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ABSTRACT

NONLINEAR DYNAMICS OF PLANT PIGMENTATION

Red, blue, and purple colors in plants are primarily due to plant pigments called anthocyanins.

In a plant cell, an equilibrium is established between anionic and cationic forms of anthocyanins

as well electrically neutral colorless forms called hemiketals. In typical cellular pH ranges, the

colorless hemiketal would be expected to be the dominant form. Why then, do plants, in fact,

display colors? We propose that this is part due to self association and intermolecular association

of the colored forms of anthocyanins. We develop a series of models for the interconversion of

the colorless and colored forms of anthocyanins, including zwitterionic species and extend these

models to include association of the colored species. Analysis of these models leads us to suggest

and implement experiments in which the total concentration changes over time, either slowly or

quickly compared to the kinetics. Coupling these models to a system of partial differential equa-

tions for in vivo anthocyanin synthesis (a modification of the Gierer-Meinhardt activator-inhibitor

model), we simulate and analyze a variety of colorful spotted patterns in plant flowers. These stud-

ies are aided by a linear stability analysis and nonlinear analysis of the modified Gierer-Meinhardt

model. The extended model that we propose is a first model to analyze the effects of association

in pattern formation. Association may occur with various geometries which have an effect on

the absorbance spectrum. Based on the Beer–Lambert law and our evaporative experiments, we

develop methods of deconvoluting absorbance spectra of anthocyanin solutions into absorbance

spectra of monomers, dimers and trimers, thus providing clues into the geometry of the smallest

associated particles. Finally, we propose a novel geometric method of probing association by ob-

serving the changing shape of evaporating solution droplets. The associated mathematical model

involves solving the highly nonlinear mean-curvature equation with nonconstant mean curvature

(surface tension), and we present new solutions making use of the hodograph transform.
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Chapter 1

Introduction

The colorful world of the plant kingdom is composed of cell pigments including anthocyanins

[1], betacyanins, carotenoids, and cholorophyll. Anthocyanins are responsible for the blue, pur-

ple, and red colors in flowers and fruits. The colors and color patterns in flowers have not only

ornamental value. Anthocyanins are biologically active chemicals that play diverse and crucial

roles in plant cell biology and ecology [2]. They influence pollinators to successfully pollinate and

impact the next generations. Anthocyanins and the other pigment compounds such as chlorophyll

and carotenoids are photoprotectants [3–5] since they respond for the optical-chemical pathways

of energy transduction in plant cells. Anthocyanins also play a role in plant cell defense mecha-

nisms [6].

Anthocyanins contribute to many human uses for plants. They are powerful antioxidants, as

well as antihypertensive, antitumor, antidiabetic, and antifungal agents [7–10]. Increasingly, re-

searchers recognize anthocyanins as potential players in the defense against neurological disorders

such as Alzheimer’s disease by helping to unravel abnormal protein complexes [11]. They influ-

ence the taste of red wines [12], and the consumer choice of flowers, fluits, and beverages [13–15].

Therefore, manufacturers of food and beverages have great interest in anthocyanins. Incorporation

of anthocyanins into solar cells has increased their sensitivity [16].

If cells are exposed to acids and bases, then anthocyanins change their structures and colors,

which means the pH values play a crucial role of presenting different colors. Anthocyanins are

stored in plant cell storage compartments called vacuoles. The pH values of vacuoles range from

4 to 6. pH values of 8 or larger are typically necessary for blue forms of anthocyanins. It is no

wonder then, that blue roses have eluded horticulturists! In this thesis, we suggest that association

is a key to understanding how there can there be any blue flowers.

The chemical structure of anthocyanins can help us to study the variation in color. The flavylium

cation is the parent structure for an anthocyanin molecule, and its three rings form a chromophore,
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Figure 1.1: The flavylium cation.

which is responsible for its color; see Figure 1.1. There are 20 known types of anthocyanidin

molecule, such as malvidin and pelargonidin, whose structures are shown in Figure 1.2. The types

of anthocyanidin are distinguished by the choices of −H , −OH , or −OH3 groups at the posi-

tions Ri. Although anthocyanidins are insoluble in water, anthocyanins are water-soluble. At the

positions marked 1 − 8 and 1′ − 6′, there can be the addition sugars (glycosyl units) that turn an

anthocyanidin into one of the more than 900 known types of anthocyanin. By adding acyl units

to the sugars, there may be further modifications of anthocyanins. Because these additions and

modifications denote electrons to the chromophore and change the geometry of the molecule, they

influence the anthocyanin color.

(a) (b)

Figure 1.2: Two well-known anthocyanidins, (a) malvidin, and (b) pelargonin

For any given anthocyanin, we are interested in the string of fast and slow reactions between

what we will call species; see Figure 1.3. Fast acid-base reactions transform the blue anion A–

2



Figure 1.3: pH-dependent anthocyanins structural changes. These species are the majority monomer that

we will discuss in the following Chapters. Denote the blue anion by A– , the purple quinoidal base by A, the

red flavylium cation by AH+, the colorless hemiketal by B, the light yellow cis-chalcone by C, and the light

yellow-green trans-chalcone C– .

into the purple quinoidal base A and turn A into the red flavylium cation AH+. Slow hydration of

the red flavylium cation AH+ forms the colorless hemiketal B. From B, tautomerization produces

the light yellow cis-chalcone Ccis. Slow isomerization changes Ccis into the light yellow-green

trans-chalcone Ctrans.

These reversible reactions are pH dependent. Thus, different species will dominate at different

pH values. The lower pH values move the reactions to the right in the scheme of Figure 1.3. We

will discuss the dominant species thoroughly in Chapter 2.

The structures shown in Figure 1.2 and Figure 1.3 are single anthocyanin molecules, which

are called monomers. Previous studies have shown that anthocyanins undergo both intramolecu-

lar associations (association with each other to form dimers, trimers, and larger j-mers) [17–20]

and intermolecular associations (association with other molecules) [21–23]. The microscopic im-

Figure 1.4: Optical microscope images of pigmented plant cells and anthocyanin complexes. (a) Antho-

cyanins associated with microtubules in geranium cells. (b,c) Various phases of anthocyanin complexes are

present in these cells of (b) purple petunia and (c) blueberry. Samples were prepared and imaged by Dr.

Stephen Thompson.

ages of cells in the outmost layer of flower petals (the epidermis) in Figure 1.4 (a- c) reveal that
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anthocyanins are not merely present in solution in plant cells, but associate to form complexes

with other molecules (microtubules dyed red by association with anthocyanins in panel (a)) or

with themselves to form particles (panels (b,c)). These images were produced by Dr. Stephen

Thompson, our collaborator in the study of anthocyanins.

Anthocyanin intramolecular association occurs through several types of chemical bonding. The

hydrophobic chromophore, composed of what we call A,B, or C rings, has delocalized electrons

which are involved inH−H bonding and they will formH associates. These delocalized electrons

form what are called π − π dispersion forces to operate in stacking modes. The other associates

are called J associates. They come from electrostatic hydrogen bonding (primarily -OH groups in

the B ring and glycosides) and produce end-to-end and offset associates. See Figure 1.5 [24]. The

important factors in the association of different anthocyanin species are bonding types, strength,

and geometry. For instance, A is a neutral quinoid with reduced solubility, so it reduced ability

to associate. A− has negative charge and willing to ion-pair with cations. Furthermore, A2− has

enhanced solubility, and therefore enhanced ability to associate. It is also known that A can as-

sociate with AH+. For a detailed discussion of these association scheme, see Section 2.4. AH+

has a positive charge and will ion-pair with negatively charged ions, which are so-called anions.

The addition of anions to AH+ will form zwitterionic molecules (AH+)−, which have negative

and positive parts that allow for alternating stacking. We will discuss a reaction scheme includ-

ing zwitterionic species in Section 2.2. Phase transitions occur in the vacuolar environment are

impacted by concentrations, solubility factors, the hydrophobic/hydrophilic balance, and B-ring

substitution. Therefore, the vacuole influences anthocyanin function.

Many flowers exhibit patterns of color, which are comprised of a variation in anthocyanin

concentration. A wide variety of patterns is observed in nature [25, 26]. Pigmentation patterns

on flower petals provide visual cues in the insect pollination and reproduction [27–30]. Recent

work in monkeyflowers, see [31], characterizes an R2R3-MYB activator, which activates its own

production as well as that of a repressor molecule, and an R3-MYB repressor, which inhibits

activator production and diffuses to nearby cells more quickly than the activator. We use the
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Figure 1.5: Schematic diagrams of J− and H−aggregates together with energy profiles. This images is

taken from Ref. [24]. The sign of the nearest-neighbor coupling J0 is determined by the through-space

Coulombic coupling. (a)Head-to-tail orientations lead to J0 < 0 and J−association. (b)Side-by-side ori-

entations led to J0 > 0 and H−association. (c)In polymer HJ−associates, Coulombic interchain coupling

is positive (Jinter > 0), whereas the effective intrachain coupling between adjacent repeat units is negative

(Jintra < 0) owing to through-bond interactions in 1D direct band-gap semiconductors.

corresponding activator-inhibitor mathematical model, and the sigmoidal biological transcriptional

behavior of production of monomer to simulate patterns in Section 2.6.

The most important concept of this dissertation is that of anthocyanin association, including in-

termolecular association and self association. These associations influence the colors and patterns

in flowers, which impacts interactions with pollinators as well as energy transduction pathways

in cells. Chapter 2 of this dissertation presents models for anthocyanin association and pattern

formation.

Absorbance spectra of anthocyanin solutions measure the amount of light absorbed as a func-

tion of wavelength. the absorbance spectrum of an anthocyanin solution is a combination of the

individual absorbance spectra of the anthocyanin monomer, dimer, trimer, and larger Nmers. We

are interested in deconvoluting the absorbance spectrum of an anthocyanin solution to determine

the absorptivity of monomers, dimers, and trimers since the shift of peak of the absorptivity helps

us to understand the geometry of association. A model of anthocyanin self association given in
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Chapter 2 informs a new method of deconvolution that we present in Chapter 4. This model pre-

dicts that, at low total anthocyanin concentrations in solution, anthocyanins will exist primarily as

monomers, dimers, and trimers and predicts the relative concentrations of these Nmers. In order to

determine the absorptivities of monomers, dimers, and trimers, we combine experimental data that

gives the absorbance spectra at a range of low concentrations with our model. We show that, for

this method to work despite noise in the experimental data and the competition with larger Nmers

at higher concentrations, we need a sufficient number of experimental measurements of absorbance

spectra at very low concentrations (on the order of 10−5 M). Accurately measuring concentrations

that are this low is difficult experimentally. This leads us to propose an approach to measuring low

concentrations by measuring the contact angle of droplets of anthocyanin solution with a surface,

as this contact angle depends on anthocyanin concentration. The reason that the contact angle

depends on anthocyanin concentration is that anthocyanins act as surfactants that change the sur-

face tension of the liquid droplet. Also, the surface tension is proportional to the mean curvature.

Hence, understanding the geometry of the droplet helps us to figure out the concentration of the

solution. This could be a way to approach measurement of low concentrations. Although we do

not fully realize this method for measuring low concentrations in this dissertation, in Chapter 3

we make progress towards this approach by proposing a method to solving the mean-curvature

equation.

This dissertation report is organized as follows: Chapter 2 introduces a series of models for

anthocyanin reaction schemes, association, and spatial pattern formation. Starting with an analysis

of the steady-state as a function of pH in a ’basic scheme’ introduced in Section 2.1, we extend this

analysis to include intermolecular association in Section 2.3 and self association in Section 2.4. In

Section 2.2, we include a zwitterionic species in the scheme. Section 2.5 concerns the dynamics

of the concentrations of anthocyanin species as the total concentration of the solution changes in

evaporative experiments. Section 2.6 concerns spatial patterns of anthocyanins. We perform linear

stability analysis of a modified Gierer-Meinhardt model which has been proposed to model an

activator-inhibitor system involved in anthocyanin production. Our numerical simulations close
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to a Turing bifurcation threshold determined by the linear stability analysis show well-ordered

patterns of rolls, squares, and hexagons. Nonlinear analysis of the modified Gierer-Meinhardt

model close to this bifurcation threshold results in differential equations for amplitudes of finite

numbers of Fourier modes involved in these patterns and allows for a study of the competition

between patterns of rolls and up- and down-hexagons. In this section, we also extend the Gierer-

Meinhardt model to allow the activator to activate anthocyanin production to include anthocyanin

synthesis as well as self association.

Chapter 3 introduces a novel geometric method to probe anthocyanin association. We motivate

a study of the mean-curvature equation by describing how anthocyanins in solution modify the

surface tension of a liquid droplet. This section includes a new mathematical approach, using

the hodograph transform, to solving the mean curvature equation. We apply this approach to find

conformal parameterizations of surfaces of revolution with mean curvature that is a function of

radius alone. Section 3 introduces a novel geometric method to probe anthocyanin association.

This approach is suggested by an analysis of the Cross-Newell phase-diffusion equation by N.

Ercolani, R. Indik, A. C. Newell, T. Passot [32].

Chapter 4 concerns methods of deconvoluting absorbance spectra of anthocyanin solutions.

Prof. Thompson has collected thousands of absorbance spectra of anthocyanins in solution. These

solutions are at varying concentrations and pH values. Therefore, they are mixtures of various

anthocyanin species and contain anthocyanin monomers, dimers, trimers, and larger aggregates.

The goal is to deconvolute the spectra into the absorbance spectra of the various species and nmers.

Our unique approach to deconvolution utilizes data sets collected at various concentrations, and

combines the models presented in Chapter 2 with a Bayesian statistical methods to give probability

distributions for the absorbance spectra. The Beer–Lambert law states the absorbance expression

isAbs = ℓ
∑

j sjcj , where ℓ is the optical path length in cm, sj are absorptivity of different species,

and cj are the concentrations of different species. Applying the Bayesian method, we can find a

probability density σ(m | d) that describes the probability of the vector m of parameter values

such as absorptivity sj given the data d, which are experimental absorbance spectra.
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Chapter 2

Anthocyanin reaction schemes, association, and

spatial patterns

Studying anthocyanins is an important project not only in bio-chemical researches, but also in

the industrial application area. Anthocyanins are so intriguing because they will affect the orna-

mental value of flowers, provide visual cues to pollinators and seed distributors, and then promote

pollination success, and an anthocyanin is also a source of non-toxic food dyes. In previous work,

Sadlowski [19] formed the chemical reactions including anhydrobase anion (A−), flavylium cation

(AH+), quinoidal anhydrobase (A), and carbinol pseudobase (B). Based on these reactions, we

obtain the concentrations of different structural transformations in several situations.

In this chapter, we develop a series of models for anthocyanin reaction schemes, association,

and spatial pattern formation. We start with an analysis of the steady-state as a function of pH in a

‘basic scheme’ introduced in Section 2.1. We extend this analysis to include intermolecular asso-

ciation in Section 2.3 and self association in Section 2.4. In Section 2.2, we include a zwitterionic

species in the scheme. Section 2.5 concerns the dynamics of the concentrations of anthocyanin

species as the total concentration of the solution changes in evaporative experiments. Section 2.6

concerns spatial patterns of anthocyanins. We first perform a linear stability analysis and non-

linear analysis of an activator-inhibitor system recently introduced by Ding and colleagues [31]

that models diffusion synthesis, and degradation of an activator for anthocyanin production and a

molecule that inhibits the synthesis of the activator. These analyses combined with numerical sim-

ulations lead us to predictions on parameter values that produce more well-ordered patterns than

those found by Ding and colleagues and allow us to predict parameter values for the formation

of stripe, hexagon, and square patterns. We extend the model of Ding and colleagues to include

anthocyanin synthesis as well as self association. We propose that the activator also activates the

anthocyanin in the cytoplasm production through the sigmoidal relationship.
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2.1 The basic monomer reaction scheme

We start with the basic scheme including the species A– (the blue anion), A (the purple

quinoidal base), AH+ (the red flavylium cation), B (the colorless hemiketal), C (the light yel-

low cis-chalcone), and C– (the light yellow-green trans-chalcone), and without association. The

chemical reaction scheme is the following:

A− +H+
k−1−−⇀↽−−
k1

A

A +H+
k−2−−⇀↽−−
k2

AH+, B
k6−−⇀↽−−
k−6

B− +H+

AH+ k3−−⇀↽−−
k−3

B +H+

B
k4−−⇀↽−−
k−4

C
k5−−⇀↽−−
k−5

C− +H+

(2.1)

The law of mass action transforms their kinetic equations into the following system of ordinary

differential equations:

d

dt
[A−] = {−k−1[A

−][H+] + k1[A]} (2.2)

d

dt
[A] = −{−k−1[A

−][H+] + k1[A]}+ {−k−2[A][H
+] + k2[AH

+]} (2.3)

d

dt
[AH+] = −{−k−2[A][H

+] + k2[AH
+]}+ {−k3[AH+] + k−3[B][H+]} (2.4)

d

dt
[B] = −{−k3[AH+] + k−3[B][H+]}+ {−k4[B] + k−4[C]}+ {−k6[B] + k−6[B

−][H+]}

(2.5)

d

dt
[B−] = −{−k6[B] + k−6[B

−][H+]} (2.6)

d

dt
[C] = −{−k4[B] + k−4[C]}+ {−k5[C] + k−5[C

−][H+]} (2.7)

d

dt
[C−] = −{−k5[C] + k−5[C

−][H+]} (2.8)
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The equilibrium constants for the anthocyanin malvidin 3−glucuronide, found in references

[19] and [33], are

K1 =
k1
k−1

= 10−6.37, K2 =
k2
k−2

= 10−4, K3 =
k3
k−3

= 10−1.92, (2.9)

K4 =
k4
k−4

= 10−0.98, K5 =
k5
k−5

= 10−6.75, K6 =
k6
k−6

= 10−7.86. (2.10)

These are the equilibrium constants, not the reaction constants.

To find the steady-state concentrations, we set all time derivatives to zero ( d
dt
[•] = 0) and

represent all the concentrations in terms of [A]:

[A−] =
K1

[H+]
× [A] (2.11)

[A] = [A] (2.12)

[AH+] =
[H+]

K2

× [A] (2.13)

[B] =
K3

K2

× [A] (2.14)

[B−] =
K6 ×K3

[H+]×K2

× [A] (2.15)

[C] =
K4 ×K3

K2
× [A] (2.16)

[C−] =
K5 ×K4 ×K3

K2 × [H+]
× [A] (2.17)

The total anthocyanin concentration is a conserved quality for the system Eq. 2.2- Eq. 2.8.

[T ] = [A−] + [A] + [AH+] + [B] + [B−] + [C] + [C−]. (2.18)
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In terms of the equilibrium solutions Eq. 2.11 - Eq. 2.17, [T ] = KT ([H
+])[A], where

KT ([H
+]) = (

K1

[H+]
+ 1 +

[H+]

K2

+
K3

K2

+
K6 ×K3

[H+]×K2

+
K4 ×K3

K2
+
K5 ×K4 ×K3

K2 × [H+]
)

The equilibrium solutions Eq. 2.11 - Eq. 2.17 can therefore be written as substitution

[A] =
[T ]

KT ([H+])

into those equations. The resulting equilibrium solutions as functions of pH= − log10[H
+] are

shown in Figure 2.1.

Figure 2.1: Steady-state mole fractions of species without association.

The results demonstate that the basic monomer scheme implies the colorless hemiketal B dom-

inates in the pH range 3-6, which includes the pH range of typical plant vacuoles. This means
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there should not be color in flowers. How can the colored anthocyanin species be observed in plant

cells? In the following subsections, we will propose several possible answers to this question.
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2.2 Zwitterions and a square scheme

One possible reason for the existence of colored species is that there are zwitterions. A zwit-

terion is a molecule which has a functional group with a positive charge as well as a functional

group having a negative charge, with an overall charge of zero. Since AH+ has a positive charge

and will ion-pair with negatively charged ions, AH+ will form zwitterionic molecules (AH+)− by

adding a negative charge. Hence, we will add a diagonal line (A
m+−−⇀↽−−m-

((AH+))−) to our scheme.

A diagram for this scheme is as follows:

A AH+

(A)−(A−)− (AH+)−

(A)−X+

k−2

k2

l2l−2 l3l−3

k̃−2

k̃2

k̃−1

k̃1

j+j−

m+

m−

Figure 2.2: Square scheme

The following is the full schemes, and we also make some informal guess of the equilibrium

constants because those numbers are unknown.
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A+ H+ k−2−−⇀↽−−
k2

AH+, K2 =
k2
k−2

= 10−4,

A
l2−−⇀↽−−
l−2

(A)− +H+, L2 =
l2
l−2

= 10−3.25,

AH+ l3−−⇀↽−−
l−3

(AH+)− +H+, L3 =
l3
l−3

= 10−3.25,

((A)−)− +H+ k̃−1−−−⇀↽−−̃
k1

(A)−, K̃1 =
k̃1

k̃−1

= 10−6.37, (guess)

(A)− +H+ k̃−2−−−⇀↽−−̃
k2

((AH+))−, K̃2 =
k̃2

k̃−2

= 10−4, (guess)

A
m+−−⇀↽−−m-

((AH+))−, M3 =
m+

m−

= 10−4, (guess)

(A)− +X
j+−−⇀↽−−
j−

(A)−X+, J =
j+
j−

From these schemes, we can write the rates of change of the concentrations as below.

d

dt
[A] =− k−2[A][H

+] + k2[AH
+]− l2[A] + l−2[(A)

−][H+]

−m+[A] +m+[(AH
+)−]

d

dt
[AH+] =k−2[A][H

+]− k2[AH
+]− l3[AH

+] + l−3[(AH
+)−][H+]

d

dt
[(A)−] =l2[A]− l−2[(A)

−][H+]− k̃−2[(A)
−][H+] + k̃2[(AH

+)−]

− j+[(A)
−][X] + j−[(A)

−X+] + k̃−1[(A
−)−][H+]− k̃1[(A)

−]

d

dt
[(AH+)−] =l3[AH

+]− l−3[(AH
+)−][H+] + k̃−2[(A)

−][H+]− k̃2[(AH
+)−]

+m+[A]−m+[(AH
+)−]

d

dt
[(A−)−] =− k̃−1[(A

−)−][H+] + k̃1[(A)
−]

d

dt
[(A)−X+] =j+[(A)

−][X]− j−[(A)
−X+].
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Because all the concentrations can be represented in terms of [A], [AH+], [(AH+)−], the steady-

state concentrations can be solved by finding their null space. Therefore, the concentrations for

[A], [AH+], [(AH+)−], and [(A)−] are represented as




[A]

[AH+]

[(AH+)−]

[(A)−]




= µ(k−2[H
+])(l−2[H

+])(l−3[H
+])







K2

[H+]
+ K2

[H+]
k̃−2

l−2
+ K2

[H+]
k̃2

l−3[H+]
+ L3

[H+]
K̃2

[H+]
k̃−2

k−2

1 + k̃−2

l−2
+ k̃2

l−3[H+]
+ L2

[H+]
k̃−2

k−2

L3

[H+]
+ L3

[H+]
k̃−2

l−2
+ L2

[H+]
K2

[H+]
[H+]

K̃2

k̃2
l−3[H+]

+ L2

[H+]
L3

[H+]
k̃−2

k−2

L3

[H+]
K̃2

[H+]
k̃−2

l−2
+ K2

[H+]
L2

[H+]
+ L2

[H+]
K2

[H+]
k̃2

l−3[H+]
+ L2

[H+]
L3

[H+]
K̃2

[H+]
k̃−2

k−2




(2.19)

+
m−

l−3[H+]




K2

[H+]
+ K2

[H+]
k̃−2

l−2
+ L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

+ L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

k̃−2

l−2

1 + k̃−2

l−2
+M3

K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

+M3
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

k̃−2

l−2

K2

[H+]
M3 +

K2

[H+]
M3

k̃−2

l−2
+M3

L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

+M3
L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

k̃−2

l−2

K2

[H+]
M3

K̃2

[H+]
k̃−2

l−2
+ L2

[H+]
K2

[H+]
+M3

L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]

K̃2

[H+]
k̃−2

l−2
+ L2

[H+]
L3

[H+]
K̃2

[H+]

k̃−2
k−2

k̃2
l−3[H

+]







,

where µ is a constant depending on the total concentration, and the steady-state concentrations for

[(A−)−] and [(A)−X+] are

[(A−)−] =
K̃1

[H+]
[(A)−], (2.20)

[(A)−X+] = J [X+][(A)−].

15



Using the total concentration relation, which is similar to Eq. 2.18, we have

T = [A] + [AH+] + [(AH+)−] + [(A)−] + [(A−)−] + [(A)−X+]

= [A] + [AH+] + [(AH+)−] + [(A)−](1 +
K̃1

[H+]
+ J [X+]).

Here, we can pick a suitable constant µ in Eq. 2.19 to fit the total concentration restriction. How-

ever, in order to compute individual concentrations, we need to know the following parameters.

K2 =
k2
k−2

, L2 =
l2
l−2

, L3 =
l3
l−3

, M3 =
m+

m−

, K̃1 =
k̃1

k̃−1

, K̃2 =
k̃2

k̃−2

(2.21)

KL−2 =
k̃−2

l−2

, KL23 =
k̃2
l−3

, tKK−2 =
k̃−2

k−2

, ML3 =
m−

l−3

, JX = J [X+]. (2.22)

In Figure 2.3a, we choose

K2 = 10−4, L2 = 10−3.25, L3 = 10−3.25, M3 = 10−4, K̃1 = 10−6.87, K̃2 = 10−4

KL−2 = 1, KL23 = 1, tKK−2 = 1, ML3 = 1, JX = 0.3

and if we take log of each concentration, we can have a pH-logci diagram such as Figure 2.3b.

Now, we are interested in which parameters in Eq. 2.21 and Eq. 2.22 influence our results the most.

If we write the original concentrations as a vector

−→
ori = ([A] [AH+] [(AH+)−] [(A]−] [(A−)−] [(A)−X+])T ,
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(a) Concentrations v.s. pH.

(b) Log Concentrations v.s. pH.

Figure 2.3: Steady-state vs. pH
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and perturb all of the coefficients by a little amount ’△,’ then using the Taylor expansion, we will

have the result concentration
−→
end, which is also a vector, satisfing

−→
end ≈ −→

ori+




∂
∂K2

[A] · · · ∂
∂JX

[A]

∂
∂K2

[AH+] · · · ∂
∂JX

[AH+]

∂
∂K2

[(AH+)−] · · · ∂
∂JX

[(AH+)−]

∂
∂K2

[(A]−] · · · ∂
∂JX

[(A]−]

∂
∂K2

[(A−)−] · · · ∂
∂JX

[(A−)−]

∂
∂K2

[(A)−X+] · · · ∂
∂JX

[(A)−X+]







△K2

△L2

△L3

△M3

△K̃1

△K̃2

△KL−2

△KL23

△tkk−2

△ML3

△JX




.

The angle between
−→
ori and

−→
end represents the influence of the perturbation. Hence, if we calculate

each angle with respect to the small perturbation of each parameter, we can figure out which

parameters are the most important ones. To process this, we first take the partial derivative of the

steady-state concentrations in Eq. 2.19 and Eq. 2.20 with respect to the coefficients in Eq. 2.21 and

Eq. 2.22. And then compute each
−→
end when we just perturb one parameter in δ amount. Finally,

the angle between
−→
ori and

−→
end is

arccos
<

−→
ori,

−→
end >

∥ −→
ori ∥ · ∥ −→

end ∥
.

In figure 2.5a and 2.6a, we found that K̃1 =
k̃1
k̃−1

has the largest effect when pH is between 4 to 7,

while K2 =
k2
k−2

and L2 =
l2
l−2

influence the results in lower pH such as pH≤ 4. Three parameters

are the most important ones.
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Besides, K̃2 = k̃2
k̃−2

has the effect of pH around 3.7, while L3 = l3
l−3

changes the results at pH≤

4 and J [X+] = j+
j−
[X+] affects if pH≥ 4. On the other hand, the less important parameter is

tKK−2 =
k̃−2

k−2
through all pH. It basically does not influence the results.
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(a) All parameters (b) Exclude the largest 3. (c) Exclude the largest 6.

Figure 2.4: Sensitivities of parameters when the perturbation is δ = 10−1, angle in radian v.s. pH.

(a) All parameters (b) Exclude the largest 3. (c) Exclude the largest 6.

Figure 2.5: Sensitivities of parameters when the perturbation is δ = 10−2, angle in radian v.s. pH.

(a) All parameters. (b) Exclude the largest 3. (c) Exclude the largest 6.

Figure 2.6: Sensitivities of parameters when the perturbation is δ = 10−3, angle in radian v.s. pH.

(a) All parameters. (b) Exclude the largest 3. (c) Exclude the largest 6.

Figure 2.7: Sensitivities of parameters when the perturbation is δ = 10−4, angle in radian v.s. pH.
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2.3 Intermolecular association

The results of Section 2.1, as shown in Figure 2.1, demonstrate that the basic monomer scheme

implies that colorless species dominate from pH 2 to 7. This includes the pH range of typical

cell vacuoles. Anthocyanins should be in colorless form in plants. How is it, then, that colored

anthocyanin species are observed in plant cells? Another possible reason for the existence of

colored species is intermolecular association with molecule such as cellulose, microtubules, or

proteins.

Consider the following basic full scheme with X , where the X represents some compounds such

as protein in the cytoplasm.

A− +H+
k−1−−⇀↽−−
k1

A, AH+ +X
k−7−−⇀↽−−
k7

AX+

A +H+
k−2−−⇀↽−−
k2

AH+, B
k6−−⇀↽−−
k−6

B− +H+

AH+ k3−−⇀↽−−
k−3

B +H+

B
k4−−⇀↽−−
k−4

C
k5−−⇀↽−−
k−5

C− +H+
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Similarly, using the law of mass action, we have the following system of ordinary differential

equations:

d

dt
[A−] ={−k−1[A

−][H+] + k1[A]}
d

dt
[A] =− {−k−1[A

−][H+] + k1[A]}+ {−k−2[A][H
+] + k2[AH

+]}
d

dt
[AH+] =− {−k−2[A][H

+] + k2[AH
+]}+ {−k3[AH+] + k−3[B][H+]}

+ {−k−7[AH
+][X] + k7[AX

+]}
d

dt
[B] =− {−k3[AH+] + k−3[B][H+]}+ {−k4[B] + k−4[C]}+ {−k6[B] + k−6[B

−][H+]}
d

dt
[B−] =− {−k6[B] + k−6[B

−][H+]}
d

dt
[C] =− {−k4[B] + k−4[C]}+ {−k5[C] + k−5[C

−][H+]}
d

dt
[C−] =− {−k5[C] + k−5[C

−][H+]}
d

dt
[AX+] =− {−k−7[AH

+][X] + k7[AX
+]}

d

dt
[X] ={−k−7[AH

+][X] + k7[AX
+]}.

We are looking the steady-state of this system. Besides Eq. 2.11 - Eq. 2.17, writing all the concen-

trations in terms of [A], we have an additional relation

[X]

[AX+]
=

k7
k−7[AH+]

=
K7

[H+]
K2

× [A]
=
K2 ×K7

[H+][A]
. (2.23)

Assuming [T ] is the total concentration of anthocyanin, and [TX] is the total concentration includ-

ing X , the conservation laws are

[T ] =[A−] + [A] + [AH+] + [B] + [B−] + [C] + [C−] + [AX+] (2.24)

[TX] =[X] + [AX+]. (2.25)
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Substituting Eq. 2.23 into Eq. 2.25, we have

[AX+] =
[H+]× [A]

K7 ×K2 + [H+]× [A]
× [TX] (2.26)

[X] =
K7 ×K2

K7 ×K2 + [H+]× [A]
× [TX]. (2.27)

Then the conservation law, Eq. 2.24, becomes

[T ] ={ K1

[H+]
+ 1 +

[H+]

K2

+
K3

K2

+
K6 ×K3

[H+]×K2

+
K4 ×K3

K2
(2.28)

+
K5 ×K4 ×K3

K2 × [H+]
+

[H+]× [TX]

K7 ×K2 + [H+]× [A]
} × [A].

To plot our results, we use the same equilibrium constants as Eq. 2.9 and Eq. 2.10, and set

K7 =
k7
k−7

= 10−4.

We assume [TX] to be proportional to [T ], and then graph the results in Figure 2.8 when [TX] =

0.4[T ] and [TX] = 0.8[T ]. We found that AX+ appeared when pH≤ 6, which means we might

have some color in the pH range 3 to 6 due to the species AX+. These results depend on the

concentration of X and the choice of the equilibrium constant K7, but they are very different from

the basic monomer scheme result in Figure 2.1.
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(a) [TX] = 0.4[T]

(b) [TX] = 0.8[T]

Figure 2.8: Steady-state mole fractions of species with X.
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2.4 Self association

Recall the results of Section 2.1 as shown in Figure 2.1 and the big question we are trying to

answer–why do flowers have colors? We suggest that association is the key to answering this

question. As a simple example, consider the case of an aqueous anthocyanin solution buffered at

pH 2.5. Figure 2.9 (a) shows that the colorless species B has the largest mole fraction at this pH

value, and the only other species with a significant mole fraction is the red AH+. Also assume that

dimerization is the only association that occurs, according to the kinetic equation

A1

k+−−⇀↽−−
k−

A2,

where A1 is the monomer and A2 is the dimer. Denoting the total moles of anthocyanins in the con-

tainer of volume V as T , according to the Law of Mass Action, the mole fraction Â1 of monomer

in the solution obeys the rate equation

dÂ1

dt
= −2K̂Â2

1 + 1− Â1, for K̂ =
k+T

k−V
. (2.29)

At steady state, Â1 = (−1 +
√

1 + 8K̂)/(4K̂). The crucial observation is that Â1 decreases (and

Figure 2.9: Mole fractions of anthocyanin species as a function of pH, assuming (a) no association, or

association to form dimers and a total concentration of (b) 10−3 M or (c) 10−1 M.

the mole fraction of dimers increases) with the concentration T/V . If the pH is such that, say AH+

and the colorless B (which does not associate with itself), are present in significant concentrations,
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this nonlinear effect still functions to drive the equilibrium away from B and towards the (red)

AH+ dimer. The result is enhanced color. Compare the mole fractions of the various anthocyanin

forms as a function of pH assuming no association, as shown in Figure 2.9 (a), with analogous re-

lationships assuming association (to form dimers) and a total concentration of 10−3 M and 10−1 M,

shown in Figure 2.9 (b,c); monomeric species are plotted in solid lines, and dimers are plotted in

dotted lines. At 10−3 M, associated species are present, but at 10−1 M the nonlinear effect is strong

enough to drive the equilibrium towards the colored species even at pH values 3-7.

In this subsection, we extend our scheme to include self association. Each of the A– , A, and AH+

anthocyanin species is known to form associative complexes with members of its own species (as

in the steady-state graphs of Figure 2.9), and there is likely also association of A with AH+. The

core reactions, if the maximum associate has size N , are

A− +A−
j1,2−−−⇀↽−−−
j1,−2

(A−)2 A+ A
j2,2−−−⇀↽−−−
j2,−2

(A)2 AH+ +AH+
j3,2−−−⇀↽−−−
j3,−2

(AH+)2

A− + (A−)2
j1,3−−−⇀↽−−−
j1,−3

(A−)3 A+ (A)2
j2,3−−−⇀↽−−−
j2,−3

(A)3 AH+ + (AH+)2
j3,3−−−⇀↽−−−
j3,−3

(AH+)3

...
...

...

A− + (A−)N−1

j1,N−−−⇀↽−−−
j1,−N

(A−)N A+ (A)N−1

j2,N−−−⇀↽−−−
j2,−N

(A)N AH+ + (AH+)N−1

j3,N−−−⇀↽−−−
j3,−N

(AH+)N

(2.30)
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as well as A · AH+ association

A+ AH+
j4,2−−−⇀↽−−−
j4,−2

A · AH+

AH+ +A · AH+
j4,3−−−⇀↽−−−
j4,−3

A · (AH+)2

A+ A · (AH+)2
j4,4−−−⇀↽−−−
j4,−4

(A)2 · (AH+)2

AH+ + (A)2 · (AH+)2
j4,5−−−⇀↽−−−
j4,−5

(A)2 · (AH+)3

...

A+ (A)N
2
−1 · (AH+)N

2

j4,N−−−⇀↽−−−
j4,−N

(A)N
2
· (AH+)N

2
(2.31)

Here the association equilibrium constants are assumed to not depend on n; that is, we are assuming

an isodesmic model. Based on measurements in [34], the equilibrium constants are chosen to be

J1 =
j1,n
j1,−n

= 3200, J2 =
j2,n
j2,−n

= 12800, J3 =
j3,n
j3,−n

= 9600, J4 =
j4,n
j4,−n

= 11200, (2.32)

j1,n = j2,n = j3,n = j4,n = 8000, for all n ∈ {1, 2, · · · , N}.

Now we consider the basic scheme as in Eq. 2.1 with the associations mentioned above. Using

the same equilibrium constants as Eq. 2.9 and Eq. 2.10, the concentration changing rates are as

follows: For [A−] and its associations,

d

dt
[A−] = {−k−1[A

−][H+] + k1[A]}+ 2{−j1,2[A−][A−] + j1,−2[(A
−)2]} (2.33)

+ {−j1,3[A−][(A−)2] + j1,−3[(A
−)3]}+ · · ·+ {−j1,N [A−][(A−)N−1] + j1,−N [(A

−)N ]}
d

dt
[(A−)2] = −{−j1,2[A−][A−] + j1,−2[(A

−)2]}+ {−j1,3[A−][(A−)2] + j1,−3[(A
−)3]} (2.34)

...

d

dt
[(A−)N ] = −{−j1,N [A−][(A−)N−1] + j1,−N [(A

−)N ]}. (2.35)
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Solving for steady-state, the concentrations are

[(A−)N ] =
j1,N
j1,−N

[A−][(A−)N−1] = J1[A
−][(A−)N−1]

[(A−)N−1] =
j1,N−1

j1,−(N−1)

[A−][(A−)N−2] = J1[A
−][(A−)N−2]

...

[(A−)2] =
j1,2
j1,−2

[A−][A−] = J1[A
−][A−]

[A−] =
K1

[H+]
× [A].

That is,

[A−] =
K1

[H+]
× [A], [(A−)n] = (J1)

n−1[A−]n, for n ∈ {2, 3, · · · , N}. (2.36)

For [A] and its associations,

d

dt
[A] =− {−k−1[A

−][H+] + k1[A]}+ {−k−2[A][H
+] + k2[AH

+]}

+ 2{−j2,2[A][A] + j2,−2[(A)2]}+ {−j2,3[A][(A)2] + j2,−3[(A)3]}

+ · · ·+ {−j2,N [A][(A)N−1] + j2,N [(A)N ]}

+ {−j4,2[A][AH+] + j4,−2[A · AH+]}

+ {−j4,4[A][A · (AH+)2] + j4,−4[(A)2 · (AH+)2]}

+ · · ·+ {−j4,N [A][(A)N
2
−1 · (AH+)N

2
] + j4,−N [(A)N

2
· (AH+)N

2
]} (2.37)

d

dt
[(A)2] =− {−j2,2[A][A] + j2,−2[(A)2]}+ {−j2,3[A][(A)2] + j2,−3[(A)3]} (2.38)

...

d

dt
[(A)N ] =− {−j2,N [A][(A)N−1] + j2,N [(A)N ]}. (2.39)

By the similar calculation, the association concentrations are

[(A)n] = (J2)
n−1[A]n, for n ∈ {2, 3, · · · , N}. (2.40)
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For [AH+] and its associations,

d

dt
[AH+] =− {−k−2[A][H

+] + k2[AH
+]}+ {−k3[AH+] + k−3[B][H+]} (2.41)

+ 2{−j3,2[AH+][AH+] + j3,−2[(AH
+)2]}

+ {−j3,3[AH+][(AH+)2] + j3,−3[(AH
+)3]}

+ · · ·+ {−j3,N [AH+][(AH+)N−1] + j3,N [(AH
+)N ]}

+ {−j4,2[A][AH+] + j4,−2[A · AH+]}

+ {−j4,3[A · AH+][AH+] + j4,−3[A · (AH+)2]}

+ · · ·+ {−j4,N−1[(A)N
2
−1 · (AH+)N

2
−1][AH

+] + j4,−(N−1)[(A)N
2
−1 · (AH+)N

2
]}

d

dt
[(AH+)2] =− {−j3,2[AH+][AH+] + j3,−2[(AH

+)2]}

+ {−j3,3[AH+][(AH+)2] + j3,−3[(AH
+)3]} (2.42)

...

d

dt
[(AH+)N ] =− {−j3,N [AH+][(AH+)N−1] + j3,−N [(AH

+)N ]}. (2.43)

The steady-state condition implies

[(AH+)n] = (J3)
n−1[AH+]n, for n ∈ {2, 3, · · · , N}. (2.44)
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For [A · AH+] and its associations,

d

dt
[A · AH+] =− {−j4,2[A][AH+] + j4,−2[A · AH+]}

+ {−j4,3[A · AH+][AH+] + j4,−3[A · (AH+)2]} (2.45)

d

dt
[A · (AH+)2] =− {−j4,3[A · AH+][AH+] + j4,−3[A · (AH+)2]}

+ {−j4,4[A][A · (AH+)2] + j4,−4[(A)2 · (AH+)2]} (2.46)

d

dt
[(A)2 · (AH+)2] =− {−j4,4[A][A · (AH+)2] + j4,−4[(A)2 · (AH+)2]}

+ {−j4,5[(A)2 · (AH+)2][AH
+] + j4,−5[(A)2 · (AH+)3]} (2.47)

...

d

dt
[(A)N

2
· (AH+)N

2
] =− {−j4,N [A][(A)N

2
−1 · (AH+)N

2
] + j4,−N [(A)N

2
· (AH+)N

2
]}. (2.48)

The steady-state concentrations are

[(A)n · (AH+)n] = (J4)
2n−1[A]n[AH+]n, for n ∈ {1, 2, · · · , N

2
}, (2.49)

[(A)n−1 · (AH+)n] = (J4)
2n−2[A]n−1[AH+]n, for n ∈ {2, 3, · · · , N

2
}. (2.50)

For the other terms such as [B], [B−], [C] and [C−], we have

d

dt
[B] = −{−k3[AH+] + k−3[B][H+]}+ {−k4[B] + k−4[C]}+ {−k6[B] + k−6[B

−][H+]}

(2.51)

d

dt
[B−] = −{−k6[B] + k−6[B

−][H+]} (2.52)

d

dt
[C] = −{−k4[B] + k−4[C]}+ {−k5[C] + k−5[C

−][H+]} (2.53)

d

dt
[C−] = −{−k5[C] + k−5[C

−][H+]} (2.54)
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These are the same concentration relations as what we did in Section 2.1, which are Eq. 2.14-

Eq. 2.17. Substituting all the concentrations in terms of A into the conservation law

[T ] =
N∑

j=1

j
(
[(A−)j] + [Aj] + [(AH+)j]

)
+

N/2∑

n=1

2n[(A)n · (AH+)n]

+

N/2∑

n=2

(2n− 1)[(A)n−1 · (AH+)n] + [B] + [B−] + [C] + [C−], (2.55)

we can find the mole fraction of each species depends on the pH value and total concentration.

The following results are assuming the maximum association size N is 20. In Figure 2.10, we

graph the mole fraction vs. the total concentration at the given pH value. At pH= 3.5, AH+

and its associations dominate when the total concentration T is greater than 7.5 × 10−3M . A

and its associations dominate at pH= 4 if T ≥ 2.3 × 10−3M , while they dominate at pH= 5 if

T ≥ 1.8 × 10−3M . This means if we take associations in count, the colored anthocyanin species

dominate when we have higher total concentrations. In Figure 2.11, we graph the mole fraction vs.

pH value at the given the total concentrations. We observed that when the total concentration goes

up to 10−2M , A and its associations appear in the pH range 4 to 6. Because self association has the

nonlinear effect, the mole fractions will be influenced dramatically by the total concentration. If

we increase the total concentration up to 10−1M , the colored form of the anthocyanins dominates

through the entire pH range. Note that the total concentrations in plant cells vary from 10−4M to

1M , so that our results are applicable to natural concentrations.
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Figure 2.10: Mole fractions vs. the total concentration [T ] when pH values are 3.5, 4, and 5.
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Figure 2.11: Mole fractions v.s. pH value when the total concentrations are 10−3M, 10−2M, and 10−1M .
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2.5 Evaporative experiments

In this section, we consider again the basic scheme with self association introduced in Section

2.4. But instead of finding the steady state, we are interested in the evolution of mole fractions as

the total concentration changes over time. Experimentally, Prof. Thompson has achieved this by

allowing a solution to evaporate, performing a so-called evaporative experiment. In an evaporative

experiment, we start with a solution at a given (low) concentration and allow the water (or other

solvent) to evaporate over time. The total concentration therefore becomes a function of time

which can be slow relative to the reaction kinetics (so that the solution is effectively always in

steady state for the given concentration) or fast. The rate of evaporation can be tuned using a

humidity-controlled evaporative chamber, and thereby adjusted relative to the slow kinetics of

formation of the colorless hemiketal species B from AH+ and AH+ from B. These experiments and

models are relevant to the in vivo process of the senescence of flowers, in which the anthocyanin

concentration increases dramatically and color changes occur. The reverse process of an increase

in cell volume, accompanied by a decrease or increase in anthocyanin concentration (depending

on the rate of anthocyanin synthesis) occurs as flower petals unfold from the bud. See Figure 2.12.

Figure 2.12: Blue morning glory started from the bud to fully open, and then closed.

Preliminary trials of evaporative experiments reveal a fundamental observation that opens another

line of study. As the solvent (typically water) in the solution evaporates and the solution becomes

more concentrated, we expect that the mole fractions of j-mers to increase, and in particular for

larger j-mers to form. We have emphasized that anthocyanins are water soluble, but there is a limit
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to this solubility as the size of the associated complex grows. Indeed, at concentrations on the

order of 10−1M , Prof. Thompson has observed particles to form and come out of solution.

Consider an experiment that begins with an anthocyanin solution at concentration T0 that has been

allowed to come to the steady state. If the solution is at a mid-range pH value (3-8), it will be

comprised mostly of the B species and be colorless. Using Eq. 2.33-Eq. 2.54, and the conservation

law Eq. 2.55, we know the mole fraction of each species for a given total concentration. We now

allow the solution to evaporate.

Numerically, we have modeled this scenario in discrete steps as follows: Choose a time step ∆t

and suppose that from times t = 0 to t = ∆t, the total concentration changes from T0 to T1.

We simulate this scenario by numerically integrating the system Eq. 2.33-Eq. 2.54 and Eq. 2.55

from time t = 0 to time t = ∆t assuming the initial total concentration T0. We then multiply

each species concentration in the system of ODEs by T1

T0
. We then repeat the process, numerically

integrating the system for another time step ∆t assuming a total concentration of T1. Again, we

multiply all the fractions by T2

T1
and apply Eq. 2.33-Eq. 2.54 to them for ∆t seconds. We iterate

this process until the concentration reaches a desired final concentration (which we choose to be

Tf = 10−1M ).

For this kinetic study, we require values for reaction rate constants such as k−1 and k1 because

we cannot set d
dt
[•] = 0 and use the ratio k1

k−1
= K1 to simply these equations. By reference [35]

and [34] , we have k2 = 3× 106, k−2 = 3× 1010, k3 = 0.2849, and k−3 = 23.7. Then we make a

close guess for the other coefficients as follows.

k1 = 3× 103.2, k−1 = 3× 1010, k4 = 3× 105, k−4 = 3× 105.98, (2.56)

k5 = 3× 103.25, k−5 = 3× 1010, k6 = 3× 102.14, k−6 = 3× 1010. (2.57)

We assume that the smallest number m that (•)m does not disassociate for (•)m+1 is a half of

the largest number of association size N . Now we will simulate the experiment that started an-

thocyanins in the form of B with concentration equal to 10−3 M, let it stay for a day, and then
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evaporated it until the total concentration is greater than 10−1 M within a time interval equal to

10× 103 or 10× 104 seconds as in Figure 2.13- Figure 2.18 in different pH values.

For the pH less than 4.5 (Figure 2.13-Figure 2.15), the length of the time interval does not matter

to the mole fraction. We will have the similar results even if we evaporate aqueous solutions faster.

However, when pH ≥ 4.5 (Figure 2.16-Figure 2.18), the longer time interval has the larger [A]

mole fraction. This shows the reaction rate influences the mole fractions more when pH value is

higher.

If we started anthocyanins in the form ofAH+, after leaving it stay for a day, the results are similar

to that we started from B. See Figure 2.19. These graphs are starting from the total concentration

equal to 10−4 M, let it stay for a day, and then evaporated it until the total concentration is greater

than 10−2 M within a time interval equal to 10 × 103 seconds. Because after a day , AH+ turned

to B to reach the steady-state in pH= 3.5, 4, or 4.5.
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(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.13: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 3.5

(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.14: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 3.8

(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.15: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 4
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(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.16: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 4.5

(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.17: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 5

(a) 10× 103 seconds (fast evaporate). (b) 10× 104 seconds (slow evaporate).

Figure 2.18: Evaporating simulations for [T ] from 10−3M to 10−1M when pH= 5.5
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(a) pH= 3.5. (b) pH= 3.5.

(c) pH= 4. (d) pH= 4.

(e) pH= 4.5. (f) pH= 4.5.

Figure 2.19: Evaporating from 10−3M to 10−1M for 10× 103 seconds.

(L) Started from [AH+] (R) Started from [B]
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2.6 Spatial anthocyanin patterns: An activator-inhibitor sys-

tem

Spatial patterns in biological systems are often due to the feedback loops between activators and

inhibitors [36, 37]. The simplest such pattern-forming system consists of one species of activator

molecule and one species of inhibitor molecule. The activator promotes its own production as well

as that of a inhibitor, and the inhibitor inhibits the production of the activator.

Figure 2.20: Anthocyanin patterns on petals: From left to right, patterns on a desert willow, a birdeye

speedwell, a snapdragon vine, and a palo colorado.

Spatial patterns of coloration due to varying anthocyanin concentrations are observed on many

flowers; see Figure 2.20. Ding and colleagues [31] have recently identified activator and inhibitor

proteins involved in anthocyanin production. The activator activates both its own production and

that of anthocyanin. The authors of Ref. [31] proposed a modified Gierer-Meinhardt model (mGM)

for this system and show through numerical simulations that the model can reproduce a range

of spatial activator patterns that are similar to spatial anthocyanin patterns observed on petals.

These researchers can also modify the inhibitor degradation rate constant, change the observed

pattern, and affect the degree to which pollinators are attracted to a flower. This is an amazing

accomplishment!

The mGM model proposed by Ding and colleagues only involves the activator and inhibitor; they

assume that the anthocyanin concentration is proportional to that of the activator. Their simulations
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show highly disordered spot patterns, whereas patterns on plant petals can be stripes or closer to

ordered spots on a regular lattice.

In this subsection, we first provide a linear stability analysis of the mGM equations. This allows

us to find parameter values close to a Turing instability threshold. If the parameter values are

close to the instability threshold, we expect to find, and do find, more ordered patterns. We find,

through numerical simulations, both hexagonal lattice and square lattice patterns. Square lattices

in a Gierer-Meinhardt-type system are a novel finding of this thesis. We also provide a nonlinear

analysis which is valid for parameter values close to threshold and results in a system of ordinary

differential equations for the amplitudes of a finite number of Fourier modes that approximate

the solution [38]. This allows us to study the competition between stripe patterns and patterns of

hexagons or squares. Our analysis parallels work of Song and colleagues [39] for a variation of the

Gierer-Meinhardt model that includes saturation.

Next, we propose an extension of the model of Ding and colleagues in [31] to include the activator-

induced production of anthocyanin, the anthocyanin scheme discussed above, as well as antho-

cyanin self association. We assume the production rate to be given by a sigmoidal function of

the activator A [40] and very low or no diffusion of anthocyanin between cells. A simple but bi-

ologically important observation from numerical simulations of this model is that the degree of

association can vary dramatically across the pattern, being very strongly associated where there is

a high concentration of anthocyanins, but dominated by the monomer where there is a low antho-

cyanin concentration.

2.6.1 The Gierer-Meinhardt and modified Gierer-Meinhardt models

The Gierer-Meinhardt model, proposed by its namesakes in 1972 [41], is a well-known activator-

inhibitor model. It is a system of two reaction-diffusion equations that has been applied to model

a wide range of problems of pattern formation in morphogenesis. The quantities of interest in the

model are the activator A and the inhibitor I . The activator is autocatalytic in that the production

rate of activator increases with A. The inhibitor inhibits the production of activator; the produc-
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tion rate of activator decreases with increasing I . The activator has a relatively small diffusion

coefficient compared to the inhibitor. (One says that the activator is of ‘short range’ whereas the

inhibitor is of ‘long range’ [41–43].) The Gierer-Meinhardt model reads

∂A

∂t
= DA △ A+GA

(
A2

I
+ Ã0

)
− UAA

∂I

∂t
= DI △ I +GIA

2 − UII.

The operator ∆ is two-dimensional Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2
for the two spatial variables x

and y. The parameters DA and DI are the diffusion coefficients of A and I, respectively. The

assumption that the activator is of short range compared to the inhibitor implies that DA << DI .

The molecules degrade with rate constants UA and UI and have background production ratesGAÃ0

and I0 = 0, respectively. The term GAA
2/I models the self-activation of A and inhibition of A by

I; the term GIA
2 models the activation of I by A. The activator is self-activated with a potency

GA, whereas the inhibitor is activated by the activator with a potency GI .

Identifying the activator and inhibitor molecules in flowers of the genus Mimulus (monkeyflowers)

has been accomplished by Ding and colleagues [31]. The authors show R2R3-MYB to be a molec-

ular activator for itself as well as for anthocyanin production and that R3-MYB inhibits activator

production.

The activator-inhibitor model introduced by Ding and colleagues [31] is a modification of the

Gierer-Meinhardt model and consists of a system of partial differential equations for the concen-

trations A of an activator molecule and I of an inhibitor molecule. The reason to add the K in the

denominator is to prevent it from becoming zero. Then we can have the inhibitor to be zero as the

initial condition. The system reads

∂A

∂t
= DA· △ A+GA

A2 + A0

I +K
− UA · A (2.58)

∂I

∂t
= DI · △ I +GI · A2 + I0 − UI · I, (2.59)
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whereDA andDI refer to the diffusion coefficients of A and I, respectively. The molecules degrade

with rate constants UA and UI and have background production rates A0 = 0.01 and I0 = 0,

respectively. The term GA(A
2 + A0)/(I + K) models the self-activation of A and inhibition of

A by I; the term GIA
2 models the activation of I by A. The activator is self-activated with a

potency GA, whereas the inhibitor is activated by the activator with a potency GI . The residual

value K = 0.001 in the denominator prevents the denominator from being zero.

Figure 2.21 shows simulations of the system (Eq. 2.58 and Eq. 2.59 ) based on parameter values

measured by Ding and colleagues for wild-type M. lewisii. For all numerical simulations in this

thesis, we employ a Fourier spectral method with periodic boundary conditions and a fourth-order

exponential time differencing Runge-Kutta method for the time stepping as the numerical tech-

nique [44, 45] with periodic boundary conditions. The spatial grid is 256 × 256 unless otherwise

noted.

(a) Activator pattern. (b) Inhibitor pattern.

Figure 2.21: Spatial concentration patterns of activator and inhibitor at time 103 seconds, resulting from

simulations of the system given by Eqns.( 2.58) and ( 2.59) with parameter values as follows: The diffusion

coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI = 0.03, the

background production rate constants are A0 = 0.01, I0 = 0, and the activation potency rate constants are

GA = 0.08, GI = 0.12. The initial concentration of the activator is 1M , and that of the inhibitor is 0M .

The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds, and the spatial

step size was 50/256. The red points represent the concentrations of activator are greater or equal to 3, and

yellow means that are less than 3.
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As the authors suggest, "subtle changes in simple activator-inhibitor systems are likely essential

contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers" [31],

and therefore to the diversity of flower-pollinator interactions. Here, we compare the influences

of the different parameters. Figure 2.22 shows further examples of patterns resulting from sim-

ulations with parameter values equal to those as for Figure 2.21, except for the degradation rate

constant UI for the inhibitor. Increasing UI increases the degradation of the inhibitor. There will

then be less inhibitor to repress the activator, thereby increasing the concentration of the activator.

The degradation constant UI is the parameter that Ding and colleagues modify experimentally to

produce a variety of patterns.

Note that in the simulations of Figure 2.21 and Figure 2.22, the pattern is a rather disordered

arrangement of dots. Stripe patterns, such as those observed in the second panel of Figure 2.20 are

not observed in these simulations, nor are patterns consisting of well-ordered hexagonal lattices as

are common in many pattern-forming systems.
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(a) UI = 0.03 (b) UI = 0.06

(c) UI = 0.09 (d) UI = 0.12

(e) UI = 0.15 (f) UI = 0.18

Figure 2.22: Spatial concentration patterns of activator at time 103 seconds, resulting from simulations

of the system Eq.( 2.58) and Eq.( 2.59) with parameter values as follows: The diffusion coefficients are

DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI as mentioned below each figure,

the background production rate constants are A0 = 0.01, I0 = 0, and the activation potency rate constants

are GA = 0.08, GI = 0.12. The initial concentration of the activator is 1M , and that of the inhibitor is 0M .

The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds, and the spatial

step size was 50/256. The red points represent the concentrations of activator are greater or equal to 3, and

yellow means that are less than 3.
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2.6.2 Analysis of the modified Gierer-Meinhardt model

In this section, we first nondimensionalize the mGM equations. We then perform a linear stability

analysis of a homogeneous steady-state solution to these nondimensionalized equations. In [31],

the authors change the parameter UI of the system given by Eqns. 2.58 and 2.59 to have differ-

ent patterns. Therefore, we are particularly interested in this parameter, and thereby focus on a

parameter Q = UI

UA
which we treat as a bifurcation parameter. As Q increases above a critical

values QT , the homogeneous steady-state solution becomes unstable to periodic disturbances in

a Turing instability. We find ordered patterns in numerical simulations and nonlinear analysis of

the nondimensionalized mGM equations when Q is close to the critical value QT for this Turing

instability.

Nondimensionalization and steady-state solutions

The modified Gierer-Meinhardt (mGM) model given by Eqns (2.58) and (2.59) involves three

independent variables (two for space and one for time), the two dependent variables A and I ,

and nine parameters. Rescaling the variables and redefining parameters, we can write the system

in terms of nondimensional variables and only four nondimensional parameters. First, we note

the dimensions of the variables and parameters in the mGM model: Denoting the dimensions of

a variable or parameter ξ by [ξ], and writing and C for ‘concentration,’ τ for ‘time,’ and L for

‘length,’ the dimensions of the original variables and parameters are as follows:

[x] = [y] = L; [t] = τ ; [A] = [I] = C;

[DA] = [DI ] = L2τ−1;

[GA] = τ−1; [GI ] = C−1τ−1;

[I0] = Cτ−1; [A0] = C2; [K] = C;

[UA] = [UI ] = τ−1.
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The rescaled variables

u =
GA

UIK
A, v =

UA

UI

(
I

K
+ 1

)
, τ = UAt, X =

√
UA

DI

x, Y =

√
UA

DI

y, (2.60)

and parameters

D =
DA

DI

, P =
GI

G2
A

UIK, Q =
UI

UA

, u0 =
A0G

2
A

U2
IK

2
(2.61)

are therefore dimensionless. In terms of these dimensionless quantities, the mGM models reads

∂u

∂τ
= D △ u+

u2 + u0
v

− u
.
=D △ u+ f1(u, v)

∂v

∂τ
=△ v + Pu2 −Qv + 1

.
= △ v + f2(u, v).

(2.62)

where now ∆ = ∂2

∂X2 + ∂2

∂Y 2 . We refer to the system (2.62) as the dimensionless modified Gierer-

Meinhardt model (dmGM).

Our analysis of the system (2.62) begins by looking for the simplest type of solution: the homoge-

neous steady-state solution u ≡ u∗, v ≡ v∗, where u∗ and v∗ are constants. The values u∗ and v∗

satisfy the cubic polynomial system





(u∗)2 + u0
v∗

− u∗ = 0

P (u∗)2 −Qv∗ + 1 = 0

⇒





(u∗)2 + u0
u∗

= v∗

P (u∗)2 −Q
(u∗)2 + u0

u∗
+ 1 = 0

(2.63)

Thus u∗ is the solution of f(s) = Ps3 −Qs2 + s−Qu0 = 0. That is,

u∗ =
Q

3P
−

3
√
2(3P −Q2)

3P 3

√
−9PQ+ 2Q3 + 27P 2Qu0 +

√
4(3P −Q2)3 + (−9PQ+ 2Q3 + 27P 2Qu0)2

+

3

√
−9PQ+ 2Q3 + 27P 2Qu0 +

√
4(3P −Q2)3 + (−9PQ+ 2Q3 + 27P 2Qu0)2

3 3
√
2P

.
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Note that f(0) = −Qu0 < 0. Since f ′(s) = 3Ps2 − 2Qs + 1 = 0 when s =
Q±

√
Q2−3P

3P
and

f(
Q−

√
Q2−3P

3P
) < 0, we know that f(s) = 0 has one and only one real positive root. We will also

refer to (u∗, v∗) as the equilibrium solution.

Linear stability analysis

The linearization of the system (2.62) at its equilibrium is




∂u
∂τ

∂v
∂τ


 = L



u

v


 , (2.64)

where

L =




∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v




∣∣∣∣∣∣∣
(u∗,v∗)

=




2u∗

v∗
− 1 − (u∗)2+u0

(v∗)2

2Pu∗ −Q


 =




2u∗

v∗
− 1 −u∗

v∗

2Pu∗ −Q


 , (2.65)

because (u∗)2 + u0 = u∗v∗.

The characteristic polynomial of the matrix L is

p(λ) = λ2 − T0λ+ J0, (2.66)

where

T0 = Tr(L) =
2u∗

v∗
− 1−Q, (2.67)

and

J0 = det(L) = (1− 2u∗

v∗
)Q+ 2P

(u∗)2

v∗
. (2.68)
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The Hopf bifurcation occurs when the real part of the roots in Eq. 2.66 is zero, which is equivalent

to T0 = 0. Hence we have that the critical value of the Hopf bifurcation QH is approximately equal

to 1; see Figure 2.23.

Figure 2.23: The original parameters are GA = 0.08, GI = 0.12,K = 0.001, A0 = 0.01, and UA = 0.03.

In terms of the nondimensional parameters of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, and

u0 = 71111
Q2 . Using the relations in Eq. 2.60, we can have T0 curve when varying the value of Q. The curve

T0 curve is graphed in blue. The critical value QH for a Hopf bifurcation is marked in red.

To analyze the stability of the uniform state under nonuniform perturbations, we seek solutions of

the form



u

v


 =



u∗

v∗


+ ϵ



uk

vk


 exp(ik · x + λt) + c.c+ o(ϵ2), (2.69)

where ‘c.c.’ is the complex conjugate of exp(ik · x + λt). Substituting Eq. 2.69 into




∂u
∂τ

∂v
∂τ


 = L



u

v


+



D △ u

△ v


 , (2.70)
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we have the dispersion relation being the function of eigenvalue λ at the wave number k = |k|:

pk(λ) = λ2 − Tkλ+ Jk = 0, (2.71)

where

Tk = −(D + 1)k2 + T0, (2.72)

Jk = Dk4 +

(
DQ− 2u∗

v∗
+ 1

)
k2 + J0. (2.73)

The characteristic values of 2.71 are

λk± =
Tk ±

√
T 2
k − 4Jk

2
. (2.74)

If Jk ≥ 0, we either have T 2
k − 4Jk ≥ 0 or T 2

k − 4Jk < 0. For the case T 2
k − 4Jk ≥ 0, λk±

are both real, and the sign of Re(λk±) depends on the sign of Tk. When T 2
k − 4Jk < 0, we have

2Re(λk±) = Tk, which means the stability also depends on the sign of Tk.

Suppose Jk < 0, we then have T 2
k − 4Jk > T 2

k > 0, which implies

2λk+ = Tk︸︷︷︸
smaller

+
√
T 2
k − 4Jk

︸ ︷︷ ︸
larger, positive

> 0.

This shows that the system is unstable. Hence the unstable term appears when (a) Tk > 0 and

Jk ≥ 0, or (b) Jk < 0. The Turing bifurcation occurs when Jk = 0 at k = kT . We can rewrite Jk

as

Jk = Dk4 +

(
DQ− 2u∗

v∗
+ 1

)
k2 + J0

= D

(
k4 +

DQ− 2u∗

v∗
+ 1

D
k2 + (

DQ− 2u∗

v∗
+ 1

2D
)2

)
+ J0 −

(
DQ− 2u∗

v∗
+ 1
)2

4D
. (2.75)
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When J0 =
(DQ− 2u∗

v∗
+1)

2

4D
, Jk = 0 at

k2 = k2T = −DQ− 2u∗

v∗
+ 1

2D
=

√
4DJ0
2D

=

√
J0
D
. (2.76)

Then the critical value of Q is the solution of

4DJ0 =

(
DQ− 2u∗

v∗
+ 1

)2

. (2.77)

It is clear that the Turing bifurcation QT is dependent on the parameter D, which equals DA

DI
.

Hence, when we fix the original parameters are GA = 0.08, GI = 0.12, K = 0.001, A0 = 0.01,

and UA = 0.03. In terms of the nondimensional parameters of Eq. 2.61, we have the coefficients

P = 5.6250 × 10−4Q, u0 = 71111
Q2 , a Turing bifurcation QT will be different if we pick different

values of D = DA

DI
. For D = 0.02, then the Turing bifurcation QT ≈ 8.58, and the corresponding

critical wave number kT ≈ 4.55. We can do the similar approximation for D = 0.1, and then

QT ≈ 1.7, kT ≈ 2. Numerically, Eq. 2.76 and Eq. 2.77 can be solved and we can find the exactly

values of QT and kT ; see Figure 2.25 and Figure 2.24.

Figure 2.24b and Figure 2.25b show that when Q < QT , we will have a narrow band of unstable

wavelengths.

Nonlinear analysis of the Turing instability: Amplitude equations

We now analyze the system given by Eq. 2.62 for parameter values that yield a Turing bifurcation

[46]. We assume the bifurcation parameter Q to be slightly below the critical value QT . As

discussed in the previous section, there is then a narrow band of unstable wave numbers about kT

(that is, an annulus in the two-dimensional space of wave vectors) for which the corresponding

Fourier modes have a positive linear growth rate. The following analysis yields nonlinear ordinary

differential equations for the evolution of the amplitudes of these unstable modes [38, 47, 48].

The nonlinear analysis will aim to understand solutions that are approximately sums of a small

number of Fourier modes. Numerical simulations of the modified Gierer-Meinhardt model, shown
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(a) QT = 8.576 (b) kT = 4.551

Figure 2.24: The original parameters are GA = 0.08, GI = 0.12,K = 0.001, A0 = 0.01, UA =
0.03, DA = 0.01, and DI = 0.5. In terms of the nondimensional parameters of Eq. 2.61, we have the

coefficients P = 5.6250 · 10−4Q, u0 = 71111
Q2 , and D = 0.02. Using the relations in Eq. 2.77 and Eq. 2.76,

we can have QT and kT values.

(b) The real part of λk+ for different value of Q. Green curve: Q ≈ 5, red curve: Q = QT = 8.576, and

blue curve: Q ≈ 12.

(a) QT = 0.1651 (b) kT = 2.023

Figure 2.25: The original parameters are GA = 0.08, GI = 0.12,K = 0.001, A0 = 0.01, UA =
0.03, DA = 0.05, and DI = 0.5. In terms of the nondimensional parameters of Eq. 2.61, we have the

coefficients P = 5.6250 · 10−4Q, u0 = 71111
Q2 , and D = 0.1. Using the relations in Eq. 2.77 and Eq. 2.76,

we can have QT and kT values.

(b) The real part of λk+ for different value of Q. Green curve: Q = 1.165, red curve: Q = QT = 1.651,

and blue curve: Q = 2.651.
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in Fig. 2.26, provide us with motivation for the form of the approximate nonlinear solutions that

may arise from this model. A roll pattern (Fig. 2.26 (a)) is approximately given by one Fourier

mode; 


u

v


 ≃




A(t)

B(t)


 eik⃗·x⃗ + c.c.,

where ‘c.c.’ is the complex conjugate of the previous term. A hexagonal pattern (Fig. 2.26 (b)) is

approximately given by the sum of three Fourier modes,




u

v


 ≃

3∑

j=1




Aj(t)

Bj(t)


 eik⃗j ·x⃗ + c.c.,

where the wavevectors k⃗j obey the relation k⃗1 + k⃗2 + k⃗3 = 0⃗ and |⃗k1| = |⃗k2| = |⃗k3| [49]. A square

pattern (Fig. 2.26 (c)) is approximately given by the sum of two Fourier modes, approximately

given by the sum of two Fourier modes,




u

v


 ≃

2∑

j=1




Aj(t)

Bj(t)


 eik⃗j ·x⃗ + c.c.,

where the wavevectors k⃗j are orthogonal and of equal length. Similar patterns of rolls and hexagons

have been observed in a wide array of laboratory experiments and natural systems. A few of the

many examples include Rayleigh-Bénard convection [50] in which convection rolls appear in a

container of fluid that is heated from below, nanoscale surface structures formed by bombarding

a solid with a broad ion beam [51–53], and the Rosenzweig instability in magnetically excited

ferrofluids [54].
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(a) Roll patterns (b) Hexagon patterns (c) Square patterns

Figure 2.26: Solutions u(x, y, t = 3000) of the modified Gierer-Meinhardt model: The original parameters

are GA = 0.08, GI = 0.12,K = 0.001, A0 = 0.01, UA = 0.03, DA = 0.05, and DI = 0.5. In terms of

the nondimensional parameters of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, u0 =
71111
Q2 , and

D = 0.1. We could have different kinds of patterns when we choose the parameter Q close to the critical

value QT . (a) QT −Q = 8%×QT . (b) QT −Q = 4%×QT . (c) QT −Q = 3%×QT .

Roll-Hexagon competition

To analyze the competition between roll patterns and hexagon patterns, we begin by rewriting the

system in Eq. 2.62 at the steady state ((u∗)T , (v
∗)T ) as

∂

∂τ



u

v


 = L



u

v


+ N (u, v) (2.78)

=



D △ +2u∗

v∗
− 1 −u∗

v∗

2Pu∗ △ −Q






u

v




+




1
v∗
u2 − 2 u∗

(v∗)2
uv + (u∗)2+u0

(v∗)3
v2 − 1

(v∗)2
u2v + 2u∗

(v∗)3
uv2 − (u∗)2+u0

(v∗)4
v3

Pu2


 ,

where L is a linear operator and N is a nonlinear operator. We consider the bifurcation parameter

Q to be slightly below the critical value QT ; that is, we set

Q = QT − ϵQ1 − ϵ2Q2 + · · · , (2.79)

where ϵ > 0 is small and Q1 > 0 and Q2 > 0 are of order 1. In Figure 2.24b and Figure 2.25b,

there is an interval around kT in which Re(λk+) > 0. We can also decompose the linear operator
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L into

L = LT + (QT −Q)M ,

where

LT =



D △ +2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T △ −QT


 .

Because 2P (u∗) ≈ 2Q by u∗ ≈ v∗ ≈ Q
P

, we have

M =
1

QT −Q
(L − LT ) =

1

QT −Q




2u∗

v∗
− 2(u∗)T

(v∗)T
−u∗

v∗
+ (u∗)T

(v∗)T

2Pu∗ − 2P (u∗)T −Q+QT




≈ 1

QT −Q




0 0

2Q− 2QT −Q+QT


 =




0 0

−2 1


 .

We expand u and v in powers of ϵ and write



u

v


 =



(u∗)T

(v∗)T


+ ϵ



u1

v1


+ ϵ2



u2

v2


+ · · · . (2.80)

We expect that the amplitudes of the unstable modes will evolve slowly in time because the linear

growth rate Reλ+ is of order ϵ. Here, we need the multiple time scales tn = ϵnτ for n = 0, 1, 2, · · · ,

which can be regarded as independent variables. Then we can write

∂

∂τ
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
+ · · · . (2.81)
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At order ϵ, the linear system of equations reads

LT



u1

v1


 =



0

0


 . (2.82)

This system has solutions of the form



u1

v1


 =

∑

k⃗j∈C




DQT+
2(u∗)T
(v∗)T

−1

4PD(u∗)T

1


 (Vje

ikj ·x + c.c.), (2.83)

where C is the circle of wave vectors of magnitute kT , the complex-valued amplitudes Vj depend

on the slow time t1 but not on t0, and c.c. denotes the complex conjugate. Later, we will restrict

this infinite sum to a finite sum of wavevectors that interact via the nonlinear terms and allow for

the study of competition between roll and hexagon planforms, namely



u1

v1


 =

3∑

j=1




DQT+
2(u∗)T
(v∗)T

−1

4PD(u∗)T

1


 (Vje

ikj ·x + c.c.), (2.84)

where k1 + k2 + k3 = 0, and kj ∈ C for j = 1, 2, 3.

Equations for the time evolution of the amplitudes Vj arise as solvability conditions for the correc-

tion term at order ϵ2. The system of equations obtained at order ϵ2 is

LT



u2

v2


 =

∂

∂t1



u1

v1


−Q1M



u1

v1


−




1
v∗
u21 − 2 u∗

(v∗)2
u1v1 +

(u∗)2+u0

(v∗)3
v21

Pu21


 .

=



Fu

Fv


 .

(2.85)

The operator LT is not invertible since it has the eigenvector (u1, v1)
T of eigenvalue 0. According

to the Fredholm Alternative (see Refs. [38, 55]), Eq. 2.85 has a solution if and only if (Fu, Fv)
T is
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orthogonal to the kernel of the adjoint operator L
†
T . The zero eigenvector of L

†
T is




1

−DQT+
2(u∗)T
(v∗)T

−1

4P (u∗)T


 (eikT ·x + c.c.), (2.86)

where kT ∈ C. The definition of the inner product ⟨a|b⟩ of a = (ax, ay)
T eik·x and b =

(bx, by)
T eiq·x is the average of a∗ · b over the region R ≡ [0, 2π/kT ] × [0, 2π/kT ] in wavevec-

tor space. Denoting the area of R by |R|, we have

⟨a|b⟩ = 1

|R|

∫

R


(ax, ay)e−ik·x




bx

by


 eiq·x


 dxdy =

1

|R|

∫

R

(axbx + ayby)e
i(q−k)·xdxdy

=





axbx + ayby if k = q;

0 otherwise.

Denote
DQT+

2(u∗)T
(v∗)T

−1

4PD(u∗)T
by Y , and let F j

u , F
j
v represent the coefficients corresponding to eikj ·x. Then,

from Eq. 2.85, we have, for j, p, q ∈ [1, 2, 3] and j ̸= p ̸= q,



F j
u

F j
v


 =



Y ∂

∂t1
Vj

∂
∂t1
Vj


−Q1




0

(−2Y + 1)Vj


 (2.87)

−




1
v∗
Y 2(2VpVq)− 2 u∗

(v∗)2
Y (2VpVq) +

(u∗)2+u0

(v∗)3
(2VpVq)

PY 2(2VpVq)


 .

Since

(1,−DY )



F j
u

F j
v


 = 0, for j ∈ [1, 2, 3] (2.88)
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we have, for j, p, q ∈ [1, 2, 3] and j ̸= p ̸= q,

Y (1−D)
∂

∂t1
Vj =−DY (−2Y + 1)Q1Vj (2.89)

+

(
2(

1

v∗
Y 2 − 2

u∗

(v∗)2
Y +

(u∗)2 + u0
(v∗)3

)− 2PDY 3

)
VpVq.

We now proceed to order ϵ2 and write



u2

v2


 =



U0

V0


+

3∑

j=1



Ũj

Ṽj


 exp(ikj · x) +

3∑

j=1



UUj

V Vj


 exp(2ikj · x) (2.90)

+



UU12

V V12


 exp(i(k1 − k2) · x) +



UU23

V V23


 exp(i(k2 − k3) · x)

+



UU31

V V31


 exp(i(k3 − k1) · x) + c.c.
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Then,

LT



u2

v2


 =




2(u∗)T
(v∗)T

− 1 − (u∗)T
(v∗)T

2P (u∗)T −QT






U0

V0




+
3∑

j=1



−Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −k2 −QT






Ũj

Ṽj


 exp(ikj · x)

+
3∑

j=1



−4Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −4k2 −QT






UUj

V Vj


 exp(2ikj · x)

+



−3Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −3k2 −QT






UU12

V V12


 exp(i(k1 − k2) · x)

+



−3Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −3k2 −QT






UU23

V V23


 exp(i(k2 − k3) · x)

+



−3Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −3k2 −QT






UU31

V V31


 exp(i(k3 − k1) · x) + c.c.,

(2.91)

because |k1 − k2| =
√
3k if |k1| = |k2| = k.

The first element of the third term of the right hand side of Eq. 2.85 is

−
(
Y 2

v∗
− 2

Y u∗

(v∗)2
+

(u∗)2 + u0
(v∗)3

)( 3∑

j=1

V 2
j exp(2ikj · x) + 2

3∑

j=1

VjVj (2.92)

+2
∑

j ̸=j̃∈[1,2,3]

VjVj̃exp(i(kj + kj̃) · x) + 2
∑

j ̸=j̃∈[1,2,3]

VjVj̃exp(i(kj − kj̃) · x) + c.c.


 .
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We can write VjVj = |Vj|2, and k1 + k2 = −k3, k2 + k3 = −k1, k3 + k1 = −k2. Then the second

element is

−PY 2




3∑

j=1

V 2
j exp(2ikj · x) + 2

3∑

j=1

|Vj|2 + 2
∑

j ̸=p ̸=q∈[1,2,3]

VjVpexp(i(−kq) · x) (2.93)

+2
∑

j ̸=j̃∈[1,2,3]

VjVj̃exp(i(kj − kj̃) · x) + c.c.


 .

Solving Eq. 2.85, we have



U0

V0


 =




2(u∗)T
(v∗)T

− 1 − (u∗)T
(v∗)T

2P (u∗)T −QT




−1

−2
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+u0

(v∗)3

)

−2PY 2


 (|V1|2 + |V2|2 + |V3|2)

(2.94)

.
=



ũ0

ṽ0


 (|V1|2 + |V2|2 + |V3|2),



UUj

V Vj


 =



−4Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −4k2 −QT




−1

−
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+u0

(v∗)3

)

−PY 2


V 2

j

(2.95)

.
=



ũu

ṽv


V 2

j ,

60





UUjj̃

V Vjj̃


 =



−3Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −3k2 −QT




−1

−2
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+u0

(v∗)3

)

−2PY 2


VjVj̃

(2.96)

.
=



ũu ̸=

ṽv ̸=


VjVj̃.

Also, we have Ũj = Y Ṽj . Denote Ṽj by Wj .

At order ϵ3, we have

LT



u3

v3


 .

=



Hu

Hv




=
∂

∂t1



u2

v2


+

∂

∂t2



u1

v1


−Q1M



u2

v2


−Q2M



u1

v1


−



N3(u, v)

2Pu1u2


 , (2.97)

where

N3(u, v) =
1

v∗
2u1u2 −

2u∗

(v∗)2
(u1v2 + u2v1) +

(u∗)2 + u0
(v∗)3

2v1v2

− 1

(v∗)2
u21v1 +

2u∗

(v∗)3
u1v

2
1 −

(u∗)2 + u0
(v∗)4

v31.

Again, according to the Fredholm Alternative, Eq. 2.97 has a solution if and only if

(1,−DY )



Hj

u

Hj
v


 = 0, for j ∈ [1, 2, 3], (2.98)

where we denote Hj
u, H

j
v to represent the coefficients corresponding to eikj ·x.
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Expanding (Hj
u, H

j
v)

T as



Hj

u

Hj
v


 =



Y
(

∂
∂t1
Wj +

∂
∂t2
Vj

)

∂
∂t1
Wj +

∂
∂t2
Vj


−




0

(−2Y + 1) (Q1Wj +Q2Vj)


+




NHj
u

−2P
︷︸︸︷
u1u2

j


 ,

(2.99)

where
︷︸︸︷
ab
j

is the coefficient corresponding to eikj ·x in ab, and

NHj
u =− 2

v∗
︷︸︸︷
u1u2

j
+

2u∗

(v∗)2
(
︷︸︸︷
u1v2

j
+
︷︸︸︷
u2u1

j
)− 2

(u∗)2 + A0

(v∗)3
︷︸︸︷
v1v2

j

+
1

(v∗)2

︷︸︸︷
u21v1

j

− 2u∗

(v∗)3

︷︸︸︷
u1v

2
1

j

+
(u∗)2 + A0

(v∗)4

︷︸︸︷
v31
j

.

For j, p, q ∈ [1, 2, 3] and j ̸= p ̸= q, the expansions for the terms
︷︸︸︷
ab
j

are

︷︸︸︷
u1u2

j
= Y Vjũ0(|Vj|2 + |Vp|2 + |Vq|2) + Y VpYWq + Y VqYWp + Y VjũuV

2
j

+ Y Vpũu ̸=VjVp + Y Vqũu ̸=VjVq

= Y
[
(ũ0 + ũu)|Vj|2 + (ũ0 + ũu ̸=)(|Vp|2 + |Vq|2)

]
Vj + Y 2

(
VpWq + VqWp

)
, (2.100)

︷︸︸︷
u1v2

j
= Y

[
(ṽ0 + ṽv)|Vj|2 + (ṽ0 + ṽv ̸=)(|Vp|2 + |Vq|2)

]
Vj + Y

(
VpWq + VqWp

)
, (2.101)

︷︸︸︷
v1u2

j
=
[
(ũ0 + ũu)|Vj|2 + (ũ0 + ũu ̸=)(|Vp|2 + |Vq|2)

]
Vj + Y

(
VpWq + VqWp

)
, (2.102)

︷︸︸︷
v1v2

j
=
[
(ṽ0 + ṽv)|Vj|2 + (ṽ0 + ṽv ̸=)(|Vp|2 + |Vq|2)

]
Vj +

(
VpWq + VqWp

)
, (2.103)

︷︸︸︷
u21v1

j

=
(
3|Vj|2 + 6|Vp|2 + 6|Vq|2

)
Y 2Vj, (2.104)

︷︸︸︷
u1v

2
1

j

=
(
3|Vj|2 + 6|Vp|2 + 6|Vq|2

)
Y Vj, (2.105)

︷︸︸︷
v31
j

=
(
3|Vj|2 + 6|Vp|2 + 6|Vq|2

)
Vj. (2.106)
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The first element of the third term of Eq. 2.99 can be rewritten as

[
G11|Vj|2 +G12(|Vp|2 + |Vq|2)

]
Vj +

(
− 2

v∗
Y 2 + 2

2u∗

(v∗)2
Y − 2

(u∗)2 + A0

(v∗)3

)(
VpWq + VqWp

)
,

(2.107)

where

G11 =

(
− 2

v∗
Y +

2u∗

(v∗)2

)
(ũ0 + ũu) +

(
2u∗

(v∗)2
Y − 2

(u∗)2 + A0

(v∗)3

)
(ṽ0 + ṽv)

+ 3

(
1

(v∗)2
Y 2 − 2u∗

(v∗)3
Y +

(u∗)2 + A0

(v∗)4

)
, (2.108)

G12 =

(
− 2

v∗
Y +

2u∗

(v∗)2

)
(ũ0 + ũu ̸=) +

(
2u∗

(v∗)2
Y − 2

(u∗)2 + A0

(v∗)3

)
(ṽ0 + ṽv ̸=)

+ 6

(
1

(v∗)2
Y 2 − 2u∗

(v∗)3
Y +

(u∗)2 + A0

(v∗)4

)
. (2.109)

The second element of the third term of Eq. 2.99 can be rewritten as

[
G21|Vj|2 +G22(|Vp|2 + |Vq|2)

]
Vj +

(
−2PY 2

) (
VpWq + VqWp

)
, (2.110)

where

G21 = (−2PY )(ũ0 + ũu) (2.111)

G22 = (−2PY )(ũ0 + ũu ̸=). (2.112)

By Eq. 2.98, we have, for j, p, q ∈ [1, 2, 3] and j ̸= p ̸= q,

(Y −DY )(
∂

∂t1
Wj +

∂

∂t2
Vj) = −DY (−2Y + 1) (Q1Wj +Q2Vj) (2.113)

+
[
(−G11 +DYG21)|Vj|2 + (−G12 +DYG22)(|Vp|2 + |Vq|2)

]
Vj

+

(
2

v∗
Y 2 − 2

2u∗

(v∗)2
Y + 2

(u∗)2 + A0

(v∗)3
− 2PDY 3

)(
VpWq + VqWp

)
.
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The amplitude Aj can be expanded into

Aj = ϵVj + ϵ2Wj +O(ϵ3). (2.114)

Combining Eq. 2.79, Eq. 2.81 and Eq. 2.114, we have

(QT −Q)Aj = (ϵQ1 + ϵ2Q2 + · · · )(ϵVj + ϵ2Wj + · · · )

= Q1Vjϵ
2 + (Q1Wj +Q2Vj)ϵ

3 + · · · , (2.115)

∂

∂t
Aj =

(
∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
+ · · ·

)
(ϵVj + ϵ2Wj + · · · )

=

(
∂

∂t1
Vj

)
ϵ2 +

(
∂

∂t1
Wj +

∂

∂t2
Vj

)
ϵ3 + · · · , (2.116)

and

ApAq = (ϵVp + ϵ2Wp + · · · )(ϵVq + ϵ2Wq + · · · )

= VpVqϵ
2 + (VpWq +WpVq)ϵ

3 + · · · , (2.117)

|Aj|2Aj = |Vj|2Vjϵ3 + · · · (2.118)

|Ap|2Aj = |Vp|2Vjϵ3 + · · · . (2.119)

By Eq. 2.89 and Eq. 2.113,

Y (1−D)
∂

∂t
Aj = DY (2Y − 1)(QT −Q)Aj (2.120)

+

(
2(

1

v∗
Y 2 − 2

u∗

(v∗)2
Y +

(u∗)2 + A0

(v∗)3
)− 2PDY 3

)
Ap Aq

+
[
(DYG21 −G11)|Aj|2 + (DYG22 −G12)(|Ap|2 + |Aq|2)

]
Aj

.
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The amplitude equation can be written as

∂

∂t
Aj

.
= σAj + ξAp Aq −

[
γ1|Aj|2 + γ2(|Ap|2 + |Aq|2)

]
Aj, (2.121)

where

σ =
DY (2Y − 1)(QT −Q)

Y (1−D)

ξ =
2( 1

v∗
Y 2 − 2 u∗

(v∗)2
Y + (u∗)2+A0

(v∗)3
)− 2PDY 3

Y (1−D)

γ1 =
G11 −DYG21

Y (1−D)

γ2 =
G12 −DYG22

Y (1−D)

Figure 2.27: The bifurcation diagram for the amplitude equation in the case 0 < γ1 < γ2 in Eq. 2.121.

Rolls are stable in the range σ > c = ξ2(2γ1+γ2)
(γ1−γ2)2

. Both hexagons and rolls are stable in the range b =

ξ2γ1
(γ1−γ2)2

< σ < c.

Observations

From our analysis, we arrive at the following observations:
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• If we choose the parameter Q that is very close to the Turing bifurcation QT , we can have

more ordered patterns, such as hexagon and rolls; see Figure 2.26. If Q is far from QT , then

the patterns will not have those ordered patterns; see Figure 2.21.

• In the case Q = 0.98QT , we will have the hexagon down pattern Figure 2.29; while the case

Q = 0.83QT , the pattern will be the hexagon up Figure 2.31. These two patterns can be

regarded as the complementary. The reason we will have these two kinds of patterns is the

sign of γ1
ξ

could be positive or negative. In the case of hexagon up Figure 2.31, the γ1
ξ

value

is negative; while the case Q = 0.98×QT , we have γ1
ξ
> 0.

• For 0.83QT < Q < 0.98QT , the system evolves to a pattern of rolls; see Figure 2.30. One

interesting aspect of this evolution is that the square pattern will evaluate to the hexagon up

after a while.

• The coefficient γ1 in our amplitude equation 2.121 could be negative, which means the bi-

furcation diagram Figure 2.27 does not apply for this situation. We need to include higher

order terms in the amplitude equation and find the bifurcation. In the case γ1 > 0, which

will be Q ≤ 0.88×QT , we have σ in the range b < σ < c for 0.85×QT ≤ Q ≤ 0.88×QT ,

and we have rolls pattern. When Q = 0.84QT , the σ in the range σ > c, which means that

the roll pattern is stable, and we have rolls pattern after 5 × 103(s); see Figure 2.28. This is

consistent with predictions from the bifurcation diagram.

• In the case Q ≤ 0.83×QT , we will have hexagon up patterns; see Figure 2.31.

In the following results, we choose the parameters as GA = 0.08, GI = 0.12, K = 0.001, A0 =

0.01, DA = 0.05, DI = 0.5.
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(a) Evolution after 5× 103(s). (b) σ in Eq. 2.121 is in the range σ > c.

Figure 2.28: In the case Q = 0.84QT . The original parameters are GA = 0.08, GI = 0.12,K =
0.001, A0 = 0.01, UA = 0.03, DA = 0.05, and DI = 0.5. In terms of the nondimensional parameters

of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, u0 =
71111
Q2 , and D = 0.1.

(a) Evolution after 1× 104(s). (b) Evolution after 2× 104(s).

(c) Evolution after 4× 104(s). (d) Evolution after 8× 104(s).

Figure 2.29: In the case Q = 0.98QT . The original parameters are GA = 0.08, GI = 0.12,K =
0.001, A0 = 0.01, UA = 0.03, DA = 0.05, and DI = 0.5. In terms of the nondimensional parameters

of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, u0 =
71111
Q2 , and D = 0.1.
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(a) Evolution after 1× 104(s). (b) Evolution after 2× 104(s).

(c) Evolution after 4× 104(s). (d) Evolution after 8× 104(s).

Figure 2.30: In the case Q = 0.94QT . The original parameters are GA = 0.08, GI = 0.12,K =
0.001, A0 = 0.01, UA = 0.03, DA = 0.05, and DI = 0.5. In terms of the nondimensional parameters

of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, u0 =
71111
Q2 , and D = 0.1.
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(a) Evolution after 1× 104(s). (b) Evolution after 2× 104(s).

(c) Evolution after 4× 104(s). (d) Evolution after 8× 104(s).

Figure 2.31: In the case Q = 0.83QT . The original parameters are GA = 0.08, GI = 0.12,K =
0.001, A0 = 0.01, UA = 0.03, DA = 0.05, and DI = 0.5. In terms of the nondimensional parameters

of Eq. 2.61, we have the coefficients P = 5.6250 · 10−4Q, u0 =
71111
Q2 , and D = 0.1.
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Roll-Square competition

We now analyze the competition between rolls and square patterns. This analysis proceeds anal-

ogously to that for roll-hexagon competition. Even so, at the acknowledged expense of being

repetitive, we include the full analysis for the sake of completeness and to have the details of the

computations on hand.

We consider the bifurcation parameter Q is slightly below the critical value QT , and set

Q = QT − ϵQ1 − ϵ2Q2 − ϵ3Q3 − ϵ4Q4 + · · · , (2.122)

where ϵ > 0 is small and Qj > 0 are of order j for j ∈ N. In Figure 2.24b and Figure 2.25b, there

is an interval around kT in which Re(λk+) > 0. We can also decompose the linear operator L into

L = LT + (QT −Q)M ,

and write

∂

∂τ
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
+ ϵ3

∂

∂t3
+ ϵ4

∂

∂t4
+ · · · . (2.123)

We expand u and v in powers of ϵ and write



u

v


 =



(u∗)T

(v∗)T


+ ϵ



u1

v1


+ ϵ2



u2

v2


+ ϵ3



u3

v3


+ ϵ4



u4

v4


+ · · · . (2.124)

At order ϵ, we have

LT



u1

v1


 =



0

0


 , (2.125)
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which has solutions of the form



u1

v1


 =

2∑

j=1




DQT+
2(u∗)T
(v∗)T

−1

4PD(u∗)T

1


 (V1,je

ikj ·x + c.c.). (2.126)

where k1 · k2 = 0, and kj ∈ C for j = 1, 2.

The system obtained at order ϵ2 is

LT



u2

v2


 =

∂

∂t1



u1

v1


−Q1M



u1

v1


−




1
v∗
u21 − 2 u∗

(v∗)2
u1v1 +

(u∗)2+A0

(v∗)3
v21

Pu21


 .

=



Fu

Fv


 .

(2.127)

According to the Fredholm Alternative, Eq. 2.127 has a solution if and only if (Fu, Fv)
T is orthog-

onal to the kernel of the adjoint operator L
†
T . The zero eigenvector of L

†
T is




1

−DQT+
2(u∗)T
(v∗)T

−1

4P (u∗)T


 (eikj ·x + c.c.). (2.128)

Denote
DQT+

2(u∗)T
(v∗)T

−1

4PD(u∗)T
by Y , and let F j

u , F
j
v represent the coefficients corresponding to eikj ·x, then

from Eq. 2.127, we have, for j ∈ [1, 2],



F j
u

F j
v


 =



Y ∂

∂t1
V1,j

∂
∂t1
V1,j


−Q1




0

(−2Y + 1)V1,j


 . (2.129)

Since

(1,−DY )



F j
u

F j
v


 = 0, for j ∈ [1, 2] (2.130)
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we have, for j ∈ [1, 2],

Y (1−D)
∂

∂t1
V1,j = −DY (−2Y + 1)Q1V1,j. (2.131)

Here we introduce high-order terms and set



u2

v2


 =



U0

V0


+

2∑

j=1



UUj

V Vj


 exp(2ikj · x) +



UU12

V V12


 exp(i(k1 + k2) · x) + +c.c., (2.132)

then

LT



u2

v2


 =




2(u∗)T
(v∗)T

− 1 − (u∗)T
(v∗)T

2P (u∗)T −QT






U0

V0


 (2.133)

+
2∑

j=1



−4Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −4k2 −QT






UUj

V Vj


 exp(2ikj · x)

+



−2Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −2k2 −QT






UU12

V V12


 exp(i(k1 + k2) · x) + c.c.,

because |k1 + k2| =
√
2k if |k1| = |k2| = k. The first element of the third term of the right hand

side of Eq. 2.127 is

−
(
Y 2

v∗
− 2

Y u∗

(v∗)2
+

(u∗)2 + A0

(v∗)3

)( 2∑

j=1

V 2
1,jexp(2ikj · x) (2.134)

+2
2∑

j=1

V1,jV1,j + 2V1,1V1,2exp(i(k1 + k2) · x) + c.c.

)
.

We can write V1,jV1,j = |V1,j|2. Then the second element can be expressed

−PY 2

(
2∑

j=1

V 2
1,jexp(2ikj · x) + 2

2∑

j=1

|V1,j|2 + 2V1,1V1,2exp(i(k1 + k2) · x) + c.c.

)
(2.135)
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Solving Eq. 2.127, we have



U0

V0


 =




2(u∗)T
(v∗)T

− 1 − (u∗)T
(v∗)T

2P (u∗)T −QT




−1

−2
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+A0

(v∗)3

)

−2PY 2


 (|V1,1|2 + |V1,2|2)

(2.136)

.
=



ũ0

ṽ0


 (|V1,1|2 + |V1,2|2),



UUj

V Vj


 =



−4Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −4k2 −QT




−1

−
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+A0

(v∗)3

)

−PY 2


V 2

1,j

(2.137)

.
=



ũu

ṽv


V 2

1,j,



UU12

V V12


 =



−2Dk2 + 2(u∗)T

(v∗)T
− 1 − (u∗)T

(v∗)T

2P (u∗)T −2k2 −QT




−1

−2
(

Y 2

v∗
− 2 Y u∗

(v∗)2
+ (u∗)2+A0

(v∗)3

)

−2PY 2


V1,1V1,2

(2.138)

.
=



ũu ̸=

ṽv ̸=


V1,1V1,2.
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At order ϵ3, we have

LT



u3

v3


 .

=



Hu

Hv




=
∂

∂t1



u2

v2


+

∂

∂t2



u1

v1


−Q1M



u2

v2


−Q2M



u1

v1


−



N3(u, v)

2Pu1u2


 ,

(2.139)

where

N3(u, v) =
1

v∗
2u1u2 − 2

u∗

(v∗)2
(u1v2 + u2v1) +

(u∗)2 + A0

(v∗)3
2v1v2

− 1

(v∗)2
u21v1 +

2u∗

(v∗)3
u1v

2
1 −

(u∗)2 + A0

(v∗)4
v31.

Again, according to the Fredholm Alternative, Eq. 2.139 has a solution if and only if

(1,−DY )



Hj

u

Hj
v


 = 0, for j ∈ [1, 2], (2.140)

when we denote Hj
u, H

j
v represent the coefficients corresponding to eikj ·x.

Expanding (Hj
u, H

j
v)

T as



Hj

u

Hj
v


 =



Y ∂

∂t2
V1,j

∂
∂t2
V1,j


−




0

(−2Y + 1)Q2V1,j


+




NHj
u

−2P
︷︸︸︷
u1u2

j


 , (2.141)

where
︷︸︸︷
ab
j

is the coefficient corresponding to eikj ·x in ab, and

NHj
u =− 2

v∗
︷︸︸︷
u1u2

j
+

2u∗

(v∗)2
(
︷︸︸︷
u1v2

j
+
︷︸︸︷
u2u1

j
)− 2

(u∗)2 + A0

(v∗)3
︷︸︸︷
v1v2

j

+
1

(v∗)2

︷︸︸︷
u21v1

j

− 2u∗

(v∗)3

︷︸︸︷
u1v

2
1

j

+
(u∗)2 + A0

(v∗)4

︷︸︸︷
v31
j

.
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For j, p ∈ [1, 2] and j ̸= p, their expansions are

︷︸︸︷
u1u2

j
= Y V1,jũ0(|V1,j|2 + |V1,p|2) + Y V1,jũuV

2
1,j + Y V1,pũu ̸=V1,jV1,p

= Y
[
(ũ0 + ũu)|V1,j|2 + (ũ0 + ũu ̸=)|V1,p|2

]
V1,j, (2.142)

︷︸︸︷
u1v2

j
= Y

[
(ṽ0 + ṽv)|V1,j|2 + (ṽ0 + ṽv ̸=)|V1,p|2

]
V1,j, (2.143)

︷︸︸︷
v1u2

j
=
[
(ũ0 + ũu)|V1,j|2 + (ũ0 + ũu ̸=)|V1,p|2

]
V1,j, (2.144)

︷︸︸︷
v1v2

j
=
[
(ṽ0 + ṽv)|V1,j|2 + (ṽ0 + ṽv ̸=)|V1,p|2

]
V1,j, (2.145)

︷︸︸︷
u21v1

j

=
(
3|V1,j|2 + 6|V1,p|2

)
Y 2V1,j, (2.146)

︷︸︸︷
u1v

2
1

j

=
(
3|V1,j|2 + 6|V1,p|2

)
Y V1,j, (2.147)

︷︸︸︷
v31
j

=
(
3|V1,j|2 + 6|V1,p|2

)
V1,j. (2.148)

The first element of the third term of Eq. 2.141 can rewrite as

[
G11|V1,j|2 +G12|V1,p|2

]
V1,j, (2.149)

where

G11 =

(
− 2

v∗
Y +

2u∗

(v∗)2

)
(ũ0 + ũu) +

(
2u∗

(v∗)2
Y − 2

(u∗)2 + A0

(v∗)3

)
(ṽ0 + ṽv)

+ 3

(
1

(v∗)2
Y 2 − 2u∗

(v∗)3
Y +

(u∗)2 + A0

(v∗)4

)
, (2.150)

G12 =

(
− 2

v∗
Y +

2u∗

(v∗)2

)
(ũ0 + ũu ̸=) +

(
2u∗

(v∗)2
Y − 2

(u∗)2 + A0

(v∗)3

)
(ṽ0 + ṽv ̸=)

+ 6

(
1

(v∗)2
Y 2 − 2u∗

(v∗)3
Y +

(u∗)2 + A0

(v∗)4

)
. (2.151)

The second element of the third term of Eq. 2.141 can rewrite as

[
G21|V1,j|2 +G22|V1,p|2

]
V1,j, (2.152)

75



where

G21 = (−2PY )(ũ0 + ũu) (2.153)

G22 = (−2PY )(ũ0 + ũu ̸=). (2.154)

By Eq. 2.140, we have, for j, p ∈ [1, 2] and j ̸= p,

(Y −DY )
∂

∂t2
V1,j = −DY (−2Y + 1)Q2V1,j (2.155)

+
[
(−G11 +DYG21)|V1,j|2 + (−G12 +DYG22)|V1,p|2

]
V1,j.

By Eq. 2.131 and Eq. 2.155,

Y (1−D)
∂

∂t
Aj = DY (2Y − 1)(QT −Q)Aj (2.156)

+
[
(DYG21 −G11)|Aj|2 + (DYG22 −G12)|Ap|2

]
Aj

⇒ ∂

∂t
Aj

.
= µAj −

[
γ1|Aj|2 + γ2|Ap|2

]
Aj,

where

µ =
DY (2Y − 1)(QT −Q)

Y (1−D)
, γ1 =

G11 −DYG21

Y (1−D)
, γ2 =

G12 −DYG22

Y (1−D)
.

Conclusions and Further Work

The coefficient γ1 can be positive or negative. In the case γ1 > 0, we can apply the bifurcation

diagram shown in Figure 2.27 to predict what kind of pattern is stable. However, in the case γ1 < 0,

we need to extend the amplitude equations to include quartic and quintic terms in order to analyze

the stability of patterns.

Our numerical simulations have found square patterns, but they evolve to hexagon patterns Fig-

ure 2.31. Are there parameter values for which square patterns are the stable steady-state solution?
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We will need to derive the amplitude equations for roll-square competition but including quintic

terms to test the stability of the square pattern in the mGM.
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2.6.3 Activator-inhibitor system combined with anthocyanin association

In this subsection, we extend the model of Ding and colleagues to include i) anthocyanin synthesis,

and ii) anthocyanin association. We assume that anthocyanin forms in the hemiketal form (B) at a

rate given by a sigmoidal function of the activator, converts to AH+ following the scheme described

in Subsection 2.1, and then associates to form dimers (AH+)2, trimers (AH+)3, and larger associates,

up to a largest particle size (AH+)N, according to the kinetics described in subsection 2.4. We take

N = 6 in our simulations. In subsection 2.6.4, we further extend this model to take into account

the locations in the cell of anthocyanin production and conversion to other species, to include more

species in the scheme, and to allow for larger N -mers.

The rate of anthocyanin synthesis is an increasing function of activator concentration in a cell. The

dependence of production rate on activator production typically follows a sigmoidal relationship

[40] which we model using a function of the form like the Hill sigmoidal function for some power

n with threshold, which is our constant τ . That is,

uact(A;n, τ) =
An

An + τn
. (2.157)

The parameter τ is a threshold value of a activator, below (above) which the production rate of

anthocyanin is small (large). The author in [40] also pointed out the half of the normal amount of

the activator is insufficient. Then we choose τ = 3 because of the maximum of the concentration

of the activator is approximately 6.
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Figure 2.32: A sigmoidal relationship from Eq. 2.157 represents the dependence of production rate on

activator production when the threshold constant τ = 3.

Combining the activator-inhibitor system with the association scheme, we arrive at the following

system of equations:

d[B]

dt
=DB· △ [B]− δ[B] + γuact(n,thr)(A) + (k3[AH

+]− k−3[B][H+]) (2.158)

d[AH+
1 ]

dt
=DAH1 · △ [AH+

1 ]− δ[AH+
1 ]− (k3[AH

+]− k−3[B][H+]) (2.159)

+ 2(−j3,2[AH+
1 ]

2 + j3,−2[AH
+
2 ]) + (−j3,3[AH+

1 ][AH
+
2 ] + j3,−3[AH

+
3 ])

+ (−j3,4[AH+
1 ][AH

+
3 ] + j3,−4[AH

+
4 ]) + (−j3,5[AH+

1 ][AH
+
4 ] + j3,−5[AH

+
5 ])

+ (−j3,6[AH+
1 ][AH

+
5 ] + j3,−6[AH

+
6 ])

d[AH+
2 ]

dt
=DAH2 · △ [AH+

2 ]− δ[AH+
2 ]− (−j3,2[AH+

1 ]
2 + j3,−2[AH

+
2 ]) (2.160)

+ (−j3,3[AH+
1 ][AH

+
2 ] + j3,−3[AH

+
3 ])

d[AH+
3 ]

dt
=DAH3 · △ [AH+

3 ]− δ[AH+
3 ]− (−j3,3[AH+

1 ][AH
+
2 ] + j3,−3[AH

+
3 ]), (2.161)

+ (−j3,4[AH+
1 ][AH

+
3 ] + j3,−4[AH

+
4 ])

d[AH+
4 ]

dt
=DAH4 · △ [AH+

4 ]− δ[AH+
4 ]− (−j3,4[AH+

1 ][AH
+
3 ] + j3,−4[AH

+
4 ]) (2.162)

+ (−j3,5[AH+
1 ][AH

+
4 ] + j3,−5[AH

+
5 ])
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d[AH+
5 ]

dt
=DAH5 · △ [AH+

5 ]− δ[AH+
5 ]− (−j3,5[AH+

1 ][AH
+
4 ] + j3,−5[AH

+
5 ]) (2.163)

+ (−j3,6[AH+
1 ][AH

+
5 ] + j3,−6[AH

+
6 ])

d[AH+
6 ]

dt
=DAH6 · △ [AH+

6 ]− δ[AH+
6 ]− (−j3,6[AH+

1 ][AH
+
5 ] + j3,−6[AH

+
6 ]) (2.164)

where DB, DAH1 , DAH2 , · · · , DAH6 refer to the diffusion coefficients. Here we assume all the

anthocyanins degrade with a rate δ and the hemiketal anthocyanin is activated by the activator with

a potency γ. Suppose all the aggregation coefficients are the same, that is, j3,n ≈ 8000(1/(M ×

sec)), ∀n, see [35], and set j−3,n = j3,n
J3,n

≈ 8000
J3,n

(1/sec), ∀n.

For pH= 1

By the chemical reaction between a hemiketal and a flavylfum cation, namelyAH+ k3−−⇀↽−−
k−3

B+H+,

we can anticipate that we will have more anthocyanins in colored form such as (AH+)n in lower

pH values such as pH= 1. In the following results, we have the parameters as following

1. The production potency: γ = 2× 10−5.

2. The diffusion coefficients: DB = 10−2, DAHj
= 10−(j+1), for j = 1, 2, · · · , 6.

3. The aggregation constants: J3,n = 5000, for j = 1, 2, · · · , 6.

4. The proton transfer rate constants: k3 = 0.2849 (1/sec), k−3 = 23.7(1/(M×sec)).

5. The sigmoidal response power n = 3 with the threshold constant τ = 3.

6. The length of time: 3× 105 × 0.01 seconds where a time step is 0.01.

For the activator-inhibitor system of the parameters in Figure 2.21, Figure 2.33 shows the con-

centrations of anthocyanins when the production potency γ = 2 × 10−5. We simulate patterns at

time= 3× 105 × 0.01(s) because all of the species already reached the pseudo-steady-state by that

time; see Figure 2.34. It is clear that a high activator concentration leads a larger production rate of

anthocyanins. So, a larger value of UI , which corresponds to a larger activator production rate, re-

sults in a larger concentration of anthocyanins. When we look at the concentrations of anthocyanin
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species such as B,AH+, · · · , AH+
6 , we realize that at the maximum point, they tend to associate

to 5−mer or 6−mer. On the other hand, at the minimum point, monomer would dominate; see

Figure 2.35.

For the higher production potency γ, we will have more anthocyanins. If we increase the produc-

tion potency γ to 3 × 10−5 and look at the concentrations of anthocyanins species in Figure 2.36,

we found the 6−mer dominates the maximum while the monomer dominates the minimum when

γ = 3× 10−5 and UI = 0.03.

For pH= 5

When we increase the pH value, by Figure 2.11, we know we will have more anthocyanins in the

B or A form. If we adjust the parameters, we will have the A6 dominates the maximum while the

B dominates the minimum. In the following results, we have the parameters as following

1. The production potency: γ = 7× 10−5.

2. The aggregation constant J3,n = 5× 104 for j = 1, 2, · · · , 6.

3. The proton transfer rate constants k3 = 0.2849, K3 =
k3
k−3

= 10−pK3, and pK3 = 4.5.

4. The length of time: 2 × 105 × 0.01 or 3 × 105 × 0.01 or 4.5 × 105 × 0.01 seconds where a

time step is 0.01.

In these simulations, we are confronted with a huge issue, which is that the largest association

number will influence our results. In other words, if we want to have more realistic results, we

need to allow the anthocyanins to associate to larger size. But how large would be enough to have

a satisfying result without making the association size infinity? We need the population analysis to

answer this question, which is in the next subsection.
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(a) UI = 0.03 (b) UI = 0.06

(c) UI = 0.09 (d) UI = 0.12

(e) UI = 0.15 (f) UI = 0.18

Figure 2.33: Spatial concentration patterns of anthocyanin at time 3 × 103 seconds, resulting from sim-

ulations of Figure 2.22 and the system Eq.( 2.158) to Eq.( 2.164) with parameter values as follows: The

production potency is γ = 2 × 10−5, the diffusion coefficients are DB = 10−2, DAHj
= 10−(j+1), for

j = 1, 2, · · · , 6, the degradation rate constants are δ = 0.01, UI as mentioned below each figure, the aggre-

gation constants J3,n = 5000, for j = 1, 2, · · · , 6, the proton transfer rate constants k3 = 0.2849 (1/sec),

k−3 = 23.7(1/(M×sec)), and the sigmoidal response power n = 3 with the threshold constant τ = 3. The

spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds, and the spatial step

size was 50/256. The red points represent the concentrations of AH+ are greater or equal to 3, and yellow

means that are less than 3.
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Figure 2.34: The concentrations of anthocyanin species v.s. time at the Max(L) and the min(R) position for

UI = 0.06, γ = 2× 10−5.

Figure 2.35: The concentrations of anthocyanin species at the end time at the Max(L) and the min(R)

position for UI = 0.03, γ = 2× 10−5.
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Figure 2.36: The concentrations of anthocyanin species at the end time at the Max(L) and the min(R)

position for UI = 0.03, γ = 3× 10−5.

Figure 2.37: The concentrations of anthocyanin species at the end time at the Max(L) and the min(R)

position for UI = 0.03, γ = 7× 10−5, J = 105, pK3 = 4.5 at the end time = 2000(s).
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2.6.4 Activator activates the Hemiketal B in the cytoplasm

In this subsection, we extend the model given in subsection 2.6.3 to take into account the locations

in the cell of anthocyanin production and conversion to other species, to include more species in

the scheme, and to allow for larger N -mers.

From previous studies [56], we know that anthocyanin is synthesized in the cytoplasm, and then

is transported to the vacuole. Note that the pH in the cytoplasm is approximately 7, and the range

of pH values in the vacuole is 3 − 6. If the anthocyanin is in the cytoplasm, it should be in the

hemiketal B form, and it could diffuse to a nearby cell. On the other hand, if the anthocyanin is in

the vacuole, it could be in various forms like A– , A, or AH+. Also, it is confined to one cell and

cannot diffuse directly to other cell vacuoles because anthocyanin needs to transport back to the

cytoplasm to diffuse.

In this subsection, we assume the activator only activates the Hemiketal B in cytoplasm. Then B is

transported across the vacuolar membrane into the vacuole. In the vacuole, anthocyanin follows the

pH-dependent scheme for conversion to other forms and may also associate. The only species that

we allow to diffuse are the activator, the inhibitor, and the Hemiketal B that is present cytoplasm.

We denote the Hemiketal in the cytoplasm by BC and the Hemiketal in the vacuole by BV.

The partial differential equations that govern the diffusing species are as follows:

∂A

∂t
= DA· △ A+GA

A2 + A0

I +K
− UA · A (2.165)

∂I

∂t
= DI · △ I +GI · A2 + I0 − UI · I (2.166)

∂[BC]

∂t
= DBC · △ [BC] + γuact(n,thr)(A)− δ[BC]− trcv[BC], (2.167)

where trcv is the transport rate from B in cytoplasm to vacuole. After anthocyanins are transported

into the vacuole, we use the ODEs in Section 2.5 to find the concentrations of different species like

A– , A, AH+, etc. Assuming all species will degrade with rate δ, we have the system of ordinary

differential equations similar to Eq. 2.2 to Eq. 2.8, but adding a degradation term to each equation,
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Figure 2.38: Structure of a plant cell. This images is taken from Ref. [57]. Anthocyanins are synthesized in

the cytoplasm, which pH value is 7, and then transported to the vacuole, which pH value is between 3− 6.
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the rate of change of B in vacuole is

d

dt
[Bv] =trcv[BC]− δ[BV ] (2.168)

− {−k3[AH+] + k−3[B][H+]}+ {−k4[B] + k−4[C]}+ {−k6[B] + k−6[B
−][H+]}

For the self association species (A– )N1, AN2, (AH+)N3, and (A)N4/2 · (AH+)N4/2, we use Eq. 2.33 to

Eq. 2.48 simulate the results.

In the following results, we have the following parameters:

1. The production potency: γ = 5× 10−3.

2. The diffusion coefficients: DA = 0.01, DI = 0.5, DB = 10−2.

3. The association constants: J1 = 3200, J2 = 12800, J3 = 9600, J4 = 11200,

and j1,n = j2,n = j3,n = j4,n = 8000, for all n ∈ {1, 2, · · · , N}.

4. The kinetic constants: k1 = 3× 103.2, k−1 = 3× 1010, k2 = 3× 106, k−2 = 3× 1010,

k3 = 0.2849, k−3 = 23.7, k4 = 3× 105, k−4 = 3× 105.98,

k5 = 3× 103.25, k−5 = 3× 1010, k6 = 3× 102.14, k−6 = 3× 1010.

5. The sigmoidal response power n = 3 with the threshold constant τ = 3.

6. The degrade rate δ = 10−2

7. The length of time: 2× 105 × 0.1 seconds where a time step is 0.1.

8. The transport rate: trcv = 0.5.
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(a) A– distribution up to 10th mer at the Max

BC.

(b) A distribution up to 200th mer at the Max

BC.

(c) AH+ distribution up to 400th mer at the Max

BC.

(d) A · AH+ distribution up to 120th mer at the

Max BC.

(e) Species distribution in different BC. (f) Species distribution at the Max BC.

Figure 2.39: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system

(Eq. 2.165 to Eq. 2.168 and the association scheme Eq. 2.2 to Eq. 2.8) with parameter values as follows: The

diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI = 0.03,

the background production rate constants are A0 = 0.01, I0 = 0, the activation potency rate constants

are GA = 0.08, GI = 0.12, the production potency: γ = 5 × 10−3, the degrade rate δ = 10−2 , and

the transport rate trcv = 0.5 at pH= 3.5. The initial concentration of the activator is 1M , and that of the

inhibitor is 0M . The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds,

and the spatial step size was 50/256. The largest association numbers for A– , A, AH+, and A · AH+ are

10, 200, 400, 120, respectively.
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(a) A– distribution up to 10th mer at the Max

BC.

(b) A distribution up to 200th mer at the Max

BC.

(c) AH+ distribution up to 200th mer at the Max

BC.

(d) A · AH+ distribution up to 120th mer at the

Max BC.

(e) Species distribution in different BC. (f) Species distribution at the Max BC.

Figure 2.40: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system

(Eq. 2.165 to Eq. 2.168 and the association scheme Eq. 2.2 to Eq. 2.8) with parameter values as follows: The

diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI = 0.03,

the background production rate constants are A0 = 0.01, I0 = 0, the activation potency rate constants

are GA = 0.08, GI = 0.12, the production potency: γ = 5 × 10−3, the degrade rate δ = 10−2 , and

the transport rate trcv = 0.5 at pH= 4. The initial concentration of the activator is 1M , and that of the

inhibitor is 0M . The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds,

and the spatial step size was 50/256. The largest association numbers for A– , A, AH+, and A · AH+ are

10, 200, 200, 120, respectively.
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(a) A– distribution up to 10th mer at the Max

BC.

(b) A distribution up to 200th mer at the Max

BC.

(c) AH+ distribution up to 200th mer at the Max

BC.

(d) A · AH+ distribution up to 120th mer at the

Max BC.

(e) Species distribution in different BC. (f) Species distribution at the Max BC.

Figure 2.41: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system

(Eq. 2.165 to Eq. 2.168 and the association scheme Eq. 2.2 to Eq. 2.8) with parameter values as follows: The

diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI = 0.03,

the background production rate constants are A0 = 0.01, I0 = 0, the activation potency rate constants

are GA = 0.08, GI = 0.12, the production potency: γ = 5 × 10−3, the degrade rate δ = 10−2 , and

the transport rate trcv = 0.5 at pH= 5. The initial concentration of the activator is 1M , and that of the

inhibitor is 0M . The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds,

and the spatial step size was 50/256. The largest association numbers for A– , A, AH+, and A · AH+ are

10, 200, 200, 120, respectively.
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(a) A– distribution up to 10th mer at the Max

BC.

(b) A distribution up to 200th mer at the Max

BC.

(c) AH+ distribution up to 200th mer at the Max

BC.

(d) A · AH+ distribution up to 120th mer at the

Max BC.

(e) Species distribution in different BC. (f) Species distribution at the Max BC.

Figure 2.42: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system

(Eq. 2.165 to Eq. 2.168 and the association scheme Eq. 2.2 to Eq. 2.8) with parameter values as follows: The

diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are UA = 0.03, UI = 0.03,

the background production rate constants are A0 = 0.01, I0 = 0, the activation potency rate constants

are GA = 0.08, GI = 0.12, the production potency: γ = 5 × 10−3, the degrade rate δ = 10−2 , and

the transport rate trcv = 0.5 at pH= 6. The initial concentration of the activator is 1M , and that of the

inhibitor is 0M . The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds,

and the spatial step size was 50/256. The largest association numbers for A– , A, AH+, and A · AH+ are

10, 200, 200, 120, respectively.
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2.6.5 Binning method

Because we will have a large number of ordinary differential equations to to solve in order to

simulate more realistic results for large association constants, we will employ a binning method

to reduce the total number of the equations. Essentially, we group several m-mers together into

a "bin" and assume that each mer in a bin has the same concentration. For (A– )n, (A)n, (AH+)n,

we set the monomer to be the first bin group, denoted by (A−)Bin1, (A)Bin1, and (AH+)Bin1,

respectively. Assume the size of other bin groups is n, which is an even number, we have the ℓth

group is binning from [(ℓ − 2) × n + 2]mer to [(ℓ − 1) × n + 1]mer, denoted by Binℓ. For the

A · AH+, the first bin group is binning from A · AH+ to (A)n
2
· (AH+)n

2

+
1, and its ℓth group is

binning from (A) (ℓ−1)n
2

+1
· (AH+) (ℓ−1)n

2
+1

to (A) ℓn
2
· (AH+) ℓn

2
+1. Also assume ji,±2 = ji,±3 =

· · · = ji,±(n+1)
.
= j̃i,±2, · · · , ji,±((ℓ−2)×n+2) = · · · = ji,±((ℓ−1)×n+1)

.
= j̃i,±ℓ, for i = 1, 2, 3 and

ℓ = 3, 4, · · · ,mi if the number of the binning group is mi. For A · AH+ association, we assume

j4,±2 = j4,±3 = · · · = j4,±(n+1)
.
= j̃4,±1, · · · , j4,±((ℓ−1)×n+2) = · · · = j4,±((ℓ)×n+1)

.
= j̃4,±ℓ, for

ℓ = 2, 3, · · · ,m if the number of the binning group is m4.

Then Eq. 2.33 to Eq. 2.35 become
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d

dt
[(A−)Bin1] ={−k−1[(A

−)Bin1][H
+] + k1[(A)Bin1]}

+ 2{−j1,2[(A−)Bin1][(A
−)Bin1] + j1,−2 ×

1

n
[(A−)Bin2]}

+ {−j1,3[(A−)Bin1]
1

n
[(A−)Bin2] + j1,−3 ×

1

n
[(A−)Bin2]}

+ · · ·

+ {−j1,(m1−1)n+1[(A
−)Bin1]

1

n
[(A−)Binm1 ]

+ j1,−((m1−1)n+1)
1

n
[(A−)Binm1 ]}

− δ[(A−)Bin1]

={−k−1[(A
−)Bin1][H

+] + k1[(A)Bin1]}

+ 2{−j̃1,2[(A−)Bin1][(A
−)Bin1] + j̃1,−2 ×

1

n
[(A−)Bin2]}

− [(A−)Bin1]

(
m1∑

ℓ=2

n− 1

n
j̃1,ℓ[(A

−)Binℓ] +

m1−1∑

ℓ=2

1

n
j̃1,(ℓ+1)[(A

−)Binℓ]

)

+

m1∑

ℓ=2

j̃1,−ℓ[(A
−)Binℓ]−

1

n
j̃1,−2[(A

−)Bin2]− δ[(A−)Bin1]

d

dt
[(A−)Bin2] =− {−j̃1,2[(A−)Bin1][(A

−)Bin1] + j̃1,−2
1

n
[(A−)Bin2]}

+ {−j̃1,3[(A−)Bin1]
1

n
[(A−)Bin2] + j̃1,−3

1

n
[(A−)Bin3]}

− δ[(A−)Bin2]

...

d

dt
[(A−)Binℓ] =− {−j̃1,ℓ[(A−)Bin1]

1

n
[(A−)Bin(ℓ−1)] + j̃1,−ℓ

1

n
[(A−)Binℓ]}

+ {−j̃1,(ℓ+1)[(A
−)Bin1]

1

n
[(A−)Binℓ] + ˜j1,−(ℓ+1)

1

n
[(A−)Bin(ℓ+1)]}

− δ[(A−)Binℓ]

...

d

dt
[(A−)Binm1 ] =− {−j̃1,m1 [(A

−)Bin1]
1

n
[(A−)Bin(m1−1)] + j̃1,−m1

1

n
[(A−)Binm1 ]}

− δ[(A−)Binm1 ].
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Eq. 2.37 becomes

d

dt
[(A)Bin1] =− {−k−1[(A

−)Bin1][H
+] + k1[(A)Bin1]}

+ {−k−2[(A)Bin1][H
+] + k2[(AH

+)Bin1]}

+ 2{−j̃2,2[(A)Bin1][(A)Bin1] + j̃2,−2
1

n
[(A)Bin2]}

− [(A)Bin1]

(
m2∑

ℓ=2

n− 1

n
j̃2,ℓ[(A)Binℓ] +

m2−1∑

ℓ=2

1

n
j̃2,(ℓ+1)[(A)Binℓ]

)

+

m2∑

ℓ=2

j̃2,−ℓ[(A)Binℓ]− j̃2,−2
1

n
[(A)Bin2]

+ {−j̃4,2[(A)Bin1][(AH
+)Bin1] + j4,−2

1

n
[(A · AH+)Bin1]}

+ {−j4,4[(A)Bin1]
1

n
[(A · AH+)Bin1] + j4,−4

1

n
[(A · AH+)Bin1]}

+ · · ·

+ {−j4,(m4)n[(A)Bin1]
1

n
[(A · AH+)Binm4 ]

+ j4,−((m4)n)[
1

n
[(A · AH+)Binm4 ]}

− δ[(A)Bin1].
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That is,

d

dt
[(A)Bin1] =− {−k−1[(A

−)Bin1][H
+] + k1[(A)Bin1]}

+ {−k−2[(A)Bin1][H
+] + k2[(AH

+)Bin1]}

+ 2{−j̃2,2[(A)Bin1][(A)Bin1] + j̃2,−2
1

n
[(A)Bin2]}

− [(A)Bin1]×
(

m2∑

ℓ=2

n− 1

n
j̃2,ℓ[(A)Binℓ] +

m2−1∑

ℓ=2

1

n
j̃2,(ℓ+1)[(A)Binℓ]

)

+

m2∑

ℓ=2

j̃2,−ℓ[(A)Binℓ]− j̃2,−2
1

n
[(A)Bin2]

− j̃4,2[(A)Bin1][(AH
+)Bin1]

− [(A)Bin1]×
(

m4∑

ℓ=1

(
1

2
− 1

n
)j̃4,ℓ[(A · AH+)Binℓ] +

m4∑

ℓ=2

1

n
j̃4,ℓ[(A · AH+)Bin(ℓ−1)]

)

+

m4∑

ℓ=1

1

2
j̃4,−ℓ[(A · AH+)Binℓ]

− δ[(A)Bin1].
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Eq. 2.38 to Eq. 2.39 become

d

dt
[(A)Bin2] =− {−j̃2,2[(A)Bin1][(A)Bin1] + j̃2,−2

1

n
[(A)Bin2]}

+ {−j̃2,3[(A)Bin1]
1

n
[(A)Bin2] + j̃2,−3

1

n
[(A)Bin3]} − δ[(A)Bin2]

...

d

dt
[(A)Binℓ] =− {−j̃2,ℓ[(A)Bin1]

1

n
[(A)Bin(ℓ−1)] + j̃2,−ℓ

1

n
[(A)Binℓ]}

+ {−j̃2,ℓ+1[(A)Bin1]
1

n
[(A)Binℓ] + ˜j2,−(ℓ+1)

1

n
[(A)Bin(ℓ+1)]}

− δ[(A)Binℓ]

...

d

dt
[(A)Binm2 ] =− {−j̃2,m2 [(A)Bin1]

1

n
[(A)Bin(m2−1)] + j̃2,m2

1

n
[(A)Binm2 ]}

− δ[(A)Binm2 ].
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Eq. 2.41 becomes

d

dt
[(AH+)Bin1] =− {−k−2[(A)Bin1][H

+] + k2[(AH
+)Bin1]}

+ {−k3[(AH+)Bin1] + k−3[B][H+]}

+ 2{−j̃3,2[(AH+)Bin1][(AH
+)Bin1] + j̃3,−2

1

n
[(AH+)Bin2]}

− [(AH+)Bin1]×
(

m3∑

ℓ=2

n− 1

n
j̃3,ℓ[(AH

+)Binℓ] +

m3−1∑

ℓ=2

1

n
j̃3,(ℓ+1)[(AH

+)Binℓ]

)

+

m3∑

ℓ=2

j̃3,−ℓ[(AH
+)Binℓ]− j̃3,−2

1

n
[(AH+)Bin2]

− j̃4,2[(A)Bin1][(AH
+)Bin1] + j̃4,−2

1

n
[(A · AH+)Bin1]

− [(AH+)Bin1]

m4∑

ℓ=1

1

2
j̃4,ℓ[(A · AH+)Binℓ]

+

m4∑

ℓ=1

1

2
j̃4,−ℓ[(A · AH+)Binℓ]

− δ[(AH+)Bin1].
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Eq. 2.42 to Eq. 2.43 become

d

dt
[(AH+)Bin2] =− {−j̃3,2[(AH+)Bin1][(AH

+)Bin1] + j̃3,−2
1

n
[(AH+)Bin2]}

+ {−j̃3,3[(AH+)Bin1]
1

n
[(AH+)Bin2] + j̃3,−3

1

n
[(AH+)Bin3]}

− δ[(AH+)Bin2]

...

d

dt
[(AH+)Binℓ] =− {−j̃3,ℓ[(AH+)Bin1]

1

n
[(AH+)Bin(ℓ−1)] + j̃3,−ℓ

1

n
[(AH+)Binℓ]}

+ {−j̃3,(ℓ+1)[(AH
+)Bin1]

1

n
[(AH+)Binℓ] + ˜j3,−(ℓ+1)

1

n
[(AH+)Bin(ℓ+1)]}

− δ[(AH+)Binℓ]

...

d

dt
[(AH+)Binm3 ] =− {−j̃3,m3 [(AH

+)Bin1]
1

n
[(AH+)Bin(m3−1)] + j̃3,−m3

1

n
[(AH+)Binm3 ]}

− δ[(AH+)Binm3 ].
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Eq. 2.45 to Eq. 2.48 become

d

dt
[(A · AH+)Bin1] =− {−j̃4,1[(A)Bin1][(AH

+)Bin1] + j̃4,−1
1

n
[(A · AH+)Bin1]}

+ {−j̃4,2
1

n
[(A · AH+)Bin1][(AH

+)Bin1] + j̃4,−2
1

n
[(A · AH+)Bin2]}

− δ[(A · AH+)Bin1]

...

d

dt
[(A · AH+)Binℓ] =− {−j̃4,ℓ

1

n
[(A)Bin1][(A · AH+)Bin(ℓ−1)] + j̃4,−ℓ[(A · AH+)Binℓ]}

+ {−j̃4,(ℓ+1)
1

n
[(A)Bin1][(A · AH+)Binℓ]

+ ˜j4,−(ℓ+1)
1

n
[(A · AH+)Bin(ℓ+1)]}

− δ[(A · AH+)Binℓ]

...

d

dt
[(A · AH+)Binm4 ] =− {−j̃4,m4

1

n
[(A)Bin1][(A · AH+)Bin(m4−1)]

+ j̃4,−m4

1

n
[(A · AH+)Binm4 ]}

− δ[(A · AH+)Binm4 ]

.

Using this method, we can compute an approximation of the m-mer distribution even with the

largest m-mer being large, on the order of a thousand-mer. Sample populations size distributions

are shown in Figure 2.43 and Figure 2.44.
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(a) A– distribution up to 40th mer at the Max

BC.

(b) A distribution up to 200th mer at the Max

BC.

(c) AH+ distribution up to 400th mer at the Max

BC.

(d) A · AH+ distribution up to 120th mer at the

Max BC.

Figure 2.43: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system given

by Eqns. 2.165 to 2.168 and the association scheme given by Eqns. 2.2 to 2.8) with parameter values

as follows: The binning size:2, the diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate

constants are UA = 0.03, UI = 0.03, the background production rate constants are A0 = 0.01, I0 = 0,

the activation potency rate constants are GA = 0.08, GI = 0.12, the production potency: γ = 5 × 10−3,

the degrade rate δ = 10−2 , and the transport rate trcv = 0.5 at pH= 3.5. The initial concentration of the

activator is 1M , and that of the inhibitor is 0M . The spatial domain is 0 ≤ x, y ≤ 50. The time step for the

simulation was 0.01 seconds, and the spatial step size was 50/256. The largest association numbers for A– ,

A, AH+, and A · AH+ are 10, 200, 400, 120, respectively.
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(a) A– distribution up to 40th mer at the Max

BC.

(b) A distribution up to 2000th mer at the Max

BC.

(c) AH+ distribution up to 4000th mer at the

Max BC.

(d) A ·AH+ distribution up to 1200th mer at the

Max BC.

Figure 2.44: Anthocyanin species at time 2 × 104 seconds, resulting from simulations of the system

(Eq. 2.165 to Eq. 2.168 and the association scheme Eq. 2.2 to Eq. 2.8) with parameter values as follows:

The binning size:10, the diffusion coefficients are DA = 0.01, DI = 0.5, the degradation rate constants are

UA = 0.03, UI = 0.03, the background production rate constants are A0 = 0.01, I0 = 0, the activation

potency rate constants are GA = 0.08, GI = 0.12, the production potency: γ = 5× 10−3, the degrade rate

δ = 10−2 , and the transport rate trcv = 0.5 at pH= 3.5. The association constants are 10 times the original

association constants 2.32. The initial concentration of the activator is 1M , and that of the inhibitor is 0M .

The spatial domain is 0 ≤ x, y ≤ 50. The time step for the simulation was 0.01 seconds, and the spatial step

size was 50/256. The largest association numbers for A– , A, AH+, and A · AH+ are 40, 2000, 4000, 1200,

respectively.
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2.7 Conclusions and Further Work

The Gierer-Meinhardt model has long been applied to study pattern formation in biological systems

[41]. Some studies have analyzed the stability of those models [39, 58, 59]. Our focus in this

dissertation has been the modified Gierer-Meinhardt model, proposed in [31], which allows the

inhibitor to be zero as the initial condition. Our analysis of the modified Gierer-Meinhardt model

has revealed well-ordered patterns of rolls, up- and down-hexagons, as well as transient squares.

The nonlinear amplitude equation analysis in Section 2.6 has probed the competition between

rolls and up- and down-hexagons when the parameters determining a cubic coefficient γ1 in the

amplitude equations is positive. Further work, described at the end of Section 2.6, will further

investigate the roll-hexagon-square competition if γ1 < 0.

The modified Gierer-Meinhardt model [31] only deals with the activator and inhibitor. We extend

this model to activate the anthocyanin synthesis. By [40], the dependence of production rate on

activator production typically follows a sigmoidal relationship uact(A;n, τ) = An

An+τn
. We adopt

this relation and assume the activator activate the Hemiketal B in the cytoplasm, and we also allow

B in the cytoplasm to diffuse with the same rate as the activator. The Hemiketal B can transport

across the vacuolar membrane into the vacuole. Once the anthocyanins are in the vacuole, they

will follow the pH-dependent scheme 2.1 with self associations 2.30 and 2.31.
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Chapter 3

Surfaces of prescribed mean curvature: A

hodograph approach to the mean-curvature equation

3.1 Introduction and outline

Having developed and analyzed models for anthocyanin association in Chapter 2, we are heading

towards using these models as part of a method for determining absorptivities of anthocyanin

monomers, dimers, and trimers that will be the focus of our attention in Chapter 4. As outlined in

Chapter 1 and described in more detail in Section 3.2 and Chapter 4, our method requires sufficient

numbers of measurements of absorbance spectra of anthocyanin solutions at low concentrations.

As described in more detail in Section 3.2, this chapter is connected with that aim through a

proposed method of using the mean curvature of a droplet of anthocyanin solution resting on a

surface to help determine the concentration of anthocyanin in the solution.

A surface embedded in R3 = {(x1, x2, x3) : xi ∈ R} may locally be described as a graph

(x1, x2, h(x1, x2)) (3.1)

of a function h(x1, x2) over the (x1, x2)-plane. In this section, we study the following problem:

Given a function H(x1, x2), find a function h(x1, x2) for which the surface given by Eq. 3.1 has

mean curvatureH(x1, x2). This problem is linked to the theme of this thesis, namely mathematical

modeling of topics in anthocyanin chemistry, through the fact that the surface tension of a liquid

droplet is proportional to the mean curvature of that droplet, and that droplet may be an anthoycanin

solution.

This chapter is organized as follows: Motivation for studying the mean curvature of droplets in

the context of this thesis is described in more detail in Section 3.2. In Section 3.3, we derive the

mean-curvature equation (MCE). This is the following nonlinear partial differential equation for
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the function h(x1, x2):

1

2

hx1x1(h
2
x2

+ 1)− 2hx1x2hx1hx2 + hx2x2(h
2
x1

+ 1)

(h2x1
+ h2x2

+ 1)
3
2

= H(x1, x2), (3.2)

whereH(x1, x2) is the mean curvature of the surface given by Eq. 3.1. In Section 3.4, we develop a

new approach to solving the mean-curvature equation that consists of first performing a hodograph

transformation (which interchanges the independent and dependent variables) and then making

use of the fact that the resulting equation separates – well, in general, almost separates– in polar

coordinates. This approach has the potential to provide formulas for large classes of equations of

prescribed mean curvature, but in this thesis we restrict to the case of finding surfaces of revolution

for which the prescribed mean curvature H(x1, x2) = H(r = x21 + x22) is a function of radius

alone and the transformed equation does completely separate in polar coordinates. We show that

the method we propose allows for the finding conformal parameterizations of these surfaces. A

surface r⃗(u1, u2) : Ω ⊂ R2 → R3 is conformally parameterized if it satisfies the conditions that it

be orthogonally parameterized (r⃗u1 · r⃗u2 = 0) and that locally the stretching in both directions of

parameterization are equal (r⃗u1 · r⃗u1 = r⃗u2 · r⃗u2).

3.2 Motivation: Droplets of anthocyanin solution

Recent work by S. Thompson has convinced us to interpret the self associative behavior of an-

thocyanins to be that of lyotropic chromonic mesogens (liquid crystals) [60]- [61]. Mesogens are

molecules with a hydrophobic component (for anthocyanins, the three-ring chromophore of the

flavylium cation) together with hydrophilic groups (for anthocyanins, the sugar group additions).

The hydrophobic aromatic chromophore with an ether link (-O-) to hydrophilic glucose gives un-

usual fluid-flow arrangements in a protic solvent. Surface activity, rheological experiments, and

the deposition and drying dynamics of anthoyanin solution droplets at different concentrations and

pH values all point to mesogenic carbohydrate features. The evaporative drying of 2-50 µL drops

placed on FEP film on a temperature-control device placed on the stage of a LED and fluorescence
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microscope (with illumination from below and above and a variety of accessory polarizers) gave

very unusual, complex color and deposition patterns. The phase behavior, morphological arrange-

ments, spatial and temporal color changes and fluorescence were all characteristics typical of those

observed on drying chromonic liquid crystal droplets [62]. Experiments carried out at different pH

values show dramatic nucleation and growth (association) patterns which are different for each

of the species in the scheme and different for added copigments and solvents. The kinetics of the

(slow) conversion of chalcones and hemiketals B to AH+ and A was accelerated as the anthocyanin

concentrations increased during the evaporative drying.

Coarse-grained models of intramolecular interactions in a chromonic liquid crystal in water show

that a correct hydrophobic-hydrophilic balance is essential for association of monomers and their

self-organization into liquid-crystal phases to occur [63].

Figure 3.1: Droplet of aqueous Mallow sylvestris anthocyanin extract.

The addition of information about phase change processes to the mathematical analysis of the

anthocyanin scheme is a fundamental way to make sense of the incredible variety of optical prop-

erties and biological functioning of plant systems. The mesogenic properties of anthocyanin

monomers and associated species induce changes in interfacial free energies that also have po-

tential consequences for their biological functioning. These considerations motivate us to pursue

a geometric method to obtain information on interfacial free-energy changes by observing the

shapes of droplets of anthocyanin solutions on surfaces or suspended between two surfaces (liquid

bridges [64]). Preliminary experiments by S. Thompson on contact angles of anthocyanin solutions

on surfaces have been carried out with a stereomicroscope optics held at 90◦ to the drop sample.
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Figure 3.1 shows a droplet of an anthocyanin extract from mallow flowers on an FEP (fluorinated

ethylene propylene) surface. The contact angle (marked in the figure) is 65◦, much less than the ca.

110◦ angle of a water droplet on FEP. The Young-Laplace equation relates the interfacial energies

γij , i, j ∈ {S, V, L} between the solid (S), liquid (L) and surrounding vapor (V ) to the contact

angle θ of a liquid droplet on a solid surface by cos(θ) = (γSV − γSL)/γLV . The reduced contact

angle in Figure 3.1 results from the decreased surface tension as the mesogenic anthocyanins act

similarly to soap in water.

The shape of a liquid droplet, assuming that the effect of gravity is negligible (a good assumption

for small droplets [65]), is spheroidal. The spheroidal shape may be seen mathematically as a

solution to the mean-curvature equation: Let the surface of the droplet be the graph of a function

h(x1, x2) over the solid surface. Then, h(x1, x2) satisfies the mean-curvature equation, where

the mean curvature of the droplet is proportional to the surface tension. The surface tension ν

is typically considered to be constant, so that the function H(x1, x2) in Eq. 3.2 is constant. The

same equation applies in the case of liquid bridges, in which a liquid is suspended between two

plates [64]. Fig. 3.2 (a,b) shows diagrams of liquid bridges from Ref. [64]. The shape of the

liquid bridge depends on the volume of liquid, the surface tension, and the distance between the

plates. But, in general, it is a surface of revolution of constant mean curvature. The surfaces in

Fig. 3.2 (a,b) are portions of a class of such surfaces called unduloids. We will meet unduloids and

their relatives (the so-called Delaunay surfaces) more intimately in Sec. 3.4.

(a) (b) (c)

Figure 3.2: Liquid bridges as suspensions of liquid between two plates: Panels (a) and (b) are diagrams of

liquid bridges from Ref. [64]. Panel (c) shows how these liquid bridges are portions of a class of surface of

revolution of constant mean curvature, the unduloid, graphed in green.
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In the case of an evaporating anthocyanin solution, we expect that self association occurring at

the solid-liquid interface if the solid is, for example, glass, will lead to the quicker formation of

associated species at the liquid surface near the contact with the solid. This may induce a spatially-

dependent surface tension ν and therefore a spatially-dependent mean curvature H . The long-

term goal is to combine information from components of this thesis, namely simulations of our

equations for anthocyanin association, and insights from solutions to the mean-curvature equation,

with observations of shapes of anthocyanin solution droplets at various concentrations and pH

values, in order to infer information regarding anthocyanin association from shapes of anthocyanin

droplets. We have made attempts at the relevant experimental observations. An example, in which

we create a nonuniform surface tension by combing a droplet of water and a droplet of water with

glycerin, is shown in Fig. 3.3. We learned that obtaining accurate experimental observations is

difficult!: For example, to realize our goal, we need to be able to more carefully control for the

volume of the droplets and be able to create plates that are nearly parallel. Therefore, we are

not able to provide the final combination of theory and experimental results in this thesis. For

the dynamically changing shapes of evaporating anthocyanin droplets, we expect to need to also

account for mechanisms of solute transport in the droplet as the solution evaporates [66].

Figure 3.3: Liquid bridge which has a solution of water with glycerin at the top and water on the bottom.

This is prototype of the type of experiment described in the the text.
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3.3 Derivation of the Mean-curvature Equation

Writing R2 = {(x1, x2) : xi ∈ R}, and R3 = {(u1, u2, u3) : ui ∈ R}, the problem of interest

is to find, given a function H(x1, x2), a surface r⃗ : Ω ⊂ R2 → R3 embedded in R3 with mean

curvature H(x1, x2). We assume the surface to be a graph

r⃗(x1, x2) = (u1 = x1, u2 = x2, u3 = h(x1, x2)) (3.3)

of a function h(x1, x2) over the (x1, x2)-plane. The mean curvature of the surface Eq. 3.1 may

be written as a nonlinear partial differential equation (PDE) for h(x1, x2), the mean-curvature

equation, stated above as Eq. 3.2. The purpose of this section is to derive that equation.

The mean curvature of a surface is defined in terms of the first and second fundamental forms. The

first fundamental form I allows for the measurement of distances and angles on a surface and is

defined by

I =

(
dx1 dx2

)



E F

F G







dx1

dx2




=

(
dx1 dx2

)



< r⃗x1 , r⃗x1 > < r⃗x1 , r⃗x2 >

< r⃗x1 , r⃗x2 > < r⃗x2 , r⃗x2 >







dx1

dx2


 . (3.4)

For the surface given by Eq. 3.3, the first fundamental form is

I =

(
dx1 dx2

)



1 + h2x1
hx1hx2

hx1hx2 1 + h2x2







dx1

dx2


 . (3.5)
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The second fundamental form measures the deviation of the surface from being planar. Denoting

the normal vector field to the surface by n⃗(x1, x2), the second fundamental form is defined by

II =

(
dx1 dx2

)



L M

M N







dx1

dx2


 (3.6)

=

(
dx1 dx2

)



< r⃗x1x1 , n⃗ > < r⃗x1x2 , n⃗ >

< r⃗x1x2 , n⃗ > < r⃗x2x2 , n⃗ >







dx1

dx2


 .

For the surface given by Eq. 3.3, choosing the unit normal vector field

n⃗ =
(hx1 , hx2 ,−1)

(h2x1
+ h2x2

+ 1)
1
2

, (3.7)

the second fundamental form is given by

II =
1

(h2x1
+ h2x2

+ 1)
1
2

(
dx1 dx2

)



hx1x1 hx1x2

hx1x2 hx2x2







dx1

dx2


 . (3.8)

In terms of the first and second fundamental forms, the mean curvature is defined by

H =
1

2
tr
(
II · I−1

)
=

1

2
tr







L M

M N




1

EG− F 2




G −F

−F E





 .

For the surface given by Eq. 3.3, using the expressions given by Eq. 3.5 for the first fundamental

form and Eq. 3.8 for the second fundamental form, the mean curvature is

H =
1

2
tr




1

(h2x1
+ h2x2

+ 1)
1
2




hx1x1 hx1x2

hx1x2 hx2x2




1

h2x1
+ h2x2

+ 1




1 + h2x2
−hx1hx2

−hx1hx2 1 + h2x1







=
1

2
tr







hx1x1 hx1x2

hx1x2 hx2x2




1

(h2x1
+ h2x2

+ 1)
3
2




(1 + h2x2
) −hx1hx2

−hx1hx2 (1 + h2x)






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=
1

2

hx1x1(h
2
x2

+ 1)− 2hx1x2hx1hx2 + hx2x2(h
2
x1

+ 1)

(h2x1
+ h2x2

+ 1)
3
2

.

In summary, we have arrived at the mean-curvature equation, Eq. 3.2, which we repeat for conve-

nience here:

1

2

hx1x1(h
2
x2

+ 1)− 2hx1x2hx1hx2 + hx2x2(h
2
x1

+ 1)

(h2x1
+ h2x2

+ 1)
3
2

= H(x1, x2). (3.9)

The mean-curvature equation may be written as the divergence of the projection

n⃗|| =
(hx1 , hx2)

(h2x1
+ h2x2

+ 1)
1
2

(3.10)

of the unit normal vector Eq. 3.7 to the (x1, x2)-plane as follows: Write

k⃗
.
= (hx1 , hx2)

.
= (f, g), k2

.
= k⃗




1 0

0 1


 k⃗t = f 2 + g2,

κ⃗ =




1 0

0 1


 k⃗t = (f, g) ,

and

B(k2)
.
=

1

2
(k2 + 1)−

1
2 =

1

2
(f 2 + g2 + 1)−

1
2 =

1

2
(h2x1

+ h2x2
+ 1)−

1
2 .

Then, for ∇ =
(

∂
∂x1
, ∂
∂x2

)
, Eq. 3.9 is

∇ · 1
2
n⃗|| = ∇ ·

(
κ⃗B(k2)

)
=

1

2

hx1x1(h
2
x2

+ 1)− 2hx1x2hx1hx2 + hx2x2(h
2
x1

+ 1)

(h2x1
+ h2x2

+ 1)
3
2

= H. (3.11)

The method that we apply to find solutions to the mean-curvature equation may be applied more

generally to equations of the general form given by Eq. 3.11, and in the following, we will derive

to an extent results for this general from.
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3.4 Surfaces via the hodograph transform

3.4.1 The hodograph transform

Equation 3.9 contains cubic products such as hx1x1h
2
x2

as well as a denominator that involves

quadratic terms and a 3
2

root. It is nonlinear. However, the equation is linear in the highest-order

(second-order) derivatives. This suggests to rewrite Eq. 3.9 in terms of the hodograph transform

of h(x1, x2). The hodograph transform of h(x1, x2) is a function ĥ(f, g) of the gradient (f, g) =

∇h = (hx1 , hx2).

Figure 3.4: Illustration of the hodograph transform ĥ(f, g) of a function h(x1, x2).

Fig. 3.4 illustrates the hodograph transformation, which is defined as follows: The function

h(x1, x2) = h(x⃗) and its hodograph transform ĥ(f, g) = ĥ(k⃗) are related by

h(x⃗) + ĥ(k⃗) = k⃗ · x⃗ = fx1 + gx2;
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∇x⃗h = (hx1 , hx2) = k⃗, ∇k⃗ĥ =
(
ĥf , ĥg

)
= x⃗.

The second derivatives are related by




hx1x1 hx1x2

hx2x1 hx2x2


 =




fx1 fx2

gx1 gx2


 =




ˆ(hf )f
ˆ(hg)f

ˆ(hf )g
ˆ(hg)g




−1

= J−1




ĥgg −ĥfg
−ĥfg ĥff


 ,

where

J =

∣∣∣∣
∂x⃗

∂k⃗

∣∣∣∣ = ĥff ĥgg − ĥ2fg.

In hodograph variables, Eq. 3.11 for general B(k2), namely

∇ ·
(
κ⃗B(k2)

)
= H, (3.12)

is (
B + 2

dB

dk2
f 2

)
ĥgg − 4

dB

dk2
fgĥfg +

(
B + 2

dB

dk2
g2
)
ĥff = HJ. (3.13)

This has the form of a Monge-Ampere equation. The general form of a Monge-Ampere equation

for a function u(x, y) is

C1uxx + 2C2uxy + C3uyy + C4(uxxuyy − u2xy) + C5 = 0,

where the coefficients Cj are functions of x, y, u, ux,and uy only [67].

3.4.2 Separation of variables

We convert the hodograph transform of the MCE, Eq. 3.13, to a polar coordinate system and find

that some solutions may be obtained by separation of variables. In accordance with the definition
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k2 = f 2 + g2, we write polar coordinates as

(f, g) = (k cosϕ, k sinϕ) . (3.14)

In this coordinate system, Eq. 3.13 reads

1

k2
(kB)kĥϕϕ +

1

k
(kB)kĥk +Bĥkk = HJ ; (3.15)

1

k2
(kB)kĥϕϕ +

1

k

{
(kB)ĥk

}
k
= HJ, (3.16)

where

J =
1

k2
ĥkk(ĥϕϕ + kĥk)−

1

k4
(ĥϕ − kĥkϕ)

2. (3.17)

From solutions ĥ(k, ϕ), we obtain surfaces

r⃗(k, ϕ) = (x(k, ϕ), y(k, ϕ), h(k, ϕ)) =
(
ĥf , ĥg, kĥk − ĥ

)
(3.18)

parameterized by k and ϕ.

The expressions for x(k, ϕ) and y(k, ϕ) are

x(k, ϕ) =
∂ĥ

∂f
=
∂ĥ

∂k

∂k

∂f
+
∂ĥ

∂ϕ

∂ϕ

∂f
=
∂ĥ

∂k
cosϕ+

∂ĥ

∂ϕ

(
−sinϕ

k

)
(3.19)

and

y(k, ϕ) =
∂ĥ

∂g
=
∂ĥ

∂k

∂k

∂g
+
∂ĥ

∂ϕ

∂ϕ

∂g
=
∂ĥ

∂k
sinϕ+

∂ĥ

∂ϕ

(
cosϕ

k

)
(3.20)

We apply separation of variables to Eq. 3.15 by making the Ansatz

ĥ(k, ϕ) = Fn(k) cos(nϕ+ ϕ0), (3.21)
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under which Eq. 3.15 becomes

[
k2BFn,kk + k(kB)kFn,k − n2(kB)kFn

]
cos(nϕ+ ϕ0) = k2HJ, (3.22)

where

k4J = −n2(kFn,k−Fn)
2−cos2(nϕ)

[
n2k2(FnFn,kk − F 2

n,k) + 2n2kFnFn,k − n2F 2
n − k3Fn,kFn,kk

]
.

(3.23)

3.4.3 Surfaces of revolution

In this section, we specialize in two ways: First, consider the case n = 0. Secondly, we assume

that the mean curvature is a function of radius alone; H(x1, x2) = H(r).

The case n = 0 corresponds to surfaces of revolution

(x, y, h(x, y)) = (r cos(ϕ), r sin(ϕ), h(r)).

Indeed,

x =
∂ĥ

∂f
=
∂ĥ

∂k

∂k

∂f
+
∂ĥ

∂ϕ

∂ϕ

∂f
=
∂ĥ

∂k
cosϕ+ 0

(
−sinϕ

k

)
=
∂ĥ

∂k
cosϕ,

and similarly

y =
∂ĥ

∂k
sinϕ.

Hence, r = (x2 + y2)
1
2 = |∂ĥ

∂k
|. Furthermore,

hx = hrrx = hr
x

r
, hy = hrry = hr

y

r
; k = (h2x + h2y)

1
2 =

(
h2r
x2

r2
+ h2r

y2

r2

) 1
2

= hr. (3.24)

The separation of variables Ansatz, Eq. 3.21, for n = 0 is

ĥ = F0(k),
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and from Eq. 3.23,

J =
1

k
F0,kF0,kk.

Eq. 3.22 for n = 0 is therefore

(kBF0,kk + (kB)kF0,k) cosϕ0 = H(r)F0,kkF0,k.

For ϕ0 = 0,

F0,kk =
(kB)kF0,k

H(r)F0,k − kB
. (3.25)

Writing r
.
= F0,k,

dr

dk
=

(kB)kr

H(r)r − kB
. (3.26)

Eq. 3.26 has the general solution

∫
rH(r) dr − rkB(k) +

1

2
C = 0, (3.27)

where C is a constant of integration. For the MCE, B(k2) = −1
2
(k2 + 1)−

1
2 , and Eq. 3.26 reads

dr

dk
=

−1

k2 + 1

r

2H(r)(k2 + 1)
1
2 r + k

. (3.28)

The general solution for Eq. 3.28 is

∫
rH(r) dr +

1

2
rk(k2 + 1)−

1
2 +

1

2
C = 0, (3.29)

where again C is a constant of integration. This last expression may be solved for k, which we

recall, from (3.24), is equal to dh/dr. Writing

Q(r)
.
=

∫
rH(r) dr,
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we have that

k =
dh

dr
= ± Q(r) + C

(r2 −Q2(r)− 2CQ(r)− C2)
1
2

, (3.30)

and finally

h(r) =

∫
dh

dr
dr = ±

∫
Q(r) + C

(r2 −Q2(r)− 2CQ(r)− C2)
1
2

dr. (3.31)

3.4.4 Surfaces of constant mean curvature

In this subsection, we further specialize to assume that H(r) = H is constant. Under this assump-

tion, the general solution Eq. 3.29 is

Hr2 +
kr

(k2 + 1)
1
2

+ C = 0. (3.32)

For example, if C = 0,

dh

dr
= k = −Hr(1−H2r2)−

1
2 ,

so that

h(r) = (R2 − r2)
1
2 .

The resulting surface is the upper hemisphere

(r cos(ϕ), r sin(ϕ), h(r) = (R2 − r2)
1
2 )

of radius R = 1/H . Fig. 3.5 illustrates this solution: plotted are the phase plane for the system

dr

dt
= −r

dk

dt
= 2(k2 + 1)

3
2 r + k(k2 + 1). (3.33)

associated to Eq. 3.28 for H(r) ≡ 1 constant, the trajectory k = dh
dr

in the phase plane correspond-

ing to the choice C = 0, the curve h(r), and (below all of this), the surface of revolution.
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r =
dĥ

dk
<latexit sha1_base64="yhyz8zWGBFRwS20e58NtcVwqp9U=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdCNUHTjsoJ9QBPKZDJphk4ezNwIJWTjr7hxoYhbP8Odf+O0zUJbD1w4nHMv997jpYIrsKxvo7Kyura+Ud2sbW3v7O6Z+wddlWSSsg5NRCL7HlFM8Jh1gINg/VQyEnmC9bzx7dTvPTKpeBI/wCRlbkRGMQ84JaCloXkk8TV2Aklo7mMnJIDDIvfHxdCsWw1rBrxM7JLUUYn20Pxy/IRmEYuBCqLUwLZScHMigVPBipqTKZYSOiYjNtA0JhFTbj57oMCnWvFxkEhdMeCZ+nsiJ5FSk8jTnRGBUC16U/E/b5BBcOXmPE4zYDGdLwoygSHB0zSwzyWjICaaECq5vhXTkOg0QGdW0yHYiy8vk26zYZ83mvcX9dZNGUcVHaMTdIZsdIla6A61UQdRVKBn9IrejCfjxXg3PuatFaOcOUR/YHz+AL6AleA=</latexit>

-2 -1 0 1 2

-2

-1

0

1

2

=
dr

k =
dh

dr
<latexit sha1_base64="j/2aOiwVLxqmpv/n7dqRBshU2/s=">AAAB+nicdVDLSsNAFJ34rPWV6tLNYBFchSQNbV0IRTcuK9gHtKFMJpN26OTBzEQpMZ/ixoUibv0Sd/6Nk7aCih64cDjnXu69x0sYFdI0P7SV1bX1jc3SVnl7Z3dvX68cdEWcckw6OGYx73tIEEYj0pFUMtJPOEGhx0jPm14Wfu+WcEHj6EbOEuKGaBzRgGIklTTSK1N4DocBRzjzJ3nm83ykV03jrFm3nTo0DdNsWLZVELvh1BxoKaVAFSzRHunvQz/GaUgiiRkSYmCZiXQzxCXFjOTlYSpIgvAUjclA0QiFRLjZ/PQcnijFh0HMVUUSztXvExkKhZiFnuoMkZyI314h/uUNUhk03YxGSSpJhBeLgpRBGcMiB+hTTrBkM0UQ5lTdCvEEqRykSqusQvj6FP5PurZh1Qz72qm2LpZxlMAROAanwAIN0AJXoA06AIM78ACewLN2rz1qL9rronVFW84cgh/Q3j4BS+2UDQ==</latexit>

h(r)
<latexit sha1_base64="Tb3FtPARCvJzAz04OLndCtKMluo=">AAAB63icdVDLSgMxFM3UV62vqks3wSLUzZCpj3ZZdOOygn1AO5RMmumEJpkhyQil9BfcuFDErT/kzr8x046gogcuHM65l3vvCRLOtEHowymsrK6tbxQ3S1vbO7t75f2Djo5TRWibxDxWvQBrypmkbcMMp71EUSwCTrvB5Drzu/dUaRbLOzNNqC/wWLKQEWwyKaqq02G5gtyLy0a9gSBy0QIZ8RDyatDLlQrI0RqW3wejmKSCSkM41rrvocT4M6wMI5zOS4NU0wSTCR7TvqUSC6r92eLWOTyxygiGsbIlDVyo3ydmWGg9FYHtFNhE+reXiX95/dSEDX/GZJIaKslyUZhyaGKYPQ5HTFFi+NQSTBSzt0ISYYWJsfGUbAhfn8L/Safmemdu7fa80rzK4yiCI3AMqsADddAEN6AF2oCACDyAJ/DsCOfReXFel60FJ585BD/gvH0Cn6+N9w==</latexit>

Figure 3.5: The phase plane for the system, the trajectory k = dh
dr in the phase plane corresponding to the

choice C = 0, the curve h(r), and (below), the surface of revolution (r cos(ϕ), r sin(ϕ), h(r)).
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For general C,

dh

dr
= ± Hr2 + C

(−H2r4 + (1− 2HC)r2 − C2)
1
2

= ± Hr2 + C

(r2 − (Hr2 + C)2)
1
2

. (3.34)

This last equation may be written as

dh

dr
= ± Hr2 + C

[−(Hr2 + r + C)(Hr2 − r + C)]
1
2

= ± Hr2 + C

[−(r + ξ+)(r − ξ+)(r + ξ−)(r − ξ−)]
1
2

,

where

ξ± =
1± (1− 4HC)

1
2

2H
.

The resulting solution

h(r) = ±
∫

Hr2 + C

[−(r + ξ+)(r − ξ+)(r + ξ−)(r − ξ−)]
1
2

dr

is an elliptic integral. An elliptic integral is defined as a function E(r) that has the from

E(r) =

∫ r

r0

R(r̂, ŝ) dr̂,

where R is a rational function (ratio of one polynomial to another) of its two arguments, and the

variables r̂ and ŝ are related by ŝ2 = P (r̂), where P (r̂) is a polynomial of degree 3 or 4 that has

no repeated roots. In our case,

R(r̂, ŝ) =
Hr̂2 + C

ŝ
,

and P (r̂) is the quartic polynomial

P (r̂) = −(r̂ + ξ+)(r̂ − ξ+)(r̂ + ξ−)(r̂ − ξ−).

The expression Eq. 3.34 for dh
dr
(r) and (dropping the hat notation) the polynomial P (r) are plotted

in Figure 3.6. The intervals in which P (r) is positive determine the intervals in which Eq. 3.34 is
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real and may be integrated to obtain h(r). For C < 0, P (r) is positive for −ξ− < r < ξ+. For

C = 0, P (r) is positive for −ξ− = ξ− = 0 < r < ξ+ = 1
H

. For 0 < C < 1
4H

, P (r) is positive for

ξ− < r < ξ+. For C > 1
4H

, P (r) is negative for all r.
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C =
1

4H
<latexit sha1_base64="ERMYdpCLLxGG2c++30t6prI0z1s=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lqQS9CsZceK9gPaEPZbDft0s0m7G4KJeSfePGgiFf/iTf/jds2B219MPB4b4aZeX7MmdKO820VtrZ3dveK+6WDw6PjE/v0rKOiRBLaJhGPZM/HinImaFszzWkvlhSHPqddf9pY+N0ZlYpF4knPY+qFeCxYwAjWRhradgPdo0EgMUndLK01s6FddirOEmiTuDkpQ47W0P4ajCKShFRowrFSfdeJtZdiqRnhNCsNEkVjTKZ4TPuGChxS5aXLyzN0ZZQRCiJpSmi0VH9PpDhUah76pjPEeqLWvYX4n9dPdHDnpUzEiaaCrBYFCUc6QosY0IhJSjSfG4KJZOZWRCbYxKBNWCUTgrv+8ibpVCvuTaX6WCvXH/I4inABl3ANLtxCHZrQgjYQmMEzvMKblVov1rv1sWotWPnMOfyB9fkDDQOSpA==</latexit>

0 < C <
1

4H
<latexit sha1_base64="gnJ7ydtAm7Eb0iTHIsUmeFn8t7g=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWpBV24KHbTZQX7gDaUyXTSDp1MwsxEqKH4K25cKOLW/3Dn3zhts9DWAxcO59zLvff4MWdKO863lVtb39jcym8Xdnb39g/sw6OWihJJaJNEPJIdHyvKmaBNzTSnnVhSHPqctv1xbea3H6hULBL3ehJTL8RDwQJGsDZS3z5x0A2qmeoFEpPUnaaV+rRvF52SMwdaJW5GipCh0be/eoOIJCEVmnCsVNd1Yu2lWGpGOJ0WeomiMSZjPKRdQwUOqfLS+fVTdG6UAQoiaUpoNFd/T6Q4VGoS+qYzxHqklr2Z+J/XTXRw7aVMxImmgiwWBQlHOkKzKNCASUo0nxiCiWTmVkRG2MSgTWAFE4K7/PIqaZVL7mWpfFcpVm+zOPJwCmdwAS5cQRXq0IAmEHiEZ3iFN+vJerHerY9Fa87KZo7hD6zPH7CNk3c=</latexit>

C = 0
<latexit sha1_base64="F2dhg53+RYRsIsKmJxcxJAK92ag=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUe/FYwbSFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb2dtfWNza7uwU9zd2z84LB0dN3WSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWO6jO/9YRK80Q+mnGKQUwHkkecUWMlv05uidsrld2KOwdZJV5OypCj0St9dfsJy2KUhgmqdcdzUxNMqDKcCZwWu5nGlLIRHWDHUklj1MFkfuyUnFulT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6CSZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/RhuAtv7xKmtWKd1mpPlyVa3d5HAU4hTO4AA+uoQb30AAfGHB4hld4c6Tz4rw7H4vWNSefOYE/cD5/ADMnjaA=</latexit>

C < 0
<latexit sha1_base64="eTRqaiqSiTJqqqFFm9jIslT7A8I=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFMI1lRPMByRH2NnPJkr29Y3dPCCE/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaCUW3mt55QaR7LRzNO0I/oQPKQM2qs9FC7cXvFklt25yCrxMtICTLUe8Wvbj9maYTSMEG17nhuYvwJVYYzgdNCN9WYUDaiA+xYKmmE2p/MT52SM6v0SRgrW9KQufp7YkIjrcdRYDsjaoZ62ZuJ/3md1ITX/oTLJDUo2WJRmApiYjL7m/S5QmbE2BLKFLe3EjakijJj0ynYELzll1dJs1L2LsqV+8tS9TaLIw8ncArn4MEVVOEO6tAABgN4hld4c4Tz4rw7H4vWnJPNHMMfOJ8/hX6NSw==</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

ξ±
<latexit sha1_base64="s72Xtga4/KfNIBnSKbKjOiSSrq8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WvXisYD+ku5Rsmm1Dk+ySZMWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wfDPzO49UaRbLezNJaCDwULKIEWys9OA/sX7mJ2LaL1fcqjsHWiVeTiqQo9kvf/mDmKSCSkM41rrnuYkJMqwMI5xOS36qaYLJGA9pz1KJBdVBNj94is6sMkBRrGxJg+bq74kMC60nIrSdApuRXvZm4n9eLzXRVZAxmaSGSrJYFKUcmRjNvkcDpigxfGIJJorZWxEZYYWJsRmVbAje8surpF2rehfV2l290rjO4yjCCZzCOXhwCQ24hSa0gICAZ3iFN0c5L86787FoLTj5zDH8gfP5AyrikKU=</latexit>

−ξ±
<latexit sha1_base64="7M5gMPiqq6ObYEucvZryXxksoiY=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBi2W3CnosevFYwX5gdynZNNuGJtklyYpl6b/w4kERr/4bb/4b03YP2vpg4PHeDDPzwoQzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh6Gbqtx+p0iyW92ac0EDggWQRI9hY6eHMf2K9zE/EpFeuuFV3BrRMvJxUIEejV/7y+zFJBZWGcKx113MTE2RYGUY4nZT8VNMEkxEe0K6lEguqg2x28QSdWKWPoljZkgbN1N8TGRZaj0VoOwU2Q73oTcX/vG5qoqsgYzJJDZVkvihKOTIxmr6P+kxRYvjYEkwUs7ciMsQKE2NDKtkQvMWXl0mrVvXOq7W7i0r9Oo+jCEdwDKfgwSXU4RYa0AQCEp7hFd4c7bw4787HvLXg5DOH8AfO5w+Vn5Dc</latexit>

−ξ+
<latexit sha1_base64="p9MNcbaE6IxpdZ+MS4CecAGe7ZI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMtuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDP1W49UaSbFvRnH1I/wQLCQEWys1DzvPrHeWa9YcsvuDGiZeBkpQYZ6r/jV7UuSRFQYwrHWHc+NjZ9iZRjhdFLoJprGmIzwgHYsFTii2k9n107QiVX6KJTKljBopv6eSHGk9TgKbGeEzVAvelPxP6+TmPDKT5mIE0MFmS8KE46MRNPXUZ8pSgwfW4KJYvZWRIZYYWJsQAUbgrf48jJpVspetVy5uyjVrrM48nAEx3AKHlxCDW6hDg0g8ADP8ApvjnRenHfnY96ac7KZQ/gD5/MH5RaOrg==</latexit>

ξ+
<latexit sha1_base64="yn3yNsN6e+a2kLtsACsbo9Hh41Q=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiF48V7Ae0oWy2m3bpZhN2J2IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKje6T6J33SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/mx07IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp56QvNGcox5ZQpoW9lbAh1ZShzadoQ/AWX14mzWrFu6hU7y/LtZs8jgIcwwmcgQdXUIM7qEMDGAh4hld4c5Tz4rw7H/PWFSefOYI/cD5/AHsVjnc=</latexit>

ξ−
<latexit sha1_base64="i1i5lJ2As93HXtk9yQmnxiH20TE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaUDbbTbt0swm7E7GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9ci1EbF6wHHC/YgOlAgFo2ilRvdJ9M57pbJbcWcgy8TLSRly1Hulr24/ZmnEFTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWKpoxI2fzY6dkFOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J47WdCJSlyxeaLwlQSjMn0c9IXmjOUY0so08LeStiQasrQ5lO0IXiLLy+TZrXiXVSq95fl2k0eRwGO4QTOwIMrqMEd1KEBDAQ8wyu8Ocp5cd6dj3nripPPHMEfOJ8/fh2OeQ==</latexit>

−ξ−
<latexit sha1_base64="T47F6yhKy1FtyQCGhKU8WPmoLow=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBS8tuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz249UaSbFvZnE1I/wULCQEWys1Cr3nli/3C+W3Io7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpa1YpXq1TvLkr16yyOPJzAKZyDB5dQh1toQBMIPMAzvMKbI50X5935WLTmnGzmGP7A+fwB6B6OsA==</latexit>

ξ+
<latexit sha1_base64="yn3yNsN6e+a2kLtsACsbo9Hh41Q=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiF48V7Ae0oWy2m3bpZhN2J2IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKje6T6J33SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/mx07IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp56QvNGcox5ZQpoW9lbAh1ZShzadoQ/AWX14mzWrFu6hU7y/LtZs8jgIcwwmcgQdXUIM7qEMDGAh4hld4c5Tz4rw7H/PWFSefOYI/cD5/AHsVjnc=</latexit>

−ξ+
<latexit sha1_base64="p9MNcbaE6IxpdZ+MS4CecAGe7ZI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMtuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDP1W49UaSbFvRnH1I/wQLCQEWys1DzvPrHeWa9YcsvuDGiZeBkpQYZ6r/jV7UuSRFQYwrHWHc+NjZ9iZRjhdFLoJprGmIzwgHYsFTii2k9n107QiVX6KJTKljBopv6eSHGk9TgKbGeEzVAvelPxP6+TmPDKT5mIE0MFmS8KE46MRNPXUZ8pSgwfW4KJYvZWRIZYYWJsQAUbgrf48jJpVspetVy5uyjVrrM48nAEx3AKHlxCDW6hDg0g8ADP8ApvjnRenHfnY96ac7KZQ/gD5/MH5RaOrg==</latexit>

−ξ+
<latexit sha1_base64="p9MNcbaE6IxpdZ+MS4CecAGe7ZI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMtuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDP1W49UaSbFvRnH1I/wQLCQEWys1DzvPrHeWa9YcsvuDGiZeBkpQYZ6r/jV7UuSRFQYwrHWHc+NjZ9iZRjhdFLoJprGmIzwgHYsFTii2k9n107QiVX6KJTKljBopv6eSHGk9TgKbGeEzVAvelPxP6+TmPDKT5mIE0MFmS8KE46MRNPXUZ8pSgwfW4KJYvZWRIZYYWJsQAUbgrf48jJpVspetVy5uyjVrrM48nAEx3AKHlxCDW6hDg0g8ADP8ApvjnRenHfnY96ac7KZQ/gD5/MH5RaOrg==</latexit>

ξ+
<latexit sha1_base64="yn3yNsN6e+a2kLtsACsbo9Hh41Q=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiF48V7Ae0oWy2m3bpZhN2J2IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKje6T6J33SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/mx07IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp56QvNGcox5ZQpoW9lbAh1ZShzadoQ/AWX14mzWrFu6hU7y/LtZs8jgIcwwmcgQdXUIM7qEMDGAh4hld4c5Tz4rw7H/PWFSefOYI/cD5/AHsVjnc=</latexit>

−ξ−
<latexit sha1_base64="T47F6yhKy1FtyQCGhKU8WPmoLow=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBS8tuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz249UaSbFvZnE1I/wULCQEWys1Cr3nli/3C+W3Io7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpa1YpXq1TvLkr16yyOPJzAKZyDB5dQh1toQBMIPMAzvMKbI50X5935WLTmnGzmGP7A+fwB6B6OsA==</latexit>

ξ−
<latexit sha1_base64="i1i5lJ2As93HXtk9yQmnxiH20TE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaUDbbTbt0swm7E7GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9ci1EbF6wHHC/YgOlAgFo2ilRvdJ9M57pbJbcWcgy8TLSRly1Hulr24/ZmnEFTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWKpoxI2fzY6dkFOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J47WdCJSlyxeaLwlQSjMn0c9IXmjOUY0so08LeStiQasrQ5lO0IXiLLy+TZrXiXVSq95fl2k0eRwGO4QTOwIMrqMEd1KEBDAQ8wyu8Ocp5cd6dj3nripPPHMEfOJ8/fh2OeQ==</latexit>

ξ− = 0
<latexit sha1_base64="WvrowXJuCaYwmUf5Ot3vjkli2UQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBb0IQS8eI5gHJCHMTmaTIbOzy0yvGJZ8hBcPinj1e7z5N06SPWhiQUNR1U13lx9LYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3fKp4VIoXkeBkrdizWnoS970R7dTv/nItRGResBxzLshHSgRCEbRSs3Ok+idXbu9YsktuzOQZeJlpAQZar3iV6cfsSTkCpmkxrQ9N8ZuSjUKJvmk0EkMjykb0QFvW6poyE03nZ07ISdW6ZMg0rYUkpn6eyKloTHj0LedIcWhWfSm4n9eO8HgqpsKFSfIFZsvChJJMCLT30lfaM5Qji2hTAt7K2FDqilDm1DBhuAtvrxMGpWyd16u3F+UqjdZHHk4gmM4BQ8uoQp3UIM6MBjBM7zCmxM7L8678zFvzTnZzCH8gfP5A3EJjvo=</latexit>

P (r)
<latexit sha1_base64="zgpkGZjBzdRVLz0nrsj/3qx32NM=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1EyZtg82u6MZlBfuANpTJdNIOnUnCzEQoob/gxoUibv0hd/6Nk7aCih64cDjnXu69J0g4UxqhD2ttfWNza7uwU9zd2z84LB0dd1ScSkLbJOax7AVYUc4i2tZMc9pLJMUi4LQbTK9zv3tPpWJxdKdnCfUFHkcsZATrXGpV5MWwVEY2cj3XQRDZLnK8Wk48r1F3XejYaIEyWKE1LL0PRjFJBY004VipvoMS7WdYakY4nRcHqaIJJlM8pn1DIyyo8rPFrXN4bpQRDGNpKtJwoX6fyLBQaiYC0ymwnqjfXi7+5fVTHTb8jEVJqmlElovClEMdw/xxOGKSEs1nhmAimbkVkgmWmGgTT9GE8PUp/J90qrZTs6u39XLzahVHAZyCM1ABDrgETXADWqANCJiAB/AEni1hPVov1uuydc1azZyAH7DePgGzQo4H</latexit>

P (r)
<latexit sha1_base64="zgpkGZjBzdRVLz0nrsj/3qx32NM=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1EyZtg82u6MZlBfuANpTJdNIOnUnCzEQoob/gxoUibv0hd/6Nk7aCih64cDjnXu69J0g4UxqhD2ttfWNza7uwU9zd2z84LB0dd1ScSkLbJOax7AVYUc4i2tZMc9pLJMUi4LQbTK9zv3tPpWJxdKdnCfUFHkcsZATrXGpV5MWwVEY2cj3XQRDZLnK8Wk48r1F3XejYaIEyWKE1LL0PRjFJBY004VipvoMS7WdYakY4nRcHqaIJJlM8pn1DIyyo8rPFrXN4bpQRDGNpKtJwoX6fyLBQaiYC0ymwnqjfXi7+5fVTHTb8jEVJqmlElovClEMdw/xxOGKSEs1nhmAimbkVkgmWmGgTT9GE8PUp/J90qrZTs6u39XLzahVHAZyCM1ABDrgETXADWqANCJiAB/AEni1hPVov1uuydc1azZyAH7DePgGzQo4H</latexit>

P (r)
<latexit sha1_base64="zgpkGZjBzdRVLz0nrsj/3qx32NM=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1EyZtg82u6MZlBfuANpTJdNIOnUnCzEQoob/gxoUibv0hd/6Nk7aCih64cDjnXu69J0g4UxqhD2ttfWNza7uwU9zd2z84LB0dd1ScSkLbJOax7AVYUc4i2tZMc9pLJMUi4LQbTK9zv3tPpWJxdKdnCfUFHkcsZATrXGpV5MWwVEY2cj3XQRDZLnK8Wk48r1F3XejYaIEyWKE1LL0PRjFJBY004VipvoMS7WdYakY4nRcHqaIJJlM8pn1DIyyo8rPFrXN4bpQRDGNpKtJwoX6fyLBQaiYC0ymwnqjfXi7+5fVTHTb8jEVJqmlElovClEMdw/xxOGKSEs1nhmAimbkVkgmWmGgTT9GE8PUp/J90qrZTs6u39XLzahVHAZyCM1ABDrgETXADWqANCJiAB/AEni1hPVov1uuydc1azZyAH7DePgGzQo4H</latexit>

P (r)
<latexit sha1_base64="zgpkGZjBzdRVLz0nrsj/3qx32NM=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1EyZtg82u6MZlBfuANpTJdNIOnUnCzEQoob/gxoUibv0hd/6Nk7aCih64cDjnXu69J0g4UxqhD2ttfWNza7uwU9zd2z84LB0dd1ScSkLbJOax7AVYUc4i2tZMc9pLJMUi4LQbTK9zv3tPpWJxdKdnCfUFHkcsZATrXGpV5MWwVEY2cj3XQRDZLnK8Wk48r1F3XejYaIEyWKE1LL0PRjFJBY004VipvoMS7WdYakY4nRcHqaIJJlM8pn1DIyyo8rPFrXN4bpQRDGNpKtJwoX6fyLBQaiYC0ymwnqjfXi7+5fVTHTb8jEVJqmlElovClEMdw/xxOGKSEs1nhmAimbkVkgmWmGgTT9GE8PUp/J90qrZTs6u39XLzahVHAZyCM1ABDrgETXADWqANCJiAB/AEni1hPVov1uuydc1azZyAH7DePgGzQo4H</latexit>

dh

dr
<latexit sha1_base64="E49CmOJOofM5oCdUGqZuBDF0ens=">AAAB9HicdVDLSsNAFL3xWeur6tLNYBFchaQWdVl047KCfUAbymQyaYdOJnFmUigh3+HGhSJu/Rh3/o2TPkBFD1zu4Zx7mTvHTzhT2nE+rZXVtfWNzdJWeXtnd2+/cnDYVnEqCW2RmMey62NFORO0pZnmtJtIiiOf044/vin8zoRKxWJxr6cJ9SI8FCxkBGsjef1QYpIFozwLZD6oVB37wimAHLu+JLU5ce1Zd6qwQHNQ+egHMUkjKjThWKme6yTay7DUjHCal/upogkmYzykPUMFjqjystnROTo1SoDCWJoSGs3U7xsZjpSaRr6ZjLAeqd9eIf7l9VIdXnkZE0mqqSDzh8KUIx2jIgEUMEmJ5lNDMJHM3IrICJsctMmpbEJY/hT9T9o12z23a3f1auN6EUcJjuEEzsCFS2jALTShBQQe4BGe4cWaWE/Wq/U2H12xFjtH8APW+xeEPJKW</latexit>

dh

dr
<latexit sha1_base64="E49CmOJOofM5oCdUGqZuBDF0ens=">AAAB9HicdVDLSsNAFL3xWeur6tLNYBFchaQWdVl047KCfUAbymQyaYdOJnFmUigh3+HGhSJu/Rh3/o2TPkBFD1zu4Zx7mTvHTzhT2nE+rZXVtfWNzdJWeXtnd2+/cnDYVnEqCW2RmMey62NFORO0pZnmtJtIiiOf044/vin8zoRKxWJxr6cJ9SI8FCxkBGsjef1QYpIFozwLZD6oVB37wimAHLu+JLU5ce1Zd6qwQHNQ+egHMUkjKjThWKme6yTay7DUjHCal/upogkmYzykPUMFjqjystnROTo1SoDCWJoSGs3U7xsZjpSaRr6ZjLAeqd9eIf7l9VIdXnkZE0mqqSDzh8KUIx2jIgEUMEmJ5lNDMJHM3IrICJsctMmpbEJY/hT9T9o12z23a3f1auN6EUcJjuEEzsCFS2jALTShBQQe4BGe4cWaWE/Wq/U2H12xFjtH8APW+xeEPJKW</latexit>

dh

dr
<latexit sha1_base64="E49CmOJOofM5oCdUGqZuBDF0ens=">AAAB9HicdVDLSsNAFL3xWeur6tLNYBFchaQWdVl047KCfUAbymQyaYdOJnFmUigh3+HGhSJu/Rh3/o2TPkBFD1zu4Zx7mTvHTzhT2nE+rZXVtfWNzdJWeXtnd2+/cnDYVnEqCW2RmMey62NFORO0pZnmtJtIiiOf044/vin8zoRKxWJxr6cJ9SI8FCxkBGsjef1QYpIFozwLZD6oVB37wimAHLu+JLU5ce1Zd6qwQHNQ+egHMUkjKjThWKme6yTay7DUjHCal/upogkmYzykPUMFjqjystnROTo1SoDCWJoSGs3U7xsZjpSaRr6ZjLAeqd9eIf7l9VIdXnkZE0mqqSDzh8KUIx2jIgEUMEmJ5lNDMJHM3IrICJsctMmpbEJY/hT9T9o12z23a3f1auN6EUcJjuEEzsCFS2jALTShBQQe4BGe4cWaWE/Wq/U2H12xFjtH8APW+xeEPJKW</latexit>

Figure 3.6: The quartic polynomial P (r) = −(r + ξ+)(r − ξ+)(r + ξ−)(r − ξ−) in the denominator of

Eq. 3.34 and the function dh
dr given by Eq. 3.34 for H = 1 and values of C in the four intervals of interest

described in the text. Also shown are the surfaces of revolution (r cosϕ, r sinϕ, h(r)).

The surfaces of revolution obtained from these solutions are the well-known Delaunay surfaces:

These are all the surfaces of revolution of constant mean curvature and were found by Delaunay

in 1841 [68, 69]. The Delaunay surfaces are the catenoid (the only minimal surface of revolution

and not contained in the formulas derived here since H = 0), the cylinder, the sphere, unduloids,

and nodoids. Each of these surfaces is the surface of revolution of a roulette of a conic, namely

a curve in the plane formed by finding the trace of the focus of a conic section as it rolls on a

line. Unduloids are formed by revolving undularies, which are roulettes of ellipses, and nodoids

are formed by revolving nodaries, which are roulettes of hyperbolas. In our setup, we obtain the

unduloid for 0 < C < 1
4H

, the sphere for C = 0, and the nodoid for C < 0. In Fig. 3.6 we show

portions of these surfaces that are graphs over the plane. The full surfaces are periodic, as shown

in Fig. 3.7.
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Figure 3.7: Delaunay surfaces: The unduloid (green), the sphere (red), and the nodoid (brown).

3.4.5 Conformal parameterizations of Delaunay surfaces

The literature gives various parameterizations of Delaunay surfaces in the form

(r(u) cos v, r(u) sin v, h(r(u)) = Ψ(u)) .

For example, Ref. [70] provides parameterizations of Delaunay surfaces, starting from the surfaces

as revolutions of roulettes of conics. An unduloid formed as the roulette of an ellipse with major

axis a, minor axis b, and c
.
= (a2 − b2)

1
2 may be parameterized as





r(u) = (m sin(µu) + n)
1
2 ,

Ψ(u) = aF1

(µu
2

− π

4
|k
)
+ cE2

(µu
2

− π

4
|k
)
,

where

µ =
2

a+ c
, k2 =

c2 − a2

c2
, m2 =

c2 − a2

2
, n2 =

c2 + a2

2
,
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F1(z|k) and E2(z|k) are the normal elliptic integral of the first and second kind, respectively [70].

The first fundamental form is

I = du2 +
1

2

(
a2 + c2 + (c2 − a2) sin

(
2u

a+ c

))
dv2.

Note that these parameterizations are not conformal. That is, the first fundamental form is not

diagonal (it does not have the form I = E(u, v)(du2 + dv2)).

With the aid of Eq. 3.34, we conformally parameterize Delaunay surfaces. We can write a surface

of revolution as

r⃗(u, v) = (r(u) cos v, r(u) sin v,Ψ(u) = h (r(u))) . (3.35)

This surface of revolution is orthogonally parameterized for any r(u) and h(r). It is conformally

parameterized if r⃗u · r⃗u = r⃗v · r⃗v. We evaluate

r⃗u · r⃗u = r2u +Ψ2
u = r2u +

(
dh

dr

dr

du

)2

= r2u

(
1 +

(
dh

dr

)2
)
,

and

r⃗v · r⃗v = r(u)2.

The condition for conformality is therefore

r2u

(
1 +

(
dh

dr

)2
)

= r2. (3.36)

Using expression Eq. 3.34 for dh
dr
, this condition becomes

r2u = r2 − (Hr2 + C)2 = −(Hr2 + C − r)(Hr2 + C + r). (3.37)
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That is, ∫
1

(r2 − (Hr2 + C)2)
1
2

dr =

∫
du; (3.38)

We have come across another elliptic integral! The function u(r) is an elliptic integral, but we are

aiming to find its inverse, r(u). The inverse of an elliptic integral is called an elliptic function. If

we find r(u) and, from Eq. 3.34, the elliptic integral h(r), we have a conformal parameterization

Eq. 3.35 for a Delaunay surface. The first fundamental form for this parameterization is

I = r(u)2(du2 + dv2).

To find r(u), we need to be mindful of the intervals in r for which the denominator P (r) in the

integral Eq. 3.38 is positive, as described above and depicted in Fig. 3.6.

For example, numerically solving Eq. 3.37 with the initial condition r(0) = ξ−+ξ+
2

= 1
2H

for the

choice H = 1 yields the function r(u) and coefficient of the first fundamental form r(u)2 plotted

in Figure 3.8.

Figure 3.8: For H = 1 and C = 1
8 , and the initial condition r(0) = 1

2 , the solution r(u) (in red) and the

coefficient r2(u) of the first fundamental form (in blue).

The C = 0 case may be solved for simply: For C = 0, Eq. 3.37 is

r2u = r2(1−H2r2).
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This has the solution

r(u) =
1

H
sech(u).

Recall that the solution for h(r) to Eq. 3.34 in the case C = 0, H = 1 is

h(r) = (1− r2)
1
2 ,

so that

Ψ(u) = h(r(u)) = tanh(u).

The resulting surface of revolution

r⃗(u, v) = (sechu cos v, sechu sin v, tanhu)

is the Mercator projection of the sphere with first fundamental form

I = sech2u(du2 + dv2).

The function G(u) = ln(sech(u)) satisfies the ODE

Guu + e2G(u) = 0.

We have solutions to this equation from Eq. 3.38, using G = ln(r(u)).
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3.4.6 Radially dependent mean curvature

We now relax the assumption that the mean curvature is constant to allow the mean curvature to be

a function of the radius; that is, we return to Eq. 3.30, which we repeat here for convenience: For

Q(r)
.
=

∫
rH(r) dr,

k =
dh

dr
= ± Q(r) + C

(r2 −Q2(r)− 2CQ(r)− C2)
1
2

. (3.39)

The condition for a reparameterization r(u) that results in a conformal parameterization, namely

Eq. 3.36, becomes

r2u = r2 − (Q(r) + C)2 = −(Q(r) + r + C)(Q(r)− r + C). (3.40)

We start with an example for which the antiderivative of Eq. 3.39 is easily computed: For H(r) =

a
r
,

k =
dh

dr
= ± ar + C

((1− a2)r2 − 2Car − C2)
1
2

. (3.41)

For C = 0, Eq. 3.41 becomes

k =
dh

dr
=

a

(1− a2)
1
2

,

and

h(r) =
a

(1− a2)
1
2

r.

The resulting surface of revolution is the cone!

More generally, choosing the positive sign in Eq. 3.41 antidifferentiation yields

h(r) =
a

1− a2

√
(1− a2)r2 − 2Car − C2 (3.42)

+
C

(a2 − 1)
3
2

arctan

(
(a2 − 1)r + aC√

a2 − 1
√
(1− a2)r2 − 2Car − C2

)
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Choosing, for example, a = 2 and C = −3, we have

h(r) =

√
3

3
arctan

(√
3

r − 2√
−3r2 + 12r − 9

)
− 2

3

√
−3r2 + 12r − 9.

The corresponding surface of revolution is shown in Fig. 3.9. Solving Eq. 3.40 with Q(r) = ar

yields the reparameterization

r(u) =
C

a2 − 1

(
sin(

√
a2 − 1u) + a

)

that provides a conformal paramterization.

Figure 3.9: Surface of revolution with radially-dependent mean curvature H(r) = 2
r .

For Q(r) = rm, where m ∈ N, the solution h(r) is a hyperelliptic integral. A hyperelliptic integral

is defined as a function H(r) that has the from

H(r) =

∫ r

r0

R(r̂, ŝ) dr̂,
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where R is a rational function of its two arguments, and the variables r̂ and ŝ are related by

ŝ2 = P (r̂), where P (r̂) is a polynomial of degree n ≥ 5 that has no repeated roots.

3.4.7 The pendulum

Eq. 3.28 may be converted to a dynamical system related to that for the nonlinear pendulum. Define

φ
.
= arctan(k), so that 1 + k2 = sec2 φ, and

dr

dφ
=
dk

dφ

dr

dk
=

−r cosφ
2rH(r) + sinφ

. (3.43)

The general solution to Eq. 3.43 is

∫
rH(r) dr +

1

2
r sinφ+ C = 0.

Eq. 3.43 may be written as the system

dr

dτ
= −r cosφ,

dφ

dτ
= 2rH(r) + sinφ. (3.44)

The phase space for this system is shown in Fig. 3.10. It follows that

d2φ

dτ 2
= −2r2H ′(r) cosφ+

1

2
sin(2φ).

Setting θ
.
= 2φ− π, this becomes

d2θ

dτ 2
= −4r2H ′(r) cos

(
1

2
(θ + π)

)
− sin(θ);

d2θ

dτ 2
+ sin θ = 4r2H ′(r) sin

(
1

2
θ

)
.

For H(r) = H constant, this equation is the pendulum equation

d2θ

dτ 2
+ sin θ = 0.
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The equation is also independent of r if H(r) = a
4r

for a constant a;

d2θ

dτ 2
+ sin θ + a sin

(
1

2
θ

)
= 0.

Figure 3.10: The phase space of Eq. 3.44 and corresponding surfaces for C < 0 (left panels), C = 0 (center

panels) and C > 0 (right panels). The intervals corresponding to R3 give (parts of) an orange nodoid, a red

sphere, and a green unduloid.

3.4.8 Conclusions and Further Work

The hodograph transformation applied to the mean-curvature equation has allowed us to find for-

mulas surfaces of revolution with prescribed mean that depends on radius alone. In the case of

constant mean curvature, we obtain the already well known Delaunay surfaces, are these are all the

surfaces of revolution of constant mean curvature. However, we have achieved a new result even

for this case: We have obtain conformal parameterizations of these surfaces in terms of elliptic

integrals and elliptic functions.
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These conformal parameterizations may be used to determine Weierstrass-Enneper representa-

tions for the surfaces. The classical Weierstrass-Enneper representation associates to any pair of

holomorphic functions ψ1(z), ψ2(z) : C → C a Euclidean minimal surface. This, as well as a

generalization to surfaces of prescribed, but not necessarily everywhere equal to 0, mean curvature

may be seen as follows [71]:

Via the mapping (x, y, h) → xi + yj + hk, isometrically identify R3 with the 3-dimensional real

Lie algebra su(2), with the Killing form < X, Y >= −1
2
tr(XY ) and the orthogonal basis

i =




0 −i

−i 0


 , j =




0 −1

1 0


 , k =




−i 0

0 i


 .

By this identification, we can consider a surface r⃗(η, ξ) : Ω ⊂ R2 → R3, r⃗(u, v) =

(r1(η, ξ), r2(η, ξ), r3(η, ξ)) as a surface r⃗(η, ξ) : Ω ⊂ R2 → su(2); r⃗(u, v) = r1(η, ξ)i+r2(η, ξ)j+

r3(η, ξ)k.

Write z = η + iξ. Given two holomorphic functions ψ1(z), ψ2(z) : C → C, define q = ψ1ψ̄2 +

ψ2ψ̄2, and ϕ1,2
.
= q−

1
2ψ1,2. Then, ϕ1ϕ̄1 + ϕ2ϕ̄2 = 1, and we have a function Φ : C → SU(2);

Φ =




ϕ1 ϕ2

−ϕ̄2 ϕ̄1


 .

We use q and Φ to determine an orthogonal frame that we integrate to obtain a minimal surface

r⃗(η, ξ) : Ω ⊂ R2 → su(2). Define the frame by

r⃗η = Φ−1qiΦ, r⃗ξ = Φ−1qjΦ, n⃗ = Φ−1kΦ. (3.45)

The integrability condition is that r⃗ηξ = r⃗ξη. The holomorphicity of ψ1,2 = q
1
2ϕ1,2 guarantees the

satisfaction of this integrability condition and also that the mean curvature the surface r⃗ be equal

to zero. The functions ψ1,2 are the Weierstrass-Enneper representation of the surface, which has

first fundamental form I = q2(dη2 + dξ2).
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More generally, the Weierstrass-Enneper representation of any conformally parameterized surface,

with first fundamental form I = q2(dη2 + dξ2), may defined by solving the integrability condition

r⃗ηξ = r⃗ξη for the functions ψ1,2 = q
1
2ϕ1,2. Alternatively, if a conformal parameterization r⃗(η, ξ)

with first fundamental form I = q2(dη2 + dξ2) is known, solving Eq. 3.45 for ϕ1,2 yields the

Weierstrass-Enneper representation ψ1,2 = q
1
2ϕ1,2 of the surface.

It is worthy of note that Eq. 3.37, namely r2u = r2− (Hr2+C)2, may be rewritten in the following

form: Define a function G(u) via r(u)
.
= eG(u). Then,

G2
u = −H2e2G + (1− 2CH)− σ1C

2e−2G;

2GuGuu = −H2e2G2Gu + C2e−2G2Gu;

Guu +H2e2G − C2e−2G = 0;

Guu + e2G(H − Ce−2G)(H + Ce−2G) = 0;

Guu + e2Gk1k2 = 0,

where k1 = H − Ce−2G and k2 = H + Ce−2G are the principal curvatures of the surface. For

C = H , this is

Guu + 2H2sinh(2G) = 0.

There are likely connections, to be explored in future work, to surfaces of constant mean curvature

under the condition that lines of curvature lie on spheres, by Abresch [72] and Walter [73]. These

authors consider solutions to the elliptic sinh-Gordon equation ∆G+sinh(2G) = 0. Similarly, the

reduction of the Gauss equation to Painlevé III in Ref. [74] and Ref. [75], Chapter 5, Eq. (5.28)

involves the elliptic sinh-Gordon equation.

130



Chapter 4

Estimating spectra through Bayesian Inversion

4.1 Deconstruction of Absorbance Spectra

The absorbance spectrum of a solution gives the absorbanceAbs(λ) as a function of the wavelength

λ. An example absorbance spectrum of a solution of the anthocyanin is shown in Figure 4.1.

Figure 4.1: MSM (Malva sylvestris var. mauritiana) dried flower for concentrations from 1 × 10−5M to

1.44× 10−4M

An anthocyanin solution is comprised of a mixture of monomer, dimer, trimers, ... and large jmers,

each of which has its own absorbance spectrum. The total measured absorbance depends on the

wavelength-dependent absorbtivities sj(λ) of the jmers as well as the concentrations cj of the

jmers. According to the Beer–Lambert law, the absorbance expression

Abs = ℓ
∑

j

sjcj (4.1)

where ℓ is the optical pathlength of the measured solution in the spectrometer.
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Given an absorbance spectrum Abs(λ) of a total concentration T =
∑

j cj , we are interested

in determining the absorbtivities sj(λ) of the various jmers. Recall from the introduction that

association can potentially occur by stacking to form H associates or by joining molecules side-

by-side to form J associates [24]. Comparing the wavelengths λmax,j at which the absorbtivities

sj(λ) reach their maximum values provides a clue concerning the type of aggregation that occurs:

If λmax,1 < λmax,2 (λmax,1 > λmax,2), we expect that dimers form via H− (J−) association [24].

Given perfect data and a perfect model for association with known parameters, we could recon-

struct the absorbtivities sj(λ) givenAbsk(λ) at concentration Tk as follows: Using the Eq. 2.44 and

Tk =
∑

j c
k
j for ckj the concentration of jmers when the total concentration is Tk, we can rewrite

Eq. 4.1 in the matrix form




Abs1

Abs2
...

Absk




= ℓ




c11 c12 · · · c1j

c21 c22 · · · c2j
...

...
. . .

...

ck1 ck2 · · · ckj







s1

s2
...

sj




. (4.2)

Hence, we can find the solution (s1 s2 · · · sj)T of Eq. 4.2. This is what we called matrix method in

finding sj .

Figure 4.2: Matrix method in finding s1,(blue curve) , s2, (red curve) and s3 (green curve) from part of the

data in Figure 4.1.
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The results Figure 4.2 in this example are not very convincing. We expect that s2 ≈ 2s1. The

reasons for the disappointing results are measurement errors in the spectra, the choice and mea-

surement errors in the concentrations Tj , and sensitivity of the decomposition to these measure-

ments. Another method to deconvolute the absorbance is to linear method, which is described in

Section 4.3.2. Our goal is to develop an approach that allows us to report not only absorptivities

sj(λ) constructed from a combination of our model, parameter choices in the model, and the data,

but also let us report how certain we are of these absorptivities. Using a Bayesian inverse approach,

we propose a method of determining a probability distribution for the absorptivties sj(λ). That is,

for each j and λ, we give a probability distribution for the value sj(λ).

We will apply two methods in our Bayesian inversion approach. In the first, described in Section

4.2, we compute for each j and λ, a probability distribution for the value sj(λ). In the Second, we

aim for probability distributions for the λmax values for each jmers.

4.2 Bayesian Inversion

Given an absorbance spectrum Absk(λ), 1 ≤ k ≤ N , measured at total concentrations Tk, we

assume that Absk(λ) = ℓ
∑

j sjc
k
j , where the concentrations ckj of the jmers obey the equilib-

rium solutions for isodesmic self association described, with association constant J , as studied in

Section 2.4. Explicitly, we are using Eq. 2.30 and Eq. 2.31.

Recall that the ckj depend on the total concentration Tk. The goal is to find a posterior probability

density (as functions of λ)

σ(m(λ)|d)

for the parameters

m(λ) = (si(λ))

for the given data d = {(Absk(λ), Tk) : 1 ≤ k ≤ N}.
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The Bayesian approach begins with Bayes’ Theorem:

σ(m|d) ∝ ρD(d|m)︸ ︷︷ ︸
′likelihood′

ρM(m)︸ ︷︷ ︸
′prior′

, (4.3)

where ρD(d|m) is the probability density, and ρM(m) is known as the prior. ρM(m) encodes

what is known about the parameters a priori. In this case, we have, from experience with similar

experimental measurements of absorbtivities, bounds on their values. We therefore take

ρM(m) = ρM(s1, s2, · · · , sN) = χ[v1,1,v1,2](s1)χ[v2,1,v2,2](s2) · · ·χ[vN,1,vN,2](sN), (4.4)

where vj,1, vj,2 is the lower and upper bound of sj , respectively, and χ is a characteristic function

meaning χ[v1,v2](z) = 1 if z ∈ [v1, v2], and 0 otherwise. The likelihood ρD(d|m) describes how

likely it would be to observe the measured data d given a set of parameter values m. If we propose

absorptivities sj of different species, and write the parameter m = (sj), then by the Eq. 4.1, we

have the predicted absorbance a(m). Taking a measure of uncertainty δ and using a probability

density based on an inverted parabola from [76], we have the probability density

ρi(di|m) = (1− | di − a(m) |2
δ2

)χ[a(m)−δ,a(m)+δ](di), (4.5)

where χ is a characteristic function with the uncertainty parameter δ. Here, ρi(di|m) describes

the relative likelihood that predicted absorbance a(m) for given fixed m is compatible with our

experimental data di. Because we assume the measurement errors are statistically independent, the

probability density that describes the collection of all measurements is a product of the densities

for each measurement. That is,

ρD(d| m) =
∏

i

ρi(di|m). (4.6)
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Together with the prior ρM(m), we find a posterior probability density

σ(m|d) = κρD(d| m)× ρM(m), (4.7)

where κ is the normalization constant that makes
∫
σ(m|d) = 1.

4.2.1 Expected values and standard deviations

By Eq. 4.7, σ(m|d) can derive the maximum a posteriori

mMAP = arg max
m

σ(m|d). (4.8)

If we only consider two parameter s1 and s2, then the expected values are

E(s1) =
∑

s1 grid

∑

s2 grid

s1σ(m|d) (4.9)

E(s2) =
∑

s1 grid

∑

s2 grid

s2σ(m|d). (4.10)

Also, the standard deviations can be calculated by

std(s1|d) =
√ ∑

s1 grid

∑

s2 grid

(s1 − E(s1))2σ(m|d), (4.11)

std(s2|d) =
√ ∑

s1 grid

∑

s2 grid

(s2 − E(s2))2σ(m|d). (4.12)

Recall that the 68.26% and 90% confidence interval for sj is [E(sj) − std(sj),E(sj) + std(sj)],

and [E(sj)− 1.645× std(sj),E(sj) + 1.645× std(sj)], respectively. We will use expected values

and standard deviations to find the confidence intervals for our deserved parameters.
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4.2.2 Constructing in silico data

We can use in silico (made up) data to test our method. We assume the monomer, dimer,

trimer, quadramer and 5-mer absorptivities to be Gaussian distributions exp(−1
2
(λ−λmax)2

variance2
); see

Figure 4.3a. The Beer-Lambert Law, Eq. 4.1, gives the (ideal) absorbance as a function of con-

centration given these assumed n-mer absorptivities. To mimic measurement error, we multiply

the ideal absorbance by 1± 0.07× rand, where rand are random numbers with the mean value 0

and the standard deviation 1. Hence, we can observe the absorbance data like Figure 4.3b. There

aborbance data are the in silico data we used to test the Bayesian method.

(a) In silico absorptivities. (b) In silico absorbance.

Figure 4.3: In silico absorptivities and absorbance data. (b) By the Beer–Lambert law Eq. 4.1, we can

calculate the absorbance at the concentration 10−4M, and we graph this ideal absorbance in green. Perturb

this ideal absorbance by multiplying 1±0.07×rand, where rand are random numbers with the mean value

0 and the standard deviation 1, we observe in silico absorbance, which is graphed in blue.

First, we consider the absorptivity of wavelength 520 nm and assume there are only monomers and

dimers in the compound by assuming that the spectra of all wavelengths are independent random

variables. Preliminary experiments showed the monomer absorptivity s1 of wavelength 520 nm

is on the interval [3 × 104, 4 × 104]. By the fact that the maximum absorptivity of dimer being

approximately to two times the maximum absorptivity of monomer, we assume that the dimer

absorptivity s2 on the same wavelength is on the interval [0× 104, 8× 104].

If we have n1 grid points in s1 direction and n2 in s2, pick δ = 0.7, and we have some in silico

data pairs {(Ti, di)} for the optical path length ℓ = 1, where Ti is the total concentration and di
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represents the absorbance measurement, then we use Ti to calculate predicted ai(m) = ℓ(s1c1 +

s2c2/2) for each grid point by the relations Ti = c1 + c2 and c2 = 2J × c21 , where J is the

association constant. Use Eq. 4.5 and measurement di to find out the probability density ρi(di|m)

for each data pair. Then a product through each pair {(Ti, di)} is the probability density σ(m|d)

for each grid point.

Here, we use the total concentrations from 5×10−5M to 3×10−4M of the in silico data, which has

association constant J = 5000. We then put all these data pairs into the Bayesian method and graph

the probability distribution of monomer and dimer absorptivities with the expected valueE and the

standard deviation Std as Figure 4.4, where we set the association constant to be J = 15000.

(a) Monomer. (b) Dimer.

Figure 4.4: The probability distribution of monomer and dimer absorptivities on one wavelength by

Bayesian method.

We found that both of the real absorptivities are in the interval [E − 1× Std, E + 1× Std]. That

is, 68.26% confidence intervals include the real monomer and dimer absorptivities, which means

this method works for finding absorptivities when we only consider one wavelength even though

we are using different association constants J .

Now, we would like to find the absorptivities at all wavelengths. Here we use the in silico data

which are the ideal absorbance by multiplying 1± 0.01× rand, where rand are random numbers

with the mean value 0 and the standard deviation 1. We will use the Bayesian method in a very

similar way as was done for one wavelength. But in this time, we just regard the data of the total
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concentration 5× 10−6M as the monomer absorptivity, because there should be only monomer in

the this low concentration. See Figure 4.5.

Figure 4.5: The actual value of monomer absorptivity, which is graphed in green. The ideal absorbance of

5× 10−6M multiplying 1± 0.01× rand, where rand are random numbers with the mean value 0 and the

standard deviation 1, and then divided by 5× 10−6 (its concentration), which is graphed in red.

Applying the Bayesian inverse method to the in silico data of the concentrations 1 × 10−5M ,

5× 10−5M , 1× 10−4M , 1.5× 10−4M , 2× 10−4M , and 3× 10−4M , we find the dimer and trimer

absorptivities of whole wavelengths when assuming the association constant J = 15000, shown in

Figure 4.6. The blue curves are the real dimer and trimer absorptivities. We use green interval to

represent ±1 standard deviation from the expected values, which are represented as the red curves.

(a) Dimer. (b) Trimer.

Figure 4.6: The dimer and trimer absorptivities of all wavelengths by Bayesian method.
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We realized that these 68.26% confidence intervals cover the real absorptivities of dimer and trimer

of whole wavelengths. This provides evidence that this method is trustworthy.

4.2.3 Experimental data

In this subsection, we apply the Bayesian inverse method to experimental data measured by Dr.

Thompson, which are exacted from plumbago at pH= 1.31. The data set consists of absorbance

of anthocyanin solutions at various concentrations, namely 6.5 × 10−6M, 1.25 × 10−5M, 2.5 ×

10−5M, 5 × 10−5M, 10−4M . Because the solutions were buffered to be at pH= 1.31, we can

assume that the anthocyanins are in the form of AH+ or its association forms. At the total con-

centration 6.5 × 10−6M , we regard the data of absorbance as the monomer absorptivity of AH+

since the concentration is not high enough to associate (assuming that our model and estimated

equilibrium constants are correct). Then we used the data of the same pH value but different

concentrations, which are 1.25 × 10−5M, 2.5 × 10−5M, 5 × 10−5M and 10−4M . If we pick the

association constant J = 15000, and compare the different measure of uncertainty parameter δ in

Eq. 4.5, then the results are shown in Figure 4.7.

Here we found the peak of the dimer absorbtivtiy, which is around 565(um), is at the longer

wavelength than the peak of the monomer absorbtivtiy, which is around 530(um). Note that the

self association may potentially occur by stacking to form H aggregrates or end-to-end bonding to

form J aggregates. From previous studies [24, 77], we know that the spectra of J- (H-) aggregates

to be shifted to longer (shorter) wavelengths with respect to the monomer. Hence, these results

show [AH+
2 ] and [AH+

3 ] are J-aggregates because the peaks are shifted to the longer wavelength.
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(a) δ = 0.1, Dimer. (b) δ = 0.1, Trimer.

(c) δ = 0.3, Dimer. (d) δ = 0.3, Trimer.

(e) δ = 0.5, Dimer. (f) δ = 0.5, Trimer.

Figure 4.7: The absorptivities of dimer and trimer of AH+ constructed by Bayesian inverse method. The

red curves are the expected values for the dimer or trimer absorptivities (as labelled), the green intervals

are the 68.26% confidence intervals, and the dark blue curve is the speculated monomer absorptivity using

the absorbance of the concentration 6.5 × 10−6M . The blue vertical line is the maximum absorptivity of

monomer and the red vertical line is the maximum absorptivity of dimer or trimer (as labelled).
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4.3 Gaussian functions

In the Subsection 4.2, we assume the spectra of all wavelengths are independent random variables.

This is true, but the absorptivity over wavelengths should be continuous and bell-shaped. We

propose another way to find absorptivities. We can assume that the absorptivity is a Gaussian

function of wavelength with expected value µ, variance σ, and amplitude amp. Similarly using the

Bayesian inverse method to find the confidence intervals of these µ, σ, and amp, we can figure out

the expected peaks of n−mers absorptivity is moving to the right or left. This will give us evidence

to show the self associations are J- or H-aggregates.

We will apply the Bayesian inverse method similarly here. But in this subsection, we are consid-

ering the parameters

m = (µi, σi, ampi),

where µi, σi, and ampi represent the expected value, variance, and amplitude, respectively, of imer

absorptivity if we regard the absorptivity as a Gaussian function of the wavelength λ. Our goal is to

find a posterior probability density σ(m|d) for the given data d = {(Absk(λ), Tk) : 1 ≤ k ≤ N}.

By the Eq. 4.3, we need to set up the likelihood ρD(d|m) and the prior ρM(m). We will treat the

data in a similar way as we do in the Subsection 4.2.1, which is regarding the absorbance of the

lowest concentration as the monomer absorptivity. Then we know the variance σ1 and amplitude

amp1 of the monomer. To find the prior ρM(m), we assume the expected value µi uniformly

distributed on the interval [500, 600], which is the peak wavelength in nanometers, the variance

σi uniformly distributed on the interval [σ1 − 10, σ1 + 10], and the amplitude ampi uniformly

distributed on the interval [i×amp1−104, i×amp1+104]. For each parameter m = (µi, σi, ampi),

we can propose absorptivities sj(λ) of jmers

sj(λ) = ampj × exp

(
−(λ− µj)

2

2σ2
j

)
. (4.13)
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By Eq. 4.1, we have the predicted absorbance a(m). Then the probability density is the same as

Eq. 4.5, and the likelihood ρD(d|m) is in Eq. 4.6.

4.3.1 In silico data

We again use the in silico noisy data in Subsection 4.2.2, for which the association constant is 2.5×

104, to test our method is working or not. The lowest concentration in the data set is 5 × 10−6M ,

chosen so that the anthocyanins are essentially all in monomer form. Therefore, the measured

absorbance would give the monomer absorptivity. We find a Gaussian function that fits these data

as follows: For the value of λ, say λ1,max, that gives the maximum absorptivity, s1,max, we find the

function of the form sj(λ) = s1,max exp
(
− (λ−λ1,max)

2

2σ2
1

)
that best fits the data. We take this function

to be the monomer absorptivity. See Figure 4.8.

Figure 4.8: The absorbance of 5×10−6M divided by its concentration, the speculated monomer absorptivity

in Gaussian function, and the real monomer absorptivity.

Here, we take the uncertainty parameter δ = 10−2, applying the Bayesian inverse method to the

in silico data of the eight concentrations from 1 × 10−5M to 8 × 10−5M . We compare the dimer

absorptivity when choosing different association constants J and concentrations of data, shown in

Figure 4.9 to Figure 4.14. The green curves are probability distributions of the peak wavelength of

the dimer absorptivity. The blue vertical line is the expected value, the red vertical lines represent

±1 standard deviations from the expected value, and the black vertical line is the ground truth
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(actual dimer). The brown interval is the 90% confidence interval. We found that we might have

a smaller confidence interval if we take more data. However, when we used some higher concen-

trations to construct the dimer absorptivity, we might have some results not consistent with the

fact because there should have more trimer that cannot be ignored. Hence, we will suggest using

the concentrations from 1 × 10−5M to 4 × 10−5M is better to construct the dimer absorptivity.

In order to have a smaller confidence interval, we can use larger association constant J . In our

in silico data, the association constant J = 25000. We can have satisfactory results by applying

J = 25000, see Figure 4.9, but we will have a better outcome for J = 75000, see Figure 4.11.

For these data, λ1,max = 526. If this value is outside of the 90% confidence interval, then we

can say with confidence that dimerization has produced a shift to larger wavelengths. Recall that

anthocyanin association may potentially occur by stacking (to form H associates) or end-to-end

bonding (to form J associates). One expects the spectra of H− (J) associates to be shifted to

shorter (longer) wavelengths with respect to the monomer. [24], [77].

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) True and Speculated monomer

and dimer curves.

Figure 4.9: The dimer absorptivity when J = 25000 using 4 data of the concentrations

from 1× 10−5M to 4× 10−5M . The 90% confidence interval includes both the true dimer and λ1,max.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Real and Speculated monomer

and dimer curves.

Figure 4.10: The dimer absorptivity when J = 25000 using 8 data of the concentrations

from 1× 10−5M to 8× 10−5M . The 90% confidence interval does not cover the true dimer, neither λ1,max.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) True and Speculated monomer

and dimer curves.

Figure 4.11: The dimer absorptivity when J = 75000 using 4 data of the concentrations

from 1× 10−5M to 4× 10−5M . The 90% confidence interval includes both the true dimer and λ1,max.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) True and Speculated monomer

and dimer curves.

Figure 4.12: The dimer absorptivity when J = 75000 using 8 data of the concentrations

from 1× 10−5M to 8× 10−5M . The 90% confidence interval includes the true dimer, but not cover λ1,max.

This means we can say with confidence that λ1,max < λ2,max.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) True and Speculated monomer

and dimer curves.

Figure 4.13: The dimer absorptivity when J = 5000 using 4 data of the concentrations

from 1× 10−5M to 4× 10−5M . The 90% confidence interval includes both the true dimer and λ1,max.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) True and Speculated monomer

and dimer curves.

Figure 4.14: The dimer absorptivity when J = 5000 using 8 data of the concentrations

from 1× 10−5M to 8× 10−5M . The 90% confidence interval includes the true dimer, but not cover λ1,max.

This means we can say with confidence that λ1,max < λ2,max.

4.3.2 Experimental data

In this subsection, we apply the Bayesian inverse method of Gaussian function to experimental data

measured by Dr. Thompson. Dr. Thompson produced extracts of Malva sylvestris var. mauritiana

dried flowers. The extracts were placed in 0.1M HCl solutions to keep them at approximately

pH= 1.008. The data set, see Figure 4.1, consists of absorbance spectra of anthocyanin solutions

at various concentrations, namely 5 × 10−6M, 1 × 10−5M, 2 × 10−5M, 2.994 × 10−5M, 3.927 ×

10−5M, 4× 10−5M, 4.32× 10−5M, 4.8× 10−5M, 5× 10−5M, 5.4× 10−5M, and 6.17× 10−5M .

Similarly, we use the best-fit Gaussian function of the data of the concentration 5 × 10−6M to be

the monomer absorptivity, as shown in Figure 4.15.

Taking the uncertainty parameter δ = 10−2, we use the concentrations from 1 × 10−5M to 6 ×

10−5M to find the dimer absorptivity. When we use different association constant J , we can

have different length of the confidence interval. Here, we will compare the results with the linear

method. The linear method is using

T = c1 + 2× c2

c2 = Jc21,
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Figure 4.15: The absorbance of 5 × 10−6M divided by its concentration, and the speculated monomer

absorptivity as a Gaussian function.

where T is the total concentration, c1 and c2 represent the concentration of monomer and dimer,

respectively. Solving 2Jc21 + c1 = T for c1, we have

c1 =
−2±

√
1 + 8JT

4J
.

By Eq. 4.1, we have the dimer absorptivity s2 when substituting the monomer absorptivity s1 and

concentration c1. Hence, if we assume the monomer absorptivity s1 equals the absorbance of the

lowest concentration divided by its concentration, we can apply this linear method to find the dimer

absorptivity s2 by the other absorbance data of concentrations. We are applying the concentration

of 2.994× 10−5M to construct the dimer absorptivity s2 by linear method.

Here we have several observations. First, the Bayesian method and the linear method are mostly

consistent. But when the concentrations go up to 6 × 10−5M , the higher concentrations include

higher jmers such as trimer, the dimer curves will be affected and have some shift; see Figure 4.18b

and Figure 4.24b. Secondly, if we restrict the concentrations to be less or equal to 5 × 10−5M ,

then we can have the smaller standard deviation when we choose the larger association constant

J . However, if we chose a different association constant, the expected peak might change as well,

which means the results will be influenced by the association constant J . Also, we can see the

probability distributions in Figure 4.16a - Figure 4.21a have multiple peaks, which is not consistent
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.16: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 5 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4. The association constant was assumed to be J = 25000.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.17: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 8 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5. The association constant was assumed to be J = 25000.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.18: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 10 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5, 5.4, 6.17. The association constant was assumed to be J = 25000.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.19: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 5 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4. The association constant was assumed to be J = 75000.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.20: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 8 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5. The association constant was assumed to be J = 75000.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.21: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 10 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5, 5.4, 6.17. The association constant was assumed to be J = 75000.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.22: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 5 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4. The association constant was assumed to be J = 5000.

(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.23: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 8 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5. The association constant was assumed to be J = 5000.
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(a) The probability distribution of λ2,max, computed using

the Bayesian method.

(b) Monomer and dimer curves

computed from experimental data

using Bayesian and linear methods.

Figure 4.24: Absorptivity of anthocyanin monomers and dimers from extracts of Malva sylvestris var.

mauritiana, computed from absorbance curves of solutions at the 10 concentrations C × 10−5M for C =
1, 2, 2.994, 3.927, 4, 4.32, 4.8, 5, 5.4, 6.17. The association constant was assumed to be J = 5000.

with in silico results such as those shown in Figure 4.9a- Figure 4.14a. We expect our probability

distributions will have only one peak if we use the suitable data set.

Suggested experimental studies

Using the data of the concentration 5×10−6M , we can have the speculated monomer absorptivity.

In order to separate the λ2,max from the λ1,max, we suggest to have 10 experiments at the concen-

trations from 1 × 10−5M to 3 × 10−5M . These will be enough to have λ1,max outside the 90%

confidence interval of λ2,max even though the real distance between λ1,max and λ2,max is as close as

5(nm). See Figure 4.25. We construct in silico absorptivities which the distance between λ1,max

and λ2,max is 5(nm). When we use 10 data of the concentrations from 1× 10−5M to 3× 10−5M ,

we can have λ1,max outside the 90% confidence interval of λ2,max.

4.3.3 Conclusions and Further Work

In this section, we developed a Bayesian method of deconvoluting spectral data. Using absorbance

spectra of anthocyanin solutions at various concentrations, together with a model for self associa-

tion, we produce probability distributions for the peak absorbance wavelengths λmax for monomers

and dimers.
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Figure 4.25: The probability distribution of λ2,max In silico data. Using 10 data of the concentrations

from 1× 10−5M to 3× 10−5M . The 90% confidence interval includes the real dimer, but not cover λ1,max.

This means we can say with confidence that λ1,max < λ2,max.

Achieving a result in which the peak absorbance wavelengths λ1,max for the monomer and λ2,max

for the dimer requires anthocyanin solutions that are of very low concentrations. We have analyzed

preliminary results involving 5 absorbance spectra at low concentrations. This was not sufficient

for the confidence interval corresponding to the λ2,max probability distribution to be small enough

for us to state with confidence that λ2,max > λ1,max. We have proposed that further measurements at

low concentrations will allow for a smaller confidence interval. The Laboratory for Mathematics

in the Sciences has acquired a new spectrometer that is sensitive even at low concentrations; this

should allow for the proposed measurements to be made.
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