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ABSTRACT

VARIABILITY SIMULATIONS OJ' JOIST fLOOR SYSTBKS

This thesis examines the us.e of the Monte Carlo method for studying

the effects of component variability on the deflection behavior of wood

joist floor systems. The study considers random variations in joist

modulus of elasticity within a lumber grade and evaluates this effect on

floor deflection behavior. Simulation results indicate that there are

two basic effects induced on deflection behavior by joist modulus of

elasticity variability. These effects are changes in mean maximum floor

deflection and maximum floor deflection variability. A means for seeking

optimum economic efficiency through restricting component variability to

a value that yields the best floor maxlm\lll deflection response to cOlllpo-

nent cost relationship can be formulated from floor maximum deflection

distributions. The study emphasizes that iIIlportant roles of structural

interaction and component variability on structural performance. For

floors in which a deflection criterion governs design, the design calcu-

lation is normally based on the deflection behavior of joists with average

member stiffness acting alone. This method of design normally does not

include the beneficial effects of load sharing and composite action nor

the detrimental effects of component variability. Design analysis based

upon a joist-acting-alone behavior assumption does not necessarily des-

cribe the behavior of floors within the design. The effects of structural

interaction and component variability need to be evaluated for floor be-

havior to be accurately predicted.

Paul R. DalltSon
Civil Engi.neering Department
Colorado State University
Fort Collins. Colorado 80521
september, 1974
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CHAPTER I

INTRODUCTI.ON AND LITUATURE REVIEW

1.1 Introduction

Efficient utilization of natural resources should constitute a high

priority in the design and construction of engineering structures for

both ecological and economical reasons. Efficient design of structures

is based. upon the selection of component dimensions, materials, and con­

nections that are best suited for a particular application. Thorough

understanding of system performance is essential for determination of

the optimum combination of interacting parameters. Response of a struc­

ture as an integrated unit to service conditions must be evaluated with

respect to the contribution of individual components. Load-sharing',

composite action, and other forms of structural component interdependence

alter system response from the performance predicted for individual com­

ponents acting separately. To efficiently employ resources in the fabri­

cation of a structure, prediction of system behavior which includes the

forms of structural interaction must be possible.

Further, natural variation in the dimensions and properties of sys­

tem components modify the behavior of a population of systems from that

of a single system· considered on a design basis. The margin of conser­

vatism incorporated into a design is dependent upon the effect on system

response caused by component dt.enaion and property variations within

the tol,erances permitted in the. manufacturing process and/or the material

property values.

Efficiency of a structure ~th. reapect to var!ability of the compo­

nents should be considered in conjunction wtth. the effects of system

structural interaction. Increasing or decreastna ~e variability of
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components within a system yields corresponding change in the variability

of system performance. A tradeoff exists between the cost of restricting

the magnitude of component variability and the benefits accruing from the

lower variability. The benefits to be gained are (1), lower variability

of the system, allowing lower conservatism in design while producing

higher system reliability, and, (2), a higher level of structural per­

formance.

Wood joist floor systems, such as those used in residential housings,

are complex structural systems. Interaction of joists) sheathing, and

connectors yields load-deflection behavior that differs significantly

from that predicted for a joist only structure. Variation in the proper­

ties or dimensions of materials, connectors or loading results in a dis­

tribution of floor response. Changes in the magnitude of variability of

any of the floor or loading parameters alter the resulting distributions

of floor behavior.

In wood joist floors, the joists and sheathing interact. This inter­

action' is by composite action of the joist and sheathing and by load

sharing be~een the joists resulting from the distribution of load by the

sheathing. Current design practice (1) does not include the benefits of

composite action and load sharing, except for a 15% increase in allowable

stress for repetitive members. Rather, for deflection it is based upon

a maximum limit for a single joist. The joist is considered to have a

modulus of elasticity corresponding to the me..an modulus of elasticity of

the lumber grade and i.8 loaded corresponding to a uniform live load of

4Q psf. A design must also aatiafy a stress criterion, for which same

eompensation ia included for load sharing and composite act~on of repeti­

tive members. In any given real floor the modulus of elutic1tr of the
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joists will vary according to the characteristics of the lumber popula­

tion and, if interaction with other components of the floor system is

not considered, some joists would be expected to deflect in excess of

the joist-only deflection prediction. The deflection characteristics of

a population of floors with respect to design practices will depend on

the relative magnitudes of the counteracting effects of structural inter­

action and component variability.

1.2 Objective

This study is part of a research project being conducted at Colorado

State University sponsored by the National Science Poundation. Other

parts of the project have been directed toward formulating and verifying

mathematical models of layered beams with interlayer slip and residential

wood joist floor systems.

The objective of this study is to evaluate the potential of using

Monte Carlo analysis to investigate the effects of component or loading

variations on the performance of wood joist floor systems. The method

analyzes the effects of variability and changes in variability on struc­

tural behavior using a mathematical model that incorporates system inter­

action. The potential for higher economic efficiency is examined. The

means of increasing efficiency could manifest itself in terms of modi­

fying the variati.on of properties within lumber grades or chanaing

existing design practice to more effici.ently utili.ze the ex:i.sting grades.

1.3 Literature Review

Inves.tigation of the effects. of chang~g input parameter varia­

bility on structure performance has been very l1Jnited to date, particu­

larly as applied to wood joist systems. Several authors have indicated

the potential usefulness of a study of this type.
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Galligan and Snodgrass (2) discussed the potential of increased

lumber efficiency through the use of both more accurately ~e8~egated

lumber and des,ign practices :Intended for that lumber. They indicated

the potential of use-oriented joist grades for the housing industry and

the current uses of machine stress rated lumber for trusses and laminated

beams. They also indicated that, to compliment methods of more accu­

rately predicting behavior of wood structures, better definitions of

material property values are needed, including the reduetion of the

variability within a grade.

Polensek (3) developed a model of the static and dynamic deflections

behavior of wood joist flooring systems using a finite difference solution

teChnique. He recommended as a possible application of the model a de­

flection behavior study of flOors consisting of randomly selected joists

of a given probability distribution. He indicated the resulting popula­

tion distribution of floor maximum deflections could be compared to the

deflection of the same floor as specified by the simplified method of

floor design.

Bonnicksen and Suddarth (4) have investigated the effects of

variability upon structural reliability of load-sharing systems. In

their research, they compared the reliability of single joist members to

vertically laminated three joist members. From reliability functions of

each group and load probabill,ty distributions, a set of structural relia­

bilitiea were obtained. Averaging effects of the modulus of rupture of

three joists resulted in a lower coefficient of variation of strength and

a higher structural rellabili.tr_ HDv.e.ver, they found the mean atrenlths

of three joist members lover than that of alngle joist membera. From

this work relative load carrying capacity of the members was evaluated.
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Zahn (5) addressed the problem of varlat~ons in the strengths of

joist structures to study' the benefits accrued from load sharina, speci­

fically the effects of groupinl several joists together and mutually

constraining the joists. The structure studied consisted of N number of

joists with a single deck element across the center of the joists. Load

sharing, but no composite action. existed in the structure. Zahn consi­

dered three models for the joist structures. These were brittlest link,

weakes t link, and flexible decking models. In the brittles t link struc­

tures all joists were required to have the same deflection, a condition

equivalent to complete load sharing, whereas, in weakest link structures

all joists carried the same load, and consequently no load sharing

occurred. The flexible deck model represented the more realistic case

between no load sharing and complete load sharing.

From modulus of rupture data for joists of four lumber grades,

Zahn (5) derived modulus of rupture distributions for the three models'.

The brittlest link and weakest link model distributions were obtained

analytically. The flexible decking model distribution was generated

through a computer simulation.

From a comparison of the distributions for one and five joist struc­

tures, Zahn (5) concluded that the maximum possible minimlDD load capacity

increase as a result of load sharing is 12%. This is based on the in-'

crease of the brittlest link floors strength over that of the weakest

link floors. The. flexible deck floors. are between the weakest link and

the brittlest link floora~ and they represent partial load Sharing.

Although he considered diff~rent in{)ut (joiat 1IlOdu1U1l of rupture) diatri­

butions he did not compare tlla resulting di8trlbut~on rlth. respect to

the effect of variations in input.
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Machine rating of lumber has not gained the use expected in the

early 1960' s , Kennedy (6) recamnends reconsideration of machine rating

1unber. He contends that. because deflection governs most d~ilD, modu­

lus of elasticity is a more s.ignific8llt parameter than modulus of rup­

ture. Machine rating lumber yields ·modulus of elasticity and thus has

particular value to designers.

Several investigators (7, 8) have reported on the correlation of

modulus of elasticity and modulus of rupture. This work contributes to

the ability of applying strength criteria in design with lumber which

has been graded in terms of modulus of elasticity.

A review of current concepts concerning analysis of wood joist

floor systems along with methods of simulation for use with mathematical

models can be found in appropriate sectioos of this thesis.



CHAPTER II

SIMULATION TECHNIQUE AND FLOOR DEFLECTION MODELS

2.1 Exact Derivation of Deflection Probability Distributions

The floor deflection models predict deflection based upon the floor

geometry and member sizes, material and connector properties, and applied

loads. In general, if the input variables of a function are rando. in

nature, the resulting output will also be random. For wood floors values

of floor geometry, material and connector properties, and applied loads

all occur at random from population probability distributions. Subetitu-

tion of these random floor parameters into a mathematical floor model

yields variations in the floor deflection.

The distribution (9) of the dependent variable of a function baaed

upon random independent variables of given probability diatributioDS can

be derived through exact analytical techniques for many types of func-

tions and input probability distributions. Let Y represent an arbi-

trary function of the independent variables, Xi (Y • g(XI,X2• • • .Xn».
The problem is to dete~ine the probability distribution of Y, F (y),

Y

based upon known probability density distributions, f X (xi)' of the
i

random input variab les •

The probability (9) distribution of Y, Fy(y), can be written as

Fy{Y) • P{YSy) • P(g(Xl,X2,X), .)g)

where P (i~j) indicates the probability of i being les.s than or equal

to j. The probability Fy(y) can be evaluated by integration of

fx ~i) over limits defining the ranges of Xi·
i

• .d
x

n
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where

B .' {(xl. • .x) e R.; g(xl" " .xn)~ y}. n n·

and

R is n-dimensional apace.
n

The symb01 e implies that (xl. • •xn) is contained in Rn•

Application of this teChnique is difficult if the functional form of

y = g(Xl,X2,X3• • .Xn) is complicated. This is because of the diffi­

culty in evaluation of the integral representing the probability distri-

bution of Y, usually expressed as an iterated integral. In the case of

the floor models, d~flection is not expressed in a functional form of the

joist modulus, for example, but rather as a numerical approximation. Thus

for this case a direct analytical approaCh becomes extremely complicated.

2.2 Monte Carlo Simulation of Deflection Distribution

The complexity of deriving a probability distribution of floor maxi-

mum deflections through a direct analytical process indicated a stmula-

tion technique would probably be more effective. For that reason, the

Monte Carlo technique was examined.

The concep t of Monte Carlo analysis (10), as applied to probabilis-

tic problems, is the experimental observation of random phenomena, such

as property or dimension values, and the inference of a solution to a

problem from the behavior of systems composed of these random values.

The random values used in the Monte Carlo analysis are generated in a

manner that is consistent with the phfsical characteristics of the pro-

cess or population being stmulated.

Monte Carlo analysis (10) 1s pC7t(8rful when complemented w1th partial

theoretical formulation of the problem. Variance re.ducing teclm1quea,

such as stratified sampling, importance sampling, or the use of control
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variates J serve to increase the simulation efficiency by restricting
I

sampling to more representative values, and thereby, reducina variation

in the output distribution. These techniques generally rely upon re-

placement of part of the simulation with exact theoretical analysis.

Shinozuka and others (11) have applied the Monte Carlo teChnique to

a wide variety of structural dynamics and related problems. The basic

soluti.on technique is the random simulation of structural loading com-

bined with the numerical solution of system governing equations. The

analysis yields system response for the assumed loading function.

In this simulation of wood joist floor systems under uniformly ap-

plied loading, the behavior of maximum deflection was observed with

respect to random variations in joist modulus of elasticity (MOE).

Simulations were conducted to determine changes in deflection behavior

for floors ODmposed of joists generated from one HOE distribution as

compared to the deflection behavior of floors with joists of different

distributions. The probability distributions of MOE utilized in the

random saapl1ng represented in-grade populations of joist properties,

having equal means but different standard deviations. The effect of

changes in variability of joist MOE probability distributions (changes

in coefficient of variation) upon floor maximum deflection populations

was examined by means of Monte Carlo simulations. One hundred floors

were analyzed for each degree of joist MOE variability under considera-

tion. In the simulati.on, the three MOE population di.stributions examined

represented high, medium and low variabUity, exhibiting coefficients of

variations of approximately· 0.4, 0.2, and o.as. respectively.

Each" stmulation vas initiated with the selection of typical floor

dimensions and material and connector properties (with the exception of
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joist MOE) (Figure 2.1). Floor joist MOE values were generated with

respect to the low variability probability distribution and assigned to

joists in the order generated. The simulated floors were analyzed by a

mathematical model for prediction of floor deflections. and the maximum

deflection of eaCh floor recorded.

Floor joist MOE values were then generated for medium and high

variability probability di.stributions and the corresponding floor deflec­

tions computed in the same manner as described in the previous paragraph.

Probability distributions for the maximum deflection of the floors

for eaCh degree of variability of the joist MOE were approximated from

the maximum deflections recorded during the simulations. Characteristics

of the distributions were compared in terms of differences in means,

standard deviations, and coefficients of variation. Conclusions were

drawn conceming the potential of increasing efficiency through applica­

tion of the results of the simulations.

Numerical approximation methods of the floor deflection models and

the multivariate nature of the simulation discouraged application of

variance reducing teChniques.

2.3 Floor Deflection Models

The mathematical model of floor deflection behavior has been deve­

loped under other portions of this research effort (12). One version

employs a finite element teclln1que for solution; the other utilizes a

finite difference approxiJDation. The floor is modeled as a system of

crossing beams, T-beams in the direction parallel to the joists and

sh.eathing strips perpendicular to th.e joists (Figure. 2.2}. Each beam 1s

analyzed as a layered beam with incomplete composite action due to inter­

layer slip. The crossing beam model neglects the contribution of
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torsional stiffness to the total floor rigidity. Liu (13) reported-in

detail on the model's theoretical foundations and experimental verifica-

tion. For full scale test floors representing a wide variety of floor

configurations, Liu indicated that the finite element solution technique

predicts "deflections usually within 6 to 7 percent of the experimental

observation. He further indicated that the finite difference approxima-

tion yielded deflection predictions usually within 10 to 12 percent of

experimental observation. Liu indicated that the closer agreement of the

finite element technique was due to its ability to include the effects of

gaps in the sheathing layer.

The mathematical models of floor deflection behavior are based on

the general theory of layered beams with interlayer slip developed by

Goodman (14) and extended by Ko (15) (Figure 2.3). The governing equa-

tions of a layered beam when specialized to the case with one axis of

(1)

(2)

where

Ei • MOE of ith layer,

Ii • moment of inertia of ith layer,

Ai • area of ith layer,

s • connector spacing,

k • slip modulus relating interlayer slip and load.

n • number of rows of connectors,

Mt • moment of cross section, and
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Figure 2.3

LAYERED BEAM SYSTEM
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The assumptions necessary in the formulation of these layered beam

governing equations are

1. small deflection,

2. linear elastic materials,

3. linear variations of strains over the depth of each layer,

4. linear slip modulus,

5. negligible shear deformations,

6. equal curvature of each layer during bending.

Kuo (16) conducted a thorough investigation of the layered beam

using a mathematical model including interlayer slip and gap effects.

He compared experimental results of full-scale layered T-beams with the

predictions of the mathematical models for beams corresponding to those

tested. The T-beams used in the verification varied in the amount of

composite action provided. Discontinuities in the T-beam sheathing

(occurring in the test T-beams at joist locations were one piece of

sheathing ended and another began) were approximated by allowing the

approximating function for axial displacement to be discontinuous at the

gap location. Kuo found that the finite element layered beam model

closely predicts the load-deflection behavior of layered beams over a

wide range of beam configurations. He indicated that predictions of

deflection for beams loaded in the usual range of working loads compared

closely to experimental observation.

The solution of the floor deflection model using the finite dif­

ference approximation is developed with the aid of matrix th.eory (12).

Deflections of the T-beam can be written in terms. of the T-beam flexi­

bility matrix and the loads applied to the T~eam. Finite difference

.approximations for th.e derivatives of deflections were substituted into
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the governing equations for layered beams with interlayer slip. A set

of simultaneous equations of beam deflection result from aoplication of

the governing equations to each of the nodal points representi.ng the

T-beam for all T-beams in the floor.

{DT} = [FT] fAT}

where

(3)

fDT} = T....beam nodal point deflections,

~] = T-beam flexibility,

{AT} = external loads applied to T-beam at nodal points.

A similar set of equations specifying sheathing strip response is

{DS} = [FS] {AS}

where

(4)

{DS} = sheathing nodal point deflections,

~S] = sheathing flexibilities,

{AS} = external load applied to sheathing at nodal points.

Equilibrium requires that the nodal point loads of the sheathing

strips and T-beams sum to the total applied nodal loads at each nodal

point.

{A} - {AS} + {AT}

where

(5)

{A} = total externally applied nodal loads.

Compatability requires that the nodal point deflections of sheath­

ing and T-beams be equal.

{D} == {DS} = {DD- (6)

Comb.inati.on of· thes.e equations, yields,

{AT} == [:rr + FS -lJ [FSJ 'Ie {Al (}l

wi th {AT} known the deflections can he evaluated from th.e equation

relating T-beam deflection to T-beam nodal point loads.
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The finite element approximation solves for floor deflections by

means of a Rayleigh-Ritz procedure (13). The potential energy of each

beam is computed and the energies of all beams are combined. The poten­

tial energy of a layered beam with interlayer slip consists of energy

due to

1. pure bending of each layer.

2. axial elongation of each layer,

3. interlayer slip of connectors between each layer, and

4. external loading.

Equilibrium of the system requires that the potential energy of the

system be a stationary value. This is equivalent to determining the

floor configuration at which the first variation of potential energy is

zero.

In the finite element approximation, the potential energy of the

beams comprising the floor is written in terms of the nodal point deflec­

tions and slopes as well as the axial displacements of each layer. A

governing set of algebraic equations for the above unknown variables is

found by setting the variation of the potential energy equal to zero.

A comparison of the deflections predicted by solution of the mathe­

matical model by the finite difference and finite element techniques is

given in Table 2.1. The deflections shown are for floors with O. 75 inch

sheathing, slip modulus of 30,000 lb/in, uniform joist MOE of 1,SOO,000

psi, and uniform loading of 40 psf. Other dimensions are the same as

used in the simulations.

The deflections listed in Table 2.1 indicate the large effect of

gaps in the sheathing. Simulation III assumed open gaps, and would be

expected to be conservative. The finite element and finite difference

techniques show good agreement for the no gaps case.
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DIFFERENCE

W/O GAPS

0.266"
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TABLE 2.1

MAXIMtM FLOOR DEFLECTIONS PREDICTED BY

DIFFERENT SOLurION TECHNIQUES

FINITE
ELEMENT

W/O GAPS

0.244"

FINITE
ELEMENT

W/OPEN GAPS

0.386"



CHAPTER III

INPUt PROPERTIES FOR SOOJLATIONS

3.1 Joist Modulus of Elastic1~y Distributions

The effects of variability and changes in variability of joist MOE

on floor system deflections were simulated by a Monte Carlo technique to

evaluate these effects for in-grade variations of population probability

distributions. The potential of increasing wood utilization efficiency

by modification of the magnitude of a grade's variability, such as by

modifying grading method techniques, was then examined fram simulation

results.

The joist MOE probability distributions were derived from data from

several sources. The distributions are realistic representations of the

possible variations of MOE within a grade, but do not represent actual

data occurring from a single grade in which variations are the result of

lumber grading technique differences. The MOE distributions incorporated
, 6

into the simulation exhibit the same mean value (1.8 x 10 ) and have

coefficients of variations of approximately 0.056, 0.204, and 0.408.

Although the distributions are not derived from actual data of a speci-

fied species and grade, they are representative of the distribution

shapes and variability occurring in actual grades.

The narrow (or low variability) distribution was taken from the data

presented in a paper by Galligan and Snodgrass (2) (Figure 3.1). The

data, presented in the form of a histogram, showed MOE values of a popu-

lati.on of joists resulting frollJ, macldne grading of 1.8E-ZlOOf lwnber.

6The. mean MOE. for the 219 apeciJnen sample is 1 .. 8 x 10 psi while the co-

efficient of variation is 0.056.
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The medium (or medium variability) distribution was derived from

data of joist MOE of Douglas-fir joists measured by the Wood Science

Laboratory at Colorado State University as a part of the research project

on wood joist floor systems (Figure 3.2). The data represents 90 pieces

of lumber from a single visual grade. The mean MOE is 1.707 x 106 psi

and the coefficient of variation is 0.215. The distribution was trans­

lated to a mean MOE value of 1.8 x 106 psi with a coefficient of varia-

tion of 0.204. This was done so that only the variability of the distri-

bution existed as the simulation variable, and the effects of different

means would not enter.

The wide (or high variability) distribution was derived by modifying

the medium variability distribution. The amount each data -point varied

from the mean was increased by a constant factor. This maintained the

same mean MOE, but increased the coefficient of variation to 0.408.

Weibu11 distribution functions (18) were fitted to the joist MOE

distribution data by a least squares method (Figure 3.3). The Weibu11

distribution is a cumulative distribution as used here to describe the

proportion of joists with MOE values less than given MOE values. Corres-

ponding to any MOE value is a percentage of the total population with a

value less than or equal to that modulus. Normal distribution functions

were also evaluated but due to the skewness of the modulus data, the

Weibull functions fit the data better. The procedure used in the least

squares curve fit is outlined below.

The cumulative Weibull d1.stributi.on function can be written as (5)

x-x m
- (~)

w (8)
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This equation can be rearranged to yield

In w + ; In(ln(l:Y». = In(X-Xo)

Let:

Z = 1n (X-X )
0

W= 1n (In(1~Y) )

1A=-m

B = 1n w

Then from Eq. (9)

Z = AW + B

(9)

(10)

(11)

(12)

(13)

(14)

The least squares estimates A and B were determined by a least

squares technique in which the sum of the squares of the error (E)

between each data point and the approximating curve at that point was

minimized with respect to A and B.

The sum of squares of the error is

n
E = L (Zi - AW

i
- B)2

i=l
(15)

Differentiating with respect to the coefficients A and B yields

dE n
-= L 2(Z - AW - B) (-W) 0
aA i i.

i-I

n
aE L 2(Z - AW - B) (-1) II:( 0--aB i i

i-I

(16)

(17)

Equati.ons (16) and (17) can be rewritten in the form of normal equations

(17) •

A computer program computed the coefficients of A and B in the

normal equati.ons and solved the normal equations: simultaneously for A
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and B. X, assumed known for the curve fitting, was determined by com­
o

puting A and B for several values x
o

and selecting the value of xo

which corresponded to the minimum total error. Table 3.1 shows the

values of X tried, with the corresponding values of the Weibull para­o

meters and approximation error also listed. The set of Weibull parame-

ters used in the simulation is indicated.

Random j ois t MOE values were generated during the canputer s imula-

tion. A system subroutine for generating random numbers between zero and

one from a uniform distribution was called during the simulation to re-

turn a random number. This number represented the frequency of occur-

rence, Y. Substitution of the frequency into the Weibull function

yielded a value of X, corresponding to the random MOE. This process

was repeated for generation random modulus for each simulation floor

joist. Random MOE values 'generated from the high variability probability

distributions were limited to values between 600,000 psi to 3,000,000 psi.

This was done to eliminate unrealistic values generated from the ends of

Weibull distribution. Typical sets of random joist MOE values are listed

in Table 3.2.

3.2 Floor Configurations for Simulation Studies

Since joist MOE was the variable in the study, other floor parame-

ters, SUdl as sheathing and connector properties and floor geometry, were

held constant during a specific simulation. The constant floor parame-

ters were selected auch that the simulation floors would be generally

typical of those currently being built for residential housing. SiIIlUla-

tiQn of typical flooring systems using an accurate mathematical model

provides deflection dis·tributions from which conclusions of effects of

variability on flooring systems can be drawn directly. This eliminates
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TABLE 3.1

WEIBULL DISTRIBUTION CURVEFIT RESULTS

Weibu11 Function:

x-x
_(_._o)m

().)
y = 1 - e

LOW VARIABILITY DISTRIBUTION

x m° ().)

1.52 0.262 2.270
1.51 0.278 2.466
1.50* 0.292 2.644
1.49 0.306 2.812
1.45 0.356 3.420

MEDIUM VARIABILITY DISTRIBUTION

x
().)0 m

0.70* 1.177 3.127
0.80 1.063 2.841
0.90 0.944 2.439
1.00 0.813 1.976
0.60 1.288 3.577
0.67 1.211 3.326

HIGH VARIABILITY DISTRIBUTION

x
().)0 m

0.25 1.540 1.841
0.10 1.749 2.223
0.00 1.875 2.443

-0.10 1.997 2.650
-0.40 2.434 3.224
-0.22* 2.138 2.885

* Values used in simulations.

STANDARD
ERROR

-59.1 x 10_5
7.2 x 10_5
6.9 x 10_5
7.2 x 10_5

12.3 x 10

STANDARD
ERROR

-5
5.1 x 10_5
6.6 x 10_5

13.4 x 10_5
36.7 x 10_5
6.0 x 10_5
5.2 x 10

STANDARD
ERROR

-44.9 x 10_
42.4 x 10_4

1.7 x 10_4
1.4 x 10_4
1.5 x 10_4
1.3 x 10
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TABLE 3.2

SAMPLES OF RANDOM JOIST MOE

LOW MEDIUM HIGH
RANDOM VARIABILITY VARIABILITY VARIABILITY

BEAM NUMBER MOE MOE' MOE

FLOOR 1141

1 •58694 1778716. 1831565. 1828691•
2 •25129 1682693 • 1491722. 1171103.
3 . 01081 1552813 • 977232. 600000.
4 •90186 1901528. 2240786. 2642760•
5 •72462 1821484 • 1976735. 2115043.
6 .42480 1733394. 1673892. 1521170.
7 •50779 1756367• 1754351. 1677614.
8 •06505 1605205 • 1196491. 618876.
9 •99948 2127620• 2947817. 3000000.

10 •17024 1654758• 1386077. 974847.
11 •03505 1582779• 1105394. 600000.

FLOOR 1179

1 • 3067 1699716. 1553668 • 1289453.
2 .4982 1753706. 1745042. 1659557.
3 .6505 1797600. 1896057. 1955546.
4 •8293 1862245 • 2112328. 2384994.
5 .5852 1778221. 1829864. 1825354.
6 .4009 1726768. 1650463. 1475816.
7 .7003 1813359. 1949396. 2060897.
8 .0253 1573089. 1064888. 600000.
9 •2748 1690090 • 1518744. 1222637.

10 •3416 1709957 • 1590535. 1360236.
11 .8917 1895004. 2219593. 2600105.
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the need to predict the behavior of real floors from the results obtained

from use of a simplified floor system or deflection model.

An eleven joist floor with 16 inch spacing between joists was selec-

ted. The joint span of 160 inches was assumed, the span allowed by Span

Tables for Joists and Rafters (18) based upon 2 x 8 inch nominal joist

6dimensions, a mean MOE of 1.8 x 10 psi. a deflection limit of L/360, and

a uniform load of 40 psf.

Two basic floor configurations were simulated in the study. The

first floor consisted of one layer of sheathing of 0.75 inch thickness,

connected to the joists by 8 penny nails at 8 inch spacing. A slip

modulus of 30,000 lb/in was used, based upon the observed composite be-

havior for this type of connection as reported by Kuo (15). A second

floor configuration, used to examine floors of very minimum construction,

assumed the use of 0.5 inch sheathing and a slip modulus of 15,000 lb/in.

MOE values assumed for both 0.5 inch and o.75 inch sheathing were

average values for Douglas fir plywood, as measured by the Wood Science

Lab at Colorado State University. MOE values for the 0.75 inch sheathing

are 523,000. psi and 1,361,000. psi, perpendicular and parallel to the

surface grain, respectively. MOE values of the 0.5 inch sheathing are

245,000. psi and 1,645,000 psi, perpendicular and parallel to the surface

grain, respectively. The MOE values perpendicular to the surface grain

represent gross cross section values adjusted to compensate for the dif-

ference in MOE for bending and axial loads, as explained by Liu (12).

Gaps in the sheathing were considered for the simulations conducted

in which. th.e mathematical floor model was solved by th.e finite element

technique. Gaps were included by allowing the approximating function

for axial displaceme~t to be discontinuous at the gap location and
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physically modeled an open gap situation. The use of flexible gaps

approximating tightly butted tongue and groove or glued gaps would re­

sult in somewhat stiffer floors.

A uniform live load of 40 psf was applied to each simulation floor.

This loading corresponds to the design loading on which the deflection

limit of L/360 of the span tables is founded.

Schematic diagrams of each floor configuration used in the simula­

tions are shown in Figures 3.4, 3.5, and 3.6. Also, material and con­

nector properties are listed with the diagrams.

Simulations of these floors were conducted using joist MOE randomly

generated from the Weibull MOE functions described earlier. Distribu­

tions of maximlDll floor deflection resulted from the simulations. These

results are discussed in Chapter IV.
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CHAPTER IV

PRESENTATION AND DISCUSSION OF SIMm..ATION RESULTS

4.1 Deflection Probability Distributions

Results of the deflection simulations for the various floor con­

figuration and joist MOE variability combinations are listed in Table 4.1.

Simulation I was conducted using a crossing beam floor model without gaps

and deflections were calculated using a finite difference approxtmation

for floors with sheathing thickness of O. 75 inch and a slip modulus of

30,000 lb/in (Figure 3.4). A total of three hundred floors (one hundred

for each degree of variability of the joist MOE distribution), were

randomly generated and analyzed for deflections corresponding to a 40 psf

uniform load during the simulation. The resulting cumulative maximum

deflection distributions are shown in Figure 4.1.

Simulation II was also conducted using the crossing beam floor

model assuming no gaps solved by a finite difference technique. The

foors had 0.5 inch sheathing and a slip modulus of 15,000 lb/in, as

indicated in Figure 3.5. One hundred floors were generated from each of

the three joist MOE distributions and analyzed for a uniform loading of

40 psf. Maximum deflection cumulative probability distributions are

shown in Figure 4.2.

Simulation III utilized the finite element technique for solution

of the crossing beam floor model. The floors consisted of 0.75 inch

sheathing with a slip modulus. of 30,000 lb/in. Open gaps in the

sheathing strip as indicated in Figure 3.6 were included. The maxtmum

deflection cumulative probability distributions are ahown in Figure 4.3

for deflections. resulting from a uni.form load of 40 paf.
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TABLE 4.1

SIMULATION RESULTS

MEAN STANDARD COEFFICIENT
SIMULATION VARIABILITY DEFLECTION DEVIATION OF VARIATION

I Low .275 .0<;)45 .016

I MeditDD. .296 .0177 .060

I High .345 .0401 .116

II Low .335 .0060 .018

II Medium .374 .0242 .065

II High .454 .0566 .125

III Low .399 .0085 .021

III MeditDD. .436 .0336 .077

III High .519 .0793 .153

Joist MOE Coefficient of Variation

Low Variability

Medium Variability

High Variability

0.056

0.204

0.408
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The mean, standard deviation, and coefficient of variation were

computed for each maximum deflection probabili ty distributions. These

values are given in Table 4.1.

It was observed from the maximum deflection distributions that the

number of floors in each study required to yield a smooth deflection

curve increased with greater joist MOE variability. For further simula­

tion studies it is recommended that the number of floors be reduced when

low variability distributions are considered and increased for high

variability distributions to make more efficient use of computer time.

4.2 Discussion of Simulation Results

Several characteristics of the deflection cumulative probability

distributions presented in Secti.on 4.1 merit further discussion.

The mean maximum deflection of th.e deflection distribution increases

as expected, with greater joist MOE variability. Mean values from Table

4.1 are plotted in Figure 4.4 showing the relationship between mean

maximwn deflections and joist MOE variability for the three simulations.

This graph indicates that mean maximum deflection increases non-linearly

as MOE variability rises.

Difference in the mean maximum deflection of floors due to varia­

tions in the floor configurations are also evident from Figure 4.4.

Increased composite action as a result of utilizing thicker sheathing or

providing a higher slip modulus yields a resulting floor with a stiffer

overall response. The presence of open gaps in the sheathing has a

strong infiuence on floor response. Mean max~um deflect~on of floors

without gaps decreased approximately one-third from th.e mean maximum

deflection of floors identical in configuration but with open gaps.

This increase in mean maximwn deflection demonstrates that composite
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action and load sharing are substantially diminished by the presence of

open discontinuities in the sheathing. Tongue-and-groove tightly butted.

or glued joints do not diminish the composite action and load sharing

effects as greatly as do open gaps (See Table 2.1). Thus, attention

given to the details of construction can be expected to produce benefi-

cial results •

The deflections of floors corresponding to the configurations used

in the three simulations were determined for joists of uniform 1.8 x 10
6

psi MOE. The purpose of this was to separate the effects of structural

interaction and joist MOE variability on floor deflection. From Table

4.2, it can be observed that the presence of structural interaction

markedly stiffens the floor in comparison to a joist only prediction.

As greater amounts of joist MOE variability are introduced, the average

stiffness of a floor population decreases. For the simulations conducted

only the mean maximum deflection of floor populations derived from the

high variability joist MOE distribution exceeded the L/360 deflection

criterion. Thus. the influence of grading, i.e., reducing the joist MOE

variability, is clearly evident.

Another result obtained by examining the floor deflection distribu-

tions is that an increase occurs in variability of the deflection dis-

tributions with increasing MOE variability. The coefficient of variation

of the maximum deflection distributions are plotted with respect to the

corresponding values of joist MOE coefficient of variation in Figure 4.5.

The relationships between coefficient of variati.on and MOE coefficient of

variation are nearly linear. Thes.e results have important implications

in that it may be possible to utilize such a relationship in developing

probability-based design concepts.



TABLE 4.2

COMPARISON OF AVERAGE FLOOR MAXIMUM PREDICTED DEFLECTICliS

SIMULATION*

I

II

III

JOIST CfiLY
PREDICTION

(L/360)

.444

•444

.444

FLOORS WITH
NO MOE

VARIABILITY

.266

.304

.386

FLOORS WITH
LOW

JOIST MOE
VARIABILITY

.274

.335

.399

FLOORS WITH
MEDIUM

JOIST MOE
VARIABILITY

.296

.374

.436

FLOORS WITH
HIGH

JOIST MOE
VARIABILITY

.345

.454

.519

.r::­....

" For assumptions made for each simulat1on~ refer to Section 4.1.
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Considering the simulation floors generated using the same MOE

distribution, it can be seen that the variability of floor maximUlll

deflection distribution is greater for floors with higher mean deflec­

tion. For example, for the medium variability distribution, the mean

maximum deflection of three simulation floors as presented in Section

4.1 are 0.296 inch, 0.374 inch, and 0.436 inch. The coefficients of

variations for these floors are 0.0600, 0.0648, and 0.0772, respectively.

Thus, as floor systems become less stiff, they tend to show greater

deflection variability for the same joist MOE variability. This is

expected as less composite action and load sharing is present to offset

the effects of joist MOE variability.

Thus, two basic effects on maximum deflection distributions occur

as a result of joist MOE variability and changes in variability. These

effects are differences in the mean maximum deflection and changes in

the amount of variability of the maximum deflection distribution.

One of the most important results that can be derived from the de­

flection probability distribution is concerned with the increase in the

efficiency of wood use that could be derived from modification of wood

variability within a grade. From the deflection distributions generated

in the simulations, the percentage of acceptable floors corresponding to

a specific deflection limit can be seen to decline as MOE variability

rises. Thus, if the floors of a given design were required to have a

specific percentage of their population exhibit deflection under design

load less than a speci.fied deflection limit, th.ose floors constructed

of low MOE variability lumber would produce a greater number of accep­

table floors than floors. constructed of higher variahi.lity' lumber. If

a particular floor configuration is examined, the number of floors that
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would be acceptable, under the requirement that a certain population per­

centage satisfy a maximum deflection criterion, can be deteDnined as a

function of MOE variability from the maximum deflection distributions.

For the simulation of floors with 0.75 inch sheathing, 30,000 lb/in, slip

modulus, and open gaps, (Simulation III) all floors generated from the

low variability joist MOE distribution satisfy the deflection require­

ment of L/360, while 65% of the floors generated from the medium varia­

bility joist MOE distribution satisfy the L/360 requirement, and only

19% of the floors generated from the high variability distribution satisfy

the L/360 criterion. For all floors resulting from the high and medium

variability joist MOE distribution to satisfy the deflection requirement,

the floors would need to be modified either by increasing the mean value

of joist MOE or by providing for more composite action or load sharing

capability. This shows that by decreasing the joist MOE variability more

restrictive deflection limits may be satisfied. Similar results are

obtained from the results of Simulations I and II.

The problem can also be examined from the point of view of deter­

mining the deflection criterion that a given percentage of the floor

population satisfies. For example, the maximum deflection limit that

could be imposed which 95% of the floor populations of Simulation III

would satisfy would be 0.412 inch, 0.483 inch, and 0.641 inCh for floors

generated from the low, medium, and high variability joist MOE distribu­

tions, respectively. The deflection liJnit corres.ponding to th.e low

vari.ability distribution shows a 16% reduction over the deflection limit

from the medium vari.ability MOE. distribution. The benefit obtained from.

reduction of the deflection liJnit due to les8 joist MOE variability could

be applied by allowing an increased load or span for this floor configu­

ration.
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Thus, the existence of component variabi.lity and degree of component

interaction alters the performance of floors. Design methods which do

not account for these ~o critical factors, are unable to properly assess

the degree 6f satisfaction of imposed performance criteria. Thus, some

floors will be overly conservative while others may be near the limit of

accep tabili ty •

One direct application of effects of joist MOE distribution varia­

bility on floor response arises with respect to lumber grading techniques.

In general, less variability occurs in lumber graded meChanically than in

lumber graded visually. In the simulation studies conducted, the low

variability joist MOE distribution approximated a tightly selected

machine graded lumber (1) and the medium variability joist MOE distribu­

tion approximated visually graded lumber. Because a greater proportion

of floors can satisfy a given deflection criterion as the joist MOE

variability is reduced, the potential for increased wood use efficiency

through improved grading procedures is evident.



CHAPTER V

CONCLUSIONS

5.1 Conclusions

Simulation studies of the deflection behavior of wood joist floor

systems were conducted. The primary purpose of the studies was to demon­

strate the feasibility of using the MOnte Carlo technique for evaluating

the effects of component or loading variations on floor system response.

When compared to the costs of studying component variability through

full-scale testing, Monte Carlo analysis is very economical and very

effective.

The secondary purpose of the study was the investigation of the

effects of joist MOE variability and changes in joist MOE variability on

the deflection response of floors. Simulation results indicate that

there are two basic effects induced on deflection behavior by joist MOE

variabili ty and changes in variability. These effects are changes in

mean maximum floor deflection and maximum floor deflection variability.

The study includes discussion on application of design deflection limits

and their relationship to the floor maximum deflection distributions.

A means for seeking optimum economic effici~ncy through restricting

joist MOE variability, or the variability of other floor components, to

a value that yields the best floor maximum deflection response to joist,

or other component, cost relationship can be formulated from floor maxi­

mum defLeccd.on dds t rdb utLona ,

The study emphasizes the iJnportant roles of structural interacti.on

and component variabili.ty on atructural performance. For floors in which

a deflectton criterion governs design, the design calculati.on is normally

based on the deflection behavior of joists with average member atiffne8.
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acting alone. This method of design normally does not include the bene­

ficial effects of load sh.aring and composite action nor the detrimental

effects of joist MOE variability. The results indicated that design

analysis based upon joist-acting-alone behavior does not necessarily

describe the behavior of floors within the design, and the effects of

structural interaction and component variability need to be evaluated.

The differences in the results of the three simulations conducted

demonstrate the important effects sheathing, connectors» and discon­

tinuities have on floor performance. Stiffening from structural inter­

action is usually adequate to offset increased flexibility due to

expected joist MOE variability. With the possible exceptions of minimal

floor construction or high joist MOE variability, floors designed by

joist only deflection criterion are conservative. However, for an accu­

rate prediction of floor behavior, especially when the predictions are

to be used for the evaluation of economic alternatives» structural inter­

action and component variability must be included in the analysis.

This study dealt only with the effects of joist MOE variability on

floor deflections. For more complete understanding of floor response,

other floor variables and other design criterion need to be examined for

their effects on floor system behavior. Factors such as slip modulus,

sheathing properties, component dimensions, and the location and type of

gaps exhibit variati.ons from the nominal values used in design analysis.

Thes.e variations result in floor response different from. the predicted

design calculati.ons.

In the simulations. conducted only a uniform. load of 40 psf was con­

sidered. Concentrated loads may result in differences in deflection

distributions. Simulation of loadings' could be app11.ed in the same
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manner as joist MOE variability to evaluate the life time floor response

to expected loading hi.stories.

Examination of other design criterion, especially that of floor

strength, could be performed by developing floor system response distri­

bution comparable to the deflection distributions with a mathematical

floor model capable of predicting floor failure. Floor strength distri­

butions could be obtained as a function of modulus of rupture variability,

for example.

From determination of the effects of component and loading varia­

bility on various design criterion, a design probabilistic method could

be developed. This would allow a designer to select the degree of

reliability needed for a flooring system and, from curves such as Figure

4.5, relating component variability to floor response variability,

specify the components necessary.
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APPENDIX. A

The maximum deflection probability distributions derived by Monte

Carlo analysis are approximations of actual distributions for the total

population of floors. To assure that the approximation is accurate,

the magnitudes of the error of the estimate (17) of the distribution

means were computed for the simulation results.

Two assumptions were required for computation of the errors. The

first assumption is that the deflection distribution was approximately

normal. The second assumption is that the sample standard deviation is

an acceptable approximation of the population standard deviation.

The magnitude of the error of the estimate for a probability of

1 -(l is

E < Z (lIZ

where E = x - ~ (error of the estimate)

s ~ sample standard deviation

1 - (l = probability value

n = sample size

Z (l!Z = area under the normal curve to the right of (l!Z

For a probability of .9, the magnitude of the error of the estimate

for each simulator case is listed in Table A.l. The errors of the

estimate indicate that the Monte Carlo analysis provides good approxi-

mations of the actual distributions.
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TABLE A.1

ERROR OF ESTIMATES OF MONTE CARLO APPROXIMATION

COEFFICIENT MEAN MAXIMUM MAGNITUDE OF
SIMULATION OF VARIATION DEFLECTION (in) ERROR OF ESTIMATE

Percentage of
Magnitude Deflection

Mean

I 0.056 0.275 0.0017 0.6
I 0.204 0.296 0.0029 1.0
I 0.408 0.345 0.0066 1.9

II 0.056 0.335 0.0001 0.03
II 0.204 0.374 0.0040 1.1
II 0.408 0.454 0.0093 2.0

III 0.056 0.399 0.0014 0.4
III 0.204 0.436 0.0055 1.3
III 0.408 0.519 0.0130 2.5
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