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PREFACE

Colorado State University's contribution to W-51 Regional Research
Project entitled "Factors Influencing the Flow of Subsoil Water in the
Immediate Proximity of and into Drainage Facilities" includes a study of
models for solving field drainage problems., Studies described in Hydrology
Paper No, 17 were conducted to delineate and help solve some of the obvious
practical problems encountered in modeling actual field systems involving
flow in partially saturated porous media. Earlier work presented in
Hydrology Paper No. 9 indicated that the theory of similitude proposed by
Brooks and Corey in Hydrology Paper No. 3 was valid and could be used as
a basis for constructing models of subsoil drains.

The study presented herein was conducted to study factors affecting
the magnitude of the drainable water above the water table on drainability
and to determine the extent to which these factors are influenced by soil
parameters. This paper is based primarily on the senior author's Ph.D.
dissertation with the same title, presented at Colorado State University

in August 1970.
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Volume flux
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Time
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Definition
Vertical distance between the soil surface and water table
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Scaled height of the water table above impermeable barrier
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Vertical space coordinate
Denotes a difference
Partial differential operator
Arbitrary constant
Pore size distribution index -d(log K)/d(log P.)
Dynamic viscosity
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Fluid density
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Summation
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ABSTRACT

The effects of the drainable water above the water table on drainage
behavior were analyzed to determine their magnitude and the extent to
which they are influenced by soil parameters. These effects were shown
to be 1) an increase of the vertical dimensions of the flow region and
2) a reduction in the outflow as predicted by assuming no drainable water
above the water table.

The Brooks-Corey scaling theory was first shown experimentally to be
valid for two-dimensional, transient-flow drainage and was then applied
in an analysis of the problem. This analysis, using the Brooks-Corey
scaled variables, demonstrated that the pore-size distribution index,
which is related to the range of the pore sizes of the soil, was of pri-
mary importance, Drainage tests of two soils having different pore-size
distribution indices were conducted. A numerical solution was developed
and applied to the problem by simulating drainage from soil of other
pore-size distribution indices.

Results from the experiments and the numerical solution showed that
drainage was affected by pore-size distribution as measured by the index.
This effect was found to be more significant for soils having a wider range
of pore sizes. A practical implication of these results is that a design
method which accounts for the water above the water table should be devel-
oped. A number of transient-flow drainage design methods, presently being
used, were shown to yield results which are appreciably in error. From
this study it appears that such an improved design method must be based on
data obtained from physical or numerical models which simulate the flow of

the drainable water above the water table.

xiii



MODELS FOR SUBSURFACE DRAINAGEEJ

by

W. E. Hedstrom, A. T. Corey, and H. R. Dukegf

INTRODUCTION

Optimum plant growth depends on a number of
atmospheric, soil, and plant factors. Among these
are an adequate supply of soil water of proper quality
and sufficient rates of exchange of oxygen and carbon
dioxide between the atmosphere and the plant root
system. The interrelationship of these factors is
illustrated by the fact that excess soil water
restricts plant growth by limiting the oxygen diffu-
sion rate to, and the carbon dioxide diffusion rate
from, the respiring roots (35, 37). Continuous air-
filled pore spaces, required to support this diffu-
sion process, can be maintained only at soil water
contents somewhat below saturation.

The soil profile may become nearly or completely
saturated and require drainage because of appreciable
rainfall, subsurface flow from areas of higher eleva-
tions, or over-irrigation. Applications of irriga-
tion water in excess of evapotranspiration demands
rarely can be avoided because of the lack of complete
control of the water used and the difficulty of pre-
dicting the exact rate of evaporation from soil and
plant surfaces. In fact, water in excess of evapo-
transpiration is often required for leaching soluble
salts from the soil profile.

Although artificial drainage has been practiced
for centuries throughout the world (40), drainage
problems still exist, In 1962, the United States
Department of Agriculture (54) indicated that excess
water is the dominant problem on 22 percent of the
total crop land in the United States. Gulhati (23)
estimated that 150 to 200 million acres of irrigated
crop land throughout the world need improved drainage.

A so0il in need of drainage is characterized by
a high water table which is defined as the locus of

points where the soil water is at atmospheric pressure.

The purpose of subsurface drainage is to lower exces-
sively high water tables within a time period which
will prevent crop damage where water tables rise too
close to the soil surface. Some subsurface drainage
systems are designed to intercept excess water before
it creates a problem. Others are designed either to
relieve the root zone of excess water or to prevent
its accumulation,

The design of relief drains consists primarily
of determining the proper drain depth and spacing to
remove the excess water. Many design solutions have

The latter are called relief drains.

been presented in the literature, but simplifying
assumptions have been made in arriving at all mathe-
matical solutions, Most design procedures are based
either on empirically derived information or analyses
incorporating a number of questionable assumptions,

One assumption repeatedly used in arriving at
solutions to drainage problems is that no flow of
water occurs above the water table, This implies
that, as the water table drops through a particular
volume of soil, the volume drains instantaneously
from saturation to its final constant water content.
However, neither the water table nor the upper limit
of the saturated region necessarily corresponds to
the depth at which sufficient rates of diffusion of
oxygen to and carbon dioxide from the plant roots
(55) exist., Also, the assumption that the water
table is the upper boundary of the flow region leads
to an erroneous formulation of the hydrodynamic
problem.

The distinguishing feature of the flow above
the saturated region is that functional relationships
exist among saturation, pressure difference between
air and water, and the permeabilities to air and
water. Below this region the permeability is not
affected by pressure variations, because the medium
is fully saturated. Brooks and Corey (B) presented
equations for these functional relationships in
terms of two physically significant soil drainage
parameters; the bubbling pressure, Py which is
related to the maximum pore-size forming an inter-
connected network of channels within the soil, and
the pore-size distribution index, A , which is an
evaluation of the distribution of pore sizes.

The equation describing two-dimensional drainage
cannot be solved directly even when these two drainage
parameters are known. In fact, this non-linear,
second order partial differential equation has been
solved for only simple one-dimensional flow problems.
Physical and numerical models offer opportunities
for solving the non-steady drainage problem. The
similitude requirements specified by Brooks and
Corey (8) can serve as a basis for developing such
models. Corey et al. (14) showed that the Brooks-
Corey theory was valid for one-dimensional drainage.
Their studies also indicated that the pore-size
distribution index is of prime importance in the
analysis of unsaturated flow.

1/Contribution from the Agricultural Engineering Department, Colorado State University, ang the Northern
~ Plains Branch, Soil and Water Conservation Research Division, Agricultural Research Service, USDA.

2/Assistant Professor, Agricultural Engineering Department, University of Wyoming (formerly Gra?uate‘Student,
" Colorado State University); Professor, Agricultural Engineering Department, Colorado State University; and

Agricultural Engineer, USDA, Fort Collins, Colorado.



The purpecses of the study reported herein are:

1.

To test experimentally the validity of the
Brooks-Corey similitude theory for two-
dimensional, transient-flow drainage.

To determine the sensitivity of two-
dimensional, transient-flow drainage
behavior to the pore-size distribution
index by:

a. conducting drainage experiments in the
laboratory using two different soils

that are characterized by significantly
different pore-size distribution
indices and

b. developing and studying a numerical
model which would simulate drainage
from soils having a wide range of
pore-size distribution indices.

Compare results from physical and numerical
models with results predicted by various
analytic drainage solutions in an effort

to evaluate these solutions.



BACKGROUND

The drainage engineer faced with the problem of
determining the depth and spacing of relief drains
must answer two questions:

1. What is the drainage system's intended
function as influenced by soil and climatic
factors, cropping patterns, and economic
considerations?

2, What are the engineering specifications
required for the design of a successful
drainage system?

The function of a drainage system may be des-
cribed in terms of depth of water to be removed within
a specified time period, maximum height of the water
table, rate of lowering of the water table, or some
other set of specified conditions. In determining
this function, the drainage or aeration requirements
of the predominant crop should be considered. To
date, engineering specifications of drainage systems
have been based on field observations of existing
systems, drainage equations, or results from models
and analogues. There is no universally accepted
design procedure, although there is extensive litera-
ture on soil drainage (39).

A brief review of some of the better known
publications dealing with drainage functions, theories
and equations, analogues, and modeling theories
follows. A summary of selected contributions to the
present knowledge of unsaturated flow is also pre-
sented to establish a foundation for the analysis
presented later.

Determination of Drainage Requirements

There are four distinguishable approaches that
have been used or suggested for determining the drain-
age requirements on which to base a system design.
The adaptability of these approaches to particular
regions, soils, and crops differs. Their relative
stages of development and extent of application also
vary greatly. The four approaches are:

1. Drainape coefficients - By far the most
extensively used approach for determining
the drainage requirement in humid areas of
the United States involves the use of a
""drainage coefficient", defined as the depth
of water to be removed in a 24-hour period
(40). Drainage coefficients are based solely
on field observations of installed projects
which were considered to have provided
adequate drainage.

2. Optimum water table depth - The maintenance
of an "optimum" water table depth has been
the objective of many drainage systems,
particularly in areas where rainfall follows
low-intensity, long-duration patterns (62).
However, ranges of optimum water table depth
have also been recommended for irrigated
areas (52). After examining the numerous
conflicting data pertaining to optimum water
table depths, Wesseling and van Wijk (61)

concluded that the most favorable water
table depth was highly dependent on the
type of crop and the type of soil as well
as a number of other factors.

3. Falling water table - Because drainage is
often required only after intense rainfall
or application of irrigation water, many
investigators have developed and recommended
the use of drainage design procedures to
determine drain depth and spacing which
would cause the water table to fall a speci-
fied distance within a certain length of
time (19). This approach has yielded
numerous mathematical solutions.

4. Fluctuating water table - A similar model
used to more effectively represent drainage
problems in humid areas is the '"fluctuating
water table" (34). Van Schilfgaarde's
model (57), used to determine frequency dis-
tributions of predicted water-table eleva-
tions from long term precipitation records,
as influenced by drainage system parameters,
is an example.

These four approaches deal either with the
removal of a specified volume of water or with the
location of the water table; they all ignore soil
parameters influencing the distribution and flow of
water above the water table.

Plant physiologists and soil physicists (37)
generally agree that oxygen diffusion rates measured
with the platinum microelectrode give the best
measurement of the aeration parameter upon which
to base drainage requirements of plants. Oxygen
reaching the root for respiration must enter the
soil surface and diffuse through soil containing
both micro-organisms and other roots, all of which
are respiring (65). Thus, the depth of the plant
root system and activity of micro-organism influence
oxygen demands and distribution in the soil. A
fairly good correlation exists between oxygen diffu-
sion rates and plant growth (35). The critical
oxygen diffusion rate for most plants has been
determined to be 35 to 40 x 10-8 grams cm~2 min-1 (37).

The volume of interconnected gas-filled pores
appears to be one of the more important soil param-
eters affecting the oxygen diffusion rate (65).

But the effective gas-filled pore volume required
varies with the depth of the root zone (37). There-
fore, determining the drainage requirement of a crop
consists of the following:

1. Crop selection and determination of the root
zone depth - This is the depth at which the
critical oxygen diffusion rate should be
maintained, except for short time periods
which depend on crop tolerances to poor
aeration conditions.

2. Determination of the maximum saturation that
allows the minimum oxygen diffusion rate to
occur - The effective porosity and possibly



other soil hydraulic properties must be
known.

3. Application of a drainage solution which
uses appropriate boundary conditions and
yields the distribution of saturation above
the water table at all times.

4. Consideration of special situations requir-
ing additional design - For example, water
table depths in irrigated soils should
minimize upward flow to prevent accumulation
of salts at or near the soil surface. This
soil-moisture flow problem can be analyzed
only if the appropriate soil hydraulic
parameters arc known.

Transient-Flow Drainage Analysis

Van Schilfgaarde et al. (58) in 1954 reviewed
and evaluated both steady-state and transient-flow
solutions, and Kirkham (32) in 1966 presented a
summary of steady-state theories for drainage. But
steady-state conditions rarely exist under field
conditions. Hence, this review is restricted to only
the better known drainage sclutions for falling or
fluctuating water table models.

The following assumptions regarding the soil-
water-air system are frequently made:

1. The soil is homogeneous, isotropic, and
physically stable.

2. The water has constant values of surface
tension, contact angle, viscosity, and
density throughout the entire flow system
and during all times under consideration,

3. The pressure of the air is constant through-
out the system and equal to the atmospheric
pressure.

4, Darcy's law is valid, that is, the flux is
proportional to the hydraulic gradient.

Many transient-flow drainage analyses apply
additional assumptions to the region of flow:

1. A horizontal, relatively impermeable barrier
exists at some depth below a horizontal soil
surface - This type of barrier, occurring
frequently in nature, forms a boundary for
the flow region.

2. No water occupying the drainable pore space
is lost to evapotranspiration.

3. There exists no drainable water above the
water table or above the upper boundary of
the capillary fringe, implying that one or
the other of these surfaces is the upper
boundary of the flow region, This assumption
implies that a soil element drains instanta-
neously to its final or residual water con-
tent as the water table or upper boundary of
the capillary fringe falls through the ele-
ment. Unlike assumptions 1 and 2, this
assumption is in serious conflict with field
cbservations, because the fraction of the
soil volume which is drained increases

gradually with the distance above the water
table or, more precisely, with capillary
pressure (the difference in pressure be-
tween the non-wetting fluid phase (air)

and the wetting fluid phase (water)).

4., The water table terminates at the level of
the water in the drain. The seepage surface
at ditch drains is ignored.

In addition to these assumptions, others have
beer necessary to formulate each of the known
transient-flow drainage solutions. These assump-
tions were required to simplify the partial differ-
ential equation or to apply an assumed mathematical
relationship involving drainage parameters and
boundaries. The Dupuit-Forchheimer assumptions,
which simplify the transient-flow equation, were
applied in the derivation of the earliest transient-
flow solutions. Later, 2 number of investigators
assumed that the water table falls without change in
shape. As a result of this assumption, steady-state
drainage relationships, which assume a uniform
recharge between drains, were used to describe the
flux at any instant of time. Integrating with respect
to time gave an expression for the rate of fall of
the water table., Another assumption sometimes made
in obtaining transient-flow drainage solutions is
that the rate of flow into a tile line is directly
propertional to the height of the water table above
the tile lines at the midpoint between them and to
the hydraulic conductivity of the soil.

Although the Dupuit-Forchheimer (or D-F) assump-
tions have been criticized (45), they have been used
extensively in ground-water hydraulics (16), steady-
flow drainage (25), and transient-flow drainage (18).
When drainage systems are analyzed using these assump-
tions, additional assumptions involving the region
of flow, such as noted above, are almost always
included. The D-F assumptions are (20):

1. All streamlines in a system of gravity flow
toward a shallow sink are horizontal.

[ ]

The velocity along these streamlines is
proportional to the slope of the free water
surface, but independent of the depth.

These two assumptions, if examined rigorously, lead
to the absurdity that no flow can occur (58). How-
ever, evidence from laboratory and field experiments
has shown that solutions based on the D-F assumptions
yield acceptable approximations of the actual behav-
ior of systems involving flow in porous media if the
slope of the water table is very slight (5).

The differential equation resulting from apply-
ing the D-F assumptions to a homogeneous region, as
shown in Figure 1, is (56):

. 3 dh sh
Ko (h33) = £ 57 (1)

in which K and f are the hydraulic conductivity
and the drainable porosity of the soil, respectively,
x is the horizontal dimension, h is the height of
the water table above the impermeable barrier, and
t is time, Since it is nonlinear, equation (1) has
been solved without linearization by Boussinesq (3)
and, by Glover (18), but it applies only to the case



when the drains are on the barrier. Van Schilfgaarde
(55) extended this analysis to the case of the drains
being at some significant distance above the barrier.
In both of these solutions a curved initial water
table was assumed.

= Soil Surface

Initial Water Table - Vorious Shapes™ ‘]
— =——— ———=——1— Hove Been
Water Table at Time 1 R Hi&numed

[ : .
| i | tlmpzrv:ous Layer
1 -’l : A e A 7 oo 7k
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| 1 |
Notes: | Both tile and diteh drains are shown for descriptive
purposes

2. M, is measured at x=L/2.

Fig. 1. Geometry of drainage system.

Equation (1) has also been solved through linear-
ization by considering the flow depth, which is the
multiplier h in equation (1) to be the mean flow
depth K equal to the average of the initial and
ultimate flow depths. The resulting equation is:

= . 3%h 3h
hl(-—-i--f'a—t- . (2)

ax

It has also been solved by substituting y = h? into
equation (1), taking y? as a constant, and obtaining
an equation similar to equation (2).

Glover (18) obtained a solution for the case of
the drains at some significant distance above the
impermeable barrier by the use of the first type of
linearization. The initial condition selected was a
level water table, The solution was a Fourier sine
series, although a simpler approximate equation was
presented which was shown to be sufficiently valid
for large time values. Tapp and Moody (19) improved
slightly on Glover's work by developing a drain spac~
ing equation using a fourth-degree parabola to repre-
sent the initial water table condition for the case
when the drains are above the barrier. Again using
the first type of linearization, they obtained a
solution similar to Glover's.

Visser (59) extended the application of a steady-
state equation developed by Hooghoudt (25) and others
(2) to fluctuating water tables. Hooghoudt's equation
is based on the D-F assumptions.

Werner (60) and Maasland (42) considered the more
general case of intermittent recharge followed by
transient-flow drainage, but they also used linearized
forms of equation (2). Kraijenhoff van de Leur (34)
studied the intermittent recharge problem analytically
and experimentally, using the first linearization pro-
cedure involving the use of equation (2).

Brooks (7) obtained a solution to equation (1)
without the use of any linearization process by using

the method of successive approximations. He assumed
an initially level water table and presented his
solution in a plot of the drawdown of the midpoint
of the water table as a function of a dimensionless
time parameter. No information was given, however,
relative to the cumulative outfiow, rate of outflow,
or water table shape.

Jenab (28) obtained a solution to equation (2)
based on an initially level water table. His results
were somewhat similar to Glover's although the water
table shape, as determined by his resulting equation,
differed.

A primary criticism of the D-F assumptions is
that the convergence of flow lines near drains is
neglected (57). Hooghoudt (25) developed the concept
of an '"equivalent depth" as a correction to be
applied to solutions based on the D-F assumptions,
The equivalent depth, representing the effective
flow depth below a drain, is dependent on the depth
of the impervious barrier below the drain, the drain
spacing, and the drain diameter. Approximate equa-
tions, as well as graphs, have been presented (55)
from which the equivalent depth can be obtained.
However, a trial and error solution is necessary if
the drain spacing is sought.

The only transient-flow drainage solution based
on the Dupuit-Forchheimer assumptions that is widely
used is the Tapp and Moody solution (19). The U.S.
Bureau of Reclamation adopted the solution after com-
paring computed drain spacings and water-table fluc-
tuations with field measurements from drain installa-
tions in widely separated areas of the world (19).
The USBR procedure incorporates a convergence correc-
tion developed by Moody (44). However, disagreement
prevails regarding the validity of the assumptions
on which the Tapp and Moody solution is based;
efforts are continually being made to derive new and
better transient-flow drainage solutions. A summary
of two-dimensional, transient-flow drainage solutions
is given in Appendix A.

Bouwer and van Schilfgaarde (6) substituted
Hooghoudt's (25) steady-state equation into a mathe-
matical relation that expresses the proportionality
between the rate of fall of the water table midway
between the drains and the flow rate into the tile
line. This resulted in an equation, generally
referred to as the integrated Hooghoudt equation,
which described the transient-flow drainage problem.
Kirkham's (31) theoretical formulas for the height
of an arch-shaped water table supplied by steady rain-
fall also have been used in the above context. Ligon
et al. (38) considered the falling water table
between open ditches, while Amer (1) investigated
tile drainage. Both analyses combine the appropriate
form of Kirkham's steady-state solutions with the
mathematical relationship represented by the second
flow assumption. Earlier, Hammad (24) developed an
equation similar to Amer's but used a slightly dif-
ferent approach. For large saturated thicknesses,
relatively flat water tables, and insignificant capil-
lary fringe effects, results from these solutions
compare fairly closely with a variety of experimental
data obtained in laboratory models and in the field,

Luthin (40) used the assumption that the rate
of flow into a tile drain is proportional to the
height of the water table above the drains to develop
a formula relating the height of the water table midway



between the drains as a function of time to the

drain spacing, hydraulic conductivity, and porosity.
The shape of the water table was considered to be
either flat or elliptical, but was assumed to remain
constant at all times. This solution and those based
on the uniform flux assumption are reviewed in
Appendix A.

Physical Models and Analogues

One of the earliest analyses of transient-flow
drainage was made by Childs (11) who used an electri-
cal analogue to find by trial and error a succession
of water table positions. Brutsaert et al. (10)
worked with an electrical resistance network to obtain
experimental positions of the water table during
drawdown. In both of these experiments, a capillary
fringe of constant height was considered. However,
results were not applicable to general design pur-
poses.

Transient-flow drainage has also been studied
with the use of the Hele-Shaw viscous flow model by
Todd (53) and by Ibrahim and Brutsaert (26). Grover
and Kirkham (22) developed a model in which the soil
was represented by glass beads and the water by glyc-
erol., The model was used by Ligon (38) to study the
falling water table between open ditches. However,
no attempt was made to model the flow above the water
table in any of these studies.

Approximate Solutions Utilizing Numerical Methods

Kirkham and Gaskell (33) applied the relaxation
method of Luthin and Gaskell (41) to the two-
dimensional transient-flow drainage problem. A for-
mula to determine the rate of fall of the water table
over a small time increment was derived, enabling a
new water table position to be found, Then the
Laplace equation was solved by the relaxation method
throughout a network of points subject to the new
flow boundary. The method developed required con-
siderable computational effort to obtain accurate
results, and these results were only applicable to
one particular drainage situation. Isherwood (27)
modified the Kirkham-Gaskell (33) procedure slightly
and used a digital computer to solve the transient-
flow drainage problem for eight different flow region
geometries.

Moody (44) solved equation (1) by writing it in
a finite-difference form and applying numerical
methods of solution. In this way he was able to con-
sider a variable flow depth. Results included plots
of dimensionless parameters representing the height
of the water table midway between the drains, the
flow rate, and the volume of water drained all as
functions of time. A correction factor for conver-
gence was applied in the numerical solution.

Rubin (48) solved the Richards equation for
transient-flow drainage from a rectangular soil slab
with the aid of an alternating-direction, implicit
procedure. Only three geometric configurations were
considered, and empirical equations were used to des-
cribe the hydraulic conductivity-capillary pressure
head and water content-capillary pressure head rela-
tionships. Since this method of solution involves
fewer approximations; it should account for the drain-
able water above the water table more accurately than
any other analytical or numerical solution developed
to date.

Drainage Solutions Derived from Physical Models

As pointed out by Corey et al. (14), properly
scaled physical models offer a means of investigating
transient-flow drainage. A number of theories des-
cribing various criteria of similitude for flow in
partially saturated porous media have been developed
(43). Brooks and Corey (B) developed a scaling pro-
cedure that specifies similitude requirements for
modeling transient flow in partially saturated
systems. They developed the procedure by scaling
the Richards equation with system parameters of
length, pressure, and time., A brief development of
the Richards equation is given here, because of its
importance in the study of transient-flow drainage.

First, Darcy's equation can be written for a
homogeneous, isotropic medium in three-dimensional
form as

q = -(k /W)V(P - pgz) (3)
or

q = -(k_og/u)V(P/pg - z) (4)
in which

q is the volume flux of the fluid --LT'l,

ke is the effective permeability -—LZ,

P is the fluid pressure ~~FL_2,

u is the fluid viscosity (absolute) —-FTL'2,

p is the fluid density --FrL 7%,

g 1is the gravitational acceleration --LT-Z, and

z is the vertical space coordinate --L

Both equation (3) and (4) have appeared in the
literature and each has advantages for certain appli-
cations. Drainage engineers have adopted equation
(4) because:

1. The values of u and p are usually
assumed to be constant for soil water.
Thus, for saturated field soils the factor
kepg/t , which is defined as the hydraulic
conductivity, K , is taken as a constant
over the entire growing season.

2. The terms P/pg and z , which are the
pressure head and elevation head, respec-
tively, have units of length. Such a unit
is convenient for field use.

The continuity equation for flow of water (assumed
incompressible) in soils of constant porosity can be
written as:

ar

divq=-¢-§% (5)

in which
¢ 1s the porosity, and
S 1is the saturation, or ratio of the volume of
water to the total pore volume.

Substituting equation (4) into equation (5)
results in a form of the Richards (47) equation

div [KV(P/eg + 2)] = ¢ %% (6)



Brooks and Corey (8) modified equation (6) by
replacing the right side of the equation with

$g3Se/9t and obtained the equivalent expression:
BSe
div [KV(P/pg + 2)] = e (7)
in which
¢y is the effective porosity, and
5e is the effective saturation.
Both 4, and S  are related to the residual

saturation S_ , definéd as that saturation where the
effective permeability is assumed to approach zero,
by the following expressions

6 = (1 - 50 (®
and S-5
X

SE = l—jr' 0 (9)

After scaling the variables appearing in the
equation with standard units of permeability, k_ i
length, L, ; and time, t, , a dimensionless form
of the equation results, that is,

div. [K. V. {P. ¢ Z:)] = 35./3¢. (10)

in which the dots designate either scaled variables
or operators with respect to scaled variables. The
standard units were chosen as:

1. kg =k , the premeability of the medium at
complete saturation.

2. Lo = Py/eg , the bubbling pressure head.
Bubbling pressure Pp is approximately
the minimum capillary pressure on the
drainage cycle at which an interconnected
nonwetting fluid phase exists in a porous
material.

3. tg = Pyuse/k(og)? or (P /0g)e, /K which

is an expression obtained by Brooks and
Corey in developing cquation (10).

Brooks and Corey (8) stated that equation (7)
yields identical particular solutions for any un-
steady problem in terms of scaled variables provided
that the following conditions are met:

1. Geometric similitude exists. The satisfac-
tion of this condition is accomplished if
corresponding lengths, which are character-
istic of the macroscopic size of the system,
are identical multiples of the length Py/og.

2. The macroscopic boundaries of the model have
a shape and orientation similar to those of
the prototype.

3. The functional relationships among K. , P.,
and S. are identical in both systems.

Obviously, two materials will meet the third
condition if the curves of the 5.(P.) relationship,
and, consequently, the K,(P.) relationship, coalesce.
Verification of the theory for unsteady one-
dimensional drainage was obtained by Corey et al. (14).

According to Brooks and Corey (8), the
relationship between effective saturation and capil-
lary pressure for most porous materials can be
approximated by:

=2

S. = (P.) for P.>1 , (11)

and

5. = 1.0 for P. <1 .

The relationship between relative permeability and
capillary pressure can similarly be expressed by:

K.= ()77 for P.>1 , (12)
and

K. =1.0 for P. <1
The relationship between A and n , derived
theoretically by Brooks and Corey, is:

n=2+ 3 . (13)

Brooks and Corey also verified equation (13)
experimentally.

The mathematical expressions of equations (11)
and (12), or their unscaled counterparts, for the
S.(P.) and K.(P.) relationship, have been closely
approximated by a large number of experimental data
taken from laboratory samples (36). They have been
successfully used in a number of quantitative analy-
ses of partially saturated flow problems. However,
laboratory tests (63) have shown that experimentally
determined values of K. , and especially S. , are
smaller than those predicted by equations (11) and
(12) at P. wvalues near 1.0. This region has been
termed the transition zone since it represents the
transition from complete saturation to partial satu-
ration throughout the material.

White et al. (63) found that the ratio of
exposed surface to volume of laboratory samples
affected the S.(P.) relationship in the tramsition
zone. Initial desaturation of samples occurred at
exposed boundaries in a portion of the pore space
which does not form a connected network of channels,
Application of data obtained from laboratory samples
to field drainage problems presents difficulties
because such samples have a much larger surface to
volume ratio than the soil material in the field. It
is probzbly not valid to assume that data obtained
for the transition zone in laboratory samples would
also apply to soils in the field. Values of 8.
for a particular value of P. would be expected to
be greater in the field than for laboratory samples.
Although some error may result from using equations
(11) and (12) because of neglect of the transition
zone, their relatively simple form is advantageous
to the investigator.

Application of the Brooks-Corey theory to
transient-flow problems such as two-dimensional drain-
age requires a knowledge of the limitations of the
theory. These limitations (8) have been briefly
outlined and can be summarized as:

1. No change can occur in the geometry of the
porous matrix as it changes from a fully
saturated condition to a saturation
approaching the residual.



2. K. must be essentially zero at Sy and
values of § 1less than S5y should not
exist. Neither of these conditions can be
strictly satisfied. However, for drainage
problems, errors from these assumptions
are believed to be usually insignificant.

3. The soil must not undergo imbibition since
the validity of the theory has been estab-
lished only for drainage.

Brooks and Corey (8) as well as Corey et al. (11)
have outlined principles for selecting model media.
Uniform sands and silts tend to have a narrow range
of pore sizes and large values of A . Obviously,
the coarser the material is, the lower the bubbling
pressure will be. Intermediate A values charac-
terize sandy loams which have some secondary porosity.
Media possessing low X values include aggregates
of clay or fractured porous sandstone. These mate-
rials are characterized by a wide range of pore sizes.
Most soils important to agriculture have low to
medium A values. Drainage problems tend to be
more pronounced in soils having high bubbling
pressures (9).

Significance of Flow Within and Above the Capillary
Fringe

The capillary fringe has usually been defined as
the region above the water table which is either
saturated (12) or essentially saturated. A univer-
sally accepted precise definition of the capillary
fringe apparently does not exist. Use of the capil-
lary fringe concept in drainage literature has fre-
quently been combined with the assumption that its
upper surface bounds the flow region. Justification
for ignoring the partially-saturated zone is that
relatively little water flow can exist there because
the hydraulic conductivity is reduced (39). Van
Schilfgaarde (55) pointed out that the presence of
the capillary fringe does not alter the total hy-
draulic head to be dissipitated, but the depth of
the flow region is larger.

The significance of flow above the water table
has generated debate. Most drainage engineers do
agree this flow should be considered if its depth
is relatively large in comparison with the total
depth of flow below the water table (4). If the im-
permeable barrier is at a very great depth, which is
often the case for unconfined aquifers supplying water
to wells, the assumption that the water table is the
boundary of the flow region can be more easily
justified (5).

A method for determining the significance of the
flow within and above the capillary fringe has not
yet been developed because an acceptable procedure
for quantitatively analyzing this flow has yet to be
developed. It has long been recognized that the
thickness of the saturated region above the water
table is related to some characteristic pore diameter
(4). Also, the saturation distribution and flow of
water above the saturated region is a function of the
uniformity of the pore sizes (9). A minimum of two
soil parameters, therefore, are needed to provide a
sufficiently accurate description of the pertinent
relationships of the flow of the drainable water
above the water table.

A number of drainage engineers have attempted to
estimate the flow within and above the capillary

fringe. Hooghoudt (25) and Donnan (17) performed
sand tank experiments to evaluate the ellipse equa-
tion for determining the spacing of drains. They
both found it was necessary to add the height of the
capillary fringe to water table elevations before
agreement between their experiments and the equation
was accomplished. In 1959, Bouwer (4) presented a
concept of "critical tension" which he defined as
the tension, or capillary pressure head, at the
center of the range over which the hydraulic conduc-
tivity reduction takes place on the equilibrium
conductivity-tension curve. The value of the criti-
cal tension, which has units of length, is somewhat
greater than the thickness of the saturated region
and this difference was intended to account for the
flow in the partially saturated region. Wind (64)
introduced a concept of an equivalent saturated
thickness to be applied as a correction factor to
account for the total flow above the water table.
This thickness is a depth such that the flow passing
through it equals the actual horizontal flow through
the entire region above the water table, It is
defined by

T

1
d, = ] K(P_/og)d(P_/pg) (14)
¢ Ksa.t 0 ¢ 9
in which K is the saturated hydraulic conduc-

sat
tivity and K(P./pg) represents the hydraulic con-
ductivity as a function of capillary pressure under
equilibrium conditions. The upper limit of integra-
tion, ZT , is the vertical distance between the
water table and the soil surface. Bouwer (5)
later replaced the term critical tension with
“eritical pressure", defined by the product of dg
and the unit weight of water, and described its use
in design calculations.

Although the concept of an equivalent saturated
thickness is generally believed to be valid, there .
is apparently no study reported which conclusively
proves this. Obviously two soils of greatly differ-
ent saturated thicknesses above the water table
could have the same equivalent saturated thickness
if they also exhibited different pore-size distribu-
tions. Whether the flow patterns would be the same
for both soils under similar geometric systems is
questionable, especially if the water table were
falling with time.

Another effect of the drainable water above the
water table on drainage behavior exists when the
water table falls during drainage. The volume of
water that drains for a specific water table drop
varies with the vertical distance from the soil sur-
face to the water table. Wesseling (61) noticed
this phenomenon in field studies and explained it by
moisture profiles which existed before and after the
water table dropped. Childs (13) also discussed
this effect and pointed out that the assumption of a
constant drainable porosity can cause considerable
error in outflow measurements. Both Wesseling (61)
and Childs (13) presented sketches similar to Figure 2,
illustrating the depth of water (volume of water
divided by the appropriate horizontal area) which

, drains as the water table drops a distance &h .

Childs also explained how hysteresis. may modify the

- initial moisture profile and, consequently, the depth

of water drained. Taylor (51) showed how the volume
of water which drains as a result of a water table
drop can be calculated by a simple integration of
the drainable porosity expressed as a function of
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for water table drop &h .

distance above the water table, The lower and upper
limits of integration must be the initial and final
water table depths, respectively. Both Childs and
Taylor emphasized the influence on the volume of water
drained caused by the initial and final depths to the
water table and also by the moisture distribution
above the water table.

An integration similar to that performed by
Taylor can be accomplished using the scaled variables
proposed by Brooks and Corey (8). If DI1. and D2,
represent the scaled depth of water held above the

water table in a column of soil when the water table
is at scaled depths Zl1. and Z2. respectively, the
scaled outflow volume per unit horizontal area or
scaled depth which drains is

z2. z1.
D1.-D2. = [ (1-8.)d(P.) - | (1-S.)d(P.)
0 0
or
22, -
D1.-D2. = [ (1-5.)d(P.) . (15)
z1.

The integration of equation (15) is presented in the
next section, Results of this integration are dis-
cussed in an evaluation of the effect of the drainable
water above the water table on the outflow.

Summary

Although the significance of drainable water
above the water table has been recognized, the effect
of this water on drainage has not been thoroughly
investigated quantitatively. Two effects have been
examined qualitatively, 1) the increased depth of
flow, and 2) the decrease in outflow for a specific
water table drop. However, nearly all mathematical
solutions of the drainage problem ignore these effects.

Brooks and Corey suggested that more accurate
data for the design of drains could be obtained from
models scaled by a method which they presented (B).
This method requires determining, for both model and
prototype, two soil parameters not usually measured
for field soils. These parameters are the bubbling
pressure P, and the pore-size distribution index 1 .

A quantitative study of the sensitivity of two-
dimensional drainage to these parameters has not been
attempted until now.



ANALYSIS OF THE PROBLEM

Characterization of the saturation and hydraulic
conductivity distributions above the water table is
required for defining the flow pattern and for relat-
ing soil moisture and aeration status to the metabolic
needs of the plant. The purpose of this analysis is
to determine the role of drainable water above the
water table. Specific attention is directed toward
the sensitivity of drainage to the value of X which
characterizes the saturation distribution above the
water table. Since the depth at which the critical
oxygen diffusion rate can be maintained is dependent
on the distribution of saturation, the requirements
of the plant are also related to the value of )
Hence, the soil parameter ) should be of great
interest to the drainage engineer.

A logical approach in analyzing the effect of 2
on drainage is to establish a sensitivity relationship
between ) and various drainage relationships, such
as outflow-time, flow rate-time, and drawdown-time.
Operation of properly scaled physical and numerical
models for two-dimensional, transient-flow drainage
is the only known method of obtaining these relation-
ships for various i values.

First, the Brooks-Corey S.(P.) and K.(P.)
relationships are examined in regard to their applica-
tion for models of two-dimensional, transient-flow
drainage. A typical flow problem was simulated by
both a scaled physical model and a scaled numerical
model. Information from these solutions provides an
analysis of the sensitivity of transient-flow drainage
to A .

Scaling a flow system by the Brooks-Corey proce-
dure eliminates the need for explicitly considering
any soil parameters other than A , since they enter
into the scaled variables.

Equilibrium Conditions in the Partially Saturated
Region

In the Background the following scaled equations
were presented

-

s, = (P.) for P. ®1 ;
S. = 1.0 for P.<1 , (11)
and
= ()" for P, >1 |,
K. = 1.0 for P. <1 (12)

These equations are assumed to be valid at all times
during transient-flow drainage, but the relationship
between P. and the scaled elevation above the water
table, 2. , is unknown during transient-flow drain-
age except at the initial and the final times when
equilibrium conditions prevail. The assumption that
Z. equals P. can be made when the vertical compo-
nent of the hydraulic gradient is small in comparison
to the horizontal component. This is usually the
case when the flow depth is small relative to the
horizontal dimensions of the system. Although the
total outflow can be analyzed without knowing how P.
varies with Z. , thickness d. cannot be represented

10

mathematically without the use of additional assump-
tions.

The first step in the derivation of an expression
for d. 1is the scaling of Wind's relationship for
the equivalent saturated thickness d. , which is
given by eqaution (14). This results in the expres-
sion

ZT.
d. = | K.d(P.)
0

(16)

where ZT. 4is the scaled vertical distance between
the water table and the soil surface.

Substituting equation (12) into equation (16),

applying the assumption that Z. equals P. , and
performing the indicated integration yields
1 1-
do =14 g5 2177 - 1] (17)

The relationship between d. and the two variables
on the right-hand side of equation (17), that is,
ZT. and n , is shown in Figure 3.

20

Fig. 3. Relationships among *» , n , ZT., and

’

As shown by Figure 3, the equivalent saturated
thickness d. is highly dependent upon the value of
» , and varies considerably with ZT. for low A
values. Thus, under a falling water table, d.
continually increases with time and with an increase
in the distance from the midpoint between drains.
The result is that a single value for d. , applied
as a correction to a falling water-table drainage
equation, is a poor approximation, particularly if
the water table is relatively close to the soil sur-
face at all times. If the depth to the water table
is always great, d. may be approximated by a con-
stant value, especially for large X values. ’

The rate of increase of d. with increasing
values of ZT. 1is of interest because it represents
the gradual decline of the effect of increased depths
to the water table on d. Differentiation of



equation (16) with respect to ZIT.
following relationship:

d(d. =\
ETE?%T = IT, ‘
This relationship, shown in Figure 4, provides a

mathematical representation of the decreasing effect
on d. with increasing values of X .

yields the

(18)

Because IT. varies in both space and time
during transient-flow drainage, the equivalent depth
of flow above the water table also varies, as indi-
cated by equation (17). Although steady-state drain-
age equations have been modified successfully to
include a constant flow depth above the water table,
such a modification applied to transient-flow drainage
equations is of limited value. However, a variable
equivalent-depth of flow above the water table has
not been incorporated into analytical transient-flow
drainage equations because of the mathematical com-
plexities involved.

Fig. 4.

Relationships among 4 ,
d(d.)/d(ZT.)

n, ZT., and

The other effect of the flow above the water
table, which has been noted above, deals with the
volume of outflow from a soil mass undergoing
transient-flow drainage. This volume can be analyzed
by applying equation (11) to the problem. However,
only the total outflow which occurs following a water
table descent can be computed. The relationship
between P. and Z. is known only after drainage
ceases. At this time equilibrium exists and P. and
Z. are equal. The procedure for computing the total
scaled depth of water consists of substituting equa-
tion (11) into equation (15) and integrating between
the proper limits. If the initial water table is at
some scaled depth Z1. greater than unity, the
depth DT. of water drained after the water table
is lowered to Z2. , also greater than unity, is

1-2

DT.=[z2.-21.- ooy (2.2 211 M4, for a1 (19)

and

DT.=[22.-Z1.-2n(22.-21.)]¢_ for i=1 . (20)

But, if the water table existing before drainage is
either at the soil surface or within the scaled
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distance of unity to the soil surface, the total
scaled depth, DT. , of water drained after the
water table is lowered to a depth Z2. , greater
than unity, is

1 1=x
DT.=[Z2,-1- s (z2. -1]]¢e for A#1 (21)
and
DT.=[Z2.-1- &n 22.}¢e for a=1 (22)

The total scaled discharge from the columns of
porous media as determined experimentally by Corey
et al. (14) agrees closely with the values computed
From equation (21).

Figure 5 is a representation of the volume of
drainable water stored above the water table under
equilibrium conditions as a function of X and ZIT. .
The volume is highly dependent on the values of 1
and ZT. , as shown in the figure. The rates of
increase of DT. with increasing values of X are
shown in Figure 6. As ZT. increases (and S
approaches S, at the surface), a drop of a umit
scaled distance of the water table causes an increased
scaled outflow which becomes more nearly equal to
unity, Differentiation of equations (21) and (22)

o8

06

d(DT)
azn
o4

o2t

Relationships
d(DT.)/d(ZT.) .

among 4 , ZT. , and



yields the relationship which represents the change

of DT. with ZT. , that is
d(DT.) _ -\
.‘J&ﬁ- -2, . (23)

The two effects caused by decreasing values of
L are to increase the flow depth and to decrease
the incremental volume of outflow, that is, the
volume of water drained for a given water table drop.
There are three conditions to consider in assessing
the combined effect of ) on drainage behavior.
These conditions, which depend on the depth of the
water table below the surface and/or the ) wvalue,
are:

1. Condition I

The scaled depth of the water table below
the soil surface is always less than 1.0,
Outflow for any drop in water table is nil.

2. Condition II

As the water table descends to scaled depths
greater than 1.0, the equivalent flow depth
increases and the outflow begins. However,
the rate of increase of these quantities
decreases with increasing depth of water
table.

3. Condition III

After the water table has fallen below some
particular depth, such that 5§%5, at the
surface, the equivalent flow-depth above
the water table does not increase signifi-
cantly, but the total accumulative outflow
increases proportionally with the increases
in the water table depth.

The value of A is the only soil parameter that
influences the particular value of ZT. which might
be selected as the division between Conditions II and
III. Any one of a number of methods could be em-
ployed to establish ZT. for a particular value of
% . Either a specific value of d(d.)/d(ZT.) or
d(DT.)/d(ZT.) could be selected to establish the
division between Conditions II and II1I, then the
corresponding values of ZT, for the entire range

of ) values could be computed. If ZT. were less
than the ZT. at this division, for a specific value
of A , Condition II would exist; if not, Condition

I11I would apply.

A reasonable criterion for the establishment of
the boundary between Conditions II and III is:

Condition II exists if

d(DT.)

1 - ¢ed T3 > e , and (24)
Condition IIIl exists if

d(DT.)
0 -gamyd<e (25)

in which € is a small number selected arbitrarily.

Equations (24) and (25) can be written in terms
of ZT. and each combined with equation (23).
Solving for ZT. results in
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Zr. < & gor condition 11, (26)
and
-1/ e
ZT. = g for Condition III (27)
The derivative d(d.)/d(ZT.) can also be
computed as a function of € ,n , and *» for each

condition by combining equation (18) with equations
(26) and (27) to obtain

f‘rg.,i;). <e™* gor Condition 11, (28)
and
g%'i’)‘)' > X gor Condition ITI . (29)

If the A wvalue is known for a specific soil,
after selecting a value of e , one can compute
from equations (26) and (27) the value of ZT.
represents the boundary between Condition II and
Condition III. Then, the value of d(d.)/d(ZT.)
can be computed from equations (28) and (29) to
insure that it is less than some arbitrarily chosen
maximum.

which

To demonstrate this procedure, two values of
A , 0.1 and 0.2, were selected. The values of ZIT.
that form the boundary between Condition II and
Condition II1 were computed and plotted as shown in
Figure 7. Corresponding values of d(d.)/d(ZT.) are
also shown. ?

Fig. 7. Relationships among * , ZT. , and d(d.)/

d(ZT.) for e = 0.1 and 0.2.

The procedure just described can be used to
estimate the magnitude of the two effects of the
drainable water above the water table on drainage,
but the procedure has three shortcomings limiting
its applicability:

1. The combined effect cannot be ascertained.

2, The determination of the scaled equivalent
flow depth d. by use of equation (17) is
limited by the assumption that P. equals
Z.

3. Even if the assumption that P. equals Z.

can be made, the only two-dimensional
drainage problems that can be analyzed by
the procedure are those in which the water
table is continually horizontal.



The third shortcoming leads to the question -
what is the shape of the water table during two-
dimensional, transient-flow drainage? There is no
reported agreement on the answer to this question.
Boussinesq (3), Glover (18), Tapp and Moody (19),
Jenab (28), and others have all presented different
shapes of the water table between parallel drains.
But, if the variation of ZT. with time and space
during drainage is not known, no information can be
obtained about the effects of the drainable water
above the water table on drainage behavior. This
is apparent because equations (18) through (23) are
dependent on ZT. .

Since no analytic solution correctly accounting
for the water above the water table has been
reported, use of models or analogues should be con-
sidered. The only physical models which correctly
simulate the partially saturated region in field
soils are properly scaled porous media models. Sim-
ulation of drainage by numerical methods offers
another satisfactory solution.

The dependency of DT. and d. on the scaled
vertical distance ZT. from the soil surface to the
water table requires that the height of soil above
the impermeable barrier be known. Both the initial
and final values of ZT. are parameters of the two-
dimensional, transient-flow problem when the flow
above the water table is considered. Although
several of the earlier transient-flow drainage solu-
tions were given in terms of one curve for each of
the pertinent relationships among the dimensionless
groups of parameters, this now becomes impossible
because of the additional length variables. An analy-
5is must be made of particular drainage problems de-
scribed by a geometric configuration of specific di-
mensions. If the dimensions are scaled by the use of
the bubbling pressure head as the standard length,
the sensitivity of drainage to the value can be deter-
mined by using soils of various A wvalues in sets of
experiments with the same boundary conditions.

The geometric configuration of the problem,
shown in Figure 8, consists of a rectangular soil
profile underlain by a horizontal impermeable barrier.
Selecting a fully-penetrating ditch as the drain
facility eliminates the need for considering a correc-
tion factor to account for any pronounced convergence
of flow lines in the vicinity of the drain. To sim-
plify the problem both the initial and final water
tables are assumed horizontal. Drainage of the soil
slab is started by rapidly lowering the level of water
in the ditch. There is neither water loss to evapo-
transpiration or deep percolation nor gain from infil-
tration, upward flow, or any other source.

The soils to be drained are assumed to be homo-
geneous and isotropic. The S.(P.) and K.(P.)
relationships for all soils considered are given by
equations (11) and (12). Hence, the only variable
soil parameter used is the A value, which permits
a study of the sensitivity of drainage behavior to ).
The scaled variables used in the problem are listed
in Table 1.

Properly scaled physical models are advantageous
for simulating flow under particular boundary condi-
tions for a specified soil material. Ample and
accurate data can be produced by such models. One
of the more difficult phases of this procedure,
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Fig. 8. Geometric configuration of drainage problem
solved by numerical simulation.

TABLE 1 Scaled Variables Used
in the Model Studies.

Scaled Variable Definition
PL‘
Capillary pressure P. = P
b
ke
Hydraulic conductivity K. = '
5-5
Saturation S. = Se = 1'Sr
Elevation above the water table Z. = z
" Pb?aa
D
Outflow expressed as a depth D. = ﬁ;?;E;;
P F
Flow rate expressed as a depth/time B, = T
2
Time T, = §eEL.T
' b “*e

however, is the selection, testing, and packing of
the porous materials to be studied. Laliberte et al.
(36) demonstrated the sensitivity of several soil
parameters, including * , to the degree of packing.

Brooks and Corey (8) and Corey et al. (14) have
suggested procedures for developing and operating
scaled porous media models. They also presented
guidelines for selecting media for the models. The



experimental procedures used in this study are out-
lined in the next section,

Use of Scaled Numerical Models

An alternative for solving the two-dimensional,
transient-flow drainage problem as described above
and as illustrated in Figure 8 is based on the appli-
cation of numerical methods. A number of investiga-
tors (44) (48) have developed solutions for a variety
of porous media flow problems, Their procedures
include the following steps:

1. Dividing the flow region into slices,
rectangles, or other elemental shapes of
finite dimensions.

2. Writing the pertinent equations of flow,
continuity, etc., for each element.

3. Solving the flow equation explicitly or

implicity with the aid of a digital computer.

The azbove steps were applied to the problem under
consideration to obtain a method for studying the
effect of many different X wvalues.

One of the most frequently used sets of assump-
tions in.analytical solutions is the Dupuit-
Forchheimer assumptions which were previously de-
scribed, Application of the D-F assumptions to
numerical solutions allows for a better basis of
comparison between it and analytical solutionms,
permits an evaluation of the D-F assumptions them-
selves, and simplifies the development of the
numerical solution.

The D-F assumptions state that the streamlines
are horizontal in any vertical section. This
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implies that the total head in any vertical section
is constant or that P. at any point above the
water table is equal to ZT. . Then, equations (11)
and (12) can be used in the numerical solution to
determine the distributions of scaled saturation
and scaled hydraulic conductivity above the water
table.

The development of the solution (presented in
detail in Appendix B) is summarized as follows.
The first is the division of the soil slab into a
number of vertical elements of equal width. Next,
Darcy's equation is written in finite-difference
form to describe the flow between two adjacent ele-
ments. The equivalent depth d. of flow above the
water table is added to the depth of flow below the
water table in computing the total effective flow
depth. The equation for continuity in finite-
difference form is then applied to each element to
solve explicitly for the change in the total scaled
volume of water in the element. During each time
step, the change in height of the water table above
the impermeable barrier is computed for each element.

A Fortran IV computer program was developed and
run on a CDC 6400 digital computer located at
Colorado State University. The memory capacity and
computational speed of this computer allows small
time and space increments to be used, thus minimizing
the error resulting from the discretization process.

The output information supplied at selected
times by the numerical solution includes:

1. scaled flow rates,
2, scaled total outflows, and

3. water table profiles.



EXPERIMENTAL PROCEDURE

The objectives of the laboratory experiments
were 1) to establish the validity of the Brooks-
Corey scaling theory for two-dimensional, transient-
flow drainage, and 2) to use the theory in determin-
ing the effect of A on drainage behavior. The
primary experimental facilities consisted of two
physical models containing porous material. The
larger model, functioning as a prototype, was designed
to represent a typical field situation. The smaller
model was a scaled model of the larger facility.
Various identical initial and boundary conditions,
in terms of scaled variables, were imposed on both
models.

Drainage behavior was studied by measuring both
the outflow from the simulated drains and the poten-
tial at a number of points throughout the porous
materials. These materials were carefully selected
to insure that their drainage properties satisfied
the similitude criteria. Methods were developed to
ascertain the drainage properties of a material after
being placed in a model,

Description of the Physical Models

The large facility is a narrow flume containing
a soil mass approximately 12.2 meters (40 feet) long,
1.22 meters (4 feet) high, and 5.1 centimeters (2
inches) wide. The small model has a length and
height which is 30 percent of the length and height,
respectively, of the large model, while the widths
are approximately equal. Both models have steel
frames and aluminum or acrylic plastic walls. The
retaining walls at the ends of both models consisted
of either perforated acrylic plastic or metal screens.
Flexible plastic tubing attached to the end boxes or
end plates of the models conducted the draining liquid
to graduated cylinders to provide a volumetric measure-
ment of the outflow. One end of the large model
could be elevated by a hand-operated hydraulic 1ift.
The small model could also be elevated at either end
by a manual jack. A photograph of both models is
shown in Figure 9. Sketches of the models are shown

in Figures 10 and 11.

Fig. 9. Photograph of models.
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Section A-A

Fig. 10. Drawing of large model.
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Plexiglas

Section A—A

Fig. 11, Drawing of small model.

Fluids and Media

A light hydrocarbon oil, Phillips core test
fluid*, was used as the liquid or wetting fluid. The
advantages of using this oil rather than water are:
greater stability of soil structure in the presence
of the oil, lower degree of clay swelling, more con-
sistent wetting and interfacial properties in the
presence of contaminants, and low (approximately
22.9 dynes/cm) surface tension which facilitates a
reduction of physical model dimensions to about one-
half that required when water is used. The dynamic
viscosity, density, and ratio of dynamic viscosity
to the specific weight of the test fluid are tabulated
in Appendix C,

Three different porous materials, each selected
because of its hydraulic properties, were used in the
study. A fraction of Poudre sand was placed in the
large model to serve as the prototype material. The
value of A of this material is similar to that of
a typical field soil. The ratios of the bubbling
pressure head to the total soil depth are also similar
for both Poudre sand and a typical field soil. How-
ever, since the test fluid was used in the models,
the large model was itself a one-half scale model of
a soil-water system, A fraction of crushed Hygiene
sandstone was used to model the Poudre sand. The A
values of these two materials are equal, thus fulfil-
ling one similitude requirement. Geometric similitude
was satisfied because the ratio of the bubbling pres-
sures of the two materials is equal to the length
ratio of the two models.

Another porous material used was Schneider sand.
This material was selected because its )} value is
much larger than that of Hygiene sand even though its
bubbling pressure is the same. Thus, the effect of

A alone could be studied by comparing the results
of drainage from both the Hygiene and Schneider
materials.

Descriptions of the test materials are as
follows:

A. Prototype material

Poudre sand -- This material is a fine-to-
medium grained fraction of an alluvial
material found in the valley of the Cache
La Poudre River near Bellvue, Colorado.
Particle sizes larger than 0.42 mm were
removed by screening. It has a pore-size
distribution more nearly like a typical
soil than most sands.

B. Model material

1. Crushed Hygiene sandstone ~-- Hygiene
sandstone is a member of the Pierre
shale formation of the Upper Cretaceous
series of the Mesozoic era. It is
yellowish-gray in color, and contains
glauconite and carbonaceous material.
After being partially crushed but not
pulverized, it was passed through
sieves to obtain the range of aggregate
sizes that would yield the desired
bubbling pressure head and pore-size
distribution index. The range of
particle sizes is 0.15 to 1.6 mm,

2. Schneider sand -- This sand was obtained
from an alluvial deposit located near
Fort Collins, Colorado. The predomi-
nate minerals are feldspar and quartz.
The fines were removed by washing.
Several sieving operations were then
required to isolate the narrow range of
particle sizes, 0.42 to 0.7 mm, which
yielded the desired drainage properties.

Determination of Media Properties

The media properties that had to be known for
the experimental studies include permeability k ,
bubbling pressure Py , pore-size distribution index
L, effective porosity ¢ , residual saturation
Sr » and bulk density py, These properties were
determined for the drainage cycle only and have been
termed the drainage properties of a porous medium (8).

The relationship between capillary pressure and
effective permeability was determined by using the
short-column method described by Corey et al. (14).
The procedure involves saturating the test columns
by immersing them in a container filled with the test
fluid which was then evacuated and later returned to
atmospheric pressure. Thus, all the air is removed
and the initial data is obtained for the completely
saturated condition. However, in this study all
porous materials imbibed the test fluid under atmos-
pheric pressure and did not become completely satu-
rated. This procedure resulted in values of maximum
effective permeability which were 40-50 percent of
the saturated permeability. The values of Pp and

‘Manufactured by Phillips Petroleum Company, Special Products Division, Bartlesville, Oklahoma.



A obtained from the drainage-cycle data were some-
what lower than those values obtained from initially
saturated laboratory samples. The scaled or relative
permeability (or relative hydraulic conductivity) was
computed by dividing the effective permeability by
the maximum permeability. The relationships between
the scaled permeability and scaled pressure for the
three porous media are shown in Figure 12.
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Fig. 12. K.-P. relationships for the three

experimental media.

The bubbling pressure and the pore-size distribu-
tion index were determined from the capillary pressure
--permeability relationship by the procedure described
by Laliberte et al. (36). Additional tests deter-
mined the residual saturation and the drainable poros-
ity. The capillary pressure-saturation relationships
also were determined using equipment and procedures
described by Laliberte et al. (36). The residual
saturation was estimated by a method developed by
Brooks and Corey (9). The total porosity ¢ was
computed from the equation
%

s

¢ =3 -

(21)

in which the bulk density py, applies to air-dry
material, and the particle density pg; was measured
by the picnometer method. The effective porosity 4¢
was computed from the equation

4= (1-5S)¢ . (22)

Method of Packing the Models

The porous materials were placed in the prototype
and model facilities through a tremie with an I.D., of
3.18 cm., The material was placed in layers 2 to 3 cm

thick which were scarified to produce a better contact
with the next layer to be deposited. After it was
noticed that sorting cccurred with dry material, the
material was moistened slightly which produced more
uniform packing.

Repeated removal and redeposition of the porous
materials was necessary to obtain the proper in-place
density. Settlement of material placed at low densi-
ties took place during the first few days after
deposition. It was found that by repeatedly saturat-
ing and draining the media in the models, the settle-
ment rate was increased and a stable medium was
attained more quickly.

Permeabilities of the media in the models were
measured by elevating one end of the model and
flowing the test fluid through the media. Although
permeabilities determined by this method varied
somewhat because of variable bulk densities and
entrapped air volumes, it was apparent that the
average values could be used in computing scaled
variables, Effective porosities, as determined by
dividing the total discharge volume by the bulk
volume of the media, also showed some variation.

For each test the effective porosity was determined
and used in computing the scaled outflow depth and
scaled time for that test. The bubbling pressure

and A were taken as constants for each media. The
media properties discussed above are shown in Table 2.

TABLE 2 Media Properties as
Determined in Models

Media
Poudre Hygiene  Schneider
Property Units Sand Sand Sand
k u? .0127 .0356 1.89
Py dynes/cm? 14,080 4224 4224
A none 1.6 1.6 4.5
b none .348 .288 . 365

e
(mean value)

Measurement of Hydraulic Head in the Models

The primary reason for measuring the hydraulic
head in the models was to locate the position of the
water table, particularly at the vertical plane mid-
way between the drains. An adequate description of
the hydraulic head distribution under two-dimensional,
transient-flow drainage required sensing at a number
of points and at time intervals small enough to per-
mit accurate interpolation.

A number of tensiometers were installed in one
sidewall of both models. The number of tensiometers
used was 92 in the large model and 32 in the small
one, Each tensiometer was constructed from a 5/8-
inch diameter bolt bored along its axis. Disc-shaped
capillary barriers of the porous plastic "Porvic"*
were sealed to the threaded end of each bolt with
epoxy resin. The tensiometers were screwed into the
sidewall of each model in such a way that the capillary

*Manufactured by Porvair Limited, Estuary Road, King's Lynn, Norfolk, England. It is no longer being

manufactured.
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barriers made firm contact with the medium, but
penetration of the medium was limited to 1/32 inch.
A seal between the bolts and the model wall was
obtained with O-ring seals. A view of a tensiometer

is shown in Figure 13.
Nylon Screen
i‘ﬂ\'&\&k\\\\\‘b Porvic Barrier
&

O-Ring

Bolt Is Bored
Along Axis

Brass Tubing Soldered
To Bolt

Screen and Barrier Are
Cemented To Bolt

Fig. 13. View of tensiometer.

Two rotary valves, each connected to a pressure
transducer, were used to provide the necessary peri-
odic interconnection between the tensiometers and the
pressure transducers. Flexible plastic tubing filled
with the test fluid provided the connection. When
operated in conjunction with the large model, the
measuring system scanned the hydraulic head at each
of the ninety-two tensiometers and two leveling
bottles, used for calibration purposes, once during
each rotation of the valves. Because drainage was
more rapid in the small model, the thirty-two

tensiometers were sensed two or three times for each
rotation of the valve. This was accomplished by

connecting the flexible plastic tubing from three
position taps on the valve heads to one tensiometer
by means of small cross-shaped glass connectors.

The voltage output from the pressure transducers
was digitized by digital voltmeters. Voltage drop
across a potentiometer, advanced by the rotation of
the valve, provided an identification of the valve
tap. The hydraulic head measurement was made through
this tap. The data acquisition system permitted a
time, a voltage representing the valve position, and
voltages representing the pressure heads to be
punched on IBM cards. A schematic diagram of the
hydraulic head measuring system is shown in Figure 14.

A computer program, described in Appendix D,
was developed to convert the information punched on
cards into hydraulic head--time relationships for
each tensiometer and to interpolate this information
in respect to time and distance. The final output
from the computer program consisted of information
that was used to develop plots of the equipotential
distributions for selected times.

A calibration was necessary for each valve--
pressure transducer subsystem during every rotation
of the valve, because of drift within the instrumenta-
tion. Two leveling bottles--one set near the top of
the soil mass, the other set near the bottom--were
connected to two taps of each valve. A conversion
factor was computed for each valve cycle by dividing
the difference in the output voltages measured at
the two leveling bottles by the vertical distance
between the bottles. This factor was used in the
computer program to convert the voltages into the
corresponding hydraulic head.

DATA ACQUISITION SYSTEM

A emum e

Tt Niw
-
reammme s
=% o
waALHE Camvalvl
uTﬂ
Raatiied
“o-1n
o o
2 & =

Coi L MAnS MLEET
30 IwaT

SuARDEY  WELAT et
138 momTIoN |

Cann Fusin
(TR

Fig. 14,

18

Schematic diagram of the hydraulic head measuring system.



Drainage Experiment

The initial condition established in each drainage
test was that of a horizontal water table at a pre-
viously selected elevation. The fluid, used in each
test, was imbibed into the soil from the end boxes
or end plates. If the initial water table was at some
elevation below the soil surface, the porous material
was first saturated to the soil surface and then
allowed to drain until the water table coincided with
the desired initial elevation. This procedure
resulted in the establishment of the capillary
pressure-saturation relationship for the drainage
cycle and eliminated hysteresis.

An initial scan of the hydraulic head distribu-
tion was made before drainage was begun to insure
that no detectable hydraulic gradients existed,

During this scan the presence of air bubbles in tub-
ings from the tensiometers to the rotary valve could
also be detected. When the correct initial hydraulic
head had been established in the soil material, the
plastic tubing leading from the end box or end plate
to the constant head cylinder was clamped off. The
cylinder was then lowered to the elevation which
represented the desired water level in the simulated
ditch drain. Removal of the clamp from the tubing
caused drainage to begin.

Readings of the outflow volume were taken
periodically during each test until the outflow had
essentially ceased. The hydraulic head measuring
system was operated continuously until the rate of
outflow and the change of hydraulic heads over a
period of several hours was very small.
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RESULTS AND DISCUSSION

As previously stated, the objective of the model
studies was to determine the effect of the pore-size
distribution index on drainage. Physical as well as
numerical models, scaled by the Brooks-Corey method,
were used to obtain the results presented below.

Verification of the Brooks-Corey Similitude Theory

Results from the physical models in three series
of tests, representing three different boundary con-
ditions, are shown in Figures 15 through 26. The
cumulative outflow-time relationships for the tests
are shown in Figures 15, 19, and 23. These plots
indicate that the time required to drain the prototype
was about 100 times longer than the time required to
drain the model under either set of boundary condi-
tions. This illustrates one of the chief advantages
of scaled models - savings in experimental time.

Time T , Sec

Fig. 15. Outflow as a function of time for similar
media-boundary condition no. 1.
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Fig. 16. Scaled outflow as a function of scaled time
for similar media-boundary condition no. 1.

The graphical representation of the scaled
outflow-time relationships for the three sets of bound-
ary conditions appears in Figures 16, 20 and 24. The
scaled outflow rate is plotted against scaled time
in Figures 17, 21 and 25. Another important drainage
relationship, shown in Figures 18, 22 and 26, is the
drawdown of the midpoint of the water table plotted
against time. Although the water table elevation above
the water level in the drains could have been scaled
by dividing it by the bubbling pressure head, it is
more useful to consider the ratio of the water table
height at any time and the initial water table height.
This ratio has been used in developing other analyti-
cal solutions and model studies and thus permits com-
parison between results of the several studies.
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Fig. 17. Scaled outflow rate as a function of scaled
time for similar media-boundary condition
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Fig. 18. Water table height as a function of scaled
time for similar media-boundary condition
no. 1.
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The scaled outflow-time relationships for the two
models, Figures 16, 20 and 24, coalesce. Equally good
results are apparent in the scaled outflow rate-time
relationships as shown in Figures 17, 21 and 25. But
the drawdown-scaled time relationships plotted in
Figures 18, 22 and 26 indicate a lesser degree of
coalescence which can be explained, at least in part,
by experimental error. Measurements of the potential
of the liquid could not be made with the same degree
of precision as the outflow measurements. Measure-
ments could be made at only a finite number of points
in the vertical section midway between the drains.

As previously noted, there were only five tensiometers
at the midway section in the smaller model and seven
in the larger; the water table was located by inter-
polation. Also, slight non-homogeneity of soil could
influence the drawdown-time relationship but not
affect the outflow-time relationship noticeably. The
data used to plot Figures 15 through 26 are presented
in Appendix E.

The relationships just discussed indicate that
the Brooks-Corey scaling theory is valid for two-
dimensional, transient-flow drainage. Consequently,
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application of the Brooks-Corey scaling theory in
other areas of this study was made with confidence,

Effect of Pore-Size Distribution

The effect of the pore-size distribution index,
A, on drainage was studied experimentally by use
of the smaller model. Two different soil materials
having the same value of bubbling pressure, but
different values of A were used. The scaled
heights and scaled lengths, respectively, were equal
in the two drainage systems, but the media were dis-
similar because of the different A values. Conse-
quently, any lack of coalescence of the drainage
relationships, plotted in terms of scaled variable,
could be attributed to the effect of the different
A values.

The relationships, shown in Figures 27 through
38 and presented in Appendix E, indicate the A
value did affect the experimental results. At any
time the media were draining, the scaled outflow
from the sand with X = 4.5 exceeded that from the
sand with A = 1.6. Yet the water table midway
between the drains was lower during drainage of the
sand with the higher value of ) .

The final cumulative outflows, referred to
previously as DT. , were computed from Equation (21)
for the three boundary conditions and for A values
of 1.6 and 4.5. A comparison between these computed
values and the DT. values obtained experimentally
is shown in Table 3. The good agreement between
the three pairs of corresponding values supports
the validity of the analysis leading to the develop-
ment of Equations (21) and (22) presented in the
Analysis,

The results from experiments with dissimilar
media also indicate, indirectly, the effect of A
on the scaled equivalent depth d. . As shown by
Figure 27, the scaled times when the water table
height ratios M¢/My, equaled 0.5 were T. = 79 for
A=1.6 and T. = 102 for A = 4.5. At these same
times the scaled outflow rates were 0.0058 and 0,0056,
respectively, as Figure 28 shows. Since the heights
of the seepage surfaces were observed to be relatively
small and nearly equal for both materials at the
times indicated above, the flow rates would be
expected to be practically equal under these conditions
if flow above the water table was non-existent. But
the significantly greater outflow rate for the smaller
A value must be the result of a greater flow depth.
Since the water table profiles are identical, the
equivalent depth of flow above the water table must
be greater for the soil with the smaller value of
% as predicted by Equation (17).

The two effects of increasing X values, there-
fore, are 1) a greater drainable volume of water
for a given water table drop, and 2) a smaller equiv-
alent depth of flow above the water table. These
two effects combine to prolong drainage.

Numerical Solution

The results of the mathematical simulation are
given in Appendix F. From these results the curves
in Figures 27 through 42 were plotted. The agreement
between the experimental results and the numerical
procedure is good except for times before the water
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table midway between the drains began to fall, The
factors probably causing this relatively poor agree-
ment are the D-F assumptions and the explicit nature
of the numerical solution. However, after the water
table has begun to fall throughout the soil profile,
the relationships shown are of more practical signifi-
cance. Accordingly, the numerical solution seems to
be an acceptable simulation of two-dimensional,
transient-flow drainage.

Another method used in evaluating the numerical
solution consisted of comparing its results with
those of a suitable analytic solution, which, in this
case, is Glover's solution. This comparison required
that the numerical solution be modified to ignore
the drainable water above the water table. Both
solutions are based on the D-F assumptions, but
Glover's solution assumed a constant flow depth
while the numerical solution does not. As shown by

TABLE 3 Comparison Between Computed and Experimental Values of DT. for each Boundary Condition

Boundary Condition DT.
Water Table Elevations Drain Spacing A  Computed from Experi- Media
No. (fraction of media height: multiple of Pb/pg) (Multiple of equation (19) mental
Initial Final Ph/pg)
1 2/3:4.02 1/3:2,01 64.08 1.6 1.637 1.64  Poudre
1.63 Hygiene
4.5 1,987 1.99 Schneider
2 1/3:2.01 0:0.00 64.08 1.6 1.854 1.87 Poudre
1.83 Hygiene
4.5 2,009 1.95 Schneider
3 1:6.03 0:0.00 64,08 1.6 3.930 3.89 Poudre
3.95 Hygiene
4.5 4,745 none
4 2/3:4,02 0:0.00 64,08 1.6 3.401 3.42 Hygiene
4.5 3.996 3.97 Schneider
5 2/3:4.02 1/3:2.01 128.16 1.6 1.637" 1.55 Hygiene
4.5 1.987 1.84 Schneider
o T ¥ i
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time for the numerical solution, selected
analytical solutions, and Hele-Shaw model
results-boundary condition no. 1.

time for the numerical solution, selected
analytical solutions, and Hele-Shaw model
results-boundary condition no. 1.
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Figure B-1 in Appendix B, the numerical solution does
agree well with Glover's solution and can be accepted
as a valid solution to the problem.
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As shown by Figures 27, 31, and 35, results were
obtained by the numerical solution for five different
4 wvalues. A more complete description of the effects
of the flow above the water table is given by these
relationships than by the experimental results. As
the A value is increased, the change in its effect
on drainage decreases. The relationships for i = 12
and ) = 20 are essentiaily identical. For very low
values of X , however, a small change of its value
produces a significant change in all the drainage
relationships.

Since the ability of the numerical solution to
simulate drainage with acceptable accuracy has been
established, drainage under a variety of boundary
conditions and from soils with various ) values can
be analyzed by simply changing the input data to the
computer program. The resulting information could
provide an improved procedure for designing relief
drains.

Evaluation of Selected Analytical Solutions

The analytical solutions of Boussinesq (3),
Glover (18), Brooks (7), and Jenab (28) can be applied
to the boundary conditions employed experimentally.
All four solutions are based on the D-F assumptions
and the assumption of no flow above the water table,
The significance of the latter assumption can be
evaluated by comparing values from the analytical
solutions with results from the numerical solution
and the experimental tests. Drainage relationships
from these solutions are derived in Appendix G and
are plotted in Figures 39 through 42 for two boundary
conditions.

The Hele-Shaw model results of Ibrahim and
Brutsaert (26) are also shown in Figures 39 through
42 and are presented in Appendix G. The good agree-
ment between these results and those from analytical
solutions indicates that the D-F assumptions provide
an acceptable approximation for the solution of the
assumed boundary value problem, that is, for a case
in which there is no flow above the water table.

The analytical solutions also provide a fair
approximation for the flow rate as a function of time
in the case of the physical models in which flow
occurred above the water table. The height of the
water table as a function of time, however, was not
adequately approximated by these solutions as Figures
40 and 42 show. The effect of flow above the water
table is most significant for the more shallow flow
depth.



CONCLUSIONS AND RECOMMENDATIONS

Developing a more accurate design procedure for
relief drains requires considering both saturated and
unsaturated regions above the water table. According
to the Brooks-Corey similitude theory, the pore-size
distribution index A characterizes the functional
relationships among the scaled values of pressure,
permeability, and saturation in the soil. Scaling
the variables by the Brooks-Corey method eliminates
all of the soil parameters except »x from explicit
consideration.

The primary purpose of this
mine the sensitivity of drainage
of the unsaturated region is the increase of the
effective flow depth by a height called the equivalent
saturated depth of flow above the water table d
A relationship, equation (17), exists between thfs
depth, the distance from the soil surface to the
water table, and )\ . The numerical solution is
based on this relationship, assuming no vertical com-
ponent of flow. The unsaturated region also may
affect the total outflow resulting from a lowering
of the water table. The total outflow is related,
as given by equations (19) through (22), to both A
and the distance from the soil surface to the water
table. Although the latter relationships cannot be
applied directly in formulation of a numerical solu-
tion, they do provide insight into the sensitivity
of drainage to ) . Physical and mathematical models
are the only means presently available to account for
flow in the unsaturated region.

study is to deter-
to * . One effect

An evaluation of the results from the physical
and mathematical models used in this study leads to
a number of conclusionms,

1. The Brooks-Corey similitude theory is valid
for transient drainage in two-dimensional
flow systems, Using this theory results in
a decrease in the time required to obtain
data from both physical and mathematical
models,

2. 'Two-dimensional drainage is sensitive to
A . As the value of A increases, the
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equivalent depth of flow above the water
table decreases, especially for lower A
values. The outflow for a given drop in
the water table increases with increasing
A values. The increase is also more
noticeable for lower values of A .

The two effects described above combine to
prolong drainage with increasing values of A.

The drainage is faster, however, than that
predicted by methods ignoring flow above
the saturated region.

This study has determined the need for further
investigations in a number of areas:

1.

Experiments using scaled physical models
should be conducted with drain facilities
simulating tile drains.

Numerical solutions that consider vertical
flow and the interrelationships among
pressure, permeability, and saturation
should be developed and tested.

Drainage experiments should be performed
in which the water table is maintained at
a stationary position. This will permit
an evaluation of the explicit effect of
the equivalent flow depth on drainage.

Information that can be used to design
parallel relief drains should be derived
from physical and numerical models which
consider flow above the water table. This
information should encompass a wide variety
of boundary conditions and include the
parameter A .

Methods for determining the value of X
and Pu/pg in the field should be developed.
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APPENDIX A

SUMMARY OF SELECTED TWO-DIMENSIONAL
TRANSIENT-FLOW DRAINAGE EQUATIONS

This summary includes representative two-
dimensional, transient-flow drainage equations. The
assumptions, boundary conditions, and mathematical
expressions for each equation are presented. The
geometric configuration of the general soil profile
under consideration is shown in Figure 1.

Assumptions

A number of assumptions were made in the deriva-

tion of all the drainage equations previously re-

_ viewed, The assumptions which deal with the soil-

| water-air system, as listed on page 4, were applied

. in the derivation of every equation, In addition,
the following assumptions have been applied in the

| development of one or more of the equations listed

' below:

1. An impermeable barrier which forms a boundary
of the flow region exists at some constant
depth below a horizontal soil surface.

2. No drainable water exists above the water
table.

3. The Dupuit-Forchheimer assumptions are
applicable,

4. There is no loss of head due to convergence
of flow near the drain.

5. A horizontal water table exists at the
initiation of drainage.

6. The depth of the flow region can be approxi-
mated as being constant at all times during
drainage.

7. The rate of flow into the drain is propor-
tional to the rate of fall of the water
table.

8. The rate of flow into the drain is propor-
tional to the product of the height of the
water table above the drain and the hydraulic
conductivity of the soil being drained.

9., The loss of head in the region beneath the
water table and above the water level in the
drains is negligible compared to the loss
of head in the remainder of the flow region,

Equations and Associated Assumptions Reference

Assumptions employed
in the development

Equation of the equation Reference
1. Boussinesq 1,2, and 3 (18)
2. Glover 1,2,3,4,5, and 6 (18)
3. Tapp and Moody 1,2,3,4, and 6 (19)
4. Brooks 1,2,3,4, and 5 (7)
5. van Schilfgaarde 1,2,3, and 4
6, Luthin 2 and 7 (40)
7. Bouwer and van 1,2,3, and 8 (6)

Schilfgaarde

(Integrated

Hooghoudt)
8. Ligon and others 1,2, and 9 (38)
9. Hammad 1,2, and 9 (1)
10. Jenab 1,2,3,4, and 6 (28)

Explanatory notes:

1. Although the development of some of the
equations above did not include a specific
reference to assumption number 2, it was
obvious that it was made as noted above.

2, Procedures for accounting for the effect of
the convergence of flow lines near drains
have been presented in the references for
equations 3, 5, and 7.

List of Equations and Boundary Copditions

1. Boussinesq
h = M0 at L/2

o 1 at T=0,
M, Mo xr h=0 for x=0
4‘46_5“}'_"1
L and x =L, for T >0,
2. Glover
h=h_ for 0<x<L
M n=e o
t 4  — at T=0,
ey Ll =X
(3] n=1,3,5 h=0 for x=0
(nw)ztd+hc/2)KT and x=L for T> 0.
fL?



3. Tapp and Hoody
M

+ 192 n=« =0 for x =0 and
ﬂ;" "y n=1,§.5 x=L for T>0,
h = EM-E (L3x-3L2x2+4Lx3-2x"%)
n2+2_g Exp—an(d+h0/2)KT L
2n® £L2 for O<x<L at T=0,
4. Brooks

The solution is given h = h_ for O<x<L
in graphical form, because it To‘ 0
of the complexity of the :
equation. h=0 for x=0

and x =L, for T >0 .

5. van Schilfgaarde
S h= ho for x =1L/2
K(d+M_) (d+M )T
L=3A [ t o } at T=20

: 0 :E

3’
h=0 for x=10
and x =L for T >0 .

where
d 2]"
A=|1 -
[ ()

6. Luthin

Initial water table is
Mt C KT curved, This curvature
i = EXP |- T T should persist for best

0 results.

where C is a factor
considered as being
equal to 0.1 by Luthin (40).

7. Bouwer and Schilfgaarde
(Integrated Hooghoudt)

)
(M +2d )
KT 0"t e

e F ot

Initial water table
is curved. This cur-
vature should persist
for best results,

where d, is the equivalent
depth by Hooghoudt's conver-
gence correction.
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8. Ligon and others

The shapes of the
initial and subsequent
water tables are de-
scribed by a lengthy
equation (38).

M
t

1 KT
@ = E)(P{m (MO-Mt- T))

where F is a sum of a
series of terms involving
flow system geometry.

9. Hammad
The shapes of the

M initial and subsequent
L. Exp 27KT water tables are de-
M 2 scribed by a length

A L y gthy

fL n equation (1).
2n2dy

for shallow barriers

ﬁi = EXP Zwri
[¢] FLtn(;;J

for deep barriers where
r is the drain radius.

10. Jenab
Mt n=e= h = ho for O0O<x<L
ﬁ;’“ erf(u) - nZZ erfe(u ) 4t T %0

h=0 for x=0

where erf is the error and x=L for T>0.

function
"1

u, =
1 * T(@F _/DRTE

X, = distance from point to the
first drain

erfc is the complimentary error
function

*n

M ® LI Wil <vEd

x_ = distance from the point to
the nth drain,



APPENDIX B

THE NUMERICAL SOLUTION

The numerical sclution was developed by combining
the scaled, finite-difference forms of the law of
conservation of mass and Darcy's law. Since the
drainable water above the water table was represented
by using functional relationships in terms of 1 ,
the results of the solution indicated the effect of
A on drainage.

Development of the Flow Equation

The soil profile shown in Figure 1 was divided
into a number of volume elements for which equations
representing conservation of mass and Darcy's law
were written. The scaled dimensions of each element,
as shown in Figure 8, are 4x and unity in the
horizontal directions and DL in the vertical.
Application of Darcy's law and the D-F assumptions
results in scaled equations representing the flow
rates into and out of each element, The scaled flow
rate equals the actual flow rate [cm”/sec] divided
by the product of the hydraulic conductivity and the
drain spacing. The flow areaz is taken as the mean
total flow depth in the adjacent elements between
which the flow rate is computed. The total flow
depth equals the sum of the water table height ZWT.
and the scaled equivalent flow depth d . The
hydraulic gradient is equal to the difference between
the water table heights divided by &x . The scaled

flow rate between the elements designated by I and
I+1 is:
Fl.=((ZWT. (1) + d.(I) + ZWT.(I+1) + d.(I+1)/2)

(ZWT. (I+1) - ZWT.(I))/&x (B-1)

where AT is the increment of scaled time. The
effective porosity ¢, which appeared in equation
(B-5) cancels with the ¢_, in the standard time unit
to used to scale time. Equation (B-6} is applied to
each element once during each time step.

The final step is the computation of ZWT.(I)
at time N + 1 . Since for a particular ) value
there exists a unique relationship among ESWT. ,
IZWT. , Z5. and ZT. , as given by equations (B-4)
and (B-5), the value of ZIWT.(I) can be obtained by
interpolation of the known value ESWT. and the
associated values of IS5. Values of IWT. and ESWT.
computed during each time step are then used during
the following time step, thereby formulating a purely
explicit solution procedure. The solution cannot be
applied to problems in which ZT. is less than or
slightly greater than one, because a unique relation-
ship exists among the above variables only when ZT.
is substantially greater than one,

Boundary Conditions

The initial condition simulated by the numerical
solution is a horizontal water table. The water
level drop in the ditch drain could be represented
as occurring either instantaneously or gradually.
However, the water table position when the midpoint
of the water table began to fall was practically
identical for either the case of an instantaneous
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water level drop or a drop at a rate identical to
that occurring in the physical models, Therefore,
the instantaneous water level drop in the drains
was simulated for all boundary conditions. The
water level was then held constant in the drains for
the remainder of the drainage period. Similarly,
the scaled flow rate between elements 1-1 and

I Ak

F2.=((ZWT. (I-1)+ d.(I-1) + ZWT.(I) + d.(1)/2)

(ZWT. (1) - ZWT.(I-1))/ix (B-2)

The total amount of drainable water within
each element can be represented in terms of scaled
variables by the product of 4x and the sum of the
scaled water table height and the scaled equivalent
depth of drainable water above the water table, as
given by:

ZT.

2s. = | S.d(P.)¢, (B-3)
0

where ZT. is the scaled distance between the water
table and the soil surface. Substituting equation
(11) into equation (B-3), applying the assumption
that Z. equals P. , and performing the indicated
integration yield:

5.« (1 + 25 zr. 1A )¢, for A1,

and
28, = {1 + in ZT.]&e for A=l (B-4)
The scaled volume of water in element I at time
step N is:
ESWT. (I,N)ix ¢e = (ZWT.(I) + ZWT.(I))Aax ¢e . (B-5)

The law of conservation of mass can be applied
to element I to obtain the expression for the total
scaled depth of drainable water at the next time
step N+1 as follows:

ESWT. (I,N+1) = ESWT.(I,N) + (F1.-F2.)(AT/AX) . (B-6)

Selection of Time Step Length

The stability of the numerical solution depends
on the length of 4T because of the solution's
explicit nature. Since the form of equation (B-6)
is essentially that of the heat flow equation, the
stability analysis for that equation can be applied
in the determination of the time step length, The
maximum time step length is based on the following
relationship:

eswr. 21— < 0.5

(B-7)
(8x)?

or



ATl Fou LT3

8o i,

ATyax = 0-5(aX)2/ESWT. . (B-8)

The maximum value of ESWT. must be used in equa-
tion (B-8) in order to insure stability,

Comparison between Numerical Solution and Glover's

Solution

Numerical solutions are usually checked by com-
paring their results with appropriate analytic solu-
tions. Glover's solution was selected because it
can be applied to boundary conditions identical to
those considered in the study and it is based on the
D-F assumptions. The numerical solution was modified
to ignore the drainable water above the water table.
The dimensionless outflow and water table height as
given by the two solutions are shown in Figure B-1.
The small differences existing in the relationships
result because of the constant depth of flow assumed
by Glover's solution while the numerical solution
considers the actual depth.
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numerical solution and Glover's solution.



FORTRAN Listing of Hydraulic Head Reduction Program

PROGRAM AGDRG
THIS IS AN EXPLICIT SOLUTION OF THE LINEARLIZED FLOW EQUATION
FOR TWO DIMENSIONAL TRANSIENT-FLOW DRAINAGE
DIMENSION DELV(52), T(30), EHC(52), Z1(52)
COMMON Z(52), ZS(52), ZHC(52), D, ES(52,2) , ZWT(52,2),ZSWT(52,2),
1ZT(52), EWTT(52,2) , ESWT(52,2), X(52) , DL

READ IN FLOW SYSTEM DIMENSIONS, ETC.

READ(5,100) SLD, DL, ZI, ZD, IT, NT, NRUNS, NRUNL

100 FORMAT ( 4F10.2 , 415 )
READ IN SOIL PARAMETERS

101

READ(5,101) ELA, DPOR
FORMAT( 2F10.3)
TD = 0.0
FO = 0.0
MM= 0
N=1
ET = 2.0 + 3.0+«ELA
ET1 = -ET + 1.0

READ IN TIMES FOR OUTPUT

102

103

READ(5,102) (T(M), M = 1,NT)
FORMAT (8E10.1)

WRITE (6,103) (T(M), M = 1,NT)
FORMAT (8E10.1)

DELX = SLD/(2.0+1T)

SUMVOL = 0.0

ZIT = DL-ZI

ZDT = DL-ZD

M=1

CALL ZHCS(ELA,ZIT,ZDT

)
INITIALIZE WATER TABLE ELEVATIONS

120

10

130
150

158

DO 120 1 =1, 51

ZWT(1,1) = Z1

MT = 0

DELT = 0.10 * 10.0%*MT

IF( TD .LE. 1.0 ) DELT = 0.025

MM= MM= 1

TD = TD + DELT

TS = TD#62.5

ZWT(1,N) = ZD

IF(TS .LT. 40.5) ZWT(1,N) = ZI - SQRT(TS/10.0)

IF(MM.GT, 1) GO TO 150

DO 130 1=2,51

EHC(I) = ZHC(52)

ES(I,1) = 25(52)

DO 160 I = 2,51

ESWT(1,N) = ZWT(I,N) + ES(I,N)

IF( I .EQ. 51 ) ZWT(52,N) = ZWT(51,N)

IF( 1 .EQ. 51 ) EHC(52) = EHC(51)

IF(I .EQ. 2) EHC(1) = 0.0

F1 = ((ZWI(L,N) + EHC(I) + ZWT(I+1,N) + EHC(I+1))/2.) ~({ZWT(I+1,N)
1 - ZWI'(L,N)) / DELX )

F2 = ((ZWT(I,N) + EHC(I) + ZWT(I-1,N) +EHC(I-1})/2.) *((ZWT(I, N)
1 - ZWT(I-1,N))/DELX)

IF(I .GT. 2 ) GO T0 155

WRITE(6,158) TbD, TS, F2, N ,M

FORMAT( # TIME = » , 2F15.8, = F1 = *F15.8,%* N = », 14, = M= «,14)
FO = FO + F2#DELT

155 ESWT(I,N+1) = ESWT(I,N) + (-F2 + F1) = (DELT/DELX)
160 CONTINUE
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Nl =N+1

DO 300 I = 2,51

CALL CONVERT( ZDT, I , N1, M)

IF(ZWT(I,N1) .LT. ZD) GO TO 999
300 CONTINUE

DO 920 I = 2,51

Z1(1) = DL - ZWT(I,N)

EHC(I)=(1./( ET1))#(Z1(I)*+ET1 - 1.0 ) + 1.0
920 CONTINUE

™1 = TD - T(M)

IF ( ABS(TD1) .GT. 0.001 ) GO TO 850

M=M=+1
WRITE(6,6210) DELT, TD, TS

210 FORMAT( = DELTA T = *» ,F10.4, = DMLS. TIME = =, F10.4, » TIME IN S

1ECS. = », F10.4 )
OUTPUT RESULTS
DO 830 I = 1,51
M6 = 6+M
IF (I .GT. M6 ) GO TO 830

WRITE(6,840) I,ZWT(I,N),ES(I), EHC(I), ESWT(I,N)

840 FORMAT( I10, 4F15.8 )
830 CONTINUE
850 CONTINUE

DELVOL = 0.0

DO 260 I = 2,51

DELV(I) = ((ZWT(I,N) - ZWT(I,N+#1)) - ES(I,N+1)+ES(I,N))~DELX

ES(I,N ) = ES(I, N+l)
IWT(I,N) = ZWT(I,N+1)
260 DELVOL = DELV(I) + DELVOL
SUMVOL = SUMVOL + DELVOL
IF ( ABS(TD1) .GT. 0.001 ) GO TO 950
WRITE(6,360) TD, DELVOL, SUMVOL, FO

360 FORMAT( « TIME = *, F10.4 , «INCREASE IN OUTFLOW =#,F15.8,*TOTAL

10UTFLOW =,2F15.8)
950 CONTINUE
IF( M .EQ. NT ) GO TO 999
GO TO 10
999 CONTINUE
END
SUBROUTINE ZHCS(E,A,B, )

THIS SUBROUTINE ESTABLISHES THE TABLE OF Z, 2S, AND ZHC VALUES
COMMON Z(52), 2S(52), ZHC(52), D, ES(52,2), ZWT(52,2),2ZSWT(52,2),

1ZT(52), EWTT(52,2) , ESWT(52,2), X(52) , DL
WRITE (6,502)

502 FORMAT( 12X, »ACTUAL ELEV.*, 4X, »SEEPAGE ELEV.x,3X,»HYD. COND. E

1LEV.* )

ET = 2.0 + 3.0+E

ELl = -E + 1.0

ET1 = -ET + 1.0

D= (B - A)/50.0

Z(1) = B+D

DO 500 I = 2,52

() w 2EIED) <MD

X(I) = DL - Z(I)

ZS(1)=(1./( EL1))«( Z(I)*+ELl - 1.0 ) + 1.0
ZHC(I)=(1./( ET1))»( Z(I)#+ET1 - 1.0°) + 1.0
ZT(I) = X(I) + ZS(I)

WRITE(6,510) 1,Z(I), 2S(I), ZHC(I),ZT(I),X(I)



510 FORMAT( I10 , 5F15.8 )
500 CONTINUE
RETURN
END
SUBROUTINE CONVERT( B, T, N1, M)
COMMON Z(52), 2§(52), ZHC(52), D, ES(52,2) , ZWT(52,2), ZSWT(52,2),
1ZT(52), EWTT(52,2) , ESWT(52,2), X(52) , DL
DIMENSION ZAT(51,2)
N=N -1
DO 800 K = 2,51
IF (M .EQ. 1) ZAT(I, 2) = B + ZS(I)
IF(ZT(K+1) .LT. ESWT(I,N1)) GO TO 800
IF(ZT(K+1) .NE. ESWT(I,N1)) GO TO 750
IWT(I,N1) = X(K+1)
ES(I,N1) = Z5(K+1)
GO TO 515
750 CONTINUE
ZAT(I,N)= ZAT(I,N1)
ZAT(I,N1) = ZT(K) + ((ESWT(I,N1) - ZT(K))/(ZT(K+1)-ZT(K)))+D
IWT(1,N1)= X(K) + ((ESWI(I,N1) =~ ZT(K))/(ZT(K+1)-2T(K)))»( X(K+1
1) - X(K} )
ES(I,N1) = ESWT(I,N1) - ZWT(I,N1)
515 CONTINUE
GO TO 900
800 CONTINUE
900 CONTINUE
RETURN
END
*RUN
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APPENDIX C

DYNAMIC VISCOSITY AND DENSITY OF
THE TEST FLUID

TABLE C-1. DYNAMIC VISCOSITY AND DENSITY OF THE TEST FLUID

PORSRY DR T Sy S

Tgﬂp. Viscosity, u Density, p u/og
C centipoises grans/nl cm-seconds

20.0 1.589 0.7582 2,127
20.5 1.571 0.7579 2.108
21.0 1.855 0.7576 2.089
21.5 1.539 0.7573 2.070
22.0 1,524 0.7569 2.051
22.5 1.509 0.7566 2.032
25.0 1.494 0.7562 2.014
25.5 1.481 0.7559 1.996
24.0 1.468 0.7556 1.979
24.5 1.454 0.7553 1,962
25.0 1.440 0.7549 1.945
25.5 1.427 0.7546 1.927
26.0 1.414 0.7542 1.910
26.5 1.401 0.7539 1.893
27.0 1.388 0.7536 1.877
27.5 1.375 0.7533 1,661
28.0 1.362 0.7529 1.845
28.5 1.349 0.7526 1.829
29.0 1.3%7 0.7522 1.814
29.5 1.326 0.7519 1.799
30.0 1.315 0.7515 1.783
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APPENDIX D

COMPUTER PROGRAM FOR THE REDUCTION
OF PRESSURE DATA FROM MODELS

Generalized Flow Diagzam

Read variables for soil properties,
tensiometer grid, calibration meth-
od, and selected pressure heads and
times for which interpolations are
to be made.

Read data unit consisting of time,
millivoltage relating to tensio-
meter position, and millivoltage
relating to sensed capillary pres-
sure at tensiometer.

Convert millivoltages to capillary
pressure head after each complete
scan of all tensiometers.

For each tensiometer, interpolate
in time to determine the capillary
pressure head at each selected time.

For each selected time, interpolate
in space to determine the position
within the media where each value of
selected head is located.

Print out coordinates of each se-
lected head for each selected time.
Also, print out water table posi-
tions for each selected time.
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FORTRAN Listing of Hydraulic Head Reduction Program

PROGRAM WADSOI

c IPPS(40,7) POS. NUMBER ST(20) SELECTED TIME

C SH(20) SELECTED HEAD N(10) CHANNEL NUMBER
C K(10) ELEMENT IN THIRD P0OS. OF DATA

C M(10) ELEMENT IN 4TH THRU 7TH POS. OF DATA - MILLIVOLTAGE

c NR(10) ELEMENT IN 8TH POS. OF DATA - DECIMAL PT., TIME,ETC.

C PRESS (40) CAPILLARY PRESSURE HEAD IN MM

C HTM(20) SELECTED TIME IN DIMENSIONLESS UNITS

C TS(96,25) TIME IN SECONDS TT(96,25) DIMENSIONLESS TIME
C THE MAXIMUM NUMBER OF CYCLES IS 25, MAX SEL. TIMES AND HEADS ARE 20

c VT(96,25) MILLIVOLTAGE CAL(25,2) CONVERSION FACTOR
c HM(96,25) HEAD IN MM HD(96,25) DIMENSIONLESS HEAD
C BIGRN TEST RUN NUMBER DATE DATE OF RUN

DIMENSION  IPPS(42, 9),ST(20),SH(20),N(10),K(10),M(10),MR(10)
DIMENSION PRES( 40), HDLG(100,20), XDST(20),DSTX(20),YDST(20)
DIMENSION HD( 96, 25),CAL(25,2), VT( 96, 25),TT(96 ,25 ), WTH(20)
DIMENSION DSTY(20), HH( 20), HM( 36,20),HDM(20) ,TS( 36,20)
DIMENSION PDST(40), HTM(25)

DATA(Q = 1HQ), (NEG = 1H-)
INTEGER Q
READ (5,100) NC, NR, NPOS, XDIST, YDIST, XIDIST, YIDIST

100 FORMAT( 315, 4F10.3)

READ (5,102) NCP1, NCP2, NCP3, NCP4, NST, NSH, CALDST

102 FORMAT( 615, F12.2)

READ (5, 106) (SH(IHS), IHS = 1, NSH)
106 FORMAT( 8F10.0)
READ (5, 109) (ST(ITS), ITS = 1, NST)

109 FORMAT( 8F10.2)

READ(5, 104) ((IPPS(IC,IR), IR = 1, NR), IC = 1, NC)

104 FORMAT (1615)

10 READ(5,120) BIGRN, DTL, SPDT
120 FORMAT( F10.0, F20.0 , F10.0 )
READ (5,113) BPH, PHI, HYCON, PSDI
113 FORMAT(4F20.6 )

WRITE(6,121) BIGRN, SPDT, DTL
1210FORMAT (40H1TEST RUN NUMBER -F10.0//
1 40HODATE OF RUN 5-28-68
2 40HOTOTAL SOIL DEPTH (MM) 1152 /
3 40 H SOIL - POUDRE SAND SCREENED /
4 40H DITCH SPACING (FT) -F10.0/
5 40H DITCH LEVEL FROM FLUME FLOOR(MM) -F10.0/////11 )
WRITE(6,112) BPid, PHI, IIYCON, PSDI
1120FORMAT (32H SOTL PARAMLILRS ARE AS FOLLOWS { it
1 32H BUBULE PRESSURE HEAD-CM SOLTROL ,10X , F20.6 /
2 32H EFFECTIVE POROSITY - PERCENT ,10X , F20.6 /
3 32H HYDRAULIC CONDUCTIVITY - CM/SEC , 10X , F20.6 /
4 32H PORE SIZE DISTRIBUTION INDEX , 10X , F20.6 [///)

TCF = HYCOM /(BPiin PHI)
WRITE(6,119) TCF
119 FORMAT(27H TIME CONVERSION FACTOR IS , 5X, F15.6 )
WRITE(6,103) NCP1, NCP2, NCP3, NCP4, NST, NSH, CALDST
1030FORMAT (27H CALIBRATION POSITION NOS -4110/28H TOTAL NO OF SELECTED
1 TIMES=110 /27H TOT. NO. OF SELECTED HEADS= 110 /31H DISTANCE USED
2 IN CALIBRATION = F10.0 //)
WRITE(6,101) NC, NR, NPOS, XDIST, YDIST, XIDIST, YIDIST
1010FORMAT (22HINUMBER OF COLUMNS = 15/ 22H  NUMBER OF ROWS = 15/
1/24H NUMBER OF POSITIONS = I7/24H DIST BETWEEN COLUMNS = F10.2
2/24H DIST BETWEEN ROWS = F10.2/24H DIST TO FIRST COLUMN = F10.2
3/24H DIST TO FIRST ROW = F10.2//)
WRITE (6,108)
108 FORMAT (25H SELECTED HEADS(DMNLS)ARE,9X,22HSELECTED HEADS (MM)ARE )
DO 115 IHS = 1, NSH
HDOM(IHS) =(SH{IHS) « (1152 - DTL))/100.
WRITE(6,116) SH(IHS), HDM(IHS)
116 FORMAT(I1HO , 2(20X, F10.3))
115 CONTINUE
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WRITE (6,118)
118 FORMAT (26H1SELECTED TIMES(DMNLS) ARE , 9X,23HSELECTED TIMES(SEC) A
1RE )
DO 125 ITS = 1, NST
HTM(ITS) =  ST(ITS) /TCF
WRITE(6,126) ST(ITS), HIM(ITS)
6 FORMAT(1HO , 2(20X, F15.6))
5 CONTINUE
NTX = 0
TTT = 0.0
DO 140 1
Do 140 J
VT(I,J) = 0.
HDLG(1,J) = 0.
HH(J) = 0
140 HD(L,J) =
IRUN = 1
90 READ (5,110) (N(I), K(I), M(I), MR{I), I = 1, 10)
110 FORMAT( 10(I2, Al, 14, I1))
DO 190 I =1, 10
NN = N(I)
KK = K(I)
MM = M(I)
FMM = MM
NNR = MR(I)
IF (NNR) 503,501, 503
501 WRITE (6,502)
502 FORMAT( 50H ERROR IN DATA - ZERO IN POSITION 8 - DISREGARDED )
GO TO 190
503 GO TO (1, 2, 25, 25, 25, 25, 7, 8, 9}, NNR
1 MM = 2%MM
GO TO 25
2 MM = 20«MM
GO TO 25
7 WRITE(6,77)
77 FORMAT (45H ERROR IN DATA- 7 IN POSITION 8 - DISREGARDED)
GO TO 190
8 IF(NN .EQ. 0 .AND. MM .EQ. 0) MM = 5
T= 3600%NN+ (MM/100) #60+ (MM~ ( (MM/100}%100))+ NTX
IF(TIT .EQ. 0.0) T = 5.0
GO TO 130
9 IF(NN.EQ. 99) GO TO 290
IF(NN. EQ. 88) NTX = MM*3600 + NTX
IF(NN.EQ. 66) TTT = 1.0
GO TO 190
25 IF(KK .EQ. Q) MM = MM + 1.0E4
IF(NN .NE. 25) GO TO 81
IF(KK .EQ. NEG) MM = -MM
FMM = MM
IM = EMM/46.5
IPOS = 47 + IM
IF(IRUN .EQ. 9 .AND. NN .EQ. 26) IPOS = IPOS + 3 -ABS(IP0S/46) 48
IF(IRUN .EQ.10 .AND. NN .EQ. 26) IPOS = IPOS + 2 -ABS(IP0S/47) =48
IF(IPOS .NE. 1) GO TO 190
IRUN = IRUN + 1
IF(IRUN .EQ. 2) GO TO 190
NP = 1
EMC = FMM1
255 DO 300 IPOSS= 3, NPOS
IF(IPOSS .EQ. 49) NP = 2
IF(IPOSS .EQ. 49) FMC = EMM2
IF(IPOSS .EQ. 49) GO TG 300
IF(IPOSS .EQ. 50) GO TO 300
IF(VT(IPOS,IRUN-1) .EQ. 0.0) GO TO 257
" HM(IPOSS,IRUN-1) = 1255, 0+ (VT (IPOSS, IRUN-1}-FMC)/CAL(IRUN-1,NP)
HD (IPOSS, TRUN-1)=(100.% (HM(IPOSS,IRUN-1)- DTL  ))/{ 386.-DTL)

Pep—

ry
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IRN1 = IRUN -1
WRITE(6, 98) IRN1, IPOSS,VT(IPOSS,IRN1), TT(IPOSS,IRN1), HM(IPOSS,
1 IRN1), HD(IPOSS,IRN1)
98 FORMAT( 2110, 4F15.6 )
GO TO 300
257 WRITE (6,258) IRN1, IPOSS
258 FORMAT( 36H APPARENT MISSING VOLTAGE AT RUN NO ,I10,2X, 10HAND P
105 No  , 110 )
300 CONTINUE
81 IF(NN .EQ. 28) IPOS = IPOS + 48
IF (KK .EQ. NEG)FMM = -FMM
IF(IPOS .EQ. NCP1) FMM1 = FMM
IF(IPOS .EQ. NCP3) FMM2 = FMM
IF(IPOS .EQ., NCP1 .OR. IPOS .EQ. NCP3) GO TO 190
1F (IPOS .EQ. NCP2) GO TO 82
IF(IPOS .EQ. NCP4) GO TO 83
GO TO 85
82 CAL(IRUN,1) = ABS((FMM-FMM1)/CALDST)
WRITE (6,92) CAL(IRUN,1),FMM, FMM1, IRUN
92 FORMAT( 1H1,3F16.5, I9)
GO TO 190
83 CAL(IRUN,2) = ABS((FMM-FMM2)/CALDST)
WRITE(6,93) CAL(IRUN,2) ,FMM, FMM2, IRUN
93 FORMAT(3F16.4, 19)
WRITE (6,99)
99 FORMAT( 12H RUN NUMBER ,10HPOS NUMBER, 3X, 7HVOLTAGE, 7X,SHREAL
ITIME, 8X, 10HREAL HEADS, OX,  20HUIMENSIONLESS HEADS )
GO TO 190
85 VT (IPOS,IRUN) = FMM
TS(IPOS,IRUN) = T
TT(IPOS,IRUN) =  TCF *TS(TPOS, IRUN)
190 CONTINUE
GO TO 90
290 NRUN = IRUN - 1
WRITE(6,292) NRUN
292 FORMAT( 23HITOTAL NUMBER OF RUNS - 16 )
GO TO 999
DO 400 IPOSS= 1, NPOS
IF (IPOSS.EQ. NCP1 .OR. IPOSS.EQ. NCP2) GO TO 400
IF (1POSS.EQ. NCP3 .OR. TPOSS.EQ. NCP4) GO TO 400
WRITE (6,544)
544 FORMAT(/11H POS NUMBER,2X, 10HRUN NUMBER, 2X, 11HSEL TIME NO , 2X,
1 13HSELECTED TIME, 2X, 12HTIME OF DATA , 3X,1SHDIMENSIONLESS HEAD)
ITS = 1
NRUNN = NRUN - 1
DO 550 IRUN = 2,NRUNN
IF (HD(IPOSS, IRUN+1) .NE. 0.0) GO TO 543
HD (IPOSS, IRUN+1) = HD(IPDSS, IRUN+2)
TT(IPOSS, IRUN#1) = TT(IPOSS, IRUN+2)
545 IF(HD(IPOSS,IRUN).NE. 0.0) GO TO 549
HD(1POSS,IRUN) = HD(IPOSS,IRUN-1)
TT(IPOSS,IRUN) = TT(IPOSS,IRUN-1)
549 IF((HD(IPOSS,IRUN+1) - HD(IPOSS,IRUN)).LT.20.0 ) GO TO 551
TRUN = NRUNN
GO TO 550
552 I1S = ITS + 1
551 IF(ST(ITS) .LT. TT(IPOSS,IRUN)) GO TO 552
IF (TT(IPOSS, IRUN) .EQ. ST(ITS)) GO TO 553
IF (TT(1POSS,IRUN) .LT. ST(ITS) .AND. TT(IPOSS,IRUN+1) .GT.
1ST(ITS)) GO TO 555
IF(TT(IPOSS,IRUN) .GT. ST(ITS)) GO TO 550
IF(TT(IPOSS,IRUN+1) .LT. ST(ITS)) GO TO 550
555 HDLG (IPOSS,ITS) = (HD(IPOSS, IRUN+1)-HD(IPOSS, IRUN) )+ (ALOGLO (ST
1(I1S)) - ALOG1O(TT(IPOSS, IRUN)))/ (ALOGL0O(TT (IPOSS,IRUN+1)) -
2ALOG10(TT (IPOSS,IRUN)))  + HD(IPOSS,IRUN)
GO TO 558

non
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553 HDLG(IPOSS,ITS) = HD(IPOSS, IRUN)
558 WRITE(6,556) IPOSS, IRUN,ITS,ST(ITS),TT(IPOSS, IRUN) ,HDLG (IPOSS,ITS)
556 FORMAT(3110, 3Fl6.4)
IF (HD(IPOSS, IRUN) .EQ. 0.0 ) GO TO 550
IF(TT(IPOSS,IRUN) .EQ. 0.0 ) GO TO 550
IF( ITS .NE. NITS ) GO TO 552
IF (HD(IPOSS,IRUN+1) .NE. 0.0) GO TO 559
HD(IPOSS,IRUN+2) = HD(IPOSS,IRUN+1)
TT(IPOSS, IRUN+2) = TT(IPOSS,IRUN+1)
559 IF(HD(IPOSS,IRUN) .NE. 0.0) GO TO 550
HD (IPOSS, IRUN-1) = HD(IPOSS,IRUN)
TT(IPOSS,IRUN-1)= TT(IPOSS, IRUN)
550 CONTINUE
400 CONTINUE
WRITE (6,450)
450 FORMAT(73H INTERPOLATION ALONG EACH ROW AND COLUMN FOR EACH SELEC
1TED TIME FOLLOWS Yiyvi )
DO 500 ITS = 1, NST
DO 600 IR = 1, NR
J =1
TMS= ST (LTS)/TCF
WRITE(6,622)  ST(ITS), TMS, IR
6220FORMAT (16HOSELECTED TIME = 2F10.3,10X,13HROW NUMBER = 110/,12H POS1
1TION NO , 5X, 8HPOS DIST, 8X, BHHEAD,DLS,7X, 10HPRESS HEAD//)
67 DO 650 IC = 1, NC
IIPOS = IPPS(IC,IR)
IF(HDLG(I1IPOS,ITS) .EQ. 0.0) GO TO 650
IF(11POS .EQ. 999) GO TO 650
AIC = IC - 1
XDST(J) = XIDIST + XDIST#AIC
HH(J) = HDLG(IIPOS,ITS)
PRES(J)=((HH(J) *(1152.-DTL ))/100.0) + DTL - 152.4-152.4 «(7-IR)
WRITE(6,632) IIPOS,XDST(J), HH(J), PRES(J)
632 FORMAT(I10, 3F16.6)
J=J %1
NJ=J -2
650 CONTINUE
WRITE(6,633)
633 FORMAT (1HO,5X,10HINTPLTN NO, 5X,11HSEL HD,DMLS,3X,14HDIST TO SEL HD
1/{)
DO 700 J =1, NJ
IHS = 1
GO TO 701
702 IHS = IHS + 1
IF( IHS .EQ. NSH) GO TO 705
701 IF(SH(IHS) .GT. HH(J) .AND. SH(IHS) .LT. HH(J+1) ) GO TO 703
IF(SH(IHS) .LT. HH(J) .AND. SH(IHS) .GT. HH(J+1l)) GO TO 703
GO TO 702
7030DSTX (IHS) = XDST(J) + ( XDST(J+1) - XDST(J))(SH(IHS) - HH(J))/
1(HH(J+1) - HH(J))
705 WRITE(6,720) J, SH(IHS), DSTX(IHS)
720 FORMAT(5X, 15, 2(10X, F12.0))
IF( IHS .NE. NSH ) GO TO 702
700 CONTINUE
DO 750 J =1, NJ
IF(PRES(J) .LT. 0.0 .AND. PRES(J+1) .GT. 0.0 .OR. PRES(J+1) .LT.
1 0.0 .AND. PRES(J) .GT. 0.0) GO TO 753
GO TO 750
753 PDST(IR) = XDST(J) - (XDST(J+1) - XDST(J)) « (PRES(J))/
1 (PRES(J+l1) - PRES(J) )
WRITE(6,772) IR, PDST(IR)
772 FORMAT(19H WATER TABLE IN ROW , I10, 2X, 12HAT DISTANCE , F15.6 )
750 CONTINUE
600 CONTINUE
DO 800 1IC = 1, NC
T= S§T(ITS)
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PDST(IC)=0.0
IF( IPPS(IC, 1) .EQ. 999) GO TO 800
L=1
WRITE (6,622)  ST(ITS), TMS, IC
8220FORMAT (16HOSELECTED TIME =2F10.3,10X,13HCOL NUMBER = I10/,12H POSI
ITION NO, 5X, BHPOS DIST, 8X, 9HHEAD,DMLS, 7X,10HPRESS HEAD//)
DO 850 IR = 1, NR
1IPOS = IPPS(IC,IR)
IF (HDLG(11POS,ITS) .EQ. 0.0) GO TO 850
IF(11POS .EQ. 999) GO TO 850
AIR = IR - 1
YDST(L) = YIDIST + YDIST*AIR
HH(L) = HDLG(IIPOS,ITS)
PRES(L)=((HH(L) *(1152.-DTL ))/100.0) +DTL - 152.4-152.4 »(7-IR)
WRITE(6,632) LIPOS,YDST(L), HH(L), PRES(L)
L=L+1
NL=L -2
850 CONTINUE
WRITE(6,633)
DO 900 L = 1, NL
IHS = 1
‘GO TO 901
902 THS = IHS + 1
IF( IHS .EQ. NSH ) GO TO 905
901 IF(SH(IHS) .GT. HH(L) .AND. SH(IHS) .LT. HH(L+1) .OR. SH(IHS)
1 .LT. HH(L) .AND. SH(IHS) .GT. HH(L+1)) GO TO 903
GO TO 902
9030DSTY (IHS) = YDST(L) #(YDST(L+1) - YDST(L))#(SH(IHS)-HH(L))/
1(HH(L+1)-HH(L))
905 WRITE(6,720) L, SH(IHS), DSTY(IHS)
IF( IHS .NE. NSH ) GO TO 902
900 CONTINUE
DO 950 L = 1,NL
IF(PRES(L) .LT. 0.0 .AND. PRES(L+1) .GT. 0.0 .OR. PRES(L+1) .LT.
1 0.0 .AND, PRES(L) .GT. 0.0) GO TO 953
GO TO 950
953 PDST(IC) = YDST(L) - (YDST(L+1) - YDST(L)) * (PRES(L))/
1 (PRES(L+#1) - PRES(L) )
WRITE(6,972) IC, PDST(IC)
972 FORMAT (19H WATER TABLE IN COL , I10, 2X, 12HAT DISTANCE , F15.6 )
950 CONTINUE
800 CONTINUE
CALL WTPLOT (PDST,T)
500 CONTINUE
999 CONTINUE
END
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APPENDIX E

RESULTS FROM PHYSICAL MODELS

TABLE E-1 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 1 - MEDIA:

Initial water table:

Final water table:

Boundary Conditions

POUDRE SAND

2/3 media height - 4.02 Pb/pg

1/3 media height - 2.01 Pb/pg

Drain spacing: 64.08 bepg
Time T, D D. F F. M_/M
sec cn cm/sec R
800 J711 0.342 0.0590
1000 .889 .410 L0713 .000351 .0688 1.000
1500 1.334 .538 .0936 .000222  .0435 .999
2000 1.778 .652 L1134 .000206 .0404 .998
3000 2.667 .841 .1463 .0001755 .0344 .996
4000 5.556 1.003 1745 .0001597 .0313 .988
6000 5.334 1.518 .2293 .0001360 .0219 .964
8000 7.112 1.547 .2692 .0001145 .0219 .949
10000 8.89 1.753 .3050 .0000988 .0194 .931
15000 13.34 2.212 .3849 .0000873 .0171 .802
20000 17.78 2.626 .4569 .0000751 .0147 .876
30000 26.67 3.299 .5740 .0000629 .0123 .817
40000 35.56 3.884 .6758 .0000527 .01034 . 734
60000 53.34 4.824 .8394 .0000410 .00803 .617
80000 71.12 5.523 .9610 .0000334 .00655 .518
100000 88.9 6.160 1.074 .0000263 .00516 .443
150000 133.4 7.195 1.254 .00001601 .00314 .289
200000 177.8 7.762 1,351 .00000956 .00187 .208
300000 266.7 8.540 1.486 .00000562 .00110 .076
400000 355.6 8.785 1.529 .00000197 .00039 .053
600000 533.4 9.004 1.567 .00000091 .00018 .021
800000 711.2 5.149 1.592 .00000058 .00011 .009
1000000 889, 9.236 1.607 .00000033 .00007 .002

45



g

T s A At B LR e S B

TABLE E-2 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 1 - MEDIA:

Initial water table:
Final water table:

Boundary Condition

HYGIENE SAND

2/3 media height - 4,02 Pb{pg
1/3 media height - 2,01 Pb;’as

Drain spacing: 64.08 P, /pg
Time T. D D. F - Fs M /M
sec em em/sec ge
100 1.07 .1342 0.08119
150 1.61 .1802 -1090 0.0009224 0.05211 1.000
200 214 . 2265 L1370 8100 04576 1.000
300 3.21 +2959 L1796 6447 L03643 +992
400 4,28 .3554 .2150 5620 .03175 .983
600 6.42 L4612 -2790 4799 .02711 963
8OO 8.56 5471 L3310 4050 .02288 L840
1000 10.70 6232 L3770 3488 .01971 914
1500 16.05 L7819 LA730 0002893 L01634 862
2000 21.4 .9125 L5521 2413 L01364 .821
3000 32.1 1.1340 6861 1975 .01116 .751
4000 42.8 1.3075 L7910 1583 .00854 L6809
6000 64,2 1,5935 L9641 1269 00717 «579
8000 85,6 1.8150 1.0981 1008 .00570 .483
10000 107.0 1.9968 1.2081 0755 00427 401
15000 160.5 2.2977 1.3901 .0000476 00269 237
20000 214, 2.4729 1.4961 246 00139 .135
o000 321, 2.6151 1.5821 105 .00059 041
40000 428, 2.6828 1.6231 004 .00002 .008
60000 642, 2.6927 1.6201
TABLE E-3 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 2-MEDIA: POUDRE SAND
Boundary Conditions
Initial water table: 1/3 media height - 2,01 Pb/pg
Final water table: base of media
Drain spacing: 64.08 thnt
Time T. D D. P F. Mt/M
sec cm cm/sec
2000 1.36 0.4827 0.0643
3000 2.04 .6226 .0829 .00002039 .03998 1.000
4000 2.72 .T885 L1050 1381 2708 .999
6000 4.08 1.0091 L1344 09898 1941 L9968
8000 5.44 1.1844 L1578 08660 16398 .997
10000 6.8 1.3355 L1779 07237 1419 .994
15000 10.2 1.6764 .2233 .000006G680 .01510 .973
20000 13.6 1.9985 .2262 6013 1179 .942
30000 20.4 2.5569 «3353 5030 09863 .916
40000 27.2 3.0575 L4073 4629 09077 .889
60000 40.8 3.9078 .5205 3591 07042 863
80000 54.4 4.4940 .5986 2802 05495 .818
100000 68 5.0287 L6698 2509 04921 7713
150000 102 6.2012 L8260 000002155 004226 673
200000 136 7.1836 .9569 1754 3439 .559
300000 204 8.7263 1.1623 1269 2488 L422
400000 272 9.7214 1.2949 08953 1756 «313
600000 408 11.3125 1.5068 05862 1149 . 208
800000 544 12.0661 1.6072 03509 0688 <137
1000000 680 12,7162 1.6938 02469 0484 .084
1500000 1020 13.5604 1.8062 .0000001414 .000277 .07
2000000 1360 14,1305 1.8835
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TABLE E-4 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 2 - MEDIA:

Initial water table:

Boundary Condition

HYGIENE SAND

1/3 media height - 2.01 th:

Final water table: base of media
Drain spacing: 64,08 Pb!ng
T 'E. D D. F F. M M
sec cm cm/sec to
100 0.989 0.1040 0.0581 .0006274  0.03545 1.000
150 1.484 .1360 L0760 6160 3481 1.000
200 1.978 .1656 .0825 5590 3158 1.000
300 2.967 .2181 1218 4837 2753 1.000
400 3.956 L2624 L1466 3813 2211 1.000
600 5.934 L3304 1846 3217 1818 .599
800 7.912 L3911 .2185 2955 1669 L9098
1000 9.89 4485 L2506 2610 1475 .993
1500 14,84 .5658 L3161 0002119 01243 970
2000 19,78 6685 L3735 1919 1084 .947
3000 29,67 .B469 4732 1608 008 913
4000 398.56 .9902 .5532 1298 0733 .882
6000 59.34 1.2229 L6832 1072 0606 .B16
BO00 79.12 1.4191 J7928 0856 0485 751
10000 98.9 1.5651 .B744 0622 0374 674
15000 148.4 1.8617 1.0401 .0000536 .00303 .492
20000 197.8 2.1013 1.1740 382 216 374
30000 296.7 2.3864 1.3333 234 132 . 242
40000 395.6 2.5690 1.4353 140 079 .159
60000 593.4 2.7652 1.5449 079 044 .082
B0OOD 791.2 2.8838 1.6112 039 022 .029
100000 9892.0 2.9205 1.6316 014 008 .004
150000 1484 2.9660 1.6571 .0000007 00004
200000 1978 2.9888 1.6698
TABLE E-5 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 3-MEDIA: POUDRE SAND
Boundary Conditions
Initial water table: 1.0 media height - 6.03 Pblpg
Final water table: base of media
Drain spacing: 64.08 thn g
Time Ty D D. F e Mt’"o
sec cm em/ sec
3000 2.33 1.1434 0.1738 0.589
4000 3.10 1.4607 2220 0.0002624 0.05145 956
6000 4.65 1.8681 L2840 2092 .04102 927
8000 6.20 2.2902 .3481 1801 03727 .902
10000 775 2.6284 3995 1536 03013 .B83
15000 11.6 3.2693 L4969 -0001376 02698 .858
20000 15.5 3.5940 L6071 1309 .02566 .839
30000 23.3 5.2620 L7998 1039 02037 .802
40000 31.0 6.0715 .9229 0783 01536 770
60000 46.5 7.5853 1.1530 0697 01366 707
80000 62.0 8.8576 1.3464 0592 01161 657
100000 71.5 9.9527 1.5128 0486 00954 614
150000 116 12.0786 1.8359 .0000375 00736 .529
200000 155 13.7051 2.0832 291 00571 468
300000 233 16.2740 2.4736 199 00389 .389
400000 310 17.8763 2.7172 138 00272 341
600000 465 20.6141 3.1333 113 .00221 279
800000 620 22,3856 3.4026 081 .00158 257
1000000 775 23.8350 3.6229 056 .00109 .206
1500000 1163 25.5676 3.8863 .0000031 00060 .159
2000000 1550 26.4950 4.0272 15 00029 .116
3000000 27.0300 4.1086
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TABLE E-6 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR

BOUNDARY CONDITION NO. 3-MEDIA:

Boundary Conditions

Initial water table:
Final water table:

HYGIENE SAND

1.0 media height - 6.03 P /pg
base of media

b

Drain spacing: 64.08 beog
T:’IZ T. D D, F F. M /M,
cm cm/sec
100 1.07 0.1846 0.1116 0.992
150 1.61 L2395 -1448 0.010420 0.5887 986
200 2.14 .2888 1746 9305 5257 974
300 3.21 3763 .2275 7998 4519 .944
400 4,28 L4488 L2713 6965 .3935 .921
600 6.42 .5824 L3521 6178 L3491 .897
BOO 8.50 L6959 L4207 5333 3013 876
1000 10.7 L7957 4810 4476 +2529 .843
1500 16.1 .9938 L6008 003765 2127 826
2000 21.4 1.1722 L7086 3365 .1901 .801
3000 32.1 1.4884 .8998 2950 1667 .759
4000 42.8 1.7622 1.0653 2394 1353 . 719
6000 64.2 2.1723 1,3132 1529 L1090 .652
8000 85.6 2.5339 1.5318 1743 .008848 +591
10000 107 2.8694 1.7346 1434 .08102 .539
15000 161 3.4599 2.0916 00096035 05426 .458
20000 214 3.8247 2.3121 6930 .03815 .395
30000 321 4.4811 2.7089 5640 03187 .332
40000 428 4,9527 2.9940 3943 .02228 . 287
60000 642 5.5866 3.3772 2696 01523 .205
80000 856 6.0309 3.6458 1629 00920 167
100000 1070 6.2383 3T 0727 00411 .132
150000 1610 6.4467 3.8972 0000302 00171 073
200000 2140 6.5405 3.9539
TABLE E-7 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 1-MEDIA: SCHNEIDER SAND
Boundary Conditions
Initial water table: 2/3 media height - 4.02 P /og
Final water table: 1/3 media height - 2.01 ber-s
Drain spacing: 64.08 I-'b/n,g
Time T. ] 118 F F. M‘I:/Mo
sec cm cm/sec
60 2.91 L3443 1777 1.000
80 3.88 .4152 L2142 0003408 03626 1.000
100 4.85 L4806 . 2480 3090 52688 999
150 7.28 L6211 L3205 .D002584 .02749 .998
200 9.70 L7390 .3813 2171 2310 .996
300 14,55 9374 L4837 1755 1867 979
400 19.4 1.0900 5624 1423 1514 .951
600 29.1 1.3538 6986 1146 1218 .BR4
800 38.8 1.5484 L7989 0963 1025 .825
1000 48.5 1.7390 L8973 0875 0931 .759
1500 72.8 2.1372 1.1028 0000725 00772 L608
2000 97.0 2,4643 1.2716 532 566 .502
3000 145.5 2.8746 1.4833 311 331 .353
4000 104 3.0868 1.5928 164 174 L2534
6000 291 3.3180 1.7121 115 123 .109
8000 388 3.5469 1.8302 090 096 056
10000 485 3.6795 1.8987 048 051 027
15000 728 3.8205 1.9761 .0000018 .00012 .014
20000 970 3.8576 1.9905 .007
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TABLE E-8 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 2-MEDIA: SCIINEIDER SAND

Boundary Condition

Initial water table: 1/3 media height - 2.01 Phlpr,

Final water table: base of media
Drain spacing: 64.08 Pb/nz

Time T. D D. F F- tho

sec cm on/sec
40 1.832 0.1925 0.0937 1.000
60 2.748 .2519 L1227  D0.002716 0.2890 1.000
80 3.664 L3018 J470 2464 L2622 1.000
100 4.58 L3504 L1706 2126 2262 1.000
150 6.87 L4399 L2142 001707 L1816 1.000
200 9.16 .5211 .2538 1497 .1593 1.000
300 13.74 L6580 .3204 1227 L1306 999
400 18.32 L7660 L3730 1076 L1145 993
600 27.48 L0796 4771 1013 L1078 978
800 36,64 1.1718 5707 0864 L0919 947
1000 45.8 1,3251 L6453 0701 0746 919
1500 68.7 1.6427 L7998 000587 L0625 L847
2000 91.6 1.9119 L0311 0463 0493 76
3000 137.4 2.2998 1.1200 0361 L0384 647
4000 185.2 2.6338 1.2827 0278 .0296 .549
6000 274.8 3.0773 1.4986 0186 .0198 407
8000 566.4 3.3785 1.6453 0120 .0128 314
10000 458 3.5592 1.7333 00853 .00908 L244
15000 687 3.8603 1.8800 0000452 00481 144
20000 916 4.0119 1.9534 .08%

TABLE E-9 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 4-MEDIA: HYGIENE SAND

Boundary Conditions
Initial water table: 2/3 media height - 4.02 Pb{pn

Final water table: base of media
Drain spacing: 64.08 P\ /og
Time T D D, F ¥ M‘IM',
sec cm cm/sec
200 2.30 0.2893 0.1880 1.000
300 3.45 L3970 «2581 0000936 005288 1,000
400 4.6 4764 3097 815 4605 .999
600 6.9 6434 L4182 7528 4253 .998
800 9.2 7775 5054 6433 3655 ,992
1000 11.5 L9007 5855 5599 3163 976
1500 17.5 1.1528 0.7492 .00004909 .002774 943
2000 25.0 1.5716 0.8915 4066 2297 901
3000 4.5 1.7467 1.1354 3149 1779 .825
4000 46. 2.0013 1.3008 2334 1319 .765
G000 69, 2.4257 1.5767 1958 1106 661
8000 02, 2,7843 1.8008 1629 0920 L5878
10000 115. 3.0773 2.0002 1269 0717 .507
15000 173 3.6139 2.3485 .00000921 .000520 . 366
20000 230 4,0081 2.6053 609 344 275
30000 345 4.4571 2.8971 342 193 171
40000 460 4.6926 3.0502 189 107 111
60000 690 4.9801 3.2371 113 6d 041
80000 920 5.1468 3.3454 070 39 .013
100000 1150 5.2595 3.4187 .004
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‘TABLE E~10 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS
FOR BOUNDARY CONDITION NO. 4-MEDIA:
SCHNEIDER SAND

Boundary Conditions,

Initial water table: 2/3 media height - 4.02 Pb,’og

Final water table: base of media
Drain spacing: 64.08 bepg
Time T i) D. F F. I{tﬂlu
sec cm cm/sec
20 0.970 0.2574 0.1328
30 1.455 L3404 .1756 0.0007940 0.08448 1.000
40 1.94 L4162 2148 07050 7501 1.000
60 2,01 5467 .2821 06115 6506 1.000
80 3.8E 6607 .3409 05499 5851 .999
100 4,85 L7866 4059 04855 5166 .998
150 7.28 .9875 .5096 .0004107 .04570 .996
200 9.70 1.1773 L6075 03404 3622 982
300 14,55 1.4784 .7628 02820 3000 978
400 16.4 1.7413 .B985 02471 2629 .959
600 29.1 2.2039 1.1572 02152 2290 921
800 38.8 2,5972 1 5402 01900 2022 .877
1000 48.5 2,9240 1.5088 01535 1633 .831
1500 72.8 3.6176 1.8667 0001228 .01307 27
2000 97.0 4,1523 2.1426 0955 1016 641
3000 145.5 4.9920 2.5759 716 0762 .506
4000 194, 5.5852 2.8820 481 0512 415
G000 291 6.3244 3.2634 27 0288 291
BO0O 388 6.6712 3.4423 187 0199 «213
10000 485 7.1926 3.7114 132 0140 162
15000 728 7.3920 3.8143 0000051 00054 . 089
20000 970 7.4838 3.8616 21 22 063
30000 1455 7.6840 3.9649 06 6 029
40000 2250 7.7014 3.9739
TABLE E-11 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR
BOUNDARY CONDITION NO. 5 - MEDIA: HYGIENE SAND
Boundary Conditions
Initial water table: 2/3 media height - 4.02 P _/og
Final water table: 1/3 media height - 2.01 beng
Drain spacing: 128.16 ?b}pg
Time T D D. F F. ntm
sec cm cm/sec &
150 1.68 1054 0667 003924 L2217 1.000
2000 2.24 1232 .0780 3331 .1882 1.000
300 3.36 1542 .0976 2875 L1624 1.000
400 4.48 1807 L1144 2441 +1378 1.000
600 6.72 2254 .1427 2088 L1179 1.000
800 8.96 L2642 .1672 1802 .1018 1.000
1000 11,2 2975 .1B83 1563 .DBB3 1.000
1500 16.8 .3705 L2345 .001378 .0784 .996
2000 22.4 4362 L2761 1209 L0683 .994
3000 33.6 5466 3460 0911 .0515 .978
4000 44.8 6384 L4041 0827 .0467 .957
6000 67.2 7857 L4973 0687 L0394 .905
8000 89.6 9172 L5806 0614 0347 849
10000 112. 1.0312 6527 0513 0290 .791
15000 168. 1.2593 L7971 000397 .0224 .675
20000 224. 1.4282 .9041 315 L0178 .571
30000 336, 1.7202 1.0889 240 L0135 423
40000 448, 1.9072 1.2073 162 L0092 514
60000 672, 2.1811 1.3806 097 L0055 .164
80000 B96. 2.2951 1.4528 052 .0030 .089
100000 1120. 2.3910 1.5135 029 L0016 047
150000 1680. 2.4366 1.5424 .016
200000 2240. 2,4503 1.5510 .008
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TABLE E-12 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR

BOUNDARY CONDITIONS NO. 5 - MEDIA: SCHNEIDER SAND

Boundary Conditions

Initial water table: 2/3 media height - 4.02 Pb/pg

Final water table: 1/3 media height - 2,01 Pb/pg
Drain spacing: 128.16 bepg

Time T. D D. F F. Ntm
sec cm cm/sec =
100 4.42 .2373 .0990 .01782 .01681 1.000
150 6.63 .3222 .1344 .01498 .01401 1.000
200 8.84 .3970 .1656 .01296 .01223 +999
300 13.26 .5065 L2113 .01072 .01011 .997
400 17.68 .6115 .2551 .00941 .00888 .992
600 26.52 .7780 .3246 .00762 .00719 .985
800 35.36 L9163 .3823 .00676 .00638 .976
1000 44,2 1.0486 4375 00605 .00571 961
1500 66.3 1.3224 L5517 .00584 .00551 .945
2000 88.4 1.5332 .6397 .00402 .00379 .918
3000 132.6 1.9165 .7996 .00340 .00321 .850
4000 176.8 2.2131 .9233 .00277 .00261 .783
6000 265.2 2,7287 1.1384 .00221 .00208 .648
8000 353.6 3.0961 1.2917 .00156 .00147 539
10000 442 3.3539 1.3992 .00105 .00099 443
15000 663 3.7600 1.5687 .00059 .00056 .282
20000 884 3.9471 1.6467 .00030 .00028 R e
40000 1526 4.1433 1.7286 .00016 .00015 .081
60000 1768 4.,2665 1.7800 .00009 .00009 .033
80000 2652 4.3920 1.8323 .00004 .00004 .007

100000 3536 4.4034 1.8371




APPENDIX F

RESULTS FROM NUMERICAL SOLUTION

TABLE F-1 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 1

Boundary Conditions

Initial water table: 2/3 soil height - 4.02 Pb/pg
Final water tablg: 1/3 soil height - 2.01 Pb/pg
Drain spacing: ! 64.08 Pb/pg

Values of D. for X values of

Ta
1.3 1.6 2.0 4.5 12, 20.
1 .0882 .0914 .1015 .1072 .1075 .1074
2 .1404 .1459 .1555 .1646 -1650 .1648
4 2117 .2203 L2311 .2452 .2458 .2454
6 . 2656 . 2767 .2890 .3068 .3076 .3072
8 .3107 .3240 .3378 .3589 .3597 .3592
10 .3502 .3656 .3808 .4046 .4056 .4050
20 .5035 .5285 .5493 .5840 .5855 .5846
30 .6194 .6529 .6783 L7216 .7234 L7224
40 L7566 .7862 .8372 .8394 .8382
50 .7973 .8458 .8797 .9381 .9407 .9394
60 .9237 .9618 1.0277 1.0309 1.0295
70 .9924 1.0348 1.1081 1.1119 1.1104
75 .9591
80 1.0533 1.0999 1.1807 1.1850 1.1835
90 1.1076 1.1582 1.2463 1.2513 1.2497
100 1.0774 1.1562 1.2107 1.3059 1.3116 1.3100
110 1.1998 1.2581 1.3601 1.3665 1.3649
120 1.2389 1.3008 1.4096 1.4165 1.4150
130 1.2742 1.3396 1.4547 1.4623 1.4607
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TABLE F-2 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 1

Boundary Conditions

Initial water table: 2/3 soil height - 4.02 Pb/ng
Final water table: 1/3 soil hieght - 2.01 Pb/og
Drain spacing: 64,08 Pb/pg

VALUES OF F. FOR X VALUES OF

T.
1.3 1.6 2,0 4.5 L2 20.
1 .06599 06874 06604 07021 .07039 .07030
2 .04373 .04561 04596 .04891 .04904 .04897
4 .05020 .03153 .03299 .03438 .03447 .03442
6 .02441 .D2557 .02632 .02802 02800 .02805
B .02009 .02208 02277 .02425 02429 .02428
10 01867 .01971 02036 02167 02173 .02170
20 .01298 01388 .01438 01532 01535 .01533
30 01045 .01125 .01169 .01249 01252 .01250
40 00883 .00957 01000 .01075 01079 .01078
50 .00762 .008352 .00874 .00949 .00954 .00952
60 00665 -00731 00773 .00848 .00853 .00852
70 .00584 .00646 00688 .00763 .00769 .D0768
B0 .00516 00575 00616 00690 00696 . 00695
90 00457 .00513 .00553 .00625 00652 00631
100 00407 .00460 00498 00568 00575 .00575
110 00413 00450 .00517 .00524 00524
120 .00372 00407 .00472 00479 .00479
130 .00335 00369 .00431 .004358 .00438
TABLE F-3 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 1
Boundary Conditions
Initial water table: 2/3 media height - 4.02 thog
Final water table: 1/3 media height - 2,01 Pb/og
Drain spacing: 64.08 beog
VALUES OF "tmo FOR A VALUES OF
T.
1.5 1.6 2.0 4.5 12 20
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 .9998 1.0000 1.0000 1.0000 1.0000 1.0000
4 9988 1.0000 1.0000 1.0000 1.0000 1.0000
6 .9764 9995 .9996 .9999 1.0000 1.0000
§ 9595 .9962 9977 .9993 L0986 .9996
10 0495 9897 0932 .9978 L9983 .9984
20 .8739 L9196 L9360 L9641 9683 L9685
30 .7816 .8312 8563 .9026 9100 L9105
40 L7476 L7778 L8344 B457 .8444
50 6217 6730 7057 L7681 L7764 L7793
60 L6071 6411 L7064 L7172 .7181
70 .5488 L5834 .6498 L6607 L6617
75 .4733
80 L4071 «5317 L5980 L6089 L6100
90 L4510 4853 5509 5616 5627
o0 L3651 L4099 4435 L5078 5184 .5195
110 L3730 L4058 L4685 L4788 .4799
120 .3398 3717 4325 L4425 L4437
130 .3098 3407 .3995 .4092 L4104
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TABLE F-4 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 2

Boundary Conditions
Initial water table: 1/3 soil height - 2.01 beng

Final water table: base of soil
Drain spacing: 64.08 Pb/pg
A =1.6 L = 4.5
1.
D. F. N‘ﬂ{o D. F. N:mn
1 L0576 .04465 1.0000 L0580 .04595 1.0000
2 L0941 03114 1.0000 .0966 .03216 1.0n00
4 L1457 02211 1.0000 1495 02288 1.0000
6 L1854 01813 1.0000 L1911 .01878 1.0000
] L2191 .01575 .9959 L2260 01632 1.0000
10 L2489 .01412 .9998 .2568 .01464 .9999
20 .3662 .01005 L9906 .3785 .01042 L9961
30 L4567 00823 L9643 .4723 .00854 .9807
50 6005 00638 8883 .6217 00664 .9254
75 L7451 .00513 L7902 - 7706 00539 .8437
100 L8604 .00429 .7032 .B946 00458 L7663
TABLE F-5 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 4
Boundary Conditions
Initial water table: 2/3 soil height - 4.02 Pb/og
Final water table: base of soil
Drain spacing: 64.08 Ph/nx
A= 1.6 Ao=4.5
T
D. F. Htmu D. B Nth
1 .1218 .12341 1.0000 L1303 .13112 1.0000
2 ,2152 07649 1.0000 .2299 .08175 1.0000
4 3388 .05213 1.0000 .3621 .05578 1.0000
6 .4319 04221 9996 L4618 .04519 1.0000
8 .5101 05644 L9977 .5455 .03902 .9997
10 .5788 03255 9936 L6190 .03485 L9887
20 .8481 .02298 9472 .9074 .02462 9762
30 1.0545 .01872 . 8868 1.1287 02010 L9358
40 1.2276 01608 .B284 1.3151 01736 .8859
50 1.3784 .01416 L7740 1.4785 .D1542 .B384
60 1.5121 .01265 .7268 1.6248 01390 L7936
70 1.6322 01141 L6831 1.7537 01264 .7518
80 1.7409 01036 L6457 1.8783 .01157 L7132
90 1.8398 .00945 .6078 1.9892 01064 L6774
100 1.9303 00867 L5750 2.0915 00983 6443
110 2.0135 00798 5449 2.1859 00909 L6136
120 2.0902 00737 L5172 2.2736 00844 .5851
130 2.1611 .00683 4915 2.3550 00786 .5585
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TABLE F-6 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION
FOR BOUNDARY CONDITION NO. 5.

Boundary Conditions

Initial water table:
Final water table:
Drain spacing:

2/3 soil height - 4.02 Pb/pg

1/3 soil height - 2.01 P
128.16 Pb/pg

b/og

A=4.5

p
D. B: Mt/MO
1 .04113 .034990 1.0000
2 06938 .024123 1.0000
4 .10901 .016955 1.0000
6 .13940 .013831 1.0000
8 .16503 .011976 1.0000
10 .18761 .010711 1.0000
20 .27628 .007576 1.0000
30 . 34435 .006187 .9995
50 .45236 .004793 .9919
75 .56007 .003946 9661
100 .65087 .003389 .9283
200 .92968 .002343 L7569
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APPENDIX G

CONVERSION FACTORS FOR SCALED TIMES

The dimensionless expressions for outflow rate
and time used in the analytical solutions can be con-
verted to the scaled variables listed in Table 1.
The conversion factors transforming selected values
of these dimensionless expressions into the corre-
sponding values of the scaled variables are deter-
mined by considering the soil and system parameters
involved. In this process the soil parameters cancel
and only drainage system dimensions remain.

The following procedure illustrates the develop-
ment of the conversion factor which transforms
selected values of the time parameter,

K(d+M°/2)T
£1?
used by Glover and Brooks, into the corresponding
values of T. . In terms of this time parameter,

designated by T' , the value of clock time T is
given by:

Next, the above equation is substituted into the
expression for T. , which gives

T. = ng¢ w'r' . (G-2)

Assuming that the effective and drainable porosities
are equivalent, these as well as the hydraulic con-
ductivity can be canceled. Scaling the length
dimensions permits the bubbling pressure head also
to cancel, yielding:

T. o=kl (6-3)

B CEIWA R } =
Finally, the conversion factor is computed by substi-
tuting the correct scaled lengths into the above

equation.

Conversion factors for outflow are obtained by
following a similar procedure. A separate set of

£1.2 conversion factors is required for each set of
T = nr————7—y (G-1) boundary conditions. A list of the conversion fac-
AW L tors for time and flow rate for boundary conditions
1 and 2 is given in Table G-1.
TABLE G-1 CONVERSION FACTORS FOR TIME AND FLOW RATE
Time Flow Rate
Boundary Represen- Conversion Represen- Conversion
Condition tation Factor tation Factor
K(d*MDKZ)T FLZ st
. —_——— 5 .00 58
No. 1 o 1361.9 ETEIﬁ;7§Tﬁ;
K(d+M°/2)T FLZ
No. 2 T 4085.8 K(d+MG Mg .0049195




Key Words: Drainage, Models, Relief drains, Capillary fringe,
Subsurface drainage.

Abstract: The effects of the drainable water above the water table on
drainage behavior were analyzed to determine their magnitude and the extent
to which they are influenced by soil parameters. These effects were shown
to be 1) an increase of the vertical dimensions of the flow region and

2) a reduction in the outflow as predicted by assuming no drainable water
above the water table.

The Brooks-Corey scaling theory was first shown experimentally to be valid
for two-dimensional, transient-flow drainage and was then applied in an
analysis of the problem. This analysis, using the Brooks-Corey scaled
variables, demonstrated that the pore-size distribution index, which is
related to the range of the pore sizes of the soil, was of primary importance.
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Abstract - Cont'd.

Drainage tests of two soils having different pore-size distribution indices
were conducted. A numerical solution was developed and applied to the
problem by simulating drainage from soil of other pore-size distribution
indices.

Results from the experiments and the numerical solution showed that drainage
was affected by pore-size distribution as measured by the index. This effect
was found to be more significant for soils having a wider range of pore sizes.
A practical implication of these results is that a design method which
accounts for the water above the water table should be developed. A number
of transient-flow drainage design methods, presently being used, were shown
to yield results which are appreciably in error.

From this study it appears that such an improved design method must be based
on data obtained from physical or numerical models which simulate the flow
of the drainable water above the water table.
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