below we can see that there is a positive coefficient of 

1.6 x 10-5 associated with ‘t’ time indicating an increase in the quantity of VOCs at SVP 02 over 

time. Which implies that there might be an overall slight increase in the concentrations of VOCs 

in SVP 02 over the period of the study.  

 

Figure 4.11. Linear trend plot of VOC concentration at SVP 02  

 

4.3.1.3  Linear trend analysis of SVP03 

 From the linear trend plot below we can see that there is a positive coefficient of 2 x 10-6 

associated with ‘t’ time indicating an increase in the quantity of VOCs at SVP 03 over time. 

Which implies that there might be an overall slight increase in the concentrations of VOCs in 
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Figure 4.12. Linear trend plot of VOC concentration at SVP 03 
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4.3.2.1  X bar and S charts of SVP01 

 The daily means are indicated in by the blue points in the upper chart below and UCL 

and LCL stand for upper and lower control limits respectively. The red points in the chart below 

indicate the daily standard deviation. The average of the daily mean (x bar bar) of VOC 

concentration at SVP 01 is 4.735 % and it has a low average daily standard deviation of 0.186. 

 

Figure 4.13. Xbar-S chart of VOC concentration at SVP 01 

 

4.3.2.2  X bar and S charts of SVP02 

   According to the Xbar-S chart below, the average of the daily mean (x bar bar) VOC 

concentration at SVP 02 is 0.072 % and average daily standard deviation of 0.148. This 

technique can be used to determine the release event dates.  
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Figure 4.14. Xbar-S chart of VOC concentration at SVP 02 

 

4.3.2.3  X bar and S charts of SVP03 

According to the Xbar-S chart below, the average of the daily mean (x bar bar) of VOC 

concentration at SVP 03 is 0.0376% and low average daily standard deviation of 0.0664. 

 

Figure 4.15. Xbar-S chart of VOC concentration at SVP 03 
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4.3.3    Mann-Kendall and Sen`s slope test. 

The Mann-Kendall (M-K) Test is a simple test for trend. Mann-Kendall is a non-

parametric test and as such, it is not dependent upon irregularly spaced monitoring periods. 

Mann-Kendall assesses whether a time-ordered data set exhibits an increasing or decreasing 

trend, within a predetermined level of significance. (38) 

 

The purpose of the Mann-Kendall (MK) test is to statistically assess if there is a 

monotonic upward or downward trend of the variable of interest over time. (39) A monotonic 

upward (downward) trend means that the variable consistently increases (decreases) through 

time, but the trend may or may not be linear. The MK test can be used in place of a parametric 

linear regression analysis, which can be used to test if the slope of the estimated linear regression 

line is different from zero. The regression analysis requires that the residuals from the fitted 

regression line be normally distributed; an assumption not required by the MK test, that is, the 

MK test is a non-parametric (distribution-free) test. 

 

If a significant trend is found, the rate of change can be calculated using the Sen Slope 

estimator. (40) For linear trend, the slope is usually estimated by computing the least squares 

estimate using linear regression. However, it is only valid when there is no serial correlation, and 

the method is very sensitive to outliers. A more robust method was developed by Sen. This test 

computes both the slope (i.e. linear rate of change) and intercept according to Sen’s method. 
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The following analysis was performed in R programming language. The Mann-Kendall 

and Sen Slope test assumes that the sample values very taken independently which is true in our 

case. The results of the Mann-Kendall tests may not be conclusive since the monotonic rise or 

fall in the readings might be caused by sensor-drift. 

 

4.3.3.1  Slope tests on SVP01: 

Both Mann- Kendall and the Sen Slope estimator tests were performed and the results for 

the VOC concentrations at SVP 01 is shown in the tables below. The negative tau value in the 

Mann-Kendall test below indicates a falling trend may be present for VOC concentrations at 

SVP01. 

Table 4.1 Mann-Kendall test results for VOC concentrations at SVP 01 

summary(MannKendall(svp01_data)) 

Score =  -14858 , Var(Score) = 11045518 

denominator =  96064.23 

tau = -0.155, 2-sided pvalue =7.8105e-06 

 

The negative z value for Sen`s slope test indicates that there might be a falling trend for 

VOC concentrations at SVP01 with a slope value of near zero. 

Table 4.2 Sen Slope test results for VOC concentrations at SVP 01 

sens.slope(svp01_data) 

 

z = -4.4703, n = 503, p-value = 7.81e-06 

alternative hypothesis: true z is not equal to 0 

95 percent confidence interval: 
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 0 0 

Sen's slope  

          0  

 

4.3.3.2  Slope tests on SVP02: 

The positive tau value for Mann-Kendall test in the table below indicates a rising trend 

may be present for VOC concentrations at SVP02. 

Table 4.3 Mann-Kendall test results for VOC concentrations at SVP 02 

summary(MannKendall(svp02_data)) 

 

Score =  -6641 , Var(Score) = 161497 

denominator =  12997 

tau = 0.611, 2-sided pvalue =< 2.22e-12 

 

The positive z value for Sen`s slope test indicates a rising trend may be present for VOC 

concentrations at SVP02 with an estimated positive slope value of 3.088235e-06. 

Table 4.4 Sen slope test results for VOC concentrations at SVP 02 

sens.slope(na.omit(svp02_data)) 

 

z = 56.23, n = 5326, p-value < 2.2e-16 

alternative hypothesis: true z is not equal to 0 

95 percent confidence interval: 

 3.33750e-06 2.84509e-06 

  Sen's slope  

3.088235e-06  
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4.3.3.3  Slope tests on SVP03: 

The positive tau value for Mann-Kendall test indicates that a rising trend may be present 

for VOC concentrations at SVP03. 

 

Table 4.5 Mann-Kendall test results for VOC concentrations at SVP 03 

summary(MannKendall(svp03_data)) 

 

Score =  -1340793 , Var(Score) = 4071198720 

denominator =  5143188 

tau = 0.261, 2-sided pvalue =< 2.22e-16 

 

The positive z value for Sen`s slope test indicates a rising trend may be present for VOC 

concentrations at SVP02 with a slope value of 2.690374e-06. 

 

Table 4.6 Sen slope test results for VOC concentrations at SVP 03 

sens.slope(na.omit(svp03_data)) 

 

z = -21.014, n = 3393, p-value < 2.2e-16 

alternative hypothesis: true z is not equal to 0 

95 percent confidence interval: 

 2.062162e-06 3.212761e-06 

  Sen's slope  

2.690374e-06  
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4.4. Time series analysis 

 Temporal statistical analysis enables us to examine and model the behavior of a variable 

in a data set over time (e.g., to determine whether and how concentrations are changing over 

time). The behavior of a variable in a data set over time can be modeled as a function of previous 

data points of the same series, with or without extraneous, random influences. 

  

Time series analysis accounts for the fact that data points taken over time may have an 

internal structure (such as autocorrelation, trend or seasonal variation) that should be accounted 

for. Time series is defined as an ordered sequence of values of a variable at equally spaced time 

intervals. The applications of time series models are two-fold. Firstly, to obtain an understanding 

of the underlying forces and structure that produced the observed data. Secondly, to fit a model 

and proceed to forecasting, monitoring or even feedback and feedforward control. 

 

 

 

4.4.1  Decomposition of time - series 

 The decomposition of time series is a statistical task that deconstructs a time series into 

several components, each representing one of the underlying categories of patterns. This is an 

important technique for all types of time series analysis, especially for seasonal adjustment. It 

seeks to construct, from an observed time series, a number of component series (that could be 

used to reconstruct the original by additions or multiplications) where each of these has a certain 

characteristic or type of behavior. For example, time series are usually decomposed into: 
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•••• The trend component at time t, which reflects the long-term progression of the series (secular 

variation). A trend exists when there is a persistent increasing or decreasing direction in the 

data. The trend component does not have to be linear.  

•••• The cyclical component at time t, which reflects repeated but non-periodic fluctuations. The 

duration of these fluctuations is usually of at least two years. 

•••• The seasonal component at time t, reflecting seasonality (seasonal variation). A seasonal 

pattern exists when a time series is influenced by seasonal factors. Seasonality occurs over a 

fixed and known period (e.g., the quarter of the year, the month, or day of the week).  

•••• The irregular component (or "noise") at time t, which describes random, irregular influences. 

It represents the residuals or remainder of the time series after the other components have 

been removed.  

 

More extensive decompositions might also include long-run cycles, holiday effects, day of 

week effects and so on. Here, we’ll only consider trend and seasonal decompositions. One of the 

main objectives for a decomposition is to estimate seasonal effects that can be used to create and 

present seasonally adjusted values. A seasonally adjusted value removes the seasonal effect from 

a value so that trends can be seen more clearly. To fit a model that weights all observations 

equally to determine the best regression fit, perform a decomposition analysis. Use when your 

series exhibits a seasonal pattern, with or without a trend. (41) 
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Singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines 

elements of classical time series analysis, multivariate statistics, multivariate geometry, 

dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève 

(1945, 1978) spectral decomposition of time series and random fields and in the Mañé (1981)–

Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a 

sum of components, each having a meaningful interpretation. (42) 

 

In the original formulation of SSA it was assumed that the time series under analysis has a 

deterministic component (such as a trend and/or a seasonal) with noise superimposed and that the 

deterministic component can be successfully extracted from the noise. 

 

4.4.1.1  Decomposition of SVP01 time series 

 The graph below shows the detrended and seasonally adjusted time series data. Since 

there is not much of a variation in VOC concentrations at SVP01 hence there is not much of a 

variation in the graphs below. 



57 

 

 

Figure 4.16.  Decomposed data of VOC concentrations at SVP 01 

  

The graph below shows percent variation during the hours of the day which is useful in 

understanding when the most change occurs in the time series. For VOC concentrations in soil 

gas at SVP01 the most change occurs in the evening hours. 

 

Figure 4.17. Seasonal analysis graphs of VOC concentrations at SVP 01 
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4.4.1.2  Decomposition of SVP02 time series 

The detrended graphs for VOC concentrations at SVP 02 are shown below.   

 

Figure 4.18.  Decomposed data of VOC concentrations at SVP 02 

The VOC concentration in the soil gas at SVP02 has maximum changes occurring during the 

morning and some in the afternoon hours as indicated in the graph below. 

 

Figure 4.19. Seasonal analysis graphs of VOC concentrations at SVP 02 
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4.4.1.3  Decomposition of SVP03 time series 

The detrended graphs for VOC concentrations at SVP 03 are shown below.   

 

Figure 4.20.  Decomposed data of VOC concentrations at SVP 03 

The maximum change for VOC concentrations in soil gas at SVP 03 occurs during the 

morning hours. 

 

Figure 4.21. Seasonal analysis graphs of VOC concentrations at SVP 03 
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4.4.2 Autocorrelation 

To measure how well observations at different points of time correlate with each other 

and look for a seasonal pattern, perform an autocorrelation analysis. The autocorrelation function 

can be used for the following two purposes namely to detect non-randomness in data and to 

identify an appropriate time series model if the data are not random. (43) 

 

4.4.2.1 Autocorrelation of SVP01 time series 

From the graph below it is evident that VOC concentrations at SVP 01 seem to relate to 

itself the most in 1-10 lag points i.e. 1-10 hours with 1 and 3 being the highest. 

 

 

Figure 4.22. Autocorrelation graphs of VOC concentrations at SVP 01 
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4.4.2.2 Autocorrelation of SVP02 time series 

From the graph below it is evident that VOC concentrations at SVP 02 seem to relate to itself 

the most in 1-5 hours. There is also a high correlation with VOC concentrations with itself at 24 

hrs and comparatively high on 48 hrs, indicating a daily correlation. 

 

 

Figure 4.23. Autocorrelation graphs of VOC concentrations at SVP 02 
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Figure 4.24. Autocorrelation graphs of VOC concentrations at SVP 03 
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coefficient) to tell you how accurate your model is. (45) Most elementary statistical analysis 

involve making scatter plots and performing linear regression. 

 

4.5.1    Regression of soil gas with ground water data 

The ground water quality data was collected from 3 sensors placed in about 12 ft deep 

wells namely MW02, MW03 and MW05. The water temperature and conductivity data were 

used for the purpose of the following correlation analysis. Correlation is a technique for 

investigating the relationship between two quantitative, continuous variables.  

 

4.5.1.1   Pearson Correlation test  

Pearson's correlation coefficient (r) is a measure of the strength of the association 

between the two variables. The first step in studying the relationship between two continuous 

variables is to draw a scatter plot of the variables to check for linearity. The correlation 

coefficient should not be calculated if the relationship is not linear. For correlation only 

purposes, it does not really matter on which axis the variables are plotted. However, 

conventionally, the independent (or explanatory) variable is plotted on the x-axis (horizontally) 

and the dependent (or response) variable is plotted on the y-axis (vertically). 

 The assumptions of Pearson correlation test are that the data should be normal, 

homoscedasctic, linear, continuous and paired. We do not meet most of the assumption except 

continuous and paired but our data is not normal or linear. 
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4.5.1.1.1   Pearson correlation test for SVP01 

The p value of MW02 is the only one below 0.05, hence SVP01 is statistically correlated 

to MW02 which makes sense since it is the closest water well to it.  

Table 4.7. Pearson correlation for VOC concentrations at SVP 01 and ground water quality data 

Pearson correlation    

 SVP 01 MW02     MW03     MW05 

Pearson correlation -0.095 0.027 -0.038 

P-Value 0.004 0.409 0.257 

 

 

The scatter plot of VOC concentrations at SVP01 and MW02 ground water conductivity 

is shown below and it shows the points that follow the fitted line and the outliers. 

 

 

Figure 4.25. Scatter plot of groundwater conductivity at MW02 and VOC concentrations at 

SVP01 
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4.5.1.1.2   Pearson correlation test for SVP02 

The p value of MW02, MW03 and MW05 are all below 0.05, hence SVP02 is at least 

slightly correlated to all three ground water wells. It is the most correlated to MW05 since that 

has the highest Pearson’s correlation constant followed by MW02 then MW03 which are the 

closest water well sites to them. 

Table 4.8. Pearson correlation for VOC concentrations at SVP 02 and ground water quality data 

Pearson correlation    

         SVP 02 MW02     MW03     MW05 

Pearson correlation 0.184 0.150 -0.249 

P-Value 0.000 0.000 0.00 

 

The scatter plot of ground water conductivity and temperature at MW05 vs SVP02 are 

shown below. We can see that conductivity has higher R-squared values indicating that ground 

water conductivity is a more important factor than ground water temperature. 

 

Figure 4.26. Scatter plot of ground water conductivity at MW 05 and VOC 

concentrations at SVP 02 
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Figure 4.27. Scatter plot of groundwater temperature at MW05 and VOC concentrations at 

SVP02 

 

4.5.1.1.3  Pearson correlation test for SVP03 
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4.5.2.2    Cross Correlation test 

Cross correlation function is used to determine whether there is a relationship between 

two time series. Usually, a correlation is significant when the absolute value is greater than 

, where n is the number of observations and k is the lag. This calculation is a rule of 

thumb procedure based on large-sample normal approximation. Since approximately 95% of a 

normal population is within 2 standard deviations of the mean, a test that rejects the hypothesis 

that the population cross correlation of lag k equals zero when |rxy(k) | is greater than 2/  

has a significance level (α) of approximately 5%. (45) 

 

A cross correlation test performed on GW conductivity of MW05 and VOC concentration 

at SVP02 in the graph below shows that the conductivity of the ground water is correlated to the 

soil gas VOC content the most at 24-48 lags i.e. hours. 

 

 

Figure 4.28. Cross correlation of groundwater conductivity at MW05 with VOC concentrations 

at SVP02 
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4.5.2    Regression of soil gas with weather data 

The weather and evapotranspiration data were imported from northernwater.org website 

for the Longmont area from a weather monitoring station that was closest to the site of interest. 

The data was converted to hourly averages to coincide with the soil gas data collected. Since 

SVP01 does not vary as much as the other two soil gas monitoring sites, we performed 

regression analysis with only the other two soil gas monitoring sites i.e. SVP02 and SVP03. The 

one-way analysis of variance (ANOVA) is used to determine whether there are any statistically 

significant differences between the means of three or more independent (unrelated) groups. The 

one-way ANOVA compares the means between the groups you are interested in and determines 

whether any of those means are statistically significantly different from each other. (46) 

The basic assumptions of linear regression is that the data sets need to have a linear relationship, 

multivariate normality, no or little multicollinearity, no auto-correlation and homoscedasticity 

 

4.5.2.1       Regression Analysis: SVP 02 with weather data 

From the p values of the ANOVA test performed of SVP02 and weather factors below it 

is evident solar radiation, wind speeds and catchment have statistically the least correlation to the 

soil gas content. 

 

Table 4.10. ANOVA results for VOC concentrations at SVP 02 and the weather data 

Analysis of Variance 
     

Source                         DF    Adj SS    Adj MS   F-Value   P-Value 

Regression                     12 65.379 5.4482 6.9 0 

  Ave Air Temp (°F)          1 8.401 8.4011 10.64 0.001 
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  Ave Soil Temp (°F)           1 6.955 6.9554 8.81 0.003 

  Rel Humidity (%)           1 1.676 1.6756 2.12 0.146 

  Vapor Pressure (kPa)        1 21.621 21.621 27.39 0 

  kp EvapPan                  1 13.281 13.2807 16.82 0 

  Rain (TB) (in)              1 7.057 7.0571 8.94 0.003 

  Catch (WB) (in)         1 2.053 2.0526 2.6 0.107 

  Precip (WB) (in)           1 5.071 5.0706 6.42 0.012 

  Solar Rad Tot (cal/cm2)    1 0.006 0.0057 0.01 0.932 

  Rso Clear Sky (cal/cm2)     1 0.583 0.5825 0.74 0.391 

  Ave Wind Speed (3m) (mph)  1 1.795 1.7955 2.27 0.132 

  Ave Wind Speed (2m) (mph)   1 1.767 1.767 2.24 0.135 

Error                        556 438.967 0.7895 
 

Total                          568 504.345 
  

 

From the summary table below the R squared value for the analysis is low, we cannot use 

this equation to calculate an exact quantity of VOCs in soil gas using just the weather data but 

we can use the equation to see if the factors are directly or inversely related to soil gas depending 

on the +/- sign in front of the factor. The magnitude of the coefficient in front of the factor can 

also help us judge how important that factor is when compared to the other factors. So from the 

equation below we can say that air temperature, soil temperature, humidity, evapotranspiration 

are positively correlated to the soil gas content while rain, precipitation and vapor pressure are 

inversely correlated to the VOC at SVP02 soil gas content. 

 

 Table 4.11. ANOVA Model summary for VOC concentrations at SVP 02 and weather data 

Model Summary 

       S     R-sq   R-sq(adj)   R-sq(pred) 

0.88854 12.96% 11.08% 7.52% 
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Regression Equation 

SVP 02 = -9.35 + 0.03110 Ave Air Temp (°F) + 0.0333 Ave Soil Temp (°F) 

         + 0.00893 Rel Humidity (%) - 2.208 Vapor Pressure (kPa) + 9.95 kp EvapPan 

         - 14.13 Rain (TB) (in) - 0.1370 Catch (WB) (in) - 13.84 Precip (WB) (in) 

         - 0.00025 Solar Rad Tot (cal/cm2) - 0.00208 Rso Clear Sky (cal/cm2) 

         + 13.88 Ave Wind Speed (3m) (mph) - 15.0 Ave Wind Speed (2m) (mph) 

 

 From the table below we can see that coeffiecients for vapor pressure, precipitation, and 

evaporation are pretty high, by an order of magnitude, when compared to other factors. 

 

Table 4.12. ANOVA model coefficients for VOC concentrations at SVP 02 and weather data 

Term                            Coef   SE Coef   T-Value   P-Value     VIF 

Constant         -9.35 1.98 -4.71 0  
Ave Air Temp (°F)      0.0311 0.00953 3.26 0.001 11.29 

Ave Soil Temp (°F)        0.0333 0.0112 2.97 0.003 5.1 

Rel Humidity (%)           0.0893 0.00613 1.46 0.146 20.31 

Vapor Pressure (kPa)   -2.208 0.422 -5.23 0 10.01 

kp EvapPan                      9.95 2.43 4.1 0 26.88 

Rain (TB) (in)               14.13 4.73 2.99 0.003 4.95 

Catch (WB) (in)          -0.137 0.085 -1.61 0.0107 3.43 

Precip (WB) (in)         -13.84 5.46 -2.53 0.012 5.16 

Solar Rad Tot (cal/cm2)     -0.00025 0.00291 -0.09 0.932 4.13 

Rso Clear Sky (cal/cm2)     -0.00208 0.00242 -0.86 0.391 3.06 

Ave Wind Speed (3m) (mph) 13.88 9.2  0.132 1746211 

Ave Wind Speed (2m) (mph) -15 10 -1.5 0.015 1746261 

 

The positive correlation between air and soil temperature and SVP02 soil gas VOC 

content can be seen in the graph below. 
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Figure 4.29. Linear graph of VOC concentration at SVP 02 and air and soil temperatures vs time 

 

The positive correlation between humidity in the air and SVP02 soil gas VOC content 

can be seen in the graph below. 

 

Figure 4.30. Linear graph of VOC concentrations at SVP 02 and humidity vs time 
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The negative correlation between vapor pressure and SVP02 soil gas VOC content can be 

seen in the graph below. 

 

 

Figure 4.31. Linear graph of VOC concentrations at SVP 02 and vapor pressure vs time 
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  Ave Soil Temp (°F)      1 0.254 0.253967 10 0.002 

  Rel Humidity (%)         1 0.019 0.018976 0.75 0.388 

  Vapor Pressure (kPa)   1 0.0116 0.011584 0.46 0.5 

  kp EvapPan          1 0.0238 0.02376 0.94 0.334 

  Rain (TB) (in)       1 0.0001 0.00012 0 0.945 

  Catch (WB) (in)  1 0.023 0.022956 0.9 0.342 

  Precip (WB) (in) 1 0.005 0.004958 0.2 0.659 

  Solar Rad Tot (cal/cm2)  1 0.0016 0.001632 0.06 0.8 

  Rso Clear Sky (cal/cm2) 1 0.1519 0.151902 5.98 0.015 

  Ave Wind Speed (3m) (mph) 1 0.0175 0.017535 0.69 0.406 

  Ave Wind Speed (2m) (mph) 1 0.0176 0.017582 0.69 0.406 

Error                  
 

556 14.121 0.025398 
 

Total                  
 

568 15.6019 
  

 

 

Similar to SVP02, from the table below the R squared value for the analysis is low, we 

cannot use this equation to calculate an exact quantity of VOCs in soil gas using just the weather 

data, but we can use the equation to see if the factors are directly or inversely related to soil gas 

depending on the +/- sign in front of the factor. The magnitude of the coefficient in front of the 

factor can also help us judge how important that factor is when compared to the other factors. So, 

from the equation below we can say that soil temperature, and humidity are positively correlated 

to the soil gas content while vapor pressure is inversely correlated to SVP03 soil gas content. 

 

Table 4.14. ANOVA model summary for VOC concentrations at SVP 03 and weather data 

Model Summary 

       S     R-sq    R-sq(adj)   R-sq(pred) 

0.159366   9.49%    7.54%         5.11% 
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Regression Equation 

SVP 03 = -0.027 - 0.00024 Ave Air Temp (°F) + 0.00636 Ave Soil Temp (°F) 

         + 0.00095 Rel Humidity (%) - 0.0511 Vapor Pressure (kPa) - 0.421 kp EvapPan 

         + 0.058 Rain (TB) (in) + 0.0145 Catch (WB) (in) - 0.433 Precip (WB) (in) 

         + 0.000132 Solar Rad Tot (cal/cm2) - 0.001063 Rso Clear Sky (cal/cm2) 

         + 1.37 Ave Wind Speed (3m) (mph) - 1.49 Ave Wind Speed (2m) (mph) 

 

Table 4.15. ANOVA model coefficients for VOC concentrations at SVP 03 and weather data 

Term                 Coef SE Coef T-Value P-Value VIF 

Constant          -0.027 0.356 -0.08 0.939 
 

Ave Air Temp (°F)         -0.00024 0.00171 -0.14 0.89 11.29 

Ave Soil Temp (°F)       0.00636 0.00201 3.16 0.002 5.1 

Rel Humidity (%)          0.00095 0.0011 0.86 0.388 20.31 

Vapor Pressure (kPa)  -0.0511 0.0757 -0.68 0.5 10.01 

kp EvapPan                     -0.421 0.435 -0.97 0.334 26.88 

Rain (TB) (in)                  0.058 0.848 0.07 0.945 4.95 

Catch (WB) (in)              0.0145 0.0152 0.95 0.342 3.43 

Precip (WB) (in)            -0.433 0.98 -0.44 0.659 5.16 

Solar Rad Tot (cal/cm2) 0.000132 0.000522 0.23 0.8 4.13 

Rso Clear Sky (cal/cm2)  -0.00106 0.000435 -2.45 0.015 3.06 

Ave Wind Speed (3m) (mph)   1.37 1.65 0.83 0.406 1746211 

Ave Wind Speed (2m) (mph)   -1.49 1.79 -0.83 0.406 1746261 

 

The correlation between soil and air temperature and SVP03 soil gas VOC content can be 

seen visually in the graph below. 
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Figure 4.32. Linear graph of VOC concentrations at SVP 03 and air and soil temperature vs time 

 

The correlation between humidity in the air and SVP03 soil gas VOC content can be seen 

in the graph below. 

 

Figure 4.33. Linear graph of VOC concentrations at SVP 03 and humidity vs time 
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The correlation between vapor pressure and precipitation and SVP03 soil gas VOC 

content can be seen in the graph below. 

 

 

Figure 4.34. Linear graph of VOC concentrations at SVP 03 and vapor pressure vs time 
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4.6    Chemical compound identification by In-Situ tests 

 

The following test was performed by using Tedlar bags in accordance with EPA method 

18. According to the results of these tests, tetrachloroethene (PCE) and trichloroethene (TCE) 

were found in the test site while toluene was found upstream towards the south of the site. 

 

Table 4.16. Laboratory test report of samples collected onsite in accordance with EPA method 18  

 

VOC Measured SVP01  SVP02 SVP03 

South 

of Site 

Reporting 

Limits 

(ug/m3) CAS 

1,1,1-Trichloroethane ND ND ND ND 11 71-55-6 

1,1,2-Trichloroethane ND ND ND ND 93.4 79-00-5 

1,1-Dichloroethane ND ND ND ND 9.8 75-34-3 

1,1-Dichloroethene ND ND ND ND 17 75-35-4 

1,2-Dichloroethane ND ND ND ND 13.4 107-06-2 

1,2-Dichloropropane ND ND ND ND 20.8 78-87-5 

1,4-Dichlorobenzene ND ND ND ND 34.6 106-46-7 

Benzene ND ND ND ND 28.4 71-43-2 

Carbon Tetrachloride ND ND ND ND 33.2 56-23-5 

Chlorobenzene ND ND ND ND 22.8 108-90-7 

Ethylbenzene ND ND ND ND 22.4 100-41-4 

m,p-Xylene ND 

ND ND ND 

49 

179601-

23-1 
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o-Xylene ND ND ND ND 29.6 95-47-6 

Styrene ND ND ND ND 29.2 100-42-5 

Tetrachloroethene 25 ND ND ND 13.6 127-18-4 

Toluene ND ND ND 12.2 11.2 108-88-3 

Trichloroethene ND 39.0 53.6 ND 47 79-01 

 

The statistical analysis of the soil gas shows that there may be a rising trend in the pollutant 

levels in the test site with a constant high VOC release at SVP01 and the multiple spikes at 

SVP02 and SVP03 indicate that the pollutant may be spreading and getting released under these 

sites as well. I propose that the pollutant might be travelling north from SVP01 to SVP02 as 

indicated in the diagram below. 

 

Figure 3.36. Spatial analysis of the laboratory report  
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CHAPTER 5.  CONCLUSIONS 
 

 

 

Multiple analysis techniques were applied on the data and the results of these tests and 

their meaning will be discussed in the following section. 

 

Preliminary data analysis was conducted such as the mean were calculated using box 

interval plots and simple linear plots were created to visually see and analyze the data. We 

noticed that there is a period between middle of January till the middle of April when the soil gas 

sensor at SVP 02 has no high emissions of VOCs while the soil gas sensor at SVP 03 has 

intermittent high emission phases of VOCs which could be explained by the soil type of the 

region. SVP 03 has high sandy soil content while SVP 02 has a high clay soil type content.  

 

One of the trend analysis techniques used was linear trend analysis as shown in section 

3.3.1. These trend analyses have an equation associated with it and the sign and magnitude of the 

coefficient associated with time indicates if it is a rising or falling trend. According to the linear 

trend analysis, there may be a rising trend associated with VOC concentrations at all the soil gas 

monitoring stations. However linear trend analysis is not the most accurate way to detect rising 

trends hence we used other tests to verify the trends such as the Mann-Kendall and Sen`s slope 

test as shown in section 3.3. These analyses show that VOC concentrations at SVP 01 may be 

falling while VOC concentrations at SVP 02 and SVP 03 may be rising. Mann-Kendall and 

Sen`s Slope test are non-parametric and have better p-values associated with them and are hence 

a better option to linear trend analysis. 
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Another method of analysis is to break the results into cyclic periods and see how they 

vary over similar periods of time. This can be done in multiple ways such as over seasons (i.e. 

summer, fall, winter and spring), or weekly, or daily. Since we have hourly data and the period 

of study isn’t sufficiently large to study seasonal changes, I divided the data into 24-hour chunks 

to see how the data varied over a period of a day. One way to do this is by using Xbar and S 

charts as shown in section 3.3.2. These charts are useful to calculate daily means and standard 

deviations. We can use this to figure out which days had the most deviations to the normal and 

use the metadata to figure out why that was the case. Another way to perform this analysis is 

using time-series decomposition as explained in section 3.4.1. From this analysis we can see that 

VOC concentrations at SVP 01 vary the most at night with a decreasing concentration while 

VOC concentrations at SVP 02 and SVP 03 vary the most during the morning hours with a 

decreasing concentration while they have a slightly increasing concentrations all through the day 

and start decreasing again through the night. Autocorrelation was also performed on data as 

shown in section 3.4.2 to see how closely the data relates to itself in cyclic periods. 

 

Another important part of this analysis was to correlate other environmental data such as 

the weather data and ground water quality data with the VOC concentration data at the soil gas 

stations. The Pearson correlation test was performed for the ground water quality data and soil 

gas data and it was found that the ground water monitoring station which was the closest to the 

soil gas monitoring station was most correlated to it (except in the case of SVP 03 which had no 

statistically correlated data with any of the ground water monitoring stations). I also plotted 

scatter plots to see how closely related the ground water quality data was to the soil gas data. We 

also conducted cross correlation tests between the ground water quality and VOC concentrations 
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at SVP 02 and found out that the soil gas data is most related to the ground water quality data 

from 24-48-hour lags as shown in section 3.5.2.2. Analysis of variance test was also performed 

on the soil gas data and weather data. Factors such as average air temperature, soil temperature, 

relative humidity, vapor pressure, precipitation, solar radiation and wind speeds were considered 

for regression.  

 

From the lab reports of the samples collected at the site we see that tetrachloroethene 

(PCE) was predominantly found in SVP 01 and trichloroethane (TCE) was predominantly found 

in SVP 02 and SVP 03 while toluene was found towards the south of the site. From the real-time 

readings though we were able to statistically show that the contaminant plume near SVP 01 is 

spreading towards the other sites. Toluene towards the south of the site indicates that other 

aromatic hydrocarbons are also present near the contaminant plume. 

 

We were able to use low-cost sensors and data analysis techniques to ascertain the spatial 

and temporal movement of the contaminant plume underground which was the main goal of this 

thesis. We were also able to correlate some of the environmental factors and make some 

inferences on its impact on the release of VOCs from the soil. 

 

Some of the key learnings and inferences from the data analysis performed are listed 

below. 

• We can extract some of the information just by the visual data such as a rising or 

falling trend of the ground water temperature and pH but other values such as 
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VOC concentrations at the soil gas station are harder to predict visually. Hence 

further statistical analysis is needed to predict and analyze these trends. 

• Time Series analysis gives us more in-depth data such as the average values at a 

particular time of day as well as deviations at each hour. This data is useful to 

predict which time of day has maximum variations and the magnitude of change 

at an average hourly basis. 

• From Auto correlation it was found that all the VOC concentrations are at 

comparatively most related to themselves at 24-hour periods. Hence VOC release 

is correlated to the time of the day. 

• We got low R squared values from correlating just ground water quality data and 

soil gas data indicating that more factors were required to be considered other 

than the ground water temperature, pH and conductivity.  

• Cross correlation test of ground water quality and soil gas data indicates that the 

changes in ground water quality data seems to affect the soil gas release the most 

after 24 to 48 hours 

• The VOC release seem to be positively correlated to humidity, air, ground water 

and soil temperatures while they seem to be negatively correlated to the vapor 

pressure, precipitation and to a certain extent to ground water conductivity. 

• Multiple low-cost sensors coupled with laboratory testing and data analysis 

techniques can provide better spatial and temporal analysis results and provide us 

with more useful key insights. 
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CHAPTER 6. RECOMMENDATIONS FOR FUTURE STUDIES 
 

 

 

There are a lot of gaps in my study due to lack of resources and technical knowledge. For 

instance, I was only able to use NDIR sensors for real time sensing which is capable of sensing 

single chain hydrocarbons such as methane, which restricts me from detecting multi chain 

hydrocarbons and gives me false readings when multiple single chain hydrocarbons are present 

in the same chemical compound. The EPA method 21 recommends PID sensors for real-time 

VOC testing and I would recommend PID sensors be used for more accurate results. 

  

Due to untimely calibration of the ground water sensors which caused a lot of the 

conductivity, oxidation reduction potential (ORP) and dissolved oxygen (DO) data to be 

inaccurate and hence unusable for the analysis. Ground water conductivity showed the highest 

correlation with VOC concentration at SVP 03 with the data that was usable. ORP and ground 

water temperature have a good correlation with the VOC concentrations as well and should be 

studied in a more in-depth study with cross-correlation in mind to explain what reactions in the 

ground water lead to the delayed release of VOCs into the soil gas. 

  

The factors such as soil type and its relation to the weather conditions and release of 

VOC were not a focus of this study but were found to be a major factor affecting it. Further 

analysis should be done in this field to detect the release of VOC from varying soil type. Other 

factors studied such as humidity, air, ground water and soil temperatures, vapor pressure, 
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precipitation and ground water conductivity need to be studied in more detail to provide better 

relation coefficients with higher R-squared values associated with the equations. 

  

We collected the soil gas data over a period of 8 months consisting of 3 seasons namely 

fall, winter and spring. There was a tremendous change in magnitude and frequency of the 

emissions of VOC between the soil gas station during these seasons and I would recommend 

doing these tests over longer periods which would help give better regression equations and 

better decomposed graphs since more cyclic periods can be extrapolated and analyzed. I would 

recommend at least a 3-year study on a site with corresponding soil, ground water and weather 

data. 

 

The main goal of this study was to develop a more precise setup for real-time VOC 

release monitoring and help regulate fracking sites more efficiently and productively and to 

analyze the data collected faster and more accurately and keep it open and easily understandable 

to the public so that they comprehend the effects of the fracking sites without inaccurate 

prejudice. Another goal of this study was to bridge the gap between laboratory sampling and 

real-time on-site testing. We were able to analyze the movement of the contaminant plume using 

real time sensing and were also able to identify most of the constituents of the contaminants 

using in-situ data. However, we did not conduct any real-time testing on the south side of our site 

and hence were not able to perform any statistical analysis on how toluene was reacting with the 

main contaminant plume (i.e. PCE). Many studies indicate that toluene is one of several co-

substrates able to support the co-metabolism of PCE and TCE by soil microbial communities. 
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Hence it would have been interesting to see how real time changes in toluene would have reacted 

with the changes in the contaminant plume.  
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