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PREFACE 

Colorado State University's contribution to W-51 Regional Research 

Project entitled "Factors Influencing the Flow of Subsoil ll'ater in the 

Inunediate Proximity of and into Drainage Facilities" include.s a study of 

models for solving field drainage problems . Studies described in Hydrology 

Paper No. 17 were conducted to delineate and help solve some of the obvious 

practical problems encountered in modeling actual field systems involving 

flow in partially saturated porous media. Earlier work presented in 

Hydrology Paper No. 9 indicated that the theory of similitude proposed by 

Brooks and Corey i n Hydrology Paper No. 3 was valid and could be used as 

a basis for constructing models of subsoil drains . 

The study presented herein was conducted to study factors affecting 

the magnitude of the drainable water above the water table on drainability 

and to determine the extent to which these factors are influenced by soil 

parameters . This paper is based primarily on the senior author's Ph.D. 

dissertation with the same title, presented at Colorado State University 

in August 1970. 
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ABSTRACT 

The effects of the drainable water above the water table on drainage 

behavior were analyzed to determine their magnitude and the extent to 

which they are influenced by soil parameters . These effects were shown 

to be 1) an increase of the vertical dimensions of the flow region and 

2) a reduction in the outflow as predicted by assuming no drainable water 

above the water tabl e . 

The Brooks-Corey scaling theory was first shown experimentally to be 

valid for two-dimensional, transient-flow drainage and was then applied 

in an analysis of the problem. This analysis, using the Brooks-Corey 

scaled variables, demonstrated that the pore-size distribution index, 

which is related to the range of the pore sizes of the soil, was of pri­

mary importance. Drainage tests of two soils having different pore-size 

distribution indices were conducted. A numerical solution was developed 

and applied to the problem by simulating drainage from soil of other 

pore-size distribution indices. 

Results from the experiments and the numerical solution showed that 

drainage was affected by pore-size distribution as measured by the index. 

This effect was found to be more significant for soils having a wider range 

of pore sizes. A practical implication of these results is that a design 

method which accounts for the water above the water table should be devel­

oped. A number of transient-flo~o• drainage design methods, presently being 

used, were shown to yield results which are appreciably in error. From 

this study it appears that such an improved design method must be based on 

data obtained from physical or numerical models which simulate the flow of 

the drainable water above the water table. 
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MODELS FOR SUBSURFACE DRAINAGElf 

by 

W. E. Hedstrom, A. T. Corey, and H. R. Duk~ 

INTRODUCTION 

Optimum plant growth depends on a number of 
atmospheric , soil, and plant factors. Among these 
are an adequate supply of soil water of proper quality 
and sufficient rates of exchange of oxygen and carbon 
dioxide between the atmosphere and the plant root 
system. The interrelationship of these factors is 
illustrated by the fact that excess soil water 
restricts plant growth by limiting the oxygen diffu­
sion rate to, and the carbon dioxide diffusion rate 
from, the respiring roots (35, 37). Continuous air­
f illed pore spaces, required to support this diffu­
sion process, can be maintained only at soil water 
contents somewhat below saturation. 

The soil profi le may become nearly or completely 
saturated and require drainage because of appreciable 
rainfall, subsurface flow from areas of higher eleva­
tions, or over-irrigation . Applications of irriga­
tion water in excess of evapotranspiration demands 
rarely can be avoided because of the lack of complete 
control of the water used and the di fficulty of pre­
dicting the exact rate of evaporation from soil and 
plant surfaces. In fact, water in excess of evapo­
transpiration is often required for leaching soluble 
salts from the soil profile. 

Although artificial drainage has been practiced 
for centuries throughout the world (40), drainage 
problems still exist . In 1962, the United States 
Department of Agriculture (54) indicated that excess 
water .is the dominant problem on 22 percent of the 
total crop land in the United States. Gulhati (23) 
estimated that 150 to 200 million acres of irrigated 
crop land throughout the world need improved drainage . 

A soil in need of drainage is characterized by 
a high water table which is defined as the locus of 
points where the soil water is at atmospheric pressure. 
The purpose of subsurface drainage is to lower exces­
sively high water tables within a time period which 
will prevent crop damage where water tables rise too 
close to the soil surface. Some subsurface drainage 
systems are designed to intercept excess water before 
it creates a problem. Others are designed either to 
relieve the root zone of excess water or t o prevent 
its accumulation. The latter are called relief drains. 

The design of relief drains consists primarily 
of determining the proper drain depth and spacing to 
remove the excess water. Many design solutions have 

been presented in the literature, but simplifying 
assumptions have been made in arriving at all mathe­
matical solutions. Most design procedures are based 
either on empirically derived information or analyses 
incorporating a number of questionable assumptions. 

One assumption repeatedly used in arriving at 
solutions to drainage problems is that no flow of 
water occurs above the water table. This implies 
that, as the water table drops through a particular 
volume of soil, the volume drains instantaneously 
from saturation to its final constant water content . 
However, neither the water table nor the upper limit 
of the saturated region necessarily corresponds to 
the depth at which sufficient rates of diffusion of 
oxygen to and carbon dioxide from the plant roots 
(55) exist . Also, the assumption that the water 
table is the upper boundary of the flow region leads 
to an erroneous formul ation of the hydrodynamic 
problem. 

The distinguishing feature of the flow above 
the saturated region is that functional relationships 
exist among saturation , pressure difference between 
air and water, and the permeabilities to air and 
water. Below this region the permeability is not 
affected by pressure variations, because the medium 
is fully saturated. Brooks and Corey (8) presented 
equations for these functional relationships in 
term.s of two physically significant soil drainage 
parameters; the bubbling pressure, P~ , which is 
related to the maximum pore-size form1ng an inter­
connected network of channels within the soil, and 
the pore- size distribution index, A , which is an 
evaluation of the distribution of pore sizes. 

The equation describing two-dimensional drainage 
cannot be solved directly even when these two drainage 
parameters are known. In fact, this non-linear, 
second order partial differential equation has been 
solved for only simple one-dimensional flow problems. 
Physical and numerical models offer opportunities 
for solving the non-steady drainage problem. The 
similitude requirements specified by Brooks and 
Corey (8) can serve as a basis for developing such 
models . Corey et al. (14) showed that the Brooks­
Corey theory was-valid for one-dimensional drainage. 
Their studies also indicated that the pore-size 
distribution index is of prime importance in the 
analysis of unsaturated flow. 

!/Contribution from the Agricultural Engineering Department, Colorado State University, and the Northern 
-Plains Branch, Soil and Water Conservation Research Division , Agricultural Research Service, USDA. 

2/Assistant Professor, Agricultural Engineering Department, University of Wyoming (formerly Graduate Student, 
-Colorado State University); Professor, Agricultural Engineering Department , Colorado State University; and 

Agricultural Engineer, USDA, Fort Collins, Colorado. 



The purposes of the study reported herein are: 

1. To test experimentally the validity of the 
Brooks-Corey similitude theory for two­
dimensional , transient- flow drainage. 

2. To determine the sensitivity of two­
dimensional, transient -flow drainage 
behavior to the pore-size distribution 
index by: 

a. conducting drainage experiments in the 
laboratory using two different soils 

2 

that are characterized by significantly 
different pore-size distribution 
indices and 

b . developing and studying a numerical 
model which would simulate drainage 
from soils having a wide range of 
pore-size distribution indices. 

3. Compare results from physical and numerical 
models with resul ts predicted by various 
analytic drainage solutions in an effort 
to evaluate these solutions. 



BACKGROUND 

The drainage engineer faced with the problem of 
determining the depth and spacing of relief drains 
must answer two questions: 

1. What is the drainage system's intended 
function as influenced by soil and climatic 
factors, cropping patterns, and economic 
considerations? 

2. What are tho engineering specifications 
required for the design of a successful 
drainage system? 

The function of a drainage system may be des­
cribed i n terms of depth of water t o be removed within 
a specified time period , maximum height of the water 
table, rate of lowering of the water table, or some 
other set of specified conditions. In determining 
this function, the drainage or aeration requirements 
of the predominant crop should be considered . To 
date, engineering specifications of drainage systems 
have been based on field observations of existing 
systems, drainage equations, or results from models 
and analogues. There is no universally accepted 
design procedure, although there is extensive litera­
ture on soil drainage (39) . 

A brief review of some of the better known 
publications dealing with drainage functions, theories 
and equations, analogues, and modeling theories 
follows. A summary of selected contributions to the 
present knowledge of unsaturated flo~oo• is also pre­
sen ted to establish a foundation for the analysis 
presented later . 

Determination of Drainage Requirements 

There are four distinguishable approaches that 
have been used or suggested for determining the drain­
age requirements on which to base a system design. 
The adaptability of these approaches to particular 
regions, soils , and crops differs. Their re l ative 
stages of development and extent of application also 
vary greatly. The four approaches are: 

1 . Drainage .coefficients - By far the most 
extensively used approach for determining 
the drainage requirement in humid areas of 
the United States involves the use of a 
"drainage coefficient", defined as the depth 
of water to be removed in a 24-hour period 
(40). Drainage coefficients are based solely 
on field observations of installed projects 
which were considered to have provided 
adequate drainage. 

2. Optimum water table depth - The maintenance 
of an "optimum" water table depth has been 
the objective of many drainage systems, 
particularly in areas where rainfall follows 
low-intensity, long-duration patterns (62). 
However, ranges of optimum water table depth 
have also been recommended for irrigated 
areas (52). After examining the numerous 
conflicting data pertaining to optimum water 
table depths, Wesseling and van ll'ijk (61) 
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concluded that the most favorable water 
table depth was highly dependent on the 
type of crop and the type of soil as well 
as a number of other factors. 

3. Falling water table - Because drainage is 
often required only after intense rainfall 
or application of irrigation water, many 
investigators have developed and recommended 
the use of drainage design procedures to 
det·ermine drain depth and spacing which 
would cause the water table to fall a speci­
fied distance within a certain length of 
time (19). This approach has yielded 
numerous mathematical solutions. 

4. Fluctuating water table - A similar model 
used to more effectively represent drainage 
problems in humid areas is the "fluctuating 
water table" (34) . Van Schilfgaarde's 
model (57) , used to determine frequency dis­
tributions of predicted water-table eleva­
tions from long term precipitation records, 
as influenced by drainage system parameters , 
is an example. 

These four approaches deal either with the 
removal of a specified volume of water or with the 
location of the water table; they all ignore soil 
parameters influencing the distribution and flow of 
water above the water table . 

Plant physiologists and soil physicists (37) 
generally agree that oxygen diffusion rates measured 
with the platinum microelectrode give the best 
measurement of the aeration parameter upon which 
to base drainage requirements of plants. Oxygen 
reaching the root for respiration must enter the 
soil surface and diffuse through soil containing 
both micro-organisms and other roots , all of which 
are respiring (65) . Thus, the dept h of the plant 
root system and activity of micro-organism influence 
oxygen demands and distribution in the soil . A 
fairly good correlation exists between oxygen diffu­
sion rates and plant growth (35). The critical 
oxygen diffusion rate fer most plants has been 
determined to be 35 to 40 x 10-E grams cm-2 min-1 (37) . 

The volume of interconnected gas-filled pores 
appears to be one of the more important soil param­
eters affecting the oxygen diffusion rate (65). 
But the effective gas-filled pore volume required 
varies with the depth of the root zone (37). There­
fore , determining the drainage requirement of a crop 
consists of the following: 

1. Crop selection and determination of the root 
zone depth - This is the depth at which the 
critical oxygen diffusion rate should be 
maintained, except for short time periods 
which depend on crop tolerances to poor 
aeration conditions . 

2. Determination of the maximum saturation that 
allows the minimum oxygen diffusion rate to 
occur - The effective porosity and possibly 



ot her s oil hydraul ic properties must be 
known. 

3. Applicat ion of a drainage solut ion which 
uses appropriat e boundary conditions and 
yields the distribution of saturat ion above 
t he wat er t able at all times . 

4 . Consideration of special situations requir­
ing addi t iona! design - For example , '"at er 
tabl e dept hs in irrigated soi l s shoul d 
minimize upv.·ard flow t o prevent accumulation 
of salts at or near the soil surface. This 
soil-moisture flow problem can be analyzed 
o:1ly i f t he appropri at e soil hydraulic 
parameter s arc known. 

Transient - Flow Drai nage Analysis 

Van Schilfgaarde et al . (58) in 1954 reviewed 
and eval uated both steady:State and transient - fl ov.• 
solutions, and Ki rkham (32) in 1966 presented a 
summary of steady-state theories for drainage. But 
steady-stat e condit ions rarely exist under field 
conditions. Hence, this review is restricted to only 
t he better known drainage solutions for falling or 
fluc tuating water tabl e model s . 

The following assumpt ions regarding t he soil­
water-air system ar e frequently made: 

l. The soil is homogeneous , isotropic , and 
physical ly st ab l e . 

2. The water has const ant values of surface 
t ension, contact angl e , viscosity, and 
density t hroughout t he entire flow system 
and during all times under considerat i on . 

3. The pressure of the air is constant through­
out the system and equal to the atmospheric 
pressure . 

4. Darcy ' s l aw is val id , t hat i s , the fl ux i s 
proportional to the hydraulic gradient . 

Many transi ent-flow drainage ana lyses apply 
additional assumpt ions to the r egion of flow: 

1 . A horizontal, relatively impermeable barrier 
exists at some depth below a horizontal soil 
surface - This type of barrier , occurring 
frequently in nat ure, forms a boundary f or 
the flo'" r egion . 

2 . No wat er occupying the drainable pore space 
is lost to evapotranspiration. 

3. There exi sts no drainabl e wa ter above t he 
water table or above the upper boundary of 
the capil lary fringe , implying t hat one or 
the other of these surfaces is the upper 
boundary of the flow region. This assumption 
impl ies t hat a soil element drains inst ant a­
neous ly t o i ts final or residual water con­
tent as t he water tabl e or upper boundary of 
the capillary fringe falls through the ele­
ment . Unl ike assumptions 1 and 2, this 
assumption is in serious conflict with field 
obser vat ions , because t he f ract ion of the 
soil vol ume which i s drained increases 
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gradually •.d th the distance above the water 
table or, more precisely, v.•ith capillary 
pressure (the difference in pressure be­
tl"een t he non-wet ting fluid phase (ai r ) 
and the v.•ett i:ig f l uid phase (wat er )) . 

4 . Tne water table terminates at the l evel of 
the water in the drain . The seepage surface 
at di tch drains is ignored . 

In addition t o these assumptions , others have 
beeT! necessary to formulate each of the kno'•'Il 
transient- flov.· drainage solutions. These assump­
tions were required t o simplify the partial differ­
ential equation or to apply an assumed mathematical 
relat ionship invol ving drainage paramet ers and 
boundaries. The Dupuit-Forchheimer assumptions , 
which simplify the transient-flow equat ion, were 
applied in the derivation of t he earliest transient­
flow solutions . Later , a number of investigators 
assumed that t he wate::- table falls '"ithout change in 
shape . As a result of this assumption, steady-state 
drainage relationships, which assume a uniform 
recharge bet,~een drains , were used to describe the 
flux at any instant of t ime . Integrating with respect 
to t ime gave an expression for the r at e of fa l l of 
the water table . Another assumption somet imes made 
in obtaining transient-flO\\' drainage solutions i s 
that the rate of flow int o a tile line is directly 
proportional to the height of the water table above 
the tile lines at the midpoint between them and to 
t he hydraulic conducti vity of t he soil. 

Although the Dupuit-Forchheimer (or D-F) assump­
t ions have been criticized (45) , they have been used 
extensively in ground-wat er hydraulics (16), steady­
flow drainage (25), and transient-fl ow drainage (18) . 
l~en drainage systems are analyzed using t hese assump­
tions, additional assumptions involving the region 
of flow, such as noted above, are almost always 
included. The D- F assumptions are (20) : 

1 . All streamlines in a system of gravi ty flov.· 
toward a .shallow sink are horizontal . 

2. The velocity alon~ these streaml ines is 
proportional to the slope of t he free water 
surface, but independent of the depth . 

These two assumptions , i f examined rigorously , lead 
to the absurdity that no flow can occur (58). Hov.•­
ever, evidence from laboratory and fie l d experiments 
has shown t hat solutions based on t he 0-F assumptions 
yield acceptabl e approximations of the actual behav­
ior of systems involving flo" in por ous media if the 
slope of the water table is very slight (S) . 

The differential equation resul ting from apply­
i ng the 0-F assumptions t o a homogeneous region , as 
shown in Figure 1, is (56) : 

K 2_ (h ah) .. f <lh 
ax ax ::I t 

(1) 

i n which K and f are t he hydraulic conductivity 
and the drainable porosity of the soil, respectively, 
x is the hor izontal dimension, h is tbe height of 
the water table above t he impermeable barrier, and 
t is time . Since it is nonl inear, equation (1) has 
been sol ved wi t hout l i neari zat ion by Boussinesq (3) 
and, by Glover (18) , but it applies only to the case 



••he:'l the drains are on the barrier. Van Schilfgaarde 
(55) extended this analysis to the case of the drains 
being at some significant distance above the barrier. 
In both of these solutions a curved initial water 
table was assumed. 

~ Soil S\lr foce 

·-· I 
_ ,L 

d h 

I i \ Impervious Loyer 
I 

I I I /i I 7 I I ; 
L/2 I 

~----------------L ------------~ 
Notes: 1. Both ti le and ditch drains are shown for descriptive 

purposes, 
2. M0 Is measured at x = L /2. 

Fig . 1. Geometry of drainage system. 

Equation (1) has also been solved through linear­
ization by considering the flow depth, which is the 
multiplier h in equation {1) to be the mean flow 
depth n equal to the average of the initial and 
ultimate flow depths. The resulting equation is: 

(2) 

It has also been solved by substituting y E h2 into 
equation (1), taking y~ as a constant, and obtaining 
an equation similar to equation (2) . 

Glover (18) obtained a solution for the case of 
the drains at some significant distance above the 
impermeable barrier by the use of the first type of 
linearization. The initial condition selected was a 
l evel water table . The solut ion was a Fourier sine 
series, although a simpler approximate equation was 
presented which was shown to be sufficiently. valid 
for large time values. Tapp and Moody (19) ~mproved 
slight ly on Glover ' s work by developing a drain spac­
ing equation using a fourth- degree parabola to repre­
sent the initial water table condition for t he case 
when the drains are above the barrier. Again using 
the first type of linearization, they obtained a 
solution similar to Glover ' s . 

Visser {59) extended the application of a steady­
state equation developed by Hooghoudt (25) and others 
(2) to fluctuating water tables . Hooghoudt's equation 
is based on the D-F assumptions. 

Werner (60) and Maasland (42) considered the more 
general case of intermittent recharge followe? by . 
transient-flow drainage, but they also used l~near~zed 
forms of equation (2) . Krai jenhoff van de Leur ~34) 
studied the intermittent recharge problem analyt~cally 
and experimentally, using the first linearization pro­
cedure involving the use of equation (2) . 

Brooks (7) obtained a solution to equation (1) 
without the use of any linearizati on process by using 
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the method of successive approximations. He assumed 
an initially level water table and presented his 
solution in a plot of the drawdo~~ of the midpoint 
of the water table as a function of a dimensionless 
time parameter. No information was given, however, 
r elative to the cumulative outflo~, rate of outflow, 
or water table shape . 

Jenab (28) obtained a solution to equation (2) 
based on an initiall y level water table . His results 
were somewha~ similar t o Glover's although the water 
table shape, as determined by his resulting equation , 
differed. 

A primary cr1t~c~sm of the D-F assumptions is 
that the convergence of flow l ines near drains is 
neglected (57). Hooghoudt {25) developed the concept 
of an "equivalent depth" as a correction to be 
applied to solutions basod on the D-F assumptions. 
The equivalent depth , r epresenting the effective 
flow depth below a drain, is dependent on the depth 
of the impervious barrier below the drain, the drain 
spacing , and the drain diameter . Approximate equa­
t ions, as well as graphs, have been presented {55) 
from which the equivalent depth can be obtained. 
However, a trial and error solution is necessary if 
the drain spacing is sought. 

The only transient- flow drainage solution based 
on the Dupuit-Forchheimer assumptions that is widely 
used is the Tapp and Moody solution (19) . The U.S. 
Bureau of Reclamation adopted the solution after com­
paring computed drain spacings and water-table fluc­
tuations with field measurements from drain installa­
tions in widely separated areas of t he world (19). 
The USBR procedure incorporates a convergence correc­
tion developed by ~loody {44). However, disagreement 
prevails regarding the validity of the assumptions 
on which the Tapp and Moody sol ution is based; 
efforts are continually being made to derive new and 
better transient - flow drainage solutions. A summary 
of two-dimensional, transient-flow drainage solutions 
is given in Appendix A. 

Bouwer and van Schilfgaarde (6) substituted 
flooghoudt ' s (25) steady-state equation into a mathe­
matical relation that expresses the proportionality 
between the rate of fall of the water table midway 
between the drains and the f l ow rate i nto t he t i l e 
line. This resulted in an equation , generally 
referred to as the integrated Hooghoudt equation, 
which described the transient-flow drainage problem. 
Kirkham's (31) theoretical formulas for the height 
of an arch-shaped water table supplied by steady rain­
fall also have been used in the above context. Ligon 
et al. (38) considered the falling water table 
between open ditches, while Amer (1) investigated 
tile drainage. Both analyses combine the appropriate 
form of Kirkham's steady-state solutions with the 
mathematical relationship represented by the second 
flow assumption. Earlier , Hammad (24) developed an 
equation similar to Amer's but used a slightly dif­
ferent approach. For large saturated thicknesses, 
relatively flat water tables, and insignificant capil­
lary fringe effects, results from these solutions 
compare fairly closely wi th a variety of experimental 
data obtained in laboratory models and in the field. 

Luthin (40) used the assumption that the rate 
of flo~· into a tile drain is proportional t o the 
height of the water t able above the drains to develop 
a formula relating the height of the water t abl e midway 



bet ween the drai ns as a funct ion of time to t he 
drain spacing, hydraulic conductivity, and porosity. 
The shape of the wat er t able was considered t o be 
eit her f lat or elliptical , but was assumed to remain 
constant a·t all times. This solution and those based 
on the uni form f l ux assumption are reviewed in 
Appendix A. 

Physical ~todels and Analogues 

One of the earliest analyses of transient-flow 
drainage was made by Childs ( 11) who used an elect ri­
cal analogue to fi nd by tri al and error a succession 
of 1vater t abl e positions. Brutsaert et al . (10) 
worked with an electrical resistance net work t o obtain 
exper i mental posit ions of the wat er table during 
dra\\•down. In both of these experiments, a capillary 
f ringe of constant height was considered . However , 
results were not applicable to general design pur­
poses. 

Transient-flow drainage has al so been s tudied 
wi th the use of the Helc-Shaw viscous flow model by 
Todd (53) and by Ibrahim and Brutsaert (26) . Grover 
and Kirkham (22) devel oped a model in which the soil 
was represented by glass beads and the water by glyc­
erol. The model was used by Ligon (38) to st udy the 
falling wat er table between open ditches. Ho1vever, 
no att empt was made to model t he flow above the water 
table in any of these studi es . 

Appr oximate Solutions Uti lizi ng Numerical Methods 

Kirkham and Gaskell (33) applied t he relaxation 
method of Luthin and Gaskell (41) to the two­
dimensional transient-flow drainage problem . A for­
mula to determine the rat e of fall of the water table 
over a smal l time increment was derived, enabling a 
new 1\'at er table position to be found . Then the 
Lapl ace equation ~Vas solved by the rel axation method 
throughout a network of points subj ect t o t he new 
flow boundary . The method developed required con­
siderable computational effort to obtain accurate 
results , and these result s were only applicable to 
one part icul ar drainage situation . Isherwood (27) 
modified the Kirkham-Gaskell (33) procedure slightly 
and used a digital comput er t o sol ve the transient­
f low drainage problem for eight different f low region 
geometries. 

Moody (44) solved equat ion (1) by writing i.t i n 
a finite-difference form and applying numerical 
met hods of solution . In t his way he \\'as abl e t o con­
sider a variable flow depth. Resul t s i nc luded plots 
of dimensionless parameters r epresent ing the height 
of t he ~<ater t ab l e mid~Vay between t he drains , t he 
f l ow rate , and the volume of water drained all as 
functions of time . A correction factor for conver­
gence was applied in the numer ical solution. 

Rubin (48) solved the Richards equation for 
transient-flo" drainage f rom a r ectangul ar soil sl ab 
~Vith the aid of an alternating-direction, i mplicit 
procedure . Only three geometric configurations were 
considered , and empirical equations were used to des­
cribe the hydraulic conduct ivity-capi llary pressure 
head and water content-capillary pressure head rela­
tionships. Since t his method of solution invo lves 
fewer approximations, it should account for the drain­
able wat er above the water table more accurately t han 
any other analytical or numerical solution developed 
to date . 
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Drainage Solutions Derived from Physical Model s 

As pointed out by Corey et al . ( 14) , properly 
scaled physical models offer a-means of inves t igating 
t ransient-fll.oiV drainage . A number of t heories des­
cr ibi ng various criteria of similitude for f l oiV in 
par t ially saturated porous media have been devel oped 
(43) . Brooks and Corey (8) developed a scaling pro­
cedure that specifies similitude requirements for 
modeling transient floiV in partially saturated 
systems . They devel oped the procedure by scaling 
t he Richards equation with system parameters of 
l ength, pressure, and time. A brief development of 
the Richards equation is given here, because of its 
importance in the study of transient-flow drainage. 

First, Darcy's equation can be written f or a 
homogeneous, isotropic medium in three-di mensional 
form as 

q -(ke/~) V (P - pgz) (3) 

or 
q = -(kepg/~) V (P/pg- z) (4) 

in which 

q is the vol ume flux of the fluid - - LT-l, 

k is the effective permeability 2 --L , 
e -2 p is the fluid pressure --FL , 

is the fluid viscosity (absolute) -2 
\! --FTL , 

p is the fluid density --FT2L-4 , 

is the gravitational acce l eration -2 and g --LT , 

2 is the vertical space coordinate - - L 

Both equation (3) and (4) have appeared in t he 
literature and each has advantages for certain appli­
cat ions . Drainage engineers have adopted equation 
( 4) because: 

1. The values of I! and p are usuall y 
assumed to be const ant for soil ~Vater . 

Thus, for saturated fie l d soi l s the factor 
keog/~ , which is defined as the hydraul ic 
conduct ivity, K , is taken as a constant 
over the entire gro~Ving season. 

2. The terms P/pg and z , ~Vhich are the 
pressure head and el evation head, respec­
tively, have units of length . Such a unit 
is convenient for fie l d use . 

The continuity equation f or flow of water (assumed 
incompressible) in soils of constant porosity can be 
writ ten as: 

as 
div q = - q. <l t 

in whi ch 

~ is the porosity , and 

(5) 

S is the saturation, or r atio of the volume of 
water to t he total pore volume. 

Substituting equation (4) into equation (5) 
results in a form of the Richards ( 4 7) equation 

div [KV(P/pg + z) ] (6) 



Brooks and Corey (8) modif ied equation (6) by 
replacing the right side of the equation with 
~eaSe/at and obtained the equivalent expression: 

as e 
div [KV(P/pg + z)) c ~e -at (7) 

in which 

9e is the effective porosity, and 

Se is the effective saturation. 

Both ~e and S are related to the residual 
saturation S , defin8d as that saturation where the 
effect ive pe¥meability is assumed to approach zero, 
by the following expressions 

and s - s r 
se .. 1-S 

r 

(8) 

(9) 

After scaling the variables appearing in the 
equation with standard units of permeability, k0 ; 
length, L

0 
; and time , t 0 , a dimensionless form 

of the equation results, that is , 

div. [K. V. (P. + Z.)] as ./dt.. (10) 

in which t he dots designate either scal ed variables 
or operators with respect to scaled variables . The 
standard units were chosen as: 

l . k0 = k , the premeability of the medium at 
complete saturation. 

2. L
0 

= Pb/og , the bubbling pressure head. 
Bubbling pressure Pb is approximately 
the minimum capi l lary pressure on the 
drainage cycle at which an interconnected 
nonwctting fluid phase exists in a porous 
mat erial. 

3. t 0 = Pbu~e/k(Pg) 2 or (Pb/og) ~e/K which 

is an ex~ression obtained by Brooks and 
Corey in developing equation (10) . 

Brooks and Corey (8) state<! that equation (7) 
yields identical particular solutions for any un­
steady problem in terli'S of scaled variables provided 
that the following conditions arc met: 

1. Geometric similitude exists. The satisfac­
tion of this condition is accomplished if 
corresponding lengths, which are character­
istic of the macroscopic size of the system, 
are identical multiples of the length Pb/pg. 

2. The macroscopic boundaries of the model have 
a shape and orient~tion simi l ar to those of 
the prototype. 

3. The functional relationships among K. , P., 
and S . are identical in both systems. 

Obviously , t wo materials will meet the t hird 
condition if the curves of the S . (P.) relationship , 
and , consequently, the K. (P .) relationship , coalesce. 
Verification of the thoory for unsteady one­
dimensional drainage was obtained by Corey et al. (14). 
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According to Brooks and Corey (8) , the 
rel ationship between effective saturation and capil­
lary pressure for most porous materials can be 
approximated by: 

S. = (P.) 
- ). 

for P. > 1 (ll) 

and 

s . = 1.0 for P. < l 

The relationship between relative permeability and 
capillary pressure can similarly be expressed by: 

K. = (P.) -n for P. > 1 

and 

K. = 1.0 for P. < 1 -
The relationship between X and n . derived 
theoretically by Brooks and Corey, is: 

n = 2 + 3). 

Brooks and Corey also verified equation (13) 
experimentally. 

(12) 

(13) 

The mathematical expressions of equations (11) 
and (12), or their unsealed counterparts , for the 
S.(P.) and K. (P.) relationship,havebeen closely 
approximated by a large number of experimental data 
taken f rom laboratory samples (36). They have been 
successfully used in a number of quantitative analy­
ses of partially saturated flow problems. However, 
l aboratory tests (63) have shown that experimentally 
determined values of K. , and especially S. , are 
smaller than those predicted by equations (11) and 
(12) at P. values near 1.0. This region has been 
termed the transition zone since it represents the 
transition from complete saturation to partial satu­
ration throughout the material. 

White et al. (63) found that the ratio of 
exposed surface-to vol~~e of laboratory samples 
affected the S. (P.) relationship in the transition 
zone. Initial dcsaturation of samples occurred at 
exposed boundaries in a portion of the pore space 
which does not form a connected network of channels . 
Application of data obtained from laboratory samples 
to field drainage probleres presents difficulties 
because such samples have a much l arger surface to 
volume ratio than the soi l material in the field . It 
is probibly not valid to assume that data obtained 
for the transition zone in laboratory samples would 
also apply to soils in the fie l d . Values of S. 
for a particular value of P. would be expected to 
be greater in the field than for laboratory samples. 
Although some error mar result from using equations 
(11) and (12) because of neglect of the transition 
zone, their relatively simple form is advantageous 
to the investigator. 

Application of the Brooks-Corey theory to 
transient-flow problems such as two-dimensional drain­
age requires a knowledge of the limitations of the 
theory. These l imitations (8) have been briefly 
outlined and can be summarized as : 

1. No change can occur in the geometry of the 
porous matrix as it changes from a fully 
saturated condition to a saturation 
appr oaching the residual . 

-· 



2. K. must be essentially zero at Sr and 
values of 5 less than Sr should not 
exist . Neither of these conditions can be 
strictly satisfied. However, for drainage 
problems , errors from these assumptions 
are believed to be usually insignificant. 

3. The soil must not undergo imbibition since 
the validity of the theory has been estab­
lished only for drainage. 

Brooks and Corey (8) as well as Corey et al. (11) 
have outlined principles for selecting modelmedia. 
Uniform sands and silts tend to have a narrow range 
of pore sizes and large values of A Obviously, 
the coarser the material is, the lower the bubbling 
pressure wi ll be. Intermedi ate ~ values charac­
terize sandy loams which have some secondary porosity. 
~ledia possessing low ~ values include aggregates 
of clay or fractured porous sandstone . These mate­
rials are characterized by a wide range of pore sizes. 
Most soils important to agriculture have low to 
medium A values. Drainage problems tend to be 
more pronounced in soils having high bubbling 
pressures (9). 

Si gnificance of Flow Within and Above the Capillary 
Fringe 

The capillary fringe has usually been defined as 
the region above the water table which is either 
saturated (12) or essentially saturated. A univer­
sally accepted precise definition of the capillary 
fringe apparently does not exist. Use of the capil ­
lary fringe concept in drainage literat ure has fre­
quently been combined with the assumption that its 
upper surface bounds t he flow region. Justification 
for ignoring the partially-saturated zone is that 
relatively little water flow can exist there because 
t he hydraulic conductivity is reduced (39). Van 
Schilfgaarde (55) pointed out that the presence of 
the capillary fringe does not alter the total hy­
draulic head to be dissipitated, but the depth of 
the flow region is larger. 

The significance of flow above the water table 
has generated debate. Most drainage engineers do 
agree this flow should be considered if its depth 
is relatively large in comparison with the total 
depth of flow below the water table (4) . If the im­
permeable barrier is at a very great depth, which is 
often the case for unconfined aquifers supplying water 
to wells , the assumption that the wa.ter table i s the 
boundary of the flow region can be more easily 
justified (5). 

A method for determining the significance of the 
flow within and above the capillary fringe has not 
yet been developed because an acceptable procedure 
for quantitatively analyzing this flow has yet to be 
developed. It has long been recognized that the 
thickness of the saturated region above the water 
table is related to some characteristic pore diameter 
(4) . Also, the saturation distribution and flow of 
water above the saturated region is a function of the 
11niformity of the pore sizes (9) . A minimum of two 
soil parameters , therefore , are needed to provide a 
suffici ently accurate description of the pertinent 
relationships of the f l ow of the drainable water 
above the water table . 

A number of drainage engineers have attempted to 
estimate the flow within and above the capillary 
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fringe . Hooghoudt (25) and Donnan (17) performed 
sand tank experiments to evaluate the ellipse equa­
tion for determining the spacing of drains. They 
both found i t was necessary to add the height of the 
capillary fringe to water table elevations before 
agreement between their experiments and the e quation 
was accomplished. In 1959, Bouwer (4) presented a 
concept of "critical tension" which he defined as 
the tension, or capillary pressure head, at t he 
cent er of the range over which the hydraulic conduc­
tivity reduction takes place on the equilibrium 
conductivity-tension curve. The value of t he criti­
cal tension, which has units of length, is somewhat 
greater than the thickness of the saturated region 
and t his difference was intended to account f or the 
flow in the partially saturated region. Wind (64) 
introduced a concept of an equivalent saturated 
thickness to be appl ied as a correction factor to 
account for the total flow above the water table. 
This thickness i s a depth such that the flow passing 
through it equals the actual horizontal flow through 
the entire Tegion above t he water t abl e. It is 
defined by 

l ZT 
d • -K- f K(Pc/pg)d(Pc/pg) 

c sat 0 
(14) 

in whi ch Ksat is the saturated hydraulic conduc­

tivity and K(Pc/Pg) represents the hydraulic con­
ductivity as a function of capillary pressure under 
equilibrium conditions. The upper limit of integra­
tion, ZT , is the vertical distance between the 
water table and the soil surface. Bouwer (5) 
later replaced the term critical tension with 
"critical pressure", defined by the product ..:d de 
and the unit weight of water, and described its use 
in design calculations. 

Although the concept of an equivalent saturated 
thickness is generally believed to be val id , there . 
is apparently no study reported which conclusively 
proves this. Obviously two soils of greatly di ffer­
ent saturated thicknesses above the water table 
could have t he same equival ent saturated thickness 
if they also exhibited di fferent pore-size distribu­
tions . Whether the flow patterns would be the same 
for both soils under similar geometric systems is 
questionable, especially if the water table were 
falling with time . 

Another effect of the drainable water above the 
water table on drainage behavior exists when the 
water table falls during drainage. The volume of 
water that drains for a specific water table drop 
varies with the vertical distance from the soil sur­
face to t he water table. Wesseling (61) noticed 
this phenomenon in field studies and explained it by 
moisture profiles which existed before and after t he 
water table dropped . Childs (13) also discus.sed 
this effect and pointed out that t he assumption of a 
constant dra inable porosity can cause considerable 
error in outflow measurements. Both Wesseling (61) 
and Chil ds (13) presented sketches similar to Figure 2, 
i llustrating the depth of water (volume of water 
divided by the appropriate horizontal area) whi ch 

, drains as t he water table drops a distance 6h . 
Chi l ds also explained how hysteresis. may modify the 
initial moisture profile and, consequently, t he depth 
of water drained. Taylor (51) showed how the volume 
of water which drains as a result of a water table 
drop can be calculated by a simple integration of 
the drainable porosity expressed as a f11nction of 
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distance above the water table. The lower and upper 
limits of integration must be the initial and final 
wat.er table depths, respectively. Both Childs and 
Taylor emphasized the influence on the volume of water 
drained caused by the initial and final depths to the 
water table and also by the moisture distribution 
above the water table. 

An integration similar to that performed by 
Taylor can be accomplished using the scaled variables 
proposed by Brooks and Corey (8). If 01. and 02. 
represent the scaled depth of water held above the 
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water table in a column of soil when the water table 
is at scaled depths Zl. and Z2. respectively, the 
scaled outflow volume per unit horizontal area or 
scaled depth which drains is 

or 

Dl. -02. 
Z2. 

I (1-S.)d(P.) 
0 

Z2 . 
Dl.-02. • I (1-S.)d(P.) 

Zl. 

Zl. 
I (1-S.)d{P .) 
0 

(15) 

The integration of equation (15) is presented in the 
next section . Results of this integration are dis­
cussed in an evaluation of the effect of the drainable 
water above the water table on the outflow. 

Summary 

Although the significance of drainable water 
above the water table has been recognized, the effect 
of this water on drainage has not been thoroughly 
investigated quantitatively. Two effects have been 
examined qualitatively, 1) the increased depth of 
flow, and 2) the decrease in outflow for a specific 
water table drop. However, nearly all mathematical 
solutions of the drainage problem ignore these effects. 

Brooks and Corey suggested that more accurate 
data for the design of drains could be obtained from 
models scaled by a method which they presented (8). 
This method requires determining, for both model and 
prototype, two soil parameters not usually measured 
for field soils. These parameters are the bubbling 
pressure Pb and the pore-size distribution index ~ 

A quantitative study of the sensitivity of two­
dimensional drainage to these parameters has not been 
attempted until now. 



ANALYSIS OF THE PROBLEM 

Characterization of the saturation and hydraulic 
conductivity distributions above the water table is 
required for defining the flow pattern and for relat­
ing soil moisture and aeration status to the metabolic 
needs of the plant. The purpose of this analysis is 
to determine the role of drainable water above the 
water table. Specific attention is directed toward 
the sensitivity of drainage to the value of ~ which 
characterizes the s aturation distribution above the 
water table. Since the depth at which the critical 
oxygen diffusion rate can be maintained is dependent 
on the distribution of saturation, the requirements 
of the plant are also related to the value of ~ 

Hence, the soil parameter ~ should be of great 
interest to the drainage engineer. 

A logical approach in analyzing the effect of ~ 
on drainage is t o establish a sensitivity relationship 
between A and various drainage relationships, such 
as outflow-time, flow rate-time, and drawdown-time . 
Operation of properly scaled physical and numerical 
models for two-dimensional, transient-flow drainage 
is the only known method of obtaining these relation­
ships for various A values. 

First, the Brooks-Corey S. (P.) and K.(P.) 
relationships are examined in regard to their applica­
tion for models of two-dimensional, transient-flow 
drainage . A typical flow problem was simulated by 
both a scaled physical model and a scaled numerical 
model. Information from these solutions provides an 
analysis of the sensitivity of transient- flow drainage 
to A • 

Scaling a flow system by the Brooks-Corey proce­
dure eliminates the need for explicitly considering 
any soil parameters other than A , since they enter 
into the scaled variables. 

Equilibrium Conditions in the Partially Saturated 
Region 

In the Background the following scaled .equations 
were presented 

s. (P.) -A for P. ~ 1 

mathematically without the use of additi onal a ssump­
tions . 

The first step in the derivation of an expressi on 
for d . is the scaling of Wind' s relationship for 
the equivalent saturated thickness de , which is 
given by eqaution (14) . This results in the expres­
sion 

ZT. 
d. = j K.d(P. ) (16) 

0 

where ZT. i s the scaled vertical distance between 
the water table and the soil surface. 

Substituting equation (12) into equation (16) , 
applying the assumption that Z. equals P. , and 
performing the indicated integration yields 

1 1-n 
d.•l+r:ii[ZT. -1] (17) 

The relationship between d. and the two variables 
on the right-hand side of equation (17), that is, 
ZT. and n , is shown in Figure 3. 

s. 1.0 for P. ~ 1 (11) Fig. 3. Relationships among A , n , ZT., and d. 

and 

K. (P .)-n for p . ~ 1 

K. 1.0 for P. < 1 (12) 

These equations are assumed to be valid at all times 
during transient-flow drainage, but the relationship 
between P. and the scaled elevation above the water 
table, Z. , is unknown during transient-flow drain­
age except at the initial and the final times when 
equilibrium conditions prevail. The assumption that 
z. equals P. can be made when the vertical compo­
nent of the hydraulic gradient is small in comparison 
to the horizontal component. This is usually the 
case when the flO\\' depth is small relative to the 
hori zontal dimensions of the system. Although the 
total outflow can be analyzed without knowing how P. 
varies with Z. , -thickness d . cannot be represented 
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As shown by Figure 3, the equivalent saturated 
thickness d. is highly dependent upon the value of 
>. , and varies considerably with ZT. for lo"'' A 
values. Thus, under a falling water table, d. 
continually increases with time and with an increase 
in the distance from the midpoint between drains. 
The result is that a single value for d. , applied 
as a correction to a falling water-table drainage 
equation, is a poor approximation, particularly if 
the water table is relatively close to the soil sur­
face at all times . If the depth to the water table 
is always great, d. may be approximated by a con­
stant value, especially for large A values. 

The rate of increase of d. with increasing 
values of ZT. is of interest because it represents 
the gradual decline of the effect of increased depths 
to the water table on d. . Differentiation of 



equation (16) with respect to ZT. yields the 
following relationship: 

~ = ZT -~ (18) 
d(ZT .) ' 

This relationship , shown in Figure 4, provides a 
mathematical representation of the decreasing effect 
on d. with increasing values of ~ . 

Because ZT. varies in both space and time 
during transient-flow drainage, the equivalent depth 
of flow above the water table also varies, as indi ­
cated by equation (17). Although steady-state drain­
age equations have been modified successfully to 
include a constant flow depth above the water table, 
such a modification applied to transient-flow drainage 
equations is of limited value . However, a variable 
equivalent-depth of flow above the water table has 
not been incorporated into analytical transient-flow 
drainage equations because of the mathematical com­
plexities involved. 

.. 
102~------~5--------~8~--~--~·~·--------1·" 

O:.. zT.• I.O 

Fig. 4. Relationships among A , n , ZT., and 
d(d.)/d(ZT.) 

The other effect of the flow above the water 
table, which has been noted above, deals with the 
volume of outflow from a soil mass undergoing 
transient-flow drainage. This volume can be analyzed 
by applying equation (11) to the problem. However, 
only the total outflow which occurs following a water 
table descent can be computed. The relationship 
between P. and Z. is known only after drainage 
ceases. At this time equilibrium exists and P. and 
z. ar e equal . The procedure for computing the total 
scaled depth of water consists of substituting equa­
tion (11) into equation (15) and integrating between 
the proper limits. If the initial water table is at 
some scaled depth Zl. greater than unity, the 
depth DT. of water drained after the water table 
is lowered to Z2 . , also greater than unity, is 

1 1-A 1-A 
DT.=[Z2.-Zl.- H (Z2. -Zl. )]te for ~J'l (19) 

and 

DT.=[Z2.-Zl. -tn(Z2.-Zl . )]~e for A=l (20) 

But, if the water table existing before drainage is 
either at the soil surface or within the scaled 

distance of unity to the soil surface, the total 
scaled depth, DT. , of water drained after the 
water table is lowered to a depth Z2. , greater 
than unity, is 

DT.=(Z2.-l- l (Z2.l-X_l)]~e for IT 
and 

DT.=(Z2.-l- tn Z2.] ~e for X=l 

(21) 

(22) 

The total scaled discharge from the columns of 
porous media as determined experimentall y by Corey 
et al. (14) agrees closely with the values computed 
£rom-equation (21). 

11 

Figure 5 is a representation of the volume of 
drainable water stored above the water table under 
equilibrium conditions as a function of X and ZT. 
The volume is highly dependent on the values of X 
and ZT. , as shown in the figure. The rates of 
increase of DT. with increasing values of A are 
shown in Figure 6. As ZT. increases (and S 
approaches Sr at the surface), a drop of a unit 
scaled distance of the water table causes an increased 
scaled outflow which becomes more nearly equal to 
unity. Differentiation of equations (21) and (22) 

.. 
5 ~ 5 8 II 14 

4 

3 

DT. 
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Fig. 5. Relationships among A , ZT. , and DT. 

Fig. 6. Relationships among X , ZT. , and 
d(DT .) /d(ZT.) 



yields the relationship which represents t he change 
of DT. with ZT. , that is 

d (DT . ) = ZT. -:\H [ l - (23) d (ZT. ) e 

The two effects caused by decreasing values of 
A are to increase the f l ow depth and to decrease 
the incremental volume of outflo1• , that is, the 
volume of wat er drai ned for a given water table drop. 
There are three conditions to consider in assessing 
the combined effect of A on drainage behavior . 
These conditions, which depend on the depth of t he 
water table bel ow the surface and/or the >.. value , 
are: 

1 . Condition I 

The scaled depth of the water table below 
the soil surface is always l ess than 1.0. 
Outflow for any drop in water t able is nil . 

2. Condition II 

As the water table descends to scaled depths 
greater t han 1 . 0 , the equivalent flow depth 
i ncreases and the outflow begins . liowever, 
the rate of increase of these quanti ties 
decreases with increasing depth of water 
table . 

3. Condition III 

After the water table has fallen below some 
particular depth, such that s~sr at the 
surface , the equivalent flow-depth above 
the water table does not increase signif i­
cantly , but the total accumulative outflow 
increases proportionally with tho i ncreases 
in the water table depth. 

The value of A is tho only soil parameter that 
infl uences the particular value of ZT . which might 
be selected as the division between Conditions I I and 
III. Any one of a number of methods could be em­
ployed to establish ZT. for a particular value of 
A . Either a specific value of d(d.)/d(ZT.) or 
d(OT .)/d (ZT .) could be selected t o establish the 
division between Conditions II and III, t hen the 
corresponding values of ZT. for the entire range 
of >.. values coul d be computed. I f ZT. were less 
than the ZT . at this division, for a specific value 
of >.. , Conditi on II would exist; if not, Condition 
III would apply. 

A reasonable criterion for the establishment of 
the boundary bet ween Conditions II and III is: 

Condi tion II exists if 

1 
_ d(DT.) 

$ d(ZT . ) 
e 

> e: , and 

Condition III exists if 

[l - d(DT . ) ] < E 
~0d(ZT.) 

(24) 

(25) 

in which t is a small number selected arbitrarily. 

Equations (24) and (25) can be written in terms 
of ZT . and each combined with equation (23) . 
Solving for ZT . results ' in 
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ZT. < E: -1/>.. for Condition II , (26) 

and 
ZT. > c - l />.. for Condit ion III (27) 

The derivative d(d.)/d(ZT.) can also be 
computed as a function of t , n , and ). for each 
condition by combining equation (18) with equations 
(26) and (27) to obtain 

and 

~ < &- n/>.. for Condition II, 

ilil > - n/>.. 
d("Z'F':T t for Condition III 

(28) 

,(29) 

If the >.. value is known for a specific soil, 
after selecting a value of E , one can compute 
from equations (26) and (27) the value of ZT. which 
represents t he boundary between Condition II and 
Condition II I . Then, the value of d(d.) / d(ZT.) 
can be computed from equations (28) and (29) t o 
insure that it is less than some arbitrarily chosen 
maximum. 

To demonstrate this procedure, two values. of 
>.. , 0.1 and 0 .2, were selected. The values of ZT . 
that form the boundary between Condition II and 
Condition Ill were computed and plotted as shown in 
Figure 7. Corresponding values of d(d.)/d (ZT.) are 
al so shown . 

Fig . 7. Relationships among 
d (ZT . ) for c • 0 . 1 

A , ZT . , and 
and 0. 2 . 

d(d.) / 

The procedure just described can be used to 
estimate the magnitude of the wo effects of the 
drainab l e water above the water table on drainage , 
but the procedure has three shortcomings limiting 
its applicability : 

1. The combined effect cannot be ascert ained . 

2. The determi nation of the scaled equivalent 
flow depth d . by use of equation (17) is 
limited by the assumption that P. equal s 
z .. 

3. Even if the assumption that P. equals Z. 
can be made, the only two-dimensional 
drainage problems that can be analyzed by 
t he procedure are those i n which the water 
table is continually horizontal. 



The third shortcoming leads to the question -
what is the shape of the water table during two­
dimensional, transient-flow drainage? There is no 
reported agreement on the answer to this question . 
Boussinesq (3), Glover (18), Tapp and Moody (19), 
Jenab (28), and others have all presented different 
shapes of the water table between parallel drains. 
But , if the variation of ZT. with time and space 
during drainage is not known, no information can be 
obtained about the effects of the drainable water 
above the water table on drainage behavior. This 
is apparent because equations (18) through (23) are 
dependent on ZT. . 

Since no analytic solution correctly accounting 
for the water above the water table has been 
reported, use of models or analogues should be con­
sidered. The only physical models which correctl y 
simulate the partially saturated region in fie l d 
soils are properly scaled porous media models. Sim­
ulation of drainage by numerical methods offers 
another satisfactory solution. 

The dependency of DT. and d. on the scal ed 
vertical distance ZT. from the soil surface to the 
water table requires that the height of soil above 
the impermeable barrier be known . Both the initial 
and final values of ZT. are parameters ~f the two­
dimensional, transient-flow problem when the flow 
above the water table is considered. Although 
several of the earlier transient-flow drainage solu­
tions were given in terms of one curve for each of 
the pertinent relationships among the dimensionless 
groups of parameters , this now becomes impossible 
because of the additional length variables. An analy­
sis must be made of particular drainage problems de­
scribed by a geometric configuration of specific di­
mensions. If the dimensions are scaled by the use of 
the bubbling pressure head as the standard length, 
the sensitivity of drainage to the value can be deter­
mined by using soils of various A values in sets of 
experiments with the same boundary conditions. 

The geometric configuration of the problem, 
shown in Figure 8, consists of a rectangular soil 
profile underlain by a horizontal impermeable barrier. 
Selecting a fully-penetrating ditch as the drain 
facility eliminates the need for considering a correc­
tion factor to account for any pronounced convergence 
of flow lines in the vicinity of the drain. To sim­
plify the problem both the initial and final water 
tables are assumed horizontal. Drainage of the soil 
slab i s started by rapidly lowering the l evel of water 
in the ditch. There is neither water loss to evapo­
transpiration or deep percolation nor gain from infil­
tration, upward flow, or any other source. 

The soils to be drained are assumed to be homo­
geneous and isotropic . The S. (P.) and K. (P.) 
relationships for all soils considered are given by 
equations (11) and (12). Hence, the only variab.le 
soil parameter used is the A value , which permits 
a study of the sensitivity of drainage behavior to A, 
The scaled variables used in the problem are listed 
in Table 1. 

Properly scaled physical ~odels are advantage~us 
for simulating flow under part1cular boundary condl­
tions for a specified soil material. Ample and 
accurate data can be produced by such models. One 
of the more difficult phases of this procedure, 
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Fig. 8. Geometric configuration of drainage problem 
solved by numerical simulation . 

TABLE 1 Scaled Variables Used 
in the ~lodel Studies. 

Scaled Variable 

Capillary pr,essure 

Hydraulic conductivity 

Saturation 

Elevation above the water table 

Outflow expressed as a depth 

Flow rate expressed as a depth/time 

Time 

Definition 
p 

P. c 
= 

pb 
k 

K. e 
T 

S-S 
s . s r • r:s e r 

z. z 
Pb/pg 

D. D 
Pb/pg~e 

F. F 
kpg/1! 

'"'-k (>"-p..,.g )7-2..;:..T T. • p 
b 11$e 

however, is the selection, testing, and packing of 
the porous materials to be studied . Laliberte et al. 
(36) demonstTated the sensitivity of several soil -­
parameters , including A , to the degree of packing. 

Brooks and Corey (8) and Corey et al. (14) have 
suggested procedures for developing and-operating 
scaled porous media models. They also presented 
guidelines for selecting media for the models. The 



experimental procedures used in this s t udy are out­
lined in the next section. 

Use of Scaled Numerical ~lodels 

An alternative for solving the two-dimensional, 
transient-flow drainage problem as described above 
and as illustrated in Figure 8 is based on the appli­
cation of numerical methods. A number of investiga­
tors (44) (48) have developed solutions for a variety 
of porous media f l ow problems . Their procedures 
include the fol101'1'ing steps: 

1. Dividing the flow region into slices, 
rectangles, or other elemental shapes of 
finite dimensions. 

2 . Writing the pertinent equations of f l ow , 
continuity, etc., for each element. 

3. Solving the flow equat ion explicitly or 
impl icit y with the aid of a digital computer. 

The above steps were applied to the problem under 
consideration to obtain a method for studying the 
effect of many different A values . 

One of the most frequently used sets of assump­
tions in .analytical solutions is the Dupuit­
Forchheimer assumptions which were previously de­
scribed. Application of the D-F assumptions to 
numerical solutions allows for a better basis of 
comparison between i t and analytical solutions, 
permits an evaluation of the D-F assumptions them­
selves, and simplifies the development of the 
numerical solution. 

The D-F assumptions state that the streaml ines 
are horizontal in any vertical section. This 
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implies that the total head in any vertical section 
is constant or that P. at any point above the 
water table is equal to ZT. . Then, equations (11) 
and (12) can be used in t he numerical solution to 
determine the distributions of scaled saturation 
and scaled hydraulic conductivity above the wat er 
table . 

The development of the solution (presented in 
detail in Appendix B) is summarized as follows. 
The first is the division of the soil slab i nto a 
number of vertical elements of equal width . Next, 
Darcy's equation is written in finite-difference 
form to describe the flow between two adjacent ele­
ments . The equivalent depth d. of flow above the 
water table is added to the depth of flow below the 
water table in computing the total effective flow 
depth . The equation for continuity in finite­
difference form is then applied to each element to 
solve explicitly for the change in the total scaled 
vol ume of water in the element . During each t ime 
step, the change in height of the water table above 
the impermeable barrier is computed for each element. 

A Fortran IV computer program was developed and 
run on a CDC 6400 digital computer located at 
Colorado Stat e University. The memory capaci ty and 
computational speed of this computer allows small 
time and space increments to be used, thus minimizing 
the error resulting from the discretization process. 

The output information supplied at selected 
times by the numerical solution includes: 

1. scaled flow rates , 

2. scaled total outflows, and 

3. water table profiles. 



EXPERIMENTAL PROCEDURE 

The objectives of the laboratory experiments 
were 1) to establish the validity of the Brooks­
Corey scaling theory for two-dimensional, transient­
flow drainage, and 2) to use the theory in determin­
ing the effect of A on drainage behavior. The 
primary experimental facilities consisted of two 
physical models containing porous material. The 
larger model, functioning as a prototype , was designed 
to represent a typical field situation. The smaller 
model was a scaled model of the larger facility. 
Various identical initial and boundary conditions, 
in terms of scaled variables, were imposed on both 
mo<iels. 

Drainage behavior was studied by measuring both 
the outflow from the simulated drains and the poten­
tial at a number of points throughout the porous 
materials. These materials were carefully selected 
to insure that their drainage properties satisfied 
the similitude criteria. Methods were developed to 
ascertain the drainage properties of a material after 
be i ng placed in a model. 

Description of the Physical ~lodels 

The large facility is a narrow flume containing 
a soil mass approximately 12.2 meters (40 feet) long, 
1.22 meters (4 feet) high , and 5.1 centimeters (2 
inches) wide. The small model has a length and 
height which is 30 percent of the length and height, 
respectively, of the large model, while the widths 
are approximately equal. Both models have steel 
frames and aluminum or acrylic plastic walls. The 
retaining walls at the ends of both models consisted 
of either perforated acrylic plastic or metal screens. 
Flexible plastic tubi ng attached to the end boxes or 
end plates of the models conducted the draining liquid 
to graduated cylinders to provide a volumetric measure­
ment of the outflow. One end of the large model 
could be e l evated by a hand-operated hydraulic lift. 
The small model could also be elevated at either end 
by a manual jack. A photograph of both models is 
shown in Figure 9. Sketches of the models are shown 
in Figures 10 and 11. 

Fig. 9. Photograph of models. 

Sec1ion A-A 

Fig. 10. Drawing of large model. 
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A alone could be studied by comparing the results 
of drainage from both the Hygiene and Schneider 
materials. 

Descriptions of the test materials are as 
follows: 

A. Prototype material 

Poudre sand -- This material is a fine-to­
medium grained fraction of an alluvial 
material found in the valley of the Cache 

Section A- A La Poudre River near Bellvue, Colorado. 

Fig . 11 . Drawing of small model . 

Fluids and Media 

A light hydrocarbon oi l , Phi llips core test 
f1uid*, was used as the liquid or wetting fluid. The 
advantages of using this oil rather than water are: 
gTeater stability of soil structure in the presence 
of the oil, lower degree of clay swelling, more con­
sistent wetting and interfacial properties in the 
presence of cont aminants, and low (approximately 
22 .9 dynes/em) surface tension which facilitates a 
reduction of physical model dimensions to about one­
half that required when water is used . The dynamic 
viscosity, density, and ratio of dynamic viscosity 
to the specific weight of the test fluid are tabulated 
i n Appendix C. 

Three different porous materials, each selected 
because of its hydraulic properties, were used in the 
study . A fraction of Poudre sand was placed in the 
large model to serve as the prototype material. The 
value of A of this material is similar to that of 
a typical field soil. The ratios of the bubbling 
pressure head to the total soil depth are also similar 
for both Poudre sand and a typical field soil. How­
ever, since the test fluid was used in the models, 
the large model was itself a one-hal f scale model of 
a soil- water system. A fraction of crushed Hygiene 
sandstone was used to model the Poudre sand. The A 
values of these two materials are equal, thus fulfil­
ling one similitude requirement. Geometric simi litude 
was satisfied because the ratio of the bubbling pres­
sures of the two materials is equal to the length 
ratio of the two models. 

Another porous material used was Schneider sand. 
This material was selected because its A value is 
much larger than that of Hygiene sand even though its 
bubbling pressure is the same. Thus, the effect of 

Particle sizes larger than 0.42 mm were 
removed by screening. It has a pore-size 
distribution more nearly like a typical 
soil than most sands. 

B. ~1odel material 

1. Crushed Hygiene sandstone -- Hygiene 
sandstone is a member of the Pierre 
shale formation of the Upper Cretaceous 
series of the Mesozoic era. It is 
yellowish-gray in color , and contains 
glauconite and carbonaceous material. 
After being partial ly crushed but not 
pulverized, it was passed through 
sieves to obtain the range of aggregate 
sizes that would yield the desired 
bubbling pressure head and pore-size 
distribution index. The range of 
particle sizes is 0.15 to 1.6 mrn. 

2. Schneider sand This sand was obtained 
from an alluvial deposit located near 
Fort Collins , Colorado. The predomi­
nate minerals are feldspar and quartz. 
The fines were removed by washing. 
Several sieving operations were then 
required to isolate the narrow range of 
particle sizes, 0.42 to 0.7 mm, which 
yielded the desired drainage properties. 

Determination of Media Properties 

The media properties that had to be known for 
the experimental studies include permeability k , 
bubbling pressure ~ , pore-size distribution index 
A , effective porosity ~e , residual saturation 
S , and bulk density pb . These properties were 
d~termined for the drainage cycle only and have been 
termed the drainage properties of a porous medium (8). 

The relationship between capillary pressure and 
effective permeability was determined by using the 
short-column method described by Corey et al . (14). 
The procedure involves saturating the test-c:olumns 
by immersing them in a container filled with the test 
fluid which wa.s then evacuated and later returned to 
atmospheric pressure. Thus, all the air is removed 
and the initial data is obtained for the completely 
saturated condition. However , in this study all 
porous mateTials imbibed the test fluid under atmos­
pheric pres.sure and did not become completely satu­
rated. This procedure resulted in val~es of maximum 
effective permeability which were 40-50 percent of 
the saturated permeability. The values of Pb and 

*Manufactured by Phillips Petroleum Company, Special Products Division, Bartlesville, Oklahoma. 
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).. obtained from the drainage-cycle data were some­
what lower than those values obtaine d from initially 
saturated laboratory samples . The scal ed or rel ative 
permeability (or relative hydraulic conductivity) was 
computed by dividing the effective permeability 'by 
the maximum permeability. The relationships between 
the scaled permeability and scaled pressure for the 
three porous media are shown in Figure 12. 

x 
~ :a 
0 • e 
~ 

0.1 

• ~ 
u 
:! w 
~ 
0 
u 
U) 

0.01 

Scoled Pressure - P. 

a Poudr"e Sond 
., . 6.8 
). • 1.6 

• HyQiene Sand 
., . 6 .8 
). = 1.6 

o Schneider Sond 
.,•15.5 
). • 4 .5 

Fig. 12. K.-P. relationships for th·e three 
experimental media. 

The bubbling pressure and the pore-size distribu­
tion index were determined from the capil lary pressure 
- -permeabi lity relationship by tho procedure described 
by Laliberte et al. (36) . Additional tests deter­
mined the residuil saturation and the drainable por os­
i t y. The capillary pressure-saturation relationships 
also were determined using equipment and procedures 
described by Laliberte et al . (36). The residual 
saturation was estimate~by-a method developed by 
Brooks and Corey (9). The total porosity ~ was 
computed from the equation 

pb 
~" ~-­

Ps 
(21) 

in which the bulk density Pb applies to air-dry 
material , and the particle densit y p~ was measured 
by the picnometer method. The effect1ve porosity ~e 
was computed from the equation 

(22) 

Method of Packing the Models 

The porous materials were placed in the prototype 
and model facilities through a tremie with an I . D. of 
3.18 em . The material was placed in layers 2 to 3 em 

thick whi ch were scarified t o produce a better contact 
with the next layer to be deposited . After it was 
noticed that sorting ~ccurred with dry material , the 
material was moistened slightly which produced .more 
uniform packing. 

Repeated removal and redeposition of the porous 
materials was necessary to obtain the proper in-place 
density. Se-ttlement of material placed at low densi­
ties took place during the first few days after 
deposition . It was found that by repeatedly saturat­
ing and draining the media in the models , the settle­
ment rate was increased and a stable medium was 
a.ttained more quickly . 

Permeabil ities of the media in the models were 
measured by elevating one end of the model and 
flowing the test fluid through the media. Although 
permeabilit ies determined by this method varied 
somewhat because of variable bulk densities and 
entrapped air volumes , it was apparent that the 
average values could be used in computing scaled 
variables. Effective porosities, as determined by 
dividing the total discharge volume by the bulk 
volume of the media, also showed some variation. 
For each test the effective porosity was determined 
and used in computing the scaled outflow depth and 
scaled time for that test. The bubbling pressure 
and ).. were taken as constants for each media. The 
media properties discussed above are shown in Tabl e 2. 

Property 

k 

pb 
).. 

~e 
(mean value) 

TABLE 2 Media Properties as 
Determined in Models 

Units 

\12 

dynes/cm2 

none 

none 

Poudre 
Sand 

. 0127 

14' 080 

1.6 

.348 

~ledia 

Hygiene 
Sand 

.0356 

4224 

1.6 

.288 

Measurement of Hydraulic Hea.d in the Models 

Schnei der 
Sand 

1.89 

4224 

4.5 

. 365 

The primary reason for measuring the hydraulic 
head in the models was to locate the position of the 
water table, particularly at the vertical plane mid­
way between the drains. An adequate description of 
the hydraulic head distribution under two-dimensional, 
transient-fl ow drainage r equired sensi ng at a number 
of points and at time intervals small enough to per­
mit accurate i nterpolation . 

A number of tensiometers were installed in one 
sidewall of both models. The number of tensiorneters 
used was 92 in the l ar ge model and 32 in the small 
one. Each tensiometer was constructed from a S/8-
inch diameter bolt bored along its axis . Disc-shaped 
capillary barriers of the porous plastic "Porvic"* 
were sealed to the threaded end of each bolt with 
epoxy resin. The tensiometers were screwed i nto the 
sidewall of each model in such a way that the capillary 

* Manufactured by Porvair Limited, Estuary Road, King's Lynn, Norfolk, England. It is no longer being 
manufactured. 
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barriers made firm contact with the medi um, but 
penetration of the medium was limited t o 1/32 inch. 
A seal between t he bolts and the model wall was 
obtained with 0-ring seals. A view of a t ensiometer 
is shown in Figure 13. 

Bross Tubing Soldered 
To Bolt 

Bolt Is Bored 
Along Axis 

Screen and Barrier Are 
Cemented To Bolt 

Fig . 13. View of tensiometer. 

Two rotary valves, each connected t o a pressure 
transducer, were used to provide the necessary peri­
odic interconnection between the tensiometers and the 
pressure transducers. Flexible plastic tubing filled 
with the test fluid provided the connection. When 
operated in conjunction with the large model, the 
measuring system scanned t he hydraulic head at each 
of the ninety- two tensiometers and t.,.,•o leveling 
bottles , used for calibration purposes , once during 
each rot ation of the val ves. Because drainage was 
more rapid in the small model, the thirty-two 

tensiometers were sensed two or three t imes for each 
rotat ion of the valve . This was accomplished by 
connecting the flexible plastic tubing from thTee 
position taps on the valve heads to one tensiometer 
by means of small cross-shaped glass connectors. 

The voltage output from the pressure transducers 
was digitized by digital voltmeters. Voltage drop 
across a pot entiometer , advanced by the rotation of 
the val ve , provided an i dentification of the v.alve 
tap. The hydraulic head measurement was made through 
this tap. The data acquisition system permitted a 
time, a volt age representing the valve position, and 
voltages representing the pressure heads to be 
punched on IBM cards. A schematic diagram of the 
hydraulic head measuring system is shown in Figure 14 . 

A computer program, described in Appendix D, 
was developed to convert the information punched on 
cards into hydraulic head--time relationships for 
each tensiometer and to interpolate this informati on 
in respect to time and distance . The final out put 
from the computer program consisted of information 
that was used to devel op plots of t he equipotential 
distributions for selected times. 

A calibration was necessary for each valve-­
pressure transducer subsystem during every rotation 
of the valve, because of drift within the instrumenta­
tion . Two leveling bottles--one set near the top of 
the soil mass, the other set near the bottom--were 
connected to two taps of each valve . A conversion 
factor was computed for each valve cycle by dividing 
the difference in the output voltages measured at 
the two leve l ing bottles by the vertical distance 
between t he bottles. This factor was used in the 
computer program to convert the voltages into the 
corresponding hydraulic head. 

Fig . 14 . Schematic diagram of t he hydraulic head measuring system. 
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Drainage Experiment 

The initial condition established in each drainage 
t~st was that of a horizontal water table at a pre­
Vlously selected elevation. The fluid, used in each 
test, was imbibed into the soil from the end boxes 
or end plates. If the initial water table was at some 
elevation below the soil surface, the porous material 
was first saturated to the soil surface and then 
allowed to drain until the water table coincided with 
the desired initial elevation. This procedure 
resulted in the establishment of the capillary 
pressure-saturation relationship for the drainage 
cycle and eliminated hysteresis. 

An initial scan of the hydraulic head distribu­
tion was made before drainage was begun to insure 
that no detectable hydraulic gradients existed. 
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During this scan the presence of air bubbles i n tub­
ings from the tensiometers to the rotary valve could 
also be detected. ~nen the correct initial hydraulic 
head had been established in the soil material, the 
plastic tubing leading from the end box or end plate 
t o the constant head cylinder was clamped off. The 
cylinder was then lowered to the elevation which 
represented the desired water level in the simulated 
ditch drain . Removal of the clamp from the tubing 
caused drainage to begin. 

Readings of the outflow volume were taken 
periodically during each test until the outflow had 
essentially ceased. Tho hydraulic head measuring 
system was operated continuously until the rate of 
outflow and the change of hydraulic heads over a 
period of several hours was very smal l. 



RESULTS AND DISCUSSION 

As previously stated, the objective of the model 
studies was to determine the effect of the pore-size 
distribution index on drainage . Physical as well as 
numerical models, scaled by the Brooks-Corey method, 
were used to obtain the results presented below. 

Verification of the Brooks-Corey Similitude Theory 

Results from the physical models in three series 
of tests, representing three different boundary con­
ditions, are shown in Figures 15 through 26. The 
cumulative outflow-time relationships for the tests 
are shown in Figures 15, 19, and 23. These plots 
indicate that the time required to drain the prototype 
was about 100 times longer than the time required to 
drain the model under either set of boundary condi­
tions. This illustrates one of the chief advantages 
of scaled models - savings in experimental time. 
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The graphical representation of the scaled 
outflow-time relationships for the three sets of bound­
ary conditions appears in Figures 16, 20 and 24 . The 
scaled outflow rate is plotted against scaled time 
in Figures 17, 21 and 25. Another important drainage 
relationship, shown in Figures 18, 22 and 26 , is the 
drawdown of the midpoint of the water table plotted 
against time. Although the water table elevation above 
the water level in the drains could have been scaled 
by dividing it by the bubbling pressure head, i t is 
more useful to consider the ratio of the water table 
height at any time and the initial water table height. 
This ratio has been used in deve loping other anal yti­
cal solutions and model studies and thus permits com­
parison between results of the several studies . 

•n• 

0 
0 

0 • 
c . 

0 . 

o • 
0 • 

0 . 
0 

• o 
0 PO\oldrt' So.rt4 0 
• ~e"e Se-.:J • o 

Bounctory Cond 1·0ni 
w a1er Tobit He19t'1~ 

!n1f10I i Med1c H.C'lljlht--'02 Pti/PQ 

'•no' j "•d o "~- 2 Oo P01P; 

~ Soocorq 6408 ~ ll'o 

oO' 
Scoleo TU'I'lt, T 

. 
0 

0 

0 

Fig . 17. Scaled outflow rate as a function of scaled 
time for similar media-boundary condition 
no 1. 

0.8-

! 
• o • 

0 

0 . 
0 

• o .. 
• o 

. 
0 

0 
0 

0 

l 

1 
1 

~ 
I 

Fig . 18. Water table hei ght as a function of scaled 
time for similar media-boundary condition 
no . 1. 



20 

• • 10 • • 

• 
~ • 0 oo 0 0 

8 0 

0 i e 
oo • Po~~rt So no 

1 
~ 

0 •• 0 HyQiono Sond 
0 • 0 Boundory ConOitlon•~ 

0 Water Tobit H~;nt: 
0 lrnhol: 1 Mldlio H~9M - 2.01 IV P9 

00 Ftno : .... Of MtCitO 
0 Dr01n SDOCtft9: 64.08 P.IM 

0 

0 
0 

0 .1 
10 10 10' 10 ' 10' 

T1mt T, SK. 

Fig. 19 . Outflow as a function of time for similar 
media-boundary condition no. 2 . 

d 

• !l a 
j 

1.0 

0.1 0 • 
0 

0 

~ . 
• 

• Pouelre Sand 
o HyQ•ent Sand 

Boundary COtldltlons: 
Water Tobit Meual'lf: 

IMiol: i lloG•o HOJtlll • 2.01 ~11'9 
F inal : lou Of MedtO 

Oro;n $~OCift9 : 64.08 P•''' 

10 o' 
Sc.oiH T_.t , T. 

Fig. 20 . Scaled outflow as a function of scaled time 
for similar media-boundary condition no. 2 . 

..: . . 
0: 

0 

• PoucJtt Sana 
o l'inttflt Sone1 

801./ftCory CCM"CC hOM~ 
Wo•tr To~t Jolt ql\1! 

"-tltOl : \ WtO•O 11~qht • 2:.01 ~/ .. 0 
F.nol : SOU Ot Medta 

Ora:n SpOCtrtQ : 64.08 P./P9 

0 . 
• o . 

0 • 
0 . 

0 

J 

0.0:~-..._____,___.__1""":-~. _..____..__............_...l.rj-- --'0---'-...L.J' i 
Scoltel Ttmt, t 

Fig . 21. Scaled outflow rate as a function of 
scaled t ime for s i mil ar media-boundary 
condition no. 2 . 

21 

1.0 
0 

0 . 0 
0,. 

0.8 
.. . Pouelrl 501'1111 , Mn"'"' SOIIO 

i 

J IOU'IOI:I' 'f CO'"'O•IIOf'$ 
~ 

"-O't' Tnt lo\t.9f'l. 
W'>·t ,t· 1 Weoo t-oe-~9"1' - 2.01 ~~~ 

a• F" nol: 8ott Ot lVtdH:I 
O;:tl" 5DOC:t~9 : 64.08 P.''9 ~- l 0.4 

0. 

0 . 

0 
I() I() 

Sc .... Tln"t, t, 

Fig . 22. Water table height as a function of 
scaled time for similar media-boundary 
condition no . 2. 

1 
I I I 

•• t . 
0 0 . ooo 

~ 

J 
•• 

& 0 

0 ai 
! • Po11drt Sond 

0 i o HyOJtnt SonG 

8 0 • 
0 • 81NI'IdO'Y ConchhCII'It: 0 

0 
0 Wottt Table Ht 1qf\t: 

0 lftlho': 1.0 Mtclo tlt1qt'lt - 6.03 P.Jpq 
0 F 1nol ; Son Of Mtd o 

0 Or01n SJa,ln;: 64.08 P•/p; 
0 

0 

I 
1 

IO' 

~ J 
j 
~ 

i 
1 

1 
O.l,l..y-..._ _ _.__._...._.~..,-_...__..._..._..._IOL,,.-.J..-_.__._._.JIO':'o--'--_.__....J..JIO• 

T~tP~e l, M<. 

Fig . 23 . Outfl ow as a function of time for 
similar media-boundary condition no . 3. 

Q t O 

• .. .. 
.. 

.. 
.. 

.. 
.· 

• Poudtt S0t1d 
0 Hy9it""lt SCittd 

lo..~ndOt')' Con121 tiont : 
wo•er Table t-It ;nt: 

.. .. .. .. .. 

lnUial: l.O WeC:hO ,_.th; M-6.03 
Flt~o! : 9C5i! Of Mtdlo '"' j O,oln Spo<an;: 64.08 ':'.110 

1rf 
~COlle! T imt, T. 

Fig . 24 . Scaled outflow as a function of scaled 
time for similar media-boundary 
condition no. 3. 



0 . 
0 

• Po,ort SMG 
o Hyo•.,• Sof'ld 

8 01.1ndary COf'lclitiO'lS : 
WtHtr l ob't io4tiOt!t: 

.. 
o• • 

o o• 

ln.tlot: 1.0 MUla H••o~u- 6.03 P/pO 
' '"ol : 8au 0 1 ~tdlo 

Or011'1 Spocln9: &4.08 PI pq 

0 0 

" .. 0 . 

•• 
! 

I ().OOIIILr/.---'----'-......I.-'--J'IJL,---'-----'--'--'-10..1',---'----'----''-..L.J 0 '()1 

Su&td TIIIM. T. 

Fig. 25. Scaled outflow rate as a function of 
scaled time for similar media-boundary 
condition no. 3. 

'1 0 'o• I I I I -
~ .. 

~ • o 
o• ., 

0.8 00 
~ .. 

~ 

0.6 • 0 

i . Poud't $0 .. ~ 

.... 0 Hylj1ttnt Sond 
,{ 

0.4 Bounder)' Cond•t•on:t : 
Wottr Tottlt Ht•9"t: 

l"'hOI; 1.0 Mtcl~ Hfl9h1 • 6.03 fll,f 
'"""I · lou Ot M.tdlo 

~ 

Oo 

~ .. 

l 
I 
i 

Orc.n $90C•ft9 . 6A.Oe ~IP9 . 
0. 

10 10 
Scoltd Tlmt , T, 

Fig. 26. Water table height as a function of 
scaled time for similar media-boundary 
condition no. 3. 

0 . 
0 

oo' 

The scaled outflow-time relationships for the two 
models, Figures 16, 20 and 24, coalesce. Equally good 
results are apparent in the scaled outflow rate-time 
relationships as shown in Figures 17, 21 and 25. But 
the drawdown-scaled time relationships plotted in 
Figures 18, 22 and 26 indicate a lesser degree of 
coalescence which can be explained, at least in part, 
by experimental error. ~leasurements of the potential 
of the liquid could not be made with the same degree 
of precision as the out flow measurements. Measure­
ments could be made at only a finite number of poi nts 
in the vertical section midway between the drains . 
As previously noted, there were only five tensiometers 
at the midway section in the smaller model and seven 
in the larger; the water table was located by inter­
polation. Also, slight non-homogeneity of soil could 
i nfluence the drawdown-time relationship but not 
affect the outflow-time relationship noticeably. The 
data used to plot Figures 15 through 26 are presented 
in Appendix E. 

The relationships just discussed indicate that 
the Brooks-Corey scaling theory is valid for two­
dimensional, transient-flow drainage . Consequently, 
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application of the Brooks-Corey scaling theory in 
other areas of this study was made with confidence. 

Effect of Pore-Size Distribution 

The effect of the pore-size distribution index 
A , on drainage was studied experimentally by use ' 
of the small er model. Two different soil materials 
having the same value of bubbling pressure but 
different values of A were used. The sc~led 
~eights and sc~led lengths, respectively, were equal 
1n the two dra1nage systems, but the media were dis­
similar because of the different A values . Conse­
quently, any lack of coalescence of the drainage 
relationships , plotted in terms of scaled variable 
could be attributed to the effect of the different' 
). values. 

The relationships, shown in Figures 27 through 
38 and presented in Appendix E, indicate the ). 
value did affect the experimental results. At any 
time the media were draining, t he scaled outflow 
from the sand with A a 4.5 exceeded that from the 
sand with A ; 1.6. Yet the water table midway 
between the drains was lower during drainage of the 
sand with the higher value of ). 

The final cumulative outflows, referred to 
previously as DT. , were computed from Equati on (21) 
for the three boundary conditions and for ). values 
of 1.6 and 4.5 .. A comparison between these computed 
values and the DT. values obtained experimentally 
is shown in Table 3. The good agreement between 
the three pairs of corresponding values supports 
the val idity of the analysis leading to the develop­
ment of Equations (21) and (22) presented in the 
Analysis. 

The results from experiments with dissimilar 
media also indicate, indirectly, t he effect of A 
on the scaled equivalent depth d . . As shown by 
Figure 27, the scaled times when the water table 
height ratios ~lt/M0 equaled 0. 5 were T . .. 79 for 
). = 1.6 and T. = 102 for A • 4.5. At these same 
times the scaled outflow rates were 0 . 0058 and 0.0056 , 
respectively, as Figure 28 shows. Since the heights 
of the seepage surfaces were observed to be relatively 
small and nearly equal for both materials at the 
times indicated above, the flow rates would be 
expected to be practically equal under these conditions 
if flow above the water table was non-existent. But 
the significantly greater outflow rate for the smaller 
). . value must be the result of a greater flow depth. 
S1nce the water table profiles are identical, the 
equivalent depth of flow above the water table must 
be greater for the soil with the smaller value of 
). as predicted by Equation (17) . 

The two effects of increasing ). values, there­
fore, are 1) a greater drainable volume of water 
for a given water table drop , and 2) a smaller equiv­
alent depth of flow above the water table. These 
two effects combine to prolong drainage . 

Numerical Solution 

The results of the mathematical simulation are 
given in Appendix F. From these results the curves 
in Figures 27 through 42 were plotted. The agreement 
between the experimental r esults and the numerical 
procedure is good except for times before the ~ater 
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table midway between the drains began to fall. The 
factors probably causing this relatively poor agree­
ment are the 0-F assumptions and the explicit nature 
of the numerical solution. However, after the water 
table has begun to fall throughout the soil profile, 
the relationships shown are of more practical signifi­
cance. Accordingly, the numerical solution seems to 
be an acceptable simulation of two-dimensional, 
transient-flow drainage. 

Another met hod used in evaluating the numerical 
solution consisted of comparing its results with 
those of a suitable analytic solution, which, in this 
case, is Glover's solution. This comparison required 
that the numerical solution be modified to ignore 
the drainable water above the water table. Both 
sol utions are based on the 0-F assumptions, but 
Glover's solution assumed a constant flow depth 
while the numerical solution does not. As shown by 

TABLE 3 Comparison Between Computed and Experimental Values of DT. for each Boundary Condition 

No. 

1 

2 

4 

5 

Boundary Condi t i on 

Water Table Elevations 
(fraction of media height: multiple of Pb/pg) 

Initial Final 

2/3:4.02 

1/3:2.01 

1:6.03 

2/3:4.02 

2/3:4 . 02 
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1/3:2 . 01 

0:0. 00 

0:0 .00 

0:0.00 

l/.3 :2. 01 

Fig. 39 . Scaled outflow rate as a function of scaled 
time for the numerical solution, selected 
analytical solutions, and Hele-Shaw model 
results-boundary condition no . 1. 
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Drain Spacing ). 
(Multiple of 

Pb/pg) 

Computed from 
equation (19) 

64 .08 1.6 1.637 

4.5 1.987 

64 .08 1.6 1.854 

4.5 2.009 

64 .08 1.6 3.930 

4 .5 4. 745 

64.08 1.6 3.491 
4.5 3.996 

128.16 1.6 1. 637 . 
4 .5 1.987 
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DT. 

Experi- Medi a 
mental 

1.64 Poudre 
1.63 Hygiene 
1.99 Schneider 

1.87 Poudre 
l. 83 Hygiene 
1.95 Schneider 

3.89 Poudre 
3.95 Hygiene 
none 

3.42 Hygiene 
3.97 Schneider 

1. 55 Hygiene 
1. 84 Schneider 

oL-~~,d----~----~--~~~,~.---~----~--~~~ 
Stoltd Tlll'lt, T. 

Fig. 40. Water table height as a function of scaled 
time for the numerical solution, selected 
analytical solutions, and Hele-Shaw model 
result s-boundary condition no . 1. 
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Scaled outflow rat e as a function of scaled 
time for the numerical solution, experimen­
tal results, Boussinesq's solution , and 
Hele-Shaw model results-boundary 
condition no . 2. 
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Fig. 42. \~ater table height as a function of scaled 
time for the numerical solution, experi­
mental results, Boussinesq's solution, and 
Hele-Shaw model results-boundary 
condition no. 2 . 

Figure B-1 in Appendix B, the numerical solution does 
agree wel l with Glover' s solution and can be accept ed 
as a valid soluti on t o the problem. 
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As shown by Figures 27, 31, and 35, results were 
obtained by the numerical solution for five different 
>. values. A more complete description of the effects 
of the flow above the water table i s given by these 
relationships than by the experimental results. As 
the A value is increased , the change in its effect 
on dr ainage decreases . The r elationships for A= 12 
and >. • 20 are essentially identical. For very lo1~ 
values of >. , however , a small change of its value 
produces a significant change in al l the drainage 
relationships. 

Since the ability of the numerical solution to 
simulate drainage with acceptable accuracy has been 
established, drainage under a variet y of boundary 
conditions and from soils with various >. values can 
be analyzed by simply changing the input data to the 
computer program. The resulting information could 
provide an impr oved procedure for designing relief 
drains. 

Evaluation of Selected Analytical Solutions 

The analyt ical solut ions of Boussinesq {3 ) , 
Glover (18), Brooks (7) , and Jenab {28) can be applied 
to the boundary conditions employed experimentally. 
All four solutions are based on the D-F assumptions 
and the assumption of ~o flow above the water tabl e. 
The significance of the latter assumption can be 
evaluated by comparing values from the analytical 
solutions with results from the numerical solution 
and the exper i mental tests. Drainage relationships 
from these sol utions are derived in Appendi x G and 
are plotted in Figures 39 through 42 for two boundary 
conditions . 

The Hele-Shaw model results of Ibrahim and 
Brutsaert (26) are also shown in Figures 39 through 
42 and are presented in Appendix G. The good agree­
ment between these results and those from analytical 
solutions indicates that the 0-F assumptions pr ovide 
an accept able approximation for the solution of the 
assumed boundary value probl em, that is, for a case 
in which there is no flow above the water table. 

The analytical solutions also provide a fair 
approximation for the fl ow rate as a function of t ime 
in the case of the physical models in which flow 
occurred above t he water t able. The height of the 
water table as a function of time, however, was not 
adequately approximated by these soluti ons as Figures 
40 and 42 show. The effect of flow above the water 
t able is most significant for the more shallow flow 
depth . 



CONCLUSIONS AND R£C()f.iENDATIONS 

Developing a more accurate design procedure for 
relief drains requires considering both saturated and 
unsaturated regions above the water table. According 
to the Brooks-Corey similitude theory, the pore-size 
distribution index A characterizes the functional 
relationships among the scaled values of pressure, 
permeability, and saturation in the soil. Scaling 
the variables by the Brooks-Corey method eliminates 
al l of the soil parameters except >. from explicit 
consideration. 

The primary purpose of this study is to deter-
mine the sensitivity of drainage to A One effect 
of the unsaturated region is the increase of the 
effective flow depth by a height called the equivalent 
saturated dopth of flow above the water table d 
A relationship, equation (17), exists between this 
depth, the distance from the soil surface to the 
water table , and A • The numerical solution is 
based on this relationship, assuming no vertical com­
ponent of flow. The unsaturated region also may 
affect the total outflow resulting f r om a lowering 
of the water table. The total outflow is related 
as given by equations (19) through (22), to both ' A 
and the distance from the soil surface to the water 
table. Although the latter relationships cannot be 
applied directly in formulation of a numerical solu­
tion, they do provide insight into the sensitivity 
of drainage to A • Physical and mathematical models 
are the only means presently availabl e to account for 
flow in the unsaturated region. 

An evaluation of the results from the physical 
and mathematical models used in this study leads to 
a number of conclusions. 

1. The Brooks-Corey similitude theory is valid 
for transient drainage in two-dimensional 
flow systems. Using this theory results in 
a decrease in the time required to obtain 
data from both physical and mathematical 
models . 

2 . Two-dimensional drainage is sensitive to 
A . As the value of >. increases, the 
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equivalent depth of flow above the water 
tabl e decreases, especially for lower A 
values. The outflow for a given drop in 
the water table increases with increasing 
A values. The increase is also more 
noticeable for lower values of A . 

3. The two effects described above combine to 
prolong drainage with increasing values of A. 

4. The drainage is faster , however, than that 
predicted by methods ignoring flow above 
the saturated region . 

This study has determined the need for further 
investigations in a number of areas: 

1. Experiments using scaled physical models 
should be conducted with drain facilities 
simul ating tile drains. 

2. Numerical solutions that consider vertical 
flow and the interrelationships among 
pressure, permeability, and saturation 
should be developed and tested. 

3. Drainage experiments should be performed 
in which the water table is maintained at 
a stationary position. This will permit 
an evaluation of the explicit effect of 
the equivalent flow depth on drainage. 

4. Information that can be used to design 
parallel relief drains should be derived 
from physical and nume~ical models which 
consider flow above the water table. This 
information should encompass a wide variety 
of boundary conditions and include the 
parameter A • 

5. Methods for determining the value of A 
and Pb/Pg in the field should be developed. 
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APPENDIX A 

S~~y OF SELECTED TWO-DIMENSIONAL 
TRANSIENT-FLO!~ DRAINAGE EQUATIONS 

This summary includes representative two­
dimensional, transient-flow drainage equations. The 
assumptions, boundary conditions, and mathematical 
expressions for each equation are presented. The 
geometric configuration of the general soil profile 
under consideration is shown in Figure 1. 

Assumptions 

A number of assumptions were made in the deriva-
tion of all t he drainage equations previously re­

- viewed. The assumptions which deal with the soil-
i water-air system, as listed on page 4 , were applied 
; in the derivation of every equation. In addition, 

the following assumptions have been applied in the 
1 development of one or more of the equations listed 

below: 

1. An impermeable barrier which forms a boundary 
of the flow region exists at some constant 
depth below a hori zontal soil surface. 

2. No drainable water exists above the water 
table. 

3. The Dupuit- Forchheimer assumptions are 
applicable. 

4. There is no loss of head due to convergence 
of flow near the drai n. 

5. A horizontal water table exists at the 
initiation of drainage . 

6. The depth of the flow region can be approxi­
mated as being constant at all times during 
drainage . 

7. The rate of flow into the drain is propor­
tional to the rate of fall of the water 
table. 

8. The rate of flow into the drain is propor­
tional to the product of the height of the 
water table above the drain and the hydraulic 
conductivity of the soil being drained. 

9. The loss of head in the region beneath the 
water table and above the water level in the 
drains is negligible compared to the loss 
of head in the remainder of the flow region. 

Equations and Associated Assumptions Reference 

Assumptions emploled 
In t~e aevelopment 

Equation of the eguation Reference 

l. Boussinesq 1,2 , and 3 (18) 
2. Glover 1,2,3,4 , 5, and 6 (18) 
3. Tapp and Moody 1,2,3,4, and 6 (19) 
4. Brooks 1,2,3,4, and 5 (7) 
5 . van Schilfgaarde 1,2 ,3, and 4 
6. Luthin 2 and 7 (40) 
7. Bouwer and van 1,2,3, and 8 (6) 

Schilfgaarde 
(Integrated 
Hooghoudt) 

8. Ligon and others 1,2, and 9 (38) 
9. Harnmad 1,2, and 9 (1) 

10. Jenab 1,2,3,4, and6 (28) 

Explanatory notes: 
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1. Although the development of some of the 
equations above did not include a specific 
reference to assumption number 2, it was 
obvious that it was made as noted above. 

2 . Procedures for accounting for the effect of 
the convergence of flow lines near drains 
have been presented in the references for 
equations 3, 5, and 7. 

List of Equations and Boundary Conditions 

l. Boussinesq 
h ,. M at L/2 

Mt 
0 

1 at T c 0 , 
M"= ~1o KT h = 0 for X = 0 0 4 .46 - - + 1 

L2 f and X = L, for T > 0 

2. Glover 
h .. h for O<x<L 

~\ n=CD 0 
4 

~ _!_ EXP at T = 0 • 
~10 = n n=l,3,5 2n h .. 0 for X = 0 

(nn) 2 (d+h /2) KT 
and X = L for T > 0 -

0 

fL2 



' . 
I' 

t 
' ,. ·. 
.. 
I' .. 

t 
1. 

l 
I 
! 
' I 

3. Tapp Hnd l•toody 

~1t Hl2 n=.,. 
i:l = - I 

o , s n=l , 3 , 5 

h 0 for x • 0 and 

x = L for T > 0 

SM 
h = ~ (L3x-3L2x2+4Lx3-2x~) 

L" 

for O<x<L at T • 0 . 

4. Brooh 

The solut ion is given 
in graphical form, because 
of the complexity of the 
equation . 

5. van Schilfgaarde 

[ K(d+~\) (d+~!0)T J ~ 
L "' 3A 2 f(l-1 -M ) 

0 t 

where 

A. rl _ ~~n~ 

6. Luthin 

(-f: KJ) 

where C is a factor 
considered as being 
equal to 0.1 by Luthin (40) . 

7. Bouwer and Schil fgaarde 
(Integrated Hooghoudt ) 

h " h 
0 

for O<x<L 

at T • 0 

h .. 0 for X = 0 

and X • L, for T > 0 

h = h 
0 

for X = L/2 

at T • 0 I 

h = 0 for X = 0 

and X • L for T > 0 

Initial water t able is 
curved. This curvature 
should persist for best 
results. 

KT fMoCMt+2de)l [ ~ ~ -1]~ L "' Sde T WLMt (Mo +2de)J 

Initial water table 
is curved. This cur­
vature should persist 
for best results . 

where de is the equivalent 
depth br Hooghoudt 's conver­
gence correction. 
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8. Ligon and others 

1
\ I 1 KT) - = EXPI - (!-! - N - ....,.-) 
~~0 2LF 0 t I . 

where F is a sum of a 
series of terms involving 
flow system geometry . 

9. Hammad 

~\ 2!!KT 
IT"' " EXP - ----

0 fL n(-LJ 
2ll2dr 

for shallow barriers 

~~t 2liKT 
M • EXP -"---:--

0 FLtn(..!::_) 
liT 

for deep barriers where 
r is the drain radius. 

10. Jenab 

Mt n=~» 

-= erf(u1) - I erfc (un) ~~ 
0 n•2 

where erf is the error 
function 

The shapes of the 
initial and subsequent 
water tables are de­
scribed by a lengthy 
equation (38) . 

The shapes of the 
initial and subsequent 
water tables are de­
scribed by a lengthy 
equation (1) . 

h = h 
0 

for O<x<L 

at T • 0 

h = 0 for X = 0 

and X . L for T ~0 

x1 = distance from point to the 
first drain 

erfc is the complimentary error 
function 

X 
n 

un ~ 4(d+h
0

/2)KT/f 

xn = distance from the point to 
the nth drain. 



APPENDIX B 

THE N~1ERICAL SOLUTIOX 

The numerical solution was developed by combining 
the scaled, finite-difference forms of the la~>• of 
conservation of mass and Darcy ' s law. Since the 
drainable water above the water t able was represented 
by using functional relationships in terms of A , 
the results of the solution indicated the effect of 
.A on drainage. 

Development of the Flow Equation 

The soil profile shown in Figure 1 was divided 
into a number of vol ume el ements for which equat ions 
represent ing conservation of mass and Darcy' s l aw 
were written. The scaled dimensions of each clement, 
as shown in Figure 8, are 6x and unity in the 
horizontal directions and DL in the vertical. 
Application of Darcy' s law and the D-F assumptions 
results in scaled equations representing t he flow 
rates into and out of each element. The scaled flOh' 
rate equals the actual flow rate [cm2/scc] divided 
by the product of the hydraulic conductivity and the 
drain spacing . The flow area is taken as t he mean 
total flow depth in the adjacent clements between 
which the flow rate is computed. The total flow 
depth equals the sum of the water t able height Zli'T. 
and the scaled equivalent flow depth d . The 
hydraulic gradient is equal to the difference between 
the water table heights divided by 6x . The scaled 
flo~>· rate between the elements designa.ted by I and 
I + 1 is: 

Fl.•((ZII'T.(I) + d . (I) + ZII'T.(I+l) + d. (l+ l )/2) 

(ZWT. (I+l) - Zli'T. (I))/llx (B- 1) 

where liT is the increment of scaled time . The 
effective porosity ¢e which appeared in equation 
(B-S) cancels with the ~ in the standard time unit 
t 0 used to scale t ime . £quat ion (B-6) i s applied t o 
each element once during each t ime step . 

The final step is the computation of Zlfl' . (I) 
at time N + 1 Since for a particular A value 
there exists a unique relationship among ESIIT. , 
ZII'T . , ZS. and ZT. , as given by equations (B- 4) 
and (B-5) , the value of Z\IIT . (I) can be obtained by 
int~rpolation of the known value ESWT . and the 
associated val·ues of ZS . Values of ZI\'T. and ESII'T. 
computed during each time step are then used during 
the following time step , thereby formulat ing a purely 
explicit solut ion procedure . The solution cannot be 
applied to problems in which ZT . is less than or 
slightly greater than one , because a unique relation­
ship exists among the above variables only when ZT. 
is substantially greater than one. 

Boundary Conditions 

The initial condition simulated by the numerical 
solution is a horizontal water t able . The water 
level drop i n the ditch drain could be represented 
as occurring either instantaneously or gradually. 
However , the water t able posit ion when the midpoint 
of the water table began to fall was pTactically 
identical for either the case of an instantaneous 
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water level drop or a drop at a rate identical to 
t hat occurring in the physical models . Therefore, 
the i nstantaneous water level drop in the drains 
was simulated for all boundary conditions. The 
water level was then held constant in the drains for 
the remainder of the drainage period. Similarly, 
the scaled flow rate betl<;een elements I-l and 
r is : 

F2.~ ((ZII'T . (I-l)+ d.(l- 1) + ZWT.(I ) • d.(I) / 2) 

{Zif!' . (I) - ZII'T. (I-1))/llx (B-2) 

The total amount of drainable water within 
each element can be represented in terms of scaled 
variables by the product of t.x and the sum of the 
scaled water table height and the scaled equivalent 
depth of drainable water above the water table, as 
given by: 

ZT . 
f S.d(P .He 
0 

zs . (B-3) 

where ZT. is the scaled distance between the water 
table and the soil surface. Substituting equation 
(11) i nto equation (B-3) , applying the assumption 
that Z. equals P. , and performing the indicated 
integration yield: 

1 1-), 
. ZS. • (1 + }:'f (ZT. - l) H e for >.~ J 

and 

ZS. ~ (1 + i n ZT . )~e for x~l 

The scaled volume of water in element 
step N is: 

(B-4) 

at t ime 

ESIIT . (1, N)£.x ~e • (ZWT . (I) + ZIIT . (I)) llx q,e . (B-5) 

The la1~ of conservation of mass can be applied 
to element I to obtain the expressi on for the total 
scaled dept h of drainable 1;ater at the next t ime 
step N+ l as follows: 

ESI\'T . (I,N+l) = ESWT . (I ,N) • (Fl. - F2.)(6T/6X) . (B- 6) 

Selection of Time Step Length 

The stability of the numerical solution depends 
on the length of liT because of the solution' s 
explicit nature . Since the form of equation (B- 6) 
is essentially that of the heat f low equation , the 
stability analysis for that equation can be applied 
in t he determination of the time step length. The 
maximum time step length is based on the follo~>;ing 
relationship: 

or 

ESII'T. _E._ < 0 .5 
(6X) 2 -

(B-7) 



,, 

t.T~IAX • O.S(e.X) 2JESII'T. (B-8) 

The maximum value of ESWT. must be used in equa­
tion (B-8) in order to insure stability . 

Comparison between Numerical Solution and Glover ' s 
Solution 

Numerical solutions are usually checked by com­
paring their results with appropriate analytic solu­
tions. Glover's solution was selected because it 
can be applied to boundary conditions identical to 
those considered in tho study and i~ is based on the 
O-F assumptions. The numerical solution was modified 
to ignore the drainable water above the water table. 
The dimensionless outflow and water table height as 
given by the t wo solutions are shown in Fi gure B-1 . 
The small differences existing in the relationships 
result because of the constant depth of flow assumed 
by Glover ' s solution while the numerical solution 
considers the actual depth. 

, . 
. • 
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FORTRAN Li sting of Hydraulic Head Reduct ion Progr am 

PROGIW1 AGDRG 
C THIS IS AN EXPLICIT SOLUTION OF THE LINEARLIZED FLOW EQUATION 
C FOR TWO DIMENSIONAL TRANSIENT- FLOW DRAINAGE 

DIMENSION DELV (52), T(30), EHC(52), Zl (52) 
CQt.11-10N Z(52). ZS(52). ZHC(52), 0, ES(52,2) , Zl'i"f(52,2),ZSWT(52,2), 

1ZT(52), E~7T(52,2) , ESWT(52,2), X(52) , DL 
C READ IN FLOW SYSTEJ.I DIMENSIONS, ETC. 

READ(5,100) SLD, DL , ZI, ZD, IT, NT, NRUNS , NRUNL 
100 FO~V.T ( 4Fl0. 2 , 415 ) 

C READ IN SOIL PAIW1ETERS 
READ(5,101) ELA, DPOR 

101 FO~T( 2F10 .3) 
TO • 0.0 
FO = 0.0 

MI-l • 0 
N • 1 
ET = 2.0 + 3. 0•ELA 
ETl • -ET + 1. 0 

C READ IN TIMF.S FOR OUTPUT 
READ(5 ,102) (T(M), M = l,NT) 

102 FO~V.T(SElO . l) 
\I'RITc (6, 103) (T(M) , M = 1,NT) 

103 FORI-V.T(SEl O .1) 
DELX • SLD/(2.0• IT) 
SUMVOL = 0.0 
ZIT = DL-ZI 
ZDT • OL- ZD 
M " 1 
CALL ZHCS(ELA,ZIT,ZDT ) 

C INITIALIZE WATER TABLE ELEVATIONS 
DO 120 I = 1, 51 

120 Z~7(I,l) R Zl 
~fT • 0 

10 DELT = 0. 10 • lO.O• •MT 
IF( TO .LE. 1.0 ) OELT = 0.025 

~l!-1• ~1).!• 1 
TO = TO + OELT 
TS " T0•62.5 
ZWT(1 , N) • ZD 
IF(TS .LT. 40 .5) ZWT(l,N) ZI - SQRT(TS/10.0) 
IF (MI-l. GT. 1) GO TO 150 
DO 130 1•2,51 
EHC(I) = ZHC(52) 

130 ES(I , 1) • ZS(S2) 
150 DO 160 1 • 2,51 

ESWT(1,N) = Zli'T(l , N) + ES (l , N) 
IF( I .EQ. 51 ) ZWT(S2,N) = Zli'T(S1,N) 
IF( I . EQ . 51) EHC(S2) = EHC(51) 
IF(I . EQ. 2) EHC(l) = 0.0 
fl • ((Z\'IT(l,N) + J::I IC(I) + Z117(I+l, N) + EHC(l+ l ))/2 . ) •((Zli'T( l +l , N) 

1 - Zli'T(l,N)) I DELX ) 
F2 = ((ZI\'T(l , N) + EHC(I) + ZWT(I- 1, N) +EIIC(l -1))/2 . ) *((Zli'T(I, N) 

1 - ZII'T(J - 1,N))/DELX) 
lF(J .GT. 2 ) GO TO 155 
WRITE(6,158) TD, TS , F~. N , N 

158 FORI-lAT( * TIM!:: • • , 21'15.8, • Fl = •Fl5.8,• N = *• 14, • ~I= • ,14) 
FO = FO + F2•0ELT 

155 ESWT(I,N+1) = ESI\7(I,N) + (-F2 + Fl) * (DELT/DELX) 
160 CONTlNUI; 
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Nl = N + 1 
DO 300 I = 2,51 
CALL CONVERT ( ZDT, I N 1 , ~I ) 
IF(ZWT(I,Nl) .LT. ZD) GO TO 999 

300 CONTINUE 
DO 920 I = 2,51 
Z1(I) • DL - ZII'T(I,N) 
EHC(I)=(l./( ET1)) • (Zl(I)••ET1 - 1.0 ) + 1.0 

920 CONTINUE 
TDl " TD - T(~l) 
IF ( ABS(TDl) .GT. 0 .001 ) GO TO 850 

M " M + 1 
WRITE (6, 6210) DELT, TO, TS 

210 FORMAT( * DELTA T = * , Fl0.4 , * DMLS . THIE = •, Fl 0.4, * TIME IN S 
lECS . = •, Fl0.4 ) 

C OUTPUT RESULTS 
DO 830 I = 1,51 
M6 = 6•M 
I F ( I .GT. M6 ) GO TO 830 
WRITE (6, 840) I, ZIIT (I , N), ES (I), EHC (I), ES\\'T (I ,N) 

840 FORI-!AT( 110, 4Fl5.8 ) 
830 CONTINUE 
850 CONTINUE 

DELVOL • 0.0 
DO 260 I = 2,51 
DELV(I) = ((ZWT(I,N) - ZWT (I,N+l) ) - ES(I,N+1)+ES(I,N))•DELX 
ES(I,N ) = ES(I, N+l) 
ZWT(I ,N) = Z~~(I,N+l) 

260 DELVOL = DELV (I) + DELVOL 
SUMVOL s SUMVOL + DELVOL 
IF ( ABS(TDl) .GT. 0.001 ) GO TO 950 
WRITE(6,360) TD, DELVOL, SU~IVOL, FO 

360 FOR!-!AT( * TI~IE" *, F10.4 , •INCREASE IN OUTFLOW u ,F15.8 , •TOTAL 
lOUTFLOII' •, 2Fl5.8) 

950 CONTINUE 
IF( M . EQ. NT ) GO TO 999 

GO TO 10 
999 CONTINUE 

END 
SUBROUTINE ZHCS(E,A,B , ) 

C THIS SUBROUTINE ESTABLISHES THE TABLE OF Z, ZS, AND ZHC VALUES 
C0~11-10N Z('S2), ZS(52), ZHC(52) , D, ES (52,2) , ZWT(52,2),ZSWT(52 , 2), 

1ZT(S2), Elm(S2,2) , ESWT(S2,2), X(52) , DL 
WRITE(6,502) 

502 FORI-IAT( 12X, •ACTUAL ELEV .*, 4X, •SEEPAGE ELEV . •,3X, • HYD. COND. E 
lLEV.• ) 

ET = 2.0 + 3.0•E 
ELl = - E + 1. 0 
ETl = -ET + 1.0 
D • (B - A)/50.0 
Z(l ) • B+D 
DO 500 I = 2,52 
Z(I) • Z(I-1) - D 
X(I) = DL - Zfl) 
ZS(I) =(l . /( ELl) )•( Z(I)••EL1 - 1.0 ) + 1.0 
ZHC (I) ,. ( 1. / ( ETl)) • ( Z (I) ** ETl - 1. 0 ) + 1. 0 
ZT(I) = X(l) + ZS(I) 
WRITE (6, 510) I,Z(I) , ZS(I), ZHC (I),ZT(I),X(I) 
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510 FORMAT( IlO , 5Fl5. 8 ) 
500 CONTI:\UE 

RETURS 
END 
SUBROUTINE CONVERT ( B, I, Nl, ~1 ) 
COMMON Z(52), Z$(52), ZHC(52), D, E$(52,2) , ZlfT(52 , 2) , ZSivT(52 , 2L 

1ZT(52) . Eli'TT (52,2) ' ES\\'T(S2 12) I X(S2) I DL 
DIMENSION ZAT(Sl, 2) 
N = Nl - 1 
DO 800 K = 21 51 
IF ( M .EQ. 1 ) ZAT(I, 2) ~ B + ZS(I) 
IF(ZT(K+1) .LT. ESI\i(I,Nl)) GO TO 800 
IF(ZT(K+l) .NE. ESWT(I,Nl)) GO TO 750 

Zl\i(I,Nl) = X(K+l) 
ES(I , Nl) = ZS(K+l) 
GO TO 515 

750 CONTINUE 
ZAT(I,N)= ZAT(l 1Nl) 
ZAT(l 1Nl) = ZT(K) + ((ESWT(I 1Nl) - ZT(K))/(ZT(K+l)-ZT(K)))•D 
ZII'T(1~N1)= X(K) + ((ESivT(I 1Nl) - ZT(K))/(ZT(K+l)-ZT(K))) .. ( X(K+l 

1 ) - X (K) ) 
ES( I 1Nl) = ESIVT(I 1Nl) - ZWT(I,N1) 

515 CONTINUE 
GO TO 900 

800 CONTI/\UE 
900 CONTI/\UE 

RETUR.~ 

END 
*RUN 
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TABLE C-1. 

TC;:Ip. 

;~ 
oc 

r 
~ 20.0 

l 20.5 
21.0 
21.5 
22 .0 
22 . 5 
23.0 
23.5 
24 . 0 
24.5 
25 . 0 
25 . 5 
26.0 
26.5 
27 . 0 
27.5 
28.0 
28 .5 
29.0 
29.5 
30.0 

APPENDIX C 

DYNAmC VISCOSITY AND DENSITY OF 
THE TEST FLUID 

DYN~tiC VISCOSITY AND DENSITY OF THE TEST FLUID 

Viscosity, u Density, p IJ/Pg 
centipoises grans/nl em-seconds 

1.589 0.7582 2.127 
1.571 0.7579 2.108 
1.555 0.7576 2.089 
1.539 0.7573 2.070 
1.524 0.7569 2.051 
1.509 0.7566 2.032 
1 . 494 0.7562 2.014 
1. 481 0.7559 1.996 
1 .468 0.7556 1.979 
1.454 0.7553 1.962 
1.440 0.7549 1.945 
1.427 0.7546 1.927 
1.414 0.7542 1.910 
1.401 0 .7539 1.893 
1.388 0.7536 1.877 
1.375 0 . 7533 1. 861 
1.362 0.7529 1.845 
1. 349 0.7526 1.829 
1. 337 0.7522 1.814 
1.326 0.7519 1. 799 
1. 315 0.7515 1.783 
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APPENDIX D 

CCNPUTER PR(X;!WI FOR THE REDUCTION 

OF PRESSURE DATA FRQt.l ~IODELS 

Generalized Flo~>· Diagram 

Read variables for soil properties, 
tensiometer grid, calibration meth-
od, and selected pressure heads and 
t i mes for which interpolations 
to be made . 

are 

1 
Read data unit consisting of time, 
millivoltage relating to tensio-
meter position, and millivoltage 
relat ing to sensed capillary pres-
sure at tensiometer. 

I 
Convert millivoltages to capillary 
pressure head after each complet e 
scan of all tensiometers. 

1 
For each tensiometer, interpolate 
in time to determine the capillary 
pressure head at each selected t ime. 

1 
For each se l ected time, interpolate 
in space to determine the position 
within the media where each value of 
selected head is located. 

l 
Print out coordinates of each se-
lected head for each selected t i me. 
Also, print out water table posi-
tions for each selected time. 
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FORTRAN Listing of Hydraulic !lead Reduction Program 

PROGRAM MOSOR 
C IPPS (40, i) POS. NU~IBER ST (20) SELECTED TIME 
C SH(20) SELECTED HEAD N(lO) CHANNEL NUMBER 
C K(lO) ELe!ENT IN THIRD POS . OF DATA 
C M(lO) ELE~IENT IN 4TH THRU 7TH POS. OF DATA - ~llLLIVOLTAGE 

C NR(lO) EL'-"\lE:-IT IN 8TH POS. OF DATA - DECIMAL PT., TI~1E,ETC. 
C PRESS(40) CAPILLARY PRESSURE HEAD IN MN 
C HTM(20) SELECTED TH1E IN DIMENSIONLESS UNITS 
C TS(96,25) TIME IN SECONDS TT(96,25) DI~!ENSIONLESS TIME 
C THE MAXI~IUM NUMBER OF CYCLES IS 25, MAX SEL. TIMES AND HEADS ARE 20 
C VT(96,25) MILLIVOLTAGE CAL(25,2) COI\'VERSION FACTOR 
C Hl-1(96,25) HEAD IN MM HD(96,25) DIMENSIONLESS HEAD 
C BIGRN TEST RUN NU~lBER DATE DATE OF RUN 

DH1ENSION IPPS(42, 9) ,ST(20) ,SH(20) ,N(lO) ,K(lO) ,M(lO) ,MR(lO) 
DIMENSION PRES( 40), HDLG(l00,20), XOST(20),DSTX(20),YDST(20) 
DIMENSION HD( 96, 25) ,CAL(25, 2), VT( 96, 25),TT(96 ,25 ), WTH(20) 
DIMENSION DSTY(20), HH( 20), ~1( 36,20),HDM(20) ,TS( 36,20) 
DIMENSION PDST(40), HTM(25) 
DATA(Q : lHQ),(NEG • lH-) 
INTEGER Q 
READ (5,100) NC, NR, NPOS, XDIST, YDIST, XIDIST, YIDIST 

100 FORt-tAT( 3IS, 4Fl0.3) 
READ (5,102) NCPl, NCP2, NCP3, NCP4, NST, NSH, CALDST 

102 FORMAT( 615, F12.2) 
READ (5, 106) (SH(IHS), IHS s 1 , NSH) 

106 FORf.IAT( 8F10.0) 
READ (5, 109) (ST(ITS), ITS = 1, NST) 

109 FOR.t<IAT( 8Fl0. 2) 
READ(5, 104) ((IPPS(IC,IR), IR = 1, NR), IC = 1, NC) 

104 FORt-tAT (1615) 
10 READ(5,120) BIGRN, DTL, SPOT 

120 FORMAT( FlO . O, F20 . 0 , FlO.O ) 
READ (5,113) BPH, PHI, HYCON, PSDI 

113 FORMAT(4F20 . 6 ) 
WRITE(6,1 21) BIGRN, SPOT, DTL 

1210FOR1-1AT(40HlTEST RUN NU~!BER -FlO .OII 
1 40HODATE OF RUN 5-28-68 
2 40HOTOTAL SOIL DEPTH (MM) 1152 I 
3 40 H SOl I. - POUDRE S.I\ND SCREENED I 
4 40H DITCH SPACli~G (FT) -FlO. 01 
5 40H DITCH LEVf:.L FRO~l FL~1F FLOOR(~IIol) -FlO.OI /11111 

WRITE(6,112) IWll, PHI, l!Y~ON, PSDI 
1120FORt<IAT(32H SOl I. PAR,\."·iiiTcK::i ARE AS FOLLOWS I I I 

1 32H BU!;!!I.E PRESSUI:E HEAD-C~i SOLTROL ,lOX , F20.6 I 
2 32H EFFl:t:TIVE POROSITY - PERCENT , l OX , F20. 6 I 
3 3211 HYDIV\lJLlC CONillJCT!VJ'l'Y - CM/SEC , lOX , F20 . 6 I 
4 32H PORE SI:E DISTRIBliTIO!\ INDEX , lOX , F20.6 Ill ) 

TCF HYCOI·! I I IH'Ii> PHI) 
WRITE(6,119) TCF 

119 F0~1AT(27H TIME CONVERSION FACTOR IS , 5X, F15.6 ) 
WRITE(6,103) NCPl, NCP2, NCr:;, NCP4, NST, NSH, CALDST 

1030FORMAT(27H CALIBRATION POSITION ~OS -4I10I28H TOTAL NO OF SELECTED 
l THIES:o i!O 127H TOT. NO. OF SELECTED HEADS= IlO I31H DISTANCE USED 
2 IN CALIBRATION = FlO.O II) 
WRITE(6,101) NC , NR, NPOS, XDIST, YDIST, XIDIST, YIDIST 

1010FOR1-IAT(22H1NUMBER OF COLUt>'INS = 151 22H NU~1BER OF ROI~S • 15/ 
l i24H NU~1BER OF POSITIONS • I7I24H DIST BET\iEE!\ COLU~I.'IS = FlO.:? 
2l241l DIST BETI~EEN ROWS = F10.212411 DIST TO FIRST COLU~JI\ = F10.2 
3I24H DIST TO FIRST ROW = Fl0.2/l) 

WRTTE(6, 108) 
lOB FOR1-1AT(25H SELECTED HEADS(!)I.tNLS)ARE, 9X , 22HSELECTED HEADS (~tl-l)ARE ) 

DO 115 IllS = 1, NSII 
110~1(!115) •(SH{IHS) • (1152 - DTL))/100 . 
WRITE(6, 116) SH(lHS) , HD~J(IHS) 

116 FO~~T(IHO , 2(20X, Fl0.3)) 
115 CONTINUE 
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WRITE (6, l !8) 
118 FOR/<11\T (261llSHECTED TIMES (DMNLS) ARE , 9X, 23HSELECTED THIES (SEC) A 

lRE ) 
DO 125 ITS ~ 1, NST 
HTM(!TS) • ST(ITS) /TCF 
~~RITE(6 ,126) ST(ITS), li1N(ITS) 

126 FOR/<IAT(1HO , 2(20X, Fl5 .6)) 
125 CONTINUE 

NTX => 0 
TIT = 0 .0 
DO 140 I = 1,96 
DO 140 J = 1,25 
'1/T( I ,J) = 0.0 
HDLG(I,J) = 0.0 
HH(J) = 0.0 

140 HD(l,J) = 0.0 
IRUN = 1 

90 READ (5,110) (N(I), K(I), ~!(I), ~IR{I) , I 1, 10) 
llO F0~1AT( 10(12, A1, 14, Il)) 

DO 190 I = 1, 10 
NN = N(I) 
KK = K(I) 
NM = M(I) 
HlM = ~ 
NNR = MR(I) 
IF(NNR) 503,501, 503 

501 WRITE (6 , 502) 
502 FORMAT( SOil ERROR IN DATA - ZERO IN POSITION 8 - DISREGARDED ) 

GO TO 190 
503 GO TO (1, 2, 25, 25, 25, 25, 7, 8, 9), NNR 

1 MM = 2•~11-1 

GO TO 25 
2 ~·R-1 = 20*~1 

GO TO 25 
7 WRITE(6, 77) 

77 FOru~~T(4SH ERROR IN DATA- 7 IN POSITION 8 - DISREGARDED) 
GO TO 190 

8 IF(NN .EQ. 0 .AND . MI-l .EQ . 0) ~R-1 = 5 
T= 3600*NN+(~!I-1/100)•60+ (~1- ((~1N/l00) *100) ) + NTX 
IF(TTT . EQ . 0.0) T = 5 .0 
GO TO 190 

9 I F(NN .EQ . 991 GO TO 290 
IF(NN . EQ. 88) NTX = ~1~1*3600 + NTX 
IF (NN. EQ. 6b) TIT = 1. 0 
GO TO 190 

25 IF(KK . EQ. Q) M/>1 = Ml-1 + 1. 01,;4 
I F(NN .NE. 25) GO TO 81 
IF (KK . EQ . NEG) ~L'I = -~tr.l 

FMI>I = ~11-t 
n1 = FMM/ 46.5 
I POS = 4 7 + I~·! 

IF(IRUN . EQ . 9 .AND. NN .EQ . 26) IPOS = I POS + 3 -ABS(IPOS/46) .48 
IF(IRUN . EQ . lO .AND . NN . EQ . 26) 1POS = IPOS + 2 -ABS (IPOS/47) *48 
IF (IPOS .NE. l ) GO TO 190 
!RUN = IRUN + 1 
IF(IRUN .EQ. 2) GO TO 190 
NP = 1 . 
FMC = FMI-11 

255 DO 300 IPOSS= 3, NPOS 
IF(IPOSS . EQ . 49) NP = 2 
IF(IPOSS .EQ. 49) F~!C = FMI-12 
IF(IPOSS .EQ. 49) GO TO 300 
IF(IPOSS . EQ . 50) GO TO 300 

' IF(VT(IPOS,IRUN-1) . EQ. 0 .0) GO TO 257 
. ~I(IPOSS,IRUN- 1) = 125S. O+(VT(IPOSS,IRUN-1) -HIC)/CAL(IRUN-1,NP) 

HD(IPOSS,IRUN-1)=(100 .* (HM(IPOSS,IRUN- 1)- DTL ))/( 386.-DTL) 
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IRNl = IRUN -1 
I~RITE (6, 98) IRNl, IPOSS, VT(IPOSS, IRNl), TT(IPOSS, IRNl), Ht-1 (IPOSS, 

1 IRNl), HD(IPOSS,IRNl) 
98 FORMAT( 2110 , 4Fl5 .6 ) 

GO TO 300 
257 WRITE (6,258) IRN1, IPOSS 
258 FO~IAT( 36H APPARENT MISSING VOLTAGE AT RUN NO ,Il0,2X, lOHAND P 

lOS No , 110 ) 
300 CONTINUE 
81 IF(NN . EQ. 28) IPOS = IPOS + 48 

IF(KK . EQ. NEG)Hr.l • - HIM 
lF{IPOS .EQ. NCPl) F~IM1 = HIM 
IF(IPOS . EQ. NCP3) FMM2 = FMM 
IF{IPOS .EQ. NCPl .OR. IPOS .EQ. NCP3) GO TO 190 
IF{IPOS .EQ. NCP2) GO TO 82 
IF(IPOS .EQ. NCP4) GO TO 83 
GO TO 85 

82 CAL(IRUN,l) ,. ABS((Ft-t-1-FM!-11)/CALDST) 
WRITE(6,92) CAL(IRUN,l) ,FMM, F~IM1, !RUN 

92 FORMAT( llll,3F16.5, 19) 
GO TO 190 

83 CAL(IRUN,2) = ABS((FMM-FMM2)/CALDST) 
WRITE (6, 93) CAL (IRUN, 2) , Ht\1, FMM2, !RUN 

93 FO~IAT(3Fl6.4, 19) 
WRITE (6,99) 

99 FORI-tAT( 12H RUN NUMBER ,lOHPOS NU!>1BER, 3X, 7HVOLTAGE, 7X , 9HREAL 
1TIME, 8X, lOHREAL HEADS, 9X , 20HDIMENSIONLESS HEADS ) 

GO TO 190 
85 VT (IPOS,IRUN) = FMM 

TS(IPOS,IRUK) = T 
TT(IPOS, IRUN) = 

190 CO:-lTINUE 
GO TO 90 

290 NRUN = IRUN - 1 
WRITE(6,292) NRUN 

TCF *TS(JPOS, !RUN) 

292 F0~1AT ( 23H1TOTAL NU~1 BER OF RUNS - I 6 ) 
GO TO 999 
DO 400 IPOSS= 1, NPOS 
IF(IPOSS . EQ. NCP1 .OR. IPOSS.EQ. NCP2) GO TO 400 
IF(IPOSS .EQ. KCP3 .OR. IPOSS.EQ. NCP4) GO TO 400 
NRITE (6, 544) 

544 FORI-IAT{/1111 POS NU~IBF.R,2X, lOHRUN !'\UMBER, 2X, llHSEL TIME NO , 2X , 
l 13HSELECTEO TIME, 2X, 121n'I~IE OF DATA , 3X,l8110IMENSIONLESS IIL:AD) 

JTS " 1 
NRUNN = NRUN - 1 
DO 550 IRUN E 2,NRUNN 
IF (HD(IPOSS,lRUK+l) .NE . 0 .0) GO TO 543 
HD (IPOSS,IRUN+l) = HD(JPOSS,IRU.:--1+2) 
TT(IPOSS, IRUN+l) • TT(IPOSS, IRUN+2) 

543 IF(HD(IPOSS,IRUN) .NL:. 0.0) GO TO 549 
liD ( IPOSS ,1 RUN) = HD (I POSS, IRUN-1) 
TT (IPOSS, IIMI) • TT (IPOSS, I RU:\-1) 

549 IF((HD(IPOSS,IRUN+l) - HD(li'OSS ,IRUK)) . LT . 20 .0) GO TO 551 
IRUN = NRUNN 
GO TO 550 

552 ITS = ITS + l 
551 IF(ST(ITS) .LT. TT(IPOSS,IRUN)) 

IF (TT (IPOSS, IRUN). EQ . ST( ITS)) 
IF(TT(IPOSS,IRUN) . LT. ST(ITS) 

lST(ITS)) GO TO 555 

GO TO 552 
GO TO 553 
. A!·.JU. TT(IPOSS, IRUN+l) 

IF(TT(IPOSS,IRUN) .GT. ST(ITS)) GO TO 550 
IF(11(IPOSS,IRUN+l) . LT . ST(ITS)) GO TO 550 

.GT . 

555 rtDLG(IPOSS,ITS) = (HO(IPOSS,lRUN+l)-IIU (IPOSS,IRUN))•(ALOGlO(ST 
l (ITS)) - ALOGlO(TT(IPOSS,IRUN)))/(ALOGlO(TT(IPOSS,IRUN+l)) -
2AL0GlO(TT(IPOSS , IRUN))) + HD{IPOSS,lRUN) 

GO TO 558 
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553 HDLG(IP05S,ITS) = HD(IPOSS 1 !RUN) 
558 II'RITE (6, 556) IPOSS 1 !RUN 1 ITS, ST (ITS) , TT(IPOSS 1 !RUN) 1 IIDLG ( IPOSS, ITS) 
556 FORMAT(3110 1 3F16. 4) 

IF(HD(IPOSS,IRUN) . EQ. 0 . 0 ) GO TO 550 
IF(TT(IPOSS,IRUN) . EQ . 0 . 0 ) GO TO 550 
IF( ITS .NE. NITS ) GO TO 552 
I F(HD(IPOSS,IRUN+1) . NE. 0.0) GO TO 559 
IID(IPOSS,IRUN+2) = HD(IPOSS 1 IRUN+l ) 
TT(IPOSS1 IRUN+2) = TT(I POSS 1 IRUN+l) 

559 IF (HD(IPOSS,IRUN) . NE. 0.0) GO TO 550 
HD(IPOSS 1 IRUN~1) = HD(IPOSS 1 IRUN) 
TT ( IPOSS 1 IRUN-1) = TT(I POSS 1 IRUN) 

550 CONTI NUE 
400 CONTINUE 

l~RITE(6,450) 
450 FOfU.IAT(73H INTERPOLATION ALONG EACH ROW AND COLU~IN FOR EACH SELEC 

1 TED THIE FOLLOWS I I I I ) 
DO 500 ITS = 1, NST 
DO 600 IR = 11 NR 
J " 1 
TMS= ST(ITS)/TCF 
WRI TE(6 , 622) ST( ITS) 1 TMS 1 IR 

6220FORMAT(16HOSELECTED TIME • 2F10 . 3,10X 1 13HROW NUMBER= ll0/ 1 12H POSl 
lTION NO , 5X, 8HPOS DIST 1 8X, 8!U1EAD 1 DLS , 7X 1 lOHPRESS HEAD//) 

67 DO 650 IC • 1, NC 
IIPOS = IPPS(IC1 IR) 
IF(HDLG(liPOS 1 1TS) . EQ . 0 .0) GO TO 650 
IF(IIPOS . EQ. 999) GO TO 650 
AlC = lC ~ 1 
XDST (J) = XIDIST + XDIST•AIC 
HH(J ) = HDLG(I IPOS , ITS) 
PRES(J)•((HH(J) *(1152 . -DTL })/100 .0) + DTL • 152.4-152 .4 • (7-IR) 
WRITE(6 1 632) IlPOS ,XDST(J) , HII(J), PRES(J) 

632 FOfU.IAT(ll0 1 3Fl6 . 6) 
J = J + 1 
NJ = J - 2 

650 CONTINUE 
WRITE(6 , 633) 

633 FOfU.1AT (1H0,5X 1 10HINTPLTN NO, SX, llHSEL HD,D~ILS , 3X , 14HDIST TO SEL HD 
1 I!) 

DO 700 J • 1, NJ 
I HS = 1 
GO TO 701 

702 IHS = IHS + 1 
IF( IHS .EQ. NSII) GO TO 705 

701 IF(SII(IIIS) .GT. HH(J) .AND . SH{IIIS) .LT. HII(J+1) ) GO TO 703 
I F(SII(IHS} .LT. HH(J) . AND. Sll(lHS) . GT . HH(J+1)) GO TO 703 
GO TO 702 

70300STX(IliS) • XDST(J) + { XDST(J+l) - XDST(J))•(SH(Il!S) - Hll(J))/ 
1 (!-1!-I(J+l) ~ liii (J)) 

705 WRITE(6 1 720) J 1 SI!{IIIS), OSTX(IHS) 
720 FOfU.IAT(SX 1 15, 2(10X 1 Fl2.0)) 

IF( lHS .NE. NSH ) GO TO 702 
700 CONTINUE 

DO 750 J • 1, NJ 
IF{PRES{J) .LT . 0 . 0 . ANU . PRES{J+l) .GT . 0.0 .OR . PRES(J+l) . LT. 

1 0 . 0 . AND. PRES(J) .GT. 0.0) GO TO 753 
GO TO 750 

753 POST{IR) " XDST(J) - (XUST(J+l) - XUST(J)) * (PRES(J))/ 
1 (PRES(J• l ) - PRES(J) ) 

WRITE(6 1 772) IR, PDST(IR) 
77.2 FORMAT(1911 WATER TABLE IN ROI~ 1 110, 2X, 12HAT DISTANCE , F15.6 ) 
750 CONTINUE 
600 CONTINUE 

DO 800 IC = 1 , NC 
T= ST{JTS) 
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PDST(IC) •0. 0 
IF( IPPS(IC, 1) . EQ. 999) GO TO BOO 
L • 1 
WRITE(6,822) ST(ITS) , TMS, IC 

8220FOR/>1AT(l6HOSELECTED TIME =2Fl0.3,10X,l3HCOL NUJ.IBER • Il0/,12H POSI 
lTION NO, SX, 81iPOS DIST, 8X, 9HHEAD,DMLS, 7X,10HPRESS HeAD//) 

DO 850 IR = 1, NR 
IIPOS = IPPS(IC,IR) 
IF(HDLG(IIPOS,ITS) .EQ. 0.0) GO TO 850 
IF(IIPOS .EQ. 999) GO TO 850 
AIR " IR - 1 
YDST(L) • YIDIST + YDlST*AlR 
HH(L) = HDLG(IIPOS, ITS) 
PRES(L)~((HH(L) *(1152.-DTL ))/100.0) +DTL - 152 .4-152 .4 *(7-IR) 
WRITE(6,632) IIPOS,YDST(L), HH(L), PRES(L) 
L "' L + 1 
NL = L - 2 

850 CONTINUE 
WRITE(6,633) 
DO 900 L = 1, NL 
IHS " 1 

'GO TO 901 
902 IHS = IHS + 1 

IF( IHS .EQ. NSH ) GO TO 905 
901 I F(SH(IHS) . GT. HH(L) . AND . SH(IHS) . LT . HH(L+1) .OR. SH(IHS) 

1 .LT. ffi1(L) .AND . SH(IHS) .GT. HH(L+l)) GO TO 903 
GO TO 902 

9030DSTY(IHS) = YDST(L) +(YDST(L+1) - YDST(L))*(SH(IHS) -HH (L))/ 
l(HH(L+l)-HH(L)) 

905 WRITE(6, 720) L, SH(IHS), DSTY(IHS) 
IF( IHS .NE. NSH ) GO TO 902 

900 CONTINUE 
DO 950 L = 1,NL 
IF(PRES(L) .LT. 0.0 .AND. PRES(L+1) .GT. 0.0 .OR. PRES(L+1 ) .LT. 

1 0.0 .AND. PRES(L) .GT. 0.0) GO TO 953 
GO TO 950 

953 PDST(IC) = YDST(L) - (YDST(L+1) - YDST(L)) * (PRES(L))/ 
1 (PRES(L+l) - PRES(L) ) 
WRITE(6,972) IC , PDST(IC) 

972 FORMAT(l9H WATER TABLE IN COL , 110, 2X, 12HAT DISTANCE , Fl5 .6 ) 
950 CONTINUE 
800 CONTINUE 

CALL WTPLOT (PDST,T) 
500 CONTINUE 
999 CONTINUE 

END 
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APPENDIX E 

RESULTS FRG! PHYSICAL ~10DELS 

TABLE E-1 - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR 

BOUNDARY CONDITION NO. 1 - MEDIA: POUDRE SAND 

Boundary Conditions 

Initial water table: 2/3 media height - 4.02 Pb/pg 
Final water table: l/3 media height - 2.01 Pb/pg 
Drain spacing: 64.08 Pb/pg 

Time T. D D. F F. Mt/~1o 
sec em em/sec 

800 . 711. 0 .342 0 .0590 
1000 .889 .410 .0713 .000351 .0688 1.000 

1500 1.334 .538 .0936 .000222 .0435 .999 
2000 1.778 .652 .1134 .000206 .0404 .998 
3000 2.667 .841 .1463 .0001755 .0344 .996 
4000 3.556 1.003 .1745 .0001597 .0313 .988 
6000 5.334 1.318 . 2293 .0001360 .0219 .964 
8000 7.112 1.547 .2692 .0001145 .0219 .949 

10000 8.89 1. 753 . 3050 .0000988 .0194 .931 

15000 13.34 2.212 .3849 .0000873 .0171 .902 
20000 17.78 2.626 .4569 .0000751 . 0147 .876 
30000 26.67 3.299 . 5740 . 0000629 . 0123 . 817 
40000 35.56 3.884 .6758 .0000527 .01034 .734 
60000 53 . 34 4.824 .8394 .0000410 .00803 .61 7 
80000 71.12 5.523 . 9610 .0000334 .00655 .518 

100000 88.9 6.160 1.074 .0000263 .00516 .443 

150000 133.4 7.195 1.254 .00001601 .00314 .289 
200000 177.8 7. 762 1.351 .00000956 .00187 .208 
300000 266.7 8 . 540 1.486 . 00000562 .00110 .076 
400000 355.6 8.785 1.529 .00000197 .00039 .053 
600000 533.4 9.004 1.567 .00000091 .00018 .021 
800000 711.2 . 9.149 1.592 .00000058 .00011 .009 

1000000 889. 9.236 1.607 .00000033 .00007 .002 
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TABLE E-2 - DRAINAGE RESULTS FR~f EXPERIMENTAL TESTS FOR 

BOUNDARY CONDITION NO. I - ~lED IA: HYG I ENE SAND 

Boundary Gondi tion 

lni tial water table: 2/3 ~:~edia lleiaht - 4.02 Pb/pg 
Final water table: 1/3 media height - 2. 01 Pb/pg 
Drai n spacing : 64 .OS Pb/pg 

Time T. 0 0. F . F. wl•to 
sec c .. em/sec. 

100 1.07 .1342 0.08119 

150 1.61 .1802 .1090 0.0009224 0.05211 1.000 
200 2.14 .2265 .1370 8100 .04576 1.000 
300 3. 21 .2959 .1796 6447 . 03643 .992 
400 4 .28 .3554 . 2150 5620 .03175 .983 
600 6.42 .4612 . 2790 4799 .02711 .963 
800 8.56 .5471 .3310 4050 .02288 .940 

1000 10.70 .6232 .3770 3488 .01971 .914 

1500 16.05 . 7819 .4730 .0002893 .01634 .86~ 
2000 21.4 .9125 .5521 2413 .01364 .821 
3000 32.1 1 .1340 .6861 1975 .01116 . 751 
4000 42.8 1.3075 0 7910 1583 .OOS94 .689 
6000 64 0 2 1. 5935 .9641 1269 . 00717 .579 
8000 85.6 1.8150 1.0981 1008 .00570 .483 

10000 107.0 1.9968 1. 208 I 0755 . 00427 .401 

i 
15000 160.5 2.2977 1. 3901 .0000476 .00269 0 237 
20000 214. 2.4729 1.4961 246 . 00139 . 135 
30000 321. 2.6151 1.5821 l OS . 00059 . 041 
40000 428. 2.6828 1.62SI 004 .00002 .008 
60000 642 0 2 .6927 1.6291 

I TABLE E-3 - DRAINAGE RESULTS Fl\0.11 EXPEr.U·ii!NTAL TeSTS FOk 

BOUNDARY CONDITIO~ NO. 2-HEDIA: POUORE SANti 

I 
Boundary Conditions 

Ini t i al water table: l/3 media height - 2.01 Pb/pg 
Final water table: base of media 
Dral n spacin&: 64.08 Pb/P& 

Time T. D D. p F. ~lt/~10 
sec Cll <:A/sec 

2000 1.36 0.4827 0.0643 
3000 2.04 .6226 .0829 .00002039 .03998 1.000 
4000 2.72 0 7885 .1050 1381 2708 .999 
6000 4 .08 1.0091 .1344 09898 1941 .998 
&000 5 .44 1.1844 .1578 08660 1698 .997 

10000 6.8 1.3355 .1779 07237 1419 .994 

15000 10.2 1.6764 .2233 .000006680 .01310 .973 
20000 13.6 1.9985 .2262 6013 1179 .942 
30000 20.4 2 .5569 .3353 5030 0986:; .916 
40000 27.2 3.0575 .4073 4629 09077 .889 
60000 40.8 3.9078 .5205 3591 07042 .863 
80000 54 .4 4 .4940 .5986 2802 05495 .818 

100000 68 5.0287 .6698 2509 04921 .773 

150000 102 6. 2012 .8260 .000002155 . 004226 .673 
200000 136 7 .1836 .9569 1754 3439 .559 
300000 204 8. 7263 1.1623 1269 2488 .422 
400000 272 9. 7214 1. 2949 0895.3 1756 .313 
600000 408 11.3125 1.5068 05862 1149 . 208 
800000 544 12.0661 1.6072 03509 0688 .137 

1000000 680 12 0 7162 1.6938 02469 0484 .084 

1500000 1020 13.6604 1.8062 .0000001414 .000277 .017 
2000000 1360 14.1305 1.8835 
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TABLE E-4 - DRAIKAGE RESULTS FRO)! EXPERIHENTAI. Tt;5TS FOR 

BOOSOARY CONDITIO~ NO. 2 - )lEOlA: HYGIENE SAND 

Boundary Condition 

Ini t ial ~'ater t abl e : 1/3 media height - 2.01 Pb/og 
Final water t able: base of media 
Or &in spacing: 64.08 Pb/1>& 

T T. D D. F F. "\"''o sec em em/sec 

100 0.989 0 .1040 0.0581 .0006274 0.0~545 1.000 
150 1.484 .1360 .0760 6160 ~481 1.000 
200 1.978 . 1656 .0925 5590 ~158 1.000 
300 2 .967 . 2181 . 1218 4837 27S3 1.000 
400 3.956 . 2624 . 1466 3913 2211 1.000 
600 5 .9 34 . 3304 . 1846 3217 1818 .999 
800 7 .912 .3911 .2185 2955 1669 .998 

1000 9 . 89 .4485 .2506 2610 1475 .993 

1500 14 . 84 .5658 . 3161 .0002]19 • 01 243 .970 
2000 19. 78 .6685 .3735 1919 108·1 .947 
3000 29.67 .8469 .4732 1608 0909 .913 
4000 39.56 .9902 . 5532 1298 D733 . 882 
6000 59 .34 1.2229 .6832 1072 D606 . 816 
8000 79. 12 1.4191 . 7928 0856 0483 • 751 

10000 98 .9 1.5651 .8744 0622 0374 .674 

15000 148.4 1.8617 1.0401 .0000536 .00303 .492 
20000 197.8 2 .1013 1.1740 382 216 .374 
30000 296 .7 2 .3864 1 .3333 234 132 . 242 
40000 395.6 2 . 5690 1.4353 140 079 .159 
60000 593.4 2. 7652 I. 5449 079 044 .082 
80000 791.2 2 .8838 1.6112 039 022 .029 

100000 989.0 2 .9203 1 .6316 014 008 .004 

150000 1&84 2.9660 1.6571 .0000007 .00004 
200000 1978 2.9888 1.6698 

TABLE E-S - DRAINAGE RESULTS FRO~I EXPER!ftEh'l'AL TESTS FOR 

BOUNDARY CONDITIO:\ NO. 3-~IEOIA: POUORE SAND 

Boundary Conditions 

Initial water tabl e: 1. o media hoiaht - 6. Ol P lP a 
final water table: base of media 
Drain spac i ng: 64.08 Pb/og 

Ti me T . D 0. F F. ~'t/~10 
sec em cm/uc 

3000 2 . 33 1.1434 0. 17 38 0 .989 
4000 3 . 10 1.4607 . 2220 0.0002624 0.05145 .956 
6000 4.65 1.8681 . 2840 2092 .04102 .927 
8000 6 .20 2. 2902 .3481 1901 .03727 .902 

10000 7. 75 2. 6284 .3995 1536 .03013 . 883 

15000 11.6 3. 2693 .4969 . 0001376 .02698 .858 
20000 15 . 5 3.9940 .E07l 1309 .02566 .839 
~0000 23.3 5. 2620 .7998 1039 .02037 .802 
40000 31.0 6.0715 .9229 0783 .01536 .770 
60000 46 . 5 7. 5853 1 . 1530 0697 .01366 .707 
80000 62.0 8.8576 1.3464 0592 .01161 .657 

100000 77.5 9.9527 1.5128 0486 .00954 .614 

150000 116 12.0786 1.8359 .0000375 .00736 .529 
200000 ISS 13.7051 2.0832 291 .00571 .468 
300000 233 16.2740 2.4736 199 .00389 .389 
400000 310 17.8763 2. 7172 138 .00272 .341 
600000 465 20.6141 3. 1333 113 .00221 . 279 
800000 620 22.3856 3.4026 081 .00158 . 237 

1000000 775 23.8350 3.6229 056 .00109 . 206 

1500000 1163 25 .5676 3.8863 .0000031 . 00060 . 159 
2000000 1550 26.4950 4.0272 15 .00029 . 116 
3000000 27 .0300 4.1086 
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TABL~ E-6 • DRAINI\GE RESULTS FRO~! EXPERIJ.IE!\'TAL Tf.Sl'S FOR 

80\JII'DARY CONDITION SO. 3-~a'OIA: HYG 1 ENE SAI'ID 

Boundary Conditions 

Initial •·ater table: 1.0 media he iaht - 6.03 P/og 
Final water t able: base of otedia 
Drain spacing: 64.08 Pb/og 

Time T. 0 0. F F. M/~10 sec 
Clll r:a/sec 

100 1.07 0.1846 0.1116 0.992 
150 1.61 .2395 .1448 0.010420 0.5887 .986 
200 2.14 .2888 .1746 9305 . 5257 .974 
300 3. 21 . 3763 . 2275 7998 .4519 .944 
400 4.28 .4488 . 2713 6965 .3935 .921 
600 6 .42 .5824 .3521 6178 .3491 .897 
800 8.56 .6959 . 4207 5333 .3013 .876 

1000 10.7 .7957 .4810 4476 .2529 .843 

1500 16. 1 .9938 .6008 .003765 .2127 .826 
2000 21.4 1.1722 .7086 3365 . 1901 .801 
3000 32.1 1.4884 .8998 2950 .1667 . 759 
4000 42. 8 I. 7622 1.0653 2394 .1353 . 719 
6000 64. 2 2 . 1723 1.3132 1929 .1090 .652 
8000 85.6 2.5339 1.5318 1743 .09848 .591 

10000 107 2.8694 1. 7346 1434 .08102 . 539 

15000 161 3.4599 2.0916 .0009603 .05426 .458 
20000 214 3.8247 2. 3121 6930 .03915 .395 
30000 321 4.4811 2. 7089 5640 .03187 . 332 
40000 428 4.9527 2. 9940 3943 .02228 .287 
60000 642 5.5866 3.3772 2696 .01523 .205 
80000 856 6.0309 3. 6458 1629 .00920 . 167 

100000 1070 6. 2383 3. 7712 0727 .00411 . 132 

150000 1610 6.4467 3.8972 .0000302 .00171 .073 
200000 2140 6.5405 3.9539 

TABLE E-7 - DRAINAGE RESULTS FROH EXPf.RlM~VTAL T ESTS FOR 

BOUNDARY CONDITION NO. 1-~IP.OIA: SCIINE IOER SAND 

Boundary Conditions 

Initial water table: 2/3 otedia height - 4.02 Pb/o& 
Final water table: 1/3 medta height - 2.01 Pb/~1 
Drll.in spacing: 64.08 Pb/ng 

Tlme T. 0 0. F F. ~\/Mo 
sec Clll Clil/sec 

60 2.91 .3443 .1777 1.000 
80 3.88 .4152 .2142 .0003408 .03626 1.000 

100 4. 85 .4806 .2480 3090 3288 .999 

150 7.28 .6211 .3205 .0002584 .02749 .998 
200 9. 70 . 7390 .3813 2171 2310 .996 
300 14. ss .9374 .4837 1755 1867 .979 
400 19.4 1.0900 .5624 1423 1514 .951 
600 29.1 1.3538 .6986 1146 1219 .884 
800 38.8 1 . 5484 . 7989 0963 1025 .825 

1000 48. 5 1. 7390 .8973 0875 0931 . 759 

1500 72.8 2 .1372 1. 1028 .0000725 .00772 .608 
2000 97.0 2.4643 1. 2716 532 566 .502 
3000 145.5 2.8746 1.4833 311 331 .353 
4000 194 3.0868 1. 5928 164 174 .234 
6000 291 3 . 3180 1. 7121 u s 123 .109 
8000 388 3.5469 1.8302 090 096 .056 

10000 485 3.6795 1.8987 048 051 .027 

15000 728 3.8295 1.9761 .0000018 .00019 .014 
20000 970 3.8576 1.9905 .007 
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TABLE E-8 • DRAIN.~GE RESULTS FRO.\! EXPERH!E.'ITAL TESTS FOR 

80\JNO:\RY CONOIT!ON NO. 2-~U:DIA: SCIINEIDCR SMfll 

Boundary Condition 

Initial -.:ater table: 1/3 media height - 2.01 Pb/pg 
Final water table: base of media 
Drain spacin~: 64 .08 Pb/pg 

Time T. D 0. F F. ~~/~'o 
sec em em/sec 

40 1.832 0 .1925 0.0937 1.000 
60 2.748 .2519 .1227 0.002716 0.2890 1.000 
80 3.664 .3018 .1470 2464 .2622 1.000 

100 4. 58 . 3504 .1706 2126 . 226~ 1.000 

I SO 6.87 .4399 .2142 .001707 . 1816 1.000 
200 9.16 .5211 .2538 1497 . 1593 1.000 
300 13.74 .6580 .3204 1227 .1306 .999 
400 18.32 • 7660 .3730 1076 . 1145 .993 
600 27.48 .9796 .477l. 1013 . 1078 .975 
800 36.64 1.1718 .5707 0864 .0919 .947 

1000 45.8 1.3251 .6453 0701 .0746 .919 

1500 68.7 J .6427 .7998 .000587 .0625 .847 
2000 91.6 1. 9119 .9311 0463 .0493 .77~ 

3000 137.4 2. 2998 1.1200 0361 .0384 .647 
4000 183.2 2.6338 I. 2827 0278 .0296 .549 
6000 274.8 3.0773 1 .4986 0186 .0198 .407 
8000 366.4 3.3785 1.6453 0120 .0128 .314 

10000 458 3 .5592 1. 7333 00853 .00908 .244 

15000 687 3.8603 ).8800 .0000452 .00481 . 144 
20000 916 4 .0119 1.9534 .089 

TABLE E-9 - DRAINAGE RESULTS FRQ.\1 EXPERU!EI(!'AL TESTS FOR 

BOUNDARY CO!'IU!TION NO. 4-.,EDIA: IIYGJENE SAND 

Boundary Conditions 
Initial water table: 2/3 ~nedia hciaht - 4.02 Pb/P& 
Final water table: base of media 
Drain spacin&: 64.08 Pb/pg 

'l'ime T . D D. F. Mt/Mo 
sec em CIA/SeC 

200 2.30 0.2893 0.1880 1.000 
300 3.45 .3970 . 2581 .0000936 .005288 1.000 
400 4.6 . 4764 .3097 815 4605 .999 
600 6.9 .6434 .4182 7528 4253 .998 
800 9.2 .7775 .5054 6433 3635 .992 

1000 u.s .9007 .5855 5599 3163 .976 

1500 17.3 1.1526 0.7492 . 00004909 .002774 .943 
2000 23.0 l. 3716 o. 8915 4066 2297 .901 
3000 34.5 l. 7467 1.1354 3149 1779 .825 
4000 46. 2.0013 1.3008 2334 1319 .765 
6000 69. 2.4257 1.5767 1958 1106 .661 
8000 92 . 2. 7843 1.8098 1629 0920 . 579 

10000 115. 3.0773 2.0002 1269 0717 . 507 

15000 173 3.6139 2.3485 .00000921 .000520 .366 
20000 230 4.0081 2.6053 609 344 .275 
30000 345 4.4571 2.8971 342 193 .171 
40000 460 4.6926 3.0502 189 107 .Ul 
60000 690 4 .9801 3. 2371 113 64 .041 
80000 920 s .1468 3.3454 070 39 .013 

100000 1150 5.2595 3.4187 .004 
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TABLE E-10 - DRAINAGE RESULTS FRO~! EXPERH!eNrAL TESTS 

FOR BO!r.IOARY CO!.'OlTIO~ NO. 4-J.IEOIA: 

SCHNEIDER SAND 

Boundary Conditions. 

Init ial wat er table: 2/3 aoedia heicht - 4. 02 P b/Q a: 
Final water table: ba.se of media 
Drain spacing: 64.08 Pb/Pg 

Time T. D o. F. M/•'o 
sec Cll Clll/sec 

20 0.970 0. 2574 0.1328 
30 1.455 .3404 .1756 0.0007940 0.08448 1.000 
40 1.94 .4162 . 2148 07050 7501 1.000 
60 2.91 .5467 . 2821 06115 6506 ' 1.000 
80 l.8e .6607 .3409 05499 5851 .999 

100 4 .85 . 7866 . 4059 04855 5166 .998 

150 7.28 .9875 .5096 .0004107 .04370 .996 
200 9. 70 1.1773 .6075 03404 3622 .992 
300 14. 55 1.4784 . 7629 02820 3000 .978 
400 19.4 1. 7413 .8985 02471 2629 .959 
600 29.1 2. 2039 1.1372 02152 2290 .921 
800 38. 8 2. 5972 l 3402 01900 2022 .877 

1000 48 .5 2.9240 1.5088 01535 1633 .831 

1500 72.8 3.6176 1.8667 .0001228 .01307 '727 
2000 97.0 4.1523 2.1426 0955 1016 .641 
3000 145. 5 4.9920 2.5759 716 0762 .506 
4000 194' 5. 5852 2 . 8820 481 0512 .415 
6000 291 6 . 3244 3. 2634 271 0288 . 291 
8000 388 6.6712 3.4423 187 0199 . 213 

10000 485 7.1926 3. 7114 132 0140 .162 

15000 728 7. 3920 3.8143 . 0000051 .00054 .089 
20000 970 7.4838 3.8616 21 22 .063 
30000 1455 7.6840 3 . 9649 06 6 .029 
40000 22SO 7. 7014 3 .9739 

TABLE E-ll - DRAINAGE RESULTS FROM EXPERIMENTAL TESTS FOR 

BOUNDARY CO~'OITION NO. 5 - ~lEOlA: HYGIENE SAND 

Boundar y Conditions 

Initi al water table: 2/3 media hela;ht - 4.02 Pb/pg 
Final wo.ter table : 1/3 media hei&ht - 2.01 Pb/og 
Dra.in spacing : 128.16 Pb/Pi 

Tlmc T . 0 o. F F. ~lt/~10 
5CC em CZJ./sec 

150 1.68 .1054 .0667 .003924 . 2217 1.000 
2000 2.24 .1232 .0780 3331 .1882 1.000 
300 3.36 .1542 .0976 2875 . 1624 1.000 
400 4 .48 .1807 .1!44 2441 . 1379 1.000 
600 6. 72 .2254 .1427 2088 . 1179 1.000 
800 8 .96 .2642 . 1672 1802 .1018 1.000 

1000 11. 2 . 2975 .1883 1563 .0883 1.000 

1500 16.8 .3705 .2345 .001378 .0784 .996 
2000 22 .4 .4362 .2761 1209 .0683 .994 
3000 33 .6 .5466 .3460 0911 .0515 .978 
4000 44.8 .6384 .4041 0827 .0467 .957 
6000 67.2 . 7857 . 4973 0697 . 0394 .905 
8000 89 .6 .9172 .5806 0614 .0347 . 849 

10000 112. 1.0312 .6527 0513 .0290 . 791 

15000 168. 1. 2593 .7971 .000397 . 0224 . 675 
20000 224. 1.4282 . 9041 315 .0178 .571 
30000 336. 1. 7202 1.0889 240 .OilS .423 
40000 448. 1.9072 1. 207 3 162 .0092 . 314 
60000 672. 2.1811 1.3806 097 .0055 .164 
80000 896. 2.2951 1.4528 052 .0030 .089 

100000 1120. 2. 3910 1.51SS 029 .0016 .047 
150000 1680. 2.4366 1.5424 .016 
200000 2240 ' 2.4503 1.5510 .008 
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TABLE E-12 - DRAINAGE RESULTS FROM EXPERI~ffiNTA.L TESTS FOR 

BOUNDARY CONDITIONS NO. 5 - ~ffiDIA: SCHNEIDER SAND 

Boundary Conditions 

Initi al water table : 2/3 media height - 4.02 Pb/og 
Final water table: 1/3 media height - 2.01 Pb/pg 
Drain spacing: 128 .16 p /pg 

b 

Time T. D D. F F. Mt/Mo 
sec em em/sec 

100 4.42 .2373 .0990 .01782 .01681 1.000 

150 6.63 .3222 .1344 .01498 .01401 1.000 
200 8.84 .3970 .1656 .01296 .01223 . 999 
300 13.26 . 5065 .2113 .01072 .01011 .997 
400 17.68 .6115 .2551 .00941 .00888 .992 
600 26.52 . 7780 .3246 .00762 .00719 .985 
800 35.36 .9163 .3823 .00676 .00638 .976 

1000 44 .2 1. 0486 .4375 .00605 .00571 .961 

1500 66.3 1 .3224 .5517 .00584 .00551 .945 
2000 88.4 1.5332 .6397 .00402 .00379 .918 
3000 132.6 1.9165 . 7996 .00340 .00321 .850 
4000 176.8 2.2131 .9233 .00277 .00261 .783 
6000 265.2 2 . 7287 1.1384 .00221 .00209 .648 
8000 353 .6 3 .0961 1. 2917 .00156 .00147 .539 

10000 442 3 . 3539 1. 3992 .00105 .00099 .443 

15000 663 3 . 7600 1. 5687 .00059 .00056 .282 
20000 884 3.9471 1.6467 .00030 .00028 .175 
40000 1326 4 . 1433 1. 7286 .00016 .00015 .081 
60000 1768 4. 2665 1.7800 .00009 .00009 . 033 
80000 2652 4.3920 1.8323 . 00004 .00004 .007 

100000 3536 4.4034 1. 8371 

-·~ 
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APPENDIX F 

RESULTS FRQ\1 Nm-IERICAL SOLUTION 

TABLE F-1 - DRAINAGE RESULTS FROM THE NUMERICAL SOLUTION 
FOR BOUNDARY CONDITION NO. 1 

Boundary Conditions 

Initial water table: 
Final water .tabl~: 
Drain spacing: -' 

Values of 

1.3 1.6 

.0882 .0914 

.1404 .1459 

. 2117 . 2203 

.2656 .2767 

.3107 .3240 

.3502 .3656 

.5035 .5285 

.6194 .6529 
.7566 

. 7973 .8458 

.9237 

.9924 
.9591 

1.0533 
1.1076 

1.0774 1.1562 
1.1998 
1.2389 
1.2742 

2/3 soil height- 4.02 Pb/pg 
1/3 soil height- 2.01 Pb/pg 
64.08 Pb/pg 

D. for A values of 

2.0 4.5 12. 

.1015 .1072 .1075 

.1555 .1646 .1650 

. 2311 .2452 . 2458 

.2890 .3068 . 3076 

.3378 .3589 .3597 

.3808 .4046 .4056 

.5493 .5840 .5855 

.6783 .7216 .7234 

.7862 .8372 .8394 

.8797 .9381 .9407 

.9618 1.0277 1.0309 
1.0348 1.1081 1.1119 

1.0999 1.1807 1.1850 
1.1582 1.2463 1. 2513 

1.2107 1.3059 1.3116 
1.2581 1. 3601 1.3665 
1.3008 1.4096 1.4165 
1. 3396 1.4547 1.4623 

52 

20. 

.1074 

.1648 

. 2454 

.3072 

.3592 

.4050 

.5846 

. 7224 

.8382 

.9394 

1.0295 
1.1104 

1.1835 
1. 2497 

1. 3100 
1.3649 
1.4150 
1.4607 



TABLE F-2 - DR.4.INACE RESULTS FROM TilE 1\"IJI>IERICAL SOUIT!O~ 

FOR BOUNDARY CONDITION NO. 1 

Boundary Conditions 

Initial water table: 2/3 soil height - 4.02 Pb/pg 
Final wa t er tabl e: 1/3 soil h ieght - 2.01 Plpg 
Drain spacing: 64.08 Pb/pg 

VALUES OF F. FOR ~ VALUES OF 

T. 

1.3 1.6 2.0 4. 5 12. 20 . 

• 06599 .06874 .06604 .07021 .07039 .07030 
.04373 .04561 .04596 .04891 .04904 .04897 

4 .03020 .03153 .03299 .03438 .03447 .03442 
6 .02441 .02557 .02632 .02802 .02800 . 02805 
8 .02009 .02208 .02277 • 02425 .02429 .02428 

10 .01867 .01971 .02036 .02167 . 0217 3 . 02170 
20 .01298 .01388 .01438 .01532 .01535 .01533 
30 .01045 .01125 . 01169 .01249 .01252 .01250 
40 .00883 .00957 .01000 .01075 .01079 .01078 
so .00762 .00832 .00874 .00949 .00954 .00952 

60 .00665 .00731 .00773 . OOB48 .00853 .00852 
70 .00584 .00646 .00688 .00763 .00769 .00768 
80 .00516 .00575 .00616 .00690 .00696 . 00695 
90 . 00457 . 00513 .00553 .00625 .00632 .00631 

100 . 00407 .00460 .00498 .00568 . 0057 5 .00575 
lW .00413 • 00450 .00517 . 00524 .00524 
120 .00372 .00407 .00472 .00479 .00479 
130 .00335 .00369 .00431 .004:>8 .00438 

TABU'. F- 3 - DRAINAGE RESULTS FRO:.! TilE NUMERICAL SOUITlOS 

FOR IK>Ul\'OARY COJ\'OITION NO. I 

Boundary Condit ions 

Initi a l wate r table: 2/3 111edia hei ght - 4.02 Pb/pg 
Final wa t er table: 1/3 111edia height - 2.01 Pb/pg 
Dra.in spacini: 64.08 Pb/Pa 

VALUES OF '"t/Mo FOR ~ VAWES OF 

T. 

l.3 !.6 2.0 4.5 12 20 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 .9999 1.0000 1.0000 1.0000 1.0000 1.0000 
4 .9988 1.0000 1.0000 1.0000 1.0000 1.0000 
6 .9764 .9993 .9996 .9999 1.0000 1.0000 
8 .9595 .9962 .9977 .9993 .9996 .9996 

10 .9495 .9897 .9932 .9978 .9983 .9984 
20 .8739 .9196 .9360 .9641 .9683 .9685 
30 . 7816 .8312 .8563 .9026 .9100 . 9105 
40 .7476 .7776 .8344 .8437 .8444 
so .6217 .6730 . 7057 . 7681 . 7764 • 7793 

60 .6071 .6411 .7064 . 7172 . 7181 
70 .5488 .5834 .6498 .6607 .6617 
75 .4733 
80 . 4971 .SH7 .5980 .6089 .6100 
90 . 4510 . 4853 . 5509 .5616 . 5627 

100 .3651 .4099 .4435 . 5078 .5184 . 5195 
110 .3730 . 4058 .4685 .4788 . 4799 
120 .3398 . 3717 . 4325 .4425 .4437 
130 . 3098 .3407 .3995 .4092 .4104 
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TABLE F-4 - DRAINAGE Rf.SULTS FRO)I THE NUMERICAL SOLUTION 

FOR BOUNDARY CONDITION NO. 2 

. 
~ Boundary Conditions 

~ Initial water table: l/3 soil height - 2.01 Pb/og 

~ Final water table: base of soU 

' 
Drain spaci ng: 64.08 Pb/oc 

. 

' ~ 
i. 1.6 ~ = 4.5 

t 
T. 

I D. F. t-Jt/:-1o o. F. '"'t/~10 
; 

l 
I 1 .0576 .04465 I. 0000 .0590 .04595 1. 0000 

! 2 .0941 .03114 1.0000 .0966 .03216 1. 0~00 
I 4 . 1457 .02211 1.0000 .1495 .02288 1.000•' 
I 6 .1854 .01813 1.0000 .1911 .01878 1.0000 
I 8 .2191 .01575 .9999 .2260 .01632 1.0000 

l 10 .2489 . 01412 .9998 . 2568 .01464 .9999 
20 .5662 .01005 .9906 .3785 . 01042 .9961 

I 
30 .4567 .00823 .9643 .4723 . 00854 .9807 

l so .6005 .00638 .8883 .6217 .00664 .9254 
75 .7431 .00513 .7902 . 7706 .00539 .8437 

100 .8604 .00429 . 7032 .8946 .00458 . 7663 

- -- -
TABLE F-5 - DRAINAGE RESULTS FROM THe NU.!ERlCAL SOLUTION 

FOR liDtM>ARY CO!'<l>ITION NO. 4 

Boundary Cond i ~ions 

I nitial water table: 2/3 soil hei&ht - 4.02 Pb/os 
Final water table: base of soil 
Drain spacini: 64.08 Pb/oi 

~ • 1.6 ~ • 4.:; 

T. 

D. F. Mt/Mo 0 . F. "'/No 

.1218 . 12341 1.0000 .1303 . 13112 1.0000 

. 2152 .07649 1.0000 .2299 . 08175 1.0000 
4 .3388 .05213 1.0000 .3621 .05578 1.0000 
6 .4319 .04221 .9996 .4618 .04519 J. 0000 
8 .5101 .03644 .9977 .5455 .03902 .9997 

10 . 5788 .03255 .9936 .6190 .03485 .9987 
20 .8481 .02298 .9472 .9074 .02462 . 976~ 
30 1 .0545 .01872 .8868 1.1287 .02010 .9338 
40 1. 2276 .01608 .8284 1.3151 .01736 .8859 
so 1.3784 .01416 .7740 1.4785 .01542 .8384 

60 1.5121 .01265 .7268 1.6248 .01390 .7936 
70 1.6322 .01141 .6831 1. 7537 .01264 . 7518 
80 1. 7409 .01036 .6437 1.8783 . 01157 . 7132 
90 1.8398 .00945 .6078 1.9892 .01064 .6774 

100 1.9303 .00867 .5750 2.0915 .00983 .6443 
110 2.0135 .00798 .5449 2.1859 .00909 .6136 
120 2.0902 .00737 . 5172 2.2736 .00844 .5851 
130 2.1611 .00683 . 4915 2.3550 .00786 .5585 
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TABLE F-6 - DRAINAGE RESULTS FROM THE NU}iERICAL SOLUTION 

FOR BOUNDARY CONDITION NO . 5. 

Boundary Conditions 

Initial water table: 2/3 soil height- 4.02 Pb/pg 
1/3 soil height - 2.01 Pb/pg 
128.16 Pb/pg 

Final water table: 
Drain spacing: 

A 4. 5 

T. 

D. F. 

1 .04113 .034990 1.0000 
2 .06938 .024123 1. 0000 
4 .10901 .016955 1.0000 
6 .13940 .013831 1.0000 
8 .16503 .011976 1.0000 

10 . 18761 .010711 1.0000 
20 .27628 .007576 1.0000 
30 .34435 . 006187 .9995 
so .45236 .004793 .9919 

75 . 56007 .003946 .9661 
100 .65087 .003389 .9283 
200 .92968 .002343 .7569 

55 



APPENDIX G 

CONVERSION FACTORS FOR SCALED TUIES 

The dimensionless expressions for outflow rate 
and time used in the analytical solutions can be con­
verted to the scaled variables l isted in Table 1. 
The conversion factors transforming selected values 
of these dimensionless expressions into the corre­
sponding values of the scaled variables are deter­
mined by considering the soi l and system parameters 
involved. In this process the soil parameters cancel 
and only drainage system dimensions remain . 

The following procedure illustrates the develop­
ment of the conversion factor which transforms 
selected values of the time parameter, 

used by Glover and Brooks, into the corresponding 
values of T. In terms of this time parameter, 
designated by T' , the value of clock time T is 
given by: 

T K (d+~l /2) T' 
0 

(G-1) 

Next, the above equation is substituted into the 
expression for T. , which gives 

(G-2) 

Assuming that the effective and drainable porosities 
are equivalent, these as well as the hydraulic con­
ductivity can be canceled. Scaling the length 
dimensions permits the bubbling pressure head also 
to cancel, yielding: 

(G-3) 

Finally, the conversion factor is computed by substi­
tuting the correct scaled lengths into the above 
equation. 

Conversion factors for outflow are obtai ned by 
following a similar procedure. A separate set of 
conversion factors is required for each set of 
boundary conditions. A list of the conversion fac­
tors for time and flow rate for boundary conditions 
1 and 2 is given in Table G-1. 

TABLE G-1 CONVERSION FACTORS FOR TIME AND FLOW RATE 

Boundary 
Condition 

No. 1 

No . 2 

Represen­
tation 

Time 

Conversion 
Factor 

1361.9 

4085.8 
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Flow Rate 

Represen­
tation 

K(d+M /2)M 
0 0 

K(d+M /2)~1 
0 0 

Conversion 
Factor 

.0014758 

.0049195 
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Abstract: The effects of the drainable water above the water table on 
drainage behavior were analyzed to determine their magnitude and the extent 
to which they are influenced by soil parameters. These effects were shown 
to be 1) an increase of the vertical dimensions of the flow region and 
2) a reduction in the outflow as predicted by asslllling no drainable water 
above the water table. 

The Brooks-Corey scaling theory was first shown experimental ly to be valid 
for two-dimensional, transient-flow drainage and was then applied in an 
analysis of the problem. This analysis, using the Brooks-Corey scaled 
variables , demonstrated that the pore-she distribution indell , which is 
related to the range of the pore sizes of the soil , was of primary importance. 

(Abstract continued on reverse side) 

Reference: liedstroo , 1\". E. , Corey, A. T., and Duke , H. R., Colorado 
Statt> U:livcrsity Hrdrology Paper No. 48 (January 1971) 
""'O<!t'ls for Subsurface Drainage." 

t.:ey ll"ords: lh"ainage , \!oc!e!s, Rt>lief drains, Capillary fringe, 
Subsurfact> d~ina~e. 

Abst ract: The effects of the drainable water above the water tabl e on 
dr ai nage behavior we re analyze<! to dl'temint> tht>i r 11a~i tude and the extent 
to which they are influenced by soi 1 ?sruett>rs. Tht>se effects wt-re shown 
to be 1) an increase of the \"er tical dirensior.s of the flov !"egion and 
2) a reduction in the outflow as predicte<! by a.ss:.:~ting II<' cnbable water 
above the water table. 

The Brooks-{Arey scaling theory was first shown t>xpeTis:ctmtal!y ~o ~ nlid 
for two-dimensional, transient-flow drainage and was t!':~ z;:?lif'C in a:: 
analysis of the problem. This analysis, using the Brooks-Corey sc~lt'<! 
variables, deaonstrated that the pore-size distribution index , ~~:c~ !s 
related to the range of the pore sizes of the soi 1, was of pria.ary i:;x- ~t.s::ce . 

(Abstract continued on reverse side) 

Refer ence: Hedstrom, W. E., Cor ey, A. T., and Duke, H. R. , Colorado 
State University Hydrology Paper No. 48 (January 1971) 
'"4odels for Subsurface Drainage." 

Key Words: Drainage, Models , Relief drains, Capillary fringe , 
Subsurface dr ainage . 

Abstract: The effects of the drainable water above the water table on 
drainage behavior were analyzed to determine their magnitude and the extent 
to which they are influenced by soil parameters. These effects were shown 
to be 1) an increase of the vertical d~ensions of the f low region and 
2) a reduction in the outflow as predicted by assuming no drainable water 
above the water table. 

The Brooks-Corey scaling theory was first shown experimentally to be valid 
for two-dimensional, transient-flow drainage and was then applied in an 
analysis of the problem. This analysis, using the Brooks-Corey scaled 
variabl es, demonstrated that t he pore-size distribution index, which is 
r elated to the range of the pore sizes of the soil, was of primary importance . 

(Abstract continued on reverse side) 

Refer ence: Hedstrom, 1~ . E., Corey, A. T., and Duke, H. R., Colorado 
State University Hydrology Paper No. 48 (January 1971) 
"Models for Subsurface Drainage. " 

Key Words: Drainage, Models , Relief drains, Capill ary fringe , 
Subsurface drainage . 

Abstract: The effects of the drainable water above the water table on 
drainage behavior were analyzed to determine their magnitude and the extent 
to which they are influenced by soil parameters. These effects were shown 
to be 1) an increase of the vertical dimensions of the flow region and 
2) a reduction in the outfl ow as predicted by assuming no dr ainable water 
above the water table. 

The Brooks-Corey scaling theory was first shown experimentally to be valid 
fOr two-dimensional, transient-flow drainage and was then applied in an 
analrsis of the problem. This analysis, using the Brooks-Corey scaled 
\~riables, de.anstrated that t he pore-size distribution index , which is 
related to the range of the pore sizes of the soil, was of primary importance. 

(Abstract continued on reverse side) 

Refer ence: !tedstr=, W. E. , Corey, A. T. , and Duke, H. R., Colorado 
State University Hydrology Paper No. 48 (January 1971) 
'"'odt>ls for Subsur face Drainage." 



Abstract - Cont 'd. 

Drainage tests of two soils having different pore-size distribution indices 
were conducted. A numerical solution was developed and applied to the 
probl em by simul ating drainage from soil of other pore-size distribution 
indices. 

Results from the experiments and the numerical solution showed that drainage 
was affected by pore-size distribution as measured by the index. This effect 
was found to be more significant for soils having a wider range of pore sizes. 
A practical implication of these results is that a design method which 
accounts for the water above the water table should be developed. A number 
of transient-flow drainage design methods, presently being used, were shown 
to yield results which are appreciably in error. 

From this study it appears that such an improved design method must be based 
on data obtained from physical or numerical models which simulate the flow 
of the drainable water above the water table. 

Abstract - Cont ' d. 

Drainage tests of two soils having different pore-size distribution indices 
were conducted. A numerical solution was developed and applied to the 
problem by simulating drainage from soil of other pore-size distribution 
indices. 
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of the drainable water above the water table. 
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on data obtained from physical or numerical models which simulate the flow 
of the drainable water above the water table . 

'·. 
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