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ABSTRACT OF THESIS

APPLYING STATIC CODE ANALYSIS TO FIREWALL POLICIES FOR

THE PURPOSE OF ANOMALY DETECTION

Treating modern firewall policy languages as imperative, special purpose

programming languages, in this thesis we will try to apply static code analysis

techniques for the purpose of anomaly detection.

We will first abstract a policy in common firewall policy language into an

intermediate language, and then we will try to apply anomaly detection algo-

rithms to it.

The contributions made by this thesis are:

1. An analysis of various control flow instructions in popular firewall policy

languages

2. Introduction of an intermediate firewall policy language, with emphasis

on control flow constructs.

3. Application of Static Code Analysis to detect anomalies in firewall policy,

expressed in intermediate firewall policy language.

4. Sample implementation of Static Code Analysis of firewall policies, ex-

pressed in our abstract language using Datalog language.

Vadim Zaliva

Computer Science Department

Colorado State University

Fort Collins, CO 80523

Summer 2009
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1 Introduction

Computer firewalls are widely used for security policy enforcement and access

control. They are used to block unauthorized network access. This is usually

done by partitioning a network into security domains and defining access rules

on the boundaries of these domains. The simplest case is when just two domains

are defined: LAN (Local Area Network) and WAN (Wide Area Network). In

more complex cases one might have domains for different departments within an

organization as well as different parts of the Internet (for example different geo-

graphic regions). A firewall could be implemented either as hardware – a special

device – or as software running on top of a general purpose operating system.

Usually an organization deploys more than one firewall and their policies must

be coordinated to provide a consistent level of security.

Firewall configuration, which mainly consists of writing policy (also some-

times reffered to as a rule set) is an exacting task, usually done by a human.

Given the complexity of some policies (hundreds, or even thoudands of rules)

and human predisposition to err, misconfigurations often occur. In a quanti-

tive study performed by Wool[36], 37 firewall rule set were examined, collected

from organizations in various market segments. He discovered that all of them

were misconfigured, most in multiple places. The implications of his study are

trully alarming: a firewall misconfiguration could expose private customer in-

formation (including medical records), sensitive business information, lead to

financial loss and in some cases even impact the life and safety of people relying

on the security of the computer system.

An example of misconfiguration is when a firewall could be managed from

an insecure location (any machine outside the network perimeter). Usually

access to firewall management interfaces is limited to a secure domain inside

the organization. The simplest form of this misconfiguration is when a rule
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limiting such access is not added to the policy. A novice firewall administrator

can easily make such a mistake. Another scenario in which a misconfiguration

may occur is when such a rule was added, but was overriden by another, usally

more generic rule. This is a mistake that even a more experienced firewall

adminstrator may make. At a cursory examination the policy looks good, as

the rule is present. However it will require a deeper examination to discover

that the rule does not have any effect.

The task of automatic discovery potential of firewall configuration errors is

called firewall anomaly detection. There is some existing research in this area

summarized in Section 2.1. In this thesis we attempt to advance research in this

area by applying static code analysis to firewall policies.

Static code analysis allows us to analyze and predict program behavior with-

out actually executing it. It is commonly used for performance optimization and

error detection.

In this section we will start by introducing basic firewall and static code

analysis concepts.

1.1 Packet Filtering

Packet filtering is a core functionality of network firewalls. The main idea is

that the firewall resides on a network Node (Host or Router) and inspects all

network traffic. Inspection is performed in accordance with network security

policy (which we will discuss in detail later). Based on this policy, the firewall

makes a decision regarding what action to perform on a given packet. The most

commonly performed actions are:

ACCEPT - the packet is permitted to pass through

DENY - the packet is silently dropped
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Some firewalls allow additional actions, which do not necessarily affect the

packet’s traversal of the firewall, but are invoked for side effects. Common

examples are logging and setting the values of some variables (which could be

checked later in other policy rules).

Most modern firewalls also support actions, which affect the control flow of

packet processing through firewall rules.

Issues related to the low-level implementation of categorizing packets and

the algorithms for doing this efficiently are commonly referred to as the packet

classification problem[19]. This problem mostly deals with performance and

resource usage constraints.

Here is an example of a simple firewall policy. This policy permits all in-

coming traffic on interface dc0 from local network 192.168.0.0/24 to host with

IP address 192.168.0.1. It also allows the return traffic to pass.

pass in on dc0 from 192.168.0.0/24 to 192.168.0.1

pass out on dc0 from 192.168.0.1 to 192.168.0.0/24

1.2 Firewall Policy

The firewall’s behavior is controlled by the Policy. A policy consists of Rules (in

the context of packet routing they are also often referred to as Filters). Each

rule consist of a condition and an action. Conditions describe the criteria used

to match individual packets. Actions describe the activity to be performed if

matches have been made.

Basic conditions consist of tests, which match individual fields of the packet

such as source address, destination address, packet type, etc. In the case of state-

ful inspection, connection-related variables like connection state (established, re-

lated, or new) can be checked. Finally, system state variables such as current

time of day, CPU load, or system-wide configuration parameters can be taken
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into account.

The sequence of rules processing differs significantly between various firewall

implementations. There are two common matching strategies:

single trigger processing means that an action of the first matching rule will

be performed.

multi-trigger processing means that all rules will be matched and an action

from the last matching rule will be performed.

Here is a typical example of multi-trigger policy for pf firewall platform:

block in all

...

pass in on dc0 from any to 192.168.1.0/24 port 22

In this example the first rule blocks all incoming traffic. This is sometimes

called a default deny approach. The next rule allows incoming traffic on port

22 to LAN subnet 192.168.1.0/24. As an incoming packet destined for port 22

passes the firewall, it will match the first rule and will be marked to be dropped.

However, since pf by default is using multi-trigger strategy, it will continue to

try to match the packet to other rules. It will match against the last rule and

this time the action will be changed to pass. At the end of the policy, this last

action will take effect and the packet will be allowed to pass through.

Some firewalls like ipfilter support multi-trigger strategy by default, but

allow individual rules to specify a quick option, which signifies that no further

processing should be done on a matched packet.

Let us try to express the previous example using single trigger strategy. We

will again use pf syntax, but now we will use the quick keyword on all rules to

enforce single trigger processing. The resulting policy would be:

pass in quick on dc0 from any to 192.168.1.0/24 port 22
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...

block in quick all

Now, the incoming packet destined for port 22 will match the first rule and

will be immediately allowed to pass. No other rules will be considered. All

incoming packets which have not matched the first rule will match the last one

and will be denied.

In addition to the single trigger or multi-trigger control flow models, most

popular modern firewall platforms support more complex control flow models,

with statements allowing conditional or unconditional branching, early termi-

nation, sub-routine calls, etc.

1.3 Static Code Analysis

Static Code Analysis is defined as:

“Program analysis offers static compile-time techniques for pre-

dicting safe and computable approximations to the set of values or

behaviors arising dynamically at run-time when executing a program

on a computer.”[25]

We will concentrate on the type of static code analysis termed data flow

analysis, first introduced in [22].

In data flow analysis, the program is split into elementary blocks which are

organized into a directed graph. This is called a control flow graph (CFG).

Nodes are elementary blocks, and edges indicate how control can pass between

them. For each block we can define a set of equations, describing information

at the exit of a node, as related to information upon entry to the node.

Let us consider a simple example of Reaching Definitions Analysis, which is

defined in [25] as follows:
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“For each program point, which assignments may have been

made and not overwritten, when program execution reaches this

point along some path.”

Now for each label l we can write two sets of reaching defintions (abbreviated

as RD): RDentry(l) and RDexit(l), each of them defining a list of tuples in the

form of (variable, label) defining what variables were assigned at what labels.

The special label ? could be used to indicate the possibility of an uninitialized

variable.

For example if at label 2 variable z is assigned a new value we can write:

RDexit(2) = (RDentry(2) \ {(z, l)|l ∈ L}) ∪ (z, 2) where L is set of all program

labels.

In general, RDentry(l) = RDexit(l1)∪ . . .∪RDexit(ln) if l1, . . . , ln are labels

from which contol may reach l. For initial label all variables are associated with

? label.

Using these equations we can reason about properties of the program at the

block boundaries. The standard way to do this is to solve the system until it

reaches fixpoint.

We must distinguish between two types of data flow analyses. In forward

data flow analysis values are propagated in a control flow graph in the direction

of the control flow. In backward data flow analysis, the values are propagated

in the opposite direction of control flow.

Another useful type of static code analysis is called control flow analysis,

which deals with the calculation of control flow graphs (which blocks lead to

which).

Thesis Organization

The rest of this thesis is organized as follows:
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First, in Section 2 we will briefly discuss the current state of research in

Firewall Policy modeling and analysis.

Then, in Section 3 we will review control flow models and control flow state-

ments in several existing firewall platforms, concentrating on the few most pop-

ular ones.

In Section 4 we define an intermediate rule language for policy rule processing

which includes support for all control flow constructs mentioned in previous

sections. We will show how all firewall languages described in Section 3 can be

converted into this new intermediate language.

In Section 5 we will show how static code analysis can be applied to a firewall

policy as expressed in intermediate language.

And finally, in Section 6 we will present our implementation of policy ana-

lyzer using techniques described in Section 5. It will be followed in Section 7 by

some usage examples of our analyzer.
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2 Firewall Policy Modeling

In this section we discuss approaches used in modeling firewall policies and

briefly review the current state of research in this area.

Many researchers assign to the policy a declarative semantics, treating it as

a set of tuples (e.g. [5], [11], [9], [24]). Each tuple contains conditions used

to match various packet fields and actions. For example, Ehab S. Al-Shaer

and Hazem H. Hamed [4],[5] use a fixed rule structure, called a “5-tuple filter”:

(order,protocol,src ip,src port,dst ip,dst port,action).

In order to formally model firewall policy, these researchers start by defining

pairwise relationship between rules in the policy: “completely disjoined”, “ex-

actly matched”, “inclusively matched”, “partially disjoined”, and “correlated”.

Next Al-Shaer and Hamed prove that these relationships are distinct and that

their union represents the universal set of relations between any two k-tuple

filters in a firewall policy. The policy is represented as a single-rooted tree,

where each node represents a field of a filtering rule and each branch at this

node represents a possible value of the associated tree. An example of such a

tree taken from [4] is shown in Figure 1. Thus each path in the tree (starting

from root) represents a policy rule. Each branch has at the end an action leaf,

which shows the action which should be taken. The dotted box at the bottom

lists rules associated with a given branch. Normally each branch should have

only one rule associated with because ideally each packet should be processed

by a sigle rule. If more than one rule is associated it represents an anomaly. For

example rule 8, in addition to having its own branch, also appears on branches

for rules 2,3,6, and 7. This happens because the rule is a superset of any of

these other rules, and packet matching any of them will match rule 8 as well.

Hari et al. [21] considers a much simpler packet filtering model, where each

filter is k-tuple (F [1], F [2], . . . , F [k]) and where each field F [i] is a prefix bit
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Figure 1: Example of a policy representation as a tree

string. This model could be used not only in firewalls, but also for routing.

Note that all matching is done only by matching prefix bit strings. However, as

shown in [28], it is always possible to represent a sub-range of [0, 2k] as at most 2k

prefixes. This allows us to convert from range-based policy rule representation

to prefix-based. Prefix-based policy rule representation has a useful property,

on which Hari et al. base their algorithms:

“If filter fields are prefix fields, then each field of a filter is either

a strict subset of, or equal to, or a strict super-set of, or completely

disjoint from the corresponding field in any other filter. In other

words, it is not possible to have partial overlaps of fields. Partial

overlaps can only occur when the fields are arbitrary ranges, not

prefixes.”[21]

Using this property, the authors propose to solve a filter conflict problem by
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formulating it as a cycle elimination problem in a directed graph.

There are some efforts related to the analysis of firewall policies using ma-

chine reasoning techniques. In particular, [16] describes an Expert System built

using Constraint Logic Programming (CLP). Considering each rule as 6-tuple

or as ranges along with action taken (“permit” or “deny”), the system repre-

sents them as constraints on the 6-dimensional packet space. Each rule is a

6-dimensional hypercube.

Capretta et al. in [9] use the Coq[8] proof assistant to detect conflicts in

firewall policies. Their “conflict” definition is two rules for which there exists

a request to which they give an opposite action (only ACCEPT and DENY

actions are considered). Then they formally prove soundness and completeness

to establish the correctness of their algorithm.

Another approach to policy modeling is using geometric interpretation. For

example, Eppstein[15] suggests that each rule could be represented as a collec-

tion of d-dimensional ranges [l1i , r
1
i ] × . . . × [ldi , rd

i ], an action Ai and priority

pi. Similarly, each packet can be viewed as a d-dimensional vector of values

P = [P1, . . . , Pd]. In IP network terms, each dimension could correspond to an

IP packet field. Thus the range [lni , rn
i ] allows us to check if the value of an

IP packet field number n falls in range [li, ri]. A filter i applies to packet P

if Pj ∈ [lji , r
j
i ]. Epspstein proceeds to formally define packet classification and

filter conflict detection problems using this geometrical abstraction and suggests

algorithms for solving them.

The multidimensional range searching problem from computational geome-

try is related to filter conflict detection. Multiple algorithms exist to solve this

problem, surveyed in [23]. In particular, as mentioned in [21], Edelsbrunner

[14] has proposed an algorithm which, in the worst case, can solve this prob-

lem in O((log(N))2k−1 + R) where N is the number of k -dimensional rectangle
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boxes and R is number of boxes intersecting the query box. However as Hari

et. al conclude in [21], there are several known problems with the geometric

interpretation approach:

The first problem is that this intepretation treats one filter which is fully

contained within another filter as the intersection of their rectangles. However

this does not indicate a conflict, since the contained filter is more specific. Thus

not every detected intersection indicates a conflict (some intersections are false-

positives).

The second problem relates to time and space bounds. Quick estimation

from [21] concludes:

“... even for modest values of N and k , the worst-case time and

space bound guaranteed by this data structure are hopelessly bad.

For instance, when N = 10, 000 and k = 4, the algorithm guarantees

a worst-case search cost of 137 = 62748517 , meaning that it is no

better than a linear search through the filters.”[21]

Guttman[20] et al. describe a group of network security related problems

and modeling frameworks that lead to their solutions:

We focus the modeling work on representing behavior as a function

of configurations, and predicting the consequences of interactions

among differently configured devices.[20]

While Guttman et al. cover both packet filtering firewalls and IPSec gate-

ways, Uribe et al.[31] build upon their work, extending it by including specifi-

cations and requirements for Network Intrusion Detection Systems (NIDSs).

All these approaches are based on declarative interpretation of firewall policy.

Another approach is to assume an imperative semantics, treating firewall policy

as a set of statements, the execution of which is controlled by a control flow.
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In practice, most firewall implementations support imperative rather than

declarative semantics, so this second approach has more practical applications.

However, most researchers deal with the simplest form of control flow when

analyzing firewall policies, where the policy is a list of sequentially applied rules.

Most modern popular firewall platforms support more complex control flow

models, with statements allowing conditional or unconditional branching, early

termination, sub-routine calls, etc.

Yuan et al. in FIREMAN[37] are some of the few researchers who go beyond

a simple linear policy model and consider what they call a Complex Chain

Model, covering a more complex policy organization similar to that implemented

in the popular Linux firewall Netfilter. They also introduce the notion of an

ACL Graph, formed by a combination of multiple ACLs (access control lists)

across the trajectory of the packet. Using this graph they provide some analysis

of anomalies in distributed firewall configuration. Their approach is similar

to ours (they also use a form of static code analysis) but they use a slighly

different model of firewall policy. Their model, apparently inspired by iptables,

is organized around chains and the only branching instruction supported is a

“calling chain”. Our approach is more generic and allows us to accomodate

branching models found in other firewall products, like pf or ipfw. To reason

about rules, they use set operations on ACL. Operations like ⊆ and ∩ have to

be defined for all packet field types could be computationally heavy, compared

to our symbolic approach using MCSI.

2.1 Anomaly Detection

Eppstein et al.[15] define the filter conflict detection problem as a way to detect

when two or more filters (rules) applied to a packet specify conflicting actions.

For example some let a packet pass through while others reject it. The pres-
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ence of such rules in a policy could indicate an error and could lead to firewall

misconfiguration.

Some studies[18] show that 15% of rules in real-life policies might be redun-

dant. A more formal definition of shadowing and redundancy, quoted from [11]

is as follows:

“Definition 1.1 Let R be a set of filtering rules. Then R has

shadowing iff there exists at least one filtering rule, Ri in R, which

never applies because all the packets that Ri may match, are previ-

ously matched by another rule, or combination of rules, with higher

priority in order.

Definition 1.2 Let R be a set of filtering rules. Then R has

redundancy iff there exists at least one filtering rule, Ri in R, such

that the following conditions hold: (1) Ri is not shadowed by any

other rule; (2) when removing Ri from R, the filtering result does

not change.”

In [11], the authors present (with formal proofs of correctness) algorithms for

shadowed and redundant rule detection and removal. However, their algorithms

use a simplified firewall model with only a single trigger processing strategy and

just two possible actions: ACCEPT and DENY. The authors do not go into

exact semantics of rule condition matching, treating them as a conjunctive set

of opaque condition attributes such that conditioni = A1 ∧ A2 ∧ . . . ∧ Ap p

being the number of condition attributes of the given set of filtering rules.

In [4] the authors identify four firewall policy anomalies:

Shadowing anomaly A rule is shadowed when a previous rule matches all

the packets that match this rule, such that the shadowed rule will never be

activated.
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Correlation anomaly Two rules are correlated if the first rule in order

matches some packets that match the second rule and the second rule matches

some packets that match the first rule

Generalization anomaly A rule is a generalization of another rule if this

general rule can match all the packets that match a specific rule that precedes

it.

Redundancy anomaly A redundant rule performs the same action on the

same packets as another rule such that if the redundant rule is removed, the

security policy will not be affected.

Al-Shaer and Hamed proceed to provide some algorithms to detect any of

these anomalies.

In [5], they extend their anomaly-detection algorithms to include configura-

tion, consisting of multiple firewalls. They provide format definitions of various

Inter-Firewall Anomalies and propose algorithms for their detection.

Baboescu [7] suggests an optimized conflict detection algorithm which, while

based on a known Bit Vector approach, shows an order of magnitude of improve-

ment compared to previous work.

Qian et al. in [26] introduce a framework which includes algorithms, allowing

it to:

“detect and remove redundant rules, discover and repair inconsistent

rules, merge overlapping or adjacent rules, map an ACL with com-

plex interleaving permit/deny rules to a more readable form consist-

ing of all permits or denies, and finally compute a meta-ACL profile

based on all ACLs along a network path.”[26]

They present a set of formal rule relation definitions: “intersect”, “contain”,

“overlap”, “disjoint”, “adjacent”, “inconsistent” and “redundant”.
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Gouda and Liu in [24] analyze the rule redundancy problem. They introduce

the notion of upward redundant rules and downward redundant rules (with for-

mal definition). They offer algorithms for the identification of redundant rules

using a firewall decision tree.

15



3 Control flow models in existing firewall plat-

forms

In this section we will review control flow models and control flow statements in

existing firewall platforms. We will concentrate on the few most popular ones.

3.1 Netfilter

Netfilter[2] is a very popular firewall platform, and is the default firewall plat-

form for most Linux distributions. In Netfilter, policy rules are organized into

chains. There are three built-in chains: INPUT, OUTPUT, and FORWARD.

In addition, there exists the possibility for additional user-defined chains.

Built-in chains have a policy which determines the default action for this

chain – what happens if the packet reached the end of the chain and no action

has been taken on it so far. The policy could be either ACCEPT or DROP. User-

defined chains all have an implicit RETURN policy which cannot be changed

by the user.

Each rule can specify as an action a JUMP to another chain. This means

that if rule conditions match, the packet will continue its traversal starting from

the beginning of the specified chain. If the packet has reached the end of the

called chain, or the RETURN action was triggered explicitly (by a rule) it will

continue processing from the next rule of the caller chain. Upon return from

built-in chains, a chain policy action is executed. For user-defined chains control

returns to the caller.

Instead of JUMP, the user can specify a GOTO action in order to branch to

another chain. When RETURN is encountered in the other chain, the control

will return not to this chain, but to the chain which has called this one via

JUMP.
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Both JUMP and GOTO can call any user-defined chain, except the one

which contains this rule.

Loops are not permitted with JUMP and GOTO. Such loops are detected

by an iptables command and are reported with the somewhat cryptic message

“iptables: Too many levels of symbolic links”. Loops detection in the current

version (1.4.0) seems to be very rough: it basically forbids any JUMP/GOTO

loops regardless of the conditions under which they occur. For example, the

following policy is not accepted, because it is considered to contain a loop:

iptables -A INPUT -p icmp -d 38.99.76.17 -g test0

iptables -A test0 -p icmp -d 38.99.76.18 -j test1

iptables -A test1 -p icmp -d 38.99.76.19 -j test2

iptables -A test2 -p icmp -d 38.99.76.20 -g test0

The SET-MARK action1 module can be used to associate values (marks)

with a packet while it is being processed. These marks can be checked later

using a MARK clause in filtering specification2. Only one mark value can be

associated with the packet. Setting a new mark value will replace the old one.

Mark checks may be performed with MARK filtering specification by com-

paring its value to a given constant, after applying an optional mask using a

bitwise AND operation.

The following is a simplified grammar of iptables policy language:

chain ::= (rule)*

rule ::= filtering-spec target

filtering-spec := mark-filtering-spec | ...

mark-filtering-spec := MARK mark-number ["/" mark-mask]

1Implemented in mark module
2Marks can be set only in the mangle table but can be checked in any other tables. Al-

though it is not recommended to use mangling table for filtering, it is possible to do so. For
completeness we assume that marks may be set and checked in any chain
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target ::= ACCEPT | DROP | RETURN |

JUMP chain | GOTO chain |

SET-MARK mark-number

mark-number := 0..(2E32-1)

mark-mask := 0..(2E32-1)

Here is an example of a simple netfilter policy:

iptables --policy INPUT DROP

iptables --policy OUTPUT DROP

iptables --policy FORWARD DROP

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp -s 192.168.1.100 --dport 22 -m state \

--state NEW -j ACCEPT

iptables -A INPUT -j DROP

The processing model is fairly simple. The processing starts from one of the

built-in chains, and proceeds sequentially until either an ACCEPT or DROP

action is triggered, or control is passed to another chain. This model is very sim-

ilar to the execution model of instructions in a CPU. Rules can call other chains

(as subroutines) or branch to them (similar to the infamous GOTO instruction

in programming languages).

3.2 PF

PF[3] (stands for “packet filter”) is another popular firewall platform, and the

default firewall for the OpenBSD system. The main difference between PF

and Netfilter is that by default, unless the quick option is specified, it is using

multi-trigger matching strategy. Thus the last matched target will be used to
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determine what to do with the packet. The quick option causes it use single-

trigger strategy for current rule.

In PF there is a notion of anchors. An anchor is a set of rules which could

be invoked at any point of the policy using the anchor instruction. Anchors

could be defined independently or as a part of the main ruleset (inline anchors).

Anchors can be nested.

The following is a simplified grammar of the pf policy language:

ruleset := (rule | anchor)*

rule : = filtering-rule | anchor-rule

filtering-rule := filtering-spec target [quick]

anchor-rule := ANCHOR anchor-name(/anchor-name)*

target ::= ACCEPT | DROP | TAG tagname

anchor ::= [anchor-name] ruleset

Here is an example of a simple pf firewall policy:

anchor "goodguys" {

pass in proto tcp from 192.168.2.3 to port 22

}

...

anchor goodguys

pass in on dc0 from 192.168.0.0/24 to 192.168.0.1

pass out on dc0 from 192.168.0.1 to 192.168.0.0/24

The default target for the main ruleset is PASS, which will be used if the

packet has not matched any rules.

Upon a match, rules can tag a packet. Only one tag can be assigned to the

packet at a time, and once it is assigned, it cannot be removed. Subsequent

rules can check for the tag presence.
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When anchors are defined inline (either via curly brackets syntax, or via the

LOAD ANCHOR command) they are also invoked at the place of definition.

Informally the processing model could be described as follows: the rules are

processed one by one. The last matching action is remembered and will be

used when the end of the policy is reached (multi-trigger strategy). A rule with

a quick option will cause its action to take effect immediately (single-trigger

strategy). Anchors are just named blocks of rules which can be invoked at

some points of the policy, either unconditionally or based on the results of the

evaluation of a packet matching criteria. Packets can be tagged with a single

named tag which is sticky. Rules can check for the presence of a particular tag.

3.3 IPFW

IPFW (also known as IPFIREWALL)[29, 6] is a firewall platform sponsored,

authored, and maintained by the FreeBSD project. It is also used as a firewall

under MacOS. IPFW matches rules sequentially, stopping at the first matching

rule. Rules are numbered from 1 to 65535. If no rules are matched, the packet is

discarded by the default rule with number 65535. Each rule belongs to exactly

one set from 0 to 31 with 0 being default. Some sets could be enabled or disabled

at any given time, except set 31 which is always enabled. Sets are just a way

for the firewall administrator to organize policy rules. They are not part of the

rule language.

A packet can have zero or more tags associated with it. Tags are identified

by numbers in the range [1..65534]. Tags can be set or unset conditionally (using

tag or untag commands). Rule matching can check for tag presence (using the

tagged rule option).

One action affecting the rule application sequence is SKIPTO. This action

makes a firewall skip all rules with numbers less than a specified amount.
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The following is a simplified grammar of the ipfw policy language:

ruleset := (rule)*

rule : = rule-number action filtering-spec

rule-number := 0..65535

set-number := 0..31

tag-number := 0..65535

action ::= ALLOW | DENY | TAG tag-number | UNTAG tag-number |

SKIPTO rule-number

Here is an example of a simple ipfw policy:

501 deny all from any to any frag

502 deny tcp from any to any established

503 allow tcp from any to any 80 out via tun0 setup keep-state

504 allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state

The set-number is specified outside of the policy file, as an argument to ipfw

command when it is loaded.

One interesting type of rules are probabilistic rules, a rules which match

packets with a given probability. For the purpose of anomaly detection, we will

treat them as normal rules (triggered with a probability of 1).

Informally, a processing model can be described as follows: rules are always

processed in increasing order of their numbers. Rules can set and check one of

65536 Boolean variables. Additionally, there is a SKIPTO instruction, (similar

to GOTO in programming languages), except it is only allowed to jump in a

forward direction.
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3.4 IPFilter

IPFilter (also known as IPF)[1, 10] is used on many firewall platforms, most

notably FreeBSD, NetBSD and SUN Solaris.

IPFilter, like PF, uses the last matched rule to make decisions on how to

handle the packet (also known as multi-trigger processing). Also, like PF it has

a quick option to make decisions immediately.

The SKIP action skips a given number of rules.

Rules can also be placed in groups. The default group is 0. A HEAD

parameter in the rule indicates that if matched, further execution should proceed

with rules within this group, using this rule action as default (if none matched).

If the quick keyword was specified, after processing a group specified in the

HEAD parameter, packet processing stops. If it was not specified, the firewall

will continue rule processing in the group which was active when HEAD was

executed. HEAD instructions can be used within non-default groups as well, to

represent more levels of branching.

The following is a simplified grammar of IPFilter policy language:

ruleset := (rule)*

rule := target filtering-spec [group-number] [quick]

group-number := 0..65535

target := skip-target | regular-target

skip-target := SKIP number-of-rules

regular-target := [HEAD tag-number] (PASS | BLOCK)

Here is an example of a simple ipfilter policy:

block in all

block out all

pass in from firewall to any
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block in on le0 proto icmp all

pass in on le0 proto 4 all

block in on le0 from localhost to any

block out quick on xl1 all head 10

pass out quick proto tcp from any to 20.20.20.64/26 port = 80 group 10

block out on xl2 all

Group invocation is similar to a subroutine call in programming languages,

the main difference being that the invocation rule always specifies a default

action. Additionally, in subroutines the SKIP instruction provides a conditional

jump forward within a group.
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4 Intermediate Rule Language

We will now try to define a generalized abstract syntax for policy rule processing

which includes support for all control flow constructs mentioned in the previous

sections of this paper. We will show that all firewall languages described above

can be converted into this new intermediate language. Having such a unified

rule language, we can do policy analysis without being dependent on specific

platforms.

This will be a language to express firewall filtering policies. A policy consists

of rules. Each rule consists of two parts: filtering specification and target speci-

fication. The language will have an imperative semantics. The policy, expressed

as a program in this language, will be applied to each packet and as a result

will produce an outcome – how this packet should be handled.

4.1 Filtering specification

A filtering specification is a predicate, which is evaluated during rule processing.

If it evaluates to True, the target specification is invoked.

For the purpose of this thesis, we will consider a filtering specification to be

a conjunction of two predicates: a static check predicate and a dynamic check

predicate.

A static check predicate deals only with the fields which do not change

while an individual packet is matched towards a policy. For example, a static

check could examine packet fields, firewall settings, etc. It should be noted that

stateful packet inspection[35] is done here, because a state cannot change during

single packet processing.

In this thesis we will consider simplified static check specification in the

5-tuple form: (src addr, src port, dst addr, dst port, protocol). All fields are
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intervals, and the corresponding fields of the packet are checked to see if they

belong to the following intervals:

src addr Source address interval

src port Source port interval (for TCP and UDP)

dst addr Destination address interval

dst port Destination port interval (for TCP and UDP)

protocol IP Protocol number interval

Address fields (src addr and dst addr) are intervals of IP addresses. For

now, we will consider only IPv4 addresses, so the values will be in the range of

0 to 232 − 1 (inclusive).

Port ranges for src port and dst port are just numeric intervals with values

in the range of 0 to 216 − 1 (inclusive).

Although a protocol will usually be compared to a single specific numeric

value, we will represent this as checks towards an interval (0 to 28−1 inclusive),

for consistency with other fields.

Real firewalls can match some additional fields, like Data Link Layer address

or ICMP protocol type and code. Although we are not considering them in this

thesis, our methodology could easily be extended to include more fields in the

static check predicate.

A dynamic check predicate deals with values which could be changed during

packet inspection, for example by target specifications of previously matched

rules. In our language such values are stored in variables. So, dynamic checks

are limited to testing values of such variables. See Section 4.4 for more details

on variables.
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4.2 Target specification

A target specification has an imperative semantics. It can make a decision on

how a packet should be processed. It can also affect a sequence of rule executions

as well as produce some side-effects, like setting variables (which could be later

examined by the dynamic check part of filtering specifications of rules, executed

after this one.)

Let us define target specifications. We will consider:

DROP denotes that the packet should not be allowed to pass through the

firewall. It should be immediately silently dropped. No further rules

should be evaluated.

ACCEPT denotes that the packet should be immediately allowed to pass

through the firewall. No further rules should be evaluated.

CALL target means that the rule processing should proceed from the specified

label until either packet is dropped, accepted, or the RETURN action is

invoked. CALL instructions can be nested.

RETURN target causes rule execution to proceed from instruction, immedi-

ately following the last CALL instruction. If there was no CALL instruc-

tion invoked, then the behavior of RETURN is undefined.

JUMP target means that rule processing should continue from a specified

label.

During rule set processing either the ACCEPT or DROP action should be

triggered. If rule set processing is finished (the last rule has been processed),

and neither the ACCEPT nor the DROP action has encountered the outcome

of a packet, processing is undefined.
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4.3 Labels

The rules are numbered. The label is a rule number. No two rules can have

same label. Some labels might not have rules associated with them.

4.4 Variables

In our language we will have a set of variables with a name and a value. The

name is a positive integer. The value is opaque (we do not make any assumtion

about value structure or type) and the only operation allowed on it is an equality

check, comparing it to a literal or constant arithmetic expression (currently only

the bitwise and operation between constants is permitted).

Unset variables are assumed to have a special value of NIL. Once the variable

is set, it could be unset again by assigning NIL as a new value. A variable could

be checked for NIL value comparing it to special NIL literal.

4.5 Abstract Syntax

An Abstract Syntax “specifies the set of trees that are considered abstract rep-

resentation of well formed documents in the language”[13].

We are using lower case letters for operators and capital letters for phyla

names. The abstract syntax for our intermediate language is as follows:

Atomic Operators

t rue

f a l s e

i n t

o c t e t

long

varname
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opaqvalue

n i l

a c c ep t t a r g e t

d rop ta rge t

r e t u r n t a r g e t

Fixed Arity Operators

p o l i c y d e f → POLICY

i n t e r v a l d e f → PACKETFIELD FLAG PACKETFIELD FLAG

ru l e d e f → LABEL STATIC CHECK DYNAMIC CHECK TARGET

s t a t i c c h e c k d e f → FLAG INTERVALSET

FLAG INTERVALSET

FLAG INTERVALSET

FLAG INTERVALSET

FLAG INTERVALSET

va r va l u e ch e ck de f → FLAG VAR VALUE

cons t expr → CONST VALUE

const masked expr → CONST VALUE CONST MASK

c a l l t a r g e t → LABEL

jump target → LABEL

va r s e t t a r g e t → VAR OPAQUE CONST

List Operators

r u l e s e t d e f → RULE . . .

i n t e r v a l s e t d e f → INTERVAL . . .

Phyla

POLICY : : r u l e s e t d e f
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TARGET : : a c c ep t t a r g e t d rop ta rge t

c a l l t a r g e t jump target r e t u r n t a r g e t

v a r s e t t a r g e t

VAR : : varname

VALUE : : n i l opaqvalue cons t expr const masked expr

OPAQUE CONST : : opaqvalue

STATIC CHECK : : s t a t i c c h e c k d e f

DYNAMIC CHECK : : va r va l u e ch e ck de f

FLAG : : t rue f a l s e

PACKETFIELD : : i n t

INTERVAL : : i n t e r v a l d e f

INTERVALSET : : i n t e r v a l s e t d e f

CONST VALUE : : i n t

CONST MASK : : i n t

LABEL: long

4.6 Sample Concrete Syntax

In this section we will define a simple concrete syntax which we will use for

examples in the rest of the document. The very same syntax will be used in our

proof of concept implementation.

The following is the syntax, expressed in EBNF notation[27]:

Listing 1: Sample Concrete Syntax

r u l e s e t = { r u l e } ;

d i g i t = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” |

”9” ;

ws = (” ” | ”\ t ” ) , {” ” | ”\ t ” } ;

l f = (”\ r ” | ”\n”) , {”\ r ” | ”\n”} ;
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comment = ”#”, comment−text , l f ;

comment−t ex t = (? Pr in tab l e ASCII Characters ? − (”\ r ” | ”\n”) )

;

opaque−value = ”\ ’ ” , (? Pr in tab l e ASCII Characters ? − (”\ r ” |

”\n” | ”\ ’ ” ) ) ,

”\ ’ ” , ;

number = d i g i t , { d i g i t } ;

var−name = ”$” , number ;

r u l e = number ” i f ” , f i l t e r i n g −spec , ” then ” , target , ” ; ” ;

f i l t e r i n g −spec = ( s t a t i c −checks , ”and” , dynamic−check )

| s t a t i c −checks

| dynamic−check

| ” true ” ;

dynamic−check = [ ” ! ” ] , var−name , ”=”, ( opaque−value | const−

expr | ” n i l ”) ;

addr oc t e t = d i g i t , [ d i g i t [ d i g i t ] ] ;

const−expr = number , [ ”&”, number ] ;

t a r g e t = act ion−t a r g e t | branching−t a r g e t | s ide−e f f e c t s −

t a r g e t ;

act ion−t a r g e t = ” accept ” | ”drop” ;

branching−t a r g e t = ” c a l l ” , number | ”jump” , number | ” return ”

;

s ide−e f f e c t s −t a r g e t = var−name , ’= ’ , ” ’” , opaque−value , ” ’” ;

i n t rv open = ” [” | ”(” ;

i n t r v c l o s e = ” ]” | ”) ” ;

ipv4addr = addr octet , ” . ” , addr octet , ” . ” , addr octet , ” . ” ,

addr oc t e t ;

ipv4mask = addr octet , ” . ” , addr octet , ” . ” , addr octet , ” . ” ,

addr oc t e t ;

a dd r i n t e r v a l = intrv open , ipv4addr , ” ,” , ipv4addr ,
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i n t r v c l o s e

| ipv4addr , ’ / ’ , number

| ipv4addr , ’ : ’ , ipv4mask ;

p o r t i n t e r v a l = intrv open , number , ” ,” , number ,

i n t r v c l o s e ;

p r o t o i n t e r v a l = intrv open , number , ” ,” , number ,

i n t r v c l o s e ;

a d d r i n t e r v a l s e t = ”{” , add r i n t e rva l , {” ,” , a dd r i n t e r v a l

} , ”}”

p o r t i n t e r v a l s e t = ”{” , p o r t i n t e r v a l , {” ,” , p o r t i n t e r v a l } ,

”}”

p r o t o i n t e r v a l s e t = ”{” , p r o t o i n t e r v a l , {” ,” ,

p r o t o i n t e r v a l } , ”}”

s t a t i c −checks = [ ” ! ” ] , (” saddr ” , ” in ” , ( add r i n t e r v a l |

a dd r i n t e r v a l s e t ) ) ? ,

[ ” ! ” ] , (” spor t ” , ” in ” , ( p o r t i n t e r v a l |

p o r t i n t e r v a l s e t ) ) ? ,

[ ” ! ” ] , (” daddr ” , ” in ” , ( add r i n t e r v a l |

a dd r i n t e r v a l s e t ) ) ? ,

[ ” ! ” ] , (” dport ” , ” in ” , ( p o r t i n t e r v a l |

p o r t i n t e r v a l s e t ) ) ? ,

[ ” ! ” ] , (” proto ” , ” in ” , ( p r o t o i n t e r v a l |

p r o t o i n t e r v a l s e t ) ) ? ;

4.7 Mapping policy languages to Intermediate Policy lan-

guage

In this section we will show how policy languages of the concrete firewalls we

reviewed in Section 3 could be represented in our intermediate policy language.
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4.7.1 Netfilter

All rules in all chains are assigned non-overlapping ranges of labels. All rules

within each chain have sequential labels.

ACCEPT, DROP and RETURN are mapped to corresponding intermediate

language instructions.

JUMP is mapped to CALL with the chain name being mapped to the label

of it’s first rule.

GOTO is mapped to JUMP with the chain name being mapped to label of

it’s first rule.

The default policy for built-in chains is mapped into an additional rule,

added at the end of each built-in chain. In this rule, the filtering specification is

a predicate which always evaluates to True and the action is one of ACCEPT

or DROP values.

The SET-MARK action will be mapped to SET instructions, setting the

variable with number 1 to mark value. Thus, for example: SET-MARK 12

becomes $1=12.

The MARK filtering specification will be mapped to the VAR intermediate

filtering specification, checking if the variable 1 value matches a given constant.

So, for example MARK 5/0x0F becomes $1 = 5 & 0x0F.

4.7.2 PF

All rules are assigned non-overlapping ranges of labels. Rules within each ruleset

have sequential labels.

Since the default action for a ruleset is PASS in PF, an additional rule will

be added at the end of each ruleset. In this rule, the filtering specification is a

predicate which always evaluates to True and the target is ACCEPT.

Both ACCEPT and DROP where the quick option is present are mapped
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to corresponding intermediate language instructions.

To simulate rules without the quick option, a special variable with number

0 will be used. The rules without the quick option will save their action in

this variable. At the end of the policy, two rules will be added to check if this

variable holds a DROP action and, if it does, to trigger it. We do not need to

check for an ACCEPT value because it is a default.

For example:

{filtering-spec} PASS

will be mapped to:

10 if {filtering-spec} then $0 = ’ACCEPT’ ;

...

65534 if $0 = ’DROP’ then drop ;

65535 if true then accept ;

tags will be stored in a special variable with number 1. Tagging instructions

will be translated to:

if ... then $1 = tagname

Checks for a tag presence will translate to:

if $1 = tagname then ...

The inline anchors definition will be moved from the ruleset they were de-

fined in to a separate block of rules, terminated with an unconditional RETURN

target. In place of their definition, an unconditional CALL statement will be

inserted.

Anchor invocation (via anchor target) will be replaced with a CALL target.
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4.7.3 IPFW

Rules are mapped, preserving their numbers as labels. A rule with label 65536

is added which unconditionally invokes the DROP target.

The SKIPTO action is mapped to the JUMP target.

TAG tag-number is mapped to $tag-number = ’TRUE’;. UNTAG tag-

number is mapped to $tag-number = NIL. The checks for a tag presence are

mapped to something like 20 if $tag-number = NIL then . . . .

Sets are just a way to organize policy rules and are not mapped into the

intermediate language. We will consider policy resulting from selecting rules

from all sets which are enabled at the moment. Enabling different sets will

produce multiple different policies, which can be analyzed separately.

4.7.4 IPFilter

All rules are first sorted by ascending group number, preserving order within a

group. Labels are assigned according to this new rule order.

quick option handling will be done in the same manner as in PF, described

in Section 4.7.2.

Group invocation (HEAD action) is mapped into the CALL instruction.

Each group uses it’s own variable, with a name equal to the first rule number in

the group to store a resulting action. Thus, a group starting with rule number

10 will store a resulting action in a variable with the number 103.

For example:

{filtering-spec} HEAD 10 DROP

will be mapped to:
3Because GROUP calls can be nested, the group could indirectly call itself. This should

not pose any problems, since in ipfilter there are no dynamic checks and the outcome of the
group execution is always the same in the context of single packet processing
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100 if {filtering-spec} then $10 = NIL ;

101 if {filtering-spec} then call 10 ;

102 if {filtering-spec} and $10 = ’ACCEPT’ then $0 = ’ACCEPT’ ;

103 if {filtering-spec} and ! $10=’ACCEPT’ then $0 = ’DROP’ ;

In the example above, the last two lines should really be three:

102 if {filtering-spec} and $10 = ’ACCEPT’ then $0 = ’ACCEPT’ ;

103 if {filtering-spec} and $10 = ’DROP’ then $0 = ’DROP’ ;

104 if {filtering-spec} and $10 = NIL then $0 = ’DROP’ ;

But knowing that in this context, the variable 10 could take only three

values: ’ACCEPT’, ’DROP’ or NIL we can replaces these three rules with the

two rule equivalent shown above.

If the quick option were specified, our example would look like:

{filtering-spec} quick HEAD 10 DROP

mapped to:

100 if {filtering-spec} then $10 = NIL ;

101 if {filtering-spec} then call 10 ;

102 if {filtering-spec} and $10 = ’ACCEPT’ then accept ;

103 if {filtering-spec} and ! $10 = ’ACCEPT’ the drop ;

The SKIP action will be mapped to the GOTO target, converting relative

offset into an absolute rule label.
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5 Firewall Policy Analysis

The goal of this section is to discuss how static code analysis could be applied

to a firewall policy expressed in intermediate language as introduced in Sec-

tion 4. While our immediate goal is anomaly detection, these techniques could

be extended further for other purposes, such as optimization.

The main premise of our work is that firewall policy is essentially a program

in an imperative programming language, which is executed by a firewall. The

input of the program is an IP packet (defined by a set of field values) and the

outcome is a decision as to how this packet should be handled (passed through

or dropped).

The techniques for analyzing relations between individual rules are well un-

derstood. Some of them are mentioned in Section 2. The main challenge is

dealing with control flow constructs, which could impact the order of execution

of individual rules.

The intermediate language which we introduced in Section 4 is highly suit-

able for the application of static code analysis. This is a fairly simple imperative

programming language with variables, conditional statements and two simple

control flow constructs: (JUMP and CALL/RETURN ).

Although we cannot assume that any program in this language is guaranteed

to terminate, the programs generated by converting valid policies from original

policy languages will terminate. (due to restrictions like loop prevention and

GOTO only pointing to the beginning of the chain in Netfilter, and forward-only

SKIPTO in IPFW.)

5.1 Minimal Combining Set Of Intervals

In this section we will first introduce a notion of a Minimal Combining Set Of

Intervals (MCSI). MCSI will be used later on in policy analysis to represent
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static checks as an operation on boolean variables instead of an operation on

intervals. This substituion will allows us to more easily apply Datalog and BDD

for policy analysis.

5.1.1 Definition

Let O be an arbitrary set of non-empty intervals. No assumptions are made

about intervals in this set: they may overlap, be open, closed, half-open, degen-

erate, bounded, unbounded or half-bounded [32]. What is described below applies

to real or integer intervals, or more generally to intervals defined on totally

ordered sets.

We will use upper case letters for sets, letters with bar on top for intervals

and lower case letters for set members.

We call Z a Minimal Combining Set (MCSI) of O iff 1-4 are all true:

Same Coverage. Every point which belongs to any of the intervals in O also

belongs to some interval in MCSI and vice versa. More formally:

∀S̄ ∈ O,∀x ∈ S̄,∃Ā ∈ Z, x ∈ Ā (1)

∀Ā ∈ Z,∀x ∈ Ā,∃S̄ ∈ O, x ∈ S̄ (2)

Disjoint. Intervals in MCSI are disjoint (non-overlapping):

∀M̄, N̄ ∈ Z,¬(∃x ∈ M̄,∃y ∈ N̄ , x = y ∧ M̄ 6= N̄) (3)

Composite. Any interval in the original set could be exactly represented by

one or more intervals from MCSI :
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∀S̄ ∈ O,∃As ∈ P(Z),
[ (∀x ∈ S̄,∃Ā ∈ As, x ∈ Ā)∧

(∀Ā ∈ As,∀x ∈ Ā, x ∈ S̄)

]
(4)

5.1.2 Properties

Let us prove the MCSI uniqueness property which is useful to us:

Theorem 1. There is a single way to represent each interval from the original

set using intervals from MCSI.

Proof. Given the original set O and it’s MCSI Z, let us assume there is S̄ ∈ O

for which there are two two distinct ways to represent it using intervals from Z.

Let us call them Zs
1 , Zs

2 ⊆ Z. Being non-equivalent:

Zs
1 6≡ Zs

1 ↔ (5)

(∃Ā ∈ Zs
1 , Ā /∈ Zs

2) ∨ (∃Ā ∈ Zs
2 , Ā /∈ Zs

1)↔ (6)

(∃M̄ ∈ Zs
1 ,∀N̄ ∈ Zs

2 , M̄ 6= N̄) ∨ (∃N̄ ∈ Zs
2 ,∀M̄ ∈ Zs

1 , N̄ 6= M̄) (7)

Let as consider M̄ ∈ Zs
1 and x ∈ M̄ . According to (2): ∃S̄ ∈ O, x ∈ S̄.

Now let us consider Zs
2 . For x ∈ S̄ according to (1) ∃N̄ ∈ Zs

2 , x ∈ N̄ .

This gives us the following system of equations:

∃M̄ ∈ Zs
1 , x ∈ M̄

∃N̄ ∈ Zs
2 , x ∈ N̄

According to (3) this means that M̄ = N̄ . Thus (7) will be always false.
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5.1.3 Algorithm

An implementation of the MCSI calculation algorithm in Haskell programming

language is presented in Appendix A.1. Below is an informal description of the

algorithm.

For all intervals in the original set, build a combined set of their boundaries.

The interval boundary is a 3-tuple which consists of:

1. Endpoint

2. Boolean flag indicating whether the endpoint is included in the interval

or not

3. Boolean flag, which is False if this endpoint represents lower bound or

False if it represents an upper bound of an interval

For example, the interval [4 − 10) has two boundaries: (4, true, true) and

(10, false, false).

The algorithm is a simple iterative algorithm. It takes a list of intervals

and calculates a list of all their boundaries. Then it proceeds by splitting each

interval by each of its boundaries. If no splits have been performed, the list of

intervals is MCSI. If splits have been performed, split intervals are replaced with

the results of the split operation and the algorithm repeats from the beginning.

A split operation takes an interval and a boundary (3-tuple). If the endpoint

is included, the interval is split into two non-overlapping sub-intervals by this

point. Only one of them would include the point. The decision which one de-

pends on is whether it was an opening or closing boundary. Example: Splitting

[0−3] by (2, true, true) will produce [0−2), [2−3]. Splitting it by (2, true, false)

will produce [0− 2], (2− 3].

If the boundary endpoint is excluded, the interval will split into three non-

overlapping sub-intervals: from the interval’s lower bound to the boundary point

39



(not including it), a degenerate interval which contains the boundary point

alone, and finally a third interval, which includes the bound point to the upper

bound of an interval. The reason for such a split is to exclude the bound point

when combining these sub-intervals to represent some of the original intervals.

Example: splitting [0− 3] by (2, false, true) will produce [0− 2), [2− 2], (2− 3].

We are trying to produce a minimal set of intervals. If this restriction is

lifted, it is sufficient to split always into three sub-intervals, as described in a

previous paragraph.

5.2 Applying MCSI to Static Checks

Most firewall rules perform checks on the fields of an IP packet. There is a

limited set of these fields, such as the source address, destination address, port,

etc. They all have numeric values which fall into well-defined intervals. For

example, an IP (version 4) address that could be represented as a 32-bit integer

must be in interval [0, 232 − 1]. TCP port numbers are in interval [0, 216 − 1].

These intervals are always totally ordered sets of individual, discrete values.

All static checks are operating on an individual value from or on sub-intervals

of these intervals. For example, one may check if a port number is in interval

[0, 1023] (a privileged port) or if an IP address belongs to subnet 192.168.1.0/24

which could be also converted to an interval [192.168.1.1, 192.168.1.255].

In a firewall policy, we treat the values of each field as belonging to a distinct

domain. For example, there is a domain of source IP addresses and there is a

domain of source TCP port numbers4. In our intermediate language, all value

checks on these intervals are static. In other words, IP packet fields are only

checked whenever they belong to constant intervals, hard-coded in a policy. This

allows us to find all possible constant intervals used for each domain. Then, for
4It should be noted that although for example source port numbers and destination port

numbers have the same physical type and range they belong to two distinct domains
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each domain we can calculate MCSI for this domain.

For example, if we have a domain of TCP port numbers [0, 65535] and the

following checks in a policy:

rule1← port = 2

rule2← (port ≥ 2) ∧ (port ≤ 3)

This allows us to identify the following set intervals for domain of TCP ports:

[2, 2], [2, 65535], [0, 3]. MCSI representation of this set is: [[0 − 2), [2 − 2], (2 −

3), [3 − 3], (3 − 65535]]. Because TCP port numbers are integers (2, 3) interval

is equivalent to an empty interval and could be omitted.

Thus any TCP port in this policy belongs to one of the intervals:

i1 = [1, 2)

i2 = [2, 2]

i3 = [3, 3]

i4 = (3, 65535]

Thus, the policy checks could be expressed as:
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rule1← port ∈ i2

rule2← ((port ∈ i2) ∨ (port ∈ i3) ∨

(port ∈ i4)) ∧ ((port ∈ i3) ∨ (port ∈ i2) ∨ (port ∈ i1))

This allows us to represent all static check expressions as a set of predicates,

one per interval from MCSI. From this point on we can forget actual interval

values, and treat them as Boolean variables, assigned result of evaluation of

packet fields towards these intervals. There will be a finite set of these variables.

How could this help us to solve the problem we are tackling? Data and

Control flow analysis relies heavily on the Control Flow Graph. This is a graph

which represents how control can pass between labels of a program. We can

build a control flow graph where each node will have a list of static checks

associated with it. Since there is a finite number of these checks, if the same

condition is checked in multiple nodes of the graph, they will have exact same

checks. This allows us to represent the control flow graph as a Binary Decision

Diagram which is well suitable for analysis using various algorithms.

5.3 Unreachable Code Detection

Unreachable Code Detection is a kind of Control Flow Analysis.

Unreachable Code is defined as:

“A code fragment is unreachable if there is no control flow path to

it from the rest of the program. Code that is unreachable can never

be executed, and can therefore be eliminated without affecting the
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behavior of the program.”[12]

We start by building a control flow graph of a firewall policy. Labels act

as the nodes of this graph. Edges can be associated with a list of constraints:

a static checks which packets must be satisfied for control flow to traverse this

edge. The label is reachable if there exists at least one path from one of initial

labels to this label. The constraints along the path must not be inconsistent.

I.e. it must be possible to have a packet which satisfies all of them.

5.4 Live Variable Analysis

Live Variable Analysis is a type of data flow analysis which could be used to

find and eliminate dead code. In particular, the code which assigns variables

that are always re-assigned later. In other words, rules which are redundant

and could be omitted from a policy. More formally:

“A variable is live at the exit from a label, if there exits a path

from the label to a use of the variable that does not re-define the

variable.”[25]

Performing live variable analysis using a monotone framework involves find-

ing a fixed point for a given lattice of finite height and functions f . There are

several algorithms to find the fixpoint. For example Nielson et al. present[25]

Chaotic Iteration algorithm, Maximal Fixed Point solution, and Meet Over all

Paths solution.

In case of multi-trigger policies, when a policy decision is stored in a (spe-

cial) variable, we can apply live variable analysis to find all places where variable

assignments are always overwritten afterwards. Such places indicate rule shad-

owing.

Example:

Sample policy in a native language (pf ):
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block in on en0 from 192.168.1.10/32 to any

pass out on en0 from 192.168.1.0/24 to any

Assuming multi-trigger action, the first rule is always shadowed by the sec-

ond one.

Let us convert this into an intermediate language.

1 if saddr in 192.168.1.10/32 then

$0=’drop’;

2 if saddr in 192.168.1.00/24 then

$0=’accept’;

# eplilogue

1000 if $0=’accept’ then

accept;

1001 if $0=’drop’ then

drop;

The variable $0 is not live at the exit from label 1. Label 1 corresponds

to the first rule in the original policy, meaning that this rule is redundant and

could be omitted.
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6 Implementation

We have implemented a simple analyzer, analyzing a program in an Intermediate

Rule Language and detecting some potential anomalies.

The implementation consists of the following modules:

1. Parser is responsible for parsing a program in Intermediate Rule Language

and representing it as a parse tree.

2. Data Flow and CFG Extractor is responsible for taking parsed policy and

extracting from it some facts, which will be used in further analysis.

3. Static Analyzer working with facts produced by previous module imple-

ments live variable analysis and unreachable code detection.

The first two modules are implemented in Haskell. Haskell is an advanced

purely functional programming language.

The Datalog language is commonly used as an implementation language for

program analysis algorithms[30], [33]. Datalog is a query language based on the

logic programming paradigm. It is a subset of the Prolog logic programming

language.

“Analyses expressed in a few lines of Datalog can take hundreds

to thousands of lines of code in a traditional language.”[33]

We use Datalog for Static Analyzer Module implementation.

Source code for all modules (excluding unit tests and build files) is included

in Appendix A. We will discuss each of these modules in more detail below.

6.1 Parser Module

This module is parsing concrete syntax of our Intermediate Policy Language as

defined in Section 4.6 into a Parse Tree. Parse tree structure is pretty much
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defined by abstract syntax as defined in Section 4.5. We are using Haskell data

structures to represent it.

Coding a parser by hand is a laborious task, and tools called parser gener-

ators are commonly used to automate it. These tools usually accept high-level

definition of syntax of the input language and generate parser code in the target

language. The tool we have chosen for this purpose is called Happy, a monadic

parser generator for Haskell[17].

Parser grammar specification in annotated BNF syntax for Happy is included

in Appendix A.2.

The type of parser we have implemented is called a monadic parser. We

are using a variant of Exception Monad (also known as Error Monad) for error

handling. The monad we use is defined by type constructor P, bind operation

thenP and return operation returnP.

We define tokens used in our language using the %token directive. The

lexical analyzer, responsible for splitting a source file into tokens is pretty trivial

and hand-coded in Haskell, and its source is included in PolicyLang.y as a lexer

function. The lexer is also monadic. It is called by the parser to emit new

tokens, and is passed a continuation as an argument. The new token is read

and a continuation is called with it.

The bulk of the grammar consists of production rules. Each rule consists

of a non-terminal symbol on the left side followed by one or more expansions

on the right side. Expansions have Haskell code associated with them (in curly

brackets) which specify the value of each expansion. The parser matches a

stream of tokens produced by lexer towards productions, and builds a Parse

Tree from values emitted by productions.

The data types for the parse tree as defined in separate Haskell modules:

NetworkData and Policy, the source of which is also included in Appendix A.2.
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The NetworkData Haskell module contains definitions of data types for basic

network concepts such as IP address5, IP Network, and Netmask as well as

utility functions for working with them, such as converting between CIDR and

netmask notations. It also contain instances of the Interval class for IP addresses

and TCP port numbers.

Haskell module Policy contains definitions of data types for firewall policies

in intermediate language: types such as PolicyRule, StaticCheck, and Target.

6.2 Data Flow and CFG Extractor Module

The purpose of this module is for a given program (parser module output) to

produce a set of facts for the Datalog analyzer.

The facts it produces are:

1. List of internal and external labels

2. List of initial labels

3. List of final labels

4. List of variables

5. At what labels writes to what variables occur

6. At what labels reads from what variables occur

Additionally, it generates Datalog predicates for the control flow graph. Be-

cause of the predicate structure we have chosen for our Datalog analysis (see

next section), it also generates analysis predicates with appropriate arity. The

arity depends on policy being analyzed.

Let us first look at the notion of internal vs external labels. In our interme-

diate policy language all rules have labels. This is what in policy analysis we
5In the current implementation, we work only with IP version 4 addresses although our

algorithms could be extended to work with IP version 6 addresses as well

47



will refer to as external labels. Static code analysis also operates with labels.

However these labels (which we will call internal labels) are more granular, since

we should be able to address individual parts of the rule. Each external label is

corresponding to a rule which hse the following general structure:

label ’if’ filteringspec ’then’ targetspec ’;’

To reflect the fact that control flow might now reach target spec if filter-

ingspec is not matched, we need to distinguish at least two internal labels here:

one for filtering spec and one for target spec. Let us call them lif and lthen and

associate them with filtering specification and target specification respectively.

After the control flow reaches lif , if filtering specification is satisfied it would

proceed to lthen. Otherwise it would proceed to the next rule.

Target specification in our intermediate language can have only 6 possible

values:

If it is either ACCEPT or DROP then lthen is final and control will not

proceed past it. The control flow graph for this case is shown on Figure 2.

Figure 2: Control flow graph of of policy statement with ACCEPT/DROP
target

If it is JUMP, it would proceed to the label specified as a parameter of JUMP.

To be more precise, it will proceed to the internal label which corresponds to

the if part of the external label specified as the JUMP argument. So for JUMP

X the control flow will proceed to Xif .
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The control flow graph for this case is shown on Figure 3.

Figure 3: Control flow graph of of policy statement with JUMP target

If it is SET, the control will always proceed to the next rule directly if the

static check condition is not satisfied, and via the Lthen label otherwise.

The control flow graph for this case is shown on Figure 4.

Figure 4: Control flow graph of of policy statement with SET target

Now, we come to a more complex case: CALL/RETURN. The control flow

for this case is shown on Figures 5 and 6. A CALL target will cause control first

to flow to the label specified as the CALL argument, but it could eventually

return from it. To describe this we define another internal label lreturn which

is where control flow would return after the call. After lreturn control flow will

invariably proceed to the next rule. A RETURN target could cause control

flow to come back to the appropriate lreturn. Determination of which one is a

complex problem which is part of interprocedural analysis. For imperative, non-

functional languages it is hard to solve and one common approach is to make
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a conservative assumption that any RETURN target could potentially return

flow control to any CALL statement in the program. This so-called conservative

analysis allows us to perform some practical dataflow analysis, which might not

be exhaustive (will not detect all possible cases), but will still be useful. For the

purpose of this prototype we decided to ignore CALL and RETURN targets,

treating them as empty (doing nothing). Adding support for them could be a

direction for future work.

Figure 5: Control flow of of policy statement with CALL target

Figure 6: Control flow of of policy statement with RETURN target

So each original label could be mapped into two (or three if the target is

CALL) internal labels). Internal labels will be used in static code analysis. The

analysis will produce some conclusions about internal labels (for instance, that

it is unreachable). Based on these conclusions we can try to infer conclusions

about policy rules referenced by original labels. For example if all internal
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labels corresponding to an original label are unreachable we can conclude that

the policy rule with this original label is also unreachable and can be safely

removed from the policy.

Initial Labels are entry points of the program. In our intermediate language,

policy processing always starts with the rule which has the external label with

the lowest number. Thus there would be only one initial label. Since for code

analysis we operate in internal labels, it would be an lif internal label corre-

sponding to the external label with the lowest number.

Final Labels are labels at which program execution stops. According to

our definition of an intermediate language, rules processing stops when when

the ACCEPT or DROP target specification is triggered or when control reaches

the end of the policy (last rule). So all lthen labels in the rules with an ACCEPT

or DROP target will be treated as finals, plus lthen label of the last policy rule

if it has SET as an action.

6.3 Static Analyzer Module

This module is implemented in Datalog. It takes some facts generated by Data

flow and CFG extraction module as described in Section 6.2 and tries to in-

fer some information about the original program. Our analysis is targeting the

discovery of “anomalies”: possible inefficiencies or errors in the program. In par-

ticular, we perform two analyses: Unreachable Code Detection and Live Variable

Analysis. The theory behind these analyses are described in Sections 5.3 and 5.4

respectively. In this subsection we will discuss mostly implementation aspects.

As mentioned earlier, we are using the Datalog language to implement this

module. The implementation we use is bddbddb[34]. It is developed at Stanford

University, and written in the Java programming language.
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6.3.1 Generated Facts

A Datalog program consists of facts and rules. Both facts and rules are ex-

pressed in the form of Horn clauses in form: L0 ← L1, . . . , Ln where Li is

predicate in form p(t1, . . . , tn) in which tn are terms. Terms could be constants

or variables.

In bddbddb all terms are mapped to integer values in their respective domains.

The domains we define are:

1. O – a domain of original labels

2. L – a domain of internal labels

3. V – a domain of variables

4. B – a special domain of Boolean constants

All domains in Datalog have size:

“A domain D ∈ D has size size(D) ∈ N, where N is the set of

natural numbers. We require that all domains have finite size. The

elements of a domain D is the set of natural numbers 0 . . . size(D)−

1.”[33]

The domain declarations are generated with calculated sizes. To minimize

domain size, values in domains L and V are generated to be sequential, without

gaps.

Sample domains declaration we generate:

### Domains

O 1021 olabels.map

L 11 labels.map

V 1000 vars.map

B 2
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For each domain we specify size and location of the EDB file. In Datalog,

facts can be stored in external relational storage, called Extension Database

(EDB) or defined in a Datalog program, referred as Intensional Database (IDB).

To simplify our implementation and so as not to deal with IDB data formats we

only use IDB for our facts. So, although we specify EDB file names for domains,

they are not used.

The facts we operate with are:

1. olabel predicate defines the relationship between internal and external la-

bels. This fact, strictly speaking, is not needed for analysis and is used

mostly to provide more user-friendly reporting, using external label num-

bers.

2. label predicate defines all known internal labels. (Since these are the labels

we work with, we will refer to them just as “labels” from now on).

3. init predicate defines entry points (labels)

4. final predicate defines exit points (labels)

5. var predicate defines dynamic variables used in program.

6. write predicate defined on variable number and label pairs, states that at

given label value of given variable is changed (written to).

7. read predicate defined on variable number and label pairs, states that at

given label the value of given variable is accessed (read from).

Here is an example of some generated facts:

label(0).

label(1).

label(3).
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label(4).

label(6).

label(7).

label(9).

label(10).

olabel(1000,0).

olabel(1000,1).

olabel(1001,3).

olabel(1001,4).

olabel(1010,6).

olabel(1010,7).

olabel(1020,9).

olabel(1020,10).

final(1).

final(10).

var(0).

var(1).

read(3,1).

write(7,0).

init(0).

6.3.2 Generated Control Flow Predicates

In addition to facts, we also generate some Datalog predicates based on source

policy, which represent a control flow graph. These predicates have a variable

number of parameters and in their most general form could be defined as:
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succ( l0, l1,

saddrvariables, sportvariables,

daddrvariables, dportvariables,

protocolvariables

).

These predicates describe how control could pass from l0 to l1.

In most cases control flow is conditional – it depends on values of packet fields

being inspected and values of dynamic variables. At the point of control flow

definition it is difficult to reason about the values of dynamic variables, so we will

assume the dynamic check, if present, can be evaluated to both True and False,

and that both control flow branches are possible. For a static check we could

very well assume that they will evaluate to the same values for all rules in the

policy, since packet fields do not change durring processing. So applying MCSI

algorithm as described in Section 5.2, we represent each part of the static check

(source address check, source port check, destination address check, destination

port check, and protocol check) as a group of Boolean variables. Each variable

could evaluate to True if the packet field value belongs to the respective interval

or False if not. These variables (which we will collectively call static check

variables could be grouped as: saddrvariables, sportvariables, daddrvariables,

dportvariables, protocolvariables.

Let us now revisit control flow diagrams at Figures 2, 3, 4, 5 and 6. There

are two kind of control flow transitions: conditional and unconditional. Repre-

senting unconditional parts of a control flow graph is very straightforward: the

predicate would not depend on values of static check variables which in Datalog
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would be defined as anonymous variables, denoted by an underscore character.

For example predicate:

succ(3,6,_,_,_,_,_,_).

denotes that control flow from label 3 could pass to label 6 regardless of the

fields values of the examined packet.

Conditional control flow predicates depend on values of static check variables.

Static check is satisfied if:

staticcheck ←

saddrvariables ∧ sportvariables ∧

daddrvariables ∧ dportvariables ∧

protocolvariables

Each static check variable group can contain one or more variables (per

MCSI split). At least one of them must evaluate to True. For example:

saddrvariables = saddr0 ∨ saddrn. So the full form of static check is:

staticcheck(. . .)←

(saddr0 ∨ saddr1 . . . ∨ saddrn) ∧

(sport0 ∨ sport1 . . . ∨ sportn) ∧

(daddr0 ∨ daddr1 . . . ∨ daddrn) ∧

(dport0 ∨ dport1 . . . ∨ dportn) ∧

(proto0 ∨ proto1 . . . ∨ proton)
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One way to decompose it into Horn clauses is:

staticcheck ←

¬nonen(saddr0, saddr1 . . . , saddrn) ∧

¬nonen(sport0, sport1 . . . , sportn) ∧

¬nonen(daddr0, daddrn . . . , daddrn) ∧

¬nonen(dport0, dportn . . . , dportn) ∧

¬nonen(proto0, proton . . . , proton)

where:

nonen(v0, v1, . . . , vn)← ¬v0 ∧ ¬v1 . . .¬vn

So for each policy rule, we generate one or more succ predicates. For the

static check part we generate different flow for cases where static check is satis-

fied and where it is not.

For example, for rule:

1001 if saddr in {[10.10.10.1,10.10.10.10],[20.0.0.0,20.1.1.1]}

sport in [1,100] and $999=5

then jump 1020;

We will generate following succ predicates:

# Label 1001

# unconditional:

succ(4,9,_,saddr1,saddr2,_,_,sport0).

# if condidion satified

succ(3,4,_,saddr1,saddr2,_,_,sport0) :- !none(0,saddr1,saddr2,0,0),
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!none(sport0).

# if condidion not satified

succ(3,6,_,saddr1,saddr2,_,_,_) :- none(0,saddr1,saddr2,0,0).

succ(3,6,_,_,_,_,_,sport0) :- none(sport0).

The example above uses internal labels. Mapping between internal and

external labels for this example is shown on page 54.

6.3.3 Unreachable Code Detection

This is a first, simple analysis of this module implementation. The theory is

discussed in Section 5.3. The top level goal for this analysis is an unreachable/1

predicate which is true for labels which are not reachable. A label is deemed

reachable if there is a path from one initial label to it. A path (expressed via

path predicate) is defined as follows:

path(A,B,x1,x2,x3,x4) :- A=B, label(A), label(B).

path(A,C,x1,x2,x3,x4) :- succ(A,B,x1,x2,x3,x4),

path(B,C,x1,x2,x3,x4),

label(A), label(B), label(C).

In this particular example we have four static check variables (named x1, x2, x3, x4)

corresponding to whenever input packet fields belong to various IP address ports

or protocol ranges mentioned in the the policy. The number of static check vari-

ables may vary depending on the policy being analyzed. The path predicates

with required arity are generated by Haskell code.

6.3.4 Live Variable Analysis

The second analysis we chose to implement is Live Variable Analysis. The

theory discussed in Section 5.4.

The Datalog definition of this analysis is just a few lines of code:
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dead(L) :- write(L,V), !live(L,V).

live(L,V) :- init(Li), path(Li,L,x1,x2,x3,x4), read(Lr,V),

readonlyPath(L,Lr,V,x1,x2,x3,x4).

path(A,B,x1,x2,x3,x4) :- A=B, label(A), label(B).

path(A,C,x1,x2,x3,x4) :- succ(A,B,x1,x2,x3,x4),

path(B,C,x1,x2,x3,x4),

label(A), label(B), label(C).

readonlyPath(A,B,_,x1,x2,x3,x4) :- A=B, label(A), label(B).

readonlyPath(A,B,_,x1,x2,x3,x4) :- succ(A,B,x1,x2,x3,x4),

label(A), label(B).

readonlyPath(A,C,V,x1,x2,x3,x4) :- readonlyPath(A,B,V,x1,x2,x3,x4),

succ(B,C,x1,x2,x3,x4),

var(V), label(A), label(B), label(C),

!write(B,V).

In this particular example we have four static check variables (named x1, x2, x3, x4)

corresponding to whenever input packet fields belong to various IP address ports

or protocol ranges mentioned in the the policy. The number of static check

variables may vary depending on the policy being analyzed. The path and

readonlyPath predicates with required arity are generated by Haskell code.

The graphical illustration of our implementation of live analysis can be seen

on Figure 7, which shows a simple control flow graph. Variable V is live at exit

from label L because the following holds true:

1. Variable V is written into at labels L (also at L1)

2. There is a path from one of initial labels (Li) to L.
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Figure 7: Live Variable Analysis example
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3. There are labels where it is read (LR, L1R)

4. There is at least one read-only path (path which does not overwrite variable

V ) from L to label where it is read (Lr).

In this example, the path from L to L1R is not read-only, because the variable

is overwritten at L1.

Strictly speaking our implementation is little more specific than “standard”

live variable analysis. In particular we only concern ourselves with places where

variables are written and attempt to detect non-live variables at the exit point

from labels where they are written. This allows us to detect unnecessary writes.

Additionally, in order to minimize search space, we only analyze labels which

are reachable, ignoring unreachable labels.

Finally, in our analysis we check whether a variable is ever read. We will

report as dead, all labels at which variables are written but never subsequently

read from.

61



7 Examples

Let us apply our analysis to several simple cases:

7.1 Example 1

Original policy in PF policy language:

block in on en0 from 192.168.1.10/32 to any

pass out on en0 from 192.168.1.0/24 to any

Since PF is using multi-trigger actions, we are using special variable $0 to

store outcome.

The same policy, translated to an Intermediate Policy Language:

1 if saddr in 192.168.1.10/32 then

$0=’drop’;

2 if saddr in 192.168.1.0/24 then

$0=’accept’;

# eplilogue

1000 if $0=’accept’ then

accept;

1001 if $0=’drop’ then

drop;

The control flow graph for this program is shown in Figure 8.

Analysis detects that the $0 assignment in the rule with label 1 is redundant,

since it is always overwritten by the rule with label 2. That means that that

this rule is redundant and could be removed from the policy without affecting

its semantics.
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Figure 8: Control flow graph for Example 1

7.2 Example 2

Sample policy, already in Intermediate Policy Language:

1000 if saddr in [192.168.1.10,192.168.1.10]

then drop;

1001 if saddr in {[10.10.10.1,10.10.10.10],[20.0.0.0,20.1.1.1]}

sport in [1,100] and $999=5

then jump 1020;

1010 if saddr in [192.168.1.0,192.168.1.255]

then $888=’1’;

1020 if saddr in [192.168.1.0,192.168.1.255]

then accept;

The control flow graph for this program is shown in Figure 9.

Analysis detects that the $888 assignment in the rule with label 1010 has

no effect since this variable will never be read afterwards. That means that
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Figure 9: Control flow graph for Example 2

this rule is redundant and can be removed from the policy without affecting its

semantics.

7.3 Example 3

Sample policy, already in Intermediate Policy Language:

1 if saddr in 192.168.1.10/32 then

$0=’drop’;

2 if saddr in 192.168.1.0/24 then

$1=’accept’;

# eplilogue

1000 if $0=’accept’ then

accept;

1001 if $0=’drop’ then

drop;
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The control flow graph for this program is shown in Figure 10.

Figure 10: Control flow graph for Example 3

Analysis detects that $1 assignment in rule with label 2 has no effect since

this variable will never be read afterwards. That means that this rule is redun-

dant and could be removed from the policy without affecting its semantics.

7.4 Example 4

Sample policy, already in Intermediate Policy Language:

1 if saddr in 192.168.1.0/24 then

jump 1000;

2 if !saddr in 192.168.1.0/24 then

jump 1000;

3 if sport in (10,100) then
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drop;

# eplilogue

1000 if $0=’accept’ then

accept;

1001 if $0=’drop’ then

drop;

The control flow graph for this program is shown of Figure 11.

Figure 11: Control flow graph for Example 4

Analysis detects that label 3 is unreachable. Since labels 1 and 2 check for

opposite conditions, control flow will proceed to label 1000 in any case, never

reaching label 3.

7.5 Example 5

Sample policy, already in Intermediate Policy Language:
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1 if saddr in 192.168.1.0/16 then

jump 1000;

2 if saddr in {192.168.1.0/24, 192.168.1.0/32,

(192.168.1.20,192.168.1.23)} then

jump 1000;

3 if sport in (10,100) then

drop;

# eplilogue

1000 if $0=’accept’ then

accept;

1001 if $0=’drop’ then

drop;

The control flow graph for this program is shown in Figure 12.

Analysis detects that label 2 has no effect. This is because saddr range check

at label 1 is more general than the check at label 2. Any packet satisfying the

check at label 2 will also satisfy the check at label 1 and thus control flow for

such packets will proceed to label 1000. The rule with label 2 could be safely

removed from the policy.
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Figure 12: Control flow graph for Example 5
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8 Conclusions and Future Work

In this thesis we have demonstrated how static code analysis could be applied to

the problem of firewall policy anomaly detection. The overall framework which

we have developed could now be used to apply more analyses to policies in our

intermediate language.

Our implementation of unreachable code detection and live variable analysis

is “conservative”: it is not guaranteed to detect all unreachable codes and all

variables which are “dead” right after being assigned. While our analysis is

conservative, and might not be able to detect some anomalies, it is “safe” and

should not produce false-positives.

We do not detect some anomalies because we do not try to reason about

values of dynamic variables, and whenever dynamic check is present as part of

the rule, we are assuming that both outcomes are possible. In fact, some of these

variables might have values which will make some branches unreachable which

would not be detected by our code. Better reasoning about dynamic variable

values could be a direction of future research.

In this work we decided not to deal yet with CALL/RETURN statements.

This could be done using inter-procedural analysis techniques and could be an

another direction for future work.

We also plan to develop compilers from actual firewall policy languages to

our intermediate language. This would allow us to apply this work to real-

life policies and to make quantitive measurements of the number of anomalies

detected using this approach.

Another very promising direction of future research is application of these

techniques in a distributed firewall environment where we need to analyze a

group of firewall policies interacting together. In this case, our approach with

intermediate policy language will be especially useful, since polices could be in
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different languages.
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Appendices

A Source Code

A.1 Implementation of MCSI calculation algorithm

-- | This module implements calculation of Minimal Combining Sets

-- | @author Vadim Zaliva <lord@crocodile.org>

module MCSI where

import Data.List

-- | Interval constructor

data (Ord a, Show a) => Interval a = Interval

a -- ^ lower bound

Bool -- ^ left-closed?

a -- ^ upper bound

Bool -- ^ right-closed?

deriving (Eq)

-- | Defines sort order for intervals, so they are sorted

-- | by their endpongs first. For convenience only.

instance (Ord a, Show a) => Ord (Interval a) where

compare (Interval a0 ai0 b0 bi0) (Interval a1 ai1 b1 bi1) =

compare (a0, b0, ai0, bi0) (a1, b1, ai1, bi1)

-- | Convenience instance for interval pretty-printing

instance (Ord a, Show a) => Show (Interval a) where

show (Interval a ai b bi) = (if ai then "[" else "(") ++

(show a) ++ "-"

++ (show b) ++

(if bi then "]" else ")")

-- | Check whenever point belongs to given interval

inInterval :: (Ord a, Show a) => Interval a -> a -> Bool

inInterval (Interval a ai b bi) x = ((ai && (x>=a)) || (not ai && (x>a))) &&

((bi && (x<=b)) || (not bi && (x<b)))

splitBy :: (Ord a, Show a) => Interval a -> a -> Bool -> Bool -> [(Interval a)]

splitBy (Interval a ai b bi) x xi xo =

if not (inInterval (Interval a ai b bi) x) ||

(xi && ai && x==a && xo) ||

(xi && bi && x==b && (not xo)) ||

a == b

then

[]

else if xi then

nub [norm (Interval a ai x (not xo)),

norm (Interval x xo b bi)]

else
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nub [norm (Interval a ai x False),

norm (Interval x True x True),

norm (Interval x False b bi)]

where

norm (Interval a ai b bi) = if a==b && ai/=bi then (Interval a True b True)

else (Interval a ai b bi)

-- | Given set of Intervals calculates MCSI

mcsi :: (Ord a, Show a) => [(Interval a)] -> [(Interval a)]

mcsi il = let splits = map (splitByList (intervalBounds il)) il

in if all ((==) []) splits then il

else mcsi (nub (splitOrOrig splits il))

where

intervalBounds intlist = nub (foldr1 (++) [ [(a,ai,True),(b,bi,False)] | (Interval a ai b bi) <- intlist])

splitByList lp i = nub (foldr1 (++) [(splitBy i p pi po) | (p,pi,po)<-lp])

splitOrOrig (s:xs) (o:os) = if s == [] then

(o : (splitOrOrig xs os))

else

s ++ (splitOrOrig xs os)

splitOrOrig [] [] = []

A.2 Parser Module Sources

{

module PolicyLang where

import Char

import Maybe

import Text.Regex.Posix.String

import Data.Bits

import Data.Word

import Data.List

import System.IO.Unsafe(unsafePerformIO)

import MCSI

import NetworkData

import Policy

}

%name parse

%tokentype { Token }

%monad { P } { thenP } { returnP }

%lexer { lexer } { TokenEOF }

%token

if { TokenIf }

then { TokenThen }

nil { TokenNil }

accept { TokenAccept }

drop { TokenDrop }

call { TokenCall }

jump { TokenJump }
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return { TokenReturn }

and { TokenAnd }

true { TokenTrue }

saddr { TokenSrcAddr }

sport { TokenSrcPort }

daddr { TokenDstAddr }

dport { TokenDstPort }

in { TokenIn }

proto { TokenProto }

’!’ { TokenNeg }

’=’ { TokenEq }

’&’ { TokenMask }

’{’{ TokenOCB }

’}’{ TokenCCB }

’(’{ TokenORB }

’)’{ TokenCRB }

’[’{ TokenOSB }

’]’{ TokenCSB }

’,’{ TokenComma }

’;’{ TokenSemi }

’/’{ TokenSlash }

’:’{ TokenColumn }

int { TokenInt $$ }

varname { TokenVarName $$ }

ipv4 { TokenIPv4 $$ }

opaque_value { TokenOpaqueValue $$ }

%%

ruleset : {- empty -} { [] }

| ruleset rule {$2:$1}

rule : int if filteringspec then targetspec ’;’ { PolicyRule $1 $3 $5}

targetspec

: action_target {$1}

| call_target {$1}

| jump_target {$1}

| return_target {$1}

| set_target {$1}

action_target:

accept { Accept}

| drop { Drop }

call_target : call int { Call $2 }

jump_target : jump int { Jump $2 }

return_target : return { Return }

set_target : varname ’=’ opaque_value {Set $1 $3}

filteringspec
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: staticchecks and dynamicchecks {FilteringSpec $1 $3}

| staticchecks {FilteringSpec $1 DynamicAny}

| dynamicchecks {FilteringSpec staticAny $1}

| true {FilteringSpec staticAny DynamicAny}

dynamicchecks : maybeneg varname ’=’ valuecheck {VarEQ $1 $2 $4}

valuecheck

: opaque_value { OpaqueValue $1}

| nil {IsNil}

| int { IntValue $1}

| int ’&’ int { IntAndMask $1 $3}

maybeneg : ’!’ { True }

| { False}

staticchecks : maybeneg saddr_check

maybeneg sport_check

maybeneg daddr_check

maybeneg dport_check

maybeneg proto_check { StaticCheck $1 $2 $3 $4 $5 $6 $7 $8 $9 $10}

saddr_check: {- empty -} { [] }

| saddr in addr_interval_or_set {$3}

sport_check: {- empty -} { [] }

| sport in port_interval_or_set {$3}

daddr_check: {- empty -} { [] }

| daddr in addr_interval_or_set {$3}

dport_check: {- empty -} { [] }

| dport in port_interval_or_set {$3}

proto_check: {- empty -} { [] }

| proto in proto_interval_or_set {$3}

addr_interval_or_set

: addr_interval { [$1] }

| ’{’ addr_interval_set ’}’ { $2 }

port_interval_or_set

: port_interval { [$1] }

| ’{’ port_interval_set ’}’ { $2 }

proto_interval_or_set

: proto_interval { [$1] }

| ’{’ proto_interval_set ’}’ { $2 }

addr_interval:

intrv_open ipv4 ’,’ ipv4 intrv_close { Interval (readIPv4 $2) $1 (readIPv4 $4) $5 }

| ipv4 ’/’ int { networkToInterval (CIDR (readIPv4 $1) (read (show $3))) }

| ipv4 ’:’ ipv4 { networkToInterval (IPMask (readIPv4 $1) (readIPv4 $3)) }
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port_interval: intrv_open int ’,’ int intrv_close { Interval $2 $1 $4 $5 }

proto_interval: intrv_open int ’,’ int intrv_close { Interval $2 $1 $4 $5 }

intrv_open

: ’[’ {True }

| ’(’ { False}

intrv_close

: ’]’ {True }

| ’)’ { False}

addr_interval_set

: addr_interval { [$1] }

| addr_interval_set ’,’ addr_interval { $3 : $1 }

port_interval_set

: port_interval { [$1] }

| port_interval_set ’,’ port_interval { $3 : $1 }

proto_interval_set

: proto_interval { [$1] }

| proto_interval_set ’,’ proto_interval { $3 : $1 }

{

parse :: P [PolicyRule]

happyError :: P a

happyError = \s i -> error (

"Parse error in line " ++ show (i::Int) ++ "\n")

data Token

= TokenIf

| TokenThen

| TokenNil

| TokenAccept

| TokenDrop

| TokenCall

| TokenJump

| TokenReturn

| TokenAnd

| TokenTrue

| TokenIn

| TokenSrcAddr

| TokenDstAddr

| TokenSrcPort

| TokenDstPort

| TokenProto

| TokenNeg

| TokenEq

| TokenMask

| TokenORB

79



| TokenCRB

| TokenOSB

| TokenCSB

| TokenOCB

| TokenCCB

| TokenComma

| TokenSemi

| TokenSlash

| TokenColumn

| TokenInt Int

| TokenVarName Int

| TokenIPv4 String

| TokenOpaqueValue String

| TokenEOF

deriving (Show,Eq)

data ParseResult a

= ParseOk a

| ParseFail String

type P a = String -> Int -> ParseResult a

thenP :: P a -> (a -> P b) -> P b

m ‘thenP‘ k = \s l ->

case m s l of

ParseFail s -> ParseFail s

ParseOk a -> k a s l

returnP :: a -> P a

returnP a = \s l -> ParseOk a

failP :: String -> P a

failP err = \s l -> ParseFail err

lexer :: (Token -> P a) -> P a

lexer cont s = if (length s) == 0 then cont TokenEOF []

else case skipTokens [skipWS, skipComment] s of

Just rest -> lexer cont rest

Nothing -> case applyTokenParsers

[parseFixedToken,

parseVarName,

parseIPv4,

parseOpaque,

parseInt] s of

Just (token, rest) -> cont token rest

Nothing -> failP "Unknown token" s

applyTokenParsers :: [String -> Maybe (Token, String)] -> String -> Maybe (Token, String)

applyTokenParsers [] _ = Nothing

applyTokenParsers (p:ps) s = case p s of

Just (token, rest) -> Just (token, rest)

Nothing -> applyTokenParsers ps s
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skipTokens :: [(String -> Maybe String)] -> String -> Maybe String

skipTokens [] _ = Nothing

skipTokens (p:ps) s = case p s of

Just rest -> Just rest

Nothing -> skipTokens ps s

skipComment :: String -> Maybe String

skipComment "" = Nothing

skipComment (p:ps) = if p == ’#’ then

case findIndex (\c -> c==’\r’ || c==’\n’) ps of

Nothing -> Just ""

Just n -> Just (drop n ps)

else Nothing

skipWS :: String -> Maybe String

skipWS "" = Nothing

skipWS s = case findIndex notWS s of

Nothing -> Just ""

Just n -> if n==0 then Nothing else Just (drop n s)

where

notWS :: Char -> Bool

notWS c = c/=’ ’ && c/=’\t’ && c/=’\r’ && c/=’\n’

parseVarName :: String -> Maybe (Token, String)

parseVarName s = case checkPattern s "\\$[0-9]+" of

("",_) -> Nothing

(match,after) ->

Just (TokenVarName (read (tail match)), after)

parseInt :: String -> Maybe (Token, String)

parseInt s = case checkPattern s "[0-9]+" of

("",_) -> Nothing

(match,after) ->

Just (TokenInt (read match), after)

parseOpaque :: String -> Maybe (Token, String)

parseOpaque s = case checkPattern s "’[^’]*’" of

("",_) -> Nothing

(match,after) ->

Just (TokenOpaqueValue (take ((length match)-2)

(tail match)), after)

parseIPv4 :: String -> Maybe (Token, String)

parseIPv4 s = case checkPattern s "([0-9]){1,3}(\\.[0-9]{1,3}){3}" of

("",_) -> Nothing

(match,after) ->

Just (TokenIPv4 match, after)
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checkPattern :: String -> String -> (String, String)

checkPattern s p = unsafePerformIO $ do

r <- compile coptions eoptions ("^"++p)

case r of

Left _ -> return ("", s)

Right rc ->

do m <- regexec rc s

case m of

Left _ -> return ("",s)

Right (Just (_, match, after, _)) ->

return (match, after)

Right Nothing -> return ("", s)

where

coptions = compExtended -- IMPORTANT: no compNewline!

eoptions = execBlank

parseFixedToken :: String -> Maybe (Token, String)

parseFixedToken s = parseFixedToken_ tokenDefs s

where

tokenDefs :: [(String, Token)]

tokenDefs = [("if", TokenIf),

("then", TokenThen),

("nil", TokenNil),

("accept", TokenAccept),

("drop", TokenDrop),

("call", TokenCall),

("jump", TokenJump),

("return", TokenReturn),

("and", TokenAnd),

("true", TokenTrue),

("in", TokenIn),

("saddr", TokenSrcAddr),

("sport", TokenSrcPort),

("daddr", TokenDstAddr),

("dport", TokenDstPort),

("proto", TokenProto),

("!", TokenNeg),

("=", TokenEq),

("&", TokenMask),

("{", TokenOCB),

("}", TokenCCB),

("(", TokenORB),

(")", TokenCRB),

("[", TokenOSB),

("]", TokenCSB),

(",", TokenComma),

(";", TokenSemi),

("/", TokenSlash),

(":", TokenColumn)

]

parseFixedToken_ :: [(String, Token)] -> String -> Maybe (Token, String)

parseFixedToken_ [] _ = Nothing

parseFixedToken_ _ "" = Nothing
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parseFixedToken_ ((p,t):ds) s = if isPrefixOf p s then Just (t, drop (length p) s)

else parseFixedToken_ ds s

------- debugging tools ------

runParser :: String -> [PolicyRule]

runParser s = case parse s 1 of

ParseOk e -> reverse e

ParseFail s -> error s

testLexer :: String -> [Token]

testLexer s = if (length s) == 0 then []

else

case skipWS s of

Just rest -> testLexer rest

Nothing -> case applyTokenParsers

[parseFixedToken,

parseVarName,

parseIPv4,

parseOpaque,

parseInt] s of

Just (token, rest) -> token:(testLexer rest)

Nothing -> [TokenEOF]

}

{--

Definition of basic networking data types, IP addresses, networks

ranges.

Currently working with IPv4 addresses only.

--}

module NetworkData where

import Data.Bits

import Data.Word

import Data.List

import MCSI

type Octet = Word

data IP = IP Octet Octet Octet Octet

deriving (Eq)

type IPMask = IP

data Network = IPMask IP IPMask | CIDR IP Word8

instance Bounded IP where

minBound = IP 0 0 0 0

maxBound = IP 255 255 255 255

instance Ord IP where

compare a b =

compare (ip2word a) (ip2word b)
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instance Show IP where

show (IP a b c d) = (show a) ++ "."

++ (show b) ++ "."

++ (show c) ++ "."

++ (show d)

ip2word :: IP -> Word32

ip2word (IP a0 b0 c0 d0) = fromInteger (

(toInteger d0)+(toInteger c0)*256+(toInteger b0)*(256^2)+(toInteger a0)*(256^3))

word2ip :: Word32 -> IP

word2ip x = IP w1 w2 w3 w4

where

(o1,o1m) = divMod x (256^3)

(o2,o2m) = divMod o1m (256^2)

(o3,o3m) = divMod o2m 256

o4 = mod x 256

w1 = fromInteger (toInteger o1)

w2 = fromInteger (toInteger o2)

w3 = fromInteger (toInteger o3)

w4 = fromInteger (toInteger o4)

instance Show Network where

show (IPMask ip mask) = (show ip) ++ ":" ++ (show mask)

show (CIDR ip prefix) = (show ip) ++ "/" ++ (show prefix)

type IPInterval = Interval IP

split delim s

| [] <- rest = [token]

| otherwise = token : split delim (tail rest)

where (token,rest) = span (/=delim) s

readIPv4 :: String -> IP

readIPv4 s = let l = split ’.’ s in

IP (read (l!!0)) (read (l!!1)) (read (l!!2)) (read (l!!3))

prefix2mask :: Word8 -> Word32

prefix2mask prefix = prefix2mask_ prefix 0

where

prefix2mask_:: Word8 -> Word32 -> Word32

prefix2mask_ 0 x = x

prefix2mask_ p x = prefix2mask_ (p-1) (setBit (shiftR x 1) 31)

networkToInterval:: Network -> IPInterval

networkToInterval (IPMask ip mask) =

Interval

(word2ip ((ip2word ip) .&. (ip2word mask)))

True

(word2ip ((ip2word ip) .|. (complement (ip2word mask))))

True

networkToInterval (CIDR ip prefix) =

networkToInterval (IPMask ip (word2ip (prefix2mask prefix)))
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universalIPInterval:: IPInterval

universalIPInterval = Interval minBound True maxBound True

universalPortInterval:: Interval Int

universalPortInterval = Interval 0 True 65535 True

universalProtoInterval:: Interval Int

universalProtoInterval = Interval 0 True 255 True

{--

Definition firewall policy related data types

--}

module Policy where

import Data.Word

import MCSI

import NetworkData

type RuleLabel = Int -- Rule #

type VarName = Int -- Variable name/#

type VarValue = String -- Opaque variable value

type Neg = Bool -- Negation flag

type Port = Int -- TCP Port #

type Protocol = Int -- IP Protocol #

data PolicyRule = PolicyRule RuleLabel FilteringSpec Target

deriving(Show, Eq)

data FilteringSpec = FilteringSpec StaticCheck DynamicCheck

deriving(Show, Eq)

data DynamicCheck = VarEQ Neg VarName DynamicCheckValue

| DynamicAny

deriving(Show, Eq)

data DynamicCheckValue =

OpaqueValue VarValue

| IntValue Int

| IntAndMask Int Int

| IsNil

deriving(Show, Eq)

data Target = Accept |

Drop |

Call RuleLabel |

Jump RuleLabel |

Return |

Set VarName VarValue

deriving(Show, Eq)

data StaticCheck = StaticCheck Neg [(Interval IP)] Neg [(Interval Port)] Neg [(Interval IP)] Neg [(Interval Port)] Neg [(Interval Protocol)]
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deriving(Show, Eq)

staticAny :: StaticCheck

staticAny = StaticCheck False [] False [] False [] False [] False []

A.3 Data Flow and CFG Extractor Module Sources

{--

Policy transformations

-}

module PolicyTransform(xmain) where

import System( getArgs )

import IO

import Data.List(nub,sort,zip5,elemIndex)

import Ix(range)

import MCSI

import Policy

import PolicyLang

import NetworkData

type InternalLabel = Int -- Internal Rule label

-- TODO add unit tests.

combineFromMCSI :: (Ord a, Show a) => [(Interval a)] -> [(Interval a)] -> [(Interval a)]

combineFromMCSI domain old = filter (\m -> any (inside m) old) domain

where

inside (Interval x xi y yi) h = inside1 h x xi True && inside1 h y yi False

inside1 (Interval a ai b bi) x xi xo = (inInterval (Interval a ai b bi) x )

|| ((not xi) && (not ai) && x==a && xo)

|| ((not xi) && (not bi) && x==b && (not xo))

getSaddr (PolicyRule _ (FilteringSpec (StaticCheck n x _ _ _ _ _ _ _ _) _) _) = (n,x)

getSport (PolicyRule _ (FilteringSpec (StaticCheck _ _ n x _ _ _ _ _ _) _) _) = (n,x)

getDaddr (PolicyRule _ (FilteringSpec (StaticCheck _ _ _ _ n x _ _ _ _) _) _) = (n,x)

getDport (PolicyRule _ (FilteringSpec (StaticCheck _ _ _ _ _ _ n x _ _) _) _) = (n,x)

getProto (PolicyRule _ (FilteringSpec (StaticCheck _ _ _ _ _ _ _ _ n x) _) _) = (n,x)

getLabel (PolicyRule x _ _) = x

policyLabels:: [PolicyRule] -> [RuleLabel]

policyLabels [] = []

policyLabels ((PolicyRule l _ a):xs) = case a of

(Call m) -> [l,m] ++ (policyLabels xs)

(Jump m) -> [l,m] ++ (policyLabels xs)

_ -> l:(policyLabels xs)
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-- Maps internal to original label

internalToOrig :: [PolicyRule] -> InternalLabel -> RuleLabel

internalToOrig rules l = (nub (sort (policyLabels rules))) !! (floor ((fromIntegral l)/3))

-- Maps policy label from original policy to pair of internal sublabels

-- First one is for condition and the second one is for ’then’ branch,

-- and the third one for return from ’call’.

-- The mapping preserves the order.

label2internal :: [PolicyRule] -> RuleLabel -> (InternalLabel,InternalLabel,InternalLabel)

label2internal policy l = case elemIndex l (nub (sort (policyLabels policy))) of

Nothing -> (-1,-1,-1)

Just pos -> (pos*3, pos*3+1, pos*3+2)

-- Returns internal label for ’if’ part of original label

label2internalIf :: [PolicyRule] -> RuleLabel -> InternalLabel

label2internalIf policy l = let (a,_,_) = label2internal policy l

in a

-- Returns internal label for ’then’ part of original label

label2internalThen :: [PolicyRule] -> RuleLabel -> InternalLabel

label2internalThen policy l = let (_,a,_) = label2internal policy l

in a

-- Returns internal label for ’return’ part of original label

label2internalRet :: [PolicyRule] -> RuleLabel -> InternalLabel

label2internalRet policy l = let (_,_,a) = label2internal policy l

in a

internalLabels:: [PolicyRule] -> [InternalLabel]

internalLabels rules =

let all_succ = rules2succ rules

in

sort $ nub (

foldl1 (++) [ [i0,i1] | (i0,i1) <- (foldl1 (++) [ u++t++f | (_,u,t,f) <- all_succ])]

++

foldl1 (++) [ [label2internalIf rules l] | (l,_,_,_) <- all_succ])

labelsPedicate :: [PolicyRule] -> String

labelsPedicate rules = foldl (++) "" [ "label("++(show r)++").\n" | r<-internalLabels rules ]

olabelsPedicate :: [PolicyRule] -> String

olabelsPedicate rules = foldl (++) "" [ "olabel("++(show (internalToOrig rules l))++","++(show l)++").\n" | l<-internalLabels rules ]

initPredicate :: [PolicyRule] -> String

initPredicate rules = "init(" ++ show (minimum (internalLabels rules)) ++ ").\n"

policyVariables:: [PolicyRule] -> [VarName]

policyVariables [] = []

policyVariables ((PolicyRule _ (FilteringSpec _ dcheck) tspec):xs) =

tl tspec ++ fl dcheck ++ policyVariables xs
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where

tl (Set v _) = [v]

tl _ = []

fl (VarEQ _ v _) = [v]

fl _ = []

renumberVariables :: [PolicyRule] -> [PolicyRule]

renumberVariables rules = map (renumber (sort $ nub $ policyVariables rules)) rules

where

renumber vars (PolicyRule l (FilteringSpec scheck dcheck) tspec) =

(PolicyRule l (FilteringSpec scheck (renD vars dcheck)) (renT vars tspec))

renT vars (Set v x) = (Set (mapvars vars v) x)

renT _ x = x

renD vars (VarEQ x v y) = (VarEQ x (mapvars vars v) y)

renD _ x = x

mapvars vars v =

case elemIndex v vars of

Nothing -> -1

Just pos -> pos

varPedicate :: [PolicyRule] -> String

varPedicate rules = foldl (++) "" [ "var("++(show r)++").\n" | r<-(sort $ nub $ policyVariables rules) ]

varReads:: [PolicyRule] -> [(RuleLabel,VarName)]

varReads [] = []

varReads (x:xs) =

case x of

(PolicyRule l (FilteringSpec _ (VarEQ _ v _)) _) -> (l,v):(varReads xs)

_ -> varReads xs

varReadsInternal:: [PolicyRule] -> [(InternalLabel,VarName)]

varReadsInternal rules = [((label2internalIf rules l), n) | (l,n)<-(varReads rules)]

readPedicate :: [PolicyRule] -> String

readPedicate rules = foldl (++) "" [ "read("++(show l)++","++ (show v)++").\n" | (l,v)<-(sort $ nub $ varReadsInternal rules) ]

varWrites:: [PolicyRule] -> [(RuleLabel,VarName)]

varWrites [] = []

varWrites (x:xs) =

case x of

(PolicyRule l (FilteringSpec _ _) (Set v _)) -> (l,v):(varWrites xs)

_ -> varWrites xs

varWritesInternal:: [PolicyRule] -> [(InternalLabel,VarName)]

varWritesInternal rules = [((label2internalThen rules l), n) | (l,n)<-(varWrites rules)]

writePedicate :: [PolicyRule] -> String

writePedicate rules = foldl (++) "" [ "write("++(show l)++","++ (show v)++").\n" | (l,v)<-(sort $ nub $ varWritesInternal rules) ]

finals:: [PolicyRule] -> [PolicyRule] -> [RuleLabel]

finals rules [] = []

finals rules ((PolicyRule l _ Accept):xs) = (label2internalThen rules l):(finals rules xs)

finals rules ((PolicyRule l _ Drop):xs) = (label2internalThen rules l):(finals rules xs)

finals rules ((PolicyRule l _ (Set _ _)):[]) = [(label2internalThen rules l), (label2internalIf rules l)]

88



finals rules ((PolicyRule l _ _):xs) = finals rules xs

finalsPedicate :: [PolicyRule] -> String

finalsPedicate rules = foldl (++) "" [ "final("++(show r)++").\n" | r<-(finals rules rules)]

buildChecks sadom spdom dadom dpdom pdom ruleset =

[[("saddr", isNeg (getSaddr x), (mapM (getSaddr x) sadom)),

("sport", isNeg (getSport x), (mapM (getSport x) spdom)),

("daddr", isNeg (getDaddr x), (mapM (getDaddr x) dadom)),

("dport", isNeg (getDport x), (mapM (getDport x) dpdom)),

("proto", isNeg (getProto x), (mapM (getProto x) pdom ))]

| x<-ruleset]

where

isNeg (n,_) = n

mapM (_,ls) dom = [ elem d (combineFromMCSI dom ls) | d<-dom]

noneArity sadom spdom dadom dpdom pdom = maximum [length sadom,

length spdom,

length dadom,

length dpdom,

length pdom]

nonePedicate sadom spdom dadom dpdom pdom =

let n = noneArity sadom spdom dadom dpdom pdom

in

((noneProto n), (noneDef n))

where

noneProto n = "none("++(commaSeparated [ "b"++(show x)++":B"| x<- take n (iterate (1+) 1)]) ++")\n"

noneDef n = "none("++(commaSeparated [ "x"++(show x)| x<- take n (iterate (1+) 1)]) ++") :- " ++

(commaSeparated [ "x"++(show x)++"=0"| x<- take n (iterate (1+) 1)]) ++ ".\n"

rule2succ :: [PolicyRule] -> PolicyRule -> (Maybe PolicyRule) ->

(RuleLabel, [(InternalLabel,InternalLabel)],[(InternalLabel,InternalLabel)],[(InternalLabel,InternalLabel)])

rule2succ allrules r0 r1 =

let (a0,b0,c0) = part1 allrules r0

(a1,b1,c1) = part2 allrules r0 r1

l = getLabel r0

in

(l, a0++a1,b0++b1,c0++c1)

where

part1 allrules (PolicyRule l0 _ t) =

let l0if = label2internalIf allrules l0

l0then = label2internalThen allrules l0

in

case t of

(Jump lx) -> ([(l0then, (label2internalIf allrules lx))],

[(l0if, l0then)],

[])

(Call lx) -> ([(l0then,(label2internalIf allrules lx))],
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[(l0if, l0then)],

[])

(Set _ _) -> ([],

[(l0if,l0then)],

[])

(Accept) -> ([],

[(l0if,l0then)],

[])

(Drop) -> ([],

[(l0if,l0then)],

[])

_ -> ([],[],[])

part2 allrules (PolicyRule l0 _ t) r1 =

case r1 of

Nothing -> ([],[],[])

Just (PolicyRule l1 _ _) ->

let

l0if = label2internalIf allrules l0

l0then = label2internalThen allrules l0

l0ret = label2internalRet allrules l0

l1if = label2internalIf allrules l1

l1then = label2internalThen allrules l1

in

case t of

(Jump lx) -> ([],

[],

[(l0if, l1if)])

(Call lx) -> ([(l0ret,l1if)],

[],

[(l0if, l1if)])

(Set _ _) -> ([(l0then, l1if)],

[],

[(l0if, l1if)])

(Accept) -> ([],

[],

[(l0if, l1if)])

(Drop) -> ([],

[],

[(l0if, l1if)])

_ -> ([],[],[])

rules2succ :: [PolicyRule] -> [(RuleLabel,[(InternalLabel,InternalLabel)],[(InternalLabel,InternalLabel)],[(InternalLabel,InternalLabel)])]

rules2succ rules = rules2succ_ rules rules

where

rules2succ_ rules [] = []

rules2succ_ rules (x:[]) = [rule2succ rules x (Nothing)]

rules2succ_ rules (x:(y:xs)) = (rule2succ rules x (Just y)):(rules2succ_ rules (y:xs))

succPedicate sadom spdom dadom dpdom pdom rules =

let all_c = buildChecks sadom spdom dadom dpdom pdom rules

all_succ = rules2succ rules

narity = noneArity sadom spdom dadom dpdom pdom

in
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foldl (++) "" [ "# Label " ++ (show l) ++

foldl (++) "\n# unconditional:\n" (map (bsu c) u) ++

foldl (++) "# if condidion satified\n" (map (bs c narity) t) ++

foldl (++) "# if condidion not satified\n" (map (bsn c narity) f)

| ((l,u,t,f),c) <- zip all_succ all_c]

where

-- unconditional clause

bsu c (l, x) = (pproto l x c) ++ ".\n"

-- positive clause

{-- positive clause. if no static variables involved, generates unconditional

succ() preducate in from succ(a,b,_,_...). -}

bs c narity (l, x) = if or [or vflags | (_, _, vflags)<-c] then

(pproto l x c) ++ " :- " ++ (commaSeparated (pslist c narity)) ++ ".\n"

else (pproto l x c) ++ ".\n"

-- negative clause

bsn c narity (l, x) = if or [or vflags | (_, _, vflags)<-c] then

foldl (++) "" [ (bs_ (ignoreothers n c) (l, x)) | n <- range (0 ,(length c)) ]

else (pproto l x c) ++ ".\n"

where

bs_ c (l, x) = if or [or vflags | (_, _, vflags)<-c] then

(pproto l x c) ++ " :- " ++ (commaSeparated (pslist c narity)) ++ ".\n"

else ""

-- negates one constraint clause and ignores others

ignoreothers :: Int -> [(String,Bool,[Bool])] -> [(String,Bool,[Bool])]

ignoreothers _ [] = []

ignoreothers n ((vname, vneg, vflags):cs) =

if n == 0 then (vname, (not vneg), vflags):(ignoreothers (n-1) cs)

else (vname, vneg, (take (length vflags) (repeat False))):(ignoreothers (n-1) cs)

pslist :: [(String,Bool,[Bool])] -> Int -> [String]

pslist [] _ = []

pslist ((vname, vneg, vflags):xs) narity =

if or vflags then (callNone vneg (varslist 0 vname vflags) narity):(pslist xs narity)

else pslist xs narity

callNone neg ls narity = (if neg then "" else "!") ++

"none(" ++ (commaSeparated (ls ++ (replicate (narity - (length ls)) "0"))

) ++ ")"

varslist :: Int -> String -> [Bool] -> [String]

varslist _ _ [] = []

varslist n prefix (x:xs) = if x then (p prefix n x):(varslist (n+1) prefix xs)

else "0":(varslist (n+1) prefix xs)

pproto :: InternalLabel -> InternalLabel -> [(String, Bool, [Bool])] -> String

pproto l0 l1 c = "succ("++(show l0)++","++ (show l1)++","++(plist c)++")"

plist :: [(String, Bool, [Bool])] -> String
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plist c = commaSeparated (foldl (++) [] [varlist 0 vname vflags | (vname, _, vflags)<-c])

varlist :: Int -> String -> [Bool] -> [String]

varlist _ _ [] = []

varlist n prefix (x:xs) = (p prefix n x):(varlist (n+1) prefix xs)

p :: String -> Int -> Bool -> String

p name n True = name ++ (show n)

p _ _ False = "_"

commaSeparated:: [String] -> String

commaSeparated [] = ""

commaSeparated l = foldl1 (\a b -> a ++ "," ++ b) l

stdProto :: String

stdProto =

"olabel(o0:O,l0:L) input\n" ++

"label(l0:L) input\n" ++

"init(l:L) input\n" ++

"final(l:L) input\n" ++

"var(v:V) input\n" ++

"write(l:L,v:V) input\n" ++

"read(l:L,v:V) input\n" ++

"rechable(l:L) outputtuples\n" ++

"unrechable(l:L) outputtuples\n" ++

"suspect(l:L) outputtuples\n" ++

"osuspect(o:O) outputtuples\n" ++

"live(l:L,v:V) outputtuples\n" ++

"dead(l:L) outputtuples\n"

dynamic sadom spdom dadom dpdom pdom =

let n = sum [length sadom,

length spdom,

length dadom,

length dpdom,

length pdom]

proto = commaSeparated [ "b"++(show x)++":B"| x<- take n (iterate (1+) 1)]

args = commaSeparated [ "x"++(show x)| x<- take n (iterate (1+) 1)]

in

(genproto proto, gendef args)

where

genproto p =

"path(l0:L,l1:L, " ++ p ++ ")\n" ++

"readonlyPath(l0:L,l1:L,v:V, " ++ p ++ ")\n" ++

"succ(l0:L,l1:L, " ++ p ++ ") input\n"

gendef a =

"rechable(L) :- init(Li), path(Li,L,"++a++").\n"++

"unrechable(L) :- label(L), !rechable(L).\n" ++

"live(L,V) :- init(Li), path(Li,L,"++a++"), read(Lr,V), readonlyPath(L,Lr,V,"++a++").\n"++

"dead(L) :- write(L,V), !live(L,V).\n"++

"suspect(L) :- dead(L).\n"++

"osuspect(O) :- olabel(O,X), suspect(X).\n" ++

"suspect(L) :- unrechable(L).\n"++
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"path(A,B,"++a++") :- A=B, label(A), label(B).\n"++

"path(A,C,"++a++") :- succ(A,B,"++a++"), path(B,C,"++a++"), label(A), label(B), label(C).\n"++

"readonlyPath(A,B,_,"++a++") :- A=B, label(A), label(B).\n"++

"readonlyPath(A,B,_,"++a++") :- succ(A,B,"++a++"), label(A), label(B).\n"++

"readonlyPath(A,C,V,"++a++") :- readonlyPath(A,B,V,"++a++"), succ(B,C,"++a++"), var(V), label(A), label(B), label(C), !write(B,V).\n"

xmain = do

args <- getArgs

file <- readFile (head args)

let policy = runParser file

sadom = mcsi (foldl (++) [] [ x | (_, x) <- (map getSaddr policy)])

spdom = mcsi (foldl (++) [] [ x | (_, x) <- (map getSport policy)])

dadom = mcsi (foldl (++) [] [ x | (_, x) <- (map getDaddr policy)])

dpdom = mcsi (foldl (++) [] [ x | (_, x) <- (map getDport policy)])

pdom = mcsi (foldl (++) [] [ x | (_, x) <- (map getProto policy)])

predicates = generatePredicates sadom spdom dadom dpdom pdom policy

(noneproto, nonedef) = nonePedicate sadom spdom dadom dpdom pdom

(dproto, ddef) = dynamic sadom spdom dadom dpdom pdom

domains = generateDomains policy

hPutStr stdout "\n\n### Domains\n"

hPutStr stdout domains

hPutStr stdout "\n\n### Relations\n"

hPutStr stdout noneproto

hPutStr stdout stdProto

hPutStr stdout dproto

hPutStr stdout "\n\n### Data\n"

hPutStr stdout predicates

hPutStr stdout "\n\n### Rules\n"

hPutStr stdout nonedef

hPutStr stdout ddef

hPutStr stdout "\n\n### Goals\n"

hPutStr stdout "osuspect(X)?\n"

hPutStr stdout "\n\n### EOF\n"

{-

hPutStr stdout (foldr (\x y -> (show x) ++ "\n" ++ y) "" (buildChecks policy))

hPutStr stdout (foldr (\x y -> (show x) ++ "\n" ++ y) "" (normalizeIntervals policy))

hPutStr stdout (foldr (\x y -> (show x) ++ "\n" ++ y) "" (normalizeIntervals policy))

hPutStr stdout "\n\n"

hPutStr stdout (foldr (\x y -> (show x) ++ "\n" ++ y) "" (buildAssumptions policy))

hPutStr stdout "\n\n"

hPutStr stdout (foldr (\x y -> (show x) ++ "\n" ++ y) "" (buildUnCond policy))

-}

maximumOr0 [] = 0

maximumOr0 x = maximum x

generateDomains :: [PolicyRule] -> String

generateDomains policy = let

nlabels = (maximumOr0 (internalLabels policy)) + 1
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nvars = (maximumOr0 (sort $ nub $ policyVariables policy)) + 1

in

"O " ++ (show (1 + (maximumOr0 (policyLabels policy)))) ++ " olabels.map\n" ++

"L " ++ (show nlabels) ++ " labels.map\n" ++

"V " ++ (show nvars) ++ " vars.map\n" ++

"B 2\n"

generatePredicates sadom spdom dadom dpdom pdom policy =

let

vpolicy = renumberVariables policy

in

(labelsPedicate policy) ++

(olabelsPedicate policy) ++

(finalsPedicate policy) ++

(varPedicate vpolicy) ++

(readPedicate vpolicy) ++

(writePedicate vpolicy) ++

(initPredicate policy) ++

(succPedicate sadom spdom dadom dpdom pdom policy)
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