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POROSITY IN THE VICINITY OF
CONTAINER WALLS

by

J. C. Ward'; A. M. ASCE

SYNOPSIS

Porosity is greater in the immediate vicinity of container walls
than in the body of a porous medium. If the ratio of particle diameter
to container diameter is large enough, significant errors will be made
in measured porosities. Additional error will be made in porosity
measurements if the ratio of particle diameter to height of container
occupied by the porous medium is large. Preliminary measurements
indicate that there will be an error of about 7. 3 percent in observed
values of porosity when both of the above ratios are 0.1 .

The porosity in the vicinity of the container walls decreases as
the ratio of particle diameter to container diameter decreases. As
this ratio approaches zero, the shell porosity approaches the shell
porosity of the bottom and top (flat) walls of the container, which is
about 0. 444 for uniform diameter spheres with a random packing. The
equations that have been developed to predict the observed porosity for
uniform diameter spheres as a function of the above ratios give calcula-

ted values that are within experimental error of the observed values.

1Associate Professor of Civil Engineering, Department of Civil Engineer-
ing, Colorado State University, Fort Collins, Colorado.
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The effect of porosity errors on surface area per unit volume
and permeability are treated quantitatively. In addition the results of

this paper have been applied to nonspherical particles successfully.

Notation: The symbols adopted for use in this paper are
defined where they first appear and are arranged
alphabetically in Appendix I.
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INTRODUCTION

. .2 ; : :
Franzini derived an expression for the measured porosity of
a porous medium composed of uniform diameter spheres that can be

stated as follows:

d d
et s - <) (8] [ -5)
Where
SV measured porosity, dimensionless
eC = core porosity, dimensionless
€g * shell porosity, dimensionless
d = sphere diameter, cm
D = diameter of cylindrical container, cm

In the derivation of Equation1, Franzini considered the medium to be
made up of two volumes, a core of diameter (D-d) and an outer shell

of thickness d/2. Franzini determined experimentally that €g

increased with d/D. It should be noted that €., =€, if d/D=0

M &

and M~ €s if d/D=1.
Although it may appear that the choice of the thickness of the

outer shell is somewhat arbitrary, consider the expression developed

if the thickness of the outer shell is chosen to be d instead of d/2:

"Permeameter Wall Effect,' by J. B. Franzini, Transactions,
American Geophysical Union, Vol. 37, No. 6, December, 1956,
pp. 735-737.
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i d d ‘
€M - €C + €5 €c (4D) (1 ﬁ, (2)
In this case €M - €c for both d/D = 0 and d/D =1 ., Because it

is desirable for € to be independent of d/D, Equation 2 is unsatis-

&

factory and will not be used.

For spheres, € would be expected to be somewhere between

C
3

0.4764 (orthogonal packing) and 0. 2595 (rhombic packing) ~. The

average of these two values is 0. 3680 and it has been determined

4
experimentally that for random packing of spheres, € is approxi-

mately 0, 37.

3Fair, . M. and Geyer, J. C. Water Supply and Waste-Water
Disposal. New York: John Wiley and Sons, Inc., 1954, page 217.

4
Closure of '""Turbulent Flow in Porous Media', by J. C. Ward,
Journal of the Hydraulics Division, ASCE, Vol, 92, No. HY 3,
May, 1966, 10 pages, in press.




DIAMETER-TO-HEIGHT RATIO

If one also takes into account the height, H , of the porous
medium in the cylinder, the medium can be considered to be made up
of three volumes: a core volume of diameter ( D-d) and height
(H-4d), én outer circular shell of thickness d/2 and height (H-d), and
two flat shells of diameter D and thickness d/2., Because €q in-
creases with d/D, it is reasonable to assume that the minimum value
of €g which will be designated €

shells at the top and bottom of the container, The porosity of the outer

S0’ will be the porosity of the flat

shell will be €50 when d/D= 0. The above leads to the following

expression for 0L

d
S0 H (3)

where H = height of the porous medium in the cylindrical container, cm

€go = Mminimum value of €g, dimensionless. If d/H = 0, Equation

3 is the same as Equation 1. Ifd/H= 1, € By choosing the

M~ €so-

volumes in this manner, €. is a function of d/D only.

S

EVALUATION OF €50

The first step necessary for using Equation 3 is the experi-

mental evaluation of €50 This can be expidited by defining a and B

so that

Q
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and

where a and B are dimensionless,

Substituting Equation 4 into Equation 3, one obtains:

= L - g + - + 4. (6
‘M~ €c H ‘s " c]* ™" “so B )
As d/D — 0, €q - €50 and therefore
d d
eM—>eC(1—ﬁ+ €50 " €cl®t €50 T (7)

Substituting Equation 5 into Equation 7, one obtains:

eso-ec) B . (8)

Therefore a plot of € versus P, will give a straight line of slope

M

€ for those points with the lowest d/D ratios.

(g0 ™€)

EXPERIMENTAL RESULTS

The experimental results are tabulated in Table 1. The first
four columns are the actual experimental data. The observed value

of €M was determined with water., The value of B was calculated

from the data in the second and third columns using Equations 4 and 5.

Figure 1 is a plot of the observed value of €M in the fourth

column versus the value of B in the sixth column of Table 1. Each



TABLE {1 - EXPERIMENTAL RESULTS
d, cm d/D d/H €M B €g
observed calculated

(1) (2) (3) (4) (5) (6) (7)

0.6 0.0746 | 0.0341 | 0, 388 0. 387 0.173 0.482
0.6 0.100 0.0190 | 0,393 0. 392 0.205 0. 489
0.6 0,121 0. 0245 | 0.400 0. 398 0.246 0.495
0.6 0.167 0. 0258 | 0.415 0.413 0. 324 0.517
0.6 0.231 0.0328 | 0.443 0. 436 0. 427 0.548
0.5 0.0623 | 0.0282 | 0,385 0. 384 0. 146 0.478
0.5 0.0834 | 0.0158 | 0. 385 0. 388 0.173 0.459
0.5 0.101 0. 0240 | 0. 386 0. 393 0.211 0. 445
0.5 0.139 0.0211 | 0.400 0. 404 0.274 0. 482
0.5 0.192 0.0281 | 0.417 0. 422 0. 365 0.577
0.4 0.0497 | 0,0228 | 0.379 0. 380 0.118 0. 452
0.4 0,0667 | 0,0125 | 0.385 0. 384 0.140 0.480
0.4 0.0806 | 0.0166 | 0,393 0. 387 0.169 0.506
0.4 0.112 0.0172 | 0,397 0. 394 0.214 0.500
0.4 0.154 0, 0230 | 0,404 0.408 0. 300 0.488
0.3 0,0374 | 0,0171 | 0,377 0.378 0.0892 | 0.450
0.3 0. 0500 | 0.0095 | 0,379 0. 380 0.106 0. 456
0.3 0.0604 | 0,0126 | 0. 381 0. 382 0.128 0.456
0.3 0.115 0.0166 | 0,396 0. 396 0.230 0.489
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point is labeled with the appropriate value of d/D given in the second
column of Table 1, The value of €50 obtained from the straight line
shown, using Equation 8, is 0.444. It should be noted that, in general,
as the slope of the line is increased, it passes through successively
higher values of d /D (the steepest line passes through the largest

value of d /D).

Solving Equation 6 for €g. One obtains:

€y = (9)

Equation 9 was used to calculate the values of €_ given in the seventh

S

column of Table 1 using the values of € B, and d/H given in

M’
columns four, six, and three respectively, along with Equation 5 and

values for €, and € of 0.370 and 0.444 respectively. Because €

C SO S

ic a function of d /D only, it is possible to determine the functional rela-
tionship by plotting the calculated values of €qg in the seventh column of
Table 1 versus the values of d /D listed in column 2. This has been done
in Figure 2. TI'he numbers above or beside each plotted point are the sizes
of the uniform diameter spherical flint glass beads in millimeters.
Although the size of the spheres should have no effect, it appears that
the best results were given by the 6 and 3 mm beads.

There are undoubtedly several reasons for the wide scatter of

the points in Figure 2. Listed in decreasing order of importance they

appear to be:



0.58

056

0.54

052

050

048

(0JFN

- d
€g = €50 t 0.380(3)

6
o

0t

0.46 3 3 3 i
(0] (0]
3 o?
© 5
(©)
0.4/1 1 1 1 1 1 1 1 | 1 1 1
0] 0.02 004 006 008 0.10 Ol2 014 0.6 0.18 020 022
g
D
d
FI. 2 €5 VERSUS

024



11

(1) Error in the evaluation of €g0 -
(2) Experimental error in SYE
(3) Possible slight error in the value of €c -
(4) Error in the value of d .

(5) Error in the value of D .

(6) Error in the value of H .

(7) Other .

At any rate there is no justification for any but the simplest

possible functional form which is:

= + C g
‘s~ “so D (10}
where C = constant, dimensionless. C was evaluated by solving
Equation 10 for C:
- €S-€SO ) es-0.444 -
d/D d/D

The values of €q and d/D listed in columns 7 and 2 respectively
of Table 1 were used to obtain an average value of C of 0,380, and

the standard deviation of C was determined to be + 0,050 .

Combining Equations 5, 6 and 10, one obtains:

a (12)

gle

€.. = € + Bl€an -

S0 €C+C(

Substituting in the values of € and C previously obtained,

c’ so’

Equation 12 becomes:
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d
€y - 0-370 + 0.074 B + 0.380 a (5) (13)

Equations 5 and 13 along with the values of d/D, d/H, and B given
in columns 2, 3,and 6 of Table 1 respectively were used to calculate
the values of €M given in column 5 of Table 1.

Figure 3 is a plot of the calculated values of €y Versus the

observed values of €M Despite the scatter in Figure 2, there is

reasonably good agreement; the maximum error in the calculated
value of €, ( for the points in Table 1) being + 0,007 or about
+ 2% . It is conceivable that the experimental error associated with
the observed value of €M could be almost this much. Both of the
double-circled points in Figure 3 indicate two points each with the
same coordinates.

The points in Figure 3 with an F above them were obtained
from Franzini's data 2 (given in Table 2) in the following manner,
Because Franzini calculated the values of € in Table 2, they were

M

slightly higher, and he estimated the value of € to be 0.378. If

both sides of Equation 12 are divided by €c o the result is:

€ €
Moep[E ) S (g (14
s ‘c C

If it is assumed that the ratios GSO/EC and C/eC are constant for

any value of € then if the values of € and C previously

CJ C 2 €SO 2

obtained are substituted into Equation 14, the result is:
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M {4 0.200 B+ 1.027 a

d
i) -

TABLE 2 - FRANZINI'S EXPERIMENTAL RESULTS

d/D (1) d/H (2) €M obs(%r)'ved
0.208 0.000469 0. 456
0.139 0.000763 0. 420
0.0820 0.00338 0.402
0.0595 0. 00654 0. 391
0.0349 0.0193 0. 385
0.0283 0.0293 0. 383

Equations 4, 5,and 15 were used to calculate the ratios of GM/EC
for the values of d/D and d/H listed in columns 1 and 2,
respectively, of Table 2, These calculated values of eM/eC were

then multiplied by 0. 378 to obtain the calculated values of €, plotted

M
in Figure 3, Although there is good agreement at the lower por-
osities, the divergence between the calculated and observed values of
€ appear to increase as the porosity increases; the calculated

M

values being too low with a maximum error of about 4%.

EFFECT OF DIAMETER RATIO
ON OBSERVED PERMEABILITY

It is known4 that
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permeability, cm?

where k
€ = porosity, dimensionless
K = constant that depends on the shape of the cross section
of flow, dimensionless
T = tortuosity, dimensionless
V = total volume of the solid portion of a porous medium, cm?
A = total surface area, cm?
K is exactly 3 for a cross section formed by closely spaced
parallel plates and is exactly 2 for a circular cross section, K is

approximately 2.36 + 0.11 for unconsolidated porous media. The

tortuosity of fully saturated isotropic unconsolidated porous media is

about 2.
Now
A
ay T oy (17)
v
where aV = surface area per unit of total volume, cm‘z/cm3
VV = total bulk volume of the porous medium, cm?
Also
V
= 1
VV (1 -¢€) (18)

Combining Equations 16, 17,and 18, one obtains:

k & =g (19)
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The surface area of wall per unit volume of cylinder is:

qvyw

Ol

where a surface area of wall per unit volume, cm?/cm?

VW

The total surface area per unit volume is:

VM \% VW

where a total surface area per unit volume, cm?/cm?

VM

For uniform diameter spheres,

vy _d
A 6
and
_ 6 -¢€
R = d
The ratio of aVM to av is:
Mo,z L )(d
aV 3 1 - € D

Assuming that the product KT remains constant, the measured

permeability should be approximately:

(23)
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where kM = the observed permeability, cm2. The ratio of kM to k

then should be approximately:

(26)

fm (€M3
k €

v |2
aVM)
It is clear that € in Equation 26 is exactly equal to €C. Ina typical
permeameter, H is usually greater than D and therefore d/H is
usually less than d/D . Furthermore, it is possible to eliminate the
effects due to d/H altogether by taking pressure readings in between
the two ends of the porous medium. For these reasons the ratio of
€M to e in Equation 26 can be obtained by setting d/H = 0 in
Equation 4 and 5 with the result that:

d d

d
B—a-—D(2——D fOI‘FI

- o) (27)
so that Equation 15 becomes

d

€
M d110. 200 + 1. 027 = ) (28)

d
c —1+—]j(2-5)

Table 3 gives the calculated values of three ratios as a func-

tion of the diameter ratio, The values in the first column are the
number of spheres that could be placed in a single horizontal layer
for the d/D ratio given in the second column. It is apparent that
the values of d/D of practical significance will, in all probability,
be less than 0. 414.

The value of “M/e given for d/D = 1 was calculated from

the fact that €M = 1/3 for d/D = 1. The value of ¢ used in all
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cases was 0.370. All the other values of $M/e were calculated

using Equation 28.

and k

TABLE 3 - ¢ AS A FUNCTION OF d/D FOR

M/e’ 2vm/AvV o, M /k
UNIFORM DIAMETER SPHERES WITH d/H = 0

Number gf _d_ eM aVM kM aVM kM
spheres in D - = - 5
a single A% \%
layer
(1) (2) (3) (4) (5) (6)
1 1. 000 0. 900 2. 000 0.183 0. 366
’ 2 0.500 1.535 1.769 1.160 2.050
. 3 0. 465 1.482 1.682 1.152 1.940
4 0.414 1.410 1.573 1.131 1,780
0. 300 1.259 1, 373 1.057 1. 451
0.200 1.146 1.232 0.992 1.222
| 0.100 1.057 1.092 0.993 1.084
0. 010 1.004 1.015 0.983 0. 997
0. 001 1,000 1. 000 1.000 1.000

All the values of aVM/ %V were calculated using Equation 24 substi-
tuting M for e in that equation. M was determined by multiplying the

ratio “M/e given in the third column of Table 3 by 0. 370.
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The values of kM/k in the fifth column of Table 3 were calcu-
lated using Equation 26 and the values of “M/e and aVM/ %V listed
in columns three and four respectively.

All of the values given in Table 3 are plotted in Figure 4.
According to the kM/k curve in Figure 4, there will be negligible
error in k for any value of d/D less than about 0. 24, but this
assumes that the product KT remains constant. It is quite likely that
this is not the case and the product KT probably decreases from about
4. 72 to somewhere in the vicinity of its minimum possible value of 2
for laminar flow in a circular pipe. In other words, the ratio (KT)/
(KT)M could conceivably increase from 1 to roughly 2 as d/D
increases from 0. 001 to 1. As a very crude estimate of the variation
of the ratio (KT)/(KT)M , it could be assumed that it is roughly equiv-
alent to aVM/ aV. If this is approximately the case, then the
actual variation in permeability would be given roughly by the product
(kg /1) (VM/ 2V,

If the criteria of a permissible error of 1% is arbitrarily chosen,
then Figure 4 gives the following maximum allowable values of d/D:
(1) for porosity measurements, d/D should be : 0. 02
(2) for surface area measurements, d/D should be : 0. 005
(3) for permeability measurements, d/D should be 5 0. 025
Franzini2 recommended that for permeability measurements, d/D
should be less than about 0. 025. Other values that have been sug-

gested are 0. 05 by Rich5 and even as high as 0. 1.

5Rich, L. G. Unit Operations of Sanitary Engineering. New York:
John Wiley and Sons, Inc., 1961, page 142.
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BERL SADDLES AND RASCHIG RINGS

In order to partially check the validity of Equation 15 for media
other than uniform diameter spheres, uniform size media with a poro-

sity much greater than 0. 37 were used with the following properties:

Media a_, cm?/cm? € (estimated) Nominal
A\ .
8 size, cm
Berl saddles 8. 98 (for 0. 635 cm size) 0.540 0.6
Raschig rings 9. 80 (calculated) 0.582 0.6

The Raschig rings had an outside diameter of 0.6 cm, a length
of 0.6 cm,. and a wall thickness of 0.1 cm.
Equation 28 can be written as:

€ 2 3
M .4 o.4oo% + 1.854 (‘9) -1.027(%,) (29)

D

which approaches the following equation as d/D approaches zero:

d

It is clear from Equation 30 (if d/H is negligible) that a plot of M

versus 1/D will approach a straight line as D approaches oo and

therefore € is the projected value of €. at 1/D =10

M

Using the values of € and D given in Table 4, this was the

M

method used to determine the values of € given above.

4
It is known that:

D = 9—

Y ;}’ (31)

S

6Leva, M. Tower Packings and Packed Tower Design. Akron, Ohio:
The United States Stoneware Company, 1953, page 14.
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TABLE 4 - BERL SADDLES AND RASCHIG RINGS
Media D, cm €M H, cm d/D d/H B €t
observed calculated
(1) (2) (3) (4) (5) (6) (7 (8)
Berl 2.58 0.598 17.95 . 204 . 0294 0. 385 0.612
saddles
d=0.528 3.60 0.586 23.50 . 146 . 0224 0.287 0.592
cm
4.95 0.583 24.20 . 107 . 0218 0.220 0.575
5.97 0.575 31.00 . 0884 . 0170 0.184 0.563
7.85 0.567 24.60 . 0672 . 0214 0. 149 0.567
(e 0.540 00 0 0 0 0.540
Raschig | 2.58 0.656 16. 95 . 192 . 0293 0. 366 0.664
rings
d=0.496 3.60 | 0.634 21.10 .138 . 0235 0.274 0.635
cm
4.95 0.625 23,55 .100 . 0211 0.207 0.618
5.97 0.610 30.65 . 0831 . 0162 0.173 0.610
7.85 0.609 30.10 . 0633 . 0165 0.137 0.603
oo 0.582 oo 0 0 0 0.582
Where
D = particle diameter, cm
P
d)s = particle shape factor, dimensionless.
¢S has a maximum possible value of one for spheres. Further

4
it has been demonstrated = that the following empirical equation is valid for

¢ £ 0.78 and 1

S ¢ £

2 :
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0.
¢ = 1 198 + 0,294 | - 0.330 (32)
S € o
g
Where
O‘g = geometric standard deviation of the particle size distri-

bution of a porous medium, dimensionless.

Combining Equations 17 and 18 gives:

4
and in general it is known that:

0.51n O'g
ﬁ\?’ ) ¢is . M (34)
Where
Mg = geometric mean size of the particles, cm

Because o 1 for Berl saddles and Raschig rings, Equations 31, 32,
and 33 were used in combination to obtain Dp which was then used for

d . In the general case of nonspherical, nonuniform size particles,

Equations 31 and 34 can be combined to give:

D =-—2 (35)

Equation 35 shows that Dp is a function only of particle size para-
meters which is desirable if it is to be used for d. It should be
noted that the effect of Ug tends to reduce the value of Dp and thus d

because the smaller sized particles will tend to reduce ¢ and €

S S0

as shown by Equation 32.
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The values of [ in Table 4 were calculated using Equation 4
and Equation 5. Equation 15 was used to calculate eM/ec and this ratio

(e . = 0.540 for Berl Saddles

was multiplied by the appropriate value of € C

C

and €c ~ 0.582 for Raschig rings) to obtain the calculated values of €

listed in the last (eighth) column of Table 4.

M

Figure 5 is a plot of €M calculated versus M observed for

Berl saddles and Raschig rings. The points with an R above them designate
Raschig rings and the points with a B above them designate Berl saddles.
The correlation for the Raschig rings was better than that for the Berl
saddles because a_, was more accurately determined for the Raschig

\4

rings.
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CONCLUSIONS

From the foregoing, it appears that Equation 15 can be restated in
its most general form as follows:

. D D D D, H’ D
— i + — Al = — _— 0.200 + 1,027 ——
€ 1% D200 = D D H D (36

L

Equation 36 appears to apply to all kinds of unconsolidated porous media.
However, since all of the experimental work was done with media with
o = 1 (uniform size) it is believed worthwhile to perform the porosity
experiments on media where Ug =l (g

Equation 24 can be restated in its most general form by combin-
ing Equations 20, 21, 31, and 33 to give:
¢ D

M,
1-€ D

P
5 (37
\ M

Wl

Finally, Equation 26 can be written in its most general form by rewriting

Equation 25 as follows:

kv~ (KT 834y (38)

and dividing Equation 38 by Equation 19 gives:

3 2
KMo (kD) €M 2y -
k (KT M € 3

It is also believed that it would be worthwhile to experimentally evaluate

the variation of the ratio (KT) /(KT)M as a function of Dp /D
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APPENDIX I - NOTATION

The following symbols have been adopted for use in this paper:

aV = surface area per unit of bulk volume, L
aVM = total surface area per unit of bulk volume, L“1
aVW = surface area of wall per unit volume of cylinder, L-1
2

A = total surface area, of porous medium, L
C = constant with a value of 0. 380 + 0, 050,
d = sphere diameter, L
D = diameter of cylindrical container, L
Dp = particle diameter, L
H = height of the porous medium in the cylindrical

container, L

o 2

k = permeability, L
kM = observed permeability L2
K = constant that depends on the shape of the cross

section of flow and has a value between 2 and

3 and is approximately 2. 36 + 0.11 for uncon-

solidated porous media;
(KT)M= observed value of the product KT which is ordinarily

about 4. 72 for unconsolidated porous media;
L = fundamental unit of length, L
Mg = geometric mean particle size of the porous medium, L
T = tortuosity and is approximately 2 for isotropic

unconsolidated porous media;

3

A% = total volume of solid portion of a porous medium, L
Vv = total bulk volume of a porous medium, L3
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NOTATION - continued:

@« =8(2-5)(1-%)
B = o * %;
€ = porosity = €c
EC = core porosity = € ;
S measured porosity ;
€q = shell porosity;
€50 ° minimum value of €g }
o = geometric standard deviation of the particle size distri-
g bution of an unconsolidated porous medium;
d’s = particle shape factor (dJS has a maximum possible value of

one for spheres).
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