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ABSTRACT 
 
 
 

STUDIES CONCERNING PLATINUM-CATALYZED 1,6-ENYNE CYCLOISOMERIZATIONS: 
 

A UNIFIED SYNTHETIC APPROACH TO THE GELSEMIUM ALKALOIDS 
 
 
 

 The development and application of transition metal-catalyzed enyne cyclization reactions is an ever 

growing and active area of research in modern organic synthesis. One prolific class of catalysts studied in 

this broad arena is that of pi-acidic metal complexes. Through further understanding of the fundamental 

processes of these alkynophilic metal catalysts, we are able to test new transformations in more complex 

settings. 

 Presented herein are our contributions to the understanding and further implementation of Pt-

catalyzed alkyne activation chemistries. In particular, we have developed a chirality transfer protocol to 

synthesize highly enantioenriched O-tethered cyclopropane-containing compounds. The substrate scope 

for this process is broad, and the overall transformation is highly stereospecific. Additionally, we further 

refined a purported mechanistic pathway and extended this chemistry in a number of additional systems. 

 Furthermore, we explored the use of this cycloisomerization chemistry in our synthetic approach to 

the Gelsemium alkaloids. Specifically, the development of a Pt-catalyzed tandem 

cycloisomerization/[3,3]-sigmatropic rearrangement allowed us to build a motif shared among a large 

number of the alkaloids. Following successful implementation of this reaction, we then studied the use of 

additional late-stage cyclizations to synthesize gelesenicine. Our final two steps, a highly efficient 

hypervalent iodine-mediated cyclization followed by an iminyl radical cyclization, provided the natural 

product. Additionally, the synthesis was highly efficient—14 steps—without the use of protecting groups. 
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CHAPTER ONE 

The Implementation of Transition Metal Catalysis in the Synthesis of Natural Products 

 

1.1 Introduction: Examples of Transition Metal-Catalyzed Processes in Total Synthesis 

 Transition metal-catalyzed processes greatly impact our daily life; since the year 2000, three separate 

Nobel Prizes in Chemistry have focused on transition metal catalysis. These processes are applied in a 

number of arenas, including industrial gas manufacturing, macromolecule synthesis, drug manufacturing, 

and natural product synthesis. In fact, the synthesis of natural products commonly offers a “proving 

ground” of sorts for the use of these methods in complex settings. 

 While there are examples of synthetic methods born out of necessity, much more common is the 

discovery of a method and its future application. Moreover, testing synthetic methods in complex settings, 

such as in natural product synthesis or in biological systems, can further validate a technique. The two 

examples discussed below demonstrate the power of transition metal-mediated processes in the context of 

complex molecule synthesis. 

 In 2002, Overman and coworkers disclosed the synthesis of quadrigemine C (1) and psycholeine (2), 

highlighting the power and efficiency of Pd-mediated cross-couplings (Scheme 1.1.1).1 The researchers 

both leveraged earlier established chemistry and explored new methods. Specifically, a Pd-catalyzed 

Stille coupling of aryl iodide 3 with vinylstannane 4 provides compound 5 in 71% yield. Then, an 

enantioselective Heck cyclization affords bis oxindole 6 in 62% yield and 90% ee. In two steps they 

complete the total synthesis of quadrigemine C (1); furthermore, this natural product is converted to 

psycholeine (2) in a single step. The capability to form four C–C bonds in two steps (one step being 

enantioselective) is quite remarkable. Without the development of this chemistry, and its attempted use in 

a number of complex synthetic applications, we may never have come to appreciate its true potential. 
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Scheme 1.1.1. Overman and Coworkers’ Synthesis of Quadrigemine (1) and Psycholeine (2) Via Pd-

Catalyzed Cross-Couplings. 

 

 Baran and coworkers showcase Pd-catalyzed C–H activation chemistry in their 2011 synthesis of 

piperarborenine B (7, Scheme 1.1.2).2 Previous approaches to these cyclobutane-containing natural 
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functionalization is completed on cyclobutane 8, utilizing an unconventional 2-amidothioanisole directing 

group to provide arylated cyclobutane 10 in good yield. Following epimerization with lithium tert-

butoxide to afford compound 11, a second Pd-catalyzed C–H arylation with iodide 12 yields 
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C–H activation chemistry remains a relatively young field, the exploration of its use in this example 

provides an arena for testing, validation, and innovation.  

 

 

Scheme 1.1.2. Sequential Cyclobutane C–H Arylations in the Synthesis of Piperarborenine B (7) by Baran 

and Coworkers. 
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Scheme 1.2.1. Pt-Catalyzed 1,6-Enyne Cycloisomerizations: Uses in Methods Development and Total 

Synthesis.  
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CHAPTER TWO 

Alkynophilic Metal Complexes in Organic Synthesis 

 

2.1 Overview 

 As outlined in Chapter 1, transition metal catalysts have allowed chemists to efficiently synthesize 

molecules of interest. Herein, the use of Ag-, Pt-, and Hg-catalyzed alkyne activation chemistry in the 

synthesis of complex molecules is stressed. The unique reactivity observed with the aforementioned 

metals is also explained. 

 

2.2 Alkyne Activation in Total Synthesis 

 Alkyne activation has been utilized in a number of natural product syntheses. Commonly employed 

metal catalysts for these transformations include gold, platinum, and mercury. The examples highlighted 

herein with gold and platinum are not meant to be comprehensive yet are chosen to emphasize the 

selectivity, efficiency, and intriguing reactivity observed when this type of chemistry is used in complex 

settings. Purported mechanisms and/or intermediates are drawn when necessary because of the 

“molecular gymnastics” or cascade processes that can occur in a single reaction step. 

 

2.2.1 Au-Mediated Alkyne Activation in Total Synthesis 

 Cationic Au(I) complexes are the most commonly employed catalysts for alkyne activation in natural 

product synthesis.1 The popularity of these complexes is owed to their high stability and the predictable 

nature of the transformations they effect. Highlighted below are three examples that showcase the 

selectivity and interesting reactivity of Au-catalyzed alkyne activation in complex molecule synthesis. 

 Trost and Dong used a highly chemoselective Au-catalyzed alkyne hydration in their synthesis of 

bryostatin 16 (14, Scheme 2.2.1).2 In the presence of an in situ generated cationic Au-complex, alkyne 15 

provides dihydropyran-containing macrocycle 16 in 73% yield. It is notable that a hydration reaction of 

this nature can be performed selectively on such a highly functionalized substrate such as compound 15. 
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Furthermore, the researchers found that the reaction selectively formed the 6-endo cyclization product 

(16) and none of the product arising from 5-exo cyclization.3 

 

Scheme 2.2.1. Late-Stage Au(I)-Catalyzed Alkyne Hydration in the Synthesis of Bryostatin 16 (14). 
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Au-carbenoid (22-A ↔ 22-B, Scheme 2.2.2). Attack of the carbonyl oxygen onto the quaternary carbon7 

and C–C bond cleavage of the cyclopropane generates oxocarbenium 23. After C–C bond formation via 

nucleophilic attack of the alkene and loss of the catalyst (through general intermediate 24), ethers 19 and 

21 are formed. The creative use of carbenoid intermediate 22-A/B in an unconventional way allows for 

the core of these molecules to be made in short order and provides further understanding of the behavior 

of these intermediates in complex settings. While the ability to anticipate the favored reaction pathways 

observed with these two substrates (18 and 20) speaks to knowledge we have already gained concerning 

these transformations, the somewhat low yields indicate much is still to be learned about these catalysts 

and their application. 

 

Scheme 2.2.2. Two Similar Routes to (–)-Englerin A (17) and Mechanistic Pathway of the Key Steps. 
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2.2.2 Pt-Mediated Alkyne Activation in Total Synthesis  

 Platinum has also been utilized as a catalyst in a number of alkyne activation steps in the context of 

total synthesis. While used less than its Au counterpart, it sometimes displays quite differential reactivity. 

The two examples below highlight the power of Pt-mediated alkyne activation and the fascinating 

mechanistic pathways that can occur with these catalysts.  

 In 2007, Fürstner and coworkers reported the total synthesis of antibiotic erypoegin H (25) and 

analogs (Scheme 2.2.3).8 Biaryl alkyne 26 is made in four steps using conventional chemistry; treatment 

of this alkyne (26) with catalytic PtCl2 affords benzofuran intermediate 31 in 80% yield. This reaction is 

proposed to occur by initial intramolecular attack of the phenolic ether oxygen onto Pt-alkyne complex 27 

(step I), followed by extrusion of the oxocarbenium (step II). Then, addition of vinyl platinate 29 into the 

oxocarbenium gives intermediate 30 (step III). Loss of PtCl2 catalyst (step IV) generates benzofuran 31. 

This intermediate is then converted to natural product erypoegin H (25) in four steps. This single step 

allows for the formation of two bonds and the cleavage of one bond selectively. Additionally, the power 

of this reaction is showcased further in the synthesis of analogs of erypoegin H. 

 

Scheme 2.2.3. Fürstner’s Pt-Catalyzed Carboalkoxylation in the Synthesis of Erypoegin H (25). 
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 Vanderwal and coworkers explored the use of Pt-catalyzed alkyne activation in the synthesis of 

echinopine B (32, Scheme 2.2.4).9 Cycloheptanone 34 is generated in four steps from cyclohexanone 33. 

Elaboration of the cycloheptanone intermediate (34) to the cycloisomerization precursor (35) is completed 

in seven steps. Two products are observed when subjecting enyne 35 to catalytic PtCl2: desired enol ether 

37 and biscyclopropane-containing byproduct 36. Their desired product (37) is converted to echinopine B 

(32) in 40% yield using the Corey-Suggs reagent.10 

 The authors offer mechanistic pathways to both products of the Pt-catalyzed cyclization. To generate 

the desired product (37), they propose an initial 5-exo cyclization and subsequent formation of Pt-

carbenoid 38. This intermediate then undergoes a 1,2-hydrogen migration into the carbenoid to generate 

zwitterion 39. Finally, enol ether 37 is formed after elimination of the metal catalyst. The authors believe 

biscyclopropane-containing byproduct (36) arises from a different pathway initiated by a 6-endo-triggered 

cycloisomerization to provide endocyclic carbenoid 40. This carbenoid then undergoes a C–H insertion to 

a β-hydrogen to ultimately form byproduct 36. By exploring the use of this type of Pt-catalyzed 

cycloisomerization chemistry in the context of natural product synthesis, the authors discovered two 

competing pathways. These findings can ultimately lead to a deeper understanding of these processes and 

can inform future uses and limitations of such chemistry.  
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Scheme 2.2.4. Pt-Catalyzed Cycloisomerization Reactions in Vanderwal and Coworkers’ Synthesis of 

Echinopine B (32). 
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owed to both the ability of the catalyst to activate the alkyne as well as the acidic nature of the reaction 

media. This intermediate (43) is then converted into their target natural product, hippuristanol (41), in two 

steps.  

 

Scheme 2.2.5. Deslongchamps and Coworkers’ Synthesis of Hippuristanol (41). 
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process—and the most common initial mechanistic step in these reactions—these metals display 

additional reactivity (i.e., pull/push reactivity) that renders them quite unlike any other Lewis acid. 

 

2.3.1 Characteristics of Alkynophilic Metal Complexes 

 There are three related characteristics associated with Au-, Pt-, and Hg-mediated alkyne activation 

chemistry. The most fundamental of these is the Lewis acidic nature of certain metals to activate alkynes 

towards nucleophilic attack, i.e., pull-type reactivity (eq 1, Figure 2.3.1). Secondly, these alkyl metal 

complexes distinctive ability to stabilize adjacent positive charges (i.e., push-type reactivity, eq 2). 

Finally, as a result of their ability to stabilize charge efficiently, carbenoid-like reactivity is commonly 

observed in these transformations (eq 3). While all three of these traits are not always operative, Lewis 

acid-activation (eq 1) is necessary. If certain reaction factors are present, the remaining two characteristics 

can follow.  

 These traits are shown quite clearly in the Au(I)-catalyzed acetylenic Schmidt reaction, disclosed by 

Toste and coworkers in 2005 (44 → 45).12 They propose initial activation of the alkyne for nucleophilic 

addition of the azide (pull-type reactivity) forming vinyl gold intermediate 47. Loss of dinitrogen then 

occurs by formation of the Au-carbenoid (48) via push-type reactivity. A 1,2-alkyl migration into the 

metal-carbenoid generates carbocation 49, and after elimination of the catalyst, provides intermediate 50. 

This compound (50) undergoes isomerization to the isolated pyrrole (45). 
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Figure 2.3.1. Three Characteristics of Alkyne Activation Catalysis and an Example of this Reactivity by 

Toste and Coworkers. 

 

2.3.2 Relativistic Effects 

 The three characteristics briefly discussed above can largely be explained by relativistic properties.13 

Therefore, a brief comment on the consequences of relativistic effects in these metal catalysts is 

necessary. As a result of special relativity, the mass of an entity (in this case, 6s electrons) approaches 

infinity as its speed approaches the speed of light. In heavier atoms (Z > 70), the radial velocity increases 

substantially, thus the mass of the electrons increases. Since the mass of the 6s electrons is inversely 

44

[M] [M]
[M]

[M]

Nu
δ−

δ+
Nu

[M]

LG

[M][M]

-LG

[M]

Nu

[M]

Nu

(1)

(2)

(3)

Pull

Push

[Au]

Ph N

NH
Ph

[Au2Cl2(dppm)] (2.5 mol %)

AgSbF6 (5 mol %), CH2Cl2, 35 °C

80% yield

Pull N

N2Ph

[Au]

Push

-N2

N
Ph

[Au]

NPh

[Au]
N

Ph

Toste
(2005)

1,2-alkyl
migration isomerization

46 47 48

49 50

45

Ph N3

44

N
N

+ [Au] +

- [Au] +
45



 15 

proportional to the Bohr radius, contraction of the 6s orbitals result. This causes greater shielding of the 4f 

and 5d orbitals from the nucleus; thus, these orbitals expand.  

 In order from most to least, Au, Pt, and Hg are the transition metals most affected by relativistic 

effects.14 The superb Lewis acidity of Au(I), Hg(II), and Pt(II) can be explained by the relativistic 

contraction of the valence s and p orbitals (Figure 2.3.2). This equates to the lowest unoccupied molecular 

orbital (LUMO) being lower-lying in energy when compared to other transition metals of the same group. 

Additionally, the drastic relativistic energy stabilization of the 6s orbital makes these metals extremely 

“soft” Lewis acids, which further explains the specific/selective activation of very “soft” Lewis bases 

(i.e., alkenes and alkynes). 

 

 

Figure 2.3.2. Molecular Orbital Energies for Au, Hg, and, Pt Before and After Relativistic 

Considerations.15 
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result in a more electrophilic Au+–alkyne complex and thus explain the observed alkynophilic nature of 

the metals. 

 The relativistic expansion of the 5d orbitals is used to rationalize why these metals are able to 

stabilize adjacent positive charges so effectively (eq 2, Figure 2.3.1). The destabilization of the 5d orbital 

(the highest occupied molecular orbital (HOMO) in these metals) raises the energy sufficiently to allow 

overlap with an empty p orbital (LUMO) on an adjacent carbon atom. This constructive overlap could 

give rise to the metal-stabilized cationic intermediates observed with Au, Pt, and Hg. It is unclear, 

however, whether the carbenoid-like reactivity observed in certain reactions with these metal catalysts 

occurs via a metal-carbenoid or simply a metal-stabilized carbocation. This argument arises from the 

ability, or lack thereof, for Au, Pt, and Hg to participate in appreciable backbonding. While the nature of 

the specific species are still argued, their unique carbenoid-like reactivity points to these metals not 

simply acting as Lewis acids. 

 

2.4 Conclusion 

 Alkyne activation chemistry has been used successfully in a number of natural product syntheses. 

The examples shown above highlight some of the key features of this chemistry, including: highly 

selective hydrations or spiroketalizations, an efficient carboalkoxylation, and multiple C–C bond forming 

events in a single step. Additionally, the fundamental atomic properties of these metals (Au, Pt, and Hg), 

namely relativistic effects, explain much of their unique reactivity. Both the potential applications of 

alkyne activation chemistry in natural product synthesis, as well as the fundamental properties for 

reaction outcomes, have driven the work described in chapters three and five. 
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CHAPTER THREE 

Cycloisomerization of Enynes as a Platform to Study Catalytic Reactivity 

 

3.1 Overview 

 As detailed in Chapter Two, pi-acidic transition metals can be a powerful tool in the synthesis of 

complex molecules. Through our knowledge concerning the fundamental properties of alkyne activation 

catalysis, we can test and explore new reactivity in complex settings. Subsequently, our findings generate 

new understanding and thus fresh avenues of inquiry. Mechanistic questions surrounding the 

cycloisomerization of N- and O-tethered 1,6-enynes prompted us to explore current limitations in 

asymmetric catalysis. Namely, we developed a highly enantiospecific transformation for the synthesis of 

enantioenriched 3-oxabicyclo[4.1.0]heptenes. With the successful implementation of this idea, we have 

eliminated some possible mechanistic pathways for the cycloisomerization reaction. Also described are 

the expansion of this method by analysis and utilization of both proposed intermediates along the reaction 

pathway and products derived from cycloisomerization, respectively. 

 

Scheme 3.1.1. Enantiospecific 1,6-Enyne Cycloisomerization and Extensions. 
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3.2.1 Introduction 

 Cycloisomerizations are a special class of ring-forming reactions. In a cycloisomerization reaction, 

no loss or gain of atoms occurs: the process is completely atom economical. 1  Well-known 

Cope
rearrangementR1

O

R

O

R1

PtCl2

R
R2

R4

R3 R2

R3
R4

R3

O R

R1

R4

oxidative
cleavage enantioenriched

cyclopropanes

enantioenriched
bridged bicycles

OHC

R2

R1

ROCO

R2

R3
R4

Other Extensions
•  [1,2]-alkyl migrations to access macrocycles
•  Si-tethered enyne cycloisomerization



 20 

cycloisomerization reactions are the intramolecular Diels-Alder reaction (IMDA),2 the intramolecular 

Michael addition,3 and the Conia-Ene reaction,4 among others. These transformations, however, are rarely 

classified as cycloisomerizations because of the prior discovery or importance of their respective 

intermolecular counterparts. Nonetheless, these reactions are prolific in complex molecule synthesis. 

Developing new types of cycloisomerization reactions will only lead to greater power and control in the 

field of molecule synthesis.  

 The use of transition metal complexes to catalyze organic transformations has led to a number of 

new cycloisomerization reactions. These new advances in cycloisomerization chemistry have also 

allowed chemists to discover a myriad of new reactivity in regards to both synthetic utility and 

mechanistic understanding.  

 

3.2.2 Products and Pathways in the Cycloisomerization of 1,6-Enynes 

 The cycloisomerization of enynes is a prolific reaction class in pi-acid catalysis. The reactions of 1,6-

enynes, in particular, provide chemists with a unique platform for studying reactivity and mechanistic 

inquiry.5 Different substrate substitutions as well as catalyst choice yield disparate product formation. As 

a result, the underlying driving forces for various reaction pathways are probed, and a further 

understanding of pi-acid mediated alkyne activation is possible. 

 From a single general 1,6-enyne structure (51), a number of products can be realized (Scheme 3.2.1). 

These include cyclobutene-containing compounds (52 and 53), oxygenated products (54),6 numerous 

dienes (55, 56, and 57), and cyclopropane-containing bicycles (58). These motifs are produced via either 

an initial 5-exo or 6-endo cyclization of the alkene onto the activated alkyne. After this split in the 

mechanistic tree, various other branches can be made. Ether 54 and diene 55 are formed along the same 5-

exo cyclization pathway yet diverge in final steps, while bicycle 58 and diene 57 share a different 

common intermediate that is initiated by 6-endo cyclization. 
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Scheme 3.2.1. Variation in 1,6-Enyne Cycloisomerization Products. 

 

 Many of these different reaction outcomes can be explained through the reaction pathways that are 

believed to be operative. Simple substrate variation can cause drastically distinctive outcomes. Under 
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Scheme 3.2.2. Substrate Influence on Products Formed in Pt-Catalyzed Cycloisomerization of 1,6-

Enynes. 

 

 Some results, however, are more difficult to rationalize from our current mechanistic understanding. 

One example is the cycloisomerization of enynes 67 and 68 to provide cyclopropane 69 and diene 70, and 

diene 71, respectively (Scheme 3.2.3).9 If, under Au-catalysis, certain substitution patterns are present, 

then dienes with the general structure of 70 are obtained as minor products. Alternatively, if enyne 68 is 

subjected to the same reaction conditions, then good conversions to diene 71 are observed. 

 

Scheme 3.2.3. Substrate Influence on Products Formed in Au-Catalyzed 1,6-Enyne Cycloisomerization. 
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 The product selectivities are difficult to explain via the purported intermediates and steps. Via 

intermediate 72, cyclopropane-containing products (73) are formed from [1,2]-hydride migration and 

demetalation (Scheme 3.2.4). Conversely, either (a) two consecutive [1,2]-alkyl migrations or less likely 

(b) one [1,3]-alkyl migration, produces intermediate 75. Following elimination, diene products (76) are 

obtained. If a species such as carbocation 75 is operative, then one could argue the steps to arrive at diene 

70 should be lower in energy than those which provide compound 71 (Scheme 3.2.3), as the internal 

methyl group would stabilize a positive charge more effectively (R2, 75). It may be that a simplistic 

picture of these reaction pathways is not sufficient and requires additional study to eliminate potential 

intermediates. 

 

Scheme 3.2.4. Proposed Intermediates Leading to the Formation of Products with the General Structures 

of 73 and 76. 

 

 The idea that a number of possible outcomes can arise from such a seemingly simple system is 
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3.3 1,6-Enyne Cycloisomerizations to Produce 3-Aza and 3-Oxabicyclo[4.1.0]heptenes 

3.3.1 Racemic Examples and Mechanistic Proposals 

 In 1995, Blum and coworkers disclosed that under Pt(IV)-catalysis, O-tethered 1,6-enynes produce 

3-oxabicyclo[4.1.0]heptenes (77 → 78, Scheme 3.3.1).10,11 Only five examples were reported, and most 

products were obtained in low yields. It was proposed that the reaction proceeds by isomerization of the 

alkyne of the substrate to the allene (79), followed by insertion of the Pt-catalyst. Migratory insertion 

provides metallocyclobutane 81, and subsequent reductive elimination gives the bicyclic products 

observed. This discovery was made years before Au and Pt alkyne activation chemistry would explode 

into the thriving field it is today.  

 

Scheme 3.3.1. First Example of 3-Oxabicyclo[4.1.0]heptenes from 1,6-Enynes and Proposed Mechanism. 
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Scheme 3.3.2. N-Tethered 1,6-Enyne Cycloisomerization with Alternative Mechanistic Proposal. 

 

 Fürstner and coworkers found that with catalytic PtCl2 at slightly elevated temperatures both O- and 

N-tethered 1,6-enynes undergo this type of cycloisomerization (88 → 89, Scheme 3.3.3).8 From the 

representative products shown below, alkyl substitution is tolerated on the alkyne (89a, 89b, 89d) as well 

as aryl (89f). Furthermore, the researchers show that terminal alkynes are acceptable with N-tethered 

substrates only, an issue that has still yet to be overcome.  

 

Scheme 3.3.3. N- and O-Tethered 1,6-Enyne Cycloisomerization Catalyzed by PtCl2. 
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 Mechanistically, they propose initial activation of the alkyne by the metal in an η2 manner (88 → 90, 

Scheme 3.3.4). Cyclopropanation then occurs with concomitant carbenoid formation (through 91) to 

produce intermediate 92. A 1,2-hydride migration generates zwitterionic compound 93. Finally, 

elimination of the metal produces bicycles with general structure 89. 

 

Scheme 3.3.4. Alternative Mechanistic Proposal by Fürstner and Coworkers. 
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conditions, N- and O-tethered enynes were explored as substrates. Two interesting observations can be 

made from the study. First, the reaction of O-tethered enynes necessitates geminal diphenyl substitution 

on the allylic carbon. When no such substitution is present, the yield falls from excellent (86%) to poor 

(18%). Secondly, only three O-tethered enynes were described in the study. Hayashi describes that the O-

tethered substrates undergo polymerization while using a similar catalytic system.14 

 

Scheme 3.3.5. Example of Rh-Catalyzed Asymmetric 1,6-Enyne Cycloisomerization.  

 

 Examples of Pt-catalyzed asymmetric alkyne activation are rare. Marinetti and coworkers have 

described the asymmetric cycloisomerization with a cyclometallated Pt(II) complex (95, Scheme 3.3.6).15 

Variable yields and enantioselectivities are achieved on N-tethered 1,6-enyne substrates using this system. 

Notably, no discussion was made concerning O-tethered 1,6-enynes.  

 

Scheme 3.3.6. Example of Pt-Catalyzed Asymmetric 1,6-Enyne Cycloisomerization.  
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generally high (93-98%), yields suffered for O-tethered systems (25-59%). Additionally, aryl substitution 

was necessary on the alkyne. 

 Fürstner and coworkers have established the most general asymmetric method, utilizing chiral 

catalysts, to promote this cyclization (Scheme 3.3.7).17 By utilizing a TADDOL-derived phosphoramidite 

ligand (97) in conjunction with cationic Au, good yields and enantioselectivites are observed for both O- 

and N-tethered enynes. Just as in Hayashi’s example, when O-tethered enynes are used, it is necessary to 

have allylic geminal disubstitution. Most importantly, when non-aryl alkynes are subject to the reaction 

conditions (e.g., CH3), reduced stereoinduction is observed (34% ee). It is proposed that there is a chiral 

pocket in which the aryl group can position, thus locking the alkyne complex in a single orientation. 

When a small aliphatic group is substituted, however, the ligand on the metal can rotate, decreasing the 

stereoselection. While these examples are not exhaustive,18 they effectively demonstrate the state of the 

art and limitations associated with rendering this reaction asymmetric. 

 

Scheme 3.3.7. Examples of Au-Catalyzed Asymmetric 1,6-Enyne Cycloisomerizations.  
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generate enantioenriched products (99, Scheme 3.4.1). For this idea to have merit when comparing it to 

previous asymmetric variants, the following must be satisfied: (1) the origin of chirality must be easily 

obtained, (2) the scope of the reaction should be general, and (3) the selectivities must be an improvement 

from previous approaches based on chiral catalysts. 

 

Scheme 3.4.1. Chirality Transfer Proposal with Enantioenriched Enyne Substrate. 
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Scheme 3.4.2. Mechanistic Possibilities in Chirality Transfer Approach. 
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Enantiospecificity (es) is used to determine the level of chirality transfer in our process.20 Therefore in 

this initial finding, substrate 108 (86% ee) affording product 109 in (80% ee) indicates an es of 93%.  

 

Scheme 3.4.4. Initial Observation of Chirality Transfer with Catalytic PtCl2. 
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Table 3.4.1. Optimization of Cycloisomerization Conditions. 
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Table 3.4.2. Results of the Nature of the Stereocontrolling Group. 

 

 

3.4.5 Tolerance and Limitations on Substitution 

 Traceless chirality transfer is observed with diverse enyne substrates, which provide enantioenriched 

products in high yield and superb optical purity (Figure 3.4.1). Di- and tri-substituted alkenes are 

predictably tolerated under the reaction conditions and are obtained in excellent ee’s. It is noteworthy that 

products 111e and 113d arise from (E)- and (Z)-alkene substrates respectively. This indicates complete 

diastereoselectivity in regards to alkene geometry. 

 

Figure 3.4.1. Enantiospecific Cycloisomerization: Alkene Substitution Scope. 
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 Importantly, alkyne substitution does not affect the efficiency of our developed process. This has 

proven to be an issue in previous examples based on chiral catalysts.16,17 Methyl substitution affords 

bicycle 113h in 68% yield and 93% es (Figure 3.4.2). Heteroaromatic substitution in the form of N-tosyl 

indole provides complex product 113i in good yield and excellent transfer of chirality. Bicycle 113j is 

obtained in exceptional optical purity and 86% yield, illustrating the stability of silyl ethers to the reaction 

conditions. 

 

Figure 3.4.2. Enantiospecific Cycloisomerization: Alkyne Substitution Scope. 
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completely unreactive under the reaction conditions. Fully substituted alkene substrate 115 is unreactive 
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Figure 3.4.3. Unsuccessful Substrates in the Cycloisomerization. 
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 This chirality transfer system tolerates various substitution patterns on both the alkene and alkyne 

moieties. Additionally, no geminal substitution is necessary for high yields and chiral induction. Such 

generality is not observed in similar enantioselective cycloisomerizations utilizing chiral catalysts. 

 

3.4.6 Stereochemical Confirmation and Model for Transfer of Stereochemical Information 

 During the investigation, we were curious how the stereochemistry of the substrate dictated the 

product chirality. Fortunately, the absolute stereochemistry of bromide 113k could be determined by 

single crystal x-ray diffraction, and this informed our understanding of the stereochemistry of 

cycloisomerization (Scheme 3.4.5).  

 

Scheme 3.4.5. Confirmation of Absolute Stereochemistry in Cycloisomerization from Single Crystal X-

Ray Structure of Aryl Bromide 113k. 
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Scheme 3.4.6. Model for Stereochemical Transfer and Unfavorable Conformations. 

 

3.4.7 N-Tethered Enyne Substrates 

 Even while many asymmetric examples have been disclosed for N-tethered 1,6-enynes, we were 

curious if these types of substrates would exhibit chirality transfer through our strategy. Indeed, substrate 

120, under the previously optimized conditions, does undergo the cycloisomerization to provide product 

121 in 97% yield and 82% es (Scheme 3.4.7). This result is consistent with the Me-substituted O-tethered 
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based on chiral catalysts already provide rather general results for these products. That said, this finding 

still presents a number of questions: how is chirality transferred in this substrate, could this system be 

even more tolerant to substitution when compared to our ether substrates, and is this system entry into 

biologically relevant molecules? We expect this initial finding lays the groundwork for further 

investigations. 

 

Scheme 3.4.7. N-Tethered 1,6-Enyne Cycloisomerization with Observed Chirality Transfer. 
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3.4.8 Reactions of Products 

 The oxidative cleavage and alkylation of 3-azabicyclo[4.1.0]heptenes has been described (Scheme 

3.4.8).25 Alkylation of N-tethered bicycle 122 with allylsilane and trifluoroacetic acid provides product 

123 in good yield and diastereoselectivity. Additionally, ozonolysis of the same substrate (122) affords 

aldehyde 124 in moderate yield. 

 

Scheme 3.4.8. Previously Disclosed Reactions on N-Tethered Products. 
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enantioenriched cyclopropane 125 in 72% yield (Scheme 3.4.9). Importantly, cyclopropane 125 contains 

two differentiated functional group handles for further elaboration; moreover, this type of highly 

substituted enantioenriched cyclopropane would be difficult to access using alternative methods. 

 

Scheme 3.4.9. Oxidative Cleavage to Produce Highly Enantioenriched Cyclopropane 125. 
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3.5 Additional Studies Concerning 1,6-Enyne Cycloisomerizations 

3.5.1 Migration into Carbenoids Introduction 

 The migration of alkyl groups into transition metal carbenoids can be a creative method to generate 

C–C bonds. While migrations into carbenes generated from the decomposition of diazo species have been 

widely explored,27 migrations into Au and Pt carbenoids derived from alkynes are just beginning to be 

studied.28 For example, Toste and coworkers disclosed this type of migration, as well a competing 

process, for 1,5-enynes under cationic Au-catalysis (Scheme 3.5.1).29 When carbon-tethered 1,5-enyne 

126 is subjected to cationic Au-catalysis, tricycle 127 is produced. Conversely, enyne 128 undergoes Au-

mediated cycloisomerization to ultimately produce biscyclopropane 129. The ring expansion and C-H 

insertion processes are highly dependent on the size of the appended ring in the starting material and are 

proposed to occur via similar Au-carbenoid intermediates (130 and 131).  

 

Scheme 3.5.1. Example of 1,5-Enynes Undergoing Ring Expansion or C–H Insertion under Au-Catalysis. 
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carbenoid (102 → 133). We thought this migration could be favored over a cyclopropane migration 

because of the added stabilization of the oxygen (oxocarbenium 133 as the major resonance contributor). 

A ring expansion, or in acyclic cases an alkyl shift, would provide access to highly substituted fused 

bicycles (134).  

 

Scheme 3.5.2. Mechanistic-Based Proposal for Alkyl Migrations in the Cycloisomerization of 1,6-Enynes. 

 

3.5.3 Results 

 The first substrate attempted, enyne 135, did indeed provide proof of principle for the proposal. 
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Scheme 3.5.3. Initial Ring Expansion Result. 
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substitution to the alkene. Highly fuctionalized products, such as pentasubstituted cyclopropane 138d and 

indole 138h, are isolated in moderate yields. Product 138i is isolated in 80% yield and 49% yield under Pt 

and Ir catalysis, respectively. Cyclobutane-based substrate affords ring expansion bicycle 139 in 69% 

yield with catalytic PtCl2 and an atmosphere of CO. This ring expansion methodology also provides 

access to large rings, which can be difficult to achieve by traditional cyclization methods. Macrocycles 

containing 8-, 9-, and 11-membered rings (140, 141, and 142 respectively) were formed in moderate to 

good yields. 

 

Figure 3.5.1. Ring Expansion Results with Ir- and Pt-Based Catalysts. 
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3.5.4 Silicon Tether Strategies: Background 

 Silyl-tethering is a common way to render unselective or poorly reactive intermolecular 

transformations intramolecular.31 It has been utilized in a number of C–C bond forming reactions. Silyl-

tethering has been used extensively in Diels-Alder reactions. By rendering these cycloadditions 

intramolecular common limitations can be overcome. For example, vinyl siloxane-tethered diene 143 

undergoes a thermal Diels-Alder reaction to afford fused bicycle 144 in good yields (Scheme 3.5.4).32 

This type of [4+2] cycloaddition would be extremely difficult to achieve in an intermolecular reaction for 

electronic reasons; the dienophile is not sufficiently electron deficient. The product can then be 

desilylated with TBAF, providing a compound that would have hypothetically arisen from an untethered 

reaction between the dienyl alcohol and ethylene. Moreover, Tamao-Fleming oxidation provides diol 146, 

or addition of methyllithium affords trimethylsilyl product 147. While silyl tethers have found many uses 

in complex molecule synthesis, their use has been explored minimally in alkyne activation chemistry.33 

 

Scheme 3.5.4. Silicon Tethering in [4+2] Cycloaddition and Post Cycloaddition Transformations. 
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can we quickly access these substrates quickly and efficiently, will these substrates undergo our desired 

transformation, and can we use the Si-tether for post-cycloisomerization manipulations? Finally, if this 

transformation is successful, we aim to further extend this reactivity to our chirality transfer system. 

 

Scheme 3.5.5. Silicon Tethering Proposal in 1,6-Enyne Cycloisomerization. 
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Scheme 3.5.6. Synthesis of Racemic Si-Tethered 1,6-Enyne Substrate 153. 
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inability to easily access the desired substrates. Given recent work by Waston and coworkers concerning 

the silyl Heck reaction,34 this challenge may be easily overcome in future investigations. 

 

Scheme 3.5.7. Pt-Catalyzed Cycloisomerization Result on Si-Tethered Substrate 153. 
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Scheme 3.5.8. 1,6-Enynes in Pt-Catalyzed Tandem Cycloisomerization/[3,3]-Sigmatropic Rearrangement. 
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Scheme 3.5.9. Proposed Mechanistic Intermediates for Tandem Cycloisomerization/[3,3]-Sigmatropic 

Rearrangement with N- and O-Tethered 1,6-Enynes. 

 

3.5.8 Results and Potential Applications 
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Scheme 3.5.10. Chirality Transfer Observation in Pt-Catalyzed Tandem Process. 

 

O

R1

H
O

R1

H
O

R1

R5 R5 R5

O R1
H

R5

O R1
H

R5 R6 R5

O

R1

R6

H

R6
R6 R6

R6

155 157-trans 157-cis

156156

[3,3]-sigmatropic
rearrangement

cycloisomerization

157-cis

i-Pr
Ph

O Me

158
98% ee

PtCl2
(7 mol %)

THF, 70 °C
12 h

159
64% yield

98% ee

O

Ph

H Me

i-Pr

O

Ph

H Me

i-Pr O

Ph

i-Pr

H

H

Me

H
H

160-cis

160-trans
O

Me

Hi-Pr

Ph



 45 

 Proof of principle reactivity in the tandem cycloisomerization/[3,3]-sigmatropic rearrangement 

further bolsters the utility of chirality transfer process. The general structure of the products generated 

from this process is found in a number of natural products including kessane (161),37 gelsemoxonine 

(162),38 and ophiodilactone B (163, Figure 3.5.2).39 

 

Figure 3.5.2. Examples of Natural Products that Contain an Oxabicyclo[3.2.2]nonane Core. 

 

3.6 Conclusion 
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3.7 Experimental Section 

3.7.1 Materials and Methods 

Reactions were performed under an argon atmosphere unless otherwise noted. Tetrahydrofuran, ether, 

dichloromethane, dimethylformamide, and toluene were purified by passing through activated alumina 

columns. All other solvents and reagents were used as received unless otherwise noted. Commercially 

available chemicals were purchased from Alfa Aesar (Ward Hill, MA), Sigma-Aldrich (St. Louis, MO), 

Oakwood Products (West Columbia, SC), Strem (Newburyport, MA), and TCI America (Portland, OR). 

Qualitative TLC analysis was performed on 250 mm thick, 60 Å, glass backed, F254 silica (Silicycle, 

Quebec City, Canada). Visualization was accomplished with UV light, exposure to iodine, exposure to p-

anisaldehyde solution followed by heating, or exposure to KMnO4 solution followed by heating. Flash 

chromatography was performed using Silicycle silica gel (230-400 mesh). 1H NMR spectra were acquired 

on either a Varian Mercury 300 (at 300 MHz) or a Varian 400 MR (at 400 MHz) and are reported relative 

to SiMe4 (δ 0.00). 13C NMR spectra were acquired on a Varian 400 MR (at 100 MHz) and are reported 

relative to SiMe4 (δ 0.0). All IR spectra were obtained on NaCl plates (film) with a Bruker Tensor 27 and 

are reported in wavenumbers (ν). All optical rotations were obtained on a Rudolph Research Analytical 

Autopol III Polarimeter. High resolution mass spectrometry (HRMS) data were acquired by the Colorado 

State University Central Instrument Facility on an Agilent 6210 TOF LC/MS. 

 

3.7.2 Enyne Cycloisomerizations 

General procedure for the platinum catalyzed cycloisomerization of oxygen-tethered 1,6-enynes. To 

a solution of enyne in THF (0.030 M) under argon was added PtCl2 (7 mol %). The resulting mixture was 

sealed and stirred at 70 °C. Upon completion, as determined by TLC, the reaction mixture was allowed to 

cool to ambient temperature. The mixture was then diluted with hexanes and passed through a small plug 

of alumina. The solvent was concentrated in vacuo and the crude residue was purified by flash 

chromatography. 
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General Notes: Without the addition of triethylamine to the flash chromatography eluent, decreased 

yields were observed. For ethereal enynes bearing a crotyl substituent (e.g., 110e), the (E)-crotyl bromide 

that was used as the starting material precursor featured a small amount (~5%) of the corresponding (Z)-

isomer. This isomer was carried through the enyne synthesis in forming the ether products, as well as the 

cycloisomerizations to form the bicycles. These isomers were generally inseparable from the major 

compound, and therefore small amounts are observed in the NMR spectra. 

 

To a solution of enyne 110e (25.0 mg, 0.109 mmol) in THF (3.63 mL, 0.030 M) under argon was added 

PtCl2 (2.0 mg, 0.00763 mmol, 7.0 mol %). The resulting mixture was sealed, heated to 70 °C and stirred 

at that temperature for 40 h. Once cooled to ambient temperature, the mixture was diluted with hexanes 

and filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was 

removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 111e (19.9 mg, 80% yield). 

Bicycle 111e: 

Physical State: yellow oil. 

Rf: 0.63 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2972, 2874, 1716, 1493 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C16H20O + H]+: 229.1587, found 229.1582. 

1H NMR (400 MHz, C6D6): δ 7.20-7.18 (comp m, 4H), 7.10 (dt, J = 8.6, 4.3 Hz, 1H), 5.19 (s, 1H), 4.17 

(dd, J = 10.3, 1.4 Hz, 1H), 3.72 (dd, J = 10.4, 2.0 Hz, 1H), 2.27-2.19 (m, 1H), 1.49-1.43 (m, 1H), 1.26-

1.20 (m, 1H), 1.07 (d, J = 3.3 Hz, 3H), 1.05 (d, J = 3.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 156.3, 142.5, 129.8, 128.7, 126.5, 104.4, 62.9, 33.0, 30.1, 27.3, 26.1, 

20.5, 20.4, 15.0. 
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Optical Rotation: [α]D
31 = +18.27 (c = 0.5, CH2Cl2). 

The ee was determined to be 97% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 1 

mL/min, λ = 230 nm, major isomer 5.01 min, minor isomer 5.36 min). 

 

 

To a solution of enyne 112a (35.1 mg, 0.121 mmol) in THF (4.03 mL, 0.030 M) under argon was added 

PtCl2 (2.3 mg, 0.00847 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 20 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113a (32.2 mg, 92% yield). 

Bicycle 113a: 

Physical State: white solid. 

Rf: 0.37 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2975, 1720, 1601, 1496 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C21H22O + H]+: 291.1743, found 291.1742. 

1H NMR (400 MHz, C6D6): δ 7.07-6.84 (m, 8H), 6.70-6.67 (m, 2H), 5.24 (s, 1H), 4.23 (dd, J = 10.4, 1.3 

Hz, 1H), 3.84-3.81 (m, 1H), 2.82 (d, J = 5.8 Hz, 1H), 2.31-2.22 (m, 1H), 2.06 (dt, J = 5.8, 0.9 Hz, 1H), 

1.09 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 157.0, 141.1, 138.5, 130.4, 128.5, 127.9, 126.6, 125.8, 104.3, 62.6, 36.9, 

33.0, 32.4, 29.7, 20.4, 20.2. 

Optical Rotation: [α]D
32 = +5.32 (c = 1.0, CH2Cl2). 
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The ee was determined to be 98% by HPLC analysis (Chiralpak IC, hexane, 1.0 mL/min, λ = 210 nm, 

major isomer 8.82 min, minor isomer 8.47 min). 

 

 

To a solution of enyne 112b (68.0 mg, 0.203 mmol) in THF (6.78 mL, 0.030 M) under argon was added 

PtCl2 (3.8 mg, 0.0142 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 27 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 3 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (97.5:2:0.5 

hexanes/Et2O/Et3N eluent), affording bicycle 113b (47.8 mg, 70% yield). 

Bicycle 113b: 

Physical State: colorless oil. 

Rf: 0.47 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2963, 2866, 1664, 1361 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C23H26O2 + H]+: 335.2011, found 335.2008. 

1H NMR (400 MHz, C6D6): δ 7.25-7.23 (m, 2H), 7.12-6.97 (comp m, 8H), 5.09 (s, 1H), 4.06 (dd, J = 

10.4, 1.4 Hz, 1H), 4.03 (q, J = 9.6 Hz, 2H), 3.64 (dd, J = 10.4, 2.0 Hz, 1H), 3.01-2.90 (m, 2H), 2.12 (dtd, 

J = 13.7, 6.8, 0.6 Hz, 1H), 1.88 (dt, J = 7.8, 5.8 Hz, 1H), 1.35 (dd, J = 5.1, 2.3 Hz, 1H), 0.95 (d, J = 4.0 

Hz, 3H), 0.93 (d, J = 3.9 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 156.6, 142.1, 139.3, 129.9, 128.7, 128.5, 127.7, 127.5, 126.8, 103.9, 72.9, 

70.5, 62.7, 32.9, 31.2, 27.4, 26.9, 20.4, 20.3. 

Optical Rotation: [α]D
33 = +64.26 (c = 1.0, CH2Cl2). 

The ee was determined to be 98% by hydroboration/oxidation and HPLC analysis:  
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To a solution of bicycle 113b (10.0 mg, 0.030 mmol) in hexanes (300 µL) at 0 °C was added BH3•Me2S 

(5.6 µL, 2.0 M in hexanes, 0.0105 mmol) dropwise. The resulting solution was stirred at ambient 

temperature for 3 h, cooled to 0 °C, and EtOH (38 µL) was added, followed by aq. NaOH (12 µL, 3 M), 

and aq. H2O2 (190 µL, 35%). The resulting mixture was allowed to warm to ambient temperature and 

stirred overnight. The mixture was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were 

washed with sat. aq. NaHCO3 (5 mL), then brine (5 mL), and then dried over MgSO4. The solvent was 

removed in vacuo and the resulting residue was purified by flash chromatography (9:1 → 4:1 

hexanes/Et2O eluent), affording alcohol 164 (7.5 mg, 71% yield, Rf: 0.30 in 4:1 hexanes/Et2O) as a 

colorless oil. 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel IA, 3% 2-propanol in hexane, 1 

mL/min, λ = 210 nm, major isomer 7.96 min, minor isomer 9.08 min). 

 

 

To a solution of enyne 112c (30.1 mg, 0.124 mmol) in THF (4.13 mL, 0.030 M) under argon was added 

PtCl2 (2.3 mg, 0.00868 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 48 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113c (18.1 mg, 60% yield).  
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Bicycle 113c: 

Physical State: yellow oil. 

Rf: 0.37 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2966, 2870, 1666, 1492 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1743, found 243.1752. 

1H NMR (400 MHz, C6D6): δ 7.21-7.17 (comp m, 4H), 7.11-7.07 (m, 1H), 4.90 (s, 1H), 4.12 (dd, J = 

11.3, 1.5 Hz, 1H), 4.05 (dd, J = 11.3, 4.1 Hz, 1H), 2.24 (dquintet, J = 13.7, 6.8 Hz, 1H), 1.26 (s, 3H), 1.13 

(d, J = 4.2 Hz, 1H), 1.07 (d, J = 4.4 Hz, 3H), 1.05 (d, J = 4.4 Hz, 3H), 0.76 (s, 3H). 

13C NMR (100 MHz, C6D6): δ 156.0, 144.5, 129.3, 128.7, 128.1, 127.9, 126.2, 98.8, 62.0, 33.3, 30.5, 

29.4, 29.2, 25.3, 20.7, 20.6, 16.6. 

Optical Rotation: [α]D
30 = +208.09 (c = 0.5, CH2Cl2). 

The ee was determined to be 92% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 

1.0 mL/min, λ = 230 nm, major isomer 4.31 min, minor isomer 4.68 min). 

 

 

To a solution of enyne 112d (44.1 mg, 0.193 mmol) in THF (6.44 mL, 0.030 M) under argon was added 

PtCl2 (3.6 mg, 0.0135 mmol). The resulting mixture was sealed, heated to 75 °C and stirred at that 

temperature for 36 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (90:8:2:1 

hexanes/CH2Cl2/Et2O/Et3N → 40:8:2:1 hexanes/CH2Cl2/Et2O/Et3N eluent), affording bicycle 113d (25.9 

mg, 59% yield). 
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Physical State: yellow oil. 

Rf: 0.71 (15:4:1 hexanes/CH2Cl2/Et2O, KMnO4). 

IR (film): 2963, 2871, 1668, 1492 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1592, found 229.1587. 

1H NMR (400 MHz, C6D6): δ 7.29-7.26 (m, 2H), 7.21-7.18 (m, 2H), 7.12-7.07 (m, 1H), 4.93 (s, 1H), 

3.99-3.97 (m, 2H), 2.32-2.25 (m, 1H), 1.49-1.41 (m, 1H), 1.19 (dddd, J = 8.7, 3.4, 2.3, 1.0 Hz, 1H), 1.16 

(d, J = 6.4 Hz, 3H), 1.10 (d, J = 4.4 Hz, 3H), 1.09 (d, J = 4.4 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 157.6, 146.9, 128.7, 128.2, 127.9, 127.6, 126.1, 95.3, 61.9, 22.4, 26.5, 

26.2, 24.7, 20.8, 8.7. 

Optical Rotation: [α]D
30 = +2.13 (c = 0.5, CH2Cl2). 

The ee was determined to be 96% by hydroboration/oxidation and HPLC analysis:  

 

To a solution of bicycle 113d (5.3 mg, 0.0232 mmol) in hexane (350 µL) at 0 °C was added BH3•Me2S 

(3.8 µL, 2.0 M in hexanes, 0.00690 mmol) dropwise. The resulting solution was stirred at ambient 

temperature for 3 h, cooled to 0 °C, and EtOH (40 µL) was added, followed by aq. NaOH (12 µL, 3 M), 

and aq. H2O2 (190 µL, 30%). The resulting mixture was allowed to warm to ambient temperature and 

stirred for 20 h. The mixture was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were 

washed with sat. aq. NaHCO3 (5 mL), then brine (5 mL), and then dried over MgSO4. The solvent was 

removed in vacuo and the resulting residue was purified by flash chromatography (9:1 hexanes/Et2O 

eluent), affording alcohol 165 (5.0 mg, 88% yield, Rf: 0.30 in 9:1 hexanes/Et2O) as a colorless solid. 

The ee was determined to be 96% by HPLC analysis (Daicel Chiralcel IC, 0.5% 2-propanol in hexane, 1.2 

mL/min, λ = 230 nm, major isomer 4.76 min, minor isomer 5.14 min). 
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To a solution of enyne 112e (29.9 mg, 0.131 mmol) in THF (4.38 mL, 0.030 M) under argon was added 

PtCl2 (2.4 mg, 0.00917 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 26 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113e (25.0 mg, 83% yield). 

Bicycle 113e: 

Physical State: colorless oil. 

Rf: 0.42 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2964, 2870, 1666, 1446 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1592, found 229.1587. 

1H NMR (400 MHz, C6D6): δ 7.24-7.18 (m, 4H), 7.11-7.07 (m, 1H), 5.10 (s, 1H), 4.00 (d, J = 10.3 Hz, 

1H), 3.45 (d, J = 10.3 Hz, 1H), 2.29-2.22 (m, 1H), 1.42 (d, J = 4.4 Hz, 1H), 1.15 (d, J = 4.3 Hz, 1H), 1.07 

(d, J = 6.9 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H), 0.60 (s, 3H). 

13C NMR (100 MHz, C6D6): δ 157.6, 143.0, 129.5, 128.4, 126.4, 103.7, 68.2, 32.7, 30.3, 28.0, 22.2, 20.6, 

20.4, 16.6. 

Optical Rotation: [α]D
32 = +55.32 (c = 0.1, CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 

1.0 mL/min, λ = 210 nm, major isomer 4.51 min, minor isomer 4.20 min). 
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To a solution of enyne 112f (30.1 mg, 0.124 mmol) in THF (4.13 mL, 0.030 M) under argon was added 

PtCl2 (2.3 mg, 0.00868 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 24 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113f (24.9 mg, 83% yield). 

Bicycle 113f: 

Physical State: colorless oil. 

Rf: 0.86 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2963, 2871, 1663, 1469, 1384 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1743, found 243.1746. 

1H NMR (400 MHz, C6D6): δ 7.23-7.17 (comp m, 4H), 7.13-7.08 (m, 1H), 5.01 (s, 1H), 4.00 (d, J = 10.2 

Hz, 1H), 3.56 (d, J = 10.1 Hz, 1H), 2.23 (dt, J = 13.4, 6.7 Hz, 1H), 1.69 (q, J = 6.6 Hz, 1H), 1.05 (d, J = 

3.4 Hz, 3H), 1.04 (d, J = 3.4 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.76 (s, 3H). 

13C NMR (100 MHz, C6D6): δ 156.1, 141.4, 131.4, 128.7, 126.5, 106.2, 69.0, 32.6, 31.2, 29.8, 26.3, 20.5, 

20.4, 12.5, 11.6. 

Optical Rotation: [α]D
32 = +351.49 (c = 0.25, CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 

1.0 mL/min, λ = 230 nm, major isomer 4.30 min, minor isomer 3.96 min). 
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To a solution of enyne 112g (31.7 mg, 0.188 mmol) in THF (3.93 mL, 0.030 M) under argon was added 

PtCl2 (2.1 mg, 0.00782 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 26 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a short plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113g (24.0 mg, 80% yield). 

Bicycle 113g: 

Physical State: colorless oil. 

Rf: 0.33 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2936, 2869, 1664, 1602, 1447 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C19H24O + H]+: 269.1900, found 269.1900. 

1H NMR (400 MHz, C6D6): δ 7.24-7.18 (comp m, 4H), 7.11-7.07 (m, 1H), 4.99 (s, 1H), 4.00 (d, J = 10.2 

Hz, 1H), 3.64 (d, J = 10.2 Hz, 1H), 2.22 (dt, J = 13.6, 6.8 Hz, 1H), 1.76 (t, J = 4.9 Hz, 1H), 1.64 (ddd, J = 

14.2, 7.8, 5.0 Hz, 1H), 1.27 (ddd, J = 14.0, 7.6, 6.1 Hz, 1H), 1.06 (d, J = 1.9 Hz, 3H), 1.04 (d, J = 1.9 Hz, 

3H), 0.97-0.85 (m, 2H), 0.75-0.58 (m, 2H). 

13C NMR (100 MHz, C6D6): δ 155.7, 142.3, 131.1, 128.8, 128.2, 127.9, 126.4, 106.6, 68.5, 32.63, 32.61, 

30.5, 30.0, 29.0, 26.9, 23.1, 21.9, 21.6, 21.3, 20.5, 20.4. 

Optical Rotation: [α]D
32 = +113.62 (c = 1.0, CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel OJ-H, 100% hexane, 1.0 mL/min, 

λ = 210 nm, major isomer 4.78 min, minor isomer 12.69 min). 
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To a solution of enyne 112h (6.5 mg, 0.0285 mmol) in THF (967 µL, 0.030 M) under argon was added 

PtCl2 (0.5 mg, 0.00203 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 17 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (97.5:2:0.5 

hexanes/Et2O/Et3N eluent), affording bicycle 113h (4.4 mg, 68% yield). 

Bicycle 113h: 

Physical State: colorless oil. 

Rf: 0.42 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2974, 1715, 1602, 1498 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1587, found 229.1600. 

1H NMR (400 MHz, C6D6): δ 7.15-7.01 (comp m, 5H), 4.99 (s, 1H), 4.09 (dd, J = 10.4, 0.8 Hz, 1H), 3.68 

(ddd, J = 10.3, 2.2, 0.4 Hz, 1H), 2.51 (d, J = 5.7 Hz, 1H), 2.31-2.24 (m, 1H), 1.36 (d, J = 5.7 Hz, 1H), 

1.11 (t, J = 6.9 Hz, 6H), 0.92 (s, 3H). 

13C NMR (100 MHz, C6D6): δ 157.5, 138.9, 129.1, 126.1, 103.8, 62.8, 35.1, 33.0, 28.5, 20.6, 20.3, 20.2, 

18.4. 

Optical Rotation: [α]D
33 = -8.40 (c = 0.076, CH2Cl2). 

The ee was determined to be 92% by HPLC analysis (Daicel Chiralcel IC, 0.1% 2-propanol in hexane, 1 

mL/min, λ = 254 nm, major isomer 4.43 min, minor isomer 4.23 min). 
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To a solution of enyne 112i (25.0 mg, 0.0517 mmol) in THF (1.73 mL, 0.030 M) under argon was added 

PtCl2 (1.0 mg, 0.00364 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 20 h. Once cooled to ambient temperature, the mixture was diluted with hexanes filtered 

through a small plug of alumina (0.5 x 2 cm, 1:1 hexanes/Et2O eluent). The solvent was removed by 

rotary evaporation and the resulting residue was purified by flash chromatography (4:1 hexanes/Et2O 

(0.5% Et3N) eluent), affording bicycle 113i (21.4 mg, 86% yield). 

Bicycle 113i: 

Physical State: white semisolid. 

Rf: 0.53 (1:1 hexanes/Et2O, KMnO4). 

IR (film): 2962, 1494, 1447, 1376 cm-1. 

LRMS (ESI+): m/z calc’d for (M + H)+ [C30H29NO3S + H]+: 484.2, found 484.2. 

1H NMR (400 MHz, C6D6): δ 8.15-8.12 (m, 1H), 7.59-7.55 (m, 1H), 7.52-7.47 (m, 2H), 7.21-7.18 (s, 

1H), 7.08-6.95 (comp m, 3H), 6.84-6.76 (comp m, 3H), 6.73-6.69 (m, 2H), 6.55-6.51 (m, 1H), 4.15 (dd, J 

= 10.6, 1.3 Hz, 1H), 3.80 (dd, J = 10.5, 2.1 Hz, 1H), 2.86 (d, J = 6.0 Hz, 1H), 2.25 (dt, J = 13.5, 6.7 Hz, 

1H), 1.91 (d, J = 5.9 Hz, 1H), 1.72 (s, 3H), 1.08 (d, J = 6.9 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 157.9, 144.2, 138.0, 136.3, 135.8, 131.6, 129.8, 128.4, 128.2, 128.1, 127.9, 

127.0, 126.0, 125.6, 124.9, 123.2, 122.3, 120.8, 114.1, 102.6, 62.5, 36.2, 33.0, 28.8, 23.6, 21.1, 20.4, 20.2. 

Optical Rotation: [α]D
32 = +14.89 (c = 0.5, CH2Cl2). 

The ee was determined to be 97% by HPLC analysis (Daicel Chiralcel OD-H, 10% 2-propanol in hexane, 

1 mL/min, λ = 254 nm, major isomer 5.74 min, minor isomer 7.09 min). 
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To a solution of enyne 112j (60.0 mg, 0.167 mmol) in THF (5.57 mL, 0.030 M) under argon was added 

PtCl2 (3.2 mg, 0.0117 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 29 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 3 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113j (51.6 mg, 86% yield). 

Bicycle 113j: 

Physical State: colorless oil. 

Rf: 0.50 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2956, 2858, 1729, 1471, 1255 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C22H34O2Si + H]+: 359.2406, found 359.2403. 

1H NMR (400 MHz, C6D6): δ 7.11 (d, J = 4.4 Hz, 4H), 7.06-7.02 (m, 1H), 5.51 (s, 1H), 4.12 (dd, J = 

10.4, 1.2 Hz, 1H), 3.70 (dd, J = 10.4, 2.1 Hz, 1H), 3.54 (d, J = 10.4 Hz, 1H), 3.23 (d, J = 10.5 Hz, 1H), 

2.67 (d, J = 5.8 Hz, 1H), 2.35-2.28 (m, 1H), 1.52 (dt, J = 5.8, 1.0 Hz, 1H), 1.13 (d, J = 5.5 Hz, 3H), 1.11 

(d, J = 5.5 Hz, 3H), -0.09 (s, 3H), -0.16 (s, 3H). 

13C NMR (100 MHz, C6D6): δ 158.0, 138.1, 129.5, 128.3, 126.4, 100.5, 64.5, 62.7, 34.9, 33.1, 26.7, 26.1, 

25.5, 20.5, 20.3, 18.5, 5.4. 

Optical Rotation: [α]D
31 = -90.21 (c = 0.5, CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel IC, 100% hexane, 1.5 mL/min, λ = 

230 nm, major isomer 4.68 min, minor isomer 4.45 min). 
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To a solution of enyne 112k (110 mg, 0.298 mmol) in THF (9.93 mL, 0.030 M) under argon was added 

PtCl2 (5.4 mg, 0.0201 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 9 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 4.5 cm, 9:1 hexanes/Et2O eluent). The solvent was 

removed by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 97.5:2:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 113k (101 mg, 92% yield). 

Bicycle 113k: 

Physical State: white solid. 

Rf: 0.36 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 3032, 2905, 1620, 1530, 1095 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C21H20BrO + H]+: 369.0849, found 369.0832. 

1H NMR (400 MHz, C6D6): δ 7.02-6.92 (comp m, 7H), 6.31-6.28 (m, 2H), 5.18 (s, 1H), 4.16 (dd, J = 

10.5, 1.3 Hz, 1H), 3.77 (dd, J = 10.4, 1.9 Hz, 1H), 2.63 (d, J = 5.8 Hz, 1H), 2.30-2.20 (m, 1H), 1.88-1.85 

(m, 1H), 1.07 (app. t, J = 7.1 Hz, 6H). 

13C NMR (100 MHz, C6D6): δ 157.1, 140.5, 137.6, 131.0, 130.2, 129.6, 128.6, 126.8, 119.7, 104.0, 62.4, 

36.1, 33.0, 32.5, 29.8, 20.4, 20.2. 

Optical Rotation: [α]D
32 = -15.75 (c = 1.0, CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel OJ-H, 0.5% 2-propanol in hexane, 

1 mL/min, λ = 254 nm, major isomer 6.45 min, minor isomer 8.68 min).  
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3.7.3 Optimization Studies 

Catalyst Evaluation 

 

General Procedure for Experiments in Table 3.4.1: To a solution of enyne 108 in the listed solvent 

under argon was added catalyst. The resulting mixture was sealed, heated to the prescribed temperature 

and stirred for the listed time. For entries 2 and 6, the solution was purged with a balloon of CO prior to 

heating. Once cooled to ambient temperature, the mixture was diluted with hexanes and filtered through a 

small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography. The enantiomeric excess of 

bicycle 109 was analyzed by HPLC. 

 

 

Entry 9. To a solution of enyne 108 (20.0 mg, 0.0567 mmol) in THF (1.90 mL, 0.030 M) under argon 

was added PtCl2 (0.8 mg, 0.00285 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at 

that temperature for 18 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 
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filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 109 (17.9 mg, 90% yield). 

Bicycle 109: 

Physical State: white solid. 

Rf: 0.73 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 3061, 2923, 2863, 1665, 1497 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C26H24O + H]+: 353.1905, found 353.1891. 

1H NMR (400 MHz, C6D6): δ 7.18 (m, 2H), 7.11-6.85 (comp m, 11H), 6.72-6.70 (m, 2H), 5.10 (s, 1H), 

4.20 (d, J = 10.5 Hz, 1H), 3.85 (dd, J = 10.5, 2.1 Hz, 1H), 2.87-2.73 (comp m, 3H), 2.32 (t, J = 7.8 Hz, 

2H), 2.05 (d, J = 5.8 Hz, 1H). 

13C NMR (100 MHz, C6D6): δ 150.9, 142.0, 140.8, 138.4, 130.3, 128.9, 128.6, 128.5, 128.00, 127.97, 

126.6, 126.2, 125.8, 107.1, 62.5, 37.2, 36.6, 33.7, 32.4, 29.3. 

Optical Rotation: [α]D
30 = -0.43 (c = 1.0, CH2Cl2). 

The ee was determined to be 87% by HPLC analysis (Daicel Chiralcel OD-H, 10% 2-propanol in hexane, 

1 mL/min, λ = 210 nm, major isomer 6.04 min, minor isomer 12.23 min). 

 

 

To a solution of enyne 110a (10.0 mg, 0.0499 mmol) in THF (1.67 mL, 0.030 M) under argon was added 

PtCl2 (0.9 mg, 0.00350 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 12 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 
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by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 111a (9.1 mg, 90% yield). 

Bicycle 111a: 

Physical State: yellow oil. 

Rf: 0.59 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2929, 1715, 1495, 1447 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C14H16O + H]+: 201.1274, found 201.1273. 

1H NMR (400 MHz, C6D6): δ 7.25-7.07 (comp m, 5H), 5.09-5.05 (s, 1H), 4.12 (dd, J = 10.5, 1.1 Hz, 1H), 

3.80 (dd, J = 10.5, 2.1 Hz, 1H), 1.67 (s, 3H), 1.43 (quintet, J = 6.0 Hz, 1H), 1.20-1.13 (comp m, 3H). 

13C NMR (100 MHz, C6D6): δ 147.7, 142.3, 129.7, 128.7, 126.5, 106.7, 62.7, 29.4, 27.5, 26.5, 20.0, 15.0. 

Optical Rotation: [α]D
31 = -31.92 (c = 0.1, CH2Cl2). 

The ee was determined to be 80% by HPLC analysis (Daicel Chiralcel OJ-H, 5% 2-propanol in hexane, 

1.0 mL/min, λ = 210 nm, major isomer 9.67 min, minor isomer 10.60 min). 

 

 

To a solution of enyne 110b (25.0 mg, 0.103 mmol) in THF (3.43 mL, 0.030 M) under argon was added 

PtCl2 (1.9 mg, 0.00722 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 24 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 111b (21.1 mg, 84% yield). 

Bicycle 111b: 

Physical State: yellow oil. 
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Rf: 0.66 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2960, 2872, 1727, 1495 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1744, found 243.1746. 

1H NMR (400 MHz, C6D6): δ 7.22-7.18 (comp m, 4H), 7.13-7.07 (m, 1H), 5.15 (s, 1H), 4.14 (dd, J = 

10.4, 1.3 Hz, 1H), 3.76 (dd, J = 10.3, 2.0 Hz, 1H), 2.03-1.82 (comp m, 4H), 1.48 (quintet, J = 6.0 Hz, 

1H), 1.23-1.17 (comp m, 2H), 0.91 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 6.5 Hz, 3H), 0.72 (d, J = 6.3 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 150.5, 142.3, 129.7, 128.7, 126.5, 107.8, 62.7, 43.9, 29.9, 27.5, 26.42, 

26.37, 22.7, 22.6, 15.0. 

Optical Rotation: [α]D
30 = -13.19 (c = 0.5, CH2Cl2). 

The ee was determined to be 78% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 1 

mL/min, λ = 210 nm, major isomer 4.91 min, minor isomer 6.01 min). 

 

 

Bicycle 110c: To a solution of enyne 111c (10.0 mg, 0.0344 mmol) in THF (1.15 mL, 0.030 M) under 

argon was added PtCl2 (0.6 mg, 0.00238 mmol). The resulting mixture was sealed, heated to 70 °C and 

stirred at that temperature for 16 h. Once cooled to ambient temperature, the mixture was diluted with 

hexanes and filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent 

was removed by rotary evaporation and the resulting residue was purified by flash chromatography 

(99.5:0.5 hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 111c (9.3 mg, 93% 

yield).  

Bicycle 110c: 

Physical State: white solid. 

Rf: 0.53 (9:1 hexanes/Et2O, KMnO4). 
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IR (film): 2925, 2855, 1719, 1602 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C21H22O + H]+: 291.1744, found 291.1735. 

1H NMR (400 MHz, C6D6): δ 7.18-6.98 (comp m, 10H), 5.06 (s, 1H), 4.11 (dd, J = 10.4, 1.4 Hz, 1H), 

3.73 (dd, J = 10.4, 2.2 Hz, 1H), 2.76-2.71 (m, 2H), 2.28-2.23 (m, 2H), 1.39 (quintet, J = 6.0 Hz, 1H), 

1.18-1.17 (m, 1H), 0.68 (d, J = 6.3 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 150.4, 142.1, 129.7, 128.8, 128.7, 128.6, 126.5, 126.2, 107.1, 62.8, 36.7, 

33.9, 29.7, 27.4, 26.4, 15.0. 

Optical Rotation: [α]D
31 = -8.51 (c = 0.1, CH2Cl2). 

The ee was determined to be 90% by HPLC analysis (Daicel Chiralcel OD-H, 3% 2-propanol in hexane, 1 

mL/min, λ = 210 nm, major isomer 5.62 min, minor isomer 12.79 min). 

 

 

To a solution of enyne 110d (25.0 mg, 0.0932 mmol) in THF (3.10 mL, 0.030 M) under argon was added 

PtCl2 (1.7 mg, 0.00652 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 24 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

filtered through a small plug of alumina (0.5 x 2 cm, 9:1 hexanes/Et2O eluent). The solvent was removed 

by rotary evaporation and the resulting residue was purified by flash chromatography (99.5:0.5 

hexanes/Et3N → 98.5:1:0.5 hexanes/Et2O/Et3N eluent), affording bicycle 111d (21.0 mg, 84% yield). 

Bicycle 111d: 

Physical State: colorless oil. 

Rf: 0.85 (9:1 hexanes/Et2O, KMnO4). 

IR (film): 2930, 2856, 1720, 1448 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C19H24O + H]+: 269.1900, found 269.1901. 
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1H NMR (400 MHz, C6D6): δ 7.23-7.19 (comp m, 4H), 7.14-7.09 (m, 1H), 5.17 (s, 1H), 4.18 (dd, J = 

10.3, 1.4 Hz, 1H), 3.74 (dd, J = 10.3, 2.0 Hz, 1H), 1.99-1.83 (comp m, 4H), 1.70-1.62 (comp m, 2H), 

1.59-1.53 (m, 1H), 1.49 (quintet, J = 6.0 Hz, 1H), 1.35-1.02 (comp m, 7H), 0.74 (d, J = 6.3 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 155.8, 142.6, 129.8, 128.7, 126.5, 104.7, 99.1, 62.8, 42.8, 31.1, 30.9, 30.2, 

27.3, 26.69, 26.67, 26.6, 26.1, 15.0. 

Optical Rotation: [α]D
28 = +10.00 (c = 1.0, CH2Cl2). 

The ee was determined to be 96% by HPLC analysis (Daicel Chiralcel OJ-H, 1% 2-propanol in hexane, 1 

mL/min, λ = 230 nm, major isomer 4.15 min, minor isomer 4.56 min). 
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3.7.4 Additional Reactions 

 

To a solution of enyne 120 (50.0 mg, 0.120 mmol) in THF (4.61 mL, 0.030 M) under argon was added 

PtCl2 (2.2 mg, 0.00840 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 15 h. Once cooled to ambient temperature, the solvent was removed by rotary evaporation 

and the resulting residue was purified by flash chromatography (4:1 → 1:1 hexanes/EtOAc eluent), 

affording bicycle 121 (44.8 mg, 90% yield). 

Bicycle 121: 

Physical State: white solid. 

Rf: 0.62 (1:1 hexanes/EtOAc, KMnO4). 

1H NMR (300 MHz, C6D6): δ 7.71 (d, J = 8.3 Hz, 2H), 7.08-6.72 (comp m, 10H), 6.40-6.38 (m, 2H), 5.42 

(s, 1H), 4.44 (dd, J = 13.6, 2.4 Hz, 1H), 3.29 (dd, J = 13.6, 2.6 Hz, 1H), 2.16-2.10 (comp m, 4H), 1.97 (d, 

J = 5.7 Hz, 1H), 1.92 (s, 3H). 

The ee was determined to be 80% by HPLC analysis (Daicel Chiralcel IC, 10% 2-propanol in hexane, 1 

mL/min, λ = 210 nm, major isomer 17.97 min, minor isomer 14.04 min). 

 

 

To a solution of bicycle 113a (36.3 mg, 0.125 mmol) in dioxane (3.75 mL) at 23 °C was added OsO4 

(23.8 µL, 4% in H2O, 0.00375 mmol) followed by 2,6-lutidine (29.0 µL, 0.250 mmol). To the resulting 

mixture was added a solution of NaIO4 (106 mg, 0.500 mmol) in H2O (1.25 mL). The resulting reaction 
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mixture was stirred vigorously for 48 h, at which time it was diluted with EtOAc (15 mL) and H2O (10 

mL). The layers were separated, and the aqueous phase was extracted with EtOAc (2 x 15 mL). The 

combined organic layers were washed with sat. aq. Na2S2O3 (1 x 10 mL), then brine (1 x 10 mL), and 

dried over MgSO4. The solvent was removed by rotary evaporation and the resulting residue was purified 

by flash chromatography (9:1 hexanes/EtOAc eluent), affording cyclopropane 125 (28.9 mg, 72% yield). 

Cyclopropane 125: 

Physical State: colorless oil. 

Rf: 0.53 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2969, 1733, 1704, 1191 cm-1. 

HRMS (ESI+): m/z calc’d for (M + Na)+ [C21H22O3 + Na]+: 345.1467, found 345.1466. 

1H NMR (400 MHz, CDCl6): δ 9.73 (s, 1H), 7.24-7.20 (comp m, 3H), 7.12-7.07 (comp m, 3H), 7.06-7.00 

(m, 2H), 6.84-6.80 (m, 2H), 4.79 (dd, J = 11.9, 5.6 Hz, 1H), 4.29 (dd, J = 11.9, 9.7 Hz, 1H), 3.34 (d, J = 

7.5 Hz, 1H), 2.93-2.87 (m, 1H), 2.60 (septet, J = 7.0 Hz, 1H), 1.21 (d, J = 3.6 Hz, 3H), 1.19 (d, J = 3.6 

Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 199.3, 135.1, 134.6, 131.5, 128.7, 128.1, 128.0, 127.0, 61.3, 49.8, 38.2, 

34.6, 34.1, 19.23, 19.16. 

Optical Rotation: [α]D
27 = -150.43 (c = 1.0 CH2Cl2). 

The ee was determined to be 98% by HPLC analysis (Daicel Chiralcel OD-H, 15% 2-propanol in hexane, 

1 mL/min, λ = 210 nm, major isomer 6.30 min, minor isomer 12.41 min). 

 

 

To a solution of enyne 153 (40.0 mg, 0.127 mmol) in toluene (4.23 mL, 0.030 M) under argon was added 

Zeise’s Dimer (1.87 mg, 0.00318 mmol). The resulting mixture was sealed and stirred at 23 °C for 18 h. 
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The mixture was then diluted with hexanes and passed through a small plug of alumina (0.5 x 2 cm, 9:1 

hexanes/Et2O eluent). The solvent was removed in vacuo and the resulting residue was purified by flash 

chromatography (3:1 hexanes/CH2Cl2 eluent with 0.5% Et3N), affording bicycle 154 (30.0 mg, 75% 

yield). 

Siloxane 154: 

Physical State: colorless oil. 

Rf: 0.85 (3:1 hexanes/CH2Cl2, KMnO4). 

IR (film): 2964, 1656, 1461, 1305, 1252 cm-1. 

1H NMR (400 MHz, C6D6): 7.30-7.27 (m, 2H), 7.22 (t, J = 7.6 Hz, 2H), 7.13-7.09 (m, 1H), 4.86 (s, 1H), 

2.16 (dt, J = 13.6, 6.8 Hz, 1H), 1.74-1.64 (m, 1H), 1.57 (t, J = 6.6 Hz, 2H), 1.31-1.08 (m, 2H), 1.07-1.00 

(comp m, 13H), 0.37 (s, 3H), 0.36 (s, 3H). 

 

 

To a solution of enyne 158 (25.0 mg, 0.0980 mmol) in THF (3.28 mL, 0.030 M) under argon was added 

PtCl2 (1.83 mg, 0.00688 mmol). The resulting mixture was sealed, heated to 70 °C and stirred at that 

temperature for 12 h. Once cooled to ambient temperature, the mixture was diluted with hexanes and 

passed through a small plug of alumina (0.5 x 2 cm, 4:1 hexanes/Et2O eluent). The solvent was removed 

in vacuo and the resulting residue was purified by flash chromatography (97.5:2:0.5 hexanes/Et2O/NEt3 

eluent), affording bicycle 159 (16.2 mg, 64% yield). 

Bicycle 159: 

Physical State: white solid. 

Rf: 0.40 (9:1 hexanes/Et2O, anisaldehyde). 

IR (film): 2964, 1494, 1446, 1097, 949 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C18H22O + H]+: 255.1744, found 255.1743. 
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1H NMR (400 MHz, C6D6): δ 7.29-7.26 (m, 2H), 7.19-7.17 (m, 2H), 7.13-7.09 (m, 1H), 5.92 (ddd, J = 

10.8, 8.3, 2.4 Hz, 1H), 5.82 (d, J = 1.9 Hz, 1H), 5.31 (dd, J = 10.9, 3.8 Hz, 1H), 4.17 (dd, J = 8.1, 1.9 Hz, 

1H), 3.64 (dd, J = 8.1, 1.9 Hz, 1H), 2.77-2.70 (m, 2H), 1.79 (dt, J = 13.4, 6.7 Hz, 1H), 1.13 (d, J = 4.7 Hz, 

3H), 1.11 (d, J = 4.6 Hz, 3H), 0.75 (d, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 148.5, 139.0, 136.5, 127.6, 126.9, 126.8, 125.6, 79.9, 70.9, 42.3, 37.2, 

34.9, 17.3, 15.6, 15.1. 

Optical Rotation: [α]D
31 = -179.15 (c = 1.0, CHCl3). 

The ee was determined to be 98% by HPLC analysis (Diacel Chiralcel OJ-H, 1% 2-propanol in hexane, 1 

mL/min, λ = 254 nm, major isomer 5.97 min, minor isomer 10.15 min). 
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3.7.5 Substrate Syntheses 

General procedure for the synthesis of propargylic alcohols using the Noyori transfer 

hydrogenation: To a solution of an ynone in 2-propanol (0.1 M) under argon was added Ru[(S,S)-

TsDPEN(p-cymene)] (.04-2 mol %). The resulting purple solution was stirred at ambient temperature 

until the reaction was complete (2-48 h). The solvent was removed in vacuo and the resulting residue was 

purified by flash chromatography, affording the enantioenriched propargylic alcohol. 

 

Alcohol 166. Based on the general procedure, alcohol 166 was produced in >99% yield. All spectra 

matched those previously reported in the literature.40 The ee was determined to be 98% by HPLC analysis 

(Daicel Chiralcel OD-H, 5% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 12.18 min, R isomer 

6.86 min). [α]D
32 = +2.98 (c = 1.0, CHCl3) (S) (Lit. [α]D

20 = +1.52 (c = 0.6, CHCl3) 47.4% ee (S)). 

 

 

Enyne 110e. To a solution of alcohol 166 (90.6 mg, 0.520 mmol) in DMF (1.73 mL) at 0 °C under argon 

was added NaH (22.9 mg, 60% dispersion in mineral oil, 0.572 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 25 min. Crotyl bromide (53.6 µL, 0.520 

mmol) was added and after 3 h, the reaction was quenched by slow addition of H2O (3 mL). The mixture 

was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. 

LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 9:1 

hexanes/EtOAc eluent), affording enyne 110e (103 mg, 87% yield).  
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Physical State: yellow oil. 

Rf: 0.74 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2963, 1490, 1444, 1350 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1587, found 229.1583. 

1H NMR (400 MHz, CDCl6): δ 7.47-7.42 (m, 2H), 7.33-7.29 (comp m, 3H), 5.82-5.72 (m, 1H), 5.67-5.57 

(m, 1H), 4.28-4.23 (m, 1H), 4.06 (d, J = 5.8 Hz, 1H), 4.00-3.95 (m, 1H), 1.75-1.71 (m, 3H), 1.07 (d, J = 

6.7 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 131.9, 129.8, 128.4, 128.3, 127.6, 123.2, 87.6, 86.4, 74.8, 69.8, 33.4, 

19.0, 18.1. 

Optical Rotation: [α]D
31 = -62.55 (c = 1.0, CH2Cl2). 

 

 

Enyne 112a. To a solution of alcohol 166 (100 mg, 0.575 mmol) in DMF (1.91 mL) at 0 °C under argon 

was added NaH (27.6 mg, 60% dispersion in mineral oil, 0.896 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Cinnamyl bromide (85.2 µL, 0.575 

mmol) was added and after 3 h, the reaction was quenched by slow addition of H2O (5 mL). The mixture 

was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. 

LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 10:1 

hexanes/EtOAc eluent), affording enyne 112a (130 mg, 78% yield).  

Physical State: colorless oil. 

Rf: 0.55 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3062, 2966, 2874, 1723, 1491 cm-1. 
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HRMS (APCI+): m/z calc’d for (M + H)+ [C21H21O + H]+: 291.1744, found 291.1752. 

1H NMR (400 MHz, CDCl6): δ 7.48-7.44 (m, 2H), 7.42-7.39 (m, 2H), 7.34-7.29 (comp m, 6H), 6.67 (d, J 

= 15.9 Hz, 1H), 6.34 (ddd, J = 15.9, 6.7, 5.5 Hz, 1H), 4.50 (ddd, J = 12.7, 5.5, 1.6 Hz, 1H), 4.23 (ddd, J = 

12.7, 6.7, 1.3 Hz, 1H), 4.14 (d, J = 5.8 Hz, 1H), 2.06 (dq, J = 12.8, 6.5 Hz, 1H), 1.11 (d, J = 6.7 Hz, 3H), 

1.07 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 137.0, 132.7, 131.9, 128.7, 128.40, 128.36, 127.8, 126.7, 126.2, 123.1, 

87.4, 86.7, 75.1, 69.7, 33.5, 18.9, 18.2. 

Optical Rotation: [α]D
32 = -85.75 (c = 1.0, CH2Cl2). 

 

 

Enyne 112b. To a solution of alcohol 166 (85.0 mg, 0.488 mmol) in DMF (1.63 mL) at 0 °C under argon 

was added NaH (23.4 mg, 60% dispersion in mineral oil, 0.585 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Bromide 16741 (118 mg, 0.488 

mmol) was added and after 6 h, the reaction was quenched by slow addition of H2O (3 mL). The mixture 

was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. 

LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 9:1 

hexanes/EtOAc eluent), affording enyne 112b (119 mg, 73% yield).  

Physical State: colorless oil. 

Rf: 0.47 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2962, 2853, 1490, 1454, 1102 cm-1. 

HRMS (APCI+): m/z calc’d for (M + NH4)+ [C23H26O2 + NH4]+: 352.2277, found 352.2276. 
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1H NMR (400 MHz, CDCl6): δ 7.46-7.42 (m, 2H), 7.34 (d, J = 4.4 Hz, 4H), 7.32-7.28 (comp m, 4H), 

5.91-5.88 (comp. m, 2H), 4.53 (s, 2H), 4.37-4.32 (m, 1H), 4.10-4.03 (comp m, 4H), 2.03 (dq, J = 12.8, 

6.5 Hz, 1H), 1.08 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 131.9, 129.7, 129.5, 128.5, 128.39, 128.35, 127.9, 127.4, 87.4, 86.6, 

75.2, 72.4, 70.4, 69.0, 33.4, 18.9, 18.1. 

Optical Rotation: [α]D
34 = -83.62 (c = 1.0, CH2Cl2). 

 

 

Enyne 112c To a solution of alcohol 166 (90.1 mg, 0.517 mmol) in DMF (1.72 mL) at 0 °C under argon 

was added NaH (24.8 mg, 60% dispersion in mineral oil, 0.620 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Prenyl chloride (58.3 µL, 0.517 

mmol) was added and after 2.5 h, the reaction was quenched by slow addition of H2O (5 mL). The 

mixture was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially 

with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by 

rotary evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 50:1 

hexanes/EtOAc eluent), affording enyne 112c (105 mg, 84% yield).  

Physical State: colorless oil. 

Rf: 0.58 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2965, 2930, 1723, 1490, 1444 cm-1. 

HRMS (DART+): m/z calc’d for (M + NH4)+ [C17H22O + NH4]+: 260.2014, found 260.2015. 

1H NMR (400 MHz, CDCl6): δ 7.47-7.43 (m, 2H), 7.32-7.29 (comp m, 3H), 5.41-5.36 (m, 1H), 4.28 (dd, 

J = 11.5, 6.3 Hz, 1H), 4.07 (dd, J = 11.6, 7.6 Hz, 1H), 4.05 (d, J = 5.9 Hz, 1H), 2.02 (dq, J = 13.0, 6.6 Hz, 

1H), 1.77 (s, 3H), 1.73 (s, 3H), 1.07 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H). 
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13C NMR (100 MHz, CDCl6): δ 137.6, 131.9, 128.4, 128.3, 123.3, 121.1, 87.8, 86.3, 74.8, 65.5, 33.4, 

26.0, 19.0, 18.3, 18.2. 

Optical Rotation: [α]D
31 = -249.36 (c = 1.0, CH2Cl2). 

 

 

Enyne 112d. To a solution of alcohol 166 (100 mg, 0.574 mmol) in DMF (1.91 mL) at 0 °C under argon 

was added NaH (29.8 mg, 60% dispersion in mineral oil, 0.746 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. (Z)-Crotyl bromide42 (77.5 mg, 

0.574 mmol) was added and after 3.5 h, the reaction was quenched by slow addition of H2O (3 mL). The 

mixture was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially 

with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by 

rotary evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 15:1 

hexanes/EtOAc eluent), affording enyne 112d (125 mg, 95% yield). 

Physical State: colorless oil. 

Rf: 0.56 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3023, 2969, 1659, 1490, 1071, 691 cm-1. 

HRMS (APCI+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1592, found 229.1583. 

1H NMR (400 MHz, CDCl6): δ 7.48-7.43 (m, 1H), 7.33-7.29 (comp m, 3H), 5.75-5.67 (m, 1H), 5.64-5.57 

(m, 1H), 4.34 (dd, J = 12.0, 5.8 Hz, 1H), 4.19 (dd, J = 11.9, 7.2 Hz, 1H), 4.08 (d, J = 5.9 Hz, 1H), 2.02 

(dq, J = 13.2, 6.6 Hz, 1H), 1.72 (d, J = 6.8 Hz, 3H), 1.08 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 131.9, 128.5, 128.4, 128.3, 126.9, 123.2, 87.7, 86.4, 74.86, 74.85, 64.3, 

33.4, 18.9, 18.2, 13.4. 

Optical Rotation: [α]D
30 = -182.55 (c = 1.0, CH2Cl2). 
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Enyne 112e. To a solution of alcohol 166 (80.0 mg, 0.459 mmol) in DMF (1.53 mL) at 0 °C under argon 

was added NaH (22.0 mg, 60% dispersion in mineral oil, 0.551 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Isobutenyl chloride (44.9 µL, 0.459 

mmol) was added and after 2.5 h, the reaction was quenched by slow addition of H2O (5 mL). The 

mixture was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially 

with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by 

rotary evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 15:1 

hexanes/EtOAc eluent), affording enyne 112e (93.1 mg, 89% yield).  

Physical State: colorless oil. 

Rf: 0.83 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2963, 2872, 1598, 1490, 1071 cm-1. 

HRMS (ESI+): m/z calc’d for (M + NH4)+ [C16H20O + NH4]+: 246.1858, found 246.1859. 

1H NMR (400 MHz, CDCl6): δ 7.47-7.43 (m, 2H), 7.33-7.29 (comp m, 3H), 5.04 (d, J = 1.0 Hz, 1H), 

4.92 (d, J = 0.7 Hz, 1H), 4.20 (d, J = 12.5 Hz, 1H), 4.05 (d, J = 5.9 Hz, 1H), 3.98 (d, J = 12.5 Hz, 1H), 

2.04 (dq, J = 13.0, 6.6 Hz, 1H), 1.78 (s, 3H), 1.09 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 142.3, 131.9, 128.4, 128.3, 123.2, 112.5, 87.6, 86.4, 74.9, 72.9, 33.5, 

19.8, 18.9, 18.3. 

Optical Rotation: [α]D
32 = -116.81 (c = 1.0, CH2Cl2). 
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Enyne 112f. To a solution of alcohol 166 (90.1 mg, 0.517 mmol) in DMF (1.72 mL) at 0 °C under argon 

was added NaH (24.8 mg, 60% dispersion in mineral oil, 0.628 mmol) in one portion. This mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Bromide 16843 (77.0 mg, 0.517 

mmol) was added and after 2 h, the reaction was quenched by slow addition of H2O (5 mL). The mixture 

was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. 

LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 50:1 

hexanes/EtOAc eluent), affording enyne 112f (91.0 mg, 73% yield). 

Physical State: yellow oil. 

Rf: 0.59 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2963, 2925, 1723, 1490, 1383 cm-1. 

HRMS (DART+): m/z calc’d for (M + NH4)+ [C17H22O + NH4]+: 260.2014, found 260.2012. 

1H NMR (400 MHz, CDCl6): δ 7.46-7.43 (m, 2H), 7.32-7.29 (comp m, 3H), 5.59-5.54 (m, 1H), 4.16 (d, J 

= 11.4 Hz, 1H), 3.99 (d, J = 6.0 Hz, 1H), 3.94 (d, J = 11.4 Hz, 1H), 2.02 (dq, J = 13.1, 6.6 Hz, 1H), 1.68 

(s, 1H), 1.64 (dd, J = 6.7, 0.9 Hz, 1H), 1.08 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H). 

13C NMR (100 MHz, CDCl6): δ 132.9, 131.9, 128.4, 128.2, 123.3, 123.0, 87.8, 75.1, 74.4, 33.5, 18.9, 

18.3, 13.9, 13.4. 

Optical Rotation: [α]D
32 = -47.87 (c = 1.0, CH2Cl2). 
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Enyne 112g. To a solution of alcohol 166 (80.0 mg, 0.459 mmol) in DMF (1.53 mL) at 0 °C under argon 

was added NaH (22.0 mg, 60% dispersion in mineral oil, 0.551 mmol) in one portion. The mixture was 

then allowed to warm to ambient temperature and stirred for 20 min. Bromide 16944 (80.4 mg, 0.459 

mmol) was added and after 12 h, the reaction was quenched by slow addition of H2O (5 mL). The mixture 

was extracted with hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. 

LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary 

evaporation and the resulting residue was purified by flash chromatography (100% hexanes → 15:1 

hexanes/EtOAc eluent), affording enyne 112g (85.2 mg, 69% yield).  

Physical State: yellow oil. 

Rf: 0.60 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2928, 2837, 1668, 1490, 1445 cm-1. 

HRMS (ESI+): m/z calc’d for (M + NH4)+ [C19H24O + NH4]+: 286.2165, found 286.2163. 

1H NMR (400 MHz, C6D6): δ 7.45-7.42 (m, 2H), 6.99-6.95 (comp m, 3H), 5.78-5.76 (m, 1H), 4.30 (d, J = 

11.4 Hz, 1H), 4.09 (d, J = 5.7 Hz, 1H), 4.00 (d, J = 11.4 Hz, 1H), 2.14-2.04 (m, 3H), 1.97-1.87 (m, 2H), 

1.58-1.43 (m, 4H), 1.19 (d, J = 6.7 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 135.3, 132.1, 128.6, 128.2, 127.9, 125.0, 123.8, 88.6, 86.7, 74.7, 74.0, 

34.0, 26.5, 25.4, 23.0, 22.9, 18.9, 18.5. 

Optical Rotation: [α]D
32 = -145.32 (c = 1.0, CH2Cl2). 
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Alcohol 171. To a solution of ketone 17045 (1.00 g, 3.96 mmol) in 2-propanol (39.6 mL) under argon was 

added Ru[(S,S)-TsDPEN](p-cymene) (23.8 mg, 0.0396 mmol), and the resulting solution was stirred at 

ambient temperature for 48 h. The solvent was then removed by rotary evaporation, and the resulting 

residue was immediately purified by flash chromatography (9:1 hexanes/EtOAc eluent) to afford alcohol 

171 (993 mg, 99% yield).  

Physical State: colorless oil. 

Rf: 0.42 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3356, 2960, 2170, 1464 cm-1. 

HRMS (DART+): m/z calc’d for (M + NH4)+ [C15H30OSi + NH4]+: 272.2404, found 272.2411. 

1H NMR (400 MHz, CDCl3): δ 4.20 (d, J = 5.5 Hz, 1H), 1.89 (dtd, J = 13.5, 6.7, 5.5 Hz, 1H), 1.68 (br s, 

1H), 1.09-1.06 (comp m, 17H), 1.03 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 107.5, 86.4, 85.6, 34.7, 18.8, 18.3, 17.4, 11.3. 

Optical Rotation: [α]D
30 = -10.64 (c = 1.0, CH2Cl2). 

The ee was determined 99% by conversion to the benzoate and HPLC analysis:  

 

To a solution of alcohol 171 (10.0 mg, 0.0393 mmol), triethylamine (11.0 µL, 0.0786 mmol), and DMAP 

(0.48 mg, 0.00393 mmol) in CH2Cl2 (0.393 mL) at 0 °C was added benzoyl chloride (5.0 µL, 0.0432 

mmol). The resulting solution was stirred at ambient temperature for 4.5 h. The solvent was then removed 

in vacuo and the resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent), 

affording benzoate 172 (12.2 mg, 87% yield, Rƒ = 0.65 in 4:1 hexanes/EtOAc eluent) as a colorless oil. 

The ee of benzoate 172 was determined to be 99% by HPLC analysis (Daicel Chiralcel OD-H, 100% 

hexane, 1.3 mL/min, λ = 280 nm, S isomer 4.29 min, R isomer 4.08 min). 
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To a solution of alcohol 171 (150 mg, 0.589 mmol) and cinnamyl bromide (116 mg, 0.589 mmol) in 

DMF (1.96 mL) at 0 °C under argon was added NaH (30.6 mg, 60% dispersion in mineral oil, 0.766 

mmol) in one portion. The mixture was then stirred at 0 °C for 20 min and ambient temperature for 4 h, at 

which time the reaction was quenched by slow addition of H2O (5 mL). The mixture was extracted with 

hexanes (3 x 30 mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 

mL), then brine (10 mL), and dried over MgSO4. The solvent was removed by rotary evaporation to give 

crude ether 173, which was used immediately in the next step. 

To crude alkyne 173 in THF (0.736 mL) at 0 °C was added TBAF (2.65 mL, 1.0 M in THF, 2.65 mmol) 

dropwise over 5 min. The resulting solution was allowed to warm to ambient temperature and stirred for 

15 min, at which time sat. aq. NaHCO3 (5 mL) was added. The mixture was extracted with hexanes (3 x 

20 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO4. The 

solvent was removed by rotary evaporation, and the resulting residue was purified by flash 

chromatography (hexanes → 9:1 hexanes/EtOAc eluent), affording alkyne 116 (122 mg, 97% yield). 

Alkyne 116: 

Physical State: colorless oil. 

Rf: 0.46 (4:1 hexanes/EtOAc, anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.43-7.38 (m, 2H), 7.35-7.30 (m, 2H), 7.26-7.22 (m, 1H), 6.64 (d, J = 

15.9 Hz, 1H), 6.33-6.26 (m, 1H), 4.44 (ddd, J = 12.7, 5.4, 1.6 Hz, 1H), 4.15 (ddd, J = 12.7, 6.8, 1.3 Hz, 

1H), 3.92 (dd, J = 5.8, 2.1 Hz, 1H), 2.44 (d, J = 2.1 Hz, 1H), 1.98 (dq, J = 13.0, 6.5 Hz, 1H), 1.05 (d, J = 

6.7 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 136.9, 132.8, 128.7, 127.8, 126.7, 126.0, 81.9, 74.5, 74.3, 69.6, 33.1, 

18.7, 17.9. 
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To terminal alkyne 116 (30.0 mg, 0.140 mmol) in THF (700 µL) at -78 °C was added n-BuLi (91.0 µL, 

2.3 M in hexanes, 0.210 mmol). The reaction mixture was stirred at -78 °C for 1.5 h, then a solution of 

MeI (34.9 µL, 0.560 mmol) in HMPA (94.7 µL) was added. The mixture was allowed to warm to ambient 

temperature and stirred for 20 h, at which time it was quenched with H2O (1 mL). The aqueous layer was 

extracted with hexanes (3 x 5 mL). The combined organic layers were washed with 10% aq. LiCl (2 mL), 

then brine (3 mL), and dried over MgSO4. The solvent was removed by rotary evaporation and the 

resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent), affording enyne 

112h (12.5 mg, 39% yield). 

Enyne 112h: 

Physical State: colorless oil. 

Rf: 0.52 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2961, 2922, 1496, 1072 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C16H20O + H]+: 229.1587, found 229.1590. 

1H NMR (400 MHz, CDCl3): δ 7.41-7.38 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.21 (m, 1H), 6.63 (d, J = 

15.9 Hz, 1H), 6.30 (ddd, J = 15.9, 6.6, 5.5 Hz, 1H), 4.41 (ddd, J = 12.7, 5.4, 1.6 Hz, 1H), 4.12 (ddd, J = 

12.7, 6.7, 1.3 Hz, 1H), 3.87 (dq, J = 5.8, 2.0 Hz, 1H), 1.97-1.90 (m, 1H), 1.89 (d, J = 2.1 Hz, 3H), 1.02 (d, 

J = 6.7 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 137.0, 132.4, 128.6, 127.7, 126.6, 126.4, 82.4, 74.8, 69.4, 33.3, 18.8, 

18.0, 3.8. 

Optical Rotation: [α]D
26 = -63.51 (c = 2.0, CH2Cl2). 
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To a 2-dram vial under argon containing CuI (3.1 mg, 0.0163 mmol) and (Ph3P)2PdCl2 (5.7 mg, 0.00812 

mmol) was added diisopropylamine (0.326 mL) followed by iodoindole 17446 (84.2 mg, 0.212 mmol). 

This resulting mixture was stirred for 5 min, at which time a solution of ether 116 (35.0 mg, 0.162 mmol) 

in THF (0.200 mL) was added via syringe. The reaction mixture was stirred for 3 h then partitioned 

between ether (4 mL) and 1 M aq. HCl (5 mL). The aqueous layer was extracted with Et2O (3 x 10 mL). 

The combined organic layers were washed with sat. aq. NaHCO3 (5 mL), then brine (10 mL), and dried 

over MgSO4. The solvent was removed by rotary evaporation and the resulting residue was purified by 

flash chromatography (9:1 hexanes/Et2O eluent), affording enyne 112i (78.3 mg, 99% yield). 

Enyne 112i: 

Physical State: colorless oil. 

Rf: 0.14 (9:1 hexanes/Et2O, anisaldehyde). 

IR (film): 2962, 2871, 1494, 1376, 1189 cm-1. 

HRMS (DART+): m/z calc’d for (M + H)+ [C30H29NO3S + H]+: 484.1941, found 484.1942. 

1H NMR (400 MHz, CDCl3): δ 7.99-7.96 (m, 1H), 7.80-7.77 (m, 2H), 7.74 (s, 1H), 7.63-7.61 (m, 1H), 

7.42-7.28 (comp m, 5H), 7.25-7.22 (comp m, 4H), 6.68 (d, J = 16.0 Hz, 1H), 6.34 (ddd, J = 15.9, 6.7, 5.5 

Hz, 1H), 4.51 (dd, J = 12.7, 5.5 Hz, 1H), 4.25 (dd, J = 12.7, 6.7 Hz, 1H), 4.19 (d, J = 5.7 Hz, 1H), 2.35 (s, 

3H), 2.13-2.07 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H), 1.10 (d, J = 6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 145.5, 136.9, 135.1, 134.3, 132.8, 131.1, 130.2, 129.1, 128.7, 127.8, 

127.1, 126.7, 126.1, 125.6, 123.9, 120.6, 113.7, 105.0, 91.8, 75.2, 69.8, 33.4, 21.8, 18.9, 18.2. 

Optical Rotation: [α]D
32 = -114.15 (c = 2.0, CHCl3). 
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To terminal alkyne 116 (120 mg, 0.560 mmol) in THF (1.12 mL) at –78 °C was added n-BuLi (0.289 mL, 

2.13 M in hexanes, 0.616 mmol) dropwise over 2 min. The resulting solution was allowed to warm to 0 

°C and stirred at that temperature for 30 min. The solution was then cooled back down to -78 °C, and 

finely ground paraformaldehyde (18.7 mg, 0.616 mmol) was added in one portion. The solution was 

allowed to warm to ambient temperature and stirred for 5 h. The reaction mixture was cooled back to 0 °C 

and TBSCl (127 mg, 0.840 mmol) was added. The resulting mixture was stirred at ambient temperature 

for 1 h and then quenched with sat. aq. NaHCO3 (10 mL). The mixture was extracted with hexanes (3 x 

20 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO4. The 

solvent was removed by rotary evaporation and the resulting residue was purified by flash 

chromatography (15:1 hexanes/EtOAc eluent), affording enyne 112j (135 mg, 67% yield). 

Enyne 112j: 

Physical State: colorless oil. 

Rf: 0.83 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3028, 2959, 2858, 1728, 1495, 1255 cm-1. 

HRMS (DART+): m/z calc’d for (M + NH4)+ [C22H34O2Si + NH4]+: 376.2672, found 376.2672. 

1H NMR (400 MHz, CDCl3): δ 7.40-7.37 (m, 2H), 7.35-7.29 (m, 2H), 7.25-7.21 (m, 1H), 6.63 (d, J = 

15.9 Hz, 1H), 6.28 (ddd, J = 15.9, 6.7, 5.4 Hz, 1H), 4.44-4.39 (comp m, 3H), 4.13 (ddd, J = 12.6, 6.8, 1.3 

Hz, 1H), 3.94 (dt, J = 5.8, 1.6 Hz, 1H), 2.00-1.92 (m, 1H), 1.03 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.8 Hz, 

3H), 0.93-0.92 (m, 9H), 0.14 (s, 6H). 

13C NMR (100 MHz, CDCl3): δ 137.0, 132.7, 128.7, 127.8, 126.6, 126.2, 85.2, 82.8, 74.5, 69.5, 51.9, 

33.3, 26.0, 18.8, 18.5, 18.1, 4.9. 

Optical Rotation: [α]D
33 = -88.30 (c = 1.0, CHCl3). 
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To a solution of alcohol 166 (150 mg, 0.861 mmol) in DMF (2.87 mL) at 0 °C under argon was added 

NaH (41.2 mg, 60% dispersion in mineral oil, 1.03 mmol) in one portion. The mixture was then allowed 

to warm to ambient temperature and stirred for 20 min. Bromide 17547 (186 mg, 0.861 mmol) was added 

and after 1 h, the reaction was quenched by slow addition of H2O (5 mL). The mixture was extracted with 

hexanes (3 x 30 mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 7 

mL), then brine (7 mL), and dried over MgSO4. The solvent was removed by rotary evaporation and the 

resulting residue was purified by flash chromatography (100% hexanes → 9:1 hexanes/EtOAc eluent), 

affording enyne 112k (193 mg, 61% yield). 

Enyne 112k: 

Physical State: colorless oil. 

Rf: 0.83 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2964, 2869, 1659, 1491, 1075 cm-1. 

HRMS (DART+): m/z calc’d for (M + NH4)+ [C21H21BrO + NH4]+: 386.1120, found 386.1097. 

1H NMR (400 MHz, CDCl3): δ 7.48-7.43 (m, 4H), 7.34-7.31 (m, 3H), 7.28-7.25 (m, 2H), 6.62 (d, J = 

16.0 Hz, 1H), 6.34 (ddd, J = 15.9, 6.4, 5.4 Hz, 1H), 4.49 (ddd, J = 12.9, 5.4, 1.6 Hz, 1H), 4.21 (ddd, J = 

12.9, 6.4, 1.4 Hz, 1H), 4.14 (d, J = 5.8 Hz, 1H), 2.14-2.02 (m, 1H), 1.12 (d, J = 6.7 Hz, 3H), 1.09 (d, J = 

6.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 135.9, 131.9, 131.8, 131.2, 128.4, 128.2, 127.2, 123.0, 121.5, 87.3, 86.8, 

75.3, 69.5, 33.5, 18.9, 18.1. 

Optical Rotation: [α]D
32 = -104.68 (c = 1.0, CH2Cl2). 
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To a solution of ynone 10648 (80.0 mg, 0.341 mmol) in 2-propanol (3.41 mL) under argon was added 

Ru[(S,S)-TsDPEN(p-cymene)] (2.1 mg, 0.00341 mmol). The resulting purple solution was stirred at 

ambient temperature for 2 h. The solvent was removed in vacuo and the resulting residue was purified by 

flash chromatography (9:1 hexanes/EtOAc eluent), affording alcohol 107 (79.3 mg, 98% yield). 

Alcohol 107: 

Physical State: colorless oil. 

Rf: 0.38 (4:1 hexanes/EtOAc, anisaldehyde). 

Note: All spectra matched those previously reported in the literature.49 The ee was determined to be 97% 

by HPLC analysis (Daicel Chiralcel OD-H, 10% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 

25.13 min, R isomer 12.59 min). [α]D
26 = +37.45 (c = 0.5, CHCl3) (S) (Lit. [α]D

27 = +28.4 (c = 1.1, CHCl3) 

49% ee (S)). 

 

 

To a solution of alcohol 107 (400 mg, 1.69 mmol) in DMF (5.64 mL) at 0 °C under argon was added NaH 

(87.9 mg, 60% dispersion in mineral oil, 2.20 mmol) in one portion. The mixture was allowed to warm to 

ambient temperature and stirred for 20 min. Cinnamyl bromide (334 mg, 1.69 mmol) was added and after 

1 h, the reaction was quenched by slow addition of H2O (10 mL). The mixture was extracted with hexanes 

(3 x 50 mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 mL), then 

brine (5 mL), and dried over MgSO4. The solvent was removed by rotary evaporation and the resulting 

residue was purified by flash chromatography (9:1 hexanes/EtOAc eluent), affording enyne 108 (498 mg, 

84% yield). 
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Enyne 108: 

Physical State: yellow oil. 

Rf: 0.77 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3060, 2858, 1491, 1453, 1336 cm-1. 

HRMS (APCI+): m/z calc’d for (M + H)+ [C26H24O + H]+: 353.1900, found 353.1903. 

1H NMR (400 MHz, C6D6): δ 7.48-7.45 (m, 2H), 7.25-7.23 (m, 2H), 7.15-6.98 (comp m, 11H), 6.61 (d, J 

= 16.0 Hz, 1H), 6.32-6.24 (m, 1H), 4.50 (ddd, J = 12.7, 5.4, 1.6 Hz, 1H), 4.36-4.31 (m, 1H), 4.10 (ddd, J 

= 12.6, 6.5, 1.4 Hz, 1H), 2.91 (t, J = 7.7 Hz, 2H), 2.34-2.16 (m, 2H). 

13C NMR (100 MHz, C6D6): δ 141.9, 137.4, 132.6, 132.1, 129.0, 128.8, 128.7, 126.9, 126.6, 126.3, 123.5, 

89.3, 86.6, 69.7, 68.8, 38.1, 32.0. 

Optical Rotation: [α]D
26 = -43.62 (c = 1.0, CH2Cl2). 

 

 

Based on the general procedure, alcohol 176 was produced in 88% yield. All spectra matched those 

previously reported in the literature.50 The ee was determined to be 97% by HPLC analysis (Daicel 

Chiralcel OD-H, 20% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 8.89 min, R isomer 5.03 

min). [α]D
31 = -33.40 (c = 1.00, CHCl3) (S) (Lit.51 [α]D

20 = -33.0 (c = 0.94, CHCl3) >99% ee (S)). 

 

 

To a solution of alcohol 176 (70.0 mg, 0.479 mmol) in DMF (0.798 mL) and THF (0.798 mL) at 0 °C 

under argon was added NaH (21.1 mg, 60% dispersion in mineral oil, 0.527 mmol) in one portion. The 

mixture was allowed to warm to ambient temperature and stirred for 25 min. Crotyl bromide (49.4 µL, 
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0.479 mmol) was added and the resulting mixture was stirred for 2.5 h, at which point the reaction was 

quenched by slow addition of H2O (4 mL). The volatile solvents were removed by rotary evaporation and 

the remaining mixture was extracted with Et2O (3 x 20 mL). The combined organic layers were washed 

sequentially with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was 

removed by rotary evaporation and the resulting residue was purified by flash chromatography (98:2 

hexanes/Et2O eluent), affording enyne 110a (92.1 mg, 96% yield). 

Enyne 110a: 

Physical State: colorless oil. 

Rf: 0.52 (9:1 hexanes/Et2O, anisaldehyde). 

IR (film): 2986, 1490, 1443, 1099 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C14H16O + H]+: 201.1274, found 201.1266. 

1H NMR (400 MHz, CDCl3): δ 7.46-7.41 (m, 2H), 7.33-7.28 (comp m, 3H), 5.84-5.73 (m, 1H), 5.69-5.57 

(m, 1H), 4.42 (q, J = 6.6 Hz, 1H), 4.27-4.22 (m, 1H), 3.99-3.94 (m, 1H), 1.72 (d, J = 1.2 Hz, 3H), 1.53 (d, 

J = 6.6 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 131.9, 130.3, 128.4, 127.4, 123.0, 89.4, 85.0, 69.6, 64.9, 22.4, 18.0. 

Optical Rotation: [α]D
31 = -75.75 (c = 1.0, CH2Cl2). 

 

Based on the general procedure, alcohol 177 was produced in 37% yield. All spectra matched those 

previously reported in the literature.52 The ee was determined to be 96% by HPLC analysis (Daicel 

Chiralcel OD-H, 5% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 14.23 min, R isomer 6.98 

min). [α]D
31 = -9.79 (c = 1.0, CHCl3) (S) (Lit.53 [α]D

23 = +9.5 (c = 3.31, CHCl3) 94% ee (R)). 
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To a solution of alcohol 177 (90.4 mg, 0.480 mmol) in DMF (1.60 mL) at 0 °C under argon was added 

NaH (21.1 mg, 60% dispersion in mineral oil, 0.528 mmol) in one portion. The mixture was then allowed 

to warm to ambient temperature and stirred for 30 min. Crotyl bromide (49.4 µL, 0.480 mmol) was added 

and after 2 h, the reaction was quenched by slow addition of H2O (3 mL). The mixture was extracted with 

hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 

mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary evaporation and the 

resulting residue was purified by flash chromatography (100% hexanes → 15:1 hexanes/EtOAc eluent), 

affording enyne 110b (107 mg, 92% yield). 

Enyne 110b: 

Physical State: yellow oil. 

Rf: 0.34 (15:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2957, 2869, 1490, 1467 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1744, found 243.1730. 

1H NMR (400 MHz, C6D6): δ 7.48-7.42 (m, 2H), 7.01-6.94 (comp m, 3H), 5.71-5.63 (m, 2H), 4.45-4.39 

(comp m, 2H), 4.05-4.01 (m, 1H), 2.09 (app. septet, J = 6.8 Hz, 1H), 1.95 (ddd, J = 13.6, 7.7, 6.6 Hz, 1H), 

1.77 (ddd, J = 13.5, 7.3, 6.2 Hz, 1H), 1.53 (d, J = 4.7 Hz, 3H), 0.92 (d, J = 1.8 Hz, 3H), 0.90 (d, J = 1.8 

Hz, 3H). 

13C NMR (100 MHz, C6D6): δ 132.1, 128.9, 128.6, 128.4, 89.9, 86.0, 69.7, 45.4, 25.3, 23.0, 22.6, 17.8. 

Optical Rotation: [α]D
31 = -69.36 (c = 1.0, CH2Cl2). 

 

 (Note: This alcohol 107, at 96% ee, was generated in a separate transfer hydrogenation from the 

aforementioned one at 97% ee.) To a solution of alcohol 107 (35.0 mg, 0.148 mmol) in DMF (0.350 mL) 

and THF (0.350 mL) at 0 °C under argon was added NaH (6.5 mg, 60% dispersion in mineral oil, 0.163 
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mmol) in one portion. The mixture was allowed to warm to ambient temperature and stirred for 20 min. 

Crotyl bromide (15.3 µL, 0.148 mmol) was added and after 4 h, the reaction was quenched by slow 

addition of H2O (4 mL). The volatile solvents were then removed by rotary evaporation and the remaining 

mixture was extracted with Et2O (3 x 20 mL). The combined organic layers were washed sequentially 

with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by 

rotary evaporation and the resulting residue was purified by flash chromatography (9:1 hexanes/EtOAc 

eluent), affording enyne 110c (33.9 mg, 79% yield). 

Enyne 110c: 

Physical State: yellow oil. 

Rf: 0.73 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2930, 2857, 1491, 1454, 1335 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C21H22O + H]+: 291.1744, found 291.1741. 

1H NMR (400 MHz, CDCl3): δ 7.45 (m, J = 1.6 Hz, 2H), 7.34-7.18 (comp m, 8H), 5.86-5.73 (m, 1H), 

5.72-5.56 (m, 1H), 4.31-4.24 (comp m, 2H), 3.96 (dd, J = 11.5, 6.8 Hz, 1H), 2.86 (t, J = 7.8 Hz, 2H), 

2.23-2.04 (m, 2H), 1.73 (d, J = 6.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 141.7, 131.89, 131.87, 130.2, 128.7, 128.5, 128.43, 128.41, 127.4, 126.0, 

123.0, 88.4, 86.1, 69.7, 68.3, 37.50, 37.45, 31.73, 31.70, 18.0. 

Optical Rotation: [α]D
31 = -17.23 (c = 1.0, CH2Cl2). 

 

Based on the general procedure, alcohol 178 was produced in 73% yield. All spectra matched those 

previously reported in the literature.54 The ee was determined to be 98% by HPLC analysis (Daicel 

Chiralcel OD-H, 15% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 12.18 min, R isomer 6.86 

min). [α]D
32 = +8.72 (c = 1.0, CHCl3) (S) (Lit. [α]D

25 = +11.7 (c = 0.63, CHCl3) 79% ee (S)). 
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To a solution of alcohol 178 (90.1 mg, 0.420 mmol) in DMF (1.40 mL) at 0 °C under argon was added 

NaH (18.5 mg, 60% dispersion in mineral oil, 0.462 mmol) in one portion. The mixture was then allowed 

to warm to ambient temperature and stirred for 20 min. Crotyl bromide (43.3 µL, 0.420 mmol) was added 

and after 3 h, the reaction was quenched by slow addition of H2O (3 mL). The mixture was extracted with 

hexanes (3 x 20 mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 

mL), then brine (5 mL), and dried over MgSO4. The solvent was removed by rotary evaporation and the 

resulting residue was purified by flash chromatography (hexanes → 9:1 hexanes/EtOAc eluent), affording 

enyne 110d (105 mg, 93% yield). 

Enyne 110d: 

Physical State: yellow oil. 

Rf: 0.77 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2927, 2854, 1490, 1330 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C19H24O + H]+: 269.1900, found 269.1903. 

1H NMR (400 MHz, CDCl3): δ 7.47-7.42 (m, 2H), 7.33-7.29 (comp m, 3H), 5.82-5.71 (m, 1H), 5.65-5.57 

(m, 1H), 4.28-4.22 (m, 1H), 4.06 (d, J = 6.2 Hz, 1H), 3.98-3.93 (m, 1H), 1.95-1.88 (m, 2H), 1.78-1.64 

(comp m, 8H), 1.33-1.09 (comp m, 7H). 

13C NMR (100 MHz, CDCl3): δ 131.9, 129.9, 128.4, 127.6, 123.2, 87.9, 74.1, 69.8, 43.0, 29.4, 28.7, 26.6, 

26.2, 26.1, 18.0. 

Optical Rotation: [α]D
31 = -25.53 (c = 0.5, CH2Cl2). 
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Based on the general procedure, alcohol 179 was produced in 76% yield. All spectra matched those 

previously reported in the literature.55 The ee was determined to be 96% by HPLC analysis (Daicel 

Chiralcel OD-H, 3% 2-propanol in hexane, 1 mL/min, λ = 254 nm, S isomer 8.17 min, R isomer 6.60 

min). [α]D
32 = +1.06 (c = 1.0, CHCl3) (S) (Lit.56 [α]D

25 = +2.4 (c = 4.0, CHCl3) 94% ee (S)). 

 

 

To a solution of alcohol 179 (90.0 mg, 0.478 mmol) in DMF (1.59 mL) at 0 °C under argon was added 

NaH (21.0 mg, 60% dispersion in mineral oil, 0.526 mmol) in one portion. The mixture was then allowed 

to warm to ambient temperature and stirred for 20 min. Crotyl bromide (49.3 µL, 0.478 mmol) was added 

and after 4.5 h, H2O (3 mL) was added dropwise. The mixture was extracted with hexanes (3 x 20 mL). 

The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 mL), then brine (5 

mL), and dried over MgSO4. The solvent was removed in vacuo and the resulting residue was purified by 

flash chromatography (100% hexanes → 15:1 H/Et2O eluent), affording enyne 110f (92.7 mg, 80% 

yield). 

Enyne 110f: 

Physical State: yellow oil. 

Rf: 0.62 (9:1 hexanes/Et2O, anisaldehyde). 

IR (film): 2969, 2871, 1724, 1489, 1284 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1744, found 243.1736. 
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1H NMR (400 MHz, CDCl3): δ 7.47-7.42 (m, 2H), 7.32-7.28 (comp m, 3H), 5.83-5.72 (m, 1H), 5.64-5.55 

(m, 1H), 4.31-4.24 (m, 1H), 3.99-3.93 (m, 1H), 3.87 (s, 1H), 1.74-1.70 (m, 3H), 1.07-1.04 (m, 9H). 

13C NMR (100 MHz, CDCl3): δ 131.9, 129.4, 128.4, 128.2, 127.8, 123.3, 87.9, 86.3, 78.0, 70.3, 35.9, 

26.1, 18.0. 

Optical Rotation: [α]D
32 = -37.23 (c = 1.0, CH2Cl2). 

 

 

To a solution of alcohol 166-rac (150 mg, 0.870 mmol) in DMF (3.00 mL) at 0 °C under argon was 

added NaH (42.0 mg, 60% dispersion in mineral oil, 1.04 mmol) in one portion. The mixture was then 

allowed to warm to ambient temperature and stirred for 20 min. Bromide 180 (130 mg, 0.870 mmol) was 

added and after 2 h, H2O (3 mL) was added dropwise. The mixture was extracted with hexanes (3 x 20 

mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 mL), then brine 

(5 mL), and dried over MgSO4. The solvent was removed in vacuo and the resulting residue was purified 

by flash chromatography (100% hexanes → 15:1 H/EtOAc eluent), affording enyne 114 (148 mg, 70% 

yield). 

Enyne 114: 

Physical State: colorless oil. 

Rf: 0.72 (4:1 hexanes/EtOAc, anisaldehyde). 

HRMS (ESI+): m/z calc’d for (M + H)+ [C17H22O + H]+: 243.1743, found 243.1736. 

1H NMR (300 MHz, CDCl3): δ 7.48-7.45 (m, 2H), 7.35-7.29 (comp m, 3H), 5.69-5.51 (m, 2H), 4.36-4.30 

(m, 1H), 4.19 (dd, J = 12.0, 7.1 Hz, 1H), 4.09 (d, J = 5.9 Hz, 1H), 2.22-2.11 (m, 2H), 2.02 (dt, J = 12.7, 

6.7 Hz, 1H), 1.11-0.97 (comp m, 6H). 
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                  DMF, 0 to 23 °C
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To a solution of alcohol 166-rac (500 mg, 2.87 mmol) in DMF (9.50 mL) at 0 °C under argon, was added 

NaH (126 mg, 60% dispersion in mineral oil, 3.16 mmol) in one portion. The mixture was then allowed to 

warm to ambient temperature and stirred for 20 min. Allyl bromide (248 µL, 2.87 mmol) was added and 

after 2 h, H2O (8 mL) was added dropwise. The mixture was extracted hexanes (3 x 30 mL). The 

combined organic layers were washed sequentially with aq. LiCl (10% w/v, 10 mL), then brine (10 mL), 

and dried over MgSO4. The solvent was removed in vacuo and the resulting residue was purified by flash 

chromatography (hexanes → 15:1 hexanes/EtOAc eluent), affording enyne 117 (508 mg, 83% yield).  

Enyne 117: 

Physical State: colorless oil. 

Rf: 0.62 (9:1 hexanes/EtOAc, KMnO4). 

 

 

To a solution of alcohol 166-rac (80.1 mg, 0.459 mmol) in DMF (1.53 mL) at 0 °C under argon, was 

added NaH (22.0 mg, 60% dispersion in mineral oil, 0.551 mmol) in one portion. The mixture was then 

allowed to warm to ambient temperature and stirred for 20 min. Bromide 18157 (74.8 mg, 0.459 mmol) 

was added and after 3 h, H2O (5 mL) was added dropwise. The mixture was extracted hexanes (3 x 20 

mL). The combined organic layers were washed with aq. LiCl (10% w/v, 5 mL), then brine (5 mL), and 

dried over MgSO4. The solvent was removed in vacuo and the resulting residue was purified by flash 

chromatography (hexanes → 15:1 hexanes/Et2O eluent), affording enyne 115 (77.0 mg, 65% yield). 

Enyne 115: 
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Physical State: colorless oil. 

Rf: 0.63 (9:1 hexanes/Et2O, anisaldehyde). 

IR (film): 2961, 2926, 2872, 1490, 1065 cm-1. 

HRMS (APCI+): m/z calc’d for (M + H)+ [C18H24O + H]+: 257.1905, found 257.1898. 

1H NMR (400 MHz, CDCl3): δ 7.47-7.42 (m, 2H), 7.32-7.29 (comp m, 3H), 4.19 (s, 2H), 3.95 (d, J = 6.3 

Hz, 1H), 2.01 (dq, J = 13.2, 6.6 Hz, 1H), 1.80 (d, J = 1.2 Hz, 3H), 1.74 (t, J = 1.1 Hz, 3H), 1.71 (s, 3H), 

1.08 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 131.8, 130.6, 128.4, 128.2, 124.9, 123.4, 88.3, 86.0, 74.3, 69.6, 33.5, 

21.1, 20.4, 19.0, 18.5, 17.0. 

 

 

To a solution of propargylic alcohol 176 (201 mg, 1.37 mmol), TsNHBoc (410 mg, 1.51 mmol), and 

triphenylphosphine (395 mg, 1.51 mmol) in THF (9.13 mL) at 0 °C was added diisopropyl 

azodicarboxylate (299 µL, 1.51 mmol) as a solution in THF (ca. 1.0 mL) dropwise over 30 min. The 

resulting mixture was stirred at 0 °C for 6 h, at which time the ice water bath was removed. After stirring 

for an additional 13 h at ambient temperature, the volatile materials were removed. The resulting residue 

was purified by flash chromatography (4:1 hexanes/EtOAc eluent), affording the Boc-protected amine 

intermediate (503 mg, 92% yield). Rf: 0.23 (4:1 hexanes/EtOAc, anisaldehyde/UV). 

To the Boc-protected amine product (498 mg, 1.25 mmol) in CH2Cl2 (12.5 mL) at 0 °C was added 

trifluoroacetic acid (430 µL, 5.62 mmol), dropwise over 5 min. The ice water bath was removed and the 

resulting solution was stirred at ambient temperature for 4 h, at which time the volatile materials were 

removed. The resulting residue was azeotroped with toluene (4 x 10 mL) and immediately used crude. Rf: 

0.57 (2.5% MeOH in chloroform, anisaldehyde/UV). 
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To crude amine in DMF (4.16 mL, 0.30 M) at 0 °C under argon was added NaH (59.9 mg, 60% 

dispersion in mineral oil, 1.50 mmol) in one portion. The mixture was then allowed to warm to ambient 

temperature and stirred for 25 min. Cinnammyl bromide (246 mg, 1.25 mmol) was added and after 3.5 h, 

H2O (10 mL) was added dropwise. The mixture was extracted EtOAc (3 x 20 mL). The combined organic 

layers were washed with brine (5 mL), and dried over MgSO4. The solvent was removed in vacuo and the 

resulting residue was purified by flash chromatography (4:1 → 2:1 hexanes/Et2O eluent), affording enyne 

120 (438 mg, 84% yield over the two steps). 

Enyne 120: 

Physical State: colorless oil. 

Rf: 0.61 (1:1 hexanes/Et2O, anisaldehyde). 

 

 

To a solution of 3-hexyne (600 µL, 5.27 mmol) and dimethylchlorosilane (586 µL, 5.27 mmol) in CH2Cl2 

(5.27 mL, 1.0 M) under argon was added Pt(DVDS) (53.0 µL, 2% w/w in xylenes, 0.530 mmol). The 

solution was stirred at ambient temperature for 2 h, at which time the solvent was removed. This crude 

residue was placed under argon and THF (5.27 mL) was added. 

To a solution of alcohol 166-rac (1.01 g, 5.80 mmol) in DMF (19.3 mL, 0.30 M) at 0 °C under argon was 

added NaH (253 mg, 60% dispersion in mineral oil, 6.32 mmol) in one portion. The mixture was then 

allowed to warm to ambient temperature and stirred for 45 min. The crude vinyl silane solution was then 

added via canula to this solution, and after 8 h, H2O (25 mL) was added dropwise. The mixture was 

extracted with pentane (3 x 40 mL). The combined organic layers were washed sequentially with aq. LiCl 

(10% w/v, 5 mL), then brine (5 mL), and dried over MgSO4. The solvent was removed in vacuo and the 
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resulting residue was purified by flash chromatography (hexanes → 15:1 hexanes/Et2O eluent), affording 

enyne 153 (675 mg, 41% yield).  

Enyne 153: 

Physical State: colorless oil. 

Rf: 0.69 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2963, 2873, 1613, 1251, 1069 cm-1. 

HRMS (APCI+): m/z calc’d for (M + H)+ [C20H30OSi + H]+: 315.2139, found 315.2138. 

1H NMR (400 MHz, C6D6): δ 7.15-7.13 (m, 2H), 7.04-7.00 (comp m, 3H), 5.62 (t, J = 6.8 Hz, 1H), 4.05 

(d, J = 5.8 Hz, 1H), 1.98-1.83 (comp m, 4H), 1.64 (tq, J = 6.6, 6.4 Hz, 1H), 0.78-0.69 (comp m, 13H), 

0.00 (d, J = 2.2 Hz, 6H). 

13C NMR (100 MHz, C6D6): δ 195.0, 191.2, 182.6, 179.2, 179.0, 174.4, 141.1, 135.8, 119.7, 86.4, 73.1, 

72.5, 69.5, 68.9, 65.9, 65.1, 49.9, 49.6. 

 

 

To a solution of alcohol 166 (90.1 mg, 0.574 mmol) in DMF (1.72 mL) at 0 °C under argon was added 

NaH (24.8 mg, 60% dispersion in mineral oil, 0.620 mmol) in one portion. The mixture was then allowed 

to warm to ambient temperature and stirred for 20 min. Sorbyl bromide 18258 (91.6 mg, 0.569 mmol) was 

added and after 2 h, H2O (5 mL) was added dropwise. The mixture was extracted with hexanes (3 x 20 

mL). The combined organic layers were washed sequentially with aq. LiCl (10% w/v, 5 mL), then brine 

(5 mL), and dried over MgSO4. The solvent was removed in vacuo and the resulting residue was purified 

by flash chromatography (hexanes → 9:1 hexanes/EtOAc eluent), affording dienyne 158 (106 mg, 81% 

yield). 

Dienyne 158: 

Ph

O
Me

Me
158

98% ee

Me

                  NaH

182

                  DMF, 0 to 23 °C

                    61% yield
Ph

OH
Me

Me
166

98% ee

Br

Me



 96 

Physical State: colorless oil. 

Rf: 0.75 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2962, 2872, 1662, 1490, 1384, 1098 cm-1. 

HRMS (ESI+): m/z calc’d for (M + H)+ [C18H22O + H]+: 255.1744, found 255.1742. 

1H NMR (400 MHz, CDCl3): δ 7.48-7.43 (m, 2H), 7.33-7.29 (comp m, 3H), 6.27 (dd, J = 15.1, 10.5 Hz, 

1H), 6.08 (ddd, J = 15.1, 10.5, 1.5 Hz, 1H), 5.75-5.63 (comp m, 2H), 4.34 (dd, J = 12.5, 5.6 Hz, 1H), 4.08 

(d, J = 5.6 Hz, 1H), 4.04 (d, J = 6.6 Hz, 1H), 2.02 (qt, J = 6.6, 6.4 Hz, 1H), 1.76 (dd, J = 6.7, 0.6 Hz, 1H), 

1.06 (app. dd, J = 11.7, 6.7 Hz, 1H). 

13C NMR (100 MHz, CDCl3): δ 194.9, 133.6, 131.9, 131.0, 130.1, 128.4, 128.3, 126.8, 123.2, 87.5, 86.5, 

74.7, 69.4, 33.4, 18.9, 18.3, 18.1. 

Optical Rotation: [α]D
31 = -140.64 (c = 1.0, CHCl3). 
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CHAPTER FOUR 

Alkaloids Isolated From the Genus Gelsemium 

 

 

 

Gelsemium sempervirens1 

 

 

4.1 Introduction 

4.1.1 Overview 

 The purpose of this chapter is to provide a synopsis of the many alkaloids produced by plants in the 

genus Gelsemium. A number of aspects regarding these natural products are discussed. Emphasis is 

placed on the structural classification system, biosynthesis, and biological properties of these molecules. 

Additionally, synthetic approaches to these natural products are highlighted.  

 

4.1.2 The Genus Gelsemium 

 Gelsemium is a genus of flowering plants belonging the family Gelsemiaceae. 2  Gelsemium 

sempervirens, Gelsemium elegans, and Gelsemium rankinii are the three species that comprise the genus. 

Gelsemium sempervirens and G. rankinii are native to southeastern United States, while G. elegans is 
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found in Southern Asian and Oceania countries. All three of the flowering shrubs are poisonous, a 

consequence of the large number of cytotoxic alkaloids found in the plants. Though the toxic effects of 

these plants are well documented, they have been used in traditional Chinese medicine for the treatment 

of numerous ailments; strangely enough, these medicinal properties are also attributed to these alkaloids. 

Herein, we describe much of the phytochemistry concerning the alkaloids isolated from the genus 

Gelsemium. Additionally, studies related to the synthesis of some of the natural products are highlighted. 

 

4.2 The Six Structural Types of Alkaloids Isolated From the Genus Gelsemium 

 The number of alkaloids isolated and characterized from Gelsemium totals more than 120 distinct 

natural products.3 These compounds have been largely classified into six types based on structural 

characteristics: Yohimbane, Sarpagine, Koumine, Gelsemine, Gelsedine, and Humantenine (Figure 

4.2.1).4 The numbering system is fully shown on gelsevirine (186). 

 

Figure 4.2.1. The Six Gelsemium Alkaloid Structural Types. 
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4.2.1 Alkaloids of the Yohimbane Type 

 The Yohimbane type comprises the fewest natural products; thus far, only three have been isolated, 

all from G. sempervirens. This structural type is the least complex of the alkaloids within this family and 

includes sempervirine (183),5 sempervilam (189),6 and ourouparine (190, Figure 4.2.2).7 The Yohimbane 

structural features include C17–C18, C2–C3, and C3–N4 bonds. Additionally, the pentacyclic structure is 

unique to this structural class. 

 

Figure 4.2.2. Alkaloids of the Yohimbane Type. 
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Figure 4.2.3. Alkaloids of the Sarpagine Type. 
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4.2.3 Alkaloids of the Koumine Type 

 Alkaloids of the Koumine variety are the most complex of the non-oxindole types. Over 20 Koumine 

type natural products have been isolated to date. Koumine (185),11 21-oxokoumine (194),12 and (19R)-

kouminol (195)13 fall under this classification (Figure 4.2.4). Alkaloids within this type share bonds C2–

C3, N4–C5, N4–C21, and C5–C16. A C7–C20 bond is the most defining characteristic of the Koumine 

type natural products. 

 

Figure 4.2.4. Alkaloids of the Koumine Type. 
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Figure 4.2.5. Alkaloids of the Gelsemine Type. 
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4.2.5 Alkaloids of the Humantenine Type 

 Alkaloids of this type are classified by N4–C21, N4–C5, and C3–C7 bond connections. Lack of the 

C6–C20 bond is what differentiates this type from the Gelsemine type.  The majority of humantenine type 

alkaloids contain spirooxindole structures, as seen in humantenine (188),17 rankinidine (199),18 and 

gelgamine B19  (200, Figure 4.2.6). Only recently were alkaloids with a degraded oxindole motif, such as 

11-methoxygelsemamide (201),20 isolated. 

 

Figure 4.2.6. Alkaloids of the Humantenine Type. 

 

4.2.6 Alkaloids of the Gelsedine Type 
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Figure 4.2.7. Alkaloids of the Gelsedine Type. 
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4.3 Proposed Biosynthesis 

 Little is known about the enzymatic processes responsible for the production of the Gelsemium 

alkaloids. Chemical methods have been used to further support or eliminate hypothetical pathways. These 

studies have resulted in refined, yet unproven biosynthetic pathways. Furthermore, the isolation of 

previously proposed intermediates has provided more evidence to a suggested pathway; conversely, the 

discovery of some alkaloids has completely shifted long held proposals. 

 

4.3.1 Proposed Biogenesis of Sarpagine, Koumine, and Humantenine Type Alkaloids 

 In 1977, Zenk and coworkers disclosed the incorporation of 0.47% of [6-14C]strictosidine (204) into 

gelsemine (196) in G. sempervirens.23 Later, the enzyme that catalyzes the condensation of L-tryptophan 

(205) and secologanin (206) to provide strictosidine (204) was isolated (strictosidine synthase).24 The in 

vivo transformations from strictosidine (204), however, are not well verified and sometimes rely merely 

on chemical corroboration.25 Nonetheless, the proposed pathways offer a thoughtful examination of the 

underlying similarities between these alkaloid types. 

 

Scheme 4.3.1. Studies Concerning Early Biosynthetic Precursors to the Gelsemium Alkaloids. 
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(207) produces koumidine (184). Following various possible redox steps as well as N-methylation, the 

ether linkage (O–C3) in (19Z)-anhydrovobasindiol (191) is made. It is plausible that vobasindiol (208) is 

a biosynthetic intermediate to (19Z)-anhydrovobasindiol (191). Moreover, this natural product (191) is a 

common ancestor and biogenetic branch point to the Koumine, Humantenine, and Gelsemine type 

alkaloids. Oxidation of (19Z)-anhydrovobasindiol (191) at C18 followed by SN2’ addition from C7 into 

C20 provides the Koumine type alkaloids, namely koumine (185). Moreover, oxidation at C7 is purported 

to deliver hypothetical intermediate 210. A pincaol-type rearrangement of this compound (210) then 

could afford known compound N-desmethoxyhumantenine (211), and thus entry into the Humantenine 

natural products.26 

 

Scheme 4.3.2. Proposed Biogenesis of Sarpagine, Koumine, and Humantenine Type Alkaloids. 
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4.3.2 Proposed Biogenesis of Gelsemine Type Alkaloids 

 The biosynthetic steps to produce the Gelsemine natural products are highly speculative but are 

believed to originate from (19Z)-anhydrovobasindiol (191). Oxidation of (19Z)-anhydrovobasindiol (191) 

at C7, followed by elimination, provides putative intermediate 212 (Scheme 4.3.3). A conjugate addition 

forms the key C6–C20 bond illustrated in hypothetical compound 213.27 The Gelsemine type alkaloids, 

such as gelsemine (196), are purported to arise via a similar oxidation/pinacol-type rearrangement process 

as described above. This generates the oxindole functionality and the observed stereochemistry at C7 as 

well as cleavage of the C2–C3 bond. 

 

Scheme 4.3.3. Proposed Biosynthetic Pathway to Gelsemine Type Alkaloids from (19Z)-

Anhydrovobasindiol (191). 
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This natural product (214) is purported to be a precursor to major alkaloids gelsenicine (187) and 

gelsedine (202). While there is one synthetic study that reinforces this hypothesis,30 the proposed pathway 

is still largely based on the existence of gelselegine (214). 

 

Scheme 4.3.4. Proposed Biogenesis of Gelsedine Type Alkaloids from Rankinidine (199). 
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4.4.2 Biological Properties of the Gelsemium Alkaloids 

 There are reports regarding the biological activity of specific Gelsemium alkaloids, including that of 

koumine (185), gelsenicine (187), and gelsemine (196, Figure 4.4.1). Koumine (185) has been shown in 

vivo to have positive effects of psoriasis, a skin disease, in mouse models.33 Koumine (185) and 

gelsenicine (187) display antitumor activity; these natural products have cytotoxic effects on HepG2 cells, 

inhibit TE-11 cell proliferation, and inhibit MGC80-cell proliferation.34 Koumine (185), gelsenicine 

(187), and gelsemine (196) have also displayed measurable analgesic effects in vivo.35  

 

Figure 4.4.1. Examples of Gelsemium Alkaloids that Exhibit Specific Biological Properties. 
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Figure 4.4.2. Kitajima and Coworkers’ Observation of Cytotoxicity for Gelsedine Type Alkaloids. 
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oxidation of indole 221 with OsO4 was attempted. This reaction in fact affords the desired oxindole (222) 

in 78% yield from gardnerine (220). The authors propose that initial dihydroxylation provides diol 223, 

and after ionization to carbocation 224, a pinacol rearrangement occurs. Inversion of the C19 

stereochemistry of diol 222, as well as acetonide formation to provide compound 225, occurs in three 

steps. The authors found that this stereochemistry is essential to provide the correct olefin geometry in a 

later elimination step. In six additional steps, N-methoxyoxindole 226 is generated. Orthoformate 

construction, elimination, and subsequent amine deprotection with zinc in acetic acid provides 

humantenirine (219) with the correct Z olefin geometry. Conversion to Humantenine type alkaloid 11-

methoxygelsemamide (201) is accomplished by treatment of humantenirine (219) with sodium 

methoxide. 

 

Scheme 4.5.1. Sakai and Coworkers’ Semisynthesis of Humantenirine (219) and 11-

Methoxygelsemamide (201). 
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4.5.2 Synthetic Approaches to the Gelsemine Type Alkaloids 

 Gelsemine type alkaloids, in particular gelsemine (196), have attracted synthetic chemists’ attention 

for decades. A staggering number of approaches toward, formal syntheses, and total syntheses have been 

disclosed to date.40 Synthetic challenges commonly attributed to gelsemine (196) are the stereoselective 

construction of the quaternary C7 spirocenter and the facile synthesis of the fused ring systems. While 

these are a number of published syntheses, three successful approaches to gelsemine (196), highlighting 

various approaches to controlling the stereochemistry at C7, are described below. 

 In 1996, Fukuyama and coworkers completed the total synthesis of gelsemine (196, Scheme 4.5.2).41 

Key to the researchers success was a highly selective [3,3]-sigmatropic rearrangement. Synthesis of 

divinylcyclopropane 229 occurs in 10 steps. Heat then effects the conversion of divinylcyclopropane 229 

to bicycle 230 in 98% yield: this process provides the stereoselective formation of the C7 spirocenter. 

Thirteen additional steps are required to accomplish the total synthesis of gelsemine (196).42 

 

Scheme 4.5.2. A Racemic Synthesis of Gelsemine (196) by Fukuyama and Coworkers. 
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Scheme 4.5.3. A Racemic Synthesis of Gelsemine (196) by Overman and Coworkers. 
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Scheme 4.5.4. The Asymmetric Synthesis of Gelsemine (196) by Qin and Coworkers. 
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mediated oxidative cleavage in good yield. Finally, hydrogenation of gelsenicine (187) affords gelsedine 

(202) in quantitative yield. 
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Scheme 4.5.5. Sakai and Coworkers’ Semisynthesis of Gelsedine Type Alkaloids. 

 

 In 1979, Baldwin and Doll reported their approach to the core of gelsedine (Scheme 4.5.6).47 In five 

steps, cyclic anhydride 246 is converted to cyclohexane 247. Treatment of this diol with acetic anhydride 

at elevated temperatures furnishes the desired bicyclic framework (compound 248) in 66% yield, and 

after five steps the ether-bridged ketone 249 is obtained. An additional six steps are necessary to convert 

acid 249 to acyl amine 250. For their key sequence, amine 250 is converted to chloroamine 251 in good 

yield by oxidation with tert-butyl hypochlorite. Photo-induced radical cyclization affords the tricyclic 

core of the natural product, in the form of compound 252, in 43% yield. This approach, while noteworthy 

for its time, is fairly lengthy. Additionally, one of the most challenging aspects to these molecules, 

stereoselective installation of the oxindole functionality, is unexplored.48 
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Scheme 4.5.6. Balwdin and Doll’s Synthetic Approach to Gelsedine Type Alkaloids. 

 

 Eleven years after Baldwin and Doll’s approach, Kende and coworkers disclosed their synthesis of 

(±)-7-epi-20-desethylgelsedine (253, Scheme 4.5.7).49 Synthesis of aldehyde 255 is complete in seven 

steps from carbamate 254. Aldol condensation of aldehyde 255 and boron enolate 256 provides alkene 

257 in 42% yield. Reduction of the alkene followed by selective lactone reduction with Li(s-Bu)3BH 

affords key step precursor 258 in moderate yield. The key step, an acid-mediated enol addition, provides 

ring-closed product 259. Unfortunately, the stereochemistry at C7 did not match the stereochemistry 

found in the natural products. The authors propose kinetic closure of oxocarbenium 260-I vs. 

oxocarbenium 260-II (i.e., the ring does not reopen and close). After amine deprotection, (±)-7-epi-20-

desethylgelsedine (253) is obtained.  
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Scheme 4.5.7. The Synthesis of (±)-7-Epi-20-Desethylgelsedine (253) by Kende and Coworkers. 

 

 In 1999, Hiemstra and coworkers described the first total synthesis of a Gelsedine type alkaloid, (+)-

gelsedine (202, Scheme 4.5.8).50 First, (S)-maleic acid (261) is converted into allene 262 in six steps. 

Treatment of allene 262 with sodium iodide and formic acid provides vinyl iodide 263 in 42% yield. The 

authors propose the reaction occurs via iodide-mediated cyclization of the allene onto the acid-generated 

iminium (264). Vinyl iodide 263 is then converted into aryl bromide 265 in four steps. A Pd-catalyzed 

Heck cyclization is utilized to effect the formation of N-methyloxindole 266 in 90% yield as a single 

diastereomer. A chemoselective hydroboration/oxidation of the exocyclic olefin of diene 266 affords 

primary alcohol 267 in 79% yield. Oxymercuration of alkene 267 followed by reduction of the alkyl 

mercury compound provides ether 268 in 70% yield over two steps. Following a number of redox steps 

and functional group manipulations, (+)-gelsedine (202) is accessed. 
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Scheme 4.5.8. The Synthesis of (+)-Gelsedine (202) by Hiemstra and Coworkers. 

 

 Recently, there has been increased interest in the synthesis of Gelsedine type alkaloids. Fukuyama 

and coworkers described the synthesis of gelsemoxonine (162) in 2011 (Scheme 4.5.9). 51  In this 

synthesis, cyclopropane 270 is generated in eight steps and 99% ee from furfuryl alcohol (269). Boron-

mediated aldol addition of N-methoxyoxindole (271) into aldehyde 270 and subsequent elimination 

provides vinylcyclopropane 272 in 88% yield over the two steps. Conversion of ketone 272 into silyl enol 

ether 273 is completed with trimethylsilyl chloride and lithium hexamethyldisilazide. Heating 

divinylcyclopropane 273 in toluene effects a thermal [3,3]-sigmatropic rearrangement, and ketone 274 is 

isolated after desilylation with tetrabutylammonium fluoride. It is noteworthy that the [3,3]-rearrangement 

is completely stereospecific; there is no other diastereomer formed in the reaction. In fifteen additional 

steps, the researchers complete the first synthesis of gelsemoxonine (162). 
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Scheme 4.5.9. The Asymmetric Total Synthesis of Gelsemoxonine (162) by Fukuyama and Coworkers. 

 

 Carreira and coworkers disclosed the synthesis of (±)-gelsemoxonine (162) in 2013 (Scheme 

4.5.10).52 In four steps, starting material 275 is converted to isoxazolidine 276. A ring contraction 

mediated by trifluoroacetic acid in acetonitrile provides β-lactam 277 in 40-45% yield;53 this approach 

provides efficient access to the left portion of the molecule. After a number of functional group 

manipulations to afford aryl bromide 278, reductive Heck cyclization gives hydroxyoxindole 279 in good 

yield as a single diastereomer. Subsequent methylation of N-hydroxyoxindole 279 with iodomethane 

followed by monodeprotection delivers homopropargylic alcohol 280 in 80% yield over two steps. A Ru-

catalyzed regioselective hydrosilylation then affords vinylsilane 281. Following Tamao-Fleming 

oxidation and removal of the remaining Boc protecting group, the total synthesis of gelsemoxonine (162) 

is complete. 
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Scheme 4.5.10. The Total Synthesis of Gelsemoxonine (162) by Carreira and Coworkers. 

 

4.6 Conclusion 

 Alkaloids isolated from the genus Gelsemium offer both, a rich and interesting past as well as an 

intriguing future. Information concerning natural products within each structural type has been used to 

map out a logical biosynthetic pathway for the family. Additionally, the toxicity of these molecules and 

the potential medicinal applications warrant further studies. The syntheses highlighted herein are but a 

small sample of approaches to these natural products. That said, they offer many insights, including the 

evolution of approaches to these structurally similar molecules, the design of novel and creative 

annulation strategies, and the challenge of controlling the stereochemistry of C7. Perhaps most intriguing 

is the possibility of using the innate similarity of these alkaloids to synthesize a great deal of them with a 

single synthetic strategy. To date, however, this opportunity is yet to be realized. 
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CHAPTER FIVE 

Towards a Unified Synthesis of Gelsemium Alkaloids: The Total Synthesis of (±)-Gelsenicine 

 

5.1 Overview  

 As described in Chapter four, the Gelsemium alkaloids have a rich history. The complex structures 

and potential biological properties of these natural products are intriguing. Consequently, many total 

syntheses, semisyntheses, and approaches have been disclosed for various alkaloids isolated from the 

genus Gelsemium. Herein our use of transition metal-catalyzed alkyne activation to construct a core motif 

found throughout a large number of these natural products is detailed. In particular, we investigate a Pt-

catalyzed cycloisomerization/[3,3]-sigmatropic rearrangement tandem process. Surprising results 

regarding this tandem process provide a deeper understanding of the transformation, and ultimately allow 

us to complete the first total synthesis of (±)-gelsenicine (Scheme 5.1.1). 

 

Scheme 5.1.1. Use of Tandem Cycloisomerization/[3,3]-Sigmatropic Rearrangement in the Total 

Synthesis of Gelsenicine. 

 

5.2 A Unified Synthetic Design of the Gelsemium Alkaloids 

 We envisage that the tandem cycloisomerization/[3,3]-rearrangement chemistry discussed in Section 

3.5.8 may serve as a mode to quickly and efficiently access the core structure found in many of these 

natural products. Before this hypothesis is discussed in detail, however, it is important to recognize the 

common structure shared among many of these alkaloid natural products. 
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5.2.1 Structural Similarities in Alkaloids of the Gelsemine, Humantenine, and Gelsedine Types 

 As detailed in Chapter four, there are six structural types of alkaloids isolated from the genus 

Gelsemium: Yohimbane, Sarpagine, Koumine, Humantenine, Gelsedine, and Gelsemine. Three of these 

structural classes, while unique, share a common bicyclic core. Specifically, the Gelsemine, 

Humantenine, and Gelsedine types contain an embedded oxabicyclo[3.2.2]nonane (Figure 5.2.1). This 

motif is found in a staggering number of these alkaloids (>90); therefore, targeting this structure could 

prove very powerful in the synthesis of these natural products.  

 

Figure 5.2.1. Oxabicyclo[3.2.2]nonane Structure Embedded in Gelsemine, Gelsedine, and Humantenine 

Type Alkaloids. 

 

5.2.2 Retrosynthetic Analysis and Proposed Route to Core Structure 

 We initially identified oxabicyclo[3.2.2]nonadiene 282 as a suitable target, as it may provide 

divergent access to a large number of Gelsemium alkaloids (Figure 5.2.2). All three structural classes 

shown below contain the N4–C5 bond connectivity. As such, an approach that allows general access to 
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N4–C5, C6–C20 and C20–C21 bond formations. We believe that a large number of these alkaloids can be 

synthesized from compound 282. Moreover, we plan on efficiently accessing this intermediate using Pt-

catalyzed enyne cycloisomerization chemistry. 

 

Figure 5.2.2. General Retrosynthesis of Different Structural Types to Common Intermediate 282. 
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Scheme 5.2.1. Previously Observed Tandem Process and Proposed Implementation on Substrate 283. 

 

 Thus, we envisage that our chirality transfer cycloisomerization protocol will enable the expedient 

synthesis of common intermediate 282 (Scheme 5.2.2). In a more thorough proposed sequence, 

cycloisomerization of stereodefined dienyne 282 would provide divinylcyclopropane 285. Poised for in 

situ [3,3]-sigmatropic rearrangement, divinylcyclopropane 285 would reorganize to enantioenriched 

oxabicyclo[3.2.2]nonadiene 284. If successful, this would allow for the single-step generation of three 

stereocenters found in the natural products. Subsequent removal of the stereocontrolling R group and 

allylic oxidation would yield our desired common intermediate 282. We favor the proposed allylic 

oxidation in preference to earlier incorporation of the carbonyl, as the ketone would not be tolerated in the 

cycloisomerization reaction. 

 

Scheme 5.2.2. Proposed Forward Route to Common Intermediate 282. 
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5.3 First Generation Approach 

 We initially chose to attack the synthesis of common intermediate 282 in a racemic context. The 

choice to approach these molecules in a racemic system is twofold: (1) We need not worry about the 

nature of the stereocontrolling R group (e.g., functionality, attachment, and cleavage) and (2) We can 

quickly assess the feasibility of, and optimize proposed late stage transformations. 

 

5.3.1 Initial Synthetic Studies 

 Thus, we first turned our attention to the synthesis of dienyne (E,E)-287 (Scheme 5.3.1). Williamson 

ether synthesis of (Z)-but-2-ene-1,4-diol (288) with bromide 289 affords (Z)-allylic alcohol 290 in 86% 

yield.1 Transformation of allylic alcohol 290 to enal 292 is complete in a single step utilizing a Cu-

mediated oxidation followed by organocatalyzed alkene isomerization. These conditions are adapted from 

those disclosed by Christmann and coworkers in 2012.2  Lithium diisopropylamine-promoted aldol 

reaction of N-methoxyoxindole (293) with enal 292 at -78 °C followed by elimination provides desired 

dienyne (E,E)-287 in 44% yield over the two steps, plus dienyne (E,Z)-287 in 12% yield. 

 

Scheme 5.3.1. Synthesis of Dienynes (E,E)-287 and (E,Z)-287. 
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 As stated prior, substrate (E,E)-287 should generate our desired diastereomer after 

cycloisomerization and subsequent divinylcyclopropane rearrangement. To our surprise however, 

treatment of dienyne (E,E)-287 to various isomerization conditions provides none of desired the 

oxabicycle (Scheme 5.3.2). Instead, oxabicyle 294, which is epimeric at the spirocenter, is formed as a 

single diastereomer in 46% yield.3 This result is quite unexpected, as high levels of stereospecificity are 

observed in the less functionalized system (158 → 159, Section 3.2.1). Furthermore, dienyne (E,Z)-287 

also produces undesired diastereomer 294.4 This outcome is “expected” as bicycle 294 is the result one 

would anticipate arising from dienyne (E,Z)-287. We were curious about the driving forces behind this 

surprising result. One possible explanation for the observed high level of stereoconvergency invokes 

thermodynamic isomerization of the olefin prior to the [3,3]-rearrangement. 

 

Scheme 5.3.2. Cyclization Attempts on Dienynes (E,E)-287 and (E,Z)-287. 
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Scheme 5.3.3. Observation of Methylene Cyclopropane 295. 

 

5.3.2 Two Different Stereochemical Outcomes 
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Scheme 5.3.4. Stereospecific and Stereoconvergent Processes. 
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Scheme 5.4.1. Revised Synthetic Approach and the Structures of Gelsemamide (307) and 11-

Methoxygelsemamide (201). 

 

5.4.2 Second Generation Synthetic Studies 

 To begin our new sequence, Horner-Wadsworth-Emmons olefination of previously utilized enal 292 

with phosphonate ester 3085 affords a 3:1 mixture of alkene isomers, favoring our desired product ((E,E)-

309, Scheme 5.4.2).6 

 

Scheme 5.4.2. Synthesis of Dienyne (E,E)-309. 
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bicyclic product and a mixture of cycloisomerization isomers slightly favoring our desired product ((E)-

310, Figure 5.4.1). Oddly, triene 311 was also isolated in ca. 15% yield.7 After this initial attempt, we 

decided study each step—the cycloisomerization and the [3,3]-sigmatropic rearrangement—

independently. First, we performed an optimization in order to see if the product E/Z ratio could be 

improved. Cooling the reaction down to 60 °C leads to a slight increase in E/Z selectivity as well as 

suppression of triene product 311 (entry 2).8 We next screened three electronically different alkene 

additives: 1-octene, ethyl acrylate, and 3,4-dihydropyran (DHP). Addition of the electronically neutral 

olefin, 1-octene, to the reaction mixture results in no change to the E/Z selectivity (entry 3) while addition 

of electron deficient ethyl acrylate leads to incomplete consumption of starting material (entry 4). 

Interestingly, addition of DHP (an electron rich olefin) provides excellent selectivity (entry 5); we 

reasoned that trace acid may be causing the alkene isomerization and that the enol ether is acting as a 

weak base. Indeed, addition of catalytic 2,6-di-tert-butyl-4-methylpyridine (DTBMP) confirms that base 

is necessary to eliminate alkene isomerization (entry 6). Thus, our optimized conditions, 3 mol % Zeise’s 

Dimer in toluene at 40 °C with catalytic 1-octene and DTBMP, provides cycloisomerization product (E)-

310 in excellent conversion and E/Z ratio (>95%, >20:1, entry 7).9 
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Figure 5.4.1. Initial Result and Optimization of Cycloisomerization on Dienyne (E,E)-309. 
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Scheme 5.4.3. Cycloisomerization/[3,3]-Sigmatropic Rearrangement and Potential [1,5]-Homodienyl 

Pathway. 

 

 Now, all that is necessary to provide our desired common precursor (306) is an oxidation of the 
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Scheme 5.4.4. Allylic Oxidation: Synthesis of the Hypothesized Common Intermediate (306). 
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pendant alkene would provide pyrroline 313.11 Finally, conversion of ester 313 to N-methoxyamide 314 

followed by cyclization would provide the oxindole ring12 and gelsenicine (187) in efficient manner. 

 

Scheme 5.4.5. Endgame Strategy to Gelsenicine (187). 
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Scheme 5.4.6. Synthetic Route to Pyrroline 313 and Failed Attempts to Access Amide 314. 
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 The failure met with attempted saponification and amide formation on pyrroline 313 required us to 
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gelsenicine (187) in orthogonal manner. 
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5.5.2 Successful Endgame Strategy: The Total Synthesis of (±)-Gelsenicine 

 Following the new proposed endgame, ester 315 is efficiently converted into N–methoxyamide 322 

in a three step sequence (Scheme 5.5.2). Then, treatment of amide 322 with hydroxylamine hydrochloride 

in pyridine followed by benzoylation affords cyclization precursor 320 in 66% yield over two steps. 

Radical cyclization of benzoyl oxime 320 provides pyrroline intermediate 314. Sadly, we are unable to 

form the oxindole ring under a number of conditions. This is most likely a result of the labile nature of the 

pyrroline ring, much like the results with ester 313. 

 We next attempted to end the synthesis by closing the oxindole ring first, as this would make the 

pyrroline closure the final step and hopefully eliminate complications. When amide 320 is treated with 

bis(trifluoroacetoxy)iodobenzene (PhI(O2CCF3)2) in chloroform, oxindole 321 is obtained in 86% 

yield.12d The target alkaloid, gelsenicine (187), is then obtained in 66% yield upon subjecting benzoyl 

oxime 321 to slow addition of AIBN and tributyltin hydride at 120 °C for 1 hour. This constitutes the first 

total synthesis of gelsenicine (187) in 14 steps. Importantly, the synthesis was completed without the use 

of protecting groups. This is additionally the shortest synthesis of a Gelsedine type alkaloid to date. 

 

Scheme 5.5.2. Successful Endgame to Gelsenicine (187). 
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 In completing this synthesis of gelsenicine (187), we have also achieved the formal synthesis of at 

least four other natural products of the Gelsedine type (Scheme 5.5.3). First, platinum oxide-catalyzed 

hydrogenation of gelsenicine (187) provides gelsedine (202).16 Conversly, oxidation of the pyrroline ring 

with oxone affords gelseziridine (323).17 In a three-step sequence, gelsedilam (324) is accessed from 

gelsenicine. 18  Finally, an acid-mediated aldol reaction with methyl glyoxylate (325) provides 

gelsecrotonidine (326).19,20  

 

Scheme 5.5.3. Divergent Conversion of Gelsenicine to Additional Alkaloids. 
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allylic alcohol 328 occurs in 94% yield. Following olefination of aldehyde 329, we will be ready to 
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attempt cycloisomerization on compound 330. If cycloisomerization occurs without complications, 

cyclopropane 327 can no longer undergo the undesired pathway. We are hopeful this will lead to 

increased yields of our desired bicycle 331. We finally propose an alkyne hydration step to overlap with 

our previously synthesized intermediate 306. If this modification of the synthesis is successful, more 

studies concerning additional targets can commence. 

 

Scheme 5.6.1. Current Route to Overcome [1,5]-Homodienyl Hydrogen Migration Byproduct. 

 

5.6.2 Synthetic Analogs: Towards a Synthesis of 7-Epi-Gelsenicine 

 Synthetic analogs of natural products sometimes have interesting biological properties.21 Thus, we 

are curious if the chemistry used in our synthesis of gelsenicine could be utilized in the synthesis of 7-epi-

gelsenicine (332). While this work is preliminary, we are currently 4 steps from 7-epi-gelsenicine 

(Scheme 5.6.2). As previously described, we can access bicyclic diene 294 in 4 steps. Allylic oxidation 

with selenium dioxide provides enone 333 in good yield. Subsequent conjugate reduction with Stryker’s 

Reagent would afford ketone 334. We are hopeful that conversion to the benzoyl oxime (335) and radical 

cyclization to give 7-epi-gelsenicine (332) will be successful and completed in the near future. This would 

constitute a synthesis of 7-epi-gelsenicine (332) in nine steps, again without the use of protecting groups. 

Biological testing of this compound and others could prove fruitful. 
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Scheme 5.6.2. Progress Towards 7-Epi-Gelsenicine (332). 

 

 While our modular approach could lend itself to synthesizing analogs to gelsenicine, it may also be 

pertinent to see where we could utilize unsuccessful/dead end intermediates. This includes compounds we 

have already accessed, such as ester 313 or methoxyamide 314 (Figure 5.6.1). These intermediates, while 

not utilized in our synthesis, contain complex structures and their biological properties may be worth 

exploring.  

 

Figure 5.6.1. Advanced Intermediates 313 and 314 as Analogs. 

 

5.7 Conclusion 

 Throughout this synthetic exploration, we have encountered many obstacles. In overcoming these 

roadblocks, we have gained insights that ultimately allowed for the successful racemic synthesis of 

gelsenicine. Our 14 step synthesis of gelsenicine is shown in Scheme 5.7.1. Key steps include the tandem 

cycloisomerization/[3,3]-sigmatropic rearrangement to provide bicycle 305, hypervalent iodine-promoted 

oxindole cyclization (320 → 321), and late stage radical cyclization of benzoyl oxime 321 to close the 
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pyrroline ring and provide the natural product. The synthesis was completed without the need of 

protecting groups. Additionally, the synthesis of gelsenicine also constitutes the formal synthesis of four 

other natural products. We anticipate this synthesis will serve as a platform for the synthesis of a large 

number of Gelsemium alkaloids. 

 

Scheme 5.7.1 Total Synthesis of Gelsenicine (187).22 
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5.6 Experimental Section 

5.6.1 Materials and Methods 

Reactions were performed under an argon atmosphere unless otherwise noted. Tetrahydrofuran, diethyl 

ether, dichloromethane, acetonitrile, and toluene were purified by passing through activated alumina 

columns. All other solvents and reagents were used as received unless otherwise noted. Commercially 

available chemicals were purchased from Alfa Aesar (Ward Hill, MA), Sigma-Aldrich (St. Louis, MO), 

Oakwood Products (West Columbia, SC), Strem (Newburyport, MA), and TCI America (Portland, OR). 

Qualitative TLC analysis was performed on 250 mm thick, 60 Å, glass backed, F254 silica (Silicycle, 

Quebec City, Canada). Visualization was accomplished with UV light and exposure to iodine, exposure to 

p-anisaldehyde solution followed by heating, or exposure to KMnO4 solution followed by heating. Flash 

chromatography was performed using Silicycle silica gel (230-400 mesh). 1H NMR spectra were acquired 

on a Varian Mercury 300 (at 300 MHz), a Varian 400 (at 400 MHz), or an Agilent Inova 500 (at 500 

MHz) and are reported relative to SiMe4 (δ 0.00). 13C NMR spectra were acquired on a Varian 400 MR 

(at 100 MHz) or an Agilent Inova 500 (at 125 MHz) and are reported relative to SiMe4 (δ 0.0). All IR 

spectra were obtained on an ATR-ZnSe as thin films with a Nicolet iS-50 FT-IR spectrometer and are 

reported in wavenumbers (ν). High resolution mass spectrometry (HRMS) data were acquired by the 

Colorado State University Central Instrument Facility on an Agilent 6210 TOF LC/MS. 

 

5.6.2 Experimental Data Relevant to the Total Synthesis of Gelsenicine (187) 

 

To a solution of cis-2-butene-1,4-diol (288, 6.30 mL, 76.7 mmol, 2.50 equiv) in anhydrous DMF (82.5 

mL, 0.9 M) at 0 °C was added NaH (1.23 g, 60% dispersion in mineral oil, 30.7 mmol, 1.00 equiv) in two 

portions. The ice water bath was removed and the resulting mixture was stirred until the effervescence 
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ceased (ca. 30 min). To this mixture was added bromide 28923 (4.94 g, 30.7 mmol), as a solution in 

anhydrous THF (10 mL), dropwise over 10 min, and the reaction mixture was stirred at 23 °C for 2 h. The 

reaction was quenched with H2O (100 mL) and poured into EtOAc (100 mL). The layers were separated 

and the aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic layers were 

washed successively with 10% aqueous LiCl solution (2 x 50 mL) and brine (50 mL). The organic layer 

was then dried over MgSO4, filtered, and concentrated under reduced pressure. The resulting residue was 

purified via flash chromatography (2:1 hexanes/EtOAc), affording allylic alcohol 290 (4.44 g, 86% yield). 

Alcohol 290: 

Physical State: colorless oil. 

Rf: 0.32 (2:1 hexanes/EtOAc, KMnO4). 

IR (film): 3415 (br), 2965, 2224, 1243, 1069, 1032 cm-1. 

HRMS (APCI+): m/z calc. for (M + H)+ [C10H16O2 + H]+: 169.1223, found 169.1228. 

1H NMR (400 MHz, CDCl3): δ 5.84 (dtt, J = 11.3, 6.4, 1.4 Hz, 1H), 5.70 (dtt, J = 11.3, 6.4, 1.4 Hz, 1H), 

4.23 (d, J = 6.1 Hz, 2H), 4.15-4.13 (comp m, 4H), 2.20 (tt, J = 7.1, 2.2 Hz, 2H), 1.78-1.68 (s, 1H), 1.54 

(app. sextet, J = 7.2 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 132.9, 128.1, 87.5, 75.8, 64.8, 58.9, 58.0, 22.2, 20.9, 13.6. 

 

 

To a solution of allylic alcohol 290 (2.00 g, 11.9 mmol) in MeCN (60.0 mL, 0.2 M) was added 

tetrakis(acetonitrile)copper (I) hexafluorophosphate (44.3 mg, 0.120 mmol, 1.00 mol %), 4,4’-dimethyl-

2,2’-bipyridine (291, 21.9 mg, 0.120 mmol, 1.00 mol %), 2,2,6,6-tetramethyl-1-piperidinyloxy (18.6 mg, 

0.210 mmol, 1.00 mol %) and 4-dimethylaminopyridine (30.0 mg, 0.240 mmol, 2.00 mol %). The 
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reaction vessel was then sparged with an O2 balloon (bubbling through the solution) for 10 min and 

placed under 1 atm of O2 via a balloon (replaced as needed through out the reaction). The resulting 

mixture was stirred at 23 °C for 15 h. The reaction mixture was then diluted with H2O (400 mL) and 

poured into pentane (350 mL). The layers were separated and the aqueous layer was extracted with 

pentane (2 x 350 mL). The combined organic layers were washed with brine (150 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash 

chromatography (9:1 → 4:1 hexanes/EtOAc), affording enal 292 (1.77 g, 90% yield, >20:1 E/Z). 

Enal 292: 

Physical State: colorless oil. 

Rf: 0.38 (4:1 hexanes/EtOAc, KMnO4). 

IR (film): 2964, 2224, 1690, 1357, 1134, 1106 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C10H14O2 + H]+: 167.1067, found 167.1072. 

1H NMR (400 MHz, CDCl3): δ 9.58 (d, J = 7.9 Hz, 1H), 6.84 (dt, J = 15.8, 4.3 Hz, 1H), 6.36 (ddt, J = 

15.8, 7.9, 1.9 Hz, 1H), 4.33 (dd, J = 4.3, 1.9 Hz, 2H), 4.21 (t, J = 2.2 Hz, 2H), 2.20 (tt, J = 7.1, 2.2 Hz, 

2H), 1.59-1.50 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 193.0, 152.4, 131.8, 87.7, 75.0, 67.7, 58.6, 21.8, 20.6, 13.3. 

 

 

To a solution of phosphonate ester 30824 (3.20 g, 11.2 mmol, 1.10 equiv) in anhydrous THF (12.5 mL, 0.9 

M) under argon at 0 °C was added NaH (407 mg, 60% dispersion in mineral oil, 10.2 mmol, 1.00 equiv) 

in two portions. The ice water bath was removed and the resulting mixture was stirred until the 

effervescence ceased (ca. 25 min). The reaction mixture was then cooled back to 0 °C and enal 292 (1.69 

g, 10.2 mmol) in THF (2.0 mL) was added dropwise over 2 min. After the addition, the ice water bath 
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was removed and the mixture was stirred at 23 °C for 4 h. The mixture was filtered through a long plug of 

silica (4:1 hexanes/EtOAc), and the solvent was removed under reduced pressure. The resulting residue 

was purified by repeated flash chromatography (15:1 → 9:1 hexanes/EtOAc), affording dienynes (E,E)-

309 (1.68 g, 55% yield) and (E,Z)-309 (540 mg, 18% yield). 

Dienyne (E,E)-309: 

Physical State: colorless oil. 

Rf: 0.36 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3056, 2961, 2223, 1710, 1639, 1592, 1433 cm-1. 

HRMS (ESI+): m/z calc. for (M + Na)+ [C19H22O3 + Na]+: 321.1461, found 321.1473. 

1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 10.9 Hz, 1H), 7.40-7.31 (comp m, 3H), 7.23-7.19 (m, 2H), 

6.30 (ddt, J = 15.3, 10.8, 1.1 Hz, 1H), 6.21 (dt, J = 15.4, 5.5 Hz, 1H), 4.10-4.07 (comp m, 4H), 3.76 (s, 

3H), 2.16 (tt, J = 7.1, 2.2 Hz, 2H), 1.50 (app. sextet, J = 7.2 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 168.2, 137.8, 136.9, 136.7, 133.5, 129.3, 128.5, 128.1, 127.7, 87.4, 75.9, 

69.6, 58.2, 52.1, 22.2, 20.9, 13.7. 

 

Dienyne (E,Z)-309: 

Physical State: colorless oil. 

Rf: 0.38 (9:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 3057, 2961, 2282, 1710, 1638, 1594, 1433 cm-1. 

HRMS (ESI+): m/z calc. for (M + Na)+ [C19H22O3 + Na]+: 321.1461, found 321.1467. 

1H NMR (400 MHz, CDCl3): δ 7.35-7.29 (comp m, 5H), 7.01 (ddt, J = 15.2, 11.3, 1.5 Hz, 1H), 6.69 (d, J 

= 11.3 Hz, 1H), 6.10 (dtd, J = 15.3, 6.0, 0.8 Hz, 1H), 4.20 (dd, J = 6.0, 1.5 Hz, 2H), 4.17 (t, J = 2.2 Hz, 

2H), 3.83 (s, 3H), 2.21 (tt, J = 7.1, 2.2 Hz, 2H), 1.60-1.51 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 168.0, 139.8, 138.6, 135.0, 133.0, 130.3, 128.6, 128.1, 127.9, 87.5, 75.7, 

69.4, 58.2, 52.4, 22.2, 20.9, 13.6. 
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To a solution of dienyne (E,E)-309 (362 mg, 1.21 mmol) in anhydrous toluene (24.2 mL, 0.03 M) under 

argon was added 1-octene (18.9 µL, 0.121 mmol, 10.0 mol %), DTBMP (24.8 mg, 0.121 mmol, 10.0 mol 

%), and Zeise’s Dimer (21.0 mg, 0.0360 mmol, 3.00 mol %). This mixture was stirred at ambient 

temperature until all the solids were dissolved (ca. 20 min) then heated to 40 °C. After stirring for 9 h, the 

reaction mixture was cooled to 23 °C and triethylamine (150 µL) was added. The mixture was 

concentrated under reduced pressure to ca. 5 mL and purified by flash chromatography (15:1 

hexanes/EtOAc with 2% Et3N), affording divinylcyclopropane (E)-310 (354 mg, 98% yield). 

Divinylcyclopropane (E)-310: 

Physical State: colorless oil. 

Rf: 0.38 (9:1 hexanes/EtOAc, KMnO4). 

IR (film): 2955, 1711, 1620, 1435, 1244, 1198 cm-1. 

HRMS (DART+): m/z calc. for (M + H)+ [C19H22O3 + H]+: 299.1642, found 299.1645. 

1H NMR (400 MHz, CDCl3): δ 7.39-7.28 (comp m, 3H), 7.25-7.23 (comp m, 2H), 6.78 (d, J = 10.8 Hz, 

1H), 6.06 (d, J = 6.0 Hz, 1H), 5.02 (d, J = 6.0 Hz, 1H), 4.05 (d, J = 10.7 Hz, 1H), 3.81 (dd, J = 10.7, 2.3 

Hz, 1H), 3.74 (s, 3H), 1.82 (dd, J = 10.8, 5.2 Hz, 1H), 1.67-1.40 (comp m, 6H), 0.96 (t, J = 7.1 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 167.8, 144.0, 142.0, 135.2, 133.1, 130.3, 128.1, 127.6, 107.8, 61.4, 52.2, 

35.7, 34.4, 32.7, 26.8, 20.7, 14.3. 
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To a flame dried vial under argon was charged divinylcyclopropane (E)-310 (340 mg, 1.14 mmol) neat. 

The vessel was capped and placed on an aluminum heating block preheated to 200 °C and stirred at this 

temperature neat for 9 min, at which time the vial was cooled to 23 °C. The crude material was purified 

by flash chromatography (hexanes → 9:1 hexanes/EtOAc), affording desired bicycle 305 (114 mg, 34% 

yield) and triene 311 (200 mg, 59% yield). 

Note: Extended reaction times reduced the yield of triene 311 but did not increase the conversion or yield 

of bicycle 305. 

Bicycle 305: 

Physical State: colorless oil. 

Rf: 0.39 (9:1 hexanes/EtOAc, KMnO4). 

IR (film): 2955, 1726, 1433, 1252, 1223, 955 cm-1. 

HRMS (APCI+): m/z calc. for (M + H)+ [C19H22O3 + H]+: 299.1642, found 299.1649. 

1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 7.3 Hz, 2H), 7.37-7.33 (m, 2H), 7.29 (d, J = 6.9 Hz, 1H), 6.37 

(dd, J = 11.1, 8.6 Hz, 1H), 5.94 (dd, J = 6.1, 1.5 Hz, 1H), 5.81 (dd, J = 11.1, 2.3 Hz, 1H), 4.88 (dd, J = 

6.1, 2.2 Hz, 1H), 4.06 (dd, J = 8.1, 1.1 Hz, 1H), 3.66 (s, 3H), 3.59 (dd, J = 8.1, 2.5 Hz, 1H), 2.65 (dd, J = 

8.6, 1.5 Hz, 1H), 2.14 (t, J = 7.5 Hz, 2H), 1.53-1.46 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 172.6, 151.0, 141.6, 132.6, 130.2, 128.5, 127.5, 126.9, 122.2, 69.4, 61.4, 

52.2, 38.5, 37.9, 20.3, 13.7. 

 

Triene 311: 

Note: 1H NMR contains 5-10% of 305 

Physical State: yellow oil. 

Rf: 0.48 (9:1 hexanes/EtOAc, KMnO4). 

IR (film): 2960, 1811, 1736, 1488, 1225, 1048, 926 cm-1. 

HRMS (DART+): m/z calc. for (M + NH4)+ [C19H22O3 + NH4]+: 316.1907, found 316.1913. 



 152 

1H NMR (400 MHz, CDCl3): δ 7.37-7.31 (comp m, 4H), 7.30-7.24 (m, 1H), 6.47 (dd, J = 6.2, 1.3 Hz, 

1H), 6.16 (t, J = 10.3 Hz, 1H), 5.56 (dd, J = 6.2, 0.7 Hz, 1H), 5.45 (t, J = 10.3 Hz, 1H), 5.00 (td, J = 7.3, 

0.8 Hz, 1H), 4.63 (d, J = 9.8 Hz, 1H), 3.80 (dd, J = 10.3, 4.1 Hz, 1H), 3.68 (s, 3H), 3.59 (t, J = 9.8 Hz, 

1H), 3.44-3.37 (m, 1H), 2.19-2.04 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 173.0, 145.3, 139.1, 129.6, 129.5, 129.0, 128.7, 127.8, 127.5, 124.7, 

101.2, 69.8, 52.4, 50.0, 38.3, 20.5, 14.4. 

 

 

To a solution of bicycle 305 (231 mg, 0.772 mmol) in 1,4-dioxane (7.74 mL, 0.1 M) under argon was 

added selenium dioxide (258 mg, 2.32 mmol, 3.00 equiv). The resulting mixture was sealed and heated to 

95 °C. After stirring for 2.5 h at 95 °C, the reaction mixture was allowed to cool to 23 °C, diluted with 

hexanes and filtered through a short plug of silica (2:1 hexanes/EtOAc). The solvent was removed under 

reduced pressure and the crude material was purified by flash chromatography (10:1 hexanes/EtOAc), 

affording enone 306 (201 mg, 83% yield). 

Note: If the reaction is stopped short of completion, the allylic alcohol intermediate is observed in varying 

quantities in 1H NMR of the crude reaction mixture. Alcohol Rf: 0.15 (4:1 hexanes/EtOAc, KMnO4). 
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1H NMR (400 MHz, CDCl3): δ 7.43-7.30 (comp m, 5H), 6.45 (dd, J = 11.1, 8.7 Hz, 1H), 5.80 (dd, J = 

11.1, 2.1 Hz, 1H), 5.06 (dd, J = 6.3, 2.1 Hz, 1H), 4.17 (dd, J = 8.4, 1.0 Hz, 1H), 3.67 (s, 3H), 3.66-3.63 

(m, 1H), 3.58 (dd, J = 8.4, 2.8 Hz, 1H), 2.84-2.68 (m, 2H), 1.15 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 165.5, 147.4, 138.8, 133.9, 129.3, 128.6, 127.7, 126.5, 76.4, 69.7, 61.2, 

52.3, 30.9, 29.9, 8.3. 

 

 

In an N2-filled glovebox, enone 306 (189 mg, 0.605 mmol) and Stryker’s Reagent (356 mg, 0.182 mmol, 

0.300 equiv) were taken up in toluene (6.72 mL, 0.09 M), sealed with a rubber septum and electrical tape, 

and removed from the glovebox. The resulting mixture was stirred sealed for 1 h. The septum was 

removed, and after stirring open to air for ca. 30 min, the mixture was filtered through silica (2:1 

hexanes/EtOAc). The solvent removed under reduced pressure and the crude material was purified by 

flash chromatography (9:1 → 4:1 hexanes/EtOAc), affording ketones 315-I (115.8 mg, 61% yield) and 

315-II (24.4 mg, 13% yield) as separable diastereomers. 

Enone 315-I: 

Note: The 1H and 13C NMR spectra have a minor impurity of triphenylphosphine. 1H NMR: δ 7.36 (s, 15 

H); 13C NMR: δ 137.4, 133.7, 128.6, 128.5. 

Physical State: colorless oil. 

Rf: 0.47 (2:1 hexanes/EtOAc, KMnO4). 

IR (film): 3054, 2936, 1725, 1434, 1223 cm-1. 

HRMS (APCI+): m/z calc. for (M + H)+ [C19H22O4 + H]+: 315.1591, found 315.1595. 
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1H NMR (300 MHz, CDCl3): δ 7.45-7.39 (comp m, 2H), 7.34-7.26 (comp m, 3H), 6.30 (dd, J = 10.9, 7.8 

Hz, 1H), 6.24-6.18 (m, 1H), 4.91 (dd, J = 8.4, 1.7 Hz, 1H), 3.77-3.67 (m, 2H), 3.64 (s, 3H), 2.63-2.52 (m, 

1H), 2.51-2.43 (m, 2H), 2.11-2.03 (m, 1H), 1.07 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 210.9, 173.1, 134.0, 129.7, 129.1, 127.6, 126.5, 74.1, 70.0, 64.7, 52.7, 

47.6, 33.4, 33.2, 27.1, 7.9. 

 

Enone 315-II: 

Note: The 1H and 13C NMR spectra have a minor impurity of triphenylphosphine. 1H NMR: δ 7.36 (s, 15 

H); 13C NMR: δ 137.4, 133.7, 128.6, 128.5. 

Physical State: colorless oil. 

Rf: 0.57 (2:1 hexanes/EtOAc, KMnO4). 

IR (film): 3053, 2935, 2874, 1724, 1434, 1222 cm-1. 

HRMS (DART+): m/z calc. for (M + NH4)+ [C19H22O4 + NH4]+: 332.1856, found 332.1865. 

1H NMR (300 MHz, CDCl3): δ 7.44-7.40 (m, 2H), 7.34-7.28 (comp m, 3H), 6.40 (dd, J = 10.8, 8.8 Hz, 

1H), 6.11 (dd, J = 10.9, 1.9 Hz, 1H), 4.67 (app. d, J = 6.2 Hz, 1H), 3.84 (dd, J = 10.0, 2.8 Hz, 1H), 3.74-

3.71 (m, 1H), 3.70 (s, 3H), 2.98-2.93 (m, 1H), 2.72-2.69 (m, 1H), 2.63-2.43 (comp m, 3H), 2.34 (dd, J = 

13.4, 10.4 Hz, 1H), 1.08 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 211.0, 173.3, 141.8, 134.0, 131.7, 127.4, 126.8, 74.2, 65.2, 64.2, 52.5, 

47.1, 33.8, 32.8, 25.9, 8.2. 

 

 

1. LiOH
    H2O/1,4-dioxane, 90 °C
2. (COCl)2, DMF (cat.)
    CH2Cl2, 0 → 23 °C

3. MeONH2•HCl, Na2CO3
    H2O/C6H6, 0 → 23 °C

O
PhH

OEt

322
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73% yield, 5:1 dr
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To a solution of enone 315 (80.1 mg, 0.255 mmol) in 1,4-dioxane (2.55 mL, 0.1 M) and H2O (2.00 mL, 

0.128 M) at 23 °C was added lithium hydroxide (611 mg, 25.5 mmol, 100 equiv). This mixture was 

heated to 90 °C and stirred at this temperature for 2.5 h. The mixture was cooled with an ice water bath 

and 1 M HCl (aq) was added dropwise until the pH was ca. 3. This mixture was then poured into EtOAc 

(20 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 30 mL). The 

combined organic layers were washed with brine (20 mL). The organic layer was then dried over MgSO4, 

filtered, and concentrated under reduced pressure. The resulting residue was azeotroped with toluene (3 x 

1 mL) and taken on crude (100 mg). 

Crude acid Rf: 0.09 (1:1 hexanes/Et2O, KMnO4). 

 

A solution of crude carboxylic acid in anhydrous CH2Cl2 (3.19 mL, 0.0800 M to 315) under argon was 

cooled to 0 °C and oxalyl chloride (43.7 µL, 0.510 mmol, 2.00 equiv to 315) was added. 

Dimethylformamide (ca. 2 µL, catalytic) was then added to the solution and the resulting mixture was 

stirred at 0 °C for 15 min, at which time the ice water bath was removed. After stirring at 23 °C for 2 h, 

the volatile materials were removed under reduced pressure. The resultant residue was azeotroped with 

toluene (3 x 1.5 mL) to provide crude acid chloride (112 mg). 

Crude acid chlorides Rf: 0.38 (major) and 0.56 (minor) (1:1 hexanes/Et2O, KMnO4). 

 

To a solution of O-methylhydroxylamine hydrochloride (31.9 mg, 0.383 mmol, 1.50 equiv to 315) in 

benzene (1.19 mL, 0.21 M to 315) and H2O (2.00 mL, 0.13 M to 315) stirring vigorously at ca. 0 °C was 

added sodium carbonate (108 mg, 1.02 mmol, 4.00 equiv to 315). This was stirred for 10 min at 23 °C, 

and then crude acid chloride 315 in benzene (2.00 mL, 0.13 M to 315) was added. The resulting biphasic 

mixture was stirred at 23 °C for 40 min, poured into aqueous HCl (25 mL, 0.05 M) and extracted with 

EtOAc (3 x 30 mL). The combined organic layers were washed with brine (1 x 20 mL), dried over 
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MgSO4, and filtered. After removal of the solvent under reduced pressure, the crude material was purified 

by flash chromatography (4:1 → 1:1 hexanes/EtOAc), affording amide 322 (61.1 mg, 73% yield). 

Amide 322: 

Physical State: colorless film. 

Rf: 0.33 (1:1 hexanes/EtOAc, KMnO4). 

IR (film): 3159 (br), 2926, 1708, 1670, 1438, 1118 cm-1. 

HRMS (DART+): m/z calc. for (M + H)+ [C19H23NO4 + H]+: 330.1700, found 330.1703. 

1H NMR (400 MHz, CDCl3) major reported: δ 8.12 (br s, 1H), 7.52 (d, J = 7.4 Hz, 2H), 7.36 (app. t, J = 

7.5 Hz, 2H), 7.31-7.28 (m, 1H), 6.32 (dd, J = 10.8, 8.4 Hz, 1H), 5.86 (d, J = 10.6 Hz, 1H), 4.83 (dd, J = 

8.2, 2.0 Hz, 1H), 3.77-3.72 (comp m, 3H), 3.68 (br s, 3H), 2.95 (td, J = 9.2, 3.1 Hz, 1H), 2.80-2.75 (m, 

1H), 2.63-2.43 (comp m, 4H), 2.33 (dd, J = 14.5, 8.7 Hz, 1H), 1.08 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3) major reported: δ 211.5, 141.0, 134.8, 128.9, 128.8, 127.7, 127.1, 74.4, 

69.5, 64.2, 63.5, 47.9, 33.53, 33.45, 27.0, 7.9. 

 

 

To a solution of amide 322 (42.5 mg, 0.129 mmol) in pyridine (1.29 mL, 0.1 M) at 0 °C was added 

hydroxylamine hydrochloride (17.9 mg, 0.258 mmol, 2.00 equiv). The reaction mixture was stirred at 23 

°C for 3.5 h, at which time it was poured into 1 M aqueous HCl saturated with NaCl (10 mL) and EtOAc 

(20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The 

combined organic layers were washed with brine (10 mL), dried over MgSO4, and filtered. The crude 

material (59.2 mg) was taken on immediately. 
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    pyridine, 0 → 23 °C
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To a solution of crude oxime and pyridine (22.9 µL, 0.248 mmol, 2.2 equiv) in THF (1.29 mL, 0.1 M) at 

0 °C was added benzoyl chloride (16.5 µL, 0.142 mmol, 1.1 equiv). After stirring for 3 h at 23 °C, 1 M 

HCl (aq) (5.0 mL) was added. This was diluted with EtOAc (15 mL). The layers were separated and the 

aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with 

brine (10 mL), dried over MgSO4, and filtered. The crude material was purified by flash chromatography 

(4:1 → 1:1 hexanes/EtOAc), affording benzoate 320 (38.1 mg, 66% yield over two steps). 

Benzoate 320: 

Physical State: white powder. 

Rf: 0.33 (1:1 hexanes/EtOAc, KMnO4). 

IR (film): 3254 (br), 2936, 2876, 1741, 1662, 1246 cm-1. 

HRMS (APCI+): m/z calc. for (M + Na)+ [C26H28N2O5 + Na]+: 471.1890, found 471.1882. 

1H NMR (400 MHz, CDCl3): δ 8.96 (s, 1H), 8.07 (d, J = 7.2 Hz, 2H), 7.63-7.58 (comp m, 3H), 7.50 (t, J 

= 7.7 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 6.38 (dd, J = 10.8, 8.5 Hz, 1H), 6.03 (dd, 

J = 10.9, 1.8 Hz, 1H), 4.86 (dd, J = 8.0, 1.7 Hz, 1H), 3.86 (d, J = 9.4 Hz, 1H), 3.82 (dd, J = 9.7, 3.9 Hz, 

1H), 3.67 (s, 3H), 3.05 (ddd, J = 9.6, 8.1, 3.0 Hz, 1H), 2.82-2.78 (m, 1H), 2.68-2.59 (m, 1H), 2.51 (q, J = 

7.5 Hz, 2H), 2.37 (dd, J = 14.7, 8.1 Hz, 1H), 1.25 (t, J = 7.6 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 172.3, 171.9, 164.4, 141.2, 134.8, 133.5, 129.7, 129.2, 128.9, 128.8, 

128.6, 127.5, 127.4, 74.8, 69.9, 63.9, 63.7, 41.1, 34.3, 28.3, 23.0, 11.1. 

 

 

To a solution of oxime 320 (5.0 mg, 0.011 mmol) in chloroform (140 µL, 0.08 M) under argon was added 

bis(trifluoroacetoxy)iodobenzene (5.8 mg, 0.013 mmol, 1.2 equiv). After stirring at ambient temperature 
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for 3 h, solid NaHCO3 (ca. 50 mg, excess) was added. This mixture was stirred for 5 min and filtered 

through a short silica plug (eluent = 1:1 hexanes/EtOAc). The solvent was removed under reduced 

pressure and the resulting reside was purified by flash chromatography (3:1 → 2:1 hexanes/EtOAc), 

affording oxindole 321 (4.2 mg, 86% yield). 

Oxindole 321: 

Physical State: white solid. 

Rf: 0.24 (2:1 hexanes/EtOAc, KMnO4). 

IR (film): 2939, 2877, 1724, 1616, 1464, 1246, 1064 cm-1. 

HRMS (DART+): m/z calc. for (M + H)+ [C26H26N2O5 + H]+: 447.1914, found 447.1917. 

1H NMR (400 MHz, CDCl3): δ 8.08 (d, J = 7.1 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 

7.36-7.31 (m, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.49 (dd, J = 10.6, 8.4 Hz, 1H), 5.33 

(dd, J = 10.6, 2.0 Hz, 1H), 4.34 (d, J = 9.4 Hz, 1H), 4.17 (dd, J = 9.5, 4.3 Hz, 1H), 4.01 (s, 3H), 3.83 (dd, 

J = 8.5, 2.0 Hz, 1H), 3.25 (td, J = 9.6, 2.7 Hz, 1H), 3.07 (dd, J = 14.1, 9.6 Hz, 1H), 3.00 (dt, J = 8.0, 3.8 

Hz, 1H), 2.77 (dq, J = 13.6, 7.1 Hz, 1H), 2.57 (dq, J = 13.6, 7.1 Hz, 1H), 2.44 (dt, J = 14.1, 9.1 Hz, 1H), 

1.30 (t, J = 7.6 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 172.1, 171.7, 164.0, 138.9, 136.3, 133.3, 129.7, 129.5, 128.9, 128.7, 

127.2, 126.5, 123.6, 107.4, 73.5, 72.4, 63.6, 60.7, 40.7, 34.2, 25.0, 21.8, 11.2. 

 

 

To a degassed solution of benzoyl oxime 321 (2.5 mg, 0.0056 mmol) in toluene (400 µL, 0.014 M) under 

argon at 120 °C was added a degassed solution of azobisisobutyronitrile (1.0 mg, 0.0056 mmol, 1.0 

equiv) and tributyltin hydride (1.5 µL, 0.0056 mmol, 1.0 equiv) in cyclohexane (100 µL) via syringe 

O
H

NEt

321
OBz

H
NOMe

O

O
H

187
gelsenicine

H
NOMe

ON
Et

AIBN (1.0 equiv)
Bu3SnH (1.0 equiv)

PhCH3/c-C6H12, 120 °C

66% yield



 159 

pump over 45 min. The reaction mixture was stirred for an additional 15 min at 120 °C, removed from the 

heat, and allowed to cool to ambient temperature. The solvent was removed under reduced pressure and 

the crude residue was purified by flash chromatography (6:4:3 petroleum ether/Et2O/MeOH → 6:4:4 

petroleum ether/Et2O/MeOH), affording gelsenicine (187, 1.2 mg, 66% yield). 

Gelsenicine (187): 

Physical State: white solid. 

Rf: 0.10 (3:1:1 petroleum ether/Et2O/MeOH, I2 → KMnO4). 

IR (film): 2922, 2852, 1726, 1645, 1616, 1465, 1111 cm-1. 

HRMS (APCI+): m/z calc. for (M + H)+ [C19H22N2O3 + H]+: 327.1703, found 327.1695. 

1H NMR (500 MHz, CDCl3): δ 7.54 (d, J = 7.2 Hz, 1H), 7.07 (td, J = 7.6, 1.0 Hz, 1H), 6.88 (d, J = 7.9 

Hz, 1H), 4.44-4.39 (m, 1H), 4.28 (dd, J = 4.7, 2.3 Hz, 2H), 3.94 (s, 3H), 3.73 (dd, J = 4.5, 1.8 Hz, 1H), 

2.86 (t, J = 9.3 Hz, 1H), 2.72 (dq, J = 16.5, 8.0 Hz, 1H), 2.59-2.55 (m, 1H), 2.37 (dd, J = 11.4, 3.4 Hz, 

2H), 2.29 (dd, J = 15.3, 1.8 Hz, 1H), 2.13 (ddd, J = 14.9, 10.1, 4.8 Hz, 1H), 1.29 (t, J = 7.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3): 128.0, 124.7, 123.3, 106.5, 74.9, 72.6, 63.3, 62.1, 42.5, 39.8, 37.7, 27.0, 

25.7, 10.0. 

 

5.6.3 Experimental Data Relevant to the First Generation Approach 

 

To a solution of diisopropylamine (300 µL, 2.17 mmol, 1.20 equiv) in THF (6.16 mL, 0.35 M to DIPA) at 

-78 °C was added n-butyllithium (790 µL, 2.5 M in hexanes, 1.99 mmol, 1.10 equiv) dropwise over ca. 1 

min. The resulting solution was stirred at -78 °C for 30 min and then oxindole 29325 (295 mg, 1.81 mmol, 
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1.00 equiv) in THF (1.38 mL, 1.3 M to 293) was added dropwise over 5 min. The resulting solution was 

stirred at –78 °C for 2 h, at which time enal 292 (300 mg, 1.81 mmol) in THF (1.80 mL, 1.0 M to 292) 

was added dropwise over 5 min. The resulting mixture was stirred at -78 °C for 5.5 h, at which time a 

dilute solution of AcOH in THF (ca. 0.5 M) was added. The solution was then allowed to warm to 

ambient temperature and poured into brine (50 mL). The layers were separated and the aqueous layer was 

extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (50 mL), dried 

over MgSO4, and filtered. The solvent was removed under reduced pressure and the resulting residue was 

taken on crude. 

To a solution of crude alcohol in CH2Cl2 (25.5 mL, 0.06 M) at –78 °C was added MsCl (237 µL, 3.06 

mmol) followed by TMEDA (918 µL, 6.12 mmol). The resulting mixture was stirred at –78 °C for 2 h 

then 0 °C for 1.5 h, at which time H2O (10 mL) was added. The layers were separated and the aqueous 

was extracted with EtOAc (3 x 55 mL). The combined organic layers were washed with 1 M HCl (15 

mL), brine (20 mL), dried over MgSO4, and filtered. The solvent was removed under reduced pressure 

and the resulting residue was purified by flash chromatography (9:1 → 3:1 hexanes/EtOAc), affording 

(E,E)-287 (230 mg, 41% yield over two steps) and (E,Z)-287 (66.7 mg, 12% yield over two steps) as 

separable olefin isomers. 

Dienyne (E,E)-287: 

Physical State: yellow oil. 

Rf: 0.48 (2:1 hexanes/EtOAc, UV and KMnO4). 

IR (film): 2935, 2223, 1714, 1609, 1459, 1321, 1070 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C19H21NO3 + H]+: 312.1594, found 312.1599. 

1H NMR (400 MHz, CDCl3): δ 7.64 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 12.2 Hz, 1H), 7.29 (td, J = 7.7, 0.9 

Hz, 1H), 7.21-7.13 (m, 1H), 7.06 (td, J = 7.7, 1.0 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.47 (dt, J = 14.9, 5.0 

Hz, 1H), 4.32 (dd, J = 5.0, 1.7 Hz, 2H), 4.25 (t, J = 2.2 Hz, 2H), 4.04 (s, 3H), 2.22 (tt, J = 7.1, 2.2 Hz, 

2H), 1.56 (app. sextet, J = 7.2 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). 



 161 

13C NMR (100 MHz, CDCl3): δ 163.9, 143.5, 139.6, 135.8, 129.2, 126.0, 123.9, 123.2, 122.8, 119.1, 

107.4, 87.8, 75.7, 69.1, 63.9, 58.7, 22.2, 20.9, 13.6. 

 

Dienyne (E,Z)-287: 

Physical State: orange oil. 

Rf: 0.62 (2:1 hexanes/EtOAc, UV and KMnO4). 

IR (film): 2935, 2218, 1706, 1612, 1463, 1046 cm-1. 

HRMS (ESI+): m/z calc. for (M + Na)+ [C19H21NO3 + Na]+: 334.1414, found 334.1421. 

1H NMR (400 MHz, CDCl3): δ 7.96 (ddt, J = 15.5, 11.5, 1.5 Hz, 1H), 7.41 (d, J = 7.4 Hz, 1H), 7.27 (td, J 

= 7.7, 1.0 Hz, 1H), 7.13 (d, J = 11.5 Hz, 1H), 7.03 (td, J = 7.6, 1.0 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 6.33 

(dtd, J = 15.5, 6.1, 0.8 Hz, 1H), 4.28 (dd, J = 6.1, 1.5 Hz, 2H), 4.19 (t, J = 2.2 Hz, 2H), 4.04 (s, 3H), 2.21 

(tt, J = 7.1, 2.2 Hz, 2H), 1.55 (app. sextet, J = 7.2 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 162.6, 142.0, 138.6, 136.0, 129.3, 127.7, 122.9, 122.6, 119.9, 119.6, 

107.2, 87.6, 75.8, 69.6, 63.9, 58.4, 22.2, 20.9, 13.7. 

 

 

To a solution of dienyne (E,E)-287 (115.1 mg, 0.338 mmol) in anhydrous THF (4.83 mL, 0.07 M) under 

argon was added PtCl2 (6.29 mg, 23.7 µmol, 7.0 mol %), and then the reaction was sealed. The resulting 

mixture was heated at 70 °C for 12 h, at which time it was removed from the heat and allowed to cool to 

ambient temperature.  The solvent was removed under reduced pressure and the resulting residue was 

purified by flash chromatography (4:1 → 2:1 hexanes/EtOAc), affording bicycle 294 (48.3 mg, 46% 

yield). 
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Bicycle 294: 

Physical State: white solid. 

Rf: 0.61 (1:1 hexanes/EtOAc, UV and KMnO4). 

IR (film): 2925, 2853, 1727, 1613, 1463 cm-1. 

HRMS (DART+): m/z calc. for (M + H)+ [C19H21NO3 + H]+: 312.1594, found 312.1599. 

1H NMR (500 MHz, CDCl3): δ 7.29 (td, J = 7.7, 0.8 Hz, 1H), 7.08 (d, J = 7.2 Hz, 1H), 7.01-6.95 (comp 

m, 2H), 6.50 (dd, J = 10.5, 8.7 Hz, 1H), 5.75 (d, J = 6.3 Hz, 1H), 5.11 (dd, J = 10.5, 1.8 Hz, 1H), 4.40 (d, 

J = 8.2 Hz, 1H), 4.24 (dd, J = 6.3, 1.8 Hz, 1H), 4.05 (s, 3H), 3.74 (dd, J = 8.2, 3.0 Hz, 1H), 2.80 (app. d, J 

= 8.7 Hz, 1H), 2.25 (t, J = 7.5 Hz, 2H), 1.63-1.53 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3): δ 173.4, 151.9, 140.0, 135.7, 129.0, 126.6, 126.0, 124.7, 122.7, 121.0, 

107.6, 74.7, 69.4, 63.8, 57.9, 38.3, 38.0, 20.7, 14.2. 

NOE Correlation Spectra: See Appendix three. 

                                    

 

5.6.4 Additional Reactions 

 
To a solution of amide 315-I (115.0 mg, 0.366 mmol) in pyridine (3.66 mL, 0.1 M) at 23 °C was added 

hydroxylamine hydrochloride (28.0 mg, 0.402 mmol, 1.10 equiv). The reaction mixture was stirred at 23 

°C for 14 h, at which time it was poured into 1 M aqueous HCl saturated with NaCl (10 mL) and EtOAc 

(20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The 
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combined organic layers were washed with brine (10 mL), dried over MgSO4, and filtered. After removal 

of the volatile materials, the resulting crude material (155 mg) was taken on immediately. 

To a solution of crude oxime and pyridine (35.2 µL, 0.437 mmol, 1.2 equiv) in Et2O (1.21 mL, 0.3 M) at 

23 °C was added benzoyl chloride (46.6 µL, 0.400 mmol, 1.1 equiv). After stirring for 1.5 h at 23 °C, 1 M 

HCl (aq) (5.0 mL) was added. This was diluted with EtOAc (15 mL). The layers were separated and the 

aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with 

brine (10 mL), dried over MgSO4, and filtered. The solvent was removed under reduced pressure and the 

crude material was purified by flash chromatography (4:1 hexanes/EtOAc), affording benzoate 316 (145.0 

mg, 91% yield over two steps). 

Benzoate 316: 

Physical State: white solid. 

Rf: 0.33 (2:1 hexanes/EtOAc, KMnO4). 

IR (film): 2926, 1728, 1655, 1082, 1063 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C26H27NO5 + H]+: 434.1962, found 434.1966. 

1H NMR (300 MHz, CDCl3): δ 8.09-8.02 (m, 2H), 7.60 (ddt, J = 8.5, 6.3, 1.8 Hz, 1H), 7.51-7.45 (comp 

m, 5H), 7.39-7.27 (comp m, 3H), 6.53 (dd, J = 10.9, 8.2 Hz, 1H), 6.31 (dd, J = 10.9, 2.0 Hz, 1H), 4.99 

(dd, J = 8.5, 1.9 Hz, 1H), 3.80-3.73 (m, 2H), 3.63 (s, 3H), 3.04 (ddd, J = 10.5, 8.5, 2.1 Hz, 1H), 2.92-2.88 

(m, 1H), 2.75-2.60 (m, 2H), 2.38 (dq, J = 13.6, 7.1 Hz, 1H), 1.95 (dd, J = 13.6, 10.3 Hz, 1H), 1.23 (t, J = 

7.7 Hz, 3H). 

 

 

To a solution of oxime 316 (30.0 mg, 69.2 µmol) in toluene (692 µL, 0.1 M) at 110 °C was added a 

solution of azobisisobutyronitrile (11.4 mg, 69.2 µmol, 100 mol %) and tributyltin hydride (22.3 µL, 83.0 

O

CO2Me

Ph

316

H

H

NEt
OBz

Bu3SnH
(addition over 2.5 h)

AIBN (100 mol %)

PhCH3/c-C6H12, 110 °C

77% yield

CO2Me

O
H

313

H
Ph

N
Et
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µmol, 1.2 equiv) in cyclohexane (692 µL, 0.1 M) via syringe pump over 2.5 h. The reaction mixture was 

stirred for an additional 30 min at 110 °C then removed from the heat. The solvent was removed under 

reduced pressure and the crude residue purified by flash chromatography (6:2 petroleum ether/Et2O → 

6:2:1 petroleum ether/Et2O/MeOH), affording pyrroline 313 (17.6 mg, 77% yield). 

Pyrroline 313: 

Note: The 1H-NMR spectrum contains a small amount of a Bu3Sn-containing impurity. 

Physical State: white solid. 

Rf: 0.23 (6:2:1 petroleum ether/Et2O/MeOH, I2 then KMnO4). 

IR (film): 2926, 1719, 1639, 1445, 1212 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C19H24NO3 + H]+: 314.1751, found 314.1761. 

1H NMR (400 MHz, CDCl3): δ 7.44 (d, J = 7.8 Hz, 2H), 7.30 (t, J = 7.7 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 

4.55 (t, J = 3.2 Hz, 1H), 4.48-4.46 (m, 1H), 4.09 (app. qd, J = 11.8, 2.2 Hz, 2H), 3.59 (s, 3H), 3.07 (dd, J 

= 14.6, 3.1 Hz, 1H), 2.80 (t, J = 9.1 Hz, 1H), 2.59-2.49 (comp m, 2H), 2.43-2.35 (m, 2H), 2.30-2.21 (m, 

2H), 1.18 (t, J = 7.4 Hz, 3H). 

 

 

To a solution of allylic alcohol 328 (450 mg, 2.74 mmol) in MeCN (10.9 mL, 0.25 M) was added 

tetrakis(acetonitrile)copper (I) hexafluorophosphate (10.2 mg, 0.0274 mmol, 1.00 mol %), 4,4’-dimethyl-

2,2’-bipyridine (291, 5.0 mg, 0.0274 mmol, 1.00 mol %), 2,2,6,6-tetramethyl-1-piperidinyloxy (4.28 mg, 

0.0274 mmol, 1.00 mol %) and 4-dimethylaminopyridine (6.70 mg, 0.0548 mmol, 2.00 mol %). The 

reaction vessel was then sparged with an O2 balloon (bubbling through the solution) for 10 min and 

placed under 1 atm of O2 via a balloon (replaced as needed through out the reaction). The resulting 

O

Me

O

O

Me

OH

[Cu(MeCN)4]PF6 (5 mol %)
                          

                    (5 mol %)

TEMPO (5 mol %)

DMAP (3 mol %)
MeCN (0.25 M), O2 (1 atm), 23 °C, 1.5 h

N N

MeMe

94% yield, >20:1 E/Z
328 329

291
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mixture was stirred at 23 °C for 21 h. The reaction mixture was then diluted with H2O (40 mL) and 

poured into pentane (55 mL). The layers were separated and the aqueous layer was extracted with pentane 

(2 x 55 mL). The combined organic layers were washed with brine (40 mL), dried over MgSO4, filtered, 

and concentrated under reduced pressure. The resulting residue was purified by flash chromatography 

(9:1 → 3:1 hexanes/EtOAc), affording enal 329 (350 mg, 79% yield, >20:1 E/Z). 

Enal 329: 

Physical State: slight yellow oil. 

Rf: 0.25 (4:1 hexanes/EtOAc, anisaldehyde). 

IR (film): 2845, 2258, 1688, 1352, 1108, 1029 cm-1. 

HRMS (ESI+): m/z calc. for (M + H)+ [C10H10O2 + H]+: 163.0754, found 163.0750. 

1H NMR (400 MHz, CDCl3): δ 9.58 (d, J = 7.9 Hz, 1H), 6.82 (dt, J = 15.8, 4.3 Hz, 1H), 6.34 (ddt, J = 

15.8, 7.9, 1.9 Hz, 1H), 4.34 (dd, J = 4.3, 1.9 Hz, 2H), 4.28 (s, 2H), 1.95 (s, 3H). 

13C NMR (100 MHz, CDCl3): δ 193.2, 152.0, 132.2, 77.6, 72.4, 70.2, 68.3, 63.7, 58.9, 4.4. 

 

 

To a solution of bicycle 294 (25.4 mg, 0.0816 mmol) in 1,4-dioxane (1.17 mL, 0.07 M) under argon was 

added selenium dioxide (22.7 mg, 0.204 mmol, 2.50 equiv). The resulting mixture was sealed and heated 

to 85 °C. After stirring for 3 h at 85 °C, the reaction mixture was allowed to cool to 23 °C, diluted with 

hexanes, and immediately purified by flash chromatography (4:1 → 1:1 hexanes/EtOAc), affording enone 

333 (23.0 mg, 87% yield). 

Enone 333: 

Physical State: white solid. 

Rf: 0.44 (1:1 hexanes/EtOAc, KMnO4). 

O

n-Pr
NOMe

O

294 333

SeO2 (2.5 equiv)

1,4-dioxane, 85 °C, 3 h

87% yield

O
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O
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HRMS (ESI+): m/z calc. for (M + Na)+ [C19H19NO4 + Na]+: 348.1206, found 348.1199. 

1H NMR (400 MHz, CDCl3): δ 7.37-7.33 (m, 1H), 7.05-6.96 (comp m, 4H), 6.54 (dd, J = 10.6, 8.8 Hz, 

1H), 5.13 (dd, J = 10.6, 2.0 Hz, 1H), 4.52-4.48 (m, 2H), 4.08 (s, 3H), 3.78-3.73 (comp m, 2H), 2.79 (q, J 

= 7.3 Hz, 2H), 1.21 (t, J = 7.3 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ 197.5, 172.2, 148.2, 139.9, 136.1, 135.0, 129.4, 126.1, 125.2, 123.7, 

122.9, 107.9, 74.1, 69.8, 63.7, 56.6, 31.0, 30.2, 29.7, 8.2. 

  



 167 

CHAPTER FIVE NOTES AND REFERENCES 

 
1 Yield based on bromide 289. 

2 Könning, D.; Hiller, W.; Christmann, M. Org. Lett. 2012, 14, 5258–5261. 

3 The stereochemistry of the spirocenter was confirmed by ROESY 1H-1H NMR data. 

4 Determined by 1H NMR of the crude reaction mixture. 

5 Geirsson, J. K. F.; Njardarson, J. T. Tetrahedron Lett. 1994, 35, 9071–9072. 

6 Isomerization of our undesired dienyne ((E,Z)-309) can be completed with tributylphosphine at 55 °C, 

thus affording enrichment to our desired substrate ((E,E)-309). 

7 The stereochemistry of triene 311 is unconfirmed. 

8 The pathway responsible for the formation of triene 311 seems to be operable at temperatures greater 

than 60 °C. 

9 It is our working hypothesis that 1-octene allows the catalyst to stay active and that DTBMP removes 

trace acid from the reaction mixture. 

10 (a) Vshyvenko, J.W. Reed, T. Hudlicky and E. Piers, 5.22 Rearrangements of Vinylcyclopropanes, 

Divinylcyclopropanes, and Related Systems, In Comprehensive Organic Synthesis II (Second Edition), 

edited by Paul Knochel, Elsevier, Amsterdam, 2014, pp. 999–1076; (b) Glass, D. S.; Boikess, R. S.; 

Winstein, S. Tetrahedron Lett. 1966, 10, 999–1008. 

11 The cyclization of activated oximes to provide pyrrolines is precedented. For two reviews, see: (a) 

Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2008, 81, 539–547; (b) Zard, S. Z. Synlett 1996, 1148–

1154. 

12 There are reported methods for the conversion of N-methoxyamides to oxindoles. See: (a) Fleming, I.; 

Loreto, M. A.; Wallace, I. H. M.; Michael, J. P. J. Chem. Soc., Perkin Trans. 1, 1986, 349–359; (b) 

Fleming, I.; Moses, R. C.; Tercel, M.; Ziv, J. J. Chem. Soc., Perkin Trans. 1, 1991, 617–626; (c) Wasa, 

M.; Yu, J.-Q. J. Am. Chem. Soc. 2008. 130, 14058–14059; (d) Kikugawa, Y.; Kawase, M. Chem. Lett. 

1990, 4, 581–582. 

 



 168 

 
13  (a) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291–293; (b) Lee, 

D.-w.; Yun, J. Tetrahedron Lett. 2005, 46, 2037–2039. 

14 Epimerization of the undesired diastereomer can be accomplished in the presence of sodium methoxide 

in methanol to provide a thermodynamic mixture of ketones 315-I (desired) and 315-II.  

15 Boivin, J.; Callier-Dublanchet, A.-C.; Quiclet-Sire, B.; Schiano, A.-M.; Zard, S. Z. Tetrahedron 1995, 

51, 6517–6528. 

16 Takayama, H.; Tominaga, Y.; Kitajima, M.; Aimi, N.; Sakai, S.-I. J. Org. Chem. 1994, 59, 4381–4385. 

17 Qu, J.; Fang, L.; Ren, X.-D.; Liu, Y.; Yu, S.-S.; Li, L.; Bao, X.-Q.; Zhang, D.; Li, Y.; Ma, S.-G. J. Nat. 

Prod. 2013, 76, 2203–2209. 

18 Kogure, N.; Ishii, N.; Kitajima, M.; Wongseripipatana, S.; Takayama, H. Org. Lett. 2006, 8, 3085–

3088. 

19 Yamada, Y.; Kitajima, M.; Kogure, N.; Takayama, H. Tetrahedron 2008, 64, 7690–7694.  

20 In similar fashion, gelsevanillidine has been synthesized from gelsenicine. See: Yamada, Y.; Kitajima, 

M.; Kogure, N.; Wongseripipatana, S.; Takayama, H. Tetrahedron Lett. 2009, 50, 3341–3344. 

21 Wender, P. A.; Donnelly, A. C.; Loy, B. A.; Near, K. E.; Staveness, D. Natural Products in Medicinal 

Chemistry (Ed: S. Hanessian) Wiley-VCH, 2014, Ch. 14, 475–544; (b) Wender, P. A.; Verma, V. A.; 

Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 40–49. 

22 This figure is reproduced from others throughout this chapter. 

23 Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059–4063. 

24 Geirsson, J. K. F.; Njardarson, J. T. Tetrahedron Lett. 1994, 35, 9071-9072. 

25 Kawase, M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54, 3394–3403. 



 

 169 

APPENDIX ONE 

Spectra Relevant to Chapter Three 

Cycloisomerization of Enynes as a Platform to Study Catalytic Reactivity 
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Figure A1.1. 1H NMR (400 MHz, C6D6) of Compound 111e. 
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Figure A1.2. 13C NMR (100 MHz, C6D6) of Compound 111e. 
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Figure A1.3. 1H NMR (400 MHz, C6D6) of Compound 113a. 

O
Me

Me

H
Ph
H

Ph

113a



 

 173 

 

Figure A1.4. 13C NMR (100 MHz, C6D6) of Compound 113a. 
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Figure A1.5. 1H NMR (400 MHz, C6D6) of Compound 113b. 
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Figure A1.6. 13C NMR (100 MHz, C6D6) of Compound 113b. 
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Figure A1.7. 1H NMR (400 MHz, C6D6) of Compound 113c. 

  

O
Me

Me

H
Me
Me

Ph

113c



 

 177 

 

Figure A1.8. 13C NMR (100 MHz, C6D6) of Compound 113c. 
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Figure A1.9. 1H NMR (400 MHz, C6D6) of Compound 113d. 
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Figure A1.10. 13C NMR (100 MHz, C6D6) of Compound 113d. 
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Figure A1.11. 1H NMR (400 MHz, C6D6) of Compound 113e. 
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Figure A1.12. 13C NMR (100 MHz, C6D6) of Compound 113e. 
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Figure A1.13. 1H NMR (400 MHz, C6D6) of Compound 113f. 
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Figure A1.14. 13C NMR (100 MHz, C6D6) of Compound 113f. 
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Figure A1.15. 1H NMR (400 MHz, C6D6) of Compound 113g. 
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Figure A1.16. 13C NMR (100 MHz, C6D6) of Compound 113g. 
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Figure A1.17. 1H NMR (400 MHz, C6D6) of Compound 113h. 
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Figure A1.18. 13C NMR (100 MHz, C6D6) of Compound 113h. 
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Figure A1.19. 1H NMR (400 MHz, C6D6) of Compound 113i. 
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Figure A1.20. 13C NMR (100 MHz, C6D6) of Compound 113i. 
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Figure A1.21. 1H NMR (400 MHz, C6D6) of Compound 113j. 
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Figure A1.22. 13C NMR (100 MHz, C6D6) of Compound 113j. 
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Figure A1.23. 1H NMR (400 MHz, C6D6) of Compound 113k. 
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Figure A1.24. 13C NMR (100 MHz, C6D6) of Compound 113k. 
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Figure A1.25. 1H NMR (400 MHz, C6D6) of Compound 109. 
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Figure A1.26. 13C NMR (100 MHz, C6D6) of Compound 109. 
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Figure A1.27. 1H NMR (400 MHz, C6D6) of Compound 111a. 
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Figure A1.28. 13C NMR (100 MHz, C6D6) of Compound 111a. 
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Figure A1.29. 1H NMR (400 MHz, C6D6) of Compound 111b. 
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Figure A1.30. 13C NMR (100 MHz, C6D6) of Compound 111b. 
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Figure A1.31. 1H NMR (400 MHz, C6D6) of Compound 111c. 
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Figure A1.32. 13C NMR (100 MHz, C6D6) of Compound 111c. 
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Figure A1.33. 1H NMR (400 MHz, C6D6) of Compound 111d. 

O
H

Me
H

Ph

111d



 

 203 

 

Figure A1.34. 13C NMR (100 MHz, C6D6) of Compound 111d. 
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Figure A1.35. 1H NMR (400 MHz, CDCl3) of Compound 125.
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Figure A1.36. 13C NMR (100 MHz, CDCl3) of Compound 125. 
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Figure A1.37. 1H NMR (400 MHz, C6D6) of Compound 159. 
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Figure A1.38. 13C NMR (100 MHz, C6D6) of Compound 159. 
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Figure A1.39. 1H NMR (400 MHz, CDCl3) of Compound 110e. 
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Figure A1.40. 13C NMR (100 MHz, CDCl3) of Compound 110e. 
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Figure A1.41. 1H NMR (400 MHz, CDCl3) of Compound 112a. 
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Figure A1.42. 13C NMR (100 MHz, CDCl3) of Compound 112a. 
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Figure A1.43. 1H NMR (400 MHz, CDCl3) of Compound 112b. 
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Figure A1.44. 13C NMR (100 MHz, CDCl3) of Compound 112b. 
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Figure A1.45. 1H NMR (400 MHz, CDCl3) of Compound 112c. 
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Figure A1.46. 13C NMR (100 MHz, CDCl3) of Compound 112c. 
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Figure A1.47. 1H NMR (400 MHz, CDCl3) of Compound 112d. 

Ph

O
Me

Me

Me

112d



 

 217 

 

Figure A1.48. 13C NMR (100 MHz, CDCl3) of Compound 112d. 
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Figure A1.49. 1H NMR (400 MHz, CDCl3) of Compound 112e. 
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Figure A1.50. 13C NMR (100 MHz, CDCl3) of Compound 112e. 
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Figure A1.51. 1H NMR (400 MHz, CDCl3) of Compound 112f. 
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Figure A1.52. 13C NMR (100 MHz, CDCl3) of Compound 112f. 
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Figure A1.53. 13C NMR (100 MHz, C6D6) of Compound 112g. 
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Figure A1.54. 13C NMR (100 MHz, C6D6) of Compound 112g. 
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Figure A1.55. 1H NMR (400 MHz, CDCl3) of Compound 112h. 
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Figure A1.56. 13C NMR (100 MHz, CDCl3) of Compound 112h. 
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Figure A1.57. 1H NMR (400 MHz, CDCl3) of Compound 112i. 
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Figure A1.58. 13C NMR (100 MHz, CDCl3) of Compound 112i. 
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Figure A1.59. 1H NMR (400 MHz, CDCl3) of Compound 112j. 
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Figure A1.60. 13C NMR (100 MHz, CDCl3) of Compound 112j. 
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Figure A1.61. 1H NMR (400 MHz, CDCl3) of Compound 112k. 
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Figure A1.62. 13C NMR (100 MHz, CDCl3) of Compound 112k. 
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Figure A1.63. 1H NMR (400 MHz, C6D6) of Compound 108. 
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Figure A1.64. 13C NMR (100 MHz, C6D6) of Compound 108. 
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Figure A1.65. 1H NMR (400 MHz, CDCl3) of Compound 110a. 
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Figure A1.66. 13C NMR (100 MHz, CDCl3) of Compound 110a. 
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Figure A1.67. 1H NMR (400 MHz, C6D6) of Compound 110b. 
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Figure A1.68. 13C NMR (100 MHz, C6D6) of Compound 110b. 
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Figure A1.69. 1H NMR (400 MHz, CDCl3) of Compound 110c. 
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Figure A1.70. 13C NMR (100 MHz, CDCl3) of Compound 110c. 
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Figure A1.71. 1H NMR (400 MHz, CDCl3) of Compound 110d. 
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Figure A1.72. 13C NMR (100 MHz, CDCl3) of Compound 110d. 
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Figure A1.73. 1H NMR (400 MHz, CDCl3) of Compound 110f. 
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Figure A1.74. 13C NMR (100 MHz, CDCl3) of Compound 110f. 
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Figure A1.75. 1H NMR (300 MHz, CDCl3) of Compound 114. 
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Figure A1.76. 1H NMR (400 MHz, CDCl3) of Compound 115. 
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Figure A1.77. 13C NMR (100 MHz, CDCl3) of Compound 115. 
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Figure A1.78. 1H NMR (400 MHz, C6D6) of Compound 153. 
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Figure A1.79. 13C NMR (100 MHz, C6D6) of Compound 153. 
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Figure A1.80. 1H NMR (400 MHz, CDCl3) of Compound 158. 
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Figure A1.81. 13C NMR (100 MHz, CDCl3) of Compound 158. 
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APPENDIX TWO 

 

Crystallographic Data Relevant to Compound 113k 
  



 

! 252 

Table 1.  Crystal data and structure refinement for 113k. 

Identification code  ef09_0m 

Empirical formula  C21H21BrO 

Formula weight  369.29 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 8.7086(4) Å a= 90°. 

 b = 10.3343(5) Å b= 113.168(2)°. 

 c = 10.3919(5) Å g = 90°. 

Volume 859.82(7) Å3 

Z 2 

Density (calculated) 1.426 Mg/m3 

Absorption coefficient 2.393 mm-1 

F(000) 380 

Crystal size 0.66 x 0.49 x 0.29 mm3 

Theta range for data collection 2.13 to 33.29°. 

Index ranges -13<=h<=12, -15<=k<=14, -16<=l<=15 

Reflections collected 22316 

Independent reflections 5869 [R(int) = 0.0255] 

Completeness to theta = 33.29° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5447 and 0.3011 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5869 / 1 / 211 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0281, wR2 = 0.0692 

R indices (all data) R1 = 0.0306, wR2 = 0.0700 

Absolute structure parameter 0.022(6) 

Largest diff. peak and hole 1.630 and -0.749 e.Å-3 
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 Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 113k.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Br(1) -533(1) 1540(1) -3037(1) 23(1) 

C(1) 597(2) 1364(2) -1061(2) 14(1) 

C(2) 469(2) 202(2) -452(2) 17(1) 

C(3) 1339(2) 48(2) 983(2) 16(1) 

C(4) 2330(2) 1043(2) 1812(2) 12(1) 

C(5) 2407(2) 2208(2) 1166(2) 14(1) 

C(6) 1546(2) 2378(2) -275(2) 15(1) 

C(7) 3336(2) 883(2) 3338(2) 12(1) 

C(8) 3157(2) -277(2) 4146(2) 15(1) 

C(9) 4739(3) -793(2) 5282(2) 24(1) 

C(10) 4666(2) 849(2) 6844(2) 17(1) 

C(11) 3559(2) 1554(2) 5836(1) 13(1) 

C(12) 2550(2) 1011(2) 4433(2) 12(1) 

C(13) 717(2) 1321(2) 3890(2) 12(1) 

C(14) -497(2) 385(2) 3694(2) 16(1) 

C(15) -2173(2) 741(2) 3225(2) 21(1) 

C(16) -2639(2) 2029(2) 2947(2) 24(1) 

C(17) -1432(2) 2972(2) 3143(2) 22(1) 

C(18) 236(2) 2613(2) 3607(2) 18(1) 

C(19) 5627(2) 1234(2) 8346(2) 21(1) 

C(20) 5145(3) 357(2) 9319(2) 29(1) 

C(21) 5395(3) 2663(2) 8623(2) 24(1) 

O(1) 4980(2) -439(2) 6665(2) 27(1) 

________________________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for 113k. 

_____________________________________________________  

Br(1)-C(1)  1.9045(15) 

C(1)-C(2)  1.382(3) 

C(1)-C(6)  1.385(2) 

C(2)-C(3)  1.392(2) 

C(3)-C(4)  1.400(2) 

C(4)-C(5)  1.393(2) 

C(4)-C(7)  1.489(2) 

C(5)-C(6)  1.397(2) 

C(7)-C(8)  1.506(2) 

C(7)-C(12)  1.547(2) 

C(8)-C(12)  1.505(2) 

C(8)-C(9)  1.515(2) 

C(9)-O(1)  1.416(2) 

C(10)-C(11)  1.328(2) 

C(10)-O(1)  1.385(2) 

C(10)-C(19)  1.506(2) 

C(11)-C(12)  1.485(2) 

C(12)-C(13)  1.504(2) 

C(13)-C(14)  1.387(2) 

C(13)-C(18)  1.396(2) 

C(14)-C(15)  1.394(3) 

C(15)-C(16)  1.389(3) 

C(16)-C(17)  1.388(3) 

C(17)-C(18)  1.389(2) 

C(19)-C(21)  1.533(3) 

C(19)-C(20)  1.534(3) 

 

C(2)-C(1)-C(6) 121.64(14) 

C(2)-C(1)-Br(1) 118.42(13) 

C(6)-C(1)-Br(1) 119.93(13) 

C(1)-C(2)-C(3) 118.83(15) 

C(2)-C(3)-C(4) 121.29(16) 

C(5)-C(4)-C(3) 118.27(14) 

C(5)-C(4)-C(7) 119.31(14) 

C(3)-C(4)-C(7) 122.39(15) 

C(4)-C(5)-C(6) 121.22(15) 

C(1)-C(6)-C(5) 118.74(16) 

C(4)-C(7)-C(8) 122.36(14) 

C(4)-C(7)-C(12) 121.89(13) 

C(8)-C(7)-C(12) 59.02(10) 

C(12)-C(8)-C(7) 61.85(11) 

C(12)-C(8)-C(9) 116.05(14) 

C(7)-C(8)-C(9) 116.87(15) 

O(1)-C(9)-C(8) 115.23(15) 

C(11)-C(10)-O(1) 122.75(17) 

C(11)-C(10)-C(19) 127.44(17) 

O(1)-C(10)-C(19) 109.56(14) 

C(10)-C(11)-C(12) 122.2(2) 

C(11)-C(12)-C(13) 114.74(13) 

C(11)-C(12)-C(8) 114.23(14) 

C(13)-C(12)-C(8) 121.24(14) 

C(11)-C(12)-C(7) 119.46(13) 

C(13)-C(12)-C(7) 117.03(13) 

C(8)-C(12)-C(7) 59.13(11) 

C(14)-C(13)-C(18) 119.21(15) 

C(14)-C(13)-C(12) 122.76(15) 

C(18)-C(13)-C(12) 118.01(14) 

C(13)-C(14)-C(15) 119.99(17) 

C(16)-C(15)-C(14) 120.35(18) 

C(17)-C(16)-C(15) 120.03(18) 

C(16)-C(17)-C(18) 119.44(19) 

C(17)-C(18)-C(13) 120.98(17) 

C(10)-C(19)-C(21) 112.88(15) 

C(10)-C(19)-C(20) 110.01(16) 

C(21)-C(19)-C(20) 110.81(16) 

C(10)-O(1)-C(9) 115.23(15) 
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Table 4.   Anisotropic displacement parameters  (Å2x 103) for 113k.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Br(1) 36(1)  20(1) 11(1)  2(1) 6(1)  6(1) 

C(1) 17(1)  16(1) 11(1)  0(1) 7(1)  3(1) 

C(2) 22(1)  15(1) 12(1)  -1(1) 4(1)  -2(1) 

C(3) 21(1)  13(1) 12(1)  0(1) 5(1)  -3(1) 

C(4) 13(1)  12(1) 12(1)  -1(1) 6(1)  0(1) 

C(5) 14(1)  12(1) 16(1)  0(1) 5(1)  -1(1) 

C(6) 18(1)  12(1) 16(1)  3(1) 8(1)  3(1) 

C(7) 13(1)  12(1) 12(1)  0(1) 5(1)  1(1) 

C(8) 21(1)  11(1) 12(1)  0(1) 5(1)  2(1) 

C(9) 34(1)  20(1) 15(1)  0(1) 5(1)  13(1) 

C(10) 15(1)  18(1) 15(1)  -2(1) 4(1)  3(1) 

C(11) 17(1)  11(1) 12(1)  0(1) 5(1)  2(1) 

C(12) 16(1)  10(1) 10(1)  1(1) 3(1)  1(1) 

C(13) 14(1)  14(1) 10(1)  0(1) 5(1)  0(1) 

C(14) 20(1)  14(1) 15(1)  -1(1) 9(1)  -3(1) 

C(15) 17(1)  28(1) 17(1)  -1(1) 6(1)  -7(1) 

C(16) 13(1)  36(1) 22(1)  4(1) 6(1)  1(1) 

C(17) 16(1)  24(1) 27(1)  6(1) 8(1)  5(1) 

C(18) 15(1)  16(1) 21(1)  3(1) 7(1)  1(1) 

C(19) 18(1)  25(1) 13(1)  -3(1) -1(1)  5(1) 

C(20) 43(1)  24(1) 15(1)  2(1) 6(1)  6(1) 

C(21) 30(1)  22(1) 17(1)  -8(1) 6(1)  -4(1) 

O(1) 34(1)  24(1) 17(1)  -1(1) 5(1)  11(1) 

______________________________________________________________________________ 
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Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for 113k. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  

H(2) -202 -480 -1005 20 

H(3) 1259 -749 1410 19 

H(5) 3057 2899 1715 17 

H(6) 1611 3175 -707 18 

H(7) 4502 1225 3658 15 

H(8) 2285 -927 3619 18 

H(9A) 4726 -1749 5220 29 

H(9B) 5707 -481 5096 29 

H(11) 3409 2435 6018 16 

H(14) -186 -498 3880 19 

H(15) -3002 98 3094 25 

H(16) -3783 2266 2623 29 

H(17) -1745 3855 2961 27 

H(18) 1061 3257 3732 21 

H(19) 6840 1093 8564 25 

H(20A) 3975 509 9164 43 

H(20B) 5860 552 10295 43 

H(20C) 5293 -551 9120 43 

H(21A) 5686 3205 7978 36 

H(21B) 6123 2880 9590 36 

H(21C) 4228 2818 8479 36 

________________________________________________________________________________  
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APPENDIX THREE 

Spectra Relevant to Chapter Five 

Towards a Unified Synthesis of Gelsemium Alkaloids: The Total Synthesis of (±)-Gelsenicine 
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Figure A3.1. 1H NMR (400 MHz, CDCl3) of Compound 290. 
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Figure A3.2. 13C NMR (100 MHz, CDCl3) of Compound 290. 
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Figure A3.3. 1H NMR (400 MHz, CDCl3) of Compound 292. 
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Figure A3.4. 13C NMR (100 MHz, CDCl3) of Compound 292. 
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Figure A3.5. 1H NMR (400 MHz, CDCl3) of Compound (E,E)-309. 
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Figure A3.6. 13C NMR (100 MHz, CDCl3) of Compound (E,E)-309. 
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Figure A3.7. 1H NMR (400 MHz, CDCl3) of Compound (E,Z,)-309. 
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Figure A3.8. 13C NMR (100 MHz, CDCl3) of Compound (E,Z)-309. 
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Figure A3.9. 1H NMR (400 MHz, CDCl3) of Compound (E)-310. 
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Figure A3.10. 13C NMR (100 MHz, CDCl3) of Compound (E)-310. 
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Figure A3.11. 1H NMR (400 MHz, CDCl3) of Compound 305. 
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Figure A3.12. 13C NMR (100 MHz, CDCl3) of Compound 305. 
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Figure A3.13. 1H NMR (400 MHz, CDCl3) of Compound 311. 

  

311

O
H

Et

CO2Me

Ph
H



 271 

 

Figure A3.14. 13C NMR (100 MHz, CDCl3) of Compound 311. 
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Figure A3.15. 1H NMR (400 MHz, CDCl3) of Compound 306. 
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Figure A3.16. 13C NMR (100 MHz, CDCl3) of Compound 306. 
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Figure A3.17. 1H NMR (400 MHz, CDCl3) of Compound 315-I. 
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Figure A3.18. 13C NMR (100 MHz, CDCl3) of Compound 315-I. 
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Figure A3.19. 1H NMR (400 MHz, CDCl3) of Compound 315-II. 
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Figure A3.20. 13C NMR (100 MHz, CDCl3) of Compound 315-II. 
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Figure A3.21. 1H NMR (400 MHz, CDCl3) of Compound 322. 
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Figure A3.22. 13C NMR (100 MHz, CDCl3) of Compound 322. 
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Figure A3.23. 1H NMR (400 MHz, CDCl3) of Compound 320. 
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Figure A3.24. 13C NMR (100 MHz, CDCl3) of Compound 320. 
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Figure A3.25. 1H NMR (400 MHz, CDCl3) of Compound 321. 
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Figure A3.26. 13C NMR (100 MHz, CDCl3) of Compound 321. 
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Figure A3.27. 1H NMR (500 MHz, CDCl3) of Compound 187. 
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Figure A3.28.A 13C NMR (125 MHz, CDCl3) of Compound 187. 
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Figure A3.28.B 13C NMR (125 MHz, CDCl3) of Compound 187 with missing peaks indicated. 
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Figure A3.29. 1H NMR (400 MHz, CDCl3) of Compound (E,E)-287. 
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Figure A3.30. 13C NMR (100 MHz, CDCl3) of Compound (E,E)-287. 
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Figure A3.31. 1H NMR (400 MHz, CDCl3) of Compound (E,Z)-287. 
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Figure A3.32. 13C NMR (100 MHz, CDCl3) of Compound (E,Z)-287. 
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Figure A3.33. 1H NMR (500 MHz, CDCl3) of Compound 294. 
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Figure A3.34. 13C NMR (125 MHz, CDCl3) of Compound 294. 
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Figure A3.35. 1H–1H ROESY Spectra of Compound 294.  
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Figure A3.36. Isolated 1H–1H ROESY Data of Compound 294.  
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Figure A3.37. 1H NMR (300 MHz, CDCl3) of Compound 316. 

  

O

CO2Me

Ph

316

H

H

NEt
OBz



 296 

 

Figure A3.38. 1H NMR (400 MHz, CDCl3) of Compound 313. 
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Figure A3.39. 1H NMR (400 MHz, CDCl3) of Compound 329. 
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Figure A3.40. 13C NMR (100 MHz, CDCl3) of Compound 329. 
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Figure A3.41. 1H NMR (400 MHz, CDCl3) of Compound 333. 
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Figure A3.42. 13C NMR (100 MHz, CDCl3) of Compound 333. 
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