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ABSTRACT

DETERMINING SYNCHRONIZATION OF CERTAIN CLASSES OF PRIMITIVE GROUPS

OF AFFINE TYPE

The class of permutation groups includes 2-homogeneous groups, synchronizing groups, and

primitive groups. Moreover, 2-homogeneous implies synchronizing, and synchronizing in turn im-

plies primitivity. A complete classification of synchronizing groups remains an open problem. Our

search takes place amongst the primitive groups, looking for examples of synchronizing and non-

synchronizing. Using a case distinction from Aschbacher classes, our main results are constructive

proofs showing that three classes of primitive affine groups are nonsynchronizing.
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Chapter 1

Introduction

One of the current topics of permutation group theory is that of synchronizing groups. The

concept of synchronization started in automata theory and was later studied from a group-theoretic

perspective [1]. In the study of transitive permutation groups, synchronizing groups are a class

that lies between 2-homogeneous groups and primitive groups. Briefly, we say a group is syn-

chronizing if there exists a partition with a transversal that is preserved by the action of the group

(where a transversal is a set that intersects each cell of the partition exactly once), see Definition

3.4. Though primitive groups can be classified as a result of work by Michael O’Nan and Leonard

Scott in 1979 that is now called the O’Nan–Scott Theorem, the same cannot be said for synchro-

nizing groups. Since all synchronizing groups are primitive, the search begins in determining

whether primitive groups are synchronizing. Here, determining classes of primitive groups which

are always nonsynchronizing is just as valuable as finding classes which are always synchronizing.

Our early attempts at this problem involved searching through GAP’s [2] extensive primitive

group library with brute force to find synchronizing and nonsynchronizing groups of small degree.

Amongst these results, we noticed an interesting pattern for the affine groups. Namely, several of

the affine groups are nonsynchronizing in a similar way – as exhibited by an example of a specific

partition and transversal. Furthermore, the partitions and transversals correspond to subspaces in

the underlying vectorspace the group acts on. We therefore turn our attention to the linear part of

the action, with matrix subgroups of GLn(p). To determine the structure of the possible subgroups,

we refer to the Aschbacher Classes to create a case distinction. Our main results are constructing

proper partitions and transversals to prove that groups from the C2, C4, and C7 classes are always

nonsynchronizing, seen in Section 4.2, 4.4. and 4.7 respectively.

From the start we assume basic knowledge of groups, and begin at the analysis of groups as

permutation groups by their actions on sets. All groups that we refer to will be finite, and act on

finite sets. Thus, some of the statements we make do not hold for infinite groups, or groups acting
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on infinite sets. Although we speak strictly in terms of permutation groups, it is important to recall

Cayley’s Theorem: that every finite group is isomorphic to a subgroup of the symmetric group

of some degree. Therefore any group can be thought of as a permutation group, and this is the

viewpoint we will take, indicating where necessary the particular permutation action we choose.
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Chapter 2

Preliminaries

2.1 Group Actions

Often times we care not only about groups as individual entities, but look at how they act on

other mathematical objects. For this we will need the notion of group actions. Recall that SΩ is

the group of all permutations on the set Ω and Sn is the group of permutations on {1, 2, . . . , n}.

Definition 2.1. Let Ω be a finite set and G ≤ SΩ a group. A group action of G on Ω is a map

from Ω×G → Ω given by (ω, g) 7→ ωg satisfying ω1 = ω and (ωg)h = ωgh for all ω ∈ Ω and all

g, h ∈ G.

Permutation groups are often organized together based on the number of points on which they

act.

Definition 2.2. Let G ≤ SΩ. Then the degree of the action of G on Ω is the size of Ω, i.e. |Ω|.

Considering the action of G on Ω as a whole, we also get a partition of Ω formed by the orbits

of G on the elements of Ω.

Definition 2.3. Let G act on Ω with ω ∈ Ω. Then the orbit of ω is ωG := {ωg | g ∈ G}.

This brings us to a general consideration of how we can use some element in G to get from one

point in Ω to another. The groups we are concerned with later will always have a way to get from

one point to another, which gives us the concept of transitivity.

Definition 2.4. We say that a group action of G on Ω is transitive if for every α, γ ∈ Ω, there exists

an element g ∈ G such that αg = γ.

Alternatively, we notice that a group action is transitive if and only if it has a single orbit. It

also turns out that we also have a similar, but more restrictive property that will be important as we

proceed.
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Definition 2.5. We say the action of G on Ω is regular if for any α, β in Ω, there exists exactly one

element g ∈ G such that αg = β.

We can thus say that a group action is regular if it is isomorphic to the left-action of the group

on itself.

When G acts on Ω we have an inherited action of G on sets and tuples with elements from

Ω. We define these actions pointwise, that is (ω1, ω2, . . . , ωk)
g = (ωg

1 , ω
g
2 , . . . , ω

g
k) for tuples and

{ω1, ω2, . . . , ωk}
g = {ωg

1 , ω
g
2 , . . . , ω

g
k} for subsets. Furthermore we can talk about the orbits of

sets, TG := {T g | g ∈ G}.

Example 2.6. The cycle g = (1, 2, 3, 4) ∈ S4 acts on the set {1, 3} by {1, 3}g = {2, 4} and the

tuple (1, 4) by (1, 4)g = (2, 1).

We can therefore extend the concept of transitivity as follows.

Definition 2.7. An action of G on Ω is k-transitive if for any pair of k-tuples of distinct elements,

(α1, α2, . . . , αk), (γ1, γ2, . . . , γk) ∈ Ωk, there exists some g ∈ G such that (α1, α2, . . . , αk)
g =

(γ1, γ2, . . . , γk).

Note that the requirement of distinct elements here lies within the tuples: i.e. αi 6= αj and

γi 6= γj for all i 6= j.

Definition 2.8. Similarly, an action of G on Ω is k-homogeneous if for any two k-subsets of Ω,

{α1, α2, . . . , αk} and {γ1, γ2, . . . , γk}, there exists g ∈ G such that {α1, . . . , αk}
g = {γ1, . . . , γk}.

Let Ω{k} denote the set of k-element subsets of Ω. Then in other words, we can say that G ≤ SΩ

is k-homogeneous if G acts transitively on Ω{k}. We then notice the hierarchical relationship

between k-transitive and k-homogeneous.

Lemma 2.9. If an action of G on Ω is k-transitive then it is also k-homogeneous.

Proof. Let G be k-transitive on Ω. Take any two k-subsets on Ω, denoted {α1, α2, . . . , αk} and

{γ1, γ2, . . . , γk}. By k-transitive, there exists g ∈ G such that (α1, α2, . . . , αk)
g = (γ1, γ2, . . . , γk).

So αg
i = γi for all i = 1, . . . , k. Then {α1, . . . , αk}

g = {γ1, . . . , γk}.
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In 1972, Kantor described all k-homogeneous groups G of degree n which are not k-transitive

[3]. Namely, they must fall into one of the following categories, with n ≥ 2k:

1. k = 2 and G ≤ AΓL(1, n) with n ≡ 3 (mod 4)

2. k = 3 and PSL(2, n− 1) ≤ G ≤ PΓL(2, n− 1) with n ≡ 0 (mod 4)

3. k = 3 and G = AGL(1, 8), G = AΓL(1, 8), or G = AΓL(1, 32)

4. k = 4 and G = PSL(2, 8), G = PΓL(2, 8), or G = PΓL(2, 32)

Kantor’s proof relies on the Feit–Thompson Theorem, as well as work published seven years

previously by Livingstone and Wagner [4]. One interesting fact to note that originated from their

paper is that each of these cases arises for k ≤ 4. That is to say that for k ≥ 5, k-homogeneous and

k-transitive are equivalent properties. However, due to the classification of finite simple groups,

only Mathieu groups, alternating groups, and symmetric groups are 5-transitive, and only the sym-

metric and alternating groups are k-transitive for k > 5.

Lemma 2.10. If G is k-transitive on Ω for k > 1, G is also (k − 1)-transitive on Ω.

Proof. Suppose G is k-transitive. Take any two tuples (α1, . . . , αk−1), (γ1, . . . , γk−1) ∈ Ωk−1.

Since G is k-transitive, there exists g ∈ G such that (α1, . . . , αk−1, δ)
g = (γ1, . . . , γk−1, δ

g), and

thus (α1, . . . , αk−1)
g = (γ1, . . . , γk−1).

To make an analogous statement about k-homogeneity, we require a few extra lemmata. The

first result is a complementary property, with a k-homogeneous group also being (|Ω| − k)-

homogeneous.

Lemma 2.11. If G is k-homogeneous on Ω, G is also r-homogeneous on Ω for r = |Ω| − k 6= 0.

Proof. Suppose G is k-homogeneous. Let S, T ⊆ Ω with |S| = |T | = r. Since G is k-

homogeneous, there exists some g ∈ G such that (Ω − S)g = (Ω − T )g. Then Sg = T g and

therefore G is r-homogeneous.
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The next two lemmata from Dixon and Mortimer [5] concern counting orbits to give us the rest

of the pieces we need.

Lemma 2.12 ( [5] Lemma 9.4A). Let G be a group which acts on both Γ and ∆ but leaves some

subset Λ ⊆ Γ × ∆ invariant. Let V = {f : Γ → Q | f(γ) = f(γx) for all x ∈ G} and W =

{f : ∆ → Q | f(δ) = f(δx) for all x ∈ G}. If the Q-linear transformation θ : V → W defined

by f θ(δ) :=
∑

(γ,δ)∈Λ f(γ) is injective, then the number of orbits of G on ∆ is at least the number

of orbits of G on Γ.

Proof. By definition of V and W , their dimensions are the number of orbits of G on the sets Γ

and ∆ respectively. Since Λ is G-invariant, then θ maps V into W . Then if θ is injective, we have

dim(W ) ≥ dim(V ) and therefore the number of orbits of G on ∆ is at least the number of orbits

of G on Γ.

Lemma 2.13 ( [5] Theorem 9.4A). Let G ≤ SΩ with integers 0 ≤ m ≤ k such that m + k ≤ |Ω|.

Then G has at least as many orbits on Ω{k} as it has on Ω{m}.

Proof. If we let Γ = Ω{m}, ∆ = Ω{k} and Λ = {(T, S) ∈ Ω{m} × Ω{k} | T ⊆ S}, we can apply

Lemma 2.12. Clearly G acts on Ω{m} and Ω{k}, and leaves Λ invariant since S ⊆ T =⇒ Sx ⊆ T x

for subsets S, T ⊆ Ω, for all x ∈ G. Then we need to show that θ is injective, which we will do by

showing it has a trivial kernel. Suppose that for some f : Ω{m} → Q,

0 = f θ(S) =
∑

T∈Ω{m}, T⊆S

f(T ) for all S ∈ Ω{k}.

For any subsets R ⊆ P ⊆ Ω let

g(R, S) =
∑

T∈Ω{m}, R⊆T⊆P

f(T ).

Then we note that g(∅, P ) = 0 when |P | = k by assumption. And if |P | > k, we can apply the

fact that

6









|P |

k






· g(∅, P ) =

∑

T⊆P, |T |=k

g(∅, T )

where each summand is 0, and therefore we can conclude g(∅, P ) = 0 whenever |P | ≥ K. Next

we note that for any ω ∈ Ω, g(R,P ) = g(R − {ω}, P ) − g(R − {ω}, P − {ω}). Then we

can induct on |R| to conclude that g(R,P ) = 0 for any R ⊆ P when |P − R| ≥ k. Then for

T ∈ Ω{m}, S ∈ Ω{k} with T ⊆ S, we get f(T ) = g(T, S) = 0. Therefore, ker(θ) = 0, so by

Lemma 2.12, G has at least as many orbits on Ω{k} as it has on Ω{m}.

Now we have the tools to show that k-homogeneity is inherited for decreasing k.

Lemma 2.14. If G is k-homogeneous on Ω for k > 1, G is also (k − 1)-homogeneous on Ω.

Proof. Without loss of generality by Lemma 2.11, let G be k-homogeneous on Ω for 0 < 2k ≤

|Ω| + 1. Then (k − 1) + k ≤ |Ω|. So by Lemma 2.13, G has as at least as many orbits on Ω{k}

as it has on Ω{k−1}. But k-homogeneity implies that G is transitive on k-sets, and therefore has

exactly one orbit on Ω{k}, and thus has no more than one orbit on Ω{k−1}, but cannot have 0 orbits.

Therefore G is (k − 1)-homogeneous.

Then since k-transitivity implies k-homogeneity, and both properties are inherited down for

smaller values of k, they can all be reduced to 2-homogeneity.

Corollary 2.15. If G is k-homogeneous or k-transitive for any k > 1, Lemmata 2.9, 2.10, and

2.14, imply that G is 2-homogeneous.

Thus, 2-homogeneous is the property that we will mainly be concerned about, and one of the

key pieces in our journey to define synchronizing groups. The other key piece primitivity.

2.2 Block Systems and Primitivity

The actions of groups on sets of points can be further studied by considering the action on sets

of sets of points: partitions. In particular, we can see if partitions are preserved by the group.

7



Definition 2.16. Let G act transitively on Ω. A block system for this action is a partition B of Ω

that is invariant under the action of G. That is to say for each B ∈ B and any g ∈ G, Bg = B′ for

some B′ ∈ B. We call any B ∈ B a block.

Note that any transitive action has two trivial block systems, namely {Ω} and
{

{ω} | ω ∈ Ω
}

.

After seeing some examples, one might notice that the preserved partitions display a symmetry, in

that the cells must be of the same size.

Definition 2.17. We say that a partition P of a set is uniform if each cell is of equal size.

Furthermore, it turns out our observation following the definition of block systems does indeed

hold.

Lemma 2.18. A block system must be uniform.

Proof. Let B be a block system for G ≤ SΩ with arbitrary distinct cells A,B ∈ B. Then for a ∈ A

and b ∈ B, there exists some g ∈ G such that ag = b by transitivity. Then Ag = B since A,B are

part of a block system. Then |A| = |B| and therefore the partition is uniform.

We will revisit uniformity later for synchronizing groups, but need to understand primitivity

first.

Definition 2.19. We say an action of G on Ω is primitive if the only block systems it affords are

the trivial ones. Otherwise, we say the action is imprimitive.

Moreover, if the action of G ≤ SΩ is primitive, we say that G is a primitive group. To under-

stand this property, we will give a few examples.

Example 2.20. For n > 2, Sn and An act primitively on the set with n elements.

Sn and An have this property because they move points maximally (being the largest groups of

degree n).

8



Example 2.21. Consider the action of the dihedral group D12 on six vertices (labelled consecu-

tively). Then

{{1, 3, 5}, {2, 4, 6}}

is a block system for this action, and therefore the standard action of D12 is imprimitive. Namely,

a rotation exchanges {1, 3, 5} with {2, 4, 6} while a reflection holds them the same.

A great tool for examining block systems (and therefore determining whether a group is prim-

itive) comes from the fact that we do not need to know the entire partition.

Lemma 2.22. A block system is determined uniquely by one of its blocks.

Proof. Let B be a block system for G acting transitively on Ω with some block B. Let |Ω| =

n, |B| = k. Consider Bg for some g ∈ G. By definition, Bg is also a block in B. Then for any

α ∈ B, if αg ∈ B then Bg = B. Else if α /∈ B, we must have that B,Bg are disjoint. Since G

acts transitively on Ω we have that {Bg | g ∈ G} will cover Ω, and therefore give the entire block

system.

We will use the previous lemma without name often as an inherent property of block systems.

A further helpful fact about primitivity is that it is inherited upwards for parent groups – as the

preservation of block systems is inherited downward to subgroups.

Lemma 2.23. If G acts primitively on Ω and G ≤ H ≤ SΩ then H also acts primitively on Ω.

Proof. Suppose for a contradiction that H did not act primitively on Ω. Then there exists some

nontrivial block system B that is preserved by H . Since G ≤ H , then G must also preserve B.

Then G could not be primitive, a contradiction.

Finally is an interesting and profound result, relating our previous properties of k-transitivity

and k-homogeneity with that of primitivity. This is a key factor in the study of synchronizing

groups.

Lemma 2.24. If the action of G on Ω is k-homogeneous or k-transitive for k > 1, G acts primi-

tively on Ω.

9



Proof. Note that if G is k-homogeneous or k-transitive for k > 1, then by Corollary 2.15, G is

2-homogeneous. In search of a contradiction, suppose that G had B, a nontrivial block in a block

system and therefore G were not primitive. Let α, β ∈ B and γ 6∈ B. Since G is 2-homogeneous,

there exists some g ∈ G such that {α, β}g = {α, γ}. But then B = Bg since α can only be in one

block, so γ ∈ B, which gives a contradiction.

We thus have that the class of 2-homogeneous groups is a subclass of primitive groups. Our

ultimate goal is to describe a class that lies between these two: synchronizing groups.

2.3 Wreath Products

An additional group structure that is important to understand as we proceed is that of wreath

products. Specifically for the case of primitivity, we care about wreath products with the product

action, which differs from an imprimitive wreath action.

Definition 2.25. Let H ≤ SΓ and K ≤ S∆ be groups acting on Γ and ∆ respectively. Then we

say G = H ≀K is the wreath product of H and K which acts on Γ∆.

Here, the group has the form of (H ×H × · · · ×H)⋊K with |Γ| copies of H , where K acts

by permuting the copies of H .

Definition 2.26. Let H ≤ SΓ and K ≤ S∆ be groups acting on Γ and ∆ respectively. Then we

say G = H ≀K acts on Γ∆ with the product action.

It turns out that these groups act primitively under a specific set of circumstances.

Lemma 2.27 (Dixon & Mortimer [5] Lemma 2.7A). The product action of H ≀K on Γ∆ is primitive

if and only if H is primitive and not regular on Γ, ∆ is finite, and K is transitive on ∆.

2.4 Simple Groups and the O’Nan–Scott Theorem

Lastly, we will refer to the O’Nan–Scott Theorem as given in [5]. As the theorem essentially

gives us a list of boxes that primitive groups fall into, we will use these boxes in the following

10



chapter in our search for nonsynchronizing primitive groups. We’ll start by recalling the definition

of a simple group.

Definition 2.28. We say that a nontrivial group G is simple if its only normal subgroups of G are

the trivial group and G itself.

Extending the idea with normal subgroups, we have a special subgroup called the socle.

Definition 2.29. The socle of a group G, denoted Soc(G), is the subgroup generated by all minimal

normal subgroups of G.

Since distinct minimal normal subgroups intersect trivially, we get a commutativity result be-

tween them.

Lemma 2.30. Distinct minimal normal subgroups of a group G commute with each other.

Proof. Let H , N be distinct minimal normal subgroups of G, thus H ∩N = 〈()〉. Let h ∈ H,n ∈

N . Then nhn−1 ∈ H and hn−1h−1 ∈ N . Then

(nhn−1)h−1 ∈ H and n(hn−1h−1) ∈ N.

Thus nhn−1h−1 ∈ H ∩ K, so nhn−1h−1 = (), and thus nh = hn. Therefore, distinct minimal

normal subgroups commute with each other.

Together the commutativity from Lemma 2.30 and the generating structure of the socle by

Definition 2.29, we inherit a direct product structure on the subgroup.

Corollary 2.31. The subgroup Soc(G) is a direct product of distinct minimal normal subgroups of

G.

The above corollary follows since a group generated by commuting subgroups has the structure

as a direct products of the subgroups. We now have the tools to define almost simple.

Definition 2.32. We say that G is almost simple if Soc(G) is simple.

11



Alternatively, one might say that G is almost simple if G lies between a simple group, H and

the automorphism group of H , i.e. H ≤ G ≤ Aut(H). We will lastly note the necessary structure

of minimal normal subgroups from [5].

Lemma 2.33. Every minimal normal subgroup of G is a direct product of isomorphic simple

groups.

And finally we can use the prior definitions and lemmata to present the O’Nan–Scott Theorem,

the tool we need to classify the primitive groups

Theorem 2.34. (The O’Nan–Scott Theorem) Let G be a primitive group of degree n such that

Soc(G) = H . Then one of the following is the case:

1. H is a regular elementary abelian p-group for p prime, |H| = pm = n, and G is isomorphic

to a subgroup of the affine group AGLm(p).

2. H is isomorphic to a direct product Tm of a nonabelian simple group T with one of the

following:

(a) m = 1 and G is isomorphic to a subgroup of Aut(T ).

(b) m ≥ 2 and G is a subgroup of diagonal type with n = |T |m−1.

(c) m ≥ 2 and there exists some proper divisor d of m and some primitive group U such

that Soc(U )∼= T d, and G is isomorphic to a subgroup of U ≀ Sm/d with the product

action, and n = lm/d where l is the degree of U .

(d) m ≥ 6 with H regular and n = |T |m.

In a nutshell, the O’Nan–Scott Theorem tells us that every primitive group can be placed into

(at least) one of five boxes - though some other sources choose their boxes slightly differently. This

classification will be important for us as we look for synchronizing groups within these boxes. Our

research will focus on part 1, the affine type, covered in Chapter 4, and we will review the progress

that has been made on part 2 in Chapter 5.
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Chapter 3

Synchronizing Groups

Within primitive groups lies the lesser studied class of permutation groups known as synchro-

nizing groups. The concept of synchronizing originated from the study of Automata Theory [1].

There, the concept concerns the existence of a "reset word" in some finite state automata. As au-

tomata are maps between states, this concept transferred directly to monoids with a monoid being

synchronizing when it contains an element h such that |im(h)| = 1. A group G is then synchro-

nizing if 〈G, f〉 is a synchronizing monoid for some map f that is not a permutation. In 2009

Peter Neumann refined this concept of a synchronizing group to a concept in permutation group

theory regarding section-regular partitions [6]. Acting from a group theoretic mindset, we will

treat this property (Definition 3.4) as our definition for a synchronizing group. Building toward a

classification of synchronizing groups is the current goal.

3.1 Section-regular Partitions

The first step to understanding the group theoretic definition of synchronization will be under-

standing section-regular partitions, so we start with the definition of a section.

Definition 3.1. Let P be a partition of Ω. We call a subset T ⊆ Ω a section for P if T contains

exactly one element from each cell of P . Alternatively, we may say that T is a transversal of P .

Let us consider an example before defining section-regular partitions.

Example 3.2. Consider the partition P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}. Then {2, 7, 9}

is a section of P , as is {1, 8, 12}. However, {1, 2, 5, 9} is not, since it contains two elements from

the first cell, and {1, 9} is not because it does not contain any elements from the third cell.

The preservation of a section under a group action will give us the concept of section-regular.

Definition 3.3. Let G ≤ SΩ and P a partition of Ω. We say that P is a section-regular partition

for G if there exists a section T of P such that T g is a section of P for any g ∈ G.
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That is to say, G is section-regular if the group action yields an orbit of sections for the partition.

Now we have the tools to define synchronizing.

Definition 3.4. Let G ≤ SΩ. We say that a group G is synchronizing if it affords no nontrivial

section-regular partition of Ω. We say that G is nonsynchronizing otherwise.

If we observe the similarities between a section-regular partition under a group, and a group

preserving a block system, we can see the relation between synchronization and primitivity.

Theorem 3.5. A synchronizing group is primitive.

Proof. We will prove the contrapositive; that G ≤ SΩ having a nontrivial block system implies G

has a nontrivial section-regular partition. Let B be a nontrivial block system for G. Pick T to be

section for B. Then since each t ∈ T are in distinct cells, then for all t ∈ T, g ∈ G each of the tg

must also be in distinct cells since G preserves the partition. Then B is a nontrivial section-regular

partition for G.

As we see the implications of comparing block systems with section-regular partitions when

comparing primitive groups to synchronizing groups, we can consider further properties. We recall

that Lemma 2.18 gave us that block systems must be uniform. Though the proof is not quite as

straightforward, the analogous fact does hold that section-regular partitions must also be uniform.

Lemma 3.6. A section-regular partition under a transitive group must be uniform [6].

Proof. Let P be a section-regular partition of Ω under G, with section T . Let P have k cells

denoted P1, . . . , Pk with sizes p1, . . . , pk respectively. Without loss of generality, suppose p1 ≤

p2 ≤ · · · ≤ pk. Then

|Ω| = p1 + p2 + · · ·+ pk ≥ kp1.

Moreover, the equality |Ω| = kp1 holds exactly when pi = pj for all i, j, which is to say when P

is uniform.

14



Let the elements of T be t1, . . . , tk where T ∩ Pi = ti for each cell Pi. Define Hi to be the

stabilizer of ti in G. Since P is section-regular with T , for any g ∈ G, T g ∩P1 has exactly a single

element, namely tg1. Define

Ki :=
⋃

x∈P1

{g ∈ G | tgi = x} and thus G =
k
⋃

i=1

Ki

So G is a union of k different sets, each Ki being a union of p1 cosets of Hi. Since G is

transitive, |Hi| = |G|/|Ω| for each i by the Orbit-Stabilizer Theorem. Therefore

|G| ≤ k · p1 ·
|G|

|Ω|
≤ k · p1.

Hence the equality |G| = kp1 holds, implying that P is uniform.

Another property that synchronization shares with primitive groups is inheritance from sub-

groups.

Lemma 3.7. If the action of G on Ω is synchronizing and G ≤ H ≤ SΩ then the action of H is

also synchronizing.

Proof. Suppose for a contradiction that H is nonsynchronizing. Then there exists some section-

regular partition P with section T such that T h is a section for P for all h ∈ H . Then T g must is a

section for all g ∈ G ≤ H . Then G could not be synchronizing, a contradiction.

As the above is an analogous statement to Lemma 2.23, we can also show a stronger version of

Lemma 2.24.

Theorem 3.8. A 2-homogeneous group is synchronizing.

Proof. Let G be 2-homogeneous and suppose G is not synchronizing for a contradiction. Then

there exists a nontrivial section-regular partition P for G with section T . Let B and C be two cells

of P intersecting T with tB and tC respectively. Let b 6= tB be another element of B. Then since G
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is 2-homogeneous, there exists a g ∈ G such that {tB, tC}
g = {tB, b}. But since {tB, tC}

g should

be a subset of a section, we have a contradiction since 2 elements of B cannot be in a section.

Therefore G must be synchronizing.

Figure 3.1: Hierarchy of permutation groups from transitive to 2-transitive with examples of each level.

This gives us that synchronizing is a class of permutation groups that lies between 2-homo-

geneous and primitive as illustrated in Figure 3.1. Therefore a classification of synchronizing

groups will require an examination of primitive groups that are not synchronizing, and synchro-

nizing groups that are not 2-homogeneous. We will look at a few of the smallest such examples.

3.2 Examples

Example 3.9. The group G := 〈(2, 7, 3, 4)(5, 8, 9, 6), (1, 2, 3)(4, 5, 6)(7, 8, 9)〉 ≤ S9 is primitive

but not synchronizing.

Proof. First note that G is primitive group with abelian socle. Namely,

Soc(G) = 〈(1, 3, 2)(4, 6, 5)(7, 9, 8), (1, 7, 4)(2, 8, 5)(3, 9, 6)〉 ∼= Z3 × Z3
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Figure 3.2: Partition for Ex. 3.9.

To show that G is not synchronizing, consider the partition {{1, 6, 9}, {2, 6, 7}, {3, 4, 8}} (as

shown in Figure 3.2) with section {1, 2, 3}. Note the orbit

{1, 2, 3}G = {{1, 2, 3}, {1, 4, 7}, {2, 5, 8}, {7, 8, 9}, {3, 6, 9}, {4, 5, 6}}

with each set in the orbit also a section for the given partition. Therefore G is not synchronizing.

Figure 3.3: Example of partition with all images of the given section from Example 3.9 with the points

labeled as in Fig. 3.2
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We’ve thus shown that synchronization is strictly stronger than primitive, and next will show

that 2-homogenous is strictly stronger than synchronization.

Example 3.10. Consider the action of S5 on the 2 element subsets of {1, 2, 3, 4, 5}. This is a

synchronizing action that is not 2-homogeneous.

Proof. To show this group is not 2-homogeneous, note there exists no permutation that maps

{{1, 2}, {1, 3}} 7→ {{1, 2}, {4, 5}} because if {1, 2}g = {1, 2} then {1, 3}g couldn’t equal {4, 5}.

Alternatively if {1, 2}g = {4, 5} then {1, 3}g wouldn’t be {1, 2}.

To show this group is synchronizing, we solicit some help from GAP [2]. We will consider this

group as H ≤ S10 acting on the ten subsets which we from here relabel as {1, . . . , 10}. In search

of a nontrivial section-regular partition, we will apply Lemma 3.6 to consider the cases of having

two cells of size 5 or five cells of size 2.

Case 1: First we consider partitions with 2 cells of size 5. Therefore a section for this partition

would be a subset of size 2, of which there are 45. We look at the orbits of these subsets and see

that there is an orbit of size 30 containing the section {1, 2} and an orbit of size 15 containing

the section {1, 8}. First let’s consider the action of the H1 := StabH(1) on {1,2}. Note that

2H1 = {2, 3, 4, 5, 6, 7}. But we can’t have that {1, q} is a section for any q ∈ {2, 3, 4, 5, 6, 7} as that

would imply we had a cell of size at least 6. Then we must have {1, q} a section for q ∈ {8, 9, 10}.

Then we consider the orbits of 1 under the stabilizers of 8, 9, 10 and see that 1H8 = {1, 4, 7},

1H9 = {1, 3, 6}, and 1H10 = {1, 2, 5}. Then for {1, q} to be a section for q ∈ {8, 9, 10} we would

have to have 1 to be in a cell of size at least 7 (including {1, 2, 3, 4, 5, 6}), which couldn’t be a cell

for a uniform partition, giving us a contradiction.

Case 2: Now we consider partitions with 5 cells of size 2 which therefore have sections of

size 5. There are 252 possible sections to consider, which fall into 6 orbits under H . We will

consider {1, 2, 3, 4, 5}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 7}, {1, 2, 3, 5, 10}, {1, 2, 3, 7, 9}, {1, 2, 6, 9, 10} as

the representatives for each of these orbits.

If {1, 2, 3, 4, 5} were a section for a partition, that means that each of the 5 cells of the partition

must contain one of {1, 2, 3, 4, 5}. Then we consider the orbits of each of these under H1 and note
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that 2H1 = 3H1 = 4H1 = 5H1 = {2, 3, 4, 5, 6, 7}. Therefore if {1, 2, 3, 4, 5} is a section for a

partition, then: 1, 2, 3, 4, and 5 must all be in different cells, 2 cannot share a cell with 6 or 7, 3

cannot share a cell with 6 or 7, 4 cannot share a cell with 6 or 7, and 5 cannot share a cell with 6 or

7. Therefore the only candidate for a cell containing 6 or 7 is that which also contains 1. Then we

would have a cell of size at least 3, implying the partition isn’t uniform, giving us a contradiction.

If {1, 2, 3, 5, 6} were a section for a partition, we have the analogous argument that neither 4

nor 7 could share a cell with any of 2, 3, 5, or 6. Then they would both have to share a cell with 1,

giving us a contradiction to uniformity.

The same argument applies if {1, 2, 3, 5, 7} were a section for a partition, concluding that 4 and

6 would have to share a cell with 1, for a contradiction to uniformity.

If we suppose {1, 2, 3, 5, 10} were a section for a partition, we must analyze an additional point

stabilizer for a different approach. Here we recall that neither 6 nor 7 can share a cell with 2, 3, or

5 since they are in the same orbit under H1. Now we apply the fact that the orbit 10H2 = {6, 7, 10}

to reach the conclusion that additionally, 6 nor 7 can share a cell with 10, implying they share a

cell with 1 for a contradiction.

Similarly for {1, 2, 3, 7, 9} we note that 4 or 5 cannot share a cell with 2, 3 or 7 since they are

in the same orbit under H1. We then use the orbit 9H2 = {1, 3, 4, 5, 8, 9} to say that neither 4 nor 5

can share a cell with 9, and must therefore share a cell with 1, leading us to the same contradiction.

Finally we consider the case if {1, 2, 6, 9, 10} were a section for a partition. Neither 3 nor 5

can share a cell with 2 or 6 because they are in the same orbit under H1. Likewise neither 3 nor 5

can share a cell with 9 since they are in the same orbit under H2. Lastly neither 3 nor 5 can share

a cell with 10, because 10H6 = {1, 3, 5, 7, 8, 10}. So 3 and 5 would have to share a cell with 1, for

a contradiction of uniformity once more.

Therefore since all possible sections of size 2 or 5 have been accounted for up to their orbits

under H , we can conclude that it is impossible to have a section-regular partition for H , and

therefore H is synchronizing.
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3.3 Basic Groups

The property of synchronization is also closely tied to the preservation of Cartesian structures

via the concept of basic groups. To understand this relationship, we will start by defining a Carte-

sian structure [1].

Definition 3.11. A Cartesian Structure on Ω is a bijection between Ω and the set KM of functions

from M to K where |M |, |K| > 1.

If we take M = {1, . . . ,m} and K = {1, . . . , k}, then the automorphism group of a Cartesian

structure as defined above is the wreath product Sk ≀ Sm with the product action.

Definition 3.12. Let G ≤ SΩ. We say that G is non-basic if it preserves a Cartesian structure on

Ω and basic otherwise.

We can thus make a more generalized statement about the structure of a non-basic group.

Corollary 3.13. A non-basic group as defined above is embedded in the wreath product Sk ≀ Sm.

Once again, we have a property defined by not preserving some structure. Primitive groups

don’t preserve block systems, synchronizing groups don’t preserve sections amongst partitions,

and basic groups don’t preserve a Cartesian structure. It turns out that synchronizing groups also do

not preserve Cartesian structures. This is easiest to see with the monoid definition of synchronizing,

that G is synchronizing if 〈G, f〉 has an element of rank 1 (meaning |im(f)| = 1), for a non-

permutation f.

Lemma 3.14. A synchronizing group is basic [1].

Proof. Proof Let G be non-basic, and suppose that Ω has been identified with the set of m-tuples

over a set A of size k, in such a way that G preserves the identification (and so is embedded in

Sk ≀Sm by Corollary 3.13). Let f be the map which takes the m-tuple (a1, a2, ..., am) to the m-tuple

(a1, a1, . . . , a1) with all entries equal. Let B be the image of f . Then applying any element of G

to B gives a set of k elements whose projections onto any coordinate form the whole of A; so
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following this by f gives us the set B again. Then applying any combination of elements of G and

f still returns B. So no element of the monoid 〈G, f〉 can have rank (image size) smaller than k,

thus G is nonsynchronizing.
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Chapter 4

Synchronization of Groups of Affine Type

Looking at the O’Nan–Scott Theorem (Theorem 2.34) we recall that one class of primitive

groups is the affine type. That is to say, if G is a primitive group of affine type of degree n, then

Soc(G) is an elementary abelian p-group with n = pm, and G is isomorphic to a subgroup of the

affine group AGLm(p) including the translations. Additionally, the stabilizer Gα acts faithfully and

irreducibly on the socle, interpreted as the natural module of GLm(p) [5]. Thus, this group has the

form G = 〈H, T 〉 where H is isomorphic to a matrix group H̃ ≤ GLm(Fp) and T corresponds to

the vector translations of Fm
p . The permutation action is thus the action on the vectors in the vector

space. We let each matrix in H̃ correspond to the permutation in H determined by where H̃ sends

the vectors of Fm
p . Additionally, T is the set of all permutations of translations in the vector space

(where tw(v) = v + w). Without loss of generality, we can choose a translation t corresponding

to adding a 1 in the first position, and since H acts irreducibly, G = 〈H,T 〉 = 〈h1, . . . , hl, t〉 for

{h1, . . . , hl} the generators of H . We will denote H as the matrix part of G.

Example 4.1. Define G = 〈H, T 〉 with matrix part

〈h〉 = H ∼= H̃ = 〈M〉 =

〈







1 1

0 1







〉

≤ GL2(F2).

We will assign a lexicographic labelling to the elements of F2
2 as follows:







0

0






7→ 1;







0

1






7→ 2;







1

0






7→ 3;







1

1






7→ 4

Then based on where M sends these vectors, we get that M 7→ (2, 3, 4). Additionally we will

consider the translation t that adds 1 to the first entry of each vector, resulting in t 7→ (1, 3)(2, 4).

Thus G = 〈(2, 3, 4), (1, 3)(2, 4)〉 with matrix part H = 〈(1, 3)(2, 4)〉.
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The structure of these groups having matrix parts gives us the powerful tools of linear algebra

to use in our analysis of the Affine type primitive groups. We will make specific use of the linear

action of the stabilizer to show properties of the permutation groups they correspond to.

Our next question is which groups could have such a form? It turns out that a theorem by

Aschbacher describes such groups in a manner similar to the O’Nan–Scott Theorem, namely Asch-

bacher’s Theorem (1984) [7]. The theorem states that subgroups of GLn(q) must fall into one of

nine classes. We will use the "rough descriptions" of eight of these classes as given by Bray, Holt

and Roney-Dougal in 2013 in Table 4.1 [8]. Not included in their table is the ninth class, which

we will call C9, which is concerned with almost simple groups.

Table 4.1: Rough descriptions of Aschbacher classes from [8].

Ci Rough description

C1 stabilizers of totally singular or non-singular subspaces

C2 stabilizers of decompositions V =
⊕t

i=1 Vi, dim(Vi) = n/t
C3 stabilizers of extension fields of Fqu of prime index dividing n
C4 stabilizers of tensor product decompositions V = V1 ⊗ V2

C5 stabilizers of subfields of Fqu of prime index

C6 normalizers of symplectic-type or extraspecial groups in absolutely irreducible reps.

C7 stabilizers of decompositions V =
⊗t

i=1 Vi, dim(Vi) = 1, n = at

C8 groups of similarities of non-degenerate classical forms

Thus, on our way to determining which primitive affine groups are synchronizing, we will dis-

tinguish between the Aschbacher classes for the stabilizer of the group. In the upcoming sections,

we will determine what can be said about the synchronization of each of these classes. However

before considering subgroups of AGLm(p), we will consider AGLm(p) itself as the parent of the

group for the first part of the O’Nan–Scott Theorem. To do this, we recall that 2-transitivity im-

plies synchronization. Thus in the context of the affine type, we can give the following statement

indicating these groups as 2-transitive.
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Lemma 4.2. Let G = 〈H, T 〉 where the matrix part H is isomorphic to a subgroup of H̃ ≤

GLm(Fp). If H̃ acts transitively on the nonzero vectors in Fm
p , then G is a 2-transitive permutation

group.

Proof. Note that by construction, H = G0, the point stabilizer of the zero vector. Then take four

vectors x 6= y and v 6= w in Ω. We want to show there exists some g such that (x, y)g = (xg, yg) =

(v, w). Consider the translations t and s where t translates by −x and s translates by +v, as well

as k ∈ G0 such that (yt)k = ws−1

. Let g = tks. Without loss of generality, let y 6= 0. Then

(x, y)g = (x, y)tks

= (xt, yt)ks

= (0, yt)ks (by assumption on t)

= (0k, ytk)s (note yt 6= 0 since y 6= x)

= (0, ytk)s (since k ∈ G0)

= (0s, ytks)

= (v, w) (by assumptions on k and s)

To address the supposition that y 6= 0, we could consider (y, x)g = (w, v). Thus, this group is

2-transitive on the vector space.

This theorem will help us in a few specific cases that we see later, but more immediately we

can use this for the full affine case, since SLm(p) is transitive on nonzero vectors.

Corollary 4.3. The actions of ASLm(p) and AGLm(p) on Fm
p are 2-transitive.

Furthermore, 2-transitivity of a group implies synchronization.

Corollary 4.4. The actions of ASLm(p) and AGLm(p) on Fm
p are synchronizing.

We now will consider the synchronization of the subgroups of AGLm(p).
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4.1 Class C1: The Reducible Case

In this class, the matrix part acts reducibly, and therefore the corresponding permutation groups

are imprimitive per the O’Nan–Scott classification. These are thus always nonsynchronizing.

4.2 Class C2: The Wreath Product Case

Our first new result comes from class C2. This gives us a matrix part of the group which is

formed by a wreath product. Here we can generate the matrix part with block diagonal matrices

with n blocks of size k, and permutation matrices that permute the blocks. Then for the overall

action on the vector space, we can break down the action into translations, permutations of length

k pieces of vectors, and block diagonal actions of matrices on the vectors of length nk. To get a

better understanding of how the matrix part GLk(p) ≀ Sn behaves, we will look at an example.

Example 4.5. Take GL2(5) ≀ S3, a group of 6× 6 matrices over F5. Then GL2(5) ≀ S3, is naturally

split into two parts, the base and the wreath. First, consider the following two block matrices g1, g2.

g1 =



































2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



































g2 =



































4 1 0 0 0 0

4 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



































Note that the upper blocks of these matrices are generators of GL2(5). Thus together these matrices

generate a piece of the base group

〈g1, g2〉 ∼= GL2(5)× E × E
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where E is the trivial subgroup of GL2(5). To get the rest of the group, we introduce the block per-

mutation matrices, which together generate a group isomorphic to S3. Consider the block matrices

h1, h2.

h1 =



































0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



































h2 =



































0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



































These matrices permute the entries of a vector or matrix, keeping each block of k = 2 together.

Thus by themselves,

〈h1, h2〉 ∼= 〈(1, 2), (1, 2, 3)〉 ∼= S3

they can permute each GL factor. Then all together, we get

〈g1, g2, h1, h2〉 ∼= GL2(5)×GL2(5)×GL2(5)⋊ S3 = GL2(5) ≀ S3

i.e. the entire wreath product. A natural way to view these actions is by dividing our vectors up

into 3 subvectors of length 2. More generally, n subvectors of length k.

Using this view, we are able to achieve new results in showing that primitive groups where the

matrix part has this form are never synchronizing.

Theorem 4.6. If G is of affine type with matrix part GLk(p) ≀ Sn, then G is nonsynchronizing.

Proof. Note that G acts on the vector space Fnk
p . We will use the notion of subvectors to describe

these n · k length vectors as the concatenation of n subvectors of length k. Consider section of

vectors,
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T :=





















































v1

v1
...

v1



















,



















v2

v2
...

v2



















, . . . ,


















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...
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












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
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
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
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


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










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where every vector is n copies of the same subvector, and the partition P given by the equiva-

lence relation u ∼ w if and only if u and w are equal in the first subvector.

Now, the elements of G are composed of three types of actions on the vectors in Fn·k
p – the

permutations of subvectors given by Sn, the action of the block diagonal matrices, and the permu-

tations given by vector addition. We want to verify that T g is a section for P for all g in G. Note

that for any g in G, we can write g as g = r ·d ·a for r, d, a corresponding to some row permutation,

diagonal multiplication, and addition of some vector respectively. Then T g = T rda = ((T r)d)a.

First we note that T r = T as, a permutation of equal subvectors, and therefore T r is a section for

P . Second, consider (T r)d = T d, the image of T under block diagonals. Note that each block is

a matrix in GLn(p) and each block acts on the subvectors independently. Namely, the matrix in

the first block will act on the first subvector of each vector in T . Then since an element of GLk(p)

acting on the elements of Fk
p will permute them, we get that the vectors in T d are all distinct in the

first subvector, and therefore a section for P . Third, we consider T g = (T d)a, the image of T d we

get by adding some vector v to each vector. Once again we will focus on the first subvector of v

and the vectors in T . Then the images of the first subvectors of elements in T will be permuted by

the addition of v, and therefore T rda is a section for P . Thus, G is nonsynchronizing.

Furthermore, by the contrapositive of Lemma 3.7 any subgroup of such a group must also be

nonsynchronizing, with the same section and partition.
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4.3 Class C3: The Extension Field Case

We did not yet explore this class beyond initial concrete examples, the smallest of which were

synchronizing. The nature of these groups means that we are not able to say they are nonsynchro-

nizing just because of the structure.

4.4 Class C4: The Kronecker Product Case

Our second new result comes from class C4. This gives us a matrix part of the group which

is formed by a Kronecker Product of matrices. Then in addition to the vector translations, our

group has actions from matrices GLm(p)⊗GLk(p) acting on vectors in Fmk
P with the property of

(A⊗ B) · (v ⊗ w) = (A · v)⊗ (b · w).

Theorem 4.7. If G is a primitive group of affine type with the matrix part of G being the Kronecker

product GLm(p)⊗GLk(p), then G is nonsynchronizing.

Proof. Consider GLm(p)⊗GLk(p) acting on the space V ⊗W . Without loss of generality, we will

choose m ≤ k or equivalently, |V | ≤ |W |. We will show that for a fixed v0 ∈ V , (we’ll choose

v0 = [0, 0, . . . , 0, 0, 1]) there exists a set S and partition P such that the latter is section-regular

under G with section S. To do so, we will define the subspace S := {v0⊗w | w ∈ W} corresponds

to a section for G. To define P , we need a complementary subspace P0 such that 〈P0, S〉 = V ⊗W

and P0 ∩ S = 〈 〉, and define the partition P := {P [z] | z ∈ S} with P [z] := {t + z | t ∈ P0}. It

follows from the structure that P0 and S are complementary, and S is a section for P . Note that S

is the set of vectors with the first k(m− 1) entries 0. To get P , we define P0 as the subspace with

the rows of the following block matrix as a basis.

























Ik 0 0 · · · 0 M1

0 Ik 0 · · · 0 M2

...
...

...
...

...
...

0 0 · · · 0 Ik Mm−1
























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We will define M = {Ik,M1,M2, . . . ,Mm−1} to be a subset of a k-dimensional matrix repre-

sentation of Fpm (since |M| = m ≤ k). By Theorem 4.8 below, each nonzero vector in the space

P0 is nondecomposable. In other words, P0 ∩ {v ⊗ w | v ∈ V, w ∈ W} = 〈 〉.

With S the section described, we want to show Sg is a section for any g ∈ G. Define the action

of g on v ∈ V ⊗W by vg := Mv+x for some M = A⊗B ∈ GLm(p)⊗GLk(p) with a translation

by x ∈ V ⊗W . Let s, r ∈ S with the forms v0 ⊗ ws and v0 ⊗ wr. Now suppose that sg and rg are

both elements of the cell P [z]. This implies that sg − z and rg − z are elements of the subspace

P0 = P
[

~0
]

. Thus we will look at the difference of these vectors which must also be in P0 by

closure.

(sg − z)− (rg − z) = (Ms+ x− z)− (Mr + x− z)

= Ms−Mr

= M(s− r)

= (A⊗ B)(v0 ⊗ ws − v0 ⊗ wr)

= (A⊗ B)(v0 ⊗ (ws − wr))

= Av0 ⊗ B(ws − wr)

We observe that Av0 ⊗ B(ws − wr) is clearly a decomposable tensor in P0, but by construction,

the only decomposable tensor in P0 is the zero vector. Since A is invertible and v0 is nonzero,

we must have B(ws − wr) = ~0. And thus, since B is also invertible, we get ws = wr, and thus

s = r. Therefore Sg must intersect at least |S| different cells, and by the pigeonhole principle Sg

is a section. Thus G is nonsynchronizing.

Once again, by the contrapositive of Lemma 3.7 any subgroup of such a group must also

be nonsynchronizing, with the same section and partition. However, to complete the proof, we

need the following theorem to guarantee the existence of a subspace that does not contain any

nondecomposable tensors.
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Theorem 4.8. Let M = {Ik,M1,M2, . . . ,Mm−1} such that Mi ∈ GLk(p) and take rows of B as

defined below to form a basis for a k(m− 1) dimensional space P . If rank(A) = k for any linear

combination of matrices A in M, then P does not contain any nonzero decomposable tensors of

the form v ⊗ w ∈ Fm
p ⊗ Fk

p with m ≤ k.

B =

























Ik 0 0 · · · 0 M1

0 Ik 0 · · · 0 M2

...
...

...
...

...
...

0 0 · · · 0 Ik Mm−1

























Proof. In search of a contradiction, given the above matrix with said properties to be the rows of

our basis, suppose there exists a tensor product x = α̂⊗δ̂ in our space. We will take δ̂ = [δ1, . . . , δk]

and α̂ = [α1, . . . , αi, . . . αm]. Let us denote the basis vectors as

{b1, . . . , bk, bk+1, . . . , b2k, . . . , b(m−2)k+1, . . . , b(m−1)k}.

The construction of the basis gives us unique vectors determined by the first k(m− 1) entries.

Therefore if x is decomposable, x = α̂⊗ δ̂, then δ̂ is determined by the first k(m−1) entries. That

is to say if entries (i − 1)k + 1 through ik of x are αi · δ̂, then αi · δ̂ comprises the (i − 1)k + 1

through ik entries of the coefficient vector for x. Therefore, if the last k entries of x are αmδ̂, then

we can describe these entries as follows:

αm · δ̂ =
m−1
∑

i=1

αiM
T
i · δ̂

Then the following must hold
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0 = −αmI · δ̂ +

(

m−1
∑

i=1

αiM
T
i · δ̂

)

= −αmI · δ̂ +

(

m−1
∑

i=1

αiM
T
i

)

· δ̂

=

(

−αmI +
m−1
∑

i=1

αiM
T
i

)

· δ̂

=

(

−αmI +
m−1
∑

i=1

αiMi

)T

· δ̂

Which would imply that the matrix −αmI+
∑m−1

i=1 αiMi (which is a linear combination in M)

does not have full rank, giving us a contradiction.

4.5 Class C5: The Non-prime Field Case

We recall the O’Nan–Scott Theorem to see that the primitive cases only occur for matrix actions

over prime fields. Therefore this class is not applicable as there will be no primitive groups of affine

types with a matrix part of this form.

4.6 Class C6: The Normalizers Case

We have not looked at this class due to time constraints. One issue is that the tools necessary

here will differ greatly from what we been used in C2 and C4 due to the difference in structure.

4.7 Class C7: The Tensor Wreath Case

Our third new result comes from class C7. This gives us a matrix part of the group which is

formed by a tensor product of matrices. Then in addition to the vector translations, our group

has actions from matrices GLm(p) ≀ Sn acting on vectors in Fmn
p . We will use the same proof as

Theorem 4.7 with a minor change to include the Sn part of the wreath product. We can do this by

noticing that n tensored copies of GLm(p) can be written as GLm(p) ⊗ GLn(p) (as in Theorem
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4.7) where k = m(n − 1). The key addition to this proof lies in the final equality where we must

multiply by a matrix H indicating the permutation of blocks.

Theorem 4.9. If G is a primitive group of affine type with the matrix part of G being the tensor

wreath product GLm(p)⊗GLm(p)⊗ · · · ⊗GLm(p)⋊ Sn then G is nonsynchronizing.

Proof. The first thing we will do is rewrite GLm(p)⊗GLm(p)⊗· · ·⊗GLm(p) as GLm(p)⊗GLk(p)

with k = m(n− 1) which acts on the space V ⊗W . We will show that for a fixed v0 ∈ V , (we’ll

choose v0 = [0, 0, . . . , 0, 0, 1]) there exists a set S and partition P such that the latter is section-

regular under G with section S. To do so, we will define the subspace S := {v0 ⊗ w | w ∈ W}

corresponds to a section for G. To define P , we need a complementary subspace P0 such that

〈P0, S〉 = V ⊗ W and P0 ∩ S = 〈 〉, and define the partition P := {P [z] | z ∈ S} with

P [z] := {t + z | t ∈ P0}. It follows from the structure that P0 and S are complementary, and S

is a section for P . Note that S is the set of vectors with the first k(m− 1) entries 0. To get P , we

define P0 as the subspace with the rows of the following block matrix as a basis.


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



















Ik 0 0 · · · 0 M1

0 Ik 0 · · · 0 M2

...
...

...
...

...
...

0 0 · · · 0 Ik Mm−1

























We will define M = {Ik,M1,M2, . . . ,Mm−1} to be a subset of a k-dimensional matrix repre-

sentation of Fpm (since |M| = m ≤ k). By Theorem 4.8, each nonzero vector in the space P0 is

nondecomposable. In other words, P0 ∩ {v ⊗ w | v ∈ V, w ∈ W} = 〈 〉.

With the section S described, we want to show Sg is a section for any g ∈ G. Define the action

of g on v ∈ V ⊗W by vg := Mv+x for some M = H(A⊗B) ∈ GLm(p)⊗GLk(p)⋊Sn with a

translation by x ∈ V ⊗W , where H is the matrix from Sn permuting blocks. Let s, r ∈ S with the

forms v0 ⊗ ws and v0 ⊗ wr. Now suppose that sg and rg are both elements of the cell P [z]. This
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implies that sg − z and rg − z are elements of the subspace P0 = P
[

~0
]

. Thus we will look at the

difference of these vectors which must also be in P0 by closure.

(sg − z)− (rg − z) = (Ms+ x− z)− (Mr + x− z)

= Ms−Mr

= M(s− r)

= H(A⊗ B)(v0 ⊗ ws − v0 ⊗ wr)

= H(A⊗ B)(v0 ⊗ (ws − wr))

= H(Av0 ⊗ B(ws − wr))

= H(Av0 ⊗ x2 ⊗ x3 ⊗ · · · ⊗ xn) (identified back to n blocks)

= H(x1 ⊗ x2 ⊗ x3 ⊗ · · · ⊗ xn)

= x1h ⊗ x2h ⊗ · · · ⊗ xnh (h the permutation from H)

= x1h ⊗ (x)

We observe that x1h ⊗ (x) is clearly a decomposable tensor in P0, but by construction, the only

decomposable tensor in P0 is the zero vector. Since A is invertible and v0 is nonzero, then we must

have B(ws −wr) = ~0. As in the proof of Theorem 4.7, since B is also invertible, we get ws = wr,

and thus s = r. Therefore Sg must intersect at least |S| different cells, and by the pigeonhole

principle Sg is a section. Thus G is nonsynchronizing.

Similarly to before, we use the contrapositive of Lemma 3.7 to say any subgroup of such a

group must also be nonsynchronizing, with the same section and partition.

4.8 Class C8: Non-degenerate Forms Case

From class C8 we have non-degenerate classical forms. This itself will spawn a series of sub-

classes. For one of the classes (symplectic forms) we will show in the following section that these
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groups are always synchronizing. The remaining forms require further consideration and case dis-

tinction. At minimum, our computational evidence has shown that some groups from orthogonal

forms are synchronizing, while others are nonsynchronizing. We expect that the requirements here

will depend on the degree of the group - both in parity and magnitude.

4.8.1 Symplectic Forms

We argue that the full affine symplectic groups are 2-transitive and therefore synchronizing.

Specifically, we want to employ Lemma 4.2, and thus need to show that the groups from symplectic

forms sufficiently move the vectors.

From Hulpke [9] due to work by Birman [10] and Klingen [11], we have that the symplectic

group has a generating set given by

Sp2n(Zp) = 〈Yi, Ui, Zj | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1〉,

where Yi = t−1
i,n+i, Ui = tn+i,i and Zi =







In Bi

0 In






for Bi the matrix with







−1 1

1 −1






at i, i + 1

along the diagonal, and all other entries zero. Here ti,j is defined for i 6= j to be the matrix that has

ones along the diagonal and at position (i, j), and zeroes elsewhere.

We also note that for 1 ≤ i 6= j ≤ n the products (ti,j)(t
−1
n+j,n+i) form a subgroup P where

P =

















M 0

0 M−1






| M ∈ SLn(Zp)











.

Lemma 4.10. The symplectic group Sp2n(Zp) as defined above acts transitively on the nonzero

vectors in F2n
p .

Proof. In order to show that Sp2n(Zp) is transitive, it will suffice to show that any nonzero vector

w can be sent to v1 = (1, 0, 0, . . . , 0). We will consider two cases for w
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• If the first n entries of w are zero, then there is some element p ∈ P such that wp is the vector

with zeroes everywhere except for a 1 in the n + 1 entry. Then for y = Y −1
1 = t1,n+1 we

have wpy is the vector with zeroes everywhere except for the ones in the 1 and n+ 1 entries.

Then for u = U−1
1 we get wpyu = v0.

• If there are any nonzero entries in the first n positions of w, there exists a p ∈ P such that

wp has all ones in the first n positions. Then for each i with a nonzero element in the n + i

position, we can apply Ui as many times as needed until that position goes to zero. Consider

u =
∏

wp
n+i 6=0

(Ui)
ai . Then wpu is the vector with the first n entries 1, and remaining entries 0.

Then there exists some q ∈ P such that wpuq = v1.

We have shown that for any w, there exists a group element gw ∈ Sp2n(Zp) such that wg =

v1. Therefore for any two nonzero vectors w, z we have wgwg−1
z = z, and therefore Sp2n(Zp) is

transitive on the nonzero vectors of F2n
p .

The above with Lemma 4.2 lets us determine that the group G consisting of the group generated

by Sp2n(Zp) with all of the vector translations is 2-transitive on all of the vectors in F2n
p (not just

the nonzero ones).

Corollary 4.11. If G is a primitive group of affine type with the matrix part of G being Sp2n(Zp),

then G is 2-transitive on F2n
p .

We can thus extend this to synchronizing.

Corollary 4.12. If G is a primitive group of affine type with the matrix part of G being Sp2n(Zp),

then G is synchronizing.

4.8.2 Orthogonal Forms

We did not study these analytically, but have some preliminary results from computation. These

results are given in Table 4.2 for prime fields with p > 2 (due to the nature of the orthogonal

groups, the p = 2 case should be handled independently).
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Table 4.2: Example data from GAP for orthogonal forms.

Matrix part Degree GAP ID Synchronizing?

GO(0, 3, 3) 8 27 No

GO(0, 3, 5) 125 42 No

GO(0, 5, 3) 243 28 No

GO(−1, 2, 3) 9 2 No

GO(−1, 2, 5) 25 7 No

GO(−1, 4, 3) 81 138 Yes

GO(−1, 4, 5) 625 656 Yes

GO(−1, 6, 3) 729 481 Yes

GO(+1, 2, 3) 9 N/A No

GO(+1, 2, 5) 25 5 No

GO(+1, 4, 3) 81 103 No

GO(+1, 4, 5) 625 651 No

GO(+1, 6, 3) 729 478 No

Due solely from the data in Table 4.2, we ask the following open questions:

• If G is of affine type with matrix part GO(0, 2n+1, p), with p > 2, is G always nonsynchro-

nizing?

• If G is of affine type with matrix part GO(−1, 2n, p) with p > 2 and n > 1, is G always

synchronizing?

• If G is of affine type with matrix part GO(+1, 2n, p) with p > 2 and n > 1, is G always

nonsynchronizing?

4.9 Class C9: The Almost Simple Case

Recall Definition 2.32, that a group is almost simple if its socle is simple. Since the simple

groups themselves do not share an underlying structure, it makes giving a structure based state-

ment about the entire class impossible. With a separate case distinction for each of the types of

simple groups (as stabilizers of affine groups), one might be able to make progress into determin-

ing synchronization for these groups. However, we have not looked at these as a whole (past the

ones that overlap different classes).
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Chapter 5

Beyond the Affine Type

Determining synchronization of primitive groups extends beyond just the groups of affine type.

As affine type was the first case from the O’Nan–Scott Theorem, let us recall the non-affine types

from Theorem 2.34:

The socle H is isomorphic to a direct product Tm of a nonabelian simple group T with one of

the following:

1. m = 1 and G is isomorphic to a subgroup of Aut(T ).

2. m ≥ 2 and G is a subgroup of diagonal type with n = |T |m−1.

3. m ≥ 2 and there exists some proper divisor d of m and some primitive group U such that

Soc(U )∼= T d, and G is isomorphic to a subgroup of U ≀ Sm/d with the product action, and

n = lm/d where l is the degree of U .

4. m ≥ 6 with H regular and n = |T |m.

This gives us four additional cases to consider, where we don’t have the benefit of a geometric

relation. In these cases, Peter Cameron and his colleagues have solved the synchronizing problem

for a few types. One helpful tool to understand for this is the property of separating groups.

Definition 5.1. We say that G is non-separating if given nontrivial subsets A,B of Ω satisfying

|A| · |B| = |Ω| for all g in G, we have |Ag ∩B| = 1. We say that G is separating otherwise [1].

The similarities between this definition and that of synchronizing come quickly, with A as-

suming the role of the transversal, and B a cell in the partition. Moreover, all separating groups

are synchronizing [1]. The few counterexamples prove to be difficult. The ultimate benefit of

separation comes from the following theorem:

Theorem 5.2. Let G be a primitive group which is not almost simple. Then G is synchronizing if

and only if it is separating [12].
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Therefor, for all O’Nan–Scott Types barring the almost simple groups, we can use the stronger

property of separating where applicable (though we didn’t need this for the affine type, since we

were using a geometric approach).

5.1 Class 1: Almost Simple Type

The case that G is isomorphic to a subgroup of the automorphism group of its socle gives us

the almost simple groups. The generic tools that we have been using (and tools that have been

used for the other classes such as the separation property) cannot be applied in this scenario. Due

to the nature of the almost simple groups (as inherited from the finite simple groups), a universal

conclusion covering the entire class is impossible. This means that the analysis of synchronization

for the almost simple groups will be dependent on the type of the group, and not solely the fact that

it is almost simple. With some luck, this could come down to analyzing the simple groups socles

by class (of which there are 18 plus the 26 sporadic groups). This could result in a case distinction

of over 44 cases (if not more) which lies beyond our scope here.

5.2 Class 2: Diagonal Type

For groups of diagonal type, we can paint a clearer picture. This is largely due to the work

of Bray, Cai, Cameron, Spiga, and Zhang leveraging the separation property and the proof of the

Hall-Paige Conjecture [12]. Their result is as follows:

Theorem 5.3. Let G be a primitive permutation group of simple diagonal type with more than two

factors in the socle. Then G is nonsynchronizing.

Conveniently, this gives us an O’Nan–Scott Type which is entirely non-synchronizing – our

first complete puzzle piece that doesn’t require several case distinctions.
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5.3 Class 3: Wreaths with the Product Action

Wreath products with the product action raise another case of nonsynchronizing. This result

is alluded to in [1], and here we can construct the section-regular partition without need for the

separation property.

Theorem 5.4. A primitive group with product action is nonsynchronizing.

Proof. Let G act primitively with the product action on Ω. Then we can identify Ω as a set of

m-tuples over a set A of size k, that is to say G ≤ Sk ≀ Sm. Let P be the partition on Ω inherited

by the equivalence relation of x ∼= y if x and y are equal in the first component. Consider the set

of m-tuples S := {(a, a, . . . , a) | a ∈ A}. Then clearly S is a section for P with |S| = k such that

P has k cells. Then take Sg for any g ∈ G. Note that since each element of S differs in the first

element, their image under g will all be different in the first element, therefore being in their own

cell in P . Therefore Sg is a section for P . Then P is a section-regular partition for G with section

S and thus G is nonsynchronizing.

This is a construction that is a bit simpler to imagine than our results from the affine cases.

This third class gives us yet another complete piece of the puzzle: an O’Nan–Scott Type which is

always nonsynchronizing.

5.4 Class 4: Twisted Wreath Products

Alas, we arrive at the twisted wreath products. We note that by the O’Nan–Scott classification,

these groups have a socle containing the product of at least 6 copies of a regular nonabelian simple

group. Thus, the smallest group in this case will have degree of 606 = 46,656,000,000. On one

hand, these permutation groups are too large to be able to experiment with. On the other hand –

their size also makes them quite impractical to study for having section-regular partitions.
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Chapter 6

Conclusion

Overall, the “synchronizing problem” is now closer to being solved. We have several cases of

primitive groups that can be classified as synchronizing or nonsynchronizing as determined by their

group structure. To review the cases of affine type, recall that we divided amongst the Aschbacher

Classes with the following conclusions.

• C1: This class is irreducible, and therefore imprimitive per the O’Nan–Scott classification.

Thus, these groups are always nonsynchronizing.

• C2: This is class gives our first new result, Theorem 4.6. Groups coming from this class are

always nonsynchronizing. We have additionally provided a construction for the section-

regular partitions that show this.

• C3: We did not have time to explore this case. Our elementary experimental data has shown

that the groups from this class are sometimes synchronizing, and will thus require further

analysis.

• C4: This class gives our second new result, Theorem 4.7. Groups coming from this class

are always nonsynchronizing. We have provided a construction for the section-regular

partitions that show this.

• C5: Similarly to C1, we look to the O’Nan–Scott Theorem to see that primitive groups of

affine type only occur over prime fields. Therefore groups of this form are imprimitive and

thus always nonsynchronizing.

• C6: We did not have time to explore this case. The structure of these groups varies from the

groups where we got results, and this will require some different tools. The synchronization

of these groups is unknown and will require further analysis.
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• C7: This is another class where were able to get a complete result. Using a combination

of the techniques from cases C2 and C4, we were able to show that these groups are always

nonsynchronizing. Once again, we provided a construction for the section-regular partitions

to show this.

• C8: This is the final case where we have new results. Unfortunately, since this is the class

of “stabilizers of forms,” it requires further case distinctions. The proper result here is that

the primitive groups of affine type coming from stabilizers of symplectic forms are always

synchronizing. The remaining groups in this class - those stabilizing other kinds of forms -

are sometimes synchronizing.

• C9: This case is the affine instance of almost simple. The synchronization of these groups

will have to be determined on an individual basis, since the groups do not have the same

underlying structure we were able to use in some of the other classes.

Thus, for primitive groups of affine type, we have five of the nine Aschbacher classes classified

as synchronizing or nonsynchronizing, with partial progress on a sixth class that requires further

case distinction. Moreover, for the classes determined to be nonsynchronizing, we have provided

the specific construction of the sections and partitions that give us this property of the group. We

had the advantage in doing this by the geometric relation of these groups, with the socles being

identified to matrix groups acting on vector spaces.

Since the question of synchronization also regards the non-affine primitive groups as well, we

will summarize the progress of those classes from the O’Nan–Scott Theorem (Theorem 2.34(2)):

• Almost Simple: Once again, due to the less coherent structure of the simple groups, analysis

of the almost simple groups is difficult without individual case distinctions. The synchro-

nization of these groups overall is unknown.

• Diagonal Type: Due to Bray et al. [12], using the property of separation and the proof of the

Hall–Paige Conjecture, these groups have shown to be always nonsynchronizing.
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• Wreath Product with Product Action: With a short proof (with construction of the section-

regular partition in Theorem 5.4) we can show that the groups of this type are always non-

synchronizing.

• Twisted Wreath Product: The smallest of these groups having degree 606 (having at least six

copies of a regular nonabelian simple group as the socle), these groups are largely impractical

to work with. The synchronization of groups in this class is unknown.

Thus, out of the five O’Nan–Scott types of primitive groups, we have two that are always

nonsynchronizing, two that are largely unexplored, and one that has been divided into a further

case distinction via Aschbacher classes - five of which have been determined. We have laid the

groundwork for exploration of a few of the remaining Aschbacher classes. That combined with

the number of combinatorialists working on this problem indicate that further progress is very

promising in due course.
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