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PREFACE 

Theoretical mathematical treatments of water storage problems in the application of the basic storage 
differential equation, in which realistic, complex periodic-stochastic processes of inputs and/or outputs and 
stochastic changes of storage characteristics are taken into consideratio·n, either have not been successful or 
have been beyond the power of presently available analytical stochastic methods. The usual theoretical treat
ment has been carried out for relatively simple conditions for storage reservoirs and their inputs and outputs. 
Simplifications deviate so much from the real world and practical problems, that the planners of and the 
decision makers related to storage reservoirs have shied away from using the generalized mathematical 
solutions under these grossly idealized conditions. 

The thesis by Jose D. Salas-La Cruz relates to the range analysis of water storage reservoirs with a relatively 
complex periodic-stochastic input and a simple output. It represents an attempt and successful accomplishment 
for increasing the power of theoretical treatment of complex hydrologic and water resource storage problems. 
This piece of work is a continuation-of several previous efforts in the analysis of range as the major random 
variable of storage problems, which have been undertaken within the research project: "Stochastic Processes in 
Hydrology and Water Resources", sponsored by the U. S. National Science Foundation at Colorado State 
University, Department of Civil Engineering, Graduate and Research Hydrology and Water Resources Program 
The continuous analysis of the range, and other random variables related to water storage problems, promise 
some very significant contributions in the theoretical treatment of water reservoir systems. 

When .the treatment of storage problems with complex inputs and outputs becomes analytically intractible, 
the only approach left at present is the use of the experimental statistical (Monte Carlo) method in generating 
new samples of given sizes for inputs and outputs, with realistic representation of all processes involved. The 
simulation method permits an assessment of effects of various hydrologic complexities in solving storage 
problems, at least within the limits of sampling reproduction of the basic processes. 

This Hydrology Paper makes a use of both methods, mathematical analytical and data generation, in 
determining the properties of range when inputs are complex:periodic-stochastic processes. A huge gap exists 
at present between the mathematical theoretical solutions of water storage problems, derived under over
simplifying assumptions, and the solutions which would be obtained with realistic physical conditions of 
inputs, outputs, and stochastic changes inside the storage capacities. Continuous attempts are needed to make 
bridges between the mathematical analysis of storage problems with realistic assumptions and true solutions 
which would be obtained under these realistic physical conditions. The progress in finding theoretical solutions 
for reservoir problems may be fastest by combining the use of all methods available in obtaining the probabilistic 
properties of range and other random variable related to storage problems. 

The results presented in this paper explain how the realistic inputs affect: the key parameters of the range, 
with the range conceived as the needed storage capacity for regulating the inputs (given in the form of various 
generated samples) to produce given simple outputs for given regulating time intervals. Particularly, it is shown 
how the periodicity in the mean, in the standard deviation and in the autocorrelation coefficients of stochastic 
components of runoff input series with intervals smaller than the year, affect the expected range and the variance 
of the range. The data generation method can be a very useful procedure for showing planners and operators of 
reservoirs that the theoretical analyses of storage problems have a realistic relationship with current practical 
problems of design and operation of storage capacities. 
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Program, Department of 
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ABSTRACT 

The storage problem of within-the-year water fluctuations is the main topic of this paper. The storage 
difference equation which relates inputs, outputs and storage is used for formulating the mathematical problem. 
This leads to the problem of determining the expected values and variances of the range or adjusted range of 
cumulative departures from the population and sample mean, respectively. 

Using the univariate, bivariate and trivariate normal distribution functions for the marginal and joint 
distributions of the partial sums, the exact expressions of the expected range are derived for n = I ,2 and 3. 
From these general expressions, particular cases of the expected range of independent and linearly dependent 
variables are derived. Based on these derived exact equations of the expected range, approximate equations are 
derived for higher values of n . 

The expected value of the adjusted range of inputs equally dependent (exchangeable variables) and outputs 
equal to a percentage of the mean inflow, is shown to be expressed in the same way as the expected value of the 
unadjusted range of exchangeable random variables. This result is relevant in hydrology because when one is 
interested on overyear storage design and the assumption of independence of streamflow events is sufficiently 
accurate and the regulation or development is expressed as a fraction of the sample mean inflow, then the 
expected value of the storage for a given number of years is given by the expected adjusted range which now may 
be computed exactly by the derived equation. 

The variance of the range was derived mathematically for the case of Markov first-order linearly dependent 
normal random variables for the case of n = 1 and 2. For the case of higher values n and periodic standard 
deviation, approximate equations are obtained by using the data generation method: 

Based on mathematical approximations derived for the expected range and assuming a Markov first-order 
Linear dependence structure of the stochastic part of monthly streamflows, a design method is developed by 
which the total storage is made up of two parts: (a) a deterministic storage which is a function of the standard 
deviation of the periodic monthly mean Jl.T and on the mean and standard deviation of the periodic monthly 
standard-deviation aT ; and (b) a st ochastic storage which is a function of the mean and standard deviation of 
the periodic monthly standard deviation aT and of the first serial correlation coefficient p . 
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Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 80521 
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CHAPTER I 

INTRODUCTION 

1.1 General Concepts 

Water is always controlled and regulated by a 
water resource system to serve a wide variety of uses. 
For example, water is regulated for urban use, 
irrigation, hydropower, navigation, recreation, water 
quality control, flood control, and so on. These uses 
may be either competitive or complementary to 
various degrees. This does not make the problem of 
design and operation of a water resource system with 
reservoirs a simple task. 

As one example of competition, release of 
water for irrigation or municipal supply may impair 
recreational uses at the reservoir and power pro
duction. An example of complementary use may be 
the case of flood control with low flow augmenta
tion. Water conflicts usually are compromised in 
project design. That is, trade-offs are considered in 
allocating the supply for different uses, which in turn 
require an estimate of alternative designs of a water 
resource system. 

One of the most importants aspects of water 
resource systems is water regulation by reservoirs. It 
basically represents man's interference with the 
hydrologic cycle in an attempt to "'balance" supply 
and demand. In other words, one often needs to 
smooth out the peaks and lows of streamflow so as to 
obtain a greater beneficial use of water resources. 

The design of a water resource system must be 
viewed within the context of hydrologic risk and 
hydrologic and economic uncertainties. The 
stochastic nature of inputs and outputs of a water 
resource system is the reason for considering the 
hydrologic risk and uncertainties. The economic 
uncertainties are also present because the discount 
rate and other economic parameters are subject to 
uncertain changes over time. This risk and all 
uncertainties make it necessary to consider alternative 
designs to achieve developments that are optimal. 

Within the past two decades, the methods for 
planning, design and operation of water resource 
systems have been changing from the use of "rules of 
thumb" and "engineering judgment" to a more 
formal type of analysis based on mathematical 
models. Approaches to be used in design of storage 
capacities may be classified into three 
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methods: empirical, experimental (simulation or data 
generation), and analytical (mathematical), 
(Yevjevich, 1972)*. 

The empirical method, known as the Rippl's 
diagram or mass curve is still the most commonly 
used method for analyzing the relationship between 
reservoir input, output and 'storage capacity. This 
method assumes that both input and output are 
known functions of time and produce the storage 
capacity required for no water shortage to occur 
during the period considered for analysis. However, 
the reliability of results of this analysis, based on a 
single sequence of hydrologic events or historical 
record, is limited, because it is unlikely that the same 
flow sequence will occur again during the life of a 
reservoir. In other words, another sequence of 
hydrologic events will require a storage capacity dif
ferent from that found by using the historical record. 
Another disadvantage of this empirical method is in 
the length of historical records, which is likely to be 
quite different from the economic life of a dam. 
Since the required storage capacity for a given regula
tion rule increases with an increase of the length of 
record, the estimated capacity based on a historical 
record will be different from th~t based on the eco· 
nomic life of the project. 

Because of the stochastic nature of strearnflows 
and water uses, one cannot speak of the storage 
capacity of a reservoir in a detenninistic sense. In 
reality, the needed capacity for a given sample size is 
a random variable, and it is therefore necessary to 
consider statistical measures such as the expected 
values and variances of the distribution of this 
variable in the design of the finite capacity of a 
reservoir. The data generation method approaches 
this problem by generating either a large number of 
samples of the project life size or large samples of 
data. This method is called, in mathematical statistics 
and probability theory, the Monte Carlo method. It 
uses independent random numbers of empirical or 
theoretical probability distribution functions, the 
time dependence structure and adds the periodic 

*Name and date in parenthesis refer to the author's 
name and date of publication given in the biblio
eraphy. 



components when they are present in a series. This 
method enables one to determine approximately the 
moments and probability distribution functions of 
random variables related to storage problems. 

The mathematical method consists of finding 
by exact, asymptotic or approximate derivations the 
properties of various variables related to storage 
capacity design, such as the mean, variance and other 
parameters of surplus, deficit and range. Exact 
general expressions for some of these properties of 
the range, with the range definition based on the 
cumulative departures from the mean, have been 
derived in the past only for the case of independent 
and identically distributed normal random variables. 
Similar properties are not known when the random 
variables are dependent and have non-stationarities. 

The complexity of reservoir · capacity designs 
depends on the type of required or proposed 
regulation. For example, if the regulation is of the 
overyear storage type, the analysis is based on annual 
streamflows and a given degree of river development 
or draft, which are usually given as a percentage of 
the mean inflow. In dealing with annual streamflows, 
the assumption of independence of events is in many 
cases sufficiently accurate. However. in other cases, 
the serial correlation between the values is significant, 
with Markov or linear autoregression models widely 
used for describing the dependence, (Yevjevich, 1964; 
Fiering, 1967). In many cases, annual streamflows are 
stationary stochastic processes; therefore the pro
perties of the random variable of storage capacity 
may be derived either from exact or from approxi
mate equations. 

If the within-the-year water fluctuations are 
considered in the design of the reservoir storage 
capacity, then the analysis is usually made either with 
monthly, weekly or daily streamflows, or with 
monthly, weekly or daily outflows. In dealing with 
monthly values of streamflows, a non-stationary 
stochastic process must be considered, since time 
series show periodicities in the mean, standard 
deviation and often also in autocorrelation coef
ficients, besides the time dependence structure of 
stationary stochastic components, (Thomas and 
Fiering, 1962; Roesner and Yevjevich, 1966; 
Yevjevich, 1971 ). Time series of monthly outflows of 
reservoirs, as water use time series, also show some 
characteristics similar to the monthly streamflows, 
(Salas-LaCruz and Yevjevich, 1972). The need to deal 
with non-stationary series of inflows c:nd outflows 
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makes the general mathematical treatment of storage 
problems extremely complex. 

1.2 Objective and General Approach in this Investiga
tion 

The storage problem of within-the-year water 
fluctuations is the topic of this paper. There
fore, mathematical models of monthly streamflow 
series are used. The main objective of this investiga
tion is to determine mathematical equations for the 
expected value and variance of storage capacity 
needed, measur·ed by the range values, which can be 
used in the design of a reservoir. 

The storage difference equation which relates 
inputs, outputs and storage is used for formulating 
the mathematical problem. This leads to the problem 
of determining the expected values and variances of 
the range or adjusted range of cumulative departures 
from the population mean and sample mean, res
pectively. 

Using the univariate, bivariate and trivariate 
normal distribution functions for the marginal and 
joint distributions of the partial sums, the exact 
expressions of the expected range are derived 
for n = 1,2 and 3. Based on these exact expressions, 
approximate equations are derived for the expected 
range for higher values of n. 

The variance of the range was derived 
mathematically for the case of Markov first-order 
linearly dependent normal random variables for the 
case of n = 1 and 2. For the case of higher values of 
n and the standard deviation periodic, approximate 
equations are obtained by using the data generation 
method. 

Based on mathematical approximations derived 
for the expected range and assuming a Markov first.
order linear dependence structure of the stochastic 
part of monthly streamflows, a design method is 
developed by which the total storage capacity is made 
up of two parts: (a) a deterministic storage which is a 
function of the standard deviation of the periodic 
monthly mean and of the mean and standard 
deviation of the periodic monthly standard deviation; 
and (b) a stochastic storage which is a function of the 
mean and standard deviation of the periodic standard 
deviation and of the first serial correlation coef
ficient. 



CHAPTER II 

REVIEW OF LITERATURE 

Empirical , simulation (experimental) and 
analytical methods have been used in the past in 
dealing with the analysis of reservoir storage design 
and operation. The empirical method proposed by W. 
Rippl, (1883), and somewhat modified later by many 
other authors, has been the most commonly used. 
With the development of the digital computer in the 
past 15 years, experimental simulation or data 
generation methods became attractive. Finally, 
mathematical analytical methods using the pro
bability theory, mathematical statistics and stochastic 
process analysis have also been attempted· by many 
authors during the last two decades, in efforts to 
solve the water storage differential equations under 
various conditions. 

From a theoretical point of view, previous 
investigations of water storage problems may be 
broadly classified into two categories: 

(1) Studies of reservoirs by assuming an infinite 
storage capacity. A great deal of research has been 
done along this line, and the concepts of the surplus, 
deficit and range of cumulative or partial sums were 
mainly analyzed under this assumption. The problem 
is, given the inflow and outflow characteristics, to 
fmd the moments and distribution of the storage 
capacity of a reservoir which, starting with any initial 
water level, would not run either empty or full in the 
following n years. 

(2) Studies of reservoirs by assuming a fmite 
storage capacity. The finite size of the storage 
capacity of the reservoir is given, and by assuming the 
inflow characteristics and the operating rules which 
determine the outflows, the problem is to find the 
time dependent probability function of storage levels, 
their limiting distribution, probabilities of water over
flow and probabilities of emptiness of the flnite 
reservoir. 

Since this study considers the reservoir storage 
problem by assuming an infinite storage, a detailed 
review of previous research concerning the statistical 
properties of the range and adjusted range comprises 
the first part of this chapter. The second part presents 
only a review of the investigations followed mainly 
by P. A. P. Moran, N. U. Prabu, W. B. Langbein, E. H. 
lloyd, and R. Jeng. 
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2.1 Analysis of Water Storage Problems by Ran_ge 

Let x. be a sequence of random variables and 
I 

assume that E(x.) = 0 , and 
I 

Si = x, + x, + ..... +xi ; i = I ,2, ... ; n 

M
0 

= max (0, S, , S, , . . ... , S
0 

) 

m
0 

=min (0 , S, , S, .•..... , S
0

) 

R =M -m . 
n n n 2.1 

The random variable S. is called the cumulative or 
I 

partial sum, M
0 

the maximum partial sum or sur-
plus, m

0 
the minimum partial sum or deflcit and 

R the range of the partial sums. 
0 

In many applications, especially for small values 
of n , it is necessary to modify the above defmitions; 
that is, each component of the partial sum is cor
rected for the estimated sample mean xn . There· 
fore , the above random variables will take the form 

i S:t' =S.- - S 
1 l 11 n 

* * M
0 

=max (0, S1 , S~ , ..... , S~ ) 

*- . ( * S* S*} m
0 

- mm 0, S1 , 2 , •. · · • , 0 

R*=M*-m* 
n o n 2.2 

where St is called the adjusted partial sum, M: the 
adjusted maximum partial sum or adjusted surplus, 
m* the adjusted minimum partial sum or adjusted 

0 

deficit and R* the adjusted range. Both types of 
0 

the above random variables, unadjusted and adjusted, 
are graphically shown in Figs. 2.1 and 2.2, respec· 
tively. 

The distributions of M
0 

, M~ , m
0 

, m: , R
0 

, 

and R* are of interest in the theory of water 
n 

storage and reservoir design. Assume a reservoir is of 
an infinite capacity which receives during every year a 
random streamflow input either of a symmetric o.r a 
skewed probability density function and releases t he 



population mean discharge f.L or the sample mean 
X0 . The probability that, starting with an initial 

water level, the reservoir will not run dry in the fol
lowing n years is given by the d istribution function 
of R

0 
or R~ . In general, finding these exact dis

tribution functions is a difficult mathematical pro
blem even for cases of independent normal random 
inputs. Therefore, one tries to approximate these 
distributions by finding either their exact expected 
values for finite values of n or their asymptotic 
expected values. 

After Rippl (1883) introduced the mass curve 
method for analyz1ng the relationship between the 
inputs, outputs, and storage capacity of a reservoir, 
several engineers tried to improve it. A. Hazen 
( 1914 ), realizing the shortcomings of Rippl' s 
approach, used standardized streamflow values of 
several rivers in order to increase the length of the 
historical records. He was able to test different 
reservoir storage capacities and evaluate the number 
of periods of water shortage occurring with each size. 
Subsequently, C. E. Sudler (1927) for the first time 
generated synthetic sequences by writing historical 
records on cards, shuffling them and then drawing a 
series of cards to represent a sequence of flows. 
Sudler's attempts were the first to use an 
experimental approach to approximate the stochastic 
nature of reservoir design and thus replaced the 
Rippl's and Hazen's empirical approach. 

H. E. Hurst (1951), in computing the storage 
required for the Great Lakes of the Nile River Basin, 
was the first to apply more formally the concepts of 
probability theory to the storage problem. His 
method made a statistical interpretation of Rippl's 
approach by estimating the mean adjusted range of 
cumulative departures of streamflow records. He 
specifically used the binomial expansion for approxi
mating the normal probability density function, and, 
with some concepts of combinatorial analysis, he 
derived the asymptotic expected adjusted range as 

E {R~ } = oj]if, 2.3 

in which o is the standard deviation and n is the 
length of record. 

Hurst also analyzed a large number of records 
of annual values of natural phenomena such as rain
fall, temperature, water levels, riverflows and so on. 
From the plots of the rescaled mean adjusted range 
R

0
/0

0 
against the observation length n , Hurst 
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concluded that the observed adjusted ranges do not 
increase as the square root of n , but as a higher 
power nc , with a mean value of c of 0.729 and a 
standard deviation of 0.092. 

Hurst's findings Jed many hydrologists to pro
pose stochastic models to account for high and low 
frequency effects in order to reproduce the depar
tures from the square root law, usually called the 
Hurst phenomenon. However, even though Hurst 
analyzed a large number of records, these departures 
from the square root law, to the understanding of the 
writer, do not represent a conclusive characteristic of 
streamflow processes. Fiering (1967) clearly says 
Hurst's results are the outcome of "a jumble of dis
t r i butions, record lengths, correlations and 
processes." Another weakness of Hurst's findings is 
that his slopes are based on estimated mean adjusted 
ranges which are highly uncertain, especially for 
values of n ;> 100. For example, for the records of 
around 1 000 years, the mean adjusted range 
for n = I 00 was computed by averaging 10 values, 
for n = 500 by averaging 2 values, and for 
n = I ,000 there is only one value. How can his 
slopes be the evidence of low frequency effects if the 
mean values were estimated over such small samples? 
The writer considers that the Hurst's results should be 
accepted with caution before trying to reproduce 
slopes which may not really represent natural charac
teristic of streamflow. If in the future, with more 
available record s, Hurst's findings are substantiated , 
then the use of stochastic models which could repro
duce slopes higher than 0.5 for n very large may be 
necessary, particularly if one is interested in designing 
reservoirs for periods of time greater than 100 years 
(Fiering, 1967). 

W. f eller (1951) found the general expression 
of the probability density function of the range 
R(t) in continuous time. Feller assumed independ
ent normal random variables and approximated the 
discrete random variables S. with a continuously 
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changing normal variable S(t), with mean zero and 
variance t . Thus, the moments of R(t) constitute 
the asymptotic moments of the discrete vari
able Rn . In particular, he obtained the asymptotic 
mean and asymptotic variance of the range as 

E {R
0 

} = 2jii::::: 1.5958 n 'h , 2.4 

and 

Var {R
0 

} :: 4n(log 2- 2/tr) ::::: 0.2181 11 • 2.5 



By approximating the discrete random variables sr 
with a continuously changing variable S*(t) , Feller 
also found the expression of the exact distribution of 
the adjusted range R *(T) in continuous time. In 
particular, the asymptotic mean and asymptotic 
variance of R: are given as 

rn; ]l 

E {R~}.:v'-1-~J.2533n,. , 2.6 

and 

7r 7r 
Var{R• }::- ( - - 1) ~ 0.0741 n . 2.7 

n 2 3 

These theoretical results also apply for cases in which 
the underlying distribution of the original random 
variables are not normal, since for large values 
of n the partial sums S or S * are asymptotically 

n n 
normally distributed. 

A. A. Anis and E. H. Lloyd (1953) gave the 
exact expected value of the maximum of the partial 
sums sl ' s2 ' ... sn of independent normal variables 
with mean zero and variance unity, in the form 

n-1 
1: 

i=l 

which leads to the expected value of the range 

E{R } = If 
n V "ti 

n-1 
1: 

i=I 
. ·~ 
I . 

2.8 

2.9 

Equation 2.9 gives the asymptotic expected value 
of 2..[fiiiir in agreement with Feller's results. 

Subsequently, A. A. Anis (1955) published the 
exact second moment of the maximum of the partial 
sums sl 's2 ' ... ,sn 'for independent standard nor
mal random variables. His equation for n ;;., 2 is 

E {M~ } = i (n + l) 

1 n-2 i 
+T1T 1: 1: [j(i-j+I))"~. 2.10 

i=l j=l 

which gives an asymptotic second moment equal to 

2 + ..J'[ 
E{M2 } ::: n--~-

n 11 

~ n . 2.11 
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A. A. Anis (1956) presented a recurrence rela· 
tionship for obtaining the numerical evaluation of all 
the moments of the maximum of the partial 
sums, sl 's2 , ... , sn 'of independent standard nor
mal variables as 

n-1 I 

..,J'Er 
~ i -~ E{Mr·~ } -

i=l n-•+1 

n-1 I 
t-(r -l)nE {M~·:, } - 2 (r - 1) i~l E {M~~~ } . 

2.12 

for n ;;., 2 and r ;;., 3. Therefore, by using the flrst 
two moments: as given by Eqs. 2.8 and 2.10, higher 
order moments may be obtained from Eq. 2.12. 

F. Spitzer (1956), using combinatorial analysis, 
published a more general result than previously 
obtained. Considering a sequence of independent and 
identically distributed random variables and sj = x, 
+ x2 ... + xi and M; = max(O,S1 ,S2 , ••• , S;), and 

2.13 

Spitzer derived the identity 

00 00 

I: <1>J.(t) .z! = exp [ I: J··l t/1
1
. (t) zi ] 

j=O j=l 
2.14 

where <P.(t) and 1/l.(t) are the characteristic func
tions of ~. a{ld s~. )respectively, that is 

J J 

2.15 

t/l;(t)= E {exp(itSj)} 2. 16 

Spitzer's equation (Eq. 2.14) is general and 
valid for independent and identically distributed ran
dom variables of any distribution function. From this 
identity, the moments of the surplus Mn may be 



directly obtained. For the first moment, differen
t iating Eq. 2.14 with respect to t, and 
setting t = 0 , then 

00 
00 

~ <1>,~(0) zi = [ ~ J·· l l/1,: (0) zi] 
j=l j=l 

00 

exp [ k f 1 l/1.(0)] t ' 
j=l J 

and 

00 00 

k <I>~ (0) zi = [ k j"1 11/ (Q) z:i] (I · z)"1 

j=I J j=1 J 

Since from Eqs. 2.15 and 2.16 

<~>; (0) = i E (Mi) and l/1; (0) = i E (~ + ) 

then the first moment of the surplus is 

n 
= ~ ··I E {S+ 1 

""" I ,· J • 
i=l 

2.17 

Similarly, differentiating Eq. 2.14 twice with respect 
to t and setting t = 0 , then 

00 00 

k <I?~' (0) zi = ~ 1- z)" 1 { ~ j" 1 lj/' (0) zi 
j= 1 J j= 1 J 

00 

Since <~>;to) = - E(MP and 1/;;(o) = - E(S~ ) , 
then the second moment of the maximum for 
n ~ 2 is 

n 
E {M2

} = ~ i"1 E(S.+ 2 ) 
n i=1 ' 

n i·l 
+ L L 

i=2 j= 1 
j"I (i- j)"I E(S) E(S~ .) . 2 18 J )·j • 

Equations 2.17 and 2.18 are generally valid for 
independent and identically distributed random 
variables of any distribution function . Specifically, 
for the case of normal random variables with mean 
zero and variance a2 

, the partial sums Si are also 

6 

normally distributed with mean zero and vari
ance Var S1 = ia2 

• The expected value of s;, is 

I oo 
E{S:}=E{"2 [Si+ I Sil]}= f SJ(S1)dS1 

0 

+ 1 ~ E {S. } = - [Var S. ] 
I V'J_i( I 2.19 

Similarly, the second moment of s; is 

Since for a symmetric distribution 
E(S1IS11) = 0 , then 

E {S .. 2 } = -
2

1 
Var{S.} . 

l l 2.20 

Substitution of Eqs. 2.19 and 2.20 into 2.17 and 2.18 
leads to the expected value and second moment of 
the maximum of partial sums for the case of 
independent normal random variables. This sub
stitution then results in: 

and 

I E{M } =-
n ~ 

£ i"1 [Var {S. }]~ 
j=) I 

1 ill 

E{ M2 } =- ~ i"1 Var{ S. } 
n 2 i=1 1 

2.21 

1 n i-1 
+ - L k f 1 (i-j)- 1 [Var{ S.} Var{ S . . } ] v. 

(2?T) i=2 j=} ) L•J 

2.22 

Therefore the expected value of the range may be 
written as 

If n ~ 
E {R } = .k i"1 [Var {S. }] . 

n t=l ' 
2.23 

For the particular case of standard normal random 
variables, the Eqs. 2.21 and 2.22 are in agreement 
with Eqs. 2.8 and 2.10 derived by A. A. Anis. 



M. E. Solari and A. A. Anis (1957) derived the 
exact expected value and the second moment of the 
maximum of th e adjusted partial sums for 
independent and standard normal random variables as 

and 

1 n1
- I 

E{M*1
} = - [ - -

n 6 n 

n-1 i-1 .(2. ) 
t -Jrl 1: .1: I I-n j ' 

2rr i=2 J=l yj3(n- i)(i- j)3 2.25 

which lead to asy mp totic values of 
.../nrr/ 2/2 and n/2 - .Jn respectively. 

N. U. Prabu (1965), reviewing Moran's model 
for the storage, gave a non-explicit solut ion of the 
probabiUty generating function of the maximum 
partial sum Mn for independent random variables, 
~~ both discrete and continuous time. M

0 
is defined 

Mn +l = max (0, Mn + xn - m) , 

n = 0 , I , 2 , ... , 2.26 

with xn the random input m the constant out
flow. 

For the case of input xn of a discrete distribu
tion function, with the probability generating func-
tion 

X 

K(O) = E{O n } , 181 < 1 , 

Prabu gives 

00 
M m 8. ~ 

1: t" E {8 n } - l 11 (...,--,;.t.) , 
o om - tK(O) r=l 1 · t r 

(lt l < l , 181 ~ 1) , 2.27 

where ~ 
1

, ~2 , . . . , ~m are the roots of the functional 
equation ~m = tK<n , such that l~r l < I . 
If m > m = E(x ) , then the limiting distribution 

1 n 
of M as n -+ oo exists, and its probability 

n 
generating function becomes 

7 

· (m-m1 )(1-8) m-l 8-a 
U(8) = K(e)- em ~I c-r=a;-) , 2.28 

where a 1 ,a2 , ••• ,am-J are the roots of the equation 
am = K(a) within the unit circle. 

For the case of input X
0 

having a continuous 
distribution K(x) = P{x n ~ x } and the partial 
sum, defined as S = x + x

1 
+ ... + x 

1
, the dis-n o n -

tribution function Kn (x) = p { sn ~ X } , 

K
1 
(x) = K(x); the probability generating function 

of M
0 

is 

00 00 
t" 

1: t" E{e·8 Mn } = exp [ 1: 
0 1 

-n 

oo (teo m )" oo 

+ 1: f 
1 n! nm 

(I t I < I , Re (8) > 0 ) . 2.29 

Furthermore, if m > m
1 

= E(xn) , the limiting 
storage function is 

00 
00 

exp [ - l: n· 1 f (1- e·9 x) dK
0

(x + nm)] 
I o 

2.30 

V. Y evjevich (1 965) gives a detailed analysis of 
applications of surplus, deficit and range in 
hydrology. He made a comparison of the empirical, 
data generation and analytical methods of obtaining 
statistical properties of surplus, deficit and range for 
values of n = 2 and n = 3 . Using the data 
generation approach, he found the mean, variance, 
skewness coefficient and the distribution of the 
unadjusted and adjusted surplus and range for a first
order Markov process for values of n up to 50 and 
various values of p. 

M. J . Melentijevich {1965) investigated the case 
of the range when the output is linearly dependent on 
storage. Using the data generation method, he gives 
approximate equations for the expected value and 
variance of the range. Approximating the storage dif-



ference equation in discrete time by the continuity 
equation in continuous time, and using S. 
Chandrasekhar's (1954) method and the Fokker
Planck partial differential equations, he also found 
the probability density function of the cumulative 
sums. 

P. Sutabutra (1967) investigated the reservoir 
design problem for within-the-year regulation 
assuming a constant standard deviation for variables 
at various positions during the year and the first-order 
Markov linear model for the stochastic part of the 
monthly streamflow data. He separated the total 
storage into a deterministic storage, as a function of 
the periodic means of the inflow and outflow series 
only, and a stochastic storage, as the expected value 
of the range for the first order Markov model. Based 
on his simulation, he suggested that the expected 
range for the first-order Markov model may be 
expressed as an approximation by 

E{R } = ![ .~ i"1 (Var{S. }]~ 
n .../rr F} I 

2.31 

which is the same as E { Rn} given by Eq. 2.23. 

V. Yevjevich (1967) using the data generation 
approach, also suggested that the expected range of 
linearly dependent normal variables may be expressed 
by Eq. 2.31 . He specifically analyzed ;the cases of the 
first and second-order Markov models and the simple 
moving average scheme. The expected values of the 
range computed by Eq. 2.31 gave a close approxi
mation to the values obtained by his simulation. 

0. Ditlevsen (1969) found the asymptotic dis
tribution function of the maximum of a stationary 
stochastic process in continuous time by considering 
the partial sums in continuous time as 

t 
S(t) = :f [ x(t) - E(x) ] dt , 2.32 

0 

and the maximum of the process S(t) in continuous 
time defined as 

11 (T) = sup 
<Ktq 

t 
f x(t) dt 
0 

2.33 

Assuming the case of a standard normal process, 
Ditlevsen found that asymptotically as T~, 

8 

where T 
w(T) = f x(t) dt . 

0 

2.34 

J. M. Mejia (1971), using the asymptotic dis
tribution of 11(T) as given by Ditlevsen, derived the 
asymptotic expected value of 11(T) or the 
asymptotic expected value of the range 
E { R(T) } = 2E{1l (T) } as 

E{R(T) } :::: 
4 

[Var w(T) ]\.-2 2.35 
.J27T 

where the variance of w(T) is given by 

with 

and 

Var w(T) = 2 A(T) [T- G (T)} 

T 
A(T) = f p (u) du 

0 

1 
G (T)= -

A(T) 

T 
f u p (u) du , 
0 

2.36 

2.37 

2.38 

where p(u) is the autocorrelation function of the: 
continuous stationary process x(t). 

2.2 Water Storage Analyzed by Other Methods 

P. A. P. Moran (1954) applied the probability 
theory to the problem of finite water storage. 
Moran's model was formulated in discrete time, so 
that the process occurs at discrete series of time inter
vals. The following assumptions are made: 

(1) The water input xt is a continuous, 
independent and identically distributed random 
variable. This input is assumed to occur during the 
"wet season" and is stored until the "dry season" 
when it is released. 

(2) The reservoir has a finite capacity 
K , and the storage at time n before the input 



: 

1 

l 
,j 

x flows into the reservoir is Z
1 

Jf Z
1 

+ x
1 

> K , 
an amount Z

1 
+ x

1 
• K will overflow, but 

if Z
1 

+ x
1 

.:S K, there will be no overflow. The 
reservoir now contains a quantity rnin(K,Z

1 
+ x

1
). 

(3) At time n + 1 , an amount of water 

m( < K) if Z
1 
+ x

1 
;;.. m or Z

1 
+ x

1 
if Z

1 
+ x

1 
< m 

is released from the reservoir. The release is thus 
Y

1 
= min(m, Z

1 
+ x

1
) • 

From these assumptions, the storage function 
Z

1 
satisfies the recurrence relation 

Z1+ 1 = min (K , Z1 + x
1 

) - min (m , Z
1 

+ x
1 

) 2.39 

so that the random variable Z
1 

forms a homo· 
geneous Markov chain. 

Considering the case in which the inputs have a 
discrete probability distribution with P { x

1 
= j } 

= gl , G = 0,1 ,2, ... ), the Markov chain Z
1 

has a 
fmite number of states 0, 1, 2, ... , K-m. Let its 
transition probabilities be denoted by 

p<_n) = P{Z = j I Z = i } 
ij t 0 

2.40 

(i , j = 0 , 1 , ... , K - m , n ~ I ) ; 

furthermore, let p(~) = 1 or 0 degend on whether 
i = j or i * j , aniJd also denote p(~) = P ... From 

I) I) 

the recurrence relation of Eq. 2.39, Moran found 
that the transition probability matrix P = (PiJ) may 
be written as 

2.41 

0 2 k-m- l k - m 

0 Gm &m•l &.,+2 &. .• h. 

G., . , &., t m•l c.., h • . , 

P• 
m Go g, g, c. ..... h . ... 

m+ I 0 g 
" 

~. S~ ·m ·l h . ..... 

k - m 0 0 0 gnJ • I h m 

9 

where Gi =So + gl + ... + gi 'hi = gi + gi+J + ... , 
(i ~ 0) , and it is assumed that m < K/ 2 . From the 
above transition probability matrix, it follows 

00 

1: P~.")zn = z2 Q. (I - z P)- 1 R. , 2 42 
n=2 IJ I J • 

where Q1 = (P . .Pv ... ,P. K ) ,I is the identity 
_ 10 1 1, ·m T 

matrixand Rj - (P0 J,Plj'" .. ,PK-m) . 

The distribution of the stationary storage was 
also obtained by Moran while N. U. Prabhu (1958) 
derived the exact solution when the inputs have 
geometric, negative binomial and Poisson distribu
tions. Subsequently, A. Ghosal (1960), following 
Moran's storage theory, analyzed the problem of 
emptiness with overflow and before overflow, fmding 
the expected values of the wet periods. 

W. B. Langbein (1958) presented an application 
of queuing theory to the storage problem. The 
analogy of queuing theory with the storage problem 
is as follows. The inflow to the reservoir represents 
the arrivals, the impounded water is the queue, and 
the regulated outflows represent the departures. 
Langbein developed a procedure for determining the 
frequency distribution of storage, the frequency of 
spills, the frequency that the reservoir may be empt y 
and the frequency distribution of reservoir outflows. 
He presented two kinds of solutions. The ftrst solu· 
tion was algebraic, applicable only to a linear service 
function and normal inflows, and the second solution 
gave a method termed " probability routing" when 
service functions are non-linear and inflows are non
normal. His procedure also allows the analysis con
sidering monthly inflows and outflow demands. 

E. H. Uoyd (1963) extended Moran's model of 
fmite reservoirs so as to take into account the serial 
correlation of inflows. The assumption is made that 
the dependence structure of this sequence may be 
approximated by a homogeneous Markov chain. 
Using bivariate Markov processes as the joint distribu
tion of storage and inflows, he derived the limiting 
distributio n of storage. In another study (1963), 
U oyd obtained the explicit expressions for the distri· 
bution of reservoir levels in terms of the correlation 
coefficient b etween consecutive inflows. The 
probabilities of emptiness and spill-over are also 
given. Subsequently, E. H. U oyd and S. Odoom 
(1964) analyzed the case of seasonal inflows. A 
simple case, a two-seasonal year with three-valued 



input distributions, is given. The main modification 
they made to the non-seasonal model was to assume 
different distribution of inflows in each season. 

R. Jeng (1967) found the probability density 
function of water levels in a fmite storage for inflows 
with independent increments and outflow equal to 
the mean of inflow. He assumed that the inflow 
process was independent of storage and that the 
in flow varies extremely rapidly compared to 

S· 
' 

Fig. 2.1 

2 3 ... IRn 

L_ I 

I n 
- ----., 

Definition of the maximum partial sum, 
M

0 
(surplus), the minimum partial sum, 

m (deficit), and the range, R . n n 

10 

variations of the storage. Under the above assump· 
tions the storage process is a case of a one
dimensional diffusion process with zero drift, in the 
presence of two reflecting barriers at 0 and 
K with K the fin ite storage capacity. Using the 
method of image points, Jeng derived the time 
dependent probability density function of the water 
levels or storage, and also found its limiting distrib· 
ution function as t+oo. 

S· 
I 

Fig. 2.2 Definition of adjusted partial sum, S~ 
I 

the adjusted maximum partial sum, M~ 
(adjusted surplus), the adjusted minimum 
partial sum, m: (adjusted deficit), an<l 
the adjusted range R * . 

n 



CHAPTER III 

GENERAL THEORETICAL FORMULATION 
FOR RANGE OF PERIODIC-STOCHASTIC SERIES 

A general mathematical formulation is 
presented in this chapter for analyzing the range 
problem of periodic-stochastic inputs and outputs. 
General characteristics of inputs and outputs com
monly used in hydrology are reviewed, and some 
autocovariance and/or autocorrelation functions are 
derived for use in the following chapters. Sub
sequently, the general characteristics, moments and 
distributions of partial sums, surplus, deficit and 
range are reviewed. 

3.1 Stochastic Storage Difference Equation 

The basic relationship between inflow, outflow 
and storage is expressed by the difference equation 

.1.S 
X -y = -

1 I Llt 
3.1 

where x
1 

and y
1 

are the inflow and outflow 
respectively, and S is the storage of the reservoir. 
Considering the time increment of t equal to one, 
the above equation may be expressed as 

x, - y, = s, - s,_ 1 , 

or 

3.2 

Equation 3.2 constitutes the general stochastic 
storage difference equation whose solution is 
expressed in terms of moments and probability distri
bution, since x

1 
and y

1 
are in general random 

variables. The solution of the Eq. 3.2 depends in 
general on the complexity of input and output, 
x

1 
and y

1 
respectively. They may be independent 

identically ·distributed random variables, independent 
but not identically distributed, dependent stationary 
and dependent non-stationary random variables. 

A. Characteristics of inputs and outputs. In 
general, inputs and outputs show periodic and 
stochastic components and may be described by 
mathematical models of the form, 

m 

z = :E 
p,T j=J 

Q . . z . + k € ' J ,T· J p ,T·J m ,T p,T 

3.3 

3.4 

11 

and 
m m 

k m,r = (I - :E :E Q 1. ~ 1• aJ. ~ J. PI,·-J·I,· ·n } !-S i=l j=l .. . •. • . " 

[£ = max(ij)] , 
3.5 

where r = 1,2, ... ,w, with w the annual cycle (of 12 
months, 52 weeks, or 365 days), 
p = 1,2, ... ,n, with n the number of years of 
record, x represents the input or output p,T 

series, JJ,. and o,. are the periodic mean and stand-
ard deviation ,a . . are the periodic autoregression 

J T·J 
coefficients whiCh are functions of the periodic auto 
correlation coefficients p. ., z is a m-th order 

J,T·J p ,T 
non-stationary Markov process, and € is a 
second-order stationary and independent sfo~hastic 
component. 

By Fourier analysis, the periodicities in the 
mean, standard deviation and autocorrelation coef
ficients may be represented by 

m 
vT = v,. + j~l [Ai cos(21rf/) + Bi sin (21T f/)] 3.6 

where v may represent JJ , a or pk ; v-· is 
T T 'T ,T T 

the mean of v,. , m is the number of significant 
harmonics, Ai and Bi the Fourier coefficients 
and fj is the frequency of the harmonic j . The 
estimation from the sample of the periodicities 
JJ , a , and pk , and the estimation of Fourier 

1' T ,T 
coefficients are given elsewhere (Yevjevich, 1972). 

The periodic autoregression coefficients 
a . . of the m-th order Markov model z of 
J~~ p~ 
.t.q. 3.4 may b e obtained by taking the expectation 
of the product of z and z k as 

p,T PtT-

m 
E {z z k } = L a. . E {z kz . } 

p,T p ,T· j=J ) ,T·J p ,T· p ,T•J 

Since z k and € are mutually inde-
p,r· p ,r 

pendent, with means zero and variances unity, it 
follows that 

m 
P = L a. .P . kl n 

K,T·k j=l J,T·J IJ· ,T·I< 3.7 



with Q = maxQ,k),k = 1,2, ... ,m, the first subscript 
of p denoting the lag and the second the position in 
time. This expression is a system of m equations 
with m unknowns, a . .J· = 1,2, ... ,m, which may 

(1) For the ftrst-order Markov model, 
m = 1 

J,T·J 
be solved as a function of autocorrelation coef-

a = P . 
I ,T-1 I,T·I , 3.8 

ficients, pk ,t· k . As may be noted, Eq. 3.7 is general 
and may be simplified to the well known recursive 
equation for the m-th order stationary Markov model, 
or with constant autoregression coefficients. 

(2) 
model, m 

Fo r the second-order Markov 
= 2 

Since the fust, second and third-order Markov 
models are most commonly used in hydrology, the 
autoregression coefficients for these non-stationary 
models can be derived from 3.7 and are 

and 

and 

p I,T-1 - PI,T·2P2,T-2 

l - p~ ,T·2 

3.9 

3.10 

(3) For the third-order Markov 

+ 

+ 

and 

model, m = 3, 

P 1 ,T-1 (1 - P~,.,.-3) + P 1 ,T-3Pl,T-2P3,T-3 ""' P l ;r-2P2 ,T·2 - P2 ,T-3P3 ,T-3 

1 + 2p i,T·2P2,T-3P1,T-3- P~ ,T-3- P~,T-2- P~,T-3 

+ 
2 2 2 

l + 2p 1 ,r-2P2 ,r-3P 1 ,T-3 - P 1 ,T-3 - P 1 ,T-2 - Pz ,T- 3 

2 2 2 1 + 2P 1 ,T·2p2 ,T·3p 1 ,T-3 - P 1 ,T· 3 - P 1 ,T-2 - Pz ,T-3 

Pl,T-2p2 ,T-2p2 ,T-3 
+ ---------------------------------------

12 

+ 

3.1 1 

3.12 

+ 

3.13 



B. Autoco" elation and lag cross-co"elation 
functions of non-stationary Markov models. Since 
the m-th order Markov model, as given by Eq. 3.4, is 
non-stationary, its covariance structure depends on 
the lag k and the time position t . With the sub
script (p,r) of z and € variables changed to 
t for simplicity of notation and assuming E {z

1 
}= 0, 

then 

Taking the expectation of the product z 1 z t +k with 
z

1 
given by Eq. 3.4, it follows 

m 
COY {z1 , Zt+ k } = j~J O:j,t +k-j COY {z1 , Zt+k·J } • 

Since Var z
1 

is constant and equal to unity 
the autocorrelation function for the positive lags 
becomes 

m 
p (k,t) = .~ a:. t +k -' p (k - j ,t) 

j=l J. J 
(k > m), 3.14 

where p(k,t) and p(k-j,t) are the two-dimensional 
autocorrelation functions of the lags and the posi
tions. Similarly, the autocorrelation function for the 
negative lags becomes 

m 

p (k,t) = j~l a:j,t-j p ( - k - j , t + k) 
3.15 

(k <- m) ' 

with p(o,t) = I , and p(k,t) for lk l :;;;; m estimated 
directly from data. 

Equations 3.14 and 3.15 may be used 
recursively to obtain the autocorrelation function of 
the m-th order non-stationary Markov process z

1 
for 

any lag lk l > m and at any time t. In particular, 
for the first-order Markov model, Eqs. 3 .14 and 3.15 
may be simplified as 

k 

p(k,t) = .n P1 r +k -i 
1=1 ' 

(k > 1) ' 

and 
3.16 

k 
p (k,t) = IT p I t . 

i= J ' · I 
(k < - 1) , 

with p(o,t) = 1. In the case of the stationary first
order Markov model with the coefficient of correla-

13 

tion p 1 1 a constant for every t , the above equa
t ions simplify to the well known expression 
p(k,t) = p~ . 

For higher-order Markov models, say m ~ 2, 
the autocorrelation function may be obtained from 
the following iteration equations: 

For the second-order Markov model, m = 2, 

p (k,t) = a:l,t+k-1 p(k- l,t) 

+ a:2,t+k -2 p(k - 2,t) (k > 2) 

with p(i,t ) and p(2,t) replaced by p 1 ,t and p
2 

,t 

respect ively, and 

p (k,t) = a:1 ,1. 1 p ( - k - I, t + k) 

+ 0:2,1·2 p ( - k - 2, t + k) (k < - 2) 3.18 

with p(-2,t+k) replaced by 

p l,t+k-1 

p(-I ,t+k) 
and 

and 

P2,t+k-2 respectively. 

For the third-order Markov model, m = 3 , 

p(k,t) = a:1 ,t+k- 1 p (k - 1 ,t) 

+ 0:2 ,t+k ·2 p (k -' 2,t) + 0:3 ,t+k-3 p (k- 3,t) 

(k> 3) 3.19 

with p(l,t) , p(2,t) , and p(3,t) replaced by 
P

1
,
1 

,P
2

,
1 

and p3 ,1 respectively,and 

p (k,t) = a:l.t-1 p ( - k - 1' t + k) 

+ 0:2 ,t-2 p (- k - 2, t + k) 

+ a:3 ,t·3 p (- k - 3, t + k) (k <- 3) 3.20 

with p(-l,t+k) , p(-2,t+k) and p(-3,t +k) replaced 

by p1 ,t+ k·l , p2 ,t+k ·2 and p3 ,t +k-J respectively. 



3.2 Partial Sums 
A. General characteristics. By using Eq. 3.2 

and assuming S
0 

= 0 , the foUowing sequence of 
partial sums is formed. 

so = 0 

SJ = (xi - Y I) 

S2 = (XI - y I)+ (X2 - y 2) 

= 0 

= S
1
(x)-S

1
(y) 

= S
2
(x)- S

2
(y) 

= S.(x) - S.(y) 
I I 

Sn =(xi- Yt) + ... +(xn- Yn) = Sn(x) - Sn(y) 

3.21 

where S; (x) and Si(y) denote the partial sums 
x 1 +x2 ... + xi and y

1 
+y

2
+ ... +yi,respectively. 

Equation 3.21 is a general representation of the 
partial sums, and according to the characteristics 
of the output y 

1 
, for instance y

1 
"" IJ.x or 

y
1 

= xn , it may represent a sequence of unadjusted 
or adjusted partial sums, respectively, as are defined 
in Eqs. 2.1 and 2.2 of Chapter II. 

Considering the general model for periodic· 
stochastic inputs and outputs as in Eqs. 3.3, 3.4 
and 3.5, and replacing the subscript (p,1) by t , 
then 

3.22 

and 

3.23 

with the periodic 1J. and a and the z variable as 
defined previously. Therefore, the general term Si of 
the partial sum of Eq. 3.21 may be represented by 

S. = ~ [IJ.
1
(x) - IJ.

1
(Y)] 

I t=} 
i 

+ L [a
1
(x) z

1 
(x) - a

1
(y) z

1
(y)] 

t=l 
3.24 

For subsequent use related to the expected val· 
ues and variance of the range, it will be necessary to 
know the moments, and marginal and joint distribu· 
tion functions of the partial sums S

0 
, S 1 ,S2 ... ,Sn. 
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B. Moments of partial sums. Equation 3.24 has 
the expected value of Si 

E{S
1
. }= E [IJ.

1
(x) - JJ.

1
(y)] . 

t=l 
3.25 

For inputs and outputs stationary in the mean, Eq. 
3.25 simplifies to E{Si }= 0. 

The variance of Si(x) = x1 + x2 + .... + xi 
is 

i i 
Var S. = L E cov {x

1
, xu } , 

1 t=I u=l 

in which the general covariance of x
1 

is 

- E{ x
1
}E{xu }= E { [p.

1
(x) + a

1
(x) z

1
(x)] 

[ IJ.u(x) + a/x) zu<x)]}- p.1(x) IJ./X) , 

which simplifies to 

cov {x
1

, xu }= a
1
(x) au(x) E{ zt< x) zu<x)} 

= a
1
(x) a

0
(x)pz(x)(u- t,t) , 

3.26 

3.27 

where p ( )(u-t,t) is the autocorrelation function of 
the Marko~ process z

1
(x) given in general by Eqs. 

3.14 and 3.15. Substitution of Eq. 3.27 into 3.26 
leads to 

Var S.(x) 
I . . 

1 1 

= E L a1(x) a (x) p ( )(u - t ,t). 3.28 
t=l u= 1 u z x 

Similarly, 

Var S.(y) 
1 

i i 
= L E a (y) a (y) p ( )(u - t,t) . 

t=l u=1 1 u z Y 
3.29 

Th e covariance function be· 
tween S.(x) and S.(y) is 

I I 

i i 
COY {S .• (x), sl.(y)} = L L COY { xt' Yu } 

t=l u= 1 3.30 



with the general covariance of x, and y u 

cov { x
1 

, y u } = E { x
1 

y u }-" E { x
1 

} E {y u j 

= E { (l.t1(x) + a1(x) z1 (x)] [J.Lu(y) + au(y) zu(y)]} 

- J.L,(x) J.L/Y) 

which simplifies to 

cov{ x
1

, yu} 

3.31 

with Pz(x)z(y)(u-t,t) the lag cross-correlation func
tion of the two non-stationary Markov pro
cesses z1(x) and zu(y). Substitution ofEq. 3.31 into 
Eq. 3.30 leads to 

i i 
= 1: 1: a

1
(x) a/y) Pz(x). z(y)(u- t ,t) . 3.32 

t=l u=l 

Since the variance of the partial 
sum S. = S

1
(x) - S.(y) may be expressed by 

1 1 

Var S. :;: Var S.(x) + Var S
1
.(y) 

1 I 

,and using Eqs. 3.28, 3.29 and 3.32 then 

i i 
Var S. = ~ ~ [a 1(x) a (x) p ( )(u - t ,t) 

I t=) u::::J U z X 

+ a
1
(y) a/y) Pz(y)(u- t ,t) 

- 2 a1(x) au(y) Pz(x). z(y)(u- t,t)] 3.33 

Equation 3.33 represents the general expression 
for the variance of the partial sums si for the general 
case of stochastic difference equations of inputs and 
outputs. For subsequent applications, simplified in
puts and outputs are used, so that Eq. 3.33 simplifies 
as 

( 1) For x, independent and y1 = J.Lx , 
with J.lx the general mean of x1 , then 

Var S1 

i 
= ~ a2 (x) ; 

t= l t 

3.34 
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(2) For x1 an independent identically dis-
tributed variable with the variance a2 and y1 = J.lx 

Var S. = i a 2 
; 

I 
3.35 

(3) For x
1 

with a;<_x) the variance of 
x, ; the first-order non-stationary Markov model 

and Y, = J.lx 

i 
Var S1 = I: a 2 (x) 

t=l t 

~) ~t u 

+ 2 t~1 u~l a ,(x) at+u(x) kJ!l Pl,t+u-k ; 3.36 

(4) For x
1 

the first-order Markov model 
with constant variance a2 but the periodic Itrst 
autocorrelation coefficient and y1 = J.Lx 

Var S. 
1 

i · l i-t u 
= a2 

[ i + 2 L L n PI k] ; 3 .37 
t=l u=I k=J ,t+u-

(5) For x
1 

the first-order stationary 
Markov model and y1 = llx, 

Var S. 
I 

3.38 

(6) For x
1 

the m-th order non-stationary 

Markov model and Y1 = llx 

Var S1 

i ~1 ~t 

= :E a2 (x) + 2 :E :E a1(x) a1+ (x) 
t= I 1 t=l u=l u 

m 

j~l aj ,t+u-j Pz(x)(u - j,t) ; 3.39 

with Pz(x)(u-t,t) given by Eq. 3.14; 

(7) For x
1 

equally correlated {pij = p ), 
with a periodic standard deviation and Y, = J.Lx, 

Var S1 
i i-1 i·t 

= :E a2 (x) + 2 p 1: 1: a, (x) at+u (x) ; 3.40 
t=l ' t= l u=l 



(8) For x
1 

ind ependent 
and y

1 
= a'Xn (*) 

Var S~ 
I 

(n -
0
2 i o:) 2 ( ) (i a 2 n 2 = L a x + n-) ~ a

1
(x) 

t= 1 t t= 1 
3.41 

(9) For x
1 

second-order stationary and 
independent, and y

1 
= axn 

Var S~ 
I 3.42 

( 1 0) For x 
1 

the first-order stationary 
Markov model and y

1 
= a'Xn 

Var S* - ( 0 
-

2 i o:) 
1 - n Var S1 

• 2 
+ (~) Var S n n 

p(l _ pi-I) (I _ Pn-i ) 

(1 - p)2 . 3.43 

with Var {S1} and Var {S
0

} given by Eq. 3.38, and 

(II) For x
1 

equally correlated with a per-
iodic standard deviation and y

1 
= aX

0 

n- 2 i a 
Var sr = ( n ) Var S1 

+ ( i~)2 Var S
0 

- liJtQ. 
n 

n-i 
L l: a

1
(x) a1+1

.(x) . 
j= I t=l 3.44 

(*) In the case when Yt • ax
0 

with xn the 
sample mean and a the level of development, the 
partial surr.:s are called the adjusted partial sums and 
are denoted by sr 
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C. Marginal and joint distribution of partial 
sums. The distribution function of the random 
variable S1 depends on distributions of x

1 
and 

y1 , which in turn depend on distributions of 
z1(x) and z

1
(y) , respectively. If z

1
(x) and 

z1(y) are normally distributed with mean zero and 
variance unity, then x

1 
- N [J.L

1
(x) , o

1
(x)] ond 

Y1 - N [J.L1(y), 0 1(y)] . Since the sum of normal 
variables is also normal, the distribution of S. is 

I 
normal, with the expected value and variance given 
by Eqs. 3.25 and 3.33, respectively. In case the 
input x

1 
is an independent non-normal random 

voriable ond the output is y
1 

= J.Lx , the distribution 
of S. is asymptotically normal for large values of i . 

I 

Since the distribution of the partial sum S
1 

is 
normal, then the joint distribution function of the 
sequence Of partial SUms S I , $

2 
, .. . ,S

1 
iS multivariate 

normal, with means and variances given by Eqs. 3.25 
and 3.33, respectively, and the autocovariance struc· 
ture dependent on the means, variances and auto· 
covariances oi the components of the partial sums 
(x, - Y

1
). 

For example, in the case of independent 
identica lly distributed (i . i.d.) inputs 
and y1 = J.Lx • S1 has zero mean and variance equal 
to io2 

• It is easy to show for this case that the auto
correlation function of the sequence S

1
, S

2 
, ... ,S

1 
is 

- _ i _ l6 P (k, i) - (i-t k ) , for k ~ 0 , 

and 

. + k 
p (k, i) = (T )% , for k ~ 0, 3.45 

where k denotes the lag, and i refers to the partial 
sum considered. 

For the case of a stationary input of the first
a r d e r M a r k o v m o d e I :1 n d t h e o u t
put y t = J.lx , si has zero mean and variance given 
by Eq. 3.38. Then the autocorrelation function of the 
sequence sl , s2 , ... , si is 



[ ( 1 - p2
) i- p ( 1 - p1) ( 1 + pk)] 

p(k,i) = , for k ~ 0 
( (1 - p2 ) i- 2 p ( 1 - p1) ) ~(( 1 - p2 ) ( i + k)- 2 p ( I - pl+k) ] ~ 

and 3.46 

[ ( 1 - p2
) ( i + k)- p ( I - p1+k) ( 1 + p·k) ] 

p(k,i) = • for k .;;;; 0 
( ( 1 - p2

) (i + k)- 2 p ( 1 - pi+k) ]"~ ( (I- p2
) i- 2 p ( 1- p1

) J* 

T h e s e q u e n c e o f r a n d o m v a r i
ables s1 , s2 , ... , si' constitutes a non-stationary 
process, even for the simplest case of independent 
identically distributed (i.i.d.), inputs, and outputs 
Y

1 
= 11-x . Although the mean is zero for all i's, the 

variance depends on i , and the autocorrelation func
tion depends not only on the lag k , but also on i . 
This makes it difficult, in general, to find the pro
perties of the maximum, minimum or the range of 
this sequence of partial sums for a sample of size n. 

3.3 Surplus, Deficit and Range 
A. General cluzraclerislics. The maximum 

(surplus), minimum (deficit) and range are defined 
in Chapter II as 

M
0 

= max ( 0, S1 , S2 , ••• , Sn ) , 

m
0 

= min ( 0, S1 , S2 , ..• , Sn) , 

R =M -m n n n 

with Mn defrned as above as always positive 
increasing and m

0 
as always negative decreasing 

functions, while Rn is a non-decreasing function 
of n . 

In some cases, (A. A. Anis and E. H. Lloyd, 
1953; A. A. Anis, 1955 and A. A. Anis, 1956), 
the maximum and minimum are defined as 

M~ =max (S1 , S2 , .•. , Sn) 

m~ = min (S 1 , S2 , ••. , S
0

) 

and the range as 

R' = M' - m' n n n 
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In this case, M' , m 
1 

and R' may take on either 
n n n , , 

positive or negative values, although M
0 

and Rn are 
the increasing functions and m~ a decreasing func· 
tion as n increases. 

Following E. H. Lloyd (1967), the relations be
tween M

0 
and M~ , mn and m~ , and Rn and 

R' may be derived as follows :· 
n 

M 
1 

may be written as n 

or 

M~ =max (S., S'2, .. . , Sn) 

= max (0, s2 - s.' s3 - s. , 
... , sn - s.) + s. , 

M~ =max {0, (x2 - y2) , (x2 - Y2) 

+ (x3- Y3) • · · · '(x2- Y2) 

+ ... + (xn - y n)} + Sl . 

Let w1 = x
1
+ 

1 
• y1+ 1 ; then the above express.ion 

may be written a~ 

M~ =niax {O, w
1
,w1 +w

2
, •••.. , w

1 

+ w2 + ... + wn } + sl , 

M~ =max {O, s~ , s; , ... , s~. 1 }+ S1 

At this p oint the assumption of the pro· 
cess w 1 = x1+ 1 • y1+ 1 being stationary is 
necessary. In this case, the distribution of S1' is the 
same as the distribution of sj' Therefore, the distri
bution of M~ will depend on the distribution 
of M

0
_
1 

and S
1 

. 



Asswning that E{ S
1 

} = 0 , the expected value 
and variance of M' become 

n 

3.47 

and 

Var {M~ }= Var{M
0

_
1 

} 

+ Var{S1 }+ 2 Cov{S
1

, M
11

_
1 

}. 3.48 

Similarly, it may be shown that 

E{m' }= E{m 
1

} 
n n- 3.49 

and 
Var {m~ }= Var {m

11
_

1 
} 

3.50 

The range R~ may also be written as 

' S' S' ' Rn = max(O, I' 2' .. . ' sn -1) 

- min(O, s;, ... , S~_ 1 ); 
therefore 

E{R'n }= E {R
11

_
1 

} , 3.51 

and 

Var {R~ }= Var{R
11

_
1 

}.. 3.52 

These final equations make it possible to compare the 
results obtained by A. A. Anis based on the 

sequence sl ' s2 ' ... , sn with other results, for 
example those of Spitzer, based on the sequence 

so ' sl , ... , sn with so = 0 . 

B. Distribution and moments of surplus, 
deficit and range. Consider F(M

0
) and F(m

0
) to 

be the cumulative distribution functions of the 
surplus M

0 
and deficit m

0 
, respectively, that is 

F(M
11

) = P{M
11 
~ s} and F(m,) = P{m

0 
~ s } 

Consider furthermore that M
0 

and 
fined as M

0 
= max(Si' S2 , ••. , S

0
) 

min(S
1

• S
2

, ... , S
0
). 

are de

mn = 

18 

Therefore, 

F(M
0

) = P {S
1 
~ s, S

2 
~ s , ... , S

0 
~ s} 

or s s 
F(M ) = J , ... ,f 

n .. oo .oo 

The joint density function of S
1 

,S2'" .. ,S
0 

may be 
expressed as 

f(St,S2, ... ,S.n) 

= f(S 1 ) f(S
2
1 S

1
) f(S

3 
I S

1
, S

2
) 

... f(S
0 

I S
1 

, S
2 

, ..• , S
0

_
1

) 

Therefore Eq. 3.53 becomes 

s s 
F(Mn)= L ... !o., f(S1) 

f(S2 I S1
) f (S

3 
I S

1 
, S

2
) 

... f (Sn I s I ' s2 ' ... , sn-1) dSl dS2 ... dSn 

3.54 

This equation constitutes a general expression for the 
distribution function of the maximum of the partial 
sums s I ,s2' ... ' sn. However. unless the distribution 
function of si and their respective conditional dis
tributiOns are very SJJTipJe, an explicit solution 
for F(M

0
) is not possible. The best result obtained 

regarding the distribution of M
0 

was that of Spitzer 
(1956) which relates the characteristic functions 
of M and s.• = max(O,S.) , for the case of i.i.d. 

n I I 

variables. 

Similarly, the distribution function of, m
0 

may 
in general be expressed as 

F(m )= P {m ~s}=l-P{m >s } n n n 

or 

F(m
11
)=l-P{S

1
>s,S2 >s, ... ,S

0
>s}. 3.55 

Let Y = - m
11 

, then 

P{Y ~ s }= P{ - m
0 
~ s }= P{m

11 
>- s} 



· or 

00 00 

L e t u s c o n s i d e r t h e c h a n g e o f v a r i· 
ables s1 "" • w1;then F(·m

0
) may be expressed as 

-00 

F(-m)"" f ..... f 
n S s 

f(- S
1 

, - S
2 

, • .. , - S
11

) d (-S
1

) d( .. S
2

) ..• d(-S
11

) 

or 
s 

F(- m)"" f n ..oo 

s 
.... . J 

.00 

3.56 

Let us further consider at this point that the input 
random variables are i.i.d. with a symmetrical density 
function, and that the output is y1 "" J.l.x . The joint 
distribution function of the sequence sl, s2 , ... ,Sn is 
also symmetric, 

in which case Eq. 3.56 takes the form 

s s 
F( - m ) ""f .... J 

n ..oo .co 

f(S 1 , S2 , • .• , S0 ) dS
1 

dS
2 

••• dSn . 3.57 

Finally, comparing Eqs. 3.53 and 3.57, then 

P(M ) ""F(- m) n n 
3.58 

This result is useful because the moments of the 
maximum and the minimum of partial sums may be 
shown to be related as 

3.59 

and in particular the mean and variances are related as 

3.60 
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and 

Var{Mn} "" Var{mn } . 3.61 

The distribution function of the 
range R

11 
depends on the joint distribution 

of M
11 

and mn. That is 

F(R
11

) ""P {R
11 
~ r} "" P {M

0 
- mn ~ r} , 

00 

or 

or 00 

F(R ) "" J ·P{m ;;;-. M -rIM } f(M ) dM 
n '-"00 n n n n n 

since P {mn ;;;-. Mn ·riM
0

} = 1-P{mn ~ M
0 

·riMn } , 
then F(Rn) may be expressed as 

00 

F(R ) = I - J P { m ~ M 
n -OO n n 

- riM) f(M )dM n n n 3.62 

The problem is that finding explicitly the joint 
distribution of M

0 
and m

0 
is very difficult, 

because even the marginal distributions 
of M

0 
and m

0 
cannot be represented in explicit 

form. V. Yevjevich (1965) found by numerical 
integration the distribution functions of the sur· 
plus, M

0 
, deficit m

0 
and range Rn for the case of 

inputs i.i.d. normal variables and output 
y

1 
""J.lx for values of n of I, 2, and 3. 

The moments of the range, surplus and deficit 
are related as follows; 

E{Rn} = E{Mn}- E{m
11

} 3.63 

For the particular case in which the distribution of 
components of the partial sums is symmetrical, Eq. 
3.60 applies, so that 

3.64 

Similarly, the variance of the range is 

Var{R } =Var{M } +Var{m }-2Cov{M ,m } 
n n n n n 



or 

Var {Rn} = Var {Mn } + Var {m
0 

} 3.65 

-2 Var~{Mn }Var~ {mn} p(Mn, mn) 

where p(Mn ,m
11

) is the correlation between 

20 

M and m as functions of n . For the particular n n 
case of symmetric distribution of the components of 
partial sums, Eq. 3.61 applies; therefore, Eq. 3.65 is 
simplified to 

Var{R } =2Var{M }[ 1-p(M ,m )] n n n n 
3.66 



CHAPTER IV 

EXACT EXPECTED VALUE OF THE RANGE 

The theoretical expected values of the range for 
n = 1 ,2, and 3 are developed in this chapter, con· 
sidering in general that the joint distribution function 
of the sequence of partial sums is multivariate nor
mal. In particular, the univariate, bivariate and 
trivariate normal distributions are used to derive the 
expected values of the maxima M

1 
, M

2 
, and M

3 
, 

which in turn lead to the expected values of the range 
R1 , R2 , and R3 . Some of the characteristics of 
these distributions are reviewed, derived and sub
sequently used in this chapter. 

4.1 Properties of Multivariate Normal Distribution 
Function 

Following A. M. Mood and F. A. Graybill 
( 1963), let W 1 , W 2 , ••• ,W n be an n-dimensional 
random variable which is designated as elements of an 
n x 1 random vector W by 

W= 

wn 
This random vector is distributed as an n-variate 

normal if the joint probability density of 
W 

1 
, W 

2 
, .•. , W 

0 
is 

= (27T) n/2 I C I ~ exp{ _l (W - J..L)C'(W - J..Ll } 
2 

4.1 

where C is a positive defmite symmetric matrix. Its 
elements are constants and is the covariance matrix, 
J.1 is an n x 1 vector whose elements J..Li are the 

expected values of the random variables Wi , which 
are constants, and c-1 denoting the inverse matrix 
of C and (W·J..L)T representing the transpose of the 
matrix (W·J..L) . The covariance matrix C is 
explicitly given as 

21 

c "' 4.2 

in which the element a.. represents the covariance 
IJ 

of random variables W. and W. , equal to 
I J 

4.3 

with a .. and a .. the variances of W. and W. res· 
II JJ 1 i 

pectively and p.. their correlation coefficient. t may 
IJ 

be shown fo r the n-variate normal random 
vector W that the marginal distribution of any Wi is 
normal with mean J..Li and variance aii" 

Another important point concerns the con
ditional distributions. Let the n x I random vector 
W , the n x l vector J.1 and the matrix C be 
partitioned as follows: 

and C 

with 

w: "(i:) u, "(t:) 
a 12, ...• 

a22 • ... , 

and C
11 

= 4.5 

ak2 , ... , 



The condHional distribution of Wi given w; is the 
k-variate normal with the mean 

406 

and the covariance matrix 

407 

in which cllo2 denotes the covariance matrix of 

W; given W 
2
* 0 The partial correlation of Wi and 

W;(iJ < k), given W k +1 ,ooo,W n , is defined by 

aijo(k+ 1 )oo••o ··" 

Pfj.(k+t) ... o.on = 
...;aii.(k+l) . ... n °}j.(k+ t ) .... n 4.8 

For the particular cases o f n = 1 ,2, and 3, the 
joint and conditional density functions are given in 
explicit fonns: 

(a) 
function is 

For n = I , the univariate density 

4o9 

with J.l and a the mean and standard deviation 
X X 

respectively o 

(b) For n = 2 , the bivariate normal density 
function is 

I 
f (X Y)-------

, 2 * 
(27T)axay(l- Pxy) 

1 X-p 
exp{- 2(1- P!y) [ (~)2 

X-Jl Y - 11 Y-11 
-2(~X~)+(~)2 ] } 4.10 

X y y 

22 

while the conditional density function 
of X given Y is 

1 
f (X I Y)= 

-J'[ir a (1 - p2 
) x xy 

[X-Jl 
X 

4.11 

(c) For n = 3 , and assuming 
that J1 = J.l = J.l = 0 , the trivariate normal density 

" y z 
function is 

I 1 
f(X Y:Z) = exp { - --

, (27T)314 1 c lv. 21 C I 

[c1X2 +c2 Y2 +c3 Z2 +2c4 XY+2c
5
:XZ+2c

6
YZ] }, 

4.12 

where 

c -a a a2 
I YY zz yz 

c =a a - a2 
2 XX 2Z X~ 

c3 = axxayy- a;Y 

and 

c =a a S xy yz 

c6 = axyaxz- axxayz' 

4013 

x ' xy ' xz 

= a , u2 a 40!4 
(

a
2 

a a ) 

yx y ' yz 

a a a2 
zx ' zy ' z 

Consider the three-dimensional vectors 

and C of Eqo 4.14, and the partition 

W= (:~) where W* = 
I (:) and w; = (Z) 0 



From Eq . 4.6 and since U1 = U2 = 0, the con
ditional distribution of X and Y given Z has the 

mean u: = C12C~~ W2*. Since 

Similarly, since the matrices C 1 1 and c21 are given 
by 

( 

a2 

c,, = ax 
yx 

and using Eq. 4 .7, the covariance matrix, C 11.2 , 

denoted now as C , is xy .z 

which may also be expressed as 

c = c!.z • 
0

xy.z) 
xy.z 2 

ayx.z ' ay.z 

= (a!O- P;z) • axay(pxy- PxzPyz)) 

axay(pxy- PxzPyz), a~ (1- P~z) 
4.17 

where the p's denote the correlation coefficients 
between the indicated random variables. Therefore, 
by using Eq. 4.10, the co ndit ional distribution 
of X,and ,Y given Z, is 

l 
f(X,YIZ) = 2~ xy .z 

X-p. 
} X .z 2 

exp{- 2(1- p2 ) [( ax.z ) - 2pxy.z. 
xy.z 

X_ , y_, y_, 
,..x.z. ,..y.z ,..y.z 2 

( a )( a ) + ( o ) 1 } • 4.18 
X.'Z. y.z. )'.'Z. 
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with p = a /a a and a a and xy.z xy.z x.z y.z xy.z. ' lL'Z. 

ay .z given by Eq. 4.17. 

Similarly, the conditional distribution function 
of X and Z given Y is 

I 
f(X,ZIY) = 21T .Jr;---

xz.y 

l X-p. 
exp { [ ( x.y )2 2 

2(1 _ 2 ) a '- Pxz.y 
Pxz.y x.y 

X-JJ. Z -p. Z-JJ. 
( a x.y )( a z.y) + ( z.y )2 J }, 4 .19 

x.y z.y (Jz.y 

with p = a /o q and the matrices of xz.y xz.y x.y z.y 
mean and covariance given by 

and 

(

a
2 

a ) = x.y ' xz.y 

0 • o2 
zx.y z.y 

c xz.y 

= (o;(l...:p~Y) ,(Jx(Jz(pxz-PxyPyz) ) ' 

axqz{pxz- PxyPyz) 'a; (I - P~z) 

4 .21 

Finally, the conditional distribution function 
of Y and Z given X is 

l 
f(Y,ZIX)= 

21Tvc;;: 

Y - JJ. 
} )'.X 

2 
exp {- 2( I - 2 ) [( Cl ) 2pyz:x 

Pxy.z y.x 

Z - p. Z-p. 
)( a z.x ) + ( a z.x )2] } , I 4.22 

z.x z.x 

with p = a /a a and the matrices of yz.x yz.x y.x z.x 
mean and covariance given by 

( ) ( 

(Jy 

P.y x a 
U* = = X yz.x 

J.l . az 
z.x -

ax 

4.23 



and 

(

(}2 (} ) C = y.x' yz.x 
yz.x 

2 
0 zy .x • 0 z.x 

= (a~ (1- P!y) • ayaz(pyz- PxyPxz)) 

0 y0 z(pyz- PxyPxz)' o~(l - 0 !z) 

4.24 

4.2 Expected Value of Surplus of Random Vari
ables with General Covariance Structure 

The following mathematical derivations deal 
with the expected value of the maximum of partial 
sums for n = 1, 2, and 3. They are performed in 
general so that the expected values obtained may be 
used for both the unadjusted and adjusted partial 
sums. The assumption is made that the departures 
(x

1 
• y

1
) are normally distributed with mean zero 

so that the distribution of the partial sums is also 
normal with mean zero. In order to simplify the 
mathematical derivations the following notation is 
introduced: 

X=S = (x -y ) 
I I I 

Y = S = (x - y ) + (x - y ) and 
2 1 I 2 2 ' 

Z=S
3 

=(x
1 

-'y
1
)+(x

2 
-y2)+ (x3 ""'Y3). 4.25 

A. The case n = 1. According to the above 
notation the maximum M 

1 
is defined as 

Then 
(1) 

(2) 
The 

M
1 

= max(O,X) 

M = 0 if X<O 
I 

M
1 

=X if X > O 
expected value of M1 is 

00 

E{M }= E{X} = f X f(X)dX 
I 0 

Since X is normally distributed, f(X) is defined 
by Eq. 4.9, so that 

4.26 

Since for a symmetric distribution, Eq. 3 .64 applies, 
then the expected value of the range is 

4.27 
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B. The case n = 2. ln this case the max
imum M

2 
is defined as 

M
2 

= max(O, X, Y) 

Then 
(1) M2 =0 for X~ 0 , Y ~O 

(2) M
2 

=X for X >O , Y<X 

(3) M =Y 
2 

for X<Y , Y > O 

The expected value of M2 is 

E{M
2 

}= E{X }+ E{Y } , 4.28 

where 
oo X 

E{X }= f f X f (X,Y) dY dX, 4.29 
0 -.00 

and 
00 y 

E{Y }= f f Yf(X, Y) dXdY 
0 -00 4.30 

Since the above two integrals are symmetric, the 
solution of only one is necessary. Therefore, for 
solving E{X } let us use the conditional distribu
tion of X given, Y , so that 

oox 
E {X }= f f X f (X I Y) f (Y) dY dX , 

Q-'00 

which, separated into two integrals, gives 

0 00 

E {X }= j f (Y) f X f (X I Y) dX dY 
-00 0 

00 00 

+ f f (Y) f X f (X I Y) dX dY , 4.31 
0 y 

where f(Y) and f(XIY) are given by Eqs. 4.9 and 
4.1 1 respectively, with , llx and J.LY ,equal to zero. 
For convenience, the conditional density function 
is expressed by 

I 1 . 2 f (X I Y)=-- exp{ --(X -" bY) } 
..j'Ei" a 2a2 

where 

a= a (1 - p 2 ) and b = p o /a . x xy xy x y 



With the above expression for f(XIY), the inside 
integrals of Eq. 4.31, denoted from now on by I, 
are 

C)() 

I :;; f X f (X I Y) dX 
~ 

C)() 

1 1 
= J X-- - exp {-- (X- bY)2 }dX 

~ ..j21f a 2a2 

whose solution is equal to 

a 1 2-bYz 
I = - exp { - ., ( --) yr;r L. a 

+bY[i - 4>(~-abY)]' 4.32 

with 4>(.) denoting the univariate normal cumula
tive distribution function. 

For the first inside integral of Eq. 4.31, 
denoted by I

1
, 2 = 0 , so that Eq. 4.32 gives 

a 1 b b 
II :;; . PC"" exp {- 2 Ca-)2 Y2 }+bY 4> (a Y). 4.33 

v2rr 

For the second inside integral of Eq. 4.31, 
~ = Y , so that Eq. 4.32 produces 

a 
I:;; - -

2 -J21f 
1 1-b (1-b) 

exp{ - 2 (-a- )2 Y2 }+bY 4> [ --a- Y] . 
4.34 

Substitution of Eqs. 4.33 and 4.34 into Eq. 
4.31 leads to 

a o 
E{X}= - J f(Y) exp 

-.j'ET -00 

C)() 

I b a 
{ - -2 ( -)2 Y 2 }dY +- f f (Y) exp 

a V2rf o 

o bY oo 

+ b J Y f (Y) <I> (a-) dY + b J Y f (Y) 4> 
-"" 0 

(1 -b) a 0 

[- - a - Y] dY:;; E{X }= ..j'Er [j"" f(Y) exp 

1 b 0 

{- 2 (a )2 Y2 }dY + J f (Y) 
-oo 

1 1 -b 
0 

exp{ - 2 (- a-)2 yl}dY] +b l jeo Yf(Y) 

bY. 0 (1 - b) 
4> ( a"'") dY - J Y f (Y) 4> { - a - Y }dY ] 

_.
00 4.35 
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The above expression basically contains the 
following two types of integrals 

0 1 
I = f f (Y) exp {- -2 c2 Y2 }dY 

3 -oo 

0 

and 1
4

:;; J Yf(Y)<P(cY) dY 
-oo 

with c :;; b/a for the first and third integrals 
and, c = ( 1-b )/a for the second and fourth integrals 
ofEq. 4.35 . The solutions of these integrals are: 

and 

0 

I = J 
3 -'00 

1 
f(Y) exp { - 2 c2 Y2 }dY 

= - ---

0 

I :;; J Y f(Y)cl>(cY)dY 
4 -00 

4.36 

4.37 

Substitution of Eqs. 4.36 and 4.37 into Eq. 4.35 
leads to 

+ -------

b 
{----

(1- b) 
}, 

Finally, replacing the constants a and b by 
o/1-p;Y)v. and pxyoxfoy respectively, the above 
equation becomes 

1 °x 
E{X}=--

2..j21r [Var(Y- X)] y, 

Since the integral E{Y} of Eq. 4.30 is of the 
same type as E{X } of Eq. 4.29, Eq. 4.38 by making 
the corresponding replacements becomes 

,· 



1 ay 
E{Y }=-- ----

2 ..['ET [Var(Y - X)] ~ 
{a -p a + y xy x 

[Var (Y- X)] ~ } . 4.39 

Substitution of Eqs. 4.38 and 4.39 into Eq. 
4.28 leads to 

I 1 
E {M }= - { ., (Var X ] ~ 

2 .J'f1r ~ 

1 I 
+ 'T [VarY] ~ + 2 (Var (Y "" X)] 1h } . 4.40 

Consequently, the expected value of the range is 

h 1 ~ 
E {R2 } = Vir { 2 [Var X] 

l ~ I ~ 
+ 2 [Var Y ] + 'l [Var (Y - X)] } . 4.41 

C. The case n = J. The maximum M
3 

is de-
fined as M

3 
= max(O,S

1 
,S

2 
,S

3
) = max(O,X,Y ,Z), 

or 

(I) M3 =0, for X~O, Y ~ O , Z ~ O 

(2) M
3

=X, for X>O , Y<X , Z <X 

(3) M
3 

= Y , for X < Y,Y>O , Z<Y 

(4) M
3

=Z, for X<Z, Y<Z,Z > O 

Therefore, the expected value of M
3 

may be written 
as 

E{M
3 

}= E{X }+ E{Y}+ E{Z}, 4.42 

where 

oo X X 
E{X }= I I I X f(X,Y,Z)dYdZ dX, 4.43 

0 -oo -oo 

00 y y 
E{Y }= I I I Y f(X, Y, Z) dX dZ dY ,4·44 

0 -oo -oo 

and 

00 y y 

E{Z}=I I I Zf(X,Y,Z)dXdYdZ.4.45 
0 -oo -00 
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Using the conditional density functions, the 
above integrals become 

00 X X 
E {X}= I I I X f (X) f (Y, Z IX)dYdZdX , 

0 ....00 -00 
4.46 

00 y y 
E {Y }= I I I Y f (Y) f(X,Z I Y) dX dZ dY • 

0 -00 - oo 4.47 

and 

00 z z 
E{Z }= I f I 

0 -'00 -00 

Z f (Z) f (X, Y I Z) dX dY dZ 
4.48 

where f(X,YIZ), f(X,ZIY) and f(Y ,ZIX) are given 
by Eqs. 4.18, 4.19 and 4.22 respectively. 

Solution of the integral E {X } of Eq. 4.46. By 
making the following change in the conditional den
sity function f(Y ,ZIX) of Eq. 4.22, 

k = I - P2 
, k = (27r a a v'l<-:- )"1 4.49 1 yz.x x y.x z.x 1 

and 

Y -ap X/a y xy x 
u=-----

(1 
y .x 

and a= 

f(Y ,ZIX) becomes 

f(Y,Z I X) 

Z-ap X/a 
Z X% X 

(J 
z.x 

4.50 

1 
=k exp { -~ (u2

- 2p uv+v2
) }, 

X ~Kl yz~ 

and the integral E {X } of Eq. 4.46 is expressed as 

00 ~X CJX 

E {X }= k o o I I I f (X) 
x y.x z.x 0 -oo -oo 

1 
exp{ -~(u2 - 2p uv+~) }du dvdX 4 s ~ K

1 
yz.x . 1 

in which 

4.52 



The constants c1 and c
2 

are usually negative for 
the linear dependence between the components of 
the partial sums. They are equal to zero for the case 
of independence (see Appendix). Therefore. the solu
tion that follows is for c1 ~ 0 and c2 ~ 0 . 

Replacing -c
1 

by b
1 

, and -c2 by b2 the 
triple integral of Eq. 4.51 is graphically shown in Fig. 
4.1. 

In order to integrate first in X , Eq. 4.51 is 
separated into two integrals as 

0 0 

E{X}= kxoy _xo~.x { _L, .L 
1 -'V/b2 

exp{ - -- (u2 -2p uv+v2
) } f 

2k yz.x 0 
J 

0 0 

X f (X) dX du dv - f j 
....:oo b

1 
v/b

2 

-v/b2 
(u2 

...; 2p uv + vl)} f 
yz.x -u/b 

J 

1 
exp{ - --

2k1 

X f(X) dX du dv] 

4.53 

Fig. 4.1 Integration region for the triple integral 
of Eq. 4.51. 

The integration of inside integrals of Eq. 4.53 leads to 

ax o 
E{X}= kxoy .xoz.x ..,fEr { l, 

1 ° 1 
exp {- 2 v2

} f exp{ - ll(u- Pyz.x v)
2

} 

-00 J 

0 1 0 1 
du dv + f exp{ - 2 k2 vl } bf /b exp{ - 21(."" 

....oo 1 v 2 1 

o I o 
(u-p v)2 }dudv- f exp { - ., k

2
v2 } f 

yz.x ....oo " ....oo 
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1 
exp { - .....- (u-p v)2 }du dv-

" K 1 yz.x 

0 1 0 
- f exp { - 2 k3 vl 1 f 

...:oo l:i
1 
v/b

2 

1 
exp{ - 2 (~ u 

Pyz.x 
- -- v)2 }du dv ] 
kl~ 4 .54 

in which the constants k
1 

and kx are given by Eq. 
4.49 and k

2 
, k

3 
, and k

4 
are 

1 + (b2 ux)2 I + (bl ax)2 
k - k = 
2- (b2ox)2 3 kl + (bl ox)2 , 

kl + (bl ox)2 
k = ----:--

4 kJ (bl a)'l 

Integrals of Eq. 4 .54 have the general form 

0 I o 
I = f exp { -' 2 a 

1
.; } f exp 

-""' a
2 
v 

4 .55 

4.56 

and their solution depends on the lower limit of the 
inside integral. Therefore, in order to find E{X } , 
and subsequently E{Y } and E{Z} , the following 
cases of Eq. 4.56 were first solved: 

(a) For 0 < a
2 

< oo 

(b) 

I 
+ - arctan 

27T 

For a
2 

== 00, 

.;a; 
I = (27T) .;a: Va; 

1 
+ - arctan 

27T 

I [ _._ 
4 

4.57 

4.58 



and 

(c) For - 00 < a < 0 2 

(d) For a
2 

= - oo 

va: 
I = (27T) 3 

~ a4 

l 1 a 
[ 4 + 27T arctan ( -_ r;:----'--_-r-::- ) ] , 

v a1 v a3 

4.59 

4.60 

in which the angles are reduced to the first quadrant 
and measured counter-clockwise. 

The first integral of Eq. 4.54, denoted by I 
1

, 

with a 
1 

= 1, a
2 

= .co, a
3 

= k 
1 

, a
4 

= 1 and 
a5 = Pyz.x , is obtained from Eq. 4.60 as 

l 1 Py z.x 
[ 4 + 27T arctan ( --)] 

~ 
4.61 

The second integral of Eq. 4.54, denoted 
by 1

2 
with a

1 
= k

2
, a

2 
= b

1
/b

2
, 

a3 = k 1 , a4 = I and a
5 

= p , is obtained from 
E 

yz.x 
q. 4.57, as 

~ 1 b -b p 
12 = (27T) ~ [ 21T arctan ( 

1 2 n.x ) 
k2 b2 ~ vr; 

I 
+ 21T arctan 4.62 

The third integral of Eq. 4.54, denoted by 
1

3 
, with a = k a = .oo a = k a = 1 and 

I 2 ' 2 ' 3 I ' 4 
a5 = Pyz.x , is obtained from Eq. 4.60, as 

-v'"K," 1 1 Py z.x 
1

3 
= (27r) ~ [ 4+21r arctan ( r.;- _ rr.-)1 

v~2 vkl v~2 

4.63 
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Finally, the fourth integral of Eq. 4.54, denoted 
by I 4 ,with a

1 
= k

3
,a

2 
= b

1
/b

2
, a

3 
= 1, 

a4 = A and as = Pyz.x/ k 1 ~ • is obtained 
from Eq. 4.57 as 

I 
= (27T) ~ l 

[ 21r arctan 
4 ~~~ 7T 

4.64 

Substituting Eqs. 4.61 through 4.64 into Eq. 
4.54, and since Eq. 4.49 gives k a a .Jk. = 1/ 
( 2 ) 

. r- X y.x Z .X I 
7T , It ,ollows that: 

0 x l I 
E {X } = ...,f2rr { 4 + 2rr arctan 

(~)- - 1- (t- -1 arctan Vk; ~ 27T 

b -b P I l 
( I 2 xz.x)] - [ 27T arctan 
b2 vK; vr; ~ vk; A 
blk1k4- b2 Pyz.x ] 

( 11." 11." ) + "fir arctan 
b2k 1 vk3 vk4 -

p 
( yz.x )] } 

kl v1<;~ . 4.65 

Solution of the integral E {Y} of Eq. 
4.47. Following a similar change of variables as in the 

case of the integral E{X }, Eq. 4.47 becomes 

oo c;v c'.Y 
E {Y }= k a G f f f y x.y z.y 0 _00 . oo 

1 
Y f (Y) exp{ - --(u2

- 2p uv + v2 )1du dv dY 
2k' xz.y ' 

1 4.66 

in which 

k' =I- p 2 
I xz. y • k = (27T o o - 'rr )-I 4 67 

Y x.y Z.y V I · 

4.68 



+Y 

, __ ...... ' ' 
/ 

I 

, ,1 

; v•-vtbz 
, • ' 

Fig. 4.2 Integration region for the triple integral 
of Eq. 4.66. 

with the constants c; > 0 and, c; ~ 0 (see 
Appendix). The integration region of E{Y } of Eq. 
4.66 is graphically shown in Fig. 4 .2. 

In order to integrate frrst in Y , Eq. 4.66 is 
separated into two integrals, see Fig. 4.2, as 

0 0 
E{Y}= ky ox.y oz.y [ J J 

-00-00 

1 
exp {---(u2 -2p uv+v2 ) } 

2 k' xz.y 

-v/b' 
2 

1 

f Y f (Y) dY du dv + 
0 

0 -b~ v/b; 1 
+ f f exp{ - -,- (u2

- 2p uv + v2
) } 

-<X> 0 2 k x z.y 
1 

- v/b; 

l/b~ Y f (Y) dY du dv) . 4.69 

The integration of the inside integrals of Eq. 
4.69 leads to the following four integrals: 

E{Y}= k o a 
y x.y z.y 

oy o 1 
. G;;; [ f exp { - 2 v2 

} 
v -<.11 -00 

0 1 
f exp{- - ,- (u- ,> v)2 }du dv + 

...oo 2 k xz.y 
1 

0 1 0 
+ f exp{- 2 k; y2 } f 1 I 

-00 -b v/b 
1 2 
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1 
exp{--~-(u-p v)2 }du dv -2 k xz.y 

1 

0 1 I 2 0 
- _L exp { - 2 k2 v } !.o., 

1 
exp{- - ,- (u - p v)2 }du dv -2 k xz.y 

1 

0 112 0 1..c;-
-J exp{-2k3 v}f, ,exp { -T(VK~u 

-a:> - b
1 
v/b

2 

Pxz.y 
v)2 }du dv ] - kl v£ 

1 4 
4.70 

where the constants k} and ky are given by Eq. 
4.67 and k; ,k;, and k

4 
are 

and k~ = 
k; +(b;ay)2 

k; (b; aY)2 

Since the four integrals of Eq. 4.70 are of the 
same type as those of Eq. 4.56, their solutions, given 
by Eqs. 4.57 to 4.60 will also be used here. 

The first integral of Eq. 4.70, denoted by 
1; , with a1 = l , a2 = ..oo , a3 = k~ , a4 = 1 , and 
a5 = p , is obtained by using Eq. 4.60 as xz.y 

1 1 Pxz.y 
I . f17 

11 = (27T) vr..1 [ 4 + 21rarctan ( Jk ) ] 
1 4 .72 

The second integral of Eq. 4.70, denoted 
by I~ , with a 1 = k~, a2 = · b1

1/b; , a3 = k1' , 

a4 1 , and a
5 

= p , is obtained from Eq. 4.60 x z.y 
as 

y'Jc' 
1 J 1 

12 = (27T) V'£ [ -27r arctan 
2 

b' + b' p 
1 2 x z .y 1 Pxz v 

(b, .Jk': ...R, ) + 21r arctan ( Jk': ~ )] . 
2 I 2 kl 2 4.73 



The third integral of Eq. 4.70, denoted by 
I~ , with a

1 
= k; , a

2 
= -00 , a

3 
= k

1
' , a

4 
= ; , and 

a
5 

= p , is obtained from Eq. 4.60 as xz.y 

4.74 

Finally, the fourth integral of Eq. 4.70, denoted 
b , . , , t 

y 14 , w1th a1 = k3 , a2 =- b
1

/b
2
,a

3 
= I , 

a4 = v'k;,and a5 = Pxz.y/k~vk':'. is obtained 
from Eq. 4.59 as 

(211) .Jki; I 

I~ = vR £ Ji( [ - 21T 

arctan 

I 

I 3 4 

b'l k'l k4' + b2' p :n.y 

( b' k' Jki, vk: ) 
2 I 3 4 

+ T7T arctan 
Px z.y 

( k' ££ )] 
I 3 4 

4.75 

Substituting Eqs. 4.72 through 4.75 into Eq. 
4.70, and since Eq. 4.67 gives k a a ..Jr,' = 1/ y x.y z.y 
(211), it follows that: 

ay I 1 Pxz.y 1 1 
E {Y }= VET { 4+ 2n arctan (v'i2,- ) - v"k: [ 4 

1 2 

1 
+ 2rr arctan 

arctan 

1 
- 2rr arctan 

4.76 
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Solutio n of the integral E{ Z } of Eq. 
4.48. Follow in!! a similar change of variables as in the 
case of the integral E {X }, Eq. 4.48 becomes 

exp { '"' -
1

- ( u2 
-. 2p uv + v2

) }du dv dZ , 
2k" xy.z 

I 

4.77 
where 

k"- 2 k ( -1 p = 21T (] (] - ,,_,, )-1 
1 - - xy.z ' z x.z y.z V"-1 

4.7S 

Gz'"'aypy7. b"- , _ ___ _ 
' 2 - c2 - a a 

z y . z 

4.79 

with the co nstants c
1 

> 0 and,c2 > 0 (see 
Appendix). 

The integration region of E{Z} of Eq. 4.77 is 
graphically shown in Fig. 4.3. 

Fig. 4.3 lntegr:.tion region for the triple integral 
of Eq. 4.77. 

In order to integrate first in Z , Eq. 4.66 is 
separated into five integrals, see Fig. 4.3, as follows: 



0 0 1 00 

E{Z }=kz ox z oy z [ f f exp { _, _
11 

(u2
- lp uv+vl) } f Zf(Z)dZdu dv+ 

• • ...:00-'00 2k xy.z 0 
1 

0 00 1 00 

+ f f exp{ - -- (u2 -2p uv+v2 ) } f Zf(Z)dZdudv+ 
-""0 2k11 xy.z u/b" 

I I 

00 0 

+ f f 
0 -00 

1 
exp{ - -- (u2

-' 2p uv + v2
) } f Z f (Z) dZ du dv + 

2 k ; xy .z v/b; 

00 

0000 1 00 

+ f f exp{ ---(u2 -2p uv+v2
) } f Zf(Z)dZdudv-

o 0 2k" xy.z u/b'; 

00 b
11 

/b" /b11 

IV 2 I v 2 

- f f exp{ --,, (u2-2p uv+r)} f Zf(Z)dZdudv). 
o o 2k

1 
x y .z u/b; 

The integration of the inside integrals of Eq. 4.80 
leads to 

4.80 

CTZ 0 1 O J 
E {Z }=k o CT .,(1_; [ f exp { - ~ v2 } f exp{ - --(u-p v)2 }dudv'-" 

z x.z y .z 27T _ 00 ~ -OO 2 k 11 xy .z 
I 

0 1 " 0 1 Pxy.z 
- f exp{ - '2" k 3 v2 } f exp{ - 2C.Jk; u ~ , ~ v? }du dv-

-00 00 kl 4 

0 I II _ _2 0 1 2 
- f exp{ -;;-k

2
v } f exp{---(u -p v) }dttdv+ 

-OO "- oo 2kll xy.z 
1 

0 1 , o 1 Pxy.z 
+ !.oo exp{ - 2 k 3 r} !.oo exp{ - 2 cvk; u - kll v'R: vY } du dv + 

I 4 

0 1 , __ 2 0 1 2 
+ f exp{ - ., k

2
v- } f exp{ --,-, (u-p v) }dudv-

-oo ~ " II 2 k xy .z 
b 1 v/b2 1 

v)2 }du dv] . 4.81 
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where the constants k~ and k 
Eq. 4.78, and k; , k; , and k; are z 

1 + (b" a )2 

" 2 z k =----
2 (b; ay 

are given by 

4.82 

1 +(b; a
2

)
2 k" +(b" a )2 

k, -- ------ , 1 1 z , and k = -----
3 k" + (b" a )2 4 k" (b" a )2 

I 1 z I I z 

Since all the integrals of Eq. 4.81 are of the 
same type as those of Eq. 4.56, their solutions as 
given by Eqs. 4.57 through 4.60 are used here. 

The first integral of Eq. 4.81, denoted by I~, 
with a1 = 1 , a2 = - oo, a3 = k;', a

4 
= 1, 

and a5 = p is obtained from Eq. 4.60 as xy .z 

" /01 1 1 Pxy .z 483 
11 = (27r)yK1 [ 4+ 21T arctan ( $, )) . · 

I 

The second integral of Eq. 4.81, denoted by 
I" . h k" r,y-k" d 2 , Wit a

1 
= ·;.1 , a2 :;; oo , a3 = 1 , a

4 
= v K

4 
an 

a5 = Pxy . 2 /k'~ vk; is obtained from Eq. 4.58 as 

arctan (k"v'k:"v'l<:)) 
I 3 4 

4.84 

The third integral of Eq. 4.81, denoted by I~, 
. h k" k" wtt a

1 
= 

2 
, a

2 
= 00 , a

3 
= 

1 
, a

4 
= 1 , and 

as = p is obtained from Eq. 4.58 as xy.z 

ViS 1 1 
I" = (2rr) - [ - - + ;o;:-

3 £ 4 .ar 
2 

arctan (-Jk':" \!'£" ) ] 
1 2 

4.85 

The fourth integral of Eq. 4.81, denoted 
by I~ , with a 

1 
= k; ,a 2 = - 00, a

3 
= I , 

a4 = .Jk';, and as = Pxy.zfk'~v'k; is obtained 
from Eq. 4.60 as 

(21T) v'i('; 1 I 
1, [ 

4 = v'i2: £ Jk: 4 + 21T 
I 3 4 

arctan ~~~ vk: K )], 
1 3 4 

4.86 
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The fifth integral of Eq. 4.81, denoted by I; , 
'h k" b"/b" k" I d wtt al = 2 , a2 = 1 2 ' a3 = I , a4 = , an 

a5 = p is obtained from Eq. 4.57 as xy.z 

v£;1 
1; = (21T) \1'£ [ 27r 

2 

b"- b" 
1 2Pxy.z 1 

( b" ~ v'i2:) + '21T 
2 1 2 

arctan 

arctan 4.87 

Finally the sixth integral of Eq. 4.81, denoted 
by 11

' with a = k 11 a = b11/b'1 a = 1 
6' 1 3' 2 1 2' 3 • 

a4 = vf: and a5 = Pxy.zfk~-v'k: is obtained from 
Eq. 4.57 as 

(21T) v'k'; 1 
I" - [ 

6 v12; v12; Jk; 27r 

b" k" k"- b" 
1 I 4 2Pxy .z 

arctan ( b" k" vi<: v'k" 
2 1 3 4 

1 
) + 27r 

Pxy.z 
arctan ( , tvr r.:tr ) ] 

k 1 vk3 vk4 

4.88 

Substituting Eqs. 4.83 through 4 .88 into 4.81, 
and since Eq. 4.78 gives k a a v'k':

1
" = 1/(2rr) , z x.z y.z 

then 

0 1 1 
E {Z }= _z {- + -v'21T 4 2rr 

arctan 
b"- b" 

I 2 Pxy.z 

( b" tvr 'k" ) 1 + 
2 VK1 VK2 

arctan 
Pxy.z 1 

(k"££ ) -27r 
I. 3 4 

arctan 
b" k" k" -b" 

I 1 4 2Pxy .z 

( b"k"££ )] } 
2 1 3 4 

4.89 



Substituting the derived expected val
ues E {X}, E {Y } and E {Z } as given by Eqs. 4.65, 
4.76 and 4.89, respectively, into Eq. 4.42 gives the 
expected value of the maximum M

3 
and con

sequently the expected value of the range R
3

. 

4.3 Expected Value of Range of Independent 
Random Variables with Changing Standard Deviation 

The expected value of ranges R
1 

, R
2 

, 

and R 3 for independent components of partial sums 
are derived here based on the above derived general 
expressions. 

For n = 1, Eq. 4.27 holds without any 
modification. 

For n = 2, the difference Y - X of Eq. 4.25 
is x

2 
-y

2
;therefore, Var {Y-X }=Var(x

2 
-y

2
)=o;. 

Furthermore, Eqs. (7) and (8) of the Appendix give 
Var X= a; and VarY = a 1

2 + Cl:}, so that Eq. 4.41 
gives the expected value of the range R

2 
as 

For the particular case of i.i.d. random vari
ables, [Var X] !h = a

1 
= a

2 
, so that Eq. 4.90 

becomes 

12 y 1 '/: 
E{R

2 
}= v' F { [ Var X] , + -z [VarY) 1 

}. 

By using the notation S
1 

= X and S
2 

= Y , finally 

4.91 

which is in agreement with Spitzer's formula given by 
Eq. 2.23. For the particular case of the standard nor
mal variable, Eq. 4.91 further simplifies to 

12 1 
E{R2 } = v i- [ 1 + .J2 ] , 4.92 

in agreement with Anis' and Lloyd's formula given by 
Eq. 2.9. 

For n = 3 , the expected values 
of X, Y, and Z are first evaluated as given by Eqs. 
4.65 , 4.76, and 4.89, respectively. 
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Evaluation of E{X } of Eq. 4.65: Substitution 

of p z.x of Eq. (17), and constants k
1 

and k
2

, 

and k4 of Eqs. (19) and (20) of the Appendix leads 
to 

1 
-=0 
v~ 

1 P yz.x 
v'k

4 

= 0 and v'k; 

which substituted into Eq. 4.65 give 

Evaluation of E {Y } of Eq. 4. 76: Substitution of 
p of Eq. (17), and constants b

1
' and b

2
' , k'1 xz.y 

1 
, 

1 
and k

2 
, and k

3 
and k4 of Eqs. (21), (22), and 

(23) of the Appendix leads to 

1 Pxz.y 

~ ==0, vr:-=0, 

and 

bl k' k' + b' 
I 1 4 2Pxz.y 

b'k'Jk:K 2 1 3 4 

which, substituted into Eq. 4.76, gives 

ay 1 1 °2 

E{Y } = v'2tr L;r+ 4 (_a_;_+_Cl_;_)~~] 

Sin ce Eq. (8) of Appendix , 
gives ay = (al + ap!h, then 

1 1 1 
E{Y }== ~ [4 a2 +4(a; +a; )!h ] 4.94 

v2rr 

Evaluation of E{Z } of Eq. 4.89: Substitution of 
p of Eq. (1 7) and constants o'1 and b; , k~ 
~a·\; , and k; and k~ of Eqs. (24), (25), and 
(26) of the Appendix leads to 



b" '- b" 
l 2 Pxy.z a2 

b" fiJI 101k" = a ' 
2 VK 1 VK2 1 

a a (a2 + a2 )Yz 
I 3 2 3 

b"k"k" = b" 
I 14 2Pxy.z 

= 
b" k" v'k" v'k" 2 1 3 4 

= ------

Substituting the above expressions into Eq. 
4.89, then 

a z 
E{Z }=

..,fJ.ir 
1 I 

{ - +-4 211' 

I I a2 
[ 4 + 2n arctan (q-) ] + 

1 

Since Eq. (9) of the Appendix 
gjves az =(a~ + a

2
2 + a~)Yz , the above equation 

simplifies to 

I I I 
E{Z}= - ·-[ - a +-(a2 +a2 )Yz ..j'J.1T 4 3 4 2 3 

1 I a2 +4(a;+a~ +a~)Yz +a3 2iT arctan Co;-)+ 

I a l a3 
+(a; +a~ + a~)Yz 2iT arctan ( 2 2 2 

y,) ] 
a2(a1 + a2 + a3) ' 

4.95 

Substituting Eqs. 4.93, 4.94, and 4.95 into Eq. 
4.42, the expected value of the maxi
mum M

3 
becomes 
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1 I 
E{M }= - { 4 (a1 + a2 + a3) 

3 ..J'IiT 

+ ~ [(a~ + a~)Yz +(a~ + a~)Yz +(a; +a~ + a~)Yz] + 

Consequently, the expected value of the range R
3 

is 
given by 

E{R
3 

}= Jf{ ~ (a
1 

+ a
2 

+ a
3

) 

+ ~ [(a; + a~)Yz +(a~+ a~)Yz +(a~ +a~ +a~(' 1 + 

1 a2 I a2 
+a1 27rarctan (<J)+a3 211 arctan (0 ) 

3 I 

I a a 
2 2 2\lz 13 

+(a1 +a2 +a3) 2iT arctan( 2 2 2 '1: ) } . 
a2(ai + a2 + a3) ' 

4.96 
For the particular case of i.i.d. random vari

ables, or a 1 = a
2 

= a
3 

= a, 

[Var X] y, = [Var S
1 
1 y, = a

1 

Eq. 4.96 takes the form 

4.97 

which is in agreement with Spitzer's formula given by 
Eq. 2.23. For the particular case of the standard nor
mal variable, Eq. 4.97 simplifies to 

A 1 l 
E{R }::; [ 1 +- + - 1 

3 Vf V3 , 4.98 

which is in agreement with Anis' and Lloyd's formula 
given by Eq. 2.9 . 



4.4 Expected Values of Range of Equally Dependent 
Random Variables (Exchangeable Variables) 

Exchangeable random variables have the pro
perty that the variances are the same, and the 
correlation between any two variables is also the 
same (M. Loeve, 1960). The expected range of this 
type of variables is of importance, especiaUy when 
deriving the expected adjusted range as given in 
section 4.6 of this chapter. 

Following D. B. Owen and G. P. Steck (1962), 

exchangeable variables may be generated by 

in which e
0 

and e
1 

are independent normal random 
variables with mean zero and variance unity, 

with E{x1 } = 0 , Var{x1 }= 1, and E{x1 xt +u }= p . 

For n = 1 , Eq. 4.27 holds without modifica
tion. For n = 2 the difference Y-X of Eq. 4.25 is 
equal to x

2 
-y 

2
• Since an equal variance is assumed, 

thn 2 
Var {Y - X } = Var {x2 '""y2 } = o 

Because Eq. (29) of Appendix gives Var X = o2 , 

Eq. 4.41 becomes 

E{R
2 
}=~-{(Var X) y, + ~ [VarY) v. }. 

With the notation S
1 

= X and S
2 

= Y , finally, 

By using Eqs. (29) and (30) of the Appendix, 
the explicit equation for the expected value 
of R

2 
becomes 

E{R2 }=lro[ 1 + -jr (l + p)'/') . 4.101 

For n = 3 , the expected values 
of X, Y and Z are flrst evaluated as given by Eqs. 
4.65 , 4.76 and 4.89, respectively. Evaluation 
of E{ X } of Eq. 4.65: Substitution of p of Eq. yz.x 
{39), and constants b 1 and b 2 , k 1 and 
k3 and k4 of Eqs. (40), (41), and (42) of the 
Appendix, leads to · 
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Pyz.x ' 
-=(I+ 2p)v, 

1 VIP 
vr;- v'K;""" = ( 1 + p )v. 

= p ' 

b1k 1k4 -' b2 Pn .. x (I- p)( 1 + 2p)16 

= 
b2kl~ ~ 2p 

and 
p 

Y Z .X \1, 
. ~ . r,;-- p (I+ 2p) 

k 1 vl\.3 v k4 

By substituting these expressions i11to Eq. 4.65 , 
it becomes 

o I 1 
E{X }= Yb hr + 27f 

y,Vf 
arctan [ ( I + 2p) ' ] - 4 

p 

I ( 1 - p)( 1 +2p)v. 
- p [ 21T arctan ( ) 

2p 

I 
+ 21T arctan (p ( 1 + 2p)y, ) ) }. 

After simplifying, we fmally have 

a 1 VI P 
E {X }= ..j2if { 4 - 4 -( 1- +- p......,) 'h.,..._ 

l 
+ 27Tarctan [( I + 2p)y, ] 

1 (1+2p) v. 
- p - arctan [ ] } . 4.1 02 

21T p 

Evaluation of E{Y} of Eq. 4.76: Substitution 
of p of Eq . (39), and constants b

1
' and b'

2
, 

I Xt.y, I I 

k
1 

and k
2

, and k
3 

and k 4 of Eqs. (43), (44) and 
(45) of the Appendix, lead to 

Pxz.y 
--= 0 
yV, 

I 

1 vr p 

~ = ( 1 +p)y, ' 



b'l k') k~ + b2' p 

and 
P xz. y 

xz.y (1+2p)y, 

p 

= 0 . 

By substituting these expressions into Eq. 4.76, 
it becomes 

a y 
E{Y }=-

y'21f 

I .J'Ip I 1 'li 
{ 4 - ( 

1 
+ P) y, [ 4 + 2rr arctan ( 1 + 2p) 1 + 

(l+p)'h 
+----'~ 

y"'f 

I ( 1 + 2p)'li 
2iT arctan [ 1 } . 

p 

Since Eq. (30) of the Appendix gives 
a ( 1 + p) y, , then 

a = v'2 y 

0 y"'f \1: 1 
E{Y }=-- {4 (I+p) '-2p 

..j2i( 

I ( 1 + 2p )y, 
+ ( 1 + p) 21T arctan [ P J - 2p 

I y, 
2rr arctan ( 1 + 2p) ' } 4.103 

Evaluation of E{ Z } of Eq. 4.89: Substitution 
of Pxy .z of Eq. (39) and constants b;' and b; ,k;' 
and k~', and k; and k; of Eqs. (46),(47),and 
(48) of the Appendix, leads to 

Pxy .z I 
=-v'k;" VJ , 

I ( I + 2p )y, 

~=VJ 

b"- b" 
I 2 Pxy.z 

= ( I + 2p )y, , 
b" VI?: K 2 I 2 

= 
v'2 ( 1 + 2p)¥> 

VJ( I+ p)y, 
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b"k" k" - b" 3( I + p)v. 
J I 4 2Pxy.z 

=----
b" k" ~ v1<:: v2 c 1 + 2p)y, 

2 I 3 4 

k''v'k:v£" I 3 4 

= 
v'2 (1 + 2p) y, 

3( I +p)v' 

By substituting these expressions into Eq. 4.89, 
it becomes 

0 z 1 l 1 
E {Z }= -- { 4 + 2rr arctan ( - ) 

v"ET Yf 

( I + 2p) y, 'I I I 

+ Yf [ 4+ 21T arctan (I+ 2p)"' 1 + 

v'2( I+ 2p)'~> 
+ 

VJ( 1 + P)"' 

Vf( I+ 2p)y, 
arctan ( y, ) 

3 ( l + p) 

I 3 ( I+p)y, 
- 21T arctan ( "' \1: ) ] } 

v2 (I+ 2p) ' 

Since Eq. (3I) of App endix 
gives oz = ../3 a( I + 2p )y, , the above equation 
simplifies to 

a 
E{Z } = 

v'2tr 

1 I 
{ (1+2p)[4 + Z1r- arctan (l +2p)'12 ] + 

v"f (I + 2p) 
+ --;r 

l 
+ .J'f (I+ 2p)y, } .4.104 

"t (l+p)y, 

Substituting Eqs. 4.102, 4.103, and 4.104 into 
Eq. 4.42 gives the expected value of the maxi
mum M3 as 

a 
E {M } = -

3 y'21f 

I lL 1 1L 

[ 1 + - ( I + p ) " + - ( 1 + 2p )" ] . 
VI VJ 



Consequently the expected value of the 
range R3 becomes 

1 I 
+ - ( 1 + p)11" + - ( 1 + 2p)'h. ] . 4.105 

..j'f V3 

Equations (29), (30), and (31) of the Appendix 
give [Var X]'h = a ,[Var Y]';, = av'2(I + p)'f>, 
and [Var Z] 'h. = ay'3(1 + 2p)'h, and a sub
stitution of S1 = X, S2 = Y , and S3 = Z , as 
indicated by Eq. 4.25, leads to 

4 .106 

In summary, the expected value of the range 
for n = 1 , 2 and 3 of exchangeable random vari
ables are: 

E{R
1

} = .Jf. [ Var S
1

] o;, , 

E{R2 } = A {[Var sl] 'h + ~ [ Var s2] y, } ' 

E{R
3

} = if {[ Var S
1

] y, 

As a conclusion, the general expression for the 
expected range of exchangeable random variables can 
be written as 

E{R } = f!_ 
n ~rr 

n 
:E r 1 [VarS,.] y, , 4.107 
i=l 

in agreement with Spitzer's formula (Eq. 2.23). 

4.5 Expected Values of the Range of First-Order 
Markov Linearly Dependent Variables 

The exact expected values of the range 
for n = 1 ,2, and 3 are given here for the case of a 
stationary first-order Markov model. 
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For n = 1, Eq. 4.27 holds also without 
modification. For n = 2, Eqs. 4.100 and 4.101, 
valid for exchangeable random variables, are also valid 
in this case because only two random variables are 
considered. 

For n = 3 the expected values of X,Y, 
and Z given by Eqs. 4.65, 4.76 and 4.89, res
pectively, are first evaluated. 

Evaluation of E{ X } of Eq. 4.65: Substitution 
of Pyz.x of Eq. (59), and constants b 1 and b 2 , 
k

1 
and k

2 
, and k

3 
and k

4 
of Eqs. (60), (61), and 

(62) of the Appendix, leads to 

p 
~ =(l+p) 
A 

I = p(I +p)'l• 

A ~ 

b l - b2 Pyz.x p 
= 

b2 ~Vi<; .J2(I +p )';, 

By substituting these expressions into Eq. 4 .65, 
it becomes 

E {X} = ~ { t + .Jrr arctan (1 +p) 
V2-i. 

( ] )'h 
- P +p (1 - 1 arctan ( p )] -

V2 4 2iT J2(l+p)y, 

- p[~ arctan Cpd+p)) + 2; arctan (p(l+p))] } 

which simplifies further to 

a 1 I pfi+"'y, 
E{X} = - {4(1-p) -4 ~ 

..,fiit V2 
+ trr arct an (l+p) + 

p(l +p ) y, 1 arctan [ P ] } 
+ -12 21T J2(l+p)'~' 4.108 



Evaluation of E {Y} of Eq. 4.76: Substitution of 
p of Eq. (59), and constants b 1' and b; , k~ , xz.y , , , 
and k

2 
, and k

3 
and k

4 
of Eqs. (63), (64), and 

(65) of the Appendix, leads to 

Pxz.y p 
~ - - -../21=2(_l+_p_)y,-, 

b' + b' p 
I 2 X Z .y 

b' .Jk: v = (l+p) 
2 I VK2 

(l+p)y. 

=..)2 

b~k,'k~ + b2' p xz.y 2 Pxz.y 

p , k' £ lj(i I 3 V K4 

By substituting these expressions into Eq. 4.76, 
it becomes 

0 y 1 I p 
E{Y }"" ...fST { 4 + 21T arctan [- -..J"[-

2
- (- l -+-p)-y,:--

p(!+p)\1' 1 I 
[ 4 + 21T arctan ( 1 + p) J + 

..jf 

(! +p)11
' 1 2 1 

+ vf [ 21T arctan ( p)- 27r 

p 
arctan ( - 2 ) ] } 

Since Eq. (50) of the App e ndix 
gives a = a.,fi (1 + p) 11', this expression further 

y 
simplifies to 

E{Y } = _ a_ {t (l - p2) 
y'fi 

+4(1+p)'11 - p(1+p)1:rr arctan (l+p)-

- .._/2(I+p)112 $-arctan [-J2(I+p)v, l } 4_109 

Evaluation of E{Z } of Eq. 4.89: Substitution of 

P xy .z of Eq. (59), and constants b ;· and b; , k'; 
and k; , and k; and k~ of Eqs. (66), (67) and 
(68) of the Appendix, leads to 
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b"- b" 
1 2 Px.y.z 

b" v'i2: £ = (l+p) 
2 I 2 

I (l+p)11' (2+p) 
--==-=-== = -----------.Ji2; ~Vi<; .._/2(3+4p +2p2 

)
11' 

b"k"k" - b" 
1 14 2Pxy. z 

b"k" v'iC:~ 2 1 3 4 

(1 +p)%(3+2p+p2 ) 

y'2(1 +p+p2) 

k"~· 1k" I 3 V 4 

By substitutin& these expressions into Eq. 4.89, 
it becomes 

(I +p )y'(2+p) 
+frr arctan (l+p)] + 0( 2 V: [t 

2 (3+4p+2p ) 2 

I (l+p)Sf2(2+p) 
- -2 arctan ( ) 

1T -)2(3+4p+2p2 ) 

_l_ (l+p)~f'(3+2p+p2) 
- "21T arctan ( . Pl 2 . ) ] } 

v2 (I+p+p ) 

After further simplification and since Eq. (5 1) 
of the Appendix gives a z = a(3 + 4p + 2p2

) v, , 
then 

o 1. I 
E{Z } = r-L{( I+p+p2

) [4 + 27rarctan (l+p)] 
y 2 7T 

(2+p)(1+p)v, _j_ .._,I2(I+p)y. 
+ .J

2 27T arctan [ p ] + 

• I _L_ (I+p? 
+ (3+4p+2p2 )'h [4 + 2iT arctan ( 

2 
Y: ) ] } 

(3+4p+2p ) ~.110 



Substituting Eqs. 4.108, 4.109, and 4.110 into 
Eq. 4.42 gives the expected value of the maxi· 
mum M

3 
as 

0 3 
E{M3 }= ${[4+2 trr arctan(l+p)] 

1 _l_ 2+2p-p2 
+v'f(l+p)"" [4+ 21T arctan( ..j2 ,) ] + 

2 2p(l+p) 

+ (3+4p+2p2)"" rt + -iT arctan ( (I+p)
2 

1/,)] } 
(3+4p+2p2) 

Consequently, the expected value of the range R
3 

is 

j_ _L 2+2p-p2 
+Vl(l+p)"" [4 + aarctan( v'2 , )} + 

2 2 p(I+p) 

I l. _L (I+p )2 
+(3+4p+2p2)v, [4 + 2 arctan ( v.) J 

7r (3+4p+2p2) 4.1 1I 

Equations (49), (50), and (51) of the Appendix 
give (Var X] 'h = a, [Var Y] 'h = ov'2(I + p)"", 
and [Var Z} 'h = o(3 + 4p + 2p2 )'h . A sub
stitution of S

1 
= X , S

2 
= Y ,and, S

3 
= Z, as 

indicated by Eq. 4.25, leads to 

arctan ( I + p) ] [Var S 1 y, + 
I 

l I 2 + 2p- p 2 

+ [ 4 + 211 arctan ( 'h ) ] 
2Vfp(l+p) 

I 1 1 ( 1 + P? 
[Var S

2
] v, + [ 4 + 21T arctan ( 2 ,) ] 

( 3 + 4p + 2p ) 

or 

2 Y: 
E{R

3
} = ..j 'iT { c

1
(p) [Var S

1
] ' 

1 'h 1 y, 
+ c

2
(p) 2 [Var S

2
] + c/P) 3 [Var S3 ] } , 

4.112 
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with 3 2 
C1 (p) = [ 4 + 27r arctan ( I + p) J , 

I I 2 + 2p- p2 

c2 (p) = 2 [ 4 + 21T arctan ( ..j2 'h ) J , 
2 2p(1+p) 

and 

1 1 ( I + p ) 2 

c3 (p) = 3 [ 4 + '21T arctan ( ( 2 'h ) } . 
3+4p+2p) 

For the particular case of p = 0 , c1 (p) = 
c

2
(p) = c

3
(p) = 1 ,thenEq.4.112simplifies to 

- II "" E{R 3 } - J 'iT {,[Var S1 ) 

1 1 
+ 2 [Var S

2
) 'h + 3 [Var S

3
) 'h } 

in agreement with Spitzer's equation (Eq. 2.23). 

4.6 A Note on the Expected Value of Adjusted Range 
The expected values of adjusted range of 

exchangeable random variables are shown to be given 
by the same formula as for the expected values of the 
range of a transformed variable which also shows the 
property of exchangeability. 

Let us assume the inputs are exchangeable vari
ables, as defined in Section 4.4, while the outputs are 
equal to ax

0 
, with 0 < a < I and x

0 
the 

sample mean. Then the adjusted partial sums, as given 
in general by Eq. 3.2 are 

S* = 0 
0 ' 

S* = S* + (x -a x ) 
I o I n· ' 

S* = S* + (x -ax ) 
2 I 2 n ' 

4.113 

By using the transformation 

4.I14 

this new process, w, , has the expected value 

4.1IS 



and the variance, using Eq. 4.114, is 

Var {w
1 

} = Var {x
1

} 

+a2 Var {x
0

} - 2acov {x1 ,x0
} . 4.116 

Because the variance of the sample, x
0 

is 

- 1 1 2 
Var {x } = -

2
- Var {S } = - [ n a 

n n n n2 
n-1 n-i 

+ 2 ~ ~ cov{x,. , x,.+J.} 1 , 
i=l j=1 

and since the original process x. has equal auto
' correlation coefficients, with Cov {x., x. . } = a2 p , 

the above equation becomes 
I t+j 

a2 
Var{x

0
} = n (l+(n-l)p] 4.117 

The covariance of xt and xn is 

1 n 
Cov { x

1 
, x } = -n E { x1 .~ xi } 

" t=l 
a2 

= 0 [1+(n ..o~ l)p]. 4.1 18 

Substituting Eqs. 4.117 and 4.118 into Eq. 
4.116 leads to 

Var {w
1

} 

al 
= n { n+a(a '- 2) [1+(n -1)p] } . 4.119 

The covariance of the process w 
1 

is 

Substituting Eqs. 4.117 and 4.118 into the above 
expression leads to 

Cov{w1 , wt+k} 

a2 
= - { n p + a (a ""' 2) [ 1 + ( n- 1) p] } . 

n 
4.120 

Therefore, the autocorrelation function of, w
1 

is 

np +a (a- 2) [ 1 + (n - 1) p] p ( w ) = __ ..:_____.:._:____:_.....:..........;;.. 
1 n +a (a- 2) [ 1 + (n- I) P 1 4.121 
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Equations 4.115, 4.119, and 4.121 show the 
process w

1 
to be second-order stationary and to 

have equal autocorrelation coefficients, independent 
of the lag k , that is, w

1
is a sequence of exchange

able random variables. This property shown by the 
components of the adjusted partial sums is important, 
because, as shown in section 4.4, the expected value 
of the range of a sequence of partial sums whose 
components are exchangeable random variables may 
be obtained by using Eq. 4.107. 

For the sequence of adjusted partial sums 
S0* , St , S2 *, ... , S

0
* , the expected value of the 

adjusted range is 

fi n 
E{R*}= ~ i"1 [Varsnv.. 

n i=l t 
4.122 

In the case of independent standard normal 
variables and o: = 1, Eq. 4.1 simplifies to the 
equation given by Solari and Anis (1957). For com
puting the variance of S, for this case, Eq. 2.2 gives 

the general terms St, expressed by St= Si · iS
0
/n ,' 

so that 

i 
Var { Sn } - 2 n Cov{Si , S0 } . 

For i.i.d. and standard normal variables, Var {Si }= 
I , Var{Sn} = n , and Cov{Si 'sn }= i , so that 

sn = i ' so that 

i 
Var {St} = n (n- i) . 4.12.3 

Substituting Eq. 4.123 into Eq. 4.122 gives 

fi n (n-i)v. 
E R* = ~ --

{ " } i= 1 i y, n V. 

n 2(n-i)'1• 
~ 

i=l n iy, 
4.124 

From Eq. 2.24, the expected value of the 
adjusted range, given by Solari and Anis, is 

A n 
E{R*} = ~ i.y, ( n- i).y, . 4.125 

0 i=l 



To show that the summations in both Eqs. 4.124 and 
4.125 are the same, write 

n 
= ~ r'h (n-' i)Y: . 

i=l 

Changing variables n - i = j on the left-hand side, 
then 

n 
~ 

j=l 

n 
= ~ r>n ( n - i)"Y: . 

i=l 

Separating the left-hand summation into two parts 
and passing one to the right-hand side gives 

n iY: 
~ 
i=l n (n- i)Y: 

n 
1: 
i= l 

= 
n 
1: 
i=l 

n 
= 1: 

i=l 

iY: 

1 

[ ·Y: ( ')Y: -1 n - 1 
------,1.,-L J > 
n ( n "" i ) " 
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and n jY: 
1: 
i= J n (n- i)Y: 

n (n- i)Y: n iY: = ~ = 1: 
i=l n iY: i=l n(n- i)Y: 

which proves that Eqs. 4.124 and 4.125 are identical. 

The conclusion of this analysis is that the ex
pected values of adjusted range of exchangeable 
random variables may be expressed in the same way 
as the formula for the expected value of unadjusted 
range. Equation 4.122 is, therefore, valid when input 
is either independent, or dependent with equal auto
correlation coefficients (exchangeables), while the 
output is equal to a percentage of the mean inflow, 
that is, y t = ciX

0 
, with a being the level of 

development. 

The above result is relevant in hydrology 
because when one is interested in overyear storage 
design, and the assumption of independence of 
streamflow events is sufficiently accurate and the 
degree of regulation or development is expressed as a 
fraction of the sample mean inflow, the expected 
value of the storage in a given number of years is 
given by the expected adjusted range which now can 
be computed exactly by Eq. 4.122. This equation is 
of mathematical interest as well, because it also gives 
the expected adjusted range when the original 
variables have the property of exchangeability. 



CHAPTER V 

APPROXIMATE EXPECTED VALUES OF RANGE 

T he exact expected values of range 
for n = I ,2, and 3 are derived in Chapter IV, con
sidering the univariate, bivariate, and trivariate nor
mal distribution functions for the partial sums 
S1 , S2 and S

3 
• Based on the exact expected 

values of range for n = 1 ,2, and 3, the computer 
simulation or the data generation method is used in 
this chapter to obtain the approximated equations of 
the expected values of range for large values of n . 
In particular, the following cases are studied : the 
Markov models with periodic autoregression coef
ficients, the non-stationary exchangeable random 
variables, and the Markov models with periodic 
standard deviation. 

5.1 Expected Values of Range of Markovian Linear 
Models with Periodic Autoregression Coefficients 

Considering the general model given by Eq. 3.3, 
it is assumed that JJ.r = 0 and o, = a = a con
stant. The Markovian models considered in this sec
tion are of the form 

m 
x = a z = a [ L a. . z . + k E ] 

p,r p,T j= l J,T·J p ,T-J m ,T p,r 

with k given by Eq. 3.5. m,-r 

V. Yevjevich (1967) gives an approximate 
equation for the expected values of ranges of linearly 
dependent normal variables. In particular, he uses the 
first and second-order Markov models with constant 
autoregression coefficients and moving average 
schemes. The same equation was used by P. Sutabutra 
(1967) for the frrst-order Markov model. 

The same equation is used in this section for 
approximating the expected value of ranges of 
Markovian models with periodic autoregression coef
ticien ts, or 

E{R }= ff1T ~ i"1 (Var S.] y, 
n V 1T i= I t 5 .I 

The approximation of the above proposed 
equation is checked in general by the data generation 
method, for various values of n . For the particular 
case of n = 3 :md the first-order Markov model, a 
comparison is made between the expected values of 
range given by the exact Eq. 4.112 and by the 
approximate Eq. 5 .1. The results of this comparison 
are given in Table 5 .1. This table shows a high 
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closeness of expected values obtained by both equa
tions where the percentage relaHve differences are less 
than 0.09 for all cases of p analyzed. 

TABLC S . I CO/IlPARISON OF TilE EXPI:CTED \'ALUI: OF RA.O,:GE 

p 

0.0 
0 .1 
ll. ~ 
'J.3 
0 .4 
0 . 5 
il. o 
11 . 7 
o.s 
0 . \1 

FOR n• 3 , GIVEN BY Til~ l:XACT LQ. 4. 112 
J\.'<D TilE APPROX HIATED t.:Q. 5. 1 , FOR Tl I~ 
fl RST -ORDER ~lAR io:OV t•!OOEL. 

___£~pee c cd rang<:' for n=.; 
l: x;oct 

L4unt ion ApprOXImated Rc l~ti ve 

J . 11:! l::qu3t ion S. l lit fferencc [rror ~n 
(I) r:1 m-<IJ l'o.:rc<'nta~:c 

1. 82li: S 1. s::;~s l). llOOOtlO 0. 0000 
J .SSJ:S3 I . SSJJSS 0.000172 0 . 0092 
I . !139:'J: I . ~13!18111 0.000559 0.0~88 

J . \l!lbio3 1 . :1!17770 0.001007 1).050-1 
c. 053,)5 7 2.oss:;"; 0 . 001~10 0.06S7 
:! . l llhiOg : . 1 1 :~>H I I) . 0() 16~)3 ll.ll8 tl 2 
: . ll>7u:'5 :. l h~ll~ll ll .tiO !SOS U. il$33 
:! . :~J303 2. ~~n013 O. tllll710 tl.0769 
2 . ~SOM:t> 2. :s::11 0 . 0(11 385 o. 01>0 7 
~ . 33726A : . 3311tlXS \) . 000817 U. ll3·1!l 

-

Equation 3.39 gives the general expression of 
the variance of the partial sum Si for the m-th order 
Markov linear model with a periodic standard devia
tion and periodic autoregression coefficients. In the 
case of a constant standard deviation, Eq. 3.39 
simplifies to 

i- 1 
Var {S,. }= a2 fi + 2 !: 

t=l 

i- t m 
L !: 
u=1 j= l 

O'i.t+u-j Pz(x) (u- j ,t)] 

where a. _ are the periodic autoregression coef-
J. • 

ficients which may be computed by the solution of a 
system of m linear equations as given by Eq. 3.7. 
For the particular cases of the first, second, and 
third-order Markov models, these coefficients can be 
computed di:rectJy from Eqs. 3.8 to 3.13. The 
periodic auto correlation function Pz(x)(u-j,L) be 
computed by using the recursive Eq. 3.14. 

S u bstituting the above equation 
for Var Si into Eq. 5.1 the expected value of range 
of the m-th order Markov model with a constant 
va riancc and periodic autoregression coefficients 
becomes 



ai.t+u-j Pz(x)(u- j ,t)] Yl 5.2 

For the particular case of the constant auto· 
regression coefficients, Eq. 5.2 simplifies to 

E{R } = ~ r' [i + 2 ~ 
fl n i-1 

" i=J u= l 

m 
(i·u) .~ a. p ( )(u-j)]* 

j = } J Z X 
5.3 

which is identical to the equation given by V. 
Yevjevich (1967). 

An explicit expression of E {R
0 

} for the case 
of the first-order Markov model with periodic auto· 
correlation coefficients may be obtained by using the 
variance of S; given in Eq. 3.37, so that Eq. 5.2 
becomes 

i-1 i-t u Yl 
[i + 2 ~ ~ n P k 1 1 , 5.4 

t=1 u=J k=l I ,t+ • 

where pi is the first periodic autocorrelation coef· 
,T 

ficient, which may in general be represented by the 
harmonic function as given by Eq. 3.6. 

In the case of a constant fust autocorrelation 
coefficient, that is, p 

1 
= p , Eq. 5.4 simplifies to 

,T 

E{R } ::: {f7T a(I-p)"2 .~ r 1 

n v7T t=l 

which is in agreement with the equation given by P. 
Sutabutra (1967). It may also be shown that, for the 
case of p

1 
= 0, Eqs. 5.2 through 5.5 simplify to 

,T 

Eq. 2.9 for i.i.d. normal random variables given by 
Anis and Lloyd (1953). 

The validity of the Eqs. 5.2 through 5.5 were 
tested by the data generation method. The first , 
second, and third-order Markov models were the only 
models tested since they are the most commonly used 
in hydrology. In all cases, 2000 sequences of normal 
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independent random numbers were generated, and 
the respective Markov dependence was then 
introduced. The mean ranges for values of n up to 
60 were obtained by averaging the computed ranges 
of 2000 samples. 

For the first-order Markov model, the following 
cases were analyzed: 

(a) PI T 
= 0.60 s(p 1 ,r) = 0.00 

' 

(b) p l = 0.60 ;r s(p i ) = 0.102 
,T 

(c) pl = 0.60 
,T 

s(p
1 

) = 0.207 
,T 

where p
1 

and s(p
1 

) represent the mean and 
,T ,T 

standard deviation of the periodic first auto· 
corre lation coefficient , respectively. The results 
obtained are presented in Figs. 5.1 through 5.5 
showing the mean ranges of simulated samples and 
the values obtained by Eq. 5.4 or Eq. 5.5 for values 
of n up to 60. In all cases, the agreement between 
the mean ranges of simulated samples and those com· 
puted by. Eq. 5.4 or Eq. 5.5 are very good. Figure 5.5 
gives a comparison of the cases studied. It shows that 
after a transition period, which is around one cycle or 
12 units, the expected ranges of n increase with the 
increase of the standard deviation of p

1 
• 

,T 

For the second-order Markov model, the cases 
analyzed are given in Table 5.2 

TABLE 5. 2 CASES ANALYZED FOR THE SECOND
ORDER MARKOV MODELS . 

Lag Mean Standard Deviation s(pk , T) 
k ~k, T 

(a) (b) 

l 0.60 0.0 0 .102 

2 0. 45 0.0 0 . 102 

The results for the mean ranges of simulated samples 
and those obtained from Eq. 5.2 are shown in Figs. 
5.6 and 5.7 for values of n up to 60. In both cases, 
the agreements are very good. 

For the third-order Markov model, the cases 
analyzed are given in Table 5.3. 



: 

I 

TABLE 5.3 CASES ANALYZED FOR T HE THI RD
ORDER MARKOV MODELS . 

Lag Mean Standard Deviation s(ok , t ) 
k ~ k , T 

(a) (b) 

l 0.60 0 . 00 0 . 102 

2 0 .45 0 . 00 0 . 102 

3 0.30 0 . 0 0 0 .102 I 

Figures 5.8 and 5.9 show the results for the mean 
ranges of simulated samples and those computed by 
Eq. 5.2 for values of n up to 60. In both cases the 
agreement is very good. 
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Fig. 5.1 

E{Rn} 

Computed from s;mulotea 
Samples I m = 2000) 

A,r 
1.0 

0.8 

0.6 

0.4 

0 

00 
T 

0 2 4 6 8 10 12 

n 

20 30 40 50 60 

Mean range obtained from simulated 
samples and the expected values of range 
computed by Eq. 5.5 , for the first-order 
Markov model with a constant autocor
relation coefficient. 
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Fig. 5.2 Mean range obtained from simulated 
samples and the expected values of range 
computed by Eq. 5 .4, for the first-order 
Markov model with the periodic autocor· 
relation coefficient. 
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Mean range obtained from simulated 
samples and the expected values of range 
computed by Eq. 5 .4, for the first-order 
Markov model with the periodic autocor
relation coefficient. 
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Mean range obtained from simulated 
samples and the Expected values of range 
computed by Eq. 5.4, for the first-order 
Markov model with the periodic autocor
relation coefficient. 
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Fig. 5.5 Comparison of mean ranges obtained 
from simulated samples and the Ex
pected values of range computed by Eq. 
5 .4, for first-order Markov models with 
7f1,.l' = 0.60, and (I) s(p1) = 0.0, (2) 
s(pE ,T) = 0.102, and (3) s(p

1 
,-r) = 0.207. 
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Fig. 5.6 Mean range obtained from simulated 
samples and the Expected values of range 
computed by Eq. 5.3, for the second
order Markov model with constant auto
correlation coefficients. 
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Mean range obtained from simulated 
samples and the Expected values of 
range computed by Eq. 5.2, for the 
second-<lrder Markov model with peri
odic autocorrelation coefficients. 
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Fig. 5.8 Mean range obtained from simulated 
samples and the Expected values of range 
computed by Eq. 5.3, for the thiid-order 
Markov model with constant autocor
relation coefficients. 
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Mean range obtained from simulated 
samples and the Expected values of range 
computed by Eq. 5.2, for the third-<lrder 
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s(p 1 ) = 0.1 02, (2) p2 )r = 0.45 and 
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3 
) = 0.102. 

,T 

The results obtained above lead to the con
clusion that Eq. 5.1 and the derived Eqs. 5.2 through 
5.5 are very good approximations of the true 
expected value of the range for Markov models with 
periodic autoregression coefficients. 

5.2 Expected Values of Range of Non-stationary 
Exchangeable Random Variables 

Non-stationary exchangeable random variable.s 
are defined for the purposes of this study as variables 
which have standard deviation changing with t , but 
which have equal autocorrelation coefficients. For 
example, at may be an increasing, a decreasing or a 
periodic function of t , while the correlation 
p.. between x. and x. for t = i and t = j is 

IJ I J 
constant and equal to p for any i and j . This kind 
of variable may ·be generated by 

x
1 
= a

1 
(yp e

0 
+ . .ff:P e

1
) , 0 ~ p < l 5.6 

where e
0 

and e
1 

are independent normal variables 
with mean zero and variance one, both uncorrelated. 
It follows that E{x

1
} = 0 , Var{x

1
} = a:, and 

Cov{x
1
,xt+u } = a

1 
a

1
+up . For the particular case 

of p = 0, Eq. 5.6 leads to independent variables 
with changing standard deviations with t . 

An approximate equation is proposed in this 
study for the expected range of the above defmed 
non-stationary exchangeable random variables, as 

fl 
n ·- I (f) 

E{R } = 1: T 1: (Var {S. }.] y, 
n i= 1 (i) j=l 1 J 5.7 



where (S.). in this case denotes the j-th sum of size 

i out of '<h possible sums. In other words, for given 
values of n and i , there are (~) possible ways in 

I 

which Si may be formed. For example, for the case 
of n = 3 , Eq. 5 .7 takes the form 

E{R 3 } = ft {(Var S
1 
)Y> + t [(Var S

2
)i' 

+ (Var S2)~ + (Var S2)i J + t (Var S3)Y• } , 

which, in terms of the components of, the partial 
sums, becomes 

E {R3 } = ,ff {(Var x)Y' 

+ t[ (Var {x
1
+x

2
})y, + (Var {x

1
+x

3
})y, 

+ (Var {x
2 

+ x
3 

})y, ] + t (Var {x
1 
+ x

2 
+ x

3 
})y, } . 

For the particular case of i.i.d. random 
variables, Eq. 5.7 simplifies to 

E{R } =fl2 ~ i- 1 [Var S.] y, 
n 1T i= I I 

which is in agreement with Spitzer's equation given as 
Eq. 2.23 in Chapter II. 

The degree of approximation by Eq. 5.7 to the 
exact expected values of range is checked by the data 
generation method for various values of p and n . 
For the particular case of p = 0 and n = 3 , a 
comparison is made between the exact expected value 
of range given by Eq. 4.96 and expected values com
puted by Eq. 5.7. The results of this comparison are 
given in Table 5.4 for various combinations of 

a1 , a
2 

, and a
3 

. This table shows that Eq. 5.7 

gives a good approximation to the exact expected 
values of range. The differences relative to the exact 
values are less than 0.75 percent in all cases analyzed. 

The validity of Eq. 5.7 is also tested for in
creasing, decreasing and periodic functions of the 
standard deviation a

1 
for various values of n . For 

the first case, a
1 

was made increasing from 1 to 12, 
and for the second case it was made decreasing from 
12 to 1. The results of the comparison of the mean 
ranges obtained from simulated samples and those 
given by Eq. 5. 7 are shown in Figs. 5.10 and 5.11 for 
values of n up to 12. They are also given in Table 
5.5. 

For the case of periodic standard deviation 
aT • several cases were analyzed by using the model 
of Eq. 5.6. These cases are given in Table 5.6. 

For cases shown in Table 5 .6, the mean ranges 
obtained from simulated samples and those computed 
by Eq. 5.7 are shown in Figs. 5.12,5.13 and 5.14. 
They are also shown in Tables 5.7, 5.8 and 5.9. These 
results lead to the conclusion that Eq. 5.7 gives a high 
degree of approximation to the expected values o f 
range of non-stationary exchangeable random vari· 
abies. 

Figure 5.15 shows a comparison of the 
expected values of range o f i.i.d. random variables 
(with a = I 0) and independent variables with 

periodic standard deviation (with aT = I 0 and 
s(a ) = 6 .87). The basic characteristic of this com-

T 

parison is that the mean ranges of variables with 

T.\BLE 5 .4. CmiPAR ISOX OF EXACT EXPECTED VALUES OF RA~GE FOR n=3, 
G I VEX BY EQ . -L 96 AND TilE APPROXHIATE Vi\ LUES CO~IPUTED 
BY ~f1. S. 7 FOR TilL: CASE QF l~OEPE:-.<OEI\'T VARIABLES I~ITII 
STA:--;DARD DEVIATIONS V,\RYI'JG I~ITH t . 

St andard Deviations Expected Range n• 3 Relative 
Tes t - - Eq . ·1 . 96 Eo. 5.7 Difference Error in 
r:\o . •J l 2 3 (1) .(2) (2)-(1) Per centa$!e 

1 1.0 1. 0 l.O 1. 822728 l. 822/28 0 .000000 0.000 
2 1.0 1.0 10.0 8 . 705911 8 .738561 +0. 032650 +0 . 375 
3 1.0 10 . 0 1. 0 8 .803861 8 . 738561 -0 .065300 -0. 740 
-l 10 . 0 1.0 1. 0 8 . 705911 8 . 738561 +0.032650 +0.375 
5 10 . 0 10.0 1.0 13.937151 13.909359 -0 .027792 -0 . 200 
6 10 . 0 1.0 10 .0 13 .853776 13. 909359 +0.055583 +0.401 
7 1.0 10.0 10 . 0 13.937151 13.909359 -0 . 027792 -0 . 200 
s 1.0 10.0 100 . 0 84 . 199965 84 . 251436 +0 . 051471 +0 . 061 
9 1.0 100. 0 10. 0 84 . 365130 84 . 251436 - 0 .113694 -0 . 135 

10 100 .0 10.0 1.0 84 . 199965 84 . 251436 +0 .051471 +0 . 061 
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TABLE 5. 5 COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF 
EQ. 5. 7 FOR INDEPENDENT RANDOM VARIABLES WITH INCREASING AND DECREAS
ING STANDARD DEVIATION . 

Mean Range 

n For Increasing 0 For Decreasing 0 
T T 

Simulated By Equation Difference Simulated By Equation Difference 
m=2000 5.7 in % m=2000 5.7 in % 

1 0.775 0 .798 2.88 9.296 9.575 2.92 
2 2.052 2.089 0.48 15.294 15.670 2.40 
3 3 .743 3. 788 1.19 19.625 20.077 2 . 25 
4 5.858 5.840 0.31 23 .100 23.398 l. 27 
5 8. 276 8.207 0.84 25 .677 25 . 931 0.98 
6 10.948 10 .861 0.80 27.674 27 .855 0.65 
7 13.976 13.779 1.43 29.158 29.290 0 .45 
8 17.087 16.944 0.84 30.244 30.327 0.27 
9 20.510 20 .343 0.82 30.997 31.038 0.13 

10 24.403 23.961 1.84 31.496 31.486 0.03 
11 28.069 27.791 1.00 31.732 31.729 0.01 
12 32.272 31.821 1.42 31.820 31.821 0.003 

TABLE 5.6 CASES ANALYZED FOR THE NON-STATIONARY EXCHANGEABLE 
RANDOM VARIABLES. 

·,. 
Correlation 
Coefficient 

(a) 

p Period (j s (a ) 
T T 

w 

0.0 12 5.0 2.79 

0.3 12 5.0 2.79 

0 .6 12 5.0 2.79 

0.9 12 5.0 2.79 

periodic standard deviation is higher than those with 
a constant standard deviation. The differences 
between them increases as n increases. 

The plot of the mean range against n for the 
case of a periodic a.,. shows that it is an increasing 
periodic function with the same period as that of 
a

1 
, but with a shift in phase. The maximum 

amplitude of the mean range is located three units 
forward with respect to the position of maximum 
amplitude of the periodic a . This characteristic is 

T 

valid only for the particular case analyzed here, that 

Periodic Standard Deviation a 
T 

(b) (c) 

Period a s (a ) Period a s (a ) 
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w T T w T T 

12 10.0 6.87 6 5.0 3.28 

12 10.0 6 .87 6 5.0 3.28 

12 10.0 6.87 

12 10.0 6.87 

is, with symmetric periodic function aT .For cases of 
asymmetric or more complex functions a.,. , the 
characteristics of the periodic mean range vary 
accordingly. 

The use of Eq. 5.7 in approximating the mean 
range obtained from simulated samples of non· 
stationary exchangeable random variables is very 
good. For large values of n , say n > 20, however, 
the computation takes too much computer time. 
Therefore, two ways of solving this problem have 
been developed as described below. 



Equation 5.7 requires that, for given values of 
n and i , the average of the standard deviation of 
all the possible sums of size i must be computed. 
Instead of following that route, one can take a ran· 
dom sample of size, say 100, out of all the possible 
sums of size i and then take the average over the 
sample size. This can be done easily in a digital com
puter. For practical use of this procedure, a com-

promise should be made between the accuracy of 
results and the amount of computer time required, 
both of which depend on the size of the sample 
co nsidered. Figure 5.16 shows an example of 
application of this procedure for the case of 
independent random VariableS With UT = 5.00 and 
s(oT) = 2.79. The number of sums, as the sample 
size, m this case was selected as m = 50. 

TABLE 5,1 COMPARIS'lW OF Sl~l.ATEO MEAN IWIGE AND API'ROXINATEO EXPECTED RAIK;E OF EQ. 5. 7 FOR NON-STATIONARY 
£XCHANC£AILE RANDOM VARIAIL£5. CASE OF e, • S. O A.~O l(o,l • 2 . 79 • 

n 

Sia~ lnC'd 

.. 2000 

I I.SlO 

1 1.991 

3 4. 1JS 

4 ' .489 

5 10.897 

6 I S. 731 

7 IP .942 

3 22. 286 

9 ~l. S.l3 

10 24. 23h 

II 24 ' b l4 

I. : • .178 

1\ :s ltl7 

14 :~. I II 

I ~· :s.s-•: 

Sl-..Jatcd 
n • 1000 

I 1.530 

2 3. 7l2 

l 7.226 

• 12.997 

5 22. 2% 

,, l l . IOI 

7 4~. ~93 

~ •Ut. ~!'l 

., :011.735 

"' ~I.Mt,l 

II U . lll 

I : 52.524 

I) $2.611 

I I $3.056 

· ~ U . IIO 

CcrTelatton Co•fCld eRt 

o•o.o ~·O. JO .. •0. 6>0 ••0. ~0 

By Equation Oi ffC!'rtnce Si lll.llatec!J 8)" Equauon Di f f e r enee Si lllUlttod ! y Equa t ion Oi fference Simu lattd By Equat ion 
s. 7 in '• 11•2000 5 . 7 in \ ••2000 s. 7 In \ m•2000 s. 7 

1.596 4 . 13 1.579 1. 59o 1.06 1.51• 1.596 0. 75 1.59• I. 5906 

3 .072 !.6~ 3.1H S. 1H 0.6! 1 .• oa 1 . 403 0 . 15 1 . 564 3 . 545 

4 .923 I. 79 s.n• 5.•a 0.15 5.911 5 . 11 1 0. 95 6 . 302 6 . 201 

7 . .U6 0.58 1.51! 8 . H2 0 . 31 9 .403 9.366 o. 39 10 . 156 10 . 134 

10.17J 0 . 21 1 2.6~5 12.7 19 0 . 74 14 .l07 14 .:11 o . 17 15.516 15.550 

15.725 0 .05 18 . 587 18.737 0.80 11.1U 21. 173 O.IJ 23 .327 23.215 

19. U6 0. 28 2• . : u 2• .318 0. 37 l7 . 94$ 27 . 930 0 . 05 31 .082 30. 978 

22.053 1.06 27.97l 27. 9J Z 0 .15 32.557 32 .• 68 o.n l6 .461 l6 . 321 

n. 2S6 1.19 30 .462 30' 291 0 . 54 35.162 35 . 626 0 . 38 •o. za• • o .1 19 

23 . 91D 1. 32 31.946 .11.867 0 . 25 3?' 851 17 . 794 o. 17 42 . 893 42.768 

24' 302 1.18 33. 005 .12.944 0 . 18 39 . 31J 39 . 123 0. 15 44 . 717 .. .. ss 

Z4 .S68 1.26 33. 124 33 . 711 0. 11 40.594 40.537 0. 14 • 6. 281 46 . 164 

1 .. 1 27 l. ll 34 . 571 l4 .632 0 . 16 41.74 5 41.1!2 0.01 47 . 70. 47 .0 72 

!S.Ul n .9l 35 .o76 35.709 0. 09 43.317 4:1.282 0 . 08 H .693 19 .Soo 

25. 771 II ,46 37 .286 37 . n3 0.03 45.5!1 45 . 453 0 . 22 52 .l8S ! 2. 211 

TA8L£ $. 1 CXlNPARISON OF Sl~t.ATED MUJ1 IWiCE AHD APPROXIMATal EXPECTED RANGE OF EQ. 5. 7 FOR SON-STATIONARY 
EXCHANCEABLE RA.•OOM VARIAB~ES . CASE OF o • 10.0 AHD S (o.) • 6.~7 · 

Correlation Cotff1c.ient 

o•o.o o• O.J o •0.6 1)•0. 9 

l y Eq.utlon Olffennc.e Sl.,laud By Equa tion 01 f f'er ence Si'll.lhted By Equ• tion 01 ff~trence Sia~lated l y Equati on 

s . 7 i n \ .. 1000 s. 7 In \ •1000 s. 7 In \ .. 1000 s. 7 

I. 591> •. 13 1.!78 1.596 l.ll 1.589 1 .596 0 . 44 t.ooo 1.596 

3.102 1.84 3.930 3.991 1.70 4, l l6 4 . 17! 0 . 93 • • 331 4 . 337 

7.282 0 . 77 7 . 911 7.933 0 .02 8 . ! 26 8 . 502 0.28 9.069 9 .0 15 

12. 152 1. 13 14 .27! 14 . 359 o.ss 15 . 696 15.648 0. 31 16. 9' 6 16. 796 

22. 116 O. l6 25 . 19! 25.224 0.11 27.861 17.767 0 . 34 JO. 217 :10.017 

32 . 900 0.63 38.253 J8 . 291 0.12 42 .926 42. 751 0 . 39 47. 029 46 .oo3 

4Z. 004 0 . 70 50 . 544 50 .496 0.09 57 .491 57 . 317 O. l l 63 .722 63 . 211 

47 ' 700 1.1 s 59 . • 37 59. 341 0 . 16 61 . 636 68. 438 0 . 29 76 , 701 7!.1 .!08 

50 .050 1.37 63 .980 64 .0 19 0 . 06 74 . 811 74. 12' 0 . 12 84 . lSO 8.1. ?!lob 

51 .081 LSI 66.794 00.6.15 o. 24 71. 741 78 . <02 0 . 43 89 .034 88. 3!8 

51.545 1.50 os . 245 68 .OI S o . 21 10.147 80.510 0. 42 91.611V 90.963 

5 1. ].1~ I. 50 69. 0• 8 68 .881 0 . 24 82 ' 011 81 .699 0.39 93. 168 ~1 :! ' -1(15 

:; I . ~~4~ 1.41 ~9 .312 69.680 0. 19 83. 111 82. 888 0 . 35 94 . 679 93 .9b8 

52.371 1.31 71. :!78 71.118 0 . 21 85.303 84 . 998 0 . 36 97 . 352 9(), {,1)4 

U . JIZ 0.93 7J.846 n.743 0 14 18. 95! 88.6&4 U.30 101.86. 10 1.1:18 
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Oi fforence 
I n \ 

0 . 12 

O.Sl 

o .os 

0 .22 

o. 23 

0. 18 

O. ll 

O. ll 

0. 41 

0 . 29 

o.n 
u. l $ 

u . 2n 

H . ~? 

n . l .l 

DIHorencc 

'" ·. 
0.25 

0 . 14 

O. bO 

0 . 89 

0.90 

0 .71 

U, IH 

11 .10 

H . hh 

11. ~1 

u. ;·• 

0 .16 

o. 76 

o. 77 

o.n 

~· 
~ 

t 
t 
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TABLE 5.9 COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF 
EQ. 5 . 7 FOR NON-STATIONARY EXCHANGEABLE RANDOM VARIABLES. CASE OF 
o = 5.0 AND s(o ) = 3.28 . 

T T 

Correlation Coefficient 

n p=O .00 

Simulated By Equation Difference 
m=lOOO 5.7 in % 

1 0.788 0.798 1. 25 
2 4 . 369 4.428 1. 33 
3 9.900 9.992 0 .92 
4 14 .576 14.415 1. 12 
5 16.407 16 . 076 2.06 
6 16 .610 16 . 253 2.20 
7 16 . 799 16 .41 7 2. 33 
8 18.291 17.894 2.22 
9 21 . 260 21 . 226 0 . 16 

10 24.060 24.255 0.80 
11 25 . 237 25 .377 0.55 
12 25.405 25 .480 0.29 
13 25.526 25.580 0.21 
14 26.563 26 .642 0.30 
15 28.852 29 .259 1. 39 
16 31.070 31. 722 2.05 
17 32.101 32 .619 1. 59 
18 32 . 200 ---- --

In using the procedure just outlined, Eq. 5.7 
takes the form 

E {R }= :;;:- k -m .k [Var {S.}.] , 5.8 ·fl n c i m y, 

n " i=l J=l 1 
J 

where m denotes the sample size of the sums com
puted, and the subscript j denotes a particular 
realization of the sum of size i , taken at random. 

Another procedure has been developed in this 
study for obtaining the approximate mean range of 
independent variables with standard deviation varying 
with t . This procedure is based on the exact 
expected range of i.i.d. random variables and an 
equivalent standard deviat ion an of the n variables 
considered. 

The proposed equation is 

E {R } ::: fi.
11
2 a ~ i-% 5.9 

n ~ 1T n i=l 

with an defined by 
r---=---
1 ~ 02 
n r=l r 

5.10 
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p=0 .30 

Simulated By Equation Differ ence 
m=1000 5.7 in % 

0. 779 0.798 2 .38 
4 .565 4 . 542 0 . 51 

10.593 10 .656 0 .59 
16 . 244 16.077 1. 04 
18 .906 18.627 l. so 
19.307 19.043 1. 39 
19.713 19.455 1. 33 
22.181 21 .937 1.11 
26.696 26 .802 0 . 39 
31.424 31. 520 0.30 
33 .605 33 .856 0.74 
33.997 34 . 257 0.76 
34.388 34.657 0 . 78 
36.635 36 .981 0.93 
41.252 41.531 0.66 
45.606 46 .014 0 .89 
47.885 48 . 284 0.83 
48.239 -- -- --

The idea behind this procedure is that by 
multiplying the function a~ , as given by Eq. 5.10, 
by the exact mean range of i.i.d. random variables, 
the effect of the changing standard deviation may be 
accounted for. 

In the particular case of a periodic standard 
devfation ar, with 7 = 1,2, ... ,w, with w ,the 
main cycle (for example, one year) and con
sidering p the number of cycles (for example, the 
number of years), then Eqs. 5.9 and 5.10 are com
bined as 

E{R }::: (I 
n ~ 1f 

5 .11 

which is valid only for values of n = pw , say for 
n = 12, 24, 36, ... , 12p , with p an integer, and 
w equal to 12 months. Notice that, for the 
particular case of i.i.d. random variables with ar = o, 
the above equations simplify to Eq. 2 .23. 

The validity of this procedure for obtaining the 
approximate mean range of independent random 
variables with standard deviations varying with t 



was tested by comparing the mean ranges obtained 
directly by simulation with those computed by 
Eq. 5.9. The first two tests considered the cases of 
standard deviations increasing and decreasing _with 
t . For this, 250 sequences of random numbers, each 
of size 600, were generated by increasing or decreas
ing (according to the case) their standard deviation 
every 50 generated numbers. These standard devia
tions varied from I to 12 and from 12 to I for the 
increasing and decreasing cases, respectively. The 
results of these tests are shown in Fig. 5. 17 for 
values of n up to 600 

40 

30 

20 

10 

E{Rn} 
--Computed by Eq. 5.7 

o Computed from Simulated 
Samples 

Fig. 5 .I 0 Comparison of mean ranges obtained 
from simulated samples and the Ex
pected values of range computed by Eq. 
5.7, for independent random variables 
with standard deviation increasing with t. 

40 

30 

20 

10 

-- Compu ted by Eq. 5.7 

• Computed from Si mulated 
Samples 

Two cases of periodic standard deviations with 
cycles of 12 months were also tested. The results of 
these tests are shown in Fig. 5.18 for the mean ranges 
of n up to 600. For all cases analyzed, the 
agreement between the mean ranges obtained by 
simulation and those computed by Eq. 5.9 are very 
good for both small and large values of n . It is 
interesting to observe in Fig. 5 .18 that the increasing 
periodic mean range may be reproduced by con
sidering the equivalent periodic function an ,as given 
by Eq. 5.10. 

20 

10 

n 

2 3 4 5 6 7 8 9 10 II 12 

Fig. 5.11 Comparison of mean ranges obtained 
from simulated samples and the Expect
ed values of range computed by Eq. 5.7, 
for independent random variables with 
standard deviation decreasing with t . 

p : 0 .90 

p • 0 .60 

p : 0.30 

Fig. 5.12 Comparison of mean ranges obtained from simulated samples and the Expected values of 
ran~e computed by Eq. 5.7 for non-stationary exchangeable random variables of Eq. 5.6. 
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Computed by Eq. 5.7 

• Computed from Simulated Samples 

100 p=0.90 

p=0.60 
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p=0.30 
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Fig. 5.13 Comparison of mean ranges obtained from simulated samples and the Expected values of range 

computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6. 
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Fig. 5.14 Comparison of mean ranges obtained from simulated samples and the Expected values of range 
computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6. 

51 



60 80 tOO 120 t40 160 

Fig. 5.15 Comparison of the Expected values of 
range for (1) i.i.d. variables with a= 10, 
and (2) variables with periodic standard 
deviation with aT = 10 and s(a1') = 6.87. 
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Fig. 5.16 Comparison of mean ranges obtained 
from simulated samples and the Expect
ed values of range computed by Eq. 5.8, 
for independent variables with periodic 
standard deviation, with a = 5 and 
s(a1') == 2.79. 
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Comparison of mean ranges obtained 
from simulated samples and the Expect
ed values of range computed by Eq. 5.9, 
for independent variables with standard 
deviation increasing with t ( l ), and 
decreasing with t (2) . 
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100 

50 

10 

5 

20(1'A(2) 
,, 
10 (I) 

s 
~ 

~ ~------~--~------~~--------~~ 
I 5 10 50 100 '>00 1000 

Fig. 5.18 Comparison of mean ranges obtained 
from simulated samples and the Expect
ed values of range computed by Eq. 5.9, 
for two cases of independent variables 
with periodic standard deviation. (1) 
aT = 5 and s(o1') = 2.79, and (2) 
a1' = 10 and s(a1') = 6.87 . 



5.3 Expected Values of Range of Markov Dependent 
Random Variables With Periodic Standard Deviation 

The use of Eqs. 5.7 and 5.9 for approximating 
the expected values of range of Markov dependent 
random variables with a periodic standard deviation 
did not give satisfactory results. Another procedure 
was developed for the particular case of Markov 
models with the constant autoregression coefficients. 
Let us first discuss some characteristics related to the 
expected values of range of this kind of models. 

Figure 5.19 shows the plot of mean ranges 
obtained from simulated samples of the first-order 
Markov model with a periodic standard deviation for 
n up to 60. These mean ranges are increasing 
periodic functions, with the same period as that of 
aT' and maximum amplitudes which are three units 
out of phase with respect to aT . This last character· 
istic refers to the particular case of aT considered. 
Figure 5.19 shows the mean ranges for the case of 
GT : 5.0 , s(aT): 2.79, and p ValUeS Of 0.0, 0.3, 

0.6, and 0.9. It also shows the mean range for the 
case of a constant a = 5 . As in the case of 
stationary Markov models, the mean range for a 
particular n increases as p increases, for Markov 
models with periodic standard deviation. 

The expected values of range of Markov models 
with a periodic standard deviation are expressed as 

where a and s(a ) denote the m ean and standard 
deviationTof the per(odic standard deviation and p is 
the first autocorrelation coefficient which defines the 
dependence. With the above notation, four functions 
are defined as follows, 

f -f (1 Op)· fi ~ i-
1 

[VarS,.]v. • 5.14 
2 - 2 • • = J 1T i=I 

5.15 

and 

5.16 
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That is, f
1 

denotes the expected values of range of 
i.i.d. random variables with variance unity and is 
exactly that given by Eq. 2.23; f

2 
denotes the 

expected values of range of Markov models with 
variance unity and the first autocorrelation coef
ficient p , which, as described in section 5.1 , may be 
approximated by Eq. 5 .S; f 3 denotes the expected 
values of range of independent variables with a 
periodic standard deviation, which, as described in 
section 5.2, may be approximated by Eqs. 5.7, 5.8, or 
5.9, (in Eq. 5.15, f

3 
is approximated by Eq. 5.9); 

finally, f 4 denotes the expected values of range of 
the Markov m odel with a periodic standard deviation. 

The basic hypothesis in approximating the 
expected values of range of Markov models with 
periodic standard deviation, denoted by f

4 
, may be 

expressed mathematically as 

f
2 

(l ,O,p) -f
1 

(I,O,O) :.J-
aT 

which is also shown schematically in Fig. 5.20. 

The idea behind the above hypothesis is that 
the effects of dependence due to p and non· 
stationarity due to a periodic aT may be separated. 
In other words, one can go from the function 
f1(1,0,0) to f3 (0T, s(aT),O) by using t he pro
cedures developed m the previous section 5 .2. Then 
the function f4(aT ,s(aT),p) will be obtained by 
superimposing the effect of p as in the stationary 
case. 

The validity of the above hypothesis of Eq. 
5. J 7 w as tested by computer simulation 
for p = 0.60 and for two cases of periodic a : 
OT: 5.0 > s(aT) : 2.79, and OT = 10.0, s(aT): 6.87. 
The effect ·of p = 0.60 for the stationary and non
stationary cases, as expressed by Eq. 5.17, are 
shown for the :above two cases in Fig. 5.21 and 
Tables 5. 10 and 5.11 for n up to 600. The 
results obtained are very good, especially for n 
greater than 10. 

Based on the hypothesis expressed by Eq. 5.17, 
the proposed approximation to the expected values 
of range of Markov models with periodic standard 
deviation is 

E{R } 2 (' ~ .. y. + -
n . = 1T an i=l I aT 

n n 
( l; r 1 (Var S.)v.- :E r~] } 
i=} I j: J 

5.18 



where a
0 

is given by Eq. 5.10 and Var Si by Eq. 
3 .3 8. It should be noted that the function 
f3 (aT, s(aT), 0) was approximated in Eq. 5.15 by 
Eq. 5.9. However, better accuracy is obtained if 
f 3 is approximated by Eq. 5.7 or Eq. 5.8. 

Equation 5.18 was used for computing the 
approximated mean ranges of the two cases of 

Markov models: (a) p == 0.60, a == 5.0 , and 
T 

s(a ) == 2.79 , and (b) p == 0.60 , (j == 10.0, and 
T T 

s(aT) == 6.87 . These mean ranges were compared 
with those directly obtained by simulation, and 
the agreement between them is very good, as shown 
in Fig 5.22 and Tables 5.12 and 5.13. 

A hypothesis similar to that expressed by 
Eq. 5.17 may be extended to cases of higher order 
Markov models or even to Markov models with 
periodic autoregression coefficients. In such cases, 
the equations developed in section 5.1 should be 
useful. 
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Fig. 5.19 Mean ranges obtained from simulated 
samples for th~rkov model xP ,T = 
a (px 1 + v 1-p· e ) with periodic 

T p;r· p,T 
standard deviation oT and constant 
first autocorrelation coefficient p . 
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Effect of dependence on the expected 
values of range of Markov models with 
both a constant and a periodic standard 
deviation. 

[t,o.o . o. o.601 · t 1 u.o ,o ,o 1] 

Mt4(5.0. 2.79 ,0.60) - f,(S.D. 2.79.01] 

~[t4(10.0 ,6.87,0.60)- 1,(10.0 ,6.87 .01] 
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Fig. 5.21 Comparison of the effect of dependence 
on the mean range, for two cases of 
Markov models with both a constant and 
a periodic standard deviation. 



TABLE 5.10 COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH 
CONSTANT AND PERIODIC STANDARD DEVIATION . CASE OF a = 5 , s(o ) = 2.79 AND 
P : 0.60 . T T 

n 

6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
so 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 

n 

6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 

Mean Range By Standardized 
Simulation Difference Difference Difference 

f4 • £4 (or,s(ot) ,p) f3 • f3 (ot,s(ot) ,O) f4 -f3 
1 

f2 (l,O,P)-£1 (1,0,0) T(f4-f3) 
t 

20 . 157 15.733 4 .4 24 0.885 1 . 002 
34.682 24 . 236 10.447 2.089 1. 843 
37 . 734 25.411 12.323 2.464 2.606 
46.928 31.225 15.703 3.140 3.300 
57.241 37.321 19.920 3.984 3.939 
59.681 38.267 21.414 4.282 4.534 
66.757 42.347 24.410 4.882 5.092 
75.196 47.091 28.105 5.621 5.619 
77 . 224 47.905 29 .319 5 . 864 6.120 
83.736 51.967 31.769 6 . 354 6.598 
91.313 56.430 34 .883 6.976 7 .056 
92 .958 57.062 35 .896 7 . 179 7.497 

138.197 80.926 57.271 11.454 12.031 
177.602 102.776 74 . 826 14.965 15 .556 
213.196 121.759 91.437 18.287 18.541 
240.101 135.943 104.158 20.832 21.180 
264.541 148.922 115.619 23.124 23.570 
288.376 162.417 1i!5.959 25 .192 25.770 
313.256 175.542 137 . 714 27.543 27.819 
336.302 188.450 147 . 852 29.570 29.746 
356.882 198.909 157.973 31.595 31.569 
374.815 209.233 165.582 33.116 33.303 
392.443 218.893 173.550 34.710 34.961 

TABLE 5.11 COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH 
CONSTANT ~~D PERIODIC STANDARD DEVIATION. CASE OF at = 10 , s(ot) = 6.87 AND 
p .. 0.60. 

Simulated Mean Range Standardi zed 
Difference Difference Difference 

f 3=f3(0T,s (ot) ,0) f - f 1 £
2

(l,O,p)-£
1 

(1,0,0) £
4
2£

4
(ot,s(oT),p) -=-(f4-f_) 4 3 OT .> 

40.853 33 .110 7 .743 0.774 1.002 
71.683 51.882 19.801 1.980 1.843 
74.896 53.081 21.815 2.181 2.606 
95.917 66 .096 29 .821 2.98 2 3.300 

118.680 79.719 38.961 3.896 3.939 
121.424 80.660 40 .764 4.076 4.534 
136.366 89.946 46.420 4.642 5.092 
154.982 100 .422 54 . 560 5. 456 5.619 
157.340 101.230 56 .110 5.611 6.120 
171.839 110 . 273 61.566 6.157 6.598 
189.909 120.212 69.696 6.970 7.056 
191.865 120 .834 71.031 7.103 7.497 
285.500 Hl.580 113.920 11.392 12.031 
367.300 219.120 148.180 14.818 15 .556 
443.160 259.870 183.290 18.329 18.541 
498.820 290 . 220 208.600 20.860 21.180 
549.670 317.660 232 .010 23.201 23 .570 
599.700 346.750 252.950 25.295 25.770 
649.430 373 . 560 275 .870 27.587 27 .819 
695 . 200 400 .650 294.550 29.455 29.746 
738.020 422.580 315.440 31.544 31.569 
775.890 445.580 330.310 33.031 33.303 
812.880 466.680 346.200 34.620 34.961 
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Fig. 5.22 Comparison of mean ranges obtained from simulated samples and the expected values 
computed by Eq. 5.18, for two cases of Markov models with p = 0.60 and with 
Standard deviation. (J) OT = 5 and S(OT): 2.79, and (2) UT = )0 and S(O,.): 6.87. 
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CHAPTER V1 

VARIANCES OF RANGE 

The exact variance of the range for any flnite 
value of n is not known even for the case of i.i.d. 
nonnaJ variables. The exact variance of the range for 
the case of stationary Markov models is derived in the 
first section of this chapter for n of 1 and 2. For 
higher values of n , the mathematical derivation 
becomes extremely cumbersome. Therefore, in these 
cases, and for Markov models with periodic standard 
deviation, approximate equations are obtained using 
the data generation method. 

6.1 Variance of the Range for Markov Models 
The general type of the first-order Markov 

model is used here, 

6.1 

where p is the first autocorrelation coefficient of 
the process z

1 
and e

1 
is an i.i.d. variable uncor

related with z
1

_
1

• It is assumed 
that E {z

1 
} = E{ e

1 
} = 0, and E {z/ } = 1 , 

and E{e/ } = (I · p ) . 

In this case , 
sums S

0 
, S

1 
, and S

2
are 

t h e pa r tial 

=0 

S =X 
t =zl 

S
2 

= (l+p)z
1 

+ e2 = (I+p)X + Y 6.2 

w h ere for simplicity of derivation the new 
symbols X = z

1 
and Y = e2 are introduced. 

that 
For n = 1 , R

1 
= max(O,S

1
) - min(O,S1 ) , so 

R
1 

= S
1 

for S1 > 0, and R
1 

=- S
1 

for S1 < O, or R1 =IS 1 1 for - oo<S1 < oo. 

The second moment of R 1 is 

E{R
1 

2
} = E{IS

1
12}= E {S

1 
2

} =a~ 6.3 

w h ere ax denotes t h e standard deviation 
of S1 = X. 

From ~ 4.27, the expected value of R
1 

is 
E{R 1 } = .../2/rr ax . Therefore, the variance of 
R

1 
becomes 

Var{R
1

} = E{R
1 

2
} - E2 {R

1
} 

Var{R1 } = a!(l - ~) 6.4 
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For n = 2 , ~ = max(O,S 1 ,S2) · min(O,S1,S2) , 
so that 

R2 = s2 - s I for s I < 0 < s2 

R =- (S - S ) 2 2 ~ 
for S

2
< o <S1 

R2 =S2 for 0 <S1 <S2 

~ =-S2 for S2 < S
1

<0 ' 

R
2 

=S
1 

for O< S2 <S1 

R = - S 2 1 
for s, <s2 <o , 

which in terms of the variables X and Y , given by 
Eq. 6.2, become 

R
2 

= [(l+p)X+Y] for X > O, pX+Y>O 

R2 =- [(l+p)X + Y] for X < 0, pX + Y < 0 

R2 =(pX+Y) for X<O , (I+p)X+Y>O, 

R2 =-(pX+Y) for X>O, (l+p)X+Y<O , 

R2 =X for {l+p)X + Y> 0, pX+ Y <O , 

and R2 =-X for (l+p)X+ Y <O, X+ Y >O 

Because of symmetric regions of integration, 
the second moment of R

2 
is 

E{R/ } = 2E{((l+p)X +Y) 2
} 

+ 2E{(-pX-Y)2
} + 2E{X2

} 6.5 

where the moments shown in Eq. 6.5 may be 
expressed as 

00 00 

E{(l+p)X+Y} = (l+p)2 _r f X2 f(X) f(Y) dYdX + 
o -pX 

00 00 

+ 2(1+p) f f XY f(X) f(Y) dYdX 
o -pX 

00 00 

+ f f Y2 f(X) f(Y) dYdX , 
o -pX 

6.6 

E { (- pX-Y)2 } = p2 f oo 51 
+p )XX2 f{X) f(Y) dY dX + 

0 ..00 

oo -(l+p)X 
+ 2 p f J XY f(X) f(Y) dYdX 

0 .oo 

+ f oo -<] +p )X Y" f(X) f(Y) dY dX, 6.7 
0 ..00 



and 

E{X2
} = Ioo -JX X2 f(X) f(Y) dYdX 6.8 

o -(l+p)X 

with f(X) and f(Y) the density functions given by 
Eq.4.9. 

to 

00 

I 
0 

The integrals of Eqs. 6.6, 6.7, and 6.8 are equal 

I oo I oo X2 f(X) f(Y) dY dX = -
2
I a2 

0 -pX X 

a2 ax 
x arctan(- ) 

21T pax 

00 

6.9 

f XY f(X) f(Y) dY dX = 
-pX (211)(a~ + p2 a;) 

6.10 

oo -( 1 +p)X 
I J X2 f(X) f(Y) dYdX = 
0 . oo 

(1 +p) a3 a a 2 a 
_ __ _..:.;;,x __,_Y- + frr arctan [(1 +p Ja ] 
{2tr)[a2 +(l+p)2 a 2 ] x 

y X 6.12 

oo -(I+p)X 
I f XY f(X) f(Y) dY dX = 
0 .00 

6.13 

j oo _li+p)X y2 f(X) f(Y) dYdX = t a~ 
(1+p) a a3 a2 (l+p)a 

+ x Y - * arctan [ a x J • 
(2tr)[a~+(I+p)2 a!J Y 

6.14 

and 
f

00 JX X2 f(X)f(Y)dYdX= 
o -(l+p)X 

1 a 1 ay 
{ii arctan C"iif) - 27r arctan [(I+p) a) } 

6.15 
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Substituting Eqs. 6.9 through 6.11 into Eq. 6.6, 
Eqs. 6.12 through 6.14 into Eq. 6.7, and Eq. 6.15 
into Eq. 6.8, gives 

I p a a 
E{ (l+p)X+Y}= (l+p)2 a!['!+ ; y

2 2
) 

(2trXaY + p ax 

1 a (2+p) a a 3 

-
2

1r arctan ( ___y_P a ) ] ~ ----...:x::.......oy,__ 
x 21r (a2 + p 2 a2

) 
y X 

1 1 P a 
+ a

2 [4 + 21r arctan . (~)] , 
y y 

6.16 

( l+p) a a 
E { ( X Y)2 } - 2 2 { X 

-p - - P ax - 2 [ 2 ( )2 21 
1r ay + l+p ax 

1 a ( l-p)a a3 

+ ""- arctan [(I f j 1 } + x 
L.1T P ax 21r [a2 +(I+p)2 a2 ] 

y X 

2 I 1 [(1 +p) ax] } 
+ ay {;r- 21T arctan 6.17 

aY 

I ay 
- 21T arctan [(1 +p) 0 ) } 

X 

6.18 

Substituting Eqs. 6.16 through 6.I8 into Eq. 
6 5 and since a2 = I and a 2 = I - p 2 the • , X , y ' 
second moment of the range R

2 
becomes 

3( 2)~ 
E{R~} = 2 (I+p) + 1;P 

I (1-p)~ 
- {1+2p) 27r arctan [(l+p)~) 6.19 

Since the fust moment of R
2 

is given by Eq. 4.101, 
the variance of R

2 
becomes 

Var{Rn } ,= 2( I+ p) 

2 ( I + p )~ I 

~;r+ 1r [3(I-p)~::..: (I+p)~ 

(I- p)~ 
- 2 y'!] -(I + 2p) arctan [ ~ J 6.20 

( 1 + p) 

6.2 Approximate Variance of the Range for Marko·v 
Models with Constant Standard Deviation 

In this section, the results of the simulation 
approach are presented for obtaining the variance of 
the range for Markov models with constant standard 



deviation. First, however, a sensitivity analysis was 
performed to see the effect of the periodicity in 
t he autocorrelation coefficients on the magnitude 
of the variance of the range. 

For the first-order Markov model, as given by 
Eq. 3.4 for m = 1, the variance of the range was 
computed for n up to 60 and for a periodic first 
autocorrelation coefficient. Figure 6.1 gives the plot 
of Var{ Rn } against n for p

1 
T = 0.6 and for 

three values of s(p 1 ) , 0.0, 0.102 and 0.207. This 
,T 

figure shows that the periodicity in p
1 

increases 
,T 

th e variance of the range as the value 
of s(p1 ) increases. It also shows that the increase 

,T 

in Var {R n} is augmented as n increases. No 
attempt was made to quantify these experienced 
increases of V ar {R } for particular values n 
of p1 ,T and s(p 1 )· 

For the second and third-order Markov models, 
no appreciable differences are found between the 
variance of the range obtained with constant and 
p eriodic autocorrelation coefficients. The results 
obtained in these cases are shown in Figs. 6.2 and 6.3 
for the second and third-order Markov models, res
pectively. 

Experimental curves are obtained by simulation 
for the variance of the range of the first and second
order Markov models with constant autoregression 
coefficients. The plot of the values of Var {R

0 
} 

against n suggests that a straight line fit is good in 
cases of n ~ 6 . Therefore, the variance of the 
range was approximated by 

Var {R
0 

} = a2 [A+ B n ] • 6.21 

P. Sutabutra (196 7) suggested another 
empirical equation to approximate the variance of the 
range of first-order Markov models, namely 

n 
Var{R } = C ( n,p) ~ i"1 Var{S.}, 6 .22 

n i=l I 

with l .5 
c (n, p) = 0.2181 ( 1 + 0.4p + 0.4p2

) ( 1 + n ) 
6.23 

A comparison was made between the percentage rela
tive errors obtained in using Eqs. 6.21 and 6.22 for 
approximating the variance of the range. The results 
of this comparison are shown in Table 6.3 and 
indicate that the Eq. 6.21 gives a better fit to the 
simulated variances of the range, decreasing the errors 
considerably with respect to those obtained by Eq. 
6.22. 

For the second-order Markov model, the 
simulated and fitted Var {Rn } against n are 
shown in Figs. 6.6, 6.7 and 6.8 for n up to 100 and 
for various values of p 

1 
and p

2 
, the first and 

second autocorrelation coefficients, respectively. The 
straight line fit in this case is also very good, and the 
respective linear regression coefficients A and 
B ·Of Eq. 6.21 are given in Table 6.4 .. 

6.3 Approximate Variances of the Range for Markov 
Models with Periodic Mean and Periodic Standard 
Deviation 

In this section, the variance of the range is 
obtained by computer simulation for the general case 

where a is the constant standard deviation and the eo 
linear regression coefficients A and B are func-
tions of the autoregression coefficients of the Markov 
model considered. 

For the first-order Markov modeE with a = 1 , 
Fig. 6 .4 shows the plot of Var{R

0 
} against n 

for n up to 50 and for various values of p . The 
straight line fit to values of Var {R

0 
} obtained from 

simulated samples is shown to be a good approxima
tion. Table 6.1 also gives the values of the simulated 
and fitted variance of the range for various values 
of n and p . The linear regression parameters of Eq. 
6.21 are given in Table 6.2 for various values of p . 
They are also shown in Fig. 6.5, which may be parti
cularly useful for finding the A and B values for 

. p not explicitly obtained. 
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of Markov models with periodic mean and periodic 
standard deviation. From Eqs. 3.3, 3.4 and 3.5 

Xp,T : J.I.T + 0 [ P Z I + v'T;,; p 2 
€ ] I 

T p ,T· I p ,T 

6.24 

with J.1. , o , p , z and E defined as in Section 
T T p,T P,T 

3.1. In obtaining the variance of the range, it is 
assumed that the output y1 of Eq. 3.2 is J.l.r . 

Vor { Rn} 
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Fig. 6.2 Variance of the range for the second
order Markov model with constant and 
periodic ftrst and second autocorrelation 
coefficients. (1) p

1
,r = p1 = 0.60 and 

P2 = p2 = 0.45 , and (2) pi = 0.60, 
~ ~ 

80 
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752 = 0.45 and s(pk ) = 0.1 02 for 
,T , T 

k = 1 and 2 . 
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Fig. 6.3 Variance of the range for the third~rder 

Markov model with constant and peri
odic first, second and third autocor
relation coefficients. (1) PI,r =PI = 
0.60 , p2 ,r = p2 = 0.45 , and P3 ,r = p3= 
0.30 , and (2) p

1 
= 0.60 , 'P2 = 0.45, 

,T jT 
and p3 = 0.30 , and s(pk = 0.102 

,T ,T 

for k = 1, 2, and 3 . 
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Fig. 6.4 Variance of the range obtained from 
simulated samples and fitted linear func
tion of Eq. 6.21, for the first-order 
Markov model with constant first auto
correlation coefficient p . 
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TABLE 6 . 2 PARAMETERS OF LINEAR REGRESSION FOR THE VARIANCE OF THE 
RANGE OF THE FIRST-ORDER MARKOV MODEL OF EQ. 3.4. 

Values of c 

0.0 0 .1 0.2 0.3 0.4 0.6 

0 .19676 0.20693 0.21238 0.2:?929 0.11639 ·0.52607 

u. ~.;380 fl. ~7527 0 .33966 0.44218 0 .53629 0 .94030 

0.00:?85 0.00305 0.00402 0.00606 0.00696 0.01323 

0.~19%6 0 . 999(,,; 0 . 99958 0.99944 0.99950 0.9!)941 

T~tLE 6 . 3 COMI'AAISON OF PEIU:EIIT~GE IU!L4TIV! ERRORS OBT~INED IN USJIIC EQS. 6 . 21 o\110 6.22 
FOR Cllfoi>IITIIIC THt VAAI.\HCES OF Tllf lANGE OF THE FIRST-ORDER HA.RKOV M00£LS . 
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TABLE 6.4 REGRESSION COEFFICIENTS OF LINEAR FUNCTION FIT TO VARIANCES OF 
THE RANGE OF THE SECOND-ORDER MARKOV MODEL. 

p1=0. 40 c1=0.60 c
1
·o .so 

02•0. 10 02•0.20 02•0.30 c2•o . 25 02•0.30 02•0.40 p2•0. 40 02•0.50 

A -0.33983 -0.66148 ·1. 21142 ·0. 12678 ·0.51548 ·1.86086 3.98548 2.20953 

B 0. 47315 0.60505 0. 77663 0.65861 0. 77870 1. 08101 o. 38242 0.90797 
~tandard Error 
Pf Regr. Coeff. 0 . 00426 0.00519 0.00617 0.00609 0.00670 0.00860 0. 00837 0.01021 

Correlation 0.99931 0.99938 0.99946 i 0.99927 0.99937 0.99946 0.99595 0.99893 Coefficient 
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Variance of the range obtained from 
simulated samples and fitted linear func· 
tion of Eq. 6.21, for the second-order 
Markov model with constant autocor· 
relation coefficients. Cases of p 

1 
= 0.40 

and (1) p 2 = 0.10 , (2) p 2 = 0.20, and 
(3) p2 = 0.30 . 

~ ~ <10 ~ oo ro w oo oo 
Variance of the range obtained from 
simulated samples and fitted linear func
tion of Eq. 6.21, for the second-order 
Markov model with constant autocor· 
relation coefficients. Cases of p 1 = 0.60 
and (1) p

2 
= 0.25 (2) p2 = 0.30, and 

(3) p2 = 0.40 . 

Variance of the range obtained from 
simulated samples and fitil:ed linear func· 
of Eq. 6.21, for the second-order Markov 
model with constant autocorrelation CO· 

efficients. Cases of p
1 

= 0.80 and (1) 
p

2 
"'0.40 and (2) p2 = 0.50. 
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In general, whenever periodicity exists in 
parameters of the components of the models repre· 
senting the inputs and outputs, the resulting variance 
of the range is also a periodic function. The frrst 
simulation was performed to see whether the char· 
acteristics of Var{ R } , when p. and a are n T T 

periodic functions, (see Fig. 6.9) depart significantly 
from the stationary cases. These curves are shown in 
Fig. 6.1 0, where the mean and standard deviation 
of p.. are "ji = 20 and ~t .. ) = 12.40, and the 

T T ~T 
mean and standard deviation of a are a = 5.0 

T T 
and s(a.,.) = 2.79. For these cases, Fig. 6.10 shows, 
for p,=,O.O and p = 0.60, the vanance of the range 
against n for values of n up to 60. This figure 
shows also how complex, Var{R

0
} becomes when· 

ever one uses models with periodic functions. 

A general characteristic presented by Fig. 6.10 
is that after a transition region the variance of the 
range becomes a non-decreasing function of n , 
because the effect of periodicities on Var{R

0
} 

decreases with n . This characteristics differs from 
that of the expected range for which, as will be 
shown in Chapter VII, the expected range is always a 
non-decreasing function for all values of n . Figure 
6.10 also shows that Var{R

0
} is a periodic function 

with its phases and amplitudes dependent on the 
periodic functions P..,. and a.,. . The plot also shows 
that the amplitudes of the peiiodic func· 
tion Var{R

0
} decrease as n becomes large. Simi· 

larly, as in the case of the variance of range for 
stationary Markov models, the effect of dependence, 
in this case of periodic P..,. and a.,. , is considerable. 

Strictly speaking, the variance of the range for 
models of the type of Eq. 6.24 depends on 
amplitudes and phases of periodic functions P..,. 
and a.,. as well as on p. If one considers the Fourier 
fit of p.r and a.,. , as suggested by Eq. 3.6, the num· 
ber of parameters to consider for determining the 
variance of the range becomes excessive. Therefore, 
the approach in this study is to look for other 
parameters which are functions of p. and a , such 

T T 
as the standard deviation s(p. ) and the mean and 

T 

standard deviation a.,. and s(a.,.). By choosing only 
the parameters s(j..t ), a and s(a ) as representa· 

T T T 
tive of P..,. and a.,. , one mainly neglects the in-
fluence of their phases. In order to see how great this 
influence is on the variance of the range, a sensitivity 
analysis was performed with s(j..t ) = 12.40 and for 

- T two phases, and with a = 10, s(a ) = 6.87 and 
T T 

for three phases. These functions, p. and a , are 
. T T 

shown in Fig. 6.11. 



Five different combinations of symmetric and 
skewed J.1. and o , as shown in Fig. 6.11 were 'T 'T 
considered, and in all cases the first autocorrelation 
coefficients was p ;:: 0.60. The variances of the 
range obtained in these 5 cases are shown in Fig. 
6.1 2. Thls figure shows that , basically, the influence 
of the different phases of J.l.'T and o'T is significant 
only in the transition region. Beyond this region or 
for n > 50, they all tend to converge to approxi
mately the same variances. Therefore, for all practical 
purposes, the influence of phases in J.l.'T and o'T may 
be neglected for larger n . Subsequently, all the 
analysis is based on symmetric func
tions J.l.'T and o 'T , and the only parameters used to 
de fine J1 and o are s'" ), and a and s(a ). 'T 'T '\Y''T 'T 'T 
The different functions of J.1. and a considered 'T 'T 
afterward are shown in Figs. 6.13 and 6.14. 

Another characteristic observed from the 
analysis of the computer simulated results is that, for 
given values of a , s(a ) and p 'the influence of J1 'T 'T 'T 
is significant only in the transition region. For 
n > 50, the variances of the range tend to converge 
to approximately the same values. Table 6.5 gives a 
comparison of variances obtained for values of n up 
to 350 for the cases of or = 20 ., s( a r) = 0 and 
14.22 , p = 0, and s'" ) = 0 and s(}-l ) ;:: 190.96. '\Y'T 'T 
Table 6.6 gives the comparison for the same case as 
above except that p = 0.60 . These comparisons are 
also shown in Figs. 6.15, 6.16, and 6.17. The results 
of this analysis lead to the conclusion that for large 
values of n , say n > 50 , the variance of the range 
for the general case of Markov models with a periodic 
mean J1 , and a periodic standard deviation o , 

T T 

depends only on a , s(o ) and p . That is, 
T T 

6.25 

The restriction on n for the validity of Eq. 
6.25, for all practical purposes is not important, 
because, whenever one considers models with 
periodic components, one is dealing with, say, with 
monthly or weekly values and so only the variances 
of the range for large values of n are of interest. 

The variances of the range for values of n up 
to 350 and various values of a , s(a ) and p are 'T T 
obtained and are presented in Tables 6.7, 6.8, and 
6.9. They are also shown in Figs. 6.18 through 6.26. 
In all cases analyzed, the plot in arithmetic scale 
of Var{ Rn } against n follows approximately a 
straight line. For the particular cases 
of s(a'T) = 0 and p = 0, the values presented in 
the respective tables and figures were obtained by 

63 

using Feller's asymptotic formula, given by Eq. 2.5. 
For the cases of s(a'T) = 0 and p * 0, they were 
obtained by using the empirical results of application 
ofEq. 6.21. 

40 l'o'r 

30 

20 

10 

O 0 I 2 3 4 5 6 7 8 9 10 II 12 

10 "" 

8 

6 

4 

2 

O 0 I 2 3 4 5 6 7 8 9 10 II 12 

Fig. 6.9 

Fig. 6.10 

Periodic mean J.1. , with Ji = 20 and 
T T 

s(JJ. ) = 12.40 , and periodic standard 'T 
deViatiOn 0 T , With QT ;:: 5 and 
s(a'T);:: 2.79, considered when Var {R

0
} 

of Fig. 6.10 are obtained by simulation. 

(4 ) 

(~) 

(2) 

( I) 

n 

Variance of the range obtained from 
simulated samples for first-order Markov 
models with Ti

7 
= 20 and s(Jl'T) = 12.40, 

and with a == 5 and (1) s(o ) = 0.0 
T T 

and p = 0.0, (2) s(or) = 2.79 and 
p = 0.0, (3) s(o'T) = 0.0 and p = 0.60, 
and (4) s(or) = 2.79 and p = 0.60 . 
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Fig. 6.12 Variance of the range obtained from 
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ar = 10 , s(aT) = 6.87 and p = 0.60, 
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in Fig. 6.11). 
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Four different periodic mean Jlr used 
in part of this chapter and Chapter VII. 
They have TiT = 250 and s(}Jr) equal to 
(l) 0.0, (2) 73.03, (3) 134.04, and (4) 
190.96. 

TABLE 6.5 COMPIIRISON OF TilE VAR II\NCe OF THE RANGE FOR 
MODELS WITH s(u,) • 0 A.Nil • ( ur) • 190.96 

TN CI\SE OF p ~ 0 . AND BOTH A CONSTANT AND 
A PEII!OOIC STANOARO OCV!AT!ON. 

~T•20,s(aT)=O , o=O .O oT•20 ,s(a,)=l4. 22,o•0.0 

-
n s (uT)•O S(1Jt)=190.96 s(ut)=O s(ut)=190.9C> 

I 129.67 348.32 5. 19 13.93 

3 276.42 971.03 56 .33 175. 35 

6 684.07 668.10 1285 .21 1217.20 

10 J54l.IO• 2430.48 2305.41 7190. 78 

IS 1837.27 1571.58 2346.62 2562.93 

I 20 2132 . 30 :1727.13 3183.43 3417.79 

30 2705.~1 2066. 21 3905.72 3484.86 

40 3422.04 3399 .94 4766.91 5098.71 

50 3845.00 3750.00 4827.00 5147.00 I 
75 6069. 00 6329.00 8612.00 9325.00 I 

100 8523.00 8513.00 13913.00 14648.00 I 
ISO 14340 .00 I 14403.00 21683 . 00 23996. 00 

200 20313.00 2057Z .OO 28446.00 28852 .00 

250 26300.00 27188.00 36932 .00 365 14 . 00 

300 29952.00 29944.00 43053.00 41357 .oo 

350 35259.00 34672. 00 52066. 00 51619.00 
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Fig. 6.14 Different periodic standard deviation aT 
used in part of this chapter and Chapter 
VII. They have aT = 20 and s(J.tT) 
equal to (I) 0.0, {2) 5.56 and (3) 14.22, 
a = 40 and s(j.J ) equal to ( 4) 0.0, (5) 

T T -
14.22, (6) 30.37, and (7) 40, and aT= 
80 and s(j.J-r) equal to (8) 0.0, (9) 30.37 
and (10) 64.50. 
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'J ABLl b. b CO'lP~P.ISQ,.- or Tilt \'AR I AACC: or THE AA.\"GE FOR 
MODELS WITII s(-,) s 0 ANU s(u,) • 190.96 

I~ CASE Or D • 0 . bO ANU 8QTII A CONSTA~i 
A.ND A Pl:IUODIC STANIJ/\Rl' UC:VIATION. 

~.·~o . sr~~l·O . o•O . DO o:•ZO ,s(?,) •l4.2~ . o·0.60 

n ,, ( ~>T ) •{l sr~,)· 190.96 ~(ltT)eO S(l-,)•190.~6 

1 129.6" ~4S. 3~ 5. 19 13.93 

~ 599.00 19RD.98 100.90 304.91 

6 ~014 . ~= 

I 
1278 .43 3012.91 2133.38 

10 J581.9: (,857.56 8:7!1.99 20605.91 

IS 7358.9i I 4148.05 91~6 . 76 6656.39 

20 8~35 . 53 I SSu~.06 1~798 . 75 10803. 38 

' 
~() 11188.38 I 7159. 14 14875 . 94 11585 . 52 

<10 143J3. 70 I !1688 . 07 17908 .69 16041.51 
I 

so luOl :.oo ' 1428~.00 1s:1s.oo 16705.00 

75 ~3970 . 00 ~4103.00 28489.00 :?9698. 00 

I uc> 33899 .00 :;:673.00 4J9~7 .00 45094.00 

150 56693. 00 55238.00 77096.00 77269 .00 

.:oo 79537.00 8079& .00 104280.00 106030 .00 

2Sll 104991.00 106130.00 13:695.00 132174.00 

sou 120032 .00 11 sss: .oo 14679(>. 00 1484:5 .00 

3;o 139950.00 138456.00 169876 .00 171444 . 00 

-· -'----· 

0 S(fOTl•O 
• S(f'- r l • 190.96 

0 
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hi • 
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5 10 50 100 500 1000 

Fig. 6.15 Comparison of the variance of the range 
for first-order Markov models -::!th s{;.L-r) 
= 0 and s(J.t-r) * 0; and a-r = 20 , 
s(a ) = 14.22 and p = 0.60, with the 

'T 

values of the variance converging for 
values of n >50. 
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5xl0" 

Comparison of variances of the range for 
models with s(.uT) = 0 and s(.uT) =I= 0 . 
Cases of p = 0 , and both constant a 

T 

with (1) a = 20, and periodic a with 
T T 

(2) aT = 20 and s(aT) = 14.22 . 

o s lf.Lrl • 0.0 
e S(fL T) : 190.96 

100 200 300 4JO 

Fig. 6 .17 Comparison of variances of the range 
for first-order Markov models with s{;.L ) 

T 

= 0 and s{;.LT) =I= 0 . Cases of p = 0.60, 
and both constant a with ( 1) a = 20, 

T T 
and periodiC aT With (2) UT = 20 and 
s(aT) = 14.22 . 
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TABI.E 6 . 7 VARIANCE OF THE'~GE FOR MARKOV MODELS ~ITH PERIODIC 
STANDARD DEVIATION. CASES OF ~ • 20 AND THREE 
VALUES OF s (o ,J . 

Var (R ) 
n 

n !•20, • <•,)•0. 8•20 , s(o,)•S.S6 o•2a. H•,J• I4 . 22 

••0.0 :0•0.30 o•0.60 o• O.O Q•O.JO o•0 .60 0"'0.0 o•0.30 o•O . ~O 

so 4360 8936 l8596 3529 6764 15381 4827 a829 18215 

75 6540 13358 27999 6098 11099 23254 8612 15234 284~9 

100 8720 17780 3H02 9634 17594 35764 13913 24746 449S7 

I SO 13080 26624 56208 IS469 28954 61987 21683 39743 77096 

200 17440 35468 750U 21767 40963 87886 28446 52219 104280 

250 21800 44312 93819 28219 52690 112411 36932 66814 132695 

300 26160 53156 112626 32392 59979 127295 43053 75890 146!'96 

350 30520 62000 1314>2 37762 69691 146332 52066 91049 169876 

TABLE 6 . 8 VARlANCE OF THE RANGE FOR MARXOV MODELS WITH PERIODIC 
STANDARD DEVIATION. CASES OF ~ • 40 AND THREE 
VALUES OF s (o

1
) • ' 

var( Rn ) 

n ;,1•40 , s(oT)•O. !
1
•40 , s (o,) • U .22 a r•40, $ (0,.)•40.0 

o•O.O ,.o.3o o•O. 60 o•O .o p•O . 30 o•O .60 o=O.O • • 0.30 o• 0.60 

so 17440 35743 743a2 14547 27782 62526 26032 45260 85227 

75 26160 53431 111994 25494 46089 94512 43687 7S81S 134958 

100 34880 71119 149606 40876 74125 147997 70189 122480 2121S9 

I SO 52320 106495 224830 64929 121190 256388 11!187 201578 36868 2 

200 69760 141871 300054 896U 169499 363897 142795 260791 482370 

250 87200 177247 37 5278 116904 219562 463106 178178 32ll02 599622 

300 104640 212623 450502 135368 250202 524378 215522 370493 655538 

350 122080 247999 S257 26 1S8209 290363 600772 265648 448575 764821 

TABLE 6 . 9 VARIAIICt OF THE IWJGE FOR 'IARI(()V MOOELS Win! PERIODIC 
STA~DARD DEVIATION. CASES OF o = 80 AJ>;D THREE 
\".\lUES OF s (o,.} . T 

VarH~n } 

;; •SO , s(o )•0 . 0 

--'-- ' 
e,.ao. s(o,J• 30.37 e,.ao. s(o 1 ) •64. 5~ 

>•0 . 0 c.:eO. 30 c•D .60 o=O .0 o•0 . 3.0 "•0.60 v=O.O p wO . .;.o o•0.60 

so 69760 14:971 297529 s8•n 111440 250830 85592 153305 306S6S 

75 104640 2l :j7~4 J47977 102753 IM023 380107 148168 .?6 104 0 48.3966 

100 139520 :!84475 598425 166088 300651 597657 238804 422323 758703 

:so 2o9:so 415979 899321 265143 49~915 1036389 3?5548 6872:?8 ll06Z74 

1200 :279040 sc,74a4 l.:!OO:Zl 7 3641 49 68650-t 1470519 4 87246 894681 17448:44 

250 34S800 708987 1501 113 473063 888691 1870963 b~n:zs 11S79Z6 220H6J 
i 
roo 418560 850;92 l BO.?OOg 548731 1013787 2115S39 742078 1 Z933ll 24 3.3665 

350 '883ZO 991996 ~102~05 Ml178 1173561 2420344 ~Q~63~ JSS9S91 281923Z 



Fig. 6.18 Variance of the range for Markov models 
with constant standard deviation. Cases 
of aT = 20 and p = 0.0, 0.3, and 0.6 . 

Vor{Rn} P•0.6 

0.0 

2xl0~ 

n 

Fig. 6.19 Variance of the range for first-order 
Markov models with periodic standard 
deviation. Cases of aT= 20, s(aT) = 5.56 
p = 0.0, 0.3, and 0.6 . 
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Fig. 6.20 Variance of the range for first-order 
Markov models with periodic standard 
deivation. Cases of aT = 20 , s(aT) = 
14.22 and p = 0.0, 0.3, and 0.6 
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Fig. 6.21 Variance of the range for first-order 
Markov models with constant standard 
deviation. Cases of aT= 40 and p = 0.0, 
0.3, and 0.6 . 

60xl0~ Vor { Rn} 

4 
40xl0 

4 
20xl0 

P=O.o 

0.0 

n 

Fig. 6.22 Variance of the range for first-order 
Markov models with periodic standard 
deviation. Cases of aT = 40 ' s(ar) = 
14.22 and p = 0.0, 0.3, and 0.6 . 



P=0.6 

Fig. 6.23 Variance of the range for first-order 
Markov models with periodic standard 
deviation. Cases of a = 40 s(a ) = 40 

T ' T 
and P = 0.0, 0.3, and 0.6 . 

Vor{ Rn} 
150xl04 

100xl04 

p =0.6, Eq. 6. 21 

300 400 

Fig. 6.24 Variance of the range for first-order 
Markov models with constand standard 
deviation. Cases of a r = 80 and p = 0.0, 
0.3, and 0.6 . 
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30Chl04 Vor{ Rn} 
p:0.6 

Fig. 6.25 Variance of the range for first-order 
Markov models with periodic standard 
deviation. Cases of a = 80 s(a ) = 

T ' T 
30.37 and p = 0.0, 0.3, and 0.6 . 

Vor{ Rn} 

p=0.6 

Fig. 6.26 Variance of the range for first-order 
Markov models with periodic standard 
deviation. Cases of o = 80 s(a ) = 

T ' T 
64.50 and p = 0.0, 0.3, and 0.6 . 
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CHAPTER VII 

DESIGN OF DETERMINISTIC-STOCHASTIC STORAGE CAPACITIES 

This chapter deals with determining the storage 
capacity of a reservoir when the within-the-year 
inflow fluctuations are considered. The analysis is 
based on the approximate expected values of the 
range developed in Chapter V and on some further 
results described herein. The main assumption is that 
the inputs are described by a Markov model with 
periodic mean 11

7 
and periodic standard deviation 

o 
7 

as represented by Eq. 6.24, and the output is 
equal to the mean input il.,. . 

7 . I Deterministic and Stochastic Storage 
First, a sensitivity analysis is performed to see 

the effect of each component 11 , o and p on the 
T T 

expected valu e of the range. The functions 
J.L., and o., used here are those previously shown in 
Fig. 6.9. Figure 7.1 shows the expected range for the 
following cases: 

(I) i.i.d. variables with o = 5.0 , 
(2) independent variables with o., = 5.0 and 

s(o
7

) = 2.79, 
(3) periodic function 11

7 
only, without ran

domness, 
(4) 11., with s(J.t.,) = 12.40' o., with a.,= 5.0 

and s(o.,) = 0.0, and p = 0.0, 
(5) 11 with s(J.t ) = 12.40. 0 with a = 5.0 

T T T T 

and s(o )=2.79,and p=O.O, 
T 

(6) 11., With s(J.LT): 12.40 > OT With aT= 5.0 
and s(o.,) = 0.0, and p = 0.60, and 

(7) 11
1 

with s(IJ..,.) = 12.40 , o.,. with 
a.,= 5.0 and s(<T.,) = 2.79 'and p = 0.60. 

The results shown in Fig. 7.1 are important, 
giving a good idea of the influence of each 
component on the expected range. For the case of 
i.i.d. random variables with <7 = 5.0, a well-known 
increasing smooth curve is shown. Then, for periodic 
(j with a = 5.0 and s(<T ) = 2.79 , the expected 

T T T 
range is a periodic non-decreasing function of n 
with a period equal to the period of <T., and with 
decreasing amplitudes as n becomes large. The 
expected range after the transition region is greater 
than the expected range of the case of a constant 
standard deviation. For case (3) the function 11., has 
no random part. The range in this case increases from 
zero up to a maximum value of 64 at n = 8 and 
remains constant for all greater values of n . Cases 
(4) and (5) give for p = 0 the effect of the periodic 
function o combined with the function 11 • In 

T T 
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these cases, the expected range is again greater when 
o.,. is periodic than when aT is constant. The same 
result is given for cases (6) and (7) for p = 0.60. A 
general characteristic shown by cases (4) through (7) 
is that they are all periodic functions with a period 
equal to one half of the period of 11 . This result 

T 

defers from case (2) in which the period shown by 
the expected range was the same as that of 0

7 
• 

Figure 7.1 also shows that the effect of dependence, 
determined in this case by p , is considerable. 

160 

Fig. 7.1 

Jj) 

® 

® 
@) 

n 

Expected range for first-order Markov 
models with periodic mean 11T and 
periodic standard deviation o.,. Cases of 

(I) s(ll,) = o. o, = 5. s(o,)=O. and p=O; 
(2) s<P,). o. u,% 5, slo,) = 2.79. and p=O; 

(3) s(sl,) "' 12.40. o, = 0, l(o,)•O, and p=O: 
(4) s(ll,) .. 12.40, o, = 5, s(o,)=O, and p=O: 
(5) s<~t,). 12.40. ii, =5. s(o,) = 2 79, and p=O; 

(6) s<~t,). 12.40, 0, • S, s(o,) • O. and p=0.60: 
(7) s(ll,). 12.40. -a, = 5, s(o,) = 2.79. and p=0.60. 

The long term effect of the phases of p.
7 

and 
o is analyzed with ~ ) = 12.40 and two 

T T 

Phases, and a = 10, and with s(o ) = 6.87 and 
T T 

three phases and p = 0.60. As in the case of the 



variance of the range, five different combinations of 
symmetric and skewed J1 and a were used as 

7' T 
shown previously in Fig. 6.11. The expected ranges 
obtained for the five cases considered are shown in 
Fig. 7 .2. These results lead to the conclusion that the 
influence of the phases of J1 and (J is significant 

7' 7' 

only in the transition region. Beyond this region, or 
say for n > 50, the expected ranges tend to con· 
verge to approximately the same values. Therefore, 
for all practical purposes, the effects of the phases of 
Jlr and a.,. are neglected, and, subsequently, the 
analyses are made for symmetric f:unctions of 11.,. 
and a.,. only. 

100 

10 

t . -

~· ... ... u;-• • • • •• 

••• • 
. • • • 

• 
.. 
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+ JLT(I), CTr (2) 
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• /4T( I), <T'T(3) 

& f4T(I),CTT(I) 
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Fig. 7.2 

10 100 1000 

Expected range obtained from simulated 
samples for first-order Markov models 
with s(Jlr) '= 12.40, a r '= 10, s( a r) '= 

6.87 and p '= 0.60 for five different 
combinations of phases of Jlr and 
a . (*numbers in parenthesis refer to 

T 

types of J1 and a indicated in Fig. 
7' T 

6.11). 

In determining the storage capacity of a 
reservoir for within-the-year regulation on the mean 
flow ii.,. , and for inputs of the Markov models type 
with periodic mean JlT and periodic standard devia
tion aT , the expected storage, given by the expected 
range of cumulative departures from the mean ji , is 

7' 
divided into two parts: (I) A deterministic storage 
which is a function of the standard deviation of 
J1 and the mean and standard deviation of a , 

T 7' 

and (2) A stochastic storage which is a function of 
the mean and standard deviation of a.,. , the auto
correlation coefficient p , and n . That is, 
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ST(n); sd [s(J11.), aT ,s(a.,.)] 

+S
5 

[ ur ,s(a ... ),p,n), 7.1 

where ST(n) denotes the total storage required for 
regulation in n units of time, and Si.) and 
S (.) denote the deterministic and stochastic storage s 
functions, respectively. Equation 7 .I is represented 
graphically in Figs. 7.3 and 7 .4. 

The hypothesis that the deterministic storage 
Sd(.) depends only on s(JlT) , oT and s(aT) was 
checked by comparing the expected ranges obtained 
when JlT is considered and when it is not - that is, 
when s(p. ) =I= 0 and s(Jl ) '= 0 . For example, Fig. 

T T 
7 .3 gives the expected range when a.,. = 10 • 
s(ar) '= 6.87 , and p '= 0 for both s(p.T) '= 12.40 
and s(j..lT) = 0 . The differences between the 
expected ranges obtained for these two cases vary 
around a constant value of 41 .96 for n values 
greater than 50. Figure 7.4 also shows the same case 
as above except that p '= 0.60. The constant value 
obtained in this last case is 42.03. These results are 
also given in Table 7.1. This analysis confirms the 
postulate of an approximately constant deterministic 
storage independent of p and n for given values of 

s(Jl.,.) , aT t and s(aT) . 

T h e d e t e r m i n i s t i c s t o r a g e fun c
tion Sd [s(Jlr), aT, s(a.,.)] is determined for various 
values of s(p.r), a;_ , and s(ar). The specific func
tions JlT and a.,. considered here are shown in 
Figs. 6.13 and 6.14. Figure 7.5 , gives the function 
sd [s(p. ), a . s(a )] for s(p. ) ; 73.03, 134.04 

T T T T 
and 190.96, for a = 20, 40, and 80, and for 

T 

s(ar) ranging from 0 to 40. This figure shows that 
a liriear· function may be fitted between the values 
of Sct(.) and s(a.,.) for particular values of a.,. 
and s(Jl.,.). ~t also shows that the effect of s( a r) 
is very small so that the function sd [s(Jl.,.) • 
a ' s(a )] may be further approximated by a 

7' 7' 

function of only two parameters, namely s(Jl.,.) 
and a . In this case Figs. 7.6 and 7. 7 give a relation-r 
ship between the deterministic storage function 
S/.) against aT and s(Jl.,.), respectively. 

The stochastic storage function S
5 

[0.,. ,s(a r) , 
p , n] is determined previously in Chapter V as the 
expected range of Markov models with periodic 
standard deviation and is given by Eq. 5.18. There
fore, the total storage ST(n) of Eq. 7.1 may be 
approximated by 



+ /2 { a ~ r'h + a .j 1r n i=l T 

n n 
~ i"1 (Var S.)'h- ~ r'>'l] } 7.2 

i=} I j:} 

where (J n is given by Eq. 5 J 0 and Var Si by Eq. 
3.38. 

7.2 Example of the Application of the Proposed 
Method 

Let us assume that a river has a monthly 
streamflow which may be described by a Markov 
model with periodic mean p.r and periodic standard 
deviation or , with the following values: 

Periodic mean: iT;. = 200 units, s(;..tr) = 150, 
the periodic standard deviation: 

-r: 1 2 3 4 5 6 7 8 9 10 11 12 
or: 4 7 12 20 34 43 43 34 20 12 7 4 

with 0
7 

= 20 and s(or) = 14.22 , and with the 
flrst autocorrelation coefficient p = 0.60. 

Assume further that one desires to fmd the 
storage capacity for regulating the mean 
flow ii., = 200 units, which on the average will not 

run dry or overflow in a period of 20 years - that is, 
n = 240. 

The deterministic storage may be found from 
Figs. 7.5 through 7. 7. Assuming the effect of s( a ) is 

T 

neglected, then Fig. 7.7 gives a value of Sd = 724 
units. The stochastic storage is obtained from Eq. 
5.18 in which the function a

0 
is computed by Eq. 

5.10. This gives a value of S, = 970 units for the 
stochastic storage. Therefore, from Eq. 7.1, the total 
storage is equal to 1694 units. The variance of this 
storage may be obtained from Fig. 6.20 which for 
aT = 20 , s(0T) : 14.22 , p : 0.60 , and n: 240 
gives a value of 124,000 or a standard deviation 
equal to 352. 

It should be noted that the proposed method of 
separating the total storage into a deterministic and a 
stochastic part may be extended to higher order 
Markov models. For these models the deterministic 
storage function Sd(.) remains the same, while the 
stochastic storage function depends on several more 
parameters; that is, in general it will be represented 

by S
5 

ra:. , S(OT) , pk , s(pk ,-r)] , With k: 1,2, ... ,Jn 

and m the order of the Markov model considered. 

TABLE 7.1 CmlPARISON OF THE EXPECTED RANGES FOR MARKOV 
MODELS WITH ZERO AND PERIODIC MEAN u

1 

(I) S(JJ, )=l2.40, Cit=10, s (oT)=6.87, p=O. (1) S(IJ· )=12.40, 
. T '\ =10, s(or)"'6.87, p=0.6 

(2) s (IJ,)=O.O, i\=10 , s(o,)=6.87 , p=O. (2) s(u ) =0 .0, 
T 

oT=lO, s (or) =6 .87, p=0 .6 

n 
Expected Range Ex]1ect ed Range 

(1) (2) 
(1)- (2) ( J!. ) (2) (1)-(2) 

so 157.4 7 117.12 40.35 225.83 185.96 39 . 87 
100 214.19 171.58 42.61 328.75 285 .50 43.25 
150 258.58 219 .1 2 39.46 407. 54 367 .30 40 .24 
200 301.25 259 .87 41.38 484.38 443 . 16 41.22 
250 331.09 290.22 40.87 539.87 498 .82 41.05 
300 359 . 76 317 . 66 42.10 593.00 549.67 43.33 
350 389 .83 346 . 75 43 .08 643.22 599.70 43.52 
400 417.51 373.56 43.95 693.31 649 .43 43 .88 
450 443.45 400 . 65 42.80 737 . 20 695 . 20 42.00 
500 465.49 422.58 42.91 780 . 62 738 .02 42.60 
550 487.86 445.58 42 . 28 817.43 775 .89 41.54 
600 508.38 466.68 41 . 70 854. 71 812.88 41.83 

Average difference :: 41.96 Average difference = 42.03 
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400 Deterministic Storage= 

sd[ s (,u,) '5,, s(a-,)] 
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Fig. 7.3 Deterministic and stochastic required storage capacities in case of inputs with periodic mean fJ.'I' 

and periodic standard deviation a with 7i = 10, s(a ) = 6.87 and p = 0. 
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Deterministic and stochastic required storage capacities in case of inputs with periodic mean fJ.T 

and periodic standard deviation a with a = 10, s(a ) = 6.87 and p = 0.60. 
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CHAPTER VIII 

CONCLUSIONS 

The analysis of storage problem considering the 
within-the-year fluctuations of inflows was the main 
objective of this study; therefore, mathematical 
models of monthly values of streamflow were used as 
examples. The storage difference equation which 
relates the inputs, outputs, and storage was used for 
formulating the mathematical problem. This led to 
the problem of determining the expected values and 
variances of the range of cumulative departures from 
the mean. 

The main conclusions drawn from this investi
gation are as follows: (1) Considering that the 
sequence of partial sums S

0
,S 1 ,S2 , ••. ,S

0 
follows the 

general multivariate normal distribution function, the 
exact expression of the expected value of the surplus 
Mn = max(S0 ,S1 ,S2 , •.• ,S0

) becomes very complex 
to derive when n is large. For small values of 
n , namely for n = I ,2, and 3, the expected value 
of the surplus M

0 
and consequently the expected 

value of the range R
0 

were derived in this study. 

(2) The derived general expression of the expected 
value of the range for n = 1,2, and 3 permits 
obtaining the exact expected ranges of stationary and 
non-stationary inputs. The following cases were 
derived: 

a. Independent random variables with changing 
standard deviation; 

b. Equally dependent random variables, and 
c. Markov dependent random variables. 

(3) The exact expected values of the range, 
obtained mathematically, for small values of n such 
as 1 ,2, and 3, and the computer simulation approach 
for larger values of n , can be used to determine the 
degree of accuracy of approximate equations of the 
expected range. In this study, approximate equations 
were obtained for the following cases: 

a. General Markov model with constant variance 
and periodic autoregression coefficients, 
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b. Non-stationary exchangeable random variables, 
and 

c. Markov dependent random variables with per
iodic standard deviation and constant auto
regression coefficients. 

(4) The expected values of the adjusted range of 
exchangeable random inputs, and outputs equal to a 
percentage of the mean inflow, may be expressed in 
the same way as the formula 4.107, valid for the 
expected range of exchangeable random variables. 
This result is relevant in hydrology in cases of over
year storage design. 

(5) The exact variance of the range was possible to 
derive for n = 1 and 2 for the case of stationary 
firs t -order Markov model. The mathematical 
derivation becomes complex for larger values of n . 

(6) Empirical equations, derived by the computer 
simulation approach, can be used for approximating 
the variances of the range. In particular, in this study, 
empirical equations were derived for the variance of 
the range of the rust and second-order Markov 
models with constant autoregression coefficients. 
Some empirical curves are also given fo r cases of non
stationary Markov models. 

(7) The total storage capacity required for regulat
ing the mean inflow, when the within-the-year 
fluctuation of the inflows is taken into account, can 
be divided into two parts: 

a. A deterministic storage which is a function 
of the standard deviation of J.L and the mean 

T 

and standard deviation of a r . (For these three 
parameters it is shown that the deterministic 
storage is pra·ctically constant for all n greater 
than 50.) 

b. A stochastic storage which is a function of the 
mean and standard deviation of a , of the 

T 

autocorrelation coefficients of the Markov 
model considered, and of n . 
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APPENDIX 

EVALUATION OF CONSTANTS TO BE USED 

IN EXPRESSIONS E{X}, E{Y} AND E{Z } 

OF CHAPTER IV 

Let us recall that the maximum M
3 

was de
fined as M

3 
= max(O,X,Y :Z) , where 

S1 = X = (x1 - y 1 ) 

s2 = y = (x l - yl) + (x2- x2) 

s3 = z = (xl - y l) + (x2 - y2) + (x3 - y3) ' 

and let us assume that the departures or components 
of partial sums (x. · y.) are normally distributed 

I I 

with mean zero, changing variance and are linearly 
dependent. 

Therefore the variances of X, Y and Z are 
given in general as 

Var {X } = a 2 = a 2 
X I ' 

(1) 

Var {Y} =a/ = a 1
2 +a/ + 2 a 1a 2 p 12 • (2) 

Var {Z } = a = a 2 + a 2 + a 2 
z I 2 3 

Th e covariances of X and Y , 
X and Z , and Y and Z may be shown to be 

Cov{X,Y } = a
1

2 + a
1 
o

2
p

12 
(4) 

Cov{X;I..}= 0 1
2 + 0 1°2P12 + ala3pt3 • (5) 

+ 0 1 °3P13 + 0 2°3P23 · ' (6) 

where o 
1

, a 
2 

and a 
3 

denote the standard devia· 
tion of the departures (x

1 
• y

1
), (x

2 
• y

2
) and 

(x
3 

• y 
3

) respectively and p 
12

, p 
13 

and p
2 3 

are 
the correlation coefficients between the indicated 
components. 
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A. FOR INDEPENDENT COMPONENTS. In 
this case p 12 = p 1 3 = p 'l3 = 0 , therefore Eqs. 
( 1) to ( 6) simplify to 

(7) 

Var {Y }=o 2 =o 2 +o 2 
y I 2 ' 

(8) 

Var {Z } = a 2 = a 2 + a 2 + a 2 
2 I 2 3 

(9) 

Cov{X,Y } = a
1

2 
, (10) 

Cov{X,Z } = o
1 

2 
, (1 1) 

Cov {Y ,Z } :: a 
1 

2 + a 
2 

2 (12) 

From the above equations, the correlation coef-
ficients p , p and p are given by 

XY XZ y z 

(13) 

Using the Eqs. 4.17, 4.21 and 4.24, the con
ditional standard deviations are 

a x.y 
=--- - -

(012 + 022)'1' 

a t (o2 z + o/)v. 
• (14) 



(15) 

a = a . (16) z.y 3 

Applying Eq. 4.8 to the trivariate case, the 
partial correlation coefficients p , p , and xy.z xz.y 
Pyz.x are 

p =---- ------
xy .z (ol2 + a22)~ (o2 2 + a32)Yz ' 

02 

Pxz.y = 0, and Pyz.x = - ------,-
(a2 2 + a/)~ ( 17) 

Substitution of above equations into Eqs. 4.49, 
4.52, 4.55, 4.67, 4.68, 4.71, 4.78, 4.79, and 4.82 
leads to the following constants: 

b
2 

= - c
2 

= 0 , (18) 

(19) 

(a; + a~) 
k3 = _ _ 0_2 __ 

3 

(20) 

' 
02 

= = b' cl I 
a I( al 

2 + 02 2)\1' 

b' 
2 

k' = I 
I 

k~ = 1 • 

I 

= - c2 

' 

k' = 
4 

k' 
2 

= 0 
' 

(21) 

= 00 (22) 

(23) 
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B. FOR COMPONENTS WITH EQUAL VAR
IANCE AND EQUAL DEPENDENCE (exchangeable 
random variables). In this case, 
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and 
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Therefore Eqs. (I) to (6) simplify to 
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and 

Cov {Y ,Z } = 2a2 ( 1 + 2p) . (34) 

From these equations, the correlation coefficients 

../[(I+ 2p)y, 
,and Pyz= -Jj(l+p)'h (35) 

Using Eqs. 4.17, 4.21, and 4.24, the conditional 
standard deviations are 
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a =- a(l-p)'h, 

x.z vr 

= a(!-p~)y, 
oy.x 
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Applying Eq. 4.8 to the trivariate case, the par
tial correlation coefficients Pxy.z ,pxz.y ,and 
Py z.x are 

P -o xz.y- ' 

(1+2p)y, 
and Pyz.x = Vl(!+p)y, · (39) 

Substitution of the above equations into Eqs. 
4.49, 4.52, 4.55, 4.67, 4.68, 4.71, 4.78, 4.79, and 
4.82leads to the following constants: 
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therefore the equations (I) to (6) simplify to 
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Applying Eq. 4.8 to the trivariate case, the 
partial correlation coefficients p · p and xy.z xz.y 
Pyz.x are 
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dependent (exchangeaole variables) and outputs equal to a per
centage of the mean inflow, is shown to be expr essed in the 
same way as the expected value of the unadjus t ed range of ex
changeable random variables. This result is relevant in hydro
logy because when one is interested in overyear storage design 
and the assumption of inde~endence of streamflow events is 
sufficiently accurate and the regulation or development is ex
pressed as a fraction of the sample mean inflow, then the ex
pected value of the storage for a gi ven number of years is 
given by the expected adjusted range which now may be comput
ed exactl y by the derived equation . 
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