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ABSTRACT 

 

 

  

THE RELATIONSHIP BETWEEN COGNITIVE FUNCTIONS AND  

OCCUPATIONAL PERFORMANCE IN CHILDREN, ADULTS, AND  

ADULTS WITH ATTENTION DEFICIT HYPERACTIVITY DISORDERS (ADHD) 

              

 

    

The overarching goal of this dissertation is to explore the relationship between cognitive 

functions and occupational performance in neurotypical children, neurotypical adults, and adults 

with attention-deficit/hyperactivity disorder (ADHD). Electroencephalography (EEG)/event-

related potential (ERP) techniques were used to measure the neural processes while participants 

performed a speeded computer-based task for the three studies conducted in this dissertation. 

The first study examined the test-retest reliability on the amplitudes of two ERP 

components associated with performance monitoring, the error-related negativity (ERN) and 

error-positivity (Pe), in 53 neurotypical adults and 118 neurotypical children aged 8-12-year-old. 

The findings indicated that the test-retest reliability of these measures was moderate for children 

(rERN = 0.55, rPe = 0.62), and was moderate to strong for adults (rERN = 0.69, rPe = 0.75). 

Moreover, the adaptive Woody filter was implemented to adjust for the trial-to-trial variation in 

latency (i.e., latency jitter) when measuring the ERN and Pe amplitudes. The findings showed 

that adjusting for the latency jitter did not improve the reliability of ERN and Pe amplitudes for 

both groups, suggesting that the latency variability may be a trait-like variable which 

systematically occurred across sessions. Furthermore, the test-retest reliability of stimulus-locked 

ERP components on correct trials was higher compared to the reliability of response-locked 
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ERPs for children and adults, confirming that both children and adults generally attended to the 

task consistently across sessions. 

The second study demonstrated the feasibility of utilizing the structural equation 

modeling (SEM) approach to model the complicated inter-relationship between neural processes 

and simple task behaviors (e.g., response times) in 143 children with typical development aged 

8-12 years. The findings from the latent models indicated that the brain-and-behavior 

relationships were significant on correct trials but were not significant on incorrect trials after 

controlling for trait and state factors. Moreover, both models demonstrated different patterns of 

relationship among latent variables to response time, yet both models yielded excellent model fit 

indices. This finding suggested that our conceptual models were valid in terms of detecting the 

distinct patterns of neural processes leading to opposite behavioral outcomes (e.g., correct and 

incorrect). The final model demonstrated that the post-error adjustment in the stream of neural 

processes provided an adaptive effect on the early neural processing of the stimulus on correct 

trials. To our knowledge, this is the first study demonstrating how the post-error adjustment 

occurs at the level of neural processing. 

The third study (1) compared the group differences (children, adults, and adults with 

ADHD) on neural and occupational performance measures, (2) examined the inter-relationship 

between these measures for each group, and (3) investigated which measures can best 

differentiate three groups. The findings suggested that adults with ADHD demonstrated 

significantly lower quality of occupational performance particularly on the motor aspect of the 

activities of daily living (ADL). Moreover, for neurotypical children, larger ERN amplitudes 

were associated with lower quality of social interaction. For adults with ADHD, larger N2 

amplitude was associated with lower quality of social interaction. Lastly, discriminant analyses 
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demonstrated that the combination of neural and occupational performance measures 

differentiated children, adults, and adults with ADHD with 93.2% classification accuracy.  

 Taken together, this dissertation demonstrated significant brain-and-behavior 

relationships especially for neurotypical children and adults with ADHD by relating the neural 

measures (e.g., ERP components) to behaviors obtained from the computer-based task (e.g., 

response times), and to the quality of occupational performance (e.g., social interaction and 

ADL). Moreover, this dissertation demonstrated that having both neural and occupational 

performance measures is beneficial to obtain a comprehensive understanding of dimensions of 

maturation and disability.    
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CHAPTER 1: LITERATURE REVIEW 

 

 

 

Introduction 

Cognitive functions are critical for individuals to successfully interact with the 

environment, especially in today’s fast-paced world that requires a vast amount of information 

exchange. In recent years, researchers have begun to develop psychophysiological measures 

associated with cognitive functions as potential biomarkers for clinical diagnosis. However, the 

psychometric properties of these measures have not been fully established. Moreover, in the past 

decades, researchers have applied these measures to investigate the underpinnings of cognitive 

functions, yet the underlying neural mechanisms have not been fully understood because of the 

complex nature. Understanding the neural mechanisms associated with cognitive functions could 

guide clinicians to develop effective and targeted intervention. Furthermore, even though 

cognitive functions are considered important in our everyday lives, how these functions relate to 

occupational performance has yet to be critically examined. Specifically, occupational 

performance refers to the completion of meaningful tasks within a major life area including 

activities of daily living (ADL), work, and leisure, and involves complex interactions between an 

individual and his or her environment (Baum, 2011; Schell et al., 2013). Therefore, the purposes 

of this dissertation are to (1) examine the psychometric properties of psychophysiological 

measures associated with cognitive functions, (2) investigate the underlying neural mechanisms 

of cognitive functions and how these mechanisms relate to behavioral outcome (Glisky, 2007), 

and (3) explore how these neural processes relate to occupational performance in different 

populations—neurotypical children, neurotypical adults, and adults with attention deficit 

hyperactivity disorder (ADHD).   
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The literature review focuses on four domains. I will review the neuroimaging techniques 

and the psychophysiological measures that have been utilized to understand the neural 

mechanisms underlying specific cognitive functions in humans. I will proceed to introduce 

occupational performance, focusing on activities of daily living (ADL) and social interactions in 

children and adults. I will then introduce the diagnosis of adults with ADHD.  Lastly, I will 

review the theoretical frameworks that assist in explaining the relationships between cognitive 

functions and occupational performance in children, adults, and adults with ADHD. 

Neuroimaging Techniques 

With today’s advances in technology, researchers are able to implement high-end 

neuroimaging techniques to study changes in neural activities while people perform tasks that 

require cognitive functions (Petersen & Posner, 2012). These techniques include positron 

emission tomography (PET), single-photon emission computed tomography (SPECT), functional 

near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), diffusion 

tensor imaging (DTI), and electroencephalogram (EEG), each measuring brain activity or 

different aspects of physiological change in the brain.   

fMRI is a noninvasive technique that utilizes differences in magnetic resonance between 

oxygenated and deoxygenated hemoglobin to detect areas of the brain that are active (Luck, 

2014). fMRI provides excellent spatial localization and has been used for research and clinical 

diagnosis (Luck, 2014). However, despite the fact that fMRI can detect changes within one 

second, its relatively lower temporal resolution limits its application in the study of the whole 

course of neural processing that occurs within a second (van Veen & Carter, 2002). PET 

constructs functional brain images by injecting radioisotopes and calculates the distribution of 

the radiotracer over time to estimate brain physiology, such as cerebral blood flow or glucose 



3 

 

metabolism (Loane & Politis, 2011). PET is a powerful diagnostic tool for brain disorders and 

neural degenerative diseases; however, because of its high cost and the time required to perform 

the procedure, PET has not been widely available to date for research and especially research 

involving children (Loane & Politis, 2011). SPECT is another type of nuclear imaging test that 

shows the way blood flows through arteries and veins in the brain (Wernick & Aarsvold, 2004). 

Similar to PET, SPECT constructs functional brain images by injecting radioisotopes. The 

difference between PET and SPECT is the type of radiotracers used (Wernick & Aarsvold, 

2004). Moreover, SPECT is less expensive and more common compared to PET for research 

purposes. However, the radioisotopes only travel in the blood stream, hence the images are 

limited to areas where blood flows (Wernick & Aarsvold, 2004). Furthermore, due to the use of 

radioisotopes needed for PET and SPECT imaging, these two techniques are considered invasive 

and for most research involving children would not be appropriate methods.  

fNIRS is hemodynamic-based and its applications have been growing over the past 20 

years. fNIRS detects simultaneous changes in optical properties of the cortex as the 

concentration of oxygenated and deoxygenated hemoglobin fluctuates in the brain. fNIRS 

provides a non-invasive and portable method to monitor brain activity (Hoshi, 2003; Irani, 

Platek, Bunce, Ruocco, & Chute, 2007). However, the primary limitation of fNIRS is that fNIRS 

measurements are restricted to outer cortex (Quaresima, Bisconti, & Ferrari, 2012).  

DTI is a technique that measures the diffusion of water molecules in the brain and 

examines the microstructure, such as axons or the volume of brain areas (Mori & Zhang, 2006; 

Whitford et al., 2011). DTI has been useful in providing the anatomical structure of the brain and 

has been used to study the development of white and gray matter (Mori & Zhang, 2006). 

http://topics.sciencedirect.com/topics/page/Hemoglobin
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EEG is a technique that measures neural activities by recording electrical signals from the 

scalp (Luck, 2014). EEG has excellent temporal resolution up to 1 millisecond (ms), allowing 

researchers to understand the course of neural processes associated with specific cognitive 

functions. As a result, EEG is a powerful tool that helps researchers to understand the dynamic 

neural processes and how these neural processes relate to behaviors (Davies, Chang, & Gavin, 

2010). In the following sections, the EEG technique will be described in more detail to provide 

background for the primary technology used in the studies included in this dissertation.  

Electroencephalogram (EEG). EEG has been widely applied as a clinical diagnostic 

tool for seizures and sleep disorders, as a brain–computer interface, or as a research tool for 

measuring neurophysiological changes. The EEG technique records electrical signals produced 

by the brain (Davies et al., 2010; Luck, 2014). These electrical signals are collected, amplified, 

filtered, and displayed as voltage in real time (Luck, 2014). Specifically, these electrical signals 

are a summation of postsynaptic potentials generated from billons of neurons across the brain 

(Luck, 2014). Because the combination of neurons producing postsynaptic potentials is 

constantly changing, the ongoing EEG signal can contain different voltages within a very short 

period of time. Importantly, researchers have found that these EEG recordings can reveal certain 

rhythmic or repetitive neural oscillations associated with different cognitive processes via a time-

frequency analysis (Luck, 2014). The time-frequency analysis is a signal-processing approach 

that converts EEG signals into a series of sine waves composed of different frequencies (Luck, 

2014). These neural oscillations are described in hertz (i.e., number of cycles of oscillation 

within a second). Generally, the most common neural oscillations described in the literature 

include delta (2–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (>30 Hz) 
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oscillations. These neural oscillations provide information regarding sensory, motor, or cognitive 

processes based on their synchronization and the intensities (Luck, 2014).   

 Event-related potentials (ERPs) correlates of cognitive functions. ERPs are a set of 

positive and negative components extracted from EEG signals and are indicative of neural 

activities in response to sensory, motor, or cognitive processes (Luck, 2014). Generally, 

researchers obtain the ERPs by segmenting and averaging the EEG recordings that are time-

locked to events of interest (e.g., visual or auditory stimuli or button presses). Mathematically, 

when averaged, the signals are time-locked to repeated events, background noise that occurs 

randomly on the EEG recording will be cancelled, and the neural activity specifically evoked by 

the event of interest will remain (Roach, 2008; see Figure 1.1). 

 

Figure 1.1. (A) Stimulus-locked ERPs elicited by and time-referenced to stimulus; (B) Response-

locked ERPs elicited by and time-referenced to incorrect responses at button closure. 

These ERPs are often described in terms of amplitude (voltages) and latency (time in 

milliseconds). Generally, each ERP component is named with a letter and a number; the letter 

represents either positive or negative deflection for the component, and the number indicates the 

ordinal position of the ERP component (see Figure 1.1; Luck, 2014). In the following section, I 
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will introduce ERP components that represent different phases of neural processes that are 

associated with information processing of a visual stimulus.   

N1. The N1 component, which is also called N100 component, is a negative voltage 

deflection that peaks at around 100–150ms at the frontal midline scalp site after stimulus onset 

(Luck 2014). N1 is associated with the early stimulus processing and selective attention, and its 

amplitude has been shown to be larger for attended stimuli than ignored stimuli (Lackner, 

Santesso, Dywan, Wade, & Segalowitz, 2013; Luck & Girelli, 1998; Polich, 1993; see Figure 

1.1). N1 amplitude has been shown to be sensitive to the properties such as intensity or 

frequency of stimuli, such that it is larger for high intensity and high frequency tones but smaller 

for low intensity and low frequency tones (Adler and Adler, 1989, 1991; Picton et al., 1974). 

Furthermore, the N1 amplitude elicited by visual or auditory stimuli has been shown to be 

smaller in children with ADHD than in children with typical development, indicating that 

children with ADHD are less able to selectively attend to stimuli (Satterfield, Schell, & Nicholas, 

1994). Moreover, Crasta et al. (2017) found that the N1 amplitudes in children with sensory 

processing disorder, a clinical group that demonstrate difficulties in integrating sensory (visual, 

tactile, and auditory) information, significantly predicted their behavioral performances on the 

selective attention tasks.  

P2. The P2 component, which is also called P200, is an ERP component that follows the 

N1 component and it peaks at around 150-200 ms at the frontal-central scalp midline site after 

the onset of the stimulus presentation (Luck, 2014; see Figure 1.1). The P2 component has been 

associated with detection or sensory registration processes (Davies & Gavin, 2007). Other 

studies have shown that P2 amplitude is larger for stimuli containing target features, and this 

effect is enhanced when the targets are relatively infrequent (Luck, 2014).  
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N2. N2 is an ERP component that appears around 200-350 ms after stimulus 

representation, and it is also called N200 (Luck, 2014; see Figure 1.1). The functional association 

of N2 varies based on paradigms. Generally, N2 has been associated with three different 

cognitive processes: target detection, executive control, and the inhibitory process (Luck, 2014).  

First, an enhanced N2 amplitude was found when participants were instructed to press buttons to 

the target stimuli, suggesting that N2 reflects the process that discriminates the target from 

nontargets (Luck, 2014). Second, the association between N2 and the executive control process 

is evident by the Flanker task paradigm (Eriksen & Eriksen, 1974). In this paradigm, participants 

are presented with an array of five letters consisting of combinations of the letters “H” or “S.” In 

this task, there are two congruent arrays, “HHHHH” and “SSSSS,” and two incongruent arrays, 

“SSHSS” and “HHSHH.” Participants are instructed to press either the right or left button 

corresponding to the central letter. Interestingly, studies have shown that N2 amplitude is larger 

for the incongruent arrays as compared to the congruent arrays, indicating that N2 reflects a 

process that detects a mismatch between the central letter and the peripheral letters in the 

incongruent stimuli.  

Last, the N2 component also indicates an inhibitory process (Jodo & Kayama, 1992). 

Paradigms such as the Go-No/Go paradigm are often used to measure inhibitory processes. For 

this paradigm, participants are instructed to press the button for one type of stimuli (Go stimuli) 

and withhold pressing the button for another type of stimuli (NoGo stimuli). The inhibitory N2 

component is significantly larger when participants perceive stimuli that require them to 

withhold their responses (e.g., button press), and when they do successfully inhibit their 

responses to the stimuli (Jodo & Kayama, 1992). Pliszka, Liotti, and Woldorff (2000) found that 

children with ADHD demonstrated reduced N2 amplitude as compared to the control group, 
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indicating that children with ADHD have reduced response inhibition ability. Moreover, they 

found that the reduced N2 amplitude is negatively associated with the number of trials in which 

participants fail to inhibit their responses when performing the tasks, suggesting that the better 

inhibitory process indicates the greater N2 amplitude (Pliszka et al., 2000). 

P3. P3 is a positive deflection occurring around 300-500 ms after stimulus presentation, 

which is also called P300 (Luck, 2014; see Figure 1.1). Generally, the P3 component indicates 

cognitive process or memory updating; thus it has been used to study cognitive functions such as 

attentional switching and working memory. For example, several dual-task paradigms are 

designed to assess the ability of attentional switching by the P3 component. Gherri and Eimer 

(2011) conducted an experiment that required participants to perform a dual task—to search for 

visual targets with unique features (e.g., different colors, such as red or green) while listening to 

stories at the same time. Researchers compared the P3 amplitude among those who performed 

the dual tasks of identifying visual targets while listening to stories and the P3 amplitude of 

participants who performed the single task of searching for visual targets. Results demonstrated 

that the P3 amplitude was smaller among participants who performed dual tasks than among 

subjects who performed single tasks, suggesting that when someone is performing dual tasks, the 

ability to attend to a task is compromised because of limited attentional resources (Gherri & 

Eimer, 2011). Kida, Kaneda, and Nishihira (2012) found that the correlation between P3 

amplitude and reaction time on tasks was higher for the dual-task condition compared to the 

single-task condition, suggesting that stimulus- and response-related processing are coupled to 

serve as a compensatory mechanism while attentional resources are limited. 

Moreover, the P3 component also indicates the memory updating process (Polich, 1993). 

Studies have shown that P3 amplitude is greater for stimuli that require participants’ recall than 
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for those that do not (Karis, Fabiani, & Donchin, 1984). Polich et al. (1983) found a significant 

correlation between P3 latency and the digit span memory task in people without neurological 

impairments, suggesting a relationship between the neural and behavioral measures of working 

memory ability. Likewise, Dolu, Başar-Eroğlu, Özesmi, and Süer (2005) also found a significant 

relationship between the working memory load and P3 amplitude. Specifically, with a greater 

working memory load, participants demonstrated larger P3 amplitudes. 

Error-related negativity (ERN). ERN component is a negative voltage deflection that is 

frontally distributed on the scalp and peaks at 0–80ms every time an individual gives an incorrect 

response (Coles et al., 2001; Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991). Thus, the 

ERN is a component in an ERP that is time-locked to a response, rather than in an ERP time-

locked to a stimulus as in the previously discussed components - N1, P2, N2, P3 (see Figure 1.1). 

The ERN has been used to represent self-regulation, response monitoring, error detection, or 

conflict detection processes (Coles et al., 2001; Davies et al., 2004; Gehring & Fencsik, 2001; 

Swick & Turken, 2002). Both fMRI and EEG dipole modeling studies have confirmed that the 

ACC, a brain region beneath the medial surface of the frontal lobe, is the neural generator of the 

ERN (Carter et al., 1998; Coles et al., 2001; Holroyd, Dien, & Coles, 1998; Mathalon, Whitfield, 

& Ford, 2003; van Veen & Carter, 2002). Several studies have shown that individuals with 

ADHD, schizophrenia, autism, or brain injury demonstrate smaller ERN amplitude compared to 

control groups, suggesting that people in these populations have a reduced ability to monitor and 

regulate their behaviors (Bates, Kiehl, Laurens, & Liddle, 2002; Groen et al. 2008; Henderson et 

al., 2006; Wiersema, van der Meere, & Roeyers, 2005).  

Ladouceur et al. (2007) found that ERN amplitude is significantly larger for the incorrect 

trials with longer reaction times than those with shorter reaction times, indicating a positive 
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relationship between error detection and subsequent compensatory behavior. Specifically, studies 

have shown that, following errors, participants initiate compensatory behaviors by decreasing 

task speed to prevent future errors (Gehring, Goss, Coles, Meyer, & Donchin, 1993). Such a 

slowdown in reaction time after an error is called post-error slowing, a widely used indicator of 

post-error adjustment behaviors (Danielmeier & Ullsperger, 2011; Gupta, Kar, & Srinivasan, 

2009).  

Error positivity (Pe). Error positivity (Pe) is a slow positive deflection that follows the 

ERN component and peaks at 300–500ms centro-parietal scalp distribution after an individual 

makes an error (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991). Pe, like ERN, is a 

component in an ERP time-locked to a response, and immediately follows ERN (see Figure 1.1). 

Studies have shown that Pe component is associational with consciously processing of errors 

(Davies, Segalowitz, Dywan, & Pailing, 2001; Falkenstein et al., 2000; Ridderinkhof, Ramautar, 

& Wijnen, 2009) and initiating post-error adjustment (e.g., inhibit ongoing behaviors; Overbeek 

et al., 2005; van Veen & Carter, 2006). Researchers found a relationship between the Pe 

amplitude with the post error behaviors, and stated that the greater Pe amplitude is, the more 

significant that the participants activate their post error adjustment (Nieuwenhuis, Ridderinkhof, 

Blom, Band, & Kok, 2001). For example, participants will slow down their reaction time on the 

trial immediately following a trial on which they commit an error to ensure their overall 

performance (Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001). While the functional 

significance of Pe has yet to be determined, several studies have shown that Pe is also influenced 

by behavioral performance, personality, and disorders (Burgio-Murphy et al., 2007; Schrijvers, 

De Bruijn, Destoop, Hulstijn, & Sabbe, 2010). 

http://topics.sciencedirect.com/topics/page/Parietal_lobe
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Test-retest reliability of the ERP components in children and adults. Several studies 

have demonstrated that the ERP components are associated with phenotype of neurological 

disorders (Bates et al., 2004; Kim et al., 2006; Larson, Kaufman, Kellison, Schmalfuss, & 

Perlstein, 2009; Marquardt, Eichele, Lundervold, Haavik, & Eichele, 2018; Morris et al., 2008; 

Vlamings et al., 2008). Moreover, the Research Domain Criteria (RDoC) framework launched by 

the National Institute of Mental Health (NIMH) provides guidelines for researchers and 

clinicians to consider various dimensions (e.g., physiology, behavior, self-report) other than 

solely relying on behavioral symptoms to understand mental disorders 

(https://www.nimh.nih.gov/research-priorities/rdoc/index.shtml). The RDoC implies that the 

combination of the neural and behavioral measures may provide a more comprehensive picture 

in understanding the dysfunction of the mental disorders than relying on behavioral measures 

alone. Specifically, if researchers or clinicians only focus on behavioral symptoms, a significant 

inadequacy in diagnoses and subsequent intervention occurs if different groups (e.g., children 

with ADHD or children with autism spectrum disorder) exhibit similar behavioral symptoms.  

However, distinct neural processing profiles may underlie different functional challenges 

regardless of diagnoses. Ignoring the neural underpinnings of impairment can lead to poorly-

targeted interventions. Thus, for neural measures, such as ERP components, to be useful in 

supplementing other methods of diagnostics and intervention planning, they will need to 

demonstrate appropriate psychometrics.  As a result, there is a growing body of literature 

investigating the psychometric properties of both stimulus-locked (e.g., N1, P2, N2, P3) and 

response-locked components (e.g., ERN and Pe; Foti, Kotov, & Hajcak, 2013; Meyer, 2017; 

Riesel, Weinberg, Endrass, Meyer, & Hajcak, 2013). 
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Taylor, Gavin, and Davies (2016) found that moderate to strong test-retest reliability of 

the stimulus-locked ERPs in neurotypical adults and moderate reliability in children. Similarly, 

the test-retest reliability of the amplitudes of stimulus-locked ERP components (e.g., N1, P2, N2, 

and P3) has been shown to be strong using the oddball task in neurotypical adults (Cassidy, 

Robertson, & O’Connell, 2012). In terms of the response-locked ERPs, studies investigating the 

test-retest reliability of the ERN and Pe components in neurotypical adults have reported strong 

test-retest reliability of ERN and Pe amplitudes across two sessions ranging from 20 minutes to 2 

years in adults (Cassidy et al., 2012; Olvet & Hijcak, 2009; Segalowitz et al., 2010; Weinberg et 

al., 2011). We only found one study examined the test-retest reliability of the ERN amplitude in 

children, and the reported reliability was moderate (Meyer et al., 2014). To our knowledge, none 

of the studies examined the test-retest reliability of the Pe amplitude in children.  

Summary. EEG and ERPs have been widely used in the literature to understand neural 

processes associated with cognitive functions. However, only a few studies have examined the 

test-retest reliability especially for the response-locked ERPs (e.g., ERN and Pe amplitudes) in 

children, thus test-retest reliability in children has not been fully established. Therefore, more 

studies are needed to further investigate the test-retest reliability of the response-locked ERPs for 

children.  

Occupational Performance 

Occupational performance refers to individuals’ ability to perform daily activities that are 

meaningful to them appropriate to their social, cultural, environmental, and developmental stages 

(Schell, Gillen, Scaffa, & Cohn, 2013). Schell et al. (2013) have provided a definition of 

occupational performance: “Doing a task related to participation in a major life area; or the 

accomplishment of the selected occupation resulting from the dynamic transition among the 
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client, the context and environment, and the activity” (p. 1238). Specifically, occupational 

performance reflects an individual’s dynamic experience of engaging in daily activities within 

his or her environment (Schell et al., 2013). The American Occupational Therapy Association 

(AOTA) practice framework categorized occupation into eight different categories, include 

activities of daily living (ADL; e.g., feeding, dressing, and grooming), education, work (e.g., 

school, home, and family management), play and leisure (e.g., sports, hobbies), rest and sleep, 

and social participation. In this dissertation, the ADL and social participation are selected as 

primary measures to assess the quality of occupational performance, therefore, I will introduce 

these two domains in detail in the following sections.  

Activities of daily living (ADL). ADL can be broadly described as activities that people 

perform routinely to take care of themselves and can be categorized into “basic ADL” (BADL) 

and “instrumental ADL” (IADL). The former refers to activities involved with taking care of 

one’s body, such as feeding, grooming, and dressing; the latter involves a person interacting with 

their environment to live independently in a community and encompasses complex skills such as 

cooking, handling transportation, and shopping (Schell, 2013). ADL has been an emphasis for 

evaluation, intervention, and setting goals in occupational therapy, and has been a critical 

component for occupational performance evaluation.  

Occupational performance assessments that emphasize ADLs. A handful of 

standardized assessments have been developed in the field of occupational therapy to evaluate an 

individual’s occupational performance. The Canadian Occupational Performance Measure 

(COPM) is an assessment tool that has been widely used to clinically measure a client’s self-

perception of his or her own occupational performance. Specifically, it requires clients to 

identify their occupational performance issues in three different domains, including self-care, 
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productivity, and leisure, as well as evaluate the importance of these activities (Hemphill-

Pearson, 2008; Schell et al., 2013). The Occupational Performance History Interview (OPHI) is 

another subjective assessment tool that gathers history information of occupational performance 

from an individual (Apte, Kielhofner, Paul-Ward, & Braveman, 2005; Schell et al., 2013).   

In contrast to subjective measurements of occupational performance, other standardized 

assessments have been designed to measure occupational performance objectively. For example, 

the Functional Independence Measures (FIM) and the Assessment of Motor and Process Skills 

(AMPS; Fisher & Jones, 2014) were developed to evaluate ADL; in both assessments, an 

occupational therapist observes an individual performing daily tasks. The FIM is used to evaluate 

the overall aspects of an individual’s functional capacity, such as walking, transferring, bathing, 

and dressing (Stineman et al., 1996). The FIM has been widely used in clinical settings to assess 

individuals who have suffered from strokes, spinal cord injuries, or cognitive impairments 

(McKinley, Santos, Meade, & Brooke, 2007). The AMPS is a client-centered assessment method 

in which occupational therapists observe the ways in which clients perform two everyday 

occupational tasks that are familiar and meaningful to them (Fisher & Jones, 2014). These ADL 

and IADL tasks might include making a sandwich with peanut butter and jelly, vacuuming, or 

washing dishes. Although both the FIM and the AMPS measure a participant’s occupational 

performance under a natural setting, studies have shown that the AMPS is more sensitive in 

detecting changes in performance than the FIM is (Fioravanti, Bordignon, Pettit, Woodhouse, & 

Ansley, 2012). Thus, the AMPS has been more widely used in clinical and research settings 

(Fioravanti et al., 2012).  

Social participation. Social participation is defined as involvement with interpersonal 

interactions in social, leisure, community, and/or work activities (Goll, Charlesworth, Scior, & 
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Stott, 2015). Social participation is important for human beings; it allows us to function in a 

community on a daily basis. Goll et al. (2005) demonstrated that reduced social participation is 

often associated with a sense of loneliness and decreased health outcomes in older adults. Other 

studies have shown that social participation can predict an individual’s well-being (Di Cagno et 

al., 2013; Gilmour, 2012), and that reduced quality of social participation might lead to lower 

self-esteem or even mental illness (Mikula et al., 2016). To engage in successful social 

participation, a person must have social interaction skills. Social interaction skills refer to “the 

individual actions or units of social behaviors that are observable within the ongoing stream of 

occupation that involves social interaction” (Fisher & Griswold, 2015, p. 201).  

Social interaction assessments. Most available tools that therapists and researchers use to 

evaluate an individual’s social interaction skills focus on subjective perceptions that are derived 

by means of checklists or questionnaires, or by observation (Schell et al., 2013). While using the 

checklists or questionnaires to assess social interaction has several advantages (e.g., easy to 

administer, and requires minimal training), it also has several disadvantages (e.g., the results may 

be difficult to be compared across individuals; Schell et al., 2013). A lack of objective measures 

on the social interactions skills might fail to reveal the true social skills from participants. 

Currently, the Evaluation of Social Interactions (ESI) is the only standardized assessment 

method that involves an occupational therapist directly observing an individual’s social 

interactions under a natural context (Fisher & Griswold, 2015). Similar to the AMPS, the ESI is 

administered under natural, real-life contexts in which an occupational therapist observes a 

participant as he or she performs two meaningful and consensual social episodes with a familiar 

social partner (e.g., their mom, dad, or siblings). The ESI has the potential to provide a 
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quantitative assessment of a client’s social skills and may be useful for clinicians when they plan 

and measure the outcomes of the intervention.  

Relationship between cognitive functions and occupational performance. 

Surprisingly, studies that investigate the relationship between cognitive function and 

occupational performance in individuals without neurological impairments are limited to older 

adults. Cahn-Weiner et al. (2002) have examined the relationship between frontal executive 

functioning and occupational performance in older adults. Specifically, the behavioral measures 

include perseverative behaviors, cognitive shifting, and response generation. The results found 

that these cognitive functions significantly predicted IADL as measured by Occupational 

Therapy Assessment of Performance & Support (OTAPS). Moreover, the researchers also 

administered a modified version of the IADL assessment and the Physical Self-Maintenance 

Scale to measure physical activities or BADL, including dressing, grooming, and toileting, as 

well as IADL, such as financial management and use of public transportation. Results 

demonstrated that, whereas perseverance did not significantly predict the scores on OTAPS or 

physical activities and BADL, cognitive shifts significantly predicted both scores on OTAPS and 

physical activities or BADL, suggesting that a relationship between cognitive function and IADL 

is established in older adults. Similarly, Bell-McGinty, Podell, Franzen, Baird, and Williams 

(2002) have found that cognitive shifting, perseverative behaviors, as well as other executive 

function tests, significantly predict functional status in older adults.   

Summary. Previous studies have demonstrated relationships between cognitive functions 

and BADL performance in older adults. However, such a relationship has not been 

comprehensively studied in children, younger adults, and adults with attention deficit 

hyperactivity disorder (ADHD). Understanding the brain-and-behavior relationship especially in 
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individuals with disorders such as ADHD will assist in guiding rehabilitative interventions and 

provide another means of studying the effectiveness of such interventions. Therefore, the 

overarching goal of this dissertation is to explore the relationship between cognitive function and 

occupational performance in children, adults, and adults with attention deficit hyperactivity 

disorder (ADHD).  

Attention Deficit Hyperactivity Disorder (ADHD) 

Studies have shown that the estimates of prevalence ranging from 5% to 10% in school-

aged children (Scahill & Schwab-Stone, 2000) and 3% to 5% in adults (Almeida Montes, 

Hernandez Garcia, & Ricardo-Garcell, 2007; Biederman, 2005). The core symptoms of ADHD 

are inattention, hyperactivity, and impulsivity across multiple settings such as home or school 

(American Psychiatric Association, 2013). While ADHD is a most common diagnosis in 

childhood, studies have shown that about 60% of cases clinically diagnosed in childhood persist 

into their mid-20s, and 41% or more persist into adulthood (Barkley, 1997; Sibley et al., 2017). 

As a result, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5; 

APA, 2013) has revised its criteria for diagnosis. Specifically, while the age of onset criteria was 

age 7 or earlier in the previous version, now the age of onset criteria has been raised to age 12 or 

earlier in DSM-5. Moreover, the revised DSM-5 provides examples such as disorganized work 

and failure to meet deadlines that apply more to adults with ADHD (APA, 2013). Therefore, 

while many studies have investigated the disorder in children, it is critical to understand the way 

it affects adults to understand its underpinnings. 

Cognitive functions in adults with ADHD. The central deficits of cognitive functions in 

people with ADHD have long been discussed yet remain inconclusive. Initially, Barkley (1997) 

stated that decreased behavioral inhibition is the core symptom of ADHD. People with ADHD 
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failed to inhibit prepotent responses, stop ongoing responses, or maintain self-directed responses 

when facing interference. For example, adults with ADHD commit more errors on the 

continuous performance task, in which they need to inhibit prepotent responses (i.e., button 

presses) when they see the infrequent stimulus (Epstein, Johnson, Varia, & Conners, 2001). 

Moreover, adults with ADHD demonstrate longer stop signal reaction time, an indicator that 

reflects the time taken to inhibit a response once it has begun (Aron, Dowson, Sahakian, & 

Robbins, 2003). Adults with ADHD also made more errors on the Stroop tasks compared to 

control adults (Johnson et al., 2001). Barkley (1997) described such a reduction in inhibition is 

the central symptom of ADHD and that further affects other executive and cognitive functions 

such as working memory, self-regulation, speech internalization, and reconstitution.   

In recent years, more and more researchers have stated that the deficits of ADHD consist 

of more than just the primary symptoms in the diagnosis. Reduced self-regulation and 

performance monitoring might be global deficits of the disorder (Barkley & Murphy, 2011; Van 

De Voorde, Roeyers, & Wiersema, 2010). Self-regulation refers to any response that alters the 

probability of a later consequence related to that event, which enables efficient interaction with 

one’s environment (Van De Voorde et al., 2010). Chang, Davies, and Gavin (2009) showed that 

college students with ADHD demonstrated reduced performance monitoring by showing reduced 

brain processing and more difficulties in self-monitoring compared to healthy adults (Chang et 

al., 2009). The study suggested college students with ADHD failed to monitor and regulate their 

ongoing behaviors, thus made more errors and had fewer post-error behavioral adjustments 

compared to healthy adults. Other studies also demonstrated the reduced ability in people with 

ADHD in almost all the domains of cognitive functions such as attention, working memory, 

planning, and initiation compared to healthy adults (Barkley & Murphy, 2011). 
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Occupational performance in adults with ADHD. Barkley and Murphy (2010) 

evaluated the self-reported occupational problems in adults with ADHD and examined whether 

the subcomponents of executive function significantly predict the outcomes of self-rated 

occupational performance in each domain. Results showed that adults with ADHD have had 

more work difficulties, arrests, driving violations, and divorces than adults without ADHD. 

Moreover, adults with ADHD demonstrated worse productivity, outlook, and psychological 

health than adults without ADHD. Specifically, based on the self-report, adults with ADHD 

experienced difficulties in daily occupations, such as failure to ignore distractions when doing 

household chores such as cooking and cleaning. They had difficulty getting things started and 

tended to have trouble with financial tasks such as paying the bills or taxes. They also had 

symptoms of forgetfulness about where things were placed such as they could not remember 

where they parked (Stern & Maeir, 2014). Barkley & Murphy (2011) demonstrated several 

difficulties that beset adults with ADHD in daily life activities, including self-management of 

time, self-organization, self-discipline, self-motivation, and self-activation. Interestingly, studies 

that examine occupational performance in people with ADHD mostly focus on job satisfaction, 

but not activities of daily living. Moreover, Friedman et al. (2003) showed that adults with 

ADHD viewed themselves as less socially competent and more sensitive toward violations of 

social norms than controls. Wehmeier, Schacht, and Barkley (2010) also showed that adolescents 

with ADHD experience difficulties with social interactions which in turn, impair their overall 

quality of life. However, while there are several studies that demonstrate that adults with ADHD 

experience difficulties with occupational performance, little is known about the underpinnings of 

the reduced occupational performance in adults with ADHD.  
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 The relationship between cognitive functions and occupational performance in 

adults with ADHD. Studies further investigating the impact of cognitive functions on 

occupational performance in adults with ADHD are limited. Barkley & Murphy (2011) predicted 

the deficits in daily life activities from the behavioral results on the executive functions tests 

using regression analysis. They found inhibition ability and the ability of self-management to 

time significantly predicted trouble with work behavior and work performance in adults with 

ADHD. Likewise, Stern and Maeir (2014) found the scores on the behavioral rating inventory of 

executive function-adult version correlated with Canadian Occupational Performance Measure 

(COPM) in adults with ADHD. Specifically, adults with ADHD who have more difficulties with 

executive functions demonstrated lower self-rating occupational performance (Stern & Maeir, 

2014). Moreover, the study found that not only do executive functions significantly correlate 

with the occupational performance in adults with ADHD, but the COPM score, Behavior Rating 

Inventory of Executive Function (BREIF) score, and adults’ self-report scale together 

significantly predicted quality of life in adults with ADHD (Stern & Maeir, 2014). This study 

suggested a relationship between cognitive function—especially executive function—and 

occupational performance in adults with ADHD. However, it is worth noting that self-rated 

measures like the COPM are subjective and might be influenced by self-esteem of participants. 

Future studies should use more objective measurements to study the relationship between 

executive function and occupational performance. 

Summary. Studies have shown that adults with ADHD have decreased cognitive 

functions and difficulties with occupational performance. While several studies showed that the 

cognitive functions are associated with occupational performance in adults with ADHD, the 

underlying interactions between these factors is unclear and requires further investigation. 
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Theoretical Frameworks for Understanding Brain-and-Behavior Relationships  

While there are no existing frameworks that explicitly explain the relationship between 

cognitive functions and occupational performance, several fundamental frameworks illustrate 

these brain and behaviors interactions. In this literature review, these frameworks serve as a basis 

to predict the relationship between cognitive functions and occupational performance. Here I will 

review the most prevalent of these frameworks: the dynamic systems theory; the International 

Classification of Functioning, Disability and Health (ICF) framework; the Person-Environment-

Occupation model (PEO model); and the Connectionist Theory. 

Dynamic systems theory. The central tenet of dynamic system theory is that behaviors 

emerge from interactions between multiple systems over time (Elman, 2003; Hayes & Strauss, 

1998). These systems could be neurons, tissues, muscles, tasks, and environment (Samuelson, 

Jenkins, & Spencer, 2015). For example, the disappearance of the stepping reflex has long been 

considered a sign of maturation of the brain, as the higher order cortex matures and inhibits this 

primary reflex. However, researchers of dynamic systems theory have shown that the 

disappearance of stepping reflex is also associated with infant’s weight (Levine & Munsch, 

2010). That is, the reflex is shown to be more frequent when infants step in the water and less 

when researchers put more weight on infants’ legs. Such a finding supports the belief that neural 

maturation is not the only factor for the disappearing stepping reflex. Rather, all systems that are 

involved in the dynamic interactions must be considered for the emergence of motor behaviors 

(Levine & Munsch, 2010). Specifically, the term dynamic suggests the flexibility among 

interactions between systems (e.g., neurons, tissues, muscles, tasks, and environment), meaning 

these interactions are not predetermined or pre-specified but are rather unique and self-organized 

(Thelen & Bates, 2003). Self-organization refers to the process that these systems interact with 

one another and move toward an attractor—that is, toward a more stable status—from a less 
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stable state. Moreover, such a process occurs from the interactions among systems without 

explicit instructions (Samuelson et al., 2015; Thelen & Smith, 2007). Some developmental 

psychologists consider this process to be a developmental trajectory in which these systems 

integrally interact with one another with flexibility (Thelen & Smith, 2007). In other words, 

development involves ever-changing relationships among multiple systems over time.  

Major principles of the dynamic systems theory include, first, the dynamic interactions 

among systems follow a nonlinear pattern (Thelen & Smith, 2007). That is, the process that 

systems interact with one another and move toward an attractor often changes in nonlinear ways. 

For example, Hayes et al (2007) adopted the dynamic systems theory to investigate changes of 

the symptoms for people with anxiety disorders during psychological therapy, specifically 

exposure therapy. They found that the symptoms changed with a nonlinear pattern over time and 

stated that anxiety must be increased before it can be decreased (Hayes et al., 2007). Second, 

each system involved with dynamic interactions has its own developmental timetable (Effgen, 

2012). Changes in the developmental timetable create opportunities for the emergence of new 

behaviors. For example, various systems including postrual control, strength, and gait pattern 

generation are associated with acquisition of locomotion. These systems have their own 

developmental timetables. Changes in one system alters the trajectory of dynamic interactions 

and produces new loconotion behaviors (Effgen, 2012; Heriza, 1991; Thelen & Smith, 2007). 

Third, dynamic systems theory, with its emphasis on embodiment, claims that the process of 

dynamic interactions among systems is always connected with its environment (Thelen & Smith, 

2007). Specifically, the term embodiment refers to the phenomenon that a human’s body is 

continuously coupling to events in the world. For example, Gibbs (2005) stated that cognition 

develops when “the body engages in the physical, cultural world, and must be studied in terms of 
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dynamic interactions between people and their environment” (p. 21-22). These critical principles 

have been widely applied to understand cognition and motor development of human beings 

(Thelen & Smith, 2007).   

Perspectives on the brain and behavior relationships. Samuelson et al. (2015) applied 

the concept of dynamic systems theory to explain the relationship between neural structures and 

functions, cognition, and behaviors. Specifically, Samuelson et al. (2015) stated that behaviors 

are influenced by interactions among neurons and determined by the environment and task that is 

performed. This perspective posits an argument that neurons in the brain dynamically interact 

with one another to produce behaviors, which are influenced by the environment and tasks 

(Samuelson et al., 2015; Thelen & Smith, 2007). Moreover, based on the dynamic system theory, 

human behaviors could also influence the neural structure. For example, the constraint-induced 

movement therapy (CIMT) is a rehabilitation approach that is based on the theory. Specifically, 

the CIMT approach forces individuals with stroke to use their affected limbs to perform daily 

activities, which significantly enhances brain functional reorganization in patients with strokes 

(Cooper & Mosby, 2012). In other words, instead of viewing behaviors as predetermined by the 

brain, dynamic system theorists consider behaviors as emerging from the dynamic interactions 

among many subsystems over time, and behaviors can mutually influence other systems.   

Perspectives on cognitive functions and occupational performance. Several researchers 

have applied dynamic system theory to understand the relationship between cognitive functions 

and occupational performance. Occupational performance is defined as doing a task related to 

participation in a major life area, it can be viewed as a type of behavior by its definition (Schell 

et al., 2013; Thelen & Smith, 2007). Darrah et al. (2011) proposed that the interaction among 

three factors, namely the child, task, and environment, is critical to achieve functional goals for 
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children with cerebral palsy (CP). Specifically, child characteristics include both physical 

abilities (e.g., muscle tone, range of motion, balance) and cognitive abilities. Task characteristics 

include descriptive features of activities that a child is trying to perform. Environmental 

characteristics include physical accessibility and availability of assistance. Darrah et al. (2011) 

modified the task and environment to help children with CP to achieve their functional goals 

without remediation of a child’s physical and cognitive abilities. Similarly, Yancosek and 

Howell (2010) applied the dynamic system theory to understand the way systems interact to 

influence motor behaviors, and emphasized the importance of environment in influencing human 

behaviors. Taken together, based on the dynamic system theory, these studies demonstrate the 

relationship between cognitive functions and occupational performance.  

International Classification of Functioning, Disability and Health (ICF). ICF is a 

widely used framework in the fields of health professions. ICF provides standardized language to 

facilitate the communication among professions, and offers a new perspective on the way people 

understand disability (Vargus-Adams & Majnemer, 2014; World Health Organization, 2002). 

Further, ICF has been applied in clinical settings and research fields to monitor progress of 

patients and to depict the interactions between multiple factors (Vargus-Adams & Majnemer, 

2014). Unlike the model that was previously proposed by World Health Organization (WHO)– 

International Classification of Impairments, Disabilities, and Handicaps (ICIDH)—which 

indicates that the disability terminates the health condition—the ICF model focuses on the 

overall health condition and functioning of an individual (World Health Organization, 2002). 

Specifically, the ICF framework describes the relationships in the changes across multiple 

factors including body function and body structure, activity, participation, environment, and 

personal factors, and how these factors bidirectionally influence each other and contribute to the 
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overall health condition (see Figure 1.2). Specifically, the factor of body function and body 

structure is defined as the physiological and psychological functions of body systems. The factor 

of activity refers to the execution of tasks or actions by an individual (see Figure 1.2) and it has a 

bidirectional relationship with the factor of participation, which is defined as involvement in a 

life situation. Such a relationship is also influenced by larger contextual factors, including 

environment and personal factors. Specifically, environment factor refers to physical, social, and 

attitudinal environment (i.e., general attitudes of community and society) that either facilitate or 

hinder people to function in their lives. The personal factor refers to gender, age, coping styles, 

education, and experiences that influence the way an individual experiences disability. Both 

environment and personal factors influence body function and body structure, activity, and 

participation factors (WHO, 2002; Figure 1.2). 

 
Figure 1.2. The ICF framework (WHO, 2002) 

Perspectives on the brain and behavior relationship. The ICF model describes multiple 

factors that bidirectionally influence each other and contribute to one’s overall health. In terms of 
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the brain and behavior relationship, I highlight the interactions among factors—body function 

and body structure, activity, and participation—in this section. The factor of body function and 

body structure includes items such as mental functions (e.g., attention and memory). This factor 

has a bidirectional relationship with the factor of activity, which also has a bidirectional 

relationship with the factor of participation. Specifically, the detailed items listed under the 

factors of activity and participation include self-care, communication, and domestic lives, which 

are largely associated with day-to-day behaviors. Thus, these bidirectional arrows among these 

primary factors suggest that our brain functions influence our behaviors, and the behaviors can 

influence our brain (WHO, 2002).  

A handful of studies in the field of rehabilitation have mapped the parameters of interest 

on each factor of the ICF model and examine the interactions among these factors. Here I 

highlight one study that especially addresses relationships between the factors of body function 

and body structure, activity, and participation in terms of the brain and behavior relationship. 

Üstüin (2007) implemented the ICF model to monitor the treatment progress in children with 

ADHD. The researchers found that factors such as smaller brain volumes, asymmetry of the 

caudate nucleurs, and corpus callosum size and shape influenced body functions (e.g., poor 

attention) and are linked with activity limitations and participation restrictions (e.g., reading, 

writing, communication, and work performances) in children with ADHD. This study indicated a 

relationship between factors of body function and body structure, activity, and participation in 

children with ADHD.    

Perspectives on cognitive function and occupational performance. Based on ICF model, 

cognitive functions are regarded as mental functions (e.g., attention and memory), which are 

associated with brain functions that belong to the factor of body function and body structure. 
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Further, since occupational performance refers to doing a task related to participation in day to 

day tasks including self-care activities, work, and leisure (American Occupational Therapy 

Association, 2014; Schell et al., 2013), occupational performance is overlapped with factors of 

activity (i.e., the execution of tasks or actions) and participation (i.e., involvement in a life 

situation) based on the ICF model. Therefore, based on the ICF model, cognitive functions and 

occupational performance bidirectionally influence one another.   

Person-Environment-Occupation (PEO) Model. The PEO model was proposed by 

Law et al. (1996) to describe the transactional relationships between three components: person, 

environment, and occupation. The interactions among these components result in occupational 

performance (Law et al., 1996). The term transactional indicates that the relationship between 

these three components are interdependent with one another, instead of a linear cause-effect 

relationship. Such an interdependent relationship assumes that these components are essential in 

relation to occupational performance and could not exist independently of one another (Law et 

al., 1996). Specifically, occupation refers to tasks or activities with cultural or personal meanings 

that individuals do to occupy their time, and keep their mind and body active within a context 

(Christiansen & Townsend, 2010; Schwartzman, Atler, Borg, & Schwartzman, 2006). Because 

the PEO model was developed by occupational therapists, the model focuses on occupational 

performance and has been applied in both clinical practice and basic research in the fields of 

rehabilitation, occupational therapy, and occupational science.   

Perspectives on brain and behavior relationship. Since the PEO model does not directly 

address the brain and behavior relationship, such a relationship can be derived from the way the 

PEO model addresses the transactional relationships between person, environment, and 

occupation resulting in occupational performance. Specifically, the PEO model defines a person 
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as a “dynamic, motivated, and ever-developing being” (Law et al., 1996, p. 17) who consistently 

interacts with the environment, resulting in occupational performance. Thus, the component of 

person encompasses the person’s cognitive abilities, problem-solving skills, sensory and motor 

abilities as well as personal values, and motivations (Strong et al., 1999). To this end, such 

features are believed to reside in brain function (Darrah et al., 2011). Further, the PEO model 

defines occupation as tasks or activities with cultural or personal meanings. Therefore, based on 

the PEO model, the person factor (which is partly associated with brain function) dynamically 

interacts with occupation (tasks and activity) and environment, which, in turn, produces 

occupational performance (behavior). Based on the transactional relationship among person, 

environment, and occupation resulting in occupational performance, we know that our brain 

interacts with the environment and tasks we perform, and thereby produces behaviors.  

Perspectives on cognitive functions and occupational performance. In this model, 

occupational performance is considered as an outcome. On the other hand, cognitive functions, 

which reside within the component of person, engage in the transactional relationship, and 

partially contribute to the outcome along with components of the environment, and occupation. 

Thus, such a relationship suggests that cognitive functions partially determine the occupational 

performance.  

Connectionist Theory. The connectionist theory, which is also called the parallel 

distributed processing models, utilizes computational models to construct the complex 

interrelationships of the units within the neural networks (Pastur-Romay, Cedrón, Pazos, & 

Porto-Pazos, 2015; Rogers, 2009). The primary tenets of the connectionist theory include (1) 

cognitive functions arise from the successive activation among a single neuron or a group of 

neurons that shared the same function (e.g., units); (2) this successive activation among neurons 
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can be described by weighted connections (e.g., edge) among those units (Pastur-Romay et al., 

2015). The connectionist theory has been applied in psychology, social science, neuroscience 

and computer science to stimulate the underlying mechanisms among multiple components 

within the system (Rogers, 2009).  

Perspectives on brain and behavior relationship. Similar with the dynamic system 

theory, the connectionist theory assumes behaviors as the consequences or the outputs that 

emerged from the interconnections of the neural network (McClelland et al., 2010). Specifically, 

these behavioral outputs can be reinforced or shaded by strengthening or weakening the 

interconnections among the units in the system (McClelland et al., 2010). For example, the effect 

of learning can be explained by the changes in the weights of the interconnections among the 

units in the neural network (McClelland et al., 2010). However, the behavioral outputs are not 

merely considered as outcomes, but these outputs can provide feedback to modify the underlying 

neural networks (Davelaar, 2012).  

Perspectives on cognitive functions and occupational performance. Based on the 

connectionist theory, the subcomponents of cognitive functions are considered as units within the 

neural network (McClelland et al., 2010). The relationships among these subcomponents, either 

linear or non-interrelationships, are considered as edges and can be described as weighted 

connections, to produce the behavioral output (e.g., occupational performance). As such, 

occupational performance can be considered as the consequences that are emerged from the 

interconnected network. According to the connectionist theory, behavioral output (e.g., 

occupational performance) could provide the feedback to modify the connections of these 

underlying neural networks (McClelland et al., 2010).  
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Summary. These models suggested dynamic interactions among multiple elements 

including cognitive functions, person, task, environment, and outcome behaviors. However, the 

cognitive functions and occupational performance have not been examined empirically and thus 

requires further investigation. 

Overview of The Studies 

 Several research questions emerged based on gaps in the current literature. These 

research questions include: (1) what is the test-retest reliability of the response-locked ERPs in 

children with a short interval between sessions, (2) what are the interrelationships of the neural 

processes associated with information processing in children, and how these neural processes 

relate to the behavioral output (e.g., response time), (3) what are the relationships between 

cognitive functions and occupational performance in children, adults, and adults with ADHD. 

Three studies were conducted to answer these questions (Table 1.1). The findings of the first 

study could provide insights into the most reliable approach to measure the ERPs, which in turn, 

can be beneficial in determining the appropriate ERP measures that we should obtain for the 

second and the third study. The second study could help to delineate the stream of neural 

processes in children, which could inform the third study in terms of fundamental neural 

mechanism associated with information processing in children. The third study allows 

researchers to have a more comprehensive perspective on how trait factors, namely maturation 

and disability, influence neural processes and occupational performance by having three groups 

(children, adults, and adults with ADHD) in the study. The findings of the third study could 

inform future studies exploring the potential relationship between neural processes and 

behavioral measures of occupational performance in individuals with and without disabilities. 

The details of each study are addressed in the following chapters. 
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Table 1.1. Overview of three proposed studies 

 
Purpose(s) Participants Measures 

Study 1 
• To examine the test-retest reliability of 

the response-locked ERPs in children and 

adults 

• 118 children 

• 53 adults 

• ERP 

components 

Study 2 

• To establish a model that depicts the full 

stream of neural processes from stimulus 

to response (task behavior) measured by 

event-related potentials (ERPs) and 

response time in neurotypical children 

aged 8-12 years old. 

• To examine the role of performance 

monitoring on the full stream of neural 

processes from stimulus to response (task 

behavior) 

• 143 children • ERP 

components 

• Response 

times 

Study 3 

• To examine the differences in 

neurological measures of cognitive 

functions and occupational performance 

in children, adults, and adults with 

ADHD 

• To investigate the relationship between 

neural and occupational performance 

measures in the three groups 

• To explore which type of measures (e.g., 

neural measures, or occupational 

performance measures, or the 

combination of the two) could best 

differentiate these three groups  

• 63 children 

• 17 adults 

• 8 adults with 

ADHD 

• ERP 

components 

• Occupational 

performance 
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CHAPTER 2: TEST-RETEST RELIABILITY OF ELECTROENCEPHALOGRAPHIC 

MEASURES OF PERFORMANCE MONITORING IN CHILDREN AND ADULTS 

 

 

 

Introduction 

Performance monitoring is a set of mental processes including the evaluation of ongoing 

behavior, detection of performance errors, and initiation of post-error behavioral adjustment 

(Coles, Scheffers, & Holroyd, 2001). Collectively, these processes allow individuals to perform 

goal-directed behaviors. Electroencephalography (EEG) has been used to understand underlying 

neural mechanisms of performance monitoring, which is indicated by two event-related potential 

(ERP) components, namely error-related negativity (ERN), and error positivity (Pe). The ERN 

component is a frontally distributed negative voltage deflection and peaks at 0–80 ms following 

incorrect responses and has been associated with error detection and conflict monitoring (Coles 

et al., 2001; Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Yeung, Botvinick, & Cohen, 

2004). Studies from functional magnetic resonance imaging (fMRI) and EEG dipole modeling 

suggested that the primary neural generator of the ERN is located at anterior cingulate cortex 

(ACC; Carter et al., 1998; Coles et al., 2001; Holroyd, Dien, & Coles, 1998; Mathalon, 

Whitfield, & Ford, 2003; van Veen & Carter, 2002). The Pe component is a slow positive 

deflection that follows the ERN and peaks at 300–500ms following incorrect responses 

(Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991). The Pe has been associated with 

conscious cognitive processing of errors, error awareness, and initiation of post-error adjustment 

(Davies, Segalowitz, Dywan, & Pailing, 2001; Falkenstein et al., 2000; Nieuwenhuis, 

Ridderinkhof, Blom, Band, & Kok, 2001; Overbeek et al., 2005; Ridderinkhof, Ramautar, & 

Wijnen, 2009; van Veen & Carter, 2006), and its primary neural generator is believed to be the 

rostral ACC (Herrmann, Rommler, Ehlis, Heidrich, & Fallgatter, 2004). Studies have shown a 
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significant relationship between the Pe amplitude and the post-error slowing (i.e., a prolonged 

response time following errors to ensure the overall performance accuracy (Nieuwenhuis et al., 

2001; Overbeek, Nieuwenhuis, & Ridderinkhof, 2005). 

Several studies have demonstrated that individuals with neurological disorders show 

atypical ERN and Pe amplitudes compared to neurotypical peers. For instance, the ERN 

amplitude has been shown to be smaller in adults with schizophrenia (Bates, Liddle, Kiehl, & 

Ngan, 2004; Kim et al., 2006; Morris, Heerey, Gold, & Holroyd, 2008; Morris, Yee, & 

Nuechterlein, 2006), traumatic brain injury (Larson, Kaufman, Kellison, Schmalfuss, & 

Perlstein, 2009), and depression (Ruchsow et al., 2006). Likewise, Pe amplitude has been shown 

to be smaller in children with attention-deficit hyperactivity disorders (Van De Voorde, Roeyers, 

& Wiersema, 2010) and schizophrenia (Rabella et al., 2016). On the other hand, a larger ERN 

has been reported in individuals with obsessive compulsive disorders (Carrasco et al., 2013) and 

anxiety disorders (Ladouceur, Dahl, Birmaher, Axelson, & Ryan, 2006). These findings suggest 

that the ERN and Pe are trait-like measures, and imply the potential utility of the ERN and Pe as 

biomarkers for screening individuals with neurological disorder or psychiatric conditions. As a 

result, there is a growing body of literature investigating the psychometric properties of the ERN 

and Pe components (Foti, Kotov, & Hajcak, 2013; Meyer, 2017; Riesel, Weinberg, Endrass, 

Meyer, & Hajcak, 2013). 

Several studies have investigated the test-retest reliability of the ERN and Pe components 

in neurotypical adults and reported strong test-retest reliability of ERN and Pe amplitudes across 

two sessions ranging from 20 minutes to 2 years. Segalowitz et al. (2010) showed moderate to 

strong ERN test-retest reliability (r = 0.87, p < .01; ICC = 0.66, p < .01) in neurotypical adults 

with 20 minutes interval between the sessions. Olvet and Hijcak (2009) examined the reliability 
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on the ERN amplitude collected from two visits with two weeks apart using the flanker task on 

45 undergraduate students. The ERN amplitude (peak measure) demonstrated strong test-retest 

reliability (r = 0.74, p < .001; ICC = 0.70, p < .001), similarly, strong test-retest reliability was 

observed in the Pe amplitude (area measure; r = 0.75, p < .001; ICC = 0.75, p < .001). Moreover, 

Cassidy et al. (2012) reported that ERN and Pe amplitudes (peak measure) collected from two 

separate visits with a month apart demonstrated strong test-retest reliability (ERN: r = 0.75, p 

< .001; ICC = 0.74, p < .001; Pe: r = 0.74, p < .001; ICC = 0.71, p < .001) on 25 neurotypical 

adults using the flanker task. Similarly, Weinberg et al. (2011) also demonstrated moderate to 

strong test-retest reliability of ERN on two sessions separated 1.5 to 2 years in 26 undergraduate 

students (r = 0.65, p < .01; ICC = 0.62, p < .01). Despite consistent findings in adult literature, 

little research exists examining the test-retest reliability of the ERN and Pe components in 

children. We only found one study conducted by Meyer et al. (2014), and their findings 

demonstrated that the ERN has moderate to strong test-retest reliability in 44 children aged 8-13 

year-old with testing completed 2 years apart (r = 0.63, p < .01). However, the ERN amplitude 

has been shown as a developmental phenomenon such that the amplitude gradually increased 

across the age range from 7 up to 18 years old (Davies et al., 2004). As a result, the 

developmental changes of the ERN amplitude across two years might possibly confound the test-

retest reliability reported in the Meyer et al. (2014).  

Moreover, when investigating the psychometric properties of the ERPs in children and 

adults, researchers need to consider other sources of variance in order to obtain robust measure 

of underlying cognitive processes (Segalowitz & Dywan, 2009). Gavin and Davies (2008) 

proposed a model to conceptualize five potential sources of variance that contribute to any 

psychophysiological measures (PM) such as ERPs, the model is presented as: 
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PM = EffectSTIMULUS + EffectSTATE + EffectTRAIT + EffectPM_PROCESSING + Measurement error 

Specifically, these variables are: (1) EffectSTIMULUS, the influence of the stimuli being 

presented (e.g., paradigm researchers used for testing); (2) EffectSTATE, the state of individuals at 

the time of testing (e.g., fatigue); (3) EffectTRAIT, the trait(s) of individuals (e.g., age, gender, or 

cognitive capacities being investigated); (4) EffectPM_PROCESSING, the signal processing parameters 

implemented to obtain the ERPs; and (5) measurement error, any unaccounted variance. When 

examining the test-retest reliability of ERPs, such as the ERN and Pe amplitudes, researchers 

strive to control for or minimize the variance associated with stimuli, state, trait, and data 

processing parameters. For instance, researchers may utilize the same testing paradigm, make 

sure participants were emotionally stable and physically comfortable during the time of testing, 

set age, and gender as covariates, and standardize the signal processes procedure across two 

sessions.  

However, even with best intentions, most researchers do not control for the trial-to-trial 

variation in latency (i.e., latency jitter), embedded in the traditional ERP data analyses when 

examining the test-retest reliability in adults and children (Lin, Gavin, & Davies, 2015; Luck, 

2014). The latency jitter, could in turn, be regarded as a source of unaccounted variance 

(measurement error), and confound the results. Specifically, by using the traditional data analysis 

approach, researchers assume that the ERP evoked by certain events (e.g., incorrect button 

presses) are invariant and time-locked over multiple event presentations (Luck, 2014). Thus, 

averaging ERPs across multiple segments reduces irrelevant background noise and retains the 

brain responses evoked by the events. By making this assumption researchers overlook the 

impact of the trial-to-trial latency jitter on the averaged ERP amplitude (DuPuis et al., 2014; 

Luck, 2014). Particularly, the considerable amount of latency jitter across segments can attenuate 
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the amplitude of averaged ERP for a single individual (Luck, 2014; Lukie, Montazer-Hojat, & 

Holroyd, 2014; Unsal & Segalowitz, 1995; van Boxtel, 1998). Additionally, latency jitter has 

been shown to be larger in children compared to adults (Lin, Gavin, & Davies, 2015; Lukie et al., 

2014; Segalowitz & Dywan, 2009). For example, Lukie et al. (2014) explored the developmental 

changes of an ERP component related to decision-making, namely the reward positivity, in 

children (8-13 years), adolescents (14-17 years), and young adults (18-23 years). In this article, 

the researchers’ visual inspection of the averaged ERP of children revealed greater latency 

variability compared to adolescents and adults. Correction of the latency variability was made by 

re-aligning the times of the reward positivity of the averaged ERPs across individuals of each 

age group to create new grand averages. While the new grand-averaged ERP figures illustrated 

the effect of latency jitter on attenuating the grand-average of the ERP especially in children, this 

approach to the latency jitter correction did not alter the underlying statistical results (Lukie et 

al., 2014). However, correcting the averaged ERP by accounting for the trial-to-trial variation in 

latency of the component did directly affect the amplitude of the ERP component by accounting 

for measurement error within an individual. This in turn, may improve on the reliability of the 

measure as well. 

Therefore, the purpose of the present study was to examine the test-retest reliability of the 

ERN and Pe amplitude before and after correcting for the trial-to-trial latency variability in 

neurotypical children aged 8-12 years and neurotypical adults. Specifically, we utilized a 

speeded, force-choice visual flanker task to elicit errors for each participant who completed 2 

sessions, 1-3 weeks apart. The reasons that this study included children aged 8 to 12 years were 

because (1) based on the developmental trajectory, the ERN amplitude is relatively stable 

between ages 8 to 12 years (Lin, Gavin, & Davies, 2015); (2) children aged 8-12 years are able 



37 

 

to follow the task instruction and maintain seated throughout the EEG sessions; and (3) currently 

Meyers et al. (2014) was the only study that examined the test-retest reliability in neurotypical 

children, and the age range of the sample reported in Meyers et al. (2014) was ages 8 to13 years. 

Thus, by using children aged 8 to 12 years allows the researchers of this study to compare their 

findings with the previous research. Our specific research questions were the following: (1) What 

is the test-retest reliability of the ERN and Pe amplitude in children and adults? According to 

Williams, Hultsch, Strauss, Hunter, and Tannock (2005), the inconsistency in response time is 

higher during early and middle childhood compared to adults. Such inconsistency in response 

time may reflect the inconsistency in the latency of the ERP components. Thus, we hypothesize 

that the test-retest reliability of the ERN and Pe amplitude will be stronger in adults compared to 

children; and (2) Does the implementation of latency jitter correction via the implementation of 

Woody Filter technique improve the reliability of the ERN and Pe amplitudes? We hypothesize 

that the reliability will be stronger after the latency jitter correction, due to correcting for the 

variations in the ERN and Pe components at single trial level. Additionally, we investigated the 

test-retest reliability of the mid-to-late ERP components elicited by the stimulus to evaluate the 

consistency of overall attention and adherence to the task across sessions as well as a procedural 

control for evaluating the validity of the reliability of the ERN and Pe.   

Methods 

Participants. A total of 241 participants - 74 neurotypical adults, aged 18-30 year-old, 

and 167 typically-developing children, aged 8-12 year-old, - were recruited from the university 

and local community through campus emails, flyers, research subject pool of the Psychology 

department, and word of mouth. All participants were screened for neurological disorders and 

use of psychopharmaceutical drugs (e.g., antidepressants) by parent- or self- report. Application 
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of exclusion criteria resulted in a few participants being excluded from data analysis; 3 adults 

and 12 children due to parent- or self-reported diagnoses of brain injury, learning disability, 

reading disability, depression, or attention-deficit hyperactivity disorders. Additionally, 1 adult 

and 9 children were excluded due to failure to complete one or both sessions. Furthermore, 

participants who had an error rate greater than 30% (144 trials out of 480 trials) or less than 2.5% 

(12 trials out of 480 trials) on either one of the sessions were excluded (Davies, Segalowitz, & 

Gavin, 2004). This resulted in the loss of an additional 17 adults and 8 children for not making 

enough errors on either or both sessions, and 20 children due to making too many errors on either 

or both sessions. After imposing all of the exclusion criteria, data from 53 adults (M = 22.13 

years, SD = 2.66) and 118 children (M = 10.19 years, SD = 1.47), were included for statistical 

analysis; see Table 2.1 for participants’ age and sex distribution. Participants were compensated 

after each session with a choice of a cocoa mug, T-shirt, or cash, except for participants recruited 

from the Psychology department research subject pool who received course credits for 

participation. The study protocol was approved by the university institutional review board. Prior 

to study onset, all adult participants signed written consent forms, parents of child participants 

signed parental consent forms, and child participants signed assent forms. Detailed information 

regarding participant distribution by age and gender is presented in Table 2.1. 

 

Table 2.1. Participant distribution by age and gender after applying screening procedures and 

performance exclusion criteria.  

Age 

Groups 

Gender 
Total 

Males Females 

8 12 19 31 

9 13 13 26 

10 11 12 23 

11 11 8 19 

12 7 12 19 

Adults 21 32 53 

Total 75 96 171 
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Procedure. Participants were invited to the laboratory for two visits that occurred 1 to 3 

weeks apart. To control for any potential confounding factors, both visits were always held on 

the same day of the week and at the same time of the day. Each visit included 1.5 hours of EEG 

tasks followed by 1 hour of behavioral testing with a 10-15 minute break between the EEG and 

behavioral testing. For the EEG portion, two trained research assistants prepped the participant 

for EEG recordings. After a 3-minute artifact training period, participants performed 3 separate 

ERP paradigms in a quiet recording room though only the results from the speeded visual flanker 

task are reported in this study. The behavioral testing included tasks of attention and executive 

function (these are reported elsewhere) and were administered by a research assistant in another 

quiet testing area.  

The ERP Paradigm. The speeded visual flanker task (Eriksen & Eriksen, 1974) was 

presented using E-prime software version 2.0 (Psychology Software Tools, Pittsburgh) in two 

blocks of 240 trials (480 trials total). In this task, participants were randomly presented four 

types of character arrays on the screen. Each character array consisted of combinations of the 

letters “H” or “S” organized as congruent arrays (“HHHHH” and “SSSSS”, 80 trials each) and 

two incongruent arrays (“SSHSS” and “HHSHH”, 160 trials each). Participants were instructed 

to press either the left button on a 4 button keypad using their left index finger if the middle letter 

was an H and to press the right button using their right index finger if the middle letter was an S. 

Participants were told that the letters would be presented quickly, and they were instructed to 

perform as accurately as possible. The stimulus duration was 250 ms and the initial inter-

stimulus interval (ISI) was set at 1400 ms. Following each set of 30 trials, the E-prime program 

was designed to evaluate the overall error rate and adjust the ISI by increasing or decreasing it by 

100 ms if the error rate was greater than 25% or fewer than 10%, respectively. A minimal ISI 
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was set at 800 ms to allow adequate time for brain processing of the stimulus and response to 

resolve prior to the onset of the stimulus on the subsequent trial. Behavioral measurements of 

error rate, response time (RT) on correct and incorrect trials were calculated for each of the two 

sessions.  

Electrophysiological recording. EEG data were collected from the scalp using either a 

33 channel or 64 channel, Active Two BioSemi system (BioSemi, Inc., Amsterdam, the 

Netherlands) based on a modified 10-20 electrode placement system (American 

Electroencephalographic Society, 1994). Two electrodes, namely the common mode sense 

(CMS) and the driven right leg (DRL), were used to generate a common reference voltage 

(https://www.biosemi.com/faq/cms&drl.htm). Additional signals collected from the left and right 

earlobes were averaged and used for offline referencing. Two electrodes were placed at the 

supra- and infraorbital regions of the left eye to measure vertical eye movements, and two 

electrodes were placed at the left and right outer canthi to measure the horizontal eye 

movements. The sampling rate was 1024 Hz.  

Electrophysiological data reduction. The EEG data were analyzed offline using Brain 

Vision Analyzer 2.0 software (www.brainproducts.com). The data were referenced to the 

averaged signals of bilateral earlobes and then filtered with a bandpass filter of 0.1–30 Hz with 

24 dB/oct. The data were then segmented into response-locked and stimulus-locked segments.  

For response-locked segments, the data on incorrect trials were segmented into 1400 ms 

time periods, which spanned from 600 ms before the incorrect response to 800 ms after the 

incorrect response. Segments with premature button responses (e.g., response times that were 

faster than 100 ms) were excluded from the analysis. Then, the segments were baseline-corrected 

based on the average voltage of -600 to 400 ms preceding the incorrect response (Davies, 

http://www.brainproducts.com/
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Segalowitz, & Gavin, 2004). Eye movement artifacts were removed via a regression approach 

based on the VEOG channel (Segalowitz, 1996) then baseline-corrected again using the period of 

-600 to 400 ms preceding the incorrect response. Segments containing voltage greater than ± 100 

µV in the midline (e.g., Fz, FCz, Cz, Pz) and VEOG channels were rejected. The segments were 

then averaged using traditional ERP data analysis and also processed with the Woody filter 

(defined below) then subsequently averaged after adjusting for latency jitter. The windows for 

selecting the peaks for ERN and Pe are reported below in the Adaptive Woody Filter section. 

For stimulus-locked segments, the data were segmented into 1200 ms time periods, which 

spanned from 200 ms before stimulus onset to 1000 ms after stimulus onset. Then, the segments 

were baseline-corrected based on the average voltage of -200 to 0 ms of stimulus onset. Eye 

movement artifacts were removed via a regression approach based on the vertical EOG (VEOG) 

channel (Segalowitz, 1996) then baseline-corrected again using the period of -200 to 0 ms of 

stimulus onset. Segments containing voltage greater than ± 100 µV in the midline (e.g., Fz, FCz, 

Cz, Pz) and VEOG channels were rejected. The data were then averaged to obtain an averaged 

stimulus-locked ERP for each participant. The stimulus-locked averaged ERPs obtained for each 

participant were scored using a customized peak-picking procedure programmed in MATLAB 

(Mathworks, Natick, MA). We used different time windows for measuring stimulus-locked ERPs 

in adults and children (Table 2.2), because two groups demonstrated different morphology of the 

ERP waveforms. The peaks were calculated based on the peak-to-peak measure. All of 

component were measured at the site FCz except for the P3 component was measured at Pz in 

addition to FCz. The topographic map that was used to determine the channel sites is presented 

in Figure 2.1). 
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Table 2.2. Time windows for scoring stimulus-locked ERPs for adults and children  

 P1 window 

(ms) 

N1 window 

(ms) 

P2 window 

(ms) 

N2 window 

(ms) 

P3 window 

(ms) 

Adults 0-100 70-150 110-240 170-350 320-575 

Children 0-100 70-170 130-270 200-375 320-600 

 

 

Figure 2.1. The topographic distribution on the stimulus-locked correct trials (N1, P2, N2, and P3 

components) and response-locked incorrect trials (ERN and Pe components) for adults and 

children. The channel FCz is marked with a while/black circle. Note: the time windows used to 

determine the topographic distribution for each component were calculated based on the averaged 

mean latency across sessions +/- averaged mean standard deviation across sessions for each age 

group. 

 

Adaptive Woody filter. After stimulus-locked ERP components were scored, the 

response-locked ERPs on the incorrect trials were processed using an adaptive Woody filter 

programmed in MATLAB (Woody, 1967). The individual MATLAB files containing all 

incorrect trial segments were passed to the Woody filter to adjust for the trial-to-trial variability 

in the latency of the ERN component. This template-matching process was performed for each 

individual and included the following steps. First, a template was obtained by averaging all 

incorrect trials segments using traditional ERP data analysis. Then, each segment was shifted one 

data point at a time (either to the left or right) to match the segment to the averaged ERN 
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waveform template that was created in step one. After each data point shift, the program 

calculated a correlation coefficient between the shifted segment ERN waveform and the template 

ERN waveform for the template period defined as 0-300 data points after incorrect response 

(note: 1 data point = 0.98 ms). This expanded time frame allowed the program to match 

morphology of a complete ERN waveform and half of the Pe waveform to enhance the overall 

matching accuracy. The data point position for the maximum coefficient was obtained was taken 

as the amount of shift needed for each segment to maximally align with the template. To prevent 

the program from misidentifying the N2 component as the ERN component, we also set the N2 

boundary for each segment (i.e., the amount of right shift allowed to be made; formula: 

[(response time on each single trial in ms) - (peak latency of the N2 on averaged ERP for each 

participant in ms - 30)] / Sampling Rate). We subtracted the value of 30 from the peak-latency of 

the averaged N2 amplitude because it allows us to take the half cycle of the N2 component into 

account, and gives us the most optimal estimation of the N2 boundary based on the visual 

inspection at the single trial level. Once the maximal coefficient was identified, the shifted 

segments were then averaged to obtain a “latency-adjusted” averaged ERP waveform for the 

ERN and Pe components. After the data were processed through the adaptive Woody filter, the 

data were subject to the customized peak-picking program for scoring ERN and Pe amplitudes at 

the FCz site. The window for measuring ERN component was 10 ms prior to 180ms after 

incorrect responses. The window for measuring Pe component was 120 – 450ms after incorrect 

responses. We used the same window for both children and adults. The peaks were calculated 

based on the peak-to-peak measure.   

Statistical analyses. For overall behavioral outcomes, a three-way ANOVA was used to 

examine the effect of Group (Children and Adults), Session (Session 1 vs Session 2), and Trial 
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Type (Correct vs Incorrect) on response times. A two-way ANOVA was used to investigate the 

effect of the Group (Children and Adults) and Session (Session 1 vs Session 2) on error rate. 

Two three-way ANOVAs were used to examine the effect of Group (Children and Adults), 

Session (Session 1 vs Session 2), and Latency Jitter Correction (Before correction vs After 

correction) on ERN amplitude and Pe amplitude, respectively. Pairwise post hoc analyses were 

conducted using the pooled error term according to Kirk (1968). Pearson correlations and two 

types of Intraclass Correlations (ICCs), ICC consistency and absolute agreement, were used to 

assess the reliability of the ERN amplitude across two sessions for behavioral performances (e.g., 

response times and error rates), stimulus-locked ERPs (e.g., N1, P2, N2, P3), and response-

locked ERPs (e.g., ERN, and Pe). Two online calculators were utilized to conduct the 

significance testing between correlation coefficients. Specifically, the correlation test for 

independent samples (http://www.quantpsy.org/corrtest/corrtest.htm) was used to compare the 

reliability of the ERPs obtaining across sessions between children and adults (Preacher, 2002); 

the correlation test for dependent correlations (http://www.quantpsy.org/corrtest/corrtest3.htm) 

was used to compare the reliability of the ERPs obtaining across sessions before and after 

latency jitter correlation for each group (Lee & Preacher, 2013).  

Results 

Descriptive results. The descriptive results are presented in Tables 2.3 and Figure 2.2. 

Behavioral results on the Flanker task.  

Response times (RTs). The three-way ANOVA demonstrated that the interaction between 

Group (Children vs Adults) x Session (Session 1 vs Session 2) x Trial Type (Correct vs 

Incorrect) on RTs was statistically significant, F(1,169) = 9.223, p = .003, ηp
2 = 0.052, as well as 

the main effect of the Group, F(1,169) = 137.949, p < .001, ηp
2 = 0.449. Post hoc analyses using 
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the pooled error term according to Kirk (1968) demonstrated that the RTs in adults were 

significantly faster than the RTs in children under all conditions (Correct trials on Session 1: q.05 

= -17.75; Correct trials on Session 2: q.05 = -18.06, Incorrect trials on Session 1: q.05 = -9.87; 

Incorrect trials on Session 2: q.05 = -12.38, critical q.05 value = 2.8). For adults, the simple main 

effect of Trial Type was significant, F(1, 52) = 136.431, p <.001, ηp
2 = 0.724, post hoc analyses 

demonstrated that the RTs for correct trials were slower than the RTs for incorrect trials for both 

sessions for adults (Session 1: q.05 = 3.44; Session 2: q.05 = 3.12, critical q.05 value = 2.8). For 

children, the two-way interaction between Session x Trial Type was statistically significant, F(1, 

117) = 31.223, p < .001, ηp
2 = 0.211. Post hoc analyses showed that the RTs for incorrect trials 

were faster than the RTs for correct trials for both sessions in children (Session 1: q.05 = 14.39; 

Session 2: q.05 = 11.33, critical q.05 value = 2.8). No differences in RTs were found for correct 

and incorrect trials across sessions, (Correct trials: q.05 = 0.32; Incorrect trials: q.05 = -2.74, 

critical q.05 value = 2.8). 

 
Figure 2.2. The boxplot of response times on correct and incorrect trials for Session 1 and 

Session 2 in children and adults 
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Table 2.3. Means, standard deviations of response times in correct and incorrect trials, and error 

rates for session 1 and session 2 in children and adults 

 Sessions Reliability 

 

Session 1 Session 2 r 
ICC (3,1) 

consistency 

ICC (3,1) 

absolute 

agreement 

Response times in correct trials (ms) 

Adults (n=53) 414.04 (45.98) 407.12 (47.94) 0.806*** 0.806*** 0.800*** 

Children      

       All 

(n=118) 

623.56 (115.51) 620.38 (117.19) 0.911*** 0.910*** 0.911*** 

8 yr (n=31) 720.39 (99.93) 699.24 (116.25) 0.919*** 0.908*** 0.894*** 

9 yr (n=26) 662.19 (89.51) 664.23 (105.25) 0.843** 0.833*** 0.838*** 

10 yr (n=23) 586.72 (76.15) 589.64 (81.37) 0.789*** 0.788*** 0.794*** 

11 yr (n=19) 594.95 (71.21) 595.08 (73.97) 0.866*** 0.865*** 0.871*** 

12 yr (n=19) 485.90 (76.74) 494.23 (75.02) 0.802*** 0.801*** 0.805*** 

      

Response times in incorrect trials (ms) 

Adults (n=53) 362.43 (40.71) 360.28 (39.93) 0.771*** 0.771*** 0.773*** 

Children      

All (n=118) 478.93 (93.31) 506.47 (115.84) 0.829*** 0.810*** 0.784*** 

8 yr (n=31) 542.96 (95.70) 570.03 (137.17) 0.859*** 0.806*** 0.790*** 

9 yr (n=26) 504.95 (87.82) 530.41 (100.34) 0.894*** 0.886*** 0.859*** 

10 yr (n=23) 440.60 (77.01) 483.82 (87.87) 0.630*** 0.624** 0.557** 

11 yr (n=19) 474.10 (50.59) 491.56 (104.26) 0.617*** 0.484* 0.487* 

12 yr (n=19) 390.09 (50.45) 412.34 (59.51) 0.702*** 0.693*** 0.650*** 

      

Error rate (%) 

Adults (n=53) 9.07 (4.14) 7.70 (4.10) 0.736*** 0.736*** 0.701*** 

Children      

All (n=118) 14.79 (5.21) 10.73 (4.92) 0.624*** 0.623*** 0.473*** 

8 yr (n=31) 14.77 (5.77) 12.56 (6.16) 0.766*** 0.765*** 0.720*** 

9 yr (n=26) 17.12 (4.42) 11.89 (4.69) 0.630** 0.629*** 0.382*** 

10 yr (n=23) 12.76 (4.85) 9.05 (3.90) 0.434* 0.423* 0.319* 

11 yr (n=19) 14.74 (4.93) 9.77 (4.04) 0.564* 0.553** 0.349** 

12 yr (n=19) 14.12 (5.20) 9.17 (3.70) 0.511* 0.483* 0.307* 

Note: the data were presented as mean (standard deviation); yr = year-old; *** p < .001, ** p 

< .01, * p < .05 

 

Error rates. The descriptive results are presented in Table 2.3 and Figure 2.3. The two 

way ANOVA showed that the interaction between Group x Session reached statistical 

significance, F(1, 169) = 16.329, p < .001, ηp
2  = 0.088. Post hoc analyses showed that children 

made significantly more errors than adults on both sessions (Session 1: q.05 = 11.02, Session 2: 
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q.05 = 5.85, critical q.05 value = 2.8). For children, their error rate on Session 1 was significantly 

greater than the error rate on Session 2 (q.05 = 9.18, critical q.05 value = 2.8). However, for adults, 

no significant differences were found on the error rate across sessions (q.05 = 2.08, critical q.05 

value = 2.8).  

 
Figure 2.3. The boxplot of error rates for Session 1 and Session 2 in children and adults 

 

Electrophysiological results. 

Response-locked EPR components. The means and standard deviation of the ERN and Pe 

amplitudes and latencies before and after latency jitter correction for both sessions are reported 

in Tables 2.4 and 2.5. The ERPs are presented in Figure 2.4. Two three-way ANOVA examined 

the effect of Group (Children vs Adults) x Session (Session 1 vs Session 2) x the Latency Jitter 

Correction (Before vs After) on the ERN and Pe amplitudes, respectively. For the ERN 

amplitude, the three way interaction reached significant, F(1,169) = 5.546, p = .02, ηp
2 = .032, as 

well as the main effect of the Group, F(1,169) = 23.395, p < .001, ηp
2 = .122. The post hoc 

analyses demonstrated that for adults, the ERN amplitude was significantly larger after the 
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latency jitter correction for both sessions (Session 1: q.05 = 5.47, Session 2: q.05 = 7.01, critical 

q.05 value = 2.8). The ERN amplitude for the Session 2 was significantly larger than the Session 

1 after the latency jitter correction but not before (Before latency jitter correction: q.05 = 2.21, 

Session 2: q.05 = 3.76, critical q.05 value = 2.8). For children, the ERN amplitude was 

significantly larger after the latency jitter correction for both sessions (Session 1: q.05 = 10.07, 

Session 2: q.05 = 9.72, critical q.05 value = 2.8). No difference was found between sessions either 

before or after latency jitter correction (Session 1: q.05 = 0.74, Session 2: q.05 = 0.39, critical q.05 

value = 2.8).  

For the Pe amplitude, the interaction between Session x Group, F(1,169) = 6.813, p = .01, 

ηp
2 = .039, as well as the Latency Jitter Correction x Group reached significance, F(1,169) = 

56.472, p < .001, ηp
2 = .250. The post-hoc analyses showed that for adults, the Pe amplitude was 

significantly larger after the latency jitter correction for both sessions (Session 1: q.05 = -7.04, 

Session 2: q.05 = -7.57, critical q.05 value = 2.8). Similar to the findings on the ERN amplitude for 

adults, the Pe amplitude for the Session 2 was significantly larger than the Session 1 after the 

latency jitter correction but not before (Before latency jitter correction: q.05 = -2.68, Session 2: 

q.05 = -3.21, critical q.05 value = 2.8). For children, the Pe amplitude was significantly larger after 

the latency jitter correction for both sessions (Session 1: q.05 = -18.47, Session 2: q.05 = -17.67, 

critical q.05 value = 2.8). No difference was found between sessions either before or after latency 

jitter correction (Session 1: q.05 = -1.70, Session 2: q.05 = -0.90, critical q.05 value = 2.8). 
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Figure 2.4. The ERN amplitude for Session 1 and Session 2 before and after latency jitter 

correction in adults and children 
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Table 2.4. Means, standard deviations, and reliability indices of response-locked ERP component 

(ERN and Pe) amplitudes and latencies (ms) in Session 1 and Session 2 for incorrect trials before 

Woody filter  

 Before Jitter Correction 

 Sessions Reliability 

 

Session 1 Session 2 r 
ICC (3,1) 

consistency 

ICC (3,1) 

absolute 

agreement 

ERN amplitude 

(μV) 
     

       Adults (n=53) -11.80 (5.77) -14.00 (6.49) .693*** .688*** .650*** 

Children (n=118) -8.10 (4.63) -8.60 (5.43) .548*** .541*** .540*** 

8 yr (n=31) -7.92 (4.61) -7.68 (4.76) .482** .481* .489** 

9 yr (n=26) -6.11 (3.33) -5.37 (2.06) .112 .101 .101 

10 yr (n=23) -8.38 (4.31) -8.56 (4.71) .489* .487* .498** 

11 yr (n=19) -8.23 (2.54) -9.78 (4.98) .561* .454* .433* 

12 yr (n=19) -10.67 (6.80) -13.39 (7.31) .578* .576* .548** 

      

ERN latency (ms)      

        Adults (n=53) 68.08 (19.14) 67.94 (21.07) .330* .328** .332* 

Children (n=118) 46.36 (39.78) 44.66 (33.12) .159 .156* .157* 

8 yr (n=31) 46.12 (56.87) 30.68 (29.21) .028 .023 .022 

9 yr (n=26) 31.17 (29.95) 38.80 (32.58) .129 .128 .129 

10 yr (n=23) 38.13 (19.24) 43.82 (33.33) .039 .034 .035 

11 yr (n=19) 62.45 (39.56) 50.32 (27.53) .222 .208 .204 

12 yr (n=19) 61.42 (26.43) 70.83 (31.25) .218 .215 .213 

      

Pe amplitude (μV)      

       Adults (n=53) 13.20 (6.15) 16.23 (7.04) .749*** .743*** .675*** 

Children (n=118) 11.19 (4.90) 12.48 (6.18) .619*** .603*** .589*** 

8 yr (n=31) 11.53 (4.23) 10.74 (4.91) .589*** .582*** .581*** 

9 yr (n=26) 9.16 (2.67) 10.93 (3.87) .294 .275 .247 

10 yr (n=23) 10.61 (3.84) 12.13 (6.66) .410 .355* .351* 

11 yr (n=19) 11.70 (5.48) 14.17 (7.40) .787*** .752*** .710*** 

12 yr (n=19) 13.61 (7.45) 16.17 (7.20) .716** .716*** .684*** 

      

Pe latency (ms)      

       Adults (n=53) 187.28 (49.39) 195.04 (50.62) .521*** .521*** .519*** 

Children (n=118) 149.27 (61.31) 151.67 (42.42) .187* .175* .176* 

8 yr (n=31) 132.37 (64.44) 130.20 (41.65) .109 .100 .103 

9 yr (n=26) 123.99 (38.69) 153.02 (31.30) .180 .176 .134 

10 yr (n=23) 163.17 (75.44) 156.25 (49.86) -.047 -.043 -.045 

11 yr (n=19) 171.57 (60.19) 160.31 (46.38) .579* .560** .561** 

12 yr (n=19) 172.34 (45.86) 170.64 (31.21) -.252 -.235 -.251 

Note: the data were presented as mean (standard deviation); the amplitude was calculated based 

on the peak-to-peak approach; *** p < .001, ** p < .01, * p < .05 
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Table 2.5. Means, standard deviations, and reliability indices of response-locked ERP component 

amplitudes (ERN and Pe) and latencies (ms) in Session 1 and Session 2 for incorrect trials after 

Woody filter  

 After Jitter Correction 

 Sessions Reliability 

 

Session 1 Session 2 r 
ICC (3,1) 

consistency 

ICC (3,1) 

absolute 

agreement 

ERN amplitude (μV)     

Adults (n=53) -17.25 (6.57) -20.99 (8.62) .747*** .720*** .646*** 

Children (n=118) -14.83 (7.05) -15.08 (7.01) .567*** .567*** .568*** 

8 yr (n=31) -15.07 (7.74) -13.98 (7.36) .725*** .724*** .723*** 

9 yr (n=26) -12.17 (3.92) -11.19 (4.02) .080 .080 .080 

10 yr (n=23) -13.84 (5.13) -15.52 (6.29) .594** .582** .568** 

11 yr (n=19) -15.07 (5.61) -15.33 (4.69) .493* .485* .498* 

12 yr (n=19) -19.00 (10.40) -21.43 (8.32) .381 .372 .372 

      

ERN latency (ms)      

Adults (n=53) 70.59 (20.40) 67.01 (20.58) .289* .289* .288* 

Children (n=118) 47.12 (41.34) 48.32 (34.07) .201* .197* .198* 

8 yr (n=31) 41.65 (60.12) 32.64 (34.19) .121 .104 .105 

9 yr (n=26) 30.16 (22.30) 40.72 (33.42) -.139 -.129 -.125 

10 yr (n=23) 43.44 (23.95) 52.10 (30.49) .052 .05 .05 

11 yr (n=19) 65.12 (44.57) 51.55 (25.19) .470* .403* .387* 

12 yr (n=19) 65.69 (22.73) 76.53 (29.99) .093 .090 .087 

      

Pe amplitude (μV)      

Adults (n=53) 21.15 (7.03) 24.78 (7.44) .743*** .742*** .662*** 

Children (n=118) 25.18 (8.40) 25.86 (9.10) .650*** .647*** .647*** 

8 yr (n=31) 26.96 (8.75) 25.25 (9.04) .693*** .693*** .687*** 

9 yr (n=26) 22.75 (4.57) 24.44 (6.56) .534** .501** .489** 

10 yr (n=23) 23.19 (8.45) 24.79 (10.36) .530** .519** .522** 

11 yr (n=19) 26.36 (8.23) 26.57 (8.89) .707** .705*** .716*** 

12 yr (n=19) 26.82 (11.12) 29.39 (10.63) .742*** .742*** .731*** 

      

Pe latency (ms)      

Adults (n=53) 179.36 (43.10) 186.93 (45.84) .526*** .525*** .522*** 

Children (n=118) 147.40 (48.26) 148.87 (39.54) .183* .179* .180* 

8 yr (n=31) 135.81 (58.96) 131.55 (38.01) -.004 -.004 -.004 

9 yr (n=26) 128.49 (30.52) 151.22 (29.80) .272 .272 .217 

10 yr (n=23) 154.81 (48.76) 148.40 (43.39) -.005 -.005 -.005 

11 yr (n=19) 171.26 (56.06) 154.91 (47.04) .518* .510* .498* 

12 yr (n=19) 159.39 (20.81) 168.43 (32.27) -.132 -.120 -.121 

Note: the data were presented as mean (standard deviation); the amplitude was calculated based 

on the peak-to-peak approach; *** p < .001, ** p < .01, * p < .05 
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Test-retest reliability results.  

The ERN and Pe amplitudes before the latency jitter correction. To answer our first 

research question, the results on the Pearson correlation analyses and the ICC analyses showed 

that for adults, the reliability of the ERN and Pe amplitudes were .693 to .749, respectively. For 

children, the reliability of the ERN and Pe amplitudes were .548 and .619, respectively (Tables 

2.4 and 2.5, Figure 2.5). In terms of the group differences on the reliability measures, the 

findings showed that before the latency jitter correction, the reliability of the ERN amplitude in 

adults was not significantly higher than children (ERN: z = -1.41, p = .08 one tail).  

 

Figure 2.5. The scatter plots depicting reliability of the ERN and Pe amplitudes between Session 

1 and Session 2 before and after latency jitter correction in adults and children (Note: rbefore 

represents the correlation coefficient between Session 1 and Session 2 before the latency jitter 

correction; rafter represents the correlation coefficient between Session 1 and Session 2 after the 

latency jitter correction) 

 

 



53 

 

The ERN and Pe amplitudes after the latency jitter correction. To answer our second 

research question, we conducted the Pearson correlation analyses and the ICC analyses to 

examine the test-retest reliability on the ERN and Pe amplitudes after the latency jitter 

correction. The results showed that for adults, the reliability of the ERN and Pe amplitudes 

were .747 and .743, respectively. For children, the reliability of the ERN and Pe amplitudes 

were .567 and .650, respectively (Tables 2.4 and 2.5, Figure 2.5). 

Contrary to what we hypothesized, the latency jitter correction did not significantly 

improve the reliability of the ERN and Pe amplitude in either adults and children (differences on 

the reliability of the ERN amplitude before and after Woody filter adjustment: adults: z = -1.065, 

p = .14, one tail, children: z = -0.307, p = .38, one tail; differences on the reliability of the Pe 

amplitude before and after Woody filter adjustment: adults: z = 0.129, p = .44, one tail, children: 

z = -0.6, p = .27, one tail). To examine the reliability in more detail, we broke down the child 

group by age and investigate the reliability of the ERN and Pe amplitude before and after latency 

jitter correction for each age group (Tables 2.4 and 2.5). The findings showed that for 8 year-old, 

and 10 year-old groups, the reliability of the ERN amplitude increased after the Woody filter 

adjustment, and these increments were statistically significant for 8 year-old (z = -1.981, p = .02, 

one tail) but not for 10 year-old (10 year-old: z = -0.61, p = .27, one tail). However, for groups of 

9 year-old, 11 year-old, and 12 year-old, the ERN reliability decreased after the Woody filter, 

and the decrements were statistically significant for 12 year-old (12 year-old: z = 1.91, p = 0.03, 

one tail) but not for 9 and 11 year-old (9 year-old: z = 0.12, p = .45, one tail; 11 year-old: z = 

0.29, p = .38, one tail). 

In terms of the Pe, the reliability of the Pe amplitude increased after the Woody filter 

adjustment for 8 year-old, 9 year-old, 10 year-old, 12 year-old, yet none of these increments 
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were statistically significant (8 year-old: z = -0.852, p = .20, one tail; 9 year-old: z = -1.23, p 

= .11, one tail; 10 year-old: z = -0.90, p = .19, one tail; 12 year-old: z = -0.35, p = .36, one tail). 

The reliability of the Pe amplitude decreased after the Woody filter adjustment for adults and 11 

year-old, and the decrements were not statistically significant (11 year-old: z = 0.64, p = .26, one 

tail).  

In terms of the group differences on the reliability measures, after the latency jitter 

correction, adults demonstrated significantly higher reliability of ERN amplitudes than children 

(z = -1.91, p = .028, one tail), but there were no significant differences before latency jitter. The 

reliability of Pe amplitude for adults was not significantly higher than children either before or 

after latency jitter correction (before: Pe: z = -1.46, p = .07, one tail; after: z = 1.07, p = .14, one 

tail; see Figures 2.6). 

Test-retest reliability on stimulus-locked ERP components. We analyzed the reliability 

on the stimulus-locked ERPs (N1, P2, N2, P3) on correct and incorrect trials for contrastive 

purposes. The descriptive results and reliability indices of stimulus-locked ERPs of correct trials 

in Session 1 and Session 2 are reported in Tables 2.6 and 2.7. The ERPs are presented in Figure 

2.6. Generally, the amplitude of stimulus-locked ERP components (N1, P2, N2, P3) were 

strongly correlated among sessions for correct trials for adults and children, (adults: rmin = .780, 

rmax = .868; children: rmin =.707, rmax = .929), but weaker for incorrect trials, (adults: rmin = .318, 

rmax = .739; children: rmin = .368, rmax = .749), especially for N1 amplitude. 
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Table 2.6. Means, standard deviations, and reliability indices of stimulus-locked ERP component 

amplitudes (N2, P2, N2, P3) and latencies (ms) in Session 1 and Session 2 for correct trials 

 Correct Trials 

 Sessions Reliability 

 

Session 1 Session 2 r 
ICC (3,1) 

consistency 

ICC (3,1) 

absolute 

agreement 

Adults      

N1 amplitude (μV) -3.40 (1.74) -3.30 (1.57) .780*** .777*** .780*** 

N1 latency (ms) 111.90 (24.69) 114.15 (25.09) .756*** .755*** .756*** 

P2 amplitude (μV) 7.03 (3.20) 6.58 (3.15) .868*** .868*** .862*** 

P2 latency (ms) 190.52 (35.58) 186.27 (39.68) .479*** .476*** .478*** 

N2 amplitude (μV) -7.53 (2.94) -7.69 (2.99) .785*** .785*** .787*** 

N2 latency (ms) 276.02 (37.16) 269.24 (35.73) .877*** .876*** .863*** 

P3 amplitude (μV) 11.40 (3.84) 12.69 (3.60) .824*** .822*** .778*** 

P3 latency (ms) 381.73 (27.15) 380.69 (27.17) .677*** .677*** .681*** 

P3 amplitude (μV) 

@Pz 
11.71 (4.68) 12.52 (5.23) .849*** .844*** .835*** 

P3 latency (ms) 

@Pz 
382.43 (35.44) 371.65 (29.18) .658*** .645*** .616*** 

      

Children      

N1 amplitude (μV) -8.14 (2.85) -8.67 (2.92) .829*** .829*** .817*** 

N1 latency (ms) 127.97 (20.23) 132.18 (19.75) .857*** .857*** .839*** 

P2 amplitude (μV) 16.51 (5.78) 15.02 (5.66) .929*** .928*** .899*** 

P2 latency (ms) 223.15 (26.39) 221.89 (23.13) .730*** .723*** .724*** 

N2 amplitude (μV) -16.29 (6.89) -14.82 (6.11) .891*** .884*** .863*** 

N2 latency (ms) 321.98 (32.01) 317.94 (32.07) .753*** .753*** .749*** 

P3 amplitude (μV) 11.84 (4.56) 12.50 (4.46) .720*** .720*** .714*** 

P3 latency (ms) 447.30 (61.63) 442.99 (59.45) .629*** .628*** .629*** 

P3 amplitude (μV) 

@Pz 
16.50 (7.69) 15.71 (7.20) .707*** .705*** .704*** 

P3 latency (ms) 

@Pz 
421.79 (73.62) 407.62 (64.43) .551*** .546*** .537*** 

Note: the data were presented as mean (standard deviation); the amplitude was calculated based 

on the peak-to-peak approach; *** p < .001, ** p < .01, * p < .05 
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Table 2.7. Means, standard deviations, and reliability indices of stimulus-locked ERP component 

amplitudes (N2, P2, N2, P3) and latencies (ms) in Session 1 and Session 2 for incorrect trials 

 Incorrect Trials 

 Sessions Reliability 

 

Session 1 Session 2 r 
ICC (3,1) 

consistency 

ICC (3,1) 

absolute 

agreement 

Adults      

N1 amplitude (μV) -4.99 (2.69) -5.06 (3.00) .318* .317* .321* 

N1 latency (ms) 114.39 (26.24) 114.29 (27.68) .251 .250* .254* 

P2 amplitude (μV) 7.98 (3.13) 7.44 (3.71) .630*** .621*** .618*** 

P2 latency (ms) 190.85 (36.48) 183.59 (38.20) .400** .399** .396** 

N2 amplitude (μV) -9.31 (3.64) -9.43 (4.13) .739*** .733*** .737*** 

N2 latency (ms) 281.14 (34.57) 272.15 (37.22) .745*** .743*** .723*** 

P3 amplitude (μV) 10.77 (3.91) 11.75 (4.83) .508*** .496*** .489*** 

P3 latency (ms) 375.48 (58.57) 378.08 (56.24) .575*** .574*** .578*** 

P3 amplitude (μV) 

@Pz 
10.34 (4.71) 11.35 (5.22) .587*** .584*** .577*** 

P3 latency (ms) 

@Pz 
373.08 (56.72) 368.00 (55.42) .690*** .690*** .691*** 

      

Children      

N1 amplitude (μV) -9.87 (4.10) -10.93 (4.67) .368*** .365*** .357*** 

N1 latency (ms) 127.76 (21.46) 129.43 (23.53) .586*** .583*** .584*** 

P2 amplitude (μV) 17.15 (6.57) 16.11 (6.20) .640*** .639*** .632*** 

P2 latency (ms) 220.80 (28.01) 219.32 (25.99) .575*** .574*** .575*** 

N2 amplitude (μV) -17.29 (7.67) -16.46 (6.65) .749*** .741*** .738*** 

N2 latency (ms) 319.93 (32.04) 315.31 (42.21) .396*** .381*** .380*** 

P3 amplitude (μV) 11.85 (5.20) 13.83 (5.51) .580*** .579*** .544*** 

P3 latency (ms) 439.01 (65.28) 428.60 (58.62) .414*** .411*** .408*** 

P3 amplitude (μV) 

@Pz 
15.97 (7.12) 16.76 (8.46) .623*** .614*** .612*** 

P3 latency (ms) 

@Pz 
426.84 (72.90) 404.01 (76.52) .347*** .347*** .333*** 

Note: the data were presented as mean (standard deviation); the amplitude was calculated based 

on the peak-to-peak approach; *** p < .001, ** p < .01, * p < .05 
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Figure 2.6. Stimulus-locked ERPs for Session 1 and Session 2 for correct and incorrect trials in 

adults and children; note: dotted vertical red line represents the average reaction time on 

incorrect trials with the red colored box indicating +/- one standard deviation from this mean; 

dotted vertical green line represents the average reaction time on correct trials with the green 

colored box indicating +/- one standard deviation. 
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Discussion 

The present study examined the test-retest reliability of the ERN and Pe amplitudes 

before and after adjusting for the latency jitter in 53 neurotypical adults and 118 typically-

developing children. For contrastive information, we also investigated the test-retest reliability of 

the mid-to-late ERP components elicited by the stimulus onset (i.e., stimulus locked). We will 

discuss the results in terms of three aspects: the test-retest reliability of response-locked ERPs 

(ERN and Pe), the reliability of the stimulus-locked ERPs (N1, P2, N2, P3) on correct and 

incorrect trials, and the role of the latency jitter in the grand-averaged ERN and Pe amplitudes in 

adults and children.  

The test-retest reliability of the ERN and Pe in children and adults. To our 

knowledge, this is the first study to examine the test-retest reliability of the ERN and Pe 

amplitudes over a short period (1- to 3-week) in typically-developing children. We found 

moderate to strong reliability of the ERN and Pe amplitudes across sessions in typically-

developing children aged 8-12 year-old (reliability of the ERN amplitude before latency jitter 

correction: r = 0.548, after latency jitter correction: r = 0.567; reliability of the Pe amplitude 

before latency jitter correction: r = 0.619, after latency jitter correction: r = 0.650). Previous 

studies on the test-retest reliability of the ERN amplitude have shown a general decreasing trend 

in the reliability of ERN amplitude with increasing interval between sessions. However, the 

reliability of the ERN amplitude found in our study is slightly lower even with a shorter interval 

compared to the reliability of the ERN amplitude (r = 0.63) measured with a 2-year interval in 

children and adolescents aged 8-13 year-old (Meyer et al., 2014). There are several possible 

explanations for the discrepancy between the r value in the current study and the previous 

literature. First, our study required two visits with 1-3 weeks interval, participants might have 



59 

 

felt nervous at the first visit as the laboratory setting, equipment, procedures, and research 

assistants were novel to them. However, participants might have felt less nervous at the second 

visit. Whereas, in the Meyer et al. (2014) study that had a 2-year interval between sessions, both 

sessions would more likely be a novel experience for the young children and the state effects 

may be more similar between the 2-year interval sessions compared to a 1 to 3 week interval as 

in this present study (Gavin & Davies, 2008). The differences in the state across sessions may 

contribute to the unaccounted variance in the ERN and Pe measures which could lead to a lower 

test-retest reliability than previous studies. Specifically, we considered that the state effect is 

associated with anxiety, fatigue, attention, motivation, learning effect, practice effect or other 

transient factors that may influence the ERP components across sessions (Gavin & Davies, 2008; 

Hagemann & Naumann, 2009; Tsai, Young, Hsieh, & Lee, 2005). Also in the shorter 1 to 3 week 

period in this current study, practice and learning strategies could also contribute to variable 

neural responses in the two sessions among children. Second, this study utilized a different study 

design compared to Meyer et al. 2014. For example, the sample sizes (118 vs 44), paradigm 

(letter version vs arrowhead version), ISIs (1400ms +/- adjusted for error rate vs variable rate of 

2300 – 2800 ms) and even task instructions in this study were different compared to Meyer et al., 

2014, and these differences increase the difficulties for comparing the results.  

Consistent with previous literature, our findings with neurotypical adults demonstrated 

moderate to strong test-retest reliability of the ERN and Pe amplitudes (rmin = .693 to rmax =.749; 

Cassidy et al., 2012; Olvet & Hijcak, 2009; Segalowitz et al., 2010; Weinberg et al., 2011). 

Taken together, the findings suggest that the ERN and Pe amplitudes are reliable measures 

across time for both adults and children. However, for clinical diagnostic purposes the reliability 

measures exceeding .80 are more desirable (Nunnally, 1978, p. 245). Given that studies are not 
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yet demonstrating this level, there are still other sources of uncontrolled variance (e.g., state 

effect) that need to be considered if researchers are to establish ERN and Pe amplitudes as 

biomarkers for neurological disorders. For example, studies have shown that the ERN 

component is influenced by state effects such as fatigue (Lorist, Boksem, & Ridderinkhof, 2005), 

or sleep deprivation (Scheffers et al., 1999), such that people with sleep deprivation have a 

smaller ERN and Pe amplitudes (Tsai, Young, Hsieh, & Lee, 2005). The majority of the adult 

participants in our sample are graduate or undergraduate students who were evaluated during the 

school year. Although we scheduled their visits on the same time of the day during the same day 

of the week, we did not take the level of the sleep deprivation into the consideration (e.g., if the 

session was scheduled on the same day when the participant had mid-term or final tests, he/she 

might have stayed up late the previous night). Moreover, the potential session effect (e.g., 

practice effect) should also need to be taken into consideration when measuring the test-retest 

reliability in adults and children. 

Lastly, despite that we have obtained strong test-retest reliability of the stimulus-locked 

ERPs on the correct trials, we acknowledge that the measurement error produced during the 

procedure of cap preparation could impact the test-retest reliability of the ERP components 

especially for the ERN and Pe amplitudes. In this study, while the research assistants who ran the 

EEG experiments were well-trained and that the sessions were conducted under supervision of 

senior researchers, there could be several potential sources for the measurement error. For 

example, according to the protocol, researcher assistants always used the measuring tape to make 

sure the EEG cap was centered for each participant, however, even with the best intention, the 

cap may not be placed at the exactly same location on the scalp across sessions for the same 

participant. Similarly, the placement of the external sensors on the faces and the earlobes may 
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not be exactly on the same location across sessions. While the impact of the random 

measurement error on measuring the ERP components were unclear, such a random 

measurement error needs to be taken into account when measuring the ERN and Pe amplitudes 

in children and adults and interpretation of the reliability results of this study.  

Reliability of the stimulus-locked ERPs. We analyzed the reliability on the stimulus-

locked ERPs (N1, P2, N2, P3) on correct and incorrect trials for contrastive purposes. As 

expected, the test-retest reliability is moderate to strong on the stimulus-locked ERPs for correct 

trials (adults: rmin = .780, rmax = .868; children: rmin = .707, rmax = .929), but relatively weak for 

the incorrect trials (adults: rmin = .318, rmax = .739; children: rmin = .368, rmax = .749). We will 

discuss the findings in terms of two aspects. First, the moderate to high test-retest reliability on 

the stimulus-locked ERPs especially for N1 on correct trials for both adults (rN1 = 0.78) and 

children (rN1 = 0.82) speaks to our task validity such that participants generally attended to the 

stimuli in the task across sessions. Specifically, the N1 component has been associated with 

selective attention and the early stimulus discrimination process and is larger for attended stimuli 

compared to ignored stimuli (Girelli, 1998; Lackner, Santesso, Dywan, Wade, & Segalowitz, 

2013; Luck & Polich, 1993). Had participants not attended to the task stimuli consistently across 

the sessions, we would not have obtained the high reliability on the N1 amplitude. The high test-

retest reliability on the stimulus-locked ERPs implies that the relatively less strong test-retest 

reliability on the response-locked ERPs (i.e., ERN and Pe) is not due to a lack of attention to the 

task in general. It could be that the response-locked ERPs involved with more endogenous 

cognitive processes, such as error detection and could have been influenced by motor responses 

such as button presses (Ullsperger & Von Cramon, 2001). Second, the reliability on the stimulus-

locked ERPs on the incorrect trials is lower compared to that of the correct trials. These results 
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indicate a lapse in the attention to the stimulus—which, in turn, led to a failure to inhibit the 

prepotent motor response (i.e., button press) and an insufficient processing of the stimuli, and 

subsequently, resulting in an incorrect button presses (van Veen and Carter et al., 2006).  

Latency jitter as a trait-like measure. Contrary to our hypothesis, our findings 

demonstrated that the test-retest reliability of the ERN and Pe amplitudes were not significantly 

improved after adjusting for the latency jitter in adults and all ages of children. One possible 

explanation could be that the latency jitter may be a trait-like variable and consistently occurred 

across the two sessions. As a result, removing the latency jitter across two sessions did not 

improve the test-retest reliability of the ERN and Pe amplitudes. Several studies support the 

notion that the latency jitter is a trait-like measure whereby individuals with certain traits have 

greater amount of latency jitter. For instance, the latency jitter has been shown to be greater in 

people with schizophrenia compared to their neurotypical peers (Young et al., 2001) and in older 

adults compared to young adults (McDowell, Kerick, Santa Maria, & Hatfield, 2003). Moreover, 

in a study that employed a three-stimuli visual oddball task on young to elderly adults aged 20-

89 year-old, latency jitter of the P3a component was shown to be correlated with age (r = 0.28, p 

< .002; Fjell, Rosquist, & Walhovd, 2009). Additionally, latency jitter may be an indicator of 

processing efficiency (i.e., the efficiency of the neural transduction) and has been associated with 

other trait measures such as working memory (Shucard, Covey, & Shucard, 2016) and 

shifting/inhibition (Fjell et al., 2009). It is unlikely that the neural systems or cognitive functions 

underwent drastic changes during our experimental period (i.e., 1-3 weeks), as a result, it is 

understandable that adjusting for the latency jitter did not improve the reliability of the ERN and 

Pe amplitude. Furthermore, previous studies have suggested that the intra-individual variability 

in response time on behavioral tasks as a trait-like measure (Hultsch, Hunter, MacDonald, & 
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Strauss, 2005). While the latency jitter correction did not improve the reliability of ERN and Pe 

amplitudes in children and adults as a group, it is worth noting that when we examined the 

reliability of these ERP components for each age group in children, the reliability of the ERN 

amplitude significantly improved for age group 8 and significantly decreased for age group 12 

after adjusting the latency jitter. Since the groups of 8 year-olds and 12 year-olds are the lower 

and upper bound of participant’s age range in this study, the findings suggest that the latency 

jitter could reflect different neural processing characteristics for younger or older children. 

Future studies needed to investigate the differential effect of correcting for latency jitter across 

development including younger and older age groups. 

Conclusion 

We found moderate to strong test-retest reliability of the ERN and Pe amplitudes in 

neurotypical adults and moderate test-retest reliability of the ERN and Pe amplitudes in 

typically-developing children aged 8-13 year-old with a 1 to 3 week interval between the 

sessions. However, contrary to our hypothesis, the test-retest reliability did not improve after the 

latency jitter correction, suggesting that latency jitter may not markedly contribute to variance 

across sessions. Additionally, the stimulus-locked ERPs on correct trials demonstrated strong 

reliability in children and adults, ruling out the possibilities that variant attention levels on the 

task stimuli across sessions caused a lower reliability of the ERN and Pe amplitudes compared to 

previous studies. Future studies could explore other factors such as controlling for state effects 

that may enhance the psychometric properties of the ERN and Pe amplitudes in children and 

adults. 
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CHAPTER 3: MODELING NEURAL PROCESSES OF EVENT-RELATED 

POTENTIALS (ERPS) FROM STIMULUS TO RESPONSE IN TYPICALLY-

DEVELOPING CHILDREN 

 

 

 

Introduction 

This study incorporates the connectionist model framework and structural equation 

modeling (SEM) statistical analyses to understand brain-and-behavior relationships in typically-

developing children. The connectionist model framework utilizes a series of computational 

modeling approaches to construct the connection among multiple units, which can vary from 

individual neurons to a set of abstract subdomains of cognitive processes (Houghton, 2005). The 

framework provides a wide range of applications to understand the neural networks underlying 

behavioral performances, and has influenced areas such as psychology, behavioral, cognitive, 

and language sciences (Houghton, 2005). In this study, we consider information processing as a 

system encompassing multiple stages (i.e., units) that are activated in sequential order to process 

stimulus and produce behavioral output (Houghton, 2005). For example, to successfully perform 

a simple two-choice computer-based task such as the Flanker task (Eriksen & Eriksen, 1974), the 

brain goes through several processing stages which includes attending to the stimuli, registering 

the sensory information, discriminating sensory-based characteristics, selecting the most optimal 

behavioral output, and evaluating the outcome (Brion, Pitel, & D’Hondt, 2016) .  

Neurologically, these processing stages can be indicated by scalp-recorded event-related 

potentials (ERPs), a series of voltage deflections obtained from electroencephalography (EEG) 

that are evoked by sensory, cognitive, or motor events (Luck, 2014). Specifically, the N1 

component is a negative voltage deflection which peaks at around 100–150 ms at the frontal 

scalp site after presentation of stimuli, and it has been associated with selective attention and 
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sensory-based processes (Lackner, Santesso, Dywan, Wade, & Segalowitz, 2013; Luck & 

Girelli, 1998; Polich, 1993). The N1 component is followed by the P2 component, a positive 

voltage deflection peaking at around 150-250 ms at the frontal-central scalp site after 

presentation of stimuli. The P2 component has been associated with early processes of sensory 

stimuli or sensory registration processes (Davies & Gavin, 2007; Polich, 1993). The P2 

component is followed by the N2 component, a negative voltage deflection peaking around 200-

350 ms after presentation of stimuli, and it has been related to target discrimination, executive 

control, or impulse inhibition (Luck, 2014; Polich, 1993). The N2 component is followed by the 

P3 component, a positive deflection peaking around 300-500 ms after stimulus presentation and 

has been associated with cognitive evaluation processes such as attention allocation, or memory 

updating (Luck, 2014; Polich, 1993).  

When incorrect responses are made (e.g., pressing the left button instead of the 

appropriate right hand button in a two-choice speeded task), two ERP components, namely error-

related negativity (ERN) and error positivity (Pe), are evoked. These two components have been 

associated with error detection and performance monitoring (Coles et al., 2001; Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1991; Gehring & Fencsik, 2001; Swick & Turken, 2002). 

Specifically, the ERN component is a negative voltage deflection that is frontally distributed on 

the scalp and peaks at 0–80 ms after incorrect responses, and has been associated with response 

monitoring, error detection, or conflict detection processes (Coles et al., 2001; Falkenstein et al., 

1991; Gehring & Fencsik, 2001; Swick & Turken, 2002). The ERN is followed by the Pe, a slow 

positive deflection peaking at 300–500 ms centro-parietal scalp distribution (Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1991). The Pe has been associated with conscious processing 

of errors, error awareness, and initiation of post-error adjustment (Davies, Segalowitz, Dywan, & 
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Pailing, 2001; Falkenstein et al., 2000; Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; 

Overbeek et al., 2005; Ridderinkhof, Ramautar, & Wijnen, 2009; van Veen & Carter, 2006). 

The purposes of this study are to understand the relationship between underlying neural 

processes of information processing as indicated by ERPs components, and to examine how 

these neural processes predict the behavioral output as indicated by response time. Taylor, 

Gavin, Grimm, Passantino, & Davies (2018) applied the SEM approach to understand the 

interrelationship among the ERPs and the response time using a cued Go/No-Go task. Their 

findings suggested that applying a sophisiticated statisical analyses approach like SEM to 

understand the nature of complicated brain-and-behavior relationships are viable and beneficial. 

In this study, we propose three conceptual models (Figure 3.1) and test these models empirically 

step-by-step using the EEG data collected from typically-developing children aged 8-12 year-

old. Our first proposed conceptual model is presented in Figure 3.1A. In this manifested path 

model, each stage of neural processes is represented by a designated ERP component, and is 

hypothesized to predict the next phase of neural process in a sequential order, which in turn, 

significantly predicts the response time. We test the model in two conditions that result in 

opposite behavioral output (i.e., correct and incorrect responses) for contrastive purpose. The 

trait measures of age and sex are included in the model as both measures are demonstrated as 

significant predictors of ERPs and response times based on previous literature (Clayson, 

Clawson, & Larson, 2011; Davies, Segalowitz, & Gavin, 2004; Lahat et al., 2014; Taylor et al., 

2018). 
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Figure 3.1 (A). Conceptual manifested path model with trait measures to be tested on correct and 

incorrect trials via path analyses; (B) Conceptual latent path model with trait measures to be 

tested on correct and incorrect trials via a structural equation modeling approach (state effect is 

assumed to be random); (C) Conceptual latent path model with trait and state measures to be 

tested on correct and incorrect trials. Note: S1 = Session 1; S2 = Session 2; State 1 = Effect of 

the state effect on Session 1; State 2 = Effect of the state effect on Session 2. 

 

While the path analyses estimate the relationships among variables in the model 

simultaneously, this approach fails to account for the measurement error in each of the variables 
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in the model. Gavin and Davies (2008) proposed a conceptual formula to demonstrate the 

potential sources of variance contributing to any psychophysiological measures (PM). The 

formula is presented as follows: 

PM = Effect STIMULUS + Effect STATE + Effect TRAIT + Effect PM_PROCESSING + Measurement Error 

These variables indicate: 

(1) Effect STIMULUS: the influence of the stimuli presented (e.g., task paradigm),  

(2) Effect STATE: the state of individuals at the time of testing (e.g., fatigue),  

(3) Effect TRAIT: the trait of individuals (e.g., age, gender, or cognitive processes of 

interest),  

(4) Effect PM_PROCESSING: the signal processing procedures for analyzing the data,  

(5) Measurement Error: unaccounted variance.  

In this formula, Gavin and Davies (2008) suggested that any given PM such as an ERP 

component (e.g., N1) incorporates some degree of measurement error. Failing to minimize or 

account for the measurement error in these variables may undermine the robustness of a study’s 

statistical analyses and prevent researchers from obtaining reliable results (Gavin and Davies, 

2008; Maruyama, 1997). In our first proposed model, the manifest path model (Figure 3.1A), 

while we model the paths among the ERPs leading to RTs, we assume that all variables in this 

model are measured with minimal measurement error, which is not likely according to Gavin and 

Davies (2008). Therefore, to effectively account for measurement error, we propose our second 

conceptual model as presented in Figure 3.1B. The model is examined using the SEM, an 

advanced statistical analyses approach that utilizes common variance of a set of manifested 

variables (e.g., N1 components) to define a single latent construct (e.g., sensory-based 

processing). This approach allows researchers to account for and remove the measurement error 
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from the latent construct; thus providing for a set of more refined latent constructs to be 

modeled. Similarly, we test this model in correct and incorrect conditions for contrastive 

purpose.  

 The model shown in Figure 3.1B assumes that any state effect in an individual’s PM is 

random and if not accounted for, would contribute to inflating the measurement error of the 

individual’s PM. In addition, the model assumes that, across participants, state effects will sum 

to a zero. However, given that the two manifested ERP variables that are used to define each 

latent construct are collected on two separate sessions, one could assume that the ERP variables 

collected on the same sessions might share some common variance with one another within the 

sessions. In other words, while the second proposed model has accounted for the measurement 

error, yet it fails to distill a potential systematic source of error variance (i.e., not random) that is 

shared across the variables within each session. This systematic source of error variance could be 

a state effect (such as anxiety, fatigue, attention, learning effect, practice effect…etc) that may 

systematically influence the amplitudes of ERPs from session to session (Gavin and Davies, 

2008). Specifying this source of systematic measurement error may lead to more integrated and 

better fitting models. Therefore, we propose the third model to be tested as shown in Figure 

3.1C. This conceptual model includes measures of both trait and state effect.  

In addition to examining the neural processes associated with information processing 

(e.g., N1, P2, N2, P3), we also investigated the role of the performance monitoring in view of the 

stream of neural processes leading to behaviors. Previously studies have shown that performance 

monitoring is beneficial and can improve our performance (Danielmeier & Ullsperger, 2011; 

King et al., 2010). For example, subjects tended to slow down their response times on the correct 

trials that immediately follow error trials (Danielmeier & Ullsperger, 2011). Such a phenomenon 
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is called post-error slowing, and has been shown to be related with the Pe amplitude (Hajcak, 

McDonald, & Simons, 2003). Moreover, researchers also found that the performance accuracy 

on the trial immediately after an error is improved (Danielmeier, Eichele, Forstmann, 

Tittgemeyer, & Ullsperger, 2011). However, while studies pointed out the role of performance 

monitoring on improving the performance outcomes, the underlying mechanism of how 

performance monitoring involves a process for adapting behavior based on performance remains 

unclear. Therefore, the purposes of this study are (1) to examine whether the stream of neural 

processes associated with information processing (e.g., N1, P2, N2, P3) could successfully 

predict the response time, (2) to understand how the neural processes of performance monitoring 

(e.g., ERN, and Pe) lead to behavioral adaptation to improve performance, (3) to investigate how 

the trait measures (e.g., age, and gender) are related to the stream of neural processes and 

response times, and (4) to investigate whether the state effect was random or systematic across 

sessions.  

Methods 

Participants. A total of 167 children aged 8-12 year-old were recruited from the 

university and local community through convenience sampling (campus emails, flyers, and word 

of mouth). All participants were screened for neurological and developmental disorders as well 

as use of psychopharmaceutical drugs (e.g., antidepressants). Twelve participants were excluded 

due to having an attention-deficit hyperactivity disorders (n = 9), a speech disorder (n = 1), or a 

reading disability (n = 2). Additionally, 12 participants were excluded due to an error rate over 

than 30% (n = 9), or less than 2.5% (n = 1) in both sessions of the Flanker task (Davies, 

Segalowitz, & Gavin, 2004), or failed to complete the first session (n = 2). As a result, data from 

143 participants (M = 10.24 years, SD = 1.48) were included for statistical analysis. Of 143 
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participants, 118 participants had usable data from both sessions, 15 participants had usable data 

from Session 1, 10 participants had usable data from Session 2. See Table 3.1 for participants’ 

age and sex distribution.  

Table 3.1. Participant distribution by age and gender  

Age Groups 
Gender 

Total 
Males Females 

8 16 19 35 

9 14 17 31 

10 15 14 29 

11 12 12 24 

12 8 16 24 

Total 65 78 143 

 

Procedure. Participants were invited to the laboratory for two visits, with 1 to 3 weeks 

apart. In order to control for potential confounding variables, both visits were scheduled on the 

same day of the week, and at the same time of the day. Parents of participants signed consent 

forms prior to their visits; all participants signed the assent form on the first visit. Both visits 

were consisted of 1.5 hours of EEG tasks and an hour of behavioral testing.  

The ERP paradigm. The speeded visual flanker task (Eriksen & Eriksen, 1974) was 

presented by the E-prime software version 2.0 to each participant on both sessions. The task 

contains 480 trials that were presented in two blocks of 240 trials. In this task, participants were 

presented four different stimuli (two congruent stimuli with 80 trials for each stimulus: 

“HHHHH” and “SSSSS”; two incongruent stimuli with 160 trials for each stimulus: “HHSHH” 

and “SSHSS). Participants were instructed to press the left button on a 4 button keypad using 

their left index finger if the middle letter is an H; and to press the right button using their right 

index finger if the middle letter is an S. Participants were told that the letters would be presented 

quickly, and they were instructed to perform as accurately as possible. The stimulus duration was 

250ms and the initial intertrial stimulus (ISI) was set at 1400 ms. Following each set of 30 trials, 



72 

 

the E-prime program was designed to evaluate the overall error rate and adjust the ISI by 

increasing or decreasing it by 100 ms if the error rate was greater than 25% or fewer than 10%, 

respectively. A minimal ISI was set at 800 ms to allow adequate time for brain processing of the 

stimulus and response to resolve prior to the onset of the stimulus on the subsequent trial.  

Electrophysiological recording. EEG data were collected using the Active Two 

BioSemi system, either 32 or 64 channels (BioSemi, Inc., Amsterdam, the Netherlands) based on 

a modified 10-20 electrode placement system (American Electroencephalographic Society, 

1994). Two electrodes, namely the common mode sense (CMS) and the driven right leg (DRL), 

were used to generate a reference voltage (https://www.biosemi.com/faq/cms&drl.htm). 

Averaged signals from the left and right earlobes were used for offline referencing. Two 

electrodes were placed at the supra- and infraorbital regions of the left eye to measure eye blinks 

or vertical eye movement, and two electrodes were placed at the left and right outer canthi to 

measure the horizontal eye movements. The sampling rate was set to 1024 Hz.  

Electrophysiological data reduction. The Brain Vision Analyzer 2.0 software 

(www.brainproducts.com) was used to conduct the offline EEG data analyses. The data were 

referenced to the averaged signals of bilateral earlobes and then filtered with a bandpass filter of 

0.1–30 Hz with 24 dB/oct. The data were then segmented into stimulus-locked and response-

locked segments. For stimulus-locked segments, the data were segmented into 1200 ms time 

periods, which spanned from 200 ms before stimulus onset to 1000 ms after stimulus onset. 

Then, the segments were baseline-corrected based on the average voltage of -200 to 0 ms of 

stimulus onset. Eye movement artifacts were removed via a regression approach based on the 

vertical EOG (VEOG) channel (Segalowitz, 1996) then baseline-corrected again using the period 

of -200 to 0 ms of stimulus onset. Segments containing voltage greater than ± 100 µV in the 

http://www.brainproducts.com/
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midline (e.g., Fz, FCz, Cz, Pz) and VEOG channels were rejected. For each participant, the data 

were then averaged to obtain an averaged stimulus-locked ERPs for correct and incorrect trials 

separately.  

For response-locked segments, the data on incorrect trials were segmented into 1400 ms 

time periods, which spanned from 600 ms before the incorrect response to 800 ms after the 

incorrect response. Segments with premature button responses (e.g., response times that were 

faster than 100 ms) were excluded from the analysis. Then, the segments were baseline-corrected 

based on the average voltage of the period between 600 to 400 ms preceding the incorrect 

response (Davies, Segalowitz, & Gavin, 2004). Eye movement artifacts were removed via a 

regression approach based on the VEOG channel (Segalowitz, 1996) then baseline-corrected 

again using the period of -600 to -400 ms preceding the incorrect response. Segments containing 

voltage greater than ± 100 µV in the midline (e.g., Fz, FCz, Cz, Pz) and VEOG channels were 

rejected.  

The averaged ERPs obtained for each participant were scored using a customized peak-

picking computer program in MATLAB that also allows for visual inspection to adjust for any 

values that were scored on a slope instead of a peak. Both the stimulus-locked and response-

locked components were measured using baseline-to-peak approach. The windows for scoring 

the peaks are reported in Table 3.2 for stimulus-locked and response-locked ERPs. All of the 

ERP components were measured at the site FCz. The reasons we used a single channel site FCz 

for all of the ERP components were: (1) upon visual inspection, the topographic distribution map 

showed that the FCz channel site covered the largest brain activity for majority of ERP 

components; (2) previous modeling work on a cued Go/No Go paradigm showed that the brain-
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and-behavior model only converged when a single channel site was used (Taylor, Gavin, Grimm, 

Prince, & Davies, 2018). 

Table 3.2. Time windows (ms) for scoring stimulus-locked and response-locked ERPs  

 
Stimulus-locked ERPs 

Response-locked 

ERPs 

 P1 (ms) N1 (ms) P2 (ms) N2 (ms) P3 (ms) ERN (ms) Pe (ms) 

Windows 0–100 70–150 110–240 170–350 320–575 -10-180 120 – 450 

 

Statistical analyses. To test our hypotheses, we conducted four path analyses to examine 

the sequential effect of the ERPs components on response time with age and sex as covariates for 

both correct and incorrect trials on Session 1 and Session 2 (Figure 3.1A). Then, we conducted 

two structural equation models to test the same hypothesis using the ERP components to define 

the latent constructs of neural processes on correct and incorrect trials (Figure 3.1B). As 

illustrated in Figure 3.1B, each latent construct was defined by the amplitudes of the components 

collected in both sessions, and the direct effect between latent variables was defined based on the 

current stage of neural processes regressed on the preceding stage of neural processes. To 

examine the role of the state effect in the model, we then used the ERP components collected 

from session 1 to define the latent construct of state 1; and we used the ERP components 

collected from session 2 to define the latent construct of state 2 (Figure 3.1C). Finally, a 

structural equation model was conducted to examine the role of the ERN and Pe amplitudes 

obtained from incorrect trials on the established stream of neural processing obtained from the 

correct trials. The data analyses were conducted using Mplus 7.4 (Muthén & Muthén, 1998–

2012). Prior to data analyses, we conducted assumption testing using SPSS version 25 (IBM). 

The assumptions for conducting such statistical analyses were tested. All variables were on the 

continuous scale except for sex, which is dummy coded (0 = boys, 1 = girls). Among 16 

variables that were used, 5 variables violated the assumption of normality, these variables 
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included: age (Shapiro-Wilk value = 0.943, p < .001), P2 amplitude on Session 1 (Shapiro-Wilk 

value = 0.971, p = .013), ERN amplitude on Session 1 (Shapiro-Wilk value = 0.951, p < .001) 

and Session 2 (Shapiro-Wilk value = 0.949, p < .001), and response time on Session 2 (Shapiro-

Wilk value = 0.9781, p = .045). However, the default estimation approach of the Mplus software 

is the Maximum Likelihood (ML) estimation, which has been found to be relatively robust to the 

violation of the normality assumption (Hoyle, 1995). Therefore, no data transformation 

technique was used. The missing data were handled by default in Mplus using full information 

maximum likelihood (FIML) technique.  

Effect size and model fit indices and criteria. The following model fit indices and 

criteria suggested by Hu and Bentler (1999) were used to determine the overall model fit: (1) the 

comparative fit index (CFI) > .95, (2) Tucker–Lewis Index (TLI) > .95, (3) root mean square 

error of approximation (RMSEA) < .06, and (4) standardized root mean square residual (SRMR) 

< .08. Additionally, we evaluated the Chi-Square test of model fit, where a non-significant test 

outcome indicates good fit of the model to the data. The best fitting model was selected using the 

model fit indices described above, and only the best fitting model was reported in this 

dissertation study. The standardized regression coefficients (i.e., β) were used as an index of 

effect size, with values of .1, .3, and .5 being considered as small, medium, and large, 

respectively (Kline, 2011).  

Results 

Descriptive statistics. The means and standard deviation of the amplitude of each ERP 

component and the RTs are reported in Table 3.3. The findings showed that the N1 and Pe 

amplitudes were significantly larger on Session 2 compared to Session 1, however, the P2 

amplitude was significantly larger on Session 1 than Session 2. The correlations among age, 
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stimulus-locked and response-locked ERP components, and response time are presented in Table 

3.4. The findings demonstrated that the effect of correlation among ERPs were small to 

moderate.  

Table 3.3. The means and standard deviations of averaged baseline-to-peak ERP amplitudes 

(µV), and averaged reaction times (RT; ms) for each session and the paired sample t-test results 

comparing Session 1 and Session 2 on each variable 

 All available samples Samples included in the paired-sample t test* 

 Session 1 

N=133 

Session 2 

N=128 

Session 1 

N=118 

Session 2 

N=118 
t value 

 df = 

117 

p  

value 
 M (SD) M (SD) M (SD) M (SD) 

N1 -6.48 (3.14) -7.33 (3.23) -6.61 (3.06) -7.13 (3.14) 2.77 .007 

P2 9.72 (5.48) 7.86 (5.43) 9.90 (5.61) 7.90 (5.35) 8.55 <.001 

N2 -6.27 (5.16) -7.23 (4.81) -6.39 (4.95) -6.92 (4.76) 1.82 .07 

P3 5.63 (5.19) 5.49 (5.10) 5.45 (5.19) 5.58 (4.94) -0.39 .70 

RT 
620.14 

(113.10) 

614.38 

(119.66) 

623.56 

(115.51) 

620.38 

(117.19) 
0.7 0.49 

ERN -7.38 (6.00) -6.85 (5.51) -7.30 (5.89) -6.89 (5.57) -0.96 0.34 

Pe 4.18 (5.69) 5.42 (5.92) 3.89 (5.59) 5.59 (6.01) -3.73 <.001 

Note: * The sample used in the t-test is different from the full sample is because of 143 

participants, only 118 participants have usable data from both sessions that allow us to conduct 

the paired sample t test 

 

Age and sex represent maturation of brain and behavior measures. Consistent with 

previous literature, age significantly correlated with several ERP components and response time 

(see Table 3.3). We plotted the stimulus-locked and response locked ERP waveforms and 

response time distribution by each age group in Figure 3.2. The ERP morphology demonstrated 

that the stimulus-locked ERPs especially the N1 amplitude gradually decreased with age. 

Contrarily, the ERN amplitude gradually increased with age. In terms of the RTs, older children 

have a narrower distribution (i.e., less variation), and the distribution is clustered closer to the 

onset of the stimulus (i.e., faster RTs, especially for correct trials) compared to younger children. 

Moreover, independent sample t tests (Table 3.5) also demonstrated three variables (the P3 

amplitude on Session 1 and Session 2, and the ERN amplitude on Session 2) differed between 



77 

 

sex, such that boys had significantly larger P3 amplitude compared to girls on both sessions, and 

that girls had significantly larger ERN amplitude than boys on Session 2. Taken together, these 

findings confirmed the legitimacy of having the trait measures of age and sex in the model, 

therefore, in the following data analyses, age and sex were included. 

Table 3.4. Correlations of baseline-to-peak ERP component amplitudes (µV), average reaction 

times (RT; ms), and age for session 1 and session 2.  

  Session 1 

  Age N1 P2 N2 P3 RT ERN Pe 

Session 1 

Age ̶        

N1 .31** ̶       

P2 -.14 .24** ̶      

N2 .23** .46** .20* ̶     

P3 .22* .26** .35** .61** ̶ 
 

  

RT -.68** -.11 .14 -.24** -.36** ̶   

 ERN -.19* .17* .32 .48** .38** .18* ̶  

 Pe -.08 .008 .04 .34** .57** -.06 .44*** ̶ 

  Session 2 

Session 2 

 Age N1 P2 N2 P3 RT ERN Pe 

Age ̶        

N1 .39** ̶       

P2 -.13 .15 ̶      

N2 .25** .46** .25** ̶     

P3 .16 .27** .37** .59** ̶    

RT -.58** -.09 .07 -.16 -.16 ̶   

ERN -.33*** .05 .12 .30** .32*** .32*** ̶  

Pe .012 .029 .30** .41*** .59*** -.07 .61*** ̶ 

Note: * p < .05, ** p < .01, *** p < .001 
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Table 3.5. The means and standard deviations of averaged baseline-to-peak ERP amplitudes 

(µV), and averaged reaction times (RT; ms) for each session and the independent sample t-test 

results comparing girls and boys on each variable 

Session 1 

 Boys (n=59) Girls (n=74) 
t value p value 

 M (SD) M (SD) 

N1 -6.77 (3.26) -6.25 (3.04) -0.950 .344 

P2 9.62 (5.07) 9.79 (5.82) -0.180 .858 

N2 -5.47 (5.10) -6.90 (5.15) 1.596 .113 

P3 6.92 (5.03) 4.61 (5.11) 2.609 .010 

RT 612.03 (120.46) 626.60 (107.26) -0.736 .463 

ERN -6.66 (5.89) -7.95 (6.06) 1.231 .221 

Pe 4.61 (5.70) 3.85 (5.69) 0.764 .446 

Session 2 

 Boys (n=60) Girls (n=68) 
t value p value 

 M (SD) M (SD) 

N1 -7.82 (3.49) -6.89 (2.94) -1.642 .103 

P2 7.75 (5.53) 7.95 (5.38) -0.206 .837 

N2 -6.95 (4.45) -7.48 (5.13) 0.628 .531 

P3 6.45 (4.93) 4.64 (5.13) 2.034 .044 

RT 613.86 (122.60) 614.84 (117.91) -0.046 .963 

ERN -5.74 (5.49) -7.83 (5.39) 2.168 .032 

Pe 5.66 (5.29) 5.21 (6.45) 0.431 .667 
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Figure 3.2. The stimulus-locked and response-locked ERP components and the frequency 

distribution of response times on both sessions for all age groups 
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Manifest variable models of brain processing predicting response times. The results 

on the model fit indices for four manifest models via path analyses are reported in Table 3.6 and 

the models are presented Figure 3.3. Overall, the model fit indices yielded acceptable to 

excellent model fit for these four models. It is worth noting that in addition to the hypothesized 

model depicted in Figure 3.1A, we added two correlated paths between N1 and N2 amplitudes, 

and between P2 and P3 amplitudes, because based on the findings on the correlation coefficients 

reported on the Table 3.4, the N1 amplitude significantly correlated with the N2 amplitude, and 

the P2 amplitude significantly correlated with the P3 amplitude on both sessions.  

Four path analyses revealed the effect of Session (session 1 vs session 2) and Trial Type 

(correct vs incorrect) on the stream of neural processing. Specifically, the relationship between 

the P2 and N2 was not significant for Session 1 but was significant for Session 2, suggesting the 

relationship between the P2 and N2 might reflect the shifting of cognitive strategies across 

sessions (e.g., learning or practice effect). Further, for the Session 1, the relationship between the 

P3 and response time was significant on correct trials but was not significant on incorrect trials, 

such that the larger the P3 amplitude was associated with faster response time on correct trials 

but not incorrect trials. In contrast, for the Session 2, this relationship was only significant on 

incorrect trials but not correct trials. These four models yielded diverse results in terms of the 

brain-and-behavior relationship, and such a discrepancy may be due to the uncontrolled 

measurement error in the models. Therefore, in the next section, we conducted the structural 

equation modeling to examine the relationship between latent constructs for correct and incorrect 

trials.  
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Table 3.6. Model fit indices results for each of the established manifest variable path models  

 Chi Square RMSEA CFI TLI SRMR 

Session 1 

Correct Trials 

χ2(4) = 9.78  

p = .044 

RMSEA = .104 

90% CI = [.015, .189] 

p = .115 

0.975 0.906 0.039 

Session 1 

Incorrect Trials 

χ2(4) = 1.273  

p = .87 

RMSEA = 0 

90% CI = [0, .068] 

p = .921 

1 1.088 0.011 

Session 2 

Correct Trials 

χ2(4) = 6.15 

p = .19 

RMSEA = 0.065 

90% CI [0, 0.16] 

p = .327 

0.988 0.955 0.03 

Session 2 

Incorrect Trials 

χ2(4) = 7.405 

p = .12 

RMSEA = .082 

90% CI [0, 0.172] 

p = .23 

0.973 0.867 0.039 

 

 

Figure 3.3. The four manifest models of ERPs predicting task behaviors (averaged response 

times). Each figure indicates the stream of neural processing on (A) Session 1 correct trials; (B) 

Session 1 incorrect trials; (C) Session 2 correct trials; and (D) Session 2 incorrect trials. Gray 

dotted arrows indicate non-statistically significant relationships. Residual variance is reported 

below for each variable. The standardized coefficients β are reported for each model.  
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Latent models of brain processing predicting task behavior while controlling for 

trait measures. The results on the model fit indices for two latent models are reported in Table 

3.7, the models are presented in Figure 3.4. Overall, tests for model fit revealed indices with 

values that were informative but suggested further refinement of the models are needed. The 

latent model on the correct trials showed that all manifested variables significantly loaded on the 

corresponding latent constructs. In this model, each latent construct of neural processes 

significantly predicted the following latent construct as hypothesized, which in turn, significantly 

and negatively predicted the response time, such that the larger the P3 amplitude, the shorter the 

response time. Similarly, the latent model on the incorrect trials showed that all manifested 

variables significantly loaded on the corresponding latent constructs. However, while each phase 

of neural processes significantly predicted the next phase, the latent construct of cognitive 

evaluation (as indicated by the P3 amplitude) did not significantly predict the response time, 

suggesting that on the incorrect trials, the stream of neural processing failed to predict the 

behavioral outcome. It is worth noting that the correlations at the bottom of each model in the 

Figure 3.4 are the continuation of the depicting relationships included in the manifest path 

models in Figure 3.3. 

Table 3.7. Model fit indices results for the latent models for correct and incorrect trials predicting 

task behavior while controlling for trait measures.  

 Chi Square RMSEA CFI TLI SRMR 

Correct Trials 

χ2(38) = 

136.96 

p <.001 

RMSEA = .135 

90% CI = [.11, .16] 

p < .001 

0.91 0.84 0.08 

Incorrect 

Trials 

χ2(37) = 

94.251  

p <.001 

RMSEA = .104 

90% CI = [.078, .130] 

p = .001 

0.90 0.83 0.06 
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Figure 3.4. Results on the structure equation model with standardized coefficients on (A) correct 

Trials, and (B) incorrect trials. Dotted lines indicate non-significant relationship; solid lines 

represent significant relationships. Note: * the residual variance for the RTS1 has been 

constrained to 0 to fix negative residual variance of this variable; S1 = Session 1; S2 = Session 2. 

The correlations at the bottom of each model are the continuation of the depicting relationships 

included in the manifest path models in Figure 3.3. 
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Latent models of brain processing predicting task behavior while controlling for 

trait and state measures. The results on the model fit indices for two latent models that control 

for both trait and state effects are reported in Table 3.8 and the models are presented in Figure 

3.5. The model fit indices yielded excellent model fit for these for models. It is worth noting that 

the models that controlled both trait and state effects had better model fit indices than the models 

that only controlled for trait measures (Table 3.7, Figure 3.4), indicating that the state effect is a 

critical factor in investigating the brain-and-behavior relationships in children. Previous studies 

have shown that fatigue and anxiety levels could impact EEG/ERP measures (Hagemann & 

Naumann, 2009; Tsai, Young, Hsieh, & Lee, 2005). Although in this current study we have not 

empirically examined the underlying mechanisms of the state effect, however, we considered 

that the state effect is associated with anxiety, fatigue, attention, motivation, learning effect, 

practice effect or other transient factors that may systematically influence the ERP components 

across sessions (Gavin & Davies, 2008; Hagemann & Naumann, 2009; Tsai, Young et al., 2005).  

Figure 3.5 illustrates that all manifested variables significantly loaded on the corresponding 

latent constructs, and that the state on Session 1 significantly predicted the state on Session 2 for 

both correct and incorrect trials. In other words, the participants’ state on Session 1 (e.g., 

attention, emotion, fatigue, anxiety…etc) is associated with their state on Session 2.  

Compared to the models without state factors shown in Figure 3.4A, this model with state 

factors (Figure 3.5A) demonstrates that the predictive relationships no longer existed for the first 

three latent variables on correct trials. This could suggest that the significant relationships 

between the latent construct of sensory/attention (indicated by the N1 amplitudes), sensory 

registration (indicated by the P2 amplitudes), and target discrimination (indicated by the N2 

amplitudes) shown in 4A were driven by the relationship between the latent state variables 
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between sessions rather than being an effect among the latent variables themselves. Note 

however, that for correct trials, the latent construct of target discrimination (indicated by the N2 

amplitudes) still significantly predicts the latent construct of cognitive evaluation (indicated by 

the P3 amplitudes), such that larger N2 amplitude is associated with smaller P3 amplitude. This 

finding suggests that greater brain activation while detecting the targets stimuli may result in less 

effort in cognitively evaluate the decision. Subsequently, the latent construct of cognitive 

evaluation (indicated by the P3 amplitudes) significantly predicts the response times, such that 

the larger the P3 amplitude, the shorter the response time. In contrast, for the incorrect trials with 

state factors (Figure 3.5B), none of the relationships among the latent brain variables were 

significant.  

Table 3.8. Model fit indices results for the latent models 

 Chi Square RMSEA CFI TLI SRMR 

Correct Trials 

χ2(34) = 

32.873 

p = .523 

RMSEA = 0 

90% CI = [0, .058] 

p = .901 

1 1.002 0.05 

Incorrect 

Trials 

χ2(34) = 

37.723  

p = .303 

RMSEA = .028 

90% CI = [0, .069] 

p = 775 

0.994 0.988 0.044 
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Figure 3.5. Results on the structure equation model with standardized coefficients on (A) correct 

trials, and (B) incorrect trials. Dotted lines indicate non-significant relationship; solid lines 

represent significant relationships. Note: * the residual variance for the RTS1 has been 

constrained to 0 to fix negative residual variance of this variable; S1 = Session 1; S2 = Session 2. 

  

  



87 

 

Including performance monitoring measures in latent models predicting task 

behavior. Building upon the model presented in Figure 3.5A, we added two latent constructs of 

error detection and post-error adjustments as defined by the ERN amplitudes and Pe amplitudes, 

respectively, to examine the role of the performance monitoring on the stream of neural 

processing for correct trials. The results on the model fit indices for this model are reported in 

Table 3.9 and the model is presented Figure 3.6. The majority of the model fit indices yielded 

acceptable model fit, except that the Chi square test of model fit was significant (p <.001) and 

that the RMSEA is greater than 0.06. In this model, the latent construct of post-error adjustments 

(indicated by the Pe amplitudes) significantly predicted the latent construct of sensory-based 

processing (indicated by the N1 amplitudes) and target discrimination (indicated by the N2 

amplitude), such that larger Pe amplitude was associated with larger N1 amplitude but smaller 

P2 amplitude. This finding suggests that greater brain activation while initiating behavioral 

adjustments (e.g., post error slowing) may enhance the brain processing of the sensory-based 

aspects of the stimuli, which may result in less effort in registering the sensory information in the 

brain. Moreover, the model also demonstrates that the latent construct of error detection 

significantly predicts the latent construct of post-error adjustment, such that the larger (more 

negative) the ERN amplitude, the smaller (less positive) the Pe amplitude, indicating that greater 

brain activation while detecting performance errors was associated with less brain activation 

while initiating post-error behavioral adjustments. Lastly, in this model, the latent construct of 

sensory registration (indicated by the P2 amplitudes) significantly predicts the latent construct of 

the target discrimination (indicated by the N2 amplitude), such that larger P2 amplitude was 

associated with larger N2 amplitude. The finding suggests that greater brain activation while 
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registering and processing the sensory stimuli may enhance the brain activities while 

discriminating the targets. This finding was also reported in the model 4A. 

Table 3.9. Model fit indices results on the latent model  

 Chi Square RMSEA CFI TLI SRMR 

Correct Trials 

with 

Performance 

Monitoring 

Measures 

χ2(74) = 

122.63 

p <.001 

RMSEA = .068 

90% CI = [.046, .089] 

p = .088 

0.967 .946 0.059 

 

 

Figure 3.6. Results on the structure equation model with standardized coefficients on the 

relationship between successive stimulus-locked ERPs on correct Trials with response-locked 

ERPs on incorrect trials. Dotted lines indicate non-significant relationship; solid lines represent 

significant relationships. * the residual variance of the variable has been constrained to 0 to fix 

negative residual variance of this variable; S1 = Session 1; S2 = Session 2. 

 

 

Discussion      

This study explored the interrelationships between stages of neural processes measured in 

stimulus and response-locked ERPs to predict the response time in a speeded Flanker task 
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obtained from two sessions in children aged 8-12 year-old by implementing the path analyses 

and SEM. We examined three conceptual models: (1) manifested path model with trait measures, 

(2) latent model with trait measures, and (3) latent model with trait and state measures. For 

contrastive purpose, we applied the model on stimulus-locked ERPs collected from correct trials 

and incorrect trials, to validate whether the model could differentiate the distinct neural processes 

leading to opposite behavioral outcomes. Lastly, we incorporated the response-locked ERPs (i.e., 

ERN and Pe amplitudes) into the model to explore the role of performance monitoring on neural 

processes associated with successful behavioral outcome. 

The manifested models on understanding brain-and-behavior relationships. Four 

manifested path models showed mixed findings in terms of the effect of Session and Trial Type 

on the stream of neural processing. These discrepancies included (1) the stream of neural 

processing broke down between P2 and N2 amplitudes for Session 1, yet remained connected for 

Session 2, and (2) the relationship between the P3 and RT was significant on correct trials but 

was not significant on incorrect trials for Session 1, yet this pattern was reversed for Session 2. 

While it is possible that these differences reflect the underlying neural processes across sessions, 

the discrepancies could also be partly due to the uncontrolled measurement error in these models 

which makes the results difficult to interpret (Gavin and Davies, 2008; Maruyama, 1997). 

The latent models on understanding brain-and-behavior relationships. Generally, the 

findings from the latent models indicated that the brain-and-behavior relationships were not 

significant on incorrect trials but were significant on correct trials. Specifically, on the correct 

trials, the greater brain activation that reflects cognitive evaluation of the stimulus, the shorter the 

response time that participants needed to correctly respond (i.e., press the buttons). Interestingly, 

the models on the correct and incorrect trials (Figure 3.5) demonstrate different patterns of 
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relationship among latent variables to response time, yet both models yield excellent model fit 

indices. Collectively these findings suggested that our conceptual models are valid in terms of 

detecting the distinct patterns of neural processes leading to opposite behavioral outcomes. 

Importantly, the latent models with both state and trait factors yielded better model fit compared 

to the latent models without the state factors. This confirmed our hypothesis that there was an 

underlying systematic state effect in our latent models (Gavin and Davies, 2008), which could 

potentially confound the relationships between neural processes if not accounted during 

statistical analyses. After accounting for the state effect in the models, we found that on correct 

trials, the predictive relationships among the first three latent brain variables were no longer 

significant. The finding implies that on the correct trials, participants may not substantially rely 

on the sensory-based aspects of processing to discriminate the target and make decisions. 

However, despite the fact that the p value for these relationships did not reach statistical 

significance, the standardized regression coefficients (βs = .27 - .28) suggested a small to 

moderate effect size for these relationships. A larger sample size might be required for future 

studies to further investigate whether a lack of significant relationships between first three latent 

brain variables was because of the small sample size.  

Contrarily, on incorrect trials, none of the predictive relationships between each stage of 

neural processes were significant. This finding suggests that on incorrect trials, a disconnected or 

disrupted stream of neural processes may cause the incorrect behavioral outcome (e.g., incorrect 

button presses). Specifically, the speeded Flanker task that we used in this study may have built a 

strong pre-potent motor response (e.g., press the button either with the right or the left hand) that 

needs to be cognitively controlled. That is, if two consecutive stimuli required the participant to 

press different buttons, when responding to the second stimuli, he/she needs to inhibit the pre-
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potent motor response, and flexibly switch his/her hands to ensure a correct motor response to 

the second stimuli (Burle, van den Wildenberg, Spieser, & Ridderinkhof, 2016). Moreover, our 

findings also showed response times on the incorrect trials were significantly faster compared to 

the response times on the correct trials, supporting the notion that failing to inhibit pre-portent 

responses leads to impulsive errors, which in turn, disrupts the stream of neural processes (Burle 

et al., 2016).  

The role of performance monitoring on mediating stages of brain processing. The 

final model demonstrated the adaptive effect of the post-error adjustment in the stream of the 

neural processes. Specifically, the latent construct of post-error adjustment, as indicated by the 

Pe amplitudes, significantly predicted the latent construct of sensory-based processing (as 

indicated by the N1 amplitudes), such that the stronger the brain response associated with post-

error behavioral adjustments or error awareness, the stronger the brain response associated with 

the sensory-based processing and the selective attention on the task. Moreover, the latent 

construct of post-error adjustment, also mediated the relationship between error detection and 

target discrimination, such that the greater the brain response associated with activating 

behavioral adjustments, the smaller brain response associated with registering the sensory 

stimuli. The model also demonstrated a significant relationship between latent constructs of error 

detection and post-error adjustments, such that the larger the ERN amplitude, the smaller the Pe 

amplitude. While several studies claimed that the ERN and Pe components are independent from 

one another (Herrmann et al., 2004; Nieuwenhuis et al., 2001), our findings suggested the 

predictive relationship among error detection and post-error behavioral adjustments, yet their 

roles on the stream of neural processing remain different (Danielmeier & Ullsperger, 2011; King 

et al., 2010). 
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The utility of modeling in the understanding of brain-behavior relationships. This 

study not only successfully demonstrated the feasibility of utilizing the modeling approach to 

understand the interrelationships among the ERP components, but also demonstrated the 

differential neural processes on the correct and incorrect trials. Over the past decades, 

researchers have begun to apply advanced statistical techniques such as the SEM to understand 

the brain-and-behavior relationships. Brydges, Fox, Reid, and Anderson (2014) applied SEM to 

examine whether the amplitudes and latencies of the N2 and P3 amplitude could predict the 

executive function skills in neurotypical children. They found that the N2 difference waveform 

and P3 amplitude and latency collected from the Flanker task significantly predicted the latent 

variable of executive function, which is defined by a battery of behavioral measures of executive 

function (Brydges et al., 2014). Their work has laid a critical foundation for researchers to apply 

advanced statistical analyses to understand the interrelationship between neural (e.g., ERP 

components) and behavioral aspects of cognitive function. However, in their model, the 

researchers did not take the interrelationship between the ERP components (e.g., N2, and P3) 

into consideration (i.e., no predictive relationship was drawn between the N2 and P3 

amplitudes). Our study was developed based on the connectionist theory (Houghton, 2005), that 

is, rather than viewing each phase in the stream of neural processing as independent from one 

another, we consider each phase in the stream of neural processing as interdependent. In other 

words, the influence from the current phase of neural processes could be carried out into the next 

phase of neural processes, and ultimately, lead to behavioral outcome. Moreover, most of the 

studies examining the brain-and-behavior relationships often examined the relationship between 

a single ERP component and a behavior measure. Failing to take the interrelationship among the 

ERP components into consideration may be one of the reasons for the inconclusive findings in 
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the current literature. Taken together, the modeling approach may be a promising technique for 

better understand the brain-and-behavior relationships.  

To our knowledge, the latent model that includes performance monitoring measures in 

our study is the first model that demonstrated the neural mechanisms of performance monitoring 

on information processes leading to response times. Although previous studies have 

demonstrated a significant relationship between Pe amplitude and post-error slowing, a 

phenomenon which subjects slowed down their response times after committing errors 

(Danielmeier & Ullsperger, 2011; Hajcak, McDonald, & Simons, 2003), none of the studies have 

empirically demonstrated the mechanism underlying such a behavioral phenomenon. The model 

in this study clearly explains the mechanism of the post-error adjustment (indicated by the Pe 

amplitudes) and by what means performance monitoring can adjust our behaviors for successful 

performance in subsequent trials. Moreover, the significant relationship between the response 

times and the latent construct of the error detection (as indicated by the ERN amplitudes) 

suggested a dynamic bi-directional brain-and-behavior relationship instead of viewing one 

(either brain or behavioral measures) predicts another. We do recognize that the models that we 

attempted to establish in this study did not encompass all possible underlying neural processes 

and that the behavioral measures (e.g., response times) that we used in this study may not explain 

real-life behaviors. Hence, future studies could expand the models by adding (1) other variables 

indicating the underlying neural processes of other cognitive functions such as attention and 

executive functions, and (2) functional behavioral assessments. 

Lastly, the ultimate goal of the modeling approach is to provide a framework of brain-

and-behavior relationship that could assist in clinical diagnosis and guide the intervention. While 

researchers began to investigate the utility of single ERP component as a biomarker for screening 
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individuals with neurological or developmental disorders (Foti, Kotov, & Hajcak, 2013; Meyer, 

2017; Riesel, Weinberg, Endrass, Meyer, & Hajcak, 2013), our findings suggested that the 

modeling appraoch may provide more enriched information into the neural mechanisms and 

brain-and-behavioral relationships. The Research Domain Criteria (RDoC; 

https://www.nimh.nih.gov/research-priorities/rdoc/index.shtml), a framework provided the 

National Institute of Mental Health (NIMH), also provided guidelines for researchers and 

clinians to consider various dimensions (e.g., physiology, behavior, self-report) other than 

relying on traditional symptoms when investigating human behaviors and mental disorders. 

Consistent with RDoC framework, the modeling approach that we implemented in this study 

allows us to more comprehensively explore the dynamic interactions between dimensions.   

Conclusion 

This study demonstrated the feasibility of utilizing the SEM to model the inter-

relationship between neural processes and simple task behaviors in 143 children with typical 

development aged 8 to 12 years. Three models with trait and state as controlled variables were 

tested to examine the neural mechanism of information processing that leads to different 

outcomes. The findings demonstrated that differential neural processes lead to correct and 

incorrect trials. The findings also provided empirical evidence of the adaptive roles of 

performance monitoring.   
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CHAPTER 4: THE RELATIONSHIP BETWEEN COGNITIVE FUNCTIONS AND 

OCCUPATIONAL PERFORMANCE IN CHILDREN, ADULTS, AND ADULTS WITH 

ADHD 

 

 

 

Introduction 

In the United States, about 8 million adults have been diagnosed with attention deficit 

hyperactivity disorder (ADHD), a clinical diagnosis with symptoms of inattention, disinhibition, 

and hyperactivity (American Psychiatric Association, 2013). While ADHD is a most common 

diagnosis in childhood, studies have shown that 60% of cases clinically diagnosed in childhood 

persist into their mid-20’s, and 41% or more persist into adulthood (Barkley, 1997; Sibley et al., 

2017). Moreover, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

(DSM-5) has revised its criteria for diagnosis of ADHD, raising the age criteria to symptoms 

present by age 12 or earlier (revised from age 7 or earlier in previous editions of the DSM; 

American Psychiatric Association, 2013). Furthermore, the revised DSM-5 provides examples of 

how the symptoms may present in adults with ADHD, including disorganized work conditions 

and failure to meet deadlines. 

Recent electroencephalography (EEG) studies have shown that adults with ADHD 

demonstrate different characteristics in terms of cognitive functions such as performance 

monitoring and information processing abilities compared to their neural typical peers (Chang, 

Davies, & Gavin, 2009; McLoughlin et al., 2009; Wiersema, van der Meere, & Roeyers, 2009). 

Performance monitoring is defined as the ability to detect performance errors and activate post-

error behavioral adjustments (Holroyd & Coles, 2002). The neural activity associated with 

performance monitoring can be measured using event-related potentials (ERPs), a series of 

voltage deflections recorded from the scalp EEG. Specifically, in the Flanker Task paradigm, 
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performance monitoring is indicated by two ERP components, the error-related negativity 

(ERN), and error positivity (Pe). The ERN is a negative voltage deflection that peaks around 80 

milliseconds (ms) after incorrect responses, is associated with early stage of error detection 

(Coles et al., 2001; Falkenstein et al., 1991; Gehring & Fencsik, 2001; Swick & Turken, 2002). 

The error positivity (Pe) component is a positive voltage deflection that immediately follows the 

ERN, and has been associated with error awareness and activation of behavioral adjustments 

after incorrect responses (Davies, Segalowitz, Dywan, & Pailing, 2001; Falkenstein et al., 2000; 

Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; Overbeek et al., 2005; Ridderinkhof, 

Ramautar, & Wijnen, 2009; van Veen & Carter, 2006). The findings on the ERN and Pe 

amplitudes in adults with ADHD are inconclusive. Chang et al. (2009) found that adults with 

ADHD demonstrated smaller ERN amplitude compared to their control peers, while no 

significant difference was found in the Pe amplitude, suggesting that adults with ADHD may be 

less efficient in detecting their performance errors. However, Wiersema, van der Meere, & 

Roeyers (2009) showed opposite results in which no group difference was found in the ERN 

amplitude, yet adults with ADHD had smaller Pe amplitude compared to neurotypical adults. 

These inconclusive findings on the underlying neural processes associated with performance 

monitoring in adults with ADHD warrants further investigation.  

Adults with ADHD not only demonstrated different amplitudes in the ERN and Pe 

components (i.e., components that are time-locked to button presses) compared to neurotypical 

adults (Chang et al., 2009; Wiersema, van der Meere, & Roeyers, 2009), but they also had 

different amplitudes in the ERP components that are time-locked to the stimuli (Bekker et al., 

2005; McLoughlin et al. 2009). Specifically, the ERP components that are evoked by visual 

stimili (e. g. pictures presented on the screen), or auditory stimuli (e.g., tones), and are associated 
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with information processing to the presented stimuli. Information processing is defined as the 

ability to process information in multiple stages whereby each mental process influences a 

subsequent stage across time (e.g., orienting to sensory information, or evaluating performance 

outcomes) thereby allowing individuals to interact with the environment efficiently (Brion, Pitel, 

& D’Hondt, 2016). The various stages of information processing can be indicated by ERP 

components that include N1, P2, N2, and P3. Specifically, the N1 component is a negative 

voltage deflection which peaks at around 100–150ms at the frontal scalp site after presentation of 

stimuli, and it has been associated with selective attention and sensory-based processes (Lackner, 

Santesso, Dywan, Wade, & Segalowitz, 2013; Luck & Girelli, 1998; Polich, 1993). The N1 

component is followed by the P2 component, a positive voltage deflection peaking at around 

200ms at the frontal-central scalp site after presentation of stimuli. The P2 component has been 

associated with early processes of sensory stimuli or sensory registration processes (Davies & 

Gavin, 2007; Polich, 1993). The P2 component is followed by the N2 component, a negative 

voltage deflection peaking around 200ms after presentation of stimuli, and it has been related to 

target discrimination, executive control, or impulse inhibition (Luck, 2014; Polich, 1993). The 

N2 component is followed by the P3 component, a positive deflection peaking around 300ms 

after stimulus presentation and has been associated with cognitive evaluation process such as 

attention allocation, or memory updating (Luck, 2014; Polich, 1993). Several studies have 

reported that the ERPs associated with the information processing in adults with ADHD tend to 

have attenuated ERP components (e.g., N2 and P3) compared to neurotypical adults (e.g., 

Bekker et al., 2005; McLoughlin et al. 2009). 

Studies have shown that adults with ADHD also demonstrate reduced quality of 

occupational performance across multiple domains (Barkley & Murphy, 2011). For example, 
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Barkley and Murphy (2010) showed that adults with ADHD experienced difficulties at work 

such as having trouble with others, quitting a job out of boredom, or demonstrating some 

behavior problems at work compared to adults without ADHD. Further, Barkley & Murphy 

(2011) demonstrated several difficulties that beset adults with ADHD in daily life activities, 

including self-management of time, self-organization, self-discipline, self-motivation, and self-

activation. Moreover, Friedman et al. (2003) showed that adults with ADHD viewed themselves 

as less socially competent and more sensitive toward violations of social norms than controls. 

Wehmeier et al. (2010) also showed that adolescents with ADHD experience difficulties with 

social interactions which in turn, impair their overall quality of life. However, while there are 

several studies that demonstrated adults with ADHD experience difficulties with occupational 

performance, little is known about the underpinnings of the reduced occupational performance in 

adults with ADHD. 

Most available tools that therapists and researchers utilize to evaluate an individual’s 

occupational performance focus on subjective perceptions that are derived by means of 

questionnaire or by observation (Schell et al., 2013). While using the checklists or questionnaires 

to assess social interaction has several advantages (e.g., easy to administer, and requires minimal 

training), it also has several disadvantages (e.g., the results may be difficult to be compared 

across individuals; Schell et al., 2013). Therefore, in this study, we implemented two 

standardized assessments, the Assessment or Motor and Process Skills (AMPS; Fisher & Jones, 

2014), and the Evaluation of Social Interaction (ESI; Fisher & Griswold, 2015) to measure 

occupational performance. Both assessments are observation-based assessments, and are 

administered in the real-life contexts to assess the quality of the occupational performance.  
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This study is a feasibility study with three primary purposes: (1) to examine the 

differences in neurological measures of cognitive functions and occupational performance in 

neurotypical children, neurotypical adults, and adults with ADHD,  (2) to understand the 

relationship between neural and occupational performance measures in these three groups; and 

(3) to explore which type of measures (e.g., neural measures, or occupational performance 

measures, or the combination of the two) best differentiate these three groups. Our research 

questions ask: (1) what are the differences between ERPs, and scores on the occupational 

performance assessments among neurotypical children, neurotypical adults, and adults with 

ADHD? We hypothesized that adults with ADHD will demonstrate different characteristics in 

the ERP components and occupational performance compared to neurotypical adults, (2) what 

are the relationships between ERP measures and occupational performance scores? We 

hypothesized that there will be significant relationships on neural and occupational performance 

for the three groups, and (3) What measures that we use (e.g., neural measures such as ERPs, or 

occupational performance measures, or the combination of the two) best differentiates the three 

groups? We hypothesized that combing both neural and occupational performance measures will 

provide us higher accuracy for classifying members of the three groups than using neural 

measures alone or occupational performance measures alone.  

The reason neurotypical children, neurotypical adults, and adults with ADHD were 

included in this study was because by having these three groups researchers are able to 

understand two dimensions in one study, the impact of both maturation and disability on 

performance monitoring.  Specifically, by comparing the group differences between neurotypical 

children and neurotypical adults, researchers could understand the typical maturation effect of 

cognitive functions and occupational performance. Moreover, comparing the group differences 
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between adults with ADHD and neurotypical adults could inform researchers about the 

manifestations of atypical neural processes or difficulties in occupational performance in adults 

with ADHD compared to neurotypical adults. Lastly, by comparing the group differences 

between neurotypical children and adults with ADHD, researchers are able to understand 

whether or not there is a difference between the maturation level of the neural processes and 

occupational performance between neurotypical children and adults with ADHD.  

Methods 

Participants. A total of 102 neurotypical children, 28 neurotypical adults, and 12 adults 

with ADHD were recruited from the university and local community through convenient 

sampling (campus emails, flyers, psychology 100 research participant pool, and word of mouth). 

All participants in the neurotypical adult and child groups were screened for neurological and 

developmental disorders as well as use of psychopharmaceutical drugs (e.g., antidepressants) 

using self- or parent-report. Participants that reported neurological or developmental disorders or 

the use of psychopharmaceutical drugs were excluded. Participants with error rates either greater 

than 30% or fewer than 2.5 % on the computer-based task on the first of three sessions were 

excluded. Table 4.1 details the complete list of exclusion criteria and the number of participants 

lost to each. After exclusion, data from 63 neurotypical children (M = 10.10 years, SD = 0.18), 

17 neurotypical adults (M = 21.31 years, SD = 0.54), and 8 adults with ADHD (M = 22.11 years, 

SD = 1.70) were entered for the final data analyses. Table 4.2 shows the final distribution 

participants by age and sex.  

For the ADHD group, a formal diagnosis by a clinical psychiatrist was required to 

participate in the study based on self-report. The symptoms for ADHD were confirmed by the 

Conners’ Adult ADHD Rating Scale (CAARS). The T-scores above 65 on subscales suggests 
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symptoms are clinically significant. All participants with ADHD had at least one subscale above 

the T-score of 65, except one participant with ADHD who did not have any subscales above the 

T-score of 65. The participants in the ADHD group were asked to discontinue methylphenidate 

or other related medications 24 hours prior to their visits if applicable. Among 8 adults with 

ADHD who entered the final data analyses, five of them have other comorbidities: two 

participants had comorbidity of learning disability, one participant had comorbidity of 

depression, one participant had comorbidity of sensory processing disorder, one participant had 

comorbidity of both reading and learning disabilities. 

Table 4.1. Detailed number of participants excluded from the study   

  Groups 

  Children Adults 
Adults with 

ADHD 

 Initially recruited 102 (100%) 28 (100%) 12 (100%) 

Exclusion 

criteria 

having neurological 

disorders 

8 (7.84%) 

(4 had ADHD, 

4 had reading 

disorders) 

1 (3.57%) 

(brain injury) 
0 (0%) 

did not complete the 

first session 
2 (1.96%) 0 (0%) 0 (0%) 

did not complete the 

third session 
16 (15.69%) 8 (28.57%) 4 (33.33%) 

error rate on the 

computer-based task 

was higher than 30% 

12 (11.76%) 0 (0%) 0 (0%) 

error rate lower than 

2.5% 
1 (0.98%) 2 (7.14%) 0 (0%) 

 final analyses 63 (61.76%) 17 (60.71%) 8 (66.67%) 

Note: the percentage following the number of participants in each cell was calculated based on 

the number of subjects for that cell divided by the number of subjects initially recruited for each 

group. 

 

Table 4.2. Participant distribution by group and gender  

Groups 
Children  

(n = 63) 

Adults  

(n = 17) 

Adults with ADHD  

(n = 8) 

Gender Males Females Males Females Males Females 

n 23 40 8 9 3 5 
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Procedure. This study was part of a larger study. Participants were invited to the 

laboratory for three visits. The first and the second visits were separated with 1 to 3 weeks apart. 

In order to control for potential confounding variables, both visits were scheduled on the same 

day of the week, and at the same time of the day. Parents of child participants signed consent 

forms prior to their visits; all child participants signed the assent form and adult participants 

signed the consent forms on their first visit. Both first and second visits were consisted of 1.5 

hours of EEG tasks and an hour of behavioral testing. The third visit lasted for an hour and 

focused on occupational performance (e.g., activities of daily living and social interaction tasks). 

The third visit was conducted in a room with a well-equipped kitchen environment.   

The ERP paradigm. The speeded visual flanker task (Eriksen & Eriksen, 1974) was 

presented by the E-prime software version 2.0 to each participant on both sessions. The task 

contains 480 trials that were presented in two blocks of 240 trials. In this task, participants were 

presented four different stimuli (two congruent stimuli with 80 trials for each stimuli: “HHHHH” 

and “SSSSS”; two incongruent stimuli with 160 trials for each stimuli: “HHSHH” and “SSHSS). 

Participants were instructed to press the left button on a 4 button keypad using their left index 

finger if the middle letter is an H; and to press the right button using their right index finger if the 

middle letter is an S. Participants were told that the letters would be presented quickly, and they 

were instructed to perform as accurately as possible. The stimulus duration was 250ms and the 

initial inter-trial stimulus (ISI) was set at 1400ms. Following each set of 30 trials, the E-prime 

program was designed to evaluate the overall error rate and adjust the ISI by increasing or 

decreasing it by 100ms if the error rate was greater than 25% or fewer than 10%, respectively. A 

minimal ISI was set at 800ms to allow adequate time for brain processing of the stimulus and 

response to resolve prior to the onset of the stimulus on the subsequent trial.  
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Electrophysiological recording. EEG data were collected using the Active Two 

BioSemi system, either 32 or 64 channels (BioSemi, Inc., Amsterdam, the Netherlands) based on 

a modified 10-20 electrode placement system (American Electroencephalographic Society, 

1994). Two electrodes, namely the common mode sense (CMS) and the driven right leg (DRL), 

were used to generate a common reference voltage (https://www.biosemi.com/faq/cms&drl.htm). 

Averaged signals from the left and right earlobes were used for offline referencing. Two 

electrodes were placed at the supra- and infraorbital regions of the left eye to measure the 

vertical eye movements (VEOG), and two electrodes were placed at the outer canthi of the left 

and the right eyes to measure the horizontal eye movement (HEOG). The sampling rate was set 

to 1024 Hz.  

Electrophysiological data reduction. The Brain Vision Analyzer 2.0 software 

(www.brainproducts.com) was used to conduct the offline EEG data analyses. The data were 

referenced to the averaged signals of bilateral earlobes and then filtered with a bandpass filter of 

0.1–30 Hz with 24 dB/oct. The data were then segmented into stimulus-locked segments on the 

correct trials, and response-locked segments on the incorrect trials. For stimulus-locked segments 

on the correct trials, the data were segmented into 1200 ms time periods, which spanned from 

200 ms before stimulus onset to 1000 ms after stimulus onset. Then, the segments were baseline-

corrected based on the average voltage of -200 to 0 ms of stimulus onset. Eye movement artifacts 

were removed via a regression approach based on the bipolar VEOG channel (Segalowitz, 1996) 

then baseline-corrected again using the period of -200 to 0 ms of stimulus onset. Segments 

containing voltage greater than ± 100 µV in the midline (e.g., Fz, FCz, Cz, Pz) and VEOG 

channels were rejected. For each participant, the data were then averaged to obtain an averaged 

stimulus-locked ERPs for correct trials separately.  
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For response-locked segments, the data on incorrect trials were segmented into 1400 ms 

time periods, which spanned from 600 ms before the incorrect response to 800 ms after the 

incorrect response. Segments with premature button responses (e.g., response times that were 

faster than 100 ms) were excluded from the analysis. Then, the segments were baseline-corrected 

based on the average voltage of the period between 600 to 400 ms preceding the incorrect 

response (Davies, Segalowitz, & Gavin, 2004). Eye movement artifacts were removed via a 

regression approach based on the bipolar VEOG channel (Segalowitz, 1996) then baseline-

corrected again using the period of -600 to -400 ms preceding the incorrect response. Segments 

containing voltage greater than ± 100 µV in the midline (e.g., Fz, FCz, Cz, Pz) and VEOG 

channels were rejected.  

The averaged ERPs obtained for each participant were scored using a customized peak-

picking computer program in MATLAB that also allows for visual inspection to adjust for any 

peaks that were scored on a slope. Both the stimulus-locked components on the correct trials and 

response-locked components on the incorrect trials were measured using peak-to-peak approach. 

Additionally, the response-locked ERP components were processed through the adaptive Woody 

filter, and the peak-to-peak latency jitter corrected ERN and Pe amplitudes were used (Gavin, 

Lin, Davies, under review). The windows for scoring the peaks are reported in Table 4.3 for 

stimulus-locked and response-locked ERPs. All of the ERP components were measured at the 

site FCz. 
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Table 4.3. Time windows for scoring stimulus-locked ERPs on the correct trials and response-

locked ERPs on the incorrect trials for adults and children  

 
Windows (ms) for  

stimulus-locked ERP components 

Windows (ms) for 

response-locked 

ERP components 

 P1 N1 P2 N2 P3 ERN Pe 

Neurotypical 

adults and 

adults with 

ADHD 

0-100 70-150 110-240 170-350 320-575 -10-180 120-450 

 

Children 

 

0-100 70-170 130-270 200-375 320-600 -10-180 120-450 

 

Occupational performance measures. We administered the Evaluation of Social 

Interaction (ESI; Fisher & Griswold, 2015) and the Assessment of Motor and Process Skills 

(AMPS; Fisher & Jones, 2014) to measure the quality of occupational performance in 

participants of the three groups.  

The Evaluation of Social Interactions (ESI). The ESI was conducted in a classroom in 

the Occupational Therapy department at Colorado State University (CSU). The ESI is an 

assessment that evaluates the quality of social exchange of the participant. A certified ESI 

assessor observed the participant as he or she interacted with their social partners (e.g., mom, 

siblings, or friend) in two meaningful and desired social episodes under naturalistic, real-life 

contexts. The types of social interactions varied from gathering information, sharing information, 

problem solving/decision making, collaborating/producing, acquiring goods and services, 

providing/delivering goods and services, or conversing socially/small talk. According to 

standardized procedures, the role of the assessor is to take notes on the observations, to record 

the purpose of the social interactions, and to score the quality of social interactions of 

participants’ social partners while the participant and his or her social partner are performing 

social interactions. The ESI logit score from Rasch analysis was used to indicate participant’s 
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quality of social interaction after adjusting for the challenge of the social episodes, and the 

severity of the rater who scored the performance. This procedure results in logit scores that are 

comparable across different social episodes, raters, and participants regardless of age (ESI; 

Fisher & Griswold, 2015).  

The ESI has 27 items that examine the quality of social interactions and can be 

categorized into seven domains: (1) initiating and terminating social interaction, (2) producing 

social interaction, (3) physically supporting social interaction, (4) shaping content of social 

interaction, (5) maintaining flow of social interaction, (6) verbally supporting social interaction, 

and (7) adapting social interaction. The occupational therapist scored each social interaction item 

using a 4-point rating scale for each social episode. Specifically, each skill has specific criteria 

that define competent, questionable, ineffective, or severely limited skill performance. A score of 

4, indicating competent performance, is given when the certified assessor observes the client to 

consistently demonstrate behavior that is “polite, respectful, timely, and socially appropriate.” 

The ESI has been shown to be an effective tool that detects the changes in social skills resulting 

from interventions for patients with traumatic brain injuries (Simmon & Griswold, 2010) and is 

sensitive to differentiating children with disabilities from typical developing children (Griswold 

& Townsend, 2012). The ESI demonstrates high inter- and intra-rater reliability and high 

parallel-forms reliability in which, the scores obtained from two social episodes are highly 

correlated (r = 0.86; Fisher & Griswold, 2015). The internal validity is also well-supported in the 

literature (Fisher & Griswold, 2014).   

The Assessment of Motor and Process Skills (AMPS). The AMPS was administered in a 

kitchen area designed to approximate a home environment located in the occupational therapy 

building at CSU. The AMPS was developed by occupational therapists to measure clients’ 
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occupational performance (Fisher & Jones, 2014). The assessment focuses on the client-centered, 

occupation-based, and top-down manner in which professionals, such as occupational therapists, 

observe the way clients actually perform two everyday occupational tasks that are familiar and 

meaningful to clients. Examples of these ADL tasks include making a sandwich with peanut 

butter and jelly, vacuuming, or washing dishes. Overall, the AMPS contains 36 scoring items and 

these items are categorized into two categories: motor skills and process skills. For motor skills, 

there are four domains that include: body position, obtaining and holding objects, moving self 

and objects, and sustaining performance. For process skills, there are five domains that include: 

sustaining performance, applying knowledge, temporal organization, organizing space and 

objects, and adapting performance. Similar to the ESI logit score, the logit scores of AMPS 

motor and AMPS process skills were used to indicate the quality of participant’s performance of 

ADL after adjusting for the difficulty of the tasks, and the severity of the rater who scored the 

performance. This procedure allows the resulting logit scores comparable across different daily 

tasks, raters, and participants regardless of age (AMPS; Fisher & Jones, 2014).  

The AMPS has been used as an outcome measure that is able to detect changes in scores 

reflecting real changes in occupational performance in people with disabilities (Ayres & John, 

2015; James, Ziviani, Ware, & Boyd, 2016). Moreover, the AMPS has been researched 

extensively with various population groups and has been found to be sensitive in detecting 

problems with efficiency, safety, and quality of performance in ADLs (Bray, Fisher, & Duran, 

2001; Fisher & Jones, 2014). The AMPS has 83 standardized personal and instrumental ADL 

tasks and is appropriate for clients aged 3 to 99 (Fisher & Jones, 2014). Studies have 

demonstrated that the AMPS has high validity (Gantschnig et al., 2012; Kottorp et al., 2003). 
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The test-retest reliability was 0.90-0.91 for motor scale, and 0.87-0.90 for process scale (Fisher 

& Jones, 2014).  

Statistical analyses. 

Group differences. A series of one-way ANCOVAs with Group (children, adults, and 

adults with ADHD) as a between-subject variable and Sex (Males versus Females) as a 

controlled variable were performed to examine the group differences on the Flanker task 

behaviors (e.g., error rate, response times), each ERP measure (e.g., ERN amplitude) and 

occupational performance scores (e.g., ESI, AMPS motor and AMPS process scores). We also 

conducted the pairwise post-hoc tests on the variables to determine if observed scores differed 

between two groups were significant. Since the sample sizes are unequal among each group, in 

order to avoid making type I error, we conducted our ANCOVA analyses on two datasets. The 

first dataset included the complete sample (children: n = 63, adults: n = 17, adults with ADHD: n 

= 8). Then we down sampled the participants via random selection in neurotypical child and 

adult groups, so that each group has the same number of participants (children: n = 8, adults: n = 

8, adults with ADHD: n = 8). We recognized that by implementing the down-sampling approach 

we decreased our statistical power to detect the differences across groups. However, this is a 

conservative approach that allows us to further confirm whether the significant differences 

obtained from the complete sample were confounded by the unequal sample sizes across groups.   

The relationship between the ERN components and occupational performance. A 

series of regression analyses were conducted to examine the relationship between six ERP 

components and occupational performance with age and gender as controlled variables for 

neurotypical children and neurotypical adults. However, since we only had 8 participants for the 

adults with ADHD group, rather than using the regression analyses to investigate the relationship 
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between ERP components and occupational performance, we used the Pearson correlation 

analyses to explore the relationship between these variables.  

Determining the contributions of ERP components and occupational performance for 

classifying group membership of individuals. Three discriminant analyses were used to 

understand the relative importance of (1) neural measures (i.e., amplitudes of ERP components), 

(2) occupational performance measures (i.e., AMPS or ESI scores), and the (3) combination of 

the neural and occupational performance measures in classifying participants according to their 

group memberships. Specifically, for the first discriminant analysis, the independent variables 

were the ERP amplitudes (i.e., amplitudes of the N1, P2, N2, P3, ERN and Pe). For the second 

discriminant analysis, the independent variables were the ESI score, AMPS motor and AMPS 

process scores. For the third discriminant analysis, the independent variables were the 

combination of the neural and occupational performance measures that are listed above. The 

accuracy of classification functions was evaluated based on the percent agreement between the 

predicted group membership and the sampled group membership. All statistical analyses were 

conducted using the Statistical Package for Social Sciences (SPSS) version 25.0. 

Results 

Group differences on the behavioral and ERP results. The descriptive results and the 

results from the ANCOVA analyses on the complete dataset are reported in the Table 4.4. The 

results on the down-sampled dataset are reported in the Table 4.5. The grand-averaged stimulus-

locked and response-locked ERPs are presented in Figure 4.1.  
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Table 4.4. The means, standard deviations, and results from the ANCOVA tests with post-hoc 

pairwise comparisons between groups on the Flanker-task behaviors, the ERP components, and 

the occupational performance tasks obtained from the complete sample 

 
Children 

(n = 63) 

Adults 

(n = 17) 

Adults with 

ADHD 

(n = 8) 

F(2,82)  
p  

value 
ηp

2 

Performance on the Flanker task  

error rate (%) 0.14±0.01a 0.08±0.01b 0.15±0.03a 9.65 <.001 0.19 

RTs on correct 

trials (ms) 
642.72±15.20a 435.58±13.07b 414.45±12.60b 34.90 <.001 0.46 

RTs on incorrect 

trials (ms) 
489.79±12.43a 384.38±11.62b 351.57±10.36b 16.78 <.001 0.29 

Occupational performance  

AMPS motor 

logit score 
2.02±0.31a 2.56±0.29b 2.21±0.28a 20.20 <.001 0.33 

AMPS process 

logit score 
1.18±0.27a 1.46±0.17b 1.34±0.18a,b 9.13 <.001 0.18 

ESI logit score 0.88±0.23a 1.12±0.23b 0.94±0.18a,b 7.83 .001 0.16 

Peak-to-peak ERP amplitude  

N1  -8.58±0.36a -3.27±0.40b -3.30±0.63b 35.45 <.001 0.46 

P2  16.39±6.58a 7.45±3.62b 6.70±4.20b 19.64 <.001 0.32 

N2  -16.52±7.24a -7.42±2.83b -9.80±5.51b 13.72 <.001 0.25 

P3  11.16±3.87 9.51±3.23 13.86±7.18 2.70 0.07 0.06 

ERN  -16.69±7.59 -16.23±6.59 -14.92±5.15 0.37 0.69 0.01 

Pe 27.63±8.87a 19.14±7.67b 21.26±4.73a,b 7.87 .001 0.16 

Note: The results from the post-hoc pairwise comparisons are denoted by subscripted letters, the 

means that share the same subscripted letter are not statistically different from each other, the 

means that share different subscripted letters are statistically different from each other  
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Table 4.5. The means, standard deviations, and results from the ANCOVA tests with post-hoc 

pairwise comparisons between groups on the Flanker-task behaviors, the ERP components, and 

the occupational performance tasks obtained from the subset of the sample 

 
Children 

(n = 8) 

Adults 

(n = 8) 

Adults with 

ADHD 

(n = 8) 

F(2,18)  
p  

value 
ηp

2 

Performance on the Flanker task  

*error rate 

(%) 
0.14±0.09 0.11±0.05 0.15±0.09 0.83 0.45 0.09 

RTs on 

correct trials 

(ms) 

689.92±174.90a 433.97±36.48b 414.45±35.64b 11.72 .001 0.57 

RTs on 

incorrect 

trials (ms) 

543.10±130.41a 385.28±30.03b 351.57±29.31b 8.96 0.002 0.50 

Occupational performance  

AMPS 

motor logit 

score 

1.96±0.28a 2.58±0.24b 2.21±0.28a 6.45 0.01 0.42 

*AMPS 

process logit 

score 

1.18±0.32 1.45±0.19 1.34±0.18 2.54 0.11 0.22 

*ESI logit 

score 
0.96±0.25 1.03±0.16 0.94±0.18 0.26 0.78 0.03 

Peak-to-peak ERP amplitude  

N1  -8.04±3.07a -3.18±1.71b -3.30±1.79b 22.34 <.001 0.71 

P2  15.99±7.35a 6.88±4.48b 6.70±4.20b 9.11 0.002 0.50 

N2  -16.40±6.41a -8.06±3.59b -9.80±5.51a,b 3.89 0.04 0.30 

P3  11.03±6.16 10.13±4.21 13.86±7.18 0.77 0.48 0.08 

ERN  -19.91±15.33 -17.28±8.40 -14.92±5.15 0.51 0.61 0.05 

*Pe  30.88±14.81 21.55±9.61 21.26±4.73 1.35 0.28 0.13 

Note: The results from the post-hoc pairwise comparisons are denoted by subscripted letters, the 

means that share the same subscripted letter are not statistically different from each other; the 

means that share different subscripted letters are statistically different from each other . An 

asterisks(*) before the variable denotes that the findings on the subset of the sample are different 

from those obtained from the complete sample.   
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Figure 4.1. The grand-averaged of the (A) stimulus-locked ERPs on the correct trials (the time 

zero indicates the onset of the stimuli) and (B) response-locked ERPs on incorrect trials (the time 

zero indicates the closure of button presses) for the children, adults, and adults with ADHD 

 

The relationship between the ERN and Pe components and occupational 

performance. For neurotypical children and adults, a series of regression analyses with ESI 

score, AMPS motor score, and AMPS process score were conducted to examine the relationship 

(A) Stimulus-locked ERPs on correct trials 

(B) Response-locked ERPs on incorrect trials 

ERN 

Pe 

N1 

P2 

N2 

P3 
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between the ERP components and the occupational performance score. For adults with ADHD, 

Pearson correlations were used to examine these relationships. 

ESI score. For neurotypical adults, none of the independent variables significantly 

predicted the ESI score. For neurotypical children, only the ERN amplitude significantly 

predicted the ESI score (b = 0.012, β = 0.391, t = 2.12, p = 0.04), such that the larger the ERN 

amplitude, the lower the ESI score after controlling for other ERP components, age, and sex 

(overall model: F(8,54) = 2.32, p = 0.032, R2 = 0.26, adjusted R2 = 0.15). For adults with ADHD, 

Pearson correlation coefficients showed that only the N2 component was significantly correlated 

with the ESI score, such that the larger the N2 amplitude, the lower the ESI score (r = 0.72, p = 

0.046).  

AMPS motor score. For neurotypical adults, none of the independent variables 

significantly predicted the AMPS motor score. For neurotypical children, only the Pe amplitude 

significantly predicted the AMPS motor score (b = -0.012, β = -0.344, t = 2.14, p = 0.037), such 

that the larger the Pe amplitude, the lower the AMPS motor score after controlling for other ERP 

components, age, and sex (overall model: F(8,54) =4.703, p = < .001, R2 = 0.411, adjusted R2 = 

0.323). For adults with ADHD, Pearson correlation coefficients showed that none of the ERP 

components are associated with the AMPS motor score.  

AMPS process score. For neurotypical adults, none of the independent variables 

significantly predicted the AMPS process score. Similarly, for neurotypical children, none of the 

independent variables significantly predicted the AMPS process score. For adults with ADHD, 

Pearson correlation coefficients showed that none of the ERP components are associated with the 

AMPS process score.  
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Discriminant analyses results.  

ERP components (N1, P2, N2, P3, ERN, and Pe amplitudes) as independent variables. 

The results from the first discriminant analysis with the ERP components as independent 

variables showed that 90.9% of the participants were accurately classified according to their 

group membership by the ERP measures alone. The neurotypical child participants were 96.8% 

correctly classified, 88.2% neurotypical adults were correctly classified, while only 50% adults 

with ADHD were correctly classified (see Figure 4.2). Four neurotypical adults were 

misclassified: two were misclassified as children and 2 were misclassified as adults with ADHD; 

two children were misclassified as neurotypical adults, four adults with ADHD were 

misclassified: three were misclassified as neurotypical adults and 1 was misclassified as a 

neurotypical child. Function 1 was significant (λ = 0.36, p < .001), and Function 2 was not 

significant (λ = 0.89, p = 0.094). The standardized canonical coefficients and structure matrix 

coefficients for the first discriminant analysis is reported in Table 4.6 and the scatter plot is 

presented in Figure 4.2.  

Table 4.6. The discriminant analysis results of the ERPs components 

 
Standardized Canonical 

Coefficients 
  Structure Matrix 

Variables Function 1 Function 2  Variables Function 1 Function 2 

N1 0.66 -0.04  N1 0.77* 0.01 

P2 0.03 -0.85  P2 -0.58* -0.10 

N2 0.64 -0.72  N2 0.48* -0.26 

P3 0.43 0.74  Pe -0.35* 0.18 

ERN -0.35 0.69  P3 -0.02 0.77* 

Pe -0.67 0.36  ERN 0.05 0.13* 

Note: *indicates largest absolute correlation between each variable and any discriminant function  
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Figure 4.2. Scatter plot for the discriminant analysis model with ERPs (N1, P2, N2, P3, ERN, 

and Pe) as independent variables 

 

Occupational performance measures as independent variables. The results from the 

second discriminant analysis with the occupational performance scores as independent variables 

showed that 80.7% of the participants were accurately classified according to their group 

membership. Ninety-five point two percent (95.2%) of the neurotypical children were correctly 

classified, 64.7% neurotypical adults were correctly classified, yet 0% adults with ADHD were 

correctly classified (see Figure 4.3). Six neurotypical adults were misclassified as children. Three 

neurotypical children were misclassified as neurotypical adults. Eight adults with ADHD were 

misclassified; one was classified as neurotypical adult and seven were classified as children. 

Function 1 was significant (λ = 0.63, p < .001), and Function 2 was not significant (λ = 0.99, 

p = 0.71). The standardized canonical coefficients and structure matrix coefficients for the first 

discriminant analysis is reported in Table 4.7 and the scatter plot is presented in Figure 4.3.  

Children 

Adults with ADHD 

Adults 
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Table 4.7. The discriminant analysis results of the occupational performance measures. 

 
Standardized Canonical 

Coefficients 
  Structure matrix 

Variables Function 1 Function 2  Variables 
Functi

on 1 
Function 2 

ESI 0.32 -0.71  AMPS-motor 0.92* -0.01 

AMPS-motor 0.77 -0.24  ESI 0.57* -0.39 

AMPS-process 0.19 1.04  AMPS-process 0.60 0.69* 

Note: *indicates largest absolute correlation between each variable and any discriminant function 

  

 
Figure 4.3. Scatter plot for the discriminant analysis model with occupational performance 

measures (ESI, AMPS motor and AMPS process scores) as independent variables 

 

Combination of the ERP components (N1, P2, N2, P3, ERN, and Pe amplitudes) and 

occupational performance measures as independent variables. The results from the third 

discriminant analysis with the ERP components and occupational performance scores as 

independent variables showed that 93.2% of the participants were accurately classified according 

to their group membership. The neurotypical child participants were 98.4% correctly classified, 

88.2% neurotypical adults were correctly classified, while only 62.5% adults with ADHD were 

Children 

Adults with ADHD 

Adults 
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correctly classified (see Figure 4.4). One neurotypical child was misclassified as a neurotypical 

adult. Two neurotypical adults were misclassified as adults with ADHD. Three adults with 

ADHD were misclassified; two was classified as neurotypical adults and one was classified as a 

child. Function 1 (λ = 0.29, p < .001) and Function 2 (λ = 0.80, p = .023) were both significant. 

The standardized canonical coefficients and structure matrix coefficients for the first 

discriminant analysis is reported in Table 4.8 and the scatter plot is presented in Figure 4.4. 

 

Table 4.8. The discriminant analysis results using the combination of the ERP components (N1, 

P2, N2, P3, ERN, and Pe amplitudes) and occupational performance measures as independent 

variables 

 
standardized canonical 

coefficients 
  Structure matrix 

variables Function 1 Function 2  variables Function 1 Function 2 

N1 0.05 0.41  N1 0.71* -0.20 

P2 0.39 0.49  P2 -0.53* 0.22 

N2 -0.03 -0.03  AMPS-motor 0.51* 0.43 

P3 0.58 -0.23  N2 0.45* 0.06 

ERN 0.02 0.56  AMPS-process 0.35* 0.16 

Pe 0.56 0.24  Pe -0.33* -0.03 

ESI 0.27 -0.84  P3 -0.04 -0.53* 

AMPS-motor -0.25 -0.29  ESI 0.31 0.34* 

AMPS-process -0.48 0.12  ERN 0.04 -0.10* 

Note: *indicates largest absolute correlation between each variable and any discriminant function  
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Figure 4.4. Scatter plot for the discriminant analysis model with ERP components (N1, P2, N2, 

P3, ERN, and Pe) and occupational performance measures (ESI, AMPS motor, and AMPS 

process scores) as independent variables 

 

Discussion 

This study is an exploratory study that investigates the differences between ERP 

component amplitudes and occupational performance scores among neurotypical children, 

neurotypical adults, and adults with ADHD. Moreover, we examined the relationship between 

neural processing measured by ERP component amplitudes and occupational performance scores 

for each group. We implemented three discriminant analyses to understand the relative 

importance of neural processes measured by ERP component amplitudes and occupational 

performance scores in classifying participants according to their group membership. The findings 

will be discussed in terms of these three investigative goals; 1) group differences in ERP 

measures and occupational performance, 2) relationship between ERP components and 

Children 

Adults with ADHD 

Adults 
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Occupational Performance, and 3) determining if neural measures, occupational performance 

scores or a combination of both best distinguish the three groups.  

Group differences on the ERN components and occupational performance scores. 

The findings from the complete sample suggested that the error rate was significantly higher in 

adults with ADHD compared to neurotypical adults, which were consistent with several studies 

(Balogh et al., 2017; Marquardt, Eichele, Lundervold, Haavik, & Eichele, 2018). However, the 

findings obtained from the smaller subset of the sample suggested that there were no group 

differences on the error rate. This outcome is similar to findings reported in several other studies 

(Chang, Davies, & Gavin, 2009; Wiersema, van der Meere, & Roeyers, 2009). The inconclusive 

findings may be due the heterogeneity especially in cognitive functions in individuals with 

ADHD (Mostert et al., 2015). Moreover, the contradicted findings may result from the 

inadequate sample size of the three groups after we down-sampled. Therefore, a larger sample 

size is needed to further examine the group differences on the error rate.  

In terms of the ERP components, consistent with previous studies, the amplitudes of the 

N1, P2, N2, and Pe amplitudes were significantly larger in neurotypical children compared to 

adults (Ridderinkhof & Van der Stelt, 2000). However, contrary to the previous studies, we did 

not find differences between adults with ADHD and neurotypical adults on the amplitudes of all 

ERP components (N1, P2, N2, P3, Pe, and ERN; Chang, Davies, & Gavin, 2009; McLoughlin et 

al., 2009; Wiersema, van der Meere, & Roeyers, 2009). In addition to the small sample size, one 

possible explanation for the non-significant group differences may be associated with our 

sampling strategy. Since the participants in the study were mostly college students and were 

considered as high functioning, the sample we recruited in this study may not be representative 

of the general population of adults with ADHD.  
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Among three occupational performance measures (i.e., ESI score, AMPS motor, and 

AMPS process scores), adults with ADHD only showed significantly lower AMPS motor score 

compared to neurotypical adults. Similar findings were also shown in the results from the subset 

of sample. The findings suggested that adults with ADHD require increased effort in successfully 

performing the daily tasks. Some of the areas on this assessment that they demonstrated 

difficulties were in obtaining, moving, or holding objects with flexibility. Our findings 

demonstrated that there were no statistical differences between adults with ADHD and 

neurotypical adults on AMPS process scores and ESI scores. Interestingly, while neurotypical 

adults had significantly higher scores compared to children on the three occupational 

performance measures, there were no significant differences between children and adults with 

ADHD on the three occupational performance measures (e.g., the AMPS motor and process 

scores, and ESI score).  

The relationship between the ERN and Pe components and occupational 

performance. For neurotypical adults, we did not find significant relationships between any of 

the ERP components and the occupational performance measures. It is possible that there might 

be other cognitive functions that underlie ADL and the social interaction tasks that we failed to 

take into consideration in this study. Again, since we only have 17 participants in this group, the 

small sample size might be another reason that we failed to obtain the significant relationships 

among neural and occupational performance measures.  

For neurotypical children, the relationship between the ERN and the ESI score was 

significant such that the larger the ERN amplitude, the lower the ESI score. Previous studies 

have shown that a larger ERN amplitude in individuals with anxiety disorder, and obsessive-

compulsive disorder, compared to a neurotypical sample, indicating that these individuals may 
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have hyperactive performance monitoring ability and may be overly concerned about their errors 

(Carrasco et al., 2013; Ladouceur, Dahl, Birmaher, Axelson, & Ryan, 2006). This could inform 

our findings that hyperactive performance monitoring ability may be a challenge in social 

interaction. Additionally, the relationship between Pe amplitude and the AMPS motor score was 

also significant such that the larger the Pe amplitude, the lower the AMPS motor score. The Pe 

amplitude is associated with post-error behavioral adjustments, and is associated with post-error 

slowing, a phenomenon that individuals slow down their reaction times after committing errors 

(Hajcak, McDonald, & Simons, 2003). Several items on AMPS motor scores were scored based 

on whether the action was performed in a timely manner, therefore, an enhanced Pe amplitude 

may be associated with slower performance, which in turn could lead to lower motor scores.  

For adults with ADHD, the findings showed that the larger the N2 amplitude, the lower 

the ESI score. Espinet, Anderson, & Zelazo (2012) found that children who had better executive 

functions skills that allowed them to flexibly switch between two tasks had smaller N2 

amplitude, suggesting a positive relationship between small N2 amplitude and better executive 

function skills. The findings may suggest that adults with ADHD who had a larger N2 amplitude 

may be less flexible in engaging and switching the conversation which may cause delayed 

response time during the social interaction, leading to lower quality in the social interaction. 

However, we need to interpret the findings with caution since we only have 8 participants in this 

group. Contrary to what we hypothesized, the relationship between the ERN and the social 

interaction scores was not significant for adults with ADHD, however, a larger sample size 

would be needed to further examine the relationship. 
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Determining the contributions of ERP components and occupational performance 

for classifying group membership of individuals. The discriminant analyses differentiated 

three groups of participants, neurotypical children, neurotypical adults, and adults with ADHD 

with highest classification accuracy when both neural and occupational performance measures 

were used (total classification of 93.2%) compared to using neural measures alone (total 

classification of 90.9%) or occupational performance measures alone (total classification of 

80.7%). To our knowledge, this is the first study utilizing the neural and occupational 

performance measures to classify children, adults, and adults with ADHD. The findings 

demonstrated the feasibility of combining the neural and occupational performance measures in 

classifying participants according to their group memberships. Specifically, these measures 

yielded two significant discriminant functions. The first function may be related to maturation or 

development, since it separated the neurotypical children from two adult groups. The second 

function may be related to the level of disability/functioning, since it separates three groups in 

terms of their disability and functioning, with neurotypical adults at the upper end and adults 

with ADHD at the lower end. The findings may inform researchers and clinicians that both 

neural and occupational performance measures are essential to provide a comprehensive picture 

to better describe the unique characteristics of groups in terms of maturation and disability. 

Limitation  

The major limitation of this study is the small sample size of the ADHD group. The small 

sample size may lead to low statistical power that prevents us from obtaining robust findings. 

Although we attempted to use a more conservative approach by down-sampling the participants 

in another two groups, we recognized that this approach might not be ideal. A future study could 

collect data in more participants with ADHD and match the size of the groups. Then Monte 
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Carlo simulation could be used to estimate missing data points. Another limitation of this study 

is that the research assistant who administered the ESI and AMPS was not blind to whether the 

adult had an ADHD diagnosis or not. Future studies could conduct blind studies in which the 

research assistants are blind to the diagnosis of ADHD in order to eliminate potential research 

biases and to obtain more robust findings. 

Conclusion 

This study demonstrated that adults with ADHD demonstrated significantly lower quality 

of occupational performance particularly on the motor aspect of the ADL. Moreover, we found a 

significant relationship between neural measures and occupational performance in neurotypical 

children and adults with ADHD. Moreover, for neurotypical children, larger ERN amplitude was 

associated with lower quality of social interaction. For adults with ADHD, larger N2 amplitude 

was associated with lower quality of social interaction. Lastly, the discriminant analyses 

demonstrated that the combination of the neural and occupational performance measures best 

differentiated children, adults, and adults with ADHD with 93.2% classification accuracy. Future 

studies could investigate what are other measures (e.g., attention or executive function measures) 

that can be used to increase the classification accuracy.   
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CHAPTER 5: DISCUSSION 

 

 

 

The overarching goal of this dissertation is to explore the brain-and-behavioral 

relationships in neurotypical children, neurotypical adults, and adults with attention-

deficit/hyperactivity disorder (ADHD). Three studies were conducted in this dissertation. For 

each study, electroencephalography (EEG)/event-related potential (ERP) techniques were used to 

measure the neural processes associated with cognitive functions. The first study demonstrated 

the psychometric properties, particularly the test-retest reliability, of the error-related negativity 

(ERN) and error positivity (Pe) components in children and adults. The second study showed the 

feasibility of utilizing the structure equation modeling (SEM) approach to examine the stream of 

neural processing predicting simple task behaviors (i.e., response time). The third study 

examined the differences among neurotypical children, neurotypical adults, and adults with 

ADHD on neural and occupational performance measures, and investigated the efficacy of using 

the combination of these measures in classifying the three groups according to their group 

membership. In the following sections, I will address the theoretical and methodological 

application, as well as the clinical implications of the dissertation. I will then relate the findings 

with occupation and rehabilitation sciences. 

Theoretical Applications 

The findings on the brain-and-behavior relationships in this dissertation are supported by 

several theoretical frameworks. Specifically, the second study successfully demonstrated the 

interrelationships among neural measures and that the stream of neural processes predicts simple 

task behaviors (e.g., response times). Such a predictive and interdependent relationship among 

neural measures predicting the response times portrayed in our models is consistent with the 
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principles of the dynamic system theory and the connectionist theory (Elman, 2003; Hayes & 

Strauss, 1998; Pastur-Romay, Cedrón, Pazos, & Porto-Pazos, 2015; Rogers, 2009; Samuelson, 

Jenkins, & Spencer, 2015). Specifically, according to the dynamic system theory and the 

connectionist theory, behavioral outputs are produced by interactions among neurons, and are 

determined by the environment and tasks that are performed (Samuelson et al. 2015). Moreover, 

the interrelationships among neural measures (units), and the strengths of these relationships are 

in line with the way connectionist theorists described the neural networks underlying cognitive 

functions (McClelland et al., 2010; Rogers, 2009). Furthermore, our last model showed that the 

error detection brain signal (i.e., ERN) predicted the brain activity associated with initiation of 

post-error adjustment (i.e., Pe). Moreover, the last model also demonstrated the circular nature of 

the brain-and-behavior relationships, such that the neural processing leads to behaviors, and in 

turn the behaviors and cognitive strategies influence brain processing. Thus, the brain activity 

associated with error detection and post-error adjustment fed forward to predict early brain 

activity on the trials in which correct responses/behaviors were performed. Such a dynamic 

interaction between neural and behavioral measures is also supported by the International 

Classification of Functioning, Disability, and Health (ICF) framework with a bi-directional 

arrow between the domain of body function and body structure and the domain of activity 

(WHO, 2002).  

The third study in this dissertation took the initial steps in expanding the brain-and-

behavior relationships to a more functional level. The behavioral measures used in the first and 

the second study were the behavioral outcomes from the simple task behaviors (i.e., response 

times in the Flanker task). However, for the third study, we utilized the occupational 

performance assessments and examined how neural measures associated with the quality of the 
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activities of daily living (ADL) and social interaction performed in natural contexts. Conducting 

the occupation-based assessment like the Assessment of Motor and Process Skills (AMPS) and 

the Evaluation of Social Interaction (ESI) is closely aligned with the Person-Environment-

Occupation (PEO) and the ICF model (Law et al., 1996). Specifically, the PEO model describes 

the relationship among the person, environment, and occupation as translational and 

interdependent (Law et al., 1996). Observing the way participants performed meaningful daily 

occupations or engaging in the social conversation with their social partners under the real-life 

contexts allows researchers to obtain a holistic perspective on the dynamic transactions among 

participants, tasks, and the environment (Law et al., 1996; WHO, 2002). Moreover, currently in 

the third study we were not able to establish models combining the occupational performance 

measures due to small sample size, however, future studies with increased number of participants 

would be able to examine the relationship between neural responses and other constructs of 

cognitive functions such as attention and executive functions and then even to occupational 

performance such as ADL/IDAL and social interactions (See Figure 5.1). 

  

 

Figure 5.1. Conceptual latent path model with neural measures, attention, executive functions 

and occupational performance 
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Methodological Applications 

Utilizing the SEM approach to model the brain-and-behavior relationship. This 

dissertation successfully demonstrated the feasibility of using the SEM in investigating the 

interrelationship of the neural processes and the simple task behavior (i.e., response times). The 

primary advantage of the SEM is that it uses the common variance of the manifested variables 

(e.g., N1 amplitude on session 1 and session 2) to define the latent variable (e.g., the construct of 

the sensory-based processing; Byrne, 2013). This approach minimizes error measurement in the 

latent variables so that researchers have cleaner variables that are free from the measurement 

error with which to model the relationships (Byrne, 2013). To our knowledge, this is the first 

study that utilizes the modeling approach to demonstrate the adaptive mechanisms of 

performance monitoring on the stream of neural processes leading to correct behaviors. Most of 

the studies that have examined brain-and-behavior relationships use a single ERP component and 

a behavioral measure as two variables in a bivariate correlation analyses. However, by 

conducting the simple correlation analysis to investigate the complicated brain-and-behavior 

relationship, the researchers overlook the interdependent nature of the complex underlying neural 

processes. Failing to account for these interdependent relationships among the neural processes 

may yield less robust and inconclusive findings. Therefore, we argue that when investigating the 

brain-and-behavior relationships, researchers should view the stream of neural processing as a 

whole discourse rather than a set of separate components (Brydges et al., 2014).    

Importance of the state and trait effect. The findings suggested that the trait and the 

state effect need to be taken into consideration when collecting the psychophysiological 

measures. Specifically, the trait is considered as a feature or a characteristic that is stable over 

time and is associated with an individual’s temperament or personality (Gavin & Davies, 2008). 
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For example, the age, sex, or diagnosis of neurological or developmental disorders may be 

considered as traits. On the other hand, the state effect is defined as the factor that may vary 

between one situation to another (Hagemann & Naumann, 2009). It is considered as the 

psychological or physiological factor that are independent of the manipulations in the 

experimental paradigm, but may influence the psychophysiological measures (Gavin & Davies, 

2008). For example, fatigue and anxiety levels are regarded as the state effect, since they are not 

related with the experimental design, yet studies have shown that these state effect could impact 

the EEG/ERP measures (Hagemann & Naumann, 2009; Tsai, Young, Hsieh, & Lee, 2005). 

Although in this dissertation we have not empirically examined the underlying mechanisms of 

the state effect, however, we hypothesized that the state effect is associated with the anxiety, 

fatigue, attention, motivation, learning effect, practice effect or other transient factors that 

systematically influenced the ERP components across sessions (Gavin & Davies, 2008). The 

findings also highlighted the importance of minimizing the measurement error associated with 

the state effect both during the data collection (e.g., building rapport with the subjects so that 

they are less nervous) or data analyses (e.g., controlling for the state and trait measures) in order 

to obtain reliable results (Gavin & Davies, 2008).  

Utilizing the discriminant analyses to better understand the group characteristics. 

The discriminant analysis is a statistical analysis approach that is less commonly applied on the 

EEG/ERP data. The discriminant analysis allows researchers to include multiple variables (e.g., 

ERP components and occupational performance measures) to understand the group 

characteristics. It also has the potential to being more effective in understanding the nature of the 

disorder group (e.g., adults with ADHD) compared to other statistical approach that only use 

single variables (e.g., correlation between an ERP component with symptom severity in adults 
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with ADHD). The findings from the discriminant analyses in the third study showed that 

combining ERP components and occupational performance gave us the highest classification 

accuracy (93.2%). This suggested that both neural and behavioral measures are necessary to best 

distinguish between the groups. Moreover, the discriminant analysis with the neural and 

occupational performance measures revealed two functions. One described the groups in terms 

of the maturation continuum such that it separated the child group from the two adult groups. 

One described the groups in terms of the disability continuum such that it separated three groups 

with the neurotypical adults and adults with ADHD at the upper and the lower end, and the 

children in between. Taken together, this study not only provided a crucial perspective that both 

neural and behavioral measures are critical in differentiating the three groups, but also showed 

how each measure contributes to group separation. 

Clinical Applications 

Biomarkers development. The first study examined the test-retest reliability of two ERP 

components, namely the error-related negativity (ERN) and error positivity (Pe), in children and 

adults. These two neural measures are shown to be associated with the phenotype of neurological 

or developmental disorders such as schizophrenia, depression, autism spectrum disorders, or 

attention-deficit/hyperactivity disorders (Bates et al., 2004; Kim et al., 2006; Larson, Kaufman, 

Kellison, Schmalfuss, & Perlstein, 2009; Marquardt, Eichele, Lundervold, Haavik, & Eichele, 

2018; Morris et al., 2008; Vlamings et al., 2008). Thus, establishing the psychometric properties 

of these two ERP components are a critical step for developing the ERN and Pe components as 

biomarkers to assist in clinical diagnoses of developmental or neurological disorders and monitor 

the treatment effectiveness for clinical interventions.    
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The brain-and-behavioral models. The second study utilized the SEM to model the 

underlying neural processes predicting simple task behaviors (e.g., response times) in children. 

The model established in this study could set a critical foundation for understanding the neural 

processes in neurotypical children and can be compared to other models established in children 

with neurological and developmental disorders. For example, certain predictive relationships in 

the models established on children with ADHD or children with autism spectrum disorders 

(ASD) may not be significant compared to the relationships in the models established on 

neurotypical children. Such differences could further guide therapists or clinicians to target the 

strengths and the weakness and development strength-based treatment.   

Relationship between neural measures and occupational performance. The third 

study demonstrated a significant relationship between the ERN amplitude and the quality of the 

social interaction in children, such that the larger the ERN amplitude, the lower the evaluation of 

the social interaction scores. The findings suggested that hyperactive performance monitoring 

may be associated with the challenge in the social interaction which is consistent with other 

studies (Barker, Troller-Renfree, Pine, & Fox, 2015; Wauthia & Rossignol, 2016). Hence, for 

clinical populations such as individuals with anxiety or obsessive-compulsive disorders who 

have been shown to have hyperactive performance monitoring, therapists and clinicians may 

develop treatment that helps to deemphasize their self-monitoring when making mistakes while 

interacting with others.  

Relation to the Occupation and Rehabilitation Science  

Occupation and rehabilitation science are two professions that share a lot of common 

ground, yet each science has its unique perspective to understand the human nature. In this 

section, I will utilize the ICF framework as a foundation to address the similarities and the 
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differences between occupation and rehabilitation science and the relationship of these 

disciplines to my dissertation studies. Specifically, ICF is a model that focuses on the overall 

health condition and functioning of an individual (WHO, 2002; Figure 5.2). The ICF framework 

describes the relationships across multiple factors including body function and body structure, 

activity, participation, environment, and personal factors, and how these factors bidirectionally 

influence each other and contribute to the overall health condition (see Figure 5.2).   

 
Figure 5.2. The ICF framework (WHO, 2002) 

 

Both occupation and rehabilitation scientists value all the aspects depicted in the ICF 

model. However, since the central tenants and the core beliefs are different between these two 

sciences, scientists from these two disciplines may prioritize these factors differently. 

Specifically, the central tenant of occupational science is the engagement in meaningful 

occupation. Specifically, Wilcock (2002) stated that “occupation is a synthesis of doing, being, 

and becoming. (Wilcock, 2002)”. Occupation encompasses what an individual does to occupy 

his/her time and keep his/her mind and body active within a place or a time frame and assign 
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culturally and personally meaningful experience to the individual (Christiansen & Townsend, 

2010; Schwartzman, Atler, Borg, & Schwartzman, 2006). Occupational scientists focused on 

understanding the meaningful occupations of an individual, and how an individual participates in 

these meaningful occupations (Christiansen & Townsend, 2010). That is, based on the ICF 

model, occupational scientists may consider the construct of participation, and how the 

contextual factors that may facilitate or hinder an individual from participating the daily tasks as 

a high priority for an individual (Christiansen & Townsend, 2010). However, focusing on the 

meaningful occupation does not mean that occupational scientists overlook the importance of the 

domain of body function and structure. Specifically, the domain of body function and structure is 

critical for occupational scientists since it allows scientists to comprehensively understand the 

dynamic interaction between the individual, occupation, and the environment to optimize their 

occupational performance (Law et al., 1996).  

Similarly, rehabilitation scientists also consider that each domain in the ICF plays an 

important role in contributing to an individual’s overall health. Yet, as mentioned earlier, the 

priorities and emphases from rehabilitation scientists may be different from the occupational 

scientists. Since rehabilitation science emerged from providing the medical care for the veterans 

returned from the war; rehabilitation science adopts the disability perspective based on the 

medical model (Brandt & Pope, 1997). In this respect, examining factors and pathologies that 

cause disabilities, developing effective interventions to reverse the disability process, or utilizing 

adaptive devise to compensate for the body functions and body structures are considered as 

priorities in rehabilitation science (Brandt & Pope, 1997). As such, rehabilitation scientists may 

highlight more on the factor of the body function and body structure, and how this factor impacts 

the way an individual participate in everyday activities (Brandt & Pope, 1997). In the following 
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sections, I will relate the major aspects of this dissertation to occupation and rehabilitation 

science.  

Cognitive functions. In this dissertation, cognitive functions (e.g., information 

processing and performance monitoring) are defined as the mental processes that allow 

individuals to interact with the environment efficiently. The cognitive functions were examined 

via the EEG/ERP technique in children, adults, and adults with ADHD. Investigating the 

underlying neural processes associated with cognitive functions via EEG/ERP is in line with the 

focus of the rehabilitation science, since rehabilitation science emphasizes the importance of the 

underlying function and structures in determining one’s overall functioning (Brandt & Pope, 

1997). Occupational scientists also consider the cognitive functions as one of the contributor to 

the personal health condition and well-being, and further explore whether having an individual to 

actively engage in occupation could help restore one’s cognitive functions (i.e., occupation as 

means; Curtin, Molineux, & Webb, 2009). Such a perspective is also illustrated in the ICF model 

with the bi-directional arrows among the relationships among participation, activity, and body 

function and body structure (WHO, 2002). 

Occupational performance. We administered two observation-based occupational 

performance assessments to measure the quality of the activities of daily living (ADL) and social 

interaction in children. Specifically, unlike other behavioral assessments that are required to be 

administered under certain contexts with standardized procedure, these occupational 

performance assessments were conducted under the natural contexts while individuals engaged 

in the tasks that are meaningful to them. For example, for the Assessment of Motor and Process 

Skills (AMPS; Fisher & Jones, 2014), almost all participants finished the meals they made for 

the assessment (e.g., scrambled eggs, cereal, or peanut butter and jelly sandwich). This 
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assessment along with the Evaluation of Social Interaction (ESI; Fisher & Griswold, 2015) are 

considered as occupation-based evaluations, which assess an individual’s strengths and 

weaknesses by observing how he/she performs daily life tasks under the nature context, and its 

rationale is closely aligned with the fundamental philosophies of occupational science (Fisher, 

2013). From the rehabilitation science perspective, participation in the meaningful occupation 

under the everyday context is also critical, however, these often considered as remote goals but 

not the primary ones from the rehabilitation science perspective.  

Disability. The third study of this dissertation focused on comparing the differences on 

the neural and occupational performance measures among neurotypical children, neurotypical 

adults, and adults with ADHD. Understanding the differences at the neural and behavioral levels 

in individuals with ADHD is important for diagnostic purposes and may assist in developing 

effective clinical intervention. Such a focus fits within the rehabilitation science perspective, 

since developing intervention by either restoring or compensating the dysfunction are critical to 

rehabilitation science (Brandt & Pope, 1997). On the other hand, occupational scientists focus on 

the idea of occupational balance in the everyday contexts. That is, instead of considering 

individuals with ADHD as dysfunction that requires medical intervention, they emphasize more 

on whether these individuals are able to engage the occupation that are meaningful to them, and 

whether these individuals have reached a balanced occupational performance in every domain 

(Christiansen & Townsend, 2010).  

Conclusion 

This dissertation demonstrated that utilizing the SEM approach to understand the 

underlying neural mechanisms associated with simple-task behaviors is feasible, and could 

inform the researchers and clinicians in terms of the dynamic interaction between brain and 
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behaviors in children. Moreover, this dissertation revealed the association between the neural 

measures and the quality of the occupational performance in children. Lastly, the investigation 

on the neural and behavioral measures on adults with ADHD identified unique characteristics in 

this clinical population compared to neurotypical children and neurotypical adults. Based on the 

ICF model, this dissertation covered constructs of body function and body structure (i.e., 

cognitive functions), activity (i.e., response times on the computer-based task), participation (i.e., 

occupational performance assessments). Our model showing the dynamic interaction between 

the neural and behavioral measures also captures the bi-directional relationships between the 

constructs of body function and body structure (i.e., cognitive functions) and activity (i.e., 

response times on the computer-based task). The results reported in this dissertation advance the 

knowledge related to brain-and-behavior relationships and demonstrate the effectiveness of 

statistical methods such as SEM and discriminant analysis in examining brain-and-behavior 

relationships. 
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