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Detection and Classification of Buried Dielectric
Anomalies Using a Separated Aperture Sensor
and a Neural Network Discriminator

Mahmood R. Azimi-Sadjadi, David E. Poole, Sassan Sheedvash, Kelly D. Sherbondy, and Scott A. Stricker

Abstract—The problem of detection and classification of bur-
ied dielectric anomalies using a separated aperture microwave
sensor and an artificial neural network discriminator was con-
sidered. Several methods for training and data representation
were developed to study the trainability and generalization ca-
pabilities of the networks. The effect of the architectural vari-
ation on the network performance was also studied. The prin-
cipal component method was used to reduce the volume of the
data and also the dimension of the weight space. Simulation
results on two types of targets were obtained which indicated
superior detection and classification performance when com-
pared with the conventional methods.

I. INTRODUCTION

THE development of a target detection system capable
of detecting and classifying various types of buried
dielectric anomalies, such as landmines, under different
environmental conditions presents many problems. His-
torically, a number of target detection and classification
schemes have been applied to this problem. However, in
practice, they have been only partially successful and have
been shown to produce high false-alarm rates. Some of
the factors which inhibit the detection and classification
are the diverse sizes and compositions of targets, varia-
tion of soil properties with location and moisture condi-
tions, nonrepeatability of target signatures, competing
clutter with similar responses as actual targets, and ob-
scuring of targets in noise.

Over the years, several sensor systems such as sepa-
rated aperture (or waveguide beyond cutoff ), acoustics,
seismic, and photon backscatter have been developed [1],
[2] as means to solve this problem. However, each sensor
has its own specific problems along with its advantages.
The separated aperture sensor which operates in the mi-
crowave range can potentially offer a very good signal-to-
clutter ratio when the sensor height from the ground sur-
face is small. Acoustic sensors are ideally suited for real
field implementations but have the problem of coupling

Manuscript received May 15, 1991; revised September 27, 1991.

M. R. Azimi-Sadjadi, S. Sheedvash, and S. Stricker are with the De-
partment of Electrical Engineering, Colorado State University, Fort Col-
lins, CO 80523.

D. E. Poole and K. D. Sherbondy are with the Countermine Systems
Directorate, U.S. Army Belvoir RD&E Center, Fort Belvoir, VA 22060-
5606.

IEEE Log Number 9105565.

energy from the air into the ground because of reflections
at the air-soil interface. In spite of its accuracy in detec-
tion, the photon backscatter sensor has physical limita-
tions and usually requires high power. A detailed descrip-
tion of these sensors and a discussion on their principles
of operation, benefits, and shortcomings were reported in
[1].

The effort of this particular research is primarily fo-
cused on the development of a neural network-based [3],
[4] detector and classifier for the separated aperture sensor
which offers better accuracy and a lower false-alarm rate
than previous systems. Specific emphasis is placed on the
development of various data representation schemes, net-
work training procedures, and network structures for au-
tomatic detection and classification of mine analogs. The
data collected from the sensor which include the magni-
tude and phase components are presented to the neural
networks in various formats to determine relative impor-
tance of these components as well as any effect of data
reduction on the network performance. Data reduction is
performed using the principal component (PC) scheme or
Karhunen-Loeve (KL) transform [5], [6]. A number of
network architectures are designed to take advantage of
multiple or single frequencies and one or both of the mag-
nitude and phase data components for training. The per-
formance of the various neural network schemes is com-
pared with the traditional methods of detection and
classification, such as basic thresholding and correlation
matching techniques.

II. THE SEPARATED APERTURE SENSOR

The sensor system used for data collection in this effort
is formally called the ‘‘Separated Aperture Sensor’” [2]
which operates at a microwave range of frequencies. As
shown in the simpified schematic diagram of this sensor
in Fig. 1, the sensor is composed of a transmit and receive
dipole pair separated by a metallic septum. Each dipole
resides within a corner reflector. During operation, given
a fixed input power, the output power measured at the
receiving dipole is monitored. As the sensor head moves
over the surface of the field, the received power varies.
When the sensor head is over the uniform background (no
target present), very little power is received. In contrast,
there is a significant increase in the received power when
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Fig. |. Simplified schematic diagram of the Separated Aperature Sensor
System.

the sensor head is over a target. The metallic septum forms
a waveguide with Earth’s surface, and when the septum-
Earth separation is small, this waveguide operates below
cutoff. This results in an exponential attenuation of the
direct and ground-reflected signals and consequently a
substantial improvement in signal-to-clutter ratio. Exper-
imental data collected under controlled conditions and
comparison of signal-to-clutter ratios show the superiority
of this sensor over all the other sensors ever attempted
from both the detection and false-alarm rate rejection ca-
pabilities points of view [1]. What follows is a description
of the fundamental operating principles of this sensor.

A. Sensor Operating Principles/Parameters

The fundamental operating principle of the separated
aperture sensor is based upon the propagation of electro-
magnetic waves through the soil and their iteractions with
a buried target. Owing to the potentially high energies
associated with the direct coupling from the transmitter
dipole to the receiver dipole and the reflection from the
air-soil interface, the signal power could be very low.
However, the key feature of the separated aperture sensor
is its ability, under proper operating conditions, to sub-
stantially suppress the components corresponding to the
direct coupling and ground-reflected energies.

A critical parameter is the height of the sensor head
above the ground. If the height of the antenna is greater
than one-half of the wavelength, the weak signal of the
target tends to reside within or below the clutter. In short,
the waveguide made between the sensor head and earth is
lost, and the direct-coupling and ground-reflected ener-
gies begin to dominate the received energy, hence making
it virtually impossible to detect the target response. An-
other parameter is the operating frequency, which should
be chosen to minimize sensor height sensitivity and max-
imize depth penetration. Additional operating parameters,
which play an important role, are the soil parameters of
the earth in which the target is buried. The detection sys-
tem is a dielectric anomaly detector, and one of the main
factors for optimal detection is the difference in dielectric
parameters between the soil and target. Specifically, if the
dielectric parameters of the target are not significantly dif-
ferent from those of its surrounding soil, detection may
not be possible, and due to the weakness of the received
signal associated with the target, the system will be
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Fig. 2. Threshold contour plots of magnitude data for nylon and wood at
792 MHz.
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plagued with high false alarms generated by competing
clutter. All of these factors must be considered when using
this sensor.

B. Experimental Data Collection

The data were collected by a symmetrical-sensor head
(resonant at 790 MHz) with a 6-in metallic septum over
a band of frequencies from 600 MHz to 1 GHz. This band
of frequencies is then sampled at multiple frequencies.
All of the data was collected in dry loamy soil with a soil
moisture content of 6% by weight [2]. The complex per-
mittivity values vary substantially depending on the type
of buried anomaly, type and moisture content of the soil
and the operating frequency of the sensor [7], [8]-

The targets that were used were of identical shape and
size. They were in the shape of rectangular blocks, with
the dimensions of 12” X 12” X 3", and were made of
nylon and wood for the respective runs. The targets were
buried at various positions and angles as opposed to the
direction traversed by the sensor head throughout the soil.
Fig. 2 shows a sample of amplitude returns (thresholded)
for the nylon and wood sets. These contour plots show
not only the responses of nylon and wood targets but also
those of clutter. The total numbers of targets for each scan
of nylon and wood lanes were 15 and 12, respectively.
Data was collected every 1.5” in both directions, provid-
ing a matrix of data points corresponding to an area of
approximately 39” by 750". At each position the scatter-
ing parameter, (S,;), was measured over a band of 51 fre-
quencies from 600 MHz to 1 GHz.

[II. DATA REPRESENTATION AND PREPROCESSING
SCHEMES

One of the most critical aspects involved with target
detection and classification is the choice of data represen-
tation which impacts the size, speed, and accuracy of the
system. The data in these experiments may be described
as being 2-D arrays of the magnitude and phase compo-
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nents of the S, signal at the receiver. A discussion of a
number of data representation schemes follows.

A. Unprocessed Data

Each data set (nylon and wood), at each frequency,
consists of two files: one representing the magnitude com-
ponent of S,, at the receiver and the other representing the
phase components of S,;. For use as input to the neutral
networks, the phase data were converted to change in
phase or delta-phase using the 2-D Robert gradient oper-
ator [5].

B. Preprocessed Data

In previous research efforts [9] two preprocessing
schemes were applied to the data obtained using the sep-
arated aperture sensor. The first algorithm, which is re-
ferred to as ‘‘target amplitude descriptor’” or TAD, com-
putes the signal-to-background ratio at each spatial
position. In this calculation the magnitude of the signal at
a particular spatial position is obtained by averaging the
magnitudes of all the signals at the same locations over
all the frequencies. The second algorithm used with the
separated aperture sensor is called the ‘‘average of sums”’
or ASUM. This algorithm calculates the weighted aver-
age of signal-background difference, weighted by the
standard deviation of the background clutter [9].

C. Data Reduction Using the Principal Component
Scheme

The KL transform is a method of principal components
that can be used to reduce the size of a data set while
closely preserving the quality of the original signal. It does
this by packing the energy of a signal into a reduced di-
mension set of values. It has been shown that the KL
transform is optimal in achieving accurate data compres-
sion of stochastic signals [5], [6]. In recent years, several
neural network architectures [10], [11] have been devel-
oped which use a Hebbian learning rule to extract the
principal components of a set of signals (or images) in
real-time. This is particularly attractive to our applica-
tion, since a composite architecture made of a principal
component network as a preprocessor and a detector/clas-
sifier network can perform the entire operation in real-
time.

The target or anomaly returns within a window can be
considered as a 2-D complex random image. Let {x(i, j )},
i, je[l, N], be a 2-D complex random image of an en-
semble set of M images each of size (N X N) with zero
mean and covariance function r,(m, n) := E[x(i, j) x*(i
— m, j — n)], where E[-] represents the expectation op-
erator. Let the row-ordered arrangement of x{i, j} be
given by vector X as

X:=[x(1, Hx(1,2) - x(1, Ny x(2, 1) - -+
X2, N) -+ x(N, 1) -+ x(N, \)]". )]
The 2-D KL transform of the image X is defined as
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Y= v¥'X (2a)
and the inverse transform is
X =vY. (2b)

The transformation matrix ¥ contains the complete set
of eigenvectors of the doubly Toeplitz [5] covariance ma-
trix R := E[X X*"] in its columns and satisfies

IRy = A (3)

where A is a diagonal matrix containing the eigenvalues,
N\, of matrix R. The eigenvalues represent the energy
(variance) of the signal along the coordinates of the signal
space. The interesting property of the KL transform is that
the elements of the Y vector are decorrelated, which
makes them ideal for neural network training. For this
research, the covariance matrix R is formed from several
images by computing the covariances in each image and
finding the average over all the available images using

M N-mN-n
1

rim, n) = MN — m)(N — n) kgl igl jgl

cx @+ m,j + n)xEG ),
vm, ne[0, N — 1] )

where {x.(i, j)} represents the kth image in the ensemble
set.

IV. DETECTION AND CLASSIFICATION

The problem of detecting target signals in noise and/or
clutter could be divided into two parts: (1) the detection
of the signal in noise and/or clutter, and (2) the extraction
of the information from the received signals, which is a
problem of statistical parameter estimation. In most of the
present target detection and classification systems the de-
tection and the extraction of information are performed
separately. For detection, methods such as matched fil-
tering and correlation techniques are typically used [12].
Extraction of information for the target classification is
normally accomplished by first estimating certain param-
eters attributed to each received signal and then using a
standard classifier such as Bayes or maximum likelihood
(ML) to separate the classes or patterns [13]. Using con-
ventional parameter estimation techniques, accurate mea-
surement of the parameters can only be made when the
signal-to-noise/clutter ratio (SN/CR) is relatively large.
In addition, the extracted features may not be distinctive
enough to guarantee accurate and nonconflicting classifi-
cations. The objective of this research work is to develop
more reliable and accurate schemes for target detection
and classification using artificial neural networks.

Methods for detection of targets used with separated
aperture in the past consisted primarily of basic thresh-
olding techniques on the magnitude data. The following
section presents the results of using the thresholding and
correlation matching techniques.
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A. Thresholding Results

Thresholding was performed on three sets of data: raw
magnitude, ASUM, and TAD, with each set having two
subsets, one each for nylon and wood targets. The per-
formance of thresholding on each set is obviously directly
related to the threshold value used and the response of the
sensor over a target. As the threshold is lowered, the
number of detections increases, and the percentage of cor-
rect detections approaches 100%, while at the same time
the percentage of incorrect detections and/or number of
false positives increases to a totally unacceptable level.
The intention of the ASUM and TAD algorithms is to
amplify the target response while minimizing the re-
sponse of the background and nontarget anomalies. Even
though a measure of success has been achieved, obviously
the requirements of a high detection rate and a low oc-
currence of false positives are conflicting and difficult to
achieve using this method. Table I provides a sample of
results from use of the thresholding technique. Because
SN/CR is so much lower in the wood data, the number of
false positives becomes very high. In a mine detection
scenario this would indicate a system incapable of per-
forming accurate detection in diverse environments.

B. Correlation Matching Results

In basic terms, the correlation matching method pro-
vides cross-correlations between two data sets in order to
determine the amount of similarity between them [12].
Two versions of the correlation matching scheme have
been tested. The results of the first version were based
upon the thresholded cross-correlation responses of tar-
gets in the respective data sets. The second version uses
a background template and two target templates in an at-
tempt to reduce false-alarm rates. In addition to the target
correlations, this version computes the background cor-
relations each time the target correlation threshold is ex-
ceeded. To be classified as a target, the computed corre-
lations must be greater than the correlation threshold for
a target and less than the correlation threshold for back-
ground. Table I presents the detection and false-alarm
rates of both versions of the detector using data collected
at 792 MH,. As with the thresholding method, it was ob-
served from the results in Table I that although lowering
the thresholds improves the detection rate, it significantly
increases the false-alarm rates. The detector showed much
better results for nylon targets than it did for wood targets.
The results in Table I might be somewhat misleading. The
percentages in Table I were realized knowing beforehand
the type of target being searched for. This allowed the use
of the correct template. Theoretically, when the nylon tar-
get template is used on the wood data and vice-versa, the
results are expected to show zero detection for both cases
(i.e., no nylon targets in the wood data, etc.). However,
in practice this was not the case, and more than 35% of
the targets were detected incorrectly. This indicates that
the correlation matching method can neither provide a ro-
bust detection, nor can it be used for classification pur-
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TABLE 1
RESULTS OF THRESHOLDING AND CORRELATION MATCHING METHODS

Performance
Conventional Methods Nylon Wood
792 MHz 100729 92/69
Tt Idis ASUM 93/22 100/76
TAD 93/26 92/86
Correlation Matching Vers:mn One @ 792 MHz 100/48 83/70
Version Two @ 792 MHz 100/44 92/78

Note: All entries are of the form: Detection Rate (%) / False-Alarm Rate (%)

poses. This severely limits the effectiveness of this method
for target detection/classification applications.

C. Neural Network Approach

Neural networks offer potentially powerful, robust, and
adaptive means of detecting and classifying targets in high
cluttered background. In a supervised neural network such
as multilayer back-propagation, the choice of training al-
gorithm, network architecture, input signal representa-
tion, and training set, plays a dominant role in the gen-
eralization and training characterististics of these
networks. The choice of input signal representation de-
termines the size of the network, the dimensionality of the
weight space, and the transient behavior of the learning.
The network architecture is another important considera-
tion for optimal training and generalization characteris-
tics. It has been proven [14] that a three-layer perceptron
neural network, with sigmoidal nonlinearity at nodes can
approximate any arbitrary nonlinear function and generate
any arbitrary complex decision region needed for detec-
tion and classification tasks. The choice of the training
algorithm, on the other hand, determines the rate of con-
vergence to a solution, time required to reach a solution
and the optimality of the solution. If enough training sam-
ples and internal parameters are used, the input-output
transformation may be defined to an arbitrary accuracy.
In this case, the performance of the network can approach
that of Bayes estimator which is optimal.

In this section emphasis is mainly focused on studying
the neural network performance in relation to various data
representation schemes and various network architec-
tures. In most cases a feed-forward three-layer back-
propagation network was employed to perform the detec-
tion/classification tasks. Three groups of experiments
were conducted. What follows are descriptions for each
group of experiments and analysis of the results.

Group 1-Magnitude Data Representation and Network
Bottleneck

The purpose of this experiment is to study the effect of
different magnitude data representations and different
bottlenecks on network performance in terms of both
detection and false-alarm rate characteristics. Two net-
work architectures, 225-100-50-3 and 225-50-25-3, were
considered. The desired output sequences for nylon tar-
gets, wood targets, and background are (1, -1, -1,
(-1, 1, =1), and (-1, —1, 1), respectively. The input
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consisted of the magnitude of sensor data in windows of
size 15 X 15 from the five frequencies. The mean for each
window was first subtracted, and then the data was nor-
malized. The networks were trained for six targets and six
backgrounds from each data file, once for single fre-
quency, once for multiple (five) frequencies and once for
selected target windows. In the latter case, the strong re-
turns were selected based upon their energy distribution.
The frequencies that were used include 728, 760, 792,
824, and 856 MHz. The learning rate was chosen to be 7
= 0.05. The training data for multiple frequencies were
presented to the network sequentially. To guarantee
proper weight adjustment and prevent early saturation, the
weights were initialized randomly in an uniform region
[—0.1, 0.1]. The index of performance used to determine
the trainability of the network is the Average Mean
Squared Error (AMSE) at the output averaged over all the
output units.

Once the network is trained, the generalization of the
network is tested by using the training data and the testing
data (the data from other parts of the lanes which the net-
work had not seen before). The testing data at each fre-
quency consisted of 15 targets and 12 background win-
dows for nylon files and 12 targets and 12 background
windows for wood files. As expected, the network with
increased bottleneck (i.e., reduced number of nodes in the
hidden layers) exhibited better generalization [15]. It must
be pointed out that for a given network with fixed data
representation, there exists a particular network architec-
ture for which the generalization performance is optimal.
A subsequent decrease in the number of nodes drastically
degraded the performance of the network. The experi-
ments conducted on a two-layer network indicated even
more pronounced degradation in the performance, as a
two-layer network is not capable of generating a complex
decision region needed for this detection/classification
problem. The training set chosen proved to be a key fac-
tor. The selected data training set, at a single frequency,
performed substantially better than the others. The detec-
tion and false-alarm rates for this case and the multiple
frequency case are given in the first and the second rows
of Table II. Comparing the network performance for ny-
lon and wood types of targets indicates that, in general,
the magnitude data for nylon targets provide a better sig-
nal-to-noise ratio than wood in the same environment.

Group 2-Magnitude and Phase Data Representation and
Network Architecture

The purpose of this experiment is to study the effect of
magnitude, phase, and magnitude-phase data and also the
network architecture on the performance in terms of de-
tection and false-alarm rates. The training data consisted
of both magnitude and phase components for each target
and background window. Similar to the previous case, ex-
periments using five frequencies were also included. In
the first part of this experiment the unprocessed magni-
tude and phase data for six targets and six backgrounds at
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TABLE 11
RESULTS OF NEURAL NETWORKS METHODS

Neural Networks Methods Perfc

Architecture Nylon Wood
225-50-25-3 87/3 84/7
225-50-25-3 85/4 76/8

Group/Case Data Representation
11 Single Freq-Sclected
1/2 Five Freq-Sequential
0 Magnitude & |A Phase| Se-
quential

2x
225-100-15-3 86/8 80/15
22 Single ﬁ'quhM,:f,m“d‘ & Sx 45.25-25-2 30/17

83/13

31 KL data, combined ¥
32 KL data, target ¥
Note: All entries are of the form: Classif

26-13-5-3 100/0 83/8
26-13-5-3 100/0 83/8
Rate (%) / False-Alarm Rate (%)

five frequencies were sequentially presented to the net-
work. The network consisted of two 225-100-15-3 net-
works in parallel, one for magnitude and one for phase
data. The testing results indicated that the combination of
magnitude and phase data has a degrading effect when
compared with the results of the magnitude alone case.
The same experiment was repeated this time using the 2-
D gradient [5] (2-D Roberts Gradient) of the phase data.
The test results indicated some improvements in the de-
tection and classification rates. This is largely attributed
to the fact that the phase is relatively constant over the
surface of the target and varying over the surface of non-
target anomalies. Thus, the 2-D phase gradient data con-
tain information about the location of the edges of the
object. The results are given in the third row of Table II.

As can be seen, the inclusion of phase resulted in some
degradation in the overall performance. It was first be-
lieved that this degradation may mainly be attributed to
enlargement of the size of the network and substantial
growth in the number of nodes which naturally leads to
poor generalization capability and hence deterioration in
the performance. Consequently, a network architecture
was specifically designed to reduce the dimensionality of
the weight space with the expectation to improve the gen-
eralization of the network. This architecture consisted of
five 45-25-25-2 networks in parallel as shown in Fig. 3.
The input data which was applied sequentially consisted
of all five frequencies. The results are given in the fourth
row of Table II. As can be seen, the reduction in the
weight space dimensionality resulted in overall degrada-
tion in the performance. Consequently, the negative ef-
fects of adding phase data cannot be blamed entirely on
the network size. After careful study of the phase data, it
was observed that rather large numbers of discontinuity
points exist in the phase data that are caused by improper
conversion procedures and hence make the gradient phase
data unreliable.

Group 3-Data Reduction

The purpose of this experiment is to study the effect of
a data reduction scheme on network performance. The
method of principal components, namely the 2-D KL
transform, was used to reduce and decorrelate the training
and testing data. This was achieved by evaluating the two-
sided covariances of the magnitude data in each 15 X 15
window and averaging over all the available windows.
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Fig. 3. The modular magnitude/phase only network architecture.

The covariances were used to form the double block
Toeplitz covariance matrix R of the process. This matrix
was then diagonalized using a unitary transformation to
yield the eigenvalues associated with each type of image.
Since these eigenvalues represent the energy of the signal,
the process of finding the significant number of eigenval-
ues was based on the number needed to represent 90% of
the total energy of the signal. That is, if K represents the
total number of eigenvalues, and L denotes the number of
significant ones, then we should have

L K

}El o= 0.9 sz N )
Results of calculations show that L = 26 largest eigen-
values out of the set of K = 225 are sufficient to represent
the images used in this study. Once the number of signif-
icant eigenvalues has been determined, the reduced trans-
formation matrix ¥, of size (K X L) can then be formed
with the first L columns of ¥ associated with the first L

largest eigenvalues. The reduced transformed image Y, is
given by

Y, = v¥'X (6)

where ?, is the reduced transformed image of size (L X
1). This decorrelated image can now be used to train a
neural network, the architecture of which will only re-
quire L inputs. Note the immense reduction in size com-
pared to the network that used the entire (15 X 15) image
and had 225 inputs.

Two groups of experiments were conducted. In the first
experiment, the reduced transformed images Y, for each
type of target and background were produced using their
associated KL transformation matrices. A three-layer
neural network with architecture 26-13-5-3 was trained
with a data set consisting of 4 target and 4 background
images for both nylon and wood cases at five frequencies.
The testing results were outstanding and showed that de-
tection and classification rates of 100% and false-alarm
rates of 0% can be achieved by this network using KL
transformed images as long as an image is transformed by
its corresponding ¥, matrix. It was found in further stud-
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ies that if a target is transformed by a ¥, that was formed
from backgrounds, the network could not correctly detect
it. And similarly, if a background image is transformed
by a ¥, that was formed from targets, the network will
produce a false alarm.

With this in mind, a second set of experiments con-
ducted to try to form a generalized KL transformation ma-
trix that could be used to reduce any arbitrary image (tar-
get or background) without severely degrading the results
of the neural networks. Two different generalized trans-
formation matrices were formed. The first was formed
from nylon target, wood target, and background images.
The second consisted of only nylon and wood targets (no
backgrounds). All images were then reduced by these
transformation matrices, and a three-layer network was
trained for each of the two sets of generalized reduced
images. The results of these experiments for the resonant
frequency (792 MHz) are shown in the fifth and sixth rows
of Table II. These results indicate that it is possible to
obtain detection and false-alarm rates that surpass those
in the previous groups of experiments.

V. CONCLUSION

As can be expected with a large and complex problem
the results are mixed, but some trends are evident. It is
evident that the traditional techniques of thresholding and
correlation matching are capable of providing high rates
of detection, but they generally produce high false-alarm
rates. The neural network approach showed comparable
rates of detection and classification while reducing the
false-alarm rate. The phase component of the signal can
potentiaily convey useful information for target detection/
classification. Interestingly, the locations in the data
where the phase only and magnitude only networks made
mistakes were at different locations; each was able to de-
tect the targets the other missed. This could lead one to
believe that coupling the two networks in some manner
would produce superb results, but this was not the case.
As can be seen from the results in Table II, there was an
overall degradation in the performance when the phase
data were included.

In general, several conclusions can be made in regard
to the number of frequencies used, the network architec-
ture, and the training and data representation. When ex-
amining the side frequencies, the tendency is to conclude
that the targets show up more consistently in the side fre-
quencies than anomalies do, and this enabled the network
to discriminate better. The architecture and the method of
training are also deterministic factors in the generalization
capability of the network. Increasing the bottleneck, to a
certain degree, has shown to improve the generalization.
The choice of training scheme determines the rate of con-
vergence and the optimality of the detection and classifi-
cation. The choice of input data representation deter-
mines, in part, the size of the network, the dimensionality
of the weight space and the transient behavior of the
learning. The principal component method is found to be
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very useful in extracting the salient features and decor-
relating the data, which is an ideal characteristic for the
training data. The results of the principal component
method showed excellent detection and classification rates
and extremely low false-alarm rates.

In summary, the use of neural networks for target de-
tection/classification showed substantial improvements in
performance over the previous methods, especially when
used in conjunction with the principal component method.
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