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ABSTRACT 
 
 
 

MACROINVERTEBRATE AND MICROBIAL COMMUNITY RESPONSES TO METAL 

STRESS AS MEASURES OF ECOLOGICAL RECOVERY OF A RESTORED HEADWATER 

STREAM 

 
 

Metal contamination from mining or natural weathering is a common feature of surface 

waters in the American west. The upper Arkansas River is a high elevation Rocky Mountain 

stream that was added to the EPA Priorities (‘Superfund’) list in 1983 due to chronic metals 

pollution from the California Gulch site near Leadville, Colorado. Water treatment infrastructure 

and removal of mine tailings  reduced metals contamination in the late-1990s and total 

abundance and richness of aquatic macroinvertebrate communities subsequently recovered to 

reference site conditions. Despite improvements in abundance and richness, other metrics (e.g., 

community composition and resilience to metals stress) suggest that the upper Arkansas River 

may not be fully recovered, and these communities may have undergone a regime shift to an 

alternative stable state set of ecological conditions. 

In Chapter 1, we report results of a long-term (28 year) observational study and a series 

of stream mesocosm experiments that investigated a potential regime shift in a mining-

contaminated watershed. We tested the hypothesis that establishment of a novel, metal-tolerant 

benthic invertebrate community in a previously contaminated stream impeded recovery of 

sensitive invertebrate species, despite significant improvements in water quality over the past 

two decades. Although individual abundance and species richness recovered following 
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reductions in metal concentrations, we observed persistent changes in community composition 

and trophic structure downstream from a former source of metal contamination. Mesocosm 

experiments conducted with reference and downstream invertebrate communities demonstrated 

that novel communities retained their tolerance to metals but were significantly more sensitive to 

other stressors. We suggest that the failure of downstream communities to recover represented a 

contaminant-induced regime shift that resulted from the sustained dominance of metal-tolerant 

species. Stream restoration ecologists generally consider increased species diversity or 

abundance of recreationally/commercially important species as indicators of restoration success. 

However, few stream restoration projects have quantified ecological resilience, and none have 

included a significant experimental component. Our finding that novel communities in a 

previously metal-contaminated watershed retained their tolerance to metals but were more 

sensitive to other stressors has important implications for how restoration success is defined. In 

systems where restoration to pre-disturbance conditions is unlikely, a better understanding of the 

ecological resilience of novel communities may be critical for assessing the restoration success. 

We suggest that resilience to novel stressors is an important indicator of restoration effectiveness 

that may be applicable in other aquatic ecosystems.  

Traditionally, stream macroinvertebrate community metrics have been used for stream 

quality assessments. Advances in microbial analyses have created the potential for routine 

sampling of aquatic microbiomes as a tool to assess the quality of stream habitat. In Chapter 2, 

we sought to determine if microbiome diversity and membership were affected by metal 

contamination in a manner similar to what has been observed for stream macroinvertebrates, and 

if so, identify candidate microbial taxa to be used to indicate metal stress in stream ecosystems. 

To address this, we evaluated microbiome membership from sediments at multiple sites within 



iv 

 

the principal drainage of an EPA superfund site near the headwaters of the Upper Arkansas 

River, Leadville, CO. From each sample, we extracted DNA and sequenced the 16S rRNA gene 

amplicon on the Illumina MiSeq platform. We used the remaining sediments from each sample 

to simultaneously evaluate environmental metal concentrations. To control for confounding 

factors in the field, we also conducted an artificial stream mesocosm experiment using  

sediments collected from two of the observational study sites. The mesocosm experiment had a 

2x2 factorial design: 1) location (upstream or downstream of contaminating tributary), and 2) 

treatment (metal exposure or control). We found that stream microbiomes showed no difference 

in alpha diversity between upstream and downstream sites in the field. Similarly, in the 

mesocosm experiments, alpha diversity changed very little following experimental metal 

exposure. However, microbiome membership differed between upstream and downstream 

locations and experimental metal exposure changed microbiome membership in a manner that 

depended on origin of the sediments used in each mesocosm. Our results suggest that 

microbiomes can be reliable indicators of ecosystem metal stress even when surface water 

chemistry and other metrics used to assess ecosystem health do not indicate stream stress. 

Lastly, a large-scale restoration project designed to improve habitat for Brown trout (Salmo 

trutta) populations was completed in the upper Arkansas River watershed. In Chapter 3, we 

examined how aquatic macroinvertebrate communities responded to this habitat restoration since 

they are a key prey resource to brown trout in this system. Over an eight-year period (2009 – 

2017), we measured benthic macroinvertebrate communities, export of aquatic 

macroinvertebrates from the river (emergence traps), inputs from riparian habitats (pan traps), 

and diets of Brown trout in response to physical habitat restoration efforts. Among these 

sampling techniques we found very similar effects – an initial decrease in abundances 
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immediately following/during restoration (2014), but abundances generally recovered and 

remained similar to pre-restoration conditions. However, fish diets had a notable trend increasing 

over baseline conditions in the last two years of monitoring (2016 and 2017).  Additionally, we 

found that overall community composition remained unchanged between pre- and post-

restoration treatments. Our results suggest that physical habitat restoration provided limited 

benefit in terms of abundance and community composition of macroinvertebrate communities, 

and that other factors such as water quality or continued presence of metal-tolerant competitors 

may still be important drivers in this system.  
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CHAPTER 1 

RESILIENCE AND REGIME SHIFTS: NOVEL BENTHIC COMMUNITIES IMPEDE 

ECOLOGICAL RECOVERY IN A HISTORICALLY METAL-CONTAMINATED STREAM 

 

Introduction 

 The likelihood that degraded ecosystems can recover following the removal of a stressor 

and the length of time required for these systems to return to pre-disturbance conditions are 

critical questions in applied ecology (Millennium Ecosystem Assessment 2005). Stream 

restoration projects that are designed to improve water or habitat quality offer unique 

opportunities to address these questions (Young et al. 2005). However, despite investments 

exceeding $1 billion (U.S.) per year, our ability to quantify the effectiveness of stream 

restoration projects remains limited (Bernhardt et al. 2005). Poor study designs (Bernhardt et al. 

2005), limited spatiotemporal scale (Bernhardt et al. 2007), the focus on habitat instead of water 

quality (Palmer et al. 2010) and failure to consider ecological theory (Palmer et al. 1997; Lake et 

al. 2007) impede our ability to learn from these potential management experiments (Gunn et al. 

2010). In addition, there remains considerable uncertainty regarding which specific ecological 

measures are most appropriate for quantifying restoration effectiveness. While increased species 

diversity or abundance of recreationally important species are considered indicators of 

restoration success, few projects also measure ecosystem processes (e.g., decomposition; export 

of riparian subsidies). Although there is an assumed relationship between species diversity and 

ecological processes in restored terrestrial systems (Ruiz-Jaen and Aide 2005), with few 

exceptions (e.g., Cardinale et al. 2000; Cardinale and Palmer 2002), this relationship has not 
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been rigorously tested in freshwater ecosystems. Finally, there is debate among ecologists 

regarding restoration goals in novel or hybrid communities, defined as new combinations of 

species resulting from anthropogenic stressors (Hobbs et al. 2006; Hobbs 2007; Hobbs et al. 

2009). Returning novel communities to reference conditions may not be possible after crossing a 

critical threshold and shifting to an alternative state.  

 Measures of species richness and abundance are among the most commonly employed 

indicators of ecological condition in stream bioassessments (Simon 2003). However, ecologists 

also recognize that trophic composition or changes in community structure in space and time 

(e.g., beta diversity) may be more sensitive indicators of anthropogenic perturbations than the 

number of species. For example, taxonomic richness may be an ineffective indicator of 

disturbance because species replacement can mask spatial and temporal changes the total number 

of species (De Laender et al. 2012; Dornelas et al. 2014). Furthermore, disturbed communities 

are often dominated by cosmopolitan species (Magurran 2016), resulting in biotic 

homogenization, reduced functional diversity and loss of ecological resilience (Folke 2004; 

Cadotte 2011; Mori et al. 2018). Shifts in community composition and loss of ecological 

resilience have long-term implications for ecosystem recovery following the removal of a 

stressor. Studies in some systems (e.g., coral reefs) suggest that regime shifts may be very 

difficult to reverse, even after a stressor has been removed (Bellwood et al. 2004; Hughes et al. 

2005). New combinations of species resulting from regime shifts may provide very different 

ecosystem services (Hobbs et al. 2006; Hobbs et al. 2009; Oliver et al. 2015) and therefore have 

important implications for how ecologists define targets for restoration.  

 Long-term observational studies have the potential to identify regime shifts in disturbed 

ecosystems; however, experimental approaches may be necessary to demonstrate cause-and-
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effect relationships (Scheffer and Carpenter 2003; Schroder 2005). Although some investigators 

have identified regime shifts in stream ecosystems in response to a stressor (Rocha et al. 2015), 

none have included a substantial experimental component. In this research we report results of a 

long-term (28 year) observational study complemented by a series of stream mesocosm 

experiments that investigated a potential regime shift in a mining-contaminated watershed. We 

focus on metal pollution associated with current and historical mining operations, which is a 

significant global environmental problem (Hudson-Edwards 2016). Although catastrophic 

discharges of mining wastes such as the 2015 Minas Gerais (Brazil) tailings dam failure and the 

Animas River (Colorado, USA) spill have significant effects on individual watersheds, elevated 

levels of metals from abandoned mines often have much broader regional impacts (Jones et al. 

2013). For example, a survey of 95 randomly selected sites in Colorado’s southern Rocky 

Mountain ecoregion showed that 23% of these streams were affected by metals from abandoned 

mines (Clements et al. 2000).  

 The primary goal of this research was to test the hypothesis that benthic communities in a 

previously metal-polluted watershed (Arkansas River, CO, USA) have undergone a regime shift. 

A second objective was to quantify responses of these communities to a novel anthropogenic 

stressor (a simulated diesel fuel spill). Building on previous work (Courtney and Clements 2000; 

Kashian et al. 2007; Clements et al. 2008), we hypothesized that ecological resilience, defined 

here as the ability of a system to withstand disturbance (Holling 1973), is an appropriate 

indicator of restoration effectiveness in streams recovering from long-term exposure to 

contaminants.  
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Methods 

Study site 

 The field study was conducted in the headwaters of the Arkansas River, located near the 

town of Leadville and approximately 100 km west of Denver, Colorado (USA). Mining in the 

watershed began in the mid-1800s, resulting in significant degradation of water quality, habitat 

and aquatic communities (Clements et al. 2010). In 1983 California Gulch, a tributary to the 

Arkansas River, was listed as a U.S. EPA Superfund Site. A large-scale restoration project 

completed in 2013 was designed to improve water quality and restore a productive brown trout 

(Salmo trutta) fishery to the watershed. From 1989 to 2017 we monitored responses of benthic 

macroinvertebrate communities, the primary prey of brown trout, to several restoration 

treatments. By 2000, significant improvements in water quality, macroinvertebrate communities 

and brown trout populations were observed following the completion of water treatment 

facilities, removal of waste tailings, and bank stabilization (Clements et al. 2010). The final 

phase of the project, which focused on improvements in stream habitat and riparian vegetation, 

was finished in 2013. In 2014 this reach of the Arkansas River was identified as a “gold medal” 

trout stream, a designation intended to recognize the highest quality fisheries in Colorado.  

 

Long-term monitoring 

 Details of the field sampling methods and study sites have been published previously 

(Clements et al. 2010). Benthic macroinvertebrate samples were collected from sites upstream 

and downstream from California Gulch (CG), the primary source of metals to the system. 

Although upstream sites historically received some input of metals from the Leadville Mine 

Drainage Tunnel (LMDT), this source of contamination was eliminated in 1992. Replicate (n = 5 
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per site), quantitative samples were collected annually in fall and spring from 1989 to 2017 using 

a Hess sampler (0.1 m2). Samples were rinsed through a 350 µm sieve in the field and materials 

retained were preserved in 80% ethanol. In the laboratory, samples were sorted and identified to 

the lowest practical level of taxonomic resolution (genus for most aquatic insects; family for 

chironomids). Benthic data were analyzed across 3 time periods: before (1989-2009) and after 

completion of water treatment facilities (2000-2008) and habitat restoration (2009-2017). Water 

samples for determination of Zn, the primary contaminant in this system, were collected on each 

sampling occasion, filtered through a 0.45 µm filter and preserved in nitric acid. Water samples 

were analyzed using flame or furnace atomic adsorption spectrophotometry.  

 

Mesocosm experiments 

 To compare the responses of benthic communities from sites upstream and downstream 

of historical metal inputs, five stream mesocosm experiments were conducted between 2009 and 

2017. Four of these experiments exposed communities to metals and a 5th experiment simulated 

a spill of diesel fuel, a novel stressor in this system. Details of the experimental approach and the 

mesocosm facility have been described previously (Clements 2004). Experiments were 

conducted using natural benthic communities that colonized plastic trays (10 x 10 x 6 cm) filled 

with pebble and small cobble substrate. Our previous experiments have shown that trays are 

colonized by a diverse assemblage of aquatic insects (25-40 taxa per tray) and that communities 

on trays are quite similar to those collected from the natural substrate (Courtney and Clements 

2002; Clements et al. 2013). For each experiment, trays were deployed at an upstream reference 

site and a site downstream from the former CG Superfund Site. The upstream and downstream 

sites (AR1 and AR5, Clements et al. 2010) were separated by approximately 12 km. Colonized 
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trays were collected after 30-40 d, placed in individual coolers filled with ambient stream water 

(4 trays per cooler), and transported to the Stream Research Laboratory (SRL) at Colorado State 

University, USA. The contents of each cooler were randomly assigned to one of 18 stream 

mesocosms. Water supplied to the mesocosms originated from a deep, mesotrophic reservoir and 

was delivered to each 20 L stream at a rate of 1.0 L/min. Paddlewheels maintained a constant 

current velocity of 0.35 m/s.  

 For each experiment we used a 2 X 2 factorial design with site (upstream versus 

downstream) and metal treatment (control versus metals) as the main effects. Control streams 

were replicated four times and treatment streams were replicated 4-5 times. Peristaltic pumps 

delivered stock solutions of metals from 20-L carboys at a rate of 10-mL/min to maintain target 

concentrations of 25 µg Cu/L and 650 µg Zn/L in treated streams. Routine physicochemical 

measurements (temperature, dissolved oxygen, pH and specific conductance) were measured 

every 2-3 d using hand held meters (models 550A and 63; YSI Incorporated, Yellow Springs, 

Ohio). Water hardness and alkalinity, factors that determine metal bioavailability, were measured 

in the laboratory using standard titration procedures. Filtered (0.45-µm) water samples were 

collected from each stream on 2-3 occasions to verify concentrations of metals and analyzed as 

described above. After 10 d the four trays in each mesocosm were removed, rinsed through a 350 

µm sieve and organisms were preserved in 80% ethanol. Benthic samples were processed in the 

laboratory as described above. Mesh nets covering the standpipes prevented emigration of 

organisms from the flow-through mesocosms and therefore differences between control and 

treated streams at the end of the experiment were attributed to mortality. 

 To quantify resilience of benthic communities to a novel stressor, an additional 

mesocosm experiment was conducted in fall 2016 that simulated a diesel fuel spill. We were 
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interested in the effects of diesel exposure because of a recent spill that occurred in West Creek, 

a tributary to the Dolores River in western Colorado (Duggan et al. 2018). We used the same 

study design (2 sites and 2 treatments) and collected organisms from the same sites as described 

above, but the mesocosms were modified to accommodate diesel exposure. Mesocosms for this 

experiment were constructed from stainless steel pans (53 x 32 x 15 cm) in a flow-through 

design. Current velocity (0.25 m/s) and stream depth (11 cm) were maintained by stainless steel 

paddle wheels and stand pipes, respectively. The rate of diluent flow to these streams was 0.3 

L/min, resulting in water residence time of approximately 40 minutes. In a 2 X 2 factorial design, 

replicate mesocosms (n = 4) with communities from either the upstream or downstream station 

were randomly assigned to one of two treatments: 0 or 600 mg/L diesel. After 48 hours of 

acclimation, diluent flow was briefly terminated and a single pulse of diesel was added to each 

mesocosm to achieve the target concentration. After 7 days exposure, trays in each stream were 

removed and the remaining organisms were preserved and processed as described above. 

 

Statistical analyses 

 In the four mesocosm experiments with metals we used general linear models (PROC 

GLM; SAS 9.3) to analyze the main effects of source community (upstream versus downstream), 

treatment and year on benthic communities. The primary goal of this analysis was to test the 

hypothesis that effects of metals differed between upstream and downstream communities and 

therefore we were especially interested in the site x treatment interaction term. Because of 

differences in community composition and abundance of dominant taxa among years, analyses 

were mostly restricted to abundance of major aquatic insect orders (Ephemeroptera, Plecoptera, 

Trichoptera and Diptera), total abundance, number of taxa and abundance of functional feeding 
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groups (e.g., grazers, predators). We used canonical discriminant analysis (PROC CANDISC) to 

examine separation of macroinvertebrate communities between sites and treatments based on 

abundance of the 18 dominant taxa. In the mesocosm experiment with diesel, we used a 2-way 

ANOVA to measure the effects of source community and treatment. Where necessary, 

abundance values were ln (x+1) transformed to satisfy assumptions of parametric statistics.   

 

Results 

Field observations in the Arkansas River 

 Changes in Zn concentrations measured at upstream and downstream stations showed 

considerable annual variation, particularly at the downstream station (Fig. 1). Zn concentrations 

in the upstream reach were reduced in 1992 after completion of the LMDT treatment facility and 

generally remained below the U.S. EPA chronic criterion value (dashed horizontal line). Zn 

concentrations were approximately 2-10 times greater at the downstream station and consistently 

exceeded the EPA chronic criterion value before 2001. Metal concentrations decreased 

significantly after the water treatment facilities were completed at the CG Superfund Site and 

were only slightly higher than those at the upstream station after 2008. Between 2009 and 2017, 

the time period when our mesocosm experiments were conducted, Zn concentration exceeded the 

U.S. EPA criterion value on only one occasion (2011). These results demonstrate the significant 

improvements in water quality and overall success of remediation with respect to reducing metal 

concentrations at the CG Superfund Site.  

 Benthic communities in the Arkansas River responded to these improvements in water 

quality. Long-term variation in taxonomic richness and total macroinvertebrate abundance at 

upstream and downstream sites were similar across the 3 time periods (Fig. 2). Mean number of 
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taxa and abundance increased significantly (p < 0.0001) in both reaches after completion of the 

water treatment facilities in 2000. Total abundance and number of taxa at both stations were 

greater than values reported in a survey of 108 uncontaminated reference streams in Colorado 

that used the same sampling methods (Schmidt et al. 2010).  

 In contrast to the patterns for abundance and taxonomic richness, functional feeding 

group composition of benthic communities differed markedly between upstream and downstream 

sites (Fig. 3). Differences in the composition of functional feeding groups resulted primarily 

from the failure of several species of mayflies (Ephemeroptera) and other grazers to recover 

downstream. These organisms were replaced by filter-feeding caddisflies (Trichoptera) and non-

insects (primarily oligochaetes), which accounted for approximately 29% of the 

macroinvertebrate community at the downstream reach (versus < 10% at the reference site).  

 

Mesocosm experiments 

 Routine physicochemical characteristics (pH, specific conductance, temperature and 

dissolved oxygen) in mesocosms did not differ among treatments (Table S1) and were similar to 

those measured in uncontaminated Rocky Mountain streams (Clements et al. 2000; Schmidt et 

al. 2010). Concentrations of metals measured during the four experiments were similar between 

treated mesocosms, but were 12-20% lower than target values (Table S2). Differences between 

measured and target concentrations likely resulted from uptake and adsorption of metals during 

the experiments. Concentrations of metals in treated mesocosms across all experiments were 

approximately 18 times the U.S. EPA hardness-adjusted criterion value for Cu and Zn.  

 Analysis of benthic communities showed significant effects of metals on total 

macroinvertebrates abundance, number of taxa and abundance of mayflies, stoneflies and 
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dipterans (Fig. 4). Results of GLM analyses showed that site, metal treatment, year and the 

associated interaction terms explained 82-95% of the total variation in abundance (Table 1). 

More importantly, effects of metals were consistently greater on communities from the upstream 

reference site, as indicated by the significant site x metals interaction term for mayflies, 

stoneflies and total abundance. Although treatment effects on dipterans (primarily 

Chironomidae) were also highly significant, responses to metals were similar between upstream 

and downstream communities. There were no effects of metals on caddisflies, which were 

dominated by three filter-feeding taxa (Arctopsyche, Hydropsyche and Brachycentrus).  

 Exposure to metals shifted the composition of most functional feeding groups, but the 

magnitude of these effects also differed between upstream and downstream communities (Fig. 5; 

Table 1). In particular, we observed a highly significant site x metal interaction effect on grazers 

(p = 0.0002), which were reduced by 72% at the upstream site compared to 43% at the 

downstream site. No other functional feeding group showed a significant site x treatment 

interaction, indicating that effects of metals on these groups were similar at upstream and 

downstream reaches.  

 Results of multivariate analyses based on abundance of the 18 dominant taxa 

demonstrated that effects of metals on upstream reference communities were greater than on 

downstream communities (Fig. S1). Although upstream and downstream communities were 

separated along canonical variable 1, canonical variable 2 significantly (p < 0.0001) separated 

control and metal-treated streams. Separation between controls and treated streams was greater 

for communities from the upstream station than the downstream station. Separation along 

canonical variable 2 resulted primarily from greater abundance of mayflies (Baetis and 
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Paraleptophlebia) in control streams and greater abundance of caddisflies (Arctopsyche and 

Rhyacophila) in treated streams.  

 Exposure of Arkansas River benthic communities to diesel fuel, a novel stressor in this 

system, significantly reduced abundance of all macroinvertebrate groups (Fig. 6; Table S3), 

including those unaffected by metals (e.g., Trichoptera). Interestingly, we observed the greatest 

effects of diesel exposure on dipterans (primarily chironomids), which were reduced by 85-90% 

in mesocosms across both sites. Mayflies were the only macroinvertebrates that showed a 

significant site x treatment interaction (p = 0.0149), indicating that the effects of diesel varied 

between sites. However, in contrast to experiments conducted with metals, mayflies from the 

downstream site were slightly more sensitive to diesel than those from the upstream reference 

site. Abundance of mayflies from the downstream site was reduced by 74% compared to a 62% 

reduction at the upstream site.  

 

Discussion 

 Results of four separate mesocosm experiments conducted between 2009 and 2017 

indicated that benthic communities located downstream from a former U.S. EPA Superfund Site 

were more tolerant to metals compared to those from the upstream reference site. We observed 

significantly greater reductions in total macroinvertebrate abundance and greater shifts in 

community structure and functional feeding group composition at the upstream site after 

exposure to metals. Shifts in community composition observed in treated mesocosms, 

particularly the loss of grazing mayflies and increased relative abundance of caddisflies, were 

consistent with responses observed in the field. Differences in metal tolerance between 

communities persisted throughout the study, despite significant improvements in water quality 
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over the past 20 years. Although several macroinvertebrate taxa from the upstream site were 

more sensitive to metals, the greatest difference between sites was observed for grazing mayflies, 

organisms known to be especially sensitive to metals (Clements et al. 2000; Mebane et al. 2015; 

Herbst et al. 2018). 

 There are at least two potential explanations for the greater tolerance of downstream 

communities to metals, both of which are related to the historical effects of mining pollution. 

First, persistent alterations in community structure and trophic composition at the downstream 

site, especially the dominance of filter-feeding caddisflies, have resulted in greater densities of 

metal-tolerant taxa. These metal-tolerant organisms have replaced several species of grazing 

mayflies, organisms which failed to recover despite improvements in water quality (Clements et 

al. 2010). A second explanation for the different responses between upstream and downstream 

communities is the greater tolerance of Baetis tricaudatus collected below CG. Effects of metals 

on B. tricaudatus, the dominant mayfly in the Arkansas River, were significantly greater on 

upstream populations (site x metals interaction, p < 0.0001). Across the four mesocosm 

experiments, survival of B. tricaudatus from the upstream site was reduced by 88% compared to 

a 48% reduction at the downstream site. These differences in sensitivity between populations 

were a result of either physiological factors that regulate metal tolerance (e.g., increased 

production of metal-binding proteins) and/or genetic differences between mayfly populations. 

Baetis is multivoltine, highly mobile, ubiquitous and the dominant mayfly species in many 

western streams (Ward et al. 2002; Merritt et al. 2008). Because of these life history traits, it is 

likely that B. tricaudatus can rapidly acclimate or adapt to metals exposure. However, given the 

potential cost of tolerance to metals (Wilson 1998; Kashian et al. 2007; Zuellig et al. 2007; 

Vigneron et al. 2015) and the rapid rate at which organisms lose this tolerance after metal levels 
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have declined (Levinton et al. 2003), it is surprising that these population-level differences have 

persisted following restoration. We have previously reported that reduced genetic diversity and 

alterations in metal-responsive genes in B. tricaudatus resulted from a population bottleneck 

(Beaty et al. 1998) downstream from the CG Superfund Site. Although we are unable to 

distinguish between physiological acclimation and genetic changes in these populations, results 

suggest that both community-level and population differences influenced responses to metals.  

 

Has the Arkansas River undergone a regime shift?  

 There are several potential explanations for the failure of downstream communities in the 

Arkansas River to recover following improvements in water quality. First, it is possible that 

metal concentrations have not been sufficiently reduced to allow grazing mayflies and other 

sensitive taxa to recolonize. Although Zn concentrations in the downstream reach declined 

significantly after 2001 and reached nontoxic concentrations, they occasionally exceeded the 

established water quality criterion value (Fig. 1). Water quality criteria for metals, defined as the 

highest concentration that should not to pose a significant risk to most species (U.S. EPA 2002), 

are established to protect all components of aquatic ecosystems. Although aquatic insects are not 

well represented in the database used to establish criteria (Brix et al. 2011; Clements et al. 2013; 

Poteat et al. 2014), these values are considered to be relatively conservative. Our previous 

mesocosm experiments have shown that the water quality criterion value for Zn is protective of 

most species, including those known to be sensitive to metals (Clements 2004). Therefore, it is 

unlikely that the modest exceedances of criterion values for metals over the last 9 years are 

responsible for the continued alteration of downstream communities.  
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 A second explanation for differences between reaches is that there has not been sufficient 

time for downstream communities to fully recover. However, macroinvertebrate communities in 

the upstream reach responded rapidly (within 2 years) to improvements in water (Clements et al. 

2010). Furthermore, other investigators have reported rapid recovery of benthic communities in 

mining polluted streams following reductions in metal inputs (Hornberger et al. 2009; Mebane et 

al. 2015; Herbst et al. 2018). Therefore, we believe that 9 years is more than sufficient time for 

downstream communities in the Arkansas River to recover.   

 A third explanation for the failure of downstream communities to recover after 

improvements in water quality was the result of a contaminant-induced regime shift and the 

continued dominance by metal-tolerant species. There is evidence from both aquatic and 

terrestrial systems that exposure to anthropogenic stressors can reduce community resilience and 

functional redundancy, thereby increasing the likelihood that the system will shift to an 

alternative state (Beisner et al. 2003; Scheffer 2003; Bellwood et al. 2004; Folke 2004). The 

specific mechanism responsible for the failure of grazers to recover in the Arkansas River are not 

known; however, previous experiments conducted with benthic communities in coldwater 

streams have demonstrated strong competitive interactions between grazers and filter-feeders 

(Dudley et al. 1990; Kohler 1992).  Identifying regime shifts in natural systems is important 

because reducing or even eliminating stressors that initially caused the transition may not be 

sufficient to return a system to pre-disturbance conditions. We hypothesize that the long-term 

reduction in abundance of metal-sensitive species, their replacement by metal-tolerant species 

and the shift in trophic composition has produced a novel community that may not return to pre-

disturbance conditions.  
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 The concept of novel or hybrid communities (Hobbs et al. 2006) is an emerging paradigm 

in ecology with important implications for how we define restoration success (Hobbs et al. 

2009). While total abundance and number of species may be similar in reference and disturbed 

systems, species replacement results in novel communities that may provide very different 

ecosystem services (Dornelas et al. 2014). If a majority of species in a disturbed community have 

similar responses to environmental perturbations, these communities are likely to show lower 

resilience to other stressors (Folke 2004; Oliver et al. 2015). A loss of resilience can even occur 

in systems where species richness is unchanged if communities become homogenized and 

dominated by cosmopolitan species (Mori et al. 2018). We believe this situation has occurred in 

the Arkansas River. If restoration of the Arkansas River to pre-disturbance conditions is 

unachievable because this system has undergone a regime shift, a better understanding of the 

stability and ecological resilience of this novel community is critical.  

 

What is an appropriate criterion for restoration success?  

 In situations where study designs allow investigators to quantify restoration effectiveness, 

the determination of success is often dependent on which specific measures are being evaluated. 

Reductions in contaminant concentrations and improvements in habitat quality are clear 

indicators of success (Gunn et al. 2010). Biological responses to these improvements, such as 

increased macroinvertebrate abundance and diversity, are also appropriate measures of 

restoration effectiveness, in part because of their potential contribution to community stability 

(Palmer et al. 2010). The increase in brown trout populations and the designation of the Arkansas 

River as a Gold Medal fishery in 2014 will have long-lasting socioeconomic benefits. However, 

despite these improvements, persistent alterations in community composition and greater 
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sensitivity of downstream communities to novel stressors suggest that this system has not fully 

recovered. Shifts in the composition of functional feeding groups, such as the elimination of 

grazers and their replacement by filter-feeders, have the potential to significantly alter ecosystem 

processes (Wallace et al. 1989). Although there is some evidence of functional redundancy for 

processes in streams (Cardinale and Palmer 2002), the relationship between species diversity and 

ecosystem function has not been well established in these systems (Palmer et al. 1997). A meta-

analysis of restoration effectiveness in aquatic ecosystems showed that stream restoration 

generally improved biodiversity, but not ecosystem services (Benayas 2009). These results 

suggest that maintaining ecosystem processes may require restoring the full complement of 

species within different functional groups (Lake et al. 2007). Because of the direct connection 

between functional groups and ecosystem processes, we believe that recovery of functional 

diversity may be a more useful indicator of restoration effectiveness than improvements in 

species diversity (Cadotte 2011). 

 In addition to returning the structural and functional integrity of a community to pre-

disturbance conditions, restoring ecological resilience will be especially important under future 

scenarios of land use alterations, climate change, chronic pollution and other anthropogenic 

disturbances (Paine et al. 1998). Although ecologists recognize the importance of ecological 

resilience, quantifying resilience in natural systems is challenging (Oliver et al. 2015; Angeler et 

al. 2018), largely because of a lack of experimental studies (Scheffer 2003; Schroder 2005). 

Consequently, most studies simply measure changes of more tractable measures (e.g., species 

richness) and assume a relationship with community resilience. We believe that experimental 

approaches are of critical importance for demonstrating cause-and-effect relationships among 

stressors, community resilience and the potential for regime shifts. 
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 In the current study, mesocosm experiments coupled with long-term biomonitoring 

provided an opportunity to quantify differences in community resilience. Benthic communities 

downstream from a historical source of metals pollution retained their tolerance to metals, 

despite significant reductions in metals exposure and improvements in water quality. We 

hypothesize that the failure of downstream communities to recover and the continued dominance 

by metal-tolerant organisms is evidence of a regime shift in this system. More importantly, these 

novel communities were also more sensitive to other stressors. Results of the current experiments 

with diesel fuel and previous studies showed that the effects of several biotic and abiotic 

stressors, including stonefly predation, acidification and UV-B radiation, were consistently 

greater on metal-tolerant communities (Kiffney 1996; Clements 1999; Courtney and Clements 

2000; Kashian et al. 2007; Zuellig et al. 2007; Clements et al. 2008). Thus, in addition to the 

traditional measures of abundance and species richness, we suggest that experimental 

quantification of community resilience and sensitivity to novel stressors are appropriate 

measures of restoration effectiveness in contaminated ecosystems. 
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Table 1. Results of ANOVA testing for effects of metals, year, site and the interaction terms for 
each main effect in the model (none of the 3-way interaction terms were significant) in stream 
mesocosms. Table shows F-values and p-values (in parentheses) for abundance of major 
macroinvertebrate orders, total abundance, total richness and abundance of the five functional 
feeding groups. 

 

 Variable R2 Metals Year Site Site x Metals Year x Metals 

Year x 

Site 

Ephemeroptera 0.95 208.34 106.35 120.14 6.94 4.14 84.59 

  

(<0.0001) (<0.0001) (<0.0001) (0.011) (0.0103) (<0.0001) 

Plecoptera 0.87 3.32 25.62 103.65 3.7 0.5 55.94 

  

(0.0741) (<0.0001) (<0.0001) (0.0597) (0.685) (<0.0001) 

Trichoptera 0.90 0.83 94.19 34.96 0.11 0.77 52.71 

  

0.3671 (<0.0001) (<0.0001) 0.7451 0.5137 (<0.0001) 

Diptera 0.89 98.64 64.3 47.38 0.58 0.48 29.28 

  

(<0.0001) (<0.0001) (<0.0001) (0.4483) (0.6962) (<0.0001) 

Total abundance 0.93 186.33 121.77 88.44 6.85 0.26 27.69 

  

(<0.0001) (<0.0001) (<0.0001) (0.0115) (0.8531) (<0.0001) 

Total taxa 0.82 4.55 12.31 124.86 0.03 4.04 22.63 

  

(0.0376) (<0.0001) (<0.0001) (0.8571) (0.0115) (<0.0001) 

Grazers 0.94 195.23 125.16 24.04 16.14 3.05 85.64 

  

(<0.0001) (<0.0001) (<0.0001) (0.0002) (0.0362) (<0.0001) 

Filterers 0.90 0.07 85.8 48.76 0.04 1.75 47.34 

  

(0.7996) (<0.0001) (<0.0001) (0.8406) (0.1683) (<0.0001) 

Shredders 0.79 0.02 25.09 3.67 0.61 1.24 40.7 

  

(0.8921) (<0.0001) (0.0607) (0.4389) (0.3054) (<0.0001) 

Gatherers 0.90 115.12 67.85 100.59 0.24 0.42 21.21 

  

(<0.0001) (<0.0001) (<0.0001) (0.6294) (0.7423) (<0.0001) 

Predators 0.87 0.01 40.00 144.29 2.25 1.37 34.08 

  

(0.9033) (<0.0001) (<0.0001) (0.1394) (0.2628) (<0.0001) 
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Figure 1. Long-term (1989-2017) changes in Zn concentration measured at upstream (open 
circles) and downstream (closed circles) stations in the Arkansas River. Dashed horizontal line 
represents the U.S. EPA chronic criterion value for Zn. 

 

 

 

 

 

 

 

 

 

 



21 

 

 

 

Figure 2. Long-term (1989-2017) changes mean (+s.e.) macroinvertebrate abundance (left 
panel) and number of taxa (right panel) at upstream and downstream reaches in the Arkansas 
River. Data summarize 3 time periods: before (1989-2009) and after completion of water 
treatment facilities (2000-2008) and habitat restoration (2009-2017). Results of 2-way ANOVA 
testing for the effects of year, site and the site x year interaction are shown (* p < 0.05; *** p < 
0.0001). Horizontal lines represent mean abundance and number of taxa reported from a survey 
of 108 Colorado reference streams that employed the same sampling methods as in the present 
study (Schmidt et al. 2010). 
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Figure 3.  Long-term (1989-2017) changes in the proportion of the major functional feeding 
groups and non-insects at upstream and downstream reaches in the Arkansas River. Data 
summarize 3 time periods: before (1989-2009) and after completion of water treatment facilities 
(2000-2008) and habitat restoration (2009-2017). 
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Figure 4. Results of mesocosm experiments showing effects of metals on benthic communities 
collected upstream and downstream from the former California Gulch Superfund Site. Figure 
shows mean (+s.e.) abundance of the 4 major macroinvertebrate orders, total abundance and 
number of taxa in control and metal-treated streams. Results of statistical analyses are shown in 
Table 1. 
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Figure 5. Results of mesocosm experiments showing effects of metals on abundance of the 5 
major feeding groups collected upstream and downstream from the former California Gulch 
Superfund Site. Figure shows mean abundance of the 5 major functional feeding groups in 
control and metal-treated streams. Results of statistical analyses are shown in Table 1. 
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Figure 6. Results of mesocosm experiments showing effects of diesel fuel on abundance of the 4 
major macroinvertebrate orders collected upstream and downstream from the former California 
Gulch Superfund Site. Results of ANOVA testing for the effects of diesel treatment, site and the 
treatment x site interaction are shown Table S3. 
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CHAPTER 2 

METALS ALTER MEMBERSHIP BUT NOT DIVERSITY OF A HEADWATER STREAM 

MICROBIOME 

 

Introduction 

Streams in the western United States are frequently impaired from elevated metal 

concentrations due to a combination of historical mining activities and to a lesser extent natural 

weathering processes. In Colorado, there are approximately 23,000 abandoned mines (Graves 

2017) resulting in approximately 23% of Colorado streams qualifying as impaired (Clements et 

al. 2000). One metric routinely used to evaluate stream water quality and ecosystem health is 

stream macroinvertebrate community composition. Various protocols that use 

macroinvertebrates continue to be standard practice for stream biomonitoring (e.g., De Pauw and 

Vanhooren 1983; Barbour et al. 1999; Carlisle at al. 2008). Macroinvertebrates have a series of 

characteristics that have proven useful for stream bioassessments including ubiquity, high 

diversity, restricted ranges, short generation times, small size, and are important food sources for 

aquatic and terrestrial consumers alike (e.g., Baxter et al. 2005). However recent studies have 

found that macroinvertebrate membership may be a better indicator than diversity for how 

contaminants affect stream ecosystems (Wolff et al. 2019). Because microorganisms have many 

of these same characteristics and because analyses of microbiome characteristics have become 

more routine, we investigated whether microbiomes had dynamic responses to metal exposure in 

metal-contaminated ecosystems that would make them an appropriate indicator of stream 

ecosystem health.  
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We hypothesized that microbiomes may potentially be better indicators of water quality 

than macroinvertebrates because they are even more ubiquitous and dynamic and thus may 

report even subtler differences in water quality. For instance, typical bacterial generation times 

(i.e., doubling time) occur over hours or days (Gibson et al. 2018) compared to weeks to months 

for macroinvertebrates (Merritt and Cummins 2019). The spatial scale at which microbiomes 

operate is also much smaller than for stream macroinvertebrates, creating potential to identify 

small pockets of contamination in heterogeneous stream ecosystems. We now know that 

microbial biofilms are formed by complex, non-random assemblages of algae, bacteria, and 

fungi (Flemming et al. 2016) and that these diverse microbiomes can be shaped by physical 

properties like stream velocity (Battin et al. 2003) and substrate type (reviewed in Zeglin 2015) 

as well as chemical properties such as pH (Fierer et al. 2007, Lear et al. 2009). It is also clear that 

metals affect the function of microbiomes, including evidence for metals decreasing stream 

nitrification (Niyogi et al. 2003), and reducing rates of microbial respiration (Carlisle and 

Clements 2005). Metals also affect microbiome membership, including evidence where specific 

sub-phyla increased (γ-proteobacteria) or decreased (β-proteobacteria) with metal exposure 

(Feris et al. 2003).   

To test the potential for microbiomes to act as indicators of metal contamination we 

evaluated the stream microbiome of the upper Arkansas River near Leadville, Colorado, USA. 

The upper Arkansas River has been impaired by metal pollution due to historical mining since 

the mid-1800s (Clements et al. 2010). By the late 1990s, implementation of water treatment 

facilities and removal of floodplain mine tailings resulted in significant improvements in water 

quality including decreased dissolved metals – principally cadmium (Cd), copper (Cu), and zinc 

(Zn) – downstream from where California Gulch enters the mainstem of the upper Arkansas 
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River (Clements et al. 2010). Despite improved water quality, macroinvertebrate community 

membership has remained different between upstream reference sites and sites downstream of 

California Gulch (Clements et al. 2010). Although species richness has remained similar between 

upstream and downstream locations, community membership has continued to differ among sites 

(Wolff et al. 2019).  

To assess how microbiomes were affected by metal exposure in the upper Arkansas River 

we chose to focus on the bacterial component of the stream microbiome because: A) sediment 

biofilms are primarily composed of bacterial biomass (from 90-99%) (Nealson 1997; Bar-On et 

al. 2018), B) many stream macroinvertebrates spend significant portion of their lifecycle grazing 

on biofilm in sediments (Boeker et al. 2016) so changes in microbiome may have effects on 

higher trophic levels, and C) 16S rRNA gene sequences have better developed sequence libraries 

compared to analogous phylogenetic markers for other groups, such as the 18S rRNA gene for 

eukaryotic microbes (Hugerth et al. 2014). We collected samples at locations upstream and 

downstream of California Gulch during both Spring and Fall seasons. From each sample, we 

used 16S rRNA amplicon sequencing of the sediment biofilms on the Arkansas River to 

determine how metals influenced microbiome diversity and membership in the upper Arkansas 

River.  We complemented our field observations with experiments that exposed microbial 

communities sampled from both upstream and downstream of California Gulch to elevated metal 

concentrations. The purpose of this study was to examine: (1) how microbiome diversity and 

membership differed in an ecosystem that has elevated metal levels, (2) if these differences could 

be attributed to exposure to metals and (3) if certain microbiome genera were consistently 

enriched or depleted in response to metal exposure and therefore may be candidates for 

indicators of stream water quality. The last goal is an important step toward identifying 
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mechanistic responses of individual bacteria and aid in the development in using certain groups 

as sensitive “indicators” of metals stress.   

Methods 

Study Site  

We conducted our observational study on the upper Arkansas River, located near the 

town of Leadville, approximately 100 km west of Denver, Colorado. This area of the upper 

Arkansas has been monitored since 1989 and the site conditions are well characterized in 

previous studies (e.g., Clements et al. 2010). Briefly, this area is approximately 2,820 meters 

above sea level, and typically receives ~30 cm of precipitation annually. The Arkansas River has 

a snowmelt driven hydrograph, with peak discharges in May or June, normally reaching base 

flow conditions by September. Variable run-off alters streamflow and contributions of solutes 

(including metals) from the watershed, resulting in higher metal concentrations recorded during 

Spring (i.e., during snowmelt runoff) compared to the Fall (i.e., at baseflow, Clements et al. 

2010). In the reach of the Upper Arkansas we evaluated the stream substrate was primarily 

composed of medium to large cobble in a matrix of gravel and sand. Most riparian vegetation 

was composed of sagebrush (Artemisia spp.), grasses, and willow (Salix spp.) trees. 

Observational Study We sampled sediment bacteria communities in the main stem of the 

Arkansas River at three locations: 2 sites upstream (AR1 and AR2), 4 sites downstream (AR3, 

AR4, AR4G, and AR5), and 1 site within the principal metal contributing tributary, California 

Gulch (Figure 1). At each site we collected samples to be analyzed for metal concentration and 

16S amplicon sequencing in Spring (first week of May) and Fall (first week of October) of 2017. 

For each sampling event we collected four independent sediment samples in riffle habitat (with a 
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water column depth of ca. 0.25 m) at each of the 7 sites. For each sample, we removed a large 

cobble (~ 0.3 m diameter) and scooped underlying sediments into separate 50 ml FalconTM tubes. 

 

Experimental Mesocosm  

To more explicitly test the effects of metals on stream microbiomes, we designed a 

common garden experiment using samples from an upstream and downstream location. 

Specifically, we tested if experimentally manipulated metal concentrations would result in 

similar effects on the microbiome as seen from the metal gradient in the upper Arkansas River. 

The observational study was conducted in Spring and Fall, however the mesocosm experiments 

were conducted only in the Fall. The design and parameters of the mesocosm experiments have 

been described elsewhere (e.g., Clements et al. 2019). Briefly, biofilms for the experiments were 

collected by placing plastic trays containing clean (scrubbed and air-dried) cobble in the river for 

31 days (09/05/2017 – 10/06/2017) allowing microbial biofilms to colonize the cobble in each 

tray. Trays were deployed at one reference site upstream of California Gulch (AR1; hereafter 

“Upstream”) and one site downstream of California Gulch (AR5, hereafter “Downstream”). 

Upon retrieval, 4 colonized trays were collected from each site and placed into individual coolers 

filled with ambient stream water then immediately transported to CSU’s Stream Research 

Laboratory (~ 3 hours from the sampling site). The 4 trays from each cooler were then placed 

into an individual experimental “racetrack “stream which after an equilibration period (~ 24 

hours) were randomly assigned to 2 treatments: metals or no metals (control). 

  Each artificial stream received source water from the hypolimnion of a mesotrophic 

reservoir (Horsetooth Reservoir) that was delivered at a rate of 1.0 L min-1, resulting in a 

residence time of approximately 20 minutes for each mesocosm. Characteristics of the source 
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water (e.g., pH, conductivity, temperature, dissolved oxygen) were typical of non-polluted 

mountain streams in Colorado (Cadmus et al. 2016). We implemented a 2 X 2 (location X 

treatment) factorial experimental design: 1) control-upstream, 2) control-downstream, 3) metals-

upstream, and 4) metals-downstream. Each control and treatment were replicated four times for a 

total of 16 experimental streams. We started metal additions after a 24 hr acclimation period. 

Peristaltic pumps delivered stock solutions of a metal mixture from a 20 L concentrated carboy 

at a rate of 10 ml min-1 to obtain a targeted concentration of 25 µg L-1 Cu and 650 µg L-1 Zn for 

each treatment. Paddlewheels provided a constant flow of 0.35 m s-1 to each mesocosm. Metals 

concentrated in the carboys were refreshed daily during the 10 day experiment. We checked 

water and peristaltic pump flows twice daily to ensure consistent delivery of metal solutions 

among treatments. We measured ambient metals concentrations from each mesocosm by filtering 

(0.45 µm) 15 mL water samples on Day 2, Day 4, and Day 10 of the experiment. On Day 10, all 

trays from each stream were collected, sieved (350 µm) into a clean, plastic bucket. Buckets 

were then decanted and the remaining material (e.g., sediments and periphyton floc) were 

transferred into 50 ml Falcon tubes and frozen at -80 °C until DNA extraction and metals 

analysis. 

DNA preparation and 16S rRNA amplicon sequencing  

We extracted DNA from each sample with a MoBio Power Soil DNA extraction kit and 

amplified and sequenced the V4 region of the 16S rRNA gene on an Illumina MiSeq sequencing 

platform to identify microbiome membership from each sample. Sequence reads were analyzed 

using MOTHUR (version 1.40.2; Schloss et a. 2009) and OTUs counts defined at a 97% 

similarity of the sequence using the OptiClust algorithm. Generated OTUs were then aligned to a 

SILVA reference file (version 132; Quast et al. 2013). After sequences were processed through 
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the Mothur pipeline, we then imported the data in R studio (R Core Team 2017) for statistical 

analyses and visualization. Within R, subsequent analyses were performed utilizing the package 

Phyloseq. Sequences were pre-processed to remove Operational Taxonomic Units (OTUs) that 

were not counted at least 3 times in 20% of the samples.  

For most analyses, raw OTU counts were transformed to relative abundances within each 

sample to reduce issues that can arise from count data from samples with varying library size. 

However, for DESeq2 analyses, we did not normalize count data to relative abundances because 

DESeq2 algorithms require raw sequence count data inputs. We also aggregated all OTUs that 

shared the same genera before performing DESeq2 analysis. We visualized DESeq2 results with 

Log2-fold change plots analyses (SRA Accession # [in progress]).  

Metals preparation  

We measured metal concentrations using material remaining from sediment samples that 

had previously been sub-sampled for DNA preparation. We dried sediments in a drying oven at 

60 °C for at least 24 hours with periodic weighing of each sample until no more mass was lost 

and the sample remained at a constant weight. A small amount of sediment (0.14 – 0.25 g) was 

then weighed and transferred into 15 mL Falcon® tubes. Next, 1 mL trace-element grade nitric 

acid (HNO3) was added to each sample. Samples were vortexed and then placed in a hot water 

bath at 90 °C for 4 – 6 hours. Samples were then cooled outside of the hot water bath and ca. 0.2 

mL hydrogen peroxide (H2O2) was then added. Samples were vortexed again and then placed 

back in the hot water bath for an additional 4 – 6 hours. After this period, samples were cooled, 

and 8.8 mL of Milli-Q water was added to ensure that all samples were diluted to a total of 10 

mL. Samples were vortexed for a final time, centrifuged at 2500 rpms for 5 minutes, and the 

supernatant was extracted into clean 15 mL falcon tubes for quantification of metal 



41 

 

concentration. We used dry weight and dilution volume (10 mL) to calculate the concentration of 

metals in each sample (µg g-1). Metal concentrations were quantified using a flame Atomic 

Absorption Spectrometer at the Colorado State University’s Aquatic Ecotoxicology Laboratory. 

From each sample we measured copper (Cu), cadmium (Cd; observational samples only), and 

zinc (Zn). These metals have been determined from previous studies to be the principal metals 

contaminating the upper Arkansas River (Clements et al. 2010). 

Biomonitoring statistics 

We estimated microbiome diversity using number of observed OTUs (richness) and the 

Shannon Index (Shannon and Weaver 1949), where the higher the number indicates greater alpha 

diversity for an individual site for both metrics. Whereas observed OTUs is an index of alpha 

diversity that captures the number of unique OTUs present in each sample, other indices (e.g., 

the Shannon Index employed here) of alpha diversity also account for the distribution of those 

OTUs (evenness).  To assess the effect of metals on membership we grouped upstream sites 

(AR1 and AR2) together (subsequently referred to as “Upstream”), and we grouped the four 

downstream sites (AR3, AR4, AR4G, and AR5) together (subsequently referred to as 

“Downstream”).  To test for differences in microbiome membership between upstream and 

downstream communities we used a Bray-Curtis Similarity Index and visualized the similarities 

in community membership using Principle Coordinates Analysis (PCoA plot). To determine if 

clusters from each location/season were statistically different from each other we used a 

PERMANOVA model. For the in-situ Arkansas River bacterial communities, we tested the 

effect of location (upstream vs. downstream), season (Spring vs. Fall), and their interaction. 

PERMANOVA tests were also used for pairwise comparisons (e.g., Upstream-Spring vs. 

Downstream-Spring; Upstream-Fall vs. Downstream-Fall, etc.).  
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After evaluating whole community membership differences, we used log2-plots to 

visualize what, if any, microbiome genera were significantly enriched or depleted in the 

upstream or downstream locations. We used a very low alpha value (α ≤ 0.0005) to protect 

against type-I error when identifying genera that are differentially enriched between upstream 

and downstream locations. If certain genera were more enriched at downstream locations 

(positive log2-fold value) we considered them as potential indicators of metal-tolerant bacteria. 

Similarly, genera more enriched at upstream sites (negative log2-fold value) we considered to be 

indicators of metal-sensitive bacteria. To aid in comparison with mesocosm results, we only 

included samples sourced directly from AR1 (upstream) and AR5 (downstream) locations for 

Log2-fold plots.   

Mesocosm Statistics  

For the mesocosm experiment samples, we used a 2x2 factorial design that tested the 

effect of metals treatment (control vs. treatment), and location (upstream vs. downstream). We 

used many of the same statistical and visual analyses as described previously for the 

observational study. One notable difference is that for mesocosm log2-fold plots, we compared 

metal-treated groups (positive log2-fold values) to control groups (negative log2-fold values) 

separately by each location.   

Results 

Observational Study  

To assess the effect of metals on the upper Arkansas River microbiome during the Spring 

and Fall of 2017 we analyzed in situ pH, sediment metal concentration, and 16S rRNA 

amplicons from California Gulch and sites upstream and downstream of California Gulch in the 

main stem of the upper Arkansas River. For all sampling locations during both seasons 
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California Gulch had the highest sediment metal concentrations for all three metals, followed by 

downstream sites, with upstream sites consistently having the lowest sediment metal levels 

(Table 1). At downstream sites there was a statistically significant increase of Cu and Zn in the 

Spring compared to Fall, but not for Cd (Table 1). However, we did not observe statistically 

different metal concentrations between Fall and Spring for any of the metals at the upstream sites 

(consistently low) or in California Gulch (consistently high, Table 1).   

We also examined surface water pH at the time of sediment sample collection since the 

addition of metals can lower pH of the receiving waters, and more importantly, lower pH can 

make metals more bioavailable to aquatic organisms. While differences in pH among locations 

were minimal (they ranged between 7.12 – 7.75), in general, samples with higher metal 

concentrations had lower pH (Table 1). There was also a statistically significant season by 

location interaction for pH (p=0.002). Spring pH values were different among all locations with 

upstream sites having the highest pH values followed by downstream sites, and then California 

Gulch. In the Fall, pH at upstream sites was significantly higher than California Gulch and all 

downstream sites, but there was no statistical difference between California Gulch and 

downstream locations (Table 1). For all locations, pH was lower in the Spring than in the Fall.   

At each site we assessed the 16S rRNA amplicons from all sediment samples. The 

number of observed OTUs were significantly different among locations and between seasons 

(Table 1). California Gulch had the lowest observed OTUs in both Spring and Fall (Table 1), 

however observed OTUs were statistically indistinguishable between upstream and downstream 

locations in either season (Table 1). At downstream locations, observed OTUs were significantly 

lower (p=0.0365) in the Spring than the Fall, but we observed no significant differences in 

microbiome observed OTUs between seasons at the upstream sites or in California Gulch (Table 
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1). Like observed OTUs, Shannon Index values were lowest at California Gulch in both Spring 

and Fall (Table 1), and there was no statistical difference in alpha diversity between upstream 

and downstream locations (Table 1). However, unlike the raw estimates of observed OTUs, we 

did not see any difference in Shannon Index values between seasons, or any significant season by 

location interactions (Table 1).  

We also evaluated microbiome membership so see if metals altered the composition of 

the microbiome even though indices of alpha diversity may not have differed. We found that 

microbiome membership was significantly different among locations (p=0.001) and between 

seasons (p=0.015). The membership of the California Gulch microbiome was different than the 

membership of the microbiome at upstream and downstream locations for all sampling dates 

(Figure 2). Because the difference in membership between California Gulch and either location 

in the mainstem of the Arkansas River was so pronounced we also performed a PERMANOVA 

that excluded California Gulch from the dataset to focus on differences between upstream and 

downstream sites. We found a significant difference in membership (p=0.003) between locations 

and a significant within site difference between seasons (p=0.016). However, the season by 

location (i.e., upstream vs. downstream) effect was not significant (p-value = 0.670), suggesting 

that microbiome membership differed between seasons, but changes occurred at both locations. 

A constrained analysis of principles coordinates (CAP) illustrated that differences in microbiome 

membership between locations were primarily driven by higher Cu and Zn sediment 

concentrations in downstream sites, which also likely reduced pH at the downstream sites 

(Figure 3). 



45 

 

Mesocosm Study 

We did not find significant effects of location, metals, or an interaction between location 

and metals, on the number of observed OTUs in any of the mesocosms after the 10-day exposure 

period (Table 2). However, alpha diversity (as assessed by the Shannon Index) was consistently 

higher for the microbiomes sourced from upstream sites compared to the microbiomes sourced 

from downstream sites for both the control and metal enriched treatments. When we assessed the 

effect of the metal treatment on alpha diversity within a location, we found that alpha diversity 

was significantly lower in the metal-treated samples for the downstream location, but we did not 

see a similar change in alpha diversity in response to metals for the upstream location (Table 2).  

Interestingly, in the metal-treated samples more Cu and Zn were retained in the 

downstream sediments compared to the upstream sediments over the course of the experiment 

(Table 2). Although, downstream sediments likely started with greater metal concentrations 

(inferred from the observational study), we did not see a similar  difference in concentrations in 

the control samples between upstream and downstream sediments suggesting that the metal 

treated sediments retained metals during the course of the experiment. This also mirrored the 

response of the stream microbiome, where the effect of metals depended on the location from 

which sediments were sourced. Over the course of the incubation, microbiomes from the 

downstream site showed a more pronounced change in membership to metal exposure than the 

upstream microbiome (Figure 4). This result was supported by a PERMANOVA that identified 

significant differences in membership between location (p=0.001), treatment (p=0.001), and the 

location by treatment interaction term (p=0.007).  
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Genera-level responses between observational and mesocosm studies  

In order to assess if microbiome membership was altered by the presence of metals 

similarly in our observational and experimental studies, we used Log2-fold plots to evaluate 

changes in genera (all OTUs identified to a common genus were aggregated) among the two 

components of the study. From the observational study we focused on the upstream (AR1) and 

downstream (AR5) sites that were used to seed the mesocosm experiments. The downstream site 

was significant (p≤0.0005) enriched in Cyanobacteria and Verrucomicrobia relative to upstream 

site (Figure 6). The upstream site was  enriched in Latescibacteria, Acidobacteria, Proteobacteria, 

and Rokubacteria relative to the downstream site (Figure 6).  

The microbiomes of the mesocosms sourced with upstream sediment (Figure 5) had a 

more pronounced shift in membership in response to the addition of metals compared to the 

mesocosms sourced with downstream sediment (Figure 5). However, microbiomes from each 

location did have genera that were enriched in the metal treated mesocosms compared to the 

control treatments. Both locations were enriched in Bacteroidetes in the metal treatment 

compared to control mesocosms (Figure 6). Genera from the Patescibacteria, Planctomycetes, 

Acidobacteria, Armatimonadetes, and Cyanobacteria were significantly enriched in control 

mesocosms (Figure 6). Some genera from the Proteobacteria were significantly enriched in both 

metal-treated while other genera from the same phylum were significantly enriched in control 

mesocosms. 

When we compared our observational and mesoscoms studies we did not find 

representatives from any genera that were consistently enriched at the downstream site in the 

Upper Arkansas River and in the metal-treated mesocosms. We also did not find OTUs that were 

enriched from the upstream site in the Upper Arkansas River and in the control mesocosms. 
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However, there was a representative of  an unclassified genus from the Family 

Verrucomicrobiales (Phylum Verrucomicrobia; Class Verrucomicrobiae) that was enriched in 

downstream sites and metal-treated mesocosms. 

Discussion 

In the observational study of the upper Arkansas River, observed OTUs and alpha 

diversity microbiome were not different between sites upstream and downstream of California 

Gulch despite consistently higher sediment metal concentrations of Cd, Cu, and Zn at 

downstream sites. However, the California Gulch microbiome did have significantly lower 

observed OTUs and Shannon Index values than either the upstream or downstream locations. 

These results suggest that metal concentrations may need to exceed a certain threshold before 

having significant effects on microbiome diversity. Previous research has also shown that mining 

activities or metal impaired streams have very little impact on microbiome diversity, particularly 

when the metal contamination does not have a pronounced impact on pH (e.g., Reis et al. 2013; 

Bier et al. 2015), as was the case in this study. Similar effects of metal exposure on 

macroinvertebrate diversity have been reported from these same locations in the upper Arkansas 

River. Specifically, overall species richness for macroinvertebrates upstream and downstream of 

California Gulch were found to be similar, both within and between seasons (Clements et al. 

2010).  However, membership for the macroinvertebrate community was different between 

upstream and downstream locations (Wolff et al. 2019) with the metals disproportionately 

affecting some taxa more than others. 

When we examined membership of the river microbiome at each location, we found 

significant differences in membership between upstream and downstream locations (Figure 3). 

Because metal delivery to the stream is most pronounced during Spring run-off, we hypothesized 
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that differences in microbiome membership between locations would be greatest in the 

springtime, and downstream membership would change the most between seasons. However, 

site-specific microbiome membership did not change between seasons. Between seasons 

membership of microbiomes within upstream and downstream sites were from each other 

(Figure 3). When we examined microbiome membership among sites the majority (39.6%) of the 

variance in membership explained by the first two principal coordinates was driven by the 

differences between the California Gulch microbiome and the two main stem locations. 

Although subtle, membership of the downstream microbiome was more similar to the California 

Gulch microbiome and this similarity was more pronounced in Spring than Fall, consistent with 

the idea of metals exerting an influence on the membership of downstream microbiomes. The 

differences in microbiome membership between upstream and downstream sites (Figure 1) are 

notable because concentration of metals in the surface water downstream of California Gulch are 

typically below EPA chronic aquatic life criteria (US EPA 2002).  

Previous investigations have shown that experimental metal exposure resulted in much 

greater effect on composition from macroinvertebrate communities sourced from sites upstream 

of California Gulch (Wolff et al. 2019). In this mesocosm experiment we expected to see greater 

changes in microbiome membership of upstream microbiomes in response to the metal 

treatments, since this site has historically had lower metal exposure and we anticipated the 

microbes would be more sensitive to metal stress. However, we observed a greater change in 

downstream microbiome membership in response to metal exposure, in contrast to our 

expectations. One potential explanation for the differences in treatment effect between locations 

is that the samples from the downstream location had metal-resistant bacteria present within the 

microbiome whereas the upstream samples did not or had fewer. Thus, the downstream 
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microbiome had a more rapid response to metal exposure than the upstream community after the 

10-day treatment. This mechanism is supported by the lower evenness in samples sourced from 

the downstream location following metal exposure compared to upstream microbiomes, 

suggesting an enrichment of metal tolerant organisms altered the rank abundance of the 

downstream microbiome. A recent study examining the effects of the antimicrobial drug 

Ciprofloxacin also reported more pronounced differences in microbiome membership from 

experimental exposure to Ciprofloxacin along a gradient of urbanized streams in New York 

(Rosi et al. 2017). The greatest difference in microbiome membership were observed in stream 

reaches with the highest ambient concentrations of Ciprofloxacin (Rosi et al. 2017). We posit 

that the discrepancy between community responses in macroinvertebrates versus microbiomes in 

response to metal exposure was due to the relative timescale of our study. For instance, over a 

10-day period of metal exposure, observed differences of macroinvertebrate membership are by 

driven by mortality of the original community, whereas, microbiomes may experience multiple 

generations during that same time period. Thus, microbiome membership was likely not only 

altered by mortality but also by enrichment of metal tolerant taxa, which was more pronounced 

at the downstream compared to the upstream sites. 

We also observed differences in the amount of metals retained in microbial biomass 

between microbiomes sourced from different locations. In the metal-treated samples, the 

downstream microbiomes had approximately 5-8x greater Cu and Zn compared to the 

mesocosms with sediments sourced from the upstream site (Table 2). In contrast, metal 

concentrations in microbial biomass were very similar between locations in the control 

treatments. One potential mechanism for this may be increased tolerance of downstream 

microbiomes through greater production of Extracellular Polymeric Substance (EPS). EPS from 
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stream biofilms have been shown to that retain metals in proteins, polysaccharides, and humic 

components (Flemming and Wingender 2000). Therefore, microbiome metal-tolerance may 

further exacerbate metal exposure to higher trophic levels by retaining metals in their biomass – 

either internally (e.g., metals compartmentalized within cell vacuole) or externally (e.g., metals 

bound to EPS). Recent studies have shown that that macroinvertebrates derive much of their 

metals from diet and not just from aqueous exposure (Croteau and Luoma 2008; Xie et al. 2009). 

Additionally, metal-resistant populations of oligochaetes in Foundry Cove, New York increased 

metal exposure to higher trophic levels by production of metal-binding proteins in their tissues 

(Levinton et al. 2003). If the downstream microbiome did produce more EPS in response to 

metal exposure (thus retaining more metals) this would suggest a mechanism for how the 

microbial response to environmental stress (increased EPS production) altered the diets of the 

next trophic level. Dietary exposure to metals, or decrease in resource quality, provides a 

mechanism that could explain the differences in macroinvertebrate membership between 

upstream and downstream locations previously reported for this same location (Wolff et al. 

2019). 

 

Similarity in response between the observational and mesocosm studies  

When we compared the membership of microbiomes in the field to those incubated in the 

experimental streams for ~10 days we did not observe strong association between samples from 

observational and mesocosm studies at the genera-level. Whereas the mesocosm experiment was 

designed to isolate the effect of metals on the stream microbiome our experimental design likely 

introduced other confounding factors. For example, comparison between the field observations 

and the mesocosm experiments were complicated by differences in source water chemistry. 
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Mesocosms received natural water inoculum from the hypolimnion of a large reservoir 

(Horsetooth Reservoir) and not upper Arkansas River water. Therefore, it is possible that 

differences in membership between the mesocosm and the field samples may be due in part to 

differences in source water and the microorganisms that were associated with the water from 

each ecosystem. In addition, the sites in the upper Arkansas River are open canopy and the 

downstream site is located downstream from the town of Leadville, CO (pop. ~3,000), whereas 

the reservoir water is comparatively lower in nutrients and sourced from the aphotic 

hypolimnion. Thus, differences in light environment and water chemistry between the field and 

the laboratory may also contribute to enrichment of certain genera due to other factors that were 

not influenced in the same way in the mesocosm studies. Additionally, California Gulch is likely 

enriched in ammonia and other nutrients from the wastewater treatment process that may be 

responsible for some observed differences. For instance, we found that Cyanobacteria were more 

enriched in the downstream site (i.e., possibly indicating metal-tolerance), but in the mesocosms 

Cyanobacteria were only significantly enriched in controls. Because we did not see similar 

enrichment of members of the Cyanobacteria in response to metal exposure in the mesocosm 

experiments, this would also suggest that differences in Cyanobacteria between locations in the 

field were not entirely driven by metals but perhaps were due to some of the confounding factors 

that were present in the observational study.  

We observed consistent enrichment of members of a single phylum between both 

observational and experimental studies and enrichment of members of some genera between both 

as well. For example, Proteobacteria were prevalent in both upstream and downstream 

observational samples. This is not surprising given the extremely high diversity within the 

proteobacteria, but also further highlights the idea that comparisons among different phyla are 
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likely too broad for applied microbial ecology research, as has been previously suggested 

(Newton et al. 2011). It is unlikely that metal sensitivity or resistance to metals is a trait that is 

conserved at the level of the phyla. However, we did find that members of Bacteroidetes were 

consistently enriched in downstream and metal-treated mesocosms compared to other phyla. This 

is consistent with previous research that has shown Bacteroidetes to be significantly enriched at 

other metal polluted sites (e.g., Jordaan et al. 2019). Three other genera that were significantly 

enriched in metal-treated mesocosms from both the upstream and downstream locations: oc32 

(Phylum Proteobacteria; Class Gammaproteobacteria; Order Burkholderiales; Family 

Nitrosomonadaceae), Parasediminibacterium (Phylum Bacteroidetes; Class Shingobacteriia; 

Order Sphingobacteriales; Family Chitinophagaceae) and an OTU from the unclassified genus in 

the Family Microscillaceae (Phylum Bacteroidetes; Class Cytophagia; Order Cytophagales). An 

OTU from an unclassified genus in the Family Flavobacteriales was found to be enriched in 

control mesocosms from both upstream and downstream locations. These four genera (e.g., 3 

metal-tolerant and 1 metal-sensitive) represent the best candidates from our study to assess the 

impact of metals on stream ecosystems. Using only the observational study we may have 

assumed that other genera were also good candidates of metal contamination, however the 

comparison with the mesocosm experiment excluded these candidates. Since many of the metal-

treated genera that were enriched came from the Phylum Bacteroidetes this group may be a 

logical starting point for more directed research into using microbiome membership as an 

indicator of metal contamination. 

The effects of low metal exposure to stream ecosystems  

The effect of metals on microbiomes upstream and downstream of the contaminant site 

had similar diversity but significant differences in membership that appeared to be caused by 
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exposure to heavy metals. Other studies have documented changes in microbiome composition 

associated with a range of heavy metal exposure in the field from diverse geologic sources such 

as mountaintop mining (Bier et al. 2015), acid mine drainage (Feris et al. 2003), and streams 

influenced by urban runoff (Ancion et al. 2013). In our study, the use of complimentary field 

observations and experimental mesocosms allowed us to assess which constituents of natural 

microbiomes were likely to be consistently affected by metal exposure.  

We conclude that the microbiomes in the Upper Arkansas River downstream of 

California Gulch are still responding to metals stress. Even though diversity metrics suggest 

similarities between upstream and downstream microbiomes, differences in membership indicate 

that metals are impacting the upper Arkansas River even after extensive restoration efforts have 

lowered surface water metals below current US EPA criteria levels (US EPA 2002). 

Interestingly, typical metal concentrations downstream of California Gulch are not directly toxic 

to macroinvertebrate communities (Clements 2004). However, the patterns we observed between 

upstream and downstream microbiomes (i.e., comparable alpha diversity but distinct 

membership) were similar to patterns found for the macroinvertebrate communities at the same 

site (Wolff et al. 2019). We also note that in the mesocosm study the microbiomes sourced from 

the downstream site accumulated more metals during the experiments than those sourced from 

the upstream site. We did not see a similar difference in metal content between the upstream and 

downstream sourced mesocosms for the control experiment. Taken together these results suggest 

that dietary exposure to metals or changes in microbial biomass that decrease nutritive quality 

(e.g. generation of excess EPS to metal exposure [e.g., Ha et al. 2010; Jittawuttipoka et al. 2013; 

Ding et al. 2018], or both may cause shifts in the macroinvertebrate community composition. 

This mechanism is further supported by the much lower abundance of functional feeding groups 



54 

 

in the downstream communities that would be indicative of a dietary shift from biofilm to seston 

feeders. A previous study (Wolff et al. 2019) found that upstream macroinvertebrates were 

enriched in mayflies and other “scrapers” (scraper is the common name given to insects of the 

functional feeding type that “scrape” biofilms from rocks as a food source) and downstream 

communities were enriched in Caddisflies and other seston-feeding taxa (Wolff et al. 2019). 

Conclusions  

In this current study we cannot conclusively link the response of the microbiome to metals to 

changes in diet quality of their primary consumers, stream macroinvertebrates. However, several 

results presented in this study are consistent with the idea that a microbial response to metals at 

the base of the food web may be affecting consumers one trophic level above. If this is indeed 

the case then it suggests that the current criteria that uses chronic exposure of aquatic 

macroinvertebrates to assess stream health (a threshold below which is thought to be protective 

of ~95% of the aquatic community) is insufficient to assess the impact of metals on stream 

ecosystems. It is becoming increasingly evident that dietary exposure is as important as direct 

exposure to aquatic life and should be considered when assessing the impact of metals on stream 

ecosystems (e.g., Croteau and Luoma 2008; Xie et al. 2009; Kim et al. 2012). One challenge 

presented here is that the metal content of macroinvertebrate diets are much harder to measure 

than the metal content of the surface water. However, if the dietary exposure is mediated through 

shifts in the microbiome, then microbial metrics, as presented here, may provide a better 

alternative to assess the impact of metals on stream ecosystems. Our research suggests current 

best practice guidelines of stream water quality (e.g., EPA aquatic life criteria) may miss impacts 

of metal contamination on the community that form the base of the stream ecosystems and 
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additional factors (e.g., dietary exposure, microbial metrics) should be included as these 

standards are improved.  

.    
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Tables and Figures 
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Table 2. Descriptive statistics for the observational study in the upper Arkansas River. Different letters refer to a statistically 
significant difference (α = 0.05) among locations (upstream, California Gulch [CalGulch], and downstream samples) in the Spring 
(lower case) and in the Fall (upper case). Asterisks refer to statistically significant difference (α = 0.05) between Spring and Fall for 
each location. 

Location Season n pH Sediment Cd Sediment Cu Sediment Zn Observed OTUs Shannon Index 

Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

Upstream Spring 8 7.63 a* 0.21 1.59 a 0.41 4.29 a 1.15 220.24 a 92.16 4825.38 a 1131.69 6.56 a 0.35 

CalGulch Spring 4 7.12 b* - 23.66 b 10.15 331.30 b 113.47 6300.8 b 1673.60 2414.00 b 1402.84 5.84 b 0.25 

Downstream Spring 13 7.41 c* 0.05 6.29 c 4.09 53.56 c* 69.58 1145.10 c* 590.00 4095.31 a* 1148.54 6.49 a 0.33 

Upstream Fall 8 7.75 A** 0.53 1.74 A 0.58 4.19 A 2.28 167.17 A 111.22 5288.50 A 1010.73 6.70 A 0.23 

CalGulch Fall 4 7.50 B** - 33.45 B 16.58 382.49 B 174.56 6488.64 B 1059.45 2729.50 B 388.95 5.65 B 0.06 

Downstream Fall 14 7.49 B** 0.07 5.14 C 2.81 18.13 C** 8.24 767.12 C** 395.35 5033.29 A** 826.92 6.49 A 0.41 
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Table 3. Descriptive statistics for the mesocosm study. Different letters refer to a statistically significant difference (α = 0.05) between 
upstream and downstream control samples (lower case), and between upstream and downstream metal-treated samples (upper case). 
Asterisks refer to statistically significant difference (α = 0.05) between control and metal-treated samples for each location. 

Location Season Treatment n Water Cu (µg/L) Water Zn (µg/L) Sediment Cu (µg/g 

dry) 

Sediment Zn (µg/g dry) Observed OTUs Shannon Index 

Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

Upstream Fall Control 4 2.35 a 2.65 0.05 a 0.17 43.07 a 17.85 1311.91 a 229.62 4715.50 a 2706.24 6.78 a 0.12 

Downstream Fall Control 4 1.33 a 0.92 0.23 a 0.77 75.93 b 19.63 1600.16 b 36.47 3728.50 a 599.13 6.30 b* 0.01 

Upstream Fall Metals 4 17.21 A 6.31 588.85 A 57.08 162.71 A 68.09 2451.97 A 645.75 5668.25 A 3493.11 6.72 A 0.11 

Downstream Fall Metals 4 18.04 A 4.94 613.53 A 49.32 656.28 B 161.64 7280.31 B 1578.52 3608.00 A 1007.13 6.11 A** 0.13 
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Figure 7. Map of the study area in the upper Arkansas River, Colorado, USA. 
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Figure 8. Principle Coordinates Analysis (PCoA) of microbiomes among locations both with 
California Gulch (CalGulch). 
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Figure 9. Constrained Analysis of Principles coordinates (CAP) analysis without California 
Gulch included.



62 

 

 

 

Figure 10. Log2-fold change plots of genera between upstream (AR1) and downstream (AR5) samples. Samples with a positive value 
are more enriched at upstream sites, and negative values more enriched at downstream sites. The color of each dot is the phylogenetic 
Order. 
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Figure 11. Principle Coordinates Analysis (PCoA) of community membership of upstream 
(circles) vs. downstream (triangles) sediment samples. Samples treated with metals are in red and 
non-treated controls are in brown. 
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Figure 12. Log2-fold change plot between metal-treated vs. control samples from upstream (triangles) and downstream (circles) 
communities. Note, Unibacterium and Flaovbacterials were drawn in the figure and do not correspond to the taxa listed on the x-axis. 
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CHAPTER 3 

PHYSICAL HABITAT RESTORATION HAS LIMITED INFLUENCE ON 

MACROINVERTEBRATE COMMUNITIES IN A HISTORICALLY METAL-

CONTAMINATED STREAM 

 

Introduction 

The total cost for remediation of mine-impacted streams in the U.S. has been estimated to 

reach $72 billon (Buxton et al. 1997). A report to the U.S. Office of Management and Budget 

concluded that despite spending $500 million on water pollution abatement programs over the 

past 30 years, the effectiveness of these investments in meeting objectives of the Clean Water 

Act has not been evaluated. Further, nearly 20% of US restoration projects had no listed goals for 

purposes of restoration, and the inability to quantify the success of restoration in aquatic 

ecosystems is largely a result of the limited monitoring, where only 10% of the US restoration 

projects implemented pre- or post-monitoring (Bernhardt et al. 2005). 

The Upper Arkansas River Basin is in the mineralized belt of the Rocky Mountains, near 

Leadville, Colorado, USA. The area was significantly disturbed by mining activities from the 

mid 1800’s through the late 20th century. As a result of these activities, water quality in the 

Arkansas River was significantly impaired and limited the native fishery (Clements 1994; 

Clements and Rees 1997). The impacts were severe enough that area was added to the US EPA 

Priorities List (i.e., “Superfund Site”) in 1983. 

There were initially two metal sources entering the upper Arkansas River: the Leadville 

Mine Drainage Tunnel and California Gulch (Fig. 1). Prior to the start of remediation, Clements 

(1994) reported patterns of reduced invertebrate abundance, species richness, and differences in 
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community composition downstream of both metal sources. Community composition shifted 

from relatively metal-sensitive species (e.g., mayflies and stoneflies) at the upstream reference 

sites to metal-tolerant species (e.g., dipterans and caddisflies) at downstream metal-polluted 

sites. Although some of these effects could have been confounded with natural variation along 

longitudinal stream gradients (Vannote et al. 1980; Clements and Kiffney 1995), changes in 

community indices (e.g., abundance and richness) were consistent with metals sources and not 

with distance, stream geomorphology, or other physiochemical differences between sites (e.g., 

temperature, dissolved oxygen, hardness, or alkalinity). 

Water treatment facilities began operating at the Leadville Mine Drainage Tunnel in 1992 

(LMDT; upstream of California Gulch and flows into the East Fork Arkansas River) and Yak 

Tunnel in 1994 (flows into California Gulch]) (Clements et al. 2010). Removal of mine tailings 

(150,000 m3) from the floodplain was completed by 1999 (Clements et al. 2010). These efforts 

resulted in significant improvements in water quality which improved overall benthic 

macroinvertebrate communities and fish populations (Clements et al. 2010). Metals 

concentrations in water decreased immediately at sites downstream of the LMDT water 

treatment facility, and water samples below California Gulch were generally below US EPA 

water quality criteria (e.g., hardness-adjusted Zn, Cu, and Cd. Benthic macroinvertebrate 

abundance and richness (particularly sensitive mayflies) also increased quickly (within a couple 

years) at sites upstream of California Gulch. Improvements in abundance and species richness 

took longer (significant increases not observed until 1999) at sites below California Gulch 

despite water quality improvements at the Yak tunnel quality treatment facility. It has been 

hypothesized that invertebrate communities upstream of California Gulch responded faster due 

to recolonization from nearby undisturbed communities (e.g., Tennessee Creek and East Fork 
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Arkansas River) (Clements et al. 2010). Despite increases in abundance and species richness, 

community composition has remained different between sites upstream and downstream of 

California Gulch. Clements et al. (2010) reported that between 2000 and 2006 the total 

invertebrate community was dominated by metals-sensitive taxa at sites upstream of California 

Gulch, whereas the downstream sites comprised up to 66% metals-tolerant taxa.  

The upper Arkansas River has since been a popular angling destination for a self-

sustaining non-native Brown trout, and habitat restoration has recently been implemented as part 

of a Natural Resources Damage Assessment (NRDA) settlement to further enhance the brown 

trout fishery. Habitat enhancements included planting riparian vegetation, bank stabilization, and 

various in-stream structures (e.g., pools, riffles, and gravel bars). The NRDA restoration goal 

was to provide more suitable habitats to increase trout population size and improve body 

condition. Physical in-stream habitat restoration as well as bank stabilization was initiated in the 

Fall of 2013 and was completed by Winter 2014. We stress the importance that this restoration 

project was designed to benefit fish populations. 

To address the effects of restoration efforts on fish populations, we focused on responses 

of aquatic macroinvertebrates before and after habitat restoration because aquatic and terrestrial 

insects are the major prey resource for brown trout in this system, and we were interested in how 

restoration would influence this resource. Some advantages of using macroinvertebrates include 

limited dispersal (i.e., represent on-site conditions), variable life-stages (e.g., aquatic and 

terrestrial), ease of collections, variable sensitivities to stressors, and long-term integration of 

environmental factors not possible using only physiochemical measurements (Metcalfe 1989). 

Since macroinvertebrates are rarely the primary consideration of many stream restoration 

goals, it is difficult to evaluate how these communities typically respond to habitat 
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enhancements. However, a review by Palmer et al. (2010) found that only 2 of 78 independent 

restoration projects reported increases in invertebrate richness. Reasons for a lack of response of 

invertebrate communities were likely due to poor statistical design (i.e., controls and replication 

of assessment of restoration efforts were insufficient), lack of adequate monitoring duration, 

insufficient durability of structures, or differential responses of macroinvertebrates compared 

with fishes (Palmer et al. 2010). Although invertebrate richness may not be as important as 

abundance and/or biomass to support increased fish populations, it highlights the general lack of 

proper invertebrate monitoring.  

We sought to overcome the limitations in statistical design of this analysis by using a 

before-after control-impact (BACI) design (Stewart-Oaten et al. 1986; Stewart-Oaten et al. 1992) 

over a significant period (2009 – 2017). Because BACI designs account for both temporal 

(before versus after) and spatial (reference versus treated sites) variation, it allows researchers to 

attribute responses directly to treatments and therefore makes a stronger case for cause-and-

effect relationships associated with restoration efforts. The primary objective of this research was 

to assess how restoration affects macroinvertebrates at control and treated stream sites through a  

variety of measures: 1) abundance and richness of the benthic community, 2) abundance of 

emerging adult insects, 3) input of riparian insects, 4) prey abundance in Brown trout diets.  

 

Methods 

Study Site 

The Upper Arkansas River is a 5th order stream located in northern Colorado, USA 

(Figure 1). The study area is located at approximately 2,820 meters above sea level, and receives 

an average precipitation of 29.5 cm, mostly in the form of snow during the winter. Substrate at 
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all sites was dominated by medium to large cobble in a matrix of gravel and sand. The primary 

riparian vegetation includes sagebrush (Artemisia spp.), grasses, and willow (Salix spp.) trees. 

The Arkansas River has a hydrograph typical of a snowmelt fed stream, with peak discharges in 

late Spring to early Summer, and reaching base flow conditions by late Summer or early Fall. 

Four study sites (AR4C, AR4E, AR4G, AR4H) were monitored along a 4 km reach of the Upper 

Arkansas River that was restored as part of a NRDA (Natural Resources Damages Assessment) 

settlement. One additional site downstream from the restoration area (AR5) that did not receive 

habitat treatment was used as a control. The treatment sites were located approximately 5 km 

downstream from California Gulch, the historical source of metals to the river, and included one 

site (AR5) that has been sampled 2-3 times annually since 1989 (Clements et al. 2010).  

 

Benthic macroinvertebrates 

We collected five quantitative benthic macroinvertebrate samples from riffle habitats at 

each site using a modified Hess sampler (0.1 m2) fitted with a 350 µm mesh net in mid-August in 

2012 – 2017. Samples were washed through a 350 µm sieve and organisms were preserved in 

80% ethanol and transported to Colorado State University. Samples were sorted in the laboratory 

and identified to the lowest practical taxonomic level – generally genus or species for most taxa. 

Chironomids were identified to subfamily or tribe.  

  

Aquatic insect emergence 

We assessed aquatic macroinvertebrate emergence using three floating emergence traps 

at each site. Emergence traps were placed at scour pools along the stream margin for two 24-

hour periods each August. Previous work has indicated that pools have higher rates of emergence 
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(Iwata 2007, Malison et al. 2010). Floating emergence traps were modified from Malison et al 

(2010). This modified emergence trap design has been described previously (Cadmus et al. 

2016). Briefly, emergence traps had the same base dimensions (0.33 m2) as a Malison et al. 

(2010) design, but the shape was changed to a pyramid with an ethanol-filled collection bottle at 

the top. In the laboratory, aquatic larvae were typically identified to the following 5 categories: 

Ephemeroptera, Plecoptera, Trichoptera, Aquatic Diptera, and Aquatic Other. 

 

Riparian inputs  

We collected adult aquatic and terrestrial samples from the riparian area at each site using 

plastic pan traps (100 cm X 41 cm X 15 cm deep) placed along the stream bank. We deployed 

the pan traps (n = 3) for two 24-hour intervals in August at the same time emergence nets were 

deployed. We chose this time period because abundance of terrestrial inputs into the river were 

hypothesized at their highest level (Saunders and Fausch 2012). We filled each plastic pan with 

stream water and approximately 5 mL of unscented, biodegradable surfactant to reduce surface 

tension. To incorporate the diversity of different riparian habitats, at each site we selectively 

deployed a pan trap at each of one of the three dominant habitats: willow, grass, and gravel bars. 

Traps were placed in areas that had homogenous habitat for at least 5 m upstream, downstream, 

and lateral of the pan placement.  

Macroinvertebrates were removed from the pan traps using a small aquarium net and 

preserved in 80% ethanol. In the laboratory, aquatic larvae were typically identified to the 

following 7 categories: Ephemeroptera, Plecoptera, Trichoptera, Aquatic Diptera, Aquatic Other, 

Terrestrial Diptera, and Terrestrial Other. Taxa that utilize aquatic habitats for any part of their 
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life history were considered aquatic, while taxa that complete their entire life history in the 

terrestrial environment were considered terrestrial (Saunders and Fausch 2007). 

 

Brown Trout Diets 

Brown trout (Salmo trutta) were collected for diet analyses from four sites (AR4C, 

AR4E, AR4G, and AR4H) in mid-August using electroshocking. Stomach sampling coincided 

with benthic macroinvertebrate and pan trap sampling. Trout (n=17-25 per site) were sampled for 

2 years before habitat restoration began (2012 – 2013) to quantify natural annual variability in 

feeding habits, and for four years following the restoration (2014 – 2017). Stomach contents 

were recovered from each trout using gastric lavage (Waters et al. 2004; Saunders and Fausch 

2007). We selected trout generally between 120 – 350 mm total length because larger fish tend to 

be piscivorous, and smaller fish are difficult to sample effectively without causing harm 

(Saunders and Fausch 2007). Stomach contents were sieved through a 350 µm screen and 

preserved in ethanol in the field. Trout recovered in a live well before being returned to the 

stream. In the laboratory, aquatic larvae were typically identified to the following categories: 

Ephemeroptera, Plecoptera, Trichoptera, Aquatic Diptera, Aquatic Other, Terrestrial Diptera, and 

Terrestrial Other. 

 

Statistical Analyses 

Abundance data were log10(x+1) transformed in order to satisfy assumptions of 

parametric statistics. Analysis of variance (ANOVA) was used to test for differences in the 

abundances of benthic macroinvertebrates, emerging insects, terrestrial and aquatic insects in pan 

traps and brown trout prey items. Within each sampling type (benthic, emergence, pan traps, and 
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fish diets) we tested the effects of restoration (pre vs. post), treatment (4 restored sites vs. AR5 

control site), year (2009 – 2017), habitat (pan traps only; grass, gravel, and willow), season 

(benthic samples only; Spring, Summer, and Fall), and a restoration x treatment interaction term. 

Feeding habits of Brown trout were not evaluated at the control site. While effects of year, site, 

habitat, and season were incorporated to better explain variance in the models, we were primarily 

interested in the restoration x treatment term (i.e., determining if restoration at the treatment sites 

were different than at the control site). We only evaluated changes in richness from benthic 

samples since taxa were generally identified to the genus or species, whereas taxonomic 

resolution was much more generalized in emergence, pan trap, and fish diet samples. 

We excluded data collected in 2014 from the statistical analyses because ongoing 

restoration caused a large decline in abundance during that period (Figure 2). Most statistical 

analyses were performed in R (R Core Development Team 2010). Benthic macroinvertebrate 

community composition was examined using Permutational ANOVA (PERMANOVA) and 

Non-metric Multi-Dimensional Scaling (NMDS) plots using Primer-e (Clarke and Gorley 2006).   

 

Results 

Although we found significant effects of restoration on abundance for most taxonomic 

groups (e.g., all groups except Ephemeroptera and Aquatic Other), the restoration x treatment 

interaction was not significant among any of the taxonomic groups (Table 1). This suggests that 

benthic abundance differed significantly before and after restoration, but these differences were 

similar between control and treatment sites (Figure 3). In fact, most of the variance explained in 

the models was driven primarily by habitat and year.  
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Results of benthic richness ANOVAs closely mirrored the abundance results. The effect 

of restoration on richness was significant for most groups, but the restoration x treatment 

interaction term was only significant for Plecoptera, and most of the variance explained in the 

models was driven primarily by habitat and year (Table 1). Therefore, except for Plecoptera, 

differences in richness were indistinguishable between control and treatment sites between pre- 

and post-restoration. 

We found that abundance of emerging insects was generally lower post-restoration 

(Figure 4). As with benthic samples, there were significant effects of restoration for most 

taxonomic groups, but none had a significant restoration x treatment interaction. Importantly, 

none of the effects in our models explained the variance well, with adjusted R2 values ranging 

from < 0.01 – 0.15 (Table 1).  

Like emergence samples, abundance after restoration was lower than pre-restoration 

levels and was significant for most groups (Figure 5). Only Ephemeroptera had a significant 

interaction effect, but that was driven by a reduction of Ephemeroptera post-restoration at the 

control site whereas the treatment sites remained nearly the same. Among all the effects 

examined, year and habitat explained the most variance in composition of immigrating 

invertebrates from the riparian zone.  

  We did not measure feeding habits at station AR5 (the control site); however, we found 

that year and site (e.g., AR4C, AR4E, AR4G, and AR4H) explained the most variance (Figure 6, 

Table 1). On average differences were minimal between pre- and post-restoration. However, 

after 2014 the number of insects per fish stomach increased above pre-restoration levels (Figure 

2) as indicated by the highly significant year effect. 
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Because changes in community composition along spatial or temporal gradients can often 

occur in the absence of changes in species richness (Dornelas et al. 2014; Mori et al. 2018), we 

visually assessed the effects of restoration on the entire community using non-metric 

multidimensional scaling (NMDS). The NMDS plots show that overall community composition 

is not different between control and treatment sites pre- and post-restoration, and the best 

separation of groups was by season (Figure 7). Results of PERMANOVA  confirmed our NMDS 

results and showed that restoration x treatment was statistically significant (p value = 0.001) but 

did not explain nearly as much variance as season (F value of 5.38 vs. 166.61, respectively).   

  

Discussion 

The relationship between biological diversity and habitat complexity is well established 

in some ecosystems and a central paradigm in ecology (e.g., MacArthur and MacArthur, 1961; 

Menge et al. 1985 Palmer et al., 1997), but this relationship has not been critically tested in 

stream benthic communities (Lepori et al. 2005; Roni et al. 2006). Specifically, there has been 

limited assessment of how restoration efforts have effected stream macroinvertebrates. 

Macroinvertebrates are essential primary consumers in stream ecosystems, linking primary 

producers to brown trout populations. Improving brown trout population density was the 

motivation for the restoration efforts. We found that habitat restoration had very little influence 

on macroinvertebrate abundance, richness, and community composition three years after 

restoration was completed on the upper Arkansas River. This result is consistent with the limited 

number of studies that have evaluated restoration efforts on macroinvertebrate communities (e.g., 

Miller et al. 2010; Luohi et al. 2011; Smith et al. 2019), _ Although we observed considerable 

variability in benthic samples, emergence nets and pan traps over the 8-year study, there was 
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little evidence that aquatic or riparian communities responded to habitat restoration. Our results 

also demonstrate the strength of BACI designs and the importance of continuous monitoring at 

reference and treatment sites throughout the period of restoration. If we simply compared 

abundances during the last year of monitoring (2017) to baseline values, we would have 

concluded that restoration increased macroinvertebrate abundances by 22%; however, control 

site abundances also increased by 18% during this same period. Therefore, the effect of 

restoration is not likely very influential compared to natural temporal variation.  

A major challenge in evaluating the effects of restoration on macroinvertebrates is that 

nearly all stream restoration projects are designed to benefit fishes. As a result, the influence of 

restoration on macroinvertebrates reported in the literature has been mixed. Like our study, 

Luohi et al. (2011) found that macroinvertebrate density decreased following in-stream 

restoration designed to benefit brown trout in Finland. Importantly, Luohi et al. (2011) 

performed their study over a similar timeframe as our study (three years monitoring before and 

after the restoration). Further, their long-term (15- to 17-year restoration recovery period) space-

for-time comparative study detected very limited benefite to restoration (Luohi et al. 2011). 

Miller et al. (2010) performed a meta-analysis assessing effects 24 restoration projects on 

macroinvertebrates and found that richness was generally improved but density of 

macroinvertebrate populations effects were negligible. Smith et al. 2019 also reported no 

significant effect of restoration on stream macroinvertebrates using a BACI-designed study at 

Big Spring Run, Pennsylvania, USA. However, a few previous studies reported increases of 

abundance or richness of macroinvertebrate communities following restoration (e.g., Selego et 

al. 2012; Nuttle et al. 2017; Li et al. 2018). In a meta-analysis of 91 restoration projects Kail et 

al. (2015) effects of habitat improvements on macroinvertebrates, fishes, and macrophytes were 
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strongly influenced by land use, river width, and project age (Kail et al. 2015). Interestingly, they 

also found that effects of restoration were generally weakened with increasing project age, and 

response ratios of macrophyte abundance turned from positive to negative after approximately 10 

years (Kail et al. 2015).   

A potential limitation of this study is that our emergence trap, pan trap, and fish diets 

were sampled only once per year. Because emergence and terrestrial input vary seasonally and 

among taxa (Raitif et al. 2018; Minshall 2011; Füreder et al. 2005; Ivković et al. 2013), we may 

have observed different responses with more intensive sampling. However, benthic communities 

were sampled three times per year (Spring, Summer, and Fall), and these data also showed little 

response to restoration treatments. In addition, our results are based on abundance and taxonomic 

richness and do not reflect changes in biomass, which may be more sensitive to restoration 

treatments. However, since community composition and abundance did not respond to 

restoration, it is unlikely that biomass would be significantly affected by these treatments. Since 

that the restoration treatments implemented in this stream were designed to improve habitat for 

brown trout populations, it is possible that treatments designed specifically to improve 

macroinvertebrate abundance and richness (e.g., greater substrate complexity, reduced 

embeddedness, and large woody debris) may have had a greater effect on benthic communities. 

Since invertebrate abundance and richness remained relatively stable between control and 

treatment sites pre- and post-restoration also evaluated the effects of restoration on community 

composition.  Overall, community composition changed very little in our study area, except for 

subtle changes in benthic communities related to seasonality (Figure 7). The reason for the lack 

of recovery of metal-sensitive taxa in the downstream reach is still unknown, particularly when 

other investigators have reported improved benthic communities following reductions in metal 
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concentrations (Herbst et al. 2018; Hornberger et al. 2009). We hypothesized that if enough of 

the habitat was disturbed from heavy equipment operation during the restoration period, metal-

sensitive taxa could recolonize available habitat. However, in-stream construction only denuded 

habitat in patches in each treatment reach, which were rapidly recolonized by metal-tolerant taxa. 

Therefore, the continued lower abundance of metal-sensitive taxa could in part be due to the 

presence of larger, metal-tolerant taxa (e.g., Brachycentrus and Arctopsyche caddisflies) that 

have dominated the downstream habitat even after significant reductions in metal concentrations 

for over 20 years (Wolff et al. 2019). Thus, the competitive advantages of caddisflies deter 

colonizing of metal-sensitive mayflies, particularly since investigators have shown strong 

competitive interactions between these two groups (Dudley et al. 1990; Kohler 1992).  

Another potential explanation for continued lower abundance of metal-sensitive taxa is 

that metal loading from California Gulch which reaches downstream sites may still be driving 

macroinvertebrate communities more than explained by physical habitat. However, water 

column metal concentrations downstream of California Gulch are typically below EPA chronic 

aquatic life criteria that are considered conservative thresholds that should protect most species 

(US EPA 2002). Additionally, mesocosm experiments using macroinvertebrate communities 

from AR5 (control site in this study) exposed to zinc concentrations near the EPA hardness-

adjusted criteria demonstrated a lack of mortality to most (> 95%) of taxa, including metal-

sensitive groups such as grazing mayflies (Clements 2004). However, results from four 

mesocosm experiments performed from 2009-2017 showed that communities downstream of 

California Gulch consistently responded differently to experimental metal exposure compared to 

communities upstream of California Gulch (Wolff et al. 2019). Metal loading may not be 

sufficiently elevated to provide direct toxicity to aquatic macroinvertebrates, but high enough to 
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bioaccumulate stream benthic biofilms. Indeed, the microbiome community membership has 

been shown to be consistently different between upstream and downstream communities (Wolff 

et al. 2020; in preparation). Changes in microbiome communities may influence 

macroinvertebrate taxa, particularly those that burrow in interstitial sediments or mayfly scrapers 

and grazers through changes in diet composition or palatability. Metals may also bioaccumulate 

in the benthic biofilms that can produce toxic effects when consumed (Xie et al. 2009). 

Improvements in improve water quality had dramatic effects on benthic communities in 

the Arkansas River (Clements 1994; Clements et al. 2010; Wolff et al. 2019). However, the 

general lack of response of macroinvertebrates to physical restoration suggests that restoration 

success may be largely dependent on watershed-scale effects and does not necessarily occur at 

the reach-scale (Roni et al. 2008). We have previously shown that historical metal contamination 

resulted in a potential  regime shift of benthic communities in the upper Arkansas River (Wolff 

et al. 2019) and that these novel ecosystems (Hobbs et al. 2009) may not return to pre-

disturbance conditions despite significant improvements in water quality. We speculate that the 

same ecological characteristics that maintain these novel benthic communities in the Arkansas 

River also make them less responsive to habitat restoration.  

In spite of a lack of effect to macroinvertebrates it is plausible that the lack of an effect of 

habitat restoration on macroinvertebrate abundances was masked by an  increase in brown trout 

populations. Colorado Parks and Wildlife recently reported that brown trout density and biomass 

after habitat restoration increased above baseline conditions by 10% and 18%, respectively, 

across all sites (Richer 2019). Fish density was not different between control and treatment sites, 

but fish biomass was 26% higher in treatment sites (Richer 2019). It is possible that restoration 

activities created greater habitat heterogeneity to support greater numbers of brown trout that 
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consumed “excess” aquatic macroinvertebrates that may have also increased abundance 

following restoration (Richer et al. 2019). Therefore, restoration likely has a positive effect on 

fish populations and therefore we would not conclude that restoration is a failure. Rather the 

effects of restoration across multiple trophic levels may need to be further researched to 

determine why fish populations (and stomach contents of individuals) seems to increase but the 

overall macroinvertebrate community seemed relatively unimpacted.  
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Tables and Figures 

  



87 

 

Table 4. Statistical results for each group model within sampling type. Significant p-values (< 
0.05) are in bold text. Abbreviations: Eph = Ephemeroptera, Plec = Plecoptera, Tric = 
Tricoptera, Dipt = Aquatic Diptera, Other = Aquatic other, Terr. Dipt = Terrestrial Diptera, and 
Terr. Other = Terrestrial Other. 

 

F value p value F value p value F value p value F value p value F value p value F value p value F value p value

Total 0.26 6.68 0.01 0.08 0.78 9.93 < 0.01 15.05 < 0.01 50.05 < 0.01 N/A N/A 0.64 0.42

Eph 0.36 0.15 0.70 < 0.01 0.98 14.18 < 0.01 17.33 < 0.01 104.19 < 0.01 N/A N/A 2.39 0.12

Plec 0.14 9.27 < 0.01 0.12 0.73 1.07 0.36 11.67 < 0.01 11.27 < 0.01 N/A N/A 0.01 0.91

Tric 0.33 28.75 < 0.01 16.30 < 0.01 1.21 0.31 14.99 < 0.01 83.61 < 0.01 N/A N/A 0.16 0.69

Dipt 0.38 9.50 < 0.01 1.03 0.31 5.88 < 0.01 25.30 < 0.01 97.70 < 0.01 N/A N/A 0.40 0.53

Other 0.33 0.04 0.84 13.58 < 0.01 69.02 < 0.01 10.71 < 0.01 6.95 < 0.01 N/A N/A 0.03 0.87

Total 0.33 11.21 < 0.01 20.05 < 0.01 4.10 < 0.01 6.23 < 0.01 111.17 < 0.01 N/A N/A 0.61 0.43

Eph 0.22 14.10 < 0.01 11.29 < 0.01 10.30 < 0.01 10.24 < 0.01 32.66 < 0.01 N/A N/A 0.43 0.51

Plec 0.21 32.84 < 0.01 0.30 0.58 0.82 0.48 8.02 < 0.01 43.30 < 0.01 N/A N/A 6.04 0.01

Tric 0.36 4.49 0.03 26.17 < 0.01 1.56 0.20 13.51 < 0.01 119.70 < 0.01 N/A N/A 3.55 0.06

Dipt 0.15 14.20 < 0.01 46.67 < 0.01 4.80 < 0.01 6.05 < 0.01 4.50 0.01 N/A N/A 0.22 0.64

Other 0.11 0.12 0.73 0.06 0.81 3.12 0.03 10.63 < 0.01 2.46 0.09 N/A N/A 3.36 0.07

Total 0.03 6.49 0.01 6.30 0.01 0.19 0.90 2.42 0.04 N/A N/A N/A N/A 0.17 0.68

Eph 0.15 17.81 < 0.01 3.58 0.06 1.16 0.32 7.43 < 0.01 N/A N/A N/A N/A 0.36 0.55

Plec < 0.01 3.37 0.08 0.08 0.78 0.45 0.72 0.67 0.65 N/A N/A N/A N/A 2.63 0.11

Tric 0.07 8.30 < 0.01 11.75 < 0.01 0.33 0.80 3.28 < 0.01 N/A N/A N/A N/A 0.88 0.35

Dipt 0.04 9.68 < 0.01 1.33 0.25 0.20 0.89 3.12 < 0.01 N/A N/A N/A N/A 0.10 0.75

Other < 0.01 0.03 0.86 1.74 0.20 0.49 0.69 1.20 0.34 N/A N/A N/A N/A 0.08 0.78

Total 0.39 8.15 < 0.01 0.62 0.43 1.18 0.32 29.62 < 0.01 N/A N/A 1.13 0.32 2.05 0.15

Eph 0.37 69.23 < 0.01 4.36 0.04 1.16 0.33 10.02 < 0.01 N/A N/A 0.39 0.68 4.15 0.04

Plec 0.25 9.79 < 0.01 2.85 0.09 5.17 < 0.01 2.12 0.07 N/A N/A 13.72 < 0.01 1.33 0.25

Tric 0.47 60.27 < 0.01 1.31 0.25 2.08 0.10 11.65 < 0.01 N/A N/A 46.86 < 0.01 1.28 0.26

Dipt 0.41 2.64 0.11 0.40 0.53 1.00 0.39 33.79 < 0.01 N/A N/A 0.17 0.85 2.09 0.15

Other 0.11 9.89 < 0.01 7.06 < 0.01 1.14 0.33 1.62 0.16 N/A N/A 2.59 0.08 0.43 0.51

Terr. Dipt 0.48 10.73 < 0.01 7.03 < 0.01 3.51 0.02 19.48 < 0.01 N/A N/A 52.70 < 0.01 < 0.01 0.93

Terr. Other 0.42 0.23 0.63 3.75 0.05 0.75 0.52 20.41 < 0.01 N/A N/A 32.88 < 0.01 0.13 0.72

Total 0.09 2.32 0.13 N/A N/A 0.48 0.70 13.08 < 0.01 N/A N/A N/A N/A N/A N/A

Eph 0.20 1.77 0.18 N/A N/A 17.30 < 0.01 9.24 < 0.01 N/A N/A N/A N/A N/A N/A

Plec 0.11 1.01 0.32 N/A N/A 3.86 0.01 4.32 < 0.01 N/A N/A N/A N/A N/A N/A

Tric 0.08 0.65 0.42 N/A N/A 1.49 0.22 10.23 < 0.01 N/A N/A N/A N/A N/A N/A

Dipt 0.16 6.25 0.01 N/A N/A 3.42 0.02 16.77 < 0.01 N/A N/A N/A N/A N/A N/A

Other 0.07 3.99 0.05 N/A N/A 1.53 0.21 2.30 0.08 N/A N/A N/A N/A N/A N/A

Terr. Dipt 0.10 2.19 0.14 N/A N/A 1.42 0.24 3.29 0.03 N/A N/A N/A N/A N/A N/A

Terr. Other 0.09 6.46 0.01 N/A N/A 3.58 0.02 0.82 0.49 N/A N/A N/A N/A N/A N/A

Group

Fish Diet Abundance

Pan Trap Abundance

Emergence Abundance

Benthic Richness

Benthic Abundance

Adj. R
2

Restoration x TreatmentHabitatSeasonYearSiteTreatmentRestoration
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Figure 13. Map of the study area in the upper Arkansas River. The inset is a map of Colorado, 
USA. 
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Figure 14. Mean total abundance at the control site (AR5; dashed line) and the NRDA treatment 
sites (AR4C, AR4E, AR4G, and AR4H combined; solid line) from each sampling  method, 2009 
– 2017. The  shaded box represents the period of physical habitat restoration at the treatment 
sites.
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Figure 15.  Benthic  abundance (No. per Hess) results pre- and post-restoration at the control site 
(AR5; light gray) and the NRDA treatment sites (AR4C, AR4E, AR4G, and AR4H combined; 
dark gray). See Table 1 for abbreviations.



91 

 

 

Figure 16. Adult export abundance (No. per emergence net) results pre- and post-restoration at 
the control site (AR5; light gray) and the NRDA treatment sites (AR4C, AR4E, AR4G, and 
AR4H combined; dark gray). See Table 1 for abbreviations. 
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Figure 17.  Adult import abundance (No. per pan trap) results pre- and post-restoration at the 
control site (AR5; light gray) and the NRDA treatment sites (AR4C, AR4E, AR4G, and AR4H 
combined; dark gray). See Table 1 for abbreviations. 
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Figure 18. Fish  diet abundance (No. per fish stomach) results pre- and post-restoration at the 
control site (AR5; light gray) and the NRDA treatment sites (AR4C, AR4E, AR4G, and AR4H 
combined; dark gray). See Table 1 for abbreviations. 
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Figure 19. Non-metric Multi-Dimensional Scaling (NMDS) plot of the benthic 
macroinvertebrate community based on Bray-Curtis distance. The upper panel shows the 
grouping based on control vs treatment sites pre- and post-restoration. The lower panel shows the 
groupings based on season. 
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APPENDIX 

 

Chapter 1 Supplemental Tables and Figures 

 

Table S 1. Routine physicochemical characteristics measured in stream mesocosms during the 4 
metals experiments. Values in parentheses are standard deviation. 

 

 

 

  

Site Treatment pH Conductivity (µS/cm) Temperature (oC) Dissolved oxygen (mg/L) 

Upstream Control 7.27 (0.27) 75.0 (2.9) 11.43 (1.06) 8.17 (1.02) 

 
Metals 7.12 (0.26) 77.4 (2.6) 11.41 (1.04) 7.96 (0.96) 

Downstream Control 7.26 (0.28) 74.5 (3.3) 11.42 (1.04) 8.19 (1.03) 

 
Metals 7.12 (0.26) 77.3 (2.5) 11.44 (1.07) 8.02 (0.99) 
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Table S 2. Mean (+ s.d.) concentrations of Cu and Zn measured in treated stream mesocosms 
during the 4 metals experiments. CCU = cumulative criterion unit, defined as the ratio of the 
measured metal concentration to the U.S. EPA hardness-adjusted chronic criterion value and 
summed for each metal (Clements et al. 2000). Values in parentheses are standard deviation. 

 

 

 

 

 

 

 

  

Site Cu (µg/L) Zn (µg/L) CCU 

    

Upstream (n = 60) 20.3 (5.6) 574.8 (104.7) 18.0 (3.3) 

    

Downstream (n = 59) 19.8 (5.3) 566.5 (114.6) 17.7 (3.6) 
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Table S 3. Results of 2-way ANOVA showing differences in survival between sites (upstream 
versus downstream), diesel treatments (control versus diesel exposure) and the site x treatment 
interaction term in stream mesocosm experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Order Source F-value p-value 

Ephemeroptera Site 58.9 < 0.0001 

 

Treatment 320.9 < 0.0001 

 

Interaction 8.1 0.0149 

    
Plecoptera Site 53.8 < 0.0001 

 

Treatment 63.9 < 0.0001 

 

Interaction 1.7 0.223 

    
Trichoptera Site 119.1 < 0.0001 

 

Treatment 165.2 < 0.0001 

 

Interaction 3.1 0.1048 

    
Diptera Site 13.9 0.0029 

 

Treatment 136.5 < 0.0001 

 

Interaction 1.1 0.3075 
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Figure S 1. Canonical Discriminant Function Analysis of community composition from all 
mesocosm samples. 

 

 


