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ABSTRACT 
 
 
 

THE OCCURRENCE OF CWD PRIONS AND THEIR RISK TO HUMANS 
 
 
 

Zoonotic diseases are often caused by viruses or bacteria, which adapt to new species with 

changes to their nucleic acid sequence. The etiologic agent of transmissible spongiform encephalopathies 

(TSEs), the prion, is a self-templating, abnormal isomer of a normal protein, PrPC, and does not include 

nucleic acids. Despite its protein-only composition, prions are transmissible and can adapt to new species. 

We are particularly interested in chronic wasting disease (CWD), the TSE of cervids.  

CWD is horizontally transmissible among cervids and has spread across much of North America 

and to Europe and Asia. It is apparent that excreta from CWD(+) deer is infectious, but the mechanism of 

horizontal transmission of CWD has not been explained. We hypothesized that deer accumulate prions in 

many tissues and that accumulation of prions is dictated by PrPC expression. Next, we used a battery of in 

vitro systems to compare the biochemical characteristics and infectivity of prions in lymphoid tissues. 

Finally, we hypothesized that in vitro detection of prions in saliva is hampered by the presence of an 

inhibitor. We demonstrated that prions accumulate in many tissues in deer and that accumulation is 

determined by tissue type, not PrPC expression. We confirmed that the prions in lymph nodes are 

infectious in vitro. Last, we confirmed the presence of an inhibitor in saliva which results in the 

underestimation of prion shedding in saliva. 

The TSE of cattle, bovine spongiform encephalopathy (BSE), crossed the species barrier and 

infected humans, confirming that TSEs can infect new species. However, the zoonotic potential of CWD 

remains unclear. For a prion from one species to infect a new host, the invading prion and the PrPC of the 

new host must be compatible. We hypothesized that prions are most compatible with their own species’ 

PrPC and that human PrPC could not be induced to misfold by CWD prions. Upon infection of a new host, 

CWD adapted, but BSE did not. Curiously, CWD prions efficiently induced the misfolding of human 

PrPC. We concluded that the species barrier between humans and CWD prions is not due to 
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incompatibility of human PrPC and CWD prions. Finally, we tested a specific region of PrPC, the amino-

terminal domain (NTD), for its role in the species barrier. We demonstrated that the NTD of PrPC 

hindered misfolding for most species, but that interactions of the NTD with the rest of molecule 

facilitated the misfolding of human PrPC by CWD prions. 

We propose that horizontal transmission among cervids is facilitated by the widespread 

propagation and deposition of prions in tissues. We hypothesize that prions in the periphery are infectious 

and that they are the source of excreted prions to which naïve cervids are exposed. We conclude that the 

species barrier preventing transmission of CWD to humans is not as robust as has been suggested. The 

species barrier is not due to incompatibility of human PrPC and CWD prions. We suggest that CWD 

infection of humans would be difficult to identify because CWD adapts to new species. Our work to 

understand horizontal transmission and the risk of CWD prions to humans contributes to an 

understanding of the pathology and ecology of CWD and the prevention and identification of zoonotic 

events involving CWD. 
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INTRODUCTION 
 
 
 
Zoonotic Disease 

Zoonosis is defined by the Merriam Webster dictionary as an “infection or disease that is 

transmissible from animals to humans under natural conditions” (1). Etiologic agents of zoonoses include 

viruses, bacteria, fungi, parasites and prions, the protein-only infectious agents that are the subject of this 

dissertation (2). Experts estimate that 50-75% of human pathogens emerged from animals, and zoonotic 

disease causes one billion human cases and one million human deaths per year (2, 3). Evolution dictates 

that pathogens will exploit and adapt to new niches, like a new host. Some zoonotic pathogens are 

enzootic in their animal host populations and are rarely transmitted from human to human, while others 

have adapted and are very easily transmitted among humans (3). There are factors intrinsic and extrinsic 

to pathogens that affect their chances of leaping from animal to human hosts. Extrinsic factors include 

modifications to agricultural practices, human intrusion into animal habitat, human population growth, 

travel, and behavior, and breakdown of public health systems (3). To further complicate matters, climate 

change will alter the contact frequency between reservoir host and humans (as reservoir hosts’ habitats 

change) (4). Intrinsic factors that affect zoonosis emergence include the basic reproduction number of the 

pathogen (R0), which describes the ease with which the pathogen is transmitted, and adaptation to a new 

vaccine, treatment or host. Frameworks like the Bradford-Hill criteria make it possible to identify the 

causative agent in zoonotic outbreaks, but are only effective after the zoonotic event has occurred (5). The 

scientific community has never successfully predicted the emergence of a zoonotic pathogen in human 

populations, but improved understanding of the characteristics that facilitated past emergence has led to 

increased efforts toward outbreak prediction. A group of preeminent virologists established a list of 

criteria upon which the zoonotic potential of a virus may be assessed, and argue that these characteristics 

must be understood if outbreak prediction is to be realized (Table 1). Most of the efforts to study and to 

predict zoonotic disease have been centered on viral agents, but these principles can be applied to any 

disease-causing agent.
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Table 1. Characteristics of animal pathogens related to the 
likelihood of infecting human hosts (6) 
Relatedness and contact frequency of reservoir host and humans 
Viral relatedness to human viruses 
Host range and plasticity 
Viral mutability  
Host-receptor interactions 
Routes of transmission 
Prediction of virulence in humans 
Host-virus coevolution 

Prions as a causative agent 

Though most zoonotic disease is caused by viruses, bacteria and other traditional pathogens, there 

is one notable exception. The bovine spongiform encephalopathy (BSE, mad cow disease) outbreak in the 

United Kingdom in the 1980s – 1990s not only resulted in the culling of nearly 5 million cattle, but also 

resulted in the infection of humans with variant Creutzfeldt-Jakob disease (vCJD) (7-11). However, the 

causative agent of BSE and vCJD is not a virus or bacterium and it does not rely on nucleic acids to 

transmit information. BSE and vCJD are classified as transmissible spongiform encephalopathies (TSEs) 

and are caused by prions (12). Prion diseases have been described for 250 years, but the causative agent 

was not identified until the 1980s, when Dr. Stanley Prusiner proposed the prion hypothesis. The prion 

hypothesis postulates that the etiologic agent of TSEs is a misfolded form of a normal protein, PrPC (7, 

13-19).  

Robert Koch postulated that a disease-causing pathogen must (i) be present in all cases of the 

disease, but absent from healthy individuals; (ii) be isolated and grown in pure culture; (iii) cause the 

same disease when inoculated into healthy hosts; and (iv) be re-isolated from the new host. Koch’s 

postulates were proposed in an age when the pathogens of interest were mostly bacteria that were solely 

pathogenic and easily cultured. For viruses, prions, and many bacteria, Koch’s postulates do not 

sufficiently define the pathogen (20). For example, viruses cannot be cultured in isolation and many 

disease-causing bacteria can exist benignly in healthy individuals. Prion biologists have proposed a 
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modified set of postulates to define a protein as a disease-causing agent (21). To summarize the history 

and current state of prion disease research, I will discuss each of the protein-only pathogen postulates. 

(1) The first postulate states that the protein must be invariably present in the disease-specific form 

and arrangement in the diseased tissue (21). This postulate is reminiscent of Koch’s requirement that the 

causative organism must be present in all cases of the disease. It requires that the prion (PrPSc)1 be found 

in the tissue of diseased individuals in the expected pattern. PrPSc was identified as the principal 

component of the fibrils observed in the brains of humans, sheep, cattle and cervids with prion disease 

through early electron microscopy experiments (22-29). The “scrapie-associated fibrils” stained with 

Congo red, suggesting that they were comprised of amyloid, which was interpreted as a marker of the 

disease-specific form of the protein (29, 30). The fibrils were identified in extracellular plaques, and have 

slightly different phenotypes depending on the particular prion disease (30).  

(2) The second postulate requires that the structure and post-translational modifications that confer 

infectivity be characterized (21). Before a discussion of the PrPSc structure, it is worthwhile to briefly 

review the structure of PrPC. The mature peptide is comprised of 208 amino acids, with signaling peptides 

present in the unprocessed form. An amino-terminal signal peptide directs the molecule to the 

endoplasmic reticulum for post-translational modifications and a carboxyl-terminal signal is replaced by a 

glycosylphosphatidylinositol (GPI) anchor during processing. The mature protein has an amino-terminal 

unstructured domain from amino acids 23-120 (numbering based on human PrPC) that contains a variable 

number of octapeptide repeats (PHGGGWGQ). The structured carboxy-terminal domain contains 3 alpha 

helices and a small beta-sheet region and extends from amino acids 121-231. A disulfide bond links alpha 

helices 2 and 3 via cysteines at positions 179 and 214 (Figs. 1-2) (31).  

                                                      
1A note about terminology: There are a variety of terms for the disease-causing form of the prion protein, including 
PrPSc, PrPres, PrPD, PrPCWD and prion. For simplicity’s sake, I will use the term PrPSc or prion for the disease-
associated form. When I discuss protease resistance (the basis for the PrPres term), I will describe the molecules as 
“protease-resistant PrPSc”. The only exception will be when discussing real-time, quaking-induced conversion. The 
field has not coalesced around the hypothesis that the molecules detected by RT-QuIC are bona fide infectious PrPSc 
molecules, so I will describe the detection of “seeding activity,” not PrPSc, by this method. 
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Figure 1. Features of PrPC molecule. Amino acid numbering is for human PrPC. Blue cartoons represent 
N-linked glycosylation and dotted line indicates the disulfide bond. Adapted from Acevedo-Morantes, et 
al., 2014 (31). 

 

 
Figure 2. PrPC tertiary structure. Image derived from Acevedo-Morantes, et al., 2014 (31). The GPI 
anchor is shown in green. Octapeptide repeats are shown in yellow and bind copper (blue). Carbohydrates 
are shown in pink and alpha helices are shown in orange. 
 

PrPC can undergo a conformational change to PrPSc, which is autocatalytic and facilitates the 

conversion of more PrPC to PrPSc (32-34). The task of defining the structural characteristics of PrPSc is 

ongoing in the prion field, particularly efforts to characterize its tertiary and quaternary structure (35). 

The primary structure of PrPSc, which is encoded by the PRNP gene, has been defined for many species 

and does not differ between the healthy and diseased states for an individual (14, 15, 36-39). Instead, a 

change in secondary, tertiary and quaternary structure defines the transition from PrPC to PrPSc. PrPC is 

primarily alpha-helical, while PrPSc has a large beta-sheet component (40). This conversion to a beta-
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sheet conformation likely affects the tertiary structure (which remains unclear), and PrPSc aggregates as 

amyloid, defined by its cross- β sheet construction (30, 34, 41). There have been many attempts to predict 

the tertiary and quaternary structure of PrPSc, but none of the models perfectly predict the experimental 

behavior of the molecule (42).  

Finally, several post-translational modifications of PrPC have been identified. First, a GPI anchor 

is added to the carboxy-terminal end of PrPC in the endoplasmic reticulum (Figs. 1-2) (32). The GPI 

anchor tethers PrPC to lipid rafts, where conversion to PrPSc is hypothesized to occur. Reengineering PrPC 

to reside in a transmembrane configuration, but not in rafts, prevented conversion to PrPSc (43, 44). The 

carboxy-terminal domain of PrPSc is more protected (from hydrogen-deuterium exchange) in the presence 

of the GPI anchor (45). Transgenic mice that express PrPC without a GPI anchor have a delayed clinical 

disease, though PrPSc still accumulates (46, 47). Second, up to two N-linked carbohydrates (glycans) are 

added to PrPC in the ER (at Asn-181 and Asn-197) (Figs. 1-2) (33, 48). The effect of glycosylation 

depends on species and isolate, but glycosylation seems to play a role in the conversion of PrPC to PrPSc 

(49, 50). And third, the glycans of PrPC carry between zero and four sialic acid residues on their termini 

(51). Sialylation plays a role in conversion efficiency and infectivity of PrPSc; undersialylated PrPC is less 

prone to conversion in vitro and undersialylated PrPSc is not infectious (51-53). Sialylation was also 

implicated in prions’ ability to hijack the immune system; when PrPSc arrives in the spleen, it is sialylated 

further (54).  

(3) The third postulate dictates that the susceptibility of an organism be defined, including cellular, 

genetic and other features. Most simply, this postulate highlights the importance of the prion’s primary 

structure, which certainly governs susceptibility of a host to a prion (13, 14, 48, 55-58). Without PRNP, 

individuals are resistant to prion disease (59, 60). For many species, there are polymorphisms in the 

PRNP gene that influence susceptibility. In humans, the most common polymorphism is at amino acid 

129. Methionine homozygosity results in earlier onset and more rapid progression of clinical signs, 

compared to heterozygosity or homozygosity for valine. Gerstmann-Sträussler-Scheinker syndrome 

(GSS, a genetic prion disease of humans) is associated with the following missense mutations: P102L, 
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P105L, A117V, F198S, D202N, Q212P, Q217R, or inserts into the octapeptide repeat region. Familial 

CJD (a genetic prion disease) is associated with the following mutations: D178N, V180I, T188A, E196K, 

E200K, V203I, R208H, V210I, E211Q, M232R, and inserts into the octarepeat region. Finally, fatal 

familial insomnia (FFI, another genetic prion disease) is caused by the mutation D178N (31). In white-

tailed deer, increased susceptibility to prion disease is associated with the following polymorphisms: 

H95Q, S96G, and G116S. In elk, L132M is associated with increased susceptibility, and in mule deer, 

F225S is associated with susceptibility (61). In addition to the effects of PRNP on host susceptibility, it 

remains unclear whether some other “Protein X” (or non-protein cofactor) is required for prion 

conversion and whether that cofactor may vary with cell and tissue types (62-64). The majority of efforts 

to define cofactor requirements have involved attempts to create infectious prions in vitro, as I describe in 

the following section.  

(4) The fourth postulate states that disease should be induced in a susceptible organism by a purified 

or synthetic agent (21). Similar to Koch’s third postulate, this type of experiment ensures that the agent in 

question is indeed infectious. It has also been among the most elusive results in the prion field (65). In 

2004, Legname, et al. inoculated aggregated, truncated, recombinant PrPC (rPrPC, amino acids 90-231) 

into transgenic mice that dramatically overexpressed PrPC. Mice inoculated with aggregated PrPC were 

euthanized due to clinical signs between 380-660 days post-inoculation, while controls remained healthy 

until 670 days post-inoculation (66-68). The Prusiner lab created synthetic amyloid from recombinant 

PrPC and compared the stability in vitro to the incubation time in vivo (69). However, each of these 

experiments was performed in susceptible organisms that may have been too susceptible; both transgenic 

mouse lines were at risk of developing spontaneous disease, which clouds the interpretation of the results. 

The group led by Claudio Soto used PrPC from healthy transgenic mouse brain homogenate as the 

substrate for a synthetic prion and used prions from sick mouse brains to catalyze the misfolding process. 

Amplification proceeded for so long that the original sick mouse brain was essentially diluted away, 

ensuring that the synthetic prions were the ones causing disease (70). The same group repeated the 

experiment with prions derived entirely in vitro in PMCA, without the use of infected brain homogenate 
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to catalyze the misfolding and still observed infectivity in transgenic mice (71). The team led by Jiyan Ma 

performed a similar experiment in a brand-new laboratory that had never been exposed to prions, which 

confirmed that the de novo prion generation was truly de novo and not a result of contamination (72). Ilya 

Baskakov’s group denatured PrPC to cause misfolding and aggregation, then inoculated hamsters, a non-

transgenic host. Disease did not manifest in the first or second passage, though atypical, aggregated prions 

were detectable (73-75). They proposed that recombinant fibrils matured in the brain of inoculated 

hamsters, and that traditional PrPSc eventually evolved, a process they called deformed templating (76, 

77). The group led by Surachai Supattapone created infectious fibrils by addition of 

phosphatidylethanolamine to recombinant PrPC, and has investigated other cofactors that control the 

infectivity and properties of prion isolates (78-83). Finally, John Collinge’s group observed prion 

formation from normal brain homogenate on the surface of metal wire in the absence of PrPSc seeds (84). 

The creation of de novo infectious prions, especially from recombinant PrPC, are evidence that the 

etiologic agent is comprised only of protein. 

(5) The fifth postulate requires that the infectious agent be recovered from an organism after 

infection with the purified agent (21). In the studies that included infection of susceptible organisms with 

infectious, recombinant prions, the investigators demonstrated the existence of PrPSc in the brains of the 

inoculated laboratory animals (73, 74, 82). Naturally-occurring prions can be recovered from the 

experimentally-inoculated individual and re-inoculated into a naïve individual, with remarkably similar 

disease presentation in subsequent passages. Observations about the similar disease caused by a given 

isolate over passages resulted in the definition of strains in prion disease. Prion strains have identical 

primary sequences, but have different biochemical characteristics in vitro and different phenotypic 

characteristics in vivo (12). Prototypical examples include the hyper and drowsy strains of transmissible 

mink encephalopathy and the Me7 and 22A strains of mouse-adapted scrapie (12, 85-90). Strains may 

result in different incubation periods, different clinical signs, different neuropathology, different protease-

sensitivity or different conformational stability (85). Strains are common among viruses with rapidly 

mutating genomes, but differences in nucleic acid sequence cannot explain the existence of strains in 
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prion disease. Prion strains are hypothesized to be caused by different conformations of PrPSc, 

conformations that are propagated upon infection of a new host (87, 88). When a prion strain infects a 

new host, it will often stabilize and adapt to the new host after several passages, though there is evidence 

that not all strains adapt upon transmission to a new host (91-93). The experiments I summarized in this 

section provide compelling evidence to support the prion hypothesis, which states that the etiologic agent 

for TSEs is a protein-only pathogen.  

 

Yeast prions and prion-like proteins  

In the decades since the proposal of the prion hypothesis, similar mechanisms of information 

transfer have been identified in mammals and in other systems. Investigators studying Saccharomyces 

cerevisiae and other yeast species have identified a number of prions that can undergo a conformational 

change and catalyze the same conformational change in another molecule (94-96). Some yeast prions are 

considered detrimental, though they are not invariably lethal like PrPSc (95). Yeast prions are similar to 

mammalian prions in a number of ways, including shared structural features (i.e. β-sheet-rich amyloid), 

self-templated replication, and the existence of strains (97). One non-lethal yeast prion, Het-S, is a 

functional prion; in other words, it performs a cellular function in its amyloid state (98). Functional prions 

have also been described in insects, mammals, sea slugs, plants and bacteria. In Drosophila, Kausik Si’s 

group has identified a synaptic protein involved in long-term memory that acts as a transcription 

repressor, but adopts the phenotype of a transcription activator upon conversion to the amyloid state (99, 

100). In mammals, two proteins involved in immune signaling have been characterized as functional 

prions. MAVS and ACS are involved in the signal transduction that follows RIG-I activation during viral 

infection (101, 102). In aplysia (sea slugs), a functional prion similar to the translation regulator in 

Drosophila plays a role in memory potentiation (103, 104). Susan Lindquist’s group identified a prion in 

plants, though its function (or not) remains unknown (105). Recently, Ann Hochschild’s group identified 

a prion in bacteria that serves as a transcription terminator in its soluble form, but loses its function upon 

aggregation, enabling dramatic changes in the transcriptome (106).  
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In light of the discovery of functional prions, the lack of consensus about the physiological role of 

PrPC is especially interesting. PrPC is likely to have some function besides serving as the substrate for 

conversion to PrPSc. However, years of investigation have produced many incongruous hypotheses for the 

normal role of PrPC, including neurotransmission, olfaction, neural cell development, myelin 

maintenance, metal ion transport and neuroprotection (107, 108). PrPC interacts with several receptors, 

including G-protein-coupled receptors, glutamate receptors, and voltage-gated calcium channels (109-

111). Mice devoid of PrPC have few phenotypic differences from wild-type mice, which makes it difficult 

to confirm the hypothesized roles for the molecule (107, 112).  

In addition to the aforementioned functional prions, a number of neurodegenerative diseases have 

features reminiscent of prion disease. Specifically, normal proteins adopt a new conformation, coerce 

other molecules to adopt the same conformation, and form aggregates, a process called prion-like 

propagation. Examples of neurodegenerative diseases with prion-like propagation through the brain are 

described in Table 2 (113). The mechanism that controls the propagation of misfolded proteins through 

the brain is likely similar in all cases, and offers an opportunity for the translation of findings from the 

prion field to the neurodegeneration field and for important scientific progress. 

Table 2. Other neurodegenerative proteinopathies. Several neurodegenerative disorders that result 
in protein aggregation are described here. 
Disease Misfolded protein Aggregate name 
Alzheimer’s disease tau, amyloid beta neurofibrillary tangles, neuropil threads 
Parkinson’s disease alpha synuclein Lewy bodies 
Huntington’s disease huntingtin  
Spinocerebellar ataxia poly-glutamine proteins  
frontotemporal dementias tau, TDP43, FUS  
chronic traumatic encephalopathy tau  
amyotropic lateral sclerosis SOD1 and others  

 

Transmissible spongiform encephalopathies of animals 

 TSEs affect several animal species, including sheep and goats (scrapie), cattle (BSE), cervids 

(chronic wasting disease, CWD), felines (feline spongiform encephalopathy, FSE) and mink 

(transmissible mink encephalopathy, TME). TME and BSE spread among farmed mink and cattle through 
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the feeding of contaminated animal byproducts and FSE was the result of BSE infection in cats (114-

118). Scrapie has been recognized in captive sheep flocks for many years (119). Because scrapie has a 

strong genetic component, breeding programs have effectively reduced the incidence of scrapie in captive 

flocks (120). CWD is the only TSE that is currently spreading among wild populations (as well as within 

and between captive populations); it has been identified in North America, South Korea and Norway 

(121, 122).  

CWD is characterized by a variable, long incubation period, followed by clinical signs that begin 

with subtle changes in behavior and movement. More advanced clinical signs include weight loss 

(wasting), bruxism, altered posture and head carriage, head tremors, ataxia, polydipsia, polyphagia and 

excessive salivation (61, 123-126). CWD(+) deer are more likely than uninfected deer to be hit by 

vehicles or preyed upon by mountain lions (127, 128). Modeling of cervid population growth suggests 

that CWD does result in reduced (or, in some cases, negative) population growth, though estimates are 

variable (129-134). CWD spreads easily among individuals, as demonstrated by its prevalence and the 

degree to which exposure of deer to contaminated environments results in infection (135). Estimates of 

prevalence vary depending on the diagnostic technique, the specific population and the cervid species, 

and range from 2 or 3% and 79% (129-132, 134, 136-138). Anecdotal and experimental evidence suggest 

that CWD prions contaminate the environment and remain infectious for long periods (126).  

 The etiology of CWD was only beginning to be recognized in the 1980s – 1990s, when another 

TSE was sweeping through Europe and devastating the cattle industry. The first detection of BSE 

occurred in 1986, and researchers in the UK soon recognized the neurological disorder as a TSE (22, 23). 

Nearly 5 million cattle were slaughtered in an attempt to stem the spread of BSE (8, 139). The inclusion 

of prion-contaminated cattle or sheep meat and bone meal (MBM) in cattle feed was likely responsible for 

the origin and proliferation of BSE in cattle herds in the UK (7, 118, 139-141). Near the end of the BSE 

outbreak, physicians in the UK and France diagnosed atypical cases of the human prion disease, 

Creutfeldt-Jakob disease (CJD), in young adults, which they described as variant CJD (vCJD) (10, 142). 

These cases were unusual and concerning because CJD (now called sporadic CJD, sCJD) is generally 
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recognized when the patient is 60+ years old, while the average age of vCJD patients was in the late 20s 

(12, 143). The authors observed other differences: the median disease course of sCJD is 4 months, while 

the median vCJD course lasts over a year and though many symptoms occur in both diseases, their order 

of appearance is dramatically different (10, 143). In vCJD cases, the earliest symptoms are psychiatric, 

followed by neurological signs, while sCJD begins with neurological symptoms (143). Careful 

biochemical analyses and laboratory animal bioassays revealed the remarkable similarities between vCJD 

and BSE, essentially confirming that vCJD was the human form of BSE (7, 10, 11, 91, 144-147). Like 

any potential zoonotic disease, the connection between human and animal hosts was tested with both 

epidemiological and molecular assessment. Epidemiologists failed to find increased vCJD incidence 

among those who worked in the dairy cattle industry (farmers, butchers, etc.) and the only risk factors 

identified among vCJD patients were residence in the UK, homozygosity for methionine at amino acid 

129 in the human PrPC sequence and relatively young age (118, 141, 143). Microbiologists and molecular 

biologists were unable to use the nucleic acid-based techniques that are frequently used to identify the 

source of zoonotic pathogens, but focused on the biochemistry and biology of the isolates instead. 

Specifically, researchers identified similarities between BSE and vCJD in 1) the electrophoretic mobility 

pattern of proteinase K (PK)-resistant PrPSc, 2) the incubation period, clinical signs and neuropathological 

lesion characteristics in inoculated laboratory animals, and 3) the susceptibility of transgenic mice to 

vCJD and BSE vs. sCJD (11, 146, 147).  

 As a response to the BSE outbreak in the UK, legislation was drafted that prevented the feeding 

of MBM to cattle, which effectively ended the exposure of cattle to prions. Several protective measures 

were enacted to limit exposure of humans to BSE prions, including the exclusion of specified risk 

materials, tissues considered to contain particularly high BSE titers (including brain, spinal cord, spinal 

ganglia, retina and terminal small intestine), and the exclusion of cattle over 30 months old from the food 

chain (for human food and pet food) (141). Cases of BSE have essentially disappeared across the world 

(with the exception of the occasional case of atypical BSE) and vCJD incidence appears to have 

disappeared with it, though the possibility of asymptomatic vCJD carriers remains (148-153). Though the 



12 
 

BSE outbreak appears to have been resolved, the increasing incidence of CWD across the world is cause 

for concern. This relatively new TSE has attracted the attention of the prion field, and significant 

improvements have been made in the methods available for prion detection and analysis in the era of 

CWD.  

 

Prion detection methods (Table 3) 

Infectivity: bioassay and cell culture  

Animal models are often used to study the infectivity and pathogenesis of prions. These include 

transgenic mice that express the Prnp gene of various species and at various levels of expression, gene-

targeted mice that express the Prnp gene of another species under the control of the mouse PRNP 

promoter, and the natural hosts of prion disease (154-157). Due to the long incubation periods and high 

cost of bioassays, many alternative assays have been introduced for the detection of prions. Attempts to 

establish cell-based models for prion infectivity have been plentiful, but relatively few cell lines are 

susceptible to prions and accumulate PrPSc, and even fewer models have been developed into useful 

assays for prion detection or infection (reviewed in (158)). The first attempts at cell culture systems for 

prions used neuronal cultures (159), but prion susceptibility has been identified in other cell types since 

then (160). Susceptible cell types include neuroblastoma cells (161, 162), Schwann cells (163), 

glioblastoma cells (164), rabbit kidney epithelial cells (165, 166), neural stem cells and neurosphere 

cultures (167-171), fibroblasts (172), muscle cells (173) and cells derived from transgenic mice (174, 

175). Others have subcloned cell lines and isolated both susceptible and resistant cells to investigate the 

factors that determine susceptibility (176-178). Applications of cell-based systems include testing the 

efficacy of antibody and small molecule prion inhibitors, investigating cell to cell prion propagation and 

identifying differences between strains (179-196). Several cell models are practical screening tools for the 

detection of infectious prions (165, 168, 169, 171, 197-199).  
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Direct detection: IHC, Western blot, ELISA 

Several methods to identify prions directly detect PrPSc, almost always based upon the variable 

protease sensitivity between PrPC and PrPSc. Western blots are useful for the detection of PK-resistant 

PrPSc and the analysis of glycosylation patterns in a given tissue, species or strain, and are used very 

commonly in the prion field (200). Immunohistochemistry makes it possible to detect PK-resistant PrPSc 

in its tissue microenvironment and to study its distribution within and among tissues (201). Enzyme-

linked immunosorbent assays (ELISAs) rely on antibody capture of PrPSc in PK-treated samples (with one 

exception, which uses a PrPSc-specific antibody and does not require PK-digestion) (202-207). All three 

assays are limited by their direct detection of PrPSc, which lowers sensitivity. 

 

Amplification: PMCA and RT-QuIC 

The central tenant of the prion hypothesis is that PrPSc coerces PrPC to misfold and adopt the 

abnormal conformation. This propagation makes it possible to amplify prions in vitro – if PrPC encounters 

PrPSc under the proper conditions, it will be misfolded and the amount of PrPSc will increase dramatically, 

well above the limit of detection. Two amplification assays are used frequently in the prion field – protein 

misfolding cyclic amplification (PMCA) and real-time, quaking-induced conversion (RT-QuIC). PMCA 

uses brain homogenate for its source of PrPC and sonication to fracture fibrils and provide more free ends 

for the growth of the amyloid fibrils. The accumulation of PrPSc is identified with PK-treatment and 

western blot (208, 209). In RT-QuIC, the PrPC source is recombinant PrP (rPrP) instead of brain 

homogenate and shaking is used in place of sonication. The readout relies on the binding of thioflavin T 

(ThT), an amyloid-specific dye, to the amyloid fibrils that result from seeding (210-212). When ThT 

intercalates within amyloid, its fluorescence spectrum shifts and its fluorescence intensity increases (213). 

RT-QuIC experiments are carried out in fluorimeters that make it possible to detect fluorescent emission 

from ThT in real-time, enabling the analysis of kinetics, which is much more elusive with PMCA. 

Because there is no PK-treatment, RT-QuIC may also be better equipped for detection of PK-sensitive 

prions.  
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Table 3. Summary of prion detection techniques. The detection techniques described above are 
summarized here. Several advantages (“pros”) and disadvantages (“cons”) are listed for each. 
Technique Amplification Characteristic of 

PrPSc 
Pros Cons 

Bioassay, 
natural host 

Yes Infectivity Gold standard for 
infectivity, natural 
history of disease 

Expensive, time-
consuming, small n, 
natural variation 

Bioassay, 
rodent 
model 

Yes Infectivity Gold standard for 
infectivity, 
transgenics 
possible 

Expensive, time-
consuming, small n 

Cell culture Yes Infectivity, 
conversion ability 

Surrogate for 
infectivity, cellular 
processes intact 

Technically difficult, 
infectivity does not 
persist 

IHC No PK-resistance Fast, tissue 
distribution, 
specific 

Relies on PK-resistance, 
low sensitivity 

Western 
blot 

No PK-resistance Fast, specific Relies on PK-resistance, 
low sensitivity 

ELISA No PK-resistance or 
underglycosylation 

Fast, specific, 
high-throughput 

Relies on PK-resistance 
or underglycosylation, 
low sensitivtiy 

PMCA Yes Conversion ability Makes infectious 
product, specific, 
sensitive, contains 
cellular factors 

Requires animal tissue, 
slow western blot readout 
relies on PK-resistance 

RT-QuIC Yes Conversion ability Sensitive, high-
throughput, kinetic 
data, mutable 
system 

Imperfect specificity, 
infectivity of product 
unknown 

 

Gaps in understanding CWD and its risk to humans 

Unsurprisingly, the prion field has been very interested in the zoonotic potential of CWD. As I 

outlined in Table 1, there is much to learn if we are to predict a species-barrier-crossing event. In 

particular, this dissertation addresses: 1) the routes of transmission (and ability to spread, signified by R0) 

of CWD, and 2) the host range and plasticity of CWD. 
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1) Routes of transmission and R0 of CWD 

For a CWD(+) deer to infect another susceptible host, CWD prions must be present in a substance 

that will be encountered by the naïve individual and must be present in an infectious form. Only with an 

understanding of the distribution of infectious prions in tissues and excreta from deer can we estimate the 

routes by which other individuals can be exposed and infected by CWD, information that is necessary to 

calculate the basic reproductive number (R0) for CWD. Years of CWD research have confirmed that deer 

can be infected with CWD through several routes, including intracerebral, intravenous, per os (oral), 

intraperitoneal and inhalation (123, 214, 215). It is also clear that PrPSc accumulates in many tissues in 

CWD(+) cervids, including the central, enteric and peripheral nervous system, the lymphoreticular 

system, the upper and lower gastrointestinal tract, muscle, endocrine tissues, fat, reproductive and 

excretory tissues (138, 156, 157, 216-223). Perhaps more importantly for the calculation of R0, PrPSc has 

also been identified in saliva, feces, urine and blood from CWD(+) deer (123, 124). Positive excreta 

likely explain the environmental contamination that seems to exist in endemic CWD regions (135).  

The prion hypothesis states that PrPSc forms as a result of a conformational change in PrPC, which 

implies that PrPC must be present for PrPSc to develop. Despite this requirement, we know relatively little 

about the distribution of PrPC in the natural host of CWD. And despite a fairly robust description of PrPSc 

deposition in the deer, there have been very few assessments of the infectivity of tissues outside the CNS. 

Lymph nodes accumulate prions particularly early and consistently in deer with CWD, but their 

infectivity has not been analyzed (156, 224). However, in sheep with scrapie, lymph nodes have been 

confirmed to be infectious by bioassay in several models (including sheep and bank voles) (225-228).  

Finally, the development of ultra-sensitive detection methods, as described above, has vastly 

simplified the identification of PrPSc in a number of complex, low-titer samples. However, the 

interpretation of results from each of these detection methods must be made with an understanding that 

the tests are imperfect in their sensitivity and specificity, with the possibility of false negatives and false 

positives. Because we are particularly interested in the RT-QuIC assay, we have been mindful of its 

vulnerability to inhibitors and activators of amyloid formation (229-231). It is essential that we 



16 
 

investigate the limitations of our detection methods if we are to properly understand their results, which 

will ultimately inform the R0 of CWD. 

2) Host range and plasticity of CWD 

The dreadful zoonotic outcomes of the BSE outbreak and the rapid, unchecked spread of CWD 

underlie the importance of understanding the host range of CWD. Experimental inoculations of squirrel 

monkeys (232, 233), cattle (234, 235), sheep (236), domestic cats (237) and ferrets (238) have caused 

disease in at least some of the inoculated individuals. Macaques appear to be refractory to CWD 

infection; 7 inoculated macaques failed to show any signs of TSE infection after >5.5 years (233). BSE, 

the prototype zoonotic TSE, infected sheep (239), pigs (240), macaques (144, 241, 242), and cervids (243, 

244) upon experimental inoculation and felines (114, 115, 245, 246) and exotic ruminants (247) upon 

natural exposure. Therefore, both prion diseases have fairly plastic host ranges when the outcomes of 

experimental inoculations are compared. However, only BSE has definitively crossed a species barrier in 

a natural transmission event (248).  

 Of course, it is not possible to test the susceptibility of humans to CWD (or BSE) by experimental 

inoculation. To simulate the natural host when the natural host is unavailable or difficult to use in 

laboratory experiments, the prion field has relied heavily upon mice engineered to express the PRNP gene 

of another species. In particular, a number of transgenic mouse lines expressing one polymorphism or 

another of human PrPC exist (TgHu). Upon intracerebral inoculation, BSE has approximately a 50% attack 

rate in TgHu mice (155, 249-252), while CWD inoculation has never resulted in disease (155, 253-255).  

 Epidemiologists monitor the prevalence of human prion disease, particularly sCJD, in populations 

that have increased exposure to CWD, but there has been no evidence that sCJD prevalence is increased 

among those exposed to venison (256-259). There were several cases of sCJD in American young adults 

who were much younger than the average sCJD patient and all three were exposed to venison, but there 

was no strong causal link between their disease and CWD (260). Of course, similar epidemiological 

approaches were used in the UK during the BSE outbreak to look for infection in humans, but there was 
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not an increased prevalence of vCJD among dairy farmers or those with occupations in the abattoir 

industry (141). 

 In vitro assays provide one more avenue for the investigation of CWD susceptibility in humans. 

The advantages of in vitro systems include their relative mutability, precise conditions and their ability to 

isolate specific features of PrPC or PrPSc. The primary structure of PrPC is undoubtedly important in prion 

disease species barriers, as are the tertiary and quaternary structures of PrPSc (56, 261-265). In vitro 

systems are particularly useful to study the effects of particular PrPC regions on misfolding. Several 

investigators have used in vitro prion amplification systems to test the ability of CWD PrPSc to coerce 

PrPC to misfold. Overall, the results suggested that misfolding of human PrPC by CWD prions was 

unfavorable, but not impossible (266-270).  

 

Conclusion 

I intended to answer questions essential to understanding the R0 and host range of CWD. The 

results of those inquiries are presented in this dissertation. In short, we asked:  

1) Where is PrPC expressed in the deer and is PrPC expression correlated with the accumulation of prion 

seeding activity? 

2) Are CWD prions from lymph nodes infectious? 

3) How accurate are our attempts to measure prion shedding in excreta, particularly in saliva? 

4) How do prions adapt to new species and is there a barrier to the misfolding of human recombinant 

PrPC by CWD prions? 

5) What is the role of the amino terminal domain of PrPC in the susceptibility of human PrPC to CWD? 

I will demonstrate that PrPC and CWD seeding activity are widespread in deer, though not clearly 

correlated, that CWD prions in lymph nodes are infectious in cell culture, and that prions are likely shed 

in saliva more frequently than we recognize. Despite the unique transmissibility of CWD, the risk to 

humans remains unclear. The apparent species barrier is not due to an impediment at the level of PrPC 

/PrPSc interaction, as CWD prions can cause misfolding of human PrPC. Finally, the amino-terminal 
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domain of human PrPC appears to facilitate the conversion of PrPC to PrPSc in the presence of CWD 

prions. 
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CHAPTER 1: PrPC EXPRESSION AND PRION SEEDING ACTIVITY IN THE ALIMENTARY 

TRACT AND LYMPHOID TISSUE OF DEER 

 
 
Summary 

The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The 

prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations 

across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that 

likely spreads via oral exposure to infectious prions (PrPSc). Though PrPSc has been identified in many 

tissues, there has been little effort to characterize the overall PrPC expression in cervids and its 

relationship to PrPSc accumulation. We used immunohistochemistry (IHC), western blot and enzyme-

linked immunosorbent assay to describe PrPC expression in CWD(-) white-tailed deer. We used real-time, 

quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD(+) deer. 

 We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and 

systemic lymphoid tissue from five naïve deer. PrPC was expressed in all tissues, though expression was 

often very low compared to the level in the CNS. Specific cell types express high levels of PrPC. To 

compare the distribution of PrPC to PrPSc, we examined five deer with advanced CWD infection. We 

detected prion seeding activity in all 21 tissues using RT-QuIC. In three subclinical deer sacrificed four 

months post-inoculation, we detected PrPSc consistently in alimentary-associated lymphoid tissue, 

irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC 

levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in 

the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal 

lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and 

that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs. 
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Background 

Chronic wasting disease (CWD) is spreading among deer, elk and other cervids in North 

America, the Republic of Korea, and, recently, Norway (61, 121, 122, 271). The etiologic agent, a prion, 

results from the templated conversion from a normal protein, PrPC, to a primarily beta-sheet, misfolded 

form (PrPSc). The prion hypothesis stipulates that the normal prion protein, PrPC, is necessary for the 

manifestation of PrPSc and the disease state (13). As deer are likely exposed via the oral route to prions in 

the natural environment and because there is evidence that prions accumulate in the lymphoid tissue of 

cervids, we were interested in the expression of PrPC in the alimentary tract and lymphoid system of the 

natural host (white-tailed deer, Odocoileus virginianus) (156, 204, 216, 219, 220, 224, 272). The 

relationship between PrPC expression and PrPSc accumulation in specific tissues has not been reported, 

though it is classically understood that the spread of prions involves centripetal spread from the peripheral 

nerves to the brain, followed by replication in the brain and centrifugal spread to the rest of the body (226, 

227, 273, 274).  

There is no literature describing the expression of PrPC in cervids, the natural host of CWD. The 

expression of PrPC has been described in cattle, the host of bovine spongiform encephalopathy, and sheep, 

the host of scrapie, and in common experimental models (hamsters and mice). In cattle, PrPC is expressed 

in the brain, lymphoid tissue, gastrointestinal nervous and mucosal tissues, thymus, kidney, heart, lung, 

liver, muscle and pancreas (275-278). In sheep, PrPC expression has been detected in the brain, intestine, 

lymphoid tissue, lung, heart, kidney, muscle, uterus, adrenal gland, salivary glands, stomachs and 

mammary glands (279, 280). Finally, PrPC has been identified in the muscle, alimentary tract, skin and 

respiratory epithelium of mice (281, 282) and in the CNS, lymphoid tissue, heart, liver, lung, kidney, 

stomach and intestine of hamsters (283-285). We hypothesized that PrPC would be widely distributed in 

white-tailed deer and that expression would be highest in lymphoid tissue, since lymphoid tissue plays a 

role in early CWD pathogenesis (156, 216, 224). 

We were also interested in the accumulation of PrPSc in alimentary tissues, since the oral route of 

exposure is likely responsible for horizontal transmission of CWD (126, 135). We hypothesized that 
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tissues with the highest PrPC expression would accumulate PrPSc earlier in disease, and that tissues with 

low PrPC expression may never accumulate detectable PrPSc or only much later in disease. PrPSc has been 

detected in a number of deer tissues by a variety of methods, including western blot, 

immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Tissues that have been 

identified as prion-positive in CWD(+) cervids include lymphoid tissues, brain, salivary glands, some 

parts of the intestinal tract, forestomachs, abomasum, pituitary, heart, adrenal gland, muscle, and fat (156, 

157, 216-222). 

We used ELISA and western blot to measure PrPC expression and IHC to describe to the 

distribution of PrPC in 21 alimentary tissues and alimentary-associated lymphoid tissues of CWD(-) deer. 

We used real-time, quaking-induced conversion (RT-QuIC) to detect prion-seeding activity in the same 

tissues from orally-inoculated, CWD(+) deer either in the symptomatic stages of disease or four months 

after oral inoculation with CWD (at least 12 months before we typically see clinical signs) (215). We 

observed that PrPC expression is widespread, and that seeding activity does not accumulate first in the 

tissues with the highest PrPC expression. Importantly, we conclude that prion replication occurs in 

alimentary tissues before centrifugal spread of PrPSc from the brain. These results are an important step 

toward understanding the pathogenesis of CWD and for understanding its facile horizontal transmission.  

 

Methods 

White-tailed deer husbandry, inoculation and necropsy 

We obtained hand-raised, indoor-adapted, white-tailed deer fawns (Odocoileus virginianus) from 

collaborators Sally Dahmes (WASCO Inc.), David Osborn, Carl Miller, and Robert Warren (Warnell 

School of Forestry, University of Georgia). The deer were maintained in accordance with Colorado State 

University’s Animal Care and Use Committee. The genotype of the deer at amino acid 96 was determined 

as previously described, and all deer were homozygous for glycine (Table 1.1) (38, 286). Deer that were 

sacrificed in symptomatic stages of disease (1031, 1078, 1079, 1081, 1082) were inoculated per os with 

0.01g of 10% brain homogenate pooled from 6 CWD(+), white-tailed deer. Deer sacrificed in pre-clinical 
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stages of CWD (1171, 1201, 1205) were inoculated per os with 0.5g of the same brain homogenate. 

CWD(-) deer were inoculated with 0.5g of CWD(-) brain homogenate (deer 1140, 1169, 1211) or were 

uninoculated (deer 952, 955). Negative deer were housed in separate suites in the same indoor facility as 

the CWD-inoculated deer (214). 

Table 1.1. White-tailed deer polymorphisms. The genotype at codons 13, 21, 96 and 226 for each 
deer is described below. 
Deer Number Codon 13 Codon 21 Codon 96 Codon 226 
1031 LL VV GG QQ 
1078 LL VV GG QQ 
1079 LL VV GG QQ 
1081 LL VV GG QQ 
1082 LF VV GG QQ 
1171 LL VV GG No data 
1201 LL VV GG No data 
1205 LL VV GG No data 

 

Tissue collection and processing 

We collected each tissue with new, prion-free, disposable instruments. We froze half of each 

tissue at -80oC and fixed the other half in periodate-lysate-paraformaldehyde (PLP) for four days. After 

fixing, we stored the tissues in sterile PBS until trimming, followed by 70% ethanol for long-term storage. 

We trimmed tissues into cassettes and embedded them in paraffin blocks using routine histologic 

techniques.  

We homogenized frozen tissue for western blots, RT-QuIC, and ELISA using the following 

protocol: we trimmed approximately 200mg of tissue on ice and added it to ice-cold 1X PBS with 

protease inhibitors (Roche Complete Mini protease inhibitor tablets; one tablet/10mL PBS) to create a 

20% w/v homogenate. We homogenized the tissues (Bead Ruptor 24 Bead Mill Homogenizer, Omni 

International) for 30 seconds, followed by a 10 second pause, then another 30 second homogenization. 

We chilled the homogenates on ice for 5 minutes, then repeated the homogenization and chill protocol 

twice more. We diluted each sample to 1% for the bicinchoninic acid (BCA) assay (Pierce BCA Protein 

Assay Kit, Thermo Scientific), and froze the remaining 20% homogenates at -80oC.  



23 
 

We performed BCA assays according to the manufacturer’s instructions, with each sample and 

standard tested in triplicate. We recorded optical density with an Opsys MR microplate reader (Dynex 

technologies).  

 

Western blot 

We thawed frozen 20% tissue homogenates on ice and added 500μg of total protein to 2% N-

lauroylsarcosine sodium salt in PBS for a final volume of 150μL. We thawed brain homogenates on ice 

and added 5.0ug of total protein to 2% sarkosyl in PBS for a final volume of 150μL. We added 25μL of 

6X Laemmli sample buffer to each sample, then boiled for 5 minutes. Next, we loaded 20μL of each 

sample preparation (~57μg total protein for tissues and 0.57μg total protein for brain) to each well of an 

18-well precast gel (12% CriterionTM XT Bis-Tris protein gels, Bio-Rad) and electrophoresed the gels for 

90 minutes at 150V. We transferred the proteins to a PVDF membrane for 1 hour at 80V on ice 

(CriterionTM Blotter, Biorad), then blocked the membranes with 5% non-fat dry milk in TBST for 20 

minutes at room temperature, then incubated the membrane with 0.2μg/mL antibody Bar224 (Cayman 

Chemicals, continuous epitope aa141-151) overnight at 4oC. We followed the primary antibody with a 

horseradish-peroxidase-labeled goat anti-mouse IgG for one hour at room temperature and developed the 

western blots with Pierce ECL substrate (ThermoFisher Scientific) for five minutes. We captured images 

with the GE ImageQuant LS 400 imager; specifically, we exposed the membranes for 70 seconds and 

analyzed the western blots whose bands were uninterrupted by bubbles or other artifacts. 

We used Image Studio Lite v4.0 (Li-Cor Biosciences) for densitometry. First, we drew a 

rectangle around the first lane and copied it onto each lane, then used the software’s background 

subtraction tool, which subtracted the median background from the right and left of each rectangle for 

three border-widths. Next, we calculated the intensity of each lane relative to the brain sample that was 

included in every experiment. We plotted a frequency histogram of all lane intensities from every 

experiment and divided the data evenly into four quadrants. We used the borders of these quadrants as 

cutoffs for our final classification (very low, low, medium and high).  
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Histology and immunohistochemistry 

We mounted 5μm sections of paraffin-embedded tissue on positively-charged glass slides. We 

heated the slides at 65°C, then removed paraffin with xylene and rehydraded the tissues in graded alcohols 

(100%, 95%, 70%) and water. We treated the tissues with 88% formic acid for five minutes to expose 

epitopes. To quench peroxidases, we incubated the tissues with 3% hydrogen peroxide in methanol. We 

blocked tissues with 5% non-fat dry milk (in TNT [0.1M Tris-HCl, 150mM NaCl, 0.1% Tween]). We 

incubated tissues overnight at 4°C in a bath of 2μg/mL anti-PrPC antibody Bar224 (Cayman Chemicals) or 

mouse IgG2A as a negative control (RD Systems). We incubated the tissues with secondary anti-mouse 

IgG conjugated to horseradish peroxidase (Envision+TM, Dako) at room temperature. Finally, we detected 

the immunoreactivity with AEC chromagen (Dako). We counterstained with Mayer’s hematoxylin 

(Dako), followed by 0.1% sodium bicarbonate bluing reagent, then added coverslips with aqueous 

mounting media (Dako) and allowed to dry completely. For hematoxylin and eosin staining, we used the 

same deparaffinization protocol. We stained the tissues with Mayer’s hematoxylin, then eosin 

(NovaUltraTM H&E Stain Kit, IHC World). We cleared the slides in xylene, then added coverslips with 

xylene-based mounting media and allowed to dry. We visualized staining with light microscopy. 

 

Enzyme-linked immunosorbent assay 

We coated 96-well plates (Maxisorp plates, Nunc) with 20μg/mL capture antibody D18 (287) 

(Telling laboratory, Colorado State University Prion Research Center) in carbonate/bicarbonate buffer, 

sealed and stored for 1-4 days at 4oC. We blocked the plates with 3% bovine serum albumin (BSA) in 

PBS at 37oC. We thawed tissue homogenates on ice and added 250-2000μg/mL total protein to 0.23% 

BSA, 0.035% Triton X100 and PBS. We added 100μL of each sample to three wells and incubated 

overnight at 4oC. We added PRC5 (1:5000, Prion Research Center, Colorado State University (202)) in 

1% BSA in PBS to the plates at 37oC, then washed and added anti-mouse IgG2s-HRP conjugate (Alpha 

Diagnostic International Inc) at a 1:5000 dilution at 37oC. We developed the plates with ABTS peroxidase 

substrate (Thermo Fisher Scientific), then stopped the reaction. We read the absorbance at 405nm on an 
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ELx808 Ultra Microplate Reader (Bio-Tek Instruments, Inc.). In addition to the samples of interest, we 

included blank wells and standard wells. The blanks were missing only the tissue homogenates and the 

standards included recombinant white-tailed deer rPrP instead of tissue homogenate. We used 

concentrations of 0.1-1250ng/mL rPrP for the standard curve.  

We assessed each sample for its linearity. Samples that did not exhibit a linear response to 

dilution were repeated at higher total protein concentrations. Samples that did not cross the threshold (3 

standard deviations above the mean absorbance of the blanks) were also repeated with higher total protein 

concentrations. If samples exhibited a linear response of absorbance to dilution and had at least two 

dilutions above the threshold, we proceeded with analysis. We were able to proceed with analysis of all 

tissues except the following: 1/3 rumen samples (below threshold), 1/3 spleen samples (nonlinear dose 

response), 2/3 prescapular lymph node samples (nonlinear dose response), 1/3 omasum samples (below 

threshold), and 1/3 ileocecocolic LN (nonlinear dose response). We computed the linear regression for the 

standard curves (within the linear range) and extrapolated the ng/mL PrPC for each sample (choosing the 

dilution in the center of the linear range). We divided the ng/mL PrPC by the μg/mL total protein added to 

the ELISA to calculate a ratio of PrPC/total protein for each sample. We plotted a frequency histogram of 

the ng PrPC/mg total protein for every replicate and divided the data into quartiles. We assigned a score of 

4 to replicates that fell within the highest quartile, 3 for the 50-75% quartile, 2 for the 25-50% quartile 

and 1 for the lowest quartile. We averaged the scores of each replicate (n=3) and each deer (n=3) in 

Figure 1.4. A score of 1 represents less than 1.36 ng PrPC/mg total protein, a score of 2 represents 1.37-

2.51ng PrPC/mg total protein, a score of 3 represents 2.52 – 4.77ng PrPC/mg total protein and a score of 4 

represents greater than 4.78ng PrPC/mg total protein. We compared sample types or groups of samples 

with a one-way ANOVA, followed by Tukey’s multiple comparison post-test. 

 

Expression and purification of recombinant PrP 

We expressed full-length white-tailed deer (WTD) PrPC for standard curves in ELISA as 

previously reported (93) and truncated Syrian hamster (SH) PrPC for RT-QuIC as previously reported 
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(288). Briefly, the cDNA sequence for the WTD PRNP gene was cloned into the pet100D expression 

system (Life Technologies). The plasmid for expression of amino acids 90-231 of SH PrPC
 was kindly 

provided by Dr. Byron Caughey. We stored the plasmids in E. coli BL21 Star cells (Life Technologies). 

To express PrPC, we added BL21 cells from frozen glycerol stocks to 5mL LB media, grew the cultures 

overnight, then added the bacteria to 1L LB media with auto-induction reagents (final concentration: 

0.5M (NH4)2SO4, 1M KH2PO4, 1M Na2HPO4, 0.5% glycerol, 0.05% glucose, 0.2% α-lactose and .001M 

MgSO4.) We harvested bacteria when the OD600 reached approximately 3.0 for WTD and 1.7 for SH 

PrPC. We lysed the cells and purified inclusion bodies according to the manufacturer’s protocol with 

BugBusterTM and LysonaseTM (EMD-Millipore).  

To purify recombinant PrP (rPrP), we solubilized the inclusion bodies in 8M guanidine 

hydrochloride (GdnHCl) and 100mM Na2HPO4 at room temperature, overnight, in an end-over-end 

rotator. We mixed the denatured rPrP slurry with SuperflowTM nickel resin (Qiagen) and refolded the rPrP 

on the column and eluted as previously reported (93).  

 

Real-time quaking-induced conversion (RT-QuIC) with NaPTA precipitation 

We thawed aliquots of frozen tissue homogenates on ice and diluted the homogenate to 0.1% in 

0.1% SDS/PBS. We added sodium phosphotungstic acid (NaPTA) (final concentration 0.33% NaPTA, 

0.28% MgCl2) to 100μL 0.1% tissue homogenate. We shook the mixture at 1400rpm for 1 hour at 37oC, 

then pelleted precipitated proteins at 14,000g for 30 minutes. We resuspended NaPTA pellets in 10μL 

0.1% SDS/PBS and added 2μL to each well of the RT-QuIC plate. We did not subject brain samples to 

NaPTA precipitation; we diluted 10% brain homogenates in 0.1% SDS/PBS and tested the 10-3 and 10-4 

dilutions.  

We performed RT-QuIC experiments in black, optical-bottom 96-well plates (Nunc). Each RT-

QuIC reaction was comprised of 0.1mg/mL SH rPrP, 320mM NaCl, 1.0mM EDTA, 20mM NaH2PO4 and 

10μM thioflavin T. An RT-QuIC experiment consisted of 250 cycles (62.5 hours) of shaking (1 minute, 
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double orbital shaking at 700rpm) and rest (1 minute) at 40oC. Microplate readers (Fluostar, BMG) 

recorded the fluorescence (450nm excitation and 480nm emission) every 15 minutes using a gain of 1700.  

We included matched negative control tissues (i.e. the same tissue from a CWD(-) deer) on every 

plate and samples were run in quadruplicate twice (8 total replicates). We calculated a threshold at 5 

standard deviations above baseline fluorescence to determine which replicates were positive. We used 

Omega software (BMG Labtech) to determine the lag phase – the time at which the fluorescence in a 

given well exceeded the threshold. If the fluorescence for a sample never crossed the threshold during the 

experiment, we estimated a value of 70 hours. We analyzed the lag phase data using non-parametric, 

rank-based tests (Wilcoxon-Mann-Whitney (WMW) and Wilcoxon signed-rank tests). If all values for 

one sample were equal, WMW tests are invalid, so we used Wilcoxon signed-rank tests instead. We chose 

these tests for several reasons: 1) our data was often non-normal (right skewed due to replicate wells that 

don’t cross the threshold in the course of the experiment); 2) our n was relatively small (8); and 3) we had 

to choose values to substitute for the replicate wells that did not cross the threshold. The choice of that 

value would affect the mean (and the results of any statistical tests that relies on means, like t-tests), but 

will not affect rank-based statistical analysis, since those values will have the longest lag phase regardless 

of which value we choose. We described a tissue as positive when it was statistically different from the 

same tissue from a negative control deer (p<0.05).  

 

Results 

PrPC expression is widespread, but low, in many tissues of the alimentary tract and alimentary-associated 

lymphoid tissue.  

 We used western blots and ELISA to detect PrPC in frozen tissue samples from captive, CWD(-), 

white-tailed deer. We examined 21 tissues of the alimentary tract, alimentary-associated lymphoid tissues, 

and peripheral lymphoid tissues. We classified PrPC expression in each tissue into quartiles and assigned 

expression scores based on the quartile where the tissue fell. We detected PrPC expression in all tissues by 

western blot, although expression was often near the limit of detection (representative western blots in Fig 
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1.1). We were able to detect PrPC expression by ELISA in nearly all tissues (select raw ELISA data in Fig 

1.2.) Overall, the assays detected similar expression in a given tissue. When expression levels varied 

between assays, the ELISA detected higher PrPC expression than did western blot (ileum and cecum), 

with the exception of the mesenteric LN (Fig 1.3). For the statistical analysis, we used the ELISA data, 

since it is inherently the more quantitative assay (281). 

 We were interested in a comparison of alimentary-associated lymphoid tissue (which is assumed 

to play a major role in CWD pathogenesis) and tissues of the alimentary tract. Tissues of the lower 

alimentary tract (small and large intestines and rectum) had higher PrPC expression than did the group 

comprised of all the alimentary-associated lymphoid tissue (ANOVA, Tukey post-test, p<0.05) (Fig 1.4) 

Earliest CWD prion replication has been detected in oropharyngeal lymphoid tissue (224), so we 

compared PrPC expression in these tissues (mandibular LN, parotid LN, tonsil, retropharyngeal LN) to the 

salivary glands, which are also proximate to the oral cavity and are likely involved in the contamination 

of saliva with prions (218, 224, 231, 288). The salivary glands had higher PrPC expression than did the 

oropharyngeal lymph nodes (ANOVA, Tukey post-test, p<0.05) (Fig 1.4). However, there was no 

difference in the PrPC expression of the oropharyngeal lymph nodes and the lymph nodes of the lower GI 

(ANOVA, Tukey post-test, p>0.05) (Fig 1.4). Finally, we were interested in the PrPC expression level in 

the spleen, which had lower expression than the lower alimentary tract tissues, the salivary glands and the 

ruminant stomachs (ANOVA, Tukey post-test, p<0.05). The spleen also had (statistically insignificantly) 

lower PrPC expression than all lymph nodes combined (Fig 1.4). 
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Figure 1.1 Representative western blots. We performed western 
blots for PrPC expression on tissue homogenates from five CWD(-) 
deer. We used a diluted obex homogenate (1% of total protein added 
for other samples) to normalize each western blot (lane 18) and 
performed densitometry on each lane. A) Representative western blot 
from deer 952. B) Representative western blot from deer 955. 
Expression of PrPC was variable among tissues and, to some degree, 
between deer. However, we detected PrPC in every tissue in at least 
one of the deer. α-PrP antibody BAR224 recognizes a continuous 
epitope from aa141-151, and is expected to recognize the C1 
fragment of PrPC.  
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Figure 1.2. Representative ELISA results. We performed sandwich ELISA assays for PrPC expression 
for three CWD(-) deer. We used PrP0/0 mouse tissues as negative controls and five dilutions of recombinant 
white-tailed deer PrPC (rPrPC) to generate a standard curve, one dilution of which is shown here. Bars 
represent the mean absorbance of three technical replicates and error bars represent standard error of the 
mean. A. We compared several alimentary tissues from all three deer. B. We compared several alimentary-
associated lymphoid tissues from all three deer. Replicate samples from individual deer were very 
consistent (error bars), but there was some variability between deer for a given tissue (note differences in 
bars of the same pattern). Overall, expression was higher in the alimentary tissues than in the alimentary-
associated lymphoid tissues. 
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Figure 1.3. Quantification of PrPC expression. A-B. We converted ELISA absorbance values to 
expression scores using the approach detailed in the methods section. Briefly, we divided each replicate 
into quartiles based on their absorbance and assigned the top quartile a score of 4 and the lowest quartile a 
score of 1. For every tissue, the mean score for three replicates for each of three deer is plotted with the 
standard error of the mean. We divided the tissues we tested into alimentary (A) and lymphoid (B) tissues. 
C-D. We converted western blot densitometry data to expression scores using the technique described in 
the methods. Briefly, we normalized each lane to the diluted obex on the same blot, then divided all 
normalized densitometry data into quartiles. The top quartile received a score of 4 and the lowest received 
a score of 1. We plotted the mean score for five deer with the standard error of the mean. We divided the 
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tissues into alimentary (including glandular) (C) and lymphoid (D) tissues. The error bars indicate that the 
alimentary tissues were more variable than the lymphoid tissues and that the western blot results were more 
variable than the ELISA results. 
 

 
Figure 1.4. Comparison of PrPC expression among tissue types. We used one-way ANOVA and 
Tukey’s multiple comparison post-test to analyze differences between PrPC expression levels in types 
of tissue (based on ELISA results.) * indicates p<0.05, ** p<0.01, *** p<0.0001. Lower alimentary 
tissues include: duodenum, jejunum, ileum, cecum, colon and rectum. Ruminant stomachs include: 
rumen, reticulum, omasum and abomasum. Oropharyngeal lymph nodes include: tonsil, 
retropharyngeal lymph node, mandibular lymph node and parotid lymph node. Lower GI lymph nodes 
includes ileocecocolic lymph node and mesenteric lymph node. As indicated by the asterisks, there are 
statistically significant differences between the following groups: lower alimentary tissues > all lymph 
nodes; lower alimentary tissues > spleen; ruminant stomachs > spleen; salivary glands > spleen; 
salivary glands > oropharyngeal lymph nodes. We plotted means and standard error of the mean. 

 

PrPC is expressed in the epithelium and nervous tissue components of many alimentary tissues. 

We observed PrPC immunoreactivity in mucosal stratum spinosum and stratum granulosum 

epithelial cells of the rumen, reticulum, and omasum forestomachs (Fig 1.5, Table 1.2, Table 1.3). In the 

abomasum, we detected PrPC immunoreactivity in individual cells in the gastric pits with a phenotype 

consistent with peptic chief cells (Fig 1.5, Table 1.2, Table 1.3). We observed immunoreactivity in the 
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apical region of the small intestinal mucosal villi, with the greatest intensity toward the villar tips, which 

is consistent with increased expression as the cells mature (Fig 1.5, Table 1.2, Table 1.3). Occasionally, 

we detected PrPC immunoreactivity in mucosal enterocytes of the cecal and colonic crypts; however, we 

observed the majority of PrPC in histiocytic cells residing in the mucosal lamina propria. The greatest and 

most consistent PrPC immunoreactivity was in myenteric plexi throughout the entire alimentary tract. For 

every tissue, we treated a matching slide with an isotype control antibody, which consistently failed to 

result in staining. 

 

Table 1.2. Summary of PrPC expression patterns. We evaluated the distribution of PrPC in all the 
tissues investigated in this manuscript. The histologic descriptions of the staining patterns are 
summarized in this table. Gray boxes represent the presence of staining in the cell types or structures 
(rows) of a given tissue (column). In alimentary tissues, staining of mucosal epithelium was common, as 
was staining of histiocytes and myenteric plexi. In lymphoid tissues, staining was common in germinal 
centers. 
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Table 1.3. Description of PrPC expression patterns. We described the PrPC distribution in the 
alimentary and alimentary-associated lymphoid tissues of interest. This table contains the histologic 
descriptions of the staining patterns for each tissue. Patterns were conserved among deer and every 
tissue type was compared to a specimen stained with an isotype-control antibody, which were 
consistently unstained. 
Tissue PrPC pattern 
Alimentary tissues 

Rumen 
Marked granular cytoplasmic staining diffusely in stratum granulosum and 
spinosum of mucosal stratified squamous epithelium; lesser staining in basal 
epithelium. No staining of superficial keratin. 

Reticulum 
Similar to rumen. Marked granular cytoplasmic staining diffusely in stratum 
granulosum, similar pattern but lesser staining in stratum spinosum, of mucosal 
stratified squamous epithelium. No staining of superficial keratin.   

Omasum 
Individual epithelial cells in stratum granulosum display diffuse cytoplasmic 
staining and occasionally perinuclear granular staining. Diffuse faint staining of 
mural smooth muscle.   

Abomasum 
Individual cells in the gastric pits consistent with peptic chief cells display 
cytoplasmic staining. Minimal staining is observed in the superficial mucosa. 
Diffuse faint staining of mural smooth muscle.    

Duodenum Cytoplasmic staining in mucosal epithelial cells diffusely affecting the apical 2/3 
of villi. No immunoreactivity observed in villar crypts or Bruner’s glands.   

Jejunum 

Cytoplasmic staining in apical mucosal epithelial cells. Cytoplasmic staining in a 
mild to moderate number of individual histiocytic-like cells in mucosal lamina 
propria. No staining in crypts. In Peyer’s patches, diffuse staining in germinal 
center of lymphoid follicle and intense cytoplasmic staining in individual 
histiocytic-like cells. Cytoplasmic staining in follicular-associated epithelium 
overlying Peyer’s patches. Diffuse immunoreactivity in smooth muscle of tunica 
muscularis and myenteric plexi.   

Ileum 

Cytoplasmic staining in apical mucosal epithelial cells with greatest intensity in 
villar tips. In Peyer’s patches, diffuse staining in germinal centers of lymphoid 
follicles. Cytoplasmic staining in individual histiocytic-like cells and occasionally 
membranous staining in lymphocytes. Intense diffuse staining of myenteric plexi.   

Cecum 
Diffuse mild cytoplasmic staining of epithelial cells in the base of mucosal crypts. 
Cytoplasmic staining of individual histiocytic-like cells in the mucosal lamina 
propria.   

Colon 
Minimal staining in the colonic mucosa. A mild number of individual histiocytic 
cells in the mucosal lamina propria displayed cytoplasmic staining. Intense 
staining in myenteric plexi. Faint diffuse staining in the tunica muscularis.   

Rectum No staining in mucosa. Faint diffuse staining in the tunica muscularis. Intense 
staining in myenteric plexi.   

Lymphoid tissues 

Tonsil 
Cytoplasmic staining of surface mucosal epithelial cells. Diffuse staining in 
germinal centers of lymphoid follicles that extends to the mantle zone when 
present. Occasional cytoplasmic staining of histiocytic-like cells in medulla.   

Retropharyngeal 
LN 

Diffuse staining in germinal centers which occasionally extends to the 
interfollicular lymphoid tissues.  Individual blast and histiocytic cells germinal 
centers display nuclear membrane staining.  Individual cells in the subcapsular 
sinus display cytoplasmic staining.  

Mandibular LN Diffuse staining in germinal centers of lymphoid follicles that occasionally 
extends into the mantle zone with greater intensity observed in outer cortical 
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follicles compared with deeper cortical follicles. Individual blast or dendritic cells 
in germinal centers display nuclear membrane staining. A mild number of 
individual histiocytic-like cells in the medulla display cytoplasmic staining.    

Parotid LN Diffuse staining in germinal centers of lymphoid follicles.     

Mesenteric LN 

Diffuse staining in germinal centers of lymphoid follicles. Occasional 
parafollicular cortical staining. Mild number individual cells display cytoplasmic 
staining. Diffuse mild staining of connective tissue in capsule and trabecular 
stroma. Intense staining of peripheral nerves in adjacent mesentery.   

Ileocecocolic LN 

Diffuse staining in germinal centers of lymphoid follicles that extends to the 
mantle zone when present. Greatest follicular staining intensity in outer cortical 
follicles compared with deeper follicles. Individual blast or dendritic cells in 
germinal centers display cytoplasmic staining. Connective tissues of lymphoid 
capsule, trabeculae, and vessel walls have diffuse staining.   

Prescapular LN 
Diffuse staining in germinal centers of lymphoid follicles. Greatest staining 
intensity in outer cortical follicles compared with deeper follicles. A mild number 
of blast cells or histiocytic cells in germinal centers display cytoplasmic staining.   

RAMALT* 
Diffuse cytoplasmic staining of the stratum spinosum and stratum granulosum of 
anal mucosa. Diffuse intense staining of the rectal myenteric plexi. Diffuse faint 
staining of the tunica muscularis.  *recto-anal associated lymphoid tissue 

Spleen Diffuse staining in germinal centers that occasionally extends to mantle zone 
when present. Intense staining of peripheral nerves in trabeculae.   

Nervous system 

Obex 
Diffuse neuropil staining with greater intensity of grey matter compared with 
white matter. In grey matter, mild punctate and linear staining of neuronal cell 
processes.   

Secretory tissues 
Mandibular 
salivary gland 

Faint cytoplasmic staining in ductular epithelial cells. No immunoreactivity in 
acinar cells.   

Parotid salivary 
gland 

Faint cytoplasmic staining in ductular epithelial cells. No immunoreactivity in 
acinar cells.   

 

PrPC is expressed in germinal centers of lymphoid tissue 

We observed diffuse immunoreactivity in germinal centers of lymphoid follicles that extended to 

the mantle zone when present (Fig 1.5, Table 1.2, Table 1.3). The more superficial cortical follicles 

typically had more intense staining when compared to secondary follicles deeper in the cortex. Individual 

cells in the germinal centers, with a blast or dendritic cell appearance, displayed cytoplasmic or nuclear 

membrane immunoreactivity. In lymph nodes, we observed occasional staining in connective tissues of 

the capsule, trabeculae, and vascular walls (Table 1.2, Table 1.3). 
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Figure 1.5. Representative IHC results. These tissues represent the most common PrPC 
staining patterns. Tissues were stained with the anti-PrP antibody (BAR 224, top row) or 
with an isotype control antibody (mouse IgG2A, bottom row). Scale bar represents 50μm. 
Descriptions of the staining patterns are in Table 1.2 and Table 1.3.  

 

Prion seeding activity is widespread in alimentary tissues and alimentary-associated lymphoid tissue.  

 Our observation that PrPC expression was widespread, albeit low, prompted us to investigate the 

distribution of PrPSc seeding activity in these same tissues in CWD(+) deer. We examined all 21 tissues 

(plus the obex region of the brain stem) by RT-QuIC with NaPTA precipitation to eliminate spontaneous 

conversion. In deer sacrificed after clinical signs developed, every tissue we tested was positive (lag 

phase was statistically different from the paired negative control) in all five deer (Table 1.4). The time 

required for detectable amyloid to form (the lag phase) for all tissues was very similar, and very fast (Fig. 

1.6 – 1.7). 

 Other work in our laboratory demonstrated that by four months after oral inoculation with CWD, 

deer have substantial prion seeding activity in many lymphoid tissues, but not in brain (224). We were 

curious to test the alimentary tract tissues from these subclinical deer to learn which tissues are involved 

before prion amplification is detectable in the brain. Indeed, some of the alimentary tissues were positive 

(statistically different from the negative control deer) in some deer four months post inoculation (Table 

1.4, Fig. 1.8). Involvement of the ileum was not surprising, given the extent of lymphoid tissue and 

Peyer’s patches in the ileum, but the omasum, abomasum, colon and salivary glands have little 
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appreciable lymphoid tissue and demonstrated significant prion seeding activity. In these deer, there was 

more variability in RT-QuIC lag phase between tissues (Fig. 1.6-1.7). 

 

Table 1.4. Distribution of prion seeding activity in CWD-infected white-tailed deer. We performed 
RT-QuIC with NaPTA pre-treatment on homogenates of the same tissues in CWD-inoculated white-
tailed deer. We included five deer that were euthanized in symptomatic stages of disease and three deer 
that were euthanized four months after oral inoculation with CWD-positive brain tissue (4mpi, no signs 
of CWD). We compared inoculated deer to negative control deer; for a tissue to be designated as 
positive, its lag phase must have been significantly different from the negative control tissue tested in 
the same experiment (Wilcoxon-Mann-Whitney or Wilcoxon Signed Rank tests, p<0.05). The number 
of positive deer/ number of total deer is in this table. The darker shades indicate tissues where a greater 
proportion of deer were positive. Clear wells had no positive results. We classified tissues into 
lymphoid or alimentary categories. Finally, we tested the obex region of the brainstem to assess 
whether the deer had reached the neuroinvasion stage. 

Prion seeding activity in mucosal tissues 
Tissue Terminal Deer 4mpi Deer 

Mandibular SG 5/5 0/3 
Parotid SG 5/5 2/3 
Rumen 5/5 0/3 
Reticulum 5/5 0/3 
Omasum 5/5 1/3 
Abomasum 5/5 1/3 
Duodenum 5/5 0/3 
Jejunum 5/5 0/3 
Ileum 5/5 3/3 
Colon 5/5 1/3 
Cecum 5/5 0/3 
Rectum 5/5 0/3 

Prion seeding activity in lymphoid tissues 
Tissue Terminal Deer 4mpi Deer 

Mandibular LN 5/5 3/3 
Parotid LN 5/5 3/3 
Tonsil 5/5 3/3 
Retropharyngeal LN 5/5 3/3 
Prescapular LN 5/5 3/3 
Ileocecolic LN 5/5 3/3 
Mesenteric LN 5/5 2/3 
Spleen 5/5 3/3 

Prion seeding activity in the CNS 
Obex 5/5 0/3 
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Figure 1.6. Terminal deer have seeding activity in all tissues. We performed 8 replicates of NaPTA RT-
QuIC on each tissue from five deer in the clinical stages of CWD. The lag phase (in hours) is indicated on 
the y-axis and each point indicates one replicate. A. Deer 1031. B. Deer 1078. C. Deer 1079. D. Deer 1081. 
E. Deer 1082. 
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Figure 1.7. Deer sacrificed 4mpi have seeding activity in some tissues. We performed 8 replicates of 
NaPTA RT-QuIC on each tissue from three deer four months after oral inoculation with CWD. The lag 
phase (in hours) is indicated on the y-axis and each point indicates one replicate. A. Deer 1171. B. Deer 
1201. C. Deer 1215. 
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Figure 1.8. Negative deer have little seeding activity. We performed at least 20 replicates of NaPTA 
RT-QuIC on each tissue from 3 CWD(-) deer. The lag phase (in hours) is indicated on the y-axis and 
each point indicates one replicate. The green lines indicate the median seeding activity. Replicates that 
never crossed the threshold were assigned a value of 70 hours. A. Deer 952, 44 replicates/tissue. B. Deer 
955, 36 replicates/tissue. C. Deer 1140, 24 replicates/tissue, except mesenteric lymph node, which 
includes 48 replicates. 
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Discussion  

The prion hypothesis postulates that the normal prion protein, PrPC, must be present in an individual 

for the disease to manifest, since it is the essential component of pathogenic prions (59, 60). Though the 

presence of PrPSc has been demonstrated in many tissues in CWD-infected cervids, there has been no 

comprehensive description of PrPC expression in the natural host (156, 157, 216-222). Several questions 

about the pathogenesis of CWD and the mechanism by which prions spread through the host remain 

unanswered: (1) is PrPC substrate available for conversion to PrPSc in the tissues of deer where prions are 

detected? And (2) do prions accumulate earliest in the tissues with the highest PrPC expression? We began 

these studies with the hypothesis that prions accumulate early in disease in tissues where PrPC expression 

is highest. We found that PrPC expression was widespread and was not highest in the tissues where prions 

first accumulate. Specifically, PrPC expression was higher in the lower GI tissues than in the alimentary-

associated lymphoid system and higher in salivary glands than in the oropharyngeal lymphoid tissue. 

However, we detected seeding activity more consistently in oropharyngeal lymphoid tissues than in the 

salivary glands or lower GI tissues of subclinical deer. The difference in consistency among deer suggests 

that seeding activity accumulates in the lymphoid tissues before lower GI tissues or salivary glands (Table 

1.4). 

We were interested in the tissues of the alimentary tract because, in nature, cervids are most likely 

exposed to CWD prions via the oral route. We found that PrPC expression was widespread in the 

alimentary tract, albeit at variable levels (Fig 1.3A, C). We describe PrPC expression in the myenteric 

plexi of the GI tract (where PrPSc has been demonstrated (157, 219, 220)) (Table 1.2). PrPC was also 

present in the intestinal mucosal stratum spinosum and granulosm layers and in follicle-associated 

epithelium of Peyer’s patches (Table 1.2). The follicle-associated epithelium contains M cells, whose role 

in prion uptake has been demonstrated in mice with scrapie (289-291). While the function of PrPC in 

alimentary epithelia is unclear, Morel, et al. demonstrated a role for PrPC in the maintenance of cell-cell 

junctions and cellular division (292, 293). 
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We hypothesized that lymph nodes would have high PrPC expression compared to non-lymphoid, 

alimentary tissues, since they play a role in early CWD pathogenesis and are prion-positive by many 

methods in symptomatic disease (156, 204, 216, 219, 220, 224, 272). However, expression of PrPC in 

lymph nodes was fairly low overall (Fig 1.4), but was more consistent among deer than were PrPC 

expression levels in the other tissues (error bars in Fig 1.3). The importance of lymph nodes early (and 

throughout) CWD progression may not be because they have the highest pool of available PrPC substrate, 

but rather because of their specific immunosurveillance role in the alimentary tract, transporting and 

presenting antigens. This hypothesis is supported by PrPC staining in lymphoid follicle germinal centers, 

consistent with B cells and follicular dendritic cells, and mantle zones, consistent with resting B cells 

(156). B cells have been implicated in the uptake and trafficking of prions and in the transfer of prions to 

follicular dendritic cells (294). B cells from CWD(+) deer are infectious to naïve deer, supporting the 

hypothesis that lymphoid cells play a specific role in CWD pathogenesis that does not rely on high PrPC 

expression (214). In sheep, PrPC is expressed in the spleen (280), and the spleen is a site of prion 

accumulation (295-297) and a source of infectious prions (228). The spleen has been identified as an 

early, but not required, site of prion replication in mouse-adapted scrapie (227, 273, 298, 299), but similar 

to Syrian hamsters, PrPC expression in the deer spleen is relatively low compared to other tissues (285) 

(Fig 1.3, Fig. 1.4).  

A potential caveat of the present study is the duration of storage for the CWD(-) deer tissues. All 

tissue samples were either frozen at -80°C or paraformaldehyde-fixed, thereby preventing assays that 

require preserved mRNA (RT-PCR) or fresh, unfixed tissues (flow cytometry). It is also plausible that 

tissue sections from different deer vary in their relative connective tissue, fat, stroma, etc. content. Our 

IHC data indicate that PrPC expression is specific to particular cell types, so a difference in the proportion 

of that cell type in the tissue homogenate could cause the expression level to vary by western blot or 

ELISA. We do not suspect falsely elevated expression levels in deer tissue due to components other than 

PrPC because the knockout mouse tissues used as negative controls in western blot and ELISA produced 
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no signal above background (Fig. 1.2). We would also expect the tissue milieu to be similar among 

individual deer.  

Several authors have proposed a centrifugal spread of prions, in which amplification occurs in the 

brain, and prions spread through the body along peripheral nerves (61, 226, 274, 300). Prions have been 

hypothesized to reach the brain via peripheral nerves, including those in the GI tract (226, 273, 301), and 

it is clear that prion inoculum can cross the mucosal barrier of the alimentary tract very soon after 

exposure (302). We tested alimentary and alimentary-associated lymphoid tissues of deer in the 

symptomatic stages of CWD and at 4mpi for the presence of prion seeding activity by RT-QuIC. In 

symptomatic animals, all examined tissues were positive, including the obex region of the brainstem, and 

all tissues had similarly short RT-QuIC lag phases (Table 1.4, Fig. 1.6). We hypothesize that the very fast, 

consistent lag phases are a result of the NaPTA pre-treatment, which concentrates prions. The lag phases 

for terminal deer tissues are among the fastest we’ve observed in RT-QuIC, suggesting that these samples 

are at the upper limit of the linear range. 

At 4mpi, prions were widespread in alimentary-associated lymphoid tissues, and were detectable 

in a few alimentary tissues (Table 1.4). At 4mpi, the obex was still negative, which suggests that the 

positive alimentary tissues were not positive due to the centrifugal spread of prions from the CNS to the 

myenteric plexi of the peripheral nervous system. We propose that prions replicate in GI tissues, and are 

not all derived from the CNS. The fact that individual 4mpi deer had different combinations of positive 

alimentary tissues, and that the lag phases were not so consistently high, suggests that this early timepoint 

falls in the midst of progression from lymphoid involvement to involvement of other tissues (Fig. 1.6) 

(224, 303). 

Our data demonstrate that PrPC expression is widespread in white-tailed deer and confirms that 

symptomatic, CWD-positive, white-tailed deer have widespread prion seeding activity. Several questions 

arise from this work: 1) What is the role of local, cellular PrPC in the generation of prions that are 

excreted by infected cervids? CWD prions have been detected in a number of excreta from cervids (124, 

218, 231, 288, 304-306) and in the organs that generate those excreta (218), but we are left to wonder 
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whether the misfolding event that produced those prions occurred in the excretory organ, or whether the 

prions were transported there. 2) Can many organs be used for CWD diagnosis in deer? Our data suggest 

that RT-QuIC may permit the testing of a broad array of tissues and that many tissues have detectable 

prion seeding activity later in disease progression. 3) What mechanism explains the presence of prion 

seeding activity in alimentary tissues before neuroinvasion? Our data suggest that prions replicate in 

tissues of the alimentary tract before they reach the brain. This work contributes to the growing body of 

evidence that CWD prions are widespread within cervids and that PrPC expression alone does not dictate 

the kinetics of prion spread in the body. 
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CHAPTER 2: CWD PRIONS IN THE LYMPHOID SYSTEM DIFFER BIOCHEMICALLY FROM 

THOSE IN THE BRAIN 

 
 
Summary 

 The lymphoid system plays a critical role in the early propagation of PrPSc in cervids, but the 

infectivity of lymph nodes from CWD(+) deer has not been examined. This topic is pertinent because 

peripheral lymph nodes could be the source of the infectious prions secreted and excreted by CWD(+) 

deer. Prions shed by infected deer likely fuel the facile horizontal transmission that results in the spread of 

CWD within and between cervid populations.  

Methods for identification of PrPSc usually do not assess its infectivity directly. However, the 

development of cell-based assays makes in vitro assessment of infectivity possible. To explore whether 

differences exist between brain and lymph node prions from CWD(+) cervids, we coupled the cervid 

prion cell assay (CPCA) with real-time, quaking-induced conversion (RT-QuIC), enzyme-linked 

immunosorbent assay (ELISA), and western blotting. While each assay produced different patterns of 

results, the consensus clearly confirmed that substantial infectious PrPSc is present in lymph nodes of 

CWD(+) cervids, often at levels approaching those found in the brain of the same animal. We propose 

that infectious prions are formed in situ in tissues outside the brain, and are the source of the PrPSc 

responsible for the horizontal transmission of CWD. 

  

Background 

Prion diseases are fatal neurodegenerative diseases caused by the misfolding of a normal protein, 

PrPC, and propagation of the pathogenic isoform, PrPSc. Neurodegeneration results when the accumulation 

of PrPSc causes neuronal death. Prion diseases include scrapie in sheep and goats, CWD in cervids, bovine 

spongiform encephalopathy (BSE) in cattle and Creutzfeldt Jakob disease (CJD) in humans. Infectivity 

has been tested with brain tissue in most experimental inoculations (119). It is clear that prions 

accumulate to infectious levels in the central nervous system of scrapie, CWD, BSE and CJD (307).  
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However, PrPSc also accumulates outside the CNS. In sheep with scrapie, PrPSc has been 

identified in spleen, lymph nodes, adrenal glands, the enteric nervous system and placenta (228, 295-297, 

308-310). In laboratory animals with scrapie, PrPSc has also been identified in muscle, skin, tongue, fat, 

plasma and intestines (300, 311, 312). In cervids with CWD, PrPSc has been identified in lymph nodes, 

spleen, salivary gland, bladder, intestines, heart, adrenal gland, pituitary gland, stomachs, ganglia, 

pancreas, fat, reproductive tissue and muscle (138, 156, 157, 216-223, 272). Most of the CWD studies 

identified PrPSc by western blot or immunohistochemistry and a few used amplification assays, but none 

have tested the infectivity of non-CNS tissues.  

Research confirming the infectious nature of prion diseases was completed largely in the scrapie 

model, wherein several studies have tested the infectivity of non-CNS tissues. In 1959, Stamp et al. 

inoculated sheep with lymph nodes or spleen from scrapie(+) sheep and observed disease in 2/10 or 3/10 

sheep after 12 months of incubation, respectively (225). In the late 1980s, Kimberlin and Walker 

inoculated lymph nodes from scrapie(+) sheep into mice and observed clinical disease in the inoculated 

mice (226, 227). In 1998, the infectivity of scrapie(+) lymph nodes was confirmed by mouse bioassay 

and, in 2006, by bank vole bioassay (228, 313, 314). To our knowledge, the infectivity of lymph nodes 

from CWD(+) deer has not been determined. 

Infectivity of tissue from prion-infected individuals is classically tested by bioassay in a 

susceptible animal, either the natural host, wild-type mice, or transgenic mice expressing PrPC 

homologous to the donor species’ PrPC (156, 315, 316). However, bioassays require long incubation 

periods, are costly, and have limited statistical power due to the low feasibility of large experimental 

groups. A number of assays have been developed for disease diagnosis, analysis of the biochemical 

features of prions, and investigation of the infectivity of many sample types (61). Direct detection assays 

include western blot for the detection of protease-resistant PrPSc, immunohistochemistry and ELISA (30, 

200, 201, 203-207). Amplification assays include protein misfolding cyclic amplification (PMCA) and 

RT-QuIC. Both are anchored in the prion hypothesis, which states that PrPSc will coerce the misfolding of 

PrPC, which propagates and results in the production of amyloid fibrils. PMCA uses brain homogenate as 
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the source for PrPC, sonication to increase free ends available for conversion, and the detection of PK-

resistant PrPSc by western blot, while RT-QuIC uses recombinant PrPC (rPrPC) as the substrate for 

conversion, shaking to provide free ends, and thioflavin T (ThT) binding of amyloid fibrils to enable 

detection (70, 208-212, 317).  

Cell-based assays for prion detection are based on years of effort to establish prion-susceptible 

cells (160-162, 166, 175, 176, 318-321). Several groups have used neurosphere cultures as an in vitro 

alternative to bioassay (168, 169, 171). The scrapie cell assay (SCA) was developed for the detection of 

mouse-adapted scrapie and enabled immunodetection of prion replication in cell lysates (197). The SCA 

was expanded to permit infection with other prions (165, 198). For the cervid prion cell assay (CPCA), 

rabbit kidney epithelial cells were engineered to produce deer or elk PrPC, which propagated prions. 

Prions were detected by cell blotting with PK-treatment and immunodetection on ELISPOT plates (165). 

The infected cells were positive in transgenic mouse bioassay, which suggests that they amplify infectious 

prions (165).  

As described in the previous chapter and elsewhere, we have tested a number of tissues from 

CWD(+) deer in RT-QuIC (204, 218, 224, 322, 323). We have attempted to correlate the seeding 

efficiency in RT-QuIC to the lethal dose in bioassay, but we only have access to bioassay data for 

CWD(+) brain samples (229, 231, 305). Ideally, we would be able to correlate RT-QuIC seeding activity 

for each tissue type to an assay of infectivity, like CPCA. We are particularly interested in the lymph 

nodes of CWD(+) deer, since they are involved early in the disease course (156, 224). We hypothesized 

that lymph nodes and brains of cervids in the terminal stages of CWD would have infectious PrPSc, but 

that there would be more in the brain. We designed the following study to test the in vitro behavior of 5 

paired brain and retropharyngeal lymph node (RPLN) samples and to test their infectivity in CPCA. We 

expected to corroborate the outcome of a transgenic mouse bioassay (324).  
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Methods 

Sample preparation 

We received 20% homogenates of terminally-ill, CWD(+) red deer, elk and white-tailed deer 

brain and RPLN samples from our collaborator, Dr. Aru Balanchandran. We made 10% weight/volume 

homogenates of brain and 20% weight/volume homogenates of RPLN from white-tailed deer 814 

(negative), 816 (terminal disease), 817 (terminal disease), 1201 (four months post inoculation) and 1215 

(four months post inoculation). 1X PBS and protease inhibitors (Halt Protease Inhibitor Cocktail, Roche) 

comprised the diluent and we homogenized the tissue for 3x 30-second cycles in an Omni Bead Ruptor 

(Omni International). Homogenates were stored at -80°C.  

 

Western blot – Figure 2.3A-B 

To determine the concentration of total protein, we performed bicinchoninic acid (BCA) assays 

on our homogenates according to the manufacturer’s protocol (Pierce BCA Protein Assay, 

ThermoScientific). For brain samples treated with proteinase K (PK), we added 240ug total protein to 2% 

N-lauroylsarcosine sodium (sarkosyl) and added PK for a final concentration of 80μg/mL (Proteinase K, 

Roche). We treated lymph node samples the same, except that we added 1500μg total protein. We 

incubated the samples in a 45° waterbath for one hour, then added 6.25mM phenylmethylsulfonyl 

fluoride (PMSF), 6X Laemmli sample buffer (LSB) and boiled for 5 minutes.  

For the non-PK treated samples, we added 80μg total protein for brain samples and 500μg total 

protein for lymph nodes to 2% sarkosyl and 6X LSB and boiled for 5 minutes. We added 22μL to each 

lane of a 10-well NuPage 12% Bis-Tris precast gel. The samples migrated for 2 hours at 100V, then 

proteins transferred to polyvinylidene fluoride (PVDF) membranes overnight at 20V. We blocked the 

membranes with 5% nonfat dry milk in TBS, then incubated with 1:5000 BAR224 in TBST (Cayman 

Chemicals) for one hour at room temperature. We washed the membrane with TBST for three 5 minute 

washes and incubated with goat anti-mouse IgG2 labeled with peroxidase (SeraCare). We washed and 
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developed for 5 minutes with ECL developing reagent (Pierce ECL 2 Substrate, ThermoScientific). We 

captured images with an ImageQuant LAS 4000 Imager.  

 

Western blot – Figure 2.3C-D 

Western blots and images in Figure 2.3C-D were provided by Dr. Jifeng Bian. We determined the 

total protein content of brain and RPLN homogenates by BCA assay. We digested 500μg total protein 

from each brain homogenate and 2000μg total protein from each RPLN homogenate with PK at 37oC. 

After PK digestion, we spun the samples at 100,000g to pellet the PrPSc, and resuspended the whole pellet 

and added it to the gel. For non-PK treated samples, we added 200μg total protein for RPLN samples and 

50μg for brain samples to sample buffer and loaded the whole volume on the gel. We resolved the 

samples by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) before transfer to 

PVDF membranes. We probed the western blots with anti-PrP antibody PRC5 and detected signal with 

infrared fluorescent-conjugated secondary antibodies (202). We scanned the membranes and captured 

images using an Odyssey CLx Infrared Imager (Li-Cor Biosciences, Inc.).  

 

RT-QuIC 

 We purified recombinant, truncated Syrian hamster PrP as previously described (325). Briefly, 

we expressed the construct in E. coli BL21-Star cells with overnight induction under the following 

conditions: LB media, kanamycin and chloramphenicol, 20X NPS [0.5M (NH4)2SO4, 1M KH2PO4, 1M 

Na2HPO4], 50X 5052 [0.5% glycerol, 0.05% glucose, 0.2% lactose], 1mM MgSO4. We harvested 

inclusion bodies with lysozyme (0.25mg/mL), DNase (1μg/mL) and MgCl2 (5mM) in 1X Bugbuster 

(Novagen). We solubilized inclusion body pellets in 8M guanidine hydrochloride (GdnHCl) overnight, 

then batch-bound the solubilized protein to Ni-agarose resin (GE Healthcare Life Sciences). We renatured 

the protein with a gradient from 6M GdnHCl in 100mM Na2HPO4 and 10mM Tris to an identical buffer 

with no GdnHCl on a GE FPLC (AktaPure, GE Healthcare Life Sciences). We eluted the protein with a 
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gradient to 0.5M imidazole and dialyzed in two changes of 20mM NaH2PO4 overnight. We stored 

recombinant PrP (rPrP) at 4°C. 

 For RT-QuIC on the tissue homogenates, we added 10μg rPrP to 10μM thioflavin T, 320mM 

NaCl, 1mM EDTA and 1X PBS in one well of a 96-well plate (Nunc black, optical-bottom, 96-well 

plates, ThermoScientific). We added 2μL diluted tissue in 0.1% SDS to each well and used a BMG 

Fluostar Omega microplate reader to shake the plates for one minute (double orbital shaking at 700RPM), 

followed by one minute of rest, for 62.5 hours at 42°C. The fluorescence was recorded every 15 minutes 

with a 450nm excitation wavelength and a 480nm emission wavelength and a gain of 1700.  

 For RT-QuIC of the cell pellets, we resuspended pellets in 100μL of a cell lysis buffer containing 

1X PBS, 1% Triton-X 100, 150mM NaCl, 5mM EDTA (pH 7.2). We performed two freeze-thaw cycles, 

then spun the suspension in a microcentrifuge at 13,000RPM for 5 minutes. We carefully removed the 

supernatant and diluted it 1000-fold in 0.1% SDS/ 1X PBS. We added 2uL of the 10-3 dilution to a 96-

well plate containing the reaction mixture described above, then mixed the plate and divided each well 

into 4 wells of a 384-well plate (Nunc black, optical-bottom, 384-well plates) and performed the RT-

QuIC assay as described above. 

 To analyze the data, we calculated a threshold that was 5 standard deviations above the mean 

baseline fluorescence. The time required to cross that threshold is the lag phase. If a sample never crossed 

the threshold, it was assigned an arbitrary value of 70 hours. We compared lag phases using a non-

parametric Wilcoxon-Mann-Whitney test.  

 

7-5 ELISA 

 We used PRC5 and PRC7 (a conformational antibody) to quantify PrPSc in our homogenates 

(202). We incubated equivalent volumes of each sample with 10% Triton-X100 in 1X PBS, then added 

0.5M GdnHCl for 15 minutes at 37°C to denature the PrPSc. We diluted the samples in 1% BSA and 

added to Nunc Maxisorb ELISA plates that were coated with 20μg/mL PRC7 in carbonate/bicarbonate 

buffer and blocked with 3% BSA in PBS. We incubated samples overnight at 4°C on the plate, then 
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washed and added PRC5 (0.27μg/mL), then anti-mouse IgG2a-HRP (Alpha Diagnostic International, Inc.) 

and developed with peroxidase substrate (ABTS). We stopped the development and read the absorbance 

at 405nm with an ELx808 Microplate Reader (Bio-Tek Instruments, Inc.) We report the absorbance for 

triplicate wells. 

 

CPCA 

 We diluted brain homogenate to 0.1% weight/volume in PBS and lymph nodes to 1.0% 

weight/volume, then extruded each homogenate through a 28ga needle five times. We coated the first row 

of a 96-well plate (for the first and third CPCA experiments (Fig. 2.4, Fig. 2.7, Fig. 2.8)) with 200μL or 

coated 10-cm plates (for the second CPCA experiment (Fig. 2.5, Fig. 2.6)) with 1mL of the homogenate. 

For the 96-well plates, we serially diluted the homogenate 3-fold into 1X PBS in the remaining rows. We 

covered the plates and allowed the prions to bind for one hour at room temperature. We removed the 

homogenates and washed the plates, then dried and stored the plates at 4°C. We added one of the 

following RK-13 cell types to each well: sensitive (Deer 5E9 or Elk 21 cells, which express deer or elk 

PrPC and HIV Gag precursor protein) or resistant (RKV, not transfected). For the 96-well plates, we 

added 2x104 cells to each well and for the 10cm plates, we added 106 cells to each plate. We incubated the 

cells on the coated plates for 12 hours – 6 weeks, depending on the experiment, and replaced the media 

every 5 days.  

 At the end of the incubation, we harvested the cells from the tissue culture plates and added 

20,000 cells from a single well of the 96-well plate (or from the 10cm plate) to a single well of a 96-well 

ELISPOT plate (EMD Millipore) that was first activated with ethanol and washed. We dried the plates, 

then added cell lysis buffer (50mM TrisHCl, 150mM NaCl, 0.5% v/v octylphenoxypolyethanol 

(IGEPAL), 0.5% w/v deoxycholic acid) and 5μg/mL PK to each well and rocked at 37°C for 90 minutes. 

We terminated digestion with PMSF, then exposed the epitopes with 3M guanidine thiocyanate for 10 

minutes. We washed the plates and blocked with 5% Pierce superblock (ThermoFisher), then added PRC5 

(0.27μg/mL) overnight at 4°C. We washed the plates and added AP-anti-mouse-IgG2 (Southern 
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Biotechnology Associates) for one hour at room temperature. We washed the plates again and removed 

the rubber bottoms, rinsed the plates with deionized water and dried overnight. Finally, we developed the 

plates with alkaline phosphatase conjugate (Roche), stopped the reaction, and dried again. We captured 

plate images and counted spots with the ImmunoSpot S6-V analyzer. We set the sensitivity and spot size 

based on our positive and negative controls and used the same settings for every plate. To confirm the 

accuracy of the automatic spot counting, we manually counted random wells and confirmed the automatic 

count. We centrifuged the remaining cells from each well and froze the cell pellets at -80°C.  

 To calculate the CPCA titer, we plotted the spots/well vs. the grams of tissue added to the well. 

We fit a four-parameter sigmoidal curve in GraphPad Prism. We calculated the midpoint of the spots/well 

by subtracting the bottom plateau from the top, then interpolated the X value in grams (equivalent to the 

LD50) that would yield the median spot number. We divided the number of spots at the midpoint by the 

grams at the midpoint, then took the log10 for the CPCA titer. 

 

Results 

Lymph node and brain homogenates from CWD(+) cervids have similar seeding activity in RT-QuIC. 

RT-QuIC detects minute amounts of amyloid seed by converting rPrPC to amyloid. Like RT-PCR, 

the time required to form detectable amyloid (lag phase) is related to the amount of initial seed present in 

the sample. Therefore, RT-QuIC can be used to estimate the seeding activity of a sample. We used RT-

QuIC to test our hypothesis that the RPLN accumulates less PrPSc than the brain by the terminal stages of 

CWD. 

We tested two white-tailed deer, 817 and 816, which were inoculated via the aerosol route and 

maintained in a laboratory setting until euthanasia due to clinical signs of CWD (215). In both deer, the 

brain had consistently higher seeding activity, but the RPLN was also positive (Fig. 2.1A-B). We 

analyzed three more paired brains and RPLNs from CWD(+) cervids that were euthanized in the terminal 

stages of disease. The white-tailed deer and elk (Fig. 2.1C-D) were naturally infected with CWD and the 

red deer (Fig. 2.1E) was experimentally infected via the oral route (219). In all three individuals, the 
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RPLN had seeding activity that was statistically indistinguishable from the brain (with the exception of 

one dilution of the red deer samples.) We interpret these data to indicate that the RPLNs of several 

species of cervids have the ability to accumulate PrPSc, in some cases to the degree that the brain 

accumulates PrPSc, by the terminal stages of CWD. 

We were also interested in CWD progression, so we tested the seeding activity of two RPLN 

samples collected at four months post-inoculation (4mpi). At this stage, the brain is negative (Table 1.2) 

(224). The RPLNs had seeding activity similar to other samples we tested (Fig. 2.1F). Finally, we 

confirmed the seeding activity of our laboratory’s positive control brain pool (Fig. 2.1G). Overall, RPLN 

samples had substantial seeding activity in RT-QuIC, albeit lower than brain tissue in some animals. 

However, it remains unclear whether the RT-QuIC assay is specific for particular strains of CWD or for 

particular characteristics of the seed (infectivity). Therefore, two equally positive samples in RT-QuIC 

may not be identical in other assays.  
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Figure 2.1. Similar amyloid seeding activity is present in lymph node and brain samples. We used 
brain or RPLN homogenate to seed the RT-QuIC assay. Points indicate the mean and error bars 
represent standard error of the mean. * indicates a statistically significant difference between the lag 
phases for brain and RPLN samples at the same dilution (p<0.05, Wilcoxon Mann Whitney test). The 
mean lag phase for the negative controls is indicated by the gray lines. The solid line represents negative 
brain samples and the dotted line represents negative RPLN samples. Negative controls from every 
experiment are combined for the means displayed in these graphs. Red points are statistically different 
from the negative control and black points are not (p<0.05, Wilcoxon Mann Whitney test) 

 

Overall, lymph nodes have less PrPSc content than brain by 7-5 ELISA. 

The capture antibody, PRC7, is selective for underglycosylated PrPC. Underglycosylated PrPC is 

overrepresented in PrPSc, so the 7-5 ELISA is specific for the disease form. After confirming similar RT-

QuIC seeding activity in the brain and RPLN for many individuals (Fig. 2.1), we tested whether the 

tissues had PrPSc that was detectable by 7-5 ELISA. We added both a high volume of sample (indicated 

by the H) and a low volume (L, 2.5 fold less than H). The brain homogenates from 817, 816, elk and red 

deer had detectable PrPSc, but the WTD brain homogenate did not (Fig. 2.2). The PrPSc content was 

variable among deer, but each individual deer had very consistent replicates (Fig. 2.2, error bars). 
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However, only the elk had detectable PrPSc in the RPLN; the PrPSc content was higher in the RPLN than 

the brain at both dilutions (Fig. 2.2).  

These data suggest that the 7-5 ELISA detects something different than RT-QuIC or is less 

sensitive, which are not mutually exclusive. It is clear that a 2.5 fold reduction in sample reduced the 

ELISA absorbance for the brain samples to near the limit of detection (Fig. 2.2, see 817, 816, RD, elk 

brain). For some samples, RT-QuIC data suggests that there may be a 10-fold difference between brain 

and RPLN seeding activity. For example, the seeding activity of 817 RPLN was roughly 10-fold less than 

817 brain in RT-QuIC (0.2ng brain is detectable, but 0.2ng RPLN is not). Therefore, it’s possible that a 

ten-fold difference in PrPSc content would result in no signal above background for the RPLN in 7-5 

ELISA. 

The red deer RPLN and brain samples were not statistically different in RT-QuIC, but it is 

possible that there was still a ten-fold difference in seeding activity (20ng brain has a very similar QuIC 

rate to 200ng RPLN). Therefore, it seems plausible that we did not add enough red deer RPLN to exceed 

the limit of detection in 7-5 ELISA. Regardless of whether we missed the limit of detection in 7-5 ELISA 

or whether the 7-5 ELISA and RT-QuIC detect different characteristics of prions, the 7-5 ELISA indicates 

lower PrPSc in RPLN than in brain, except in the elk sample (Fig. 2.2).  
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Figure 2.2. 7-5 ELISA detects different PrPSc levels in RPLN and brain samples. We added two 
volumes of brain or RPLN homogenate to the 7-5 ELISA (high (H) was 2.5 fold more homogenate than 
low (L)). We used brain from a PRNP knockout mouse, blank (no homogenate), two negative brains and 
two negative RPLNs as negative controls (gray bars). The dotted line is the cutoff for background and was 
calculated by adding three standard deviations to the mean absorbance for the negative control samples. 
Bars indicate mean absorbance and error bars indicate SEM for three replicates.  
 

PrPSc is detectable by western blot in almost all brain and RPLN samples. 

Western blot for proteinase-K (PK)-resistant PrPSc has been the gold standard for prion detection 

since the early days of prion research (200). After assessing the seeding activity (RT-QuIC) and the PrPSc 

content (7-5 ELISA), we compared the protease-resistant PrPSc by PK-treatment and western blot. We 

observed PK-resistant PrPSc in the brain and RPLN of the elk, red deer, 816 and 817 (Fig. 2.3). In the 

WTD sample, there was a faint signal for PK-resistant material in the brain and no signal in the RPLN 

(Fig. 2.3A, E). However, the non-PK treated sample had very low signal for the WTD RPLN, so it is 

possible that the sample was degraded and the PK-resistant material was below the limit of detection (Fig. 

2.3B, E). A similar explanation is likely appropriate for the 817 RPLN sample, which had faint PK-

resistant bands, and also has faint non-PK treated bands (Fig. 2.3D, F).   
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Figure 2.3. There is PK-resistant PrPSc in almost all samples. A. We treated 2000μg total protein 
for RPLN samples and 500μg total protein for brain samples with PK, then spun the samples at 
100,000g and added the whole pellet. We probed with PRC5. B. We added 200μg total protein for 
RPLN samples and 50μg total protein for brain samples and probed with PRC5. The western blots 
in panels A and B are courtesy of Dr. Jifeng Bian. C. We PK-treated 30μg total protein or we added 
40μg untreated sample to the gel, then probed with BAR224. D. We PK-treated 200μg total protein 
or we added 250μg untreated sample to the gel, then probed with BAR224. All protein markers are 
indicated with dashes on the left, in kDa.  

 

Lymph node prions are less infectious than brain prions after four weeks in cell culture. 

After we assessed the RPLNs and brains by RT-QuIC, ELISA and western blot, we tested their 

infectivity. Because CPCA had never been tested with lymph node samples, we performed a pilot study to 

ensure that lymph node prions would infect the cells. After 4 weeks of infection, we were surprised to 

observe that only the positive brain pool caused substantial infection (Fig. 2.4A). We calculated the titer 

for the brain pool (Fig. 2.4B), but were unable to calculate titers for lymph nodes due to the apparent lack 
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of infection. However, we noticed that the wells of the ELISPOT plate that contained lymph node-

infected cells had a smattering of spots, while the negative controls were almost completely blank. We 

confirmed that there were time-dependent increases in spots in the lymph node-infected cells, but that the 

increase was considerably lower than the increase in for the CWD(+) brain pool (Fig 2.4C).  

We had four hypotheses for the very limited infection of cells by lymph node samples. 1) The 

RPLN PrPSc detected in RT-QuIC and western blot is not a form that is particularly infectious to cells, 2) 

CPCA can replicate PrPSc from lymph nodes, but the products are PK-sensitive, 3) the lymph node PrPSc 

failed to adhere to the CPCA plates, effectively eliminating exposure of the cells to PrPSc, or 4) the PrPSc 

titer in the lymph node samples was too low to infect the cells. We designed an experiment to test these 

possibilities, wherein we collected samples of cells much earlier in the procedure (to assess whether PrPSc 

adhered to the plate), let the infection proceed for longer (five weeks vs. four weeks) and tested the cells 

at the end of the experiment by RT-QuIC (which does not involve a PK step).  
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Figure 2.4. Brain pool is more infectious than lymph nodes. The number of spots/20,000 cells is 
indicated on the Y axis and the grams of homogenate added to the well is on the X axis. Open symbols 
indicate that the spot count in sensitive cells is statistically different from the same inoculum in resistant 
cells (p<0.05, unpaired t-test). A) The positive control brain pool produced significant PK-resistant material 
after 4 weeks. B) We fit a four-parameter sigmoidal curve to the brain pool data and determined the CPCA 
titer, which is the log-transformed spots/g at the midpoint of the curve’s range. C) Adjusting the Y axis 
permitted our observation that the lymph node-infected cells have increased spot numbers compared to the 
negative controls (negative tissue or resistant cells).  
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Infection by RPLN prions is delayed and less severe compared to brain. 

When we tested the kinetics of cell infection, we observed that the brain sample caused a more 

rapid increase in spots (and more total spots, indicating a more severe infection) than the RPLN sample 

(Fig. 2.5). The positive RPLN did infect sensitive cells, but the infection was delayed until three weeks 

and there was no substantial increase in spots until the fifth week post-inoculation, while resistant cells 

have very few or no spots at later time points. However, the RPLN sample did successfully infect the cells 

and result in PK-resistant spots in this experiment, which confirms that the cells can propagate lymph 

node prions, that lymph node prions adhered to the plate and that at least some of the propagated prions 

are PK-resistant.  

 
Figure 2.5. RPLN prions infect cells in culture, but infection is delayed compared to brain. 
The positive brain sample infected the sensitive cells and had detectable spots around 2 weeks post-
infection (dilution is the same as the highest is Fig. 2.4). The RPLN also infected sensitive cells, 
and the increase in spots was more dramatic from weeks 4-5. Open circles indicate that the sensitive 
cells are statistically different from the resistant cells inoculated with the same sample (brain or 
RPLN) (p<0.05, unpaired t-test).  

 

To test whether RPLN prions are propagated earlier in the course infection, but yield PK-

sensitive prions, we tested the cell lysates in RT-QuIC as well as by cell blotting (Fig. 2.6). The RT-QuIC 

data matches the cell blotting data; infection with the brain sample caused a significant increase in 

positive cells by the second week post-inoculation, but infection with the RPLN did not result in positive 
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cells until the fifth week post-inoculation. We hypothesized that the delayed propagation from RPLN 

prions was irrespective of dilution and that the delay indicated a difference in the PrPSc strain in brain and 

RPLN. Therefore, we designed an experiment to include multiple dilutions and multiple time-points (Fig. 

2.7, Fig. 2.8, Fig. 2.9).   

 

 

Figure 2.6. RPLN prions infect cells in culture, but infection is delayed compared to brain. We 
tested the cells from the experiment in Fig. 2.5 in RT-QuIC to determine whether there were PK-
sensitive prions in samples that were cell blot-negative. * indicates a significant difference between 
the brain or RPLN sample in sensitive and resistant cells at a given time-point (p<0.05, Wilcoxon 
Signed Rank). The positive control is a CWD(+) transgenic mouse brain in sensitive cells. 
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RPLN prions consistently infect cells, with no consistent differences from brain in kinetics or titer. 

 We hypothesized that, regardless of dilution, the RPLN infection would be delayed compared to 

brain, and that spots and RT-QuIC seeding would be detectable only in later collections (5 weeks – 6 

weeks). Similarly, we hypothesized that infection with brain prions would result in spots and RT-QuIC 

seeding as early as 2 weeks and that dilution would not affect the kinetics of infection.  

However, we found no consistent difference in kinetics of PrPSc propagation between brain and 

RPLN, either by PK-resistant spots (Fig. 2.7) or RT-QuIC activity of the cells (Fig. 2.9). In the highest 

dilution, the spot formation was delayed in the lymph node samples compared to the brain samples, which 

is similar to our previous experiment (Fig. 2.5). Specifically, spots increased in the brain-infected cells 

from week 2-3, while the RPLN-infected cells experienced an increase from weeks 3-4 (Fig. 2.7). 

However, this pattern was not apparent in RT-QuIC or in subsequent dilutions (Fig. 2.7, Fig. 2.9).  

 Because RPLN prions robustly infected sensitive cells, we calculated titers for each inoculum. 

The elk RPLN had a higher titer than the brain, but the red deer, 816 and 817 had higher titers in their 

brains (Fig. 2.8). Interestingly, the white-tailed deer brain caused essentially no prion propagation in the 

cells, either by cell blotting or by RT-QuIC. The white-tailed deer RPLN-infected cells had very, very 

few spots and a lower titer than the other samples (Fig. 2.7, Fig. 2.8).  

 We tested the cells by RT-QuIC, which is able to detect PK-sensitive prions. However, there was 

no consistent delay in PrPSc propagation in cells infected with RPLN prions, nor was the seeding from 

RPLN-infected cells consistently slower than brain-infected cells (Fig. 2.9). We confirmed that the crests 

and troughs in lag phase were not artifacts of variability in the RT-QuIC assay – there was no relationship 

between faster samples and the RT-QuIC plate on which the cells were tested. 
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Figure 2.7. RPLN prions infect cells in culture, without consistent differences in infection 
kinetics. We collected cells at each week from 1-6 for each combination of homogenate (brain 
or RPLN), dilution (8 total) and cell type (resistant or susceptible). The mean number of PK-
resistant spots is indicated on the y-axis and the most dilute homogenate is at the bottom of each 
column, as indicated by the arrow on the right (A, B, C). We are missing some data during early 
collection points due to insufficient homogenate volume for all the experiments.  
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Figure 2.8. CPCA titers are similar in brain and RPLN. We used the spot counts from the 4th week of 
cell infection to calculate the CPCA titer for each sample. A-B. The points indicate the mean spot counts 
for each brain or RPLN sample and the error bars indicate the SEM for each dilution that was tested in 
CPCA. The lines are 4-parameter sigmoidal curves of best fit. C. We plotted the titer that was calculated 
from each of the curves in A-B. The titer is the log of the number of spots/wet gram tissue homogenate at 
the midpoint of the sigmoidal curve. 
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Figure 2.9. RPLN prions infect cells and cells seed RT-QuIC. We collected cells 
at each week from 1-6 for each combination of homogenate (brain or RPLN), 
dilution (8 total) and cell type (resistant or susceptible). The mean lag phase for cell 
lysates in RT-QuIC is indicated on the y-axis and the most dilute homogenate is at 
the bottom of each column, as indicated by the arrow on the right (A, B, C). We are 
missing some data during early collection points due to insufficient homogenate 
volume for all the experiments.  
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Discussion 

 Though PrPSc accumulates in many tissues of CWD(+) deer, differences between PrPSc in the 

brain vs. the peripheral tissues remain unknown. We were particularly interested in the in vitro 

characteristics and the infectivity of PrPSc in lymph nodes. We hypothesized that lymph node PrPSc would 

be similar to brain PrPSc in its in vitro characteristics and that lymph node prions would be infectious, but 

that there would be less PrPSc in lymph nodes than in brain. We observed similar RT-QuIC seeding 

activity for brain and RPLN, though the brain occasionally had higher seeding activity (Fig. 2.1). We 

observed PK-resistant PrPSc by western blot in most brain and RPLN samples, without dramatic 

differences between tissue types (Fig. 2.3). In 7-5 ELISA, we detected PrPSc in brain samples fairly 

consistently (4/5), but only in one RPLN sample (1/5) (Fig. 2.2). Finally, 5/5 RPLN samples and 4/5 brain 

samples were infectious by CPCA (Fig. 2.8). Results are summarized in Table 2.1. 

 

Table 2.1. Comparison of lymph node and brain samples by various assays. We 
summarized the findings from each assay to enable comparison of the outcomes. In some 
cases (gray), the brain was indistinguishable from the RPLN. In other cases, brain had a 
higher titer (blue) or RPLN had a higher titer (yellow). 
Sample Method Comparison of RPLN and brain 
Red Deer RT-QuIC Brain = RPLN 
Red Deer CPCA Brain > RPLN 
Red Deer 7-5 ELISA Brain > RPLN 
WTD RT-QuIC Brain = RPLN 
WTD CPCA RPLN > Brain 
WTD 7-5 ELISA No signal 
Elk RT-QuIC Brain = RPLN 
Elk CPCA RPLN > Brain 
Elk 7-5 ELISA RPLN > Brain 
816 (WTD) RT-QuIC Brain > RPLN 
816 (WTD) CPCA Brain > RPLN 
816 (WTD) 7-5 ELISA Brain > RPLN 
817 (WTD) RT-QuIC Brain > RPLN 
817 (WTD) CPCA Brain > RPLN 
817 (WTD) 7-5 ELISA Brain > RPLN 

 

 Because different assays gave slightly different results, it is important to discuss the differences 

among the assays we used. The 7-5 ELISA is specific for underglycosylated PrPC, which has been 
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demonstrated to be characteristic of PrPSc in the brain (202). However, little is known about the 

recruitment of underglycosylated PrPC to PrPSc in non-brain tissues. It is possible that lymph nodes do not 

experience the same enrichment of underglycosylated PrPSc in the disease state, which would render the 

7-5 ELISA insufficiently sensitive to detect CWD in lymph nodes, even though the PrPSc could still be 

infectious. Western blots for PrPSc require the PrPSc to be PK-resistant. There is anecdotal evidence in our 

group that lymph node PrPSc is more PK-sensitive than brain PrPSc. If there is a difference in the PK 

sensitivity of PrPSc in brain vs. lymph node, we would expect western blot to differentiate the tissues, 

even though the infectivity may not be different. In fact, there is some evidence that the most infectious 

species of PrPSc are the small, PK-sensitive oligomers (326). Even if PK-sensitivity is similar, it is clear 

that PrPC expression is much lower in the RPLN than the brain, which makes detection by western blot 

more difficult. Finally, RT-QuIC is presumed to amplify PrPSc amyloid and our statistical comparisons to 

negative tissue ensure that we are detecting bona fide amyloid formation. However, it is less clear 

whether RT-QuIC is specific for infectious prions, specific strains, or specific PrPSc molecules (i.e. large 

amyloid aggregates, oligomers, PK-sensitive PrPSc, etc.). The unknown specificity of RT-QuIC for certain 

characteristics of the prion agent led us to CPCA to attempt to calculate the LD50 for our lymph node 

samples (Fig. 2.4).   

The first CPCA experiment yielded very low, albeit statistically significant, infection from lymph 

node PrPSc in RK-13 cells expressing deer PrPC (Deer5E9 cells) (Fig. 2.4). When we prolonged the 

incubation from 4 weeks to 5 weeks, also in the Deer5E9 cells, we saw many more cells infected with 

RPLN PrPSc (Fig. 2.5). In the second experiment, we observed a delay in infection of cells with RPLN 

PrPSc vs. brain PrPSc (Fig. 2.5, 2.6). We replicated that delay in the third experiment, but it was only 

apparent in the cells infected with the highest dilution (Fig. 2.7). The delay was not apparent in the lower 

dilutions and was less apparent in the RT-QuIC analysis of the cell lysates, perhaps because there was 

more variation in the RT-QuIC data (Fig. 2.9). It seems that the delay is an artifact of the specific dilution, 

which may be due to inhibition by non-PrPSc RPLN components since the RPLN homogenates were 

applied to the plate at a 10-fold higher concentration than the brain.  
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 It is also interesting that the WTD brain sample failed to infect the cells, produce a PK-resistant 

PrPSc signal, or be detected in ELISA. The failure of infection in CPCA cannot be blamed on the Deer5E9 

cells, as the experiment was repeated twice and the accompanying CWD(+) sample, 817 brain, was 

positive in Deer5E9 cells in both cases. There is some evidence that CPCA is specific for particular CWD 

strains; in the original CPCA publication, one of the CWD isolates failed to infect cells, despite being 

infectious in vivo. The authors confirmed that the isolate was infectious in vivo and suggested the CPCA 

may be specific for some CWD strains (165). If the failure of CPCA to detect PrPSc in the WTD brain 

sample is due to a strain difference, these data suggest that RT-QuIC may be less sensitive than CPCA to 

differences in strain. 

Of course, it is possible that RT-QuIC detects something other than infectious PrPSc and that the 

CPCA and ELISA correctly identified the lack of infectious PrPSc for the WTD brain sample. The best 

test of the infectivity is a bioassay. The Telling group performed a bioassay for the WTD brain and 

RPLN, in addition to the elk and red deer brain and RPLN samples, and all 6 were positive in transgenic 

mouse bioassay (324). In other words, the WTD brain and RPLN samples were both infectious in vivo, 

which agrees with the RT-QuIC result, the CPCA result (for RPLN, but not brain) and disagrees with the 

7-5 ELISA and western blot, at least with the volume of homogenate we tested. 

We used a number of assays to analyze the presence of PrPSc in brain and RPLN tissue from 

CWD(+) cervids and found substantial signal (seeding activity, PK-resistant PrPSc and cell infectivity) in 

both tissue types. It seems likely that PrPSc not only accumulates to high levels outside the CNS, but is in 

an infectious form. The prion field has largely focused its efforts on understanding neurodegeneration and 

its relationship to PrPSc, but the question of accumulation, replication, and dissemination of PrPSc by the 

lymphoid system has been lingering for decades. It is clear that CWD and scrapie are both lymphotropic 

and include an early stage during which prions replicate in the lymphoid system (156, 224, 303). 

Conversely, BSE is restricted almost exclusively to the nervous system, with a few reports of PrPSc 

detection in the distal ileum and the tonsil (327-330). Interestingly, when cattle were IC-inoculated with 

scrapie, PrPSc was not detected in the mesenteric lymph node or spleen (331). When cattle were IC-
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inoculated with CWD, there was essentially no PrPSc detected outside the CNS (332). However, IC 

inoculation of CWD in deer results in robust PrPSc accumulation in the lymph node (218, 332). However, 

when red deer were inoculated IC with BSE, prions were detectable only in the CNS. It is likely that these 

deer had a very early infection, and that prion spread to the periphery had not yet occurred. Together, 

these results suggest that lymphotropism is dictated by the host, and that deer and sheep permit 

lymphotropism, while cattle do not.  

The presence of infectious prions outside the CNS in CWD is important for several reasons: first, 

it offers clues into the mechanism of rapid spread of CWD from its initial description in mule deer in 

Northern Colorado in 1982 to its current (detectable) presence in 23 states, 3 Canadian provinces, Korea, 

and Norway (61, 122, 271). We hypothesize the highly contagious nature of CWD is related to the 

presence of infectious prions in the periphery, which leads to shedding of CWD in excreta. Prions in the 

periphery are far more likely to be encountered by naïve animals than prions from the CNS. Second, the 

lymphoid system and the CNS have different tolerances for cross-species prion transmission (333). When 

transgenic mice were inoculated with prion strains to which they were typically resistant, significant PrPSc 

(and infectivity) was detectable in their spleens (333). Therefore, it is possible that CWD prions from the 

spleen may have different risk to humans than prions present in the brain. There is already evidence that 

CWD strains have variable lymphotropic behavior, which supports the hypothesis that the CNS and 

lymphoid system provide different environments for prion replication (334). These results beg the 

question: are the peripheral tissues of CWD(+) cervids more infectious to humans than the CNS tissues 

that have been tested widely?  

In conclusion, we demonstrated the infectivity of PrPSc
 from lymph nodes and we compared 

several prion detection assays to compare brain and RPLN samples from CWD(+) cervids. We observed 

differences among prion detection assays that should be considered for future analysis. Finally, this work 

prompts the question: is all the PrPSc identified in the periphery infectious?  
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CHAPTER 3: INSIGHTS INTO CWD AND BSE SPECIES BARRIERS USING REAL-TIME 

CONVERSION2 

 
 
Summary 

The propensity for trans-species prion transmission is related to the structural characteristics of 

the prions in the enciphering and new host, although the exact mechanism remains incompletely 

understood. The effects of variability in prion protein structure on cross-species prion transmission have 

been studied with animal bioassays, but the influence of prion protein structure vs. host co-factors (e.g. 

cellular constituents, trafficking, and innate immune interactions) remains difficult to dissect. To isolate 

the effects of protein-protein interactions on trans-species conversion, we used recombinant PrPC (rPrPC) 

and real-time, quaking-induced conversion (RT-QuIC) and compared chronic wasting disease (CWD) and 

classical bovine spongiform encephalopathy (cBSE) prions. To assess the impact of transmission to a new 

species, we studied feline CWD (fCWD) and feline BSE (i.e. feline spongiform encephalopathy, FSE). 

We cross-seeded fCWD and FSE into each species’ full-length rPrPC and measured the time required for 

conversion to the amyloid form, the rate of amyloid conversion. These studies revealed that: (1) CWD 

and BSE seeded their homologous species’ rPrPC best; (2) fCWD was a more efficient seed for feline 

rPrPC than for white-tailed deer rPrPC; (3) conversely, FSE converted bovine rPrPC more efficiently than 

feline rPrPC; (4) and CWD, fCWD, BSE, and FSE all converted human rPrP, though not as efficiently as 

homologous sCJD prions. These results suggest that: (1) at the level of protein-protein interactions, CWD 

adapts to a new species more readily than does BSE, and (2) the barrier preventing transmission of CWD 

to humans may be less robust than estimated. 

 

                                                      
2 Copyright © American Society for Microbiology, [Journal of Virology, Volume 89, 2015, 9524-9531, 10.1128/jvi.01439-15] 
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Background 

Prion diseases are characterized by the seeded misfolding and aggregation of the cellular prion 

protein, PrPC, to a pathogenic state, PrPSc. All mammals express PrPC, with only minor polymorphisms 

within and between species (335). Prion disease has been identified in humans (Creutzfeldt Jakob disease, 

CJD), cattle (BSE), cervids (CWD), felines (feline spongiform encephalopathy, FSE) and sheep and goats 

(scrapie), as well as other mammals (336). The transmissibility of prion diseases makes them unique 

among other protein misfolding diseases, including Alzheimer’s and Parkinson’s diseases. Though prion 

diseases vary in their proclivity to transmit to new species, the cBSE epidemic and subsequent 

transmission to humans (as variant CJD, vCJD), felines (FSE) and several ungulate species illustrate the 

importance of understanding zoonotic transmission (10, 114, 115, 146, 245, 247, 336).   

The trans-species transmissibility of cBSE and CWD has been studied in natural hosts, 

conventional and transgenic rodents, and in vitro models. CWD has been transmitted experimentally to 

sheep, felines, cattle and squirrel monkeys (232, 233, 235-237, 337). BSE has been transmitted 

experimentally to sheep, European red deer and macaques (241-243). Transgenic mice were developed to 

explore the potential transmissibility of cBSE and CWD to humans. In four studies with mice expressing 

the human prion protein (TgHu), cBSE inoculation produced mixed results, with attack rates ranging from 

0 to ~50% (155, 250-252). Inoculation of TgHu mice with CWD has yielded no infections (155, 255, 338, 

339). Additionally, three distinct in vitro amyloid amplification methods have also shown that BSE is 

better able to induce the misfolding of human PrPC than is CWD (266, 268, 269, 340-343).  

That prion characteristics are not solely defined by primary structure can be inferred by the 

existence of prion strains (268). Indeed, several studies have noted the similarity that cBSE prions 

passaged in other species (FSE, vCJD, and sheep BSE) have to the original cBSE agent, despite the 

variable primary structure of the passaged prions (147, 252, 343, 344). Therefore, it is logical to conclude 

that variability in prion conformation and the interactions of PrPSc and PrPC are essential to prion species 

barriers. We used RT-QuIC to assess the complementarity of seed-substrate pairing and the possibility of 

trans-species conversion of two prions pertinent to human health, CWD and cBSE. 
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We hypothesized that in RT-QuIC, cBSE and passaged forms of cBSE would have similar trans-

species seeding characteristics and would readily convert human rPrPC, whereas passaged forms of CWD 

would be less like CWD and would convert human rPrPC poorly. 

 

Methods 

Recombinant PrP (rPrP) Production 

The coding regions for full-length (aa23-231) recombinant prion protein (rPrP) from each species 

(bank vole, bovine, feline, human M129 and white-tailed deer) were kindly provided by Dr. Glenn 

Telling. We cloned full-length constructs (bovine, feline, human M129 and white-tailed deer) into the 

pET100D expression system (Life Technologies). The truncated Syrian hamster construct in BL21 E. coli 

was kindly provided by Dr. Byron Caughey. We truncated the bank vole PRNP coding region using 

specific primers to isolate the sequence for amino acids 90-231, then cloned the sequence into the vector 

that contained the Syrian hamster construct. We used E. coli BL21 Star cells (Life Technologies) to 

express rPrP. Briefly, we spiked BL21 cells from a glycerol stock into 5mL LB media and 5μg/mL 

ampicillin and grew the cultures overnight, shaking at 37o. We inoculated 1L LB media with the 5mL 

culture, plus 5μg/mL ampicillin and auto-induction reagents (final concentration 0.5M (NH4)2SO4, 1M 

KH2PO4, 1M Na2HPO4, 0.5% glycerol, 0.05% glucose, 0.2% α-lactose, .001M MgSO4). When the OD600 

reached approximately 3.0, we harvested and lysed bacteria, then isolated inclusion bodies according to 

the manufacturer’s protocol with Bug Buster™ and Lysonase™ (EMD-Millipore). We solubilized 

inclusion bodies and rotated the solution in 8M guanidine hydrochloride (GdnHCl) and 100mM Na2HPO4 

for at least one hour at room temperature. We bound the denatured rPrP to Superflow™ nickel resin 

(Qiagen) and refolded at a rate of 0.75mL/min on the column with a gradient from 6.0M GdnHCl, 

100mM Na2HPO4, 10mM Tris (pH 8.0) to the same buffer with no GdnHCl. We used a gradient to 0.5M 

imidazole, 100mM NaH2PO4, 10mM Tris (pH 5.5) with a flow rate of 2.0mL/min to elute the rPrPC. We 

filtered the eluted rPrPC and dialyzed at a concentration of ~.4mg/mL in two changes of 4.0L 20mM 

NaH2PO4 (pH 5.5). After dialysis, we filtered the rPrPC again and stored at 4oC, having determined its 
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concentration by A280. We tested the purity of the rPrPC samples was tested by performing gel 

electrophoresis (12% bis-tris gels with 1X MOPS [Bio-Rad], 190V, 55min) and staining with Coomassie 

Brilliant Blue (Bio-Rad).  

 

Circular dichroism (CD) spectroscopy 

 We purged a Jasco 810 CD spectrometer (Jasco, Inc.) with N2 for 15 minutes, then filled a clean, 

glass cuvette (2mM path length) with the diluent in which rPrPC is stored (20mM Na2HPO4) or an rPrPC 

sample. We measured the HT voltage and ellipticity (Θ) from 200-250nm, then calculated the molar 

ellipticity (Θ*molecular weight/(10* concentration (mg/mL)* path length) and plotted it against the 

wavelength.  

 

Real-time quaking-induced conversion (RT-QuIC) 

We combined 0.1mg/mL rPrPC with 400mM NaCl, 1mM EDTA, 20mM NaH2PO4 and freshly-

made thioflavin T (ThT; final concentration 10μM) for a final volume of 95μL per well in a 96 well plate. 

We homogenized brain samples (see Table 3.1) in 1X PBS as a 10% solution with a bead beater (Next 

Advance), then aliquoted the homogenate in single-use tubes and froze the samples at -80oC. We thawed 

homogenate aliquots and diluted the samples into 1X PBS plus 0.05% SDS (Conditions 1) or 0.1% SDS 

(Conditions 2). We added 2μL diluted brain seed to 95μL reaction buffer in the well of an optical bottom 

96 well plate. An RT-QuIC experiment consisted of 400 cycles (100 hours) of shaking and incubation at 

45oC; specifically, plates were shaken for 1 minute (700rpm, double orbital), followed by 1 minute of 

rest. Fluorescence (450nm excitation and 480nm emission, 20 flashes/well) was recorded every 15 

minutes using a gain of 1700 (96 well plate). 
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Table 3.1. Sources of the prion seeds used in these experiments. 
 Species (n) ± Tissue Inoculum Inoculation Sample 

CWD WTD (1) + Caudal brain 
sections 

CO Dep’t of Wildlife 
positive deer LA01 oral 104 

Exper. CWD WTD (6) + Whole brain CSU CWD-positive 
deer 700, 800 series oral/aerosol CBP6 

negative deer WTD (1) - Caudal brain 
sections 

CSU CWD-negative 
deer UGA 1/2 oral 123 

Feline CWD  Feline (2) + Multiple brain 
sections 

CSU CWD-positive 
deer IC 4137/ 

4152 

negative cat Feline (1) - Obex CSU CWD-negative 
deer UGA 1/2 oral 4141 

FSE (345) Feline (1) + Medulla natural infection - FSE 
BSE Bovine (1) + Obex natural infection - BSE 

negative cow Bovine (1) - Brainstem not inoculated - Negative 
bovine 

Field CWD 1 
(217) WTD + Obex Field Isolate - H92  

Field CWD 2 
(217) WTD + Obex Field Isolate - 98-

933968 
 

To ensure that the results observed in our RT-QuIC experiments were not a result of specific 

experimental conditions, we completely repeated all the experiments in this study in two sets of 

conditions. For Condition 1, we used one or two batches of each rPrP species (bovine, feline, white-tailed 

deer, human) and an SDS concentration SDS of 0.05% for the homogenate diluent. For Condition 2, we 

used new batches (one or two) of each species of rPrP, with an SDS concentration of 0.1% in the sample 

dilution step. In both Condition 1 and Condition 2, we used were 6-8 replicates (on 3-4 plates) of every 

reaction. Because the reaction conditions resulted in different kinetics (kinetics using 0.1% SDS were 

faster than 0.05% SDS), we could not compare the rates of amyloid conversion between experiments. 

Data shown here is from Condition 2, but patterns were maintained in Condition 1. 

 

Artificial Seeds 

In order to assess each species’ inherent propensity to convert from rPrPC to rPrPSc 

(amyloidogenicity), we created synthetic rPrPThT+ seeds from truncated Syrian hamster rPrPC (SH, amino 
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acids 90-231) or truncated bank vole rPrPC (BV, amino acids 90-231). For the SH artificial seeds, we 

shook 0.5mg/mL SH rPrPC with 2M GdnHCl at 37oC overnight. We made BV artificial seeds by shaking 

0.3mg/mL BV rPrPC at 37o without GdnHCl. In both cases, we added 2μL artificial seed (or ten-fold 

dilutions thereof) to the RT-QuIC reaction in place of a brain-derived seed. 

 

Western Blot and Quantification 

We added 5μL, 9μL or 13μL of a 5% homogenate of BSE or CWD (sample 104) to 1μL of 

Proteinase K (100μg/mL, Invitrogen), 1μL of 2% SDS and brought the volume to 15μL with water. We 

incubated the samples at 37oC for 30 minutes, then 45oC for 10 minutes. We added 5μL of a 4X sample 

loading buffer/reducing agent (Life Technologies) to the samples and incubated at 93o for 3 minutes. We 

added 18μL to each well of a 12-well, 12% bis-tris gel, then electrophoresed for 10 minutes at 115V 

followed by one hour at 150V. We transferred the protein to polyvinylidene fluoride (PVDF) membranes 

in cold transfer buffer (20% MeOH, 192mM glycine, 25mM tris base) for 1.5 hours at 115V, then 

blocked overnight at 4oC in tris-buffered saline plus tween (TBST, 0.1% Tween) and non-fat dry milk. 

We bound anti-PrP antibody 6H4 to the membrane in TBST+milk for one hour at a concentration of 

1:5000, then washed the membrane with TBST for one hour. We applied the secondary antibody, a near-

infrared-tagged goat anti-mouse antibody, in TBST plus milk for one hour at a concentration of 1:20,000. 

We washed the membrane with TSBT for one hour. We collected images on the Odyssey CLx Infrared 

Imager (Li-Cor Biosciences, Inc.) and analyzed them using Image Studio Lite Version 4.0 (Li-Cor 

Biosciences, Inc.). We calculated the intensity for each lane of the western blot, then divided by the 

number of microliters of 5% brain homogenate added to the well. Finally, we divided the intensity/μL for 

each PK+ lane by the intensity of the PK- lane to determine the relative quantity of PK resistant material. 

 

Quantitative Analysis 

We determined the lag phases of positive and negative samples in MARS (BMG Labtech) by 

calculating the time required to meet a threshold for positive samples (305). We defined the threshold as 
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the average baseline fluorescence plus five standard deviations for each experiment. The rate is the 

inverse of the lag phase for each sample (1/lag phase), with units of hours-1. We use the rate of amyloid 

conversion here instead of lag phase in order to account for the samples that never cross the threshold (the 

rate can be conservatively assigned a value of 0 hours-1). Despite their similar purity, conformation and 

functionality, the rPrPC substrates were not equally sensitive. In order to compare one seed’s behavior 

across multiple substrates without confounding by the inherent amyloidogenicity differences between the 

substrates, we calculated relative rates and used them for analysis. Specifically, we divided all rates for a 

given substrate by the highest rate in that substrate; the fastest sample has a rate of 1.0. Average relative 

rates of amyloid conversion from 6-12 replicates are displayed as the mean with error bars indicating the 

standard error of the mean. We tested the difference between rates at each dilution with the non-

parametric Mann-Whitney U (MWU) test (when both samples had a non-zero median) in Prism 5.0 

(Graphpad), or the non-parametric one-sample Wilcoxon signed-rank (WSR) test (when one of the 

samples had a median of zero) in R. We defined a statistically significant difference by a p-value <0.05. 

Significant differences by the MWU test were indicated by *, while significant differences by the WSR 

test were indicated by #. 

 

Results     

Recombinant bovine, feline, human and white-tailed deer PrPC have similar purity. 

To compare the behavior of a given prion seed across multiple rPrPC substrates, it was necessary 

to ensure that every batch of every substrate had similar purity, structure and functionality. We analyzed 

each rPrPC preparation by gel electrophoresis and total protein staining to show that the substrates were of 

comparable purity (Fig. 3.1A). To ensure that the secondary structure of each preparation was 

comparable, we used CD spectroscopy (Fig. 3.1B-E). All substrates had minima at 208nm and 222nm, 

indicating a predominance of α-helical secondary structure, as expected.  

We analyzed each preparation of recombinant protein with the homologous species’ prion seed in 

RT-QuIC to verify its ability to form amyloid upon addition of seed. We used homologous seeds (e.g. 
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CWD brain samples in full-length white-tailed deer substrate) as positive controls and negative brain 

samples (deer, bovine and feline) as negative controls. We considered a batch of rPrPC to be functional if 

the fluorescence in wells containing positive control seeds crossed the threshold within 20 hours (rate ≥ 

1/20, 0.05 hours-1) and the negative controls had an average rate less than .015 hours-1. By these metrics, 

we determined that all batches of rPrPC were comparable and that seed behavior could consequently be 

compared among substrates. 
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Figure 3.1. rPrPC substrates are of comparable quality. A. Coomassie Blue visualization of 1.5μg rPrPC 
substrate indicates the purity of each rPrPC. Bands represent, from left-right, ladder; bovine (amino acids 
23-231), feline (23-231), human M129 (23-231) and white-tailed deer (23-231) rPrPC; ladder, bank vole 
(90-231) rPrP. B. CD spectrum for bovine rPrPC. C. CD spectrum for feline rPrPC. D. CD spectrum for 
human M129 rPrPC.  E. CD spectrum for white-tailed deer rPrPC. The dotted lines indicate the anticipated 
minima for α-helical structure (B-F). 
 

rPrPC species differ in inherent propensity for conversion, as reflected by the rate of amyloid conversion. 

Despite their similar purity, conformation and functionality, the rPrPC substrates did not have an 

equal propensity to form amyloid (amyloidogenicity), which may reflect inherent features from each 

species, as multiple purified batches of rPrPC of the same species had the same behavior. With a variety of 
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prion seeds (CWD, BSE, fCWD, FSE), the fastest rate of amyloid conversion for full-length white-tailed 

deer rPrP (0.27 hours-1) was nearly twice the fastest rate in full-length bovine (0.13 hours-1) or feline rPrP 

(0.17 hours-1).  

To verify the amyloidogenicity differences, we used artificial seeds (rPrPThT+ created by shaking 

rPrPC with guanidine hydrochloride at 37○) and compared the rates of amyloid conversion. Mimicking our 

observation with brain-derived prion seeds, white-tailed deer rPrP formed amyloid fastest with the 

addition of truncated bank vole rPrPThT+, with a rate approximately twice the rate of bovine and feline 

rPrP conversion (Fig 3.2A). We observed the same pattern when the seed was prepared from truncated 

Syrian hamster rPrP (Fig. 3.2B). The same trends are visualized with representative raw data (Fig. 3.2C-

D). The use of artificial seeds confirmed the different propensities for amyloid conversion in divergent 

species. To compare the behavior of a given seed among species with variable amyloidogenicity, we 

normalized the rates by considering the maximum rate in each substrate to be 1.0 hour-1. 

 



80 
 

 
Figure 3.2. WTD rPrPC is more amyloidogenic than bovine or feline rPrPC. A. Points indicate the 
average rate of amyloid conversion for each substrate (bovine, feline and white-tailed deer) upon addition 
of artificial truncated bank vole rPrPThT+. B. Points indicate the rate of amyloid conversion for each substrate 
upon the addition of artificial truncated Syrian hamster rPrPThT+. Error bars represent the standard error of 
the mean (SEM) (A-B). C and D. Each line represents the average ThT fluorescence for 4 replicates for 
each seed-substrate combination and the dotted line indicates the threshold for determination of the lag 
phase. 
 

RT-QuIC with full-length rPrPC recapitulates BSE and CWD species barriers in vitro. 

We hypothesized that RT-QuIC would reflect in vivo species barriers, as defined by preferential 

seeding of the native host species rPrPC. We found the native prion of a given species to be most 

compatible (the fastest conversion to amyloid) with its host substrate. To demonstrate an in vitro species 

barrier, we added cBSE or CWD PrPSc to the non-homologous rPrPC substrate. As anticipated, CWD 

converted full-length white-tailed deer rPrPC faster than it did full-length bovine rPrPC (Fig. 3.3A,C). 
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Likewise, cBSE seeded full-length bovine rPrPC relatively faster than full-length white-tailed deer rPrPC 

(Fig. 3.3B,D). Thus, RT-QuIC recapitulated the in vivo species-seeding proclivities of CWD and cBSE 

prions.  

 

 
Figure 3.3. Preference for intra-species conversion by BSE and CWD prions was recapitulated in 
RT-QuIC. A. CWD was seeded into white-tailed deer rPrPC (black line), or bovine rPrPC (blue line). B. 
BSE was seeded into white-tailed deer rPrPC (black line) or bovine rPrPC (blue line). Each point represents 
the relative rate of amyloid conversion for each seed concentration (ng) and the error bars represent SEM. 
The rate of spontaneous amyloid conversion is designated by the dotted gray line in A and B. Significant 
differences between substrates were tested by the MWU test (p<0.05 indicated by *) or the WSR test 
(p<0.05 indicated by #). C and D. Each line represents the average ThT trace for 6 replicates of 3 dilutions 
of each seed/substrate combination and the gray line indicates the threshold for determination of the lag 
phase.  
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Characteristics of cBSE and cBSE-derived prions are conserved after trans-species transmission. 

cBSE and CWD are prion diseases that have been naturally passaged in their respective species 

(cattle and deer), whereas FSE and fCWD are first-passage infections in a new host species. To 

investigate the biochemical properties of cBSE and CWD after trans-species transmission to felines, we 

compared the amyloidogenicity of fCWD and FSE in the original host and in feline substrate. We found 

fCWD to be a more efficient seed for its new (feline) host, suggesting that adaptation to the new host had 

occurred (Fig. 3.4A). By contrast, FSE remained a more efficient seed for its enciphering (bovine) host, 

despite its derivation from feline brain PrPC (Fig. 3.4B). These cross-species seeding experiments in RT-

QuIC suggest that cBSE may retain its ability to cross species barriers even after transmission to a new 

host species and that CWD may change substantially upon trans-species transmission. 
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Figure 3.4. Prions from felines infected with BSE maintain original species characteristics, while 
prions from felines infected with CWD are adapted to the new species. A. Points indicate the average 
rate of amyloid conversion for white-tailed deer rPrPC (black line), or feline rPrPC (green line) upon seeding 
with an fCWD seed. B. Points indicate the rate of amyloid conversion for bovine rPrPC (blue line) or feline 
rPrPC (green line) upon addition of an FSE seed. The rate of spontaneous amyloid conversion is designated 
by the dotted gray line and error bars represent SEM. Significant differences between substrates were tested 
by the MWU test (p<0.05 indicated by *) or the WSR test (p<0.05 indicated by #). C-D. Each line represents 
the average ThT trace for 6 replicates of 3 dilutions of each seed/substrate combination and the gray line 
indicates the threshold for determination of the lag phase. 
 

Human rPrPC can be converted by bovine, feline and cervid prions. 

The threat of zoonotic transmission of prion disease is evident and well-documented, yet 

uncommonly observed and incompletely understood. We thereby explored the propensity of heterologous 

prions to convert human rPrPC. We used sporadic CJD (sCJD) brain as a positive control, and normal 

bovine, white-tailed deer and feline brain as negative controls. sCJD, as expected, seeded human rPrPC 
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most efficiently, so all other seeds were normalized to the rate of conversion of sCJD. We found human 

rPrPC to be a competent substrate in RT-QuIC for CWD, fCWD, cBSE and FSE (Fig. 3.5A). 

Interestingly, CWD and fCWD converted human rPrPC more efficiently than did cBSE and FSE. These 

data suggest that at the level of PrPC-PrPSc interaction, CWD has the ability to template the conversion of 

human rPrPC to amyloid. To assess whether CWD was faster than cBSE due to an increased concentration 

of PrPSc, we performed western blots on the inocula. Western blots indicated that the cBSE sample had 

more PrPSc than the CWD sample, indicating that CWD did not appear to be a better seed than cBSE due 

to PrPSc titer (Fig. 3.5B). Finally, we assessed the behavior of 8 CWD field isolates, brain samples from 

white-tailed deer infected naturally and verified to be positive using full-length white-tailed deer PrPC in 

RT-QuIC (Fig. 3.5C). All 8 of the isolates induced amyloid formation in human rPrPC, confirming that 

our observations were not due to the use of experimental CWD (Fig. 3.5D). In all, these experiments 

suggest that the CWD prions naturally circulating in the western USA have the capacity to convert human 

rPrPC in this assay of protein-protein interactions. 
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Figure 3.5. CWD is capable of efficiently seeding the conversion of human rPrPC. A. Points represent 
the average rate of conversion of full-length human M129 rPrPC by sporadic CJD (black line), CWD (red 
line), fCWD (pink line), BSE (dark blue line) and FSE (light blue line). Error bars indicated SEM. The rate 
of spontaneous amyloid conversion is indicated by the gray line. B. Western blot of BSE and CWD. PK-
digested lanes indicate the presence of more PrPSc in the BSE sample than in the CWD sample. 
Densitometry indicates that BSE has more PrPSc/μL relative to total undigested PrP/μL than does CWD. C. 
Points indicate the average rate of amyloid conversion for multiple field isolates of CWD in full length 
human M129 rPrPC. The gray line indicates the rate of spontaneous amyloid conversion. D. Points indicate 
the average rate of amyloid conversion for multiple field isolates of CWD in full length white-tailed deer 
rPrPC. The gray line indicates the rate of spontaneous amyloid conversion. 
 

Discussion  

Despite decades of investigation, complete characterization of barriers to trans-species 

transmission of prion diseases remains elusive. Many animals, including multiple lines of transgenic 

mice, have been inoculated with various prions to define prion disease species barriers and to understand 

the effects of passage into a new host. Likewise, in vitro assays have been used to model propensities for 
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trans-species conversion of PrPC to amyloid. We chose RT-QuIC because it permits observation of 

amyloid conversion in real-time and, consequently, comparison of the conversion efficiency of seed 

(PrPSc): substrate (rPrPC) combinations.  

We report that cBSE, after passage to felids in the form of FSE, remained a more efficient seed 

for the prion protein of the enciphering (bovine) host than for the new (feline) host (Fig. 3.4). This pattern 

has been observed in other contexts as well: cBSE-derived prions maintain many of their characteristics 

upon experimental or natural transmission to a new species (147, 344). We show that the features of 

cBSE are maintained as a result of the prion conformation and not solely due to cellular cofactors. 

Conversely, fCWD was a more efficient seed for the new (feline) host than for the enciphering (white-

tailed deer) host (Fig 3.4). This result suggests that when felids are infected with CWD, the resulting 

fCWD has adapted to the new host. This appears to be an example of the difference between prions that 

adapt to new hosts upon passage and amplification that occurs without adaptation (92). It would be 

interesting to test other passaged BSE and CWD samples, particularly in light of the evidence for prion 

strains. The behavior of the fCWD and FSE in this paper may be dependent on the particular CWD and 

BSE samples that infected the cats, but examples of trans-species transmission of prions are rare and 

samples are not plentiful. 

We also assessed the seeded conversion of human rPrPC by BSE, CWD, FSE and fCWD. 

Previous in vitro work using PMCA and two seeded fibrillization assays found human (polymorphism 

M129) PrPC to be a weakly competent substrate for conversion by CWD and cBSE (268, 269, 342). We 

demonstrate that both FSE and fCWD have the ability to seed human rPrPC as well. Our finding that 

cBSE was a poor, if not ineffective, seed for human rPrPC in RT-QuIC was also observed by Orrú, et al. 

(346). By contrast, our finding that CWD is an efficient seed for human rPrPC (albeit not as efficient as 

human sCJD) differs from previous results using PMCA or other seeded fibrillization assays (268, 269, 

342). Perhaps the disparities between these in vitro assays reflect the fact that RT-QuIC measures the rate 

of amyloid conversion (indicating the initial trans-species seeding) vs. total PrPSc after conversion (266, 

268, 269, 342, 343). We understand the rate of amyloid conversion to depend on both the quantity of 
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prion in the seed and the competence of the seed to convert the substrate (305). Because our cBSE brain 

seed had a higher concentration of PrPSc relative to the total PrP than did our CWD brain sample, we 

interpreted the increased rate of amyloid conversion in human rPrPC to reflect the relative compatibility of 

seed with substrate, not a difference in PrPSc content. Indeed, our analysis supports the notion that human 

rPrPC is a competent substrate for several non-human prions. Of course, we also understand that any in 

vitro estimation of prion species barriers carries the innate caveats of a reductionist model of complex in 

vivo processes. 

In summary, recapitulation of the species barrier phenomenon in RT-QuIC demonstrates that 

CWD and BSE prions differ in their tendency to adapt. These experiments also demonstrate that human 

rPrPC can be converted to amyloid by both cBSE and CWD prions. These data point to the importance of 

the mechanisms by which prions infect a new species, and prompt continued vigilance for transspecies 

prion transmission. 
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CHAPTER 4: ASSESSMENT OF THE AMINO-TERMINAL DOMAIN IN PRION SPECIES 

BARRIERS3 

 
 
Summary 

Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in 

cattle are prion diseases that are caused by the same protein-misfolding mechanism, but appear to pose 

different risks to humans. We are interested in understanding the differences between the species barriers 

of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central 

molecular event in prion disease, the templated misfolding of the normal prion protein, PrPC, to a 

pathogenic, amyloid isoform, PrPSc. We examined the role of the PrPC amino-terminal domain (NTD, 

aa23-90) in cross-species misfolding by comparing the conversion efficiency of various prion seeds in 

either full-length (aa23-231) or truncated (aa90-231) PrPC. We demonstrate that the presence of white-

tailed deer and bovine NTDs hindered seeded conversion of PrPC, but human and bank vole NTDs did the 

opposite. Additionally, full-length human and bank vole PrPC were more likely to be converted to 

amyloid by CWD prions than were their truncated forms. A chimera made with replacement of the human 

NTD by the bovine NTD resembled human PrPC. The requirement for an NTD, but not for the specific 

human sequence, suggests that the NTD interacts with other regions of the human PrPC to increase 

promiscuity. These data contribute to the evidence that prion species barriers are controlled by 

interactions of the substrate NTD with the rest of the substrate PrPC molecule, in addition to compatibility 

of primary sequence. 

 

Background   

CWD, BSE and Creutzfeldt-Jakob disease (CJD) are prion diseases of cervids, cattle, and 

humans, respectively. These neurodegenerative diseases are caused by the pathogenic misfolding of the 
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normal prion protein (PrPC) to an amyloid conformation (PrPSc), the accumulation of which causes 

neuronal death (15, 16). CWD was first identified in the western United States in the 1980s in captive 

mule deer (Odocoileus hemionus) (271) and has since spread into free-ranging and farmed cervid 

populations in 24 US states, Norway, the Republic of Korea and two Canadian provinces (61). BSE was 

identified in the United Kingdom in the 1980s and is hypothesized to have been spread as a result of 

feeding animal by-products to cattle (8, 347). The BSE epidemic led to the culling of nearly 5 million 

cattle and over 200 people died from variant CJD, a form of CJD acquired from consumption of BSE-

tainted beef (10, 11, 91, 145-147). So far, there is no evidence of transmission of CWD to humans, but the 

BSE epidemic indicates that prions have zoonotic potential. 

Efforts to define the host range of both BSE and CWD have included experimental infections of 

non-host species. CWD inoculations have resulted in prion propagation in cattle, sheep, hamsters, voles, 

felines, ferrets, and some non-human primates (233, 234, 236-238, 337, 348, 349). BSE inoculations have 

resulted in prion propagation in deer, sheep and some non-human primates (144, 241-244, 350). 

Moreover, natural BSE infections occurred in felines and several species of zoo ungulates, in addition to 

humans (10, 11, 146). Transgenic mice expressing human PrPC (TgHu) have been used to model human 

susceptibility to animal prion diseases. Published reports of CWD inoculation of TgHu mice have 

reported no prion propagation, although studies employing protein misfolding cyclic amplification 

(PMCA) have yielded more ambiguous results (267). Prion propagation has been reported in 

approximately 50% of TgHu mice inoculated with BSE (155, 249-255). Despite these reports, prion 

species barriers remain mostly empirical. While the most important known factor in trans-species 

transmission is the compatibility of the PrPC amino acid sequences, there is evidence that the tertiary and 

quaternary structure of PrPSc also influence prion transmission (56, 93, 261, 263). 

Multiple studies have identified specific PrPC regions that may control susceptibility or resistance 

to conversion by non-homologous prions, but the role of the amino-terminal domain (NTD, we define as 

amino acids 23-90, following mouse numbering) in species barrier maintenance has not been tested (264, 

265). Transgenic mice with an amino-terminal PrPC truncation that resulted in expression of only amino 
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acids (aa) 90-231 had no overt changes in phenotype compared to wild-type mice, while larger 

truncations caused spontaneous neurodegenerative disease (351). A transgenic mouse expressing chimeric 

mouse-hamster PrPC (aa90-231) had reduced susceptibility to prion infection compared to mice that 

expressed full-length chimeric PrPC, and susceptibility varied with the strain of mouse-adapted scrapie 

used for infection (352). Mice that expressed mouse aa90-231 propagated prions upon inoculation, but 

had delayed disease onset and lower PrPSc titers compared to mice that expressed full-length PrPC (353). 

Mice expressing mouse aa88-231 had reduced susceptibility to infection compared with mice expressing 

full-length PrPC, but disease onset was accelerated when the inoculum consisted of PrPSc with the same 

truncation (354, 355). Finally, mice expressing Δ34-124 had prions with different protease-resistant 

bands, which were similar to bands observed when the mouse-hamster prion species barrier was crossed 

(356). Overall, these results suggest that amino acids 23-90 are involved in prion propagation and disease 

progression.  

Evidence from in vitro studies indicates that the amino-terminal fragment of the prion protein 

(amino acids 23-144) misfolds easily without addition of a prion seed, and that the human fragment 

converted faster than did the hamster or mouse fragment (357). Other investigators determined that the 

aggregation mechanism and resulting aggregate morphology were heavily dependent on pH and 

truncation of the protein (90-231 vs. full-length) (358, 359). The NTD interacts with the cell adhesion 

molecule NCAM, suggesting that the NTD is involved in the physiological role for PrPC (360). Finally, 

melanin has been shown to inhibit PrPC misfolding in cell culture, and to be associated with the NTD 

(361). These in vitro data indicate that the absence of aa23-90 has dramatic effects on the mechanism and 

likelihood of misfolding. We were interested in the role of aa23-90 not only for its effect on 

amyloidogenicity, but for its role in preventing (or facilitating) templated misfolding between species. 

We chose to compare full-length rPrPC (aa23-231) to truncated rPrPC comprised of aa90-231 for 

several reasons: (1) the PrP27-30 fragment, an important molecule identified early in prion disease 

research, is comprised of amino acids 90-231 (362); (2) amino acids 23-90 comprise the N2 cleavage 

product in the disease state (363); and (3) the aa90-231 fragment is commonly used as the substrate for 
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prion detection in RT-QuIC (364). Specifically, we hypothesized that the NTD decreases an rPrPC 

molecule’s propensity to form amyloid and that it plays a role in defining in vitro species barriers. We 

have assessed species barriers using RT-QuIC because: (1) it makes possible assessment of conversion 

efficiency (by detection of amyloid formation in real time); and (2) we can study the effects of changes to 

the rPrPC primary structure without the complexity of a transgenic mouse or cell culture system. 

 

Methods 

Recombinant PrPC (rPrPC) cloning and expression  

The coding regions for the bank vole and bovine prion protein (PRNP) were kindly provided by 

Drs. Glenn Telling and Jifeng Bian and we obtained cDNA for the white-tailed deer, human and chimeric 

PRNP from Genewiz, Inc. We cloned the sequences for the full-length PrP (amino acids 23-231) into the 

pet100D expression system (Life Technologies). We cloned the sequences for the truncated PrP (amino 

acids 90-231) into a vector kindly provided by Dr. Byron Caughey. We transformed and amplified the 

plasmids in E. coli Top 10 cells (Life Technologies), then stored the plasmids in E. coli BL21 Star cells 

(Life Technologies) in glycerol stocks at -80C. To express rPrPC, we added BL21 cells from the glycerol 

stock to 5mL LB media and antibiotics (5μg/mL ampicillin for full-length constructs and 25μg/mL 

kanamycin for truncated constructs) and grew the culture overnight, shaking at 37°. We used the 5mL 

culture to inoculate 1L LB media plus antibiotics as described above. We added auto-induction reagents 

for a final concentration of 0.5M (NH4)2SO4, 1M KH2PO4, 1M Na2HPO4, 0.5% glycerol, 0.05% glucose, 

0.2% α-lactose and .001M MgSO4. We harvested the bacteria when the OD600 reached approximately 3.0 

for full-length constructs and 1.7 for truncated constructs. We either froze the cell pellets at -80C for up to 

5 days or immediately lysed the cells and harvested inclusion bodies, which we isolated according to 

manufacturer’s protocol with Bug Buster™ and Lysonase™ (EMD-Millipore).  
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Recombinant PrP purification 

We solubilized inclusion bodies in 8M guanidine hydrochloride (GdnHCl) and 100mM Na2HPO4 

and rotated the solution overnight at room temperature. We bound the denatured rPrPC to Superflow™ 

nickel resin (Qiagen) and refolded the rPrPC at a rate of 0.75mL/min on the column with a gradient from 

6.0M GdnHCl, 100mM Na2HPO4, 10mM Tris (pH 8.0) to the same buffer with no GdnHCl (wash buffer). 

We used a gradient from the wash buffer to 1.0M imidazole, 100mM NaH2PO4, 10mM Tris (pH 5.5) with 

a flow rate of 2.0mL/min to elute full-length rPrPC. For truncated rPrPC, the final gradient ended with 

0.5M imidazole. We filtered and dialyzed the eluted rPrPC at a concentration of ~.4mg/mL in two changes 

of 4.0L 20mM NaH2PO4 (pH 5.5). After dialysis, we filtered and stored the rPrPC at 4°C, its concentration 

having been determined by A280 and Beer’s Law. We confirmed the purity of the rPrPC samples by gel 

electrophoresis (12% bis-tris gels with 1X MOPS [Bio-Rad], 190V, 55min) and staining with Coomassie 

Brilliant Blue (Bio-Rad).  

 

Preparation of prion seed material 

We homogenized brain tissue from deer, cattle or humans at 10% weight/volume in 1X PBS 

using a FastPrep bead beater (MB Biomedicals). Single-use aliquots of 10% homogenate were stored at -

80°C. Both prion-positive and prion-negative brain material were prepared. Prion-positive brain material 

was used for the experiments, while prion-negative brain was used for the unseeded controls. The BSE 

sample is classical BSE (cBSE) and the sporadic CJD sample is MM1 (Type 1).  

 

Real-time, quaking-induced conversion (RT-QuIC) for full-length rPrP 

We combined 0.1mg/mL rPrPC with a pre-mixed reaction solution that contained a final 

concentration of 400mM NaCl, 1mM EDTA, 20mM NaH2PO4. Then, we added freshly-made thioflavin T 

(ThT; final concentration 10μM) for a final volume of 98μL per well in a 96 well plate. We thawed 

aliquots of 10% brain homogenate and serially diluted the samples into 1X PBS plus 0.1% SDS. We 
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added 2μL diluted brain seed to 98μL protein substrate mix in the well of an optical-bottom, 96-well 

plate. An RT-QuIC experiment consisted of 400 cycles (100 hours) of shaking and incubation at 45°C; 

specifically, plates were shaken for 1 minute (700rpm, double orbital) and 1 minute of rest. Fluorescence 

(450nm excitation and 480nm emission, 20 flashes/well) was recorded every 15 minutes using a gain of 

1700 in a Fluostar microplate reader (BMG Labtech). To compare full-length PrP directly to truncated 

PrP with the same molarity (0.6nM), we increased the concentration of full-length rPrPC to 0.14mg/mL 

and the truncated rPrP to 0.10mg/mL (Fig 2). These conditions were optimized for use with full-length 

rPrPC. For Figure 4, conditions were as follows: 0.6nM rPrPC, 320mM NaCl, 0.1% SDS, 42oC.  

 

RT-QuIC for truncated PrP 

We combined 0.07mg/mL rPrPC with a pre-mixed reaction solution that contained a final 

concentration of 320mM NaCl, 1mM EDTA, 20mM NaH2PO4. We added freshly-made thioflavin T 

(ThT; final concentration 10μM) for a final volume of 98μL per well in a 96 well plate. We thawed and 

serially diluted aliquots of 10% brain homogenate into 1X PBS plus 0.05% SDS. We added 2μL diluted 

brain seed to 98μL protein substrate mix in the well of an optical-bottom, 96-well plate. An RT-QuIC 

experiment consisted of at least 250 cycles (62.5 hours) of shaking and incubation at 42°C; specifically, 

plates were shaken for 1 minute (700rpm, double orbital), followed by 1 minute of rest. Fluorescence 

(450nm excitation and 480nm emission, 20 flashes/well) was recorded every 15 minutes using a gain of 

1700 in a Fluostar microplate reader (BMG Labtech). These conditions were optimized for use with 

truncated rPrP. 

 

Data analysis and statistics 

The RT-QuIC read-out is fluorescence, which is recorded at 15 minute intervals (Fig. 4.1A). To 

assess the efficiency of reactions, we compared the lag phase for amyloid formation. First, we calculated 

a fluorescence threshold by averaging the baseline fluorescence for every well in the plate, then adding 5 
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standard deviations. We used Omega software (BMG Labtech) to determine the lag phase – the time at 

which the fluorescence in a given well exceeded the threshold (Fig. 4.1B). If the fluorescence for a 

sample never crossed the threshold during the experiment, we estimated a value of 105 hours (example is 

marked by an X symbol in Fig. 4.1B). Raw lag phase data are displayed as scatterplots with lines to 

indicate the median. We analyzed the lag phase data using non-parametric, rank-based tests (Wilcoxon-

Mann-Whitney (WMW) and Wilcoxon signed-rank tests). If all values for one sample were equal, WMW 

tests are invalid, so we used Wilcoxon signed-rank tests instead. We chose these tests for several reasons: 

1) our data was often non-normal (right skewed due to replicate wells that don’t cross the threshold in the 

course of the experiment); 2) our n was relatively small (8-12); and 3) we had to choose values to 

substitute for the replicate wells that do not cross the threshold. The choice of that value would affect the 

mean (and the results of any statistical tests that relies on means, like t-tests), but will not affect rank-

based statistical analysis, since those values will have the longest lag phase regardless of which value we 

choose. We chose to represent the median instead of mean for the same reason – the median is not 

affected by our choice of a value for wells that do not cross the threshold. We described differences as 

statistically significant when p<0.05, which is indicated by * or by brackets (Fig. 4.6).  
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Figure 4.1. Data Analysis Workflow. A. Raw data was recorded as fluorescence every 15 minutes. We 
show two technical replicates for this example. B. We plotted the time required to reach the threshold 
(5SD above the mean background) vs. the dilution of 10% brain homogenate added to the reaction. The 
X indicates an estimated value for a sample that did not cross the threshold during the experiment. We 
have reversed the Y axis. 

 

Results 

Removal of the amino terminal domain affects efficiency of seeded conversion and increases spontaneous 

conversion of rPrPC. 

To investigate the effect of the NTD on the propensity of rPrPC to form amyloid, we added the 

homologous prion seed (or negative brain material) to each species’ rPrPC, either truncated or full-length 

(e.g. CWD to deer PrP). To ensure that any differences in the median amyloid formation lag phase would 

be due to differences in the rPrPC/seed compatibility, not other reaction conditions, we performed the RT-

QuIC reactions with 0.6nM rPrPC, salt, SDS, EDTA and at the same temperatures (the full-length 

conditions described in the Methods).  
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For all species, truncated rPrPC was more prone to spontaneous conversion (after addition of 

negative brain material) than was the full-length substrate (Fig. 4.2A,C,E,G). The addition of cBSE brain 

to truncated bovine rPrPC resulted in faster amyloid conversion than did addition of the same seed to full-

length bovine rPrPC (Fig. 4.2B). Likewise, the addition of CWD seed to truncated white-tailed deer rPrPC 

resulted in faster amyloid conversion than addition of the same CWD material to full-length white-tailed 

deer rPrPc (Fig. 4.2D).  

The addition of sporadic CJD MM1 (sCJD) seed to truncated or full-length human rPrPC 

(methionine at position 129) resulted in very fast amyloid conversion. However, conversion of the 

truncated human rPrPC was significantly slower than the full-length human rPrPC (Fig. 4.2F). Because the 

bank vole and human PRNP NTD sequences are very similar (Fig 4.3), we compared truncated to full-

length bank vole rPrPC as well. Like human rPrPC, both the truncated and full-length bank vole rPrPC 

formed amyloid very quickly upon addition of sCJD prions (which have been demonstrated to convert 

bank vole PrP effectively (53, 54)). Also like human rPrPC, conversion of the full-length bank vole rPrPC 

was statistically faster than truncated rPrPc (365, 366)) (Fig. 4.2H). Because the conversion of human and 

bank vole rPrPC was so fast, the data are also shown on a smaller scale (Fig. 4.4A,B).  
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Figure 4.2. Removal of the amino terminal domain affects rate of seeded conversion and 
increases spontaneous conversion of rPrP. We added brain homogenate (prion-positive or 
negative) to the homologous substrate, in either its full-length or truncated version. Reaction 
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conditions were designed for increased amyloidogenicity and were the same for all experiments in 
this figure (RT-QuIC conditions for full-length PrP, as described in the methods). Scatterplots 
represent raw data and lines indicate the median. * indicates a difference between the lag phase for 
full-length and truncated substrates (p<0.05, WMW test). A. Truncated bovine rPrP spontaneously 
formed amyloid faster than full-length bovine rPrP (in the presence of normal brain homogenate). 
B. cBSE seeded truncated bovine rPrP faster than full-length. C. Truncated white-tailed deer rPrP 
spontaneously formed amyloid faster than full-length white-tailed deer rPrP (in the presence of 
normal brain homogenate). D. CWD seeded truncated white-tailed deer rPrP faster than full-length. 
E. Truncated human rPrP spontaneously formed amyloid faster than full-length human deer rPrP (in 
the presence of normal brain homogenate). F. sCJD seeded full-length human rPrP faster than 
truncated. G. Truncated bank vole deer rPrP spontaneously formed amyloid faster than full-length 
bank vole rPrP (in the presence of normal brain homogenate).  H. sCJD seeded full-length bank vole 
rPrP faster than truncated. 

 

 
Figure 4.3. Primary sequence alignment. The amino acid sequences of bovine, human, bank vole and the 
N-Hu-Bo-C and N-Bo-Hu-C chimeras are aligned. Green letters indicate differences between human and 
bovine NTD sequence and red letters indicate differences between bank vole and human PrPc NTD 
sequence. The red bars indicate the junctions where human and bovine meet in the chimeras. 
 



99 
 

 
Figure 4.4. CWD converts human and bank vole rPrP very efficiently. This data is also displayed in 
Fig. 4.2, but is shown here on a smaller y-axis, which makes it easier to visualize the differences between 
the points. As described in Fig. 4.2, we added prion-positive human brain homogenate to A) human rPrPc 
substrate, in either its full-length or truncated version. B) We added prion-positive human brain homogenate 
to bank vole rPrPc, in either its full-length or truncated form. Reaction conditions were designed for 
increased amyloidogenicity and were the same for all experiments in this figure (RT-QuIC conditions for 
full-length PrP, as described in the methods). Scatterplots represent raw data and lines indicate the median. 
* indicates a difference between the lag phase for full-length and truncated substrates (p<0.05, WMW test).  
 

The amino terminal domain is not essential for preferential seeding of rPrPC species by native prions. 

Once we completed the direct comparisons of truncated rPrPC to full-length rPrPC, we modified 

the reaction conditions used for the truncated rPrPC to improve specificity. We decreased the salt, SDS, 

PrP concentration and temperature to reduce the amyloidogenicity of the reaction. Experiments in 

subsequent figures were performed with these more specific conditions (details in Methods). 

We hypothesized that the NTD may play a role in defining an rPrPC molecule as bovine or human 

or white-tailed deer. For the RT-QuIC assay, we expect a prion seed to cause the most efficient 

conversion in its host substrate (93), but we hypothesized that this may no longer be the case upon 

removal of the NTD. Therefore, we added each prion of interest (cBSE, CWD, sCJD) to its homologous 

substrate and to a non-homologous substrate. For cBSE, CWD and sCJD, there was no indication that the 

NTD is necessary for the prion to preferentially seed its host rPrPC. cBSE prions caused amyloid 

conversion faster in bovine rPrPC than non-host rPrPC (white-tailed deer), whether the rPrPC was amino-

terminally-truncated or full-length (Fig. 4.5A-B). CWD prions converted white-tailed deer rPrPC faster 
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than non-host rPrPC (bovine), whether the rPrPC was truncated or full-length (Fig. 4.5C-D). sCJD prions 

caused amyloid conversion faster in human rPrPC than in non-host (bovine), whether or not the rPrPC was 

truncated (Fig. 4.5E-F). Therefore, the NTD was not essential for prion seeds to most efficiently seed 

their host rPrPC. The amyloid formation in unseeded controls is indicated by the dotted lines in Fig. 4.5 

and the distribution of those data is displayed in Fig. 4.6. Additionally, each data set in Fig. 4.5 was 

compared to unseeded controls and the results are shown in Table 4.1. 
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Figure 4.5. The amino terminal domain is not essential for preferential seeding of rPrP species by 
their native prions. We added prion-positive or prion-negative brain homogenate to both a homologous 
rPrPc substrate and a non-host substrate, either truncated or full-length. We performed full-length rPrP 
experiments with RT-QuIC conditions for full-length PrP, as described in the methods. We performed 
truncated rPrP experiments with RT-QuIC conditions for truncated PrP, as described in the methods, and 
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unlike the conditions used in Fig. 4.2. Scatterplots represent raw data and lines indicate the median. Dotted 
lines indicate the median lag phase for unseeded misfolding for truncated substrates (colors indicate which 
species the line represents). * indicates a difference between the lag phase for the host and non-host 
substrate (p<0.05, MWM test). A. cBSE prions converted full-length bovine rPrPc faster than white-tailed 
deer rPrPc. B. cBSE prions also converted bovine rPrPc faster than white-tailed deer rPrPc when the 
substrates were truncated. C. CWD prions converted white-tailed deer rPrPc faster than bovine rPrPc when 
the substrates were full-length. D. CWD prions converted white-tailed deer rPrPc faster than bovine rPrPc 
when the substrates were truncated. E. sCJD prions converted human rPrPc faster than bovine rPrPc when 
the substrates were full-length. F. sCJD prions converted human rPrPc faster than bovine rPrPc when the 
substrates were truncated. 
 

 
Figure 4.6. Distribution of unseeded controls. Frequency histogram of the negative controls (negative 
brain material) are displayed for A. full-length bovine substrate, B. truncated bovine substrate, C. full-
length human substrate, D. truncated human substrate, E. full-length white-tailed deer (WTD) substrate, 
and F. truncated WTD substrate. The frequency of unseeded controls crossing the threshold is indicated 
by bar graphs for each lag phase.  
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Table 4.1. Statistical analysis of data in figure 4.5. Compare unseeded negative controls to seeded 
experiments. 
Figure Prion Seed Substrate Dilution Different from Unseeded Controls? 
5A BSE FL Bovine 10-3 P<0.05 
5A BSE FL Bovine 10-4 P<0.05 
5A BSE FL Bovine 10-5 P<0.05 
5A BSE FL Bovine 10-6 P<0.05 
5A BSE FL WTD 10-3 P<0.05 
5A BSE FL WTD 10-4 P<0.05 
5A BSE FL WTD 10-5 Not significant 
5A BSE FL WTD 10-6 Not significant 
5B BSE Truncated Bovine 10-3 P<0.05 
5B BSE Truncated Bovine 10-4 P<0.05 
5B BSE Truncated Bovine 10-5 P<0.05 
5B BSE Truncated Bovine 10-6 Not significant 
5B BSE Truncated WTD 10-3 P<0.05 
5B BSE Truncated WTD 10-4 P<0.05 
5B BSE Truncated WTD 10-5 Not significant 
5B BSE Truncated WTD 10-6 P<0.05 
5C CWD FL WTD 10-3 P<0.05 
5C CWD FL WTD 10-4 P<0.05 
5C CWD FL WTD 10-5 P<0.05 
5C CWD FL WTD 10-6 Not significant 
5C CWD FL Bovine 10-3 P<0.05 
5C CWD FL Bovine 10-4 P<0.05 
5C CWD FL Bovine 10-5 P<0.05 
5C CWD FL Bovine 10-6 Not significant 
5D CWD Truncated WTD 10-3 P<0.05 
5D CWD Truncated WTD 10-4 P<0.05 
5D CWD Truncated WTD 10-5 P<0.05 
5D CWD Truncated WTD 10-6 Not significant 
5D CWD Truncated Bovine 10-3 Not significant 
5D CWD Truncated Bovine 10-4 Not significant 
5D CWD Truncated Bovine 10-5 Not significant 
5D CWD Truncated Bovine 10-6 Not significant 
5E sCJD FL Human 10-3 P<0.05 
5E sCJD FL Human 10-4 P<0.05 
5E sCJD FL Human 10-5 P<0.05 
5E sCJD FL Human 10-6 P<0.05 
5E sCJD FL Bovine 10-3 P<0.05 
5E sCJD FL Bovine 10-4 P<0.05 
5E sCJD FL Bovine 10-5 P<0.05 
5E sCJD FL Bovine 10-6 P<0.05 
5F sCJD Truncated Human 10-3 P<0.05 
5F sCJD Truncated Human 10-4 P<0.05 
5F sCJD Truncated Human 10-5 P<0.05 
5F sCJD Truncated Human 10-6 P<0.05 
5F sCJD Truncated Bovine 10-3 P<0.05 
5F sCJD Truncated Bovine 10-4 Not significant 
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5F sCJD Truncated Bovine 10-5 Not significant 
5F sCJD Truncated Bovine 10-6 Not significant 

 

The amino terminal domain enables CWD conversion of human rPrPC in vitro. 

Above, we show that homologous prions are better seeds for their native rPrPC, despite truncation 

(Fig. 4.5). However, when we assessed the behavior of non-homologous prions in human rPrPC, we 

observed that the truncated human rPrPc is less permissive to CWD prions than is the full-length human 

rPrPC (Fig. 4.7A).  

 

 
Figure 4.7. The amino terminal domain enables CWD conversion of human rPrPc. A. We added 
prion-positive or prion-negative brain homogenate from white-tailed deer to truncated or full-length 
human rPrPC. Experiments were under the same conditions, which are described in the methods. B. 
We added prion-positive or negative brain homogenate from white-tailed deer to truncated or full-
length bank vole rPrPC. Scatterplots represent raw data. * indicates that the differences in CWD 
susceptibilities are different between full length and truncated substrates (p<0.05, MWM test). 

 

The amino terminal domain improves CWD conversion of bank vole rPrPC in vitro. 

Because bank vole and human PrPC have only one amino acid difference in the NTD (Fig. 4.3), 

we hypothesized that the full-length bank vole rPrPC may also be more susceptible to conversion by CWD 

prions than the truncated bank vole rPrPC. We tested the effect of amino-terminal truncation on the 
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promiscuity of the bank vole rPrPC (Fig. 4.7B). Again, CWD caused conversion slightly more efficiently 

in full-length bank vole rPrPC than in truncated bank vole rPrPC. 

 

The human amino terminal domain does not increase susceptibility when substituted into another rPrPC 

Since the human NTD behaved differently than bovine or white-tailed deer in its effect on 

amyloidogenicity, we hypothesized that the human NTD may confer increased promiscuity to the 

molecule and that the substitution of the human NTD into bovine rPrPC would increase the susceptibility 

of the chimeric rPrPC to CWD prions. To test this hypothesis, we developed a chimera containing the 

human NTD and bovine carboxy-terminal domain (N-Hu-Bo-C). cBSE caused rPrPC conversion with 

indistinguishable lag phases in the N-Hu-B-C chimera and bovine rPrPC, which suggests that the NTD 

substitution does not reduce the homologous seeding of bovine rPrPC with cBSE (Fig. 4.8A). sCJD prions 

converted the human rPrPC faster than the N-Hu-Bo-C chimera, indicating that the human NTD alone was 

not sufficient to define the rPrPC substrate as human (Fig. 4.8C). Finally, seeding efficiency with CWD 

was equivalent in the N-Hu-Bo-C chimera and in bovine rPrPC, suggesting that the substitution of the 

human amino terminal domain did not increase the propensity of bovine rPrPC to be converted by CWD 

prions (Fig. 4.8E).  
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Figure 4.8. The human rPrPC is susceptible to conversion by CWD prions regardless of its amino 
terminal domain sequence.  However, the human amino terminal domain does not confer increased 
susceptibility to other species’ rPrPC. We added prion-positive or prion-negative brain homogenate from 
white-tailed deer (CWD), cattle (cBSE) or humans (sCJD) to full-length human, bovine or chimeric rPrPC. 
These experiments used RT-QuIC conditions for full-length PrP, as described in the methods. Scatterplots 
represent raw data and lines indicate the median. Dotted lines indicate the median lag phase for unseeded 
misfolding for truncated substrates (colors indicate which species the line represents). Brackets indicate a 
significant difference between either full-length bovine or human and the chimera (p<0.05, WMW). A. 
cBSE prions convert bovine and N-Hu-Bo-C chimeric rPrPC with the same efficiency, but human rPrPc is 
slower. B. cBSE prions convert human and N-Bo-Hu-C chimeric rPrPC with the same efficiency, while the 
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conversion of bovine rPrPC is faster. C. sCJD prions convert bovine and N-Hu-Bo-C chimeric rPrPC with 
the same efficiency, but human rPrPC is faster. D. sCJD prions convert human and N-Bo-Hu-C chimeric 
rPrPC with the same efficiency, while the conversion of bovine rPrPC is slower. E. CWD prions convert 
bovine and N-Hu-Bo-C chimeric rPrPC with the same efficiency, but conversion of human rPrPC is faster. 
F. CWD prions convert human and N-Bo-Hu-C chimeric rPrPC with the same efficiency, while the 
conversion of bovine rPrPC is slower. 
 

CWD prions convert human rPrPC efficiently, regardless of amino terminal domain sequence. 

Given the previous result, we alternatively hypothesized that human rPrPC is susceptible to 

conversion by CWD prions independent of NTD sequence, as long as the NTD was present. We created 

the N-Bo-Hu-C chimera, which substitutes the bovine NTD for the human NTD, to investigate the 

importance of the NTD in the CWD species barrier. When we added cBSE prions to the N-Bo-Hu-C 

chimera, the conversion of the chimera was statistically indistinguishable from full-length human rPrPC 

(Fig. 4.8B). When we added sCJD prions, the N-Bo-Hu-C chimera likewise was statistically 

indistinguishable from full-length human rPrPC (Fig. 4.8D). Finally, when we added CWD prions, the 

chimera was statistically indistinguishable from full-length human rPrPC (Fig. 4.8F). These results 

suggest that the presence of an amino terminal domain preserves the susceptibility of full length human 

rPrPC to CWD prions, even if it does not have exactly the same sequence as the human NTD. 

 

Discussion  

The role of the PrPC amino terminal domain (NTD, aa23-90) in the physiological role of PrPC, 

disease progression and amyloidogenicity have been reported (352-354, 357-359, 367-369). However, the 

role of the NTD in trans-species transmission of prions has not been studied. Here, we used RT-QuIC to 

compare the conversion efficiency of white-tailed deer (WTD), bovine, bank vole or human PrPC, with or 

without the NTD, in the presence of CWD, cBSE, sCJD or no prions. 

We demonstrated that truncated (aa90-231) WTD, bovine, bank vole and human PrPC 

spontaneously form amyloid faster than the full-length forms, which suggests that the NTD reduces the 

amyloidogenicity of PrPC. However, the efficiency of conversion in the presence of a prion seed relies 

upon the compatibility of the prion seed with the substrate and upon the amyloidogenicity of the PrPC 



108 
 

substrate. Truncated bovine and WTD rPrPC formed amyloid faster than full-length rPrPC upon addition 

of a seed, whereas truncated human and bank vole rPrPC converted more slowly than full-length rPrPC 

upon addition of a seed. This suggested that the NTD of human and bank vole may increase the 

compatibility of the seed and substrate in some way.  

Next, we tested the effect of the NTD on the permissiveness of the rPrPC to conversion by 

homologous and heterologous prions. cBSE, CWD and sCJD converted their native substrates more 

efficiently than non-native substrates, regardless of truncation. This suggested that a prion seed is able to 

recognize its host PrPC with or without the NTD and that the NTD does not play an essential role in 

defining a PrPC molecule as one species or another. We observed previously that human rPrPC is 

susceptible to misfolding by CWD prions (93). Here, we demonstrated that CWD misfolded truncated 

human rPrPC less efficiently than it misfolded full-length human rPrPC, suggesting that the susceptibility 

of human rPrPC to CWD prions may involve the NTD. The results are summarized in Table 4.2.  

 

Table 4.2. Summary of results for NTD of various species’ rPrPc. See figures for more details. 

Species PrPC NTD role in 
permissiveness 

NTD role in rate of 
misfolding 

NTD required to 
recognize host 

Chimera 
behaves like: 

Bank Vole ↑ ↑ No  
Bovine ↔ ↓ No  
Human ↑ ↑ No  
White-tailed deer ↔ ↓ No  
N-Hu-Bo-C    Bovine 
N-Bo-Hu-C    Human 
See Figure: Fig. 4.5 Fig. 4.2 Fig. 4.5 Fig. 4.7 

 

Chimeric PrPC molecules are commonly used in prion research to focus on the region of the 

protein responsible for resistance to prion conversion (57, 64, 316, 370, 371). We were particularly 

interested in whether the NTD of human PrPC could increase susceptibility to trans-species conversion by 

CWD prions, so we created a chimera with a human NTD substituted into bovine PrPC (N-Hu-Bo-C) and 

a chimera with the bovine NTD substituted into human PrPC (N-Bo-Hu-C). We hypothesized that the 

human NTD would increase promiscuity, so we tested the susceptibility of the N-Hu-Bo-C chimera to 
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seeded conversion. However, N-Hu-Bo-C was indistinguishable from bovine rPrPC, whether homologous 

or non-homologous prions were used as seeds. We concluded that the human NTD alone did not confer 

additional susceptibility to conversion.  

Alternatively, we hypothesized that the presence of any NTD to human substrate would have the 

effect of increasing the susceptibility of the chimera vs. the truncated rPrPC. Indeed, we found that N-Bo-

Hu-C had essentially the same permissiveness as full-length human rPrPC to conversion by human, cBSE 

and CWD prions. The importance of the NTD for human rPrPC susceptibility invokes transgenic mouse 

studies wherein truncation around amino acid 90 results in reduced attack rate and PrPSc accumulation 

(352, 353). It is possible that the human and bank vole PrPC have a site in the globular domain that 

interacts with the NTD to facilitate seeded conversion, but not spontaneous conversion. 

Together, the above data suggest that the PrPC NTD alone does not control species barriers in 

vitro, but that interaction of the amino terminal domain with the rest of the protein may be involved in the 

susceptibility of human rPrPC to in vitro conversion by CWD prions. Multiple investigators have studied 

the role of specific regions of the PrPC core and carboxy-terminal domain in prion disease species 

barriers. Reports have identified the β2-α2 loop and amino acids 165-175 as regions controlling trans-

species transmission of prions, particularly of CWD prions to humans (255, 264). A favored interpretation 

of these data describes a steric zipper, wherein very few amino acid changes can severely disrupt the 

tertiary structure. Several polymorphisms between human and WTD PrPC exist in this region, which may 

explain the apparent resistance of humans to CWD (56, 264). However, our data indicates that the 

variation in the β2-α2 loop does not prevent in-vitro conversion, which suggests that factors in addition to 

the PrPC – PrPSc interactions we modeled in vitro must influence in vivo conversion. 

 Our empirical observation that unseeded conversion of truncated rPrPc was more efficient than 

full-length rPrPC made us wonder whether the NTD impeded conversion universally or in a species-

specific manner, serving to protect against spontaneous misfolding or against trans-species infection. We 

hypothesized that the NTD may play a protective role in trans-species prion conversion, perhaps in 

addition to the β2-α2 loop. However, our data suggests that the NTD does not control trans-species prion 
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conversion, but that it may contribute to the promiscuity of human and bank vole rPrPC. It is possible that 

the NTD, which is natively unfolded, has some interaction with other regions of the rPrPC or with the 

PrPSc seed. A recent report suggested a structural mechanism by which the NTD may interact with the 

globular domain (372). These observations suggest that full-length protein should be used in structural 

studies of human PrPC and the mechanisms of its seeded or spontaneous conversion.  

We found that human rPrPC can be readily converted to an amyloid state by CWD prions, and 

that the NTD facilitates this conversion. As there is little evidence for the susceptibility of humans to 

CWD, the biologic significance of our observation remains to be determined. However, the role of the 

NTD in this in vitro phenomenon may be important to the in vivo mechanism as well. RT-QuIC, 

transgenic mouse bioassay, and protein misfolding cyclic amplification (PMCA) measure different 

outcomes. This manuscript compares the efficiency of initial amyloid formation, while bioassay and 

PMCA reflect total accumulation of protease-resistant PrPSc, which may explain the difference in the 

apparent susceptibility of full-length human rPrPC in these models. The molecular underpinnings for 

species barriers and trans-species prion conversion remain a complex, important problem in prion 

biology. We propose that an interaction between the amino terminal domain and the globular domain 

facilitates in vitro susceptibility of human rPrPC to conversion by CWD prions. Such an interaction may 

be important when considering the susceptibility of humans to animal prion diseases.  
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CHAPTER 5: WHITE-TAILED DEER SALIVA CONTAINS INHIBITORS OF AMYLOID 

FORMATION IN RT-QUIC 

 
 
Summary 

Chronic wasting disease (CWD) is the prion disease of cervids, and involves the conversion of a 

normal protein, PrPC to an abnormal conformation, PrPSc. PrPSc is autocatalytic and the conversion of 

PrPC to PrPSc propagates. PrPC is expressed throughout the deer, and PrPSc has been identified in many 

tissues and in excreta. CWD is unique in its facile horizontal transmission, which has resulted in a 

dramatic expansion of the geographic range and prevalence of CWD since its discovery in the 1980s. 

Infectious prions have been identified in saliva, and there have been several attempts to quantify PrPSc in 

saliva. The introduction of ultra-sensitive prion detection techniques like real-time, quaking-induced 

conversion (RT-QuIC) has made the detection of very low levels of prions possible. 

However, detection of seeding activity in saliva with RT-QuIC is hampered by imperfect 

sensitivity and specificity, despite the development of several approaches to improve specificity and 

sensitivity. Here, we describe an RT-QuIC inhibitor in saliva, confirm that inhibition is not due to 

protease activity, and suggest that the inhibitor is a mucin protein. Recognition and characterization of 

RT-QuIC inhibitors in saliva and other biological samples is crucial to understand the frequency and 

magnitude of prion shedding in saliva and to understand CWD horizontal transmission. 

 

Background 

 CWD has spread across much of the western United States since its identification in the 1980s 

(61, 271). It is clear that horizontal transmission is common in wild and captive cervid populations, but 

the mechanisms of transmission of CWD remain incompletely understood (135). As with any infectious 

(and potentially zoonotic) disease, it is crucial that we understand the routes of transmission of CWD. An 

understanding of the prevalence of prions in excreta would enable the calculation of R0, which is essential 

for an explanation of the disease process and spread. The development of sensitive diagnostic tools has 
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increased our ability to detect prions, but the interpretation is more complex than yes-or-no. RT-QuIC 

does not have 100% sensitivity or 100% specificity, leaving the possibility for both false negatives and 

false positives (288). My colleagues have investigated the presence of prions and seeding activity in 

saliva from CWD(+) white-tailed deer for many years. We have confirmed that prions in saliva are 

infectious, and have made attempts to quantify prions in saliva and other excreta (123, 218, 230, 231, 288, 

305). Through these studies, we have relied on negative controls to prevent misinterpretation of false 

positives and have suspected the presence of false negatives. Sample preparation with phosphotungstic 

acid precipitation (PTA) and iron-oxide magnetic extraction (IOME) increases the sensitivity of RT-QuIC 

in saliva samples (230, 288). Despite these additional steps, we have observed the pattern wherein saliva 

samples appear to be negative in RT-QuIC until diluted. The requirement for sample dilution to enable 

seeding caused us to hypothesize that an inhibitor of RT-QuIC was present in some saliva samples, an 

inhibitor which would cause us to underestimate the frequency or titer of seeding activity in saliva from 

CWD(+) deer.  

 There is evidence that RT-QuIC is susceptible to inhibition from non-prion components. Hoover, 

et al. observed that the highest concentrations of brain homogenate are inhibitory to amyloid formation in 

RT-QuIC and that the expected dilutional response does not commence until the brain homogenate has 

been diluted to approximately a 0.01% w/v homogenate. However, when polar lipids are removed from 

the brain homogenate with alcohol precipitation, the dilutional response is restored. The addition of polar 

lipids from brain inhibits the RT-QuIC reaction for other tissue types as well, confirming that polar brain 

lipids are a bona fide inhibitor of RT-QuIC (373). The other compelling evidence for inhibitors of the RT-

QuIC reaction comes from the attempts to diagnose prions in blood. Several approaches have been 

described for detecting seeding activity in “inhibitor-laden” samples like whole blood and blood plasma 

(374, 375). For example, Byron Caughey’s group used immunoaffinity capture to trap prions from blood 

plasma, which were then subjected to a modified RT-QuIC protocol to facilitate detection. In the case of 

RT-QuIC inhibition by blood, no inhibitor(s) was identified (150).  
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 Though inhibitors are problematic for detection by RT-QuIC, inhibition of amyloid formation has 

therapeutic potential. Several molecules have been used in vitro and in vivo to inhibit amyloid formation 

or prion propagation, with the goal of prion disease treatment. For example, doxycycline (a tetracycline 

antibiotic) decreased the amount of PrPSc in animal models, though it had no effect in a human clinical 

trial (376-378). Similarly, quinacrine, an anti-malarial compound, inhibited PrPSc propagation in vitro and 

in some animal models, but had no effect in a human clinical trial (198, 379-381). Others have explored 

potential inhibitors of amyloid propagation in vitro, but prion disease remains essentially untreatable 

(361, 382-384). Progress requires more compounds and a better understanding of the mechanisms by 

which prion propagation may be inhibited, both of which may be explored with high-throughput, in vitro 

assays like RT-QuIC (385).  

 We suspected that the RT-QuIC inhibitor in saliva was among the normal components of 

ruminant saliva. In ruminants generally, and fallow and roe deer (Cervus dama dama, Capreolus 

capreolus) in particular, saliva is basic (pH 8.2-8.6) and buffered, principally by Na+, K+, inorganic 

phosphate and Ca++ (386, 387). Mixed saliva (from all salivary gland tissue) contains 0.7-6.7mg/mL 

protein (386). There are several protein families in ruminant saliva. In mule deer (Odocoileus hemionus 

hemionus), saliva contains more proline-rich proteins than cattle and sheep, which are presumed to 

facilitate consumption of high levels of tannins (388). The most common protein family in saliva is the 

mucin family, which is comprised of complex glycoproteins that lend saliva its viscosity and provide 

lubrication (389). Mucins have cysteine-rich termini to facilitate disulfide bonds between and within 

monomers and serine/threonine-rich cores to facilitate the addition of O- and N-linked oligosaccharides, 

including sialic acids and acetylhexosamine (390).  

 Our observations from many years of experience with saliva from CWD(+) deer suggested that at 

least some samples contained an RT-QuIC inhibitor. The presence of an inhibitor would result in an 

underestimation of the frequency and/or titer of seeding activity in saliva, information that is crucial to 

understanding the spread of CWD. In these experiments, we confirmed the presence of an RT-QuIC 

inhibitor and provided evidence that the inhibitor is a protein, perhaps a member of the mucin family. 
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This work provides the basis for further optimization of the RT-QuIC assay and provides motivation to 

analyze results of excreta screens in a manner that accounts for false negatives (and false positives). 

 

Methods 

Western blot and Coomassie stain 

We pooled replicate RT-QuIC wells and combined 20μL RT-QuIC product or saliva with 20μL 

2X LSB/βME (Novagen) and boiled the samples for 5 minutes. We loaded 30μL each sample to a 12-

well, 12% Bis-Tris, pre-cast, polyacrylamide gel (Novagen) and electrophoresed at 150V for one hour. 

For Coomassie stained gels, we added Coomassie stain (0.25%w/v Coomassie Brilliant Blue R250, 7.5% 

v/v glacial acetic acid, 50% v/v methanol) to the gel and rocked at room temperature (RT) for 2 hours, 

then removed the stain, rinsed the gel, and destained (7.5% v/v glacial acetic acid, 50% v/v methanol) for 

2 hours at RT. For western blots, we transferred the proteins to polyvinylidene fluoride (PVDF) 

membranes for one hour at 80V on ice. We blocked the membranes in 5% non-fat dry milk, then exposed 

the membranes to anti-PrP antibody Bar224 (Cayman Chemicals) overnight at 4°C, followed by 

secondary antibody (goat anti-mouse IgG2a-HRP (SeraCare)) for one hour at RT. We developed the 

western blots with Pierce ECL substrate (Thermo Scientific). For both western blots and Coomassie 

stained gels, we collected images with an ImageQuant LS. 

 

Inhibitory saliva pools 

We made a large pool of CWD(-) saliva to be used for the experiments in this study. The pool 

was comprised of 1mL baseline saliva samples (pre-inoculation) from each of the following deer: 1201, 

1204, 1205, 1211, 1218. Data confirming the inhibitory nature of this pool is shown in Fig. 5.2A.  

 

NaPTA treatment 

We added fresh 7μL sodium phosphotungstic acid (final concentration: 0.33% NaPTA, 0.28% 

MgCl2 w/v) to 100μL undiluted saliva. We shook the solution for 1 hour at 37°C and 1400 RPM, then 
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pelleted the proteins by centrifugation at 14,000g for 30 minutes. We resuspended the pellets in 10μL 

0.1% SDS/PBS, then spiked 1μL 0.01% brain homogenate into 9μL the resuspended, NaPTA-treated 

saliva pellet. 

 

PTA treatment 

We added 4% fresh phosphotungstic acid (PTA) (Sigma) to 100µL undiluted saliva or 1% tonsil 

homogenate for a final concentration of 0.3%, then incubated the samples for 1 hour at 37°, shaking at 

1700 RPM. We pelleted the proteins by centrifugation at 17,000g for 30 minutes, then resuspended the 

pellets in 10µL 0.1% SDS/PBS, then spiked 1μL 0.01% brain or tonsil homogenate into 9μL treated 

saliva pellet.  

 

Iron-oxide bead treatment 

We diluted saliva 1:5 in 0.1% SDS/PBS (100μL total) and added a final concentration of 

0.00001% brain homogenate, plus 2μL iron-oxide beads (~9μm, Bangs Laboratory). We rocked the 

solution for 1 hour at RT, then used a magnetic particle separator to pellet the beads. We saved the 

supernatant and resuspended the beads in 0.1% SDS/PBS. To test whether the inhibitors in saliva bind the 

beads, we did not add brain before bead binding, but resuspended the beads in 0.001% brain homogenate 

after incubation with saliva. Therefore, the beads were exposed to the same amount of brain material in 

both scenarios. 

 

Protease treatment 

We treated saliva samples with proteinase K (PK, final concentration of 4μg/mL) at 45°C for 1 

hour at 900 RPM. We added 10mM phenylmethylsulfonyl fluoride (PMSF) to each sample and boiled for 

5 minutes to inactivate the PK. Next, we spiked 1μL 0.01% brain homogenate into 9μL treated saliva.  
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Protease inhibitor treatment 

To test whether the proteases present in saliva were destroying the recombinant PrPC (rPrPC) upon 

which the RT-QuIC assay relies, we pre-incubated saliva with rPrPC, with or without protease inhibitors. 

We substituted 1/3 the water in the RT-QuIC mastermix (1mM EDTA, 0.1mg/mL rPrP, 320mM NaCl, 

10μM ThT, H2O) with saliva (for a final concentration of 20% v/v). We added protease inhibitor cocktail 

(EDTA-free protease inhibitor cocktail, Thermo Scientific 78437) and incubated for 1hr, 2hr, 6hr or 

overnight at 42°C with one minute of shaking (500RPM) alternating with one minute of rest. We used 

these samples as the substrate for RT-QuIC or for electrophoresis, then western blot or Coomassie stain.  

 

Mucin treatment 

We made fresh mucin daily (25mg/mL bovine submaxillary mucin, Sigma; in 10mM HEPES 

buffer, pH 7.6) and diluted it in PBS or saliva electrolytes for final concentrations of 0.5mg/mL, 

1.25mg/mL, 2.5mg/mL, 5.0mg/mL, 6.25mg/mL or 12.5mg/mL. The use of 10mM HEPES as a diluent for 

bovine submaxillary mucin was published previously (391). 

 

NaLC treatment 

We made fresh N-acetly-L-cysteine in water (NaLC, Sigma, 0.3M), then diluted it in saliva or 

PBS for final concentrations of 30μM, 15μM or 5μM. Concentrations were based on other in vitro 

experiments with NaLC (392).  

 

Saliva electrolyte treatment 

We created a solution with the electrolyte concentrations of ruminant saliva based on a 1948 

report by McDougall (393). The solution composition is as follows: 117mM NaHCO3, 26mM 

Na2HPO4*12H2O, 8mM NaCl, 8mM KCl, 0.2mM CaCl2 anhydrous, 0.3mM MgCl2 anhydrous. We 

dissolved these salts in deionized water and filtered the solution. We added 2% SDS for a final 

concentration of 0.1% SDS and diluted brain homogenate into the SDS/electrolyte solution. 
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Saliva screen 

To determine the frequency with which negative saliva samples contain inhibitors of RT-QuIC, 

we devised a screening protocol. First, we diluted positive brain to a final concentration of 0.01% or 

0.001% in saliva and 0.01%SDS and tested for inhibition in triplicate in RT-QuIC. To test the dilutional 

response of the inhibitor, we added 0.001% positive brain in 30% saliva or 60% saliva, added SDS for a 

final concentration of 0.01%, and added the sample to triplicate wells in RT-QuIC.  

 

RT-QuIC 

We purified Syrian hamster rPrPC (codons 90-231) as previously described (325). We expressed 

the cDNA in E. coli BL21-Star cells overnight under the following inducing conditions: LB media, 

kanamycin and chloramphenicol, 20X NPS [0.5M (NH4)2SO4, 1M KH2PO4, 1M Na2HPO4], 50X 5052 

[0.5% glycerol, 0.05% glucose, 0.2% lactose], 1mM MgSO4. We harvested inclusion bodies with 

lysozyme (0.25mg/mL), DNase (1μg/mL) and MgCl2 (5mM) in 1X Bugbuster (Novagen) following the 

manufacturer’s protocol (Novagen). We solubilized inclusion body pellets in 8M guanidine hydrochloride 

(GdnHCl) overnight, then bound the solubilized protein to Ni-agarose resin, rotating at room temperature 

for 45 minutes (GE Healthcare Life Sciences). We refolded the rPrPC with a gradient from 6M GdnHCl in 

100mM Na2HPO4 and 10mM Tris to the same buffer with no GdnHCl on a GE FPLC (AktaPure, GE 

Healthcare Life Sciences). We eluted with a gradient from 0.0M to 0.5M imidazole and dialyzed the 

rPrPC in two changes of 20mM NaH2PO4 overnight, then stored at 4°C. 

We added 10μg rPrPC to 10μM thioflavin T (ThT), 320mM NaCl, 1mM EDTA and 1X PBS in 

one well of a 96-well plate (Nunc black, optical-bottom, 96-well plates, ThermoScientific). Sample 

preparation was variable, depending on the treatment, and is described in the previous sections, but we 

always added 2μL of the sample to each well. We either prepared the sample in 0.1% SDS or added 2µL 

0.1% SDS to the plate separately. For controls, we included brain (positive and negative) diluted into PBS 

and into inhibitory saliva on every plate. We used a BMG Fluostar Omega microplate reader to shake the 

plates for one minute (double orbital shaking at 700RPM), followed by one minute of rest, for 62.5 hours 
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at 42°C. The fluorescence was recorded every 15 minutes with a 450nm excitation wavelength, a 480nm 

emission wavelength, and a gain of 1700.  

 

Results 

Some saliva samples require dilution to enable seeding in RT-QuIC. 

We have studied the presence of prions and seeding activity in saliva from CWD(+) white-tailed 

deer for many years. We previously confirmed that prions in saliva are infectious, and have quantified 

prions in saliva and other excreta (123, 218, 230, 231, 288, 305). In many of these studies, we used RT-

QuIC to measure the seeding activity in saliva samples. Over years of experience testing saliva, we 

observed that some saliva samples were apparently negative, until they were diluted (some examples in 

Fig. 5.1A). We hypothesized that saliva contains an inhibitor of RT-QuIC, which impedes seeding when 

the inhibitor concentration is particularly high, the seeding activity is low, or some combination of both 

conditions.  

We designed a number of experiments to confirm the presence of an RT-QuIC inhibitor and to 

attempt to identify the molecule. First, we used SDS-PAGE and Coomassie stain to compare the total 

protein content of saliva samples that either did or did not require dilution to enable RT-QuIC seeding 

(Fig. 5.1B). The saliva samples varied in their total protein content, based on the total intensity of each 

lane, and there were only a few apparent differences in the presence or absence of bands from the samples 

that require dilution for seeding. The bands that appear only in the samples that require dilution are 

indicated with arrows. The requirement for dilution of some samples, and the unclear results from the 

Coomassie stain prompted us to confirm the presence of an RT-QuIC inhibitor in saliva and to attempt to 

identify the molecule(s) responsible. 
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Figure 5.1. Some saliva samples must be diluted to enable seeding in RT-QuIC. A. Points indicate the 
lag phase for each replicate in RT-QuIC, which indicates the efficiency with which amyloid formation 
occurred. We show three examples of saliva samples that have detectable seeding activity upon dilution. 
(A=121, B=139, C=143) B. We analyzed the total protein content in four saliva samples by Commassie 
stain. Black arrows along the top of the image indicate dilution of the samples and labels on the bottom of 
the gel indicate which samples require dilution for RT-QuIC seeding. Red arrows indicate bands that appear 
only in samples that require dilution. Samples, from L-R, are 121, 142, 132, 137. 
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Saliva inhibits seeding activity in RT-QuIC 

To test whether saliva has an inhibitor that hampers seeding in in RT-QuIC, we performed a 

series of spiking experiments. We created a pool of saliva from naïve deer that we used for all subsequent 

spiking and subtraction experiments. First, we diluted CWD(+) brain in neat saliva with SDS or in PBS 

with SDS, then tested the solution in RT-QuIC. All but the highest dilution of brain homogenate were 

completely inhibited by saliva, and the highest dilution had a decreased lag phase compared to the 

PBS/SDS control, indicating inhibition in this prion-laden sample (Fig. 5.2A). Next, we added 200ng 

CWD(+) brain to saliva diluted in PBS. There is a dilutional response; seeding activity is completely 

inhibited at 100% saliva (neat) and 60% saliva, severely delayed at 30% saliva and uninhibited at 0% 

saliva (Fig. 5.2B). Finally, we tested dilutions of CWD(-) brain in PBS/SDS or saliva/SDS to ensure that 

components of saliva do not cause spontaneous misfolding of rPrPC (Fig. 5.2C). We have observed that 

the addition of SDS is essential to the RT-QuIC system; without SDS, there is no seeding (unpublished). 

It is possible that SDS is less effective when added to saliva than when added to PBS, so we tested 

whether increased SDS concentrations could rescue the inhibition. However, increased SDS 

concentrations had no effect on inhibition from the saliva diluent (Fig. 5.2D).  
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Figure 5.2. Saliva inhibits seeding activity in RT-QuIC. We tested the ability of saliva to inhibit seeding 
activity from CWD(+) brain homogenate. Points indicate the lag phase for each replicate in RT-QuIC. A. 
First, we diluted brain homogenate into neat saliva, then added 2µL of each dilution to the RT-QuIC assay. 
B. Next, we added 200ng brain homogenate to a series of saliva dilutions (100%, 60%, 30% and 0% saliva) 
and added 2µL of each sample to RT-QuIC. C. Finally, we diluted CWD(-) brain in saliva to ensure that 
saliva did not cause spontaneous conversion of rPrPC to amyloid. D. The RT-QuIC assay is very sensitive 
to changes in SDS concentration, and we have observed that low SDS concentrations or omission of SDS 
will prevent seeding. Therefore, we added extra SDS when we diluted brain in neat saliva to try to rescue 
the inhibition. The SDS concentration of the sample is indicated in the legend; the final concentration is 
2% of the concentration indicated in the legend. 
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Inhibition is common among CWD(-) saliva samples. 

 We were curious how representative our inhibitory, negative saliva pool was for the larger 

population of negative saliva samples. We screened 39 negative saliva samples for their tendency to 

inhibit prion seeding activity from CWD(+) brain homogenate. Roughly 25% of the saliva samples 

completely inhibited (3/3 replicates) 200ng CWD(+) brain homogenate. That percentage increases to 

nearly 50% when we only added 20ng CWD(+) brain homogenate (Fig. 5.3A). We confirmed a dilutional 

response by diluting CWD(+) brain homogenate in 100% saliva, 60% saliva, 30% saliva and 0% saliva. 

More samples were completely inhibited (4/4 replicates) when the saliva concentration was higher, 

confirming a dilutional response (Fig. 5.3B). Even in samples that were not completely inhibited, it was 

common for the lag phase to be lower in the presence of increasing concentrations of saliva (Fig. 5.3C). 
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Figure 5.3. Inhibition is common among CWD(-) saliva samples. We tested 39 saliva samples from 
CWD(-) deer for their ability to inhibit prion seeding activity from brain homogenate in RT-QuIC. A. First, 
we tested the tendency of neat saliva to inhibit seeding from 200ng CWD(+) brain or 20ng CWD(+) brain. 
The number of saliva samples that inhibited 100%, 66%, 33% or 0% of the replicates are indicated by the 
bars. B. Next, we tested whether dilution of the saliva sample resulted in a dilutional response. Indeed, more 
samples were completely inhibitory (inhibited 4/4 replicates) as the percentage of saliva in the diluent 
increased. C. Not all samples prevented seeding entirely, but still had an inhibitory effect on the RT-QuIC 
lag phase. The gray shaded area represents the range of lag phases for 20ng CWD(+) brain with no saliva 
in the diluent. Each point represents the lag phase for an individual replicate for an individual saliva sample 
(3 replicates, 39 samples).  
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The inhibitor interferes with several RT-QuIC detection paradigms. 

 We have used several protocols to concentrate seeding activity in saliva and increase sensitivity 

in RT-QuIC. These include PTA precipitation and concentration of seeding activity with IOME (230, 

231, 288, 305). Both treatments improved sensitivity, but our identification of an RT-QuIC inhibitor in 

saliva caused us to question whether the inhibitor may also be concentrated by these methods and 

continue to interfere with RT-QuIC sensitivity (230, 288). Therefore, we designed a series of experiments 

to test the behavior of the inhibitor in RT-QuIC following PTA precipitation, the related NaPTA 

precipitation, and IOME (Fig. 5.4, Table 5.1). Briefly, we detected inhibition when brain was combined 

with saliva, but detection was rescued by bead extraction. However, when we added iron-oxide beads to 

inhibitory, negative saliva, the beads and supernatant were inhibitory when brain was added after 

separation. This suggests that the RT-QuIC inhibitor binds the beads to some degree, though the presence 

of brain homogenate during incubation competes with the inhibitor binding. NaPTA and PTA treatment 

of brain homogenates does not result in seeding activity, so we switched to CWD(+) tonsil for PTA and 

NaPTA experiments. When we added CWD(+) tonsil to inhibitory, negative saliva, seeding activity was 

inhibited, but PTA treatment restored seeding activity to the pellet, although it was slightly delayed 

compared to PTA-treatment of tonsil without saliva. These data suggest that the RT-QuIC inhibitor is 

precipitated by PTA treatment, but perhaps the seeding activity in the concentrated sample can again be 

high enough to overcome inhibition. When we treated inhibitory, negative saliva with NaPTA, the pellet 

and supernatant were both inhibitory to spiked brain homogenate. Similarly, when we treated inhibitory, 

negative saliva with PTA, the pellet and supernatant were both inhibitory. The supernatant from a PTA-

treated blank was also slightly inhibitory. The pellet is the target fraction that is traditionally used in RT-

QuIC. Together, these data suggest that the RT-QuIC inhibitor is distributed to both the pellet and the 

supernatant in NaPTA and PTA.  
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Figure 5.4. Experimental design to determine effects of saliva inhibitor on RT-QuIC detection 
methods. We have used several methods to enhance the detection of seeding activity in saliva with 
RT-QuIC, including PTA precipitation and iron-oxide beads. We applied each of these treatments to 
saliva, with or without brain homogenate (as outlined in the figure and in the methods section). Red 
fill or text indicates no RT-QuIC activity existed in this fraction, while green indicates full seeding 
activity and orange indicates partial inhibition. Detailed results are in Table 5.1.   
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Table 5.1. The saliva inhibitor interferes with several RT-QuIC detection paradigms. We often 
use ancillary concentration techniques to increase the detection of seeding activity in saliva (and other 
dilute) samples. We tested each technique (iron-oxide beads, NaPTA, PTA) with saliva spiked (or not) 
with brain homogenate. Summarized results are in Fig. 5.4, and the detailed results are described here. 
We assigned a value of 70 hours for replicates that never crossed the threshold. The median lag phase 
and % positive replicates were calculated from 8 replicates. The approach is described in detail in the 
methods section. 
Sample description Median 

lag phase 
% Positive 
replicates 

(+) brain (0.01%) 12.46 100% 
(+) brain (0.001%) 11.04 100% 
(+) brain (0.0001%) 11.93 100% 
(-) brain (0.01%) 70.00 0% 
(-) brain (0.001%) 70.00 0% 
(-) brain (0.0001%) 70.00 0% 
(-) brain (0.01%) in (-) saliva 70.00 0% 
(-) brain (0.001%) in (-) saliva 70.00 0% 
(-) brain (0.0001%) in (-) saliva 70.00 0% 
(+) brain (0.01%) in (-) saliva 70.00 0% 
(+) brain (0.001%) in (-) saliva 70.00 0% 
(+) brain (0.0001%) in (-) saliva 70.00 0% 
beads incubated with 20% (-) saliva and (+) brain 9.38 100% 
(+) tonsil (0.1%) 10.33 100% 
(+) tonsil (0.01%) 11.77 100% 
(+) tonsil (0.001%) 49.49 100% 
pellet from PTA-treated (+) tonsil 11.22 100% 
(+) tonsil in saliva (0.1%) 70.00 0% 
(+) tonsil in saliva (0.01%) 70.00 0% 
(+) tonsil in saliva (0.001%) 70.00 0% 
pellet from PTA-treated (+) tonsil in saliva 15.35 100% 
supernatant from PTA-treated (+) tonsil in saliva 70.00 0% 
(+) brain in pellet from NaPTA-treated (-) saliva 70.00 20% 
(+) brain in supernatant from NaPTA-treated (-) saliva 70.00 0% 
supernatant from NaPTA-treated (-) saliva 70.00 0% 
(+) brain in pellet from PTA-treated (-) saliva 62.27 60% 
(+) brain in supernatant from PTA-treated (-) saliva 70.00 0% 
supernatant from PTA-treated (-) saliva 70.00 0% 
(+) brain in beads incubated with 20% (-) saliva 59.84 50% 
(+) brain in supernatant from beads incubated with 20% (-) saliva 58.97 75% 
(+) brain in pellet from PTA-treated (-) blank 12.76 100% 
(+) brain in supernatant from PTA-treated (-) blank 20.12 80% 
supernatant from PTA-treated (-) blank 70.00 0% 

 

Saliva contains proteases which degrade rPrP in RT-QuIC. 

 We hypothesized that the RT-QuIC inhibitor in saliva may function in one of two ways; first, it 

could damage one of the essential components of the RT-QuIC assay (like rPrPC) or it could inhibit the 
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conversion of rPrPC to amyloid. To test whether saliva was impeding the RT-QuIC assay by degrading 

rPrPC, we incubated saliva with rPrPC for one hour and assessed degradation by western blot (Fig. 5.5A). 

It was apparent that the addition of large concentrations of saliva (1/3 - 1/5 total volume) resulted in 

degradation of the rPrPC, which suggested the presence of protease(s) in saliva. We used the same pre-

incubated samples as the substrate in RT-QuIC and observed no amyloid formation upon the addition of 

CWD(+) brain (Fig. 5.5B).  

We also performed RT-QuIC as we have in previous figures; we diluted brain homogenate into 

saliva and added 2µL of the solution to the RT-QuIC assay without saliva pre-incubation (this constitutes 

a final saliva concentration of approximately 2%). In this case, we also saw inhibition of amyloid 

formation, but without substantial degradation of the rPrPC (Fig. 5.5B). We suspected that the degradation 

of rPrPC was not responsible for the inhibition of the RT-QuIC assay by saliva, but we confirmed this 

hypothesis by treating saliva and rPrPC with a protease-inhibitor cocktail (PIC). We took samples of the 

solution periodically during an overnight incubation, then used the incubated samples as substrate for a 

62.5 hour RT-QuIC assay. The addition of PIC dramatically reduced the degradation of rPrPC by saliva 

proteases, but seeding was not rescued (Fig. 5.5C). Therefore, we concluded that saliva does not inhibit 

RT-QuIC only by degrading the rPrPC substrate, and we proceeded to test other components of saliva that 

may constitute the RT-QuIC inhibitor. 
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Figure 5.5. Saliva contains proteases, which degrade rPrP in RT-QuIC, but is not the only reaction 
inhibitor. A. To test the effect of saliva on the rPrPC in the RT-QuIC assay, we incubated rPrPC with saliva 
of various concentrations. When rPrPC was combined with a final saliva concentration of 33%, 25% or 20% 
for one hour at RT, there was a noticeable degradation product (indicated by red arrow on right). B. We 
subjected the same samples to RT-QuIC with positive or negative brain homogenate spikes or added brain 
diluted in saliva to RT-QuIC, then analyzed the QuIC products by western blot. C. We treated saliva (20% 
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v/v) and rPrPC (.1mg/mL) with a protease inhibitor cocktail (PIC) and collected samples periodically during 
an overnight incubation period. We then used the treated samples as substrate for RT-QuIC and compared 
pre- and post-RT-QuIC samples by western blot.  
 

PK removes RT-QuIC inhibitor in CWD(-) saliva, but does not reliably rescue seeding in CWD(+) saliva 

samples. 

 Based on the tendency of the RT-QuIC inhibitor to end up in NaPTA and PTA pellets (Fig. 5.4, 

Table 5.1) and the appearance of extra bands in a Coomassie stain of neat saliva (Fig. 5.1B), we suspected 

that the inhibitor may be a protein. To remove PK-sensitive proteins, we treated inhibitory, negative 

saliva with several concentrations of PK. We observed noticeable changes in the total protein content of 

the samples between 1.0 and 5.0µg/mL PK (Fig. 5.6A). We tested the ability of PK-treated saliva to 

inhibit RT-QuIC (after PMSF treatment). At and above 1.0µg/mL PK, the inhibitory saliva pool was no 

longer inhibitory. We also PK-treated PBS and stopped the reaction with PMSF to 1) ensure that we were 

removing all PK activity and to 2) ensure that PMSF does not affect the reaction (Fig. 5.6B). We chose a 

concentration of 4µg/mL and compared PK-treated, heated (the PK protocol requires one hour at 45°C, 

followed by the addition of PMSF and boiling, so we included heating alone as a control for the PK 

treatment) and untreated saliva in their ability to inhibit RT-QuIC. PK-treatment, but not heat alone, 

rescued seeding in the RT-QuIC assay (Fig. 5.6C).  

 With the evidence that PK-treatment removed the RT-QuIC inhibitor in inhibitory, negative 

saliva and spiking experiments, we treated CWD(+) saliva with 4µg/mL PK and compared the seeding 

from the PK-treated sample to neat or diluted saliva (Fig. 5.6D). Interestingly, the PK treatment only 

rescued seeding in one of the three samples we tested. We suspect that the PrPSc in saliva may not be as 

PK-resistant as typical PrPSc and that we destroyed the seeding activity (and, presumably, the inhibitor) in 

the two samples that were not rescued. These data demonstrate one of our challenges in addressing 

detection in saliva: positive control saliva is hard to reliably identify and we are left using brain 

homogenate and spiking experiments. Together, these data suggest that the RT-QuIC inhibitor is a protein 

and that the PrPSc in saliva is protease-sensitive. 
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Figure 5.6. Protease treatment rescues seeding in spiked negative saliva, and in some 
positive saliva samples. To test whether the RT-QuIC inhibitor is a protein, we treated saliva 
samples with PK. A. First, we determined the effect of PK on the total protein profile in our 
inhibitory saliva pool. We treated saliva with a range of PK concentrations, stopped the PK with 
PMSF, and assessed the total protein content by Coomassie stain. B. We tested the effects of a 
range of PK concentrations on our inhibitory saliva by treating saliva with PK, stopping the 
reaction with PMSF, then adding 200ng CWD(+) brain homogenate and adding the solution to 
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RT-QuIC. Shades of blue indicate PK concentrations and green points indicate PK-treatment of 
a blank (to ensure that the PK is destroyed and does not degrade the rPrPC in the RT-QuIC assay.) 
Points indicate the lag phase for each replicate. C. We chose a concentration of 4µg/mL 
PK/sample and compared treatment with PK to heat alone (since there is a heat step in the PK 
protocol). Points indicate the lag phase for each replicate. 20ng brain are added to each sample. 
D. Finally, we tested the effect of PK on CWD(+) saliva samples that require dilution for seeding 
(and presumably contain the inhibitor). Orange points indicate the lag phase for PK-treated neat 
saliva, while black points indicate the lag phase for dilutions of untreated saliva. 

 

Electrolytes in saliva are compatible with RT-QuIC. 

 The major components of saliva besides protein are electrolytes. We created a solution that 

mimics the electrolyte milieu of ruminant saliva and diluted brain homogenate into the solution instead of 

saliva (393). We did not observe inhibition from the electrolyte solution (Fig. 5.7A).  

 

Mucin inhibits RT-QuIC assay. 

The major protein component of saliva is the mucin family, a complex group of glycoproteins 

that provide the viscosity of saliva (394, 395). We compared several mucin concentrations (made from 

reconstituted bovine submaxillary mucin in 10mM HEPES), all of which are in the range of reported 

physiological concentrations, with PBS as a diluent for CWD(+) brain homogenate (394-397). We 

observed a dose-dependent inhibition of seeding activity in RT-QuIC upon the addition of increasing 

mucin concentrations, but not in our buffer-only controls (Fig. 5.7B,C). Interestingly, mucin inhibited the 

RT-QuIC assay at lower concentrations when combined with the electrolyte solution described previously 

(Fig. 5.7C).  

We tested the ability of PK to relieve the inhibition caused by mucin. At low mucin 

concentrations, the heat step in the PK protocol (45°C for one hour, followed by PMSF and boiling) was 

sufficient to eliminate the inhibition from mucin (Fig. 5.7D). However, at 5mg/mL mucin, PK treatment 

removed the inhibition, but the heated control was still inhibited (Fig. 5.7D).  
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Figure 5.7. The electrolytes in saliva are compatible with RT-QuIC, but mucin is not. Points indicate 
the lag phase for each replicate. A. We confirmed that the electrolyte composition of saliva is compatible 
with RT-QuIC by diluting brain in a solution designed to mimic the electrolyte composition of saliva 
(393). B-C. We tested the inhibitory effects of mucin (purified bovine submaxillary mucin) in the RT-
QuIC assay. There is a dose-dependent inhibition of seeding as mucin concentrations are increased 
(within the physiological range) (394-397). We compared the mucin treatments to buffer only (HEPES) 
and to PBS. D. We treated mucin-spiked PBS with PK and observe the effects of PK (but not heat) at 
5mg/mL mucin. 
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N-acetyl-L-cysteine inconsistently relieves inhibition in negative saliva samples, but not in mucin-spiked 

PBS or CWD(+) saliva samples. 

 N-acetyl-L-cysteine (NaLC) is an antioxidant with a number of clinical applications in human 

medicine (398, 399). NaLC is classified as a mucolytic agent, and contains free sulfhydryl groups that 

hydrolyze the disulfide bonds that link mucin oligomers (399). NaLC hydrolyzes mucin in vitro (392), so 

we tested the effect of NaLC on our inhibitory saliva pool, on CWD(+) saliva and on mucin itself. 

Overall, the results were inconsistent (which appears to be the case for in vivo applications of NaLC as 

well (399)). 5mM NaLC did not relieve the inhibition of seeding activity from CWD(+) brain by 

inhibitory, negative saliva, but 15mM NaLC completely rescued seeding (Fig. 5.8A). However, the 

dilutional response was not evident when we treated the samples with 30mM NaLC (which only partially 

relieved inhibition) (Fig. 5.8A). Concentrations in this range were used in other in vitro models (392). We 

noticed that the blank (PBS) treated with 30mM NaLC had slightly delayed seeding relative to the blank 

treated with 15mM NaLC, so it’s possible that NaLC inhibits the RT-QuIC reaction at higher 

concentrations.  

Interestingly, there was more (and faster) spontaneous conversion when 30mM NaLC was added 

to saliva or PBS, and then used to dilute negative brain homogenate (Fig. 5.8B). It is clear that NaLC has 

off-target effects on the RT-QuIC assay. More importantly, NaLC did not rescue seeding in CWD(+) 

saliva samples that require dilution for seeding (Fig. 5.8A). We tested the impact of NaLC on mucin 

directly and observed that NaLC did not rescue inhibition by mucin at the concentrations we tested (Fig. 

5.8B).  
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Figure 5.8. N-acetyl-L-cysteine inconsistently relieves inhibition in inhibitory, negative saliva 
samples, but not in mucin-spiked PBS or in CWD(+) samples. Points indicate the lag phase for each 
replicate. A. We treated inhibitory, negative saliva with NaLC, then added brain homogenate, or we 
treated CWD(+) saliva that requires dilution with NaLC. Positive brain homogenate is indicated by black 
points and negative is indicated by gray points. CWD(+) saliva samples are represented by green points. 
B. We treated various mucin concentrations with NaLC, then added CWD(+) (black points) or CWD(-) 
(gray points) brain homogenate and tested whether mucin was inhibitory after NaLC treatment. 

 

Discussion 

 Detection of prions in excreta from CWD(+) cervids is an essential step for understanding 

horizontal transmission of CWD. Sensitive detection assays, including RT-QuIC, have made such 

investigations possible. However, we have suspected that RT-QuIC has imperfect sensitivity (ability to 

detect true positives) and specificity (ability to classify true negatives). In previous work, we have relied 

upon the inclusion of negative controls to improve our ability to identify false positives, but we have 

struggled to identify false negatives, even with sample preparation protocols that improve sensitivity 

(230, 288). We designed the experiments described in this chapter to confirm the presence of an RT-QuIC 
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inhibitor in saliva samples and to attempt to identify the inhibitor. This information will make it possible 

to optimize the RT-QuIC assay and improve our analyses of RT-QuIC results.  

 We confirmed the presence of an RT-QuIC inhibitor through dilution of positive saliva samples 

and through spiking of CWD(+) brain material into inhibitory, negative saliva samples (Fig. 5.1, 5.2, 5.3). 

We tested the most common sample preparation protocols that have been applied to saliva samples (PTA, 

IOME and NaPTA) and confirmed that none of these protocols eliminates the inhibitor problem entirely 

(Fig. 5.4, Table 5.1). We identified protease activity in saliva samples, but when we blocked that activity 

with a protease-inhibitor cocktail, the saliva samples remained inhibitory. Therefore, it is not protease 

activity that results in false negative detections (Fig. 5.5). Saliva has anti-viral activity against human 

immunodeficiency virus, which has also been demonstrated not to be due to protease activity (400).  

We confirmed that the electrolyte milieu in saliva is not inhibitory, and proceeded to investigate 

the role of salivary proteins (Fig. 5.6, 5.7, 5.8). Addition of mucin to PBS inhibited the RT-QuIC reaction, 

which was rescued with PK treatment of the mucin, but not with N-acetyl-cysteine treatment (Fig. 5.7, 

5.8). We expected NaLC to hydrolyze the mucin in vitro, but other literature suggests that the 

effectiveness of NaLC is not predictable (399). Treatment of inhibitory, negative saliva with PK reliably 

removed the RT-QuIC inhibitor, but treatment of CWD(+) saliva did not enable seeding (Fig. 5.6). The 

likely explanation for this outcome is that the seeding activity in saliva is PK-sensitive and that the same 

treatment that destroyed the inhibitor (4µg/mL PK, 45°C for 60 minutes) also destroyed the PrPSc. 

 RT-QuIC relies upon the tendency of PrPSc to induce the misfolding of PrPC. The misfolding is 

then propagated and PrPSc aggregates in the form of amyloid. ThT intercalates in amyloid and its 

fluorescence spectrum shifts, which is detected by the fluorimeter. Therefore, lack of signal in RT-QuIC 

could indicate a lack of amyloid or a failure of ThT to intercalate, fluoresce and be detected. A lack of 

amyloid could be due to missing subunits (PrPC) or a failure of amyloid propagation. We confirmed that 

the lack of signal that results from the addition of inhibitory saliva is not due to destruction of PrPC. We 

assume that the lack of signal it is not due to a failure of ThT to fluoresce based on previous work in our 

lab and unaffected maximum fluorescence values (373). Therefore, we chose to describe the inhibition as 
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inhibition of seeding, suggesting that amyloid formation is inhibited. However, the efficacy of ThT in the 

presence of saliva should be confirmed. 

 These data are the first step toward 1) identification of the RT-QuIC inhibitor in saliva and 2) 

optimization of RT-QuIC for saliva testing. The frequency of inhibition among negative samples suggests 

that inhibition in saliva is common, the results from RT-QuIC analysis of saliva may be significantly 

affected, and that interpretation must account for the possibility of low sensitivity (Fig. 5.2). There are a 

number of experiments that should be pursued to improve seeding from saliva samples. It is worth 

considering the lipid content in saliva, which is low, but not absent. In brain samples, lipids inhibit RT-

QuIC, and it would be interesting to test that possibility in saliva (373). However, the protocol 

recommended for brain samples is not compatible with saliva, because the saliva is simply washed away 

in the alcohol washes. Lipase treatment of saliva had no effect (data not shown), but interpretation of 

those results was complicated by the lack of an appropriate positive control for the lipase treatment. 

However, it is an important step in this systematic approach to eliminate lipids as the species responsible 

for inhibition.  

The failure of PK treatment to rescue seeding in CWD(+) samples was disappointing, but not 

surprising. There exists anecdotal evidence that prions outside the brain may be more susceptible to PK 

than brain prions. It is likely that the PK treatment destroyed the seeding activity in the positive saliva 

samples. Therefore, PK treatment is not a viable pre-treatment to increase the seeding of RT-QuIC by 

saliva. However, the effectiveness of PK treatment on inhibitory, negative saliva suggests that the 

inhibitor is a protein, information that is useful for subsequent experiments. Treatment with glycosidases 

will remove the oligosaccharides from mucin, but will not affect the peptide (and, hypothetically, will not 

affect seeding activity). Together, these enzymes are referred to as “mucinase,” and the class includes 

glycosulfatases, sialidases and others (401). If mucin is indeed the RT-QuIC inhibitor, and if inhibition 

relies on the presence of mucin’s post-translational modifications and quaternary structure, mucinase 

treatment should relieve inhibition and leave seeding activity intact. A mucinase cocktail could be used as 
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a pre-treatment for saliva samples, or for samples that remain RT-QuIC-negative after PTA or IOME 

treatment. Finally, it would be interesting to assess the effects of mucin on prions other than PrP. 

To identify the RT-QuIC inhibitor more specifically, inhibitory saliva could be separated by ion-

exchange (or size-exclusion) chromatography, then the fractions could be tested with RT-QuIC to identify 

which contain the inhibitor. Inhibitory fractions could then be compared to non-inhibitory fractions by 

mass spectrometry (402). This approach would make identification of the protein possible, which could 

be followed by addition of the purified protein of interest to RT-QuIC to confirm its inhibitory character. 

Of course, the question that underlies all these experiments, and the justification for carrying them out, is 

whether this RT-QuIC inhibitor matters in vivo. There are bench-top approaches for increasing prion 

detection in vitro and modeling techniques to improve our inference from in vitro data, so the knowledge 

that there is an inhibitor may be sufficient for diagnostic needs (403).  

However, if the inhibitor has a role in vivo, it is crucial to understand its nature and the 

mechanism by which it inhibits the RT-QuIC reaction. Despite the observation that treatment of prion 

diseases is difficult, it seems worthwhile to pursue identification of inhibitors of amyloid formation, for 

the chance that the molecule has therapeutic potential. Therefore, identification of the inhibitor should 

lead to in vitro experiments to test the molecule’s ability to inhibit amyloid formation in other systems, 

like PMCA and cell culture. These experiments would provide a foundation for the treatment of prion-

infected mice with the inhibitor. The likelihood that the RT-QuIC inhibitor in saliva has physiological 

activity is low, but the reward makes these experiments worthwhile. 
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CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

The horizontal transmissibility of CWD and its risk to humans remain important questions in prion 

disease research. Specifically, we were interested in factors that contribute to the reproductive number 

(R0) of CWD and the role of protein-protein interactions in the host range of CWD, particularly the 

susceptibility of humans.  

 

R0 and the horizontal transmission of CWD 

Conclusions 

We demonstrated that PrPC expression is common in the alimentary and lymphoid tissues of 

white-tailed deer, though expression is much lower in non-CNS tissues than in the brain. We confirmed 

that seeding activity is present in alimentary tissues before it is detectable in the brain, and that seeding 

activity is not detectable earliest in tissues with the highest PrPC expression. Next, we considered the 

infectivity of prions found in lymph nodes, compared to those found in the brain. Prions in lymph nodes 

and brain were variable in in vitro assays; both seeded RT-QuIC, but lymph node prions were less 

consistently detectable using PK-treatment and western blot or PrPSc-specific ELISA. Importantly, brain 

and lymph node prions were infectious in cell culture. Finally, we scrutinized the detection of saliva 

prions with RT-QuIC, which we use to understand prion shedding in excreta. We confirmed that many 

saliva samples contain an inhibitor of RT-QuIC, which affects our interpretation of results, regardless of 

which sample preparation protocol we use. The RT-QuIC inhibitor is likely a protein, and may be a 

member of the mucin family. The presence of an inhibitor suggests that we have been underestimating the 

frequency (and perhaps the titer) of prion shedding in saliva. 

 

Future directions 

A. Seeding activity is common in the tissues of deer in the terminal stages of CWD, but we 

simplified our results by classifying tissues as positive or negative, with no attempt to rank the tissues by 
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their level of seeding activity. To better understand prion pathogenesis, it would be useful to rank tissues. 

NaPTA precipitation of tissues is necessary to limit spontaneous conversion for many of the tissues we 

studied, but it may also blunt differences in seeding activity, since it concentrates prions. A dilutional 

series of NaPTA pellets and analysis of the endpoint dilution might enable researchers to rank the tissues 

by seeding activity.  

B. Traditionally, CWD diagnosis relies on recto-anal mucosal-associated lymphoid tissue 

(RAMALT) biopsy, followed by IHC, or IHC analysis of the brain of hunter-killed cervids (61). 

However, our detection of seeding activity in every tissue we tested suggests that many other tissues 

could be used for CWD diagnosis. Any tissue could be selected, then collected from hunter-killed cervids, 

and compared to the sensitivity and specificity of testing brain. It is possible that sensitivity would be 

increased with the use of a non-CNS tissue, since many tissues seem to have detectable seeding activity 

earlier than brain in the disease course. However, specificity must not be ignored, especially when 

alimentary tissues are used. 

C. The propagation of seeding activity in alimentary tissues before the brain is surprising, 

considering the hypothesis that prions reach peripheral tissues by centrifugal spread from the brain. The 

mechanism for prion propagation in peripheral tissues has not been described. Immunohistochemistry of 

RT-QuIC positive, alimentary tissues may indicate whether the PrPSc
 is deposited in nervous tissue 

components of the alimentary tract (i.e. myenteric plexi) or if PrPSc is present in epithelial cells, where 

PrPC is also expressed (or both). The local PrPC population responsible for propagation may indicate 

differences among prions from different tissues. If prions are always formed from neuronal PrPC, perhaps 

one would hypothesize that prions in the periphery are not different (in their biochemical features or 

infectivity). However, if prions propagate in non-neuronal cells, perhaps they are more likely to be 

different from CNS prions. 

D. The use of CPCA to detect PrPSc from lymph nodes suggests that the assay may be useful for the 

detection of PrPSc in many non-brain tissues. We should take the opportunity to test infectivity in vitro for 

tissues from the alimentary tract, which contain substantial RT-QuIC seeding activity. 
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E. To understand the dilution-dependent delay we observed in prion propagation in the CPCA cells, 

one could spike a 0.1% brain homogenate into a 1% homogenate of brain or lymph node and use the 

spiked material to coat the plates. If high tissue concentrations are inhibitory, the cells exposed to the 

spiked samples will develop spots later in infection than 0.1% brain homogenate in PBS. 

F. We observed differences in the behavior of LN and brain prions in 7-5 ELISA. As we discussed, 

7-5 ELISA is specific for underglycosylated PrPC/Sc. It is certainly possible that the recruitment of 

underglycosylated PrPC to prions is not as extensive in the lymph nodes as it is in the brain, though we 

didn’t observe a dramatic differences in glycosylation patterns by western blotting. A thorough analysis 

of the PrPC or PrPSc glycoform ratios in brain vs. lymph node would clarify whether the starting material 

is dramatically different among tissues. 

G. There are a number of experiments that can be pursued to complete the investigation of RT-QuIC 

inhibitors in saliva. First, lipids should be eliminated as the inhibitory species (lipase treatment). Next, 

substitution of mucinase for proteinase K would confirm whether the mucin family (specifically, their 

post-translational modifications) are responsible for the inhibition of RT-QuIC by saliva.  

H. Chromatography, selection of inhibitory fractions from saliva, and mass spectrometry can be used 

to identify the proteinaceous inhibitor specifically. With the identification of the inhibitor, it would be 

possible to test its role in other in vitro assays (including PMCA and cell culture) and in vivo. 

I. We have demonstrated for the first time that PrPSc in saliva is protease-sensitive. PrPSc in excreta 

and brain should be compared for other features as well (infectivity, etc.) 

 

Host range of CWD and the risk to humans 

Conclusions 

 We confirmed that PrPSc preferentially induces amyloid formation in the homologous rPrPC 

substrate in RT-QuIC. BSE maintained its preferential seeding of bovine rPrPC upon passage of BSE to 

felines, while CWD adapted to felines and seeded feline rPrPC more efficiently. Interestingly, CWD very 



141 
 

efficiently caused amyloid formation in human rPrPC, suggesting that the species barrier preventing CWD 

infection of humans is not due to the compatibility of CWD PrPSc and human PrPC.  

We tested the role of the amino-terminus of PrPC in in vitro amyloid formation and in the species 

barrier. We concluded that for bovine and white-tailed deer rPrPC, the NTD hampered seeded amyloid 

formation, while the human and bank vole NTD improved seeded amyloid formation. The human rPrPC 

was more susceptible to misfolding when an amino terminus was present, whether it had exactly the same 

primary sequence as the human NTD or not.  

 

Future directions 

A. In light of the recent description of prion strains that do not adapt upon transmission to a new 

species, it would be very interesting to test non-adaptive prions in both the enciphering and recipient 

rPrPC species (92). We hypothesize that non-adaptive prions would always seed the enciphering host 

more efficiently than the new host (like BSE and FSE).  

B. Our data suggests that there is an interaction of the NTD and the rest of the protein. A recent 

publication proposed an interaction of the NTD and a portion of the carboxy-terminal domain (the 

discontinuous epitope for the antibody POM1) (372). It would be interesting to alter the POM1 epitope in 

the human rPrPC and assess whether alteration of that epitope removes the effect of the NTD on the 

species barrier between human rPrPC and CWD prions.  

 
 

Many years of prion research have described a novel class of pathogens, defined a mechanism by 

which information can be transferred by proteins alone, and established the zoonotic potential of prion 

diseases. Prion research continues to be preoccupied by the horizontal transmission of CWD and its risk 

to humans. We have explored the role of tissues outside the CNS in the horizontal transmission of CWD, 

and confirmed that these tissues play a role in generating, harboring and shedding prions. A prion disease 

species barrier could manifest in many ways, including immunological defenses, failure of trafficking 

from the periphery to the brain, or an incompatibility of donor and recipient PrPSc/PrPC. We conclude that 
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PrPSc from CWD(+) deer is not incompatible with human rPrPC and that the apparent species barrier must 

result from another feature of the host-pathogen interaction. 
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