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ABSTRACT

THE D-NEIGHBORHOOD COMPLEX OF A GRAPH

The Neighborhood complex of a graph, G, is an abstract simplicial complex formed by

the subsets of the neighborhoods of all vertices in G. The construction of this simplicial

complex can be generalized to use any subset of graph distances as a means to form the

simplices in the associated simplicial complex.

Consider a simple graph G with diameter d. Let D be a subset of {0,1, . . . , d}. For each

vertex, u, the D-neighborhood is the simplex consisting of all vertices whose graph distance

from u lies in D. The D-neighborhood complex of G, denoted DN(G,D), is the simplicial

complex generated by the D-neighborhoods of vertices in G. We relate properties of the

graph G with the homology of the chain complex associated to DN(G,D).
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CHAPTER 1

Introduction

A natural question in mathematics asks “When are objects the same, and when are they

different?” Consider the two graphs in Figures 1.1 and 1.2. Each graph contains 12 vertices

and the local viewpoint from any vertex is the same. In particular, each vertex has degree

two. Globally, one can see that these two graphs are different. Graph G1 is a disconnected

graph consisting of two cycles, while graph G2 is a disconnected graph consisting of three

cycles.

Figure 1.1. Graph G1 Figure 1.2. Graph G2

It is desirable to find techniques for distinguishing between two graphs. For example, if

graphs share the same local information, isomorphism tests can become difficult. Algebraic

topology allows one to study connectivity information in a precise manner. In particular,

persistent homology is an algebraic method for measuring the topological features of a space.

This field allows for the study of various levels of connectivity such as path connectivity, loop

connectivity, as well as higher dimensions.

One can use tools from algebraic topology to distinguish between graphs. A topological

space can be associated to a graph in many different ways. One such way is to use the
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information about how the vertices in a graph are connected. Studying the topological

features of the space can give insight into the global structure of the graph.

Chapters 2 and 3 will introduce the theory behind building a topological space from a

graph. Chapters 4 - 7 will discuss particular types of graphs and what can be said about

the features of the spaces associated to these graphs.
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CHAPTER 2

Background

In order to construct a topological space from a graph, some background information

from both graph theory and simplicial homology is needed. The next three sections will

introduce vocabulary, notation, and concepts from these areas.

2.1. Graph Theory

The following definitions from graph theory are consistent with those found in [Die10],

[GR01], [Gro08], and [HHM08]. A graph, G = (V,E), consists of a set of vertices, V , together

with a set of edges, E, which are two element subsets of V . If vi, vj ∈ V , then the edge between

these vertices will be denoted as the monomial vivj = vjvi.

The notion of distance in a graph is measured by the number of edges which must be

traversed in order to move from one vertex to another. The following defines three terms

relating to graph distance. These terms will be used frequently throughout this work.

Definition 1. Let G = (V,E) be a graph with vi, vj ∈ V .

(1) The distance between two vertices, denoted d(vi, vj), is the length of the shortest path

between vi and vj.

(2) The eccentricity of a vertex, vi, is given by ε(vi) =max{d(vi, vj) ∶ ∀ vj ∈ V }.

(3) The diameter of a graph is given by diam(G) =max{ε(vi) ∶ ∀ vi ∈ V }.

In other words, the distance between a pair of vertices is the fewest number of edges

needed to travel from vertex vi to vertex vj. From here on, when speaking of distance, it

will be assumed to be graph distance. The eccentricity of vertex vi is the maximum distance

between vi and every other vertex in the graph, and the diameter of a graph is the maximum
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distance between every pair of vertices. If diam(G) = d, then there exists a path of length d

or less between every pair of vertices. Two vertices are said to be adjacent if there exists an

edge between them. This is to say, the vertices have distance 1 from each other.

Definition 2. A graph, G = (V,E), is disconnected if the vertices can be partitioned

into two non-empty sets, G1 and G2, such that no vertex in G1 is adjacent to any vertex in

G2. We say G is the disjoint union of the two subgraphs and denote this graph by G1 ∐G2.

A graph is connected if there exists a path between every pair of vertices. A graph is

simple if there are no loops (edges connecting a vertex to itself) or multiple edges between a

pair of vertices. Unless otherwise noted, all graphs are assumed to be simple and connected.

A cycle is a path which starts and ends at the same vertex, but otherwise has no repeated

edges or vertices. A cycle graph, denoted Cn, is a single cycle on n vertices (See Figure 2.1).

Figure 2.1. Cycle graph on 5 vertices, C5

A tree is a simple, connected graph in which there are no non-trivial cycles (See Figure

2.2). In a tree, there is exactly one path between every pair of vertices. A leaf of a tree is a

vertex of degree 1; that is, there is exactly one edge incident with that vertex.

v

Figure 2.2. Tree with leaf v
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2.2. Simplicial Homology

The definitions from algebraic topology are consistent with [Car09], [EH10], [Koz08],

[Mun84], and [MS05]. An (abstract) simplicial complex, ∆, on the vertex set V (∆) =

{1, . . . , n}, is a collection of subsets from the vertex set, called faces or simplices, which

is closed under taking subsets. Equivalently, the faces of a simplicial complex can be ex-

pressed as monomials. Monomial division acts as a closure operation and it follows that if

σ ∈ ∆, then {τ ∶ τ ∣σ} ⊂ ∆. A face σ ∈ ∆ of cardinality ∣σ∣ = i + 1 has dimension i and is

called an i-face of ∆. A face, τ , is a facet if there is no distinct σ ∈ ∆ such that τ ∣σ; that is

to say, τ is a maximal face. Many texts emphasize the term “abstract” when referring to an

abstract simplicial complex. For the purpose of this dissertation, the term “abstract” will be

dropped and all simplicial complexes will be assumed to be abstract simplicial complexes.

Given a set of faces, a simplicial complex can be generated by taking the simplicial closure

of this set. Mathematically, given some vertex set V , if there exists a face σ ⊂ V , then the

simplicial closure of this face is {τ ∶ τ ∣σ}. Now, given a set of faces, S one can take the set

of simplicial closures of each face in S, call this ∆. By definition, ∆ is a simplicial complex.

Taking the simplicial closure a second time stabilizes ∆; in other words, there will be no new

faces.

There is an algebraic structure called a chain complex which is a sequence of abelian

groups or modules connected by homomorphisms. From the definition that follows, we will

show one way in which a simplicial complex can be associated to a chain complex.

Definition 3. A chain complex, C = {Ci, ∂i}, is a collection of abelian groups or modules

Ci, one for each integer i, and of homomorphisms ∂i ∶ Ci → Ci−1 such that ∂i ○ ∂i+1 = 0, for

each i.
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Suppose ∆ is a simplicial complex on the vertex set V (∆) = {1, . . . , n}. For each integer

i, let Fi(∆) be the set of i-dimensional faces of ∆. This means that F0(∆) can be thought

of as the set of all vertices, F1(∆) as the set of edges, F2(∆) as the set of solid triangles,

F3(∆) as the set of solid tetrahedron, etc. Let KFi(∆) be a vector space over a field K whose

basis elements eσ correspond to i-faces σ ∈ Fi(∆). Suppose eσ = v0v1⋯vi.

Definition 4. The boundary operator δi ∶ KFi(∆) → KFi−1(∆) is a homomorphism given

by

δi(eσ) =
i

∑
j=0

(−1)j(v0⋯v̂j⋯vi)

where the face v0⋯v̂j⋯vi is the jth face of eσ obtained by removing the jth vertex.

Definition 5. A chain complex, C = {∆, δ}, is the sequence of vector spaces:

0Ð→ KFn−1(∆) δn−1Ð→ ⋯Ð→ KFi(∆) δi
Ð→ KFi−1(∆) Ð→ ⋯

δ1
Ð→ KF0(∆) δ0

Ð→ 0

where δi is the boundary operator defined in Definition 4.

By the definition of the boundary operator, it follows that δi ○ δi+1 = 0 for all i. As a

consequence, Im(δi+1) ⊆ Ker(δi). If Im(δi+1) = Ker(δi), then the sequence is exact at i. A

chain complex is exact if it is exact for all i.

Definition 6. The i-th homology of a chain complex, C, is defined to be

Hi(C) = Ker(δi)/Im(δi+1)

The i-th homology is said to be trivial if Hi(C) ≅ K when i = 0 or if Hi(C) = 0 for i > 0.

A chain complex has trivial homology if both H0(C) ≅ K and if Hi(C) = 0 for all i > 0.
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Notice that a chain complex has trivial homology if it is exact for each i > 0 and if H0(C)

is one-dimensional. The i-th homology measures the failure of a chain complex to be exact.

Intuitively, the dimension of the i-th homology can be thought as indicating the number of

boundaries of i-dimensional holes in the simplicial complex, where the dimension of H0(C)

indicates the number of connected components. To say the homology of a chain complex is

trivial indicates the associated simplicial complex bounds no holes.

2.2.1. Koszul Complex. Consider a simplicial complex consisting of all subsets on the

vertex set V (∆) = {1,2, . . . , n} defined below and shown in Figure 2.3.

Definition 7. Let ∆ be a simplicial complex. A complete simplex of ∆ is a face which

contains every vertex v ∈ V (∆).

1

2
3

4

Figure 2.3. Simplicial complex on the set {1,2,3,4}

By this definition and the definition of a simplicial complex, it follows that ∣Fi(∆)∣ = ( n
i+1

)

for each 0 ≤ i < n, and the associated chain complex, C, is given by:

0Ð→ K1 δn−1
Ð→ ⋯Ð→ K(

n
i+1
) δi
Ð→ K(

n
i
) Ð→ ⋯

δ1
Ð→ Kn δ0

Ð→ 0

This chain complex is a Koszul Complex, see [Eis95]. The homology of the Koszul

complex can be computed directly to show that H0(C) ≅ K and Hi(C) = 0 for all i > 0 [MS05].

Furthermore, the homology of the Koszul complex does not depend on the characteristic of

the field. Topologically, a complete simplex on n vertices is a solid ball of dimension n − 1.

As can be seen, Figure 2.3 is a ball of dimension 3.
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2.2.2. Trivial Homology. There are different techniques that can be used to deter-

mine when the homology of a chain complex is trivial. One such way is by identifying whether

or not the chain complex is a copy of the Koszul complex, as in Section 2.2.1. Another is by

using the ranks of the boundary operators. This is described in the lemma that follows.

Lemma 1. Let C = {∆, δ} be a chain complex. If i > 0 and rank(δi) + rank(δi+1) =

dim(KFi(∆)), then Hi(C) is trivial.

Proof. Suppose i > 0. It follows from Definition 6 that

dim(Hi(C)) = null(δi) − rank(δi+1)

= (dim(KFi(∆)) − rank(δi)) − rank(δi+1)

Therefore, if rank(δi) + rank(δi+1) = dim(KFi(∆)), then dim(Hi(C)) = 0. �

Consider a simplicial complex on n vertices. The boundary operator, δ0, will be a zero

array of dimension n and therefore, null(δ0) = n. If rank(δ1) = n − 1, then it will follow

that dim(H0(C)) = null(δ0) − rank(δ1) = n − (n − 1) = 1. Therefore, in order for H0(C) to be

trivial, rank(δ1) must be n−1. Combining this fact with Lemma 1 describes one method for

determining when the i-th homology of a chain complex is trivial for all i.

Another technique for identifying when homology is trivial utilizes knowledge of other

chain complexes. Since a chain complex is a sequence of vector spaces, it is natural to

study homomorphisms between chain complexes. These homomorphisms give insight into

the homology of the associated chain complexes.

8



Definition 8. Let A = {∆1, δ} and B = {∆2, ϕ} be two chain complexes. A chain map

f ∶ A → B is a family of homomorphisms

fi ∶ KFi(∆1) → KFi(∆2)

such that ϕi ○ fi = fi−1 ○ δi for all i.

That is to say that the following diagram commutes for each i:

⋯ ÐÐÐ→ KFi+1(∆1) δi+1
ÐÐÐ→ KFi(∆1) δi

ÐÐÐ→ KFi−1(∆1) ÐÐÐ→ ⋯

fi+1
×
×
×
Ö

fi
×
×
×
Ö

fi−1
×
×
×
Ö

⋯ ÐÐÐ→ KFi+1(∆2) ϕi+1
ÐÐÐ→ KFi(∆2) ϕi

ÐÐÐ→ KFi−1(∆2) ÐÐÐ→ ⋯

Suppose A = {∆1, δ} and B = {∆2, ϕ} are two chain complexes and suppose there is

a chain map f ∶ A → B. Let f0 ∶ F0(∆1) → F0(∆2) map the vertex set V (∆1) to the

vertex set V (∆2). This map can be extended to a continuous map fi ∶ KFi(∆1) → KFi(∆2)

with fi(σ) = f0(v0)f0(v1)⋯f0(vi) where σ = v0v1⋯vi ∈ Fi(∆1) [Arm83]. A chain map

induces a homomorphism between the i-th homology groups of the two chain complexes:

f∗ ∶Hi(A) →Hi(B) [Hat02].

Chain maps can be further extended to a sequence of chain complexes. It is interesting

to study when this sequence is exact and how this affects the induced maps on the homology

of the chain complexes.

Definition 9. Suppose A,B, and C are chain complexes. Let 0 denote the trivial chain

complex. Let f ∶ A → B and g ∶ B → C be chain maps. The sequence

0Ð→ A
f
Ð→ B

g
Ð→ C Ð→ 0

9



is a short exact sequence of chain complexes if in each dimension i, the sequence

0Ð→ Ai
fi
Ð→ Bi

gi
Ð→ Ci Ð→ 0

is an exact sequence.

The following lemma is called the Snake Lemma in references such as [EH10]. However,

this name is often used to describe an additional result in homological algebra and to avoid

confusion, the name Zig-Zag Lemma found in [Mun84] and [Koz08] will be used.

The Zig-Zag lemma says that a short exact sequence of chain complexes induces a long

exact sequence in homology. Given knowledge of the homology of two chain complexes, this

lemma allows one to bound the homology of the third chain complex.

Lemma 2. (Zig-Zag Lemma)

Assume that

0Ð→ A
f
Ð→ B

g
Ð→ C Ð→ 0

is a short exact sequence of chain complexes. Then there is a long exact sequence of homology

groups

⋯ Ð→Hn(A)
f∗
Ð→Hn(B)

g∗
Ð→Hn(C)

∂∗
Ð→Hn−1(A)

f∗
Ð→ ⋯

where f∗ and g∗ are the maps between the homology groups induced by the maps f and g,

and ∂∗ is induced by the boundary operator in B.

2.3. Construction of Chain Complexes

The Zig-Zag Lemma is a powerful lemma, but requires three chain complexes. The pur-

pose of this section is to identify tools which can be used to construct three chain complexes.
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With specific knowledge of the homology of two of these chain complexes, the Zig-Zag Lemma

will allow us to deduce the homology of the third chain complex.

Given a simplicial complex, there are natural ways to study a second simplicial complex

where one is a subset of the other. Induction on the number of vertices is one such method.

There will be two chain complexes associated to these simplicial complexes. These chain

complexes will be used to construct a third chain complex. It will then be shown that

there exists a short exact sequence between the three chain complexes, thus giving us the

opportunity to use the Zig-Zag Lemma.

2.3.1. Injective Chain Maps. The next definition describes when one chain complex

is a subcomplex of another. The notation ∂i∣C′i indicates restriction of the homomorphism ∂i

to the module C′i.

Definition 10. A subcomplex C′ = {C′i, ∂
′
i} of a chain complex C = {Ci, ∂i}, denoted

C′ ⊂ C, is a chain complex such that C′i ⊂ Ci and ∂′i = ∂i∣C′i for all i.

The idea of subcomplexes can be extended for simplicial complexes. Recall, a basis for

KFi(∆) is the set of i-faces Fi(∆). Suppose ∆1 ⊂ ∆2. By the choice of basis, it is easy to

see that KFi(∆1) ⊂ KFi(∆2) for each i. This implies the chain complex associated to ∆1 is a

subcomplex of the chain complex associated to ∆2.

The following lemma shows that there exists a natural chain map between a subcom-

plex and a chain complex. In particular, this chain map is a collection of injective linear

transformations.

Lemma 3. Let A and B be two chain complexes such that A ⊂ B. Then there exists a

chain map f ∶ A → B.

11



Proof. Let A and B be two chain complexes such that A ⊂ B. For each i, partition

Bi = {Ai,A′i}. Suppose dim(Ai) = n and dim(Ai−1) = m. Then dim(Bi) = n + n′, and

dim(Bi−1) =m +m′.

There exists an injective linear transformation, fi ∶ Ai ↪ Bi. This map can be represented

by the following block matrix

fi =

⎛
⎜
⎜
⎜
⎝

In

0

⎞
⎟
⎟
⎟
⎠

where 0 is a n′ × n zero matrix.

Similarly,

fi−1 =

⎛
⎜
⎜
⎜
⎝

Im

0

⎞
⎟
⎟
⎟
⎠

where 0 is an m′ ×m zero matrix.

Consider the following diagram:

⋯ ÐÐÐ→ Ai
αi

ÐÐÐ→ Ai−1 ÐÐÐ→ ⋯

fi
×
×
×
Ö

fi−1
×
×
×
Ö

⋯ ÐÐÐ→ Bi
βi

ÐÐÐ→ Bi−1 ÐÐÐ→ ⋯

Now, αi ∶ Ai → Ai−1 can be represented by some m×n matrix A, and due to the partition

of bases, βi ∶ Bi → Bi−1 can be represented by a block matrix:

βi =

⎛
⎜
⎜
⎜
⎝

A ∗

0 ∗∗

⎞
⎟
⎟
⎟
⎠

It follows that

fi−1 ○ αi =

⎛
⎜
⎜
⎜
⎝

A

0

⎞
⎟
⎟
⎟
⎠

12



and

βi ○ fi =

⎛
⎜
⎜
⎜
⎝

A

0

⎞
⎟
⎟
⎟
⎠

Since the diagram commutes for each i, then f must be a chain map. �

2.3.2. Surjective Chain Maps. From linear algebra, we know that if W is a vector

space and if there exists a subspace V ⊂ W , then there exists a subspace U such that

U ⊕ V =W [Hal58]. For our purposes, since chain complexes are sequences of vector spaces,

then we can extend this property to chain complexes. In particular, if a simplicial complex

is a subset of another simplicial complex, ∆1 ⊂ ∆2, then as vector spaces, KFi(∆1) ⊂ KFi(∆2)

for each i. The next lemma describes a way to obtain another subspace of KFi(∆2).

Lemma 4. Suppose ∆1 ⊂ ∆2 are two simplicial complexes. There exists a subspace, call

this KFi(∆3), such that KFi(∆1) ⊕KFi(∆3) = KFi(∆2) for all i.

Proof. Suppose ∆1 ⊂ ∆2 are two simplicial complexes. Then for each i, KFi(∆1) is a

subspace of KFi(∆2). Therefore, the basis elements in KFi(∆2) can be partitioned into the set

{Fi(∆1), Fi(∆3)} where Fi(∆3) = Fi(∆2) ∖ Fi(∆1). Thus, there must exist a subspace over

the field K with basis Fi(∆3), say KFi(∆3), where KFi(∆1) ⊕KFi(∆3) = KFi(∆2). �

Let Fi(∆3) be a basis for the subspace KFi(∆3), and let ∆3, be the collection of bases

{Fi(∆3)}.1 Define homomorphisms, δi ∶ KFi(∆3) → KFi−1(∆3), to be the boundary operator

defined in Definition 4. The following lemma shows that the sequence of homomorphisms

between these vector spaces is in fact a chain complex. This implies that given two chain

complexes A ⊂ B, a third chain complex, C, can be constructed. It will be shown in Lemma

6 that one can also obtain a chain map g ∶ B → C.

1Despite the notation, ∆3 is not necessarily a simplicial complex.
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Lemma 5. Suppose ∆1 and ∆2 are two simplicial complexes and ∆1 ⊂ ∆2. For each

i, let Fi(∆3) be a basis for KFi(∆3) where KFi(∆1) ⊕KFi(∆3) = KFi(∆2). Then there exists a

non-trivial chain complex C = {∆3, δ}.

Proof. Let ∆1 and ∆2 be two simplicial complexes such that ∆1 ⊂ ∆2. For each i,

let Fi(∆3) be a basis for KFi(∆3) where KFi(∆1) ⊕ KFi(∆3) = KFi(∆2). Using the boundary

operator defined in Definition 4, there is a non-trivial sequence:

0Ð→ KFn−1(∆3) δn−1Ð→ ⋯Ð→ KFi(∆3) δi
Ð→ KFi−1(∆3) Ð→ ⋯

δ1
Ð→ KF0(∆3) Ð→ 0

Let σ = a0a1⋯ai ∈ Fi(∆3) and let a0a1⋯âj⋯ai denote the (i − 1)-dimensional face which

excludes vertex aj. Suppose j < k. Then the following holds:

δi−1 ○ δi(σ) = δi−1(. . . + (−1)ja0⋯âj⋯ai + . . .

+(−1)ka0⋯âk⋯ai + . . .)

= . . . + (−1)j(−1)k−1a0⋯âj⋯âk⋯ai + . . .

+(−1)k(−1)ja0⋯âj⋯âk⋯ai + . . .

= 0

Since KFi(∆3) is a vector space, then τ ∈ KFi(∆3) implies that the additive inverse −τ ∈

KFi(∆3) for all i. This ensures that all terms will sum to 0. Therefore, the definition of a

chain complex is satisfied. �

With this construction of the third chain complex, we call C the difference complex.
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Definition 11. Suppose A = {∆1, δ} and B = {∆2, ϕ} are chain complexes and A ⊂ B.

The difference complex, C = {∆3, ψ}, is the sequence of vector spaces together with a boundary

operator, ψi ∶ KFi(∆3) → KFi−1(∆3), where KFi(∆3) ⊕KFi(∆1) = KFi(∆2).

It follows that C ⊂ B. The following lemma shows that there exists a natural chain map

g ∶ B → C.

Lemma 6. Let B and C be two chain complexes such that C ⊂ B. Then there exists a

chain map g ∶ B → C.

Proof. Suppose B and C are two chain complexes such that C ⊂ B. For each i, patrition

Bi = {Ci,C′i}. Suppose dim(Bi) = n + n′, and dim(Bi−1) = m +m′. Then dim(Ci) = n and

dim(Ci−1) =m.

There exists a surjective linear transformation gi ∶ Bi ↠ Ci. This can be represented by

the following block matrix

gi = ( In 0 )

where 0 is an n × n′ zero matrix.

Similarly,

gi−1 = ( Im 0 )

where 0 is an m ×m′ zero matrix.

Consider the following diagram:

⋯ ÐÐÐ→ Bi
αi

ÐÐÐ→ Bi−1 ÐÐÐ→ ⋯

gi
×
×
×
Ö

gi−1
×
×
×
Ö

⋯ ÐÐÐ→ Ci
βi

ÐÐÐ→ Ci−1 ÐÐÐ→ ⋯
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By the partition of bases, αi ∶ Bi → Bi−1 can be represented by the block matrix

αi =

⎛
⎜
⎜
⎜
⎝

A ∗

0 ∗∗

⎞
⎟
⎟
⎟
⎠

where βi ∶ Ci → Ci−1 is represented by the m × n matrix A. It follows that

gi−1 ○ αi = ( A 0 )

and

βi ○ gi = ( A 0 )

Since the diagram commutes for each i, then g must be a chain map. �

Beginning with two simplicial complexes ∆1 ⊂ ∆2, we have shown there is a natural

injective chain map between the associated chain complexes A = {∆1, δ} and B = {∆2, ψ}.

Using the faces in Fi(∆2) ∖ Fi(∆1) = Fi(∆3) as a basis, it is possible to build a sequence of

vector spaces which induces a difference complex, C = {∆3, ϕ}. Therefore, B = A⊕ C. There

is a natural surjective chain map between B and C. The following lemma is a result from

[DF04] and shows that this construction of chain maps is a short exact sequence of chain

complexes. The proof of this lemma follows from the fact that f is injective, g is surjective,

and it is a simple exercise to show that Ker(g) = Im(f).

Lemma 7. Suppose A and B are chain complexes. Then

0Ð→ A
f
Ð→ A⊕B

g
Ð→ B Ð→ 0

is a short exact sequence of chain complexes.
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Suppose we start with a chain complex with known homology. Then we can construct

two more chain complexes in such a way to guarantee a short exact sequence. It is then

possible to apply the Zig-Zag Lemma. Computing the homology of the remaining two chain

complexes becomes a task in record keeping. At times, it will be possible to use some of

the techniques from Section 2.2.2 for identifying trivial homology in one chain complex to

show the homology of the two remaining chain complexes must be equivalent. Since the

homology of the chain complex was known for one chain complex, this gives us a method for

determining the homology of the other chain complex.
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CHAPTER 3

D-Neighborhood Complex

This chapter describes one way to construct a simplicial complex from a graph. In

particular, the distance between vertices will be used as a rule for generating a face in the

simplicial complex. To this simplicial complex, one can associate a chain complex. The

homology of the chain complex can be computed to identify topological features of the

simplicial complex. These features will then be used as a way to compare different classes

of graphs.

3.1. The D-Neighborhood Complex of a Graph

Consider a graph, G = (V,E), on n vertices. The next definition describes how to

construct a simplex from one vertex in a graph.

Definition 12. Let D be a subset of the set of graph distances {0,1, . . . ,diam(G)}. The

D-neighborhood of a vertex, vi, is given by Ni = {vj ∈ V ∶ d(vi, vj) ∈ D}.

In other words, the D-neighborhood of a vertex is a collection of vertices lying at specific

distances from that vertex. A natural choice for D is to choose the set of consecutive distances

{0,1, . . . , d}, for some number d, as this uses the immediate neighborhood around a vertex.

However, there is no requirement for D to be a set containing consecutive distances or to

include 0. In some graphs, it will be interesting to study the case when the set of distances

do not contain 0, such as the case when D = {1}.

Distance in a graph is measured by the number of edges in the shortest path between two

vertices (Definition 1). This value will always be a positive integer or 0. It will be explicitly
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stated when 0 ∈ D; therefore, without loss of generality, an arbitrary value d ∈ D will be

assumed to be an integer greater than 0.

Consider the following graph:

a

b

cd

e

Figure 3.1. Graph G

Let D = {0,2}. The D-neighborhood of vertex a is Na = {a, c} since these are the vertices

with distance 0 or 2 from vertex a.

The concept of a D-neighborhood can be used to build a simplicial complex from a graph.

The following definition describes this process.

Definition 13. The D-neighborhood complex of a graph G = (V,E) with distance set

D, denoted DN(G,D), is the simplicial complex with simplex σ included whenever σ ⊂ Ni

for some vertex vi.

One can generate the D-neighborhood complex of a graph by taking the simplicial closure

of the set of D-neighborhoods. The set of all facets are a subset of the D-neighborhoods

of the graph. The D-neighborhood, Ni, will be written as a monomial of vertices from the

graph. The operation of monomial division ensures the definition of a simplicial complex is

satisfied. That is,

(1) {τ ∶ τ ∣Ni} ⊂DN(G,D)

The D-neighborhood complex is a generalization of a simplicial complex called the Neigh-

borhood complex. The Neighborhood complex is equivalent to considering the case when
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D = {1} and the “closed” Neighborhood complex is equivalent to the case when D = {0,1}.

More information about this simplicial complex can be found in [Cso07] and [Kah07]. It

is interesting to study D = {0,1, . . . , d} for increasing choices of d because one can create a

nested sequence of the associated chain complexes. The induced maps in homology allow

one to look for topological features which persist as d increases. In other words, this allows

one to study the persistent homology of the nested sequence of D-neighborhood complexes.1

Recall from Figure 3.1, the D-neighborhood on vertex a was Na = ac. Finding the D-

neighborhoods of the remaining vertices and taking the simplicial closure yields the following

D-neighborhood complex:

DN(G,D) = {ace, bce, bde, ac, ae, bc, bd, be, ce, de, a, b, c, d, e}

Using Section 2.2, the chain complex, C, associated to DN(G,D) is the sequence

0Ð→ K3 δ2
Ð→ K7 δ1

Ð→ K5 δ0
Ð→ 0

Recall the definition of the boundary operator (Definition 4). Using a matrix to represent

δ1, we have

δ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ac ae bc bd be ce de

a −1 −1 0 0 0 0 0

b 0 0 −1 −1 −1 0 0

c 1 0 1 0 0 −1 0

d 0 0 0 1 0 0 −1

e 0 1 0 0 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1This is not the purpose of this dissertation, but is one possible direction for future research.
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The boundary operator for δ2 can be represented by

δ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ace bce bde

ac 1 0 0

ae −1 0 0

bc 0 1 0

bd 0 0 1

be 0 −1 −1

ce 1 1 0

de 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The boundary operator for δ0 can be represented by a zero array. Using Definition 6,

the homology of C is H0(C) = Ker(δ0)/Im(δ1) ≅ K, H1(C) = 0, and H2(C) = 0. This indicates

that the D-neighborhood complex has trivial homology. Using the facets {ace, bce, bde}, the

D-neighborhood complex can be visualized (Figure 3.2).

a

bc

de

Figure 3.2. D-neighborhood complex for graph G

3.2. Examples

In Chapters 4 - 7 we will compute the homology of the chain complex associated to the

D-neighborhood complex of general classes of graphs and for various choices of distance sets.

This section will study the homology of the D-neighborhood complex of a few special graphs.

Consider the Petersen Graph (See Figure 3.3). The Petersen Graph is a strongly regular

graph. Specifically, every vertex has degree 3, every pair of adjacent vertices has 0 common
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neighbors, and every pair of non-adjacent vertices has 1 common neighbor [GR01]. The

symmetry and regularity of this graph makes it interesting to study.

v0

v1

v2v3

v4

v5

v6

v7v8

v9

Figure 3.3. Petersen graph

Let D = {0,1} and let C be the chain complex associated to DN(G,D). There are

10 distinct facets of DN(G,D) which correspond to the D-neighborhoods on each of the

10 vertices in the Petersen Graph. Since each vertex has degree 3, each of these facets is

3-dimensional. The chain complex has the form:

0Ð→ K10 δ3
Ð→ K40 δ2

Ð→ K45 δ1
Ð→ K10 δ0

Ð→ 0

Using Definition 6 to compute the homology of the chain complex, the only non-trivial

homology class is H1(C) ≅ K6. This means that there are 6 boundaries of one-dimensional

“holes” in the D-neighborhood complex of the Petersen Graph. Something to notice is that

there are 40 faces of dimension 2. Since there are 10 faces of dimension 3, then a simple

counting argument shows that there are no 3-faces “glued” together along the same 2-face;

otherwise, there would be fewer than 40 faces of dimension 2. However, there are many

3-faces glued together along the same 1-face. In other words, many tetrahedron share edges.

This topology explains why H1(C) is non-trivial.

22



Suppose D = {0,1,2}. Then since 2 is the diam(G), the homology of the chain complex

associated to the D-neighborhood complex would be trivial (See Proposition 3). Extending

the radius of the neighborhoods around each vertex from a radius of 1 to radius of 2, in

effect, “solidifies” the simplicial complex.

Next, we will look at the homology of the chain complex of the D-neighborhood complex

of the skeletons of the Platonic solids. By definition, each of the skeletons of the Platonic

solids are regular graphs. This means that all of the facets of the associated D-neighborhood

complex will have the same cardinality. It is uninteresting to study the skeleton of the

tetrahedron since this is a complete graph.

Figure 3.4. Skeleton of cube

Consider the graph of the skeleton of a cube (Figure 3.4). Let D = {0,1}. Then the chain

complex, C, associated to DN(G,D) is given by:

0Ð→ K8 δ3
Ð→ K32 δ2

Ð→ K24 δ1
Ð→ K8 δ0

Ð→ 0

Once again, the 8 vertices in the graph give 8 distinct facets. In computing the homology

of the chain complex, the only non-trivial homology class is H2(C) ≅ K7. This means that the

D-neighborhood complex of the skeleton of the cube contains 7 boundaries of two-dimensional

“holes”. In other words, this simplicial complex has the same homology as a wedge sum of

7 hollow tetrahedron. As with the Petersen Graph, since the diameter of the cube is 2, then

letting D = {0,1,2} will lead to trivial homology of the associated D-neighborhood complex.
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The D-neighborhood complexes of the skeletons of the octahedron, dodecahedron, and

icosahedron (Figure 3.5) also have interesting homology for various choices of D.

Figure 3.5. Skeleton of octahedron (left), dodecahedron (center), icosahe-
dron (right)

Table 3.1 summarizes the results from direct computations. Notice that since the skeleton

of the octahedron has diameter 2, then the homology of the chain complex associated to the

D-neighborhood complex will be trivial for D = {0,1,2}.

Table 3.1. Homology of the D-neighborhood complex of Platonic solids

D = {0,1} D = {0,1,2}

Octahedron H4(C) ≅ K Trivial

Dodecahedron H1(C) ≅ K11 H2(C) ≅ K
Icosahedron H2(C) ≅ K H10(C) ≅ K

3.3. Propositions

As mentioned in Section 2.1, unless specified, all graphs will be assumed to be connected

and simple. The justification for this follows. Recall the definition of the disjoint union of two

graphs (Definition 2). Notice that the definition of graph distance does not allow for simplices

in the D-neighborhood complex to form between vertices from two disjoint graphs regardless

of the choice of D. As a consequence, the homology of the chain complex associated to the
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D-neighborhood complex of a disconnected graph can be treated additively. The following

proposition formalizes this scenario, thereby justifying the restriction to connected graphs.

Figure 3.6. Disjoint union of two graphs

Proposition 1. Let D be fixed. Let G1 ∐G2 be the disjoint union of graphs G1 and G2.

Let A be the chain complex associated to DN(G1,D), let B be the chain complex associated

to DN(G2,D), and let C be the chain complex associated to DN(G1 ∐G2,D). Then Hi(C) =

Hi(A) ⊕Hi(B) for all i.

Proof. The proof of this proposition is trivial. �

The reason for assuming all graphs to be simple is that loops and multiple edges do not

change the distance between vertices and therefore, will not change the D-neighborhoods.

If the homology of the D-neighborhood complex of a non-simple graph is needed, one can

remove the loops and multiple edges.

Consider a connected graph, G = (V,E), and let D = {0,1, . . . , d}. Notice that for each

vertex vj ∈ V , there will exist at least one D-neighborhood, Nk, such that vj ∣Nk. Since 0 ∈ D,

then it will also be true that vj ∣Nj. This means that the associated D-neighborhood complex,

DN(G,D), will always be one connected component. In other words, H0(C) ≅ K. However,

this is not necessarily true if 0 ∉ D.

As implied in Section 3.2, there is a time when there are enough distances included in D

so that the homology of the chain complex associated the D-neighborhood complex becomes

trivial. The following expands upon this idea.
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Definition 14. Given a graph G = (V,E), a D-neighborhood, Ni, is said to be complete

if Ni is a complete simplex on V .

The first case is applicable to any choice ofD. Once there exists a completeD-neighborhood

in the D-neighborhood complex, then the associated chain complex is a Koszul complex.

From [Mun84], the homology of the chain complex will be trivial.

Proposition 2. Let G = (V,E) be a graph and let D be fixed. Let C be the associated

chain complex to DN(G,D). If there exists a complete D-neighborhood in DN(G,D), then

Hi(C) is trivial for all i.

Proof. Let G = (V,E) be a graph and let D be fixed. Suppose there exists a complete

D-neighborhood, Ni ⊂ DN(G,D). By Definition 13, every monomial which divides Ni will

also be a face, and thus, every possible combination of the vertices from V . It follows that

the chain complex associated to DN(G,D) is the Koszul complex on the vertex set V . Thus,

Hi(C) is trivial for all i. �

The next case is actually a corollary to Proposition 2. This is the case when D contains

every possible distance in a particular graph. At this point in time, every vertex will have a

complete D-neighborhood.

Proposition 3. Let G = (V,E) be a graph and let D = {0,1, . . . ,diam(G)}. Let C be the

chain complex associated to DN(G,D). Then Hi(C) is trivial for all i.

Proof. Let G = (V,E) be a graph, let D = {0,1, . . . ,diam(G)}, and let C be the chain

complex associated to DN(G,D). By definition of the diameter of a graph (Definition 1),

d(vi, vj) ≤ diam(G) for every pair of vertices vi, vj ∈ V . This implies that Ni is a complete

D-neighborhood for each vertex vi ∈ V . By Proposition 2, Hi(C) is trivial for all i. �
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In addition to assuming all graphs are simple and connected (unless otherwise noted),

then by Proposition 3, we can also assume for distance set D = {0,1, . . . , d}, that d is an

integer and 1 ≤ d < diam(G). Otherwise, it will be immediately known that the homology of

the chain complex associated to the D-neighborhood complex is trivial.
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CHAPTER 4

One-Point Union of Graphs

Beginning with a simple connected graph, we have described one way of building a

simplicial complex based on the distance between vertices. The homology of the associated

chain complex gives insight into the topological features of the simplicial complex. This

chapter begins to draw connections between these features and the graph.

Choosing D to be the set of consecutive distances {0,1, . . . , d}, this chapter studies how

the homology of the D-neighborhood complex changes when two graphs are joined together

at a single vertex. Understanding these changes allows one to compute the homology of the

D-neighborhood complex of a variety of graphs by decomposing them into smaller pieces.

4.1. One-Point Union Definition

Recall Definition 2 of the disjoint union of graphs. The following definition describes

joining two disconnected graphs at a single vertex in order to form the one-point union.

Definition 15. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Let v1 ∈ V1 and

v2 ∈ V2 be two vertices. The one-point union of G1 and G2 with respect to v1 and v2, denoted

G1∐̃G2 = (V,E), is the graph defined by

(1) the vertex set V = ({V1 ∖ v1}) ∪ ({V2 ∖ v2}) ∪ {v}

(2) vivj is an edge in G1∐̃G2 if and only if either vivj is an edge in G1 ∪ {v} and vivj is

an edge in G1 once v is replaced with v1, or vivj is an edge in G2 ∪ {v} and vivj is an

edge in G2 once v is replaced with v2.
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The one-point union of two graphs can be regarded as “gluing” vertices v1 and v2 together

(See Figures 4.1 and 4.2). The one-point union depends on the choice of vertices, v1 and v2,

but in practice, these will be suppressed from notation.

v1

vi

vj

vk

vm

vn

v2

Figure 4.1. Disjoint union G1 ∐G2

v

vi

vj

vk

vm

vn

Figure 4.2. One-point union G1∐̃G2

The idea of joining objects together at a single point can be extended to simplicial

complexes. The following definition is from [Koz08] and will be used in the theorem in

Section 4.2.

Definition 16. Given two simplicial complexes ∆1 and ∆2, with vertices v1 ∈ V (∆1)

and v2 ∈ V (∆2), the wedge of ∆1 and ∆2, with respect to the vertices v1 and v2, is the

simplicial complex ∆1 ∨∆2 defined by

(1) V (∆1 ∨∆2) = (V (∆1) ∖ {v1}) ∪ (V (∆2) ∖ {v2}) ∪ {v};

(2) σ ⊂ V (∆1 ∨∆2) is a simplex of ∆1 ∨∆2 if and only if either σ ⊂ V (∆1) ∪ {v} and σ

is a simplex of ∆1 once v is replaced with v1, or σ ⊂ V (∆2) ∪ {v} and σ is a simplex of

∆2 once v is replaced with v2.
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The wedge of two simplicial complexes joins two vertices from each simplicial complex

to form one vertex. Notice that the homology of the wedge of two simplicial complexes is

equivalent to the sum of the homology of each simplicial complex [Jon08].

4.2. The Main Theorem

The following theorem says that the homology of the D-neighborhood complex of the

one-point union of two graphs is equivalent to the homology of the D-neighborhood complex

of the disjoint union of the graphs.1 This is not something that is immediately obvious.

The set of facets in DN(G1∐̃G2,D) is not the union of the set of facets in DN(G1,D) and

DN(G2,D). In other words, the D-neighborhood complex of G1∐̃G2 is not the wedge sum of

DN(G1,D) ∨DN(G2,D). In particular, it is possible that the D-neighborhood of vertex v

in Figure 4.2 creates a facet of higher dimension than those in DN(G1,D) and DN(G2,D).

Despite the changes in facets, it turns out that the topological features of the simplicial

complexes for each graph are preserved.

Theorem 1. Let D = {0,1, . . . , d}. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs.

Let A be the chain complex associated to DN(G1 ∐G2,D) and let B be the chain complex

associated to DN(G1∐̃G2,D). Then Hi(B) =Hi(A) for all i > 0 and H0(B) ≅ K.

Proof. Let D = {0,1, . . . , d}. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Let

A = {∆1, δ} be the chain complex associated to the D-neighborhood complex of the disjoint

union G1 ∐ G2. Let G1∐̃G2 be the one-point union of G1 and G2 with respect to vertices

a′ ∈ V1 and a′′ ∈ V2. Let B = {∆2, ψ} be the chain complex associated to the D-neighborhood

complex of G1∐̃G2.

1Recall, from Section 3.3 the homology of the D-neighborhood complex of the disjoint union of two graphs
is equivalent to the sum of the homology groups of the D-neighborhood complex of each graph.

30



Let f ∶ A → B be a chain map. In particular, let f0 ∶ a′ ↦ a, f0 ∶ a′′ ↦ a, and f0 ∶ vi ↦ vi

for all other 0-faces in DN(G1 ∐ G2,D). By identifying vertices a′ and a′′ with vertex

a, notice that DN(G1 ∐ G2,D) ⊂ DN(G1∐̃G2,D). Let ∆3 be the collection of faces from

DN(G1∐̃G2,D) ∖DN(G1 ∐G2,D). For each σ ∈ ∆3, there exists at least one vertex v1 ∈ V1

and at least one vertex v2 ∈ V2 such that v1∣σ and v2∣σ. That is, each face in ∆3 must

have at least one vertex from G1 and one vertex from G2, otherwise, this face would be in

DN(G1 ∐G2,D). Put an ordering on the vertices in ∆3, such that a < vj for all other vj. By

Lemma 5, there is an associated chain complex to ∆3, the difference complex C = {∆3, ϕ}.

We first show that C is exact. By Lemma 1, we want to show that rank(ϕk)+rank(ϕk−1) =

dim(KFk−1(∆3)) for all k.

By definition of a chain complex, it follows that Im(ϕk) ⊆ Ker(ϕk−1). This implies that

null(ϕk−1) ≥ rank(ϕk)(2)

dim(KFk−1(∆3)) − rank(ϕk−1) ≥ rank(ϕk)(3)

dim(KFk−1(∆3)) ≥ rank(ϕk−1) + rank(ϕk)(4)

Using Equation 4, it is left to show that dim(KFk−1(∆3)) ≤ rank(ϕk) + rank(ϕk−1).

Let k > 0 and consider av0⋯vk−1 ∈ Fk(∆3). Applying the boundary operator, ϕk, yields

the linear combination ϕk(av0⋯vk−1) = v0⋯vk−1 − av1⋯vk−1 + . . . This is a linear combination

of (k − 1) dimensional faces where the only subsimplex which is not divisible by vertex a is

the face v0⋯vk−1 which has coefficient 1. Due to the ordering on the vertices, this will be

true for every face, σ ∈ Fk(∆3) where a∣σ. Furthermore, any face τ ∈ Fk(∆3) such that a ∤ τ

will be mapped to a linear combination of (k − 1)-faces which also are not divisible by a.
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Recall, the k-faces from Fk(∆3) are a basis for KFk(∆3). By the ordering on the elements

in Fk(∆3), the matrix representation of ϕk will be a block matrix of the form

ϕk =

⎛
⎜
⎜
⎜
⎝

∗ 0

It ∗∗

⎞
⎟
⎟
⎟
⎠

Let A = {σ ∈ Fk(∆3) ∶ a∣σ}, i.e. the the set of k-faces that contain vertex a. Let B =

{τ ∈ Fk−1(∆3) ∶ a ∤ τ}, i.e. the set of (k − 1)-faces that do not contain vertex a. Notice that

the size of A determines the size of the identity block in ϕk and therefore, puts a lower bound

on the rank(ϕk) . This implies that ∣A∣ = t ≤ rank(ϕk). There exists a 1-1 correspondence

between A and B. For each σ ∈ A, there is exactly one corresponding (k−1)-face that is not

divisible by a which is obtained from applying the boundary operator, ϕk(σ). Furthermore,

each τ ∈ B divides a distinct face in A by construction of ∆3. Otherwise, if τ is a (k−1)-face,

if a ∤ τ , and if there does not exist σ ∈ A such that τ ∣σ, then τ ∈DN(G1 ∐G2,D). That is, a

(k − 1)-face which is not divisible by a and which does not divide any face in A would have

been a face in DN(G1 ∐G2,D). Therefore, ∣A∣ = ∣B∣ and ∣B∣ ≤ rank(ϕk).

Now let C = {σ ∈ Fk−1(∆3) ∶ a∣σ}, i.e. the set of (k − 1)-faces that contain vertex a.

It follows that ∣B∣ + ∣C ∣ = dim(KFk−1(∆3)). By the same argument as above, it follows that

∣C ∣ ≤ rank(ϕk−1). Therefore, dim(KFk−1(∆3)) = ∣B∣ + ∣C ∣ ≤ rank(ϕk) + rank(ϕk−1). Combining

this result with Equation 4, it has been shown that rank(ϕk)+ rank(ϕk−1) = dim(KFk−1(∆3)).

By Lemma 1, this means that Hi(C) is trivial for all i > 0.

Let ∆1 = DN(G1 ∐ G2,D) and let ∆2 = DN(G1∐̃G2,D). In order to use the Zig-Zag

Lemma, we want a short exact sequence of chain complexes between A, B, and C. However,

the map f0 ∶ KF0(∆1) → KF0(∆2) produces a non-trivial kernel. In particular, Ker(f0) is

one-dimensional. In order to remedy this, the chain complex A can be adjusted.
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Since G1 and G2 are disjoint, then δ1 ∶ KF1(∆1) → KF0(∆1) can be represented as the block

matrix

δ1 =

⎛
⎜
⎜
⎜
⎝

R 0

0 S

⎞
⎟
⎟
⎟
⎠

Take the wedge DN(G1,D)∨DN(G2,D) at vertices a′ and a′′ by defining δ̃1 ∶ KF1(∆1) →

KF0(∆1)/K. This means that δ̃1 can be represented by the matrix

δ̃1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T

R̃ 0

0 S̃

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where T can be thought of as a single row which takes the sum of the row from R which

corresponded to vertex a′ and the row from S which corresponded to vertex a′′.

This modified chain complex, denoted Ã, is given below:

0Ð→ ⋯
δi
Ð→ KFi(∆1) δi−1Ð→ ⋯

δ2
Ð→ KF1(∆1) δ̃1

Ð→ KF0(∆1)/K δ̃0
Ð→ 0

From the modification on the chain complex, A, the changes in the homology, Hi(A),

can be tracked. First, we show that the rank(δ1) = rank(δ̃1). In [Bap10], it is shown if a

graph, G, on x vertices has k connected components, and has incidence matrix Q(G), then

rank(Q(G)) = x − k. Since δ1 is the (oriented) incidence matrix for G1 ∐G2, and there are

two connected components, then rank(δ1) = (∣V1∣ + ∣V2∣) − 2. Since joining DN(G1,D) with

DN(G2,D) at vertices a′ and a′′ means there is one less vertex in DN(G1,D)∨DN(G2,D),

then rank(δ̃1) = (∣V1∣ + ∣V2∣ − 1) − 1 = rank(δ1). Since dim(KF1(∆1)) is the same in the chain

complexes A and Ã, then it follows by the rank-nullity theorem that null(δ1) = null(δ̃1).

Therefore, the homology on Ã is equivalent to Hi(A) for all i ≥ 1.
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Since null(δ̃0) = null(δ0) − 1, then the dimension of H0(Ã) is one less than the dimension

of H0(A). By assuming that G1 is connected and G2 is connected, then H0(A) ≅ K2, and

therefore, H0(Ã) ≅ K.

Let f̃ ∶ Ã → B and let g ∶ B → C be chain maps. Then we have the following sequence of

chain complexes:

0 0 0
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

⋯ ÐÐÐ→ KF2(∆1) δ2
ÐÐÐ→ KF1(∆1) δ̃1

ÐÐÐ→ KF0(∆1)/K δ̃0
ÐÐÐ→ 0

f2
×
×
×
Ö

f1
×
×
×
Ö

f̃0

×
×
×
Ö

⋯ ÐÐÐ→ KF2(∆2) ψ2
ÐÐÐ→ KF1(∆2) ψ1

ÐÐÐ→ KF0(∆2) ψ0
ÐÐÐ→ 0

g2
×
×
×
Ö

g1
×
×
×
Ö

g0
×
×
×
Ö

⋯ ÐÐÐ→ KF2(∆3) ϕ2
ÐÐÐ→ KF1(∆3) ϕ1

ÐÐÐ→ 0
×
×
×
Ö

×
×
×
Ö

0 0

Notice that by construction B = Ã ⊕ C. Therefore, this sequence of chain complexes is of

the form

0Ð→ Ã Ð→ Ã ⊕ C Ð→ C Ð→ 0

By Lemma 7, this is a short exact sequence of chain complexes. By the Zig-Zag Lemma,

there is a long exact sequence in homology.

⋯ Ð→Hi(Ã) Ð→Hi(B) Ð→Hi(C) Ð→Hi−1(Ã) Ð→ ⋯

It was shown that Hi(C) was trivial for i > 0 and since KF0(∆3) = 0, then H0(C) = 0.

Therefore, the homology of Ã is equivalent to the homology of B for all i. As shown before,
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Hi(Ã) = Hi(A) for i > 0 and H0(Ã) ≅ K. Therefore, Hi(B) = Hi(A) for all i > 0 and

H0(B) ≅ K. �

4.3. Graph Decomposition

Theorem 1 allows for a decomposition of graphs into subgraphs that meet at exactly one

vertex. For example, let D = {0,1} and consider the D-neighborhood complex of the graph

in Figure 4.3.

Figure 4.3. Graph G

This graph can be decomposed into 3 one-point unions of subgraphs (See Figure 4.4). By

Theorem 1, the homology of the D-neighborhood complex of G is the sum of the homology

groups of the D-neighborhood complex of each subgraph. We can compute the homology of

the D-neighborhood complex of each subgraph using theorems from Chapters 5 and 6. It

follows that H2(C) ≅ K, H1(C) ≅ K, and Hi(C) is trivial for i ≠ 1,2.

Figure 4.4. Decomposition of graph G

4.4. Corollary for Trees

Edges are the building blocks of a graph. By joining a set of edges as one-point unions,

one is able to build any tree. Restricting to one-point unions of edges ensures that a cycle

is not formed and thus, protects the definition of a tree. The next result is an immediate

35



consequence of Theorem 1 and looks at the homology of of the D-neighborhood complex of

a tree.

Corollary 1. Let T = (V,E) be a tree, let D = {0,1, . . . , d}, and let C be the chain

complex associated to DN(T,D). Then Hi(C) is trivial for all i.

Proof. Consider a tree on two vertices, vj and vk. This tree must be the edge vjvk. It

follows that σ = vjvk is a face in DN(T,D). Since σ is a complete D-neighborhood, then by

Proposition 2, Hi(C) must be trivial for all i.

vj vk

Figure 4.5. Tree on two vertices

Consider any tree, T . A tree is a collection of one-point unions of edges. The homology

of the D-neighborhood complex of each edge is trivial. Thus, by Theorem 1, if C is the chain

complex associated to DN(T,D), then Hi(C) must be trivial for all i. �

vi vj vk

vm

Figure 4.6. One-point union of edges
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CHAPTER 5

Trees

As mentioned in Chapter 2, there is exactly one path between any pair of vertices in a

tree. Equivalently, adding any edge to a pair of existing vertices will form a cycle. For this

reason, the connectivity information in a tree seems trivial. This chapter will look at how

different choices of D and how adding edges to a tree changes the connectivity information.

First, we study the D-neighborhood complex of path graphs for a specific choice of D. Section

5.2 will look at how the homology of the D-neighborhood complex of a tree changes when

one edge is added to a pair of existing vertices.

5.1. The D-Neighborhood Complex of Path Graphs

The most basic type of tree to study is a path graph. A path graph, denoted Pn, is a

tree on n vertices with exactly two leaves and where all other vertices have degree 2. This

graph can be thought as a straight line through n vertices (See Figure 5.1).

By Corollary 1, the homology of the D-neighborhood complex associated to a path graph

is trivial if D consists of consecutive distances starting with 0. The homology is no longer

trivial if 0 is excluded from D. In particular, consider the case when D = {1}.

v0 v1 v2 v3 v4 v5 v6

Figure 5.1. Path graph P7

Theorem 2. Let Pn be a path graph, and let D = {1}. Suppose C is the chain complex

associated to DN(Pn,D). Then H0(C) ≅ K2 and Hi(C) is trivial for all i > 0.

Proof. Let Pn be a path graph on the vertex set V = {v0, v1, . . . , vn−1}, and let D = {1}.

Consider DN(Pn,D). Notice that N0 = v1 and Nn−1 = vn−2. It follows that N0∣N2 and
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Nn−1∣Nn−3. Thus, the facets of DN(Pn,D) are 1-faces of the form vj−1vj+1 for each integer

j ∈ [1, n − 2]. Whenever j is even, Nj will be a 1-face of vertices with odd subscripts and

when j is odd, Nj will be a 1-face of vertices with even subscripts. This implies Hi(C) is

trivial for i > 1. Also, this implies the set of facets can be separated into exactly two disjoint

components (see Figure 5.2). Since H0(C) measures the number of connected components,

then H0(C) ≅ K2.

v0 v2 v4 v6 v1 v3 v5

Figure 5.2. D-neighborhood complex of P7

Now, if H1(C) were not trivial, then at the minimum, there would exist a set of 1-faces

which contains vertices of the form ajak, ajam, akam which would form the boundary of a

one-dimensional hole. If vj−1vj+1 is in this set, then this set must also contain a 1-face with

vertex vj−1 and a 1-face with vertex vj+1. However, by construction of the D-neighborhoods,

these faces would have to be vj−3vj−1 and vj+1vj+3. Since vj−3 ≠ vj+3, then no such set exists.

Thus, H1(C) is trivial. �

5.2. The D-Neighborhood Complex of Unicyclic Graphs

A graph is unicyclic if it contains exactly one cycle. One such graph is Cn. A more general

example is if exactly one edge is added between two existing vertices in a tree. Corollary 1

from Section 4.4 can be extended to compute the homology of the D-neighborhood complex

of a unicyclic graph in the case of D = {0,1}. In order to do this, we start with a tree and add

exactly one edge which forms one cycle. This new graph is a copy of the tree. The homology

of the D-neighborhood complex of a unicyclic graph will vary depending on the size of the

cycle. An immediate corollary of this theorem classifies the homology of the D-neighborhood

complex of Cn for this same choice of distance set.
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Theorem 3. Let D = {0,1}. Consider a tree T with distinct leaves v1 and v2. Let

G = (V,E) be a copy of T where the edge v1v2 ∈ E. Let B be the chain complex associated to

DN(G,D).

(i) If d(v1, v2) = 2 in T , then Hi(B) is trivial for all i.

(ii) If d(v1, v2) = 3 in T , then H2(B) ≅ K and Hi(B) is trivial for all i ≠ 2.

(iii) If d(v1, v2) ≥ 4 in T , then H1(B) ≅ K and Hi(B) is trivial for all i ≠ 1.

Proof. LetD = {0,1}. Suppose T is a tree with distinct leaves v1 and v2. LetA = {∆1, δ}

be the associated chain complex to DN(T,D). Let G = (V,E) be a copy of T with edge

v1v2 ∈ E. Let B = {∆2, ψ} be the chain complex associated to DN(G,D). Let f ∶ A → B be a

chain map. Notice that ∆1 ⊂ ∆2. Let ∆3 be a collection of i-dimensional faces from ∆2∖∆1.

By Lemma 5, let C = {∆3, ϕ} be the difference complex.

(i) Suppose d(v1, v2) = 2 in T , and suppose v3 is the parent of v1 and v2 (see Figure 5.3).

That is, d(v1, v3) = 1 and d(v2, v3) = 1. In ∆1, N1 = v1v3 and N2 = v2v3. In ∆2, these

D-neighborhoods change to N1 = v1v2v3 = N2. However, since the face v1v2v3∣N3 in

both ∆1 and ∆2, it follows that ∆3 = ∅. That is, ∆1 = ∆2, so Hi(A) =Hi(B) for each

i. Therefore, by Corollary 1, Hi(B) is trivial for all i.

v3

v1 v2

Figure 5.3. Tree with d(v1, v2) = 2

(ii) Suppose d(v1, v2) = 3 in T . Suppose v3 is the parent of vertex v1 and that v4 is the

parent of vertex v2 (see Figure 5.4). That is, d(v1, v3) = 1 and d(v2, v4) = 1. The
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facets that are in ∆3 come from the D-neighborhoods on v1 and v2 in ∆2 which are

given by N1 = v1v2v3 and N2 = v1v2v4.

v4v3

v2v1

Figure 5.4. Tree with d(v1, v2) = 3

All of the faces in ∆3 can be given explicitly, ∆3 = {v1v2v3, v1v2v4, v1v2}. This

can be used to write the chain complex C:

0Ð→ K2 ϕ2
Ð→ K1 ϕ1

Ð→ 0

where ϕ2 = (1 1) and ϕ1 = (0).

There are chain maps between the chain complexes A,B, and C which are demon-

strated below:

0 0 0 0
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

⋯ ÐÐÐ→ KF3(∆1) δ3
ÐÐÐ→ KF2(∆1) δ2

ÐÐÐ→ KF1(∆1) δ1
ÐÐÐ→ KF0(∆1) δ0

ÐÐÐ→ 0

f3
×
×
×
Ö

f2
×
×
×
Ö

f1
×
×
×
Ö

f0
×
×
×
Ö

⋯ ÐÐÐ→ KF3(∆2) ψ3
ÐÐÐ→ KF2(∆2) ψ2

ÐÐÐ→ KF1(∆2) ψ1
ÐÐÐ→ KF0(∆2) ψ0

ÐÐÐ→ 0

g3
×
×
×
Ö

g2
×
×
×
Ö

g1
×
×
×
Ö

g0
×
×
×
Ö

0 ÐÐÐ→ K2
ϕ2

ÐÐÐ→ K1
ϕ1

ÐÐÐ→ 0
×
×
×
Ö

×
×
×
Ö

0 0
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By construction, B = A⊕ C. Therefore, this sequence of chain complexes is of the

form

0Ð→ A Ð→ A⊕ C Ð→ C Ð→ 0

By Lemma 7, this is a short exact sequence of chain complexes, and by the Zig-Zag

Lemma, there is a long exact sequence in homology:

⋯ Ð→Hn(A) Ð→Hn(B) Ð→Hn(C) Ð→Hn−1(A) Ð→ ⋯

Recall, by Corollary 1, Hi(A) is trivial for all i. Since ϕk is the zero map for k ≠ 2,

then Hi(C) is trivial for i = 0 and for all i ≥ 3.

Using ϕ2 and ϕ1, explicit computations show that H2(C) ≅ K and H1(C) = 0.

Filling in known homology groups, the long exact sequence becomes:

⋯ Ð→ 0Ð→H2(B) Ð→ KÐ→ 0Ð→H1(B) Ð→ 0Ð→ ⋯

Since this sequence is exact, then H2(B) ≅ K, and Hi(B) is trivial for all i ≠ 2.

(iii) Suppose d(v1, v2) ≥ 4 in T . Suppose v3 is the parent of vertex v1 and that v4 is the

parent of vertex v2 (see Figure 5.5). That is, d(v1, v3) = 1 and d(v2, v4) = 1.

v3 v4

v1 v2

Figure 5.5. Tree with d(v1, v2) ≥ 4

The facets that are in ∆3 come from the D-neighborhoods on v1 and v2 in ∆2

which are given by N1 = v1v2v3 and N2 = v1v2v4. It follows that the faces in ∆3 can
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be given explicitly, ∆3 = {v1v2v3, v1v2v4, v1v2, v1v4, v2v3}. This can be used to write

the chain complex C:

0Ð→ K2 ϕ2
Ð→ K3 ϕ1

Ð→ 0

where ϕ1 is a zero array and

ϕ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1

0 −1

1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

There are chain maps between A,B, and C which are demonstrated below:

0 0 0 0
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

⋯ ÐÐÐ→ KF3(∆1) δ3
ÐÐÐ→ KF2(∆1) δ2

ÐÐÐ→ KF1(∆1) δ1
ÐÐÐ→ KF0(∆1) δ0

ÐÐÐ→ 0

f3
×
×
×
Ö

f2
×
×
×
Ö

f1
×
×
×
Ö

f0
×
×
×
Ö

⋯ ÐÐÐ→ KF3(∆2) ψ3
ÐÐÐ→ KF2(∆2) ψ2

ÐÐÐ→ KF1(∆2) ψ1
ÐÐÐ→ KF0(∆2) ψ0

ÐÐÐ→ 0

g3
×
×
×
Ö

g2
×
×
×
Ö

g1
×
×
×
Ö

g0
×
×
×
Ö

0 ÐÐÐ→ K2
ϕ2

ÐÐÐ→ K3
ϕ1

ÐÐÐ→ 0
×
×
×
Ö

×
×
×
Ö

0 0

By construction, B = A⊕ C. Therefore, this sequence of chain complexes is of the

form

0Ð→ A Ð→ A⊕ C Ð→ C Ð→ 0

By Lemma 7, this is a short exact sequence of chain complexes, and by the Zig-Zag

Lemma, there is a long exact sequence in homology:
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⋯ Ð→Hn(A) Ð→Hn(B) Ð→Hn(C) Ð→Hn−1(A) Ð→ ⋯

Recall, by Corollary 1, Hi(A) is trivial for all i. Since ϕk is the zero map for k ≠ 2,

then Hi(C) is trivial for i = 0 and for all i ≥ 3.

The homology for H2(C) and H1(C) can be computed explicitly using ϕ2 and ϕ1.

It follows that H2(C) = 0 and H1(C) ≅ K. Filling in known homology groups, the long

exact sequence becomes:

⋯ Ð→ 0Ð→H2(B) Ð→ 0Ð→ 0Ð→H1(B) Ð→ KÐ→ 0Ð→ ⋯

Since this sequence is exact, then it follows that H1(B) ≅ K, and Hi(B) is trivial

for i ≠ 1.

�

Theorem 3 looks at the D-neighborhood complex of a graph when an edge has been

added between the leaves of a tree. One can add edges to these same vertices as one-point

unions to obtain any tree in which an edge has been added between any pair of existing

vertices. Therefore, by Theorem 3, the homology of the D-neighborhood complex of any

unicyclic graph is known.
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CHAPTER 6

The D-Neighborhood Complex of Cycle Graphs

6.1. Cycle Graphs

As indicated in Section 5.2, the graph of Cn can be formed from a tree. Begin with

the path graph Pn and add an edge between the two leaves. The graph is now a cycle

on n vertices. The homology of the D-neighborhood complex of cycle graphs is non-trivial

for several choices of D. Section 6.2 uses the “smallest” set of consecutive distances, while

subsequent sections in this chapter will look at other choices for D.

v2

v1

v0

vn−1

vn−2

vn−3

. . .
v3

Figure 6.1. Cycle graph Cn

6.2. The D-Neighborhood Complex with Minimal Distance Set

The “smallest” set of consecutive distances is D = {0,1}. For this choice of D, the

homology of the D-neighborhood complex of a cycle graph is a corollary to Theorem 3.

Corollary 2. Let Cn be a cycle graph and let D = {0,1}. Let C be the chain complex

associated to DN(Cn,D).

(i) If n = 3, then Hi(C) is trivial for all i > 0.

(ii) If n = 4, then H2(C) ≅ K, and Hi(C) is trivial for i ≠ 2.

(iii) If n > 4, then H1(C) ≅ K, and Hi(C) is trivial for i ≠ 1.

Proof. Consider a path graph Pn. Add an edge between the two leaves to form the

cycle graph Cn.
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(i) If n = 3, then the leaves of P3, say v0 and v2, are of distance d(v0, v2) = 2, so this is

case (i) from Theorem 3.

v1

v0 v2

Figure 6.2. P3 with edge added to form C3

(ii) If n = 4, then the leaves of P4, say v0 and v3, are of distance d(v0, v3) = 3, so this is

case (ii) from Theorem 3.

v2v1

v0 v3

Figure 6.3. P4 with edge added to form C4

(iii) If n > 4, then the leaves of Pn, say v0 and vn−1, are of distance d(v0, vn−1) = n − 1 ≥ 4,

so this is case (iii) from Theorem 3.

v2

v1

v0 v4

v3

Figure 6.4. P5 with edge added to form C5

The homology of the D-neighborhood complex of Cn follows from Theorem 3. �

By Corollary 2, the D-neighborhood complex of C4 has one boundary of a 2-dimensional

“hole”. The facets of DN(C4,D) are {v0v1v2, v0v1v3, v0v2v3, v1v2v3}. One can see that these

facets form a 2-sphere, or a hollow tetrahedron.
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v0v3

v2 v1

v0

v1

v2

v3

Figure 6.5. Graph C4 (left) and DN(C4,{0,1}) (right)

One way to think about the D-neighborhood complex of Cn when n > 4, is to suppose

the vertices of Cn are labeled consecutively v0, v1, . . . vn−1. The D-neighborhoods are of the

form vi−1vivi+1 (mod n) for all i ∈ [0, n − 1]. Therefore, there are n facets of dimension 2

which can be thought of as solid triangles. Each triangle, vi−1vivi+1, shares an edge with two

other triangles, vi−2vi−1vi and vivi+1vi+2. Depending on the parity of n, the D-neighborhood

complex of Cn will either be a cylinder or a Möbius band. However, the homology of the

chain complex for both simplicial complexes will still be one-dimensional at H1(C) [Mun84].

See Figures 6.6 and 6.7

v0 v2 . . . vn−2 v0

vn−1 v1
. . . vn−3 vn−1

Figure 6.6. D-neighborhood complex of Cn when n is even

v0 v2 . . . vn−3 vn−1

vn−1 v1 v3
. . . vn−2 v0

Figure 6.7. D-neighborhood complex of Cn when n is odd

6.3. One-Point Unions of Cycles

There is a class of graphs called Dutch windmill graphs, denoted D
(m)
3 , which consists

of m copies of C3 joined at a single vertex. These graphs can be extended to D
(m)
n , which

46



consists of m copies of Cn joined at a single vertex. Theorem 1 and Corollary 2 can be used

to compute the homology of the D-neighborhood complex of D
(m)
n when D = {0,1}.

Figure 6.8. Dutch windmill graphs D3
3 and D3

4

Corollary 3. Let D = {0,1} and let D
(m)
n be a Dutch windmill graph. Let C be the

chain complex associated to DN(D
(m)
n ,D).

(i) If n = 3, then Hi(C) is trivial for all i > 0.

(ii) If n = 4, then H2(C) ≅ Km, and Hi(C) is trivial for i ≠ 2.

(iii) If n > 4, then H1(C) ≅ Km, and Hi(C) is trivial for i ≠ 1.

Proof. Let D = {0,1} and let D
(m)
n be a Dutch windmill graph. Let C be the chain

complex associated to DN(D
(m)
n ,D). Using the same choice of D, let A be the chain complex

associated to DN(Cn,D).

Since D
(m)
n is a one-point union of m copies of Cn, then by Theorem 1, Hi(C) = ⊕

m
Hi(A).

The homology groups Hi(A) are given in Corollary 2. �

6.4. The D-Neighborhood Complex for D = {1}

Just as Section 5.1 computes the homology of the D-neighborhood complex of Pn when

D = {1}, this section will compute the homology of the D-neighborhood complex of the cycle

graph, Cn, for the same choice of D. Recall, the D-neighborhood complex of a path graph
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is two disjoint sequences of 1-faces. However, for Cn, the D-neighborhood complex is either

homotopy equivalent to a circle or homotopy equivalent to two circles. The D-neighborhood

complex depends on the parity of n.

Theorem 4. Let Cn be a cycle graph and let D = {1}. Let C be the chain complex

associated to DN(Cn,D).

(i) If n is even, then H0(C) ≅ K2, H1(C) ≅ K2, and Hi(C) is trivial for i > 1.

(ii) If n is odd, then H1(C) ≅ K, and Hi(C) is trivial for i ≠ 1.

Proof. Let Cn be a cycle graph and suppose D = {1}. Suppose the vertices are labeled

in consecutive order, v0, v1, . . . , vn−1. Then the D-neighborhood on vertex vj is of the form

Nj = vj−1vj+1 (mod n), for each j ∈ [0, n − 1]. It follows that the facets of DN(Cn,D) are

{v0v2, v1v3, v2v4, v3v5, . . . , vn−2v0, vn−1v1}. Since the facets are all of dimension 1, this implies

that the only non-trivial homology can come from H0(C) and H1(C).

(i) If n is even, then each edge pair vj−1vj+1 will either contain only even numbered sub-

scripts or odd numbered subscripts. This divides DN(Cn,D) into exactly two disjoint

components: {v0v2, v2v4, . . . , vn−2v0} and {v1v3, v3v5, . . . , vn−1v1}, (See Figure 6.9).

This implies H0(C) ≅ K2. Furthermore, each component forms the boundary of a

circle. Together, these two circles give H1(C) ≅ K2.

v2

v0

vn−2

vn−4

. . .

v4

v3

v1

vn−1

vn−3

. . .

v5

Figure 6.9. D-neighborhood complex of Cn, n even
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(ii) Suppose n is odd. Then the D-neighborhood on vertex vn−1 is Nn−1 = vn−2v0, which is

an edge consisting of a vertex with an odd numbered subscript and a vertex with an

even numbered subscript. Rather than have two disjoint cycles consisting of vertices

of strictly even numbered subscripts or odd numbered subscripts, this edge connects

the two circles from case (i) to create one component which is the boundary of a circle

(See Figure 6.10). Therefore H1(C) ≅ K and Hi(C) is trivial for i ≠ 1.

�

v4

v2

v0

vn−2

vn−4

⋱
v1 vn−1

⋰

Figure 6.10. D-neighborhood complex of Cn, n odd

6.5. The D-Neighborhood Complex with Maximal Distance Set

Corollary 2 looked at the case where D is the “minimum” set of consecutive distances,

namely D = {0,1}. Proposition 3 showed that once D = {0,1, . . . ,diam(G)}, then the ho-

mology of the D-neighborhood complex would always be trivial. For this reason, we regard

D = {0,1, . . . ,diam(Cn) − 1} as the “maximum” choice of distance set. By construction of

the D-neighborhood on a vertex, the following case only applies when n is even. When n is

even, then diam(G) = n
2 .

Theorem 5. Let n be even and let D = {0,1, . . . , n2 − 1}. Let C be the chain complex

associated to DN(Cn,D). Then Hn−2(C) ≅ K and Hi(C) is trivial for all other i.

Proof. Let n be even and let D = {0,1, . . . , n2 − 1}. Consider DN(Cn,D). For each

j ∈ [0, n − 1], Nj = v0⋯v̂k⋯vn−1 where vertex vk is excluded and k = j + n
2 (mod n). These
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n distinct D-neighborhoods are the facets of DN(Cn,D). Notice all facets have dimension

n − 2.

Now consider an (n− 1)-ball which can be represented as the facet v0⋯vn−1. Notice that

applying the boundary operator yields

δ(v0⋯vn−1) =
n−1

∑
j=1

(−1)jNj

This is to say, the facets of DN(Cn,D) form the boundary of the (n − 1)-ball. Therefore,

DN(Cn,D) can be represented as an (n − 2)-sphere and thus, Hn−2(C) ≅ K and Hi(C) is

trivial for all other i [Mun84]. �

If n were odd. Then diam(Cn) = ⌊n2 ⌋. This means that each D-neighborhood is of the

form Ni = v0⋯v̂j v̂j+1⋯vn−1, where j = i + ⌊n2 ⌋ (mod n). This is no longer the boundary of an

(n− 1)-ball. As a result, the homology of DN(Cn,D) is more difficult to predict for various

choices of n when n is odd.
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CHAPTER 7

The D-Neighborhood Complex of Vertex Weighted

Trees

Up to this point, the D-neighborhoods of the vertices of a graph have been formed using

the same distance set, D. This chapter studies the case when D varies for each vertex. We

assign weights to the vertices of the graph. These weights are used to determine the distance

set that applies to the D-neighborhood on each vertex. In Section 7.3, we compute the

homology of the D-neighborhood complex of vertex weighted trees.

7.1. The D-Neighborhood Complex of Weighted Graphs

The following definitions formalize the process for constructing the D-neighborhood com-

plex of a graph where D varies for each vertex.

Definition 17. A vertex weighted graph, Gw = (V,E), is a graph in which each vertex

vi ∈ V is assigned a weight wi ∈ Z+.

Definition 18. Suppose Gw = (V,E) is a vertex weighted graph. Define Di = {0, . . . ,wi}.

The D-neighborhood of vertex vi will be given by Ni = {vj ∶ d(vi, vj) ∈ Di}. The D-neighborhood

complex of a vertex weighted graph, denoted DN(Gw,D), is the simplicial complex with sim-

plex σ included whenever σ∣Nj for some Nj.

Just as before with the value of d ∈ D, without loss of generality, we assume each weight,

wi, is a positive integer less than the diameter of the graph, i.e. 1 ≤ wi < diam(Gw). If

wi ≥ diam(Gw), then Ni is a complete D-neighborhood. By Proposition 3, the homology of

the associated chain complex will be trivial.
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Allowing different distance sets for the D-neighborhoods of the vertices in a graph can

create interesting connectivity information. The homology of the D-neighborhood complex

will depend heavily on the various choices for weights on the vertices.

For example, consider the vertex weighted graph of C8 in Figure 7.1.

2
1

1

1

2
2

1

2

Figure 7.1. Vertex weighted C8, version 1

The chain complex associated to the D-neighborhood complex of this weighted graph is given

below.

0Ð→ K4 Ð→ K18 Ð→ K32 Ð→ K25 Ð→ K8 Ð→ 0

Explicit computations show the homology of the D-neighborhood complex of this vertex

weighted graph is trivial for all i. In Chapter 6, we showed that H1(C) would have been one

dimensional in the case of D = {0,1}. Notice that by increasing this distance set for four

vertices, the homology of the D-neighborhood complex becomes trivial.

It will not always be the case that the D-neighborhood complex of a weighted C8 has

trivial homology. From Figure 7.1, we can increase one vertex of weight 1 to weight 2 and

rearrange these weights to obtain Figure 7.2.

2
2

1

2

1
2

1

2

Figure 7.2. Vertex weighted C8, version 2

52



In version 1, there were four facets of dimension 4. In version 2, there are five facets

of dimension 4 which is a result of increasing the weight of one of the vertices. The chain

complex associated to the D-neighborhood complex of the graph in Figure 7.2 follows.

0Ð→ K5 Ð→ K23 Ð→ K39 Ð→ K27 Ð→ K8 Ð→ 0

In this case, H2(C) ≅ K. Again, this differs from the case of D = {0,1} on an unweighted

C8. It can be shown that when D = {0,1,2} in an unweighted C8, then the homology of the

chain complex associated to DN(C8,D) is H2(C) ≅ K3. Intuitively, one would assume that

as the weights of more of the vertices are increased to 2, the homology of the D-neighborhood

complex of a weighted C8 will approach the homology of the D-neighborhood complex of an

unweighted C8 with D = {0,1,2}.

7.2. Maximally Weighted Graphs

Consider the case when vertex vi is assigned weight wi and its correspondingD-neighborhood

Ni∣Nj for some Nj. There are times when changing wi will not change the fact that Ni∣Nj.

It is possible to increase the weight, wi, until it is “maximal”. That is, the weight can be

increased until it changes the corresponding simplicial complex, so that Ni ∤ Nj. In other

words, the D-neighborhood, Ni, picks up extra 0-faces, or vertices, which changes the faces

in the D-neighborhood complex. The following definition describes the notion of when a

vertex weighted graph has maximal weight.

Definition 19. A vertex weighted graph is maximally weighted if there are no complete

D-neighborhoods and if increasing any of the weights of the vertices changes the associated

D-neighborhood complex.

53



3

2

1
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1

1

2

1

2

2

1

Figure 7.3. A vertex weighted tree

Let Tw be a vertex weighted tree (See Figure 7.3). The weights of the vertices in this tree

can be increased until the tree is maximally weighted (See Figure 7.4). Notice with these

changes in weights, the facets of the associated D-neighborhood complex do not change.

3

3

2

2

2

1

1

2

1

2

2

2

Figure 7.4. A maximally weighted tree

The weights on the leaves of the tree determine the weights of the vertices adjacent to

each leaf. In some cases, the weight of a vertex adjacent to a leaf might already be maximal.

In other cases, this weight will need to be increased in order for the tree to be maximally

weighted. The following Lemma describes the weight of such vertices.

Lemma 8. Let Tw be a maximally weighted tree and let v0 be a leaf. Suppose d(v0, v1) = 1.

Then the weight of v1 is w1 = w0 − 1.

Proof. Suppose Tw is a vertex weighted tree. Let v0 be a leaf with weight w0 and

suppose vertex v1 is adjacent to v0; that is, d(v0, v1) = 1. Suppose the weight of vertex v1 is

w1 < w0 − 1. Then N1∣N0. It will be shown that the weight associated to v1 can be increased

to w1 = w0 − 1 and this will not change the D-neighborhood complex of Tw.
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Let vj be an arbitrary vertex such that vj ∣N1 in DN(Tw,D). Then it follows that

d(v1, vj) ≤ w1

1 + d(v1, vj) ≤ w1 + 1

d(v0, v1) + d(v1, vj) ≤ w1 + 1

d(v0, vj) ≤ w0

This implies that vj ∣N0, which means that N1∣N0. Therefore, increasing the weight of w1

does not add any new simplices to DN(Tw,D).

Next, suppose w1 > w0−1, or equivalently, w1+1 > w0. Then N0∣N1. It will be shown that

the weight associated to v0 can be increased to w0 = w1 + 1 without changing DN(Tw,D).

Let vj be an arbitrary vertex such that vj ∣N0. Then it follows that

d(v0, vj) ≤ w0

d(v0, vj) ≤ w1 + 1

d(v0, v1) + d(v1, vj) ≤ w1 + 1

d(v1, vj) ≤ w1

This implies that vj ∣N1, which means that N0∣N1. Therefore, increasing the weight of w0

does not add any new simplices to DN(Tw,D). Therefore, w1 = w0 − 1. �
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As a consequence of this lemma, in a maximally weighted tree, if v0 is a leaf and v1 is an

adjacent vertex, then it will be true that N0 = N1.

7.3. The Main Theorem

The following theorem shows that for any vertex weighted tree, the homology of the

D-neighborhood complex will be trivial regardless of the weights assigned to the vertices.

To prove this theorem, we compare the D-neighborhood complex of one vertex weighted

tree with the D-neighborhood complex of the same vertex weighted tree with one more leaf.

Careful bookkeeping allows one to track the differences between these simplicial complexes.

In order to record the simplices that are contained in the D-neighborhood complex of the

tree with the extra leaf, we assume the trees are maximally weighted. By definition of

maximally weighted graphs, we will not lose the information contained in the facets of the

D-neighborhood complex. We are then able to use the Zig-Zag Lemma by constructing a

short exact sequence of chain complexes. Knowledge of the homology groups on two of the

chain complexes allows us to find the homology of the third chain complex.

Theorem 6. Let Tw be a vertex weighted tree. Let C be the chain complex associated to

DN(Tw,D). Then Hi(C) is trivial for all i.

Proof. We use induction on the number of vertices on Tw to prove our result.

Suppose Tw is a vertex weighted tree on 3 vertices (see Figure 7.5). Then Tw must be a

vertex weighted path graph.

v0

w0

v1

w1

v2

w2

Figure 7.5. Weighted tree on 3 vertices
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Since wj ≥ 1 for all j, then N1 = v0v1v2. Since N1 is a complete D-neighborhood, then by

Proposition 2, Hi(C) is trivial for all i.

Let T2 be a vertex weighted tree on n+1 vertices, where vertex vj has corresponding weight

wj ≥ 1. Without loss of generality, assume T2 is maximally weighted. Let DN(T2,D) = ∆2 be

the D-neighborhood complex of the vertex weighted tree T2. Let T1 be the vertex weighted

tree obtained by removing a leaf, v0, from T2. Now T1 has n vertices1. Let DN(T1,D) = ∆1 be

the D-neighborhood complex of the vertex weighted tree T1. By this construction, ∆1 ⊂ ∆2.

Assume that the D-neighborhood complex of a vertex weighted tree with n vertices has

trivial homology; that is, if A is the chain complex associated to ∆1, then Hi(A) is trivial

for all i. Suppose B is the chain complex associated to ∆2, it suffices to show that Hi(B) is

trivial.

Suppose d(v0, v1) = 1, i.e. v1 is adjacent to v0. Since T2 is maximally weighted, then by

Lemma 8, w1 = w0 − 1. It follows that N0 = N1 in ∆2.

Let f be a chain map f ∶ A → B. Since ∆1 ⊂ ∆2, then let ∆3 be the collection of faces

from ∆2 ∖∆1. Consider σ ∈ ∆2 where σ∣N0 and v0∣σ. Then it must also be true that σ∣N1.

Suppose τ ∣σ, but v0 ∤ τ . Since τ ∣N1 by Definition 13, then τ ∈ ∆1. However, since v0∣σ, then

by construction of T1, σ ∉ ∆1. Therefore, for every α ∈ ∆3, it follows that v0∣α. This is to

say, all faces in ∆3 are divisible by v0. All faces which are not divisible by v0 are in ∆1 from

the fact that T2 is maximally weighted. Notice that ∆3 contains exactly one facet and this

is N0 from ∆2. Let dim(N0) = d; recall this means that the cardinality ∣N0∣ = d + 1. Since

each face in ∆3 is divisible by v0, then fixing v0 leaves (d+ 1) − 1 = d vertices and choosing j

of these yields a face of dimension j in ∆3. Thus, there are (d
j
) faces of dimension j in ∆3,

where 1 ≤ j ≤ d. In other words, ∣Fj(∆3)∣ = (d
j
).

1It is important to note the subscripts on the vertex weighted trees here are to distinguish the trees and are
not an indication of the weights assigned to the vertices.
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By Lemma 5, there is a difference complex, C, associated to ∆3.

0Ð→ K(
d
d
) ϕd
Ð→ ⋯Ð→ K(

d
i
) ϕi
Ð→ K(

d
i−1
) Ð→ ⋯

ϕ1
Ð→ K(

d
0
) Ð→ 0

Notice this chain complex is a copy of the (augmented) Koszul Complex and therefore,

Hi(C) = 0 for all i [MS05].

Construct chain maps between these three chain complexes as follows:

0 0
×
×
×
Ö

×
×
×
Ö

⋯ ÐÐÐ→ KFi(∆1) δi
ÐÐÐ→ KFi−1(∆1) ÐÐÐ→ ⋯

fi
×
×
×
Ö

fi−1
×
×
×
Ö

⋯ ÐÐÐ→ KFi(∆2) ψi
ÐÐÐ→ KFi−1(∆2) ÐÐÐ→ ⋯

gi
×
×
×
Ö

gi−1
×
×
×
Ö

⋯ ÐÐÐ→ KFi(∆3) ϕi
ÐÐÐ→ KFi−1(∆3) ÐÐÐ→ ⋯

×
×
×
Ö

×
×
×
Ö

0 0

The structure of these three chain complexes is such that B = A ⊕ C. Therefore, this

sequence is of the form

0Ð→ A Ð→ A⊕ C Ð→ C Ð→ 0

By Lemma 7 there is a short exact sequence of chain complexes. By the Zig-Zag Lemma,

this induces a long exact sequence on homology

⋯ Ð→Hn(A) Ð→Hn(B) Ð→Hn(C) Ð→Hn−1(A) Ð→ ⋯

Recall, Hi(A) is trivial for all i, by assumption. Since Hi(C) = 0 for all i, then the long

exact sequence implies that Hi(B) is trivial. �
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The homology of the Koszul complex is characteristic free which implies that the proof for

Theorem 6 shows that the homology of the D-neighborhood complex of a vertex weighted tree

is also characteristic free. Thus, Theorem 6 applies to a very general class of D-neighborhood

complexes of trees.

In Chapter 4, it was shown that the homology of the chain complex of the D-neighborhood

complex of a tree with distance set D = {0,1, . . . , d} must be trivial. There is another method

for showing this to be true using Theorem 6 where the weight of each vertex is the same.

Corollary 4. Let T = (V,E) be a tree. Let D = {0,1, . . . , d}, and let C be the associated

chain complex to DN(T,D). Then Hi(C) is trivial for all i.

Proof. Consider a vertex weighted tree, Tw = (V,E), where wj = d for each vertex

vj ∈ V . By Theorem 6, Hi(C) mus be trivial for all i. �

In Section 7.1, we showed that adjusting the weights of the vertices of C8 will impact

the homology of the D-neighborhood complex. This should not be surprising since each

D-neighborhood is gathering a different amount of connectivity information in the graph. It

is interesting that regardless of the weights assigned to the vertices in a tree, the homology

of the D-neighborhood complex will still be trivial.
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CHAPTER 8

Conclusion

Beginning with a graph, one can build a simplicial complex based on the connectivity

of the vertices. Specifically, given a subset of graph distances, D, the D-neighborhood of a

vertex, v, is the set of all vertices in the graph with distance in D from v. The collection of

D-neighborhoods on all of the vertices in the graph generate the D-neighborhood complex.

It is possible to study the topological features of this simplicial complex.

Much is known about the way in which vertices are connected in a tree since there is

exactly one path between each pair of vertices. When D is a set of consecutive distances

beginning with 0, the D-neighborhood complex of a tree has trivial homology. This means

the simplicial complex bounds no holes. What may not be intuitive is that if D is a set

of consecutive distances which varies for each vertex in a tree, the homology of the D-

neighborhood complex is still trivial.

The connectivity information of a cycle graph is also well known. There are exactly

two paths between each pair of vertices; however, there may (or may not) be only one path

of shortest distance. The homology of the D-neighborhood complex is non-trivial for many

choices of D. In the case when D = {0,1}, once there are more than 5 vertices in the graph, the

D-neighborhood complex is equivalent to the boundary of a circle. This agrees with the fact

that the graph is also a circle. Once we look at how the vertices in the graph are connected

to all but one vertex, i.e. when D = {0,1, . . . ,diam(Cn) − 1} for n even, then we find that

the D-neighborhood complex is a (hollow) sphere of dimension n − 2. Preliminary findings

suggest that when D is between these two distance sets, the D-neighborhood complex has

the same homology as the wedge sum of spheres. This means that if we think of looking at

60



the filtration of the D-neighborhood complex of Cn when D = {0,1, . . . , d} and we increment

d by 1, then the D-neighborhood complex begins as a circle, changes into some number of

hyper-spheres, these turn into an (n − 2)-sphere, which then fills into a solid n-ball.

When D is a set of consecutive distances which begins with 0, the homology of the D-

neighborhood complex of any two graphs joined at a vertex will be equivalent to the sum

of the homology groups of the D-neighborhood complex of each graph. This means that

the topological features present in each of the D-neighborhood complexes of the individual

graphs are preserved. Furthermore, this result provides a method for decomposing graphs

into subgraphs in order to detect the structure of the associated D-neighborhood complex.

One method for looking at the global structure of a graph is to look at the topological

structure of the associated D-neighborhood complex for a particular choice of D. In the

case of two graphs with similar local structure, this can be one way to differentiate the two

graphs rather than using an isomorphism test. At times, it may be preferable to categorize

two graphs as being “similar”. For example, a graph with a few edges joined at a vertex

will have a D-neighborhood complex with the same topological features as a graph without

these edges. As a result, we could say that although these graphs are not isomorphic, they

are similar.

8.1. Open Questions

There are several possible directions one can take with this research. One such direction

would be to continue to explore the D-neighborhood complex of other classes of graphs. For

example, we have a conjecture for the homology of the D-neighborhood complex of bipartite

graphs when D = {0,1}. Since the connectivity information in these graphs is predictable,
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generalizing to D = {0,1, . . . , d} will be a task in extending the current conjecture. Further-

more, using a conjecture for the homology of the D-neighborhood complex of multipartite

graphs for D = {0,1}, one could expect to generalize this case to D = {0,1, . . . , d} as well.

Another direction for research is to explore connections between the D-neighborhood

complex and other simplicial complexes. The Vietoris-Rips complex of a set of points in a

metric space is related to the clique complex of a graph. Currently, it is predicted that while

the D-neighborhood complex is distinct from the Vietoris-Rips Complex, the homology of

the D-neighborhood complex of a cycle graph for sets of consecutive distances beginning

with 0 is the same as the Vietoris-Rips complex of a circle of evenly spaced points. This is

ongoing work joint with Henry Adams and Micha l Adamaszek. The homotopy types of the

clique complex of powers of cycle graphs was proved by Adamaszek [Ada13]. By relating the

homology of the D-neighborhood complex of a cycle graph with the homology of the clique

complex, we hope to solidify the connection with the Vietoris-Rips complex.
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