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ABSTRACT 

RENEWABLES FIRMING USING GRID-SCALE BATTERY STORAGE  

IN A REAL-TIME PRICING MARKET 

 

Battery storage has many benefits, such as providing instantaneous response to changes in 

demand, clean electricity to customers, and integration of intermittent power sources. However, 

at the present time battery storage has proven to be too costly for widespread implementation. 

While there has been research to examine the cost at which battery storage will become cost 

effective for particular applications, little work has been done to determine the most effective 

placement of battery storage for the greatest impact on the system as a whole. This research 

examines battery storage in a real-time pricing energy market, and compares the cost 

effectiveness of three different cases: (1) Battery storage owned and operated by an intermittent 

renewable energy generation facility, (2) Battery storage connected to the grid providing energy 

services, (3) Battery storage owned and operated by a manufacturing plant. Real-time pricing 

data from ISO New England was analyzed to determine the monetary benefits of each case on a 

per mega-amp-hour basis.  By looking at the issue holistically, instead of analyzing isolated 

scenarios, the benefits of each placement can be isolated from the overall benefits of connecting 

storage to the grid.  Once the true value of each scenario can be accurately identified, the 

integration of utility scale battery storage is optimized to maximize benefits to all stakeholders. 

The results show that the economic benefit of a battery in a real-time pricing market is not 

dependent on the electrical generation or consumption attached to it. Instead, a grid-connected 

battery makes its own business case, meaning that existing battery storage can be leveraged for 

arbitrage and grid services without a loss of renewables firming capabilities. 



iii 
 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Thomas Bradley for his guidance, expertise, and thoughtful 

feedback throughout this project. I am grateful for the knowledge that he has imparted to me 

both academically and professionally. 

I would like to thank Dr. John Petro for his support and encouragement throughout this 

project and my entire master’s program. 

I would like to thank Dr. Rodolfo Valdes-Vasquez for his help and insight, which made 

this thesis stronger and more complete.  

  



iv 
 

DEDICATION 

 

 

 

 

 

 

This work is dedicated to my wife, Amber Joyce Quann, who bravely joined me in this adventure, 

and who has fiercely loved me through it 

  



v 
  

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

DEDICATION ............................................................................................................................... iv 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF ABBREVIATIONS ......................................................................................................... x 

1. Introduction .............................................................................................................................. 1 

1.1 Background ..................................................................................................................................... 1 

1.2 Literature Review ............................................................................................................................ 3 

2. Methods ................................................................................................................................... 6 

2.1 Overview ......................................................................................................................................... 6 

2.1.1 Case 1: Grid-Connected Battery in Pure Arbitrage Application .............................................. 6 

2.1.2 Case 2: Grid-Connected Battery in Renewables Firming Application .................................... 7 

2.1.3 Case 3: Grid-Connected Battery in Peak Shaving Application ............................................... 8 

2.2 Dynamic Programming ................................................................................................................... 9 

2.2.1 Value Function ....................................................................................................................... 10 

2.2.2 Algorithm Constraints ............................................................................................................ 11 

2.2.3 Idealized Battery .................................................................................................................... 12 

2.3 Data ............................................................................................................................................... 12 

2.3.1 Pricing Data ............................................................................................................................ 13 

2.3.2 Solar Field Data ..................................................................................................................... 14 

2.3.3 Manufacturing Plant Data ...................................................................................................... 15 

2.4 Grid Convergence Study ............................................................................................................... 16 



vi 
 

2.5 Case Comparison Simulations ....................................................................................................... 17 

2.6 Isolating Net Value of Battery ....................................................................................................... 17 

2.6.1 Solar Generation with no Storage .......................................................................................... 18 

2.6.2 Manufacturing Plant Consumption with no Storage .............................................................. 18 

2.7 Simulation Variations .................................................................................................................... 19 

3. Results .................................................................................................................................... 21 

3.1 Overview ....................................................................................................................................... 21 

3.2 Grid Convergence Study ............................................................................................................... 21 

3.3 Results of Case Comparison Simulations ..................................................................................... 22 

3.3.1 Simulation 1: Baseline Scenario ............................................................................................ 23 

3.3.2 Simulation 2: VOC Variation .................................................................................................. 24 

3.3.3 Simulation 3: Capacity Variation ........................................................................................... 25 

3.3.4 Simulation 4: Price Data Variation ........................................................................................ 26 

3.3.5 Simulation 5: Solar Data Variation ........................................................................................ 27 

3.3.6 Simulation 6: Manufacturing Data Variation ......................................................................... 27 

3.3.7 Simulation 7: Seasonality Variation ...................................................................................... 28 

4. Discussion .............................................................................................................................. 29 

4.1 Grid Convergence Study ............................................................................................................... 29 

4.2 Case Comparisons ......................................................................................................................... 30 

4.3 Pricing Anomalies: Primary Drivers of Economic Value ............................................................. 34 

4.4 Daily Cycling Policy ..................................................................................................................... 36 

4.5 Negligible Seasonal Arbitrage ....................................................................................................... 37 

5. Conclusions ............................................................................................................................ 39 

5.1 Absence of Synergistic Effect of Renewables Firming and Peak Shaving in a RTP Market ....... 39 

5.2 Optimal Control Policy ................................................................................................................. 40 



vii 
 

5.2.1 Primary Drivers of Economic Benefit ................................................................................... 40 

5.2.2 Effects of Crate on Total Value ................................................................................................ 41 

5.3 Direction for Future Research ....................................................................................................... 42 

6. References .............................................................................................................................. 43 

7. Appendix ................................................................................................................................ 47 

7.1 Appendix A Matlab Code .............................................................................................................. 47 

 

 

 



viii 
 

LIST OF TABLES 

Table 1: Battery Parameters .......................................................................................................... 17	

Table 2: Summary of simulation variations. ................................................................................. 19	

Table 3: Grid convergence study results. ...................................................................................... 22	

Table 4: Total value of the solar generation and manufacturing consumption ............................ 23	

Table 5: Economic analysis of simulation 1. ................................................................................ 24	

Table 6: Economic analysis of simulation 2. ................................................................................ 24	

Table 7: Economic analysis of simulation 3. ................................................................................ 25	

Table 8: Economic analysis of simulation 4. ................................................................................ 26	

Table 9: Economic analysis of simulation 5. ................................................................................ 27	

Table 10: Economic analysis of simulation 6. .............................................................................. 28	

Table 11: Economic analysis of simulation 7. .............................................................................. 28	

Table 12: Relative error of the grid convergence study. ............................................................... 29	

Table 13: Value of battery for each simulation. ........................................................................... 31	

 

 



ix 
 

LIST OF FIGURES 

Figure 1: Case 1, stand alone grid-connected battery operating in pure arbitrage. ........................ 7	

Figure 2: Case 2, solar array with grid-connected battery storage. ................................................ 7	

Figure 3 : Case 3, manufacturing plant with grid-connected battery storage ................................. 8	

Figure 4: Sample of pricing data from ISO New England 15-minute final LMP. ....................... 13	

Figure 5: Sample solar data from Christman Field Phase 1. ........................................................ 14	

Figure 6: Sample of manufacturing plant data from ENERNOC Open Data. .............................. 15	

Figure 7: Configuration of solar field with no storage. ................................................................ 18	

Figure 8: Configuration of manufacturing plant without storage. ................................................ 19	

Figure 9: Example results showing battery function over a single day. ....................................... 22	

Figure 10: Effect of increasing the C-rate on the total value obtained through arbitrage. ........... 30	

Figure 11: Battery storage energy to discharge during price spike event. .................................... 34	

Figure 12: Negative pricing event. SOC decreases just before the price drop. ............................ 35	

Figure 13: Results between anomalies. ......................................................................................... 37	

Figure 14: SOC for one week. ...................................................................................................... 38 

 

 



x 
  

LIST OF ABBREVIATIONS 

 

Term  Abbreviation 
Real-time pricing  RTP 
Time-of-use TOU 
Locational mean pricing LMP 
State of charge  SOC 
Dynamic programming DP 
Independent System Operators ISO 
 



1 
  

1. INTRODUCTION 

1.1 BACKGROUND 

Energy storage has long constituted a critical part of electricity distribution systems around 

the world. Supply of electricity must closely match the demand; if too little power is produced, 

large-scale blackouts can result, and if too much power is produced, power is curtailed [1]–[3]. 

Energy storage systems allow for low-cost base load power to be stored temporarily for use 

when demand and costs are high. This helps ensure that there will be sufficient supply in case of 

an unplanned equipment outage, and also that excess energy is not completely wasted [4]. 

Historically, grid-scale electrical storage has been provided by pumped hydro systems [5].  

As intermittent renewable energy generation is added to the grid at consistently increasing 

rates, the role of energy storage becomes more important [1], [6]. The output of wind and solar 

installations can be intermittent depending upon weather conditions such as passing clouds and 

gusty winds [4], [7]–[9]. Energy storage with fast response time is helpful in mitigating the 

intermittency of these renewable electricity generators. 

Battery storage for grid-scale applications has several key benefits that are important for 

supporting a grid with a high percentage of renewable energy generators [10].  Batteries can 

dispatch energy within seconds, not minutes or hours like some storage systems[1], [2]. They 

have a low self-discharge rate, so energy can be stored for a long period of time without much 

loss [2], [11]. Additionally, batteries are scalable to the application, and are not site dependent 

like pumped hydro or compressed air energy storage [2], [10]. Batteries also have some key 

drawbacks, which make them not cost effective at their current prices. In most grid-scale 

applications, high initial costs often more than offset any economic value batteries are able to 
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achieve, while degradation over time reduces their capacity [12]. However, new developments 

and maturation of battery technology has driven prices down, and will lead to profitability in the 

near future [13]–[15]. 

A significant amount of research has been done to analyze the profitability of battery storage 

in particular applications, such as peak shaving for consumers [16], and renewables firming for 

intermittent energy generators [14], [17]. Additional research has been done into the feasibility 

of utilizing electric vehicle batteries for ancillary grid services [18]–[21]. Some of this research 

was conducted under RTP electricity tariffs, and some of it was conducted under TOU rates [22]. 

TOU tariffs are historically how electricity has been billed to large scale consumers; however, 

RTP is starting to become more common [23]. RTP can have several advantages over other 

pricing models; since consumers assume the real costs of electricity production and delivery at a 

given time, it allows them to make conscious decisions about reducing consumption when prices 

are high [24], [25]. This reduction of variability in the demand can lead to lower generation costs 

and emissions [24], [26].  

Deploying battery storage for renewables firming in a RTP market could improve grid 

management due to their instantaneous response times, scalability and rapidly declining costs of 

batteries. While research has been conducted to analyze the cost-effectiveness of battery storage 

for particular applications, there is a gap in research that analyzes the most cost-effective 

placement of battery storage. This project will seek to model and quantify the economic benefit 

that can be realized from a battery storage system in a RTP market. It will compare various 

applications in order to determine if the economic value of the battery is independent of coupling 

the battery behind the gate with electrical generation or consumption. The results of this research 
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will help determine if existing battery storage can be leveraged for grid services without a loss of 

renewables firming capability. 

1.2 LITERATURE REVIEW 

The need for advanced energy storage, as intermittent renewable energy generation 

capability is increased, has been well documented [2], [4], [27]. The demand for widespread 

implementation of renewable energy is driven by environmental concerns, local legislation, and 

international treaties [2]. Storage technologies that can handle the intermittent nature of these 

energy sources are critical if the energy mix is to be dominated by non-dispatchable energy 

sources [2], [28]. Renewable energy that is stored can be used later, in times of less favorable 

conditions. This use of energy storage is called “renewables firming” [29]. 

Renewables firming is becoming a major concern as renewable energy reaches higher levels 

of penetration [4], [28]. Renewables firming allows energy to be provided with some degree of 

control and reliability during a given time period, even if the energy source is intermittent and 

undispatchable [29]. The combination of renewable energy generation and energy storage has 

proven effective in avoiding ramp rate penalties [30], that monetizes the costs associated with the 

speed at which renewables come online and offline [29]. While this synergistic effect results in 

quantifiable avoided costs, these ramp constraints do not apply in a RTP market [25].  

Previous research has assumed that renewables firming is inherently beneficial, and that 

energy storage can add value to the renewable generation irrespective of the market parameters 

[28]. In some particular instances, synergistic effects have been observed [31]; however, the 

benefits are dependent on market conditions such as outage protection and TOU tariffs. Research 

has not been done to test if a synergistic relationship between renewable energy and energy 
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storage exists in a RTP market. This project analyzes the economic benefit of battery storage in a 

renewables firming configuration to determine if the renewables firming battery contributes an 

increased value when compared to the case of a disaggregated battery.  

As mentioned previously, batteries provide key advantages that are valuable to a grid that 

has high intermittent energy implementation. The rapidly declining costs of battery storage has 

been well documented, and will provide increasing opportunities for profitable operation of grid-

scale battery storage systems [13]–[15]. This project provides a comparison of battery 

configurations in order to analyze the economic benefit of battery storage relative to a 

disaggregated grid-connected battery, and does not seek to determine at what cost grid-scale 

battery storage will become profitable.  

RTP tariffs can also improve the market potential for renewable energy generation [9], [25]. 

During times of high electricity production, consumers can increase their energy demand at low 

marginal cost. RTP can also reduce peak demand, resulting in a reduction of emissions [15]. This 

reduction of emissions is dependent on the energy source dominating in the region, and is 

reduced at higher levels of renewable implementation [24]. More markets are moving towards 

RTP in order to capture the true market volatility, and allow customers to shift their usage 

patterns to take advantage of lower prices [32]. Battery storage implemented in TOU pricing 

markets has been demonstrated to realize only limited economic gains, due to relatively small 

price differential [3], [15]. However, implementing battery storage in RTP markets may lead to 

more profitability due to increased price volatility [3].  

This project uses a model of battery storage in a RTP market in order to determine if 

renewables firming has an inherent synergistic economic benefit, or if the economic value that 

can be derived from combining battery storage with renewable energy is simply the sum of its 
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parts. Similarly, this project also analyzes a peak shaving application of battery storage to 

evaluate if the system yields additional value beyond a disaggregated grid-connected battery.  

Based on this understanding of the literature, we can compose 3 research questions to guide 

this investigation.   

1.3 RESEARCH QUESTIONS 

1. Does there exist an economic benefit to coupling a battery storage system with 

intermittent electrical generation or manufacturing loads relative to a disaggregated 

grid-connected battery in a RTP market?  

2. What are the primary drivers of economic benefit in a RTP market using grid-scale 

battery storage? 

3. Which battery parameters can be optimized to maximize economic benefit of a 

battery storage system in a RTP market? 

This thesis seeks to answer these research questions by developing a model to compare the 

economic benefits of coupled and disaggregated battery energy storage systems in RTP markets.  
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2. METHODS 

2.1 OVERVIEW 

The purpose of this project was to determine the economic value that could be derived from 

a grid-scale battery in a three distinct cases, (1) connected to the grid independent of other 

generation or consumption, (2) connected behind the gate to solar power generation, and (3) 

connected “behind-the-meter” to a manufacturing plant. These three configurations represent the 

battery energy storage business cases of energy arbitrage, renewables firming, and peak shaving, 

respectively. A mathematical model was created to simulate each case. DP was utilized in order 

to determine the optimal control of the battery and the maximum economic benefit that can be 

derived from it. Because this project compares the economic benefit of the three configurations, 

an idealized battery was modeled.  

2.1.1 Case 1: Grid-Connected Battery in Pure Arbitrage Application 

The economic value of Case 1, a stand-alone grid-scale battery, was determined by 

modeling the system to maximize dollars as it participates in arbitrage in a RTP market. Figure 1 

demonstrates the functionality of the battery. The system was modeled to only buy and sell 

electricity directly with the grid. It realizes value by buying when costs were low, and selling 

when costs were high. No exogenous electrical generation or consumption was modeled for the 

Case 1 system. This allowed the maximum economic value of the battery to be determined for a 

given set of parameters and RTP market datasets. 
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2.1.2 Case 2: Grid-Connected Battery in Renewables Firming Application  

The system model for Case 2, renewables firming, was designed such that the grid-scale 

battery was connected to a solar energy generation facility. Figure 2 demonstrates the 

functionality of the renewables firming system. The battery was still modeled to participate in 

arbitrage, but could also supply the solar installation with power to run its auxiliary systems 

 

Figure 2: Case 2, solar array with grid-connected battery storage. 

 

 

Figure 1: Case 1, stand alone grid-connected battery operating in pure arbitrage. 
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during times of high pricing, or charge from the solar array during times of low pricing. The 

solar installation was also modeled to be able to buy and sell electricity directly from the grid 

depending on the price of electricity and the optimal control of the battery. For example, during 

times of high pricing while the solar array was outputting electricity, both the battery and the 

solar field would be able to sell electricity to the grid. In times of low pricing, when the solar 

installation required power for “balance of system system” loads, electricity would be purchased 

from the grid to both charge the battery and power the solar installation.   

2.1.3 Case 3: Grid-Connected Battery in Peak Shaving Application 

The system for Case 3, peak shaving, was modeled such that the grid-scale battery was 

connected “behind-the-meter” to a load of the manufacturing plant. Figure 3 demonstrates the 

functionality of the peak shaving configuration. Unlike the solar installation, the manufacturing 

plant exhibits electrical consumption only, not both consumption and production. The system 

was designed such that the battery could participate in arbitrage. The manufacturing plant could 

 

 

Figure 3 : Case 3, manufacturing plant with grid-connected battery storage 
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buy electricity directly from the grid or draw power from the battery, depending upon the cost of 

electricity. 

2.2 DYNAMIC PROGRAMMING  

The DP algorithm maximizes economic benefit throughout a given time range by 

controlling changes in the battery state of charge, and realizing value by buying or selling 

electricity at its real-time price. The time range is broken up into increments, each defined as a 

“stage”, and the battery states of charge are each defined as a “state”. DP allows for the 

determination of the optimal control at each state and stage. This allows for an optimal control 

sequence to be determined, based on a starting state and stage, which will maximize the 

economic benefit throughout the time period. Perfect forecasting is assumed so that the optimal 

control sequence yields the maximum total economic value that can be derived from the system. 

The battery was modeled as a nonlinear dynamic system described by Equation 1, where 

time has been discretized as k = 1:N.  

 

S(k+1) represents the future SOC of the battery, and is dependent on the previous state of 

charge S(k), the control input u(k), which represents buying and selling electricity, and an 

exogenous input w(k), which represents the generation or consumption connected to the battery. 

The discrete time intervals, or stages, were represented by k, and correspond to the 15-minute 

pricing intervals.  

S(k+1) = f(S(k), u(k), w(k)) 

Equation 1:   
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The DP algorithm optimizes the control u(k) of the system, The control sequence is 

optimized by maximizing the objective function presented in Equation 2.   

 

The objective function J is the summation of the economic benefit at each stage, g(S(k), 

u(k), w(k)). The maximization of J leads to the control sequence u(k) which yields the optimal 

economic value. 

2.2.1 Value Function 

The value function, g(S(k), u(k), w(k)), defined for this study was applied at each state and 

stage, Equation 3.  

 

This was utilized to determine the optimal control, u*(k). The Energy term represents the 

total energy bought or sold at a given state and stage. This term was defined by Equation 4. 

 

The w(k) term represents the solar generation and manufacturing consumption for the 

given scenario. The Amps term represents the amount of current being charged to or discharged 

from the battery, and is defined by Equation 5. 

𝐽 = ! 𝑔(𝑆(𝑘),𝑢(𝑘),𝑤(𝑘))
!

!!!

 

Equation 2:  

g(S(k), u(k), w(k)) [$] = Energy [MWh] * Price [$/MWh] 

Equation 3:   

Energy [MWh] = ((Amps [A]*Voc [V]) − (Rint [Ohms]*Amps2 
[A2])) /4,000,000 [W/MW-h] + w(k) [MWh] 

Equation 4:   



11 
 

 

At each state and stage, the g(S(k), u(k), w(k)) term is calculated for every u(k) option 

available, with positive values of u(k) representing selling electricity, and negative values 

representing buying electricity. Then, the u(k) option leading to the highest value will be saved 

as the optimal control for that particular state and stage. This allows the optimal path to be 

determined, from whatever starting state and stage are selected. The Total Value of the system, 

Σg, is then calculated using Equation 2. 

2.2.2 Algorithm Constraints 

The DP algorithm was subjected to several constraints on the SOC and the control. SOC 

was constrained such that the battery could not discharge below 0% SOC and could not charge 

beyond 100% SOC. In order to simulate a continuing process, the starting SOC for the 

simulation was set to 50%. The value of the ending state is increasingly penalized the more it 

deviates from 50% state of charge, this is done by defining a quadratic end state penalty function, 

Equation 6. 

 

This forces the DP algorithm to seek an end SOC close to 50% unless the price of electricity 

is sufficiently high or low to overcome the penalty. 

Penalty = –100,000*(SOCf – 0.5)2 

Equation 6:   

Amps [A] = u(k) [MAh]*(1,000,000 [Ah/MAh]*4 [1/hr]) 
Equation 5:   
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The control input u(k), was constrained to operate between a minimum current and a 

maximum current, based on the Crate of the simulation. Negative current represents charging, and 

positive current represents discharging.  

2.2.3 Idealized Battery 

The battery modeled for this simulation was an idealized case, operating at 100% coulombic 

efficiency and without degradation due to cycling. The internal resistance, or Rint (Ohms), was 

modeled as a function of the maximum Crate, assuming that 80% of impedance-matched 

maximum power is available, Equation 7.   

 
This internal resistance term reduces the efficiency of the battery at high rates of charge and 

discharge. The open circuit voltage (VOC) that the battery model operated at was fixed at 480 

Volts, and the battery capacity was fixed at 1 Mega Amp-Hour.  

2.3 DATA 

Data sets were acquired for the electricity pricing, the solar generation, and the 

manufacturing plant consumption. The data sets used in this project are all from real-world 

sources so as to allow for accurate reproduction of short and long term dynamics without 

approximation. The data is from various locations around the United States, which serves to 

reduce dependence on localized effects, such as outages and weather. Each data set spans an 

entire year, encompassing 366 days. 

Rint = (Voc/2 [V])*(1/Crate [1/hr]*1,000,000)*(0.8) 

Equation 7:   
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Pricing Data 

The RTP data was acquired from ISO New England1. It is comprised of 15 minute final 

nodal LMP data, and it was collected from December 14th, 2015 through December 13th, 2016. 

Because 2016 was a leap year, there are 366 days in the data set, each with 96 different price 

values. Prices are reported in units of $/MWh. Negative prices are possible, and do occur in the 

data set. Factors such as low demand and high supply can create short instances of negative 

pricing, which represent the utility paying customers to consume electricity. In this dataset in 

particular, there are a number of price spikes that are short in duration. A sample day of RTP 

data can be seen in Figure 4.  

                                                
1 ISO New England final nodal fifteen-minute LMP data from historical and RTP database. 
Available from https://www.iso-ne.com 

 
Figure 4: Sample of pricing data from December 14th, 2015 to December 15th, 2015. ISO New England 15-
minute final LMP. 
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2.3.1 Solar Field Data 

The solar field data was from the Christman Field in Fort Collins, Colorado2. The solar 

installation contains two phases. Phase I is a 2MW multicrystalline silicone system that was 

completed in 2009. Phase II is a 3.3MW multicrystalline silicone system that was completed in 

2010. The data was acquired through SunEdison, the company responsible for data acquisition of 

the system. It is comprised of 15 minute billable energy data in units of kWh, collected from 

October 1st, 2015 through September 30th, 2016. Because 2016 was a leap year, this data also 

contains 366 days of solar output. Negative output is common during the nighttime hours, and 

represents the energy required to run the auxiliary systems at the solar field. There are also times 

during which energy is neither produced nor consumed, and these represent times when the 

                                                
2 Christman Field Solar Data provided by SunEdison. 

 
Figure 5: Sample solar data from October 1st, 2015 to October 2nd, 2015. Christman Field Phase 1. 
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system was offline. There are strong daily and seasonal effects present in this dataset which are a 

direct result of the earth’s motion relative to the sun. A sample day of solar field data can be seen 

in Figure 5. 

2.3.2 Manufacturing Plant Data 

The manufacturing plant consumption data was acquired from ENERNOC’s Open Data 

database3. This dataset in particular is from a light manufacturing plant in Chicago, Illinois. It is 

comprised of 5 minute power draw in units of [kW]. To convert the data into a usable form, an 

average power draw over each 15 minute interval was determined. Then, the average power draw 

was divided by 4 [segments/hour] to determine the amount of energy consumed in the 15 minute 

period in units of [kWh]. There is a strong seasonality to this dataset, as well as demand 
                                                
3 Manufacturing plant data is made available to the public by ENERNOC. Available from 
https://open-enernoc-data.s3.amazonaws.com/anon/index.html 

 
Figure 6: Sample of manufacturing plant data from January 3rd, 2012 to January 4th, 2012. ENERNOC 
Open Data. 
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indicative of a 5-day workweek. A sample day of manufacturing plant consumption can be seen 

in Figure 6. 

2.4 GRID CONVERGENCE STUDY 

A grid convergence study was completed to ensure that the DP algorithm was converging 

on a robustly optimal answer. The total economic value was examined for various discretizations 

of battery states. Increasing the number of states also increases the number of control options 

available; this finer grid allows the DP algorithm to test more control options at each stage, 

leading to a more precise control sequence. The objective of the grid convergence study was to 

verify that the simulation successively converged on a single figure for economic benefit as the 

fineness of the battery’s SOC grid was increased. If the program converges on an optimal value 

as the number of considered battery states is increased, then this optimal trajectory and optimal 

value can confidently be used as the solution.  

Since batteries can have a diverse range of characteristics, this grid convergence study was 

conducted for several battery models, varying only the maximum Crate. The maximum Crate is the 

fraction of capacity that the battery can charge or discharge in a given hour. A battery with a 

maximum Crate of 1.0 can fully charge or discharge in one hour. A battery with a maximum Crate 

of 2.0 can fully charge or discharge in a half an hour. The grid convergence study was conducted 

for a total of 7 different Crate values. The DP algorithm was conducted for 4 discretizations of 

available states of charge. Each battery has a minimum SOC value of 0% and a maximum SOC 

value of 100%. Increasing the battery states simply increases the resolution of the energy states 

available. For example, the battery with 101 SOC has increments of 1% while the battery with 

1001 SOC has increments of 0.1%. The grid convergence study was run on ISO New England 
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real-time price data for a single day, the 14th of December, 2015. The results of this study are 

presented in section 3.5 

2.5 CASE COMPARISON SIMULATIONS 

Once the grid convergence study demonstrated that the DP optimization was converging on 

a solution, the DP optimization was applied to a full year of real-time pricing data. A Crate of 1.0 

was selected for comparing the three configurations, and 101 discrete states of charge were 

utilized. A summary of the relevant battery parameters is presented in Table 1. 

 

 

 

2.6 ISOLATING NET VALUE OF BATTERY 

In order to compare the three systems, the economic value of the battery storage system in 

Case 2 and Case 3 had to be isolated from the value of the total system. To do this, the total 

value of the solar generation and manufacturing plant consumption was calculated without 

energy storage systems connected to them. Then the value of the solar generation without storage 

was subtracted from Case 2, renewables firming, and the value of the manufacturing plant 

consumption without storage was subtracted from Case 3, peak-shaving. This process was used 

to determine if the total value each system was the sum of the value of its components, or if 

Table 1: Battery Parameters used for the Baseline Scenario 

Battery Parameters Value Units 
Battery Capacity 1,000,000 Amp Hours 

Open Circuit Voltage 480 Volts 

Crate 1 Fraction of charge per 
hour 

Internal Resistance at 
Crate of 1 (Rint) 

192 Micro-ohms 

SOC Discretization 1 % 
Total Number of Charge 

States 101 States 
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synergistic effects were present which increased the value of the system beyond the sum of the 

components.  

2.6.1 Solar Generation with no Storage 

To calculate the total value of the solar generation without storage, the generation was 

multiplied by the instantaneous price of electricity. This resulted in a figure which represented 

the total income that could be derived from the solar installation using the same RTP for the 

Case 1, Case 2, and Case 3 simulations. This figure was then subtracted from the total value 

derived from the renewables firming system (Case 2), in order to normalize value of Case 2 so 

that it could be compared to the total value of Case 1.  Figure 7 illustrates the functionality of the 

solar system with no storage capability. 

2.6.2 Manufacturing Plant Consumption with no Storage 

To calculate the total value of the manufacturing plant consumption without storage, the 

consumption was multiplied by the instantaneous price of electricity. The result is a gross cost 

that would be incurred from operating the manufacturing plant using the same RTP for the Case 

1, Case 2, and Case 3 simulations. This figure was then subtracted from the total value derived 

from the peak shaving system (Case 3), in order to normalize value of Case 3 so that it could be 

 

 

Figure 7: Configuration of solar field with no storage. 



19 
 

compared to the total value of Case 1. Figure 8 demonstrates the structure of the manufacturing 

plant without storage capability. 

2.7 SIMULATION VARIATIONS 

In order to determine if the conclusions are robust to a wide variation in expected 

conditions, a computational design of experiments was performed. The simulation parameters, 

including pricing, solar generation, and manufacturing plant data were each modified for 

different simulations. Additionally, the VOC was reduced by half, and capacity was doubled for 

other simulations. For each variation, the simulation was run for all three cases. A summary of 

all the simulation variations can be seen in Table 2.  

 

Figure 8: Configuration of manufacturing plant without storage. 

Simulation 
Number Varied Parameter Description  

1 None Baseline scenario: Parameters in Table 1 
2 VOC Open circuit voltage reduced by half 
3 Capacity Capacity doubled from 1MAh to 2MAh 
4 Price Data RTP values multiplied by a factor of 10 
5 Solar Data Solar data multiplied by a factor of 100 
6 Manufacturing Data Manufacturing data multiplied by a factor of 0.5 
7 Seasonality Data sets aligned to start on December 14th 

 

Table 2: Summary of simulation variations. 
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2.8 RESEARCH LIMITATIONS 

This research has several limitations, some of which are simplifying assumptions, and others 

are necessary in order to answer the research questions presented in section 1.2. To determine the 

maximum economic value that could be realized through coupling the battery system with 

electrical generation and consumption, perfect forecasting of pricing data had to be included in 

the simulation. Additionally, because this project compares a battery system in several 

configurations, several effects that occur during the operation of real-world batteries were 

neglected. These include degradation due to cycling, internal thermal effects and management, 

and losses due to depth of discharge. These effects would have real impacts on the economic 

value that can be generated through the battery storage system, but do not help determine if there 

is an economic case for coupling battery storage systems to loads in a RTP market. 
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3. RESULTS 

3.1 OVERVIEW 

The results obtained from this project are separated into two categories, the grid 

convergence study and the comparison simulations. The grid convergence study provided the 

validation of convergence of the simulation results. The comparison simulations were conducted 

to examine the principles of renewables firming and peak shaving in an RTP market. These 

simulations included seven variations in order to determine if the results reveal a scenario 

dependent occurrence, or an underlying mathematical principle. 

3.2 GRID CONVERGENCE STUDY 

Table 3 presents the results of the grid convergence study. Twenty-eight simulations were 

conducted for twelve Crate values and four levels of increasing SOC discretization. The results 

demonstrate convergence to a single Total Value (Σg) figure for each individual Crate. This 

supports the simulation validation, as it shows convergence as a function of increased mesh 

refinement. 

The results also reveal increasing economic benefit with higher Crate. Each increase in Crate 

corresponds to an increase in economic value that can be derived from the system. However, 

uniform increases in Crate do not correspond to uniform increases in economic benefit. Increasing 

the Crate from 1 to 2 increases the total value by approximately 85%, while increasing Crate from 3 

to 4 increases the total value by 16%. On the basis of the results, 101 states were choses for all 

future studies. 
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3.3 RESULTS OF CASE COMPARISON SIMULATIONS 

In addition to the Total Value (Σg), the result of each simulation also includes the optimal 

control sequence, and the resulting optimal SOC sequence, for each possible state, for all times, 

Crate 
Number of States 

41 81 101 201 501 1001 
0.04 -- -- $1,863.43 $2,064.54 $2,116.83 $2,125.04 
0.4 $17,010.00 $17,129.00 $17,143.27 $17,166.51 $17,172.28 $17,172.89 
1.0 $37,847.00 $37,914.00 $37,920.56 $37,927.72 $37,930.38 $37,930.73 
2.0 $70,022.00 $70,058.00 $70,063.24 $70,067.99 $70,069.67 $70,070.02 
3.0 $91,664.00 $91,683.00 $91,688.03 $91,689.87 $91,691.30 $91,691.41 
4.0 $106,263.32 $106,273.79 $106,272.72 $106,277.02 $106,277.99 $106,278.25 

10.0 $150,033.45 $150,042.48 $150,045.00 $150,045.56 $150,046.09 $150,046.12 
 

Table 3: Grid convergence study results. Total value at varying C-rate and increasing refinement of battery SOC 

Figure 9: Example results showing battery function over a single day. Control sequence, SOC and Price are shown. 

a b c d 
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for the entire year. Figure 9 illustrates the optimal control sequence, state of charge, and the price 

of electricity for an example time period. As described in Eqn 5, positive values of control 

correspond to the selling of electricity (highlighted in red), while negative values of control 

correspond to buying electricity (highlighted in green). Section A shows a time of relatively low, 

stable pricing, which the algorithm exploits through buying electricity to prepare for the price 

spike in section B. Section C similarly increases the SOC at a steady rate, until reaching section 

D, where a pricing anomaly results in a maximum selling of energy, and a rapidly decreasing 

SOC. The results of each year-long simulation are presented in the following subsections.  

3.3.1 Simulation 1: Baseline Scenario 

Specific to the baseline scenario, the value of the solar generation without storage and the 

total value of the manufacturing plant consumption without storage were determined based on 

simulation. No optimization was required to calculate these values. Table 4 presents these 

figures, which are required to calculate the net value of energy storage as described in section 

2.6. 

Table 5 demonstrates the economic value of each component of each system. Because Case 

1 represents the stand-alone battery, the net value of the battery is equal to the total value of the 

system. In Case 2, the battery was connected to a solar array. When the value of the solar 

generation without storage was subtracted from the total system value, the net value of the 

Total Value of Solar Field and Manufacturing Plant without Storage 

System Value 

Solar Generation with no Storage $99,784 

Manufacturing Consumption with no Storage –$72,779 

 

Table 4: Total value of the solar generation and manufacturing consumption without storage capabilities. 
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battery was the same as Case 1. This principle is exhibited again in Case 3. When the value of 

the manufacturing plant consumption was subtracted from the total system value, the net value of 

the battery again matches Case 1. For each case, the battery contributes the exact same value, 

and the total value of the system is simply the sum of the values of the system components. 

3.3.2 Simulation 2: VOC Variation 

Simulation 2 consisted of the same parameters as the baseline scenario with the exception of the 

open circuit voltage. The VOC was reduced by half, to a value of 240 Volts. Table 6 demonstrates 

the effects that this had on the total economic value of the systems. The value of the battery was 

Configuration 

Economic Value of Components: Simulation 1 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $13,765,001 $0 $0 $13,765,001 

Case 2: Renewables 
Firming 

$13,864,785 $99,784 $0 $13,765,001 

Case 3: Peak 
Shaving 

$13,692,222 $0 –$72,779 $13,765,001 

 

Table 5: Economic analysis of simulation 1. The total value of the system is presented for each case, along with the net value of 
the battery. 

Configuration 

Economic Value of Components: Simulation 2 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $6,882,501 $0 $0 $6,882,501 

Case 2: Renewables 
Firming 

$6,982,285 $99,784 $0 $6,882,501 

Case 3: Peak 
Shaving 

$6,809,722 $0 –$72,779 $6,882,501 

 

Table 6: Economic analysis of simulation 2. The total value of the system is presented for each case, along with the net value of 
the battery. 



25 
 

reduced by half, directly proportional to the VOC. This is because as the power being charge or 

discharged from the battery is calculated using Equation 4, where the power is the product of the 

Amps and VOC. Because the VOC was reduced by a factor of 2, the power that the system is able 

to charge or discharge is also reduced by a factor of 2. The net value of the battery was 

equivalent for each of the three cases, indicating again that the total value of the system is equal 

to the sum of the individual components. 

3.3.3 Simulation 3: Capacity Variation 

In simulation 3, the capacity of the battery was doubled from 1MAh to 2MAh. The other 

system parameters were held constant from the baseline scenario. Table 7 shows that the value of 

the system is approximately twice that of the baseline scenario. Because the Crate was held 

constant, the Rint was reduced for the higher capacity battery, leading to less energy loss as the 

battery charges and discharges. This led to a battery total value of slightly more than double that 

of the baseline scenario. The results also reaffirms the findings of the other simulations, in that 

the net value of the battery is equivalent for all three cases. 

 

Configuration 

Economic Value of Components: Simulation 3 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $27,530,003 $0 $0 $27,530,003 

Case 2: Renewables 
Firming 

$27,629,787 $99,784 $0 $27,530,003 

Case 3: Peak 
Shaving 

$27,457,224 $0 –$72,779 $27,530,003 

 

Table 7: Economic analysis of simulation 3. The total value of the system is presented for each case, along with the net value of 
the battery. 
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3.3.4 Simulation 4: Price Data Variation 

Simulation 4 consisted of the same battery parameters as the baseline scenario, but the RTP 

data was multiplied by a factor of 10. This had the effect of increasing the pricing variability; the 

standard deviation of the original pricing data was found to be 18.27 while the standard deviation 

of the pricing data multiplied by 10 was found to be 182.7. The average price of electricity also 

shifted from $21/MWh to $210/MWh. Table 8 illustrates the effect that increased price 

variability has on arbitrage. The net value of the battery is 10 times higher than the basic case. 

Because arbitrage takes advantage of pricing differentials, higher price variability will lead to 

more economic value generated through arbitrage. Conversely, if price volatility were to be 

reduced by a factor of 10, a reduction of economic value would be expected. The net value of the 

battery is again consistent throughout the three cases. This indicates that the pricing affects the 

battery’s economic value consistently across the three cases. 

 

Configuration 

Economic Value of Components: Simulation 4 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $137,650,146 $0 $0 $137,650,146 

Case 2: Renewables 
Firming $138,647,987 $997,841 $0 $137,650,146 

Case 3: Peak 
Shaving $136,922,359 $0 –$727,787 $137,650,146 

 

Table 8: Economic analysis of simulation 4. The total value of the system is presented for each case, along with the net value of 
the battery. 
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3.3.5 Simulation 5: Solar Data Variation 

In simulation 5, the solar generation was multiplied by a factor of 100, effectively scaling up 

the solar field from 2MW to 200MW. The other system parameters were held constant with the 

baseline scenario. Table 9 demonstrates that the value of the solar generation increases by a 

factor of 1000, to $99,784,109, but that this has no effect on the value of the battery. The net 

value of the battery in each case is exactly the same as scenario 1. This indicates that the scale of 

the solar plant connected to a battery does not influence the economic value that can be derived 

from that battery. 

 

3.3.6 Simulation 6: Manufacturing Data Variation 

In simulation 6, the manufacturing consumption data was multiplied by a factor of 0.5 while 

all of the other parameters were held constant with the baseline scenario. This effectively 

reduced the manufacturing plant consumption by half. Table 10 demonstrates the decrease in 

manufacturing cost, along with the resulting value of the case 3 system. When the value of the 

battery is isolated, the resulting net battery value is equal across all three cases. 

Configuration 

Economic Value of Components: Simulation 5 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $13,765,001 $0 $0 $13,765,001 

Case 2: Renewables 
Firming 

$23,743,412 $9,978,411 $0 $13,765,001 

Case 3: Peak 
Shaving 

$13,692,222 $0 –$72,779 $13,765,001 

 

Table 9: Economic analysis of simulation 5. The total value of the system is presented for each case, along with the net value of 
the battery. 
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3.3.7 Simulation 7: Seasonality Variation 

In simulation 7, the pricing, solar and manufacturing data sets are seasonally aligned. This 

means that each was adjusted to begin on the same day as the pricing data, December 14th. Table 

11 demonstrates that while this had some effect on the value of the solar and manufacturing total 

value, it did not alter the value of the battery. Changes in the generation and consumption value 

are caused by new electrical prices as a result of shifting the buying and selling of the energy. 

Despite this, the net value of the battery remains the same in all three cases. 

 

Configuration 

Economic Value of Components: Simulation 6 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $13,765,001 $0 $0 $13,765,001 

Case 2: Renewables 
Firming 

$13,864,785 $99,784 $0 $13,765,001 

Case 3: Peak 
Shaving 

$13,728,612 $0 –36,389 $13,765,001 

 

Table 10: Economic analysis of simulation 6. The total value of the system is presented for each case, along with the net value of 
the battery. 

Configuration 

Economic Value of Components: Simulation 7 

Value of 
System 

Value of Solar 
Generation 

Value of 
Manufacturing 
Consumption 

Net Value of 
Battery  

Case 1: Pure 
Arbitrage $13,765,001 $0 $0 $13,765,001 

Case 2: Renewables 
Firming $13,858,999 $93,998 $0 $13,765,001 

Case 3: Peak 
Shaving $13,692,222 $0 –$72,779 $13,765,001 

 

Table 11: Economic analysis of simulation 7. The total value of the system is presented for each case, along with the net value of 
the battery. 
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4. DISCUSSION 

4.1 GRID CONVERGENCE STUDY 

The grid convergence study demonstrated decreasing relative error as the number of battery 

SOC was increased. Table 12 shows the relative error for the grid convergence study. In addition 

to decreasing relative error with respect to a finer SOC resolution, the relative error decreases as 

Crate increases. This is a result of the increased battery capabilities. As the Crate is increased, the 

battery is able to find more value through arbitrage, and further refinement of the SOC has less 

effect on that value. 

 

This fact is more clearly demonstrated in Figure 10 by the way that the slope of the graph 

decreases as Crate increases. Increasing the Crate of the battery allows more of the battery capacity 

to be charged and discharged in a given stage, which leads to higher total value through simple 

Crate 
Relative Error for Increasing Number of States 

41 to 81 81 to 101 101 to 201 201 to 501 501 to 1001 

0.04 -- -- 9.74E-02 2.47E-02 3.86E-03 

0.4 6.95E-03 8.32E-04 1.35E-03 3.36E-04 3.55E-05 

1.0 1.77E-03 1.73E-04 1.89E-04 7.01E-05 9.23E-06 

2.0 5.14E-04 7.48E-05 6.78E-05 2.40E-05 5.00E-06 

3.0 2.07E-04 5.49E-05 2.01E-05 1.56E-05 1.20E-06 

4.0 9.85E-05 1.01E-05 4.05E-05 9.13E-06 2.45E-06 

10.0 6.02E-05 1.68E-05 9.74E-02 2.47E-02 3.86E-03 

 

Table 12: Relative error of the grid convergence study. 



30 
 

arbitrage. At a Crate of 4, the battery can fully charge or discharge in a single 15 minute 

increment. Because the pricing data is also in increments of 15 minutes, any increase in Crate 

above 4 does not enable additional value through arbitrage. The increase in total value at Crate 

higher than 4 is only a result of the decrease in internal resistance, and the corresponding 

increase in battery energetic efficiency. 

Because the battery was assumed to operate at 100% coloumbic efficiency, the degradation 

effects were neglected. These effects often arise out of the thermal management issues associated 

with high rates of charge and discharge. While increasing the battery’s Crate directly leads to an 

increase in economic benefit that can be derived through arbitrage, it is unclear at what point the 

economic cost of operating the battery at high Crates and high cycles would outweigh the benefits.  

4.2 CASE COMPARISONS  

The results of the case comparisons were uniform. In each simulation the net value of the 

battery was consistent throughout the three cases. This indicates that each case, pure arbitrage, 

renewables firming, and peak shaving, the value of the system is the sum of the value of the 

 

Figure 10: Effect of increasing the C-rate on the total value 
obtained through arbitrage. 
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system’s components. The results did not reveal any synergistic benefit resulting from 

combining battery storage with generation or consumption. This indicates that a battery’s value 

is independent of the generation or consumption that is connected to it. It also shows that in a 

real-time pricing market, there is no additional value to be gained through “renewables firming” 

or “peak shaving” beyond what the battery can provide through arbitrage independent of these 

applications.  

The net value of the battery was the same in each of the three cases, pure arbitrage, 

renewables firming, and peak shaving. This result did not change throughout the seven 

simulations, no matter which system parameters were varied. This further supports the idea that 

the results of this study arise from the underlying mathematical principles of operating a battery 

in a RTP market in the absence of ramp rate penalties and peak demand charges. Table 13 shows 

the total economic value of the battery in each of the seven simulations.  

Total Value of Battery for Each Simulation 

Simulation Description Net Battery 
Value 

Net Battery 
Value per MWh 

[$/MWh] 

Simulation 1 Basic Scenario $13,765,001 $28,677 

Simulation 2 VOC Variation $6,882,501 $28,677 

Simulation 3 Capacity Variation $27,530,003 $28,677 

Simulation 4 Pricing Data Variation $137,650,146 $286,771 

Simulation 5 Solar Data Variation $13,765,001 $28,677 

Simulation 6 Manufacturing Data Variation $13,765,001 $28,677 

Simulation 7 Seasonal Alignment $13,765,001 $28,677 

 

Table 13: Value of battery for each simulation. 
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In the baseline scenario, the net value of the battery was $13,765,001. Reducing the open 

circuit voltage by a factor of 0.5 directly reduced the total value that the battery could generate 

by that same factor, to a total value of $6,882,501. Doubling the battery capacity from 1MAh to 

2MAh without changing the Crate approximately doubled the total value of the battery to 

$27,530,003. The total value was slightly more than double the baseline scenario due to the Rint 

being lower. When the pricing data was multiplied by a factor of ten, the total value of the 

battery increased by a factor of ten. This is because larger pricing differences directly lead to 

larger value from the battery. Variation of the solar and manufacturing plant data had no effect 

on the value of the battery. This again supports the principle that the battery’s value is 

independent of the consumption and generation attached to it. And finally, aligning the datasets 

based on calendar year had no effect on the total economic value of the battery.  

When the net battery value is analyzed on a per megawatt-hour basis, only variations in 

price effect the economic benefit that can be gained from each megawatt-hour of capacity. 

Increasing or decreasing the capacity of the battery did not change the net battery value per 

MWh, and the net value of the battery was completely unaffected by variations in consumption, 

generation, or season.  All of these system variations support the conclusion that in an RTP 

market, a battery storage system makes its own business case, irrespective of generation or 

consumption connected to it. 

This lack of synergistic behavior supports, for example, the potential benefits of utilizing 

existing battery resources for energy storage in a RTP market. Battery storage capacity that is 

already implemented, such as plug-in electric vehicles, could be leveraged to provide vehicle to 

grid services. As intermittent renewable energy reaches higher levels of market penetration, the 

existing energy storage capabilities of electric vehicle fleets can be leveraged to firm the supply. 



33 
 

Because synergistic benefits do not exist in a RTP market, ancillary grid services could be 

provided by existing distributed storage systems without sacrificing economic value. Renewables 

firming and peak shaving can be accomplished through the function of the RTP market by 

energy storage systems that are integrated with or separate from electrical generation and 

consumption. 

Even though there are no synergistic effects exhibited in the renewables firming or peak 

shaving cases in a RTP market, there is still a need for advanced energy storage to make 

widespread renewables possible. Combining battery storage with renewables does not increase 

the value of the renewable energy, but battery storage can still support renewables penetration by 

absorbing energy surpluses and mitigating shortages. Pricing variations in a RTP market are 

more indicative of surpluses and shortages in the energy supply than ramp rate penalties, which 

are fixed regardless of market needs [33]. Siting battery storage at a single renewable generation 

source could limit the potential renewables firming ability of that battery if it only stores energy 

from that one system. If the battery is engaged in arbitrage in a RTP market, it can leverage its 

entire value to support the market needs; otherwise, it may only utilize a portion of its capacity, 

and by extension, only a portion of its potential value. 

In a RTP market, grid-scale battery storage can be sited throughout the grid without a loss of 

renewables firming capability. The results of this study demonstrate that the economic feasibility 

of renewable energy and battery storage are not dependent upon the location of the battery 

storage. This enables the advanced capabilities of the battery to be utilized for the maximum 

benefit of all stakeholders. Instead of utilizing a battery purely to firm a renewable energy source 

by slowing its ramp rates, batteries can leverage their fast response times to respond to variations 

in energy supply. Additionally, a disaggregated battery can be utilized to perform multiple 
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ancillary services in order to increase the value of the battery system as a whole [34]. In a RTP 

market, grid-scale battery storage can be employed to maximize economic benefit in arbitrage 

without loss of renewables firming capability.  

4.3 PRICING ANOMALIES: PRIMARY DRIVERS OF ECONOMIC VALUE 

The results of the case comparisons reveal that pricing anomalies, short durations of very 

high or low prices relative to the prices surrounding that time period, are the most significant 

sources of economic benefit. Figure 11 demonstrates the optimal control of the system as it 

approaches a sharp spike in price. The pricing variations close to this price spike become 

negligible, and the battery stores energy during section A, and then maintains maximum SOC in 

order to sell during the height of the anomaly in section B. 

 
Figure 11: Battery storage energy to discharge during price spike event. Maximum price of 
approximately $500/MWh. 

a b 
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Conversely, Figure 12 demonstrates the optimal control of the system as it approaches a 

short duration of negative pricing. Negative costs of electricity are fairly common in the data set, 

and can arise from a variety of causes. Negative prices are typically caused by inflexibility of the 

electrical supply [35]. For example, it may be more economical for a coal fired power plant to 

remain operational while customers are paid to consume the electricity generated, than to throttle 

back or shut down the power plant, and incur the high costs associated with startup. As the 

system approached this period of negative cost, the battery is discharged in order to purchase the 

low cost energy, illustrated in section A. Section B demonstrates how the battery moves from 0% 

SOC to 100% SOC during the negative pricing anomaly. The system then fully discharges in 

section C in order to again take advantage of the negative price of electricity in section D. It is 

important to note that the selling of electricity in sections B and D occur at times of relatively 

 
Figure 12: Negative pricing event. SOC decreases just before each price drop. 

a b c d 
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low price, and it is the negative pricing anomaly that drives the selling of electricity in these 

cases. 

In both instances of pricing anomalies, high and low, the optimal system control prepares 

for the change in pricing ahead of the actual pricing anomaly. This renders all pricing variations 

surrounding the anomaly negligible. This demonstrates the importance of the economic value 

that can be derived from these short durations of drastic pricing4.  

4.4 DAILY CYCLING POLICY 

While pricing anomalies dominate other variation during the time surrounding the pricing 

event, there is sufficient time between anomalies for the system to extract value through 

arbitrage. Because daily pricing trends do not follow a set pattern, extracting value it is not as 

simple as buying electricity at night and selling it during the day. Figure 13 shows the SOC 

throughout a time period between anomalies. The battery cycles several times between these 

high price events, in response to small-scale price fluctuations. While the economic benefit 

derived from arbitrage in the absence of anomalies does yield high revenue per MAh, the high 

frequency of daily price variation allows it to contribute significant value to the total value that 

the energy storage system can generate. 

                                                
4 The economic value that can be captured by the battery would be reduced if operated in a 
market devoid of anomalies. As grid-scale energy storage implementation is increased to 
sufficiently high levels, the supply and demand curves will be smoothened, leading to a 
reduction in pricing variation. The effect of storage saturation was neglected for this study 
because the size of the battery was assumed to have a negligible impact on price. However, 
economic value could be impacted by sufficient grid connected battery storage systems through 
the reduction of anomalies. 
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This study demonstrates that TOU rates do not accurately capture the daily pricing 

volatility. While TOU rates attempt to emulate the daily demand curve by setting, on-peak and 

off-peak prices, this study revealed that pricing can fluctuate high and low many times 

throughout a single day. The inflexibility of the electrical supply means that electrical demand is 

not the only factor effecting the cost of generating and distributing energy to customers. Instead,  

the cost is impacted by demand, supply, congestion, energy mix, and other factors. Because of 

this, pricing is much more volatile than demand. 

4.5 NEGLIGIBLE SEASONAL ARBITRAGE 

Seasonal variations in price were shown to be completely inefficacious in generating value 

in this study. Prices were far too volatile for economic benefit to be derived by storing energy 

during one season of the year in order to sell it during another season. Figure 14 demonstrates 

 
Figure 13: Results between anomalies. The system demonstrates several cycles of full charge and 
discharge between major pricing anomalies. 
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how frequently the battery cycles throughout one week. If value were being derived from 

seasonal variations in price, the SOC of the battery would not fluctuate on a weekly basis, but 

would store energy for longer periods of time. Additionally, the number of cycles per year would 

be very low. 

 

 
Figure 14: SOC for one week. Numerous fluctuations indicate that seasonal-scale storage is not an 
optimal strategy. 
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5. CONCLUSIONS 

This project reveals several characteristics of battery storage in a RTP market, most notably, 

the absence of synergistic effects when used in renewables firming and peak shaving 

applications. Additionally, short-term pricing anomalies were identified as the primary drivers of 

economic benefit, and maximizing Crate can enable a storage system to realize maximum value. 

The following section serves to answer the original research questions, which are restated here: 

Research Questions:  

1. Does there exist an economic benefit to coupling a battery storage system with 

intermittent electrical generation or manufacturing loads relative to a disaggregated 

grid-connect battery in a RTP market?  

2. What are the primary drivers of economic benefit in a RTP market using grid-scale 

battery storage? 

3. Which battery parameters can be optimized to maximize economic benefit of a 

battery storage system in a RTP market? 

5.1 ABSENCE OF SYNERGISTIC EFFECT OF RENEWABLES FIRMING AND PEAK 

SHAVING IN A RTP MARKET 

The primary conclusion that can be drawn from this analysis is that in a RTP market, the 

concepts of “renewables firming” and “peak shaving” do not realize value relative to a 

disaggregated grid-connected battery. Instead, the battery makes its own business case, providing 

economic benefit through arbitrage independent of the generation or consumption attached to it.  
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In electricity markets where ramp rates and TOU rates are employed, batteries have been 

demonstrated to add some value associated with connecting them to renewables or to a 

manufacturing plant [16]. However, as more markets move towards RTP, the value derived from 

integrating batteries with renewables firming and peak shaving will disappear.  

This does not discount the fact that increasing grid connection of intermittent renewables is 

causing a growing need for advanced energy storage capabilities. As battery storage becomes 

cost effective, it can be utilized throughout the grid in order to leverage its fast response time, 

low self-discharge rate, and scalability. This study suggests that because batteries can make their 

own business case, they can be implemented in a RTP market in a variety of configurations with 

the same economic benefit. Disaggregated batteries can also be employed to serve multiple grid 

services, such as frequency regulation, arbitrage, and power factor correction, in order to 

increase the economic value of the battery system. 

5.2 OPTIMAL CONTROL POLICY 

Additional conclusions from this research can help grid-scale battery storage operators to 

make informed decisions on how best to manage energy storage for maximum economic benefit. 

System parameters and arbitrage control can be optimized as the sources of economic benefit are 

understood.  

5.2.1 Primary Drivers of Economic Benefit 

This project demonstrates that pricing anomalies, short durations of very high or low prices, 

are the primary drivers of economic benefit. The results of the DP simulations show that the 

most value can be made when the system buys and sells during pricing events that are extreme 

relative to the prices around them. The results of the optimization demonstrate that energy was 
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stored as the simulation approached high price events, and energy was discharged as the 

simulation approached low price events; this indicates that the economic value of other 

variations become negligible near price anomalies.  

 The results show that daily variations do contribute to the total value, but only when they 

are not dominated by anomalies. Even though the daily price extremes are relatively low, their 

high frequency enables value to be derived between anomalies. It is important to note that daily 

price variations do not necessarily mimic daily demand cycles. A battery with a sufficiently high 

Crate may cycle many times per day under the optimal control sequence, as it takes advantage of 

small fluctuations in price throughout the day. This frequent cycling renders seasonal pricing 

variations completely negligible. Battery storage operators can gain the most economic benefit 

by leveraging the fast response time of the battery to take advantage rapidly changing electricity 

prices, which are often short lived. 

5.2.2 Effects of Crate on Total Value 

This study clearly shows the impact that Crate has on the battery’s ability to obtain value 

through arbitrage.  Increasing the Crate increases the total value significantly. With a higher Crate, 

the battery can take advantage of uncharacteristically high and low prices of electricity, which do 

not last for very long. The high Crate batteries can discharge or charge more fully during these 

short increments of very high or low prices, in order to maximize the value derived from them.  

This effect is limited by the pricing structure, specifically how often the price of electricity 

changes. Increasing the Crate beyond the point at which the battery can fully charge or discharge 

within the pricing time period does not increase the value due to arbitrage. It is important to 

remember that there are other costs associated with a high Crate that were not considered in this 

study, including degradation and availability. 
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5.3 DIRECTION FOR FUTURE RESEARCH 

Several aspects of this project warrant further investigation in order to inform 

stakeholders of optimal system design and operation. The primary areas of future research are 

the effect of Crate on the battery economic benefit, and regression analysis of the optimal control. 

The effect of Crate on battery cycle life should be investigated in order to accurately quantify 

the economic cost associated with operating at high rates and depths of charge and discharge. 

High current through a battery can cause significant thermal management problems, lead to a 

reduction in efficiency, and lead to premature failure. Deep discharge can also lead to reduced 

cycle life, further reducing economic value of the battery. To a certain extent, these negative 

impacts of high Crate and deep discharge are acceptable as higher they enable the battery to 

extract more value through arbitrage. Understanding the economic impact of the effects of high 

current could help determine an optimal Crate that maximizes economic benefit while accounting 

for the reduction in efficiency and cycle life. 

Regression analysis of the optimal control of the battery storage system can lead to an 

optimization algorithm that can control without perfect forecasting. Regression analysis can 

provide the statistical support, based on electricity price and battery SOC, to determine the 

optimal times to charge and discharge the battery for the most economic benefit. By 

incorporating the cost of cycling, depth of discharge, and Crate, an algorithm could be developed 

that would optimize the battery control in real time while minimizing the costs of battery cycle 

life degradation. 
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7. APPENDIX 

7.1 APPENDIX A MATLAB CODE 

 

This dynamic optimization code models the maximum economic 
benefit that can be derived from grid scale battery storage 
connected to the grid without any solar generation or plant 
consumption coupled with it. 
close all; 

clc; clear; 

User Inputs and Initial Calculations 
User Defined Battery Parameters 

C_max = 1;                             % The maximum C-rate which the battery can 

charge and discharge [Fraction of capacity/hour] 
Battery_div = 100;                     % Defines how many states of charge the battery 

will posess (Technically +1 for 0% state) 
Battery_Increment = 1/Battery_div;     % Uses the number of divisions to determine the 

resolution or the increment between each state of charge 
V_oc = 480;                             % Open circuit voltage for the battery pack 

[Volts] 
 

% Initial Calculations 
Max_u = C_max./4;                      % Defines control over a 15 minute period [Amp-

hours] 
Max_amps = Max_u*1000000*4;               % Defines the maximum amps that the battery 

can draw at a given time [Amps] 
R_int = (V_oc/2)*(1/Max_amps)*(0.8);   % Defines the internal resistance of the 

battery [Ohms] 

Code Compatibility Checks 
Verify that Max_u is not larger than necessary for given 15 minute data 

if Max_u > 1;       % If battery can fully charge in less than 15 minutes, 

    Max_u = 1;      % Limit the maximum charge to a desired control 

end 
 

% Verify Compatibility of States and Controls 
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Int_Check = Max_u/Battery_Increment;                            % Defines variable 

Int_Check to verify if the Max_u control state is divisibly by the state of charge. 
if floor(Int_Check)~=Int_Check                                  % If Int_Check is a 

whole number, then the control states and the battery states are compatible. 
    fprintf('Some states or controls may not be accessable')    % If not, the code 

displays an error message 
    return                                                      % And then breaks the 

code 
end 

Loading exogenous data: Price, Solar Output, and Plant 
Consumption 
load('PriceXXX'); 

P = Price(1:96);                 % Price Data [$ / MWh] 

k_vector = [1:length(P)];  N = k_vector(end);   % Number of Stages 
S_vector = [0:Battery_Increment:1];             % State of Charge 

u_vector = [-Max_u:Battery_Increment:Max_u];    % Control vector, or allowable change 
in State per Stage 

%load('Solar_Data','Christman1');             % Solar Data [kW] 
w =  zeros(1, length(k_vector)); % Christman1(1:N)'; %  ;Exogenous function 

%load('MANUFACTURING','MWH_15min') 
m = zeros(1, length(k_vector)); %MWH_15min(1:N);  %    % Manufacturing Plant Data 

Preparation for Dynamic Optimization 
Preallocating vectors 

V = ones(length(S_vector), length(k_vector)); 

mu = ones(length(S_vector), length(k_vector)-1); 

 

% Penalty for End State 

for S_index = 1:length(S_vector)            % End state should be at 50% to continue 
smoothly into the next time period 

    S(N) = S_vector(S_index);               % However, if 
    V(S_index,N) = -100000*(S(N)-0.5)^2;    % apply the end state penalty fxn 

end 
 

i = 0; 
 

tic                 % Start clock to measure how long the Dynamic Optimization takes 

Recursive Backwards Computation 
for k = N-1:-1:k_vector(1);                                             % move 
backwards through the stages, 
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    for S_index = 1:length(S_vector)                                    % and at each 

state 
        S(k) = S_vector(S_index); 

        for u_index = 1:length(u_vector)                                % evaluate the 
costs of the available actions , u. 

            u(k) = u_vector(u_index); 
             if u(k) > inf                                               % if the 

resulting control input is invalid (this is now a dummy validity test) 
                cost_to_go(u_index) = -999999;                             % then 

penalize invalid actions 
            else 

                S(k+1) = S(k) - u(k);                            % use the system 
dynamic eqn to calculate the next state 

                if  S(k+1) < min(S_vector) || S(k+1) > max (S_vector)   % if the 
resulting state is invalid 

                    cost_to_go(u_index) = -999999;                         % then 
penalize invalid actions 

                else 
                    Amp(k) = u(k)*(4*1000000); 

                    P_term = (Amp(k)*V_oc - R_int * Amp(k)^2)/4000000 + w(k)*0.001 - 
m(k);  % calculating real power sold/purchased [MWh] 

                    g = P(k).*P_term;                                   % else 
evaluate cost and cost to go for each u 

                    cost_to_go(u_index) = g + 
interp1(S_vector,V(:,k+1),S(k+1),'spline'); 

                end 
             end 

        end 
        [V(S_index,k), u_best_index] = max(cost_to_go);                 % choose the 

best control choice 
        mu(S_index,k) = u_vector(u_best_index);                         % assign mu 

and V 
        i=i+1; 

        A(i) = S_index; 
        B(i) = P(k); 

        C(i) = u_vector(u_best_index); 
    end 

end 

Forward Recovery of Optimal States 
clear S_star u_star 
S_star(1) = 0.5; 

for k = k_vector(2):k_vector(end) 
    u_star(k-1) = interp1(S_vector,mu(:,k-1),S_star(k-1),'spline');     % optimal 

control sequence 
    S_star(k) = S_star(k-1) - u_star(k-1);                              % optimal 

state sequence 
end 

toc 
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Elapsed time is 67.928088 seconds. 

Plotting Results and Saving 
figure(1) 

subplot(3,1,1); plot(u_star); xlabel('Stage'); ylabel('Control Input'); ylim([-Max_u 

Max_u]); %legend('Optimal Control Sequence, u(k)') 
subplot(3,1,2); plot(S_star); xlabel('Stage'); ylabel('State of Charge'); ylim([0 1]); 

%legend('Optimal Control Sequence, S(k)') 
subplot(3,1,3); plot(P); xlabel('Stage'); ylabel('Price/MWh'); 

Cost_To_Go_Matrix = V; 
Optimal_Control_Matrix = mu; 

 
% Return the optimal value the system can realize at 50% charge at start of 

% the time period 
R = 1/Battery_Increment*0.5 + 1; 

Total_Value = V(R,1) 
save('Publish_Results_AMPS_C010Days366UXXXBat101','u_star','S_star','Total_Value','Opt

imal_Control_Matrix','S_vector') 

 

 


