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ABSTRACT

VIETORIS–RIPS METRIC THICKENINGS AND WASSERSTEIN SPACES

If the vertex set, X , of a simplicial complex, K , is a metric space, then K can be interpreted

as a subset of the Wasserstein space of probability measures on X . Such spaces are called sim-

plicial metric thickenings, and a prominent example is the Vietoris–Rips metric thickening. In

this work we study these spaces from three perspectives: metric geometry, optimal transport,

and category theory. Using the geodesic structure of Wasserstein space we give a novel proof of

Hausmann’s theorem for Vietoris–Rips metric thickenings. We also prove the first Morse lemma

in Wasserstein space and relate it to the geodesic perspective. Finally we study the category of

simplicial metric thickenings and determine effects of certain limits and colimits on homotopy

type.
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Chapter 1

Introduction

Simplicial metric thickenings are, roughly speaking, simplicial complexes which can be

viewed as subspaces of the Wasserstein space of probability measures. The purpose of this the-

sis is to expound upon the Wasserstein space to the applied topology community, and to answer

questions about the topology of simplicial metric thickenings, in particular the Vietoris–Rips

metric thickening. Three different perspectives come together in this work: metric geometry,

optimal transport, and category theory; each of which contribute to our understanding of sim-

plicial metric thickenings in different ways.

Chapter 2 begins with an overview of a longstanding problem: what is the homotopy type

of the Vietoris–Rips complex of a given metric space? This question, in some form, dates to the

work of Gromov in the late 1980s [1] and of Hausmann in the early 1990s [2]. It has captured

increasing attention in recent years due to its relevance in applied topology. Here the focus is

on the related question of the homotopy type of Vietoris–Rips metric thickenings, which were

introduced in [3] and are defined in Section 2.3. These also provide the primary example of a

simplicial metric thickening.

Key to the definition of a simplicial metric thickening is the Wasserstein metric on probabil-

ity measures. The history of the Wasserstein metric and its origins in optimal transport theory

are the subject of Section 3.1. Analytical details of the Wasserstein space P (X ) are provided in

Section 3.2 and Section 3.3.

Chapter 4 begins our investigation of the homotopy type of Vietoris–Rips metric thickenings

in earnest. Of great importance to the homotopy type of the Vietoris–Rips metric thickening,

V R (X ;r ), is the curvature of the space X and the existence of a center of mass of probability

distributions. Section 4.2 considers this in detail. Section 4.3 then proves versions of Haus-

mann’s theorem in several different curvature settings. These results are similar to the main
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theorem in [3], but the proofs are original and emphasize the geometry of Wasserstein space.

Original corollaries dependent upon our proof technique are given in Section 4.4.

Wasserstein space, P (X ), inherits to some extent whatever infinitesimal structure the base

space, X , possesses. This motivates Chapter 5, which describes the differential structure of

Wasserstein space, and develops an original version of the first Morse lemma which holds for

sublevel sets of Wasserstein space. The relation between this structure and the results in Chap-

ter 4 is considered in Section 5.3.

The last chapter introduces a categorical perspective. Simplicial metric thickenings are

shown to be a particular example of a restricted comma category, a construction introduced

in Section 6.1. This framework is used to prove results about the homotopy type of products

and coproducts of simplicial metric thickenings. Finally, Section 6.5 gives a version of Dowker’s

theorem for simplicial metric thickenings.

Essential definitions are found in Section 2.1 and Section 2.3. The reader interested in back-

ground on Wasserstein space should peruse Chapter 3 and Section 5.1. Original results are con-

centrated in Chapters 4 to 6, particularly Sections 4.3, 4.4, 5.2, 6.1, 6.2 and 6.4. Lastly, Chapter 6

can be read almost independently, aside from the major definitions.
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Chapter 2

Background and Related Work

The motivating problem of this thesis is to understand the homotopy types of certain geo-

metric simplicial complexes—Vietoris–Rips and Čech complexes—and a related class of metric

spaces called simplicial metric thickenings. Section 2.1 provides the basic definitions of these

simplicial complexes. Section 2.2 then gives an extensive history of the problem and discusses

the motivation from applied topology. Lastly, Section 2.3 introduces the simplicial metric thick-

enings, which are a much more recent construction, and discusses the previous literature on

them.

2.1 Overview

Metric spaces and simplicial complexes are both mathematical objects that inherently pos-

sess geometric and topological features. Simplicial complexes admit a very simple homology

theory, so for topological computations it is often necessary to turn a space into a simplicial

complex. The Vietoris–Rips and Čech complexes are classical methods of doing this when the

original space has a metric, or distance function associated to it.

The more classical construction is the Čech complex. Throughout (X ,d) is a metric space

(often just denoted X ), and r is a non-negative real number.

Definition 2.1.1. The Čech complex of (X ,d) at scale parameter r is the simplicial complex

Č (X ;r ) with vertex set X and with a simplex σ corresponding to every finite subset of X such

that there exists a ball Br (y) with σ⊆ Br (y).

Equivalently, the Čech complex can be defined as the nerve of Ur = {Br (x) | x ∈ X }, the

covering of X by balls of radius r . (This equivalence will be discussed further in Chapter 6.) The

balls in Definition 2.1.1 may be either open or closed, and when the distinction is important the

notation will be Č< (X ;r ) and Č≤ (X ;r ). Definition 2.1.1 is the intrinsic Čech complex. If Y ⊇ X
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is a larger ambient space, the ambient Čech complex, Č (X ,Y ;r ) can be defined by requiring

that σ⊆ Br (y) for some y in Y .

The Čech complex has a long history in algebraic topology due to the nerve theorem:

Theorem 2.1.2. Let T be a paracompact topological space and U an open cover of T such that

for any open sets U1, . . . ,Un in U , the intersection U1 ∩ ·· · ∩Un is either empty or contractible.

Then the nerve simplicial complex of U is homotopy equivalent to T .

A proof can be found in [4, Corollary 4G.3] and originates in the work of Pavel Alexan-

drov [5]. If the Čech complex at scale r satisfies the contractible intersection requirement, then

Č(X ;r ) ≃ X because Č(X ;r ) is a nerve complex. The Čech complex does not always satisfy this

requirement: see Figure 2.1 for a counterexample.

Ua

Uc Ub

a

bc

Figure 2.1: The open sets Ua , Ub , and Uc intersect at a, b, and c, so the nerve complex is a 2-simplex.

The Vietoris–Rips complex is similar to the Čech complex, except that containment in a ball

is replaced by containment in an arbitrary set of given diameter. The diameter of σ ⊆ X is

defined to be

diam(σ) := sup
x,y∈σ

d(x, y).

Of course, for finite subsets the supremum is actually a maximum.

Definition 2.1.3. The Vietoris–Rips complex of a metric space X at scale parameter r is the sim-

plicial complex VR(X ;r ) with vertex set X and with a simplex σ corresponding to every finite
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subset of X such that

diam(σ) < r.

Specifically, this defines the open Vietoris–Rips complex. Requiring diam(σ) ≤ r gives the

closed Vietoris–Rips complex. The notation VR< (X ;r ) and VR≤ (X ;r ) will distinguish the two

when necessary.

The Vietoris–Rips complex is clearly closely related to the Čech complex. Several precise

connections can be made:

1. There is an interleaving, VR(X ;r ) ⊆ Č (X ;r ) ⊆ VR(X ;2r ), since a set σ of diameter r is

contained in a ball of radius r centered at any point in σ, and because a ball of radius r

has diameter at most 2r .

2. If X is a geodesic space, then the 1-skeleta of VR(X ;2r ) and Č(X ;r ) are the same. A ball of

radius r centered at the midpoint of the geodesic between x and y has diameter at most

2r and contains x and y whenever d(x, y) < 2r .

3. If X is a hyperconvex metric space, then VR(X ;2r ) = Č (X ;r ). Hyperconvexity is addressed

at the end of Section 2.2. An example is R2 with the L∞ norm.

Figure 2.2: The Čech (left) and Vietoris–Rips (right) complexes on the same vertex set.
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The idea that VR(X ;r ) and Č(X ;r ) turn metric spaces into simplicial complex can be made

precise in a categorical sense by describing VR(�;r ) and Č(�;r ) as functors from the category

of metric spaces and 1-Lipschitz maps to the category of simplicial complexes. This viewpoint

plays a major role in Chapter 6.

2.2 Related Work

This section traces the history of the Vietoris–Rips complex, discusses its use in applied

topology, and gives an overview of some of the recent work on the question of homotopy types

of Vietoris–Rips complexes.

2.2.1 Prehistory

The Vietoris–Rips complex originates in the work of Leopold Vietoris [6], who was a pioneer

in the study of homology. In 1927 homology had been developed for simplicial complexes, but

it was not clear how to associate homology groups to general topological spaces (themselves a

new concept at the time). Thus, Vietoris devised the Vietoris–Rips complex as a tool for associ-

ating a canonical simplicial complex with any metric space.

To eliminate the arbitrary choice of scale parameter, r , he takes the limit as r → 0. More

precisely, let zk be an n-cycle in the chain group of VR(X ;εk ). Consider a sequence of n-cycles

(zk )∞
k=1 with εk → 0 as k → ∞. Such a sequence is fundamental if for every δ > 0 there exists

an Nδ such that zl − zm = ∂σ for some n +1-chain σ in VR(X ;δ) for all l ,m > Nδ. A null funda-

mental sequence is one for which zk = ∂σ for all k > Nδ. The group of fundamental sequences

modulo null sequences is then taken as the homology of the metric space X in dimension n [7].

Geometrically, fundamental sequences contain cycles which “exist” at r = 0 and so describe the

homology of X itself. Vietoris does not seem to have considered the geometry of VR(X ;r ) at any

fixed positive scale parameters.

Much later, the same complex appeared in the context of geometric group theory. In [1]

Mikhail Gromov defines a polyhedron, Pd (X ), which is identical to the Vietoris–Rips complex,
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VR(X ;d). Since Gromov attributed several lemmas about Pd (X ) to Elihu Rips, the space Pd (X )

became known as the Rips complex in the geometric group theory literature. Rips and Gro-

mov were concerned with a problem almost exactly opposite that of Vietoris. For example, [1,

Lemma 1.7.A] says, “Let X be a δ-hyperbolic space such that every x ∈ X can be joined by a

segment with a fixed reference point x0 ∈ X . Then the polyhedron Pd (X ) is contractible for all

d ≥ 4δ." If X is bounded, then when r is greater than or equal to the diameter of X the complex

VR(X ;r ) is contractible. At this point VR(X ;r ) is the complete simplicial complex on the set

X . (The same is true if X is unbounded if VR(X ;∞) is defined correctly.) So Gromov and Rips

are interested in finding large scale parameters, possibly less than the diameter of X , where the

Vietoris–Rips complex becomes contractible. Of course, X itself is quite likely not contractible,

so at these scales the Vietoris–Rips complex is not typically representative of the topology of X ,

though this parameter contains some geometric information.

The first to recognize that these were the same construction was Jean-Claude Hausmann [2].

More significantly, he was the first to consider the topology of VR(X ;r ) at intermediate scales

and to raise the question of the structure of the Vietoris–Rips complex of spheres. Since Haus-

mann’s work is fundamental to the study of Vietoris–Rips complexes it is worth considering in

some detail.

Definition 2.2.1. A geodesic space is a metric space (X ,d) in which every pair of points (x, y)

admits at least one path γx
y : [0,T ] → X with γx

y (0) = x, γx
y (T ) = y, and length(γx

y ) = d(x, y). Such

paths are called geodesics.1

The first example of a geodesic space is a Riemannian manifold such as the n-sphere, Sn .

1Geodesics as defined here are sometimes called minimal geodesics and should not be confused with
geodesics in the sense of Riemannian geometry. In that setting a geodesic is, heuristically, the straightest possible
path connecting x and y . It can be shown that there is always a Riemannian geodesic which is a geodesic in the
sense of Definition 2.2.1. However, there are may be non-minimal Riemannian geodesics. For example, following
any great circle on the sphere gives a geodesic path, but there are both long and short directions of traversal and
only the shorter satisfies Definition 2.2.1. Throughout this document “geodesic” always means minimal geodesic,
even when referring to Riemannian manifolds.
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Definition 2.2.2. For any geodesic space, define r (X ) to be the least upper bound of the set of real

numbers r which satisfy

1. If d(x, y) < 2r then there is a unique geodesic from x to y,

2. if x, y, and z, are three points with d(x, y), d(x, z), and d(y, z) all less than r , then any point

u on the shortest geodesic from x to y satisfies d(z,u) ≤ max{d(x, z),d(y, z)}, and

3. if α and β are arc-length parametrized geodesics2 with α(0) = β(0) and if 0 ≤ s, s′ < r and

0 ≤ t ≤ 1, then d(α(t s),β(t s′)) ≤ d(α(s),β(s′)).

All three conditions hold trivially for r = 0. A compact Riemannian manifold M always has

r (M) > 0, but in general r (X ) need not be positive. The second condition in particular is closely

related to the convexity and curvature conditions which will be discussed in Section 4.2. We can

now state Hausmann’s main theorem, [2, Theorem 3.5]:

Theorem 2.2.3. Let X be a geodesic space and suppose r (X ) > 0. Then for any 0 < ε ≤ r (X ), the

Vietoris–Rips complex VR(X ;ε) is homotopy equivalent to X .

Proof. The proof involves constructing a map T : VR(X ;ε) → X , showing that T induces an iso-

morphism on fundamental groups and all homology groups, and implicitly invoking White-

head’s theorem to show that T is a homotopy equivalence. To define T use the axiom of choice

to choose a total order of all points in X . The construction of T depends on this choice and is

therefore non-canonical. Every simplex σ in VR(X ;ε) can then be described uniquely by a finite

list of ordered vertices, σ= [x0, . . . , xn]. Then a map Tσ from the standard n-simplex, ∆n , to X is

determined by mapping vertices of ∆n to x0, . . . , xn and convex combinations of vertices to the

corresponding geodesic convex combination in X . This requires that ε< r (X ). Finally, the map

T is given by σ 7→ Tσ.

2A geodesic γ is arc-length parametrized if d(γ(s),γ(s′)) = |s − s′| for all s, s′.
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Intuitively X ought to include into VR(X ;ε) by mapping a point x to the vertex [x]. However,

this is not the homotopy inverse to T as it is not a continuous map; in fact, no such inverse is

explicitly constructed in Hausmann’s proof. This will be important in Section 2.3.

Hausmann concludes his discussion of VR(X ;ε) by posing two motivating problems:

1. What can be said about the homotopy type of VR(Y ;r ) when Y ⊆ X ? If Y is sufficiently

dense in X , is there a homotopy equivalence VR(Y ;r ) ≃ X ?

2. What is the homotopy type of VR(X ;ε) when ε> r (X )? In particular, if ε′ > ε, does

πk (VR(X ;ε)) ∼= 0 for all 0 < k ≤ n

imply that πk (VR
(
X ;ε′

)∼= 0 for all 0 < k ≤ n?

The first of Hausmann’s questions was addressed relatively quickly, by Janko Latschev [8].

Theorem 2.2.4. Let X be a closed Riemannian manifold. Then there exists an ε0 > 0 and a δε > 0

for every 0 < ε≤ ε0 so that if Y is a metric space and the Gromov–Hausdroff distance dGH(X ,Y ) <

δε, then VR(Y ;ε) ≃ X .

An important concept in Latschev’s theorem is the Gromov–Hausdorff distance. This is a

measure of distance between metric spaces.3 The Hausdorff distance between two subsets X

and Y of a metric space (Z ,dZ ) is

dH(X ,Y ) := max

{
sup
x∈X

inf
y∈Y

dZ (x, y) , sup
y∈Y

inf
x∈X

dZ (x, y)

}
. (2.1)

This mildly unintuitive equation can be thought of as follows: you wish to travel from X to Y in

the ambient space Z , and you would like to move the shortest distance possible, corresponding

to the infimum in equation (2.1). You have an adversary, however, who is to choose where

3Between arbitrary metric spaces, dGH is not a true metric, though it is a metric on the set of compact metric
spaces modulo isometry.
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you start and who wants to make you travel as far as possible (the supremum). The Hausdorff

distance is the maximum distance you can be made to travel from X to Y or from Y to X .

A map f between metric spaces (X ,dX ) and (Y ,dY ) is an isometry if

dX (x1, x2) = dY ( f (x1), f (x2)) for all x1, x2 ∈ X .

Clearly, any isometry must be an injection. The Gromov-Hausdorff distance from X to Y is

dGH := infdH( f (X ), g (Y )) where the infimum is taken over all isometries f : X → Z and g : Y →

Z , and over all metric spaces Z . This should be thought of as optimally aligning X and Y within

some larger space Z .

If F ⊆ X , then dGH(F, X ) ≤ dH(F, X ), so dense samplings of X are Gromov-Hausdorff close

to X . Thus Latschev’s theorem is strictly stronger than Hausmann’s conjecture. In fact, if F

and X both live in an ambient space Z , then dH(F, X ) ≥ dGH(F, X ). Suppose that F is a finite

set of points in Z such that every point in X is within ε of some point in F . Then dH(F, X ) < ε

so Latschev’s theorem tells us that VR(F ;ε) ≃ X for sufficiently small ε. Therefore, one can

determine the topology of a space X by computing a finite dense sample of X , even with some

amount of noise.

The same can be accomplished with Čech complexes by choosing a finite collection of

points F in X with sufficient density and r is small. The set of balls Br (x) centered at all x ∈ F is

then a good cover of X and Theorem 2.1.2 applies. For subsets of Euclidean space [9] provides

a rigorous statement of the probability that a random sample meets the density conditions and

gives a Čech complex with the correct topology.

2.2.2 Applied Topology

Renewed interest in Vietoris–Rips complexes was sparked by the creation of persistent ho-

mology in the mid-2000s. Just as homology is a quantitative description of the topology of

a space, persistent homology is a quantitative description of how the topology of a sequence

of spaces evolves. This is no mere mathematical curiosity—a collection of data X , thought of

10



as points in R
d or some other metric space, can be turned into a sequence of spaces by con-

structing VR(X ;r ) for an increasing sequence of scale parameters r (and likewise with Č(X ;r )).

The idea that data has shape motivates the field of applied topology. Some of the significant

early works on persistent homology include [10–13] A thorough treatment can be found in the

books [14, 15]. The results most directly related to geometric simplicial complexes follow.

A filtered topological space U is a functor from the poset (R,≤) to the category of topological

spaces. More concretely, U is a collection of spaces Ur indexed by real numbers r , along with

functions f r
s : Ur →Us whenever r ≤ s, and the requirement that if r < s < t , then f r

t = f s
t ◦ f r

s .

In practice the functions are almost always inclusions, and the spaces simplicial complexes.

The Vietoris–Rips and Čech complexes are then natural examples, since there is a canonical

inclusion ιrs : VR(X ;r ) → VR(X ; s) when r ≤ s, and likewise for Čech complexes.

In the context of persistence the metric space X is typically a finite sampling from a larger

unknown space Z . Thanks to Latschev’s theorem (Theorem 2.2.4), there is reason to expect that

the topology of X is the same as that of Z for at least some scale parameters. However, the right

scale parameter is also unknown. Persistence thus chooses to be agnostic to the choice of a

particular scale and considers the entire sequence of spaces VR(X ;r ) for r ∈ [0,+∞]. (In prac-

tice the Vietoris–Rips complex is preferred to the Čech complex for computational reasons—it

is much faster to compute pairwise distances than to determine containment in a ball, partic-

ularly in high-dimensional space.)

The data of persistent homology of U in dimension n, PHn(U) consists of the homology

(with field coefficients) at all scales r and the induced maps Hn( f r
s ) for all r and s. This appears

to be too much data to be computable, but typically only a finite number of scale parameters

see changes in homology, and the homology is finite-dimensional. The Vietoris–Rips complex

of a finite set X always has both of these properties. Persistence is concisely described by a

barcode: a collection of bars encoding the scale parameters at which elements of the homology

groups are born and die. More precisely, the number of bars containing an interval [b,d ] is

11



equal to the rank of the map Hn(ιb
d

) (see Figure 2.3). Remarkably, there are efficient algorithms

for computing persistent homology [13].

Figure 2.3: The Vietoris–Rips filtration turns a data set into a sequence of simplicial complexes (top).
The barcodes in dimension i record the homology in dimension i as the sequence progresses. Here
the 0-dimensional persistent homology intervals show 21 connected components merging into a single
connected component, and the 1-dimensional intervals show two 1-dimensional holes, one short-lived
and the other long-lived.

An obvious question is the following: given a space Z and a subset X , how similar is the per-

sistent homology of VR(Z ;�) and VR(X ;�)? Answering this first requires a measure of similar-

ity for barcodes. There are a number of choices, including a version of the Wasserstein distance

which is pursued more generally in Chapter 3, and as a special case, the Bottleneck distance,

dB . Details can be found in [14], among other sources.

This machinery leads to an important generalization of Latschev’s theorem:

Theorem 2.2.5 (Stability [16]). If X and Y are metric spaces and dGH(X ,Y ) < ε, then the cor-

responding persistence diagrams of VR(X ;�) and VR(Y ;�) have bottleneck distance less than

2ε.

This theorem is weaker than Latschev’s theorem in that it only describes homology, rather

than homotopy type. Moreover, it does not state that the homology is the same at each scale

12



parameter, or in fact at any scale parameter. What it effectively says is that the homology groups

are never too far from being the same when the initial data are similar. In particular, if X is a

dense subset of Z , then the persistence of X closely approximates the persistence of Z .

2.2.3 Further Studies of Vietoris–Rips Complexes

The structure of Vietoris–Rips complexes for particular spaces is now quite an important

question. Indeed, if we were to know the homotopy type of VR(X ;r ) at all scale parameters for

a given reference space, then we would also know its persistent homology exactly. Then if the

persistent homology of Y was close to that of X , we would have a reference space with which Y

could be compared.

A good first candidate space to study is the circle, S1. By Hausmann’s theorem, VR
(
S

1;ε
)
≃

S
1 for small ε, and so has non-trivial topology, but since the circle is bounded, VR

(
S

1;r
)

is

contractible when r is at least equal to the diameter of the circle. Therefore there is at least one

change in homotopy type as the scale parameter varies.

Recall that on a circle, a metric ball Br (x) is an arc centered at x ∈ S
1. Therefore the Čech

complex at scale r is the same as the nerve complex of a collection of circular arcs. In [17] the

authors determine the homotopy types of the Čech and Vietoris–Rips complexes of any finite

collection of evenly-spaced points in S
1.

Theorem 2.2.6. Let Xn be a set of n evenly-spaced points in S
1 with the convention that the

circumference of S1 is 1 and that distances are taken with respect to the arc-length distance on

S
1. Then

Č≤

(
Xn ,S1;

k

2n

)
≃





∨n−k−1
S

2ℓ if k
n
= ℓ

ℓ+1

S
2ℓ+1 if ℓ

ℓ+1 < k
n
< ℓ+1

ℓ+2

for some ℓ≥ 0

and

VR≤

(
Xn ;

k

n

)
≃





∨n−2k−1
S

2ℓ if k
n
= ℓ

ℓ+1

S
2ℓ+1 if ℓ

2ℓ+1 < k
n
< ℓ+1

2ℓ+3

for some ℓ≥ 0
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Moreover, they show that a complex built on non-evenly spaced points is always homotopy

equivalent to one comprised of some number of evenly spaced points [17, Theorem 5.4].

Expanding on this result, in [18] Michał Adamaszek and Henry Adams determine VR
(
S

1;r
)

for all r .

Theorem 2.2.7. With the same conventions as in Theorem 2.2.6,

VR<
(
S

1;r
)
≃S

2ℓ+1 for
ℓ

2ℓ+1
< r ≤

ℓ+1

2ℓ+3
, ℓ= 0,1,2, . . .

and

VR≤
(
S

1;r
)
≃





S
2ℓ+1 if ℓ

2ℓ+1 < r < ℓ+1
2ℓ+3

∨
c
S

2ℓ if r = ℓ
2ℓ+1

, ℓ= 0,1,2, . . .

Note that here c = 2ℵ0 is the cardinality of the reals, so that the last line indicates an (un-

countably) infinite wedge sum of spheres. The proof of this theorem is highly combinatorial.

We will sketch some of the major steps in order to contrast it with the theory of metric thicken-

ings developed later.

Proof. To begin, consider a finite subset Xn ⊆S
1. The points in Xn can be cyclically ordered by

reading them clockwise, so the 1-skeleton of VR(Xn ;r ) is a cyclic graph. Let
−→
C k

n be the cyclic

graph with n equally spaced vertices in which each vertex is connected by an edge to the next

k vertices in clockwise order. Cyclic graphs have a fundamental invariant called the winding

fraction, defined by

wf(
−→
G ) = sup

{
k

n

∣∣∣∣ there exists a cyclic homomorphism
−→
C k

n →−→
G

}
.

A cyclic homomorphism is a directed graph homomorphism which respects the cyclic ordering

and which is not constant whenever the domain has a directed cycle. A vertex w in a cyclic

graph is dominated by a vertex v if there is a directed edge v → w and the set of vertices reached
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by directed edges out of v is the union of w and the set of vertices reached by directed edges out

of w .

By removing dominated vertices, any cyclic graph can be dismantled to a graph
−→
C k

n for some

n and k, and if a cyclic graph
−→
G dismantles to

−→
C k

n then wf(
−→
G ) = k

n
[18, Propositions 3.12 and

3.14]. A dismantling of cyclic graphs induces a homotopy equivalence on the associated clique

complexes. The homotopy type of any (finite) Vietoris–Rips complex on the circle is then ob-

tained by dismantling to some
−→
C k

n and applying Theorem 2.2.6. The winding fraction is directly

related to the scale parameter. In particular, wf(VR(X ;r )) > r − 2ε if X is ε-dense in S
1 [18,

Proposition 5.2].

The last difficulty is in passing to infinite subsets, including the entire circle. It can be shown

that VR
(
S

1;r
)

is the colimit of VR(X ;r ) over all finite subsets X of S1 ordered by inclusion.

Theorem 2.2.7 follows from showing that the homotopy types of finite subsets stabilize in the

poset order.4

This proof depends strongly on the use of cyclic graphs, which prevents it from generalizing

to spaces besides S
1. Even changing the metric on S

1 can alter the results, as [19]—which

studies the Vietoris–Rips complexes of ellipses (as subsets of Euclidean space)—shows.

These results can be extended to give the persistence of a class of spaces called metric glu-

ings. The authors of [20] completely characterize the 1-dimensional homology of the Čech

complex filtration of any metric graph—a finite graph equipped with the path-length metric.

Combining this with [18] allows the authors of [21] to characterize the Vietoris–Rips persistence

of certain metric graphs in all homological dimensions.

Determining the precise homotopy type of the Vietoris–Rips complexes of general spaces

and at all scales is still a formidable challenge, but there are results that classify the homology of

homotopy groups of classes of spaces at different scales. Zero-dimensional persistence in fact

can be easily characterized. Suppose that a metric space X is the disjoint union of connected

4This is excluding the “singular” case with the ≤ convention at scale parameters ℓ
2ℓ+1 , which require a separate

analysis [18, Section 8].
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components X1, . . . , Xn . Let

r I J = d(X I , X J ) = inf
xi∈X I

inf
x j∈X J

d(xi , x j ).

Then the 0-dimensional Vietoris–Rips persistence has n bars when 0 < r ≤ minI ,J r I J . Assuming

all r I J are distinct, one bar dies at each successive r I J as the two components are merged by the

appearance of an edge [xi , x j ]. One can think of the scales r I J as “critical” scale parameters. If

X is a subset of an appropriate ambient space, then the Čech persistence in dimension zero is

similarly characterized.

Higher dimensions are not so easily characterized, but when X is a geodesic space, Žiga Virk

gives a description of the 1-dimensional persistent homology [22]. He does so by identifying

conditions for a scale parameter to be critical for 1-dimensional persistence.

Consider a 1-cycle z ∈ Z1(VR(X ;r )), the simplicial 1-cycles of VR(X ;r ). The goal is to give

a geometric description of when z is null-homologous. The data describing z are a list of ad-

jacent edges in VR(X ;r ), so z can be concisely written as a sequence of vertices x0, x1, . . . , xn ,

which themselves are points in X . Define a realization of z to be a path ζ in X which passes

through x0, . . . , xn and which is a geodesic between xi and xi+1. Geodesics need not be unique,

so there may be multiple paths corresponding to a given cycle; however, the lengths of all such

paths are the same. Virk shows [22, Proposition 4.7, Theorem 4.8] that z is null-homologous in

Z1(VR(X ;r )) if and only if ζ has length less than 3r , or equivalently if the smallest ball enclosing

ζ has radius 3r
2 .

A different set of techniques are used by Matthew Zaremsky in [23] to determine the Vietoris–

Rips complexes of spheres at small scale parameters. He uses Bestvina–Brady discrete Morse

theory with the multi-valued Morse function (diam,−dim): VR(Sn ;r ) → R
2 to show that for

0 < r < 1
4 (where spheres are given circumference one), VR(Sn ;r ) ≃S

n [23, Proposition 5.2].

Recently [24] uses a promising technique to determine the homotopy type of the Rips com-

plexes of a number of spaces. The authors show that the first change in homotopy type for

spheres happens after r = arccos
(
− 1

n+1

)
where n is the dimension of the sphere, here given
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circumference 2π. They also obtain the next homotopy type of VR
(
S

1;r
)
, VR

(
S

2;r
)
, and CP

n .

Their technique is to embed the space X into its Kuratowski space K (X ), the set of all functions

X → R equipped with the supremum norm (significantly, not the space of continuous func-

tions). This is a hyperconvex space, so the Vietoris–Rips and Čech complexes in K (X ) coincide.

The Kuratowski space was studied extensively Mikhail Katz [25] which provides the foundation

for the results in [24].

2.3 Metric Thickenings

One piece absent from the preceding discussion is [3], the major contribution of which is to

introduce the Vietoris–Rips metric thickening, which is a major object of study in this thesis. As

motivation for this new space, consider the simplicial complex topology in detail. The standard

n-simplex, ∆n , has a topology as the convex hull of the standard basis vectors e0, . . . ,en in R
n+1.

Any simplex, σ, in a simplicial complex, K , has a geometric realization, |σ|, obtained by identi-

fying σ with the standard n-simplex in Euclidean space. The geometric realization is extended

to all of K by

|K | :=
∐

σ∈K

|σ|/ ∼

where ∼ is the identification along faces. The associated topology is also called the simplicial

complex topology of K . The Vietoris–Rips complex is typically given a topology in exactly this

way and this is the topology to which all of the preceding results about homotopy type refer.

When restricted to the vertex set the simplicial complex topology is discrete. Therefore

VR≤ (X ;0), which is simply the set of points in X , is not homeomorphic to X in general. The

metric on X has been forgotten. (This is important to the construction in Chapter 6.) Even

stronger, the inclusion x 7→ [x] is not a continuous map unless X is discrete.

The metric on X is generally not compatible with the simplicial complex topology at all. A

topological space T is metrizable if it is homeomorphic to some metric space X . A simplicial

complex is locally finite if each vertex is contained in at most a finite number of simplices. In

order for a topological space T to be metrizable, it must be first-countable, meaning that to
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every point p ∈ T it is possible to associate a collection of open sets U = Un , n ∈ N, such that

any open set V containing p contains some Un .

Proposition 2.3.1. The geometric realization of a simplicial complex K is metrizable only if K is

locally finite.

Proof. If K is not locally finite, then there exists a vertex v in K contained in an infinite number

of edges, En , with n ∈ N (if v is contained in an uncountable number of simplices, then any

countable subset of those suffices here). Let U be a countable neighborhood basis. The simpli-

cial complex topology has the property that the intersection of any open set Un with any simplex

is open in that simplex, thus Un ∩En is open in En . For each n ∈N, choose some an ∈Un ∩En

such that an 6= v . Let V = |K | \ {an | n ∈N}. This is an open set in |K |, since its complement is a

countable union of closed sets (singletons), and it contains v . However, it does not contain any

Un since each Un contains an an , and V contains no an . Therefore |K | is not first-countable,

and hence not metrizable.

In fact, the converse of Proposition 2.3.1 holds as well. For the stronger result, see [26, Propo-

sition 4.2.16].

Now observe that if X contains a ball, Br (x), consisting of an infinite number of points, then

VR(X ;r ) is not locally finite because x will be the vertex of an infinite number of simplices. In

particular, the Vietoris–Rips complex of an open subset of Rn (and therefore of any manifold) is

not locally finite. Whatever properties of X the Vietoris–Rips complex exhibits, it fundamentally

cannot retain the metric.

At the same time, as long as X is a finite set, and therefore a discrete metric space, the

Vietoris–Rips complex does replicate the features of X , and it is this setting where the Vietoris–

Rips complex is used in applied topology. This raises the question: is the simplicial complex

topology the correct approach if we want to understand the limit of finite samples from a met-

ric space?

Answering this question, of course, requires the existence of some alternative topology with

better properties. The alternative studied here and in [3] is the Vietoris–Rips metric thickening.
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If σ= [x0, . . . , xn] is an n-simplex, then every point in |σ| can be formally written as
∑n

i=0λi xi

where 0 ≤ λi ≤ 1. Any point, excluding vertices, in the geometric realization of a simplicial

complex |K | can be written uniquely as
∑n

i=0λi xi for some n, and with 0 < λi < 1 (in other

words, every point is in the interior of a unique minimal simplex), which defines barycentric

coordinates on K .

Now suppose that K is a simplicial complex and the set of vertices is a metric space X . De-

fine a matching between points µ =
∑m

i=0αi xi and ν =
∑n

j=0β j x j in |K | to be any bistochastic

matrix M with marginals µ and ν, that is, M is an m ×n matrix such that

M ·✶=~α and ✶ ·M = ~βT

where ~α and ~β are the vectors of coefficients αi and β j and ✶ denotes the vector [1,1, . . . ,1]T .

Call the set of all matchings between µ and ν, Γ(µ,ν). Let D be the m ×n matrix with entries

Di j = d(xi , x j ). The cost of a matching M is

cost(M) :=✶T ·M ⊙D ·✶

where ⊙ denotes the pointwise matrix product.

Figure 2.4: The optimal transport plan between µ = 1
3δ(0,0) + 1

3δ(1,0) + 1
3δ(2,0) (in gold) and ν = 1

2δ(1,1) +
1
2δ0,1 (in green) involves splitting the mass at (1,0) between (0,1) and (0,2). (Here δp is the Dirac delta
distribution centered at p.)
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The 1-Wasserstein distance on |K | is

W1(µ,ν) := inf
M∈Γ(µ,ν)

cost(M).

This is a special case of the Wasserstein distance described in Chapter 3. The Wasserstein dis-

tance is a metric on |K | and induces a topology. The geometric realization of K with the Wasser-

stein metric will be denoted by K .

By Proposition 2.3.1, K and |K | with the usual topology are not generally homeomorphic.

However, when K has a locally finite vertex set (in particular, when K is finite) then K and |K |

are homeomorphic. The map taking the formal sum µ =
∑n

i=0λi xi in K to the corresponding

point in Barycentric coordinates in |K | is in that case a homeomorphism.

The Vietoris–Rips complex necessarily has a metric space as its vertex set, and so admits

a Wasserstein metric, giving the Vietoris–Rips metric thickening, V R (X ;r ). For two points

x and y in X , W1(x, y) = d(x, y) since there is only one matching, the trivial one. Thus the

Wasserstein metric restricted to the vertex set of V R (X ;r ) is the original metric on X , and X

isometrically embeds into V R (X ;r ).

An r -thickening of a metric space is a larger embedding space Z ⊇ X such that X is isomet-

rically embedded in Z and d(z, X ) ≤ r for all z ∈ Z . The Vietoris–Rips metric thickening is an

r -thickening of X , since

W

(
n∑

i=0
λi xi , X

)
≤W

(
n∑

i=0
λi xi , x0

)
=

n∑

i=0
λi d(xi , x0) ≤ r

n∑

i=0
λi = r.

Here the central equality holds because there is only one transport plan to any singleton.

The Vietoris–Rips thickening also satisfies a version of Hausmann’s theorem. If M is a Rie-

mannian manifold, then any (weighted) finite collection of points µ⊆ M with sufficiently small

diameter has a unique Riemannian center of mass, or Karcher mean5.

5Chapter 4 explicates the rigorous definition of the Riemannian center of mass and its role in the proof of The-
orem 2.3.2.
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Theorem 2.3.2. Let M be a complete Riemannian manifold and ρ sufficiently small so that every

subset of diameter at most ρ has a unique Karcher mean. Then for any 0 ≤ r < ρ, the Vietoris–Rips

metric thickening V R (M ;r ) is homotopy equivalent to M.

Proof. There are three key elements. First, the natural inclusion ι : M → V R (M ;r ) is continu-

ous, since it is an isometric embedding as previously stated. Second, the map g : V R (M ;r ) →

M sending µ to its Karcher mean is continuous, and finally, these two maps are homotopy in-

verses, which follows by showing that whenever µ= [x0, . . . , xk ] is a k-simplex in VR(M ;r ), then

µ̂ = [x0, . . . , xk , g (µ)] is a (k + 1)-simplex in VR(M ;r ). This allows ι ◦ g to be homotopic to the

identity in V R (M ;r ) by mapping linearly from µ to g (µ) within µ̂.

For the special case of spheres the bound can be extended to r < rn , where rn is the diameter

of the inscribed regular (n+1) simplex in S
n . The exact technique in the proof of Theorem 2.3.2

can be used to show a metric version of the nerve lemma [3, Theorem 4.4], and of Latschev’s the-

orem [3, Corollary 6.8]. The Vietoris–Rips metric thickening then appears to enjoy all the same

reconstruction properties as the Vietoris–Rips simplicial complex, with the additional benefit

of preserving the metric.

The last results which need to be translated to metric thickenings are the known homo-

topy types of manifolds at scales beyond Hausmann’s limit. Let An be the alternating group

on n elements. Note that An+2 acts on ∆n+1 by rotations. This gives an group homomor-

phism An+2 ,→ SO(n + 1). Theorem 5.4 in [3] shows that the first change in homotopy type

of V R≤ (Sn ;r ) is at r = rn , and that

V R≤
(
S

n ;rn

)
≃Σ

n+1 SO(n +1)

An+2
,

the (n +1)-fold suspension of the quotient space. In particular,

V R≤

(
S

1;
1

3

)
≃Σ

2 SO(2)

A3
=Σ

2 S
1

Z/3Z
=Σ

2
S

1 =S
3.
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This is noteworthy in that it is not the same as the homotopy type of VR≤
(
S

1; 1
3

)
. Therefore,

|K | and K are not always homotopy equivalent. At the same time, it is the homotopy type of

VR
(
S

1;r
)

when 1
3 < r < 2

5 , which suggests that perhaps VR< (X ;r ) ≃ V R< (X ;r ) in general, and

that VR≤ (X ;r ) and V R≤ (X ;r ) only differ at these critical scales where the homotopy type of

VR≤ (X ;r ) is wild.
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Chapter 3

Optimal Transport and Wasserstein Spaces

This chapter provides an introduction to the Wasserstein distance on spaces of probability

measures. Section 3.1 discusses the optimal transport problem, which is the historical and the-

oretical motivation for the Wasserstein metric. Next, Section 3.2 goes into the analytical details

of the Wasserstein metric and Wasserstein spaces of probability measures, establishing basic

properties of the metric such as equivalence with the weak topology. Thought the Wasserstein

distance is familiar to applied topologists as a metric on persistence diagrams, many of these

details in more general spaces may be unfamiliar and so are covered in detail. Particular atten-

tion is payed throughout to how the theory relates to measures with finite support since these

are the foundation of the Vietoris–Rips metric thickening.

Throughout X is a metric space and measures on X are assumed to be with respect to the

Borel σ-algebra of X . Background on measure and probability theory can be found in [27].

3.1 Optimal Transport

The problem of optimal transport has a long history. In 1781 Gaspard Monge formulated

it like this: Suppose that you are given a pile of dirt and an equivoluminal hole situated some

distance away; in order to minimize effort (mass times distance), which shovelful of dirt should

be placed in which part of the hole? [28].

The modern mathematical formulation interprets the pile and the hole as probability dis-

tributions, µ and ν, on a metric space X . A transport plan is a function T : X → X which trans-

forms µ into ν via pushforward, ν= T #µ.6 (Recall that the pushforward of µ along a measurable

map T is the measure T #µ defined by

6It is possible without any significant change in theory to consider T : X → Y , but the Wasserstein distance,
and therefore the focus of this chapter, is on the case of T : X → X .
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T #µ(A) :=µ(T −1(A)). (3.1)

for any measurable set A.) A fundamental property of the pushforward is the change of vari-

ables formula: if T : X → X and f : X →R, then

∫

X
f ◦T (x)dµ(x) =

∫

X
f dT #µ(x). (3.2)

If µ is a finitely-supported measure, then T #µ is as well, and so if ν = T #µ, T must be a func-

tion moving the support of µ surjectively onto the support of ν. Moreover, there are clearly no

transport plans between measures of unequal mass; hence the problem must be restricted to

probability measures (those with total mass one).

In this formalization the optimal transportation problem is to minimize the cost functional

I (T ) :=
∫

X
d p (T (x), x)dµ(x)

over the set of all transport plans T with ν = T #µ, where p ∈ [0,+∞). (Monge considered the

case p = 1, while modern treatments often focus on p = 2 or the general case.) Unfortunately,

this problem often fails to have a solution.

Example 3.1.1. Suppose that µ= 1
2δ[x1]+ 1

2δ[x2], and ν= 3
4δ[y1]+ 1

4δ[y2] where x1, x2, y1, and

y2 are any four distinct points in R
d . There are no transport plans from µ to ν because for any

function f : Rd → R
d , µ( f −1({y1})) is either 0, 1

2 , or 1. The issue is that the masses in µ must be

“split” in order to produce ν, but no function can do so. Nor are there any transport plans from

ν to µ for the same reason. This example is fundamental, and it is a major point of distinction

between discrete measures and absolutely continuous ones. �

Solving the optimal transport problem involves a common technique: enlarge the space of

possible solutions, and then prove that under some restrictions the solution actually lives in the

desired subspace. In particular, any measurable function T : X → X and measure µ gives rise

to a measure γ on the product space X × X via γ := (id,T )#µ. If π1 and π2 are the projections
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X × X → X onto the first and second factors, then π1#γ = µ and π2#γ = T #µ, in other words,

the marginals of γ are µ and T #µ. Thus a relaxation of the optimal transport problem, due to

Kantorovich [29] is to search over all measures γ on X ×X with marginals µ and ν. The objective

function is now

I (γ) :=
∫

Rd×Rd
d p (x, y)dγ(x, y).

The measures γ are called transference plans (following Villani [30]) and the collection of all

such will be denoted Γ(µ,ν).

Example 3.1.2. The measures in Example 3.1.1 admit transference plans. In particular, γ =
1
4δ[(x1, y2)]+ 1

2δ[(x2, y1)]+ 1
4δ[(x1, y1)] is one such plan. Optimality, of course, depends on the

locations of x1, x2, y1, and y2. �

Now three questions must be answered to solve the optimal transport problem: the exis-

tence and uniqueness of an optimal γ, and whether γ has the form (id,T )#µ for some T . The

Kantorovich duality theorem answers the existence and uniqueness questions, and Brenier’s

theorem gives a precise characterization of optimal transport plans when they exist.

Remark 3.1.3. Before stating these theorems in Section 3.1.1 and Section 3.1.2, it is convenient

for the sake of examples to describe a formalization of the problem when restricted to measures

supported on finite sets. Any such measure has the form µ=
∑n

i=0λiδ [xi ]. A transference plan

γ between µ and ν =
∑m

i=0ξ jδ
[

y j

]
is a measure supported on (a subset of) the points (xi , y j ).

Letting λ and ξ be the vectors of length n+1 and m+1 corresponding to the weights λi and ξ j , γ

can be written as a matrix with γi j the weight on (xi , y j ). The marginal condition now says that

γ ·✶=λ and ✶ ·γ= ξT . Let D be the matrix with Di j = d p (xi , y j ). Then the objective function is

I (γ) =✶T ·D ⊙γ ·✶

with ⊙ denoting the pointwise or Hadamard matrix product.
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3.1.1 Kantorovich Duality

The exposition here follows [30]. As a technical detail, X is always a locally-compact, com-

plete, and separable metric space.

Theorem 3.1.4. For any pair (µ,ν), there is a γ ∈ Γ(µ,ν) which minimizes I .

Proof. The proof follows that found in [31]. First, observe that the product measure µ⊗ν has

marginals µ and ν, so Γ(µ,ν) is nonempty. Put the weak topology on Γ(µ,ν), meaning that a

sequence {γk } converges to γ if for any lower semi-continuous function f : X ×X →R∪+∞,

lim
k→∞

∫

X×X
| f |dγk =

∫

X×X
| f |dγ.

Prokhorov’s theorem says that any tight sequence of measures on a Polish space has a con-

vergent subsequence and that any convergent sequence of measures is tight. (Recall that a se-

quence {αk } of measures is tight if for every ε> 0 there is a compact set K such that αk (X \K ) < ε

for every k.) Let {αk } be any sequence in Γ(µ,ν). By Prokhorov’s theorem there are two compact

subsets of X , Kµ and Kν, such that µ(X \ Kµ) < ε
2 and ν(X \ Kν) < ε

2 . The product Kµ×Kν is a

compact subset of X ×X . Then

αk ((X ×X ) \ (Kµ×Kν)) ≤αk ((X \ Kµ)×X )+αk (X × (X \ Kν))

by additivity of measures, and by definition of Γ(µ,ν)

αk ((X \ Kµ)×X )+αk (X × (X \ Kν)) =µ(X \ Kµ)+ν(X \ Kν) < ε.

Hence any sequence of measures has a convergent subsequence, so Γ(µ,ν) is sequentially com-

pact.

Let {γn}∞n=0 be any sequence of measures converging weakly to γ in Γ(µ,ν). Then

liminf
n→∞

∫

X×X
d(x, y)p dγn(x, y) ≥

∫

X×X
d(x, y)p dγ(x, y)
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by the definition of weak convergence and the continuity of d(x, y)p . This implies immediately

that I is lower semi-continuous.

The extreme value theorem says that any lower semi-continuous function from a sequen-

tially compact space to R∪+∞ achieves its minimum.

Remark 3.1.5. Theorem 3.1.4 is not the most general existence theorem which can be stated.

Most obviously, the properties of the distance function were never used, aside from continuity,

so the theorem actually holds for a much wider class of cost functions c(x, y). Many different

versions of this result can be found in [32, Section 4]. Worth mentioning is the result of [33]

which removes the assumption of a Polish space in exchange for the mild restriction of working

only with Radon measures.

If one only wants the value of the minimum, rather than a description of the transference

plan, then Kantorovich’s duality theorem provides a dual formulation of the problem.

Theorem 3.1.6 (Kantorovich Duality). Let Φ be the set of all pairs of bounded, continuous func-

tions (φ,ψ) such that φ(x)+ψ(y) ≤ d 2(x, y) for µ-almost every x and ν-almost every y. Then

min
γ∈Γ(µ,ν)

∫
d 2(x, y)dγ= max

(φ,ψ)∈Φ

∫

X
φdµ+

∫

X
ψdµ.

A delightful intuition is provided by Cedric Villani in [30].

Suppose for instance that you are both a mathematician and an industrialist, and

want to transfer a huge amount of coal from your mines to your factories. You can

hire trucks to do this transportation problem, but you have to pay them c(x, y) for

each ton of coal which is transported from place x to place y . Both the amount

of coal which you can extract from each mine, and the amount which each fac-

tory should receive, are fixed. As you are trying to solve the associated Monge-

Kantorovich [optimal transport] problem in order to minimize the price you have

to pay, another mathematician comes to you and tells you “My friend, let me han-

dle this for you: I will ship all your coal with my own trucks and you won’t have to
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worry about what goes where. I will just set a price φ(x) for loading one ton of coal

at place x, and a price ψ(y) for unloading it at destination y . I will set the prices in

such a way that your financial interest will be to let me handle all your transporta-

tion! Indeed, you can check very easily that for any x and y , the sum φ(x)+ψ(y) will

always be less that [sic] the cost the cost c(x, y) (in order to achieve this goal, I am

even ready to give financial compensations for some places, in the form of negative

prices!)”.

Using the conventions of Remark 3.1.3, Theorem 3.1.6 in the finite setting reduces precisely

to the usual duality of linear programming, so it can be thought of as a generalization of a cer-

tain class of linear programs to the continuous setting.

We now turn to characterizing the optimal transport plans. While the minimum is achieved

by Theorem 3.1.4, it need not be unique. The set of measures which achieve the minimum will

be written Γ0(µ,ν).

Example 3.1.7. As a simple instance of non-uniqueness, let X = {x1, x2, x3, x4} be a four point

metric space in which d(xi , x j ) = d for all i , j . Any transference plan between µ = λ1δ [x1]+

λ2δ [x2] and ν=λ3δ [x3]+λ4δ [x4] has equal, optimal, cost, since

✶
T ·γ⊙D ·✶= d

(
✶

T ·γ ·✶
)
= d

as long as γ is a transference plan. �

3.1.2 Brenier’s Theorem

When the cost function is
∫

X d 2(x, y)dγ the solution to the generalized Kantorovich problem

can be shown to be unique, and to in fact be given by pushforward along a function so long as

the measures in question are sufficiently regular.

Theorem 3.1.8 (Brenier). If µ is absolutely continuous with respect to Lebesgue measure on R
d

and µ and ν have finite second-moments, then there is a unique optimal transport plan γ, and
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γ= (id×∇φ)#µ

for some convex function φ.

A thorough, and very readable treatment, including multiple proofs, is given in [30, Chapter

2]. The original proof appeared in [34, 35]. The statement can in fact be extended to a slightly

more general class of measures that do not give mass to small sets. If the measures are not

absolutely continuous, it can still be shown that the support of any optimal γ lies on the sub-

differential of a convex, lower semi-continuous function φ. (The subdifferential is defined in

Chapter 5.)

McCann [36] showed that, with appropriately modified definitions, the same result holds on

manifolds:

Theorem 3.1.9 (McCann). More generally, if M is a compact Riemannian manifold and µ ≪

dVol, then there is a unique optimal transference plan

γ= (id×T )#µ

where T : M → M satisfies T (x) = expx(−∇φ(x)) for some geodesically convex function φ.

3.2 The Wasserstein Metric

The optimal transport problem assigns a real number to any pair of measures, namely, the

cost of the optimal transport plan between them. This section shows how that assignment is ac-

tually a metric on the space of probability measures, which gives rise to the Wasserstein space.

Let P (X ) denote the set of all Borel probability measures on a Polish (complete, separable)

metric space X . Define the set of measures with finite p-th moment,

Pp (X ) :=
{
µ ∈ P (X ) |

∫

X
d(x, x0)p dµ<+∞

}

for some x0 ∈ X .
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Proposition 3.2.1. The following basic properties of Pp (X ) hold:

1. The set Pp (X ) does not depend on the choice of x0.

2. If X is a bounded metric space, then Pp (X ) = P (X ).

3. Pp (X ) contains all finitely-supported probability measures.

Proof. 1. Take any x1 ∈ X . Then

∫

X
d(x, x1)p dµ≤

∫

X
d(x, x0)p dµ+

∫

X
d(x0, x1)p dµ,

and since d(x0, x1)p is a constant and µ is a probability measure

∫

X
d(x0, x1)p dµ= d(x0, x1)p .

Thus the difference between the two integrals is at most a finite amount.

2. Let c = supx,y∈X d p (x, y). Then
∫

X d p (x, x0)dµ≥
∫

X c dµ= c <∞.

3. Let µ=
∑n

i=1λiδ[xi ]. Then
∫

X d p (x, x0) =
∑n

i=1λi d p (xi , x0) <∞ because the sum is finite.

Definition 3.2.2. Let µ,ν ∈Pp (X ). The p-Wasserstein distance between µ and ν is

Wp (µ,ν) := inf
γ∈Γ(µ,ν)

(∫

X×X
d p (x, y)dγ

)1/p

.

The Wasserstein distance is a metric on Pp (X ). Since d is a distance, Wp (µ,ν) ≥ 0. Non-

degeneracy follows from observing that Wp (µ,ν) = 0 implies that γ is supported precisely on

the diagonal x = y in X ×X . Thus µ= ν since for any measurable function f : X →R,

∫

X
f (x)dµ=

∫

X×X
f (x)dγ=

∫

X×X
f (y)dγ=

∫

X
f (y)dν.
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Symmetry is immediate. The triangle inequality is less clear, depending on two significant lem-

mas.

Lemma 3.2.3 (Disintegration of Measure). Let X and Y be Polish spaces, π2 : X × Y → Y be

the projection onto Y , µ ∈ Pp (X ×Y ), and set ν = π2#µ. Then there exists a family of measures

µy ∈Pp (X ) indexed by y ∈ Y such that

µ=
∫

Y
µy dν(y).

Moreover, the map y 7→µy (B) is measurable for any measurable B ⊆ X ×Y , and the family {µy } is

uniquely determined ν-almost everywhere.

A proof can be found in [37, page 78].

Lemma 3.2.4 (Composition of Transport). Let α ∈Pp (X ×Y ) and β ∈Pp (Y ×Z ) with

µ=π2#α=π1#β ∈Pp (Y ).

Then there exists a (not necessarily unique) measure σ ∈Pp (X ×Y ×Z ) such that π1,2#σ=α and

π2,3#σ=β.

Here πi , j denotes the projection onto factors i and j of the product.

Proof. By disintegration of measure there exist families αy and βy such that α =
∫

Y αy dµ(y)

and β =
∫

Y βy dµ(y). Then σ defined as σ :=
∫

y (αy ⊗βy )dµ(y) satisfies the requirements of the

lemma.

Remark 3.2.5. It is trivial to construct a measure σ ∈ Pp (X ×Y ×Y × Z ) with π1,2#σ = α and

π3,4#σ = β by simply taking the product α⊗β. The significance of Lemma 3.2.4 is that the

central index can be “contracted.” A similar composition does not hold for three measures:

given α and β as in the lemma and γ ∈Pp (X × Z ), with π1#γ= π1#α and π2#γ= π2#β, there is

in general no σ with π1,2#σ=α, π2,3#σ=β, and π1,3#σ= γ.
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Example 3.2.6. The construction is clear when working with finitely-supported measures, in-

terpreted as matrices. Let A and B be the matrices with values corresponding to the weights in

α and β, respectively, and m the vector of weights corresponding to their common marginal.

The assumption that µ=π2#α=π1#β corresponds to requiring that

m =✶T · A = B ·✶.

A disintegration Ay is the row of A corresponding to y and dividing it by my , the weight on y in

m, and likewise for B , except transposed. The joint measure on X ×Y × Z is then represented

by a three-dimensional array whose sheets are the outer product of Ay and By .

�

Proposition 3.2.7. (Pp (X ),Wp ) is a metric space.

Proof. Non-degeneracy and symmetry have already been shown. To show the triangle inequal-

ity, let µ,ν,ρ ∈ Pp (X ), with γ1 and γ2 the optimal plans for (µ,ν) and (ν,ρ), respectively. By

Lemma 3.2.4 there is some σ which marginalizes to γ1 and γ2, and by construction π1,3#σ is

a transference plan between µ and ρ. Applying the triangle inequality in X and Minkowski’s

inequality gives:

Wp (µ,ρ) ≤
(∫

X
d p (x, z)dπ1,3#σ(x, z)

)1/p

=
(∫

X
d p (x, z)dσ(x, y, z)

)1/p

≤
(∫

X
(d(x, y)+d(y, z))p dσ(x, y, z)

)1/p

≤
(∫

X
d p (x, y)dσ(x, y, z)

)1/p

+
(∫

X
d p (y, z)dσ(x, y, z)

)1/p

≤
(∫

X
d p (x, y)dπ1,2#σ(x, y)

)1/p

+
(∫

X
d p (y, z)dπ2,3#σ(y, z)

)1/p

=Wp (µ,ν)+Wp (ν,ρ).

Also note that Wp is finite since by the assumption of finite p-th moment,
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+∞>
∫

X
d p (x, x0)dµ=

∫

X×X
d p (x, y)d(µ⊗δ [x0])(x, y) =Wp (µ,δ [x0])

and then by the triangle inequality, Wp (µ,ν) ≤Wp (µ,δ [x0])+Wp (δ [x0] ,ν).

There are many notions of convergence in probability theory, including convergence in

probability, almost sure convergence, convergence in total variation, strong convergence, and

weak convergence, among others. Convergence in Wasserstein distance could be added to this

list, but it turns out to be equivalent to weak convergence under minor assumptions.

Recall that a sequence µn converges to µ weakly if

lim
n→∞

∫

X
f dµn =

∫

X
f dµ

for all continuous, bounded functions f . The nomenclature “weak convergence” is used be-

cause most other forms of convergence for probability measures imply weak convergence, and

becuase—perhaps more rigorously—weak convergence is convergence in the dual space Cb(X )∗

of the space of bounded, continuous functions on X with the weak-* topology, that is, the weak-

est topology on Cb(X )∗ such that the evaluation maps are continuous. By the Riesz represen-

tation theorem, probability measures can be identified with a convex subset of Cb(X )∗ (though

not a vector subspace).

Proposition 3.2.8. Let X be a compact metric space. Then limn→∞Wp (µn ,µ) = 0 if and only if

µn →µ weakly.

Proof. Suppose first that W2(µn ,µ) → 0, and let γn be an optimal transport plan from µn to µ.

Then for any f ∈Cb(X ),

∣∣∣∣
∫

X
f (x)dµn(x)−

∫

X
f (y)dµ(y)

∣∣∣∣=
∣∣∣∣
∫

X
f (x)− f (y)dγn(x, y)

∣∣∣∣≤
∫

X
| f (x)− f (y)|dγn(x, y).

Assume for the moment that f is k-Lipschitz. Then
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∫

X
| f (x)− f (y)|dγn(x, y) ≤ k

∫

X
d(x, y)dγn(x, y) = kW1(µn ,µ).

Hölder’s inequality gives that

∫

X
d(x, y)dγn(x, y) ≤

(∫

X
d p (x, y)dγn(x, y)

)1/p (∫

X
1dγn(x, y)

)1/q

for any p ∈ (1,+∞) and q = p

p−1 . Since γn is a probability measure,

lim
n→∞

∫

X
d(x, y)dγn(x, y) ≤ lim

n→∞

(∫

X
d p (x, y)dγn(x, y)

)1/p

= lim
n→∞

Wp (µn ,µ) = 0.

Finally, conclude by recalling that the set of Lipschitz functions is dense in Cb(X ) with the sup-

norm (i.e. uniform convergence), so convergence must hold for any f .

Conversely, if µn → µ weakly, assume there is a sequence γn ∈ Γ0(µn ,µ) which conveges to

some γ and this γ is an optimal plan.7 This means
∫

d p (x, y)dγ(x, y) = 0, so that

lim
n→∞

W
p

p = lim
n→∞

∫
d p (x, y)dγn(x, y) =

∫
d p (x, y)dγ(x, y) = 0.

Corollary 3.2.9. If X is compact, then the spaces Pp (X ) are homeomorphic, i.e. Wp induces the

same topology for all p.

Proof. Compactness implies boundedness, and by Proposition 3.2.1 Pp (X ) is the same set for

all p as long as X is bounded. Then by Proposition 3.2.8, convergence in Wp and Wq are both

equivalent to uniform convergence, and therefore equivalent.

This corollary justifies using P (X ) rather than specifying any particular p, as will be done

throughout the remainder. Moreover, when a particular p is intended it will always be p = 2 for

reasons given in Chapter 4, unless specified otherwise.

7The elided details are to be found in [38].
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3.3 Topology and Geometry of Wasserstein Space

Wasserstein space P (X ) inherits a number of topological and geometric properties from X .

Recall that X is assumed to be locally compact, complete, and separable.

Corollary 3.3.1. If X is compact then P (X ) is compact.

Proof. It suffices to show that P (X ) is closed and bounded since it is a metric space. If X is

bounded, then d 2(−,−) is bounded and so W2 is bounded. By Proposition 3.2.8, P (X ) is closed.

Proposition 3.3.2. If X is a geodesic space, then P (X ) is a geodesic space.

Proof. The construction of the geodesics is given here. A complete proof is found at [38, The-

orem 3.10]. Define the space Geo(X ) to be the set of all constant-speed geodesics γ : [0,1] → X

with the sup-norm. Let G : X ×X → Geo(X ) be the map (x, y) 7→ γx
y (t ) selecting a geodesic con-

necting x and y .8 There is also an evaluation map e : [0,1]×Geo(X ) → X defined by et (γ) = γ(t ).

Let µ and ν be any measures in P (X ) with γ an optimal plan connecting them. Define Θ :=

G#γ ∈ P (Geo(X )) and θ(t ) := et #Θ ∈ P (X ). The constant speed geodesic between µ and ν is

θ(t ) : [0,1] →P (X ).

Example 3.3.3. Consider the case where µ and ν are finitely-supported, µ =
∑n

i=0λiδ [xi ] and

ν =
∑m

i=0ξ jδ
[

y j

]
. An optimal transference plan γ has the form γ =

∑
i , j ωi , jδ

[
(xi , y j )

]
where

some ωi , j may be zero. Then

G#γ=
∑

i , j

ωi , jδ
[
γ

xi
y j

]
and θ(t ) =

∑

i , j

ωi , jδ
[
γ

xi
y j

(t )
]

.

The difference between the last two formulas is that in the first δ
[
γ

xi
y j

]
is the point mass at γxi

y j

in the space of geodesics, while in the second δ
[
γ

xi
y j

(t )
]

is the point mass at γxi
y j

(t ) in X .

This formula for the geodesics between discrete measures will play a significant role in

Chapter 4. �

8This map is not necessarily uniquely defined, in which case the geodesics in P (X ) are also not unique.
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3.3.1 Vietoris–Rips Metric Thickenings as Wasserstein Spaces

Section 2.3 gave the definition of Vietoris–Rips metric thickenings and defined a Wasserstein

metric on them. The relation between this definition and the Wasserstein metric in this chapter

is made explicit here.

Let VR(X ;r ) be a Vietoris–Rips complex and suppose that some point m ∈ VR(X ;r ) is given

in barycentric coordinates by the formal sum m =
∑n

i=0λi xi . Define a map Φ : VR(X ;r ) →P (X )

by
∑n

i=0λi xi 7→
∑n

i=0λiδ [xi ], that is, turning the formal sum into a convex sum of probability

distributions. The image of Φ in P (X ) is the Vietoris–Rips metric thickening V R (X ;r ). Specifi-

cally, V R (X ;r ) as defined in Section 2.3 is the image in P1(X ); however, this is homeomorphic

to the image in any other Pp (X ). Henceforth V R (X ;r ) will denote the image in P2(X ) unless

otherwise stated.

The Vietoris–Rips thickening is not typically a geodesically convex subset.

Example 3.3.4. Consider V R
(
S

1; 2π
3 +ε

)
where ε is small (0 < ε< 2π

15 ). Let µ= 1
3δ [0]+ 1

3δ
[2π

3

]
+

1
3δ

[4π
3

]
and ν= δ [0]. The constant speed geodesic in P (X ) from µ to ν is

γ
µ
ν(t ) =

1

3
δ

[
(1− t )

2π

3

]
+

1

3
δ

[
2πt + (1− t )

4π

3

]
+

1

3
δ [0] .

Note that diam(γ
µ
ν( 1

4 )) =π> 2π
3 +ε, and so γ

µ
ν(t ) is not contained in V R

(
S

1; 2π
3 +ε

)
. �

The definition of geodesics in Wasserstein space, and of the Vietoris–Rips metric thickening,

emphasizes that there are two distinct concepts of “straight line” at play. On the one hand,

there are geodesics γ
µ
ν(t ) in P (X ), at least when X is geodesic, and geodesics broadly speaking

generalize the idea of a straight line. On the other hand, there are convex combinations (1−t )µ+

tν for any t ∈ [0,1] which also connect µ to ν in an intuitively “linear” way. Viewing P (X ) as a

subset of Cb(X )∗, the dual function space, the latter is precisely the linear vector space structure

there. At first glance the linear structure is more compatible with V R (X ;r ), since if σ and τ are

faces of the same simplex in VR(X ;r ), then (1−t )Φ(σ)+tΦ(t ) is in V R (X ;r ). Chapter 4 however

determines the homotopy type of V R (X ;r ) using only the geodesic structure. The interplay
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between these two elements of Wasserstein space is a significant, if not always explicit, theme

in this thesis.
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Chapter 4

Curvature and Hausmann-Type Theorems

This chapter uses the Wasserstein space structure on V R (X ;r ) to construct a homotopy

equivalence between V R (X ;r ) and X under various curvature constraints on X . A main tool is

the center of mass, discussed in Section 4.1. Curvature for metric spaces is defined in Section 4.2

and necessary curvature bounds imposed. The main theorem is in Section 4.3. This extends the

results of [3] by using a homotopy along geodesics within Wasserstein space, rather than along

the linear structure of the simplices. Section 4.4 concludes the chapter with new corollaries

arising from the geodesic approach.

4.1 The Center of Mass

The center of mass of a measure µ on R
d is defined by

µ :=
∫

Rn
~x dµ(~x).

This is finite for any probability measure with finite first moment, in particular for anyµ ∈P (X ).

In the case that µ=
∑n

i=0λiδ [xi ] is finitely supported, its center of mass is

µ=
n∑

i=0
λi~xi .

The center of mass satisfies the property that

µ= argmin
~y∈Rn

∫

Rn
‖~x −~y‖2 dµ(~x),

and it can also be understood statistically as the expected value of the distribution µ. The center

of mass gives a convenient map from P (Rd ) to R
d .
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Hermann Karcher showed how to generalize this construction to a Riemannian manifold or

more general metric space with his introduction of the Riemannian center of mass in [39, 40].

The exposition that follows is drawn from [40] and [41]. A measurable function f : A → M from

some probability space (A,F ,P) to a Riemannian manifold M induces a measure µ = f #P on

M . Define a function P f : M →R by

P f (m) :=
1

2

∫

A
d(m, f (a))2 dP(a) =

1

2

∫

M
d(m, x)2 dµ(x).

(The subscript will denote either the function or the induced measure depending on context, so

here P f = Pµ.) The function P f is the weighted sum of squared distances from m to the support

of µ. Let Bρ(m) be the ball of radius ρ centered at m ∈ M . If ρ is sufficiently small Bρ(m) is

geodesically convex: there is a unique shortest geodesic between any points x and y in Bρ(m),

and the entirety of this geodesic is contained in Bρ(m).

Theorem 4.1.1 (Karcher). Suppose that supp(µ) is contained inside a geodesically convex ball

Bρ(m) and that the sectional curvature of M in Bρ(m) is either

• at most 0, or

• bounded above by some ∆> 0 and ρ < 1
4π∆

− 1
2 .

Then P f : Bρ(m) →R is (geodesically) convex and therefore has a unique minimum C f in Bρ(m).

The proof is found in [40, Theorem 1.2]. The point C f may variously be called the Rieman-

nian center of mass, the “Karcher mean,” the “Fréchet mean,” or the barycenter of µ. Here

C f will be called the center of mass, since “Karcher mean” is disputed [42] and barycenter has

another meaning in the setting of simplicial complexes.

While Theorem 4.1.1 depends on the Riemannian structure of M , neither the definition of

P f nor C f does so.
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Definition 4.1.2. Let X be a metric space and µ ∈P (X ). Define

Pµ(x) =
∫

X
d 2(x, y)dµ(y)

as in the Riemannian setting, and define

V (µ) = inf
x

Pµ(x), K (µ) = argmin
x

Pµ(x).

A priori, K (µ) is set-valued and K (µ) =; is possible.

Recall that a metric space is proper if every closed, bounded subspace is compact.

Lemma 4.1.3. If X is a proper metric space, then K (µ) is nonempty for every µ ∈P (X ).

Proof. The proof follows that in [43, Lemma 3.2]. Choose some x0 ∈ X and r > 1 such that

µ(Br (x0)) ≥ 1
2 and

∫

X \Br (x0)
d 2(x0, x)dµ(x) ≤ 1.

Such a choice is possible by the assumption that the second moment of µ is finite. This implies

that
∫

Br (x0)
d 2(x0, x)dµ(x) ≤ r 2µ(Br (x0))

since d(x, x0) ≤ r in Br (x0). This gives

∫

X
d 2(x0, x)dµ(x) ≤ r 2µ(Br (x0))+1 ≤ r 2 +1.

If y ∈ X \ B3r (x0), then

∫

X
d 2(y, x)dµ(x) ≥

∫

Br (x0)
d 2(y, x)dµ(x) > (2r )2µ(Br (x0)) ≥ 2r 2

where the first inequality holds because X ⊇ Br (x0) and the second because y ∈ B3r (x0) and

therefore infx∈Br (x0) d 2(x, y) = 2r . Hence the optimal point necessarily is contained in B3r (x0).
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With the assumption that X is proper, B3r (x0) is compact, and therefore Pµ achieves its mini-

mum.

If X happens to be globally non-positively curved (see Section 4.2), then this can be im-

proved:

Proposition 4.1.4. If X is globally non-positively curved and µ is supported in a convex closed

set V ⊆ X , then K (µ) is in V .

For proof, see [44, Proposition 6.1]. The idea is to project onto the boundary of the region V

and show that doing so reduces the integral. Non-positive curvature gives a canonical projec-

tion onto V , and guarantees that the distance from the projection to any point in the interior of

V is less than the original distance.

Proposition 4.1.4 does not hold in positive curvature. Let H be a closed hemisphere on the

2-sphere. Certainly H is geodesically convex, however, if µ is supported on two antipodal points

on the equator, the pole opposite H is a mean.

In order to use K as a map P (X ) → X we would like to further establish some type of unique-

ness, as well as continuity. Uniqueness will generally only hold for measures supported on

sufficiently small subsets, and continuity of course depends upon uniqueness. Geometric con-

siderations on the space X will determine the necessary conditions.

4.2 Curvature Considerations

Existence of a minimizer requires only the minor assumption that X is proper. Uniqueness

is generally much harder, but one way to guarantee the uniqueness of a minimizer is to show

that Pµ is a convex function. If X is a geodesic space, then convexity of a function f means that

for any pair of points x and y and any geodesic γx
y : [0,T ] → X connecting them, the inequality

f (γx
y (t )) ≤ (1− t ) f (x)+ t f (y)
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is satisfied. Convex functions have a unique minimum whenever their minimum is achieved,

and a unique argmin if the inequality is strict whenever t ∈ (0,T ). Since Pµ corresponds to a

sum of squared distances, convexity of d 2(−,−) is closely related to the convexity of Pµ, and the

convexity of the distance function is closely related to the curvature of the space X .

Curvature for geodesic spaces is defined by comparisons to reference manifolds of constant

curvature, in the simplest case, the Euclidean plane. Given a point p and a geodesic curve γ(t )

in X which is parametrized by arc length, define the comparison function g (t ) = d(p,γ(t )). Any

such function has a Euclidean comparison function ~g (t ) = ‖~p −~γ(t )‖ defined by choosing a

point ~p in the Euclidean plane and a parametrized straight line segment ~γ(t ) such that ‖~p −

~γ(0)‖ = d(p,γ(0)) and ‖~p −~γ(1)‖ = d(p,γ(1)).

p

r

q

~r

~p

~q

Figure 4.1: A triangle in a geodesic space and the comparison Euclidean triangle.

Definition 4.2.1. A neighborhood Nx of a point x in a geodesic space X is non-positively curved

(respectively, non-negatively curved) if given any point p ∈ Nx and a geodesic γ ⊆ Nx , the com-

parison function satisfies g (t ) ≤~g (t ) (respectively, g (t ) ≥~g (t )).

A neighborhood Nx satisfying this condition is called a normal region. If it is possible to

take Nx = X then X is globally non-positively or non-negatively curved. If X is complete and

every x ∈ X has a normal region satisfying the same curvature inequality, then X is locally non-

positively curved (respectively, non-negatively curved). Equivalent to Definition 4.2.1 is the

triangle condition:
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Definition 4.2.2. Let △pqr be a triangle in X , that is, a set of three points p, q, and r , and

a designated geodesic between each. Let △~p~q~r be a triangle in Euclidean space with the same

side lengths. The geodesic space X satisfies the narrow triangle condition if for every point x on

the geodesic connecting p and r , d(x, q) ≤ ‖~x −~q‖, and the wide triangle condition if d(x, q) ≥

‖~x −~q‖.

Satisfying the narrow triangle condition is equivalent to non-positive curvature, and the

wide triangle-condition to non-negative curvature.

A direct consequence of the definition is that in any space of non-positive curvature the

distance function is convex, meaning that for any geodesics γ and γ̃,

d(γ(t ), γ̃(t )) ≤ (1− t )d(γ(0), γ̃(0))+ td(γ(1), γ̃(1)).

Examples of spaces of global non-positive curvature, hereafter global NPC, include mani-

folds which are complete, simply-connected, and have non-positive sectional curvature [44].

(The major example is hyperbolic space.) Locally finite metric trees, that is, simply connected

metric graphs, are non-positively curved. Hilbert spaces are also global NPC spaces, and in

fact, this condition distinguishes Banach spaces from Hilbert spaces in the sense that a Banach

space is global NPC space if and only if it is a Hilbert space. These and many other examples

are found in [44, Section 3].

A key example of a space which is locally NPC but not globally NPC is the circle. Any open

metric ball of radius less than π in S
1 is isometric to a segment of the real line and therefore

satisfies the condition of Definition 4.2.1; however, the circle is the canonical example of a space

of global positive curvature. More generally, any locally finite metric graph is locally NPC, since

a sufficiently small neighborhood of any point resembles a tree. If φ : R→R is a smooth convex

function, then its surface of revolution is a non-compact Riemannian manifold with negative

sectional curvature and non-trivial fundamental group. It is therefore not globally NPC, but

it is locally NPC. A concrete example is the pseudo-sphere, the surface of constant negative
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curvature obtained as the surface of revolution of f (x) = log
(

1−
p

1−x2

x
−
p

1−x2
)
. Additional

examples can be found in [45, Chapter 4].

Any complete Riemannian manifold with positive sectional curvature at each point is glob-

ally non-negatively curved in the sense of Definition 4.2.1. In particular, spheres have constant

positive curvature and the sphere S
n is the only manifold of dimension n with this property.

Spaces of non-negative curvature are discussed extensively in Chapter 5. A particularly notable

example is that the Wasserstein space P (X ) has non-negative curvature if and only if X does.

(See Theorem 5.1.2.)

A more refined notion of curvature bounds is that of a CAT(κ) space. In a CAT(κ) space,

the Euclidean comparison triangles of Definition 4.2.2 are replaced with standard comparison

triangle in other spaces of constant curvature.

Definition 4.2.3. The reference spaces of dimension n and constant curvature κ, denoted M
n(κ)

are the metric spaces:

• if κ= 0 then M
n(0) is Euclidean space Rn ,

• if κ> 0 then M
n(κ) is obtained from the unit n-sphere Sn by multiplying the distance func-

tion by 1p
κ

, and

• if κ< 0 then M
n(κ) is obtained from hyperbolic space Hn by multiplying the distance func-

tion by 1p
−κ .

When κ> 0 the space M
n(κ) can also be described as the sphere of radius 1p

κ
.

Definition 4.2.4. Let △pqr be a triangle in a geodesic space X and △p̄ q̄ r̄ be a triangle identical

side lengths in M
n(κ). The triangle △pqr satisfies the CAT(κ)-inequality if for any point x on the

geodesic connecting p and r and x̄ on the geodesic connecting p̄ and r̄ with d(p, x) = d(p̄, x̄), the

inequality d(x, q) ≤ d(x̄, q̄) holds.

A geodesic space has Alexandrov curvature ≤ κ if for every x ∈ X there is a ball Br (x) in

which all triangles satisfy the CAT(κ)-inequality. If all triangles in X satisfy the CAT(κ)-inequality,

then X is a CAT(κ)-space.
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Lemma 4.2.5. Let U be a CAT(κ)-space, or more generally a geodesically convex ball satisfying the

CAT(κ)-inequality, and △pqr a triangle in U . Let w(t ) = d(γ
p
q (t ),γr

q (t )) be the distance between

the geodesics from p and r to q, scaled so that γ
p
q (1) = γr

q (1) = q, the “width” of the triangle. Then

for all t ∈ [0,1], w(t ) ≤ d(p,r ).

Proof. In non-positive curvature this is immediate from the convexity of the distance function.

In positive curvature it suffices to prove the lemma on the unit n-sphere. Recall that any ball

of radius at most π
2 is convex. Let a = d(p, q) and b = d(r, q) so that d(γ

p
q (t ), q) = a − at and

d(γr
q (t ), q) = b −bt . Let θ be angle at q between the geodesics γ

p
q and γr

q . The result follows

from the spherical law of cosines:

cos(w(t )) = cos(a −at )cos(b −bt )+ sin(a −at )sin(b −bt )cos(θ)

which shows that w(t ) is non-increasing.

In detail,

d

dt
w(t ) =

d

dt
arccos(cos(a −at )cos(b −bt )+ sin(a −at )sin(b −bt )cos(θ))

=−
(a −b cos(θ))sin(a −at )cos(b −bt )+ (b −a cos(θ))cos(a −at )sin(b −bt )

√
1− (cos(θ)sin(a −at )sin(b −bt )+cos(a −at )cos(b −bt ))2

≤ 0

since a,b ∈ [0, π2 ] and θ ∈ [0,π].

The notion of Alexandrov curvature is closely related to the classical definition of curvature

on a Riemannian manifold:

Theorem 4.2.6. A smooth Riemannian manifold has Alexandrov curvature ≤ κ if and only if it

has sectional curvature ≤ κ.

Proof. See [46, Theorem 1A.6].
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4.2.1 The Center of Mass in Non-positive Curvature

Because of the inherent convexity of the distance function, the center of mass in NPC spaces

is relatively easy to determine. Throughout, let N be a global NPC space or a normal region of

a metric space X on which the non-positive curvature condition of Definition 4.2.1 is satisfied.

(In the latter case N , viewed as a metric space on its own right, is global NPC.)

Proposition 4.2.7. Let µ ∈P (N ). Then there is a unique K (µ) ∈ N and K : P (N ) → N is contin-

uous.

Proof. Proposition 4.3 in [44]. The proof consists in showing that K is uniformly convex.

A direct proof, in the case where µ =
∑n

i=0λiδ [xi ] is a finitely-supported measure, is also

possible. Here Pµ is certainly continuous, since it is a weighted sum of the distance function,

which is continuous. If N =R
n , then Pµ is convex. This can be shown by computing the second

derivative, or by applying the definition directly. Doing the latter gives, for any m1 and m2 in

R
n ,

Pµ((1− t )m1 + tm2) =
n∑

i=0
λi‖(1− t )m1 + tm2 −xi‖2

=
n∑

i=0
λi‖(1− t )m1 + tm2 − (1− t )xi − t xi‖2

=
n∑

i=0
λi‖(1− t )(m1 −xi )+ t (m2 −xi )‖2

≤
n∑

i=0
λi‖(1− t )(m1 −xi )‖2 +‖t (m2 −xi )‖2

=
n∑

i=0
λi (1− t )2‖m1 −xi‖2 + t 2‖m2 −xi‖2

<
n∑

i=0
λi (1− t )‖m1 −xi‖2 + t‖m2 −xi‖2

= (1− t )Pµ(m1)+ tPµ(m2),

establishing convexity.
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Now let N be any global NPC space. Let m1 and m2 be in N and γ
m1
m2

be the geodesic con-

necting them. Then for t ∈ (0,1),

Pµ(γm1
m2

(t )) =
n∑

i=0
λi d 2(xi ,γm1

m2
(t ))

≤
n∑

i=0
λi‖x̂i − γ̂

m̂1
m̂2

(t )‖2

<
n∑

i=0
λi (1− t )‖m̂1 − x̂i‖+ t‖m̂2 − x̂i‖2

where the first inequality follows from curvature, and the second one is the same as in the Eu-

clidean case. This establishes that Pµ is strictly convex on N , so it has a unique minimum on N .

This proof clearly shows the importance of the curvature assumption, since in positive curva-

ture the necessary inequality would point the wrong way.

There is in fact a stronger statement than continuity available when N is globally non-

positively curved, namely that K is 1-Lipschitz (with respect to the 1-Wasserstein metric). This

follows as a consequence of Jensen’s inequality for global NPC spaces [44, Theorem 6.3].

4.2.2 The Center of Mass in Non-negative Curvature

Determining the existence and uniqueness of centers of mass in non-negative curvature is

generally more difficult. Since the distance function is not globally convex, some assumptions

on the diameter of the support of the measure are necessary.

Example 4.2.8. Let x and x− be antipodal points on the sphere, and take µ = 1
2δ [x]+ 1

2δ [x−].

Then there is an equator of the sphere, every point on which is a minimizer of Pµ (see Figure 4.2).

�

It is for this reason that Theorem 4.1.1 imposes a diameter bound on the measure µ. How-

ever, even more care is necessary. While Theorem 4.1.1 guarantees the existence of a unique

mean on some Bρ(m) containing the support of µ, it does not guarantee that mean is the global

mean, and a priori there may be another ball Bρ(m′) also containing supp(µ) with a different
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Figure 4.2: Every point on the equator is a mean of the poles.

local minimum. The mean guaranteed by Theorem 4.1.1 has thus been called the “solipsistic

Karcher mean” since it is the mean if nothing outside of Bρ(m) exists [47, 48]. The literature

on Riemannian centers of mass has since improved upon Theorem 4.1.1. A stronger statement

than Karcher’s which guarantees a global minimum is the following theorem of Afsari [48].

Theorem 4.2.9. Let M be a complete Riemannian manifold with sectional curvature ≤ ∆ and

injectivity radius I . Define

ρ∆ :=
1

2
min

{
I ,

π
p
∆

}
.

Suppose that µ is a probability measure on M with supp(µ) ⊆ Bρ∆
(m) for some m ∈ M. Then

there is a (globally) unique minimum of Pµ and that minimum is contained in Bρ∆
(m).

The present work does not depend on the exact bound, only that there be some bound below

which centers of mass are unique, and that the location of the center of mass lies within a given

region. Therefore, let ρ(M) be the minimal radius guaranteeing both of these for the manifold

M , so ρ(M) ≥ ρ∆.

Karcher’s result bounds the distance between the centers of mass of two different distribu-

tions:
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Lemma 4.2.10. If f , g : A → Bρ(m) are measurable, A is a probability space, and Bρ(m) satisfies

the conditions of Theorem 4.1.1, then

d(C f ,Cg ) ≤ (1+ c(δ,∆) · (2ρ)2) ·
∫

A
d( f (a), g (a))dP(a),

where c(δ,∆) is some constant depending on the curvature bounds δ and ∆.

This is [40, Corollary 1.6]. An immediate and useful lemma is the following:

Lemma 4.2.11. Suppose Br (m) where r ≤ ρ(M). Then K : P (Bρ(m)) → Bρ(m) is continuous.

Proof. Let µ and ν be in P (Bρ(m)). Let A = supp(µ)× supp(ν) and make A a probability space

with reference measure γ for some γ ∈ Γ0(µ,ν). That is, γ is an optimal transport plan between

µ and ν. Then π1 and π2 are measurable maps A → Bρ(m) with K (µ) = Cπ1 and K (ν) = Cπ2 .

Then Lemma 4.2.10 gives

d(K (µ),K (ν)) ≤
(
1+ c(δ,∆) · (2ρ)2) ·

∫

A
d(π1(a),π2(a))dγ(a)

=
(
1+ c(δ,∆) · (2ρ)2) ·

∫

Bρ(m)
d(x, y)dγ(x, y)

=
(
1+ c(δ,∆) · (2ρ)2)W1(µ,ν)

establishing the continuity of K with regard to W1, and therefore Wp for all p.

An interesting example is the unit circle, S1. Here the center of mass can be explicitly com-

puted for any measure µ with diam(supp(µ)) < π, so that supp(µ) ⊆ Bπ
2

(m) for some m ∈ S
1.

Note that Karcher’s theorem only guarantees a unique minimum up to ρ = π
4 . Identify S

1 with

the unit circle in C, that is, {e iθ | θ ∈ [0,2π)}. Choose a branch of log: S1 →R such that B = Bπ
2

(m)

is mapped isometrically into R and denote its inverse by exp.9 Then

K (µ) = exp

(
argmin
θ∈log(B)

∫

log(B)
|θ−φ|2 dlog#µ(φ)

)
.

9Here isometric is meant in the sense of metric spaces, not of Riemannian manifolds.
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More intuitively, the center of mass of µ can be computed by treating µ as a measure on the real

line and identifying angular coordinates on S
1 with the corresponding real numbers. So long

as µ is supported on a subset of diameter less than π, all distances within the support of µ are

computed without wrapping around the circle in the opposite direction, so this is an isometry.

Example 4.2.12. While the conditions imposed by Theorem 4.2.9 are sufficient to guarantee the

existence and uniqueness of centers of mass, they are not necessary. Consider a distribution on

the circle µ = aδ[0]+bδ[π]+ cδ[π+ε] where coordinates are given in [0,2π) and ε > 0. This is

not supported in an open hemisphere and therefore fails the assumptions given above. Writing

coordinates on the circle as angles,

Pµ(θ) =





aθ2 +b(π−θ)2 + c(θ+π−ε)2 0 ≤ θ < ε

aθ2 +b(π−θ)2 + c(π+ε−θ)2 ε< θ ≤π

a(2π−θ)2 +b(θ−π)2 + c(π+ε−θ)2 π< θ < 2π

Thus,

dPµ

dθ
=





2aθ+2b(θ−π)+2c(θ+π−ε) 0 ≤ θ < ε

2aθ+2b(θ−π)+2c(θ−π−ε) θ ≤π

2a(θ−2π)+2b(θ−π)+2c(θ−π−ε) π< θ < 2π

The critical points are

θ = 0,ε,π, (b − c)π+ cε, (b + c)π+ cε, and θ = (1+a)π+ cε.

Choosing a = b = c = 1
3 and ε= 1

10 , the unique minimum occurs at (1+a)π+ cε= 38
9 . �

4.3 Hausmann-Type Theorems for Metric Thickenings

Recall that Hausmann’s theorem (Theorem 2.2.3) says that when r is sufficiently small and

M is a manifold, VR(M ;r ) ≃ M . This section gives proofs that V R (X ;r ) ≃ X for certain bounds
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on r in both positive and negative curvature. These proofs are all modelled on the same format,

illustrated first for convex subsets of Euclidean space, that is, the zero curvature setting.

Example 4.3.1. Let Ω⊆R
n be convex, and consider the Vietoris–Rips thickening V R (Ω;r ). Any

µ=
∑n

i=0λiδ [xi ] has a mean K (µ) =µ=
∑n

i=0λi xi . There is a geodesic γµ(t ) in P (Ω) connecting

µ and δ
[
µ
]
. Explicitly this is given by

γµ(t ) =
n∑

i=0
λiδ

[
(1− t )xi + tµ

]

as seen in Example 3.3.3. That this curve lies in P (Ω) is due to convexity; and in fact it lies in

V R (Ω;r ) since it clearly remains a finitely-supported measure, and

diam(γ(t )) = (1− t )diam(µ)

since for any pair xi and x j in supp(µ),

‖((1− t )xi + tµ)− ((1− t )x j + tµ)‖ = ‖(1− t )xi − (1− t )x j‖ = (1− t )‖xi −x j‖.

In particular this holds for any pair determining the diameter of µ. Now identify Ω with the

space δ [Ω] of point masses in P (Ω). Since we have established that K : P (Ω) →Ω is continu-

ous, there are compositions of continuous maps K ◦δ : Ω→Ω and δ◦K : V R (Ω;r ) → V R (Ω;r ).

Obviously K ◦δ= idΩ since the mean of a point mass is the only point in its support. Conversely

there is a continuous map

H(µ, t ) : V R (Ω;r )× [0,1] → δ [Ω]

given by H(µ, t ) = γµ(t ), which is a homotopy between δ ◦ K and idV R(Ω;r ). In conclusion,

V R (Ω;r ) is homotopy equivalent to Ω, or more precisely, is contractible. �

This example is not a surprising result, but the method employed can be directly transferred

to each of the settings discussed in Section 4.2. In short, we will be able to show that V R (X ;r ) ≃

X under the conditions that
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1. any µ ∈ V R (X ;r ) has a unique center of mass, K (µ) =µ,

2. K : V R (X ;r ) → X is continuous, and

3. the geodesic γµ connecting µ to δ
[
µ
]

does not increase in diameter.

4.3.1 Riemannian Manifolds

The first result here stated is the same as [3, Theorem 4.2]. However, the proof technique

followed here is more in the spirit of the Wasserstein metric, and has novel corollaries discussed

in Section 4.4.

Theorem 4.3.2. Let M be a complete Riemannian manifold. Then for any 0 ≤ r < ρ(M) there is

a homotopy equivalence V R (M ;r ) ≃ M.

Proof. There is as usual an inclusion map δ : M → V R (M ;r ) which is an isometry. By the as-

sumptions on ρ and Theorem 4.2.9, any measure in V R (M ;r ) has a unique center of mass,

thus K : V R (M ;r ) → M is well-defined, and it is continuous by Lemma 4.2.11. Indeed, if ε2 =

ρ(M)−r and W2(µ,ν) < ε, then there exist points xi ∈ supp(µ) and y j ∈ supp(ν) with d 2(xi , y j ) <

ε2. Then d(xi , y j ) < ε, and since by assumption d(xi , xi ′) ≤ r for all i ′ and d(xi , y j ′) ≤ d(xi , y j )+

d(y j , y j ′) < ε+ r = r ′, we have that

diam(supp(µ)∪ supp(ν)) < ρ(M)

thereby guaranteeing continuity of K .

Let γµ(t ) be the constant speed geodesic in P (M) connecting µ to K (µ) and recall that

γµ(t ) =
n∑

i=0
λiγ

xi

µ
(t ).

Then by Lemma 4.2.5, the diameter of γµ(t ) is decreasing, since γµ(t ) is contained in a ball with

sectional curvature bounded above by ∆ and therefore satisfies the CAT(κ)-inequality for κ=∆.
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This means we have a well-defined and continuous homotopy H(µ, t ) : V R (M ;r ) × I →

V R (M ;r ) between δ◦K and idV R(M ;r ) given by H(µ, t ) = γµ(t ), while K ◦δ= idM .

4.3.2 Non-Positively Curved Spaces

Theorem 4.3.3. Let X be a local NPC space. Take ρ(m) be the largest radius such that Bρ(m) is

NPC and geodesically convex. Let r ′ = infm∈M ρ(m). Then for any 0 ≤ r < r ′, there is a homotopy

equivalence V R (M ;r ) ≃ M.

Proof. Identical to the proof of Theorem 4.3.2, except that the diameter is non-increasing di-

rectly by the assumption of non-positive curvature.

Remark 4.3.4. For the sphere, Sn , this version gives r ′ = π
2 , while Theorem 4.3.2 only permits

r ′ = π
4 . Both are less than the known first parameter at which the homotopy type changes, which

is the diameter of an inscribed regular (n +1)-dimensional simplex.

Note that it is possible to have r ′ = 0, and that if M is not global NPC, then r ′ < +∞. In

addition to the circle, this version applies to the torus, or any manifold with a flat metric. It also

applies to a locally finite metric graph, G , where r ′ is one-quarter the diameter of the smallest

loop in G .

Corollary 4.3.5. Let M be a complete, simply-connected Riemannian manifold of non-positive

sectional curvature. Then V R (M ;r ) ≃ M for all r ∈ [0,+∞).

Proof. Immediate.

For global NPC spaces the result of Section 4.3.1 can be strengthened considerably:

Corollary 4.3.6. Let X be a global NPC geodesic space. Then V R (X ;r ) ≃ X for all r ∈ [0,+∞]. In

particular, V R (X ;r ) is always contractible.

Proof. Apply Proposition 4.2.7 to get that K is well-defined and continuous. Then by convexity

of the distance function the usual homotopy is well-defined.
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Vietoris–Rips simplicial complexes (instead of metric thickenings) of trees have been stud-

ied in [49, 50], but the analysis is in some part made more complicated due to the difficulties

of the simplicial complex topology. Corollary 4.3.6 determines that V R (T ;r ) is contractible for

any tree T .

While we have focused primarily on Vietoris–Rips metric thickenings, the proofs here are

easily adapted to the Čech metric thickening as well. Recall that the Čech complex of X contains

a simplex whenever all the vertices are contained in a metric ball of radius r . We also know that

if supp(µ) ⊆ Br (m), then K (µ) ∈ Br (m) by Theorem 4.2.9 or Proposition 4.1.4. Thus the flowγµ(t )

never leaves Br (m). Therefore the proofs of Theorem 4.3.2 and Theorem 4.3.3 immediately give:

Theorem 4.3.7. Let X and r satisfy the assumptions of Theorem 4.3.2 or Theorem 4.3.3. Then

there is a homotopy equivalence Č
(
X ; r

2

)
≃ X .

4.4 Novel Corollaries

A significant feature of the theorems in Section 4.3 is that they consist of following a geodesic

flow in Wasserstein space. A consequence is that the support of the measure H(µ, t ) never in-

creases in cardinality as t varies.

Definition 4.4.1. The k-skeleton of a simplicial complex L is the subcomplex consisting of sim-

plices of dimension at most k. The k-skeleton is denoted L(k).

The Vietoris–Rips complex of course has a k-skeleton. Analogously, the k-skeleton of the

Vietoris–Rips metric thickening is the subspace V R
(k) (X ;r ) of V R (X ;r ) which consists of mea-

sures supported on at most k+1 points. The k-skeleton of the Čech metric thickening is defined

analogously.

Corollary 4.4.2. Let X and r satisfy the requirements of Theorem 4.3.2 or Theorem 4.3.3. Then

there are homotopy equivalences V R
(k) (X ;r ) ≃ X and Č

(k) (X ;r ) ≃ X for any k ∈N.

Proof. The homotopy H(µ, t ) along geodesic curves is supported on at most as many points as

µ, and therefore restricts to V R
(k) (X ;r ), and likewise for Č

(k) (X ;r ).
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Example 4.4.3. The Borsuk–Ulam states that given an odd map f : Sn →R
n , there exists a point

x ∈ Sn with f (x) equal to the origin in R
n . In [51], generalizations are given for odd maps into

higher-dimensional codomains, namely f : Sn → R
k with k ≥ n. In this context, one obtains

a set X ⊆ Sn of diameter bounded from above such that the convex hull of f (X ) contains the

origin in R
k . Carathéodory’s theorem implies that the cardinality of X can be taken to be at

most k + 1. Corollary 4.4.2, or related ideas, could be potentially be used to strengthen this

bound to give a set X of cardinality at most k. �

Alternatively, it is natural to consider spaces of measures which are not restricted to con-

taining only those of finite support. Define

V R
(∞) (X ;r ) = {µ ∈P (X ) | diam(supp(µ)) ≤ r }

(or < depending on convention). Similarly, define

Č
(∞) (X ;r ) = {µ ∈P (X ) | ∃x ∈ X with supp(µ) ⊆ Br (x)}.

These are called the infinite Vietoris–Rips and Čech metric thickenings, respectively.

Corollary 4.4.4. Let X and r satisfy the requirements of Theorem 4.3.2, Theorem 4.3.3, or Theo-

rem 4.3.7. Then V R
(∞) (X ;r ) ≃ X , or, respectively, Č

(∞) (X ;r ) ≃ X .

Proof. Since Theorem 4.2.9 and Proposition 4.2.7 both apply to arbitrary measures, the proofs

of Theorem 4.3.2 and Theorem 4.3.3 apply directly to V R
(∞) (X ;r ).

The infinite Vietoris–Rips and Čech metric thickenings are mathematically natural exten-

sions of the Vietoris–Rips and Čech metric thickenings. Indeed, V R
(∞) (X ;r ) with the ≤ con-

vention is the closure of V R (X ;r ) in P (X ) (with either convention). As a closed and bounded

subspace, V R
(∞) (X ;r ) is compact. Additionally, an increasing sequence of samples from a

space converges in a precise sense to V R
(∞) (X ;r ), as shown in Proposition 4.4.5. Analogous

statement are true for the infinite Čech metric thickening.
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Proposition 4.4.5. Let M be a compact manifold with volume form dVol. Let (Xn)∞
i=1 be an

increasing sequence of subsets of M where Xn is a random sample of n points from dVol. Then

the sequence of spaces V R (Xn ;r ) converges to V R
(∞) (X ;r ) almost surely in Gromov–Hausdorff

convergence.

Proof. Since V R (Xn ;r ) and V R
(∞) (M ;r ) are all subsets of P (M), it suffices to show conver-

gence in Hausdorff distance. For any n, V R (Xn ;r ) includes into V R
(∞) (M ;r ) isometrically.

By compactness, there there is an εn such that Xn is an εn-net in M , and with probability one

εn → 0 as n →∞. By [45, Corollary 7.3.28], V R (Xi ;r ) → V R
(∞) (M ;r ) almost surely in Gromov–

Hausdorff distance.

Note that V R
(∞) (M ;r ) is compact if and only if M is compact and the ≤ convention is used.

Thus these assumptions are necessary for the Gromov–Hausdorff distance to be well-defined.

Since V R (M ;r ) is not closed, it is never compact (barring the trivial case where M is finite).)
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Chapter 5

Morse Theory on Wasserstein Space

This chapter discusses the differential or Riemannian structure of Wasserstein space, devel-

oped originally in [52] and further in [43, 53, 54] among others. Every Alexandrov X space has

an infinitesimal structure, and whenever X is Alexandrov, so is P (X ). Therefore it is possible to

develop the idea of a gradient flow in Wasserstein space [54]. Using this framework, a version of

the first Morse lemma for functions on Wasserstein space is given.

In the case where M is a manifold, a stronger differential structure on P (M) can be de-

veloped. An overview is given in Section 5.3, and the relation between this structure and the

technique used to prove Theorem 4.3.2 is discussed.

5.1 Infinitesimal Structure of Wasserstein Space

A Riemannian structure on a manifold M , intuitively, is the data required to locally describe

distances and angles. This admits various equivalent formalizations. One is to define a tangent

vector at a point p ∈ M as an equivalence class of curves (smooth maps γ : (−1,1) → M) such

that γ(0) = p, and γ and γ̃ are identified if under any coordinate chart φ the derivatives d
dt

(φ◦γ)

and d
dt

(φ◦ γ̃) are equal at t = 0. The tangent space is the set of all equivalence classes of curves,

and it inherits a vector space structure from R
d via the coordinate charts. Intuitively, the set of

curves through a point determine all of the directions of motion away from that point.

A Riemannian metric g on M is a function g (−,−) : Tp M ×Tp M → R at each tangent space

which varies smoothly from point to point on M . The angle θ between two tangent vectors u

and v can be defined by cos(θ) = g (u,v)
g (u,u)g (v,v) . With this data it is possible to define Riemannian

geodesics and to show that every equivalence class in the tangent space is represented by a

constant-speed geodesic.
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When X is a geodesic space, not necessarily a manifold, these definitions can be worked out

essentially in reverse to construct an infinitesimal structure. The additional assumption that X

is an Alexandrov space will be useful.

Definition 5.1.1. A geodesic metric space X is an Alexandrov space of curvature ≥ κ if given

any three points x, y, z in X , geodesics γx
y and γz

y , and any three comparision points x̂, ŷ , ẑ and

comparison geodesics γ̂x
y and γ̂z

y in M
2(κ), the triangle condition

d(γx
y (t ),γz

y (s)) ≥ dM2(κ)(γ̂
x
y (t ), γ̂z

y (s))

holds for all s, t ,∈ [0,1]. Ifκ> 0 the equality is only required to hold for triangles in which d(x, y)+

d(y, z)+d(z, x) < 2πp
κ

.

The definition of an Alexandrov space should be compared to that of CAT(κ) spaces (Def-

inition 4.2.4). Heuristically an Alexandrov space is one in which triangles are at least as wide

as they are in the comparison space M
2(κ). A Riemannian manifold M is an Alexandrov space

of curvature ≥ κ if the sectional curvature of M is at least κ everywhere. Manifolds of constant

curvature are both Alexandrov and CAT(κ) spaces.

Theorem 5.1.2. P (X ) is an Alexandrov space of curvature ≥ 0 if and only if X is.

Proof. Since δ : X →P (X ) is an isometric embedding, the only if is immediate. The converse is

shown in [55, Proposition 2.10.(iv)].

The same does not hold for the CAT(κ) property. Euclidean space is CAT(0), yet P (Rd ) does

not satisfy the CAT(κ) condition for κ = 0, as shown by [38, Example 3.21] which constructs a

triangle of three point masses in P (R2) that does not satisfy the CAT(0) condition.

5.1.1 Geodesics and Tangent Cones

Any Alexandrov space has an infinitesimal structure given by geodesics and tangent cones.

This section focuses on how that structure manifests for P (X ) when X is a compact Alexandrov
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space with curvature κ≥ 0. The exposition follow [54] and [38, Chapter 7]. The idea is to define

appropriate equivalence classes of curves to serve as tangent vectors. Recall that a curve is a

continuous function µ(t ) : I →P (X ), where I is some (usually closed) interval containing 0.

Definition 5.1.3. The metric derivative of a curve µ(t ) in P (X ) is defined by

∣∣µ̇
∣∣ (t ) := lim

h→0

W2(µ(t +h),µ(t ))

h

whenever this limit exists.

Since the metric derivative contains no directional information, it is the “speed” rather than

the “velocity” of the curve. A sufficient condition to guarantee the existence of the metric

derivative is that the curve in question be 2-absolutely continuous.

Definition 5.1.4. A curve µ(t ) : [0,1] → P (M) is 2-absolutely continuous if there exists a func-

tion f ∈ L1(0,1) such that

d(µ(t ),µ(s)) ≤
∫s

t
f (r )dr

for all s > t , s, t ∈ (0,1).

Despite the confluence of terminology, 2-absolutely continuous does not in any way imply

that the measure µ(t ) is absolutely continuous with respect to some reference measure. In fact,

2-absolute continuity is typically defined for general metric spaces which are not Wasserstein

spaces.

Theorem 5.1.5. If µ(t ) is 2-absolutely continuous, then
∣∣µ̇

∣∣ exists, and for almost all t ,
∣∣µ̇

∣∣ (t ) ≤

f (t ) as given in Definition 5.1.4.

Proof. [52, Theorem 1.1.2].

Observe that a constant speed geodesic is necessarily 2-absolutely continuous since it can

always be assumed to be parametrized by arc length. Doing so gives that W2(µ(t ),µ(s)) = |t − s|

by definition, and so f (t ) = 1 satisfies Definition 5.1.4.
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Example 5.1.6. An informative example is the curve γt := (1− t )δ[a]+ tδ[b], which is not 2-

absolutely continuous. Indeed,

lim
h→0

W2(γt+h ,γt )

h
= lim

h→0

p
hd(a,b)

|h|
= lim

h→0

d(a,b)
p

h
=∞.

This shows that a curve consisting of point masses cannot be 2-absolutely continuous unless

the mass distribution remains constant. This curve involves mass “teleporting” from one point

to another. �

Let Σ′
µP (X ) denote the set of unit speed geodesics γ : [0,ε] →P (X ) with γ(0) =µ. Define an

equivalence relation on Σ
′
µP (X ) by γ∼ γ̃ if γ(t ) = γ̃(t ) for all t ∈ [0,δ] for some δ> 0. Given two

geodesics in Σ
′
µP (X ) and s, t ≥ 0, define

σµ((α, s), (β, t )) := lim
ε→0+

1

ε
W2(α(εs),β(εt )).

This limit exists by [54, Theorem 3.6]. The angle, ∠µ, between two geodesics at the point µ is

determined by

cos(∠µ(α,β)) := 1−
σµ((α,1), (β,1))2

2
.

The angle is a pseudo-metric on Σ
′
µP (X ).

Definition 5.1.7. The space of directions in P (X ) at µ is

ΣµP (X ) :=Σ
′
µP (X )/ ∼

where α∼β if ∠µ(α,β) = 0, and the closure is taken with respect to the pseudo-metric ∠µ.

Form the cone CµP (X ) := ΣµP (X )× [0,+∞)/(α,0) ∼ (β,0). This is called the tangent cone

at µ. An element (α, s) of the tangent cone should be thought of as describing a direction, given

by the geodesic α and a distance to travel along that geodesic, given by the number s ∈ [0,+∞).
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The cone over Σ
′
µP (X )/ ∼ will be denoted C ′

µP (X ). Note that the completion of C ′
µP (X ) is

CµP (X ), so the completion and cone can be formed in either order.

5.1.2 Differentiable Functions

Now that a tangent space is defined, a method of assigning tangent vectors to curves and

gradient vectors to functions will complete the differential structure.

Definition 5.1.8. A curve γ(t ) is right differentiable at 0 if there is a v ∈ CµP (X ) such that, for

any sequence εi → 0 and any associated sequence of unit speed geodesics αi from µ= γ(0) to γ(εi ),

the sequence

lim
i→∞

(
αi ,

W2(µ,γ(εi ))

εi

)
= v

This assigns a velocity to a curve γ which need not be a geodesic. The vector v is denoted

γ′(0).

The class of differentiable functions will be those which are lower semi-continuous and λ-

convex. These definitions are stated for a general metric space X , but apply immediately to

Wasserstein space.

Definition 5.1.9. A function f : X →R is lower semi-continuous at x ∈ X if

liminf
y→x

f (y) ≥ f (x).

Definition 5.1.10. Fix λ ∈ R. A function f : X → R is λ-convex along a curve γ(t ) if for all x ∈ X

and all t ∈ [0,1], the inequality

f (γ(t )) ≤ (1− t ) f (γ(0))+ t f (γ(1))−
λ

2
(1− t )td 2(γ(0),γ(1))

holds.

Intuitively convexity means that the region above the graph of f is a convex region. The

generalization to λ-convexity for λ< 0 permits this region to be nearly convex with λ measuring
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the amount of second-order “smoothing” required to make it so. Note that λ-convexity for λ> 0

is stronger than simple convexity, while λ< 0 is weaker.

Example 5.1.11. The function f (x) = x4 is a convex function on R. The function g (x) = x2(x −

1)(x −2) is λ-convex for a negative λ. Note that the g (x) has two distinct local minima, while a

strictly convex function can have at most one. �

Let Kλ(P (M)) be the space of bounded, lower semi-continuous, real-valued functions on

P (M) which are λ-convex along all minimal geodesics. 10 Definition 5.1.3 gave a definition of

the derivative of a curve analogous to its speed in P (M). For a function f ∈ Kλ(P (M)), there is

a similar derivative which corresponds to the slope of f , but without directional information.

Definition 5.1.12. The absolute gradient of f at µ is

∣∣∇ f
∣∣ (µ) := max

{
0, limsup

ν→µ

f (µ)− f (ν)

W2(µ,ν)

}
.

Observe immediately from the definition that if µ is a local minimum of f , then
∣∣∇ f

∣∣ = 0

because the limit superior term will always be negative. The absolute gradient may be infinite,

but is always lower semi-continuous.

There is also a “directional derivative.” Fix a µ ∈P (M) at which
∣∣∇ f

∣∣ (µ) <+∞ and choose a

unit speed geodesic γ(t ) with γ(0) =µ and a number s ≥ 0. Take v = (γ, s) in C ′
µP (M). Define

D ′
µ f (v) := lim

ε→0+

f (γ(εs))− f (µ)

ε
(5.1)

to be the directional derivative along v . Lastly, extend the derivative to any v ∈CµP (X ) by

Dµ f (v) := liminf
w→v

D ′
µ f (w)

10For slightly more generality, bounded can be replaced by “ f (x) < +∞ on a nonempty set of points”, and the
following can be restricted to the subset P (X )∗ of points for which a given function is finite. This is the approach
taken in [54], but the generality will not be needed here.

62



where w ∈ C ′
µP (M). The directional derivative is actually an element of the tangent space

CµP (X ), and [54, Lemma 4.2] gives a way of identifying a gradient vector from it:

Lemma 5.1.13. For any µ ∈ P (X ) with
∣∣∇ f

∣∣ (µ) < ∞, there is a unique γ ∈ CµP (X ) such that

Dµ f (γ) =−
∣∣∇ f

∣∣ (µ).

In light of this, define the negative gradient vector of f at µ to be ∇ f (µ) := (γ,
∣∣∇ f

∣∣ (µ)) ∈

CµP (X ).

Definition 5.1.14. A continuous, locally Lipschitz curve ξ : [0,T ) → P (X ) is a gradient curve of

f if ξ is right differentiable,
∣∣∇ f

∣∣ (ξ(t )) <∞ for all t ∈ (0,T ), and

d

dt
ξ(t ) =

∣∣∇ f
∣∣ (ξ(t )).

A gradient curve is called complete if T =+∞.

The following results from [54] establish the foundation for a Morse theory of Wasserstein

spaces. Up to this point all of the statements in this section do not depend on having curvature

κ > 0, only on having some lower bound, but the following do require a positive curvature as-

sumption. Nevertheless, these results ought to hold in some form without such an assumption,

but they are required for a technical reason.

Theorem 5.1.15. Assume that f ∈ Kλ(P (X )). For everyµ in P (X ) there exists a complete gradient

curve ξ : [0,∞) →P (X ) of f with ξ(0) =µ.

Proof. Theorem 5.11 in [54].

Theorem 5.1.16. Let ξ and ζ be gradient curves of f ∈ Kλ(P (X )). Then

W2(ξ(t ),ζ(t )) ≤ exp(−λt )W2(ξ(0),ζ(0)).

In particular, there is a unique, continuous gradient flow G : P (X )× [0,∞) →P (X ).
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Proof. Theorem 6.2 in [54].

These two theorems establish that a continuous gradient flow always exists. The next propo-

sition gives an important control on the function value along a gradient curve.

Proposition 5.1.17. Let ξ(t ) be a gradient curve of f . Then for any t > 0,

f (ξ(t )) = f (ξ(0))−
∫t

0

(∣∣∇ f
∣∣ (ξ(s))

)2
ds.

Proof. Proposition 5.12 in [54].

5.2 Toward a Morse Theory

The machinery of Section 5.1 provides the foundation for a version of the first Morse Lemma

for Wasserstein spaces. Recall the classical version of the first Morse lemma:

Theorem 5.2.1 (First Morse Lemma). Let M be a smooth manifold and f : M → R a smooth

function. Suppose that [a,b] contains no critical values of f , and that f −1([a,b]) is compact.

Then f −1((−∞,b]) and f −1((−∞, a]) are homeomorphic, and f −1((−∞,b]) deformation retracts

to f −1((−∞, a]).

A proof sketch is as follows: assume without loss of generality that M has a Riemannian

metric g . Compute the gradient of f , and let X be vector field equal to ∇ f on f −1([a,b]) and

zero outside of a small neighborhood of f −1([a,b]). The flow associated to X defines a defor-

mation retraction (in fact, a diffeomorphism) from f −1((−∞,b]) to f −1((−∞, a]). The standard

reference is [56].

This proof will be transported to the setting of Section 5.1. The greatest difference is that

general vector fields are not yet defined; however, the proof can be constructed “by hand” from

the gradient flow without an intermediate vector field at the cost of giving up the homeomor-

phism.

Throughout this section X is a compact, non-negatively curved Alexandrov space. Let f

be a lower semi-continuous, λ-convex function on M . Call a µ ∈ P (M) a critical point of f if
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either
∣∣∇ f

∣∣ (µ) = 0 or f is discontinuous at µ. If M is compact, then P (M) is compact and so

is any closed bounded subset of P (M). In particular, f −1((−∞, a]) is compact for any a, and

f −1([a,b]) is compact for any a < b.

Theorem 5.2.2. Suppose that [a,b] contains no critical values of f , so that f −1([a,b]) contains

no critical points. Then f −1((−∞, a]) ≃ f −1((−∞,b]).

Proof. By Theorem 5.1.16 there is a continuous gradient flow G associated to f . Proposi-

tion 5.1.17 gives

f (G(µ, t )) = f (µ)−
∫t

0

∣∣∇ f
∣∣ (G(µ, s))ds.

The lack of critical points in f −1([a,b]) guarantees that
∣∣∇ f

∣∣> 0 on f −1([a,b]), so that f (G(µ, t ))

is strictly decreasing on the same. Compactness then ensures that there is some t = τ(µ) such

that f (G(µ,τ(µ)) = a, and this varies continuously in µ. Let T = maxµτ(µ). Of course, for ν ∈

f −1((−∞, a]), τ(ν) = 0.

Define a deformation retract R(µ, t ) : f −1((−∞,b])× [0,T ] → f −1((−∞,b]) by

R(µ, t ) =





G(µ, t ) t ≤ τ(µ)

G(µ,τ(µ)) t ≥ τ(µ)

Since R(µ,0) =µ and R(µ,T ) ⊆ f −1((−∞, a]), the desired homotopy is achieved.

Remark 5.2.3. Since P (X ) is a convex subset of Cb(X )∗, a Banach space, P (X ) is contractible

for any X . The informational content of Morse theory on P (X ) is then necessarily more about

the sublevel sets of f at intermediate scales than the topology of P (X ) itself.

Theorem 5.2.2 is analogous to the classical first Morse lemma, which naturally suggests the

question:

Question 1. Does some version of the second Morse lemma hold for Wasserstein spaces? In

particular, if a is a critical value of f , is there a useful relation between f −1((−∞, a − ε]) and

f −1((−∞, a +ε])?
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Even in the classical case, the second Morse lemma is considerably more subtle. The first

Morse lemma does not require that f be a Morse function, while the second does. At a mini-

mum a second Morse lemma for Wasserstein space should require some non-degeneracy as-

sumption on the critical points of f .

Examples of functions in Kλ(P (M)) are often closely related to geometric partial differential

equations. An extensive discussion can be found in [57].

For the study of Vietoris–Rips complexes, one would ideally be able to apply Theorem 5.2.2

to the function D : P (M) → R given by D(µ) = diam(supp(µ)). The infinite Vietoris–Rips thick-

ening described in Section 4.4 can be defined as

V R
(∞) (M ;r ) := D−1((−∞,r ]) ⊆P (X ).

Similarly, the Vietoris–Rips thickening is

V R≤ (M ;r ) = D−1((−∞,r ]) ⊆I (X )

where the domain of D is restricted to finitely-supported measures. However, D is notλ-convex.

Example 5.2.4. Let M = S
1, and let µ = 1

2δ [ε]+ 1
2δ [π−ε] and ν = 1

2δ [π+ε]+ 1
2δ [2π−ε] where

points are given in angular coordinates (see Figure 5.1).

Clearly, W2(µ,ν) = 2ε, D(µ) = D(ν) =π−2ε, and the diameter of their connecting geodesic is

D(γ(t ) =





(1−2t )(π−2ε)+2tπ 0 ≤ t ≤ 1
2

(2−2t )π+ (2t −1)(π−2ε) 1
2 ≤ t ≤ 1

.

To be λ-convex the inequality

D(γ(t ) ≤ (1− t )D(µ)+ tD(ν)−
λ

2
(1− t )tW 2

2 (µ,ν)
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1
2δ[ε]

1
2δ[2π−ε]

1
2δ[π−ε]

1
2δ[π+ε]

Figure 5.1: The diameter of the geodesic between µ and ν violates the λ-convexity inequality.

must hold for some fixed λ and all t , µ, and ν. The right hand side is r (t ) =π−2ε− λ
2 (1−t )t (2ε)2.

Now consider t = 1
2 . There D(γ( 1

2 )) = π, while r ( 1
2 ) = π−2ε− λ

2ε
2. For any λ there is a choice of

ε such that r ( 1
2 ) <π, and so D is not λ-convex. �

5.3 Riemannian Structure

When M is a Riemannian manifold, the differential structure on P (M) can be strengthened.

This section describes this additional structure and then discusses how the homotopies in Sec-

tion 4.3 are related to gradient flows of this sort. Throughout assume M is a smooth, compact,

Riemannian manifold. Let C∞
c (M) be the set of compactly-supported smooth functions on M ,

and denote by ∇C∞
c the set of gradients of such functions,

∇C∞
c (M) := {∇ f | f ∈C∞

c (M)}.

As a consequence of McCann’s theorem (Theorem 3.1.9), at any absolutely continuous µ ∈

P (M), every direction is associated to the gradient of a function. Therefore C ′
µP (M) ∼=∇C∞

c (M),

and this can be taken as the definition of the tangent space.
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More precisely, define L2(M ,T M ;µ) to be the set of Borel vector fields11 X on M such that

‖X ‖2
µ :=

∫
M 〈X , X 〉2

g dµ<+∞. As usual with Lp spaces, vector fields which differ on sets of mea-

sure zero are identified. There is an inner product on L2(M ,T M ;µ) given by

(X ,Y )µ :=
∫

M
〈X ,Y 〉g dµ. (5.2)

With this inner product, L2(M ,T M ;µ) is a Hilbert space. There is a natural map of ∇C∞
c (M) into

L2(M ,T M ;µ): by definition ∇ f is compactly supported and Borel, and because f is smooth and

compactly supported, ‖∇ f ‖ is bounded, and thus square-integrable with respect to any µ.

Definition 5.3.1. The tangent space, TµP (M), of µ in P (M) is the closure of ∇C∞
c (M) within

L2(M ,T M ;µ) under the topology induced by the inner product.

The tangent space is a Hilbert space since it is a closed linear subspace and TµP (M) inherits

the inner product from L2(M ,T M ;µ) through restriction.

Example 5.3.2. Suppose µ is supported on a finite set of points, x1, . . . , xn . Then TµP (M) =

L2(M ,T M ;µ), and TµP (M) ∼= ⊕n
i=1Txi

M canonically as vector spaces. The equality holds be-

cause vector fields are identified on sets of measure zero, so only the values of a vector field X

at x1, . . . , xn are relevant. The inner product then reduces to

(X ,Y )µ =
∑

i

λi 〈X (xi ),Y (xi )〉g

where λi is the weight at xi . Since ‖X ‖ is finite at any given point, the sum is finite for any vector

field. It is easy to construct a function f such that ∇ f (x) is equal to a desired vector at each of

x1, . . . , xn , hence the identification with ⊕n
i=1Txi

M . Note however that while the vector space

isomorphism is canonical, the natural inner product is not the same, in particular, TµP (M)

generally gives a weighted sum of the component inner products.

11That is, sections of the tangent bundle, T M , which are Borel-measurable, not-necessarily smooth, maps.
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If µ = δ
[
p

]
, then this implies that TµP (M) ∼= Tp M . Thus TµP (M) is clearly a much more

restrictive set of directions than CµP (M) when µ is discrete. �

The tangent space TµP (M) admits an inclusion into CµP (M), the tangent cone. Given a

φ ∈ C∞
c (M), a geodesic near µ can be obtained by t 7→ (id+ t∇φ)#µ, which is an element of

ΣµP (M).12 This is actually injective and isometric [38, Theorem 7.1]. When µ is an absolutely

continuous measure this is also surjective. Intuitively, this is because every geodesic beginning

at an absolutely continuous measure is obtained by a function. For discrete measures this is far

from true. The only measures obtained from δ
[
p

]
by a pushforward of a function are other δ

measures.

Example 5.3.3. Let α = 1
2δ [a]+ 1

2δ [b], and β = 3
4δ [a]+ 1

4δ [b] for some points a,b ∈ M , and

consider the curve µ(t ) = tα+(1−t )β. Reasoning similar to Example 5.1.6 shows that µ(t ) is not

2-absolutely continuous. There is a geodesic between α and β,

γ(t ) =
1

2
δ [a]+

1

4
δ [b]+

1

4
γa

b (t ).

where γa
b

(t ) is the geodesic from a to b in M . Therefore there are vectors in the tangent cone

Cδ[a]P (M) which describe the direction “within simplices.” This data is not contained in the

tangent space Tδ[a]P (M) since the mass at a has to “split” instantaneously. �

An advantage of this stronger Riemannian structure is that gradients velocities can be stated

more explicitly. Let µ(t ) be a curve. The continuity equation for µ(t ) is

∂µ

∂t
+divµ(X t ) = 0 (5.3)

and a solution is a vector field X t on M such that Equation (5.3) holds in the sense of distribu-

tions, namely
∫

(−1,1)

∫

M

(
∂ f

∂t
+d f (X t )

)
dµt dt = 0 (5.4)

12Technically this gives a representative of an equivalence class.
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for all compactly-supported test functions, f . A solution is guaranteed whenever µ(t ) is 2-

absolutely continuous [52, Theorem 8.3.1], and this solution is interpreted as the velocity of

µ(t ).

For a given function F : P (M) →R it is possible to construct a vector field by computing the

gradient of F . The subdifferential at µ of ∂µF is the set of vector fields ξ (on P (M)) defined by

lim
ν→µ

F (ν)−F (µ)− supγ∈Γ0(µ,ν)

Î
M×M

〈
ξ(x),exp−1

x (y)
〉

dγ(x, y)

W2(ν,µ)
≥ 0 (5.5)

and the superdifferential, ∂µF is the set of vector fields ξ such that

lim
ν→µ

F (ν)−F (µ)− supγ∈Γ0(µ,ν)

Î
M×M

〈
ξ(x),exp−1

x (y)
〉

dγ(x, y)

W2(ν,µ)
≤ 0 (5.6)

The functional F is said to be differentiable at µ if there is a (not necessarily unique) vector

field in ∂µF ∩∂µF , and that vector field is the gradient of F at µ, denoted ∇µF . Of course, the

limits here need not exist for generic functions F , but they do when F is λ-convex, which is not

surprising given the theory of Section 5.1.

There are several fundamental examples where the gradient can be computed explicitly.

Example 5.3.4. Let f : M →R, and define the potential energy function F : P (M) →R by

F (µ) :=
∫

M
f dµ.

Then the gradient of F is ∇ f , so long as ∇ f ∈ L2(M ,T M ;µ). �

Example 5.3.5. Let w : M ×M → R be symmetric. The interaction energy function is

W (µ) :=
1

2

∫

M×M
w(x, y)d(µ⊗µ)(x, y).

The gradient of W is ∇W ∗µ whenever this is in L2(M ,T M ;µ). �
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A curve µ(t ) is a gradient flow of F if the velocity vector field Vt associated to µ(t ) is the

gradient of F for all t , or more generally, if F is λ-convex and Vt is in the subdifferential of F (µt )

for almost all t . If f or W satisfies appropriate convexity conditions, then so do F and W and

gradients flows exist [38, Proposition 4.33, Theorem 4.35].

5.3.1 Homotopies as Gradient Flows

Consider the function P (M) defined by

J (µ) :=
1

2

∫

M×M
d 2(x, y)d(µ⊗µ)(x, y).

This has the form of Example 5.3.5. Ignore for the moment the λ-convexity requirement (which

may or may not be satisfied depending on M), and suppose that µ is supported on a sufficiently

small ball in M so that exp−1
x (y) is well-defined for any x, y ∈ supp(µ). Then Example 5.3.5

implies that

∇Jµ(x) =∇
1

2
d 2(x, y)∗µ=

∫

M
exp−1

x (y)dµ(y)

The gradient flow along J , starting at µ, is given by pushing µ forward along the flow of the

vector field ∇Jµ.

Compare this to gradient of Pµ, which Karcher derives [40] to be

gradPµ(x) =−
∫

A
exp−1

x ( f (a))dP(a) =−
∫

M
exp−1

x (y)dµ(y), (5.7)

assuming that supp(µ) ⊆ Br (m) for some m ∈ M and r < ρ(M).

Example 5.3.6. When M = R
d , the flow along ∇Jµ is exactly the homotopy given in Section 4.3.

It is easy to see that d 2(x, y) = ‖x − y‖2 is a convex function on R
d , and so by [38, Proposition

4.33] J is convex along interpolating curves, and therefore ∇Jµ is the vector field

∇Jµ(x) =
∫

Rd
y −x dµ(y) =µ−x.
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A flow along this vector field is a solution to the differential equation

ẋ =µ−x , x(0) = x0

which has solution given by x(t ) = (1−exp(−t )µ)+exp(−t )x0 which is the straight line from x0

to µ. Rescaling to have constant speed and pushing µ forward along the flow gives precisely the

map γµ(t ) used in Section 4.3. �

In the manifold setting there is no longer perfect agreement between the geodesic flow and

the gradient flow of J because in positive curvature ∇Pµ does not point directly to µ, but only

approximately [40, Theorme 1.5.2]. Heuristically, however, the flows are similar, and it would be

possible to replace the geodesic flow in the proof of Theorem 4.3.2 with a gradient flow. Doing

so does not improve the bounds on Theorem 4.3.2. Much beyond the small radius dictated

by Theorem 4.2.9 the gradient of J cannot be well-defined.

Proposition 5.3.7. Let m ∈ M and µ ∈ P (X ). Then any open ball Br (µ) ⊆ P (M) contains a

measure whose support contains m.

Proof. Take µ′ = (1−ε)µ+εδ [m]. If ε< r
W2(δ[m],µ) , then µ′ ∈ Br (µ).

As a result of Proposition 5.3.7, any sublevel set of J always contains points supported at the

cut locus of µ, and so exp−1 will not be defined.
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Chapter 6

Simplicial Metric Thickenings

The Vietoris–Rips metric thickening is the geometric realization of the Vietoris–Rips simpli-

cial complex equipped with an alternative topology. A priori, not every simplicial complex ad-

mits a topology in the same way, since the vertex set need not be a metric space, nor does every

metric space contain the type of simplicial complex structure which the Vietoris–Rips metric

thickening does. This chapter introduces a general category of simplicial metric thickenings

which generalize the Vietoris–Rips and Čech metric thickenings.

Section 6.1 develops a general categorical construction, the restricted comma category, of

which the category of simplicial metric thickenings is a particular example described in Sec-

tion 6.2 and Section 6.3. Some results about the homotopy type of simplicial metric thickenings

under limit and colimit operations are discussed in Section 6.4. Finally, a version of Dowker’s

theorem for simplicial metric thickenings is presented in Section 6.5.

Intuitively one would like the definition of simplicial metric thickening to be something like

the following:

Definition 6.0.1. A simplicial metric thickening of a metric space X is a subspace K of I (X )

which satisfies:

1. The image of δ : X →P (X ) is contained in K , and

2. If µ ∈K and ν≪µ, then ν ∈K .

As a point of comparison, recall the definition of an abstract simplicial complex:

Definition 6.0.2. An abstract simplicial complex on a set V is a subset K of 2V consisting only

of finite sets which satisfies

1. The image of the map v 7→ {v} is in K , and

2. If σ ∈ K and τ⊆σ, then τ ∈ K .
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Definition 6.0.1 does in fact describe the objects of the category of simplicial metric thicken-

ings, and could be furnished with appropriate morphisms to produce that category. However,

this approach leaves the structure of the category itself a bit opaque.

6.1 Comma Categories

For standard definitions in category theory the reader is encouraged to peruse [58]. One

abuse of notation that will be used is to write c ∈C when c is an object of the category C.

Definition 6.1.1. Given functors S : A → C and T : B → C, the comma category (S ↓T ) has as

objects all triples (a,b,φ) where a ∈A, b ∈B, and φ : Sa → T b, and as morphisms all pairs ( fA, fB)

with fA ∈ homA(a, a′) and fB ∈ homB(b,b′), such that the following diagram commutes.

Sa

Sa′

T b

T b′

φ

S fA T fB

φ′

Definition 6.1.2. The restricted comma category [S ↓T ] is the subcategory defined to contain all

objects (a,b,φ) of (S ↓T ) such that φ is an isomorphism.

In arbitrary comma categories the order of the source functor S and target functor T is im-

portant: (S ↓T ) and (T ↓S) are not equivalent as categories in general. Restricted comma cate-

gories are less particular.

Proposition 6.1.3. The categories [S ↓T ] and [T ↓S] are isomorphic.

Proof. Let Φ : [S ↓T ] → [T ↓S] be defined on objects by (a,b,φ) 7→ (b, a,φ−1) and on morphisms

by ( fA, fB) 7→ ( fB, fA). This is well-defined since the commutativity of the diagram on the left

below implies the commutativity of the diagram on the right.
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Sa

Sa′

T b

T b′

φ

S fA T fB

φ′

Sa

Sa′

T b

T b′

φ−1

S fA T fB

φ′−1

The natural transformation Φ is an isomorphism because (φ−1)−1 =φ.

The main theorems in Section 6.4 are about various types of limits and colimits. Restricted

comma categories inherit these structures from their source and target categories.

Observe that any comma category (S ↓T ) has two functors PA : (S ↓T ) →A and PB : (S ↓T ) →

B, the domain and codomain functors. These are given by sending a triple (a,b,φ) to a and to

b, respectively, and by sending morphisms ( f A, fB ) to f A and fB , respectively.

Lemma 6.1.4. Let J be a small index category. Suppose that A and B possess colimits under J-

shaped diagrams and that S preserves colimits under J-shaped diagrams. Then (S ↓T ) possesses

colimits under J-shaped diagrams.

Proof. Let D : J → (S ↓T ) be a diagram in the comma category, and denote the objects in its

image by (a j ,b j ,φ j ) for j ∈ J. Then PAD : J→ A and PBD : J→ B are J-shaped diagrams in A

and B, and so have colimits ℓa and ℓb . There is a natural transformation Φ= (φ j ) j∈J : SPAD =⇒

T PBD . Observe that SPAD : J→C is a diagram inCwith colimit Sℓa because S preserves colim-

its. Let Z : PBD =⇒ ℓB denote the cocone natural transformation. Then T ZΦ : SPAD =⇒ TℓB

is a cocone over SPAD , so there exists a unique morphism ψ : SℓA → TℓB (see Figure 6.1).

The colimit of D is (ℓA,ℓB,ψ). Indeed, suppose that (a,b,χ) is a cocone over D . Then there

are unique morphisms f1 : ℓA → a and f2 : ℓB → b because composition with PA or PB gives dia-

grams in A and B. The morphism ( f1, f2) ∈ hom(S↓T )((ℓA,ℓB,φ), (a,b,χ)) is well-defined because

everything in sight commutes.
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Sai · · · Sa j

Sℓa T bi · · · T b j

Tℓb

φi φ j

ψ

Figure 6.1: There exists a map, ψ, because TℓB is a cone over SPAD .

Lemma 6.1.5. Let J be an index category. Suppose that A and B possess limits over J-shaped

diagrams and that T preserves limits over J-shaped diagrams. Then (S ↓T ) possesses limits over

J-shaped diagrams.

Proof. Dualize the proof of Lemma 6.1.4.

Lemma 6.1.6. Suppose that A and B have limits over (respectively, colimits under) all J-shaped

diagrams, and that S and T both preserve limits over (colimits under) J-shaped diagrams. Let

D : J→ [S ↓T ] be a diagram in [S ↓T ] viewed as a subcategory of (S ↓T ). Then the (co)limit of D

exists and is an object of [S ↓T ].

Proof. Suppose both functors preserve limits. Using the notation in the proof of Lemma 6.1.4,

there is a natural transformation Φ and also a natural transformation Φ
−1 = (φ−1

j
) j∈J. This

means that SℓA is a colimit under T PBD and TℓB is a colimit under SPAD . Hence there are

unique morphisms ψ : SℓA → TℓB and ξ : TℓB → SℓA and these are necessarily isomorphisms.

The colimit case is analogous.

Lemma 6.1.7. Let PA and PB be the domain and codomain functors from (S ↓T ) to A and B,

repsectively. If T has a left adjoint, then so does PA, and if S has a right adjoint, then so does PB.

Proof. Assume that T has a left adjoint L, with counit ε : LT → idB and unit η : idC → T L. Define

L̃ : A→ (S ↓T ) by
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[S ↓T ]

A B

C
TS

PA

PB

L

L̃

Figure 6.2: A schematic for the setup of Lemma 6.1.7.

A ∋ a 7→ (a,LSa,ηSa) ∈ (S ↓T )

homA(a1, a2) ∋ f 7→ ( f ,LS f ) ∈ hom(S↓T )(L̃a1, L̃a2)

Observe that PAL̃ = idA so there is trivially a unit η̃ : idA → PAL̃. Construct a counit ε̃ : L̃PA →

id(S↓T ) by defining ε̃(a,b,φ) = (ida ,εb ◦Lφ). In particular, the following diagrams commute:

L̃ L̃PAL̃

L̃

L̃η̃

idL̃

ε̃L̃

PA PAL̃PA

PA

η̃PA

idPA

PAε̃

Dualizing this shows that if S has a right adjoint R then PB thas a right adjoint R̃.

Corollary 6.1.8. Let PA and PB be the domain and codomain functors from [S ↓T ] to A and B,

repsectively. If S has a left or right adjoint, then so does PB, and likewise if T has a left or right

adjoint, so does PA.

Proof. Apply Lemma 6.1.7 and Proposition 6.1.3.

6.2 Category of Simplicial Metric Thickenings

To formalize simplicial thickenings as comma categories, recall the definitions of the cate-

gories of simplicial complexes and of metric spaces.
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Simplicial complexes have been defined in Definition 6.0.2. The appropriate morphisms are

simplicial maps:

Definition 6.2.1. Let K and L be a simplicial complexes with vertex sets K 0 and L0. A simplicial

map is a function f : K 0 → L0 such that if σ is a simplex of K , then f (σ) is a simplex of L.

The category of simplicial complexes, sCpx, has abstract simplicial complexes as objects

and simplicial maps as morphisms. This category possesses finite products and coproducts.

The categorical product of simplicial complexes K and L is the simplicial complex K
∏

L, where

(σ,τ) ∈ K
∏

L is a simplex whenever σ ∈ K and τ ∈ L [59, Definition 4.25]. The coproduct, K
∐

L,

is the disjoint union simplicial complex.

Definition 6.2.2. Let X and Y be metric spaces and c ∈ [0,+∞). A function f : X → Y is k-

Lipschitz if d( f (x), f (x ′)) ≤ kd(x, x ′) for all x, x ′ ∈ X . Functions which are 1-Lipschitz may be

called short.

Lipschitz functions are, of course, continuous. The category of metric spaces, Met, has met-

ric spaces as objects and short maps as morphisms. While this is a standard definition (it is the

same used in [60], for example), there are alternative definitions in the literature, where either

the morphisms are less-restricted, or the axioms of a metric space are relaxed. In particular, the

morphisms may be allowed to be all maps which are k-Lipschitz for some k ∈ [0,∞), or simply

continuous maps. The latter is the structure of the category of metric spaces as a full subcate-

gory of Top. Many of the constructions here do not depend on the choice of morphisms for Met

and so Met∗ is used to be agnostic about this choice.

The metric space axioms may also be relaxed when defining a category of metric spaces.

Recall that the classical definition of a metric space is a set X equipped with a function

d(·, ·) : X ×X → [0,+∞)

such that
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• d(x, x) = 0, and d(x, y) = 0 if and only if x = y ,

• d(x, y) = d(y, x) for all x, y ∈ X , and

• d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z ∈ X .

Allowing d(x, y) = ∞ gives an extended metric space, while allowing d(x, y) = 0 when x 6= y

gives a pseudo-metric space, and allowing d(x, y) 6= d(y, x) is a quasi-metric space. Combining

all of the above relaxations gives Lawvere metric spaces, or categories enriched in the monoidal

poset ([0,+∞],≤,+) [61]. Here classical metric spaces and extended pseudo-metric spaces are

used, with the latter denoted by pMet. Of course, Met is a full subcategory of pMet.

The category Met has finite products. If X and Y are metric spaces, the product X ×Y is the

cartesian product of the underlying sets with the supremum norm:

d((x, y), (x ′, y ′)) = max{d(x, x ′),d(y, y ′)}.

Arbitrary products do not exist. For example R
R is a product in the category of topological

spaces, but it is not metrizable (it is not first-countable).

Coproducts do not exist in Met; however, in Section 6.4.2 we define a pointed category of

metric spaces where the coproduct structure, the wedge sum, is of more interest. One advan-

tage of pMet is the existence of (unpointed) coproducts as well as products. The coproduct

X
∐

Y is the set X ⊔Y with d(x, y) =+∞ for x ∈ X and y ∈ Y (all other distances are unchanged).

The product is the same as in Met.

Both the categories of metric spaces and simplicial complexes possess canonical functors

to Set. For metric spaces, the functor U is given by forgetting the metric d ,

U : Met ∋ (X ,d) 7→ X ∈ Set

f : (X ,dX ) → (Y ,dY ) 7→ f : X → Y

For abstract simplicial complexes, the functor �0 is given by forgetting the subset structure,
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�0 : sCpx ∋ K 7→ K 0 ∈ Set

f : K → L 7→ f |K 0 : K 0 → L0

When no ambiguity is possible the symbols U and �0 will not appear explicitly, with only X or

K 0 referring to the underlying sets.

Definition 6.2.3. The category MetTh of simplicial metric thickenings is the restricted comma

category [U ↓�0]. Explicitly, objects are triples (X ,K ,φ), in which X is a metric space, K is an

abstract simplicial complex, and φ : K 0 → X is an isomorphism of sets, and a morphism between

(X ,K ,φ) and (Y ,L,ψ) is a pair ( f : X → Y , g : K → L) such that the following commutes in Set:

X

K 0

Y

L0

φ

f

g

ψ

The source category of U can be either Met or pMet and this choice is distinguished by

MetTh and pMetTh.

Proposition 6.2.4. Both the domain functor PpMet : pMetTh→ pMet and the codomain functor

PsCpx : pMetTh→ sCpx have left and right adjoints. In addition, the functor PMet also defines a

functor MetTh→Met with left and right adjoints.

Proof. As per Corollary 6.1.8 it suffices to show that U and �0 have adjoints. Starting with �0,

the right adjoint is the complete simplicial complex functor, C , and the left adjoint is the trivial

complex functor, T .

Let Dr : Set→ pMet be the functor giving every set the discrete metric where all distances

are equal to r . The right adjoint of U is D0 and the left adjoint is D∞. These are not defined for

Met, and so PsCpx has adjoints only in pMetTh, and not in MetTh.

Proposition 6.2.5. If pMet and sCpx each possess (co)limits over diagrams of shape J, then so

does pMetTh.
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Proof. As described in Proposition 6.2.4, U and �0 both have left and right adjoints when the

domain is pMetTh. Therefore, both are continuous and cocontinuous functors, i.e., they pre-

serve small limits and colimits. By Lemma 6.1.6, [U ↓�0] has limits of any small diagram for

which limits exist in both pMet and sCpx.

Restricting the domain to MetTh, U no longer has adjoints and so does not necessarily pre-

serve arbitrary limits or colimits. For the constructions in Section 6.4, however, it will be clear

that the (co)limit object is in the subcategory Met whenever the diagram is.

6.3 Metric Realization Functor

This section shows that every object of pMetTh can be realized as a space satisfying Defini-

tion 6.0.1. This metric space is called the metric realization of the simplicial metric thickening.

It was first introduced in [3] and is related to [60].

Definition 6.3.1. The metric realization functor �m : pMetTh→ pMet is specified by the follow-

ing data:

• For each simplicial thickening K = (X ,K ,φ) in MetTh, let K
m be the sub-metric space of

P (X ) of all probability measures µ such that supp(µ) =σ for some σ ∈ K .

• For each morphism ( f , g ) : (X ,K ,φ) → (Y ,L,ψ), let ( f , g )m be the morphism taking µ =
∑n

i=1λiδ [xi ] to f m(µ) =
∑n

i=1λiδ
[

f (xi )
]
.

This also restricts to a functor �m : MetTh→Met.

There is no difficulty in allowing pseudo-metric spaces here, even though Chapter 3 only

treats classical metric spaces. If X contains some point x ′ with d(x ′, x) = ∞ for some x (and

hence all y within finite distance of that x), then no measure with x, x ′ ∈ supp(µ) is in P (X )

due to the finite moments condition. Pseudo-metric spaces also have a natural topology and a

well-defined Borel σ-algebra, so P (X ) is defined for such spaces.

The objects here are precisely those described by Definition 6.0.1. For finitely-supported

measures, ν≪ µ if and only if supp(ν) ⊆ supp(µ). Therefore the morphisms are precisely func-
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tions f : X → Y between metric spaces such that the induced map f #: K
m → P (Y ) has its

image contained in L
m. This holds for any of the variants Met∗ of categories of metric spaces,

though in the only Met and pMet with short maps are used.

Unsurprisingly, the Vietoris–Rips complex provides a natural example of the construction

of simplicial thickenings. The definition of the metric realization gives a new description of the

Vietoris–Rips complex and metric thickening as functors.

Definition 6.3.2. Let r ∈ [0,+∞]. The Vietoris–Rips functor VR(�;r ) : Met→MetTh is defined

by

VR(�;r ) : Met ∋ X 7→ (X ,VR(X ;r ) , id)

f : X → Y 7→ ( f , f )

This is well-defined because f is a short map and therefore sends any simplex σ to a set of

points with no larger diameter. The Vietoris–Rips simplicial thickening is the composition of

functors VR(�;r )m. For consistency with previous chapters this will be stylized V R (�;r ).

Definition 6.3.3. The Čech complex functor Č (�;r ) : Met→MetTh is defined by

Č (�;r ) : Met ∋ X 7→ (X , Č (X ;r ) , id)

f : X → Y 7→ ( f , f )

Again, the Čech simplicial thickening is the composition Č(�;r )m = Č (�;r ).

6.4 Homotopy Types and (Co)Limit Operations

Vietoris–Rips and Čech simplicial complexes preserve certain homotopy properties under

products and wedge sums. The case of (L∞) products is given in [18, Proposition 10.2], and the

case of wedge sums is given in [21, Proposition 4] and [62].
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This section gives categorical proofs of similar results for metric thickenings. In particular,

if Met and sCpx have (co)limits of a certain shape, then so does MetTh, by Proposition 6.2.5.

These (co)limits are not generally preserved by the metric thickening functors �m, V R (�;r ),

and Č (�;r ), but certain ones are preserved up to homotopy type.

6.4.1 Metric Thickenings of Products

The simplest limit operation to consider is the product. Let × denote the product in Met

and sCpx, and
∏

the product in MetTh. Since products exist in both Met and sCpx, they exist

in MetTh by Proposition 6.2.5. Explicitly, the product of M = (X ,K ,φ) and N = (Y ,L,ψ) is

M
∏

N = (X ×Y ,K ×L,φ×ψ).

Proposition 6.4.1. For any simplicial metric thickenings M and N , the metric realization fac-

tors over the product up to homotopy:

M
m ×N

m ≃ (M
∏

N )m.

Proof. Let M = (X ,K ,φ) and N = (Y ,L,ψ). Elements of M
m are finitely-supported measures

of the form µ =
∑

i λiδ [xi ] with xi ∈ X and supp(µ) ∈ K . Likewise elements of N
m have the

form ν=
∑

j ξ jδ
[

y j

]
with y j ∈ Y and supp(ν) ∈ L. Thus elements of M

m×N
m are pairs (µ,ν) =

(
∑

i λiδ [xi ] ,
∑

j ξ jδ
[

y j

]
) with supp(µ)×supp(ν) ∈ K ×L, i.e. supp(µ) ∈ K and supp(ν) ∈ L. On the

other hand, elements of (M
∏

N )m are measures on X ×Y of the form
∑

k ζkδ
[
(x, y)k

]
.

With this in mind, there is is an obvious injection ι : M
m ×N

m
,→ (M

∏
N )m via

(
∑

i

λiδ [xi ] ,
∑

j

ξ jδ
[

y j

]
)
7→

∑

i , j

λiξ jδ
[
(xi , y j )

]
.

Concretely, ι sends a pair of measures on X and Y to their product measure on X ×Y .

There is also a surjection ρ : (M
∏

N )m ։ M
m ×N

m given by taking the marginals of the

joint distribution:
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∑

i , j

ζi , jδ
[
(xi , y j )

]
7→

(
∑

i

(
∑
j
ζi , j

)
δ [xi ] ,

∑

j

(∑
i
ζi , j

)
δ

[
y j

]
)

.

Finally, ι and ρ are homotopy inverses. By construction ρ◦ ι= id. The composition ι◦ρ gives

the map
∑

i , j

ζi , jδ
[
(xi , y j )

]
7→

∑

i , j

(
∑

i

ζi , j

)(
∑

j

ζi , j

)
δ

[
(xi , y j )

]
.

This is homotopic to the identity on (M
∏

N )m via the straight-line homotopy H : (M
∏

N )m×

I → (M
∏

N )m where

H(t ,µ) = t id(µ)+ (1− t )ι◦ρ(µ).

This is clearly well-defined as a map to P ((X ×Y )). To see that the image of H is in (M
∏

N )m,

note that supp(ι◦ρ(µ)) ⊆ supp(µ), so the entire homotopy takes place within a simplex of K ×L.

It then follows from [3, Lemma 3.9] that the homotopy H is continuous.

Proposition 6.4.2. As functors Met→MetTh, both VR(�;r ) and Č (�;r ) preserve products.

Proof. As simplicial complexes VR(X ×Y ;r ) ∼= VR(X ;r )
∏

VR(Y ;r ) since, with the L∞ metric, a

subset of X ×Y has diameter equal to the maximum of the diameters of its coordinate projec-

tions. Similarly, Č (X ×Y ;r ) ∼= Č (X ;r )
∏

Č (Y ;r ) since a collection of L∞ balls intersect if and

only if their projections onto both factors intersect.

Corollary 6.4.3. For any metric spaces X and Y , the product operation factors through the metric

Vietoris–Rips and Čech metric thickenings up to homotopy:

V R (X ×Y ;r ) ≃ V R (X ;r )×V R (Y ;r )

Č (X ×Y ;r ) ≃ Č (X ;r )× Č (Y ;r ) .

Proof. Apply Proposition 6.4.1 and Proposition 6.4.2.

Remark 6.4.4. The same result holds true for coproducts; however, the coproduct is not in-

teresting. Recall the coproduct X
∐

Y of metric spaces X and Y has d(x, y) = +∞ for x ∈ X
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and y ∈ Y , and so is only defined in pMet. Therefore VR(X
∐

Y ;r ) ∼= VR(X ;r )
∐

VR(Y ;r ) and

Č(X
∐

Y ;r ) ∼= Č (X ;r )
∐

VR(Y ;r ) trivially. Similarly, M
m ∐

N
m ∼= (M

∐
N )m for trivial reasons.

6.4.2 Metric Thickenings of Gluings

The wedge sum is a natural colimit operation to consider. Recall that a terminal object in a

category C is the (unique up to isomorphism) object • ∈C such that there is a unique morphism

•A : •→ A for every A ∈C.

Definition 6.4.5. Let • be the terminal object in a category C. Let A,B ∈ C. The wedge sum of A

and B is the pushout of •A and •B :

•

A

B

A∨B

•A

•B

ιA

ιB

Proposition 6.4.6. Wedge sums exist in Met, sCpx, and MetTh.

Proof. The description of the wedge sum in each category is essentially the same. The terminal

object in Met is the metric space with a single point. The wedge sum X ∨Y is the metric space

X ⊔Y /(•X ∼ •Y ),

that is, X and Y are “glued together” at the points •X and •Y . This common basepoint in X ∨Y

will be represented by •. The metric on X ∨Y is given by d(x, y) = d(x,•)+d(•, y) for x ∈ X

and y ∈ Y , while distances within X and Y are unchanged. One can check that with this metric

X ∨Y satisfies the appropriate universal property.

The terminal object in sCpx is the simplicial complex with a single vertex. The wedge sum

K ∨L is the simplicial complex

K ⊔L/(•K ∼ •L)

where again the common basepoint in K ∨L will be denoted •.
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Since wedge sums exist in both Met and sCpx, they exist in MetTh by Proposition 6.2.5. Ex-

plicitly, the wedge sum of M = (X ,K ,φ) and N = (Y ,L,ψ) is M ∨N = (X ∨Y ,K ∨L,φ∨ψ).

Remark 6.4.7. For any simplicial metric thickenings M and N , the metric realization factors

over the wedge sum. Indeed, we have K
m ∨L

m = (K ∨L )m. However, if F : Met→MetTh, it

is too much to expect that F (M ∨N ) ∼= F (M )∨F (N ) (this fails for the Vietoris–Rips functor,

for example). Therefore proving that the metric thickening behaves well with respect to wedge

sums is more delicate than the product case.

Proposition 6.4.8. Let M = (X ,K ,φ) and N = (Y ,L,ψ) be simplicial thickenings. Suppose the

simplicial thickening V = (X ∨Y ,S,φ∨ψ) has the property that S ⊇ K ∨L, and if σ ∈ S is a subset

of neither X nor Y , then σ∪• is also a simplex in S. Then V
m ≃ (M ∨N )m.

Proof. Elements of both V
m and (M ∨N )m have the form

∑

i

λiδ [xi ]+
∑

j

ξ jδ
[

y j

]
+ωδ [•] .

where xi ∈ X and y j ∈ Y . Define λ=
∑

i λi and ξ=
∑

j ξ j , so ω+λ+ξ= 1. Elements of (M ∨N )m

must satisfy λ= 0 or ξ= 0. Since S ⊇ K ∨L, there is an inclusion ι : (M ∨N )m
,→ V

m.

Define ρ : V
m ։ (M ∨N )m by

ωδ [•]+
∑

i

λiδ [xi ]+
∑

j

ξ jδ
[

y j

]
7→





(2ξ+ω)δ [•]+
(
1− ξ

λ

)∑
i λiδ [xi ] if λ≥ ξ

(2λ+ω)δ [•]+
(
1− λ

ξ

)∑
j ξ jδ

[
y j

]
if ξ≥λ,

setting ξ
λ = 1 if λ= 0 and λ

ξ = 1 in the case that ξ= 0. To see that ρ is continuous, note that the

two piecewise formulas agree when λ = ξ (in which case the image of ρ is •). By construction

the image of ρ is in (M ∨V )m, and ρ is in fact a deformation retract, so ρ ◦ ι= id.

To complete the proof, ι◦ρ is homotopic to the identity via

H(t ,µ) = t id(µ)+ (1− t )ι◦ρ(µ).
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Two cases are required to show that the image of H is indeed V
m. If supp(µ) ⊆ X or supp(µ) ⊆ Y ,

then supp(ι◦ρ(µ)) = supp(µ). Otherwise supp(ι◦ρ(µ)) = supp(µ)∪•. Regardless, φ∨ψ(supp(µ)∪

supp(ι ◦ρ(µ))) is a simplex in S by assumption. It then follows from [3, Lemma 3.9] that the

homotopy H is continuous.

Corollary 6.4.9. For any metric spaces X and Y , the wedge sum factors through the Vietoris–Rips

and Čech metric thickenings:

V R (X ∨Y ;r ) ≃ V R (X ;r )∨V R (Y ;r )

Č (X ∨Y ;r ) ≃ Č (X ;r )∨ Č (Y ;r ) .

Proof. The Vietoris–Rips case follows since VR(X ∨Y ;r ) ⊇ VR(X ;r )∨VR(Y ;r ), and since if σ ∈

VR(X ∨Y ;r ) is not a subset of either X or Y , then σ∪• ∈ VR(X ∨Y ;r ). The Čech case is analo-

gous.

6.5 Dowker’s Theorem

A classical result about simplicial complexes is Dowker’s theorem. This section presents a

direct proof of the analogous result for simplicial metric thickenings.

If X and Y are sets, a relation, R, is a subset of X ×Y such that π1(R) = X and π2(R) = Y .

If (x, y) ∈ R, then x is related to y , written xR y . Let R(y) = π1(π−1
2 (y)), the set of points in x to

which y is related, and define R(x) analogously.

An relation defines two simplicial complexes, DX and DY , as follows: the vertex set of DX is

X , and a finite σ⊆ X is in DX if σ⊆ R(y) for some y ∈ Y . In parallel, DY has vertex set Y and a

simplex σ whenever σ⊆ R(x).

Theorem 6.5.1 (Dowker). There is a homotopy equivalence DX ≃ DY .

The original proof is in [63].
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The motivation for Dowker’s theorem was to explain why several a prior different homol-

ogy theories gave the same result. In fact, both the Vietoris–Rips and Čech complexes can be

defined as Dowker complexes.

Example 6.5.2. Chapter 2 noted that the Čech complex admits two definitions—as a nerve

complex, or by containment in open balls. These are the two Dowker complexes of a relation.

Let X be a metric space, and let B = {Br (x) | x ∈ X }. Define a relation between X and B by

(x,b) ∈ R if x ∈ b. Then DX contains a simplex for every finite set of points σ for which σ⊆ Br (x)

for some x ∈ X . Alternatively, DB contains a simplex for every finite collection of balls which all

contain some x ∈ X , i.e. for which the intersection is nonempty. Both DX and DB are called the

Čech complex as they happen to be not only homotopy equivalent but equal.

By using more general open sets two complexes can be defined by the same relation which

are not equal, but must still be homotopy equivalent, per Theorem 6.5.1. Replacing open balls

with all sets of diameter at most r gives the Vietoris–Rips complex as a Dowker complex. Since

the set of all sets of bounded diameter unwieldy, usually only DX is described as the Vietoris–

Rips complex. �

A relation is symmetrically finite if R(y) is finite for all y and R(x) is finite for all x. A sym-

metrically finite relation defines locally-finite simplicial complexes, and so any simplicial met-

ric thickenings X = (X ,DX , id) and Y = (Y ,DY , id) have X
m ∼= |DX | and Y

m ∼= |DY |. Then

Dowker’s theorem says that X
m ≃Y

m. The following gives a direct proof of this result without

appealing to either Dowker’s theorem or the homeomorphism between locally-finite simplicial

complexes and simplicial metric thickenings. The proof proceeds by working at the level of

metric realizations.

Definition 6.5.3. Let X and Y be simplicial metric thickenings. Two maps f , g : X
m →Y

m are

contiguous if for all µ ∈X
m and some ε ∈ (0,1), the convex linear combination (1−ε) f (µ)+εg (µ)

is in Y
m.

Lemma 6.5.4. If f and g are continuous and contiguous, they are homotopic.
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Proof. Note that if the convex combination requirement holds for some ε ∈ (0,1), then it neces-

sarily holds for all because simplicial metric thickenings are closed under absolute continuity.

Therefore H(µ, t ) = (1− t ) f (µ)+ t g (µ) is a well-defined map X
m × I →Y

m.

Further, H is continuous as follows: choose a point µ ∈X
m and let N = W2( f (µ), g (µ)). Let

ν be another measure in X
m. Let γ f be the optimal transport plan from f (µ) to f (ν) and γg the

optimal plan from g (µ) to g (ν). By the triangle inequality, the optimal transport plan from f (µ)

to g (ν) has cost at most N +cost(γg ). Assume that s > t . Then a transport plan from

H(µ, t ) = (1− t ) f (µ)+ t g (µ) to H(ν, s) = (1− s) f (µ)+ sg (µ)

is given by

α := (1− s)γ f + tγg + (s − t )γ f g .

Then cost(α) ≤ (1− s)W ( f (µ), f (ν))+ tW (g (µ), g (ν))+ (s − t )N .

Let ε > 0. By the continuity of f and g there exists a δ > 0 such that each of W2( f (µ), f (ν)),

W2(g (µ), g (ν)), and |s − t | are less than ε/(1− s + t +N ). This establishes the inequality

cost(α) <
(1− s)ε

(1− s + t +N )
+

tε

(1− s + t +N )
+

Nε

(1− s + t +N )
= ε.

A similar argument holds assuming s ≤ t , giving the continuity of H .

Let B ⊆ X
m be the space of all uniform distributions in X

m. (Since X
m only contains

finitely-supported measures, this is the set of measures of the form µ= 1
n+1

∑n
i=0δ [xi ].)

Since P (X ) is a metric space, one can construct the space P (P (X )), that is the Wasserstein

space of measures of measures. There is a natural map A : P (P (X )) → P (X ) given by averag-

ing: for any Borel set S ⊆ X ,

A (µ)(S) :=
∫

P (X )
ν(S)dµ(ν). (6.1)

(This map is the unit in the monad structure on the category of metric spaces discussed in [60].)
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Lemma 6.5.5. Let µ =
∑n

i=1λiδ[xi ] ∈ P (X ). Then there exists a unique measure φ
(
µ
)
∈ P (B)

such that A
(
φ

(
µ
))
=µ and φ

(
µ
)

is supported on a sequence of measures ν0, . . . ,νk with

supp(ν0) ⊃ supp(ν1) ⊃ ·· · ⊃ supp(νk ).

Proof. Define φ̃ on finite sets by

φ̃ ({x0, . . . ,xn}) = δ

[
1

n +1

n∑

i=0
δ [xi ]

]
.

Suppose that µ=
∑n

i=1λiδ[xi ] is ordered so that λi ≤λ j whenever i < j . Define

φ
(
µ
)
=

n∑

i=1
ai φ̃ ({xi, . . . ,xn})

where

a1 = nλ1 and ai = (λi −λi−1)(n − i +1).

Then φ(µ) satisfies both conditions by construction.

Intuitively φ changes the measure µ into barycentric coordinates. When µ is a uniform dis-

tribution, φ(µ) = δ
[
µ
]
. Consequently, call φ (X m) the metric barycentric subdivision of X

m.

Lemma 6.5.6. The barycentric subdivision of X
m is isometric to X

m.

Proof. The map φ is an isometry, since for any optimal transference plan γ, φ
(
γ
)

is an optimal

transference plan.

Definition 6.5.7. Let R be a symmetrically finite relation between metric spaces X and Y . Define

the Dowker simplicial metric thickenings RX and RY of R as follows. For each y ∈ Y , include all

measures supported on R(y) in RX , and for each x ∈ X include all measures supported on R(x)

in RY .

Theorem 6.5.8. Let X and Y be discrete metric spaces and R a symmetrically finite relation. Then

the simplicial metric thickenings RX and RY are homotopy equivalent.
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Proof. First, take the spaces of barycenters, BX and BY of RX and RY . Define ψ : BX →BY

by

ψ(µ) = φ̃

(
⋂

x∈supp(µ)
R(x)

)
(6.2)

and similarly θ : BY →BX by

θ(ν) = φ̃

(
⋂

y∈supp(ν)
R(y)

)
(6.3)

where φ̃ is as in Lemma 6.5.5. Note that supp(φ(µ)) =∩x∈supp(µ)R(x) is non-empty by the con-

struction of the Dowker complex. Extend ψ and θ linearly across simplices. Continuity is im-

mediate since BX and BY are discrete. The compositions ψ◦θ and θ◦ψ are contiguous to the

identity maps by construction.
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Chapter 7

Conclusion

There are many interesting questions about simplicial metric thickenings in general, and

Vietoris–Rips metric thickenings in particular, which remain to be answered.

The homotopy type of VR<
(
S

1;r
)

is known for all r —is the homotopy type of V R<
(
S

1;r
)

the

same? More generally, are VR< (X ;r ) and V R< (X ;r ) always homotopy equivalent? This holds

in all known examples, but is not yet proven. In a similar vein, the infinite Vietoris–Rips metric

thickening, V R
(∞) (X ;r ) was mentioned in Section 4.4. In all known examples, V R

(∞) (X ;r ) ≃

V R (X ;r ), but it is not known if this holds in general.

The theorems of Chapter 4 show that when r is small the homotopy type of V R (X ;r ) can

be determined. A significant, but difficult problem is the following: is there a general method

to determine how the homotopy type of V R (X ;r ) changes once that bound is passed? Perhaps

preliminary to this is to determine precisely what the scale parameter causing a change in ho-

motopy type is, in general. All spaces for which this is currently known (for either V R (X ;r ) or

VR(X ;r )) possess a high degree of symmetry. We conjecture that a more precise analysis of local

curvature will be important to answering these questions in any form.

The Morse lemma proven in Chapter 5 is at best the beginning of a theory. Classical Morse

theory possesses also the second Morse lemma, which states that when a critical point of index

j is passed in the sublevel sets, the homotopy type changes by the addition of a j -dimensional

cell. Is there an analogous statement that can be made in the setting of Theorem 5.2.2? One dif-

ficulty is that lower semi-continuous, λ-convex functions possess more variety of critical points

than classical Morse functions. It is almost certainly necessary to restrict to some subset of

functions which have “well-behaved” critical points, but the appropriate restriction is far from

clear.

The categorical constructions in Chapter 6 leave several paths to explore. A laudable goal

is to develop a better understanding of the relation between the homotopy type of a metric

92



realization of a simplicial metric thickening, and the homotopy type of the metric space and

simplicial complex which define that structure. A naïve conjecture is that if M = (X ,K ,φ) is a

simplicial metric thickening, and K is homotopy equivalent to some other complex L via sim-

plicial collapse, then M
m should be homotopy equivalent to |L|. However, this statement is

almost certainly too strong. Additionally, a stronger version of the Dowker’s theorem in Sec-

tion 6.5, in particular one admitting non-finite relations, should be possible. This could lead

to a much richer theory of spaces like simplicial metric thickenings, but in which measures of

infinite support are permitted, as indeed V R
(∞) (X ;r ) is already an example.
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