Colorado Climate Summary Water-Year Series

(October 1991-September 1992)

Nolan J. Doesken Thomas B. McKee

÷

Climatology Report No. 93-1

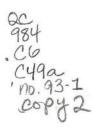
DEPARTMENT OF ATMOSPHERIC SCIENCE COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

Colorado Climate Summary Water-Year Series

(October 1991-September 1992)

by

Nolan J. Doesken


Thomas B. McKee

Colorado Climate Center Department of Atmospheric Science Colorado State University Fort Collins, CO 80523

August 1993

Climatology Report No. 93-1

ACKNOWLEDGMENTS

As always we would like to take this opportunity to thank the many cooperative weather observers in Colorado and their National Weather Service supervisors, Jerry Sherlin and Michael Elias, for making it possible to monitor the climate in all parts of Colorado at a very low cost. Again, our sincere thanks are in order.

The authors also wish to express their appreciation to Odilia Bliss for doing a fine job of preparing and processing each month's climate data and assembling this finished product. The work of John Kleist in automating much of the data analysis has been very helpful.

These summaries have been made possible by funding for the Colorado Climate Center from the CSU Agricultural Experiment Station through the College of Engineering.

COLORADO STATE UNIVERSITY

977.12-129

TABLE OF CONTENTS

P	a	ge
		-

I. Introduction	1
II. Explanation of Degree Days: Heating, Cooling and Growing	
III. 1992 Water Year in Review	
October 1991	13
November 1991	
December 1991	35
January 1992	48
February 1992	61
March 1992	
April 1992	
May 1992	
June 1992	
July 1992	
August 1992	
September 1992	

I. INTRODUCTION

The 1992 Water Year marked the 18th year of existence of the Colorado Climate Center (CCC) and the 15th year of closely monitoring the climate of this diverse and interesting state. The first monthly climate summary prepared by the CCC was written in early 1977 in the midst of an unprecedented severe winter drought. Since that time Colorado has experienced a myriad of extremes – record winter cold, incredible snowstorms, disastrous hail storms and tornadoes, brief dry periods, some of the snowiest years in the past 60 years and one of the wettest consecutive periods in the state as a whole. Our monthly descriptions of Colorado climate have expanded to document and describe as much of this information as possible.

The monthly climate descriptions are intended to accomplish several purposes. They are a written historical record of what our climate has been which can hopefully always be used as a reference in the future. By tracking monthly departures of temperature and precipitation from long-term averages, these summaries also become tools for operations, planning and policy-making related to agriculture, water resources, recreation, land use and energy. Finally these summaries are used to educate the people of Colorado about our unique climate and its impact on our lives and livelihoods.

In Colorado, the Water Year (October 1 through September 30) is the most appropriate period for monitoring climate. This 12-month period is directly correlated with the state's water storage-water usage cycle. In October snow usually begins to accumulate in the high mountains. As winter progresses, the snowpack normally continues to build. This snow is the frozen reservoir which supports the huge ski and winter recreation industry. As it melts in the subsequent spring and summer, it supplies much of the water for human consumption, for extensive irrigation, for industry, for replenishing reservoirs, and to satisfy long-standing streamflow compacts with neighboring states. Irrigated agriculture still accounts for the majority of water used in Colorado. Therefore, demand for water peaks during the summer and tapers off as temperatures drop, crops are harvested, and autumn arrives. September marks an appropriate end to the water year.

Because of the crucial importance of water to Colorado, this publication emphasizes precipitation and water-year accumulated precipitation. Comparisons with long-term averages are made to help determine which parts of the state are wetter or drier than average. This makes it possible to document the availability of water resources and to assess potential drought situations.

The format for the monthly report changed during the 1992 Water Year. The original format, described in previous issues of this report was continued through October 1991. In November 1991, a new two-column layout was initiated and continued for the remainder of the year. The first page of this new format begins with a brief synopsis of the month. A short paragraph and small map describe precipitation patterns for the month. A similar paragraph and map, showing temperature departures from normal, completes the front page. Normal climate, for both temperature and precipitation is defined as the 30-year average for the period 1961-1990.

The second page of each monthly summary gives a day-by-day narrative account of specific weather patterns, air masses and storm systems affecting Colorado. It includes selected examples of temperature values and precipitation totals. This page ends with a tabulation of temperature, precipitation and snowfall extremes for the state as reported by official National Weather Service Cooperative weather stations.

The third page is a graphical display of daily maximum and minimum temperatures for the month for nine selected locations in Colorado. The same nine cities are shown each month along with smoothed 30-year daily averages: Grand Lake, Denver, Akron, Grand Junction, Gunnison, Pueblo, Durango, Alamosa and Lamar. It is important to note that many stations do not use a midnight to midnight reporting period. The time of observation clearly has an impact on reported temperatures. For example, Durango, Gunnison and Lamar all take their observations at about 8 a.m. The maximum temperatures they report each day usually occurred the previous afternoon. It is important to take time of observation differences into consideration when comparing temperatures from different locations.

The fourth page of each monthly summary contains a map of monthly precipitation totals for the state, a brief narrative description of significant precipitation events and a bar graph showing daily precipitation amounts averaged spatially over the entire state of Colorado. This graph also shows the approximate percent area of the state receiving measurable (greater than or equal to 0.01 inches) precipitation each day. Again, it is important to realize that differences in observation time influences these results. A station with an 8 a.m. observation time will report yesterday afternoon's precipitation on today's date.

The fifth page of each monthly report shows a map with monthly precipitation plotted as a percent of the 1961-90 average. Beneath the map is a graph showing the number of stations in each of eleven precipitation categories varying from less than 25% of average to more than 100% of average. This graphic, accompanied by a brief narrative, allows a quick evaluation of the frequency distribution of monthly precipitation. The lower right hand portion of the page contains monthly precipitation rankings and extremes for six Colorado weather stations with long data records. These rankings are intended to give readers a long-term perspective on how typical or unusual precipitation was during the month.

Page six consists of a map, graph and narrative description of water-year accumulated precipitation with respect to average. This page is very helpful for evaluating the cumulative precipitation inputs into state water supplies.

Heating degree day data for 36 Colorado cities are published each month on the seventh page of each monthly report in a data table similar to previous years. A description of heating degree days and their use is given in Section II of this report.

The next two page are tabular climate information for the month for selected Colorado stations. Stations are divided into 4 regions: the Eastern Plains, the Foothills/Adjacent Plains (includes the Front Range urban corridor), the Mountains and High Interior Valleys, and the Western Valleys (includes stations in western Colorado below 7,000 feet). Data presented for each station include the average high (Max), average low (Min) and mean temperature (Mean) for the month and the departure (Dep) from the 1961-1990 average, the extreme highest (High) and lowest (Low) temperature recorded during the month, the monthly total of heating (Heat), cooling

(Cool) and growing (Grow) degree days (see Section II for definitions), the monthly total precipitation (Total), the departure from the 1961-1980 average (Dep), the percent of the 1961-1990 average (% Norm) and the total number of days with measurable precipitation (# days).

Beneath the data tables is a comparative table of number of clear, partly cloudy and cloudy days and the percent of possible sunshine for several National Weather Service stations. This is followed by a graph of daily total solar radiation data measured at Fort Collins and a graph of daily soil temperatures at four selected depths (4", 12", 36", and 72"). Beneath the soil temperatures is a brief section, "Hats Off To:

______, which acknowledges an individual or an institution for their contribution to data collection and climate monitoring in Colorado.

The components of the monthly report described above are provided each and every month, however there is some flexibility in the final few pages. Almost every month there is an in-depth analysis and discussion of some important aspect of Colorado's climate. These features vary in length from one to three pages. Under special circumstances there may be two feature stories per month. The September issue always contains a wrap-up of the water year. Here is the index of the feature stories published during the 1992 Water Year.

- New Precipitation Averages for Colorado How Much Have They Changed?, October 1991, Page 13.
- Colorado Temperatures Have They Changed?, November 1991, Page 33.

- Trends in Cloudiness Over Colorado A Fresh Look, December 1991, Page 44.
- What Happened to Alamosa? The 1992 Island of Ice, January 1992, Page 57.
- Solar Energy and Climate: An Inseparable Duo, February 1992, Page 70.
- Solar Energy in Colorado A Climatic Perspective, March 1992, Page 83.
- A Storm to Remember (March 8-9, 1992), March 1992, Page 84.
- Solar Energy in Colorado How much do we get?, April 1992, Page 86.
- Heavy Rains in a Dry State The Colorado Story, May 1992, Page 107.
- Heavy Rains in a Dry State The Rest of the Story, June 1992, Page 120.
- A Classic Severe Thunderstorm June 24, 1992, Fort Collins, CO, June 1992, Page 121.
- 12) Weather Enthusiasts Come to Colorado, July 1992, Page 133.
- 13) The ASOS Era Begins, July 1992, Page 134.
- 14) Coolest Early Summer Graph, July 1992, Page 134.
- 15) After a Cold Summer, What Lies Ahead?, August 1992, Page 144.

16) Reader Survey Summary, August 1992, Page 146.

17) A Review of the 1992 Water Year, September 1992, Page 157.

The final components of each monthly report is a feature on climate and energy which is provided to the Colorado Climate Center by the Joint Center for Energy Management (JCEM) at the University of Colorado at Boulder. Back in 1988 they developed a small network of automated weather stations to help gather data useful for heating and cooling design and for energy conservation. A one-page table and graph provides a very compressed summary of statewide temperature, humidity, solar energy and wind based on hourly data. The actual raw data can be obtained on request from JCEM (303) 449-4547. Occasionally a one-page narrative on an important climateenergy issue is also included authored by University of Colorado JCEM graduate students. Here is the index of special energy features during the 1992 Water Year.

1. One Beam at a Time, October 1991, page 22.

2. Keep the Home Fires Burning, December 1991, page 47.

3. Typical Meteorological Year, January 1992, page 60.

4. Thermal Storage in Buildings, February 1992, page 72.

5. The Importance of Kite Flying, March 1992, page 85.

No more special JCEM summaries were published in the Colorado Climate past March 1992.

Except for the JCEM data, temperature and precipitation data used in the monthly summaries were obtained from the National Weather Service cooperative observer network. Data from the major National Weather Service stations, such as Denver and Grand Junction, are also used extensively. A few volunteers who are not affiliated with the National Weather Service's networks are also included based on the Colorado Climate Center's judgement that the data are of good quality.

Please note that specific *daily* temperature and precipitation data are not listed here. Daily data can be obtained in digital and/or hard copy form from the Colorado Climate Center and the National Climatic Data Center (Asheville, NC). Much of the daily data are published in the government document, *Climatological Data*.

The averages which are used in this report for both temperature and precipitation were calculated using 1961-1990 data. Heating degree day normals were based on 1951-1990 data.

The written descriptions here give a good general accounting of each month's weather, but the majority of information is contained on the maps and tables which accompany each report. The accuracy of all of these maps and tables is quite good. However, these reports were initially prepared soon after the end of each month, and preliminary information was sometimes used. Therefore, some of the precipitation, temperature, and heating, cooling and growing degree day values may differ slightly from what is later published by the National Climatic Data Center.

II. EXPLANATION OF DEGREE DAYS

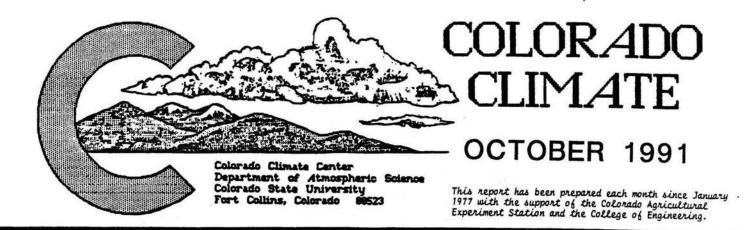
Many climatic factors affect fuel consumption for heating and cooling. Wind, solar radiation and humidity all play a part, but temperature is by far the most important element. Very simply, the colder it gets; the more energy is needed to stay warm.

A simple index, given the name, *heating degree days*, was devised many years ago to relate air temperatures to energy consumption (for heating). The number of *heating degrees* for a given *day* is calculated by subtracting the mean daily temperature (the average of the daily high and low temperature) from 65°F. Sixty-five degrees is used as the base temperature because at that temperature a typical building will not require any heating to maintain comfortable indoor temperatures. That difference (65°F minus the mean daily temperature) is the number of heating degrees for that day. For example, on a day with a maximum temperature of 40°F and a minimum of 10°F the mean daily temperature is 25° and the heating degree total is 40. The daily values are accumulated throughout the heating season to give heating degree day totals. Different base temperatures can be used to calculate heating degree days, but 65° is the long-standing traditional base.

The heating degree day total for a month or for an entire heating season is approximately proportional to the quantity of fuel consumed for heating. Therefore, the

colder it gets and the longer it stays cold, the more heating degree days are accumulated and the more energy is required to heat buildings to a comfortable temperature.

So why is this important? Very simply, if you know how much energy you have used for heating your home or business during a certain period of time, and if you also know the heating degree day total for the same period, you can then establish an energy consumption ratio. With that information you can then make reasonable estimates of your future energy consumption and costs. Also, you can easily check the success and calculate the saving's resulting from energy conservation measures such as new insulation, new windows or lowering the thermostat.


Cooling degree days are calculated in a similar fashion. Cooling degrees occur each day the daily mean temperature is *above* 65°F. They are accumulated each day throughout the cooling season and are roughly proportional to the amount of energy required to cool a building to a comfortable inside temperature. Cooling degree days are less useful than heating degree days, especially here in Colorado where air conditioning requirements are minimal in many parts of the state. However, they still offer a means of making general comparisons from site to site, year to year or month to month.

Growing degree days, which are sometimes referred to as "heat units" or "crop growth units" are a measure of temperature which has been found to correlate with the rate of development and maturation of crops. Several methods exist for computing growing degree days. In this report the "corn" growing degree day definition was used. The optimum growth occurs at 86°F and essentially no growth occurs at temperatures below 50°F. Therefore, when computing the daily mean temperature any minimum

temperature below 50° is counted at 50° and any maximum above 86° is counted as 86°F. Growing degree day totals are this adjusted mean temperature (°F) minus 50°F summed for each day.

III. 1992 WATER-YEAR IN REVIEW

In previous years up through the 1984 water year summary, several pages were written recapping the highlights of the year's climate and the impact it had on Colorado. This section now appears as the special feature story that accompanies the September 1992 summary found on pages 157-159.

Volume 15 Number 1

October in Review:

Mother nature dished out her absolute best and her absolute worst to Colorado during October. Warm, calm, and dry weather prevailed for most of the first three weeks of the month. Many new record high temperatures were set. The gorgeous weather all came to a screeching halt in the final week of October with one of the most severe cold blasts ever to hit Colorado so early in the season. For the month as a whole, temperatures ended up near or a bit below average east of the mountains and warmer than average in the west. Precipitation was below average except over areas hit hard by the late October winter fury.

Colorado's December Climate:

It is with some trepidation that I attempt to describe our December climate. This fall has already been exciting, with record heat, record cold, and record snow in some areas. We also still have strong memories of recent December weather. Starting with the Christmas Eve blizzard of 1982, several recent Decembers have brought spirited weather to Colorado. Past records don't guarantee future performance, but it does make me a bit nervous.

There are a few things we can count on in December, but there are many uncertainties. Daylength is shorter than in any other month. That means that colder weather is unavoidable. December almost always ranks as one of the three coldest months of the year and has been the coldest month east of the mountains in half of the winters during the past decade. Short days also mean that mid-latitude westerly winds aloft will be strong. This has several immediate implications. Storms will approach regularly and pass quickly. Sunny periods will develop, but they won't last long. Most of our moisture will come from the west. If the jet stream stays south over the U.S., as it often does in December, this means frequent and sometimes heavy mountains snows and quite a few cloudy days on the West Slope. It also means the Front Range cities and adjacent lower foothills will likely be the warmest part of the State. Westerly winds descending east of the Continental Divide warm by compression and often lift temperatures into the 50s and sometimes the 60s. The air also dries, so get out your hand lotion. The only problem with downslope winds is that sometimes they are very strong, gusting to 80 mph or greater near the eastern base of the foothills.

It is unlikely that we will see temperatures as cold as they were last December. Daytime highs usually climb into the 20s in the mountains with 30s in the valleys. East of the mountains highs often reach the 40s and 50s. Nighttime lows average in the teens over eastern Colorado while lows near or below zero become the norm on clear nights in the mountains. December temperatures are changeable, however, especially east of the mountains. Often in December we have an outbreak of arctic air that will likely keep temperatures well below freezing for a few days and bring subzero readings at night. Precipitation can be expected on 3-6 days during the month east of the mountains increasing to 10-15 days in the northern and central mountains. Precipitation totals average less than 0.50" east of the mountains (5-10" snow). December snows east of the Front Range tend to fall in small amounts, but strong winds can still cause transportation and human safety problems. Closer to the mountains, precipitation increases sharply to as much as 5" of moisture (about 80" snow) in some highcountry locations. Fortunately, except near passes and mountains peaks, December snows in and west of the mountains usually fall with light winds.

New Precipitation Averages for Colorado -- How Much Have They Changed?

Climatologists participate in an interesting ritual not unlike the taking of our national census. Every ten years, we scurry about compiling, checking and verifying all available long-term climatic data that we can get our hands on, hoping and praying that as many weather stations as possible have maintained complete and consistent records for at least the past 30 years. Then we assemble all the data for a uniform time period and compute new averages or "normals." For the next ten years these averages will be used in all our reports and climate summaries for describing and comparing climatic conditions. (Note: We have been using 1961-80 averages in our report, COLORADO CLIMATE. Beginning with this issue, we will now employ 1961-90 averages. See explanations and analyses presented in the August 1991 issue (Vol. 14, No. 11) of COLORADO CLIMATE.)

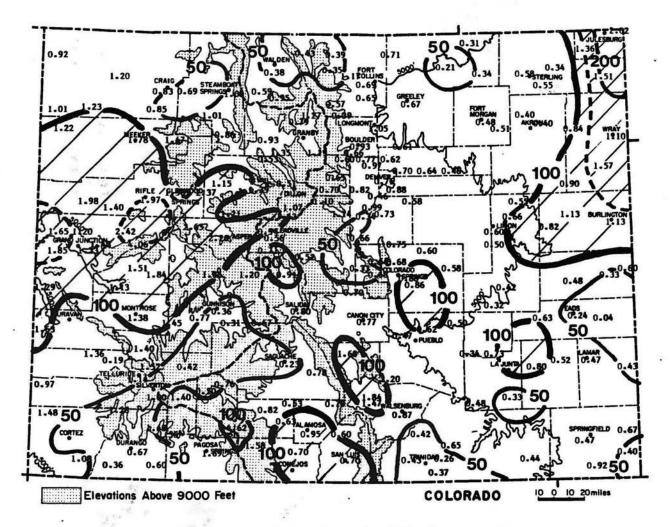
Date Event

2nd.

1-2

Sunny and warm weather marked the beginning of October. Highs climbed into the 70s and 80s at elevations below 7500 feet. There was a little fog in parts of eastern Colorado early on the 1st, and some downslope breezes along the Front Range on the

- 3-5 Warm temperatures continued on the 3rd over much of Colorado, but a strong cold front moved southward out of Wyoming late in the day bringing strong winds and sharply colder temperatures. High temperatures on the 4th were 30 to 45 degrees colder than the 3rd from the foothills eastward, while temperatures in southwestern Colorado remained unseasonably mild. Durango's high temperatures on the 4th was 77° compared to 45° at Denver. Rains developed early on the 4th along the northern Front Range and across the Northeastern Plains changing to wet snow at elevations above 5,000 feet--the first snow of the year for places like Denver and Boulder. Precipitation ended by noon on the 4th and was generally light, but Boulder did report 0.31" and Holyoke got 0.58" of rain. Southern and western Colorado remained dry. Skies cleared late on the 4th and temperatures dropped to their chilliest readings so far this autumn early on the 5th. Walden dipped to 9°F.
- 6-21 A prolonged period of dry weather in Colorado with predominantly above average temperatures and many sunny days. Temperatures began warming on the 6th and reached into the 80s 7th-8th at many low-elevation locations. A weak cool front crossed the area late on the 8th bringing some clouds and slightly cooler temperatures but no rain or snow. Very warm and nearly cloudless weather occurred 10-12th with temperatures near 70° well up into the mountains. It was a bit cooler 13-14th over northern and eastern Colorado as a storm passed well north of the State. Then temperatures rebounded again 15-17th as a large high pressure ridge dominated the West. Record high temperatures were widespread on the 16th matching or exceeding the highest temperatures ever observed in Colorado this late in the season. Craig hit 81°, dillon reached 70°, fort collins was 88° and Pueblo had an all-time October record of 94°F. More records were set in eastern Colorado on the 17th while western Colorado cooled a bit. Las Animas hit 97° just three degrees short of Colorado's all-time October high. Much cooler air pushed into eastern Colorado on the 18th but with no moisture. Western Colorado stayed mild. Some clouds approached Colorado 19-21, but conditions remained mild and dry.
- 22-25 Colorado enjoyed one more very warm day on the 22nd but clouds increased as a strong storm system took shape over the Northwest. Valley rains and mountain snows began in western Colorado on the 23rd and temperatures began to drop. Precipitation became heavy over central Colorado early on the 24th and a little rain also developed along the Front Range. Fruita received 1.02" of rain from the storm, and Rifle reported 1.35". Another surge of rain and snow moved across the State late on the 24th. Aspen reported 17" of new snow and 1.64" of moisture. The Grand Mesa received more than 2" of water equivalent. Snow ended on the 25th, but conditions remained cool and unsettled.
- 26-31 It was cool but pleasant on the 26th with wave clouds over the mountains. Meanwhile, a new surge of cold and snow began to push down from western Colorado and roared into Colorado late on the 27th. As the cold arrived, snow developed in the northern mountains spreading south with rain and freezing rain over northeastern Colorado changing to light snow. Temperatures dropped nearly 50 degrees out on the plains and stayed below freezing for the rest of the month. By the afternoon of the 28th, temperatures in northeast Colorado were down in the teens. The mountains received 4-14" of snow for this initial surge. Record low temperatures were set in some areas on the 29th. Then temperatures dropped even more and snow intensified late on the 29th as a 2nd disturbance pushed south. Deep snow piled up, especially over southern Colorado on the 30th. Many location east of the mountains experienced their coldest October day on record. Greeley only reached a high of 18°F. Snow ended on the 31st. Alamosa ended up with 15° of new snow and a record low of -9°F. Westcliffe reported 30" of new snow, Pueblo came in with 16" and Burlington got 12". The skies cleared on Halloween but it seemed more like Christmas with fresh snow and icy temperatures.


October 1991 Extremes

Highest Temperature	97°F	October 17	Las Animas
Lowest Temperature	-12°F	October 29	Antero Reservoir
		October 31	Rand
Greatest Total Precipitation	4.62"	And a second sec	Wolf Creek Pass 1E
Least Total Precipitation	0.21"		Briggsdale
Greatest Total Snowfall	59.0"		Wolf Creek Pass 1E
Greatest Depth of Snow on Ground	47"	October 31	Wolf Creek Pass 1E

OCTOBER 1991 PRECIPITATION

During the first 22 days of October, precipitation only fell on one day (Oct. 4) and that was limited to portions of northeast Colorado. Precipitation was widespread in late October, and unusually large amounts of snowfall was reported in many areas. However, the snow was fluffy with low water equivalent for so early in the season. As a result, monthly precipitation remained below average over much of the State. For the month as a whole, above average precipitation was observed over west central Colorado from the Utah border to Aspen. Other wet areas included the south half of the San Luis Valley, Wolf Creek Pass, a band just east of the Sangre de Cristo Mountains, and an area of eastern Colorado from La Junta northeastward to Julesburg. Holyoke and Julesburg each reported over southwestern Colorado from Durango to Gunnison, in Routt and eastern Moffat counties and in the eastern foothills of the Front Range from Pikes Peak north to Wyoming.

Greatest		Least	
Wolf Creek Pass 1E	4.62"	Briggsdale	0.21"
Bonham Reservoir	4.06"	Saguache	0.23"
Redstone 4W	2.65"	Eads	0.24"
Collbran	2.42"	Trinidad	0.26"
Shoshone	2.37"	Cochetopa Creek	0.31"
Aspen 1SW	2.26	New Raymer 21N	0.31"
		•	

Precipitation amounts (inches) for October 1991 and contours of precipitation as a percent of the 1961-1990 average.

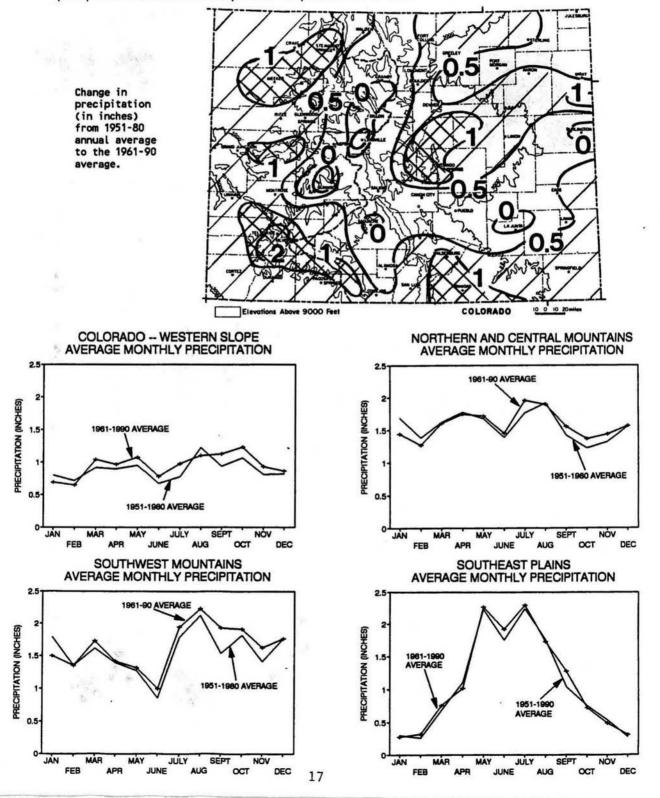
New Precipitation Averages for Colorado -- How Much Have They Changed? continued

After about five months of data processing here at the Climate Center, we have completed our preliminary data analysis. Some adjustments may be made in 1992 when the National Climatic Data Center computes their new "normals" for the entire country, but I anticipate the differences will be minor. Here are our findings.

GENERAL COMPARISON BETWEEN 1961-80 AVERAGES AND 1961-90 AVERAGES

The 1980s were generally a decade of abundant precipitation for Colorado. The extremely wet years of 1982-86 more than compensated for dry years early and late in the decade in many parts of Colorado. For most areas of Colorado the new annual precipitation averages are somewhat greater than the 1961-80 averages. The greatest increase is in west central Colorado. Grand Junction, for example, now has an average of 8.64", an increase of 7%. Rifle has increased 1.33" to 12.28" per year. Most areas east of the mountains have also gotten wetter. The Akron area has increased by about 1". The Arkansas Valley has seen a welcome increase as well. Pueblo's annual average has increased from 10.58" to 11.21". Denver, despite many memorable storms in the 1980s, has increased only 0.26" to 15.43". Meanwhile, some of the higher mountain stations have experienced a slight decrease. Breckenridge, for example, has dropped from 19.86" to 19.50".

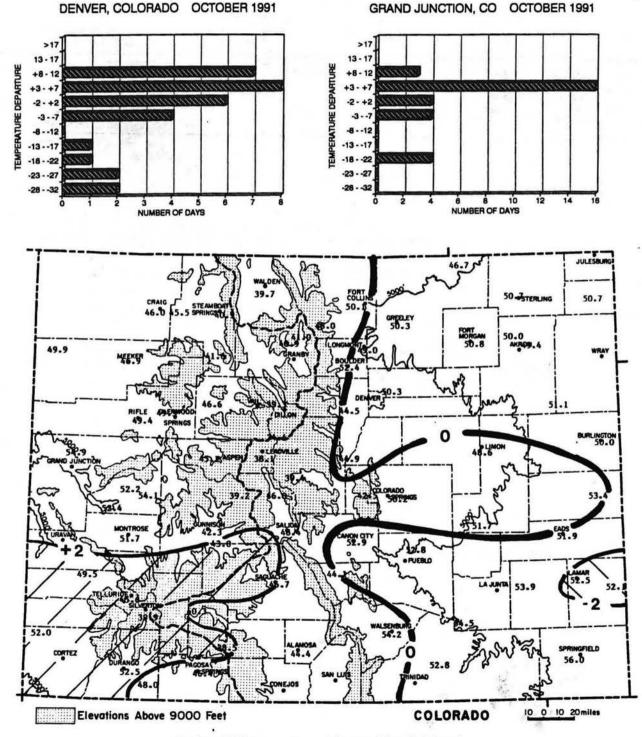
Averages for individual months have shown much greater changes in comparison to the 1961-80 period:


- January: Drier along and west of Continental Divide (10-20% drier in some areas). Slightly drier along the Front Range. Wetter (about 10%) across the Eastern Plains.
- February: Little consistent change over western half of Colorado. Generally wetter east of mountains. More than 20% wetter over most of the Eastern Plains.
- March: Wetter statewide. Ten to 20% wetter along the Front Range.
- April: Varied. A little wetter over parts of western Colorado and Northeast Plains. Drier along the Front Range.
- May: The majority of the State is wetter especially over the Northern and Central Mountains and on the Northeast Plains. A little drier in extreme southwest Colorado.
- June: The majority of Colorado is now a little wetter.
- July: Considerably and consistently wetter west of Continental Divide (5-20%). Drier in the San Luis Valley. Considerable local variations but no systematic change east of the mountains.
- August: Drier Northern Mountains. Wetter southwest. Considerably wetter southern Front Range, Trinidad to Castle Rock.
- September: Wetter Western Slope, southwest and extreme southeastern counties. A little drier northeast quarter of Colorado.
- October: Much wetter (10-20%) northwestern Colorado. Varied, but generally a little wetter over the Eastern Plains. A little drier in extreme southwest Colorado.
- November: Systematically wetter western half of Colorado. Ten to 20% wetter southwestern Colorado. Slightly wetter Front Range and Northeast Plains. Slightly drier Southeast Plains.
- December: Wetter Front Range and Eastern Plains. Drier southwest. Little change elsewhere.

There may or may not be much significance to these changes. Precipitation is such a highly variable climate element that some of these changes, while large, may simply indicate some of typical natural variations in our climate. The large increase in March precipitation along the northern Front Range, for example, was due almost entirely to one remarkably wet month -- March 1990. But some features deserve a closer watch. The tendencies for wetter summers, wetter autumns and drier midwinters in the mountains and western valleys along with wetter winters on the plains have been quite consistent for much of the past decade. These could be the result of some systematic variations in the general circulation of the atmosphere. We'll keep you posted on how this progresses in the 1990s.

New Precipitation Averages for Colorado -- How Much Have They Changed? continued

HOW DO THE 1961-90 AVERAGES COMPARE TO THE 1951-80 COLORADO PRECIPITATION MAP?


In the early 1980s, precipitation data for the 1951-80 period were analyzed to produce a very detailed color map of average annual precipitation for Colorado. This map has become a standard reference for educators, resource managers, engineers and consultants in Colorado. (Note: copies of this map are still available at the Colorado Climate Center.) The question that users of that map are beginning to ask is "Is the map still accurate?" My reply is, "Yes, it is still accurate, but the past 10 years have deviated somewhat from those values." With the help of Kim Zikmund, an enthusiastic student intern from the University of Denver who worked with the Climate Center during this past summer, we were able to quantify some of the changes. The following map and graphs attempt to demonstrate the magnitudes and seasonal distributions of precipitation changes from the 1951-80 period to 1961-90. In general, the seasonal changes are similar to those outlined above. We plan to include a more complete analysis of this information in a publication on Colorado precipitation characteristics planned for publication in 1992.

OCTOBER 1991 TEMPERATURES

AND DEGREE DAYS

This month was a good example of how misleading average data can sometimes be. Temperatures for October as a whole ended up just slightly below average over eastern Colorado and a little warmer than average in the mountains and on the Western Slope. The warmest part of the State was the southwestern counties where temperatures were 2-3°F warmer than average. But the real story of the month can be found in the frequency distributions. Many days ended up above average with several days much below average. There weren't many days in the middle.

October 1991 temperatures (degrees Fahrenheit) and contours of departures from 1961-1990 averages.

Table 1. Heating Degree Day Data through October 1991 (base temperature, 65°F).

	Heating	Degree	e Data					Color	ado Cl	imate	Center	(303	491-	8545				Heating	Deere						Color	edo Ci	imate I	Tenter	(303)	401.	85/5
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			FTATION	neating	21430-2 				MOV	DEC	JAN	FFR	NAR	ADD	MAY	JUN	ANN
ALAMOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990	1457	1519 1671	1182	1035 954	732 742	453 410	165		1.00		STATION GRAND LAKE 65SW	AVE 90-91 91-92	JUL 214 264 220	AUG 264 268 255	468 350 427	0CT 775 774 739		DEC 1473 1605	1593	100000	1318	951 979	654 615	384	10591 10305 1641
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964		1376 1444		1116 1077	798 811	524 432	262 224	8850 8593 1161			GREELEY	AVE 90-91 91-92	· 14 8	0 2 5	149 62 119	450 450 450		1128 1309	1240 1246	946 741	856 692	522 492	238 159		6442 5901 582
BOULDER	90-91	0 32 17	13 7	130 81 121	357 338 403	714 589	908 1161	1004 1081	804 667	775 685	483 511	220 211	59 44	5460 5413 548			GUNN I SON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059		1714 1787	1422 M	1231 M	816 N	543 M	276 249	10122 M 1351
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 N	577 641 580	936 905		1218 1256	1025 896	983 983	720 771	459 472		7734 7879 M			LAS ANIMAS	AVE 90-91 91-92	0 4 1	0 0 3	45 21 59	296 308 350	729 624	998 1220	1101 1113	820 667	698 602	348 352	102 81		5146 4992 413
BURLING- TON	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 M	1017 1249		871 688	803 737	459 438	200 136	38 1	5743 N 595			LEAD- VILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826		1435 1556			1320 1210		726 714		10870 10953 2071
CANON	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548	870 1098		770 626	740 679	430 459	190 182	40 26	5100 5088 492			LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503		1070 1280		960 779	936 820	570 592	299 245		6531 6370 707
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453		1042 1256	1122 1142	910 750	880 773	564 568	296 219	78 33	6346 6009 630			LONGHONT	AVE 90-91 91-92	0 24 12	11 6	162 101 133	453 481 489		1082 1284	1194 1249	938 740	874 699	546 520	256 186	78 28	6432 6050 640
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423		1150 1321		950 879	850 882	580 702	330 335	100 113	6665 7067 605			NEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553		1240 1406	1345 1458		998 939	651 696	394 358	164 110	7714 7563 805
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	996 876		1479 1544	1193 1095	1094 995	687 693	419 398	193 127	8376 8029 852			HONTROSE	AVE 90-91 91-92	000	10 3 0	135 81 135	437 470 404		1159 1385		941 974	818 768	522 571	254 268	69 49	
DELTA	AVE 90-91 91-92	000	0 2 2	94 58 88	394 416 383	813 751	1135 1400	1197 1549	890 998	753 742	429 512	167 170	31 26	5903 6624 473			PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910	1305 1538	1380 1432	1123 1038	1026 1002	732 767	487 489	233 227	8367 8340 938
DENVER	AVE 90-91 91-92	0 12 6	0 3 4	135 64 118	414 388 449	789 623		1101 1143	879 684	837 682	528 510	253 174		6014 5508 577			PUEBLO	AVE 90-91 91-92	0 1 1	000	89 34 76	346 360 380		998 1243		834 730	756 667	421 406	163 103		5465 5273 457
DILLOW	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788		1435 1587	1516 1569	1305 1220	1296 1257	972 1031	704 691		10754 10778 1946			RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475		1249 1433		1002 964	856 814	555 605	298 265	82 52	6945 6966 620
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379		1153 1373		958 842	862 919	600 619	366 364	125 125	6848 6979 539			STEAMBOAT SPRINGS	AVE* 90-91 91-92		E 110 141	370 255 394	670 700 742				1240 1223	1150 1120	780 851	510 518	270 262	9210 9477 1404
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934		1448 1536	1148 1052	1014 889	705 693	431 355	171 99	8377 7881 803			STERLING	AVE 90-91 91-92	0 17 5	671	157 68 92	462 437 437		1163 1359			896 716	528 466	235 173	51	6614 5933 535
EVER- GREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627		1135 1330		1011 937	1009 885	730 727	489 430		7827 7569 1113			TELLURIDE	AVE 89-90 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972	1293 1384	1339 1351		1141 1093	849 828	589 486		9164 8592 1272
FORT COLLINS	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457		1073 1284	1181 1212	930 747	877 703	558 508	281 203		6483 5947 614			TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654	973 1160	1051 1048			468 462	207 156		5544 5288 489
FORT MORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437			1283 1248	969 750	874 722	516 489	224 180		6520 5979 535			WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	822 794 776					1277 1164	915 931	642 587		10466 9710 1630
GRAND JUNCTION	AVE 90-91 91-92	000	0 0 2	65 28 37	325 360 304		1138 1370	1225 1464	882 919	716 706	403 478	148 136	19 18	5683 6238 343			WALSEN- BURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543	924 1047	989 985	820 646	781 674	501 437	240 141	49 23	5504 4883 438
	* = AV	ES ADJ	JSTED I	FOR ST	ATION	NOVES		H =	MISSI	NG	E	= ESTI	ATED					* = AV	ES ADJ	USTED	FOR ST	ATION	NOVES	+	H =	NISSI	NG	E	= ESTIP	ATED	

OCTOBER 1991 CLIMATIC DATA

Eastern Plains

	Temperature						D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days
NEW RAYMER 21N	63.4	30.0	46.7	-1.3	85	3	562	3	270	0.31	-0.29	51.7	6
STERLING	68.7	32.8	50.7	0.7	91	6	437	4	333	0.58	-0.22	72.5	4
FORT MORGAN	67.7	33.8	50.8	-0.0	91	6	437	5	320	0.48	-0.18	72.7	6
AKRON FAA AP	64.9	35.2	50.0	-0.7	88	4	466	11	288	0.40	-0.32	55.6	4
AKRON 4E	66.2	32.6	49.4	-0.8	90	1	485	12	306	0.40	-0.20	66.7	6
HOLYOKE	65.8	35.6	50.7	-0.8	90	6	446	12	298	1.51	0.80	212.7	5
JOES	67.5	34.7	51.1	-0.9	91	6	434	13	316	0.90	0.10	112.5	2
BURLINGTON	65.2	34.9	50.0	-3.5	89	10	462	7	296	1.13	0.36	146.8	5
LIMON WSMO	65.1	32.2	48.6	0.3	85	2	503	3	284	0.60	-0.04	93.7	3
CHEYENNE WELLS	70.9	35.9	53.4	0.2	93	10	381	30	363	0.33	-0.48	40.7	2
EADS	68.8	34.9	51.9	-1.9	92	10	413	12	326	0.24	-0.57	29.6	1
ORDWAY 21N	71.7	31.7	51.7	0.2	93	6	410	6	367	0.32	-0.16	66.7	3
LAMAR	75.0	30.0	52.5	-2.2	95	8	392	11	394	0.47	-0.24	66.2	3
LAS ANIMAS	73.4	34.4	53.9	-1.6	97	12	350	14	379	0.80	0.10	114.3	3
HOLLY	68.7	35.6	52.1	-2.0	93	14	397	5	334	0.43	-0.45	48.9	2
SPRINGFIELD 7WSW	73.8	38.3	56.0	0.9	92	10	303	31	411	0.47	-0.32	59.5	2
TIMPAS 13SW	71.5	37.5	54.5	1.1	89	10	331	11	362	0.48	-0.22	68.6	3

Foothills/Adjacent Plains

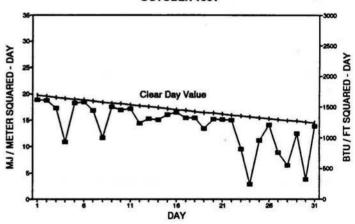
			Tempera	ature			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	· Low	Heat	Cool	Grow	Total	Dep	%Norm	# days
FORT COLLINS	66.0	34.2	50.1	0.3	88	4	457	3	286	0.69	-0.29	70.4	5
GREELEY UNC	66.7	33.8	50.3	-0.2	91	8	450	3	309	0.67	-0.28	70.5	- 5
ESTES PARK	64.3	31.7	48.0	3.1	76	-2	521	2	247	0.57	-0.29	66.3	5
LONGMONT 2ESE	66.4	31.5	49.0	-0.9	90	3	489	0	302	1.05	0.20	123.5	7
BOULDER	66.9	37.9	52.4	-1.1	87	5	403	20	319	0.93	-0.36	72.1	7
DENVER WSFO AP	66.3	34.3	50.3	-1.1	89	7	449	1	304	0.70	-0.28	71.4	5
EVERGREEN	63.1	25.9	44.5	-0.1	84	-3	627	0	251	0.82	-0.49	62.6	6
CHEESMAN	65.9	23.8	44.9	-1.8	83	-1	615	0	294	0.66	-0.54	55.0	5
LAKE GEORGE 8SW	59.3	25.3	42.3	-0.0	73	4	697	0	196	0.17	-0.56	23.3	5
ANTERO RESERVOIR	58.8	19.9	39.4	1.5	73	-12	787	0	183	0.52	-0.17	75.4	6
RUXTON PARK	58.7	26.3	42.5	4.1	76	-3	692	0	188	0.68	-0.75	47.6	6
COLORADO SPRINGS	65.1	35.4	50.2	0.1	85	7	453	4	287	0.88	0.04	104.8	5
CANON CITY 2SE	68.5	37.4	52.9	-1.3	88	12	379	12	328	0.77	-0.18	81.1	4
PUEBLO WSO AP	71.6	33.9	52.8	-0.8	94	13	380	9	359	0.62	0.05	108.8	3
WESTCLIFFE	63.7	24.5	44.1	0.1	77	4	641	0	252	1.60	0.47	141.6	4
WALSENBURG	71.0	37.5	54.2	1.1	87	11	337	12	378	0.87	-0.16	84.5	3
TRINIDAD FAA AP	70.5	35.1	52.8	-0.7	89	10	377	2	354	0.65	-0.15	81.2	3

Mountains/Interior Valleys

	Temperature						D	egree D	ays		Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days		
WALDEN	58.1	21.3	39.7	1.0	76	-5	776	0	171	0.38	-0.54	41.3	4		
LEADVILLE 2SW	53.8	22.3	38.1	1.3	69	-1	826	0	122	0.56	-0.44	56.0	4		
SALIDA	67.6	29.2	48.4	1.9	80	11	507	0	302	0.80	-0.30	72.7	3		
BUENA VISTA	64.6	27.5	46.0	0.6	78	6	580	0	266	0.91	0.10	112.3	6		
SAGUACHE	65.0	28.5	46.7	2.1	75	11	559	0	261	0.23	-0.47	32.9	2		
HERMIT 7ESE	61.5	19.1	40.3	1.8	76	5	760	0	209	0.50	-1.09	31.4	3		
ALAMOSA WSO AP	65.9	23.0	44.4	0.9	77	-9	630	0	287	0.95	0.25	135.7	2		
STEAMBOAT SPRINGS	61.5	20.3	40.9	-1.3	78	0	742	0	226	1.00	-0.87	53.5	5		
YAMPA	57.5	25.7	41.6	-0.2	73	-5	718	0	177	0.86	-0.44	66.2	2		
GRAND LAKE 1NW	60.3	21.6	41.0	2.1	73	3	736	0	195	1.27	-0.15	89.4	4		
GRAND LAKE 6SSW	58.9	22.9	40.9	1.0	71	5	739	0	184	0.79	-0.20	79.8	4		
DILLON 1E	56.5	22.1	39.3	0.8	70	4	788	0	146	0.51	-0.29	63.7	5		
CLIMAX	47.6	21.1	34.4	1.0	63	-5	940	0	38	1.63	0.27	119.9	7		
ASPEN 1SW	60.6	29.6	45.1	1.6	76	7	610	0	215	2.20	0.49	128.7	5		
TAYLOR PARK	55.7	22.7	39.2	1.4	69	7	792	0	147	1.20	-0.10	92.3	5		
TELLURIDE	64.9	26.4	45.6	2.5	82	6	595	0	273	1.14	-1.08	51.4	8		
PAGOSA SPRINGS	67.5	25.4	46.4	1.2	80	19	568	0	304	1.69	-0.42	80.1	6		
SILVERTON	57.1	22.7	39.9	2.9	72	4	769	0	169	1.00	-1.27	44.1	7		
WOLF CREEK PASS 1	51.2	25.9	38.5	2.3	65	5	809	0	106	4.62	0.27	106.2	8		

Western Valleys

			Tempera	ture			D	egree Da	ays		Precip	oitation	
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	XNorm #	days
CRAIG 4SW	63.2	28.7	46.0	0.9	81	1	582	0	258	0.83	-0.47	63.8	5
HAYDEN	63.9	27.2	45.5	0.3	81	2	596	0	261	0.69	-0.91	43.1	6
MEEKER NO. 2	64.8	29.0	46.9	0.8	80	-4	553	0	274	1.78	0.01	100.6	5
RANGELY 1E	66.8	33.0	49.9	1.0	83	0	461	0	308	1.22	0.04	103.4	4
EAGLE FAA AP	65.9	27.3	46.6	1.7	81	10	563	0	288	1.15	0.11	110.6	6
GLENWOOD SPRINGS	68.1	30.6	49.3	0.9	84	13	460	0	309	1.50	-0.25	85.7	5
RIFLE	69.1	29.8	49.4	0.4	84	7	475	0	335	1.97	0.66	150.4	7
GRAND JUNCTION WS	68.8	41.1	54.9	0.3	81	19	304	0	327	1.20	0.22	122.4	6
CEDAREDGE	69.9	34.4	52.2	1.5	84	12	393	0	331	1.51	0.05	103.4	4
PAONIA 1SW	70.0	38.2	54.1	2.6	83	19	330	0	342	1.84	0.20	112.2	7
DELTA	71.5	33.3	52.4	0.5	84	20	383	0	359	1.13	0.08	107.6	4
GUNN I SON	65.4	19.1	42.3	1.1	77	10	698	0	268	0.36	-0.48	42.9	5
COCHETOPA CREEK	64.7	21.3	43.0	2.2	77	10	674	0	255	0.31	-0.58	34.8	3
MONTROSE NO. 2	67.5	35.9	51.7	1.3	80	17	404	0	295	1.38	0.24	121.1	6
URAVAN	74.3	36.9	55.6	1.0	88	16	287	0	401	1.39	-0.01	99.3	6
NORWOOD	64.5	34.5	49.5	3.3	79	2	473	0	264	1.36	-0.23	85.5	3
YELLOW JACKET 2W	66.7	37.3	52.0	2.3	81	9	392	0	297	1.48	-0.33	81.8	3
CORTEZ	68.4	34.0	51.2	1.2	81	14	421	0	319	0.18	-1.42	11.2	1
DURANGO	69.6	35.4	52.5	3.7	80	15	379	0	334	0.67	-1.35	33.2	6
IGNACIO 1N	65.6	30.4	48.0	0.2	77	16	518	0	288	0.60	-0.86	41.1	4

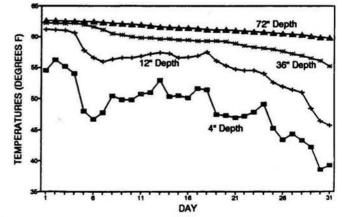

* Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

OCTOBER 1991 SUNSHINE AND SOLAR RADIATION

	Num	ber of	Days		
Station	CLR	PTLY <u>CLDY</u>	CLDY	% of possible <u>sunshine</u>	ave % of possible
Colorado Spring	s 13	10	8		
Denver	12	12	7	78%	73%
Fort Collins	13	11	7		
Grand Junction	19	4	8	78%	74%
Limon	12	13	6		
Pueblo	17	8	6	79%	79%
17		CLR	= Clea		
	DTI			Ly Claudy	

PTLY CLDY = Partly Cloudy CLDY = Cloudy

FT. COLLINS TOTAL HEMISPHERIC RADIATION OCTOBER 1991



OCTOBER 1991 SOIL TEMPERATURES

Soil temperatures remained warmer than normal for October until late in the month. The snowcover that accompanied the latemonth arctic blast helped keep soil temperatures from freezing.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES OCTOBER 1991

ONE BEAM AT A TIME

This column often emphasizes the use of solar and other alternative energy resources. Here at the Joint Center for Energy Management we study the feasibility of these renewable resources and recommend ways in which to use them. Often, however, the data we require for our methods of analysis differ from the standard format with which weather information is traditionally measured.

For example, the usual measurement of solar radiation is one taken on a horizontal plane that views the total irradiance of the sky. The sensor used to take these kinds of measurements is known as a pyranometer. By using yearly solar intensity measurements we can model the performance of various types of solar systems. But rarely will one find a solar collector oriented facing straight up. In order to use this 'horizontal' radiation to model many different types of systems we must first decide what the sky conditions are, such as the percentage and type of cloud cover and the angular distribution of the available solar energy.

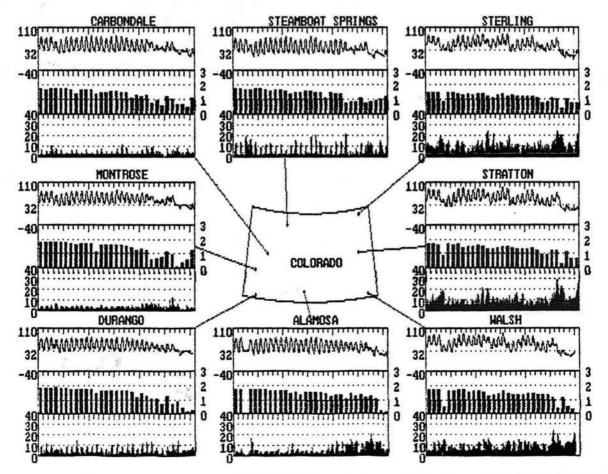

For a collector that is tilted up from the horizontal (as are most of the solar hot water systems you see in Colorado), there are three different parts of the total solar irradiance that should be accounted for: the beam, diffuse and reflected components. The beam radiation is that which comes directly from the solar disk itself. Collectors which 'track' the sun across the sky see mostly the beam radiation, and on clear days this will be the largest component. Diffuse radiation is the sky radiation without the beam part. When the sky is cloudy the diffuse component is often greater than the beam. The reflected component is the the solar energy intercepted a tilted surface which is first reflected off the foreground. Under normal condition the reflected component is small, but when there's snow or water on the ground it can become quite significant.

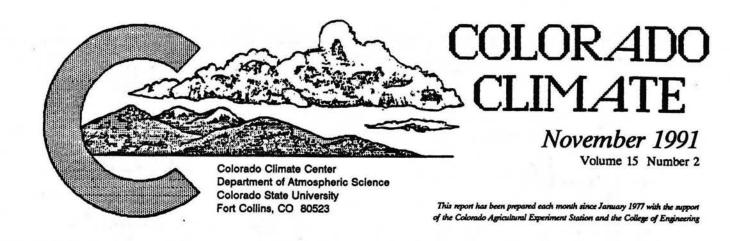
It is difficult to measure these various components due to the constantly changing seasonal and daily position of the sun. Beam radiation is typically measured using a tracking sensor with a narrow field of view, called a pyrheliometer. Diffuse radiation is usually measured using a horizontally oriented pyranometer which has a thin strip of metal (a shadow band) blocking out the direct beam radiation. These devices must constantly be adjusted, however, to account for the daily and seasonal motions of the sun and are not recommended for use at remote sites.

The WTHRNET stations use stationary pyranometers to measure the solar radiation on four fixed planes, each at a different tilt and azimuth. Using the hourly average from each pyranometer and the solar geometry for that hour, it is possible to get a good idea of what the sky conditions are and the relative magnitudes of the three solar components. This method is prefered to having tracking sensors or devices, since the stations are visited just a few times a year and cannot be susceptible to the whims of the extreme Colorado climate.

This "multi-pyranometer array" technique is a relatively new and untested method for finding the various components; much work has been done recently on figuring out just how well this system performs. Here in Boulder we have been comparing the data from one of our arrays to the beam radiation measured with a pyrheliometer located nearby. With several years of data to work with, we have shown that this is a valid method for use on remote weather stations and can give accurate estimates of the radiation components.

The graph to the right shows the distribution of beam insolation over the a period of more than 3000 hours of daylight (about eight months). The X-axis shows the intensity of the beam radiation in increments of 25 watts per square meter. The Y-axis shows the percent of total time that the beam magnitude fell within a specific range. The two distributions compare fairly well; the error in the measurements is rather small for beam values in the middle ranges, and averages out to about eight percent in the higher ranges.

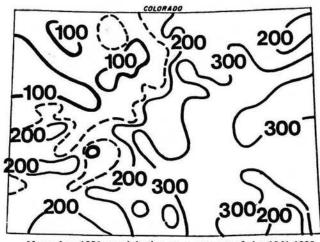



This report was prepared by Peter Curtiss of the Joint Center for Energy Management, University of Colorado, Campus Box 428, Boulder 80309-0428

WTHRNET	WEATHER	DATA	OCTOBER	1991

			WINANEIW	ICAINER DAIA	OCIOBER 1441			
	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
eonthly	average temp 44.2	erature (*F) 46.9	45.1	48.4	38.6	48.8	49.6	52.0
monthly maximum: minimum:	77.4 16/		15 84.6 11/1	6 80.8 16/15	79.0 11/15	88.0 16/10 0.1 30/2		92.1 16/1 12.2 31/
sonthly 5 AM 11 AM 2 PM 5 PM 11 PM	average rela 67 / 17 31 / 24 23 / 21 24 / 19 43 / 17	tive humidity 59 / 20 33 / 22 24 / 21 25 / 19 43 / 17	/ dewpoint (pe 79 / 23 33 / 22 25 / 22 26 / 20 53 / 21	ercent / *F } 57 / 20 31 / 22 26 / 21 27 / 20 43 / 18	83 / 17 31 / 17 23 / 16 27 / 16 56 / 15	27 / 5 17 / 11 16 / 14 17 / 12 21 / 3	65 / 25 39 / 30 31 / 28 33 / 26 54 / 24	63 / 26 38 / 31 33 / 31 34 / 29 54 / 28
day day night	average wind 165 168	direction (222 88	degrees clockwi 237 170	se from north) 106 100	234 113	198 222	127 221	149 211
onthly	ed distribut 329 358 41	l speed (miles 3.62 tion (hours p 400 334 10 0	per hour) 2,43 er month for ho 563 181 0 0	2.48 burly average mp 492 242 2 0	3.93 h range 475 213 52 0	8.14 82 542 120 0	9.15 14 581 141 8	7.29 87 537 116 0
onthly	average dail 1326	y total insola 1355	tion (Btu/ft ² 1286	day) 1335	1325	1138	1315	1291
"clearne 60-80% 40-60% 20-40% 0-20%	234 45 15 21	ution (hours p 96 57 48 36	er month in spe 190 52 49 16	cified clearnes 135 51 29 28	s index range 189 48 35 11) 170 79 53 27	235 58 31 12	217 58 36 14

The figure below shows monthly weather at WIHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour. One day of data is missing for both Alamosa and Walsh stations due to station changes.

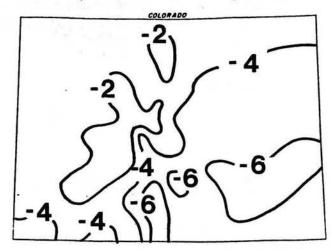


November Climate in Perspective - Cold and Wet

November 1991 started cold, ended cold, and was stormy and wet in between. Mountain snow accumulation got off to an excellent start, and Eastern Plains soil moisture also benefitted greatly. Snowfall was excessive over portions of eastern Colorado. This year challenged but fell far short of the remarkable snowfall record of November 1946 when 3-5 feet of wet snow blanketted much of eastern Colorado.

Precipitation

November was wetter than average over more than 90% of Colorado. Eastern and southern Colorado was especially wet. A handful of locations including Holly,


November 1991 precipitation as a percent of the 1961-1990 average.

Ordway, Genoa, Kit Carson, Monte Vista, Pueblo and Colorado Springs received more than 4 times their November average. Mountain precipitation was generally 120-200% of average. The only areas that remained below average were in the northwest quarter of Colorado.

Eagle totalled just 0.45" (61% of average) even though a trace or more of precipitation fell on 18 days during the month.

Temperatures

There were a few brief episodes of warmth early in November. Highs east of the mountains were in the 60s and 70s on the 8-9th and again 12-13th. However, the month as a whole was considerably colder than average ranging from 1-3 degrees below average in western Colorado to 4-8 degrees below average over southeast counties. The most unusual feature of the month was the Halloween cold snap that continued into early November. Many records were set during the first 3 days of the month. Pueblo's -17°F reading on November 3 tied their all-time coldest temperature for any day in November. Fraser and Crested Butte each dropped to -30° that morning - the coldest temperature ever officially observed in Colorado so early in the winter.

Departure of November 1991 temperatures from the 1961-90 averages.

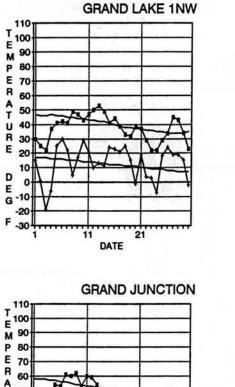
Inside T	
November 1991 Daily Weather 2	1992 Water Year Precipitation 6
November 1991 Temperature Comparison 3	Comparative Heating Degree Day Data 7
November 1991 Precipitation 4	November 1991 Climatic Data 8
November 1991 Precipitation Comparison 5	Special Feature - Colorado Temperatures:
	Have They Changed? 10

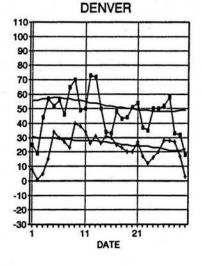
NOVEMBER 1991 DAILY WEATHER

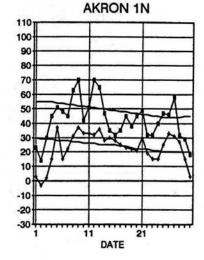
- 1-4 Colorado's Halloween snowstorm headed northeast on the 1st burying Minnesota. Behind the storm, a powerful new surge of Arctic air moved into Colorado engulfing the whole state by the 2nd. Incredibly cold daytime temperatures for so early in the season were observed on the 2nd, especially east of the mountains. Colorado Springs' high of 10° broke the previous record by 19 degrees. Light snow accompanied the polar push. Skies cleared and much of Colorado awoke to record cold temperature on the 3rd. Examples included -17° at Pueblo, -18° at Lamar and -26° at Alamosa. Fraser and Crested Butte shared honors for the coldest in the State with -30°F. That appears to be the earliest -30° ever officially recorded here in Colorado. A muchwelcomed warming trend then began on the 4th.
- 5-7 Snow in the Northern Mountains and strong northwesterly downslope winds along the Front Range developed on the 5th. Strong winds along with colder temperatures and rain and snowshowers spread across the Eastern Plains on the 6th. Snow and fog continued over southeast Colorado early on the 7th. Much of the Colorado plains picked up a trace to as much as 3" of snow before skies cleared during the day on the 7th.
- 8-13 The only real warm spell of November tried to develop over the State 8-9th. Cheraw (near LaJunta) reached a high of 78° on the 9th, the warmest in the State for the month. A disturbance SW of Colorado then spread clouds and moisture into westen Colorado at the same time that a cool upslope flow developed east of the mountains. Precipitation was light but widespread over much of the State falling mostly as rain. Pagosa Springs picked up 0.45" of rain which fell all day on the 10th. Skies cleared from west to east on the 11th. Dry, warm and beautiful weather then returned 12-13th with low elevation temperatures climbing into the 60s and 70s.
- 14-19 A large low pressure area formed over the Southwest U. S. on the 14-15th and tracked northeastward

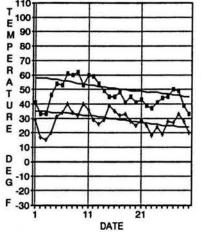
 $5\pi^{-1}$

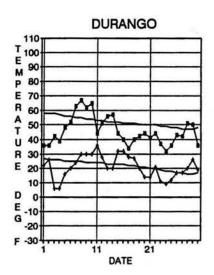
across Southern Colorado 16-17th. Then a second storm took a similar track but moved more quickly across the southern Rockies 18-19th. Both storms were moisture laden, and except in the high mountains, temperatures didn't drop much below the freezing point. Plentiful wet snow fell in many areas and helped mountain snowpack get off to an excellent start. Durango totalled 3.83" of water equivalent from the storm. Wolf Creek Pass reported 51" of snow with more than 4" water content. The Front Range and Eastern Plains were also hit hard, but warm temperatures helped melt most of the snow from highways. The two storms in quick succession dropped at least 20" of snow on the Denver area. Some lower areas received mostly rain. In these few days, some areas on the plains received more precipitation than they normally receive in the entire November-January period.

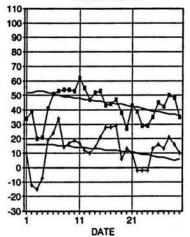

- 20-26 Northwest winds aloft dominated this period, and temperatures remained near or below average. Snow fell daily in the northern and central mountains but in small quantities. The heaviest precipitation fell 21-22nd as a strong, cold, upper-level disturbance crossed the State. Lower elevation precipitation was sparse, but Walsenburg did report 10" of snow from the storm on the 22nd. The high temperatures in Vail and Dillon on the 22nd only reached 18°F.
- 27-30 Colorado enjoyed above average temperatures on the 27th, but a new, vigorous storm was rapidly developing west of Colorado. Thanksgiving (28th) remained dry and mild over much of the State, but much colder air with fog, freezing drizzle and light snow began spreading southward along the Front Range. Snow expanded over much of southern and eastern Colorado on the 29th and continued intermittently on the 30th. Most areas received 1-5" of snow from the storm, but Rye reported well over a foot and Wolf Creek Pass got more than 20 inches. Temperatures were cold with highs on the 30th mostly in the teens and 20s across the State.

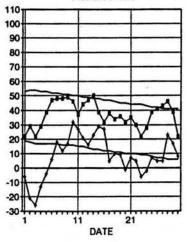

Weather Extremes

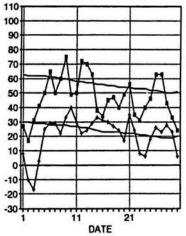

Highest Temperature	78°	November 9	Cheraw 1N
Lowest Temeprature	-30°	November 3	Crested Butte, Fraser
Greatest Total Precipitation	5.66"		Wolf Creek Pass 1E
Least Total Precipitation	0.38"		Green Mountain Dan
Greatest Total Snowfall	83.5"		Wolf Creek Pass 1E
Greatest Depth of Snow on Ground	48"		Wolf Creek Pass 1E

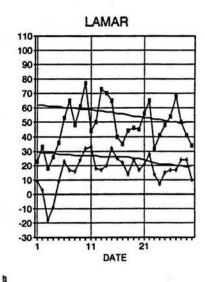

NOVEMBER 1991 TEMPERATURE COMPARISON


Observed daily high and low temperatures are shown along with smoothed daily averages for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 5 p.m. The remaining stations shown below report at midnight.)

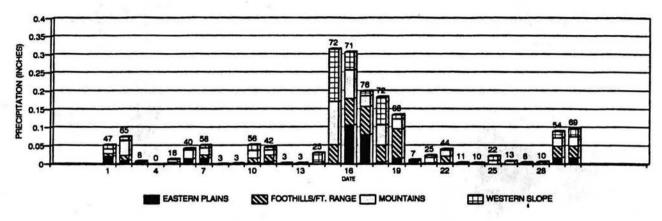


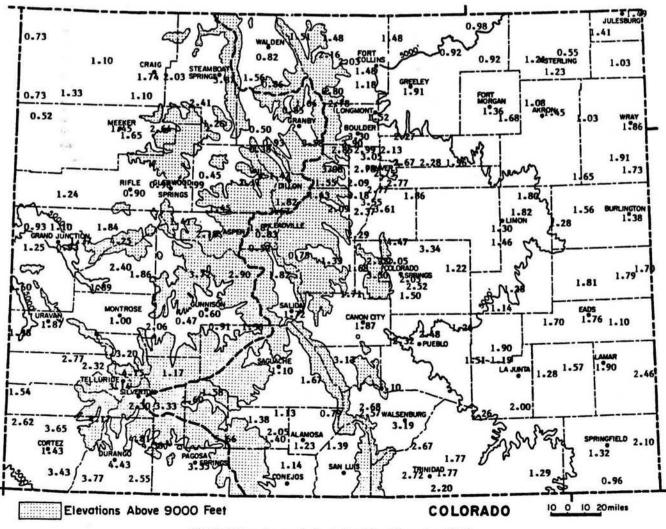




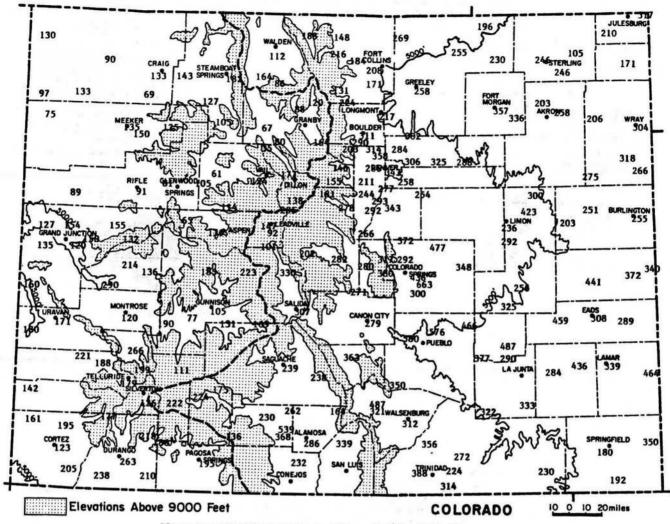

GUNNISON

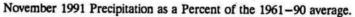
ALAMOSA

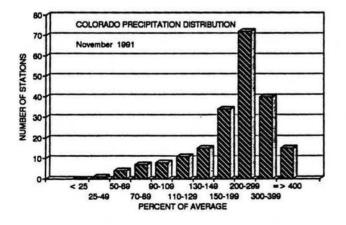

PUEBLO WSO


NOVEMBER 1991 PRECIPITATION

November was characterized by a progression of storms, one every 3 to 5 days, for the entire month. However, it was the sequence of mid-month storms that made this one of the 10 wettest Novembers on record. This new graphic shows statewide daily precipitation based on an average of about 80 representative stations. The number indicates what percent of those stations received precipitation on each day.

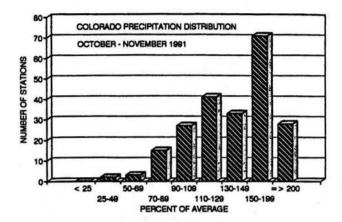

COLORADO DAILY PRECIPITATION - NOV 1991

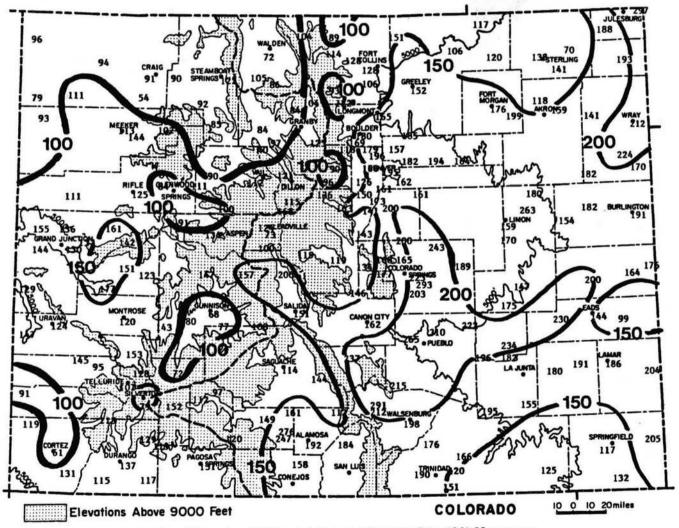

(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)



Precipitation Amounts (in inches) for November 1991.

NOVEMBER 1991 PRECIPITATION COMPARISON




NOVEMBER 1991 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES

Station	Precip.	Rank
Denver	2.67"	2nd wettest in 120 years of record (wettest = 3.21" in 1946)
Durango	4.43"	2nd wettest in 98 years of record (wettest = 4.55" in 1982)
Grand Junction	1.10"	14th wettest in 100 years of record (wettest = 2.39" in 1895)
Las Animas	1.28"	11th wettest in 125 years of record (wettest = 3.06" in 1946)
Pueblo	2.48"	Wettest ever in 123 years of record
Steamboat Springs	3.97"	4th wettest in 87 years of record (wettest = 5.59" in 1985)

1992 WATER YEAR PRECIPITATION

Heavy November precipitation helped the 1992 water year get off to an excellent start. More than 85% of the State is currently wetter than average. Eastern and southern parts of Colorado are doing particularly well. Drier than average conditions are limited to portions of Routt and Moffat counties and to relatively small portions of the Upper Colorado Valley and the Upper Gunnison.

October-November 1991 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR NOVEMBER 1991

	Heating	Degree	Data					Color	ado Cl	imate (Center	(303	491-	8545			Heating	Degre	e Data					Color	ado Cl	imate	Center	(303)	491-	8545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN		STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
ALAMOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990 1263	1457 1597	1519 1671		1035 954	732 742	453 410	165 172			GRAND LAKE 6SSW	AVE 90-91 91-92	214 264 220	264 268 255	468 350 427	775 774 739	1128 1071 1169	1473 1605	1593 1668	1369 1148	1318 1233	951 979	654 615		10591 10305 2810
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964 1106			1162 1013		798 811	524 432	262 224	8850 8593 2267		GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	861 723 925		1240 1246	946 741	856 692	522 492	238 159	52 11	6442 5901 1507
BOULDER	AVE 90-91 91-92	0 32 17	6 13 7	130 81 121	357 338 403	714 589 831	908 1161	1004 1081	804 667	775 685	483 511	220 211	59 44	5460 5413 1379		GUNNISON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059 1120	1590 1664	1714 1787	1422 M	1231 M	816 N	543 M	276 249	10122 N 2471
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 M	577 641 580	936 905 1056	1184 1326	1218 1256	1025 896	983 983	720 771	459 472	184 207	7734 7879 M		LAS ANIMAS	AVE 90-91 91-92	0 4 1	0 0 3	45 21 59	296 308 350	729 624 896		1101 1113	820 667	698 602	348 352	102 81	9	5146 4992 1309
BURLING- Ton	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 M 903		1110 1223	871 688	803 737	459 438	200 136	38 1	5743 N 1498		LEAD- VILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826	1173 1141 1245		1473 1550		1320 1210	1038 1068	726 714	439 449	10870 10953 3316
CANON CITY	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548 800	870 1098	950 1004	770 626	740 679	430 459	190 182	40 26	5100 5088 1292		LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503	834 745 1000	1070 1280		960 779	936 820	570 592	299 245	100 38	6531 6370 1707
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453	819 663 954		1122 1142	910 750	880 773	564 568	296 219	78 33	6346 6009 1584		LONGHONT	AVE 90-91 91-92	0 24 12	6 11 6	162 101 133	453 481 489	843 727 936	1082 1284	1194 1249	938 740	874 699	546 520	256 186	78 28	6432 6050 1576
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423	830 774 947	1150 1321	1220 1364	950 879	850 882	580 702	330 335	100 113			MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406	1345 1458	1086 1047	998 939	651 696	394 358		7714 7563 1808
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	996 876 1080		1479 1544		1094 995	687 693	419 398	193 127	8376 8029 1932		HONTROSE	AVE 90-91 91-92	. 0 0 0	10 3 0	135 81 135	437 470 404	837 804 901	1159 1385	1218 1460	941 974	818 768	522 571	254 268	69 49	6400 6833 1440
DELTA	AVE 90-91 91-92	000	222	94 58 88	394 416 383	813 751 832	1135 1400	1197 1549	890 998	753 742	429 512	167 170	31 26	5903 6624 1305		PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910 1116		1380 1432		1026 1002	732 767	487 489	233 227	8367 8340 2054
DENVER	AVE 90-91 91-92	0 12 6	0 3 4	135 64 118	414 388 449	789 623 902	1004 1209	1101 1143	879 684	837 682	528 510	253 174	74 16	6014 5508 1479		PUEBLO	AVE 90-91 91-92	0 1 1	000	89 34 76	346 360 380	744 610 927		1091 1116	834 730	756 667	421 406	163 103		5465 5273 1384
DILLON	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788	1167 1071 1210		1516 1569	1305 1220		972 1031	704 691		10754 10778 3156		RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475	876 824 906		1321 1462	1002 964	856 814	555 605	298 265		6945 6966 1526
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379	837 832 940		1218 1274	958 842	862 919	600 619	366 364	125 125	6848 6979 1479	1	STEAMBOAT SPRINGS	AVE* 90-91 91-92	90 129 127	E 140 141	370 255 394	670 700 742	1060 1013 1140		1500 1613			780 851	510 518	270 262	9210 9477 2544
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934 972	1407 1568	1448 1536	1148 1052	1014 889	705 693	431 355	171 99	8377 7881 1775		STERLING	AVE 90-91 91-92	0 17 5	6 7 1	157 68 92	462 437 437	876 725 930		1274 1244	966 713	896 716	528 466	235 173	51 8	6614 5933 1465
EVER- GREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 988		1199 1244	1011 937	1009 885	730 727	489 430		7827 7569 2101		TELLURIDE	AVE 89-90 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972 1013	1293 1384	1339 1351	1151 987	1141 1093	849 828	589 486	318 293	9164 8592 2285
FORT	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	846 690 891		1181 1212	930 747	877 703	558 508	281 203	82 41	6483 5947 1505		TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654 876		1051 1048	846 697	781 709	468 462	207 156		5544 5288 1365
FORT HORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	867 730 947	1156 1343	1283 1248	969 750	874 722	516 489	224 180	47 8	6520 5979 1482		WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	822 794 776	1170 1028 1217		1535 1459			915 931	642 587		10466 9710 2847
GRAND JUNCTION	AVE 90-91 91-92	0000	0 0 2	65 28 37	325 360 304	762 759 815	1138 1370		882 919	716 706	403 478	148 136	19 18	5683 6238 1158		WALSEN- BURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543 818	924 1047	989 985	820 646	781 674	501 437	240 141	49 23	5504 4883 1256
	* = AV	ES ADJI	USTED	FOR ST	ATION	NOVES		H =	MISSI	NG	E	= ESTI	NATED				* = AVI	ES ADJI	USTED	FOR ST	TION	NOVES		N =	MISSI	KG	E	ESTIN	ATED	

NOVEMBER 1991 CLIMATE DATA

EASTERN PLAINS

Temperature							D	egree D	ays	Precipitation			
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days
NEW RAYMER 21N	40.9	20.6	30.8	-4.0	66	-8	1020	0	34	0.98	0.48	196.0	13
STERLING	45.5	21.9	33.7	-2.9	73	-2	930	0	53	1.21	0.72	246.9	8
FORT MORGAN	44.5	21.8	33.2	-3.8	71	-2	947	0	48	1.36	0.98	357.9	8
AKRON FAA AP	42.6	22.8	32.7	-4.4	70	-3	962	0	41	1.08	0.55	203.8	7
AKRON 4E	42.8	21.5	32.2	-4.4	71	-6	979	0	45	1.45	0.89	258.9	10
HOLYOKE	45.2	23.2	34.2	-3.8	73	2	913	0	61	1.03	0.43	171.7	6
JOES	44.6	22.3	33.4	-5.6	74	-7	938	0	56	1.65	1.05	275.0	4
BURLINGTON	43.9	25.3	34.6	-3.4	71	3	903	0	39	1.38	0.84	255.6	5
LIMON WSMO	41.4	21.3	31.4	-3.8	70	-3	1000	0	34	1.30	0.75	236.4	12
CHEYENNE WELLS	46.7	20.5	33.6	-6.0	74	-4	932	0	60	1.79	1.31	372.9	9
EADS	45.2	21.4	33.3	-6.5	73	-12	944	0	60	1.76	1.19	308.8	8
ORDWAY 21N	46.7	19.1	32.9	-4.6	76	-12	956	0	75	1.14	0.79	325.7	7
ROCKY FORD 2SE	49.8	21.7	35.7	-4.7	76	-16	870	0	79	1.19	0.78	290.2	10
LAMAR	48.2	16.8	32.5	-8.2	77	-18	968	0	82	1.90	1.34	339.3	9
LAS ANIMAS	48.4	21.4	34.9	-6.5	77	-10	896	0	78	1.28	0.83	284.4	9
HOLLY	48.9	21.0	34.9	-4.9	73	-9	893	0	78	2.46	1.93	464.2	9
SPRINGFIELD 7WSW	49.8	24.4	37.1	-5.2	72	-9	830	0	87	1.32	0.59	180.8	6
TIMPAS 13SW	46.7	23.6	35.1	-5.7	72	-10	889	0	67	2.26	1.56	322.9	12

FOOTHILLS/ADJACENT PLAINS

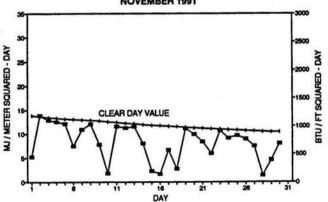
Temperature							D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days	
FORT COLLINS	45.9	24.2	35.1	-2.4	69	-1	891	0	47	1.48	0.77	208.5	11	
GREELEY UNC	43.9	24.0	33.9	-3.5	69	1	925	0	44	1.91	1.17	258.1	12	
ESTES PARK	45.2	24.7	34.9	0.3	59	-8	893	0	25	0.80	0.19	131.1	9	
LONGMONT 2ESE	46.6	20.4	33.5	-3.7	74	-8	936	0	55	1.52	0.82	217.1	10	
BOULDER	47.8	26.3	37.0	-3.7	69	-1	831	0	67	3.30	2.24	311.3	14	
DENVER WSFO AP	46.7	22.7	34.7	-4.3	73	1	902	0	57	2.67	1.80	306.9	17	
EVERGREEN	45.8	17.9	31.9	-2.5	68	-6	988	0	53	2.09	1.10	211.1	11	
CHEESMAN	46.4	15.1	30.8	-5.3	66	-8	1017	0	49	2.29	1.43	266.3	12	
LAKE GEORGE 8SW	39.3	13.9	26.6	-2.1	57	-4	1145	0	12	1.33	0.86	283.0	8	
ANTERO RESERVOIR	38.6	9.2	23.9	-0.8	56	-18	1226	0	8	0.75	0.38	202.7	9	
RUXTON PARK	36.7	10.2	23.4	-4.3	56	-16	1239	0	9	3.50	2.58	380.4	12	
COLORADO SPRINGS	43.4	22.5	32.9	-5.0	70	-5	954	0	46	2.05	1.58	436.2	12	
CANON CITY 2SE	50.5	25.7	38.1	-4.2	73	-7	800	0	96	1.87	1.20	279.1	10	
PUEBLO WSO AP	46.9	20.9	33.9	-6.6	75	-17	927	0	71	2.48	2.05	576.7	11	
WESTCLIFFE	37.1	9.9	23.5	-9.2	54	-24	1234	0	4	3.13	2.27	364.0	11	
WALSENBURG	49.1	25.8	37.5	-4.3	69	-7	818	0	77	3.19	2.17	312.7	11	
TRINIDAD FAA AP	48.9	22.1	35.5	-5.8	71	-15	876	0	77	1.77	1.12	272.3	11	

MOUNTAINS/INTERIOR VALLEYS

		Temper	ature			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	35.4	12.8	24.1	-2.4	53	-22	1217	0	3	0.82	0.09	112.3	11
LEADVILLE 2SW	35.0	11.5	23.2	-1.7	55	-17	1245	0	3	0.83	-0.07	92.2	13
SALIDA	44.6	17.2	30.9	-5.1	64	-17	1016	0	33	1.62	1.06	289.3	8
BUENA VISTA	42.3	16.8	29.6	-4.3	59	-14	1056	0	18	1.82	1.27	330.9	9
SAGUACHE	38.2	13.3	25.7	-5.7	55	-2	1171	0	9	1.10	0.64	239.1	8
HERMIT TESE	37.3	5.5	21.4	-3.6	49	-20	1302	0	0	2.60	1.44	224.1	3
ALAMOSA WSO AP	37.1	8.3	22.7	-7.2	50	-26	1263	0	0	1.23	0.80	286.0	10
STEAMBOAT SPRINGS	38.0	15.4	26.7	-2.4	61	-18	1140	0	13	3.55	1.43	167.5	18
YAMPA	37.2	16.8	27.0	-2.2	53	-17	1132	0	5	1.26	0.07	105.9	9
GRAND LAKE 1NW	37.5	13.1	25.3	-0.9	53	- 19	1185	0	2	1.64	0.28	120.6	18
GRAND LAKE 6SSW	35.9	15.7	25.8	-2.1	51	-10	1169	0	1	0.85	-0.11	88.5	15
DILLON 1E	36.4	12.4	24.4	-2.4	56	-15	1210	0	5	1.47	0.64	177.1	14
CLIMAX	27.2	0.9	14.0	-7.6	49	-14	1524	0	0	3.67	1.88	205.0	19
ASPEN 1SW	39.7	16.0	27.9	-2.6	55	-5	1106	0	9	2.18	0.58	136.2	13
CRESTED BUTTE	34.2	7.6	20.9	-4.5	50	-30	1314	0	0	3.72	1.71	185.1	14
TAYLOR PARK	34.6	10.8	22.7	-1.6	47	-11	1262	0	0	2.90	1.60	223.1	13
TELLURIDE	44.2	17.7	31.0	-0.5	63	-5	1013	0	36	3.14	1.39	179.4	14
PAGOSA SPRINGS	43.1	11.9	27.5	-5.7	63	-6	1116	0	31	3.35	1.64	195.9	10
SILVERTON	40.6	9.9	25.3	-1.6	56	-20	1187	0	12	2.30	0.48	126.4	15
WOLF CREEK PASS 1	35.0	11.5	23.3	-2.4	51	-10	1243	0	1	5.66	1.50	136.1	16

WESTERN VALLEYS

		D	egree D	ays		Precipitation							
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	%Norm #	# days
CRAIG 4SW	39.0	18.4	28.7	-2.9	62	-10	1080	0	22	1.74	0.44	133.8	16
HAYDEN	39.6	19.4	29.5	-2.7	61	-14	1057	0	19	2.03	0.62	144.0	10
MEEKER NO. 2	41.6	20.9	31.3	-2.4	62	-16	1003	0	24	1.45	0.38	135.5	9
RANGELY 1E	42.4	20.6	31.5	-2.8	59	-5	998	0	24	0.52	-0.17	75.4	3
EAGLE FAA AP	44.2	20.7	32.4	0.5	63	-1	972	0	28	0.45	-0.28	61.6	8
GLENWOOD SPRINGS	44.8	22.0	33.4	-2.5	63	0	939	0	36	0.98	-0.22	81.7	11
RIFLE	45.5	23.6	34.6	-2.1	63	5	906	0	38	0.90	-0.08	91.8	7
GRAND JUNCTION WS	46.8	28.5	37.6	-2.7	62	15	815	0	35	1.10	0.39	154.9	12
CEDAREDGE	47.4	23.2	35.3	-2.7	65	3	884	0	46	2.40	1.28	214.3	9
PAONIA 1SW	48.1	26.2	37.2	-1.9	67	8	828	0	57	1.86	0.50	136.8	10
DELTA	48.2	25.9	37.0	-2.1	63	10	832	0	47	1.87	1.22	287.7	6
GUNNISON	42.8	11.9	27.4	-1.0	62	-15	1120	0	21	0.60	0.03	105.3	5
COCHETOPA CREEK	42.3	14.9	28.6	0.6	58	-16	1088	0	15	0.91	0.22	131.9	9
MONTROSE NO. 2	45.5	23.9	34.7	-3.0	62	5	901	0	42	1.00	0.17	120.5	9
URAVAN	51.6	27.3	39.5	-1.4	67	13	761	0	72	1.87	0.78	171.6	10
NORWOOD	44.1	19.5	31.8	-2.4	62	-2	990	0	30	2.77	1.52	221.6	6
YELLOW JACKET 2W	45.8	22.9	34.3	-2.8	64	4	913	0	36	2.62	1.00	161.7	7
CORTEZ	47.2	19.3	33.2	-5.0	66	7	947	0	51	1.43	0.27	123.3	9
DURANGO	45.8	21.1	33.4	-3.7	67	6	940	0	40	4.43	2.75	263.7	8
IGNACIO 1N	43.8	21.1	32.4	-3.6	64	5	969	0	28	2.55	1.34	210.7	5

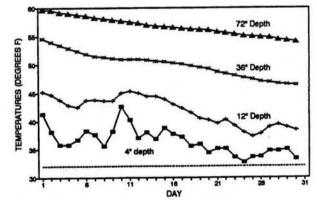

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

NOVEMBER 1991 SUNSHINE AND SOLAR RADIATION

	Num		Dour	Percent Possible	Average % of
	Numb CLR		CLDY	Sunshine	Possible
Colorado Springs	8	10	12		-
Denver	5	12	13	50%	65%
Fort Collins	4	14	12		
Grand Junction	6	9	15	53%	63%
Limon	7	10	13		
Pueblo	6	12	12	70%	73%

CLR = Clear	PC = Partly Cloudy	CLDY = Cloudy

The cold, wet weather of November was accompanied by more and denser cloudiness and less solar radiation than average.


FT. COLLINS TOTAL HEMISPHERIC RADIATION NOVEMBER 1991

NOVEMBER 1991 SOIL TEMPERATURES

A brief warmup followed the dramatic early coldwave in Colorado. Near-surface soil temperatures were a little cooler than average for this time of year but remained above freezing throughout November.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES NOVEMBER 1991

COLORADO TEMPERATURES - HAVE THE AVERAGES CHANGED?

As I told you in the October 1991 issue of Colorado Climate, we have recently completed the arduous task of updating the climatic averages for Colorado weather stations based on data for the 1961-1990 period. Last time, we described some of the changes that have occurred in precipitation. In general, the 1980s were a wet decade and caused an increase in long-term averages over most of Colorado. There was no strong indication, however, that any of these changes were out of the ordinary. Precipitation fluctuates greatly from month to month, year to year, and even decade to decade. More than likely, these observed increases were simply a result of natural variations in our climate. In another 10 years when we again update the averages, values will probably decrease again.

Now lets talk about temperature. With all the hubbub over global warming that has bombarded us during the past few years, we were extremely interested to see the new temperature averages. Has Colorado continued to get warmer?

Before I begin to answer, first let me remind you that temperatures are much more consistent from year to year than precipitation. Certainly there are variations, but the progression of seasons with the accompanying changes in solar energy dominate temperature characteristics throughout the year. It is quite unusual for temperatures to deviate from average by more than about 8 degrees Fahrenheit when averaged over an entire month. In the summer, a 4-degree departure is extreme. When all 12 months are combined, a difference in annual temperature of 2 degrees is considered large. My point is, when you see the new averages and how they compare with the past, don't expect any dramatic changes.

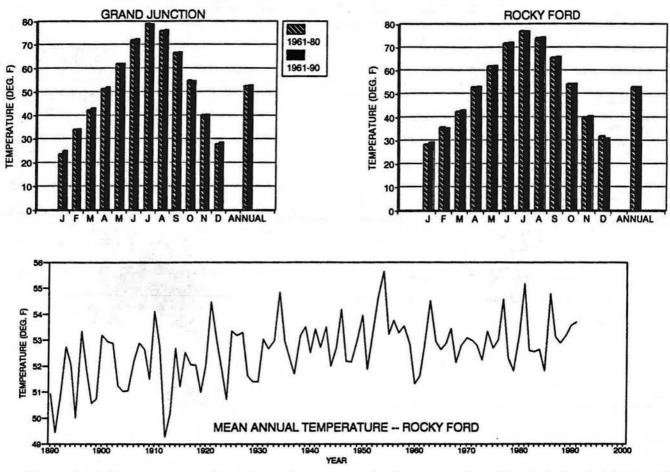
It is also important to remember that temperatures are extremely sensitive to any changes in how data are collected. Changes in thermometers, time of observation, location of instrument, or surrounding structures and vegetation can easily have as much effect on temperature averages as variations in the climate itself. Any individual or organization collecting weather data must keep this in mind. Regrettably, many of Colorado's weather stations have experienced one or more of the above changes during the past 30 years. Therefore, results must always be carefully interpretted.

1961-1990 AVERAGES COMPARED TO 1961-1980

No systematic changes in temperature averages have been noted that are consistent throughout entire seasons and across the entire area of Colorado. The following generalizations appear to be valid, based on comparative data from 100 weather stations scattered across the State.

- January: New averages are a little warmer than before $(+0.46-+1.2^{\circ}F)$.
- February: New averages are cooler east of the mountains but unchanged or a bit warmer west of the Continental Divide.
 - March: Warmer statewide $(+0.3 +1.5^{\circ}F)$.

- April: Unchanged to a little warmer east of the mountains, warmer (+0.3-+0.9°F) over western Colorado.
- May: Generally unchanged statewide.
- June: Unchanged eastern Colorado, somewhat warmer across western Colorado.
- July: Mostly unchanged.
- August: A little warmer than in the past (+0.2-+0.6°F) most areas.
- September: A little warmer than in the past (+0.2-+0.6°F) most areas.
- October: Slightly cooler (-0.1 -0.5°F) across most of Colorado.
- November: Mostly unchanged southwest Colorado but a little warmer elsewhere $(+0.2-+0.6^{\circ}F)$.
- December: Unchanged or slightly warmer west of the Continental Divide. Cooler (-0.1 -1.1°F) east of the Divide.


Overall, no dramatic changes were observed anywhere in the State. A number of larger monthly differences (> 1.5° F) were observed, but almost all of the larger changes were attributable to station changes. It is worth noting, though, that in the list above the word "cooler" appears just three times, "unchanged" is mentioned seven times, and "warmer" is stated 10 times. The new averages are warmer than before in four months (January, March, August and September) statewide and unchanged in two months (May and July). Only one month (October) was cooler statewide. The remaining months showed mixed signals although December was distinctly cooler east of the mountains.

Graphs are shown below comparing the averages we have been using during the past decade (1961-1980) with the averages we will be using for the next ten years (1961-1990) for two example locations, Grand Junction and Rocky Ford. As you can see, when compared to the annual cycle of temperatures, the changes in averages are indeed very small.

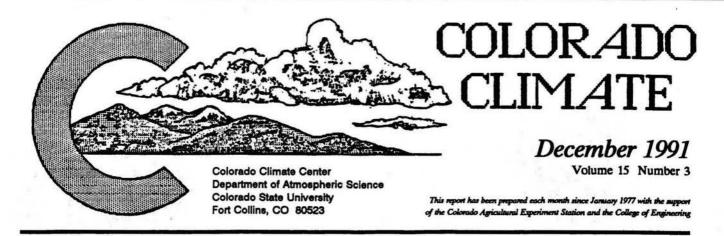
LONG-TERM TEMPERATURE COMPARISONS

It is important to put these recent climatic statistics into a better long-term perspective by including data from before 1961 in this comparison. For most purposes, the average annual temperature does not communicate much about the climate of a location and I rarely suggest using it. Seasonal patterns and daily variations are much more significant. But for the benefit of this comparison, I would like to show you how the new 1961-90 averages that we will be using throughout the 1990s compare to data collected throughout the past century.

A time series of more than 100 years of mean annual temperatures for Rocky Ford (one of Colorado's most consistent long-term stations) suggests that we are indeed warmer now than during the early part of this century. Most long-term stations in Colorado show somewhat similar results. The following table compares mean annual temperatures at selected Colorado locations for 30-year periods beginning each new decade.

Once again, don't expect to see any huge changes here. Thirty-year averages do change, but not by much. Of the six stations shown, two (Durango and Fort Collins) have now reached their warmest average temperature of record. The mean annual temperature at Fort Collins has risen by nearly 2.5 degrees F from the 1891-1920 period to the 1961-1990 period. This is the largest change noted in Colorado but appears to be caused by urbanization in the vicinity of the weather station instead of any widespread regional warming. In Durango, the area surrounding their weather station has also experienced urban growth. At each of the other four locations listed here, the weather stations are outside the main city limits. They each reached their warmest 30-year averages during the middle of the 1900s. The 1961-1990 average for Grand Junction and Rocky Ford are only slightly cooler than their peak values which occurred 1931-1960.

The Center station shows something quite different. The data show that it is now at its coolest level on record. This

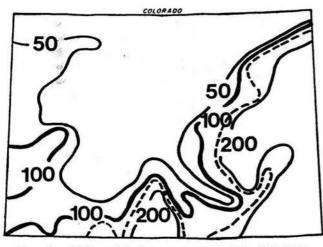

winter's extreme cold conditions in the San Luis Valley, while other parts of the State are having mild conditions, suggests that it could be true. However, it could easily be attributed to relocation of that station 22 years ago to a more open exposure outside of Center.

What is our conclusion? Without a doubt, the majority of Colorado weather stations have consistently reported warmer temperatures in the past few decades than they did prior to 1930. There is little indication from these data, however, that a dramatic warm-up is underway in our State. In fact, some local areas now appear to be cooler than in the past. It is truly possible in a topographically complex state like Colorado, for warming and cooling to occur simultaneously in areas that are not far apart.

As we continue to gather and analyze statewide data in the years ahead, you can be sure we will revisit this topic on a regular basis.

Mean A	nnual Tempe	rature (° F)	for the indi	cated time p	eriod. * =	incomplete	30-year per	iod.
Location	1891-1920	1901-30	1911-40	1921-50	1931-60	1941-70	1951-80	1961-90
Center	40.8*	41.0	41.1	41.1	41.7	41.9	41.1	40.6
Cheyenne Wells	50.4*	50.7	51.5	51.7	52.0	51.3	51.5	51.4
Durango	46.5*	45.9	45.6	45.6	46.2	46.4	46.7	46.8
Fort Collins	46.3	46.4	47.0	47.5	48.1	48.0	48.4	48.8
Grand Junction	52.0*	52.1	52.5	53.0	53.1	52.7	52.6	52.8
Rocky Ford	51.8	52.1	52.3	52.8	53.1	53.1	53.0	53.0

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

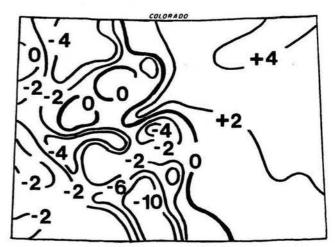


December Climate in Perspective - Cold in the Valleys

Fewer storms than normal moved across Colorado during December 1991. The persisting storm track was very far south with storms grazing southern and eastern parts of Colorado while missing northern areas. Temperatures were quite mild with only minor intrusions of arctic air into the State, but some high-elevation valleys generated their own frigid air. Snowcover, frequent clear skies and light winds allowed very cold air to become trapped in several valleys for most of December.

Precipitation

For the second consecutive month, parts of the eastern plains were much wetter than average. Some of the winter precipitation on the plains even fell as rain.


December 1991 precipitation as a percent of the 1961-1990 average.

Monthly precipitation totals exceeded 1.00" at several plains stations – three to four times their paltry December averages. The situation was much different elsewhere in the state. The southernmost mountains of

Colorado received average precipitation, but the remainder of the state was much drier than average. Little or no precipitation fell along the Front Range corridor and only 20-50% of the average December precipitation was reported in the northern and central mountains.

Temperatures

An episode of arctic air early in December was the only near-zero weather that most parts of Colorado had to endure. There were also only a few days of abnormally warm weather. But the main story in December was the frigid temperatures that developed in some of Colorado's high, broad valleys. While the Eastern Plains enjoyed temperatures one to five degrees above average for December, and the high mountains were slightly warmer than average, several valley communities on the Western Slope were 2 to 6 degrees F colder than average. The San Luis Valley had a remarkable month ending up 10-12 degrees below average, the coldest December on record at Alamosa.

Departure of December 1991 temperatures from the 1961-90 averages.

Inside This Issue

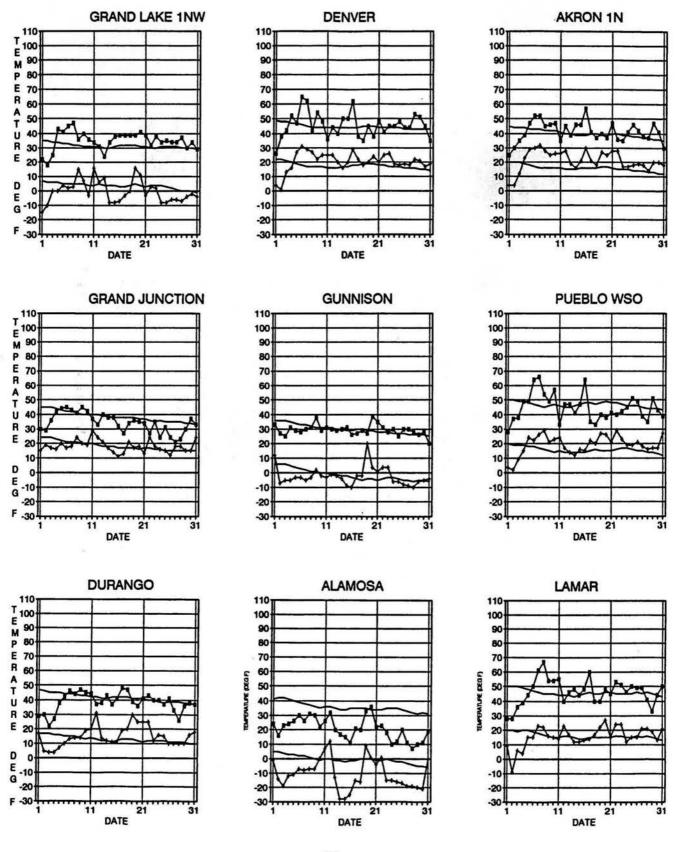
	115 135 UC
December 1991 Daily Weather 2	Comparative Heating Degree Day Data 7
December 1991 Temperature Comparison	December 1991 Climatic Data 8
December 1991 Precipitation 4	Special Feature - Trends in Cloudiness over Colorado-
November 1991 Precipitation Comparison 5	A Fresh Look 10
1992 Water Year Precipitation 6	JCEM WTHRNET Data 12
	JCEM - Keep the Home Fires Burning

DECEMBER 1991 DAILY WEATHER

- Icy cold air gripped Colorado. Numerous subzero 1-3 temperatures were reported in the mountains, especially 1-2nd, and single digit lows were widespread across the plains. Spicer (southwest of Walden) recorded -28° early on the 1st. Light snow ended over southeast Colorado on the 1st. Then snow showers began in the mountains on the 2nd as winds aloft shifted to the northwest and became strong. Wind gusts topped 50 mph in some eastern foothills and high mountain locations 2-3rd. Skies cleared on the 3rd, and temperatures began to moderate slightly.
 - The entire state was dry and sunny 4-7th with pleasantly mild temperatures. Eastern Colorado enjoyed daytime temperatures in the 50s and 60s while the mountains and western valleys were generally in the 30s and 40s. Very mild nighttime temperatures were also noted in the eastern foothills. However, pockets of colder air formed in some mountain valleys, particularly the snow-covered San Luis Valley. Wheat Ridge soared to 72° on the 7th, the warmest in Colorado for December. That same day, Alamosa only reached 26°. A Pacific cold front then zipped across the State on the 8th bringing cooler temperatures and dropping a few inches of snow across northwest Colorado. Sunshine returned on the 9th along with seasonal temperatures.
- 10-12 A low pressure area aloft which had been spinning harmlessly off the California coast began drifting eastward on the 10th. Clouds increased, and temperatures remained very mild that night. Precipitation began early on the 11th and became quite heavy over parts of extreme southern Colorado. Pagosa Springs picked up 1.04" of moisture in the form of wet, sloppy snow. Manassa, southwest of Alamosa, got 12" of new snow. Later on the 11th, rain, freezing rain and wet snow spread out onto the eastern plains, but totally missed most Front Range locations. Burlington picked up 0.65" of moisture, mostly rain, and Bonny Lake reported 0.88" (their greatest 1-day precipitation total ever recorded in December). Skies cleared on the 12th over most of Colorado, but fog remained in some valley locations.
- 13-17 Strong northwesterly winds developed on the 13th driving very cold air into Colorado. Temperatures only rose into the teens in the northern and central

mountains on the 13th with periods of light snow. The rest of the State remained dry, and areas east of the mountains were much warmer as a result of downslope winds. Alamosa dipped to -28° early on the 14th which tied for the coldest temperature in Colorado this December. Winds and temperatures then moderated over most areas, but frigid stable air remained trapped in many mountain valleys which set up some amazing local contrasts. On the 16th, Pueblo basked in sunshine and 64° warmth while Alamosa only reached a high of 11° with dense fog.

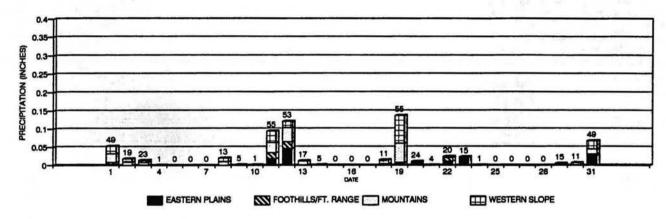
- 18-22 Unsettled weather marked this period as a strong storm approached from the west on the 18th, stalled and sank southward into Mexico (bringing good rains to the Arizona deserts), and then nipped Colorado again on the 22nd as it suddenly moved northeastward. Moderate to heavy snow began late on the 18th and ended on the 19th across parts of southwest Colorado with lighter amounts in the northern and central mountains. Cedaredge measured 5" of new snow. Durango got 10" of snow with 1.21" water content. Wolf Creek Pass totalled 17". A scant dusting of snow fell along the Front Range on the 20th. Then snows developed again on the 22nd mostly in a band from Alamosa and Walsenburg northeast to Akron and Holyoke. As much as 6" of snow fell in some areas.
- 23-28 A large ridge of high pressure over the Rockies brought calm and sunny weather, mild days and cold nights to most of Colorado for the Christmas holiday. Fog and cold temperatures remained trapped in some western valleys (Delta and Grand Junction, for example) and some cloudiness slipped into extreme southern Colorado 25-28th. But most of the state enjoyed cloudless skies and dry roads for holiday travel.
- 29-31 December ended with a weak storm system passing across southern Colorado. Very light snows began on the 29th in western Colorado and continued sporadically on the 30th. The storm became better organized on the 31st and spread snow out across most of eastern Colorado. Limon received 5" and Akron 6". For a few hours on New Year's Eve, snow also fell along the Front Range corrider producing hazardous driving conditions just in time for holiday festivities.


Weather Extremes

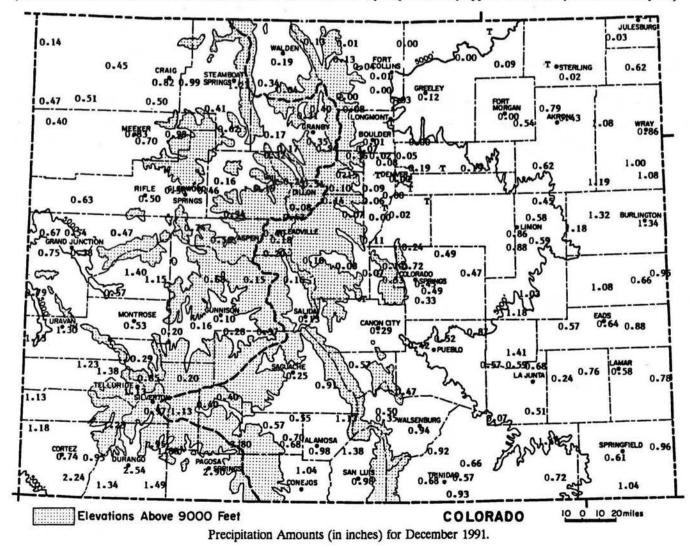
Highest Temperature	72°	December 7	Wheat Ridge
Lowest Temeprature	-28°	December 1	Spicer
		December 14, 15	Alamosa WSO
Greatest Total Precipitation	3.80"		Wolf Creek Pass 1E
Least Total Precipitation	0.00"		Briggsdale, Nunn, Littleton,
			Waterdale, Estes Park, and others
Greatest Total Snowfall	46"		Wolf Creek Pass 1E
Greatest Depth of Snow on Ground	52"	December 1, 19	Wolf Creek Pass 1E

4-9

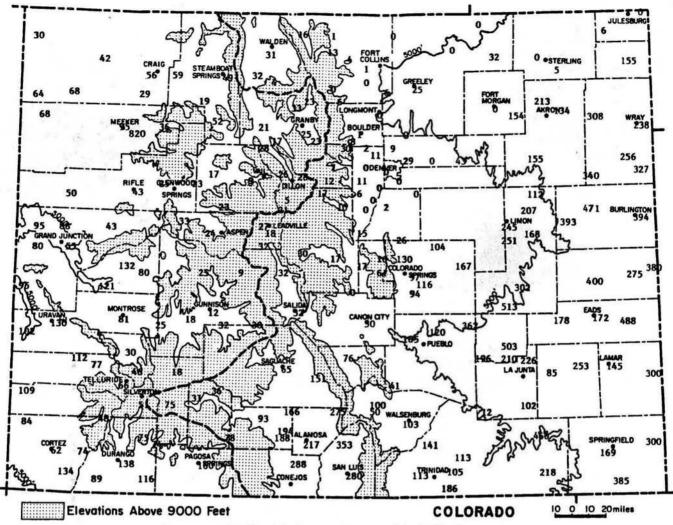
DECEMBER 1991 TEMPERATURE COMPARISON

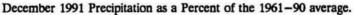

Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

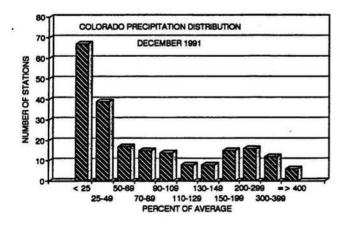
37


DECEMBER 1991 PRECIPITATION

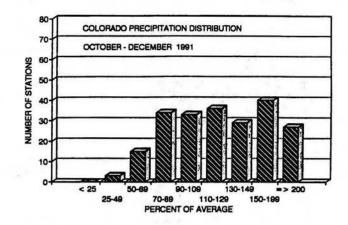
On five days in December close to half of the State received precipitation. The heaviest precipitation fell on the 19th, primarily over the mountains and Western Slope. This graphic provides a quick analysis of when and where precipitation fell based on data from 80 representative stations. Each bar represents an estimate of total daily precipitation averaged over the entire area of Colorado. The small number above the bar indicates what percent of the weather stations received precipitation on that day.

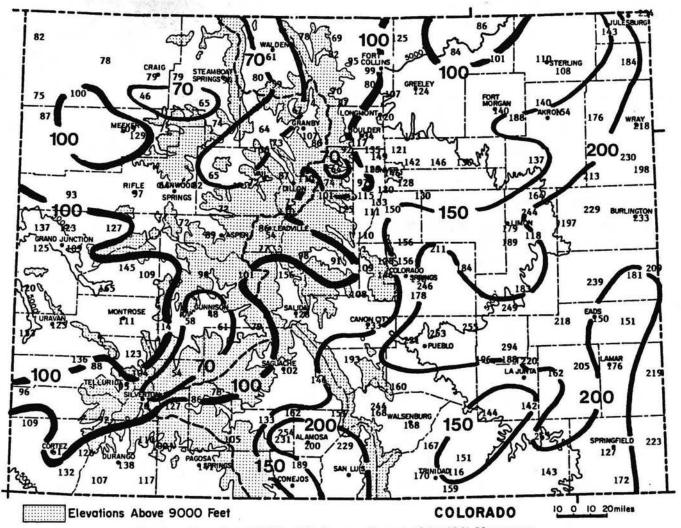


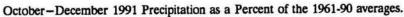

COLORADO DAILY PRECIPITATION - DEC 1991


(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

DECEMBER 1991 PRECIPITATION COMPARISON




DECEMBER 1991 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES


Station	Precip.	Rank
Denver	0.19"	24th driest in 120 years of record (driest < 0.01 " in 1881 and 1905)
Durango	2.54" .	22nd wettest in 98 years of record (wettest = 7.37" in 1921)
Grand Junction	0.54"	45th wettest in 100 years of record (wettest = 1.89" in 1951)
Las Animas	0.24"	61st wettest in 125 years of record (wettest = 3.69" in 1913)
Pueblo	0.52"	40th wettest in 123 years of record (wettest = 1.35" in 1913)

1992 WATER YEAR PRECIPITATION

After the first three months of the 1992 water year, accumulated precipitation is much above average across the San Luis Valley and most of eastern Colorado. The situation has deteriorated quickly in the northern and central mountains, however, as a result of a very dry December at a time when precipitation is normally heavy. A sizeable portion of the snow accumulation season still lies ahead, so there will still be many opportunities for this situation to change between now and the summer.

COMPARATIVE HEATING DEGREE DAY DATA FOR DECEMBER 1991

	Heating	Degree	Data					Color	ado Cl	imate (Center	(303)	491-	8545				Heating	Degree	e Data					Color	ado Cl	imate (Center	(303)	491-	8545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
ALAMOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990 1263	1457 1597 1849		1182 1081	1035 954	732 742	453 410	165 172	8717 8628 4106	6		GRAND LAKE 655W	AVE 90-91 91-92	214 264 220	264 268 255	468 350 427	775 774 739	1128 1071 1169	1473 1605 1468	1593 1668	1369 1148	1318 1233	951 979	654 615		10591 10305 4278
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964 1106	1339 1462 1369		1162 1013		798 811	524 432	262 224	8850 8593 3636			GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	861 723 925	1128 1309 1011	1240 1246	946 741	856 692	522 492	238 159	52 11	6442 5901 2518
BOULDER	AVE 90-91 91-92	0 32 17	6 13 7	130 81 121	357 338 403	714 589 831	908 1161 911	1004 1081	804 667	775 685	483 511	220 211	59 44	5460 5413 2290			GUNN 1 SON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059 1120	1590 1664 1597	1714 1787	1422 M	1231 M	816 M	543 M	276 249	10122 M 4068
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 M	577 641 580	936 905 1056	1184 1326 1265	1218 1256	1025 896	983 983	720 771	459 472	184 207	7734 7879 M			LAS AWIMAS	AVE 90-91 91-92	0 4 1	0 0 3	45 21 59	296 308 350	729 624 896	998 1220 966	1101 1113	820 667	698 602	348 352	102 81	9 0	5146 4992 2275
BURL ING- Ton	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 M 903	1017 1249 1004	1110 1223	871 688	803 737	459 438	200 136	38 1	5743 M 2502			LEAD- VILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826	1173 1141 1245	1435 1556 1461	1473 1550		1320 1210	1038 1068	726 714		10870 10953 4777
CANON	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548 800	870 1098 945	950 1004	770 626	740 679	430 459	190 182	40 26	5100 5088 2237			LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503	834 745 1000	1070 1280 1095	1156 1237	960 779	936 820	570 592	299 245		6531 6370 2802
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453	819 663 954	1042 1256 1048	1122 1142	910 750	880 773	564 568	296 219	78 33	6346 6009 2632			LONGHONT	AVE 90-91 91-92	0 24 12	6 11 6	162 101 133	453 481 489	843 727 936	1082 1284 1047	1194 1249	938 740	874 699	546 520	256 186	78 28	6432 6050 2623
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423	830 774 947	1150 1321 1227	1220 1364	950 879	850 882	580 702	330 335	100 113	6665 7067 2779			MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406 1367	1345 1458	1086 1047	998 939	651 696	394 358	164 110	7714 7563 3175
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	996 876 1080	1342 1547 1517	1479 1544	1193 1095	1094 995	687 693	419 398	193 127	8376 8029 3449			MONTROSE	AVE 90-91 91-92	000	10 3 0	135 81 135	437 470 404	837 804 901	1159 1385 1312	1218 1460	941 974	818 768	522 571	254 268	69 49	6400 6833 2752
DELTA	AVE 90-91 91-92	0 0 0	0 2 2	94 58 88	394 416 383	751	1135 1400 1302	1197 1549	890 998	753 742	429 512	167 170	31 26	5903 6624 2607			PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910 1116	1305 1538 1362		1123 1038	1026 1002	732 767	487 489		8367 8340 3416
DENVER	AVE 90-91 91-92	12 6	0 3 4	135 64 118	414 388 449	789 623 902	1004 1209 982	1101 1143	879 684	837 682	528 510	253 174	74 16	6014 5508 2461			PUEBLO	AVE 90-91 91-92	0 1 1	0 0 0	89 34 76	346 360 380	744 610 927	998 1243 1014	1091 1116	834 730	756 667	421 406	163 103		5465 5273 2398
DILLON	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788				1305 1220		972 1031	704 691		10754 10778 4603			RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475	876 824 906	1249 1433 1185	1321 1462	1002 964	856 814	555 605	298 265	82 52	6945 6966 2711
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379	837 832 940	1153 1373 1179	1218 1274	958 842	862 919	600 619	366 364	125 125	6848 6979 2658			STEAMBOAT SPRINGS	AVE* 90-91 91-92	90 129 I 127	140 110 141	370 255 394	670 700 742	1060 1013 1140	1430 1683 1626	1500 1613	1240 1223	1150 1120	780 851	510 518	270 262	9210 9477 4170
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934 972	1407 1568 1358	1448 1536	1148 1052	1014 889	705 693	431 355	171 99	8377 7881 3133			STERL ING	AVE 90-91 91-92	0 17 5	6 7 1	157 68 92	462 437 437	876 725 930	1163 1359 1028	1274 1244	966 713	896 716	528 466	235 173	51 8	6614 5933 2493
EVER- GREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 988	1135 1330 1078	1199 1244	1011 937	1009 885	730 727	489 430		7827 7569 3179			TELLURIDE	AVE 89-90 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972 1013	1293 1384 1264	1339 1351		1141 1093	849 828	589 486		9164 8592 3549
FORT COLLINS	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	846 690 891	1073 1284 1002	1181 1212		877 703	558 508	281 203	82 41				TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654 876	973 1160 1004	1051 1048	846 697	781 709	468 462	207 156		5544 5288 2369
FORT MORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	867 730 947	1156 1343 1025	1283 1248	969 750	874 722	516 489	224 180	47 8	6520 5979 2507			WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	822 794 776	1170 1028 1217	1457 1550 1422	1535 1459		1277 1164	915 931	642 587		10466 9710 4269
GRAND JUNCTION	AVE 90-91 91-92	000	0 0 2	65 28 37	325 360 304	762 759 815	1138 1370 1193	1225 1464	882 919	716 706	403 478	148 136	19 18	5683 6238 2351			WALSEN- BURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543 818	924 1047 915	989 985	820 646	781 674	501 437	240 141	49 23	5504 4883 2171
	* = AVE	ES ADJU	ISTED I	OR ST	ATION	HOVES		H =	MISSI	NG	E	= ESTI	ATED					* = AVE	IL DA Z	ISTED I	OR STA	TION	OVES		N =	MISSIN	IG	E =	ESTIM	ATED	

DECEMBER 1991 CLIMATIC DATA

EASTERN PLAINS.

			Tempera	ture			D	egree D	ays		Precip	oitation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm #	days
NEW RAYMER 21N	43.8	15.7	29.7	3.2	67	5	1088	0	25	0.00	-0.40	0.0	0
STERLING	45.2	18.0	31.6	5.3	64	0	1028	0	16	0.00	-0.33	0.0	0
FORT MORGAN	44.8	18.6	31.7	5.3	60	5	1025	0	16	0.00	-0.27	0.0	0
AKRON FAA AP	41.1	21.3	31.2	3.4	57	4	1040	0	5	0.79	0.42	213.5	3
AKRON 4E	40.5	17.4	28.9	2.2	58	0	1111	0	8	0.43	0.11	134.4	2
HOLYOKE	45.7	19.1	32.4	3.7	69	5	1002	0	34	0.62	0.22	155.0	3
JOES	42.2	19.4	30.8	1.2	61	4	1054	0	15	1.19	0.84	340.0	3
BURLINGTON	41.5	23.3	32.4	3.2	62	6	1004	0	16	1.34	1.00	394.1	4
LIMON WSMO	38.8	20.0	29.4	2.2	59	4	1095	0	8	0.86	0.51	245.7	6
CHEYENNE WELLS	43.7	21.7	32.7	2.5	63	0	990	0	19	0.66	0.42	275.0	5
EADS	43.7	20.6	32.2	1.9	64	3	1011	0	22	0.64	0.27	173.0	3
DRDWAY 21N	43.3	16.8	30.1	1.6	66	2	1075	0	27	1.18	0.95	513.0	4
ROCKY FORD 2SE	45.5	18.7	32.1	1.2	68	4	1014	0	28	0.59	0.31	210.7	6
LAMAR	46.5	15.7	31.1	0.3	67	-9	1042	0	30	0.58	0.18	145.0	5
LAS ANIMAS	47.7	19.5	33.6	2.2	69	5	966	0	37	0.24	-0.04	85.7	4
HOLLY	46.1	21.3	33.7	3.5	59	2	963	0	22	0.78	0.52	300.0	6
SPRINGFIELD 7WSW	46.6	23.9	35.3	1.7	71	8	916	0	43	0.61	0.25	169.4	5
TIMPAS 13SW	43.6	21.0	32.3	1.3	65	9	1005	0	27	0.07	-0.48	12.7	2

FOOTHILLS/ADJACENT PLAINS

			Temper	ature			D	egree D	ays		Precip	oitation	
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	%Norm #	days
FORT COLLINS	46.2	18.4	32.3	3.2	67	7	1002	0	25	0.01	-0.50	2.0	1
GREELEY UNC	44.6	19.5	32.1	3.8	62	11	1011	0	19	0.12	-0.36	25.0	1
ESTES PARK	42.0	18.3	30.1	2.2	52	-6	1072	0	2	0.00	-0.47	0.0	0
LONGMONT 2ESE	45.3	16.5	30.9	2.7	65	2	1047	0	24	0.00	-0.58	0.0	0
BOULDER	46.9	23.7	35.3	1.8	63	8	911	0	29	0.01	-0.79	1.2	1
DENVER WSFO AP	45.6	20.6	33.1	2.1	65	1	982	0	26	0.19	-0.45	29.7	2
EVERGREEN	46.7	13.2	29.9	2.2	64	-1	1078	0	35	0.09	-0.70	11.4	3
CHEESMAN	45.9	9.5	27.7	-0.8	63	-3	1149	0	30	0.11	-0.60	15.5	2
LAKE GEORGE 8SW	27.9	-0.2	13.9	-3.4	42	-11	1578	0	0	0.08	-0.38	17.4	2
ANTERO RESERVOIR	27.2	-10.7	8.2	-7.0	42	-27	1750	0	0	0.10	-0.23	30.3	2
RUXTON PARK	34.5	6.1	20.3	-1.0	51	-8	1380	0	1	0.53	-0.33	61.6	7
COLORADO SPRINGS	41.3	20.7	31.0	1.2	61	4	1048	0	16	0.45	-0.01	97.8	5
CANON CITY 2SE	46.6	21.7	34.2	-1.8	66	0	945	0	38	0.29	-0.29	50.0	2
PUEBLO WSO AP	44.9	19.2	32.0	1.0	66	2	1014	0	30	0.52	0.09	120.9	4
WESTCLIFFE	32.5	1.7	17.1	-7.1	48	-14	1475	0	0	0.57	-0.18	76.0	6
WALSENBURG	47.1	23.4	35.2	1.2	60	1	915	0	32	0.94	0.03	103.3	5
TRINIDAD FAA AP	45.7	19.1	32.4	-0.1	64	-1	1004	0	26	0.66	0.08	113.8	5

MOUNTAINS/INTERIOR VALLEYS

			Temper	rature			Deg	gree Day	/S		Precip	oitation	
WALDEN	33.4	4.5	18.9	0.8	46	-22	1422	0	0	0.19	-0.42	31.1	4
LEADVILLE 2SW	34.2	0.9	17.6	0.1	50	-9	1461	0	0	0.18	-0.82	18.0	5
SALIDA	39.6	11.9	25.8	-1.3	54	-2	1208	0	2	0.13	-0.27	32.5	3
BUENA VISTA	37.8	8.5	23.2	-2.4	49	-5	1285	0	0	0.16	-0.33	32.7	2
SAGUACHE	24.6	-5.4	9.6	-11.1	35	-16	1709	0	0	0.25	-0.13	65.8	4
HERMIT 7ESE	22.6	-14.2	4.2	-8.4	30	-23	1877	0	0	0.40	-0.88	31.2	3
ALAMOSA WSO AP	20.8	-10.5	5.1	-12.3	36	-28	1849	0	0	0.98	0.53	217.8	7
STEAMBOAT SPRINGS	27.9	-3.3	12.3	-4.9	38	-22	1626	0	0	1.27	-1.31	49.2	9
YAMPA	32.0	8.6	20.3	0.1	45	-9	1378	0	0	0.62	-0.57	52.1	5
GRAND LAKE 1NW	35.1	-0.3	17.4	-0.2	47	-15	1468	0	0	0.40	-1.29	23.7	7
GRAND LAKE 6SSW	27.8	-1.6	13.1	-4.3	40	-13	1603	0	0	0.31	-0.62	33.3	9
DILLON 1E	34.6	1.5	18.1	-0.1	48	-7	1447	0	0	0.24	-0.68	26.1	6
CLIMAX	30.3	5.1	17.7	3.1	44	-9	1459	0	0	0.43	-1.59	21.3	6
ASPEN 1SW	35.1	6.0	20.6	-1.9	46	-3	1369	0	0	0.56	-1.69	24.9	7
CRESTED BUTTE	26.9	-11.0	7.9	-6.1	42	-23	1763	0	0	0.68	-1.95	25.9	7
TAYLOR PARK	22.2	-10.0	6.1	-4.2	37	-24	1822	0	0	0.15	-1.43	9.5	2
TELLURIDE	39.3	8.6	23.9	0.5	50	-2	1264	0	0	1.13	-0.57	66.5	7
PAGOSA SPRINGS	38.2	3.3	20.8	-2.3	46	-6	1362	0	0	2.90	1.09	160.2	8
SILVERTON	33.9	-5.7	14.1	-3.1	42	-15	1570	0	0	0.97	-0.93	51.1	7
WOLF CREEK PASS 1	33.9	8.1	21.0	0.3	46	-6	1357	0	0	3.80	-1.05	78.4	10

WESTERN VALLEYS

			Temper	ature			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm #	days
CRAIG 4SW	26.3	5.4	15.8	-5.0	45	-6	1517	0	0	0.82	-0.63	56.6	9
HAYDEN	25.6	2.3	14.0	-6.1	36	-15	1576	0	0	0.99	-0.67	59.6	7
MEEKER NO. 2	32.7	8.6	20.7	-4.1	50	-7	1367	0	0	0.83	-0.04	95.4	5
RANGELY 1E	29.8	12.1	20.9	0.7	45	3	1358	0	0	0.40	-0.18	69.0	2
EAGLE FAA AP	36.5	5.3	20.9	0.6	46	-4	1358	0	0	0.16	-0.75	17.6	4
GLENWOOD SPRINGS	37.2	12.3	24.7	-0.6	46	5	1243	0	0	0.38	-1.09	25.9	6
RIFLE	39.3	13.7	26.5	1.3	48	5	1185	0	0	0.50	-0.65	43.5	7
GRAND JUNCTION WS	34.4	18.0	26.2	-2.3	45	. 11	1193	0	0	0.54	-0.07	88.5	4
CEDAREDGE	39.1	11.5	25.3	-3.2	57	0	1223	0	5	1.40	0.34	132.1	6
PAONIA 1SW	34.5	10.3	22.4	-6.1	50	0	1310	0	0	1.15	-0.28	80.4	6
DELTA	32.1	13.3	22.7	-6.2	48	1	1302	0	0	0.57	0.10	121.3	5
GUNN I SON	29.4	-2.9	13.3	-1.2	39	-10	1597	0	0	0.10	-0.68	12.8	1
COCHETOPA CREEK	33.4	-0.9	16.3	1.3	42	-10	1502	0	0	0.28	-0.58	32.6	4
MONTROSE NO. 2	32.7	12.2	22.5	-5.1	59	5	1312	0	5	0.53	-0.12	81.5	4
URAVAN	38.1	18.7	28.4	-2.0	54	11	1129	0	2	1.30	0.30	130.0	5
NORWOOD	35.7	8.4	22.0	-2.9	46	-3	1323	0	0	1.23	0.14	112.8	7
YELLOW JACKET 2W	39.2	15.5	27.3	-0.5	50	1	1162	0	0	1.18	-0.21	84.9	7
CORTEZ	37.3	13.2	25.2	-2.8	48	2	1227	0	0	0.74	-0.44	62.7	7
DURANGO	38.5	15.1	26.8	-0.6	48	4	1179	0	0	2.54	0.71	138.8	8
IGNACIO 1N	36.8	15.8	26.3	0.4	46	3	1190	0	0	1.49	0.21	116.4	5

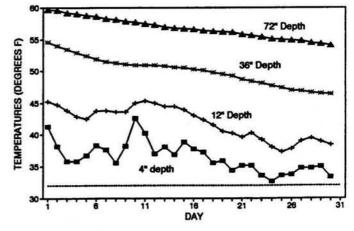

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

DECEMBER 1991 SUNSHINE AND SOLAR RADIATION

	Numt	ber of	Days	Percent Possible	Average % of
	<u>CLR</u>		<u>CLDY</u>	Sunshine	Possible
Colorado Springs	16	5	10		
Denver	14	7	10	70%	67%
Fort Collins	16	9	6		
Grand Junction	13	4	14	57%	61%
Limon	11	9	11	-	
Pueblo	14	7	10	68%	72%

CLR =	Clear	PC =	Partly	Cloudy	CLDY=	Cloudy

Fog and low clouds were a problem in December in some of Colorado's western valleys. Still, there were an unusually large number of clear days statewide for this time of year.



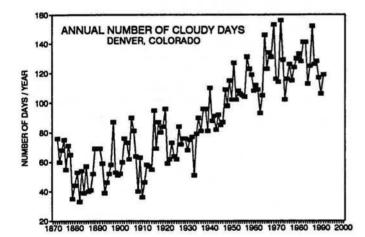
DECEMBER 1991 SOIL TEMPERATURES

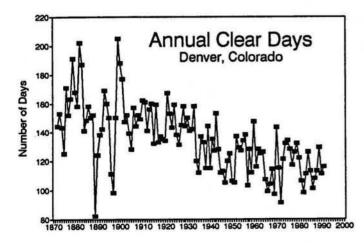
Soil temperatures continued to decrease during December, as expected. Although air temperatures were above average in Fort Collins, a total lack of snowcover throughout the month allowed heat to escape steadily. The frost penetration was not deep, though. Episodes of prolonged or extreme cold accompanied by minimal snowcover are required for deep frost penetration east of the mountains.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES

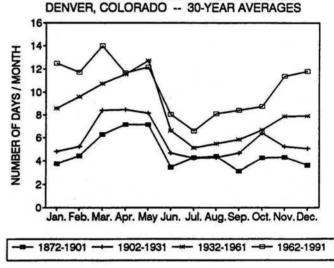
Surprise – Here is a little empty space. Each month, beginning in January we will use this space to acknowledge one of Colorado's cooperative weather observers. Watch for it!


43


TRENDS IN CLOUDINESS OVER COLORADO - A FRESH LOOK

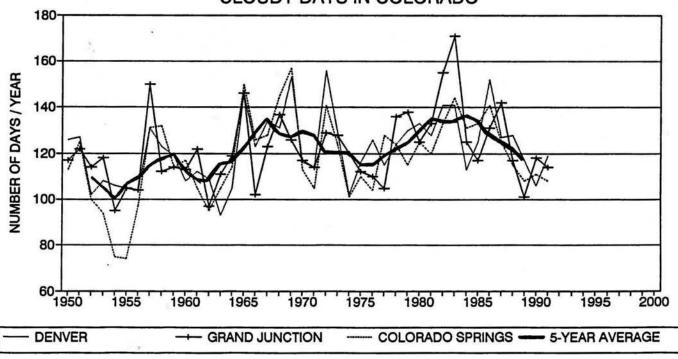
In earlier editions of "Colorado Climate" (October 1986 and February 1987) we looked into the number of clear and cloudy days in Colorado. At that time we took issue with the popular chamber of commerce statement "Colorado enjoys at least 300 days of sunshine each year." We also noted what appeared to be a very significant increase in the number of cloudy days compared to previous decades.

Five years have passed, and I don't know about you, but it sure has seemed to me that sunshine is alive and well again right here in Colorado. So what's the deal? Has the climate changed its mind again? Rather than speculating – which is always easy (and dangerous) to do – let's look at some data.


The longest available record on cloudiness in Colorado comes from the official National Weather Service office in Denver. Observations of cloudiness have now been taken at Denver every day for 120 consecutive years. The following two graphs show quite a remarkable "apparent" change in cloudiness with almost twice as many cloudy days now compared with pre-1910 conditions. Any scientist in his right mind would get very excited looking at such a dramatic trend. At the same time, the number of clear days has decreased, although not as dramatically. The remainder of days are classified as partly cloudy. No graph is shown here, but a decrease in partly cloudy days has been observed.

The number of clear and cloudy days appear to have changed, but the seasonal aspects of cloudiness have not. The following graphs show monthly averages of clear and cloudy days for Denver for each of four non-overlapping 30-year periods. Spring has always been the cloudiest time of year, and that fact remains. The number of cloudy days have increased during all months of the year with each successive 30-year period. The most dramatic changes appear during the winter months. For example, Denver averaged just 4 cloudy days in January for the 1872-1901 period. The average for 1962-1991 is more than 12. Clear days have decreased but wuth almost no change in seasonality. In an average year in Denver, clear days decline throughout the spring, reach a low point in May, shoot up in June and then decline slightly in July and August. September and October continue, as always, to be the time of year with the most clear days.

SEASONAL PATTERN OF CLOUDY DAYS


SEASONAL PATTERN OF CLEAR DAYS DENVER, COLORADO -- 30-YEAR AVERAGES Are these statistics believable? The seasonal patterns are certainly true. As for the upward trend in cloudiness – that may also be true, but the rate of change is hard for me to swallow. Doubling in the number of cloudy days in less than a century seems impossible or at least very unlikely. There has been no systematic trend in precipitation over that period, and temperatures have changed only a little. On the other hand, the definition of clear, partly cloudy and cloudy is the same now as it was 120 years ago. The evaluation of cloudiness then and now was done visually by a human at specific times of day. Eachday's observations were combined to determine daily average skycover. 0-30% sky cover constitutes a clear day. 80-100% sky cover is classified as a cloudy day.

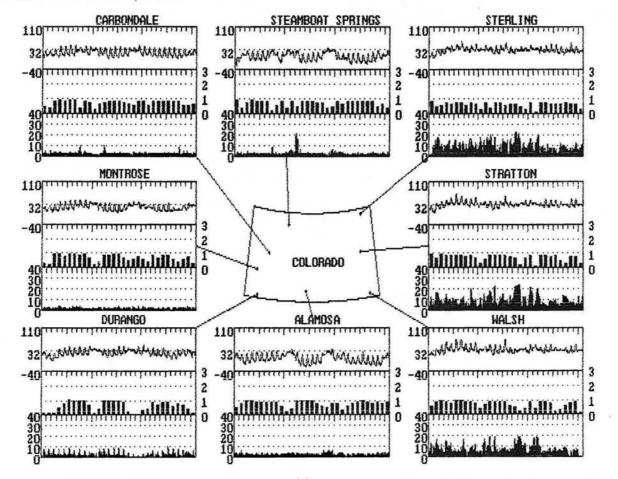
The definition has not changed, but procedures for sky cover evaluation may not have been specific early in weather observing history. For example, we are uncertain if early observers reported thin clouds through which sunlight easily penetrated. However, starting in the 1930s with the rapid growth of civil aviation, specific rules for evaluating sky condition were adopted and federal certification became a requirement for all aviation weather observers. Based on current weather observing regulations, clouds which are fairly transparent to sunlight do contribute to total sky cover. This might explain some of the observed increases.

When we only look at the past 40-years, the period when we are confident that the cloud observations are consistent, the increase in cloudy days is still noticeable. For three Colorado cities; Denver, Colorado Springs and Grand Junction; cloudy days increased by about 15% from the 1950s to the 1980s. When we first looked at this graph in early 1987 we had just experienced some of the cloudiest years in Colorado history. Since then, several well-known climatologists have published papers documenting significant increases in cloudiness over various regions of the Northern Hemisphere including most of the United States.

But lets get back to our original question. Has sunshine returned to Colorado? Indeed, the last four years have brought a marked decline in the number of cloudy days. Based on these three stations, the annual average number of cloudy days 1988-1991 has been 114. By comparison, the average for the previous decade had been 133. Solar energy enthusiasts can take heart – at least for now, the trend has reversed. The sun is back!

By the way, while we disagree with the idea that we have 300 or more sunny days everywhere in Colorado, we certainly know that sunshine is a very important and enjoyable part of our climate. Las Vegas and El Paso have us beat by a mile, if the number of sunny days is the only thing you're concerned about. But it takes a balance of sunshine and clouds to produce the things that we have come to take for granted – our four-season climate, rushing rivers, a very productive statewide agricultural industry, snow and tree-covered mountains, and entertaining summer thunderstorms. We can argue about increasing clouds if we wish, but any newcomer from Michigan, Ohio, Washington or many other places would probably just laugh.

CLOUDY DAYS IN COLORADO


Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

WTHRNET WEATHER DATA DECEMBER 1991

	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
monthly a	average tempera 4.2	ature ('F) 23.3	20.1	20.7	7.6	30.5	30.6	33.1
monthly t maximum; minimum;	temperature ex 34,5 12/14 -25,1 15/ 7	tremes and ti 46.6 21/1 -4.0 3/	me of occurence 5 45.9 6/15 7 1.0 14/7	45.7 7/1	ur) 5 36.1 19/14 1 -22.7 1/8	638.6 3/ 1.6 1/2		69.3 6/1 10.6 2/ 6
monthly a 5 AM 11 AM 2 PM 5 PM 11 PM	average relativ 86/7 -8 86/7 72/12 77/8 88/-3	ve humidity / 87 / 13 63 / 19 59 / 20 70 / 20 89 / 17	dewpoint (per 92 / 10 64 / 15 47 / 16 54 / 14 87 / 12	cent / "F) 86 / 10 69 / 16 60 / 17 68 / 15 85 / 12	88 / -2 81 / 8 60 / 9 68 / 5 89 / 2	34 / -2 25 / 1 22 / 4 26 / 0 31 / -0	90 / 22 72 / 29 63 / 29 78 / 27 87 / 23	83 / 21 58 / 25 49 / 25 60 / 23 79 / 23
monthly a day night	average wind di 191 175	irection (d 200 85	egrees clockwis 169 155	e from north 122 205) 144 116	219 241	185 234	193 255
Construction of the constr	average wind sp 2.26 ed distribution 580 164 0 0	2.17	per hour) 1,91 r month for hou 688 52 0 0	1,58 rly average m 674 50 0 0	1.67 ph range } 684 50 10 0	8.90 114 491 138 1	8.76 32 561 148 3	6.84 91 542 91 0
monthly a	average daily t	otal insolat 581	ion (Btu/ft²•d 664	ay) 670	660	565	694	690
"clearnes 60-80% 40-60% 20-40% 0-20%	55" distributic 140 92 56 18	on (hours pe 100 47 53 96	r month in spec 115 68 83 21	ified clearne 113 60 74 38	55 index range 135 68 57 19	88 89 42 47	132 76 40 29	129 69 47 40

The State-Wide Picture

The figure below shows monthly weather at WTHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

KEEP THE HOME FIRES BURNING

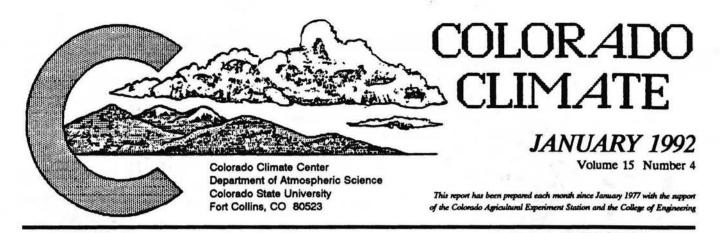
Fire was most likely one of the main reasons that the species homo splex flourished. It certainly allowed man to spread to climates that otherwise were hostile. Jumping forward a bit, western European men had their fires outside during the summer for cooking and brought them inside to hearths that were nothing more than a stone slab in the middle of the floor. Smoke escaped through a hole in the roof or through crannies within the walls. It wasn't until the late thirteenth century that a crude chimney was built. Hearths were moved to the walls in the Norman castles because the second floors were made of wood which made the central hearth impractical. And by the late fourteenth century, there were wall fireplaces with chimneys in many room within a castle. But the common man made do with a hole in the roof of his cottage until the late 1500's. The closed stove began to appear in the 1700's. It provided prodigious amounts of heat to a room with just a small amount of wood as long as minimal fresh air was allowed into the room. Thermostatic controls for these stoves were invented in 1849 by the American Elisha Foote. We Americans produced more iron stoves than other countries during the 1800's. Now, with the advent of central heating, wood stoves are a rarity, not the common sight they once were.

Among the problems facing us today is the fact that the fossil fuel used to heat our homes is a dwindling fuel source. Some people are choosing to revert back to the days when the fuel was burned in the home to provide the heat directly. However, wood stoves have changed since the days of Ben Franklin. Technology has built stoves that burn wood pellets made of sawdust and agricultural residue. Not only is the fuel source different, these pellets can be added to the fire as needed by automatic controls. Definitely not the 'tending of the home fires' one may think of when referring to a wood stove. Even stoves using wood as fuel can provide heat for up to 8 hours without refueling. Today's wood stoves may have small electric blowers which circulate the warmed air. This allows for convective heat transfer as well as radiative heat transfer. Homes with a ceiling fan can create their own convection to work in tandem with a stove whose main form of heat transfer is radiation.

In the early days when the hearth was the only form of heating and cooking, wood preparation was an art. Wood was well seasoned and usually 'toasted' into a semi-charcoal state before being brought into the home. In parts of the Mediterranean, the wood was soaked in oils and aromatics. The laying of the fire had a precise method with its own vocabulary. Generations passed down how to choose the best woods for particular uses. Today, the U.S. Department of Energy can tell us approximate heating values on varying woods. Their values are for a cord of wood. A standard cord of wood is 128 cubic feet, an 8 foot by 4 foot stack which has a depth of 4 feet. Table 1 shows some of these values in millions of BTU's per cord. The cost of the heat in the wood is (2 x cost per cord/MMBTU per cord) assuming a 50% efficient stove. The actual wood heating cost includes the cost of the stove and chimney.

TABLE 1

......

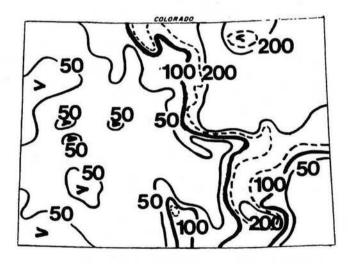

Approximate Heating Values per Cord of Wood

High	Medium	Low
(24-31 MMBtu)	(20-24 MMBtu)	(16-20 MMBtu)
Oak	Western larch	Black Spruce
Dogwood	Pond pine	Red fir
Slash pine	Juniper	Black willow
Apple	Red maple	Ponderosa pine
Sugar maple	American elm	Quaking aspen
Longleaf pine	Douglas fir	Sugar pine
White ash	Norway pine	White pine
Black walnut	Chestnut	Western red cèdar
		•

When deciding what size stove is best, the saying "bigger is better" does not apply. If the stove is too large for the home, the heat it puts out will overwhelm the residents and it will be damped way down. This causes the fire to be oxygen starved and created excess creosote which can build up and be a potential chimney fire. Most dealers of stoves give an approximate floor size for which their stove will comfortably provide heat. This is fine for the typical home, however, it your home has more than average insulation, or has more than average infiltration of air, this approximation may not hold.

Environmentally, wood heating is not a 'clean' burning form of energy. It releases carbon dioxide into the air which may or may not influence the greenhouse effect so prevalent in today's news. The metro area of Denver and Boulder regulate this by codes requiring specific equipment which helps to reduce this wood air pollution. This air pollution is a problem that man has been dealing with since he started using stoves for heating. There were formal complaints from France during Tudor times that the vines were being ruined by London smoke. And an anti-smog leaflet tried to influence the burning of coal in London in 1661. Wood, as a fuel source, needs to be tended by man to assure its continued existence. This is especially true in developing countries where 80% of the people use wood as a principle fuel source. It is expected that wood, as a form of solar energy, will be used for many years to come if the resource it treated properly and not overused.

This paper was written by Mary Sutter of the Joint Center for Energy Management at the University of Colorado, Box 428, Boulder, CO 80309-0428.

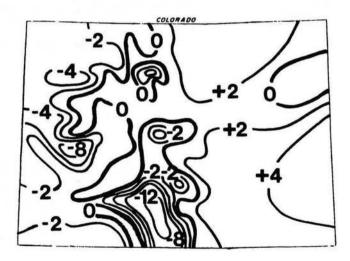


January Climate in Perspective - Dry in the Mountains

A pair of respectable winter storms struck Colorado during the first half of January. These were followed by a brief shot of arctic air that hit late on the 14th. The rest of the month was remarkably dull for this time of year with many days of sunshine and light winds. This allowed cold, stagnant air to linger in several of Colorado's high valleys, especially near Alamosa and Delta.

Precipitation

January was the third consecutive month with above average precipitation over the normally dry Eastern Plains. But for the mountains and Western Slope, where mid-winter



January 1992 precipitation as a percent of the 1961-1990 average.

precipitation normally falls frequently and abundantly, this was the second month in a row with few storms and much drier than average conditions. For much of the mountains, the storm of Jan. 7 was the only significant snow event. For the month as a whole, the northeast quarter of Colorado ended up with more than double their meager average for January, while most of the remainder of Colorado recorded less than 50% of average. Monte Vista reported no precipitation all month.

Temperatures

One brief surge of arctic air whipped down across eastern Colorado late on the 14th dropping temperatures below zero for a few hours. Otherwise, January was characterized by fairly pleasant midwinter temperatures for most mountains and plains locations. There were several dramatic local exceptions, however, as frigid air collected and remained in the San Luis Valley, the valleys from Paonia and Montrose downstream to Grand Junction and a few other locations. For the month as a whole, temperatures ranged from more than 13 degrees below average at Alamosa to several degrees above average along the Front Range and the southeastern plains.

Departure of January 1992 temperatures from the 1961-90 averages.

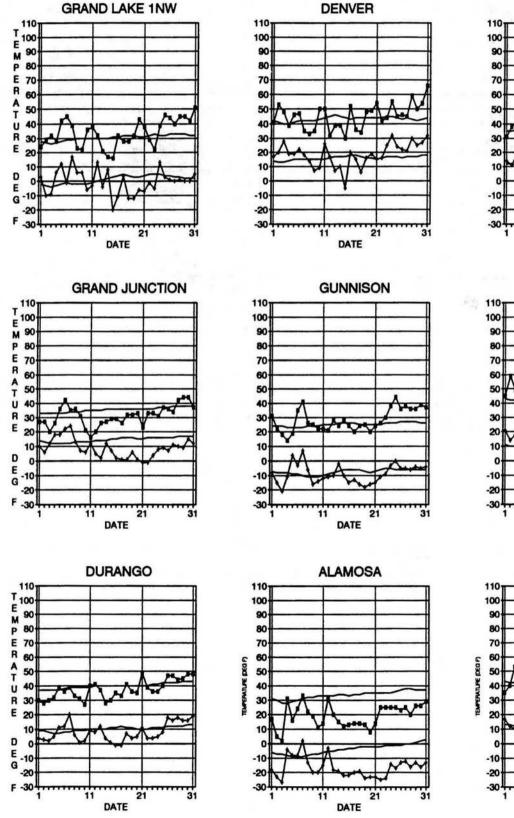
Inside This Issue

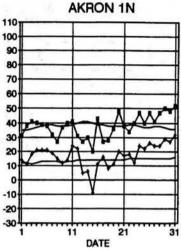
Inside 1	his issue
January 1992 Daily Weather 2	Comparative Heating Degree Day Data
January 1992 Temperature Comparison	January 1992 Climatic Data 8
January 1992 Precipitation 4	Special Feature - What Happened to Alamosa -
January 1992 Precipitation Comparison 5	The 1992 Island of Ice 10
1992 Water Year Precipitation 6	JCEM WTHRNET Data 12
-	JCEM - Typical Meteorological Year 13

JANUARY 1992 DAILY WEATHER

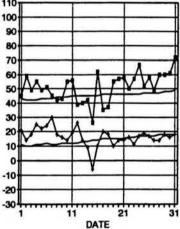
- 1-3 Snow ended during the morning of the 1st over northeastern Colorado leaving cold temperatures and a 3-8" blanket of brilliant white snow. Meanwhile, fog and low clouds filled some western valleys, and all of the Western Slope remained cold. With plenty of sunshine, temperatures moderated quickly 2-3rd east of the mountains, but cold air remained entrenched in the western valleys. Alamosa only reached a high of +2°F on the 3rd. Taylor Park Dam reported a low of -32° on the 3rd the coldest in Colorado for the month.
- 4 A California storm system raced eastward across the Rockies. The mountains and Western Slope picked up a few inches of snow, but the storm moved too quickly to drop heavy amounts. Only a few flakes spilled across into the eastern foothills, and the plains remained dry.
- 5-8 The 5th was a pleasant midwinter day over much of the State and pleasant weather continued on the 6th over eastern portions of Colorado. Clouds and wind increased on the Western Slope and pressure dropped sharply statewide on the 6th. Snow began in southwest Colorado and spread northeastward. Then, early on the 7th, the deep low pressure area emerged from the mountains over southeast Colorado. Heavy snow developed quickly across northeast Colorado including Denver, and strong winds lashed all of the Eastern Plains. The storm behaved like a typical spring storm with snowfall rates in excess of 1" per hour, considerable water content, and strong winds. Blizzard conditions closed many highways, and the Denver airport suspended operations for several hours The heaviest snow fell in a band from Monument northward along and east of I-25. Greeley and Parker each reported 9". Denver's Stapleton Airport totalled 14.8". The eastern foothills missed the brunt of the storm, but an area in the northern mountains was hit surprizingly hard. 18" fell at the Hohnholz Ranch on the Laramie River. Rand got 14". Walden reported 0.96" of water equivalent on the 7th (12" snow), setting a new 1-day precipitation record for January. Snow ended and skies cleared on the 8th but temperatures were quite cold.
- 9-13 Sunny but cold on the 9th. Continued very cold in the mountain valleys on the 10th with local dense

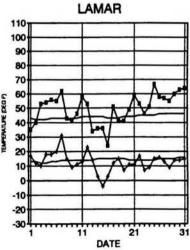
fog, but from the mountains eastward, temperatures warmed nicely. Clouds increased on the 11th as a disturbance approached Colorado from the northwest and another system south of Arizona began moving northward. Snow fell over much of the Front Range and Eastern Plains on the 12th as the two systems combined. Most locations received 1-5" of snow but local areas including Monument and the foothills west of Boulder got more than a foot of fluffy snow. The 13th was sunny but cold.


- 14-15 Arctic air plummetted southward from Canada on the 14th. The cold wave hit the Eastern Plains late that evening accompanied by blowing snow and white-out conditions. Temperatures dropped below zero over much of the State by the 15th, the only subzero reading of the month for eastern Colorado. Akron dipped to -10° and Denver hit -5°. The coldwave was brief, however, and by late on the 15th a warming trend had already begun.
- 16-20 A dry and sunny period for most of Colorado. A few light snow showers fell on the 17th, mostly in the northern mountains, associated with an upper level disturbance. A very strong ridge of high pressure then developed over the western U.S. keeping frigid, stable air trapped in all the high valleys. From Craig to Alamosa, subzero nighttime temperatures in the valleys were widespread.
- 21-24 An upper-level low pressure center passed south of Colorado on the 21st. Downslope winds developed east of the Front Range on the 22nd as the storm moved toward the Midwest. Very strong winds continued at mountain-top level on the 23rd with a few mountain snowshowers. A warm chinook wind developed early on the 24th, raising temperatures into the 50s and 60s east of the Front Range. Winds were locally very severe, however, with localized damaging wind gusts over 75 mph from Fort Collins south to Golden.
- 25-31 Dry, sunny and warm for the mountains and eastern plains. Even the mountain valleys began to moderate as high pressure persisted. The month ended with the mildest temperatures of the month – highs in the 30s and 40s in the mountains with 50s and 60s out on the plains. Pueblo hit 72° on the 31st, the warmest in Colorado for the month.

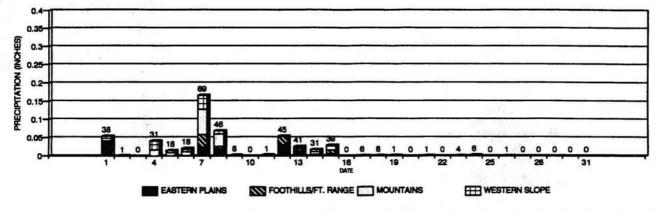

Weather Extremes

Highest Temperature	72°	January 31	Pueblo WSO AP
Lowest Temperature	-32°	January 3	Taylor Park Dam
Greatest Total Precipitation	2.23"	Adv	Monument
Least Total Precipitation	0.00"		Monte Vista
Greatest Total Snowfall	37.0"		Monument
Greatest Depth of Snow on Ground	56"	January 8	Wolf Creek Pass 1E

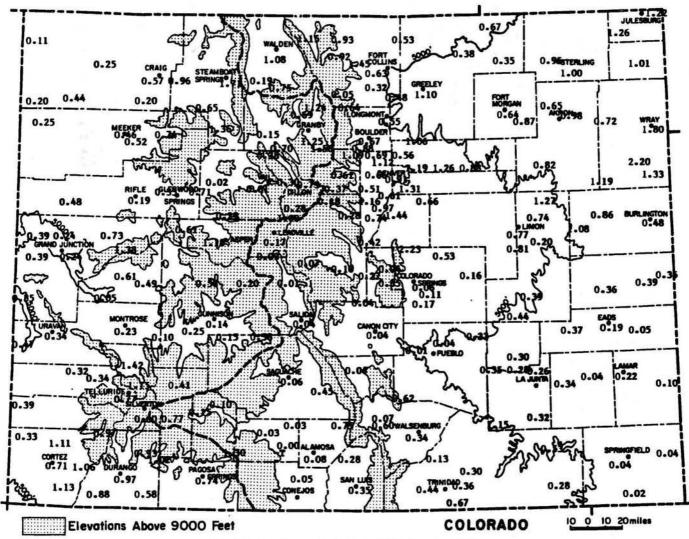

JANUARY 1992 TEMPERATURE COMPARISON


Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

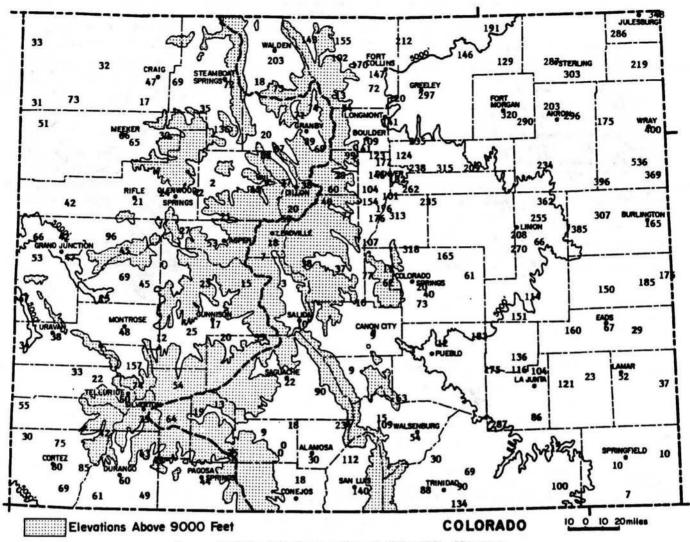
PUEBLO WSO



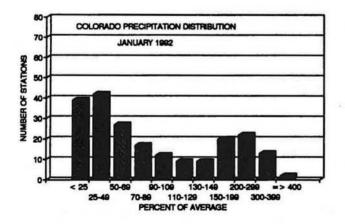
JANUARY 1992 PRECIPITATION


Practically all of January's precipitation fell during the first half of the month. Precipitation on January 1, 12 and 13 was limited to eastern Colorado. Moisture which fell on January 4-6 was concentrated over the mountains and Western

Slope. The only large storm that encompassed the majority of Colorado occurred on the 7th. This storm (including moisture recorded on the 6th and 8th) produced a statewide average of over 0.25" of precipitation -- a large amount for midwinter.

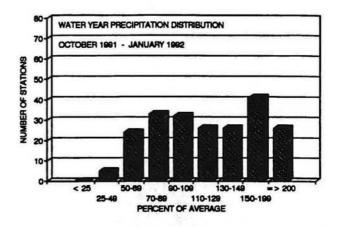

COLORADO DAILY PRECIPITATION - JAN 1992

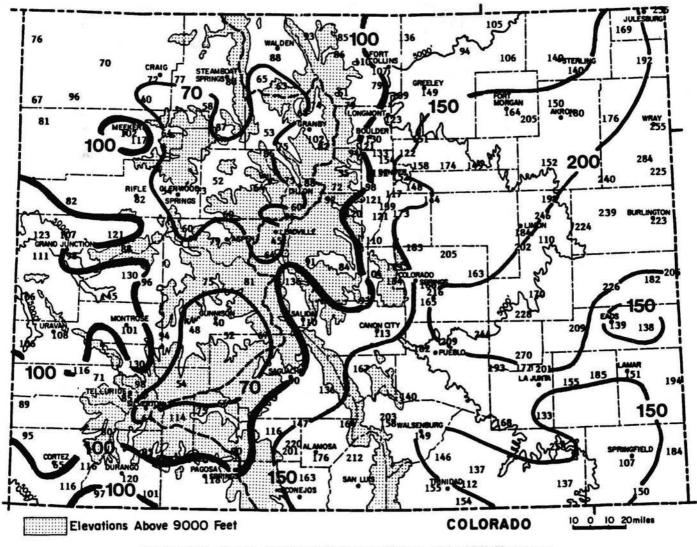
(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)



Precipitation Amounts (in inches) for January 1992.

JANUARY 1992 PRECIPITATION COMPARISON


For the second month in a row, parts of eastern Colorado were much wetter than average while the majority of Colorado was very dry. Denver reported a record January snowfall total of 24.3", which exceeded the January snow totals at most mountain locations including Wolf Creek Pass.


JANUARY 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES

Precip.	Rank
1.19"	8th wettest in 121 years of record (wettest = 2.35" in 1883)
0.97 "	37th driest in 99 years of record (driest = 0.08 " in 1934 and 1936)
0.24"	17th driest in 101 years of record (driest = Trace in 1961)
0.34"	39th wettest in 126 years of record (wettest = 1.60" in 1944)
0.04"	9th driest in 124 years of record (driest = 0 or T in 1880, 1923, '33, '34)
1.33"	19th driest in 86 years of record (driest = 0.23 " in 1919)
	1.19" 0.97" 0.24" 0.34" 0.04"

1992 WATER YEAR PRECIPITATION

The Eastern Plains continue to enjoy a moist start to the 1992 water year with most areas reporting at least 150% of the average precipitation for October-January. Yuma and Kit Carson counties have had well over 200% of average. It is a different story up in the mountains, however. Were it not for the heavy storms of November, there would now be a serious shortage of snow. Precipitation totals in Western Colorado currently range from a little above average in extreme southern areas to less than 50% of average over portions of the Gunnison and Colorado watersheds.

October 1991-January 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR JANUARY 1992

	Heating	Degree	e Data					Colorado Climate Center (303			(303)	491-8	8545		Heating	g Degre	e Data					Color	ado Cl	imate	Center	(303)	491-8	545	
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN	STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
ALAMOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990 1263	1457 1597 1849		1182 1081	1035 954	732 742	453 410	165 172		GRAND LAKE 655W	AVE 90-91 91-92	264	264 268 255	468 350 427	775 774 739	1128 1071 1169	1473 1605 1468	1593 1668 1735	1369 1148		951 979	654 615		10591 10305 6013
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	964	1339 1462 1369	1376 1444 1410		1116 1077	798 811	524 432	262 224	8850 8593 5046	GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	861 723 925	1128 1309 1011	1240 1246 1088	946 741	856 692	522 492	238 159	52 11	
BOULDER	AVE 90-91 91-92	0 32 17	6 13 7	130 81 121	357 338 403	714 589 831	908 1161 911	1004 1081 901	804 667	775 685	483 511	220 211	59 44	5460 5413 3191	GUNH I SON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059 1120	1590 1664 1597	1714 1787 1707	1422 M	1231 M	816 M	543 M	276 249	10122 N 5775
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 N	577 641 580	936 905 1056	1184 1326 1265	1218 1256 1246	1025 896	983 983	720 771	459 472	184 207	7734 7879 M	LAS ANIMAS	AVE 90-91 91-92	0 4 1	003	45 21 59	296 308 350	729 624 896	998 1220 966	1101 1113 943	820 667	698 602	348 352	102 81		5146 4992 3218
BURLINGTON	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 M 903	1017 1249 1004	1110 1223 1021	871 688	803 737	459 438	200 136	38 1	5743 M 3523	LEADVILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826	1173 1141 1245		1473 1550 1471		1320 1210	1038 1068	726 714		10870 10953 6248
CANON	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548 800	870 1098 945	950 1004 870	770 626	740 679	430 459	190 182	40 26	5100 5088 3107	LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503	834 745 1000	1070 1280 1095	1156 1237 1161	960 779	936 820	570 592	299 245	100 38	6531 6370 3963
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453	819 663 954	1042 1256 1048	1122 1142 998	910 750	880 773	564 568	296 219	78 33	6346 6009 3630	LONGNON T	AVE 90-91 91-92	0 24 12	11 6	162 101 133	453 481 489	843 727 936	1082 1284 1047	1194 1249 1124	938 740	874 699	546 520	256 186	78 28	
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423	830 774 947	1150 1321 1227	1220 1364 1310	950 879	850 882	580 702	330 335	100 113	6665 7067 4089	MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406 1367		1086 1047	998 939	651 696	394 358	164 110	
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	876	1547	1544	1193 1095	1094 995	687 693	419 398	193 127	8376 8029 5005	MONTROSE	AVE 90-91 91-92	000	10 3 0	135 81 135	437 470 404	837 804 901	1159 1385 1312	1218 1460 1385	941 974	818 768	522 571	254 268	69 49	
DELTA	AVE 90-91 91-92	0 0 0	0 2 2	94 58 88	394 416 383	813 751 832		1197 1549 1486	890 998	753 742	429 512	167 170	31 26	5903 6624 4093	PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910 1116	1538	1380 1432 1477	1123 1038	1026 1002	732 767	487 489	233 227	
DENVER	AVE 90-91 91-92	0 12 6	0 3 4	135 64 118	414 388 449	789 623 902	1004 1209 982	1101 1143 1022	879 684	837 682	528 510	253 174	74 16		PUEBLO	AVE 90-91 91-92	0 1 1	0 0 0	89 34 76	346 360 380	744 610 927		1091 1116 958	834 730	756 667	421 406	163 103	23 3	5465 5273 3356
DILLON	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788	1071		1569	1305 1220	1296 1257	972 1031	704 691		10754 10778 6120	RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475	876 824 906	1433	1462	1002 964	856 814	555 605	298 265	82 52	6945 6966 3994
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379		1153 1373 1179		958 842	862 919	600 619	366 364	125 125	6848 6979 3963	STEAMBOAT SPRINGS	1	129	E 140 110 141	370 255 394		1060 1013 1140		1613	1240 1223	1150 1120	780 851	510 518	270 262	
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	934		1536	1148 1052		705 693	431 355	171 99	8377 7881 4520	STERL ING	AVE 90-91 91-92	0 17 5	6 7 1	157 68 92	462 437 437	876 725 930		1244	966 713	896 716	528 466	235 173		6614 5933 3684
EVERGREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 988	1135 1330 1078	1199 1244 1123	1011 937	1009 885	730 727	489 430	218 152	7827 7569 4302	TELLURIDE	AVE 89-90 91-92	117	223 179 163	396 267 339	676 635 595	1026 972 1013	1384	1339 1351 1291		1141 1093	849 828	589 486	318 293	
FORT COLLINS	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	690	1073 1284 1002	1212	930 747	877 703	558 508	281 203	82 41		TRINIDAD	AVE 90-91 91-92	0 4 3	062	86 46 107	359 334 377	738 654 876	973 1160 1004	1048	846 697	781 709	468 462	207 156		5544 5288 3315
FORT MORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	730	1156 1343 1025	1248	969 750	874 722	516 489	224 180	47 8	6520 5979 3700	WALDEN	AVE 90-91 91-92	202	285 258 209	501 332 452	794		1550	1459		1277				10466 9710 5816
GRAND JUNCTION	AVE 90-91 91-92	0 0 0	0 0 2	65 28 37	325 360 304	759	11 38 1370 1193	1464	882 919	716 706	403 478	148 136		5683 6238 3741	WALSENBURG	AVE 90-91 91-92	15	8 8 5	102 53 90	370 311 337	720 543 818	1047			781 674	501 437	240 141		5504 4883 3041
	• = A	VES AD	JUSTED	FOR S	TATION	MOVES	ii.		= MISS	ING	E	= EST	MATE)		• = ;	AVES AD	JUSTED	FOR S	TATION	MOVES		H	= MISS	ING	E	= EST	MATED	,

JANUARY 1992 CLIMATIC DATA

EASTERN PLAINS

			Temper	ature			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	# days
NEW RAYMER 21N	39.4	15.6	27.5	4.3	57	-8	1156	0	10	0.67	0.32	191.4	6
STERLING	38.8	13.7	26.3	2.2	59	-9	1191	0	14	0.95	0.62	287.9	5
FORT MORGAN	39.8	12.8	26.3	2.5	57	-6	1193	0	12	0.64	0.44	320.0	5
AKRON FAA AP	38.4	17.3	27.8	1.8	52	-9	1144	0	1	0.65	0.33	203.1	4
AKRON 4E	35.9	13.7	24.8	-0.6	46	-10	1238	0	0	0.98	0.65	297.0	3
HOLYOKE	40.1	16.0	28.0	0.8	59	-9	1139	0	10	1.01	0.55	219.6	4
JOES	39.1	15.5	27.3	-1.3	51	-5	1160	0	1	1.19	0.89	396.7	4
BURLINGTON	41.6	22.1	31.9	3.9	64	-1	1021	0	15	0.48	0.19	165.5	3
LIMON WSMO	38.4	16.3	27.3	1.8	58	-8	1161	0	4	0.77	0.40	208.1	6
CHEYENNE WELLS	47.3	20.5	33.9	5.1	69	-5	959	0	42	0.39	0.18	185.7	3
EADS	45.1	19.7	32.4	4.6	62	-1	1003	0	34	0.19	-0.09	67.9	3
ORDWAY 21N	42.1	15.1	28.6	2.6	60	2	1120	0	11	0.44	0.15	151.7	5
ROCKY FORD 2SE	47.1	17.0	32.1	3.0	66	-3	1014	0	40	0.28	0.04	116.7	3
LAMAR	49.7	12.8	31.3	2.3	67	-4	1040	0	70	0.22	-0.20	52.4	3
LAS ANIMAS	51.1	17.7	34.4	4.9	71	2	943	0	76	0.34	0.06	121.4	2
HOLLY	50.5	18.3	34.4	6.6	70	6	944	0	72	0.10	-0.17	37.0	2
SPRINGFIELD 7WSW	49.5	21.7	35.6	3.8	68	1	902	0	60	0.04	-0.34	10.5	3
TIMPAS 13SW	44.0	19.6	31.8	2.6	57	-6	1023	0	25	1.15	0.75	287.5	3

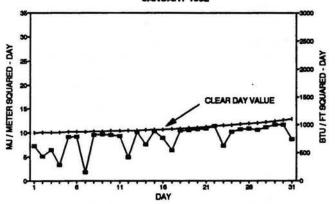
FOOTHILLS/ADJACENT PLAINS

			Temper	ature			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm i	# days	
FORT COLLINS	44.9	18.2	31.5	3.8	59	-2	1029	0	21	0.63	0.20	146.5	2	
GREELEY UNC	41.9	17.3	29.6	2.4	54	-2	1088	0	10	1.10	0.73	297.3	3	
ESTES PARK	44.2	18.2	31.2	3.8	54	- 13	1041	0	7	0.05	-0.31	13.9	2	
LONGMONT 2ESE	43.8	13.3	28.6	2.0	56	-9	1124	0	17	0.55	0.16	141.0	5	
BOULDER	48.3	23.1	35.7	5.2	63	-5	901	0	39	0.67	0.06	109.8	6	
DENVER WSFO AP	45.0	18.5	31.8	2.1	66	-5	1022	0	23	1.19	0.69	238.0	7	
EVERGREEN	46.1	10.8	28.5	1.8	60	- 14	1123	0	33	0.51	0.02	104.1	6	
CHEESMAN	45.1	5.7	25.4	-1.2	60	- 15	1219	0	21	0.42	0.03	107.7	6	
LAKE GEORGE 8SW	30.4	-3.3	13.5	-1.0	43	-17	1588	0	0	0.10	-0.17	37.0	2	
ANTERO RESERVOIR	26.5	-14.1	6.2	-7.5	41	-27	1816	0	0	0.07	-0.11	38.9	3	
RUXTON PARK	35.2	5.5	20.3	0.2	51	-14	1378	0	1	0.35	-0.21	62.5	5	
COLORADO SPRINGS	44.6	20.5	32.6	3.8	62	1	998	0	27	0.06	-0.23	20.7	3	
CANON CITY 2SE	51.2	22.3	36.7	3.2	64	-4	870	0	76	0.04	-0.37	9.8	2	
PUEBLO WSO AP	51.2	16.5	33.8	4.2	72	-6	958	0	77	0.04	-0.28	12.5	2	
WESTCLIFFE	33.4	0.5	16.9	-5.3	48	-13	1483	0	0	0.04	-0.40	9.1	1	
WALSENBURG	50.4	22.9	36.6	3.7	69	-3	870	0	68	0.34	-0.28	54.8	3	
TRINIDAD FAA AP	48.9	19.5	34.2	3.0	67	1	946	0	58	0.30	-0.13	69.8	4	

MOUNTAINS/INTERIOR VALLEYS

			Temper	ature			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days	
WALDEN	30.9	-1.2	14.8	-1.1	44	-27	1547	0	0	1.08	0.55	203.8	4	
LEADVILLE 2SW	34.3	0.2	17.2	2.3	54	-15	1471	0	2	0.17	-0.73	18.9	8	
SALIDA	42.0	9.4	25.7	-1.2	55	-2	1209	0	9	0.04	-0.34	10.5	3	
BUENA VISTA	39.2	9.8	24.5	-1.1	54	-2	1246	0	3	0.01	-0.27	3.6	1	
SAGUACHE	22.9	-7.2	7.9	-10.2	32	-22	1763	0	0	0.06	-0.21	22.2	2	
HERMIT TESE	25.4	-12.0	6.7	-3.1	40	-24	1801	0	0	0.15	-0.63	19.2	2	
ALAMOSA WSO AP	19.3	-16.5	1.4	-13.3	33	-27	1963	0	0	0.08	-0.18	30.8	1	
STEAMBOAT SPRINGS	26.5	-5.2	10.7	-4.2	38	-18	1680	0	0	1.71	-0.66	72.2	9	
YAMPA	29.7	5.2	17.5	-1.4	41	-13	1464	0	0	1.36	0.36	136.0	8	
GRAND LAKE 1NW	33.8	-1.0	16.4	0.5	51	-20	1498	0	1	1.24	-0.42	74.7	11	
GRAND LAKE 6SSW	23.9	-6.5	8.7	-4.7	35	-20	1735	0	0	0.69	-0.27	71.9	10	
DILLON 1E	32.5	-0.8	15.8	0.1	47	-10	1517	0	0	0.30	-0.49	38.0	8	
CLIMAX	28.1	-0.2	14.0	1.1	42	-27	1575	0	0	1.00	-0.87	53.5	8	
ASPEN 1SW	35.8	2.5	19.2	-1.0	49	-5	1410	0	0	1.18	-1.02	53.6	9	
CRESTED BUTTE	26.4	-11.4	7.5	-3.4	38	-26	1775	0	0	0.58	-1.92	23.2	4	
TAYLOR PARK	25.0	-13.9	5.6	-1.1	38	-32	1833	0	0	0.20	-1.08	15.6	2	
TELLURIDE	41.2	5.0	23.1	1.2	52	-5	1291	0	3	0.77	-0.76	50.3	7	
PAGOSA SPRINGS	38.2	-3.9	17.1	-3.0	50	-13	1477	0	0	0.74	-0.94	44.0	5	
SILVERTON	36.2	-7.8	14.2	-0.9	49	-16	1568	0	0	0.60	-0.91	39.7	5	
WOLF CREEK PASS 1	35.4	4.5	20.0	2.7	48	-7	1387	0	0	1.30	-2.39	35.2	5	

WESTERN VALLEYS

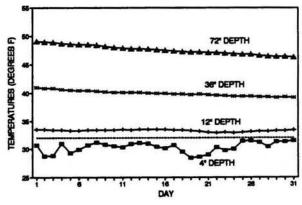

			Temper	ature			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days	
CRAIG 4SW	26.3	2.8	14.5	-3.0	40	-9	1556	0	0	0.57	-0.63	47.5	8	
HAYDEN	26.1	2.7	14.4	-2.6	38	-13	1562	0	0	0.96	-0.43	69.1	9	
MEEKER NO. 2	31.4	2.1	16.8	-6.4	46	-11	1490	0	0	0.46	-0.23	66.7	2	
RANGELY 1E	25.6	0.2	12.9	-3.5	35	-15	1605	0	0	0.25	-0.24	51.0	2	
EAGLE FAA AP	36.5	3.5	20.0	1.5	50	-9	1387	0	0	0.02	-0.72	2.7	1	
GLENWOOD SPRINGS	36.4	8.7	22.5	-1.0	49	2	1307	0	0	0.35	-1.09	24.3	6	
RIFLE	38.5	8.2	23.4	1.0	54	0	1283	0	6	0.19	-0.71	21.1	2	
GRAND JUNCTION WS	31.1	8.6	19.9	-5.1	44	-1	1390	0	0	0.24	-0.32	42.9	3	
CEDAREDGE	38.7	6.9	22.8	-3.6	54	-6	1298	0	3	0.61	-0.27	69.3	5	
PAONIA 1SW	33.5	3.8	18.6	-6.8	45	-9	1427	0	0	0.49	-0.59	45.4	5	
DELTA	30.5	3.1	16.8	-9.3	40	-5	1486	0	0	0.05	-0.28	15.2	1	
GUNN I SON	28.2	-8.8	9.7	0.6	44	-21	1707	0	0	0.14	-0.64	17.9	1	
COCHETOPA CREEK	33.1	-5.5	13.8	4.1	45	-20	1583	0	0	0.15	-0.58	20.5	3	
MONTROSE NO. 2	32.0	8.2	20.1	-4.7	45	-2	1385	0	0	0.23	-0.24	48.9	4	
URAVAN	38.7	10.0	24.4	-3.2	47	2	1252	0	0	0.34	-0.54	38.6	3	
NORWOOD	34.8	4.8	19.8	-2.8	48	-10	1394	0	0	0.32	-0.64	33.3	3	
YELLOW JACKET 2W	37.7	10.9	24.3	-0.9	55	1	1255	0	5	0.33	-0.75	30.6	3	
CORTEZ	37.1	8.0	22.5	-2.0	48	0	1310	0	0	0.71	-0.17	80.7	3	
DURANGO	37.4	7.9	22.7	-2.3	49	-1	1305	0	0	0.97	-0.63	60.6	4	
IGNACIO 1N	33.8	6.8	20.3	-2.1	48	-7	1380	0	0	0.58	-0.59	49.6	3	

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

JANUARY 1992 SUNSHINE AND SOLAR RADIATION

	Num	ber of	f Days	Percent Possible	Average % of	
	<u>CLR</u>	<u>PC</u>	CLDY	Sunshine	Possible	
Colorado Springs	17	4	10		-	
Denver	15	9	7	79%	71%	
Fort Collins	17	7	7			
Grand Junction	18	4	9	81%	61%	
Limon	12	12	7			
Pueblo	18	7	6	95%	75%	
CLR = Clear	PC	= Pa	arthy Clou	udy CL	DY= Cloud	y

Sunshine and solar radiation exceeded the average for January as high pressure dominated the Rocky Mountain region.


FT. COLLINS TOTAL HEMISPHERIC RADIATION JANUARY 1992

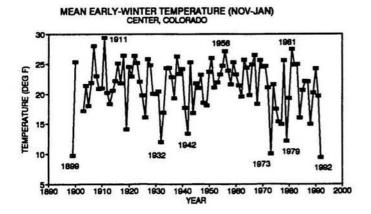
JANUARY 1992 SOIL TEMPERATURES

Snowcover during mid-January stabilized soil temperatures. The top soil remained frozen all month, but no deep frost penetration occured.

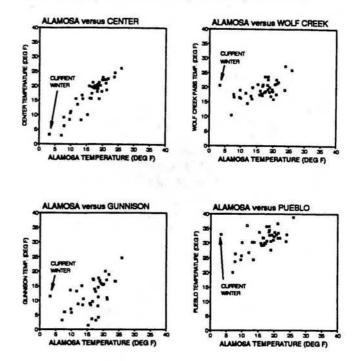
These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES JANUARY 1992

HATS OFF TO: Ethal Jordan of Hamilton, Colorado


Hamilton is a tiny village in a steep, narrow valley southwest of Craig. Mrs. Jordan has been reporting daily precipitation there without interruption since April 1957. Thanks so much, and keep up the great work!

56


Most of the nation has been enjoying a very mild winter. Were it not for some frigid airmasses and major snowstorms back in late October and November, many areas of the U.S. may have thought they missed out on winter completely. Colorado has shared in this mild weather. For the Front Range and Eastern Plains, there has only been a handful of days all winter with temperatures below freezing during the day and below ten at night. But have you talked to anyone from Alamosa and the San Luis Valley recently? They have quite a different story to tell.

Looking at the statistics from the Alamosa National Weather Service office at the Alamosa airport, since October 28th through the end of January, there have been only 14 days when the temperature climbed above the daily average. During the same period there have been 58 days when the mean daily temperature was at least 10 degrees F colder than average. On 22 days, the temperatures have been at least 20 degrees colder than average. When you stop for just a minute and think what average midwinter temperatures are like in Alamosa - with daytime temperatures typically climbing from below zero readings at sunrise to highs in the 20s and 30s - that's when the significance of this winter begins to sink in. Just for an example, imagine a high temperature of 2 degrees after a morning low of -27° accompanied by dense fog. That is what Alamosa experienced on January 2, 1992. As of January 31, their temperatures had fallen below 0°F on 63 nights. February has been adding steadily to this total. In comparison, up on Wolf Creek Pass there have been only 13 nights with subzero temperatures all winter. Denver has recorded only 2 subzero days compared to a winter average of 9 days.

Center, an agricultural community 25 miles northwest of Alamosa, has complete weather records dating back nearly 100 years. It is interesting to see how this year's temperatures compare to previous years. A quick glance at the following graph reveals that this has been the coldest early winter on record at Center. While we have not verified these statistics at other locations around the San Luis Valley, most certainly other locations near the middle of the valley are sharing similar conditions. But as you rise out of the valley, record cold temperatures have not been a problem. On Wolf Creek Pass, winter temperatures have been slightly warmer than average. Gunnison, a well-recognized consistently cold valley, has had just an average winter.

Now I would like you to look at a set of scatter diagrams comparing Alamosa winter temperatures to 4 surrounding locations all within a distance of less than 100 miles: Center, Wolf Creek Pass, Gunnison, and Pueblo.

Scatter graphs are a great way to quickly see if two variables are related to each other. Don't worry about the minute size of these graphs. It is not essential that you see every point. In analyzing these graphs, you can see that winter temperatures at Alamosa and Center are closely related. When Alamosa is warm, so is Center. When Center is cold, so is Alamosa. From the linear relationship that exists between these two sites, you can estimate quite accurately the mean winter temperature at one town if you know the temperature at the other town. This winter's temperature fits neatly on the cold end of the graph, right in line with the expected relationship between the two sites.

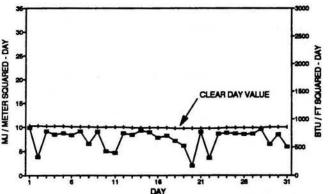
The comparisons between Alamosa and the other three locations are not quite so tidy. There is a general tendency for Gunnison, Pueblo, and Wolf Creek Pass to be colder than average when Alamosa is cold, and warmer than average when Alamosa is warm, but there is plenty of variability. One point sticks out as a particular exception – and it happens to be this winter. While Alamosa has been extremely cold, the other locations have been average or above.

How can this be? How can Alamosa and the middle of the San Luis Valley be so cold, while the rest of the region has been having a mild winter? It turns out that there is one simple factor that affects temperatures greatly everywhere, but especially in the San Luis Valley. It is a four letter word – SNOW. When the Valley is covered with snow, the entire climate of the valley changes. The plentiful sunshine that usually warms this broad, high-elevation valley is reflected back into the atmosphere once the snow is deep enough to cover the sparse vegetation. On a clear night radiational heat loss continues even more dramatically. The air directly above the snow cools steadily. Eventually, the whole valley fills with cold air. This air, being denser and heavier than surrounding air, becomes very difficult to displace. Only storm systems with strong winds, dense clouds, and vertical updrafts can displace the air. After storms pass, however, the lake of frigid air can quickly redevelop.

The cold air trapping phenomenon is tied closely to the elevation angle of the sun. Once the ground is covered by snow in early and mid winter, it is practically impossible to get enough energy to melt the snow. As long as the snow remains, the valley continues to trap cold air. Once it snows, it gets cold. When it gets cold, the snow doesn't melt. If the snow doesn't melt, it stays cold. The whole process is self reinforcing. The only salvation is the fact that by the end of February the sun climbs high enough that solar energy begins to win the battle with the snow, and by March even a heavy snowfall is soon attacked and melted by the sun.

So why isn't Alamosa always as cold as this winter? As it turns out, the San Luis Valley is the driest part of Colorado. Even though it is plenty cold to snow throughout the fall, winter and spring, snow in excess of a few inches rarely accumulates over the dry central portion of the valley (where the coldest air can collect). In an average winter, there are only about a dozen days with at least four inches of snow on the ground. In roughly 25% of all winters, snow never accumulates to a depth of 4" during the November-February period. Without snow, temperatures never stay cold. But in those occasional wet years when snow does acccumulate – look out! Looking back to the time series of Center winter temperatures, sure enough all the cold years were years with persisting snowcover and all the warmest years had little or no lasting snow. In 1981, for example, there was only one day from December through February in Alamosa when the ground was covered by an inch of snow. For the San Luis Valley, snowcover explains more than half of the year to year variance in winter temperatures. Snowcover is also important in other western valleys, but other valleys – Gunnison, for example – tend to have much more consistent and reliable snowcover from winter to winter.

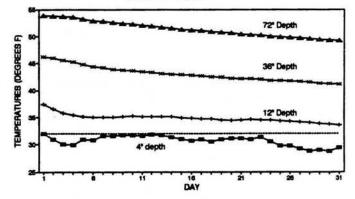
This year was Alamosa's year for snow. 15" fell at the end of October. 10" more fell in November and 9" in December. Storms were separated by periods of clear, dry weather allowing energy to reflect and radiate out of the Valley. Furthermore, the entire San Luis Valley was snowcovered, not just parts of it. Since October 30, the Alamosa NWS office has reported only 5 days with bare ground - all back in November. Only 1" of new snow fell in January, but more than 8" remained on the ground all month from previous storms. As of January 31, 8" or more of snow had been on the ground for 52 days - the longest on record at the Alamosa weather office. It didn't take a PhD for local residents to know they were in for a long, hard winter. When there is a foot of settled snow on the ground on the winter solstice it is almost a sure bet that temperatures will be brutal at least until late February. Sure enough, that's what's happening.


There is some consolation for those who have spent the winter in the San Luis Valley. When it is cold, the wind doesn't blow. Alamosa's average wind speed in January was 3.7 mph. Wind chill wasn't a factor!

OUR APOLOGIES!!

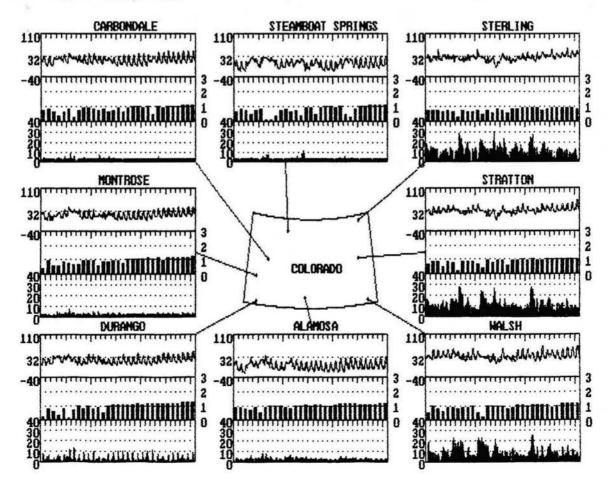
As you can tell, our monthly climate description, Colorado Climate, has been undergoing some changes. As a result of attempting these changes, we fell behind our normal publication schedule. We even made a few outright mistakes (did you notice??)

DECEMBER 1991 SOLAR RADIATION



At last it looks like we're back on the right track. Reports should again be mailed out 4 to 6 weeks after the end of each month. We hope you like our new format, and we'll try not to make any more mistakes. To set the record straight here are the solar and soil temperature graphs that <u>should</u> <u>have appeared</u> in the December 1991 issue.

DECEMBER 1991 SOIL TEMPERATURES


FORT COLLINS 7 AM SOIL TEMPERATURES DECEMBER 1991

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

			WTHRNET W	IEATHER DATA	JANUARY 1992			
	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
onthly	average tempe 0.4	rature (*F) 19.6	19.6	17.4	6.6	27.2	30.7	33.7
conthly aximum inimum	33.4 7/1	3 48.0 31/1	4 50.7 31/1	e (*F day/hou 5 43.9 31/13 7 -5.1 3/8	32.5 31/15	60.1 29/11 -7.6 15/ 8	64.8 31/14 -1.8 15/ 7	69.1 31/1 6.1 15/
5 AM 5 AM 11 AM 2 PM 5 PM 11 PM	average relat 82 7-14 81 / 1 68 / 8 70 / 6 84 / -9	ive humidity / 84 / 7 50 / 11 46 / 13 50 / 12 82 / 10	/ dewpoint (pe 90 / 7 59 / 11 39 / 11 42 / 10 77 / 10	ercent / *F) 85 / 6 59 / 13 51 / 14 57 / 12 85 / 8	86 / -4 79 / 6 59 / 8 65 / 5 87 / -1	31 / -5 26 / -2 24 / 2 26 / -1 30 / -3	79 / 18 64 / 26 58 / 27 70 / 26 82 / 22	78 / 18 47 / 22 37 / 20 43 / 18 69 / 18
day night	average wind 167 178	direction ((210 73	legrees clockwi 187 164	se from north) 115 222	147 118	247 254	196 217	234 253
	2.35 ped distributi 3 573 2 171 4 0	speed (miles 2.40 ion (hours pi 547 196 1 0	1.99	2.00 burly average sp 640 104 0 0	1.74 bh range) 665 79 0 0	9.63 109 404 217 14	10.20 13 546 164 21	8.40 48 528 158 6
monthly	average daily 953	total insola 916	tion (Btu/ft ² 800	day) 920	720	721	867	895
"clearne 60-80% 40-60% 20-40% 0-20%	ess" distribut 172 92 37 1	tion (hours p 149 55 33 29	er month in spe 144 57 57 21	cified clearnes 166 61 41 6	55 index range 126 60 58 33) 98 36 40	177 83 32 12	175 62 58 15

The figure below shows monthly weather at WIHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

59

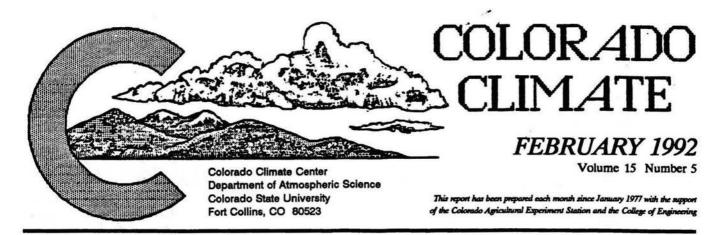
TYPICAL METEOROLOGICAL YEAR

One purpose of collecting weather data is to have representative and typical conditions of the climate that can be used as reference. This art has been passed throughout generations in many cultures. The Egyptians could approximately predict the flood season of the Nile. American farmers used their almanac to seed and harvest at the correct time.

CHARAC	TER
POSITIO	N DESCRIPTION
01-005	WBAN STATION NUMBER
006-015	SOLAR TIME(YR,MO,DY,HR,MN)
16-019	LOCAL STANDARD TIME (HR,MN) SOLAR DATA
20-023	EXTRATERRESTRIAL RADIATION
24-028	DIRECT RADIATION
29-033	DIFFUSE RADIATION
34-038	NET RADIATION
	GLOBAL RADIATION
39-043	TILTED SURFACE
44-048	HORIZONTAL SURFACE DATA
49-053	HRZ.SFCE. ENGINEERING DATA
54-058	HRZ.SFCE. STANDARD YEAR
59-068	ADDITIONAL RADIATION MEASM.
69-070	MINUTES OF SUNSHINE. SURFACE DATA
71-072	TIME OF OBSUN.
	CEILING HEIGHT (DEKAMETERS)
	SKY CONDITIONS
	VISIBILITY
	WEATHER
	PRESSURE (KILOPASCALS)
04-111	TEMPERATURE (DEGREES CELSIUS)
12-118	WIND (SPEED IN METERS/SEC)
19-122	CLOUDS
23	SNOW COVER INDICATOR

Today in the information era, weather information is used for more purposes than in the past. Architects need weather data to design energy efficient homes. Engineers need wind speed and direction to calculate structural strength and loads. Weather patterns are used to study climate effects in the environment such as the green house effect and the after effects of natural events such as the ash released by volcanos in the Philippines.

Now that we fallen in love with information access, mass storage of data challenges climatologists all over the world. Usually a simple set of weather data consists of: Dry Bulb Temperature, Humidity Ratio, Barometric Pressure, Horizontal Solar Radiation, Wind Speed and Direction, and Precipitation. These data for every hour of the day for a whole year, storing some 50,000 numbers. Since this is only data for one site for one year, data management can become a nightmare for a network or a state.

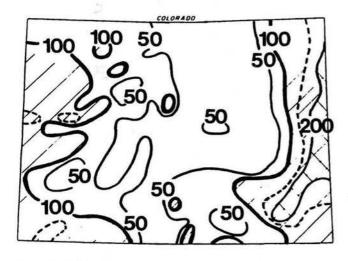

To deal with this problem a group of American climatologists came up with an standard format called TMY. The Typical Meteorological Year weather information was created by a project that involved 40 years worth of data in each chosen city. TMY data are for a statistically typical year constructed from this 40-

year period. The TMY format base became a standard for US weather data. The weather data values are stored in a continuous line of 132 characters (usually numbers), twenty four lines form a block for one day; 365 blocks make up a year. For the example below for Pueblo, CO the first 5 characters correspond to the station number, the next two are the year, then the month number, etc. The lines are divided into three main sections: Site Information, Solar Data, Surface Data. The data are stored in ASCII format readable by any computer system.

In the United States there are 248 cities that have TMY information. In the state of Colorado the following cities have TMY records; Denver, TMY Pueblo, CO

Colorado Springs, Pueblo, Grand Junction, Eagle. These data can be obtained thorough a bulletin board system that will download the specific information to a user's computer using a modern. The National Climatic Center in Asheville, North Carolina 28801, will do this using the following phone number (704)258-2850.

This report was prepared by Carlos Lopez-Alonso at the Joint Center for Energy Management (303) 492-3915 University of Colorado at Boulder 80309-0428.

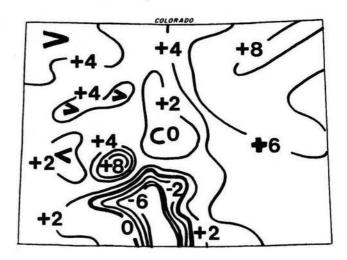


February Climate in Perspective - A Warm Month

Colorado escaped another winter month with no strong arctic airmasses. Temperatures ended up well above average except in the San Luis Valley. Several major storm systems moved inland across California during February. Most of these storms weakened drastically before bumping up against the Rockies. As a result, although precipitation fell on many days during the month, total moisture remained well below average in the mountains. Just east of the Front Range was extremely dry.

Precipitation

Pacific storms systems took aim on Colorado during February. Frequent mountain snows brought happy reports from many Colorado skiers, but there were very few



February 1992 precipitation as a percent of the 1961-1990 average.

widespread snowfall episodes. When the totals were tallied, most of the mountains ended up with considerably less February moisture than usual – the third dry month in a row for the high country. Almost no precipitation at all fell just east of the mountains along the Front Range urban corrider. Fort Collins experienced their driest February in 104 years of record. But there were some wet areas. Above average precipitation was observed over much of the Western Slope and across extreme eastern Colorado.

Temperatures

No intrusions of arctic air made it to Colorado in February, and a late-month heatwave raised temperatures above 70° east of the mountains. The most unusual aspect of the months temperatures, however, where the persistently mild nighttime temperatures. The coldest temperature all month at Denver and Akron was only 20°F. Temperatures for the month as a whole ended up 1°-9° above average over most of the State. Gunnison was nearly 10 degrees warmer than average – their 8th warmest February on record. But again the San Luis Valley was the exception. Temperatures there remained cold ending up more than 7° below average.

Departure of February 1992 temperatures from the 1961-90 averages.

Inside This Issue

February 1992 Daily Weather	 	•	• •	•	•		• •	 	•		2
February 1992 Temperature Comparison	 					•		 			3
February 1992 Precipitation											
February 1992 Precipitation Comparison	 										5
1992 Water Year Precipitation											

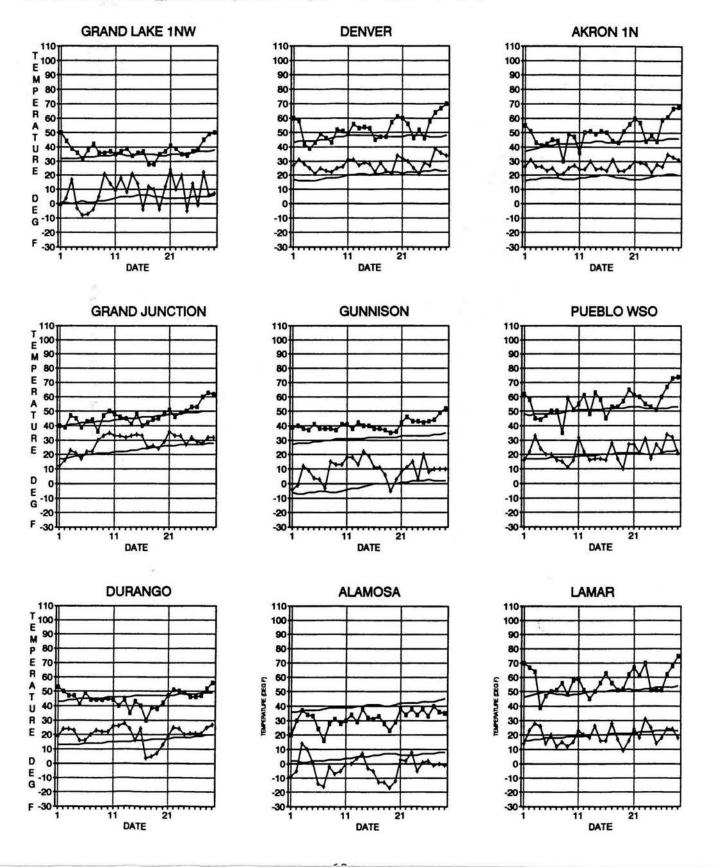
Comparative Heating Degree Day Data	7
February 1992 Climatic Data	
Special Feature - Solar Energy and Climate:	
An Inseparable Duo 1	0
JCEM WTHRNET Data 1	
JCEM - Thermal Storage in Buildings 1	3

FEBRUARY 1992 DAILY WEATHER

Storms knocked on the door frequently in February, but despite many favorable opportunities, no heavy widespread precipitation events occurred over Colorado.

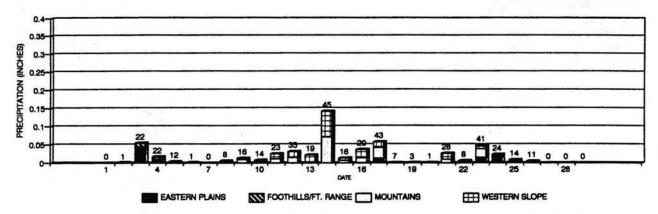
- February began sunny and quite mild with 1-4 temperatures climbing into the 50s and 60s east of the mountains. Clouds increased over southern Colorado on the 2nd as a storm took an unusual track moving nearly straight northward out of Mexico toward southeast Colorado. Precipitation began as rain late on the 2nd over southeastern counties. Winds increased over the plains and rain turned to snow in some areas on the 3rd and spread northward. Lamar, Holly and John Martin Dam all reported more than 0.50" of moisture with several inches of snow on higher ridges. Precipitation stayed east of Limon leaving the rest of the state dry but unsettled. The main storm weakened on the 4th, but an upper level disturbance lingered over Colorado and triggered a few convective snow showers east of the mountains.
- 5-7 Weak high pressure returned to the Rockies giving Colorado dry, sunny weather. Temperatures were mostly near average statewide, but the cold pool of air remained entrenched in the San Luis Valley. Alamosa only reached a high of 16° on the 7th after a morning low of -16°F. Wolf Creek Pass was nearly 20 degrees warmer than the Valley.

8-19 A series of storms crashed into California bringing that state many inches of much-needed moisture. Each storm weakened drastically before reaching Colorado. At the same time, pulses of Arctic air tried unsuccessfully to slip down out of Canada into eastern Colorado. Cooler temperatures were observed east of the mountains on the 8th and 11th with some local fog and low upslope clouds 8-12th. Moisture from the California storms reached western Colorado on the 8th with periods of light wet snow near the mountains ending on the 9th. Clouds increased again from the west on the 10th. Up to 0.33" of moisture was measured over southwest Colorado on the 11th. The strongest storm system

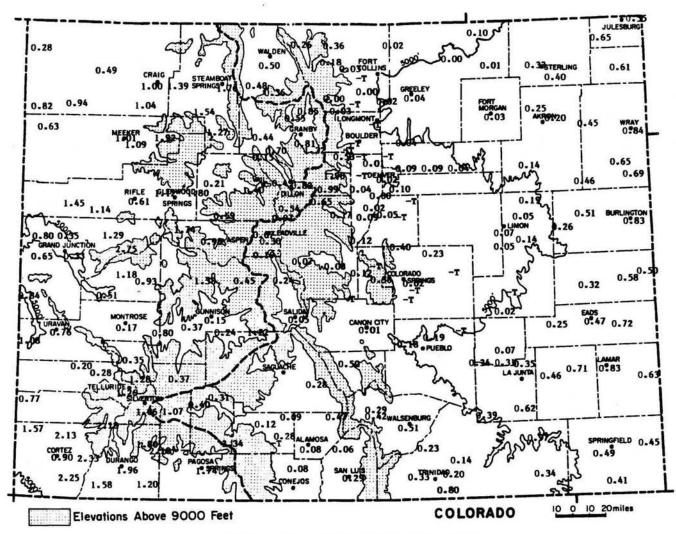

moved toward Colorado on the 13th and moved rapidly eastward. Nearly all of western Colorado received some moisture. Hardest hit was Wolf Creek Pass where 1.55" of water was measured in more than a foot of snow. The storm dissipated quickly as it pushed east on the 14th. Breckenridge only reported 3" of new snow and only a few flakes spilled over east of the mountains. One more strong-looking storm targetted Colorado 16-17th. The San Juan Mountains and the Vail area received several inches of snow, but elsewhere snowfall was much less than expected. Strong winds buffetted the Eastern Plains as the storm headed east, but the only precipitation on the plains fell out near the Kansas border. The storm did manage to pull in some chilly air behind it. The Mount Evans Research Center had a high of only 18° on the 18th. Taylor Park Dam had Colorado's coldest temperature in February with -27° on the morning of the 19th.

- 20-25 After a lovely mild day on the 20th, weak cold fronts associated with upper air disturbances crossed Colorado in rapid succession on the 21st, 23rd and Each storm brought small amounts of 25th. precipitation (mostly to the northern sections of Colorado), periods of strong winds, and minor episodes of colder weather. Even so, temperatures over most of the State were still warmer than average. Akron picked up 2" of snow and Burlington received 0.26" of moisture on the 23rd. Moisture on the 25th was very limited, but up to 4" fell near Georgetown contributing to a nasty traffic accident on I-70.
- 26-29 February ended with dry weather statewide and an episode of near-record warmth. Temperatures in the 60s and 70s were widespread 28-29th. Even Alamosa managed to hit the 40° mark on the 27th for the first time since late November. Holly took honors for the Colorado hot spot with 81° on the 29th.

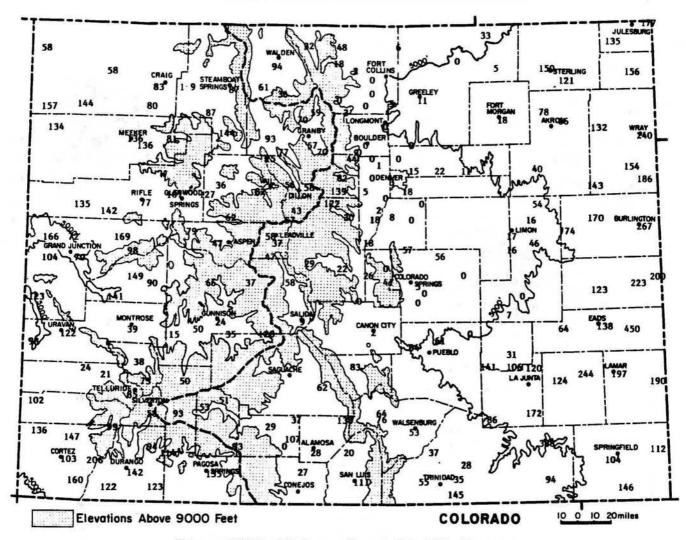
	Weddied Lante		
Highest Temperature	81°	February 29	Holly
Lowest Temperature	-27°	February 19	Taylor Park Dam
Greatest Total Precipitation	3.34"		Wolf Creek Pass 1E
Least Total Precipitation	0.00"		Briggsdale, Estes Park,
			Littleton, Waterdale
			(numerous sites with Trace)
Greatest Total Snowfall	45.0"		Wolf Creek Pass 1E
Greatest Depth of Snow on Ground	67"	February 16	Wolf Creek Pass 1E


Weather Detremes

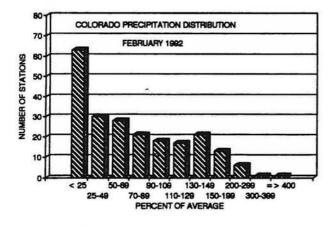
Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)


FEBRUARY 1992 PRECIPITATION

Precipitation fell somewhere in Colorado on over half of the days in February, but storms were typically small in quantity and in coverage. Significant moisture fell on the 3rd but only affected southeast Colorado. Nearly all of the moisture from storms 8-17th fell in the mountains and western valleys. The storm 13-14th was the only storm of the month that dropped significant moisture over nearly half of Colorado. Precipitation 21-25th was scattered across the State but was again quite light.


COLORADO DAILY PRECIPITATION - FEB 1992

(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

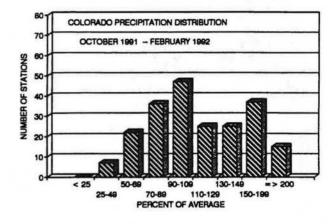


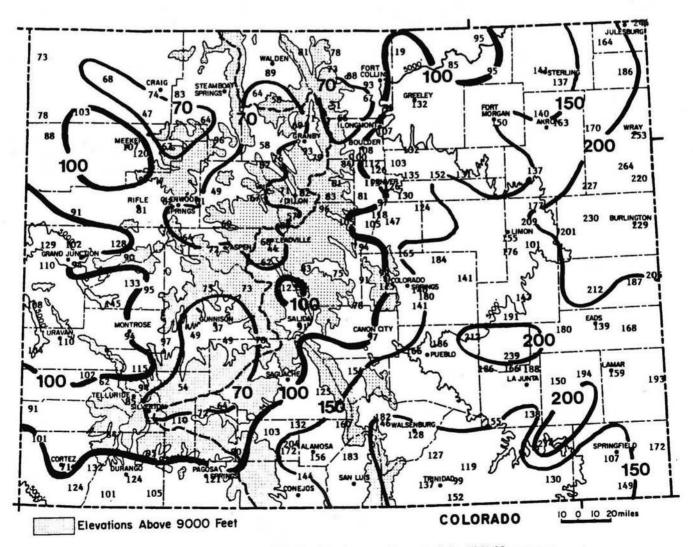
Precipitation Amounts (in inches) for February 1992.

FEBRUARY 1992 PRECIPITATION COMPARISON

February 1992 Precipitation as a Percent of the 1961-90 average.

Fort Collins had its driest February in 104 years of recorded data. But it is always rare for the whole State to be dry (or wet) at the same time. Out at Wray, during the past year, 11 months have been wetter than the long-term average. During that same period, Leadville has been drier than average 11 out of 12 months.


FEBRUARY 1992	PRECIPITATION RANKING
FOR SELECT	TED COLORADO CITIES


Station	Precip.	Rank
Denver	0.09"	11th driest in 121 years of record (driest = 0.01° in 1970)
Durango	1.96"	24th wettest in 98 years of record (wettest = 7.02" in 1911)
Grand Junction	0.35"	34th driest in 101 years of record (driest = Trace in 1898 and 1972)
Las Animas	0.46"	39th wettest in 126 years of record (wettest = 2.13" in 1903)
Pueblo	0.19"	41st driest in 124 years of record (driest = 0 or T in 1880, 1916, '52, '70)
Steamboat Springs	1.76"	29th driest in 87 years of record (driest = 0.30° in 1935)

1992 WATER YEAR PRECIPITATION

Drier than average conditions have continued to spread and now encompass most of the mountains. Only the Sangre de Cristo Mountains and southern portions of the San Juans remain wetter than average. The driest areas compared to average are some of the high valleys – less than 50% of average moisture has fallen at Eagle, Leadville and Gunnison. Areas with less than 75% of average are now widespread across the northern and central mountains.

Much of the Western Slope remains a bit wetter than average, and the San Luis Valley is still much above average. Elsewhere, conditions vary from dry in the northern foothills, near average over the Front Range cities with precipitation then increasing to the east and south. More than double the average October-February precipitation has fallen in a band from just east of Pueblo northeast to Burlington and Wray.

October 1991-February 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR FEBRUARY 1992

	Heating	Degree	Data					Color	ado Cl	imate (Center	(303)	491-8	8545				Heating	Degree	e Data					Color	ndo Cl	imate (Center	(303)	491-8	1545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			STATION		JUL	AUG	SEP	OCT	NOV	DEC	MAL	FEB	MAR	APR	MAY	JUN	ANN
ALAHOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	633	1074 990 1263	1457 1597 1849			1035 954	732 742	453 410	165 172					AVE 90-91 91-92	214 264 220	264 268 255	468 350 427	775 774 739	1128 1071 1169	1473 1605 1468	1593 1668 1735		1318 1233	951 979	654 615		10591 10305 7367
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964 1106	1339 1462 1369	1376 1444 1410		1116 1077	798 811	524 432	262 224	8850 8593 6170			GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	861 723 925	1128 1309 1011	1240 1246 1088	946 741 724	856 692	522 492	238 159	52 11	6442 5901 4330
BOULDER	AVE 90-91 91-92	0 32 17	13 7	130 81 121	357 338 403	714 589 831	908 1161 911	1004 1081 901	804 667 700	775 685	483 511	220 211	59 44	5460 5413 3891			GUNN I SON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059 1120	1590 1664 1597	1714 1787 1707	1422 M 1167	1231 M	816 M	543 N	276 249	10122 M 6942
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 N	577 641 580	936 905 1056	1184 1326 1265	1218 1256 1246	1025 896 1048	983 983	720 771	459 472	184 207	7734 7879 N			LAS ANINAS	AVE 90-91 91-92	0 4 1	003	45 21 59	296 308 350	729 624 896	998 1220 966	1101 1113 943	820 667 712	698 602	348 352	102 81	9 0	5146 4992 3930
BURLINGTON	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 N 903	1017 1249 1004	1110 1223 1021	871 688 751	803 737	459 438	200 136	38 1	5743 M 4274			LEADVILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826	1173 1141 1245	1435 1556 1461	1473 1550 1471		1320 1210	1038 1068	726 714		10870 10953 7544
CANON	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548 800	870 1098 945	950 1004 870	770 626 688	740 679	430 459	190 182		5100 5088 3795			LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503	834 745 1000	1070 1280 1095	1156 1237 1161	960 779 827	936 820	570 592	299 245	100 38	6531 6370 4790
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453	819 663 954	1042 1256 1048	1122 1142 998	910 750 788	880 773	564 568	296 219	78 33	6346 6009 4418			LONGHONT	AVE 90-91 91-92	0 24 12	11 6	162 101 133	453 481 489	843 727 936	1082 1284 1047	1194 1249 1124	938 740 786	874 699	546 520	256 186	78 28	6432 6050 4533
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423	830 774 947	1150 1321 1227	1220 1364 1310	950 879 892	850 882	580 702	330 335		6665 7067 4981			MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406 1367	1345 1458 1490	1086 1047 1025	998 939	651 696	394 358	164 110	7714 7563 5690
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	996 876 1080	1342 1547 1517	1479 1544 1556	1193 1095 1078	1094 995	687 693	419 398	193 127	8376 8029 6083			MONTROSE	AVE 90-91 91-92	000	10 3 0	135 81 135	437 470 404	837 804 901	1159 1385 1312	1218 1460 1385	941 974 911	818 768	522 571	254 268	69 49	6400 6833 5048
DELTA	AVE 90-91 91-92	0000	0 2 2	94 58 88	394 416 383	813 751 832	1135 1400 1302	1197 1549 1486	890 998 874	753 742	429 512	167 170	31 26	5903 6624 4967			PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910 1116	1305 1538 1362	1380 1432 1477	1123 1038 1087	1026 1002	732 767	487 489	233 227	8367 8340 5980
DENVER	AVE 90-91 91-92	0 12 6	0 3 4	135 64 118	414 388 449	789 623 902	1004 1209 982	1101 1143 1022	879 684 714	837 682	528 510	253 174		6014 5508 4197			PUEBLO	AVE 90-91 91-92	0 1 1	000	89 34 76	346 360 380	744 610 927	998 1243 1014	1091 1116 958	834 730 759	756 667	421 406	163 103		5465 5273 4115
DILLON	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788	1167 1071 1210	1435 1587 1447	1516 1569 1517		1296 1257		704 691		10754 10778 7426			RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475	876 824 906	1249 1433 1185	1321 1462 1283	1002 964 804	856 814	555 605	298 265	82 52	
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379	837 832 940	1153 1373 1179	1218 1274 1305	958 842 935	862 919	600 619	366 364	125 125	6848 6979 4898			STEAMBOAT Springs	AVE* 90-91 91-92	90 129 127	140 110 141	370 255 394	670 700 742	1060 1013 1140	1430 1683 1626	1500 1613 1680		1150 1120	780 851	510 518	270 262	
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934 972	1407 1568 1358	1448 1536 1387	1148 1052 970	1014 889	705 693	431 355	171 99	8377 7881 5490			STERLING	AVE 90-91 91-92	17 5	6 7 1	157 68 92	462 437 437	876 725 930	1163 1359 1028	1274 1244 1191	966 713 731	896 716	528 466	235 173	51 8	6614 5933 4415
EVERGREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 988	1135 1330 1078	1199 1244 1123	1011 937 939	1009 885	730 727	489 430		7827 7569 5241			TELLURIDE	AVE 90-91 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972 1013	1293 1384 1264	1339 1351 1291	1151 987 1057	1141 1093	849 828	589 486		9164 8592 5897
FORT	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	846 690 891		1181 1212 1029	930 747 736	877 703	558 508	281 203	82 41	6483 5947 4272		14	TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654 876	973 1160 1004	1051 1048 946	846 697 774	781 709	468 462	207 156		5544 5288 4089
FORT MORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	867 730 947	1156 1343 1025	1283 1248 1193	969 750 756	874 722	516 489	224 180		6520 5979 4456			WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	822 794 776	1170 1028 1217	1457 1550 1422	1535 1459 1547		1277 1164	915 931	642 587	351 300	10466 9710 7050
GRAND JUNCTION	AVE 90-91 91-92	0 0 0	0 0 2	65 28 37	325 360 304	759	1138 1370 1193	1225 1464 1390	882 919 788	716 706	403 478	148 136	19 18	5683 6238 4529			WAL SENBURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543 818	924 1047 915	989 985 870	820 646 717	781 674	501 437	240 141	49 23	5504 4883 3758
	• = AV	ES AD.	USTED	FOR S	ATION	MOVES		M	= MISS	ING	E	= ESTI	MATED					• = ٨	VES AD.	IUSTED	FOR ST	ATION	MOVES			MISS	ING	E	= ESTI	MATED	

11.2

67

FEBRUARY 1992 CLIMATIC DATA

EASTERN PLAINS

			Tempera	ture			D	egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days		
NEW RAYMER 21N	49.5	21.7	35.6	6.1	66	14	847	0	49	0.10	-0.20	33.3	3		
STERLING	52.9	26.1	39.5	9.0	71	19	731	0	75	0.33	0.11	150.0	1		
FORT MORGAN	53.0	24.5	38.8	8.2	69	19	756	0	66	0.03	-0.13	18.7	1		
AKRON FAA AP	49.5	26.4	37.9	7.3	68	20	779	0	48	0.25	-0.07	78.1	1		
AKRON 4E	49.1	26.7	37.9	7.8	68	20	779	0	42	0.20	-0.10	66.7	2		
HOLYOKE	51.4	27.0	39.2	7.2	69	19	743	0	72	0.61	0.22	156.4	4		
JOES	49.8	27.1	38.5	4.9	69	20	762	0	60	0.46	0.14	143.7	3		
BURLINGTON	49.7	28.1	38.9	5.9	73	19	751	0	58	0.83	0.52	267.7	3		
LIMON WSMO	46.3	26.2	36.3	6.5	67	18	827	0	31	0.07	-0.34	17.1	2		
CHEYENNE WELLS	54.1	25.5	39.8	6.5	75	17	725	0	88	0.58	0.32	223.1	3		
EADS	52.6	26.1	39.4	5.2	69	18	735	0	77	0.47	0.13	138.2	2		
ORDWAY 21N	52.4	21.9	37.2	5.2	69	13	799	0	74	0.02	-0.25	7.4	1		
ROCKY FORD 2SE	55.9	24.1	40.0	4.9	77	11	717	0	104	0.31	0.02	106.9	2		
LAMAR	56.9	19.4	38.2	3.2	75	9	770	0	117	0.83	0.41	197.6	4		
LAS ANIMAS	56.3	24.0	40.2	4.7	79	11	712	0	112	0.46	0.09	124.3	2		
HOLLY	57.3	24.4	40.9	7.5	81	13	693	0	123	0.63	0.30	190.9	3		
SPRINGFIELD 7WSW	55.6	26.8	41.2	5.5	75	16	682	0	102	0.49	0.02	104.3	4		
TIMPAS 13SW	51.7	25.4	38.6	5.1	68	15	760	0	62	0.39	-0.06	86.7	3		

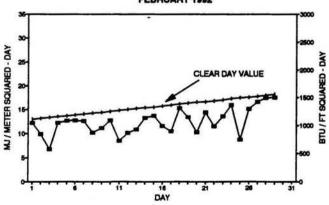
FOOTHILLS/ADJACENT PLAINS

			Tempera	ature			D	egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm #	days		
FORT COLLINS	52.7	26.0	39.4	7.0	70	15	736	0	63	0.00	-0.39	0.0	0		
GREELEY UNC	52.5	27.1	39.8	6.9	71	19	724	0	67	0.04	-0.31	11.4	2		
ESTES PARK	45.1	21.3	33.2	4.2	57	2	913	0	13	0.00	-0.46	0.0	0		
LONGMONT 2ESE	53.3	22.0	37.7	6.3	71	13	786	0	71	0.00	-0.39	0.0	0		
BOULDER	52.2	29.0	40.6	5.1	69	19	700	0	60	0.00	-0.75	0.0	0		
DENVER WSFO AP	52.6	27.6	40.1	6.7 -	70	21	714	0	69	0.09	-0.48	15.8	2		
EVERGREEN	47.9	16.9	32.4	3.7	64	7	939	0	32	0.04	-0.74	5.1	1		
CHEESMAN	48.3	11.6	29.9	1.0	62	2	1012	0	31	0.12	-0.52	18.7	1		
LAKE GEORGE 8SW	37.0	3.7	20.3	1.4	51	-6	1287	0	1	0.08	-0.27	22.9	3		
ANTERO RESERVOIR	34.8	-1.4	16.7	-0.4	48	-17	1395	0	0	0.06	-0.18	25.0	3		
RUXTON PARK	37.7	7.7	22.7	1.4	52	-9	1217	0	2	0.38	-0.54	41.3	4		
COLORADO SPRINGS	50.0	25.1	37.5	5.5	68	17	788	0	47	0.02	-0.38	5.0	1		
CANON CITY 2SE	54.4	27.5	41.0	3.8	69	17	688	0	92	0.01	-0.44	2.2	1		
PUEBLO WSO AP	55.6	21.6	38.6	3.6	74	10	759	0	107	0.19	-0.12	61.3	1		
WESTCLIFFE	37.6	6.2	21.9	-3.7	52	-8	1243	0	1	0.50	-0.10	83.3	6		
WALSENBURG	52.1	28.0	40.1	4.5	68	17	717	0	64	0.51	-0.45	53.1	4		
TRINIDAD FAA AP	53.8	22.4	38.1	3.2	71	11	774	0	83	0.14	-0.35	28.6	1		

MOUNTAINS/INTERIOR VALLEYS

	Temper	ature			D	egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	36.2	8.1	22.2	3.3	49	-11	1234	0	0	0.50	-0.03	94.3	6
LEADVILLE 2SW	34.9	5.4	20.1	3.1	48	6	1296	0	0	0.30	-0.50	37.5	10
SALIDA	46.4	17.2	31.8	2.1	61	3	953	0	22	0.05	-0.49	9.3	2
BUENA VISTA	43.1	14.0	28.6	0.1	57	5	1048	0	7	0.24	-0.17	58.5	4
SAGUACHE	31.4	2.7	17.0	-7.5	43	-10	1385	0	0	0.08	-0.15	34.8	2
HERMIT 7ESE	30.3	-9.3	10.5	-3.7	39	-18	1574	0	0	0.40	-0.35	53.3	4
ALAMOSA WSO AP	31.5	-2.6	14.4	-7.6	40	-17	1459	0	0	0.08	-0.20	28.6	3
STEAMBOAT SPRINGS	40.3	11.6	25.9	6.4	49	-4	1126	0	0	1.76	-0.26	87.1	9
YAMPA	35.6	12.2	23.9	2.7	48	-2	1184	0	0	1.27	0.39	144.3	5
GRAND LAKE 1NW	38.1	8.0	23.0	3.9	50	-8	1207	0	0	0.85	-0.58	59.4	12
GRAND LAKE 6SSW	33.3	2.8	18.1	1.7	44	-16	1354	0	0	0.55	-0.23	70.5	13
DILLON 1E	34.8	4.7	19.7	1.2	45	-8	1306	0	0	0.49	-0.37	57.0	9
CLIMAX	29.3	2.3	15.8	0.9	47	-9	1421	0	0	0.97	-0.72	57.4	9
ASPEN 1SW	40.9	11.3	26.1	3.1	53	2	1124	0	2	0.98	-1.07	47.8	11
CRESTED BUTTE	34.0	-0.1	16.9	2.0	44	-25	1386	0	0	0.00	-2.06	0.0	0
TAYLOR PARK	33.4	-5.6	13.9	3.3	44	-27	1473	0	0	0.45	-0.74	37.8	5
TELLURIDE	43.8	12.7	28.3	3.5	56	-2	1057	0	7	1.26	-0.22	85.1	10
PAGOSA SPRINGS	44.1	10.4	27.2	1.4	56	-10	1087	0	7	1.74	0.46	135.9	7
SILVERTON	38.7	0.8	19.7	1.3	51	-15	1305	0	1	1.06	-0.74	58.9	6
WOLF CREEK PASS 1	33.5	8.9	21.2	2.8	49	-6	1262	0	0	3.34	-0.25	93.0	11

WESTERN VALLEYS

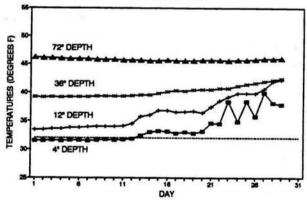

							. D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm #	days
CRAIG 4SW	40.2	15.0	27.6	6.1	54	-8	1078	0	3	1.00	-0.20	83.3	8
HAYDEN	37.0	14.7	25.9	4.2	46	-3	1131	0	0	1.39	0.23	119.8	10
MEEKER NO. 2	41.4	17.4	29.4	1.9	56	2	1025	0	5	1.01	0.27	136.5	5
RANGELY 1E	41.9	16.0	28.9	4.6	58	-1	1039	0	6	0.63	0.16	134.0	4
EAGLE FAA AP	45.2	17.3	31.3	6.0	60	4	970	0	12	0.21	-0.36	36.8	3
GLENWOOD SPRINGS	46.6	21.4	34.0	3.9	60	12	891	0	11	1.12	0.02	101.8	7
RIFLE	51.0	23.0	37.0	6.9	65	13	804	0	42	0.61	-0.18	77.2	8
GRAND JUNCTION WS	47.1	28.1	37.6	3.4	63	12	788	0	23	0.35	-0.13	72.9	5
CEDAREDGE	46.7	21.3	34.0	1.6	65	12	894	0	17	1.18	0.39	149.4	8
PAONIA 1SW	46.8	23.4	35.1	3.0	61	12	859	0	18	0.93	-0.10	90.3	7
DELTA	47.0	22.1	34.6	0.7	62	1	874	0	18	0.51	0.15	141.7	2
GUNNISON	40.6	8.4	24.5	9.8	52	-5	1167	0	1	0.15	-0.47	24.2	1
COCHETOPA CREEK	41.8	8.7	25.2	9.7	53	-7	1146	0	2	0.24	-0.43	35.8	5
MONTROSE NO. 2	44.2	22.4	33.3	1.7	57	10	911	0	8	0.17	-0.26	39.5	2
JRAVAN	50.2	25.2	37.7	2.1	67	12	784	0	35	0.76	0.14	122.6	9
NORWOOD	42.5	20.0	31.2	3.3	56	6	972	0	7	0.20	-0.62	24.4	2
YELLOW JACKET 2W	45.1	21.4	33.3	3.5	60	8	912	0	17	1.57	0.42	136.5	5
CORTEZ	45.7	22.2	33.9	3.9	59	5	892	0	15	0.90	0.03	103.4	5
DURANGO	44.9	20.1	32.5	1.3	56	4	935	0	7	1.96	0.58	142.0	7
IGNACIO 1N	43.9	19.7	31.8	3.0	57	-5	956	0	8	1.20	0.23	123.7	6

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

FEBRUARY 1992 SUNSHINE AND SOLAR RADIATION

	Num	ber of	f Days	Percent Possible	Averag % of	1
	<u>CLR</u>		CLDY	Sunshine	Possibl	e
Colorado Springs	8	13	8			
Denver	8	10	11	70%	70%	
Fort Collins	12	8	9			۲
Grand Junction	9	7	13	77%	65%	
Limon	7	11	12			
Pueblo	8	12	9	85%	73%	
CLR = Clear	PC	= Pa	artly Clou	udy CL	DY= C	loudy

Lots of high clouds streamed into Colorado as storm systems moved in from California. But there were few days of dense overcast. The result was plenty of solar energy.


FT. COLLINS TOTAL HEMISPHERIC RADIATION FEBRUARY 1992

FEBRUARY 1992 SOIL TEMPERATURES

Frost came out of the soil earlier than usual with the help of air temperatures that were persistently well above average throughout February.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

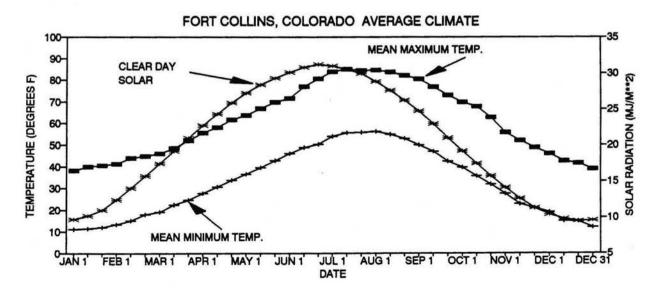
FORT COLLINS 7 AM SOIL TEMPERATURES FEBRUARY 1992

HATS OFF TO: Edward Thompson of Ouray, Colorado

Mr. Thompson is just starting his 16th year as the official weather observer for Ouray. His records are always complete and precise. Since he took over the station, the wettest year in Ouray was 1984 when 33.66" of precipitation was measured in Mr. Thompson's rain gage, 10" more than average.

SOLAR ENERGY AND CLIMATE - AN INSEPARABLE DUO

We've talked a lot about sunshine and clouds in our special climate articles, and for good reason. Sunshine, and the energy it transmits into the earth's atmosphere, is the true lifeblood of our climate. The sun's energy, which climatologists call solar radiation, is the energy source that heats the air and evaporates water. Differences in heating from the tropics to polar areas and between land and sea establish wind patterns which redistribute energy from the tropics to the colder polar regions. The energy used to evaporate water is later released in the atmosphere as condensation occurs and clouds form. All of these processes are the essential ingredients that make up our observed climate – temperature, pressure, wind, humidity, clouds and precipitation, and their seasonal changes.


I find it somewhat ironic, considering the vast importance of solar energy in our climate system, how little effort has been made to measure and record it. Nationally we have thousands of weather stations recording temperatures and precipitation. There are hundreds of stations where detailed observations of cloud heights, visibility, wind, humidity and weather conditions are taken each hour. National networks have been in place for many decades to make sure these data are collected and available. But when it comes to monitoring solar radiation - the very heart of our climate - data are surprisingly hard to come by. For example, here in Colorado, some of our weather stations date back more than 100 years. At least one or two stations measuring temperature and precipitation can be found in every county in our state. But if you ask for 20 years of solar radiation measurements, you are pretty much out of luck.

There has been a national solar network operating about 30 stations nationwide since the late 1970s. Colorado was lucky and had two locations included in this network, Boulder and Grand Junction. Unfortunately, this small network has constantly struggled and has come close to termination on several occasions. There are three main reasons why solar radiation measurements have received such low priority. 1) A meteorologist can make a weather forecast without knowing how much solar energy is reaching the ground. 2) A pilot can land a plane without knowing the amount of incoming solar radiation. 3) Accurate measurements of solar energy are more difficult and require more expensive equipment than thermometers and raingages. These three factors have had the greatest impact during recent history on determining how our resources are spent for data collection. Monitoring solar radiation takes a back seat to most other meteorological measurements.

While weather forecasters, pilots, and taxpayers may get along fine without solar energy measurements, there are a number of others who have a different attitude. Here in Colorado, the management of our water resources is very sensitive to solar energy. Evaporation rates from reservoirs and irrigation ditches and evapotranspiration from plants are directly related to solar radiation. Solar radiation also affects snowmelt rates and runoff efficiencies. As a result, several organizations have begun their own solar radiation monitoring activities including golf courses, cities, and water companies.

Plant growth and crop yield is also related to solar energy, so several agricultural groups have initiated solar monitoring. Solar energy during the summer months helps dry out vegetation and increases wild fire potential. Organizations responsible for fire control have begun closer monitoring of solar radiation as it relates to fire potential. Air pollution potential is related to solar radiation and the development of temperature inversions. Air quality monitoring stations sometimes include solar radiation sensors.

Another obvious application of solar radiation is in providing energy for heating our homes, businesses, and public buildings. Back in the 1970s when energy shortages were

anticipated, Public Service Company of Colorado began collecting solar data at a number of locations in Colorado. Since energy shortages and rapid cost escalations failed to materialize, their monitoring program faded away. In 1985, the City of Fort Collins Light and Power Utility provided funds to the Colorado Climate Center to begin ongoing measurements of solar energy in Fort Collins. We have published a graph of Fort Collins daily solar energy in **Colorado Climate** continuously since that time. More recently the Joint Center for Energy Management, with support from the Colorado Office of Energy Conservation, set up a weather network in Colorado specifically designed to provide data pertinent for evaluating potential use of renewable energy resources (specifically wind and solar energy) here in Colorado. We have been publishing data from their small network now since January of 1988.

It is good to see this growing interest in monitoring solar energy. Sources of data are expanding every year. Unfortunately, there are severe disadvantages to having disjointed data collection systems as have emerged here in the Rocky Mountain region. It is difficult to know what data are available and how good those data are. It is difficult for potential users to obtain data. At the present time only a small portion of the solar data currently being collected in Colorado is sent to the Climate Center for archiving and public access. It is difficult to maintain consistent data collection standards and quality control when data collection is in the hands of many different groups. Some organizations have the resources to calibrate and maintain their equipment. Others simply purchase an instrument, install it, hope it works right and never give it another thought. While it is easy and inexpensive to measure temperature to an accuracy of a degree or two, solar measurements accurate to within 3-5% require considerable care and expense. Measurements that are accurate to within 0-2% require special equipment and frequent calibration. At this time, most of the measurements in Colorado fall into the \pm 3-5% accuracy range, and some are probably not even that good. For most applications we suggest discarding any data that is outside of those limits.

The day will come, and probably quite soon, when satellite data and networked surface stations will be used for real-time high resolution monitoring and display of Colorado solar radiation. I can imagine computer maps with contour lines or color shading identifying regions of greater and lesser solar energy. Computations of evapotranspiration, plant growth, and even insect pest development could then be made for the entire State using available computer simulations. This technology already exists and is being used in some parts of our country. Over time, that data could be assembled into detailed climatic descriptions of solar energy and water usage.

We have a long way to go before we are solar experts. But even now, with only a few years of data from a few selected locations in Colorado, we can already piece together a lot of useful information about our solar climate. Next month, we will describe some of the characteristics of solar energy in Colorado.

CENTENNIAL BOOKLET AVAILABLE

Last year we celebrated the Centennial of the Cooperative Weather Observation Program in Colorado. Eleven Colorado communities were recognized for maintaining cooperative weather stations for the entire past century. The highlight of the whole event was the first-ever meeting of the two most experienced weather observers in Colorado. Marvin Rankin (52 years as Westcliffe weather observer – longest individual official weather observer in Colorado history) and Lynn Woods (50 years of volunteer service as Del Norte weather observer) met and exchanged stories while more than 200 joyous onlookers, some teary-eyed, applauded. Who ever said weather observing and climatology aren't exciting. What a blast we had!

Reprints of the Centennial Booklet that were distributed at the celebration are now available to the public. This booklet contains a history of weather observations in Colorado, a brief description of our climate, highlights of the top climatic events in Colorado during the past 100 years, and a write-up on each centennial weather station and each of the special long-time individual weather observers. This neat little 40-page booklet will stand as a lasting reminder of the importance of human weather observers in Colorado history.

To get your own Centennial booklet please send a check for \$2.50 payable to <u>Colorado State University</u> and send it to our regular mailing address. Please allow 3 weeks for delivery. Make sure your return address is clearly indicated.

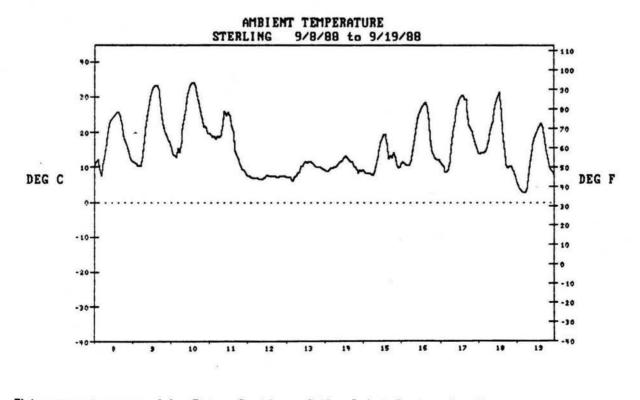
Official Weather Observers – Send <u>no</u> payment. Free copies have been reserved for every official weather observer in Colorado as a small expression of our thanks for your service to the State and Nation.

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

Thermal Energy Storage in Buildings

Have you ever walked in bare feet on an asphault roadway on a warm, sunny afternoon? If the sun has been shining on the road long enough, you probably regretted not wearing your shoes that day. The dark pavement absorbs the incident solar radiation and stores it in the form of heat. Even after sunset the roadway remains warm for a few hours.

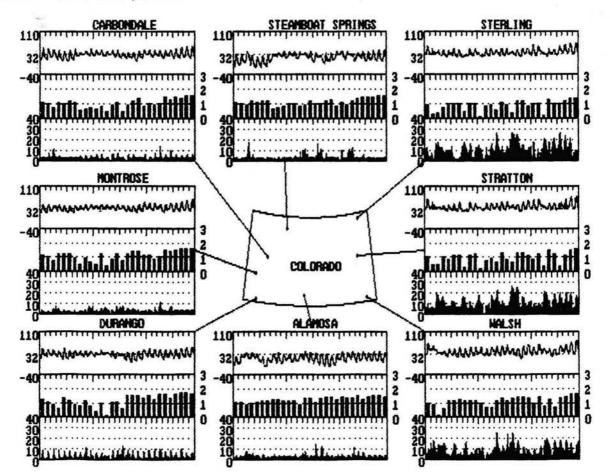
Buildings also exhibit this effect. It is more noticable in "light" houses (wood frame construction), where there is less mass to temper the effects of the added energy, than in "heavy" (masonry) houses. That is, a heavy building will store more energy than a similarly sized light structure, and will tend to show less radical temperature changes within the occupied zones. This thermal storage is a benefit in the spring and fall when it gets chilly after sunset, but can be undesirable during a hot summer night when you are trying to sleep.

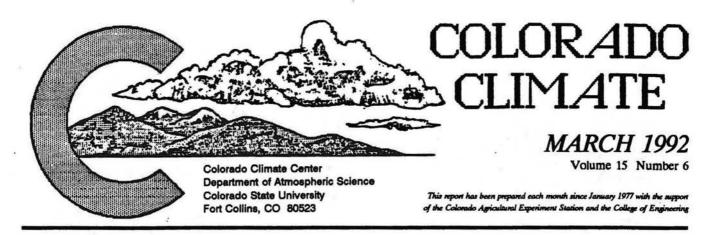

The mass of a building also plays a role during the heating season. A heavy building which cools off (for example, over a weekend) is more difficult to bring up to normal habitable temperatures. A light building, like most residences, does not store much heat within the structure itself, and therefore relies on insulation to prevent heat loss through the walls and roof.

Of course, any deviation from normal operating conditions translates into energy use: heaters or air-conditioners must be used to bring the internal climate back into the "comfort zone." When designing low energy-use homes, therefore, it is important to correctly size the thermal mass of the building for optimal heating and cooling applications.

In passive solar-heated homes, sizing the thermal mass is an integral part of the design process. Since the main energy source is not available for half of the day, solar houses are designed to take advantage of the heat capacity of the construction materials through correct orientation and thicknesses of heat storage walls.

An Example

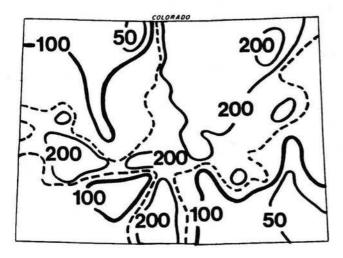

In September most of the state experienced a cold spell from the 11th to the 15th. This little preview of winter clearly illustrates the benefit of thermal storage, since most of us had probably not done our yearly furnace maintenance by then. The graphic below shows the temperature in Sterling over a twelve day period starting on the 8th. Just before the cold snap the daytime temperatures reached 94°F, then plummeted to around 45° for the next four and a half days. Whereas the interior of a thick-walled stone house might not "see" this temperature drop for a few days, a stud and sheetrock framed home would most likely be uncomfortably cool by the end of the first day.



This report prepared by Peter Curtiss of the Joint Center for Energy Management, a collaboration between Colorado State University and the University of Colorado at Pouldon 70

			WTHRNET W	EATHER DATA	FEBUARY 1992			
	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
monthly	average tempe 16.0	rature (*F) 29.2	30.5	32.4	20.8	36.9	36.8	39.6
conthly axisus: anisus:	40.1 23/1	xtremes and t 4 54.7 28/ 7 2.7 18/		e (*F day/hou 5 60.8 29/1 7 13.6 6/	17) 5 44.6 27/14 7 -14.8 5/7	69.4 28/1 21.6 7/	4 72.9 29/15 5 19.9 8/8	74.7 29/1 15.4 19/
5 AM 5 AM 11 AM 2 PM 5 PM 11 PM	average relat 91 / 3 77 / 16 65 / 20 68 / 18 91 / 11	ive humidity 77 / 14 47 / 17 43 / 17 44 / 17 74 / 19	/ dewpoint (pe 90 / 19 54 / 20 37 / 17 40 / 16 74 / 20	rcent / *F) 80 / 19 52 / 22 41 / 20 43 / 19 74 / 22	88 / 9 65 / 15 47 / 16 55 / 16 85 / 14	37 / 5 26 / 8 22 / 8 21 / 5 30 / 4	88 / 26 60 / 27 48 / 24 51 / 23 80 / 25	78 / 23 50 / 28 40 / 26 43 / 25 69 / 23
day day night	average wind 175 179	direction (214 96	degrees clockwi 216 165	se from north . 88 217) 166 126	229 241	114 214	216 262
	2.85 red distributi 451 241 4	speed { eiles 2.71 on { hours p 464 223 1 0	per hour) 2.14 er month for ho 549 142 1 0	2.64 urly average m 460 236 0 0	2.28 ph range) 561 116 7 0	8.77 158 356 174 8	9.19 55 468 164 9	8.36 49 491 141 7
monthly	average daily	total insola 1159	tion (Btu/ft [‡] • 988	day } 1110	1093	854	973	1103
clearne 60-802 40-602 20-402 0-202	ess" distribut 175 86 44 1	ion (hours p 89 72 66 37	er month in spe 117 68 88 33	cified clearnes 139 65 73 17	55 index range 127 83 48 19) 98 72 58 51	127 66 45 39	150 65 50 30

The figure below shows monthly weather at WTHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

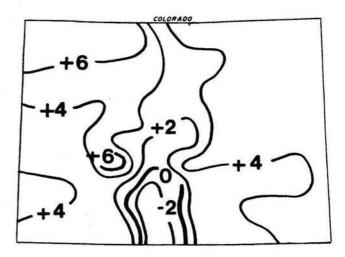


March Climate in Perspective - Wet and Mild

While much of the Western United States experienced a dry March, a series of moisture-laden storms snuck into Colorado from the southwest. As a result, much of the State ended up considerably wetter than average. Again there were only a few brief intrusions of cold air into the State, continuing the pattern of mild weather that has characterized much of the winter.

Precipitation

Three major storms in March followed similar tracks and delivered heavy precipitation from southwestern Colorado northeastward into the South Platte Basin. The entire last half


March 1992 precipitation as a percent of the 1961-1990 average.

of the month was unsettled with frequent but mostly light and scattered rain and snow showers, particularly from the Front Range west across the mountains. March precipitation greatly improved mountain snowpack and summer water supply projections. However, the storms managed to miss portions of northwest and southeast Colorado. Totals ranged from less

than 50% of average over portions of extreme southeast Colorado and the Walden-Steamboat Springs area to near record levels (close to 400% of average) in the San Luis Valley and along the Front Range urban corrider.

Temperatures

With persisting snowcover, the San Luis Valley remained colder than average in March, continuing the winterlong pattern. Elsewhere, the entire State was warmer than average with most areas ending up 3-5 degrees F above their 1961-1990 averages. The warmest parts of Colorado, compared to average, were the upper Gunnison Valley and northwestern counties where temperatures were 6-8 degrees above average, one of the 3 warmest Marches on record this century. It was the warmest March on record at Steamboat Springs. Continuing the trend of the past months, there were very few intrusions of polar air into the State. The few cold episodes we did have, such as March 9, were very brief.

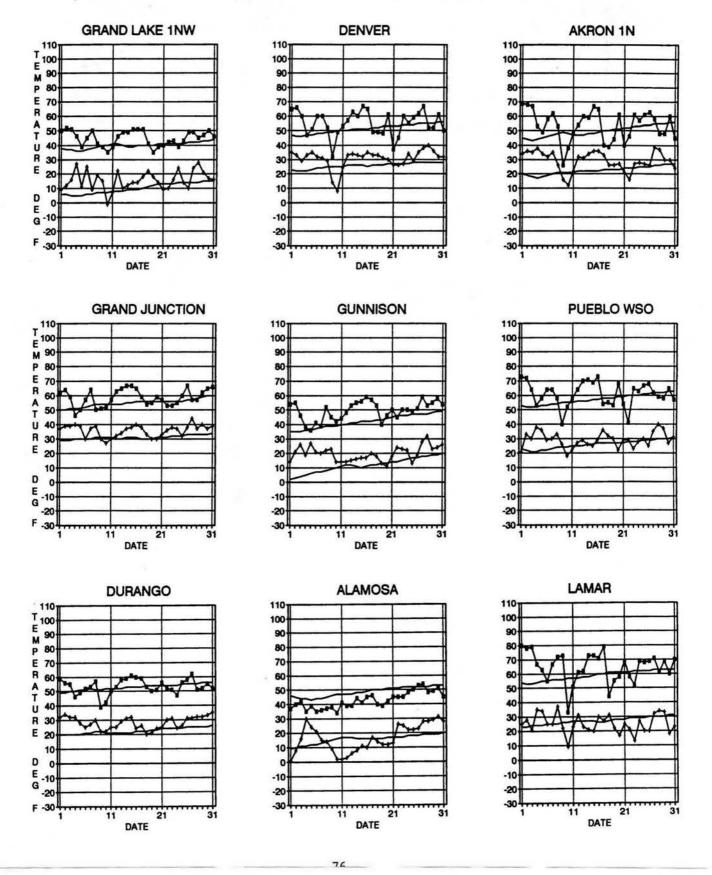
Departure of March 1992 temperatures from the 1961-90 averages.

is Issue
March 1992 Climatic Data 8
Special Feature - Solar Energy in Colorado -
A Climatic Perspective
Special Feature – A Storm to Remember (Mar 8-9) 11
JCEM - The Importance of Kite Flying 12
Subscriber Response Form 13

MARCH 1992 DAILY WEATHER

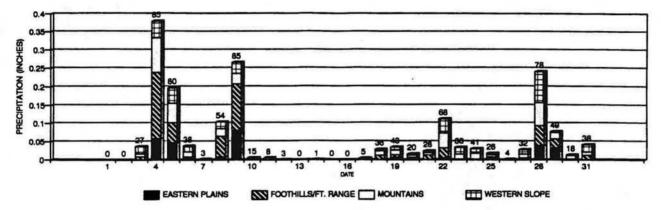
- 1-2 Temperatures were much warmer than average. Even some summer-like convective clouds developed near the foothills on the 2nd. Daytime temperatures climbed into the 60s and 70s at lower elevations with 40s and 50s in the mountains. Holly's 81°F on the 1st was the warmest in the State. The San Luis Valley remained cold.
- 3-5 A major upper-level storm system moved across the southern Rockies. Temperatures cooled, but not dramatically, and rain and wet snow began over southwest Colorado on the 3rd spreading northeastward. Steady moderate rain greeted residents along the Front Range on the morning of the 4th. Heavy snow fell in the foothills. Parts of the San Luis Valley were clobbered by snow on the 4th. Precipitation tapered off late in the day, but low clouds, local fog and a few rain and snow showers lingered on the 5th. Precipitation totals from the storm were impressive in some areas and triggered a number of major mountain avalanches. From Paonia to Ouray well over one inch of precipitation fell. More than 2 feet of new snow accumulated on the Grand Mesa. More than a foot of wet snow fell on parts of the San Luis Valley. Manassa reported 1.31" of precipitation (15" of snow) in 24-hours on the 4th, their heaviest March storm on record. One to two inch rains fell along the Front Range from Denver northward with 1-2 foot snows in the foothills. Fort Collins totalled 2.16" - all rain - the heaviest March rainfall ever recorded there.
- 6-7 Partly cloudy and fairly humid with statewide temperatures remaining at or above average.
- 8-10 A powerful storm erupted over Colorado on the 8th as a moisture-laden system moved northeastward from southern California at the same time that one of the few surges of Arctic air of the entire winter pushed down from Canada. Sunday, the 8th, began mild and springlike east of the mountains while mountain snows began from the southwest. Thunderstorms developed during the afternoon, especially over northeast Colorado as the air masses collided. Local hail and even a small tornado were reported. Then suddenly the rain changed to a ferocious and dangerous blizzard across northeastern Colorado east of the Continental Divide (see feature story). By the morning of the 9th the storm was over, but it left widespread power outages, broken

trees and stranded vehicles from Monument to Cheyenne and east to Julesburg. Boulder, Fort Collins and Wheat Ridge reported 16.3", 16.7" and 17.8" of snowfall, respectively, skies cleared and winds diminished, temperatures plummeted to their lowest points of the month. Highs only reached the 20s and 30s on the 9th. Denver hit +8° early on the 10th, and many mountain areas fell far below zero.

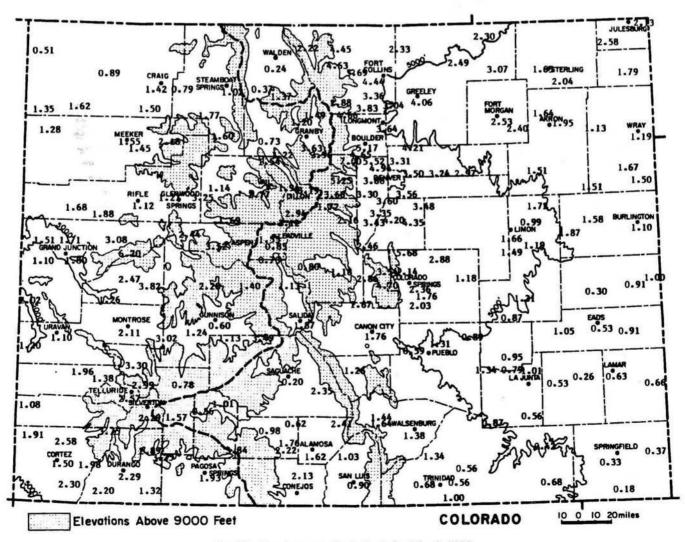

- 11-16 Warmer temperatures returned statewide. Low elevation temperatures were back in the 60s and 70s each day 12-16th quickly melting the remaining snow.
- 17-19 Much cooler weather for Colorado as Canadian air slipped down across the Eastern Plains and a cold low pressure trough crossed the mountains. No major storms developed, but several inches of new snow fell in many parts of the mountains. Some light rain, snow and fog dampened the Front Range.
- 20-25 Unsettled changeable spring weather. Warmer on the 20th. Colder again on the 21st with developing snow in the mountains and along the Front Range. Precipitation was generally light, but Bailey recorded 6" of new snow. Cool and breezy on the 22nd. A new disturbance crossed the mountains 23-24th delivering several inches of snow. Skies cleared on the 25th but northwesterly winds were brisk in some areas.
- 26-28 A storm off the southern California coast lifted northeastward and brought a new surge of moisture to parts of Colorado. Dry and mild on the 26th, but clouds and moisture reached southwestern Colorado on the 27th. Significant rain and snow developed quickly overnight. By noon on the 28th Denver had recorded 1.11" of rain. Cedaredge and Paonia also received an inch or more of moisture from a rain/snow mixture. Mountain snows were substantial with 6-15" totals in many areas from Wolf Creek Pass to Winter Park. The Mount Evans Research Station totalled 19 inches.
- 29-31 Clearing 29th but still unsettled. Some moisture snuck into extreme southern Colorado 30-31st from a storm over southern California. A strong Canadian cold front then pushed rapidly southward across much of the State on the 31st and triggered some light upslope precipitation along the Front Range generally less than 0.10".

Weather Extremes

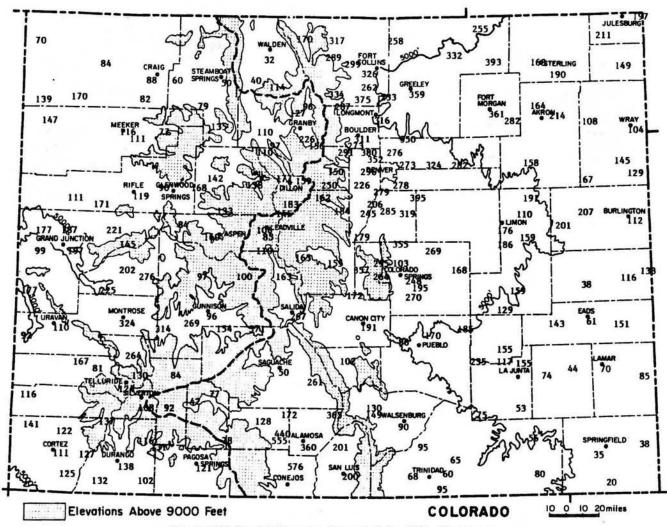
Highest Temperature	81°	March 2	Holly
Lowest Temperature	-19°	March 10	Taylor Park Dam
Greatest Total Precipitation	7.00"		Coal Creek
Least Total Precipitation	0.18"		Campo 7S
Greatest Total Snowfall	73.0"		Bonham Reservoir
Greatest Depth of Snow on Ground	76"	March 24	Bonham Reservoir
Greatest Depth SCS Snowcourse	91"	March 30	Upper San Juan


MARCH 1992 TEMPERATURE COMPARISON

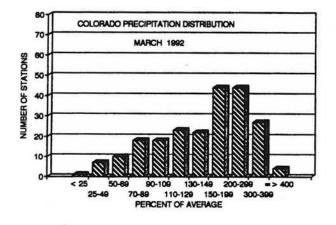
Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)


MARCH 1992 PRECIPITATION

Three major storms, March 3-5th, 8-9th and 28th all followed similar paths across Colorado and accounted for the majority of March precipitation statewide. Scattered, lighter precipitation fell daily throughout the last two weeks of March. Precipitation March 4-5 averaged 0.57" statewide. This single storm dropped more than 3 million acre-feet of water on Colorado, enough to totally fill Blue Mesa Reservoir more than three times.


COLORADO DAILY PRECIPITATION - MAR 1992

(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

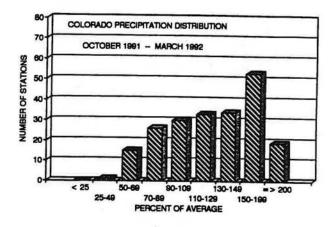


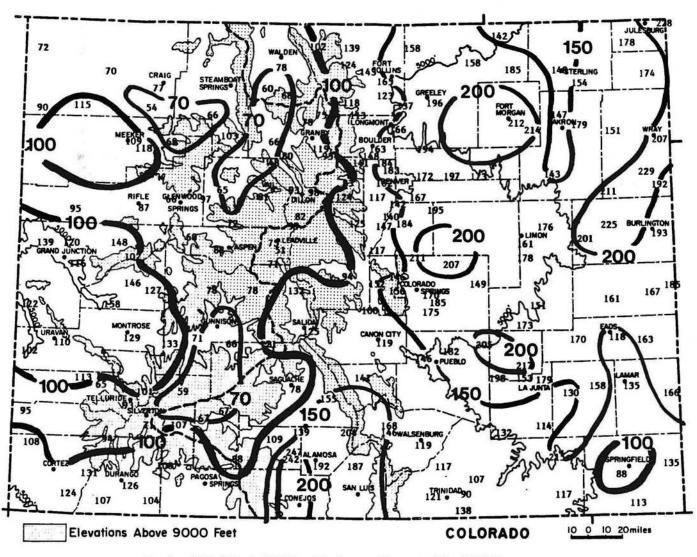
Precipitation Amounts (in inches) for March 1992.

MARCH 1992 PRECIPITATION COMPARISON

March 1992 Precipitation as a Percent of the 1961-90 average.

Roughly 75% of Colorado received more March precipitation than average. About 1/3 of the State reported more than 200% of average. Boulder's 5.17" monthly total established a new record for March. Fort Collins and Greeley each had their second wettest March on record, second only to March 1990.


MARCH 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES


Station	Precip.	Rank
Denver	3.50"	2nd wettest in 121 years of record (wettest = 4.56" in 1983)
Durango	2.29"	30th wettest in 98 years of record (wettest = 4.87 " in 1938)
Grand Junction	1.71"	9th wettest in 101 years of record (wettest = 2.36 in 1912)
Las Animas	0.53"	53rd wettest in 126 years of record (wettest = 3.06" in 1973)
Pueblo	1.31"	15th wettest in 124 years of record (wettest = 3.06" in 1905)
Steamboat Springs	1.02"	10th driest in 87 years of record (driest = 0.49 " in 1910)

1992 WATER YEAR PRECIPITATION

The abundant March precipitation improved the 1992 water supply outlook for much of Colorado. Dry areas persist in some of the mountains and over limited areas of northwest Colorado, but these areas retreated in March. March precipitation especially helped the South Platte River Basin.

Most of the Eastern Plains continue to enjoy very good early moisture. For the first 6-months of the 1992 water year, all of the Plains are wetter than usual except the immediate Springfield area which is just slightly below average. The majority of the Eastern Plains now stand between 160% and 225% of average. This is excellent for most agricultural activities. The San Luis Valley has also been much wetter than normal. However, these conditions can change rapidly during the next few months as we move into what is normally the wet season for areas east of the Continental Divide.

October 1991-March 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR MARCH 1992

	Heating	Degree	Data					Color	ado Cl	imate	Center	(303)	491-8	1545		Heating	Degree	e Data					Color	ado Cl	imate (Center	(303)	491-8545	
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN	STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN AN	IN
ALAMOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990 1263	1457 1597 1849	1519 1671 1963	1081	1035 954 1093	732 742	453 410	165 172		GRAND LAKE 6SSW		214 264 220	264 268 255	468 350 427	774	1128 1071 1169	1473 1605 1468	1593 1668 1735		1318 1233 1118	951 979	654 615	384 1059 330 1030 848)5
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964 1106	1339 1462 1369	1376 1444 1410	1162 1013 1124	1116 1077 980	798 811	524 432	262 224	8850 8593 7150	GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	723	1128 1309 1011	1240 1246 1088	946 741 724	856 692 665	522 492	238 159	52 644 11 590 499	11
BOULDER	AVE 90-91 91-92	0 32 17	6 13 7	130 81 121	357 338 403	714 589 831	908 1161 911	1004 1081 901	804 667 700	775 685 664	483 511	220 211	59 44	5460 5413 4555	GUNNISON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	771	1119 1059 1120	1590 1664 1597	1714 1787 1707	M	1231 M 940	816 M	543 M	276 1012 249 788	M
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 N	577 641 580	936 905 1056	1184 1326 1265		1025 896 1048	983 983 901	720 771	459 472		7734 7879 H	LAS ANIMAS	AVE 90-91 91-92	0 4 1	0 0 3	45 21 59	296 308 350	729 624 896		1101 1113 943	820 667 712	698 602 539	348 352	102 81	9 514 0 499 446	22
BURL INGTON	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 N 903	1017 1249 1004	1110 1223 1021	871 688 751	803 737 639	459 438	200 136	38 1	5743 N 4913	LEADVILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538			1556				1038 1068	726 714	439 1087 449 1095 873	53
CANON	AVE* 90-91 91-92	0 14 8	10 12 0	100 58 105	330 382 379	670 548 800	870 1098 945	950 1004 870	770 626 688	740 679 604	430 459	190 182	40 26	5100 5088 4399	LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503		1280		960 779 827	936 820 734	570 592	299 245	100 653 38 637 552	70
COLORADO SPRINGS	AVE 90-91 91-92	8 28 16	25 21 16	162 83 145	440 473 453	819 663 954	1042 1256 1048	1122 1142 998	910 750 788	880 773 717	564 568	296 219	78 33	6346 6009 5135	LONGHONT	AVE 90-91 91-92	0 24 12	11 6	162 101 133	453 481 489		1082 1284 1047	1249	938 740 786	874 699 730	546 520	256 186	78 643 28 605 526	50
CORTEZ	AVE* 90-91 91-92	5 1 13	20 6 8	160 151 161	470 539 423	774	1150 1321 1227	1364	950 879 892	850 882 744	580 702	330 335	100 113	6665 7067 5725	MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406 1367	1345 1458 1490	1086 1047 1025	998 939 758	651 696	394 358	164 771 110 756 644	53
CRAIG	AVE 90-91 91-92	32 14 27	58 18 13	275 116 230	608 606 582	996 876 1080	1342 1547 1517	1544	1193 1095 1078	1094 995 809	687 693	419 398	193 127	8376 8029 6892	MONTROSE	AVE 90-91 91-92	000	10 3 0	135 81 135	437 470 404	837 804 901	1159 1385 1312	1218 1460 1385	941 974 911	818 768 683	522 571	254 268	69 640 49 683 573	53
DELTA	AVE 90-91 91-92	000	0 2 2	94 58 88	394 416 383	813 751 832	1135 1400 1302	1197 1549 1486	890 998 874	753 742 625	429 512	167 170	31 26	5903 6624 5592	PAGOSA SPRINGS	AVE 90-91 91-92	82 44 44	113 108 37	297 177 289	608 608 568	981 910 1116	1538	1380 1432 1477	1123 1038 1087	1026 1002 899	732 767	487 489	233 836 227 834 687	60
DENVER	AVE 90-91 91-92	0 12 6	0 3 4	135 64 118	414 388 449	789 623 902	1209	1101 1143 1022	879 684 714	837 682 673	528 510	253 174	74 16	6014 5508 4870	PUEBLO	AVE 90-91 91-92	0 1 1	000	89 34 76	346 360 380	744 610 927	998 1243 1014	1091 1116 958	834 730 759	756 667 608	421 406	163 103	23 546 3 527 472	73
DILLON	AVE 90-91 91-92	273 284 316	332 355 321	513 430 521	806 858 788	1071	1435 1587 1447	1569	1220	1296 1257 1144	972 1031	704 691		10754 10778 8570	RIFLE	AVE 90-91 91-92	6 0 1	24 4 1	177 69 143	499 474 475	876 824 906	1249 1433 1185	1321 1462 1283	1002 964 804	856 814 660	555 605	298 265	82 694 52 696 545	56
DURANGO	AVE 90-91 91-92	946	34 28 2	193 118 152	493 481 379			1274	958 842 935	862 919 745	600 619	366 364	125 125	6848 6979 5643	STEAMBOAT SPRINGS			140 E 110 141	370 255 394	700		1430 1683 1626				780 851	510 518	270 921 262 947 783	77
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934 972	1407 1568 1358		1148 1052 970	1014 889 809	705 693	431 355	171 99	8377 7881 6299	STERLING	AVE 90-91 91-92	0 17 5	6 7 1	157 68 92	462 437 437	876 725 930	1163 1359 1028	1274 1244 1191	966 713 731	896 716 645	528 466	235 173	51 661 8 593 506	33
EVERGREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 968	1135 1330 1078	1199 1244 1123	1011 937 939	1009 885 887	730 727	489 430		7827 7569 6128	TELLURIDE	AVE 90-91 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972 1013		1339 1351 1291		1141 1093 946	849 828	589 486	318 916 293 859 684	22
FORT COLLINS	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	846 690 891	1073 1284 1002	1181 1212 1029	930 747 736	877 703 681	558 508	281 203	82 41	6483 5947 4953	TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654 876	973 1160 1004	1051 1048 946	846 697 774	781 709 642	468 462	207 156	35 554 12 528 473	58
FORT HORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	867 730 947	1156 1343 1025	1248	969 750 756	874 722 652	516 489	224 180	47 8	6520 5979 5108	WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	794	1028	1457 1550 1422	1459	1105	1277 1164 1025	915 931	642 587	351 1046 300 971 807	10
GRAND JUNCTION	AVE 90-91 91-92	0 0 0	0 0 2	65 28 37	325 360 304	759	1138 1370 1193	1464	882 919 788	716 706 608	403 478	148 136	19 18	5683 6238 5137	WAL SENBURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543 818	924 1047 915	989 985 870	820 646 717	781 674 634	501 437	240 141	49 550 23 488 439	13
	* = A\	ES AD.	USTED	FOR S	TATION	MOVES	0	M	= MISS	ING	E	= EST	IMATED	6		• = A	VES AD	JUSTED	FOR ST	ATION	MOVES		H	= MISS	ING	E	• EST	IMATED	

MARCH 1992 CLIMATIC DATA

EASTERN PLAINS

			Tempera	ture			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days
NEW RAYMER 21N	50.9	26.2	38.5	4.9	69	10	811	0	81	2.30	1.40	255.6	8
STERLING	58.7	29.2	44.0	6.4	75	13	645	0	171	1.65	0.64	163.4	6
FORT MORGAN	57.3	30.3	43.8	5.6	73	8	652	0	143	2.53	1.83	361.4	6
AKRON FAA AP	53.9	29.2	41.6	4.7	69	12	718	0	109	1.64	0.64	164.0	3
AKRON 4E	54.7	29.0	41.9	5.5	69	12	710	0	123	1.95	1.04	214.3	8
HOLYOKE	56.3	29.3	42.8	3.7	74	12	681	0	140	1.79	0.59	149.2	8
JOES	57.5	29.9	43.7	5.2	74	9	654	0	151	1.51	0.61	167.8	5
BURLINGTON	57.5	30.7	44.1	4.6	72	12	639	0	143	1.10	0.12	112.2	4
LIMON WSMO	53.5	28.6	41.1	4.6	66	13	734	0	93	1.66	0.72	176.6	8
CHEYENNE WELLS	60.5	29.0	44.7	4.5	75	13	623	0	175	0.91	0.13	116.7	7
EADS	59.9	30.7	45.3	3.6	75	16	604	0	179	0.53	-0.33	61.6	3
ORDWAY 21N	60.4	27.6	44.0	5.5	75	15	645	0	182	0.87	0.20	129.9	8
ROCKY FORD 2SE	63.8	29.1	46.5	3.6	74	17	566	0	221	0.79	0.12	117.9	8
LAMAR	64.8	24.9	44.9	1.8	80	9	616	0	251	0.63	-0.27	70.0	5
LAS ANIMAS	64.1	30.7	47.4	3.7	80	16	539	0	234	0.53	-0.18	74.6	7
HOLLY	65.2	29.5	47.4	5.9	81	15	541	0	244	0.66	-0.11	85.7	7
SPRINGFIELD 7WSW	63.4	31.0	47.2	4.8	76	13	543	0	217	0.33	-0.61	35.1	9
TIMPAS 13SW	60.4	30.7	45.5	4.3	73	18	595	0	181	0.87	-0.28	75.7	5

FOOTHILLS/ADJACENT PLAINS

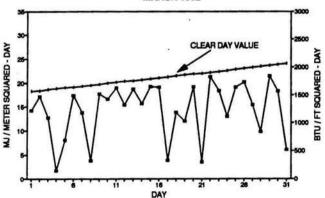
			Tempera	ature			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	# days
FORT COLLINS	55.3	30.4	42.8	4.5	67	10	681	0	104	4.44	3.08	326.5	10
GREELEY UNC	55.6	30.9	43.2	2.9	70	5	665	0	119	4.06	2.93	359.3	7
ESTES PARK	47.5	23.7	35.6	2.6	57	8	905	0	22	2.88	2.02	334.9	6
LONGMONT 2ESE	55.4	27.0	41.2	3.3	73	-1	730	0	122	3.64	2.49	316.5	6
BOULDER	54.8	31.8	43.3	3.8	65	13	664	0	104	5.17	3.51	311.4	14
DENVER WSFO AP	55.3	30.7	43.0	4.0	67	8	673	0	110	3.50	2.22	273.4	10
EVERGREEN	50.7	21.7	36.2	3.2	60	4	887	0	58	3.30	1.84	226.0	8
CHEESMAN	51.9	19.5	35.7	1.6	62	0	899	0	68	2.46	1.09	179.6	8
LAKE GEORGE 8SW	43.4	12.5	28.0	1.3	59	- 13	1139	0	6	1.18	0.42	155.3	9
ANTERO RESERVOIR	42.1	11.5	26.8	2.9	51	-3	1177	0	1	0.80	0.31	163.3	7
RUXTON PARK	41.6	11.5	26.6	1.1	54	-1	1185	0	7	4.70	2.92	264.0	11
COLORADO SPRINGS	53.5	29.7	41.6	4.4	64	16	717	0	91	2.36	1.41	248.4	10
CANON CITY 2SE	59.0	31.6	45.3	4.6	70	17	604	0	153	1.76	0.84	191.3	5
PUEBLO WSO AP	61.0	29.2	45.1	3.4	73	18	608	0	187	1.31	0.54	170.1	10
WESTCLIFFE	46.0	17.9	32.0	-0.1	56	2	1015	0	9	1.26	0.03	102.4	7
WALSENBURG	58.2	30.4	44.3	3.5	67	13	634	0	140	1.38	-0.15	90.2	11
TRINIDAD FAA AP	60.4	27.6	44.0	3.0	73	14	642	0	179	0.56	-0.29	65.9	7

MOUNTAINS/INTERIOR VALLEYS

			Tempera	ature			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	45.4	17.9	31.7	6.3	54	3	1025	0	10	0.24	-0.51	32.0	7
LEADVILLE 2SW	40.7	12.3	26.5	4.5	48	0	1186	0	0	0.85	-0.15	85.0	15
SALIDA	52.0	22.5	37.3	0.8	60	14	854	0	57	1.87	1.17	267.1	5
BUENA VISTA	49.5	21.9	35.7	1.7	57	14	901	0	32	1.13	0.44	163.8	6
SAGUACHE	43.0	18.5	30.7	-2.5	55	5	1054	0	4	0.20	-0.20	50.0	7
HERMIT 7ESE	37.9	6.7	22.3	2.6	45	-5	1319	0	0	0.56	-0.75	42.7	1
ALAMOSA WSO AP	42.6	16.5	29.5	-2.8	54	1	1093	0	5	1.62	1.17	360.0	7
STEAMBOAT SPRINGS	50.7	23.3	37.0	8.7	62	12	863	0	54	1.02	-1.02	50.0	8
YAMPA	43.7	21.4	32.5	4.5	52	2	1001	0	3	1.60	0.42	135.6	11
GRAND LAKE 1NW	44.9	15.5	30.2	5.0	52	-1	1068	0	5	1.49	-0.05	96.8	15
GRAND LAKE 6SSW	42.4	14.7	28.6	5.0	51	-1	1118	0	1	1.20	0.26	127.7	20
DILLON 1E	41.7	14.1	27.9	3.8	50	-5	1144	0	0	1.94	0.85	178.0	16
CLIMAX	36.6	3.0	19.8	0.8	45	-18	1395	0	0	3.12	0.98	145.8	15
ASPEN 1SW	46.3	20.0	33.1	4.6	55	11	980	0	15	3.52	1.32	160.0	16
CRESTED BUTTE	42.6	10.6	26.6	3.9	51	-9	1183	0	1	2.28	-0.06	97.4	12
TAYLOR PARK	39.1	1.8	20.5	2.6	45	-19	1372	0	0	1.40	0.01	100.7	12
TELLURIDE	47.9	20.5	34.2	4.7	57	4	946	0	23	2.57	0.50	124.2	16
PAGOSA SPRINGS	50.9	20.6	35.7	2.8	59	12	899	0	53	1.93	0.34	121.4	11
SILVERTON	43.4	9.9	26.7	2.7	49	-6	1183	0	0	2.29	0.18	108.5	14
WOLF CREEK PASS 1	37.3	14.0	25.7	3.8	45	1	1211	0	0	3.84	-1.08	78.0	17

WESTERN VALLEYS

			Tempera	ture			D	egree D	ays		Precip	itation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm :	# days
CRAIG 4SW	51.3	25.9	38.6	7.2	62	15	809	0	55	1.42	-0.18	88.7	12
HAYDEN	49.5	26.1	37.8	7.4	62	15	835	0	38	0.79	-0.52	60.3	12
MEEKER NO. 2	53.3	27.4	40.3	5.1	65	17	758	0	81	1.55	0.22	116.5	10
RANGELY 1E	55.4	29.5	42.5	6.0	64	20	690	0	107	1.28	0.41	147.1	6
EAGLE FAA AP	52.5	24.9	38.7	4.8	62	17	809	0	73	1.14	0.34	142.5	10
GLENWOOD SPRINGS	54.1	28.8	41.5	3.9	65	18	724	0	92	1.27	-0.13	90.7	11
RIFLE	58.8	28.2	43.5	4.8	70	7	660	0	152	1.12	0.18	119.1	14
GRAND JUNCTION WS	61.0	29.2	45.1	2.0	73	18	608	0	187	1.31	0.40	144.0	10
CEDAREDGE	56.5	27.3	41.9	2.3	69	19	707	0	113	2.47	1.25	202.5	11
PAONIA 1SW	56.2	32.4	44.3	4.5	66	27	637	0	121	3.82	2.44	276.8	12
DELTA	58.1	31.0	44.6	2.8	69	22	625	0	143	1.26	0.70	225.0	8
GUNN I SON	49.5	19.5	34.5	7.5	59	11	940	0	42	0.06	-0.56	9.7	2
COCHETOPA CREEK	49.7	19.3	34.5	7.8	58	10	936	0	36	1.13	0.40	154.8	10
MONTROSE NO. 2	54.5	31.0	42.7	3.2	65	24	683	0	95	2.11	1.46	324.6	11
URAVAN	61.1	32.7	46.9	3.6	74	24	552	0	181	1.10	0.10	110.0	12
NORWOOD	50.4	28.0	39.2	4.4	59	17	791	0	44	1.96	0.79	167.5	6
YELLOW JACKET 2W	52.3	29.1	40.7	4.9	61	18	746	0	62	1.91	0.56	141.5	10
CORTEZ	52.9	28.7	40.8	3.5	64	21	744	0	78	0.30	-1.04	22.4	7
DURANGO	53.4	28.0	40.7	3.0	62	20	745	0	72	2.29	0.64	138.8	11
IGNACIO 1N	52.8	25.9	39.3	3.0	61	15	787	0	65	1.32	0.03	102.3	9

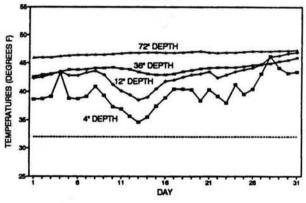

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

MARCH 1992 SUNSHINE AND SOLAR RADIATION

	Num	ber of	Days	Percent Possible	Average % of
	<u>CLR</u>	<u>PC</u>	CLDY	Sunshine	Possible
Colorado Springs	6	9	16		
Denver	7	8	16	60%	69%
Fort Collins	3	14	14		
Grand Junction	5	8	18	65%	64%
Limon	5	8	18		
Pueblo	7	9	15	76%	74%

CLR = Clear PC = Partly Cloudy CLDY= Cloudy

Solar energy reaching the ground was only a little less than average in March, but clear days were a rare commodity.

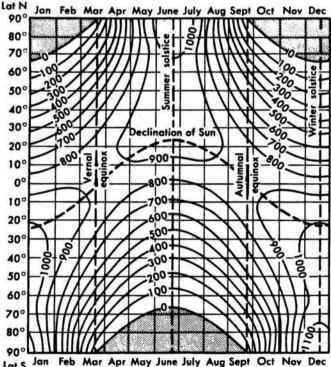


FT. COLLINS TOTAL HEMISPHERIC RADIATION MARCH 1992

MARCH 1992 SOIL TEMPERATURES

March soil temperatures got off to a very warm start but then retreated to more normal levels following the early March blizzard. After the snow melted, the spring warmup then continued.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.


FORT COLLINS 7 AM SOIL TEMPERATURES MARCH 1992

HATS OFF TO: Bob Florian of Akron, Colorado

There are only a handful of Colorado citizens who can come close to matching what Mr. Florian has done as a cooperative weather observer. Bob has taken most of the weather observations out at the Central Great Plains Research Center 4 miles east of Akron since 1954. Thanks alot, Bob!!

If there were no clouds and no atmosphere, it would be a very easy thing for us to figure out how much energy we were receiving from the sun here in Colorado. We wouldn't even need to measure it. By knowing the amount of energy emitted from the sun, which we do with a fairly high degree of accuracy, it is possible to compute the amount of energy that reaches the earth. As long as the sun's output is constant (in truth, it isn't, but the variations are small relative to the overall output), the energy which reaches the top of our atmosphere is simply a function of our distance from the sun and our position on the earth. Our position, in turn, is just a geometric function of the time of year and time of day. If you can deal with sines and cosines and one or two tangents and maybe a pi or two, you can calculate this energy. Scientists refer to this as extraterrestrial solar radiation - ETR for short.

Over the surface of the earth, ETR is distributed approximately as shown in the following graph. Near the equator, there is only a minor seasonal fluctuation in solar energy as the sun migrates north and again back to the south but remains mostly overhead. At the poles the changes are much more dramatic. During the month of April, the incoming solar radiation near the North Pole doubles every few days as the sun climbs steadily above the horizon.

Lat S

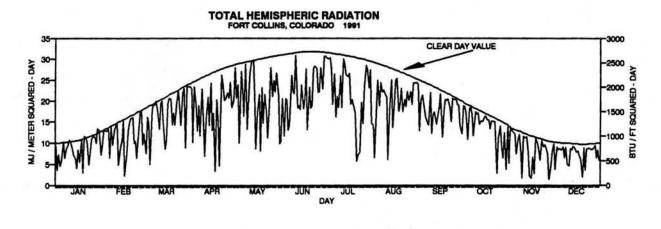
Solar energy at the top of the atmosphere on a horizontal surface as a function of latitude and date (cal/cm²/day).

But life is never simple. We have an atmosphere thankfully. It scatters, reflects and absorbs a portion of the incoming solar radiation. Depending on the clearness of the air, the length of the path the sun must make through the atmosphere and factors like how much ozone and water vapor

are in the air, anywhere from 60% to 85% of the extraterrestrial radiation reaches the earth's surface on clear days. The line labelled "Clear Day Value" which we show on the Fort Collins solar radiation graph each month in Colorado Climate, has been found by experience to be about 72% to 75% of the extraterrestrial radiation (ETR) and varies a little through the year. For example, clear days in the autumn typically receive a higher percentage of the ETR than clear summer days since the total water vapor in the atmosphere declines from summer to fall here.

Elevation is a factor in determining what percent of ETR reaches the surface. Percentages tend to be lower at low elevations and higher at higher elevations for the obvious reason that more solar energy is absorbed, scattered and reflected the deeper into the atmosphere that it penetrates. Near Alamosa, for example, the clear day solar radiation is between 74% and 78% of ETR. Above elevations of 9000 feet, clear day radiation probably exceeds 80% of ETR. We have no baseline solar measurements at high elevations above timberline here in Colorado, but at those elevations solar energy may approach 85% of ETR.

Atmospheric water vapor (water in gaseous form that is not condensed to form cloud layers) is another variable contributing to variations in solar energy reaching the earth's surface since it absorbs a small amount of the incoming radiation. Also, when more vapor is present in the air, some of the moisture collects on dry particles in the air making those particles more effective light scatterers. Therefore, clear-day solar radiation reaching the ground is slightly lower when the moisture is greater in the atmosphere. The atmosphere over Colorado is normally quite dry, but moisture patterns change through the year. In winter, atmospheric water vapor is often greatest west of the mountains. During the summer, water vapor is consistently greatest east of the mountains. As a result, on a clear day in July, more solar radiation is likely to reach the ground at Grand Junction than at Flagler. In the winter, the reverse occurs.


Having an atmosphere complicates the distribution of solar radiation that the earth receives. But if every day was a clear day, our solar radiation would still be fairly predictable. The real challenge is clouds. On most days of the year, even here in "sunny" Colorado, there are some clouds. Depending on the extent, thickness, liquid water content, height above ground, and the angle to the sun, clouds reflect and absorb varying amounts of solar radiation. On some cloudy days, as much as 80% to 90% of the clear-day radiation makes it to the ground. On those days, the cloud bases are typically quite high above the ground and the clouds themselves are thin enough that some direct sunlight penetrates through them. On such days, we can easily get sunburns. But on days when clouds are thick, contain considerable liquid water, and have solid, low bases not far above the surface, as little as 10% of the clear-day radiation reaches the ground.

Even if we knew all the characteristics and frequencies of clouds in every region of Colorado, it would still be very difficult to estimate solar radiation. Only a handful of weather stations in Colorado evaluate cloud conditions daily (see **Colorado Climate**-October 1986). No direct measurement of cloud thickness is made, so only approximate estimates of solar radiation can be made using just cloud data.

Day to day changes in solar radiation are dramatic throughout the year as you see in the example below. But over the course of a month, solar energy tends to converge toward fairly stable and consistent averages.

Fortunately, actual measurements of daily solar energy have been made during the past two decades at a few locations in Colorado. Some of the earlier solar energy measurements from the 1970s and early 1980s were published in a 1983 Colorado Climate Center report entitled "Colorado Solar Radiation Data with Supplemental Climatic Data." Copies of this report are still available at a cost of \$6.00 (which includes postage and handling). More recently, the Joint Center for Energy Management's WTHRNET system has now collected about 4 years of additional data from previously unmonitored locations primarily over western Colorado. Combining these sources, a fairly accurate picture of regional solar energy resources in Colorado can now be pieced together.

Next month we will conclude this series on Colorado solar energy by summarizing and comparing seasonal patterns of solar energy over various regions of Colorado.

A Storm to Remember – March 8-9, 1992

Meteorologists, watching a storm system moving slowly eastward from California while at the same time observing a sharp cold front poised north of Colorado ready to drop south at anytime, knew more than two days in advance that a dramatic change in the weather was likely to occur over parts of Colorado on March 8. But the change was even more dramatic than expected. Within the span of less than an hour, a mild, springlike day changed into a frightening blizzard from the northern and central mountains northeast to the Front Range urban corrider and northeastern plains.

The timing and location of the developing storm could not have been worse for Colorado travelers. It hit like a brick right about dinner time on Sunday evening as thousands of Coloradans were beginning their drives home after weekend outings and ski trips. In a very short time, driving conditions deteriorated from normal to nearly impossible as a combination of strong northerly winds and very intense, swirling, dense wet snow dropped visibilities to near zero, covered highways and literally broke windshield wipers that could not keep up with the accumulation. From Larimer and Weld Counties south to Monument and then west into the mountains, snow fell at rates of 2 to 4 inches per hour during the first few hours of the storms. Widespread lightning and thunder accompanied that portion of the storm and shocked residents. Trees and powerlines gave way to the strain leaving perhaps hundreds of

thousands of people in the dark. At a minimum, several hundred and perhaps even a few thousand motorists were stranded overnight along I-25, I-70 and the Boulder Turnpike. Many spent the night in their cars.

By midmorning of the 9th, the storm was over, and by afternoon bright sunshine helped quickly melt the snow from most streets and highways. But for the thousands of motorists who spent as long as 24 hours trying to drive from the mountains to their Front Range homes, this storm will stick in their minds for a long, long time. My guess is that next year, a lot more people will take our Colorado spring blizzard threat a little more seriously.

March 8-9, 1992 Snowfall Totals

Akron	3.0"	Limon	3.2"
Boulder	16.3"	Longmont	15"+
Buckhorn Mountain	25.3"	Monument	21.0"
Coal Creek	25.5"	Mount Evans	
Colorado Springs	1.4"	Research Center	25.0"
Denver Stapleton	12.4"	Pueblo	0.2"
Dillon	5.5"	Ralston Reservoir	21.0"
Fort Collins	16.7"	Red Feather Lake	18.0"
Grand Junction	Trace	Wheat Ridge	17.8"
Greeley	13.0"		

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

The Importance of Flying a Kite

Science has always strived to soar higher and higher, but lately, it has been going up with a kite. Today, research is actually using kites to explore the high altitudes of the earth's atmosphere. Kites are gathering information on temperature, radiation, ozone and other important factors accurately with minimal cost. In fact, the Cooperative Institute for Research in Environmental Studies (CIRES) based at the University of Colorado Boulder is a proponent of kite based research. A recent study by B.B. Balsley et al has shown the effectiveness of kites as stable platforms for measurements and might help to remind us all to bring our kites out of closet more often.

Kite flying has been an important scientific tool for over 200 years. Everyone knows about Benjamin Franklin's famous kite flight to study electricity, but few people know that kites were used in the 1750's to fly thermostats into the atmosphere to explore the atmosphere temperatures. Around the turn of century, there were actually 17 meteorological kite stations east of the Rocky Mountains funded by the U.S. Weather Bureau. But, kites, as scientific devices, became obsolete after the First World War. The establishment of the airplane and improvements in balloons seemed to doom the kite to a mere hobby.

Today, it appears that like the kite is coming out of closet more often than on the occasional windy Sunday. Kevlar-based cords with mylar and carbon fiber support materials have made kites capable of flying higher and longer. The kite is also becoming more popular because of the ability of a kite to stay relatively stationary. Balloons are susceptible to winds and tend to float over a range of altitudes. Planes can upset the parameters to be studied, but a kite can be set to a certain altitude and a small area without seriously disturbing the surroundings.

Before you start running out to buy more kite string, there are a few restrictions to kite experimentation that you should know. First, the areas of interest are at altitudes above one and a half miles. Most kite stores do not carry that much string!. Secondly, stability of the experiment is dependent on upper-level winds. If you do not have a previous knowledge of the general upper-level wind trends, one good downburst could bring the kite and the miles of string down to earth at once. Finally and most importantly, the FAA does not allow kite flights above 300 meters in areas of air traffic without prior, difficult to get approval. The only areas that are free from these restrictions are Antarctica and the tropical Pacific Basin, but everyone already knows how important knowledge of key climate variables in these areas has become.

So, the kite might become another key player in this information age. It has become a very attractive research device because of the stability, accuracy and cost. It is also a great way to get your children excited and training for science at a young age.

This article was written by Erika Komito of the Joint Center for Energy Management. Information on acquiring our weather data can be obtained by writing Carlos Lopez-Alonso at the Joint Center for Energy Management, University of Colorado, Campus Box 428, Boulder, CO. 80309-0428 (phone: 303-492-3915). Dear Subscriber:

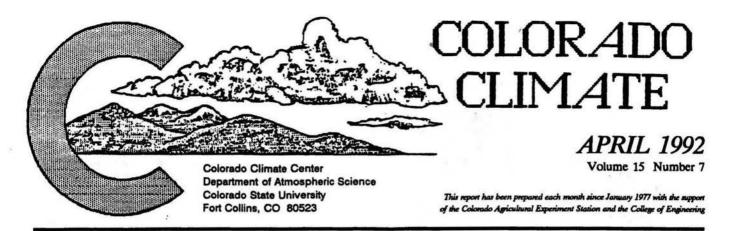
For nearly 15 years the Colorado Climate Center has prepared the report, "Colorado Climate," and distributed it each month free of charge to hundreds of subscribers throughout Colorado. I personally have authored 165 of these reports and am amazed each and every month at the variety and complexity of our climate. I wish I could include a lot more detail, share more research results and conduct many more special studies. (My list of ideas for new research and special education feature stories is getting longer every month.) It would also be great if we could get the summary mailed out to you sooner each month. Unfortunately, we are limited in many ways, and those limits seem to be getting tighter each year.

Despite various limits, we hope to continue to produce a reliable and informative monthly report that can serve as accurate historical documentation of Colorado's unique and variable climate. We would like to continue to provide this information at no charge to educators, researchers, businesses, agencies and any other organizations and individuals who may benefit from a better knowledge of our climate.

Please take the time to fill out this response form. It is imperative that we limit our distribution of "Colorado Climate" to those who truly take interest in this information. We also want to do as much as we can to improve our publication to meet your needs. Please understand, however, that the historical nature of our work will always limit the potential timeliness of this report. The earliest that a complete monthly report could be written and distributed is about **four weeks** after the end of each month. Only with considerable change in data accessibility, staffing, printing and mail priority could a near real-time climate summary become possible – all of which seem very unlikely at this time.

Many thanks for your cooperation. We look forward to your reply and will do our best to respond to your comments and suggestions.

Nolan J. Doesken Assistant State Climatologist

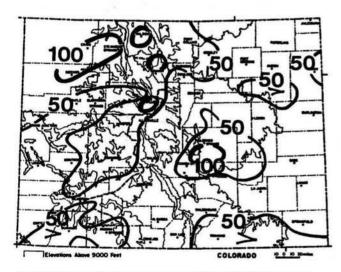

What change(s) would you most like to see in "Colorado Climate"?

What information currently provided could you best do without?

What additional climatic information would you most like to see included?

Suggestions for future topics in the "Special Climate Summary" section:

Other Comments/Suggestions:

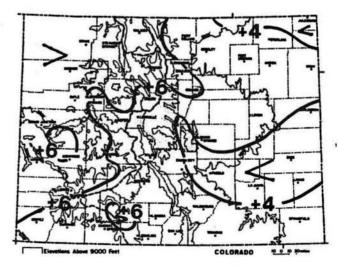


April Climate in Perspective - Dry and Very Warm

One mid-month storm system brought precipitation to most portions of Colorado and helped keep temperatures close to their seasonal averages for about a week. Otherwise, the month was characterized by persisting warmth and lack of moisture. In just one month, water supply projections for the coming summer declined from just a little below average (the April 1 projections) to much below average (May 1 projection) for most watersheds. The month ended with record-shattering temperatures statewide including a 100° reading at Las Animas.

Precipitation

April failed to dish out its normal share of rains and wet snows. With the help of unusually warm temperatures, most of what did fall fell as rain. More than half of the State's



April 1992 precipitation as a percent of the 1961-1990 average.

surface area received less than 50% of the average April precipitation. A number of locations got shut out completely including portions of the Eastern Plains and the San Luis Valley. As usual, there were a few spots that fared much better. A small area from Meeker to Steamboat Springs was above average. Areas south of Colorado Springs and near Grand Lake, Breckenridge and Walden were also slightly on the wet side.

Temperatures

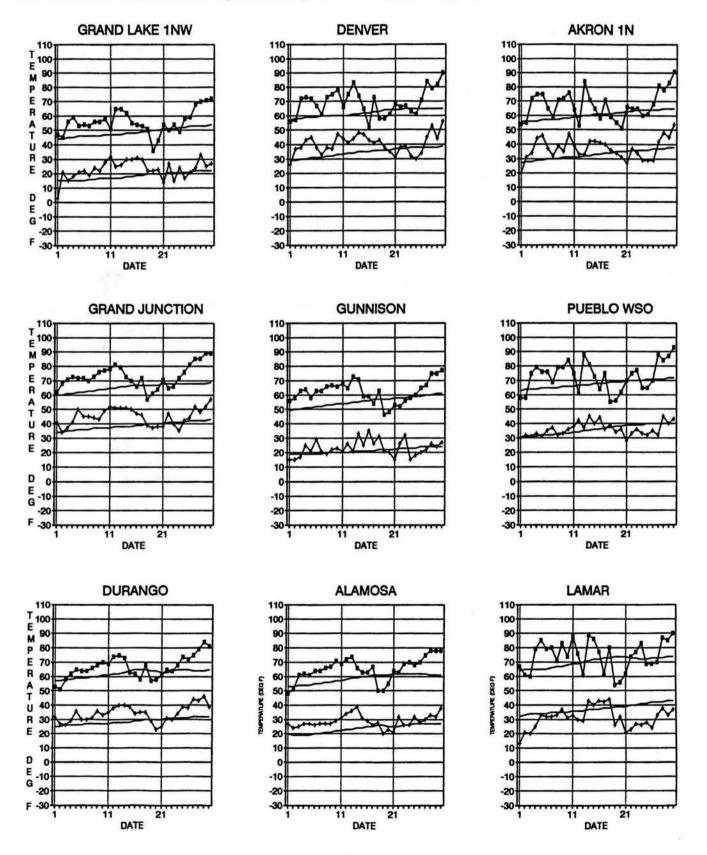
Warmer than usual April weather prevailed during most of the month. The few chilly days here and there had little overall effect on monthly temperatures which ended up far above average statewide. Areas east of the mountains were generally 3 to 6 degrees warmer than average while western Colorado was mostly 5 to 7 degrees warmer. This has been one of the warmest early springs on record for portions of Colorado. For example, at Grand Junction, this is the 4th warmest March-April period this century. The result has been earlier than normal plant development along with an early decline in mountain snowpack. No freezes all month occurred over Colorado's Western Slope fruit orchard areas.

Departure of April 1992 temperatures from the 1961-90 averages.

Inside This Issue

April 1992 Daily Weather 2 April 1992 Temperature Comparison 3 April 1992 Precipitation 4	Comparative Heating Degree Day Data
April 1992 Precipitation Comparison 5 1992 Water Year Precipitation 6	How much do we get? 10

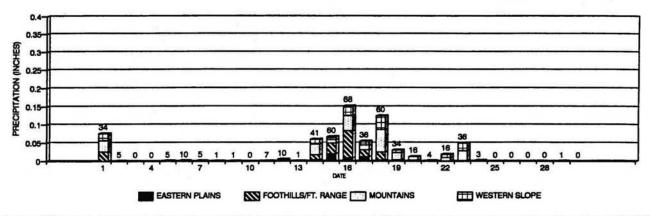
APRIL 1992 DAILY WEATHER


- 1-4 Rain and snow ended early over extreme southern Colorado. Wolf Creek Pass ended up with 11" of new snow. Eastern Colorado residents awoke to the coldest morning in April with morning lows on the 1st near or below 20°F. It was still seasonally cool on the 2nd with a few trace showers early in the day. Sunshine and very warm temperatures then took over statewide for the 3rd and 4th. Low elevation temperatures climbed into the 60s and 70s (Lamar hit 85° on the 4th) while 50s were common in the mountains.
- 5-7 A disturbance from the west triggered some brief spring thunderstorms on the 5th. A skier was killed by lightning at Vail. Precipitation was very meager, however, and temperatures remained well above average through the period. The exception was the northeastern plains where cooler air from the north returned local temperatures to near average 5-6th.
- 8-12 Westerly winds aloft brought a very mild and dry period to most of Colorado. Western Slope temperatures were ten or more degrees above average each day, and low elevation temperatures statewide reached into the 70s each day. Much colder air was poised just north and east of Colorado and eventually wedged southward helping to trigger a few scattered thunderstorms on the 11th. Fog and low clouds were observed early on the 12th across northeast Colorado, and temperatures only barely reached the low 50s across the Eastern Plains that day.
- 13-16 Temperatures skyrocketed into the 80s across the plains on the 13th as a low pressure area developed over the State. Clouds spread into western portions of Colorado during the day with a few showers by evening. The first precipitation episode of the month then spread across the State 14-16th. No cold air accompanied the storm, so snow was limited to the highest elevations of the mountains. The storm was not well organized for this time of year so precipitation was fairly light. A few strong but localized thunderstorms developed on the 15th. The heaviest rain and high-mountain snow fell near Pikes Peak on the 15th and over a small portion of northcentral Colorado early on the 16th. More than an inch of moisture fell at Fountain and Fort Carson while Fort Collins measured 0.94" and Grand Lake 0.98" on the 16th.

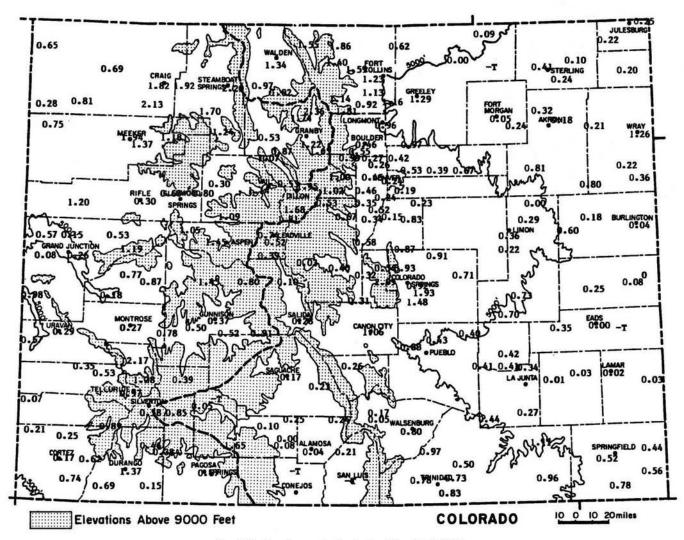
- 17-19 A strong Pacific disturbance dropped down from the northwest creating a deep low pressure area over Colorado on the 17th. Grand Junction's sea level pressure dipped to 29.20", the lowest they have seen in several years. Mountain snows developed and were accompanied by a brief return to winterlike temperatures in the high country. The heaviest snows fell late on the 17th and on the 18th and were accompanied by plenty of wind. Six or more inches of snow fell over many mountain areas. High temperatures 18-19th in the mountains only advanced into the 20s and 30s. Low elevation precipitation didn't amount to much, and strong westerly downslope winds east of the mountains helped keep temperatures from getting too cold.
- 20-23 The storm that crossed Colorado slowed as it moved out onto the plains and brought a surprise heavy snowstorm to eastern Nebraska 20-21st. Colorado saw a return to sunshine, but brisk winds and chilly temperatures were a reminder of the storm to our east. Then a new, fast moving storm raced across the Rockies 22-23rd. A few thunderstorms erupted on the 22nd, and a period of moderate to heavy precipitation fell over portions of the northern mountains. Steamboat Springs recorded 0.82" of moisture and 2" of wet snow.
- April ended with dry weather. Temperatures were 24-30 seasonal 24-25, and the morning of the 26th brought the last frost or freeze of the spring to many lowelevation areas east of the mountains. Then a major spring heatwave began that by the end of the month brought record high temperatures to many locations in the State. Grand Junction surpassed the 80degree mark each of the last 5 days of April and hit 89° on both the 29th and 30th. Denver reached 90° for a high temperature on the 30th, the earliest 90° reading in their 121 year weather history. Even in the mountains, temperature records were shattered as the mercury soared to near 70° in the day with lows only near 32°F. This allowed a too early start to the mountain snowmelt season. Las Animas laid claim to the Colorado sizzler award with a 100° reading on the 30th. This is only the second time the 100° mark has ever been hit. The first time was April 21, 1989 - also at Las Animas.

Weather Extremes

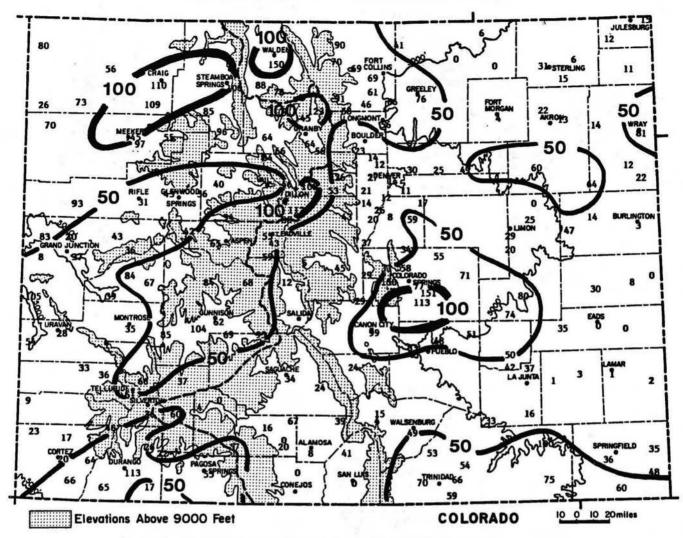
Highest Temperature	100°	April 30	Las Animas
Lowest Temperature	-4°	April 2	Climax
Greatest Total Precipitation	2.99"	1 080 C 196 7 296 7	Ruxton Park
Least Total Precipitation	0.00" or Trace		Creede, Brandon, New Raymer,
			Manassa, Monte Vista, Eads,
			Briggsdale, and other locations
Greatest Total Snowfall	29.0"		Climax
Greatest Depth of Snow on Ground	72"	April 1	Wolf Creek Pass 1E


Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

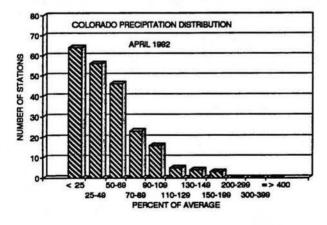
APRIL 1992 PRECIPITATION


April precipitation statewide averaged only about 0.65", less than half of what typically falls. The episode from the 14th to the 19th accounted for the vast majority of the month's total. Particularly noteworthy was the lack of signif-

icant moisture out on the Eastern Plains. This comes at a time when winter wheat begins to require water at a rapidly increasing rate.


COLORADO DAILY PRECIPITATION - APR 1992

(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)



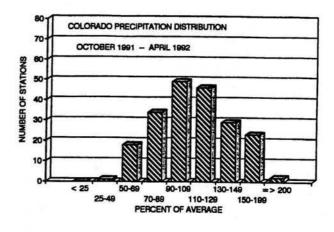
Precipitation Amounts (in inches) for April 1992.

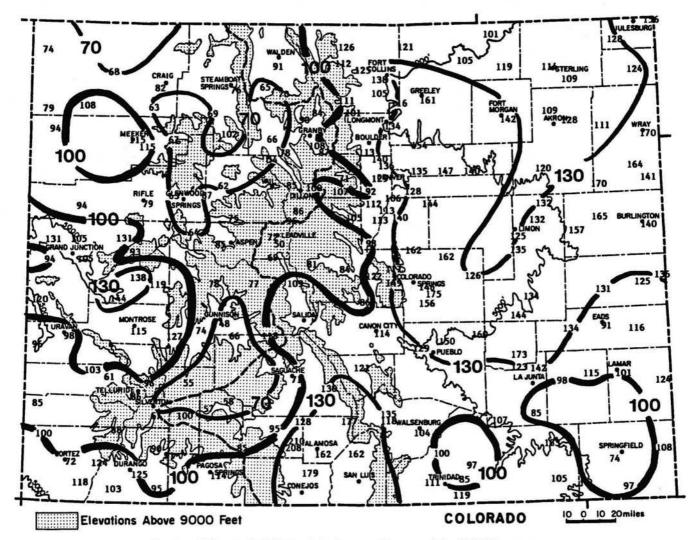
APRIL 1992 PRECIPITATION COMPARISON

April 1992 Precipitation as a Percent of the 1961-90 average.

Approximately 90% of Colorado received below average precipitation in March with most areas receiving less than 70% of their average. This makes a dramatic contrast with March 1992 when most of the State was very wet. On the Eastern Plains, most areas experienced one of their 10 driest Aprils in the past 100 years.

APRIL 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES


Station	Precip.	Rank
Denver	0.53"	10th driest in 121 years of record (driest = 0.03 " in 1963)
Durango	1.37"	37th wettest in 98 years of record (wettest = 5.54 [*] in 1926)
Grand Junction	0.15"	9th driest in 101 years of record (driest = 0.05 " in 1939)
Las Animas	0.01"	tied for 3rd driest in 126 years (driest < 0.01 " in 1899 and 1963)
Pueblo	0.43"	29th driest in 123 years of record (driest < 0.01" in 1878 and 1963)
Steamboat Springs	2.20"	40th wettest in 87 years of record (wettest = 5.13 " in 1920)


1992 WATER YEAR PRECIPITATION

The driest areas of Colorado in April happened to coincide with many of the areas that had enjoyed above average moisture earlier in the 1992 water year. The result is that precipitation departures from average are decreasing and the statewide distribution of precipitation is taking on the appearance of a "normal" or bell-shaped curve. Surface soil moisture is quickly declining on the Eastern Plains, but water year precipitation totals are still above average everywhere except the extreme southeastern counties.

It is important to note that although many areas out on the Eastern Plains had been far wetter than average during the first half of the water year, this only represented 2-4" of surpluses in most areas. Dry spring and summer weather can quickly use up that surplus.

語り

October 1991-April 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR APRIL 1992

.

	Heating	Degree	Data					Color	ado Cl	imate	Center	(303)	491-8	545				Heating	Degre	e Data					Color	ado Cl	imate	Center	(303)	491-8	545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			STATION		JUL	AUG	SEP	OCT	NON	DEC	MAL	FEB	MAR	APR	MAY	JUN	ANN
ALAHOSA	AVE 90-91 91-92	40 59 33	100 118 51	303 201 280	657 633 630	1074 990 1263	1457 1597 1849	1519 1671 1963	1182 1081 1459	1035 954 1093	732 742 535	453 410	165 172	8717 8628 9156	ð.,	đ	GRAND LAKE 655W	AVE 90-91 91-92	214 264 220	264 268 255	468 350 427	775 774 739	1128 1071 1169	1473 1605 1468	1593 1668 1735	1369 1148 1354	1318 1233 1118	951 979 751	654 615		10591 10305 9236
ASPEN	AVE 90-91 91-92	95 134 104	150 146 112	348 234 335	651 652 610	1029 964 1106	1339 1462 1369	1376 1444 1410	1162 1013 1124	1116 1077 980	798 811 660	524 432	262 224	8850 8593 7810			GREELEY	AVE 90-91 91-92	0 14 8	0 2 5	149 62 119	450 450 450	861 723 925	1128 1309 1011	1240 1246 1088	946 741 724	856 692 665	522 492 310	238 159	52 11	
BOULDER	AVE 90-91 91-92	0 32 17	13 7	130 81 121	357 338 403	714 589 831	908 1161 911	1004 1081 901	804 667 700	775 685 664	483 511 321	220 211	59 44	5460 5413 4876			GUNN I SON	AVE 90-91 91-92	111 65 131	188 179 151	393 264 371	719 771 698	1119 1059 1120	1590 1664 1597	1714 1787 1707	1422 M 1167	1231 M 940	816 M 661	543 M	276 249	10122 M 8543
BUENA VISTA	AVE 90-91 91-92	47 66 63	116 130 87	285 226 N	577 641 580	936 905 1056	1184 1326 1265	1218 1256 1246	1025 896 1048	983 983 901	720 771 568	459 472	184 207	7734 7879 M			LAS ANIMAS	AVE 90-91 91-92	0 4 1	0 0 3	45 21 59	296 308 350	729 624 896	998 1220 966	1101 1113 943	820 667 712	698 602 539	348 352 242	102 81	9 0	
BURLINGTON	AVE 90-91 91-92	6 10 13	5 4 14	108 76 106	364 407 462	762 N 903	1017 1249 1004	1110 1223 1021	871 688 751	803 737 639	459 438 360	200 136	38 1	5743 H 5273			LEADVILLE	AVE 90-91 91-92	272 331 343	337 402 364	522 464 538	817 861 826	1173 1141 1245	1435 1556 1461	1473 1550 1471	1318 1207 1296	1320 1210 1186	1038 1068 852	726 714		10870 10953 9582
CANON	AVE* 90-91 91-92	0	10 12	100 58 105	330 382 379	670 548 800	870 1098 945	950 1004 870	770 626 688	740 679 604	430 459 331	190 182	40 26	5100 5088 4730			LINON	AVE 90-91 91-92	8 36 19	6 11 14	144 96 171	448 491 503	834 745 1000	1070 1280 1095		960 779 827	936 820 734	570 592 436	299 245	100 38	
COLORADO SPRINGS	AVE	8 28 16	25 21	162 83 145	440 473 453	819 663 954	1042 1256 1048	1122 1142 008	910 750 788	880 773 717	564 568 383	296 219	78 33	6346 6009 5518			LONGHONT	AVE 90-91 91-92	0 24 12	6 11 6	162 101 133	453 481 489	843 727 936	1082 1284 1047	1194 1249	938 740 786	874 699 730	546 520 391	256 186	78 28	6432 6050 5654
CORTEZ	AVE* 90-91	5	20	160 151	470 539	830 774 947	1150 1321	1220 1364	950 879	850 882	580 702 458	330 335	100 113	6665 7067 6183			MEEKER	AVE 90-91 91-92	28 9 24	56 23 7	261 121 221	564 511 553	927 885 1003	1240 1406 1367	1345	1086 1047 1025	998 939 758	651 696 446	394 358	164 110	7714
CRAIG	90-91	13 32 14	8 58 18	161 275 116	423 608 606	996 876	1227 1342 1547	1310 1479 1544	892 1193 1095	744 1094 995	687 693	419 398	193 127	8376 8029			NONTROSE	AVE 90-91	0 0 0	10 3	135 81	437 470 404	837 804	1159 1385 1312	1218 1460	941 974 911	818 768 683	522 571 324	254 268	69 49	6400
DELTA	91-92 AVE 90-91	27 0 0	13 0 2	230 94 58	582 394 416	1080 813 751	1517 1135 1400	1556 1197 1549	1078 890 998	809 753 742	497 429 512	167 170	31 26	7389 5903 6624			PAGOSA SPRINGS		82 44	113 108	135 297 177	608 608	901 981 910	1305 1538	1380 1432	1123 1038	1026 1002	732 767 577	487 489	233 227	
DENVER	91-92 AVE 90-91	0 12	2 0 3	88 135 64	383 414 388	832 789 623	1302 1004 1209	1486 1101 1143	874 879 684	625 837 682	273 528 510	253 174	74	5865 6014 5508			PUEBLO	91-92 AVE 90-91	44 0 1	37 0 0	289 89 34	568 346 360	1116 744 610	1362 998 1243	1091 1116	1087 834 730	899 756 667	421 406	163 103	23 3	5465 5273
DILLOW	91-92 AVE 90-91	6 273 284	4 332 355	118 513 430	449 806 858	902 1167 1071	982	1022 1516	714	673 1296 1257	309 972 1031	704 691		5179 10754 10778			RIFLE	91-92 AVE 90-91	1 6 0	0 24	76 177 69	380 499 474	927 876 824	1014 1249 1433	958 1321 1462	759 1002 964	608 856 814	309 555 605	298 265	82 52	
DURANGO	91-92 AVE	316	321	521 193	493	1210	1447	1517	1306	1144	805	366	125	9375			STEAMBOAT	91-92 AVE*	1	1 140	143 370	475	906 1060	1185	1283	804 1240	660 1150	352 780	510		5810 9210
DUKANGO	90-91 91-92	46	28	118 152	481 379	832 940	1373 1179	1274 1305	842 935	919 745	619 430	364	125	6979 6073			SPRINGS	90-91 91-92		E 110 141	255 394	700 742	1013 1140	1683 1626	1680	1223	1120 863	851 595 528	518 235	262	8434
EAGLE	AVE 90-91 91-92	33 15 26	80 23 6	288 134 208	626 583 563	1026 934 972	1407 1568 1358	1448 1536 1387	1148 1052 970	1014 889 809	705 693 466	431 355	171 99	8377 7881 6765			STERLING	90-91 91-92	17 5	6 7 1	157 68 92	462 437 437	876 725 930	1163 1359 1028	1244 1191	713 731	716 645	466 352	173	8	5933 5412
EVERGREEN	AVE 90-91 91-92	59 120 83	113 131 92	327 219 311	621 591 627	916 803 988	1135 1330 1078	1199 1244 1123	1011 937 939	1009 885 887	730 727 541	489 430	218 152	7827 7569 6669			TELLURIDE	AVE 90-91 91-92	163 117 175	223 179 163	396 267 339	676 635 595	1026 972 1013			1151 987 1057		849 828 565	589 486	318 293	9164 8592 7408
FORT	AVE 90-91 91-92	5 19 11	11 6 1	171 74 145	468 460 457	846 690 891	1073 1284 1002	1181 1212 1029	930 747 736	877 703 681	558 508 356	281 203	82 41	6483 5947 5309			TRINIDAD	AVE 90-91 91-92	0 4 3	0 6 2	86 46 107	359 334 377	738 654 876	973 1160 1004	1051 1048 946	846 697 774	781 709 642	468 462 289	207 156	35 12	
FORT MORGAN	AVE 90-91 91-92	0 18 5	674	140 63 89	438 421 437	867 730 947	1156 1343 1025	1283 1248 1193	969 750 756	874 722 652	516 489 332	224 180	47 8	6520 5979 5440			WALDEN	AVE 90-91 91-92	198 202 193	285 258 209	501 332 452	822 794 776	1170 1028 1217	1457 1550 1422		1313 1105 1234	1277 1164 1025	915 931 700	642 587	351 300	10466 9710 8775
GRAND JUNCTION	AVE 90-91 91-92	000	002	65 28 37	325 360 304	762 759 815	1138 1370 1193	1225 1464 1390	882 919 788	716 706 608	403 478 195	148 136	19 18	5683 6238 5332			WALSENBURG	AVE 90-91 91-92	0 15 6	8 8 5	102 53 90	370 311 337	720 543 818	924 1047 915	989 985 870	820 646 717	781 674 634	501 437 309	240 141	49 23	
	• = A	res ad.	IUSTED	FOR S	NOTTAT	MOVES	I	M	= MISS	ING	E	= EST	INATED					• = ٨	VES AD	JUSTED	FOR S	TATION	HOVES		H	- MISS	ING	E	= EST	MATED	i

20

APRIL 1992 CLIMATIC DATA

EASTERN PLAINS

			Tempera	ature			D	egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm	# days		
NEW RAYMER 21N	63.1	29.8	46.4	2.5	80	15	552	0	207	0.09	-1.26	6.7	4		
STERLING	69.1	37.0	53.0	4.9	88	18	352	1	291	0.41	-0.91	31.1	1		
FORT MORGAN	69.2	38.5	53.9	5.3	85	23	332	6	299	0.05	-1.15	4.2	1		
AKRON FAA AP	67.4	37.0	52.2	5.4	91	20	382	8	270	0.32	-1.12	22.2	1		
AKRON 4E	66.3	34.6	50.5	4.1	84	16	429	0	253	0.18	-1.14	13.6	1		
HOLYOKE	65.3	36.3	50.8	1.4	83	18	417	0	237	0.20	-1.47	12.0	2		
JOES	68.3	36.4	52.4	5.4	84	14	374	1	284	0.80	-0.45	64.0	2		
BURLINGTON	68.5	37.1	52.8	3.0	84	17	360	3	286	0.04	-1.20	3.2	1		
LIMON WSMO	66.0	34.5	50.3	5.3	88	22	436	2	248	0.36	-0.85	29.8	6		
CHEYENNE WELLS	71.1	34.9	53.0	2.8	95	20	364	10	317	0.08	-0.91	8.1	2		
EADS	70.3	37.7	54.0	2.4	85	20	325	2	313	0.00	-0.95	0.0	0		
ORDWAY 21N	71.0	35.3	53.1	3.6	88	22	351	0	321	0.70	-0.24	74.5	5		
ROCKY FORD 2SE	75.9	37.3	56.6	3.6	94	25	254	9	388	0.41	-0.55	42.7	5		
LAMAR	74.5	31.0	52.7	-1.2	90	13	364	1	369	0.02	-1.13	1.7	1		
LAS ANIMAS	76.1	38.1	57.1	2.9	100	22	242	12	387	0.01	-0.90	1.1	1		
HOLLY	75.4	38.8	57.1	4.3	99	16	250	20	377	0.03	-1.03	2.8	2		
SPRINGFIELD 7WSW	75.8	39.6	57.7	5.7	96	20	230	19	388	0.52	-0.89	36.9	4		
TIMPAS 13SW	71.6	39.0	55.3	4.0	87	32	285	3	333	0.44	-0.86	33.8	2		

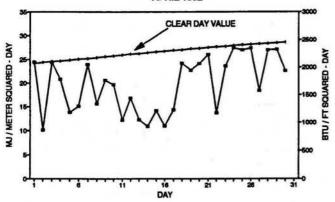
FOOTHILLS/ADJACENT PLAINS

		Tempera	ture				Degree D	ays	Precipitation					
Name		Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm	# days
FORT C	OLLINS	67.5	38.2	52.9	5.4	89	19	356	5 3	268	1.23	-0.53	69.9	4
GREELE	Y UNC	69.6	39.5	54.5	5.5	91	21	310	6	300	1.29	-0.39	76.8	5
ESTES	PARK	60.1	32.5	46.3	6.1	75	7	553	0	162	1.14	-0.10	91.9	7
LONGMO	NT ZESE	68.6	34.9	51.8	4.3	84	21	391	1	287	0.96	-0.74	56.5	4
BOULDE	R	68.1	40.3	54.2	6.4	87	21	321	6	282	0.46	-1.70	21.3	6
DENVER	WSFO AP	69.3	40.3	54.8	6.6	90	26	309	9	300	0.53	-1.18	31.0	4
EVERGRI	EEN	63.7	29.8	46.7	5.6	82	22	541	0	212	0.46	-1.64	21.9	4
CHEESM	AN	65.0	26.2	45.6	3.4	82	15	577	0	235	0.58	-0.96	37.7	5
LAKE G	EORGE 8SW	57.3	27.4	42.4	6.0	73	17	670	0	137	0.40	-0.47	46.0	4
ANTERO	RESERVOIR	54.9	22.7	38.8	5.4	72	13	779	0	104	0.03	-0.55	5.2	1
RUXTON	PARK	52.6	20.5	36.5	3.0	71	0	845	0	72	2.99	0.69	130.0	5
COLORAL	DO SPRINGS	66.8	37.4	52.1	5.5	87	26	383	4	260	0.92	-0.27	77.3	4
CANON	CITY 2SE	69.0	38.8	53.9	4.1	84	29	331	4	292	1.06	-0.01	99.1	6
PUEBLO	WSO AP	73.2	35.9	54.6	2.8	93	28	309	3	350	0.43	-0.45	48.9	4
WESTCL	IFFE	62.6	27.2	44.9	4.1	76	18	598	0	198	0.26	-0.81	24.3	2
WALSEN	BURG	70.7	38.8	54.7	5.8	85	26	309	7	324	0.80	-0.83	49.1	7
TRINID	AD FAA AP	72.5	38.4	55.5	5.4	90	28	289	10	345	0.50	-0.41	54.9	3

MOUNTAINS/INTERIOR VALLEYS

			Tempera	ture			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days	
WALDEN	57.2	25.6	41.4	6.4	74	4	700	0	126	1.34	0.45	150.6	9	
LEADVILLE 2SW	50.3	22.3	36.3	5.9	65	12	852	0	48	0.52	-0.68	43.3	9	
BUENA VISTA	62.0	29.6	45.8	4.4	76	23	568	0	191	0.10	-0.67	13.0	2	
SAGUACHE	62.2	29.3	45.7	4.4	77	21	569	0	195	0.17	-0.33	34.0	3	
HERMIT 7ESE	49.4	20.1	34.8	4.6	60	10	901	0	43	0.05	-1.16	4.1	1	
ALAMOSA WSO AP	65.2	28.7	47.0	5.6	78	20	535	0	236	0.04	-0.45	8.2	3	
STEAMBOAT SPRINGS	61.2	28.7	44.9	6.1	78	17	595	0	182	2.20	0.02	100.9	11	
YAMPA	57.7	29.3	43.5	6.5	73	17	636	0	131	1.24	-0.04	96.9	6	
GRAND LAKE 1NW	56.0	23.0	39.5	5.9	72	3	758	0	110	2.36	0.45	123.6	8	
GRAND LAKE 6SSW	55.8	23.7	39.7	6.2	73	4	751	0	109	1.74	0.54	145.0	12	
DILLON 1E	52.4	23.4	37.9	5.1	68	11	805	0	71	0.53	-0.62	46.1	8	
CLIMAX	44.4	16.9	30.6	4.6	59	-4	1024	0	19	1.81	-0.43	80.8	7	
ASPEN 1SW	56.9	28.4	42.7	4.2	73	21	660	0	124	1.45	-0.75	65.9	10	
CRESTED BUTTE	53.1	23.8	38.5	6.0	69	13	788	0	78	1.45	-0.27	84.3	8	
TAYLOR PARK	50.6	18.6	34.6	5.8	66	4	904	0	51	0.80	-0.36	69.0	6	
TELLURIDE	64.0	27.9	45.9	8.2	78	20	565	0	220	0.97	-0.92	51.3	7	
PAGOSA SPRINGS	64.3	26.6	45.5	4.2	78	21	577	0	222	0.67	-0.53	55.8	4	
SILVERTON	53.4	23.9	38.6	5.6	70	15	784	0	85	0.58	-1.02	36.2	6	
WOLF CREEK PASS 1	49.6	23.3	36.4	7.0	69	11	851	0	48	1.65	-1.24	57.1	8	

WESTERN VALLEYS

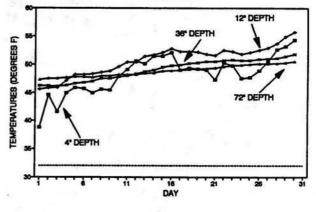

	10.00	Tempera	ture	1		D	egree D	ays	127 2010	Precip	oitation	1	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	
CRAIG 4SW	63.1	33.3	48.2	6.0	79	22	497	0	208	1.82	0.17	110.3	6
HAYDEN	64.2	31.5	47.8	5.6	79	20	507	0	226	1.92	0.44	129.7	6
MEEKER NO. 2	65.9	33.9	49.9	7.0	80	22	446	0	246	1.94	0.61	145.9	6
RANGELY 1E	69.3	38.0	53.6	5.9	85	28	334	0	298	0.75	-0.32	70.1	6
EAGLE FAA AP	67.2	31.2	49.2	6.9	83	23	466	0	264	0.30	-0.44	40.5	5
GLENWOOD SPRINGS	67.2	34.7	51.0	5.1	83	28	413	0	266	0.68	-0.87	43.9	3
RIFLE	71.5	34.9	53.2	6.2	90	27	352	3	326	0.30	-0.65	31.6	. 4
GRAND JUNCTION WS	73.1	44.9	59.0	7.0	89	34	195	21	358	0.15	-0.60	20.0	6
CEDAREDGE	70.0	36.0	53.0	5.5	85	27	353	0	305	0.77	-0.14	84.6	5
PAONIA 1SW	69.7	39.7	54.7	6.6	85	28	304	3	304	0.87	-0.41	68.0	7
DELTA	72.2	39.3	55.7	5.1	89	29	273	3	342	0.18	-0.28	39.1	3
GUNN I SON	62.4	22.9	42.7	4.4	77	15	661	0	198	0.37	-0.22	62.7	1
COCHETOPA CREEK	62.6	24.6	43.6	6.6	78	15	633	0	201	0.52	-0.23	69.3	6
MONTROSE NO. 2	68.5	39.3	53.9	5.9	84	29	324	0	285	0.27	-0.50	35.1	5
JRAVAN	74.7	41.4	58.0	6.5	90	33	209	7	371	0.29	-0.72	28.7	6
NORWOOD	64.7	35.0	49.8	7.3	79	22	448	0	225	0.35	-0.69	33.7	3
YELLOW JACKET 2W	67.1	37.1	52.1	7.7	78	26	381	0	263	0.21	-0.68	23.6	4
CORTEZ	66.1	32.8	49.4	5.0	82	23	458	0	249	0.17	-0.68	20.0	5
DURANGO	66.7	34.2	50.5	5.0	84	23	430	0	257	1.37	0.16	113.2	7
IGNACIO 1N	65.6	30.1	47.8	3.6	80	20	508	0	240	0.15	-0.72	17.2	3

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

APRIL 1992 SUNSHINE AND SOLAR RADIATION

	Num	ber of	f Days	Percent Possible	Average % of
Kept.	CLR		CLDY	Sunshine	Possible
Colorado Springs	8	9	13	1.1	
Denver	8	9	13	67%	67%
Fort Collins	7	11	12	-	
Grand Junction	7	14	9	77%	69%
Limon	10	6	14		
Pueblo	10	7	13	74%	74%
CLR = Clear	PC	= P	artly Clou	udy CL	DY= Cloudy

There were close to the average number of clear and cloudy days in April. Due to relatively thin clouds on many days, the solar energy reaching the ground was a bit more than average in many areas.


FT. COLLINS TOTAL HEMISPHERIC RADIATION

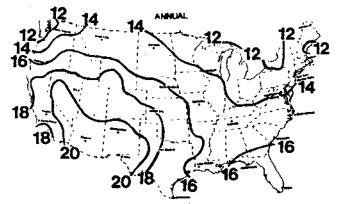
APRIL 1992 SOIL TEMPERATURES

With persisting mild and dry weather, April soil temperatures stayed warmer than average throughout most of the month. The last few days of April were especially warm.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

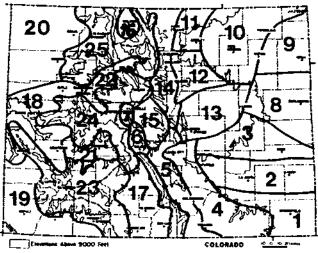
FORT COLLINS 7 AM SOIL TEMPERATURES APRIL 1992

HATS OFF TO: Carl Guy of Eastonville (5 NW), Colorado


Mr. Guy lives in the climatically fascinating high prairie northeast of Colorado Springs (elevation above 7,000 feet). He has observed plenty of nasty blizzards and raging thunderstorms since taking over the weather station there just over 36 years ago. Carl, we thank you!

95

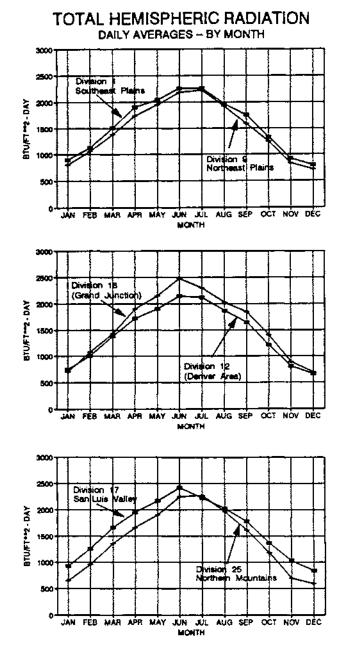
Solar Energy in Colorado - How Much Do We Really Get?


The National Renewable Energy Laboratory in Golden Colorado (formerly called the Solar Energy Research Institute) prepared a lovely atlas a few years ago containing national maps of the amount of solar energy reaching the ground. The maps are very useful and show clearly that solar energy is least over the Pacific Northwest, the Great Lakes area and New England. Solar energy resources increase steadily toward the south and west reaching a maximum over Arizona, New Mexico, Nevada, and portions of southern Utah and southwest Colorado.

The atlas gives excellent information on how much solar energy we have on a national scale. But locally, the atlas can be very misleading. A good example is right here in Colorado. If all we had was the national atlas, Colorado's solar resources would appear to increase smoothly from northeast to southwest. The data we have here in Colorado, shows the pattern to be much more complex.

Annual average daily solar radiation on a horizontal surface in megajoules per square meter.

Combining actual observations of total solar energy on a horizontal surface with general cloudiness and precipitation patterns, we have developed regional estimates of monthly average solar energy for 25 regions in Colorado.



Climatic divisions used in Solar Energy Resource Evaluation.

How much variation do we see in solar radiation across Colorado? Since the primary influence is latitude, and latitudes only range from 37°N at the New Mexico border to 41°N at the Wyoming stateline, the entire State experiences a fairly smilar sinusoidal annual cycle. But regional differences are still quite significant.

The top figure compares average daily solar radiation by month for southeasternmost Colorado with that of the northeastern plains. Southeast Colorado systematically and reliably receives more solar energy than areas to the north in every season of the year. The differences are greatest during spring and fall and are least during the summer months.

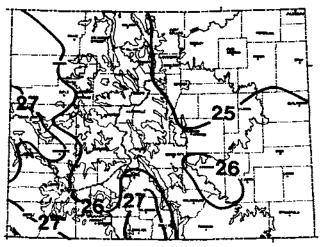
An east-west comparison from the Denver area over to the lower valleys of western Colorado show that solar energy is very similar during the winter but is significantly greater on the Western Slope from April to October. The month of June stands out with at least 15% more solar radiation reaching the ground near Grand Junction than in the Denver area.

٩Ġ

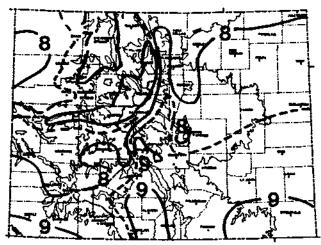
Our final example compares solar energy in the San Luis Valley to that of the Colorado northern mountains. Northsouth differences in horizontal solar energy are most extreme. Winter is also the time when clouds frequently hang over the mountains but dissipate as air descends over the valley. Then look at the months of July and August. For a brief period there is no difference in solar resources. Monsoon moisture moving north from Mexico triggers frequent thunderstorms over the mountains that surround the San Luis Valley. These clouds then spread out over the valley diminishing solar radiation during the afternoon hours. The Northern Mountains also see cloud development but as much as southern areas.

Let us conclude by looking at contour maps of solar radiation on a borizontal surface. Remember, these analyses are based on regional estimates for 25 climatic divisions in Colorado and are smoothed in response to known terrain influences on cloudiness. If more data were available, greater local variations would be observed than these maps indicate.

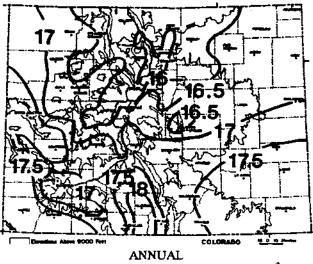
Despite our complex topography, solar radiation is distributed quite uniformly in June with the lowest amounts in northeast Colorado and along the northern Front Range. Solar radiation is greatest in the southwestern valleys of the State. June in the mountains is the sunniest month of the year. As seen here, daily solar radiation averages between 25 and 26 megajoules per meter² over almost the entire mountain area.


In December, the lowest solar radiation totals are expected along and just west of the State's northern and central mountain ranges. The highest totals are, of course, in the San Luis Valley, but southeast and extreme southwest parts of the State are also quite high. An interesting feature is the narrow band of higher insolation observed in the Front Range foothills west from Denver. Many who live there confirm that there are numerous days each winter when the Front Range cities are hidden by low clouds but the foothills are up in the sunshine.

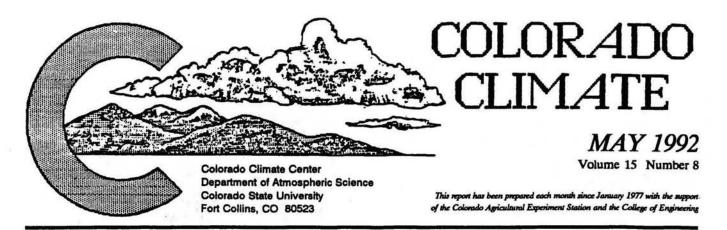
Averaged over the whole year, the San Luis Valley has the greatest solar energy resources in Colorado. Because of their cold temperatures there, the Valley is well suited for utilizing the sun's energy. Large solar values are also found over southeastern counties and the western valleys.


Solar radiation is lowest in a band along the Continental Divide from south of Loveland Pass up to Rocky Mountain National Park. This area is a preferred location for winter orographic cloud formation, spring "upslope" clouds and moisture from the east, and summer convective cloud development. Other portions of the State generally are preferred locations for only one or two of these cloud formation processes.

Not only do our State maps show more detail than the Solar Radiation Energy Resource Atlas of the U.S., but we also see that our values are systematically lower. Apparently, their methods provided consistent overestimates of solar energy for this region of the country.


As we conclude this series on solar energy, I hope you now recognize its importance both as an energy resource and as the key ingredient for our climate. My hope is that 10 years from now I can write another report and, at last, present conclusive results instead of educated estimates. Whatever you readers can do in your respective fields to encourage the establishment of ongoing top-quality solar energy monitoring just might make a difference.

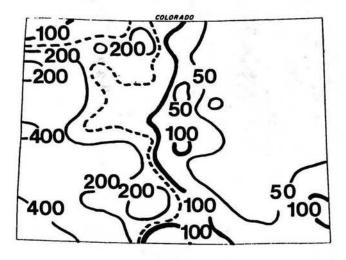
JUNE



DECEMBER

Average daily solar radiation on a horizontal surface (MJ/m²).

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

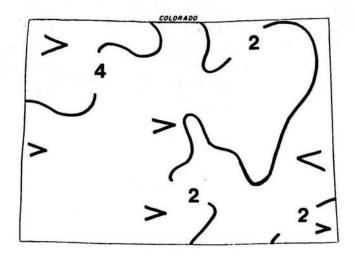


May Climate in Perspective - Backwards Weather ??

May weather seemed like it came in reverse order. The month began very warm and dry and ended up very cool and wet. After almost three weeks of getting used to sunshine and temperatures in the 70s and 80s, the final 12 days of the month brought chilly temperatures, dense clouds and frequent rains. There was even some snow late in the month both in the mountains and at a few points out on the plains.

Precipitation

Fear of drought spread quickly in May as temperatures soared and the Eastern Plains dryland agricultural areas missed most of the storms for the second



May 1992 precipitation as a percent of the 1961-1990 average.

critical month in a row. At the same time, mountain snowpack melted much too quickly. Then an unusual weather pattern for this time of year brought a steady stream of moisture into western Colorado for the last two weeks of May. Parts of southwest Colorado ended up with 3 to 5 times their May average, and nearly all of western Colorado ended up well above average. Areas from the plains to the eastern foothills, which are typically wet in May, benefitted from the late-May moisture but still ended up well below average.

Temperatures

The temperatures during the first three weeks of May pushed the month toward the record books as one of the warmest May's on record. Then one of the cold, damp episodes that so often strikes Colorado in the spring, finally arrived after we had almost given up. Unfortunately, it was accompanied by subfreezing temperatures after Memorial Day over parts of the plains. This was one of the latest freezes to strike the area in many years. Despite the late cold, monthly temperatures still ended up 1 to 4 degrees Fahrenheit above average for the month with even warmer anomalies in parts of northwest Colorado.

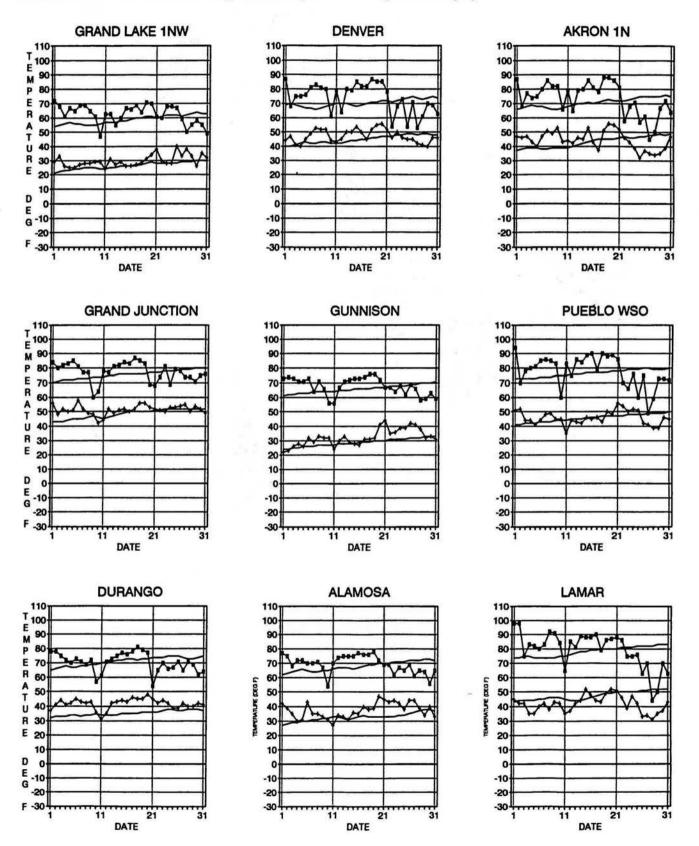
Departure of May 1992 temperatures from the 1961-90 averages.

Inside This Issue

May 1992 Daily Weather	2
May 1992 Temperature Comparison	
May 1992 Precipitation	
May 1992 Precipitation Comparison	
1992 Water Year Precipitation	

Comparative Heating Degree Day Data	7
May 1992 Climatic Data	
Special Feature - Heavy Rains in a Dry State -	
The Colorado Story	10
ICEM - WTHRNET (April and May 1992)	

- May began with lots of sunshine, low humidity, 1-7 consistently warmer than average temperatures, and melting mountain snowpack. Day-night temperature differences were often 40 degrees or more. May 1st was one of the hottest days of the month as temperatures climbed into the 80s and 90s at lower elevations. Las Animas hit 101°F, the hottest in the State. Temperatures were a little more seasonal on the 2nd behind a Pacific cold front, and a few light showers were reported east of the mountains. Then warm and dry weather returned with highs mostly in the 50s and 60s in the mountains with 70s and 80s at lower elevations. With mostly clear skies, chilly nighttime temperatures occurred in the mountains. Hohnholz Ranch on the Laramie River had the coldest reading of the month with 17° on the morning of the 4th. Clouds increased in western Colorado on the 7th with a few showers.
- 8-10 A Pacific cold front combined with an upper-level low pressure area over the Southwest to bring some wet weather to much of the State. It was still warm 8-9th, especially east of the mountains, but rain and high mountain snow spread eastward. Much cooler temperatures then moved in 9-10th. Substantial rainfall was reported over southwest Colorado and over portions of northwestern counties. Meeker reported 1.06" on the 9th from all-day rains. Cortez and Mesa Verde picked up nearly an inch that day close to their average for the entire month. A few thunderstorms, with local small hail, moved out on the plains that evening. Rain ended in western Colorado on the 10th but continued in parts of southeast Colorado. Rocky Ford picked up 0.58" on the 10th. Northeastern Colorado received very little moisture from the storm.
- 11-15 Temperatures rebounded sharply on the 11th. Then cooler air pushed in from the northeast on the 12th with low clouds over northeast Colorado. A few showers developed with some moderate thunder-storms in southeastern areas. Colorado Springs picked up 0.40" of rain. The cool, moist air retreated again on the 13th and was replaced with more unseasonable warmth. Low elevation temperatures again returned to near 80°, but a stationary front lingered out near the Kansas border. A few scattered showers and thunderstorms developed each day but were heaviest in southeastern Colorado on the 15th. Walsh and Stonington both received more than 1" of rain from storms late on the 15th.
- 16-19 Mostly dry statewide with temperatures continuing much warmer than normal. Rapid snowmelt took place as mountain temperatures pushed well up into

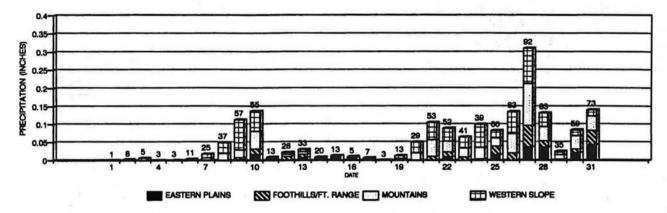

the 50s and 60s with nighttime temperature falling only slightly below freezing. A few summerlike isolated afternoon and evening thundershowers developed. Then on the 19th, winds increased and a major surge of subtropical moisture pushed northward in advance of a large approaching storm system. A few thundershowers appeared on the Western Slope marking the beginning of a dramatic change in the spring weather pattern.

- 20-21 Still dry and warm on the plains, but cooler air with widespread precipitation enveloped western Colorado. Most precipitation fell as rain, except at elevations above 11,000 feet. Yellow Jacket measured 0.94" of rain on the 20th. The Climax weather station (elev. 11,300 ft.) found 1.10" of moisture with 5" of new snow at their 8 a.m. observation on the 22nd.
- 22-31 The month ended with a prolonged period of cool and unsettled weather. An upper-level low over Arizona and New Mexico pumped moisture into southwestern Colorado 22-27th while a large high pressure area moved down out of Canada into the Midwest pushing cool, damp air into eastern Colorado for the remainder of the month. Temperatures dropped sharply on the 22nd across eastern Colorado. Showers continued over southwestern Colorado 22-25th with some locally heavy thunderstorms. Upslope clouds gradually cleared east of the mountains, but then a line of thundershowers developed late on the 24th along the Front Range. A new surge of even cooler air pushed in early on Memorial Day (25th). With occasional drizzle and light rain, holiday temperatures east of the mountains stayed in the 50s. Skies cleared out on the plains early on the 26th and temperatures dipped unexpectedly below the freezing point. The Leroy 5WSW weather station near Sterling reported a low of 28°, the latest hard freeze in many years. Then a disturbance from the northwest helped trigger widespread precipitation. Hayden measured 1.33" of rain and small hail on the 26th. Dinosaur National Monument got more than 2" over two days. All of eastern Colorado had cold rain on the 27th, and high temperatures were only in the 40s in many areas. Snow fell in the foothills, and even some flakes were seen out on the plains. Another freeze occurred that night in some areas. As the month ended, temperatures moderated a little east of the mountains, but remained cold in the mountains. Showers diminished on the 28th but became more numerous again 30-31st. Lamar recorded 0.98" of rain on the 30th. Denver had 0.48" on the 31st.

	Weather Extremes		
Highest Temperature	101°F	May 1	Las Animas
Lowest Temeprature	17°	May 4	Hohnholz Ranch
Greatest Total Precipitation	5.43"	12	Yellow Jacket
Least Total Precipitation	0.13"		Ordway 2 ENE
Greatest Total Snowfall	8.0"		Climax

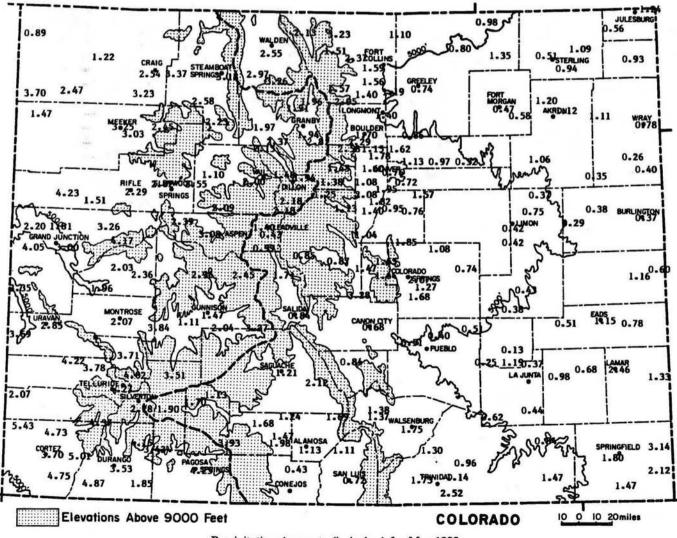
99

Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

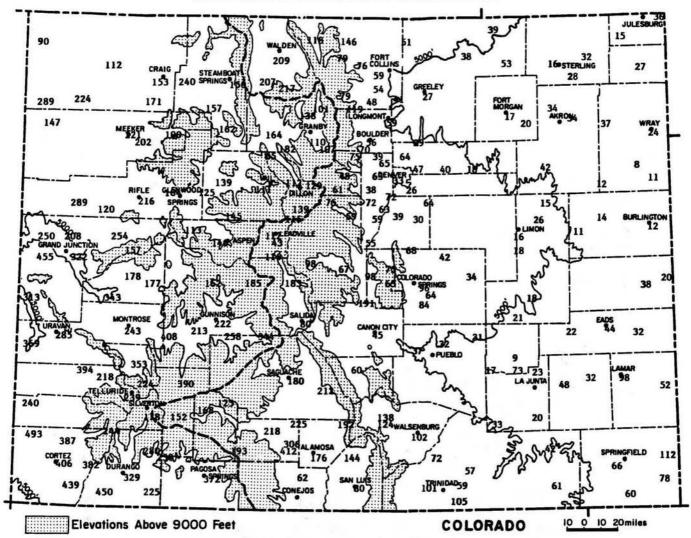


100

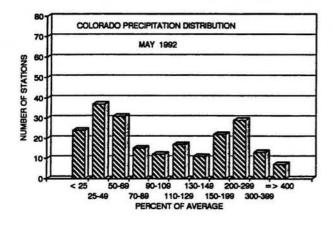
MAY 1992 PRECIPITATION


May typically boasts frequent and sometimes heavy precipitation, especially east of the mountains. This year was much differenct. Only one significant storm system was observed during the first 19 days of May and it mostly affected western Colorado. Late May is usually dry and sunny over

western Colorado, but this year rain fell with nearly unprecedented proportions on the Western Slope. Pagosa Springs and Silverton each reported rainfall on all of the last 12 days of May. Precipitation totals were heaviest on the 27th, averaging over 0.30" statewide.


COLORADO DAILY PRECIPITATION - MAY 1992

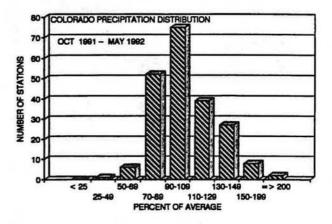
(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

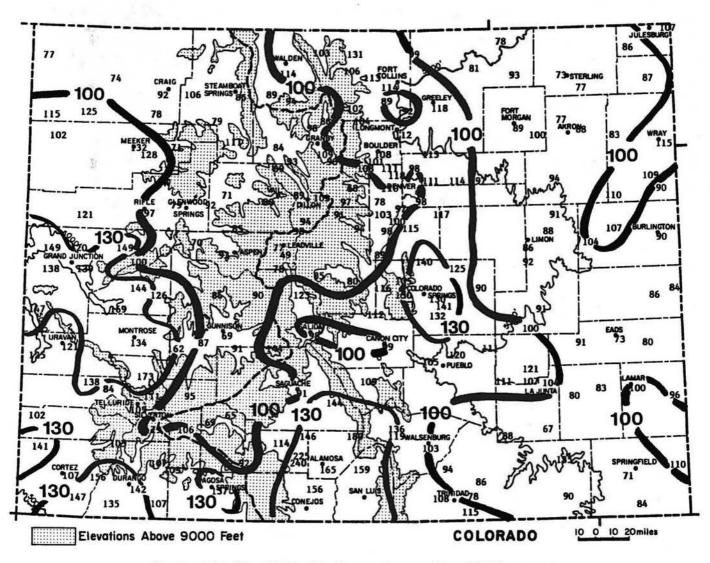


Precipitation Amounts (in inches) for May 1992.

MAY 1992 PRECIPITATION COMPARISON

May 1992 Precipitation as a Percent of the 1961-90 average.


May precipitation had a bimodal distribution in Colorado. Only a small area of the State was near average while large regions were either much above or much below average. Several sites in southwest Colorado established new records for the wettest May in recorded history.


MAY 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES

Station	Precip.	Rank 23th driest in 121 years of record (driest = 0.06" in 1974)							
Denver	1.13"								
Durango	3.53"	2nd wettest in 98 years of record (wettest = 3.72" in 1947)							
Grand Junction	1.81"	3rd wettest in 101 years of record (wettest = 2.74 " in 1906)							
Las 0.98" Animas		31st driest in 126 years of record (driest < 0.01" in 1932)							
Pueblo	0.40"	12th driest in 124 years of record (driest < 0.01" in 1868 and 1899)							
Steamboat Springs	3.18"	13th wettest in 86 years of record (wettest = 5.42" in 1981)							

1992 WATER YEAR PRECIPITATION

Dry May weather east of the mountains dropped water year precipitation totals below average for the first time since October over much of the Eastern Plains. At the same time, several Western Slope areas rose above 130% of average. Mountain areas also improved somewhat but generally remain below average. In combination with the warm weather of recent months, mountain snowpack has been melting quickly. May streamflow volumes have been near normal on most major rivers in Colorado, but prospects for abundant surface water supplies during the rest of the summer are not good. The distribution of water year precipitation shows that most stations are now fairly close to their long-term average. It is normal, as we move later into the water year, for this distribution to compress toward the average.

October 1991-May 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR MAY 1992

	Heating	Degree	e Data					Color	ado Cl	imate	Center	(303)	491-8	8545	
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	HAY	JUN	ANN	
ALAMOSA	AVE	40	100	303	657	1074	1457	1519	1182	1035	732	453	165	8717	
	90-91 91-92	59 33	118 51	201 280	633 630	990 1263	1597	1671 1963	1081	954 1093	742	410 350	172	8628 9506	
	41-92	22	21	200	030	1203	1049	1903	1437	1093	333	330	1.9	9300	
ASPEN	AVE	95	150	348	651	1029	1339	1376	1162	1116	798	524	262	8850	
	90-91 91-92	134	146	234 335	652	964	1462	1444	1013	1077 980	811 660	432	224	8593 8297	
	A1-A5	104	112	222	010	1100	1204	1410	1124	900	000	40/		0291	
BOULDER	AVE	0	6	130	357	714	908	1004	804	775	483	220	59	5460	
	90-91	32	13	81	338	589	1161 911	1081 901	667 700	685 664	511	211 192	44	5413 5068	
	91-92			121	403	831	911	901	100	004	321	192		5000	
BUENA	AVE	47	116	285	577	936	1184	1218	1025	983	720	459	184	7734	
VISTA	90-91	66	130	226	641	905	1326	1256	896	983	771	472	207	7879	
	91-92	63	87	M	580	1056	1265	1246	1048	901	568	391		H	
URLINGTON	AVE	6	5	108	364	762	1017	1110	871	803	459	200	38	5743	
	90-91	10	4	76	407	M	1249	1223	688	737	438	136	1	M	
	91-92	13	14	106	462	903	1004	1021	751	639	360	173		5446	
CANON	AVE*	0	10	100	330	670	870	950	770	740	430	190	40	5100	
CITY	90-91	14	12	58	382	548	1098	1004	626	679	459	182	26	5088	
	91-92	8	0	105	379	800	945	870	688	604	331	167		4897	
COLORADO	AVE	8	25	162	440	819	1042	1122	910	880	564	296	78	6346	
SPRINGS	90-91	28	21	83	473	663	1256	1142	750	773	568	219	33	6009	
	91-92	16	16	145	453	954	1048	998	788	717	383	219		5737	
CORTEZ	AVE*	5	20	160	470	830	1150	1220	950	850	580	330	100	6665	
CONTER	90-91	ĩ	6	151	539	774	1321	1364	879	882	702	335	113	7067	
	91-92	13	8	161	423	947	1227	1310	892	744	458	266		6449	
CRAIG	AVE	32	58	275	608	996	1342	1479	1193	1094	687	419	193	8376	
CRAIG	90-91	14	18	116	606	876	1547	1544	1095	995	693	398	127	8029	
	91-92	27	13	230	582	1080	1517	1556	1078	809	497	270		7659	
DELTA	AVE	0	0	94	394	813	1135	1197	890	753	429	167	31	5903	
DELIN	90-91	ŏ	2	58	416	751	1400	1549	998	742	512	170	26	6624	
	91-92	0	2	88	383	832	1302	1486	874	625	273	86		5951	
DENVER	AVE	0	0	135	414	789	1004	1101	879	837	528	253	74	6014	
DEWVER	90-91	12	3	64	388	623	1209	1143	684	682	510	174	16	5508	
	91-92	6	4	118	449	902	982	1022	714	673	309	158		5337	
	AVE	273	332	513	806	1167	1435	1516	1305	1296	972	704	435	10754	
DILLON	90-91	284	355	430	858	1071	1587	1569	1220	1257	1031	691		10778	
	91-92	316	321	521	788	1210	1447	1517	1306	1144	805	609		9984	
									-		(00		175	6848	
DURANGO	AVE 90-91	24	34 28	193 118	493 481	837 832	1153 1373	1218	958 842	862 919	600 619	366	125	6979	
	91-92	6	2	152	379	940	1179	1305	935	745	430	267		6340	
		0227	1000	10000	10000	10000	10799202 70799202	1022000							
EAGLE	AVE 90-91	33 15	80 23	288	626 583	1026 934	1407	1448	1148	1014 889	705 693	431 355	171	8377 7881	
	91-92	26	6	208	563	972	1358	1387	970	809	466	289		7054	
A HURSESTE MERINA			19		(55)7	1000									
EVERGREEN	AVE 90-91	59 120	113 131	327 219	621 591	916 803	1135 1330	1199	1011 937	1009 885	730	489 430	218	7827 7569	
	91-92	83	92	311	627	988	1078	1123	939	887	541	410	132	7079	
FORT	AVE	5	11	171	468	846	1073	1181	930	877	558	281	82	6483 5947	
COLLINS	90-91 91-92	19	6	74	460 457	690 891	1284	1212 1029	747	703	508 356	203 193	41	5502	
				.45			TOOL			501					
FORT	AVE	0	6	140	438	867	1156	1283	969	874	516	224	47	6520	
MORGAN	90-91	18	?	63	421	730	1343	1248	750	722	489	180	8	5979 5603	
	91-92	5	4	89	437	947	1025	1193	756	652	332	163		2002	
GRAND	AVE	0	0	65	325	762	1138	1225	882	716	403	148	19	5683	
	90-91	õ	0	28	360	759	1370	1464 1390	919	706 608	478	136	18	6238	
JUNCTION	91-92	0	2	37	304	815	1193		788		195	53		5385	

	Heating	Degree	e Data					Color	ado Cl	imate	Center	(303)	491-8	8545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
GRAND	AVE	214	264	468	775	1128	1473	1593	1369	1318	951	654		10591
LAKE 6SSW	90-91 91-92	264 220	268	350 427	774	1071 1169	1605 1468	1668 1735	1148	1233	979 751	615 534	330	10305 9770
GREELEY	AVE 90-91	0	2	149 62	450 450	861 723	1128 1309	1240	946	856	522 492	238	52	6442 5901
	91-92	8	5	119	450	925	1011	1088	724	665	310	181	- 11	5486
												-		
GUNN I SON	AVE 90-91	111 65	188 179	393 264	719	1119 1059	1590	1714 1787	1422	1231	816 M	543 M	276	10122
	91-92	131	151	371	698	1120	1597	1707	1167	940	661	452		8995
LAS	AVE	0	0	45	296	729	998	1101	820	698	348	102	9	5146
ANIMAS	90-91	4	0	21	308	624	1220	1113	667	602	352	81	Ó	4992
	91-92	1	3	59	350	896	966	943	712	539	242	107		4818
LEADVILLE	AVE	272	337	522	817	1173	1435	1473	1318	1320	1038	726	439	10870
	90-91	331	402	464	861	1141	1556	1550	1207	1210	1068	714	449	10953
	91-92	343	364	538	826	1245	1461	1471	1296	1186	852	656		10238
LIMON	AVE	8	6	144	448	834	1070	1156	960	936	570	299	100	6531
	90-91 91-92	36	11	96 171	491 503	745	1280	1237	779 827	820	592 436	245 272	38	6370 6232
														1000
LONGHONT	AVE 90-91	24	11	162	453 481	843 727	1082	1194	938 740	874	546 520	256 186	78	6432 6050
	91-92	12	6	133	489	936	1047	1124	786	730	391	201	20	5855
		-												
MEEKER	AVE 90-91	28	56 23	261	564 511	927 885	1240	1345 1458	1086 1047	998 939	651 696	394 358	164	7714
	91-92	24	7	221	553	1003	1367	1490	1025	758	446	280		7174
NONTROSE	AVE	0	10	135	437	837	1159	1218	941	818	522	254	69	6400
	90-91	0	3	81	470	804	1385	1460	974	768	571	268	49	6833
	91-92	0	0	135	404	901	1312	1385	911	683	324	176		6231
PAGOSA	AVE	82	113	297	608	981	1305	1380	1123	1026	732	487	233	8367
SPRINGS	90-91 91-92	44	108	177	608 568	910	1538	1432	1038	1002	767	489	227	8340
	41-45	44	31	289	200	1116	1362	1477	1087	899	577	392		7848
PUEBLO	AVE 90-91	0	0	89	346	744	998	1091	834	756	421	163	23	5465
	91-92	;	0	34	360	610 927	1243	1116 958	730	667 608	406	103	3	5273 5157
		51	100	573			0.0000	0.53354			1.04220	0.045404	122	7458223
RIFLE	AVE 90-91	6	24	177	499	876 824	1249	1321 1462	1002	856 814	555 605	298 265	82	6945 6966
	91-92	ĩ	ī	143	475	906	1185	1283	804	660	352	142	32	5952
		-		-	670						700			
STEAMBOAT	AVE* 90-91	90 129 E	140	370 255	700	1060	1430 1683	1500 1613	1240	1150	780 851	510 518	270 262	9210 9477
400000	91-92	127	141	394	742	1140	1626	1680	1126	863	595	383		8817
STERLING	AVE	0	6	157	462	876	1163	1274	966	896	528	235	51	6614
UTENETING.	90-91	17	7	68	437	725	1359	1244	713	716	466	173	8	5933
	91-92	5	1	92	437	930	1028	1191	731	645	352	142		5554
TELLURIDE	AVE	163	223	396	676	1026	1293	1339	1151	1141	849	589	318	9164
	90-91 91-92	117	179	267 339	635 595	972 1013	1384	1351 1291	987 1057	1093 946	828 565	486	293	8592 7858
	71-72	113	105	337		1013	1204	1271	1037	740	303	430		1030
TRINIDAD	AVE 90-91	0	0	86	359	738	973	1051	846	781	468	207	35	5544
	91-92	43	62	46	334	654 876	1160	1048 946	697 774	709	462 289	156 186	12	5288 5206
											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
WALDEN	AVE 90-91	198 202	285 258	501 332	822 794	1170	1457	1535 1459	1313	1277	915 931	642 587	351	10466 9710
	91-92	193	209	452	776	1217	1422	1547	1234	1025	700	500	200	9275
WALSENBURG	AVE	0	8	102	370	720	924	989	820	781	501	240	49	5504
WALGCABURG	90-91	15	8	53	311	543	1047	985	646	674	437	141	23	4883
	91-92	6	5	90	337	818	915	870	717	634	309	163		4864

104

H = MISSING

E = ESTIMATED

M = MISSING

MAY 1992 CLIMATIC DATA

.

.

EASTERN PLAINS

		Temperature						egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	%Norm	# days		
NEW RAYMER 21N	70.7	38.5	54.6	1.1	87	29	318	6	333	0.98	-1.52	39.2	7		
STERLING	77.8	45.8	61.8	3.9	95	35	142	50	433	0.51	-2.66	16.1	6		
FORT MORGAN	76.2	46.0	61.1	2.7	94	33	163	48	420	0.47	-2.17	17.8	4		
AKRON FAA AP	73.6	44.3	58.9	2.4	88	32	213	35	384	1.20	-2.23	35.0	9		
AKRON 4E	75.0	42.5	58.8	2.4	91	29	216	32	397	1.12	-2.13	34.5	8		
HOLYOKE	73.9	45.6	59.8	0.8	94	33	191	37	390	0.93	-2.43	27.7	8		
JOES	74.7	45.6	60.2	2.2	93	31	183	41	397	0.35	-2.40	12.7	2		
BURLINGTON	75.3	45.3	60.3	1.1	92	31	173	36	408	0.37	-2.54	12.7	4		
LIMON WSMO	70.7	41.3	56.0	2.4	85	33	272	3	333	0.42	-2.08	16.8	7		
CHEYENNE WELLS	76.6	42.7	59.7	0.1	95	29	181	24	412	1.16	-1.87	38.3	4		
EADS	76.0	46.6	61.3	0.6	94	36	162	55	418	1.15	-1.42	44.7	4		
ORDWAY 21N	77.7	44.9	61.3	2.3	92	36	145	40	435	0.38	-1.41	21.2	6		
ROCKY FORD 2SE	81.5	47.6	64.6	2.5	96	36	78	72	494	1.19	-0.42	73.9	7		
LAMAR	79.5	41.5	60.5	-2.0	98	31	173	40	444	2.46	-0.04	98.4	7		
LAS ANIMAS	79.0	49.2	64.1	0.6	101	35	107	87	461	0.98	-1.06	48.0	10		
HOLLY	79.2	47.5	63.4	1.4	99	38	116	73	459	1.33	-1.20	52.6	7		
SPRINGFIELD 7WSW	80.1	47.5	63.8	3.2	96	36	97	67	478	1.80	-0.90	66.7	7		
TIMPAS 13SW	76.5	48.1	62.3	1.8	91	35	137	62	432	0.62	-1.23	33.5	5		

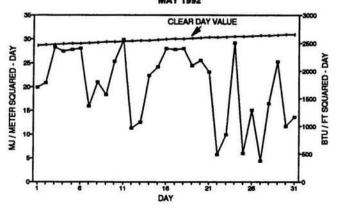
FOOTHILLS/ADJACENT PLAINS

	Temperature						D	egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	days		
FORT COLLINS	72.8	45.0	58.9	2.5	86	38	193	10	364	1.59	-1.10	59.1	12		
GREELEY UNC	74.0	45.7	59.9	2.0	90	38	181	26	386	0.74	-1.92	27.8	9		
ESTES PARK	64.5	36.8	50.7	2.5	77	29	436	0	235	1.57	-0.41	79.3	14		
LONGMONT 2ESE	75.4	42.5	59.0	1.9	92	35	201	19	395	1.40	-0.94	59.8	10		
BOULDER	73.0	45.1	59.1	2.1	87	37	192	15	369	1.70	-1.30	56.7	13		
DENVER WSFO AP	73.8	47.3	60.6	3.4	87	40	158	29	389	1.13	-1.27	47.1	9		
EVERGREEN	66.0	37.0	51.5	2.6	80	30	410	0	257	1.08	-1.70	38.8	9		
CHEESMAN	71.0	33.7	52.3	1.8	83	24	388	0	335	1.04	-0.85	55.0	9		
LAKE GEORGE 8SW	62.2	34.5	48.4	2.5	73	30	509	0	200	0.87	-0.42	67.4	9		
ANTERO RESERVOIR	63.4	30.8	47.1	4.1	71	22	547	0	215	0.85	-0.01	98.8	12		
RUXTON PARK	58.7	30.1	44.4	1.9	77	23	632	0	156	1.64	-0.95	63.3	9		
COLORADO SPRINGS	70.4	45.2	57.8	2.4	85	37	219	3	329	2.07	-0.08	96.3	9		
CANON CITY 2SE	73.5	47.1	60.3	2.0	90	37	167	28	384	0.68	-0.81	45.6	8		
PUEBLO WSO AP	77.9	45.8	61.8	0.8	94	35	125	34	435	0.40	-0.85	32.0	7		
WESTCLIFFE	65.0	34.8	49.9	0.6	75	23	433	0	228	0.84	-0.55	60.4	9		
WALSENBURG	74.4	45.5	59.9	2.2	85	36	163	12	395	1.75	0.04	102.3	10		
TRINIDAD FAA AP	74.1	44.6	59.4	0.5	91	37	186	19	385	0.96	-0.72	57.1	12		

MOUNTAINS/INTERIOR VALLEYS

			Temperature					egree D	ays	Precipitation					
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days		
WALDEN	65.0	32.3	48.6	4.5	77	20	500	0	241	2.55	1.33	209.0	13		
LEADVILLE 2SW	58.6	28.5	43.6	3.8	67	25	656	0	143	0.43	-0.57	43.0	9		
SALIDA	70.1	37.9	54.0	2.0	81	28	330	0	320	0.84	-0.21	80.0	10		
BUENA VISTA	67.8	36.4	52.1	2.1	77	32	391	0	283	1.71	0.78	183.9	8		
SAGUACHE	67.4	37.5	52.5	2.5	79	31	383	0	280	1.21	0.54	180.6	7		
HERMIT 7ESE	60.4	29.9	45.2	3.7	72	19	610	0	164	1.70	0.69	168.3	11		
ALAMOSA WSO AP	69.5	37.4	53.5	3.1	78	27	350	0	311	1.13	0.49	176.6	11		
STEAMBOAT SPRINGS	69.5	35.2	52.4	4.6	79	28	383	0	309	3.18	1.07	150.7	15		
YAMPA	63.9	35.6	49.8	3.0	73	28	463	0	226	2.23	0.86	162.8	12		
GRAND LAKE 1NW	62.6	29.8	46.2	3.4	72	24	577	0	207	1.96	0.03	101.6	16		
GRAND LAKE 6SSW	63.2	31.9	47.5	3.8	72	24	534	0	214	1.91	0.53	138.4	18		
DILLON 1E	60.2	30.1	45.2	3.1	70	25	609	0	167	1.48	0.17	113.0	13		
CLIMAX	50.2	25.5	37.8	2.6	61	19	836	0	48	2.18	0.30	116.0	6		
ASPEN 1SW	63.9	34.1	49.0	2.0	72	27	487	0	225	3.08	0.98	146.7	15		
CRESTED BUTTE	60.9	31.4	46.2	3.0	69	25	576	0	180	2.36	0.90	161.6	16		
TAYLOR PARK	56.6	30.6	43.6	3.4	64	23	656	0	112	2.45	1.13	185.6	12		
TELLURIDE	67.3	33.3	50.3	3.8	75	25	450	0	275	4.27	2.49	239.9	13		
PAGOSA SPRINGS	68.6	35.4	52.0	2.8	78	27	392	0	298	4.25	3.11	372.8	15		
SILVERTON	59.1	31.0	45.0	2.4	67	25	610	0	157	2.78	1.22	178.2	14		
WOLF CREEK PASS 1	54.0	30.8	42.4	3.2	64	21	695	0	86	3.93	1.90	193.6	16		

WESTERN VALLEYS

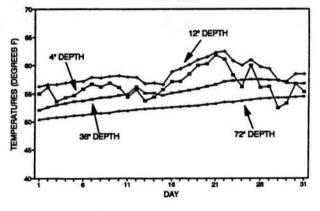

		Tempera	ture			D	egree D	ays		Precipitation					
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	%Norm #	# days		
CRAIG 4SW	70.7	41.4	56.0	5.5	78	33	270	0	328	2.54	0.89	153.9	12		
HAYDEN	70.5	40.3	55.4	3.7	81	32	290	0	327	3.37	1.97	240.7	11		
MEEKER NO. 2	70.8	40.6	55.7	4.2	79	33	280	0	332	3.25	1.78	221.1	11		
RANGELY 1E	75.6	46.5	61.1	4.4	84	38	122	7	411	1.47	0.47	147.0	8		
EAGLE FAA AP	72.5	38.3	55.4	4.2	81	30	289	0	358	1.10	0.31	139.2	14		
GLENWOOD SPRINGS	74.2	42.1	58.1	3.5	83	34	205	1	383	2.82	1.29	184.3	12		
RIFLE	75.3	45.2	60.3	4.7	85	34	142	2	400	2.29	1.23	216.0	11		
GRAND JUNCTION WS	77.5	51.4	64.4	2.4	87	42	53	43	465	1.81	0.94	208.0	15		
CEDAREDGE	75.7	40.3	58.0	1.4	85	32	208	1	408	2.03	0.89	178.1	12		
PAONIA 1SW	75.6	45.8	60.7	3.6	85	39	133	6	405	2.36	1.03	177.4	12		
DELTA	77.8	47.1	62.5	3.1	89	38	86	15	448	1.96	1.39	343.9	8		
GUNN I SON	68.0	32.2	50.1	2.7	76	22	452	0	288	1.47	0.81	222.7	3		
COCHETOPA CREEK	69.2	33.8	51.5	5.1	78	23	409	0	305	2.04	1.25	258.2	14		
MONTROSE NO. 2	73.0	45.1	59.1	1.9	82	37	176	0	364	2.07	1.22	243.5	12		
URAVAN	80.3	48.7	64.5	3.3	89	38	53	47	482	2.85	1.85	285.0	11		
NORWOOD	67.8	40.4	54.0	2.7	77	28	302	0	252	4.22	3.15	394.4	10		
YELLOW JACKET 2W	69.7	42.4	56.0	1.9	79	31	270	0	313	5.43	4.33	493.6	18		
CORTEZ	71.5	40.8	56.2	2.8	81	32	266	1	340	3.70	2.79	406.6	16		
DURANGO	70.5	41.7	56.1	2.6	81	31	267	0	328	3.53	2.46	329.9	15		
IGNACIO 1N	69.7	38.5	54.1	1.2	78	33	277	0	262	1.85	1.03	225.6	9		

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

MAY 1992 SUNSHINE AND SOLAR RADIATION

	Num	ber of	f Days	Percent Possible	Average % of	
	<u>CLR</u>	<u>PC</u>	CLDY	Sunshine	Possible	
Colorado Springs	- 5	11	15		-	
Denver	4	12	15	57%	65%	
Fort Collins	5	13	13			
Grand Junction	5	16	10	71%	73%	
Limon	7	11	13			
Pueblo	8	10	13	70%	74%	
CLR = Clear	PC	= Pa	arthy Clou	idy CL	DY= Clou	ıdy

Episodes of sunshine early in the month gave way to abundant clouds later in May. Overall, solar energy for the month ended up below average, especially for southwest Colorado.


FT. COLLINS TOTAL HEMISPHERIC RADIATION MAY 1992

MAY 1992 SOIL TEMPERATURES

Soil temperatures were off to a very warm start throughout the first two-thirds of May. A dramatic change late in May quickly returned near-surface soil temperatures to average or below average values.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES MAY 1992

HATS OFF TO: Mr. W. R. Davis of Holly, Colorado

Mr. Davis holds a unique postion among Colorado weather observers. He had the frightening honor of measuring Colorado's greatest official 24-hour rainfall total, 11.08" on June 17, 1965. Mr. Davis has faithfully reported Holly's weather since March 1958. Great job!!

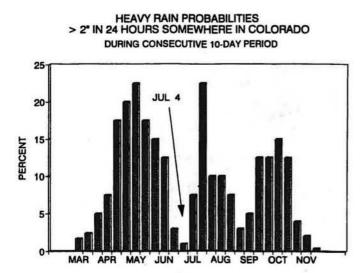
106

It's summertime in Colorado and I'm sure you know what that means. Yes, indeed, its the crash boom time of year where black-bottomed, white-topped thunderheads (meteorological name: cumulonimbus) erupt over the mountains and plains adding a fearsome beauty to our State. Meteorologists delight in the summer thunderstorms. Farmers and gardeners carry on a love-hate relationship – loving the rain (if it falls when they need it) and hating the hail that all too often comes along for the ride. And then there are dogs. I've known dogs that would gladly hitchhike to California to miss our convective season if they could just figure out how to raise a thumb.

Lots of things amaze me about climate in general and our Colorado climate in particular. A question I often ask myself at this time of year is "how can it rain so hard and still be so dry?" That seems to be a fact of life here in the summer – always on the verge of drought but with a flood possible at any moment.

Anyway, let's talk about heavy rain. The National Weather Service definition of heavy rain is based appropriately on the rate of fall. By their standards, more than 0.03" of rain in 6 minutes or 0.30" in an hour is heavy rain. At that rate, you can't even dash across a narrow street without getting pretty wet. A few of our big widespread spring and fall storms will produce general rains that fall at about that rate. Those storms more commonly drop moisture at a rate of 0.15" to 0.25" per hour, but since they may last for several hours, total rainfall may add up to 1 to 3 inches. By comparison, when precipitation falls as snow, rates of water accumulation are typically only 0.01" to 0.10" per hour. Only exceptionally heavy, wet snows like the one we experienced March 8, 1992 deposit precipitation at a rate close to 0.20" per hour. It is a rare and frightening snowstorm indeed that drops precipitation at a rate of more than 0.30" per hour.

The type of storm most capable of producing heavy rainfall rates is, of course, the thunderstorm. In fact, a good thunderstorm would be embarrassed among its friends if it could only muster up 0.30" per hour. Strong storms from May to September (but especially in the heat of mid summer) may drop rain at rates of 0.05" on up to as much as 0.18" per minute. These high rainfall rates are normally found only near the core of the storm and are most likely to occur out on the plains or in the lower foothills. On occasion, the higher mountains and the Western Slope see comparable downpours, but the storms there tend to be brief and localized. "Gully washers," as they have long been called, are likely to last longer and cover larger areas east of the mountains. The Palmer Ridge northeast of Colorado Springs is also a favored area.

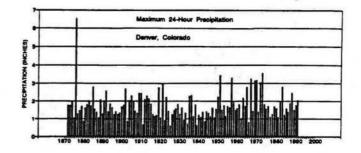

With all the thunderstorms we get from May to September, the reason we aren't a lush, overgrown jungle is the fact that our storms are often in the form of single cells or poorly organized groups of thunderstorm cells just barely getting enough moisture from the lower atmosphere to keep them going. While capable of producing brief and localized heavy rain, Colorado storms generally are fairly short lived and cover relatively small areas – a few square miles for a typical storm. This is in sharp contrast to the spring and summer thunderstorm systems of the Great Plains and Midwest that cover broad areas and feed on copious amounts of very humid air.

From time to time there are exceptions to these rules. These exceptions often stand out as memorable floods in our State's history. For example, the flood in the Big Thompson Canyon west of Loveland on the night of July 31, 1976 was not a typical localized thunderstorm cell. It was a part of a large storm complex that developed on a day when the atmosphere over all of Colorado was exceptionally rich with moisture. Most of Colorado received some rain that day. At the center of the storm near the town of Drake rainfall maximized at close to 12" in just a few hours of time. The devasting results are well known to most Coloradans. The ensuing flash flood claimed at least 139 lives.

Even more impressive meteorologically was the episode of storms that developed from the mountains eastward to Kansas and Nebraska June 13-18, 1965 which brought widespread flooding. Localized downpours became more widespread on the 16th and 17th over many areas east of the mountains. Unofficial reports of up to 14" of rain in a few hours on the 16th south and east of Denver were likely true. The largest official 24-hour and 48-hour rainfall measurement in Colorado's history were taken at Holly in extreme southeast Colorado. They measured 11.08" at their observation on June 17th with an additional 4.09" on the 18th. Unprecedented flooding followed.

Storms like these do not happen often, but more than likely they will occur again. The many years of climate data we have from various locations across Colorado may not allow us to anticipate the exact time and place of future heavy rains, but they can give us a useful background. First of all, experience has shown that heavy rains do have certain times of year when they are most likely. The following graph shows that heavy rains of at least 2.00" are unheard of in mid winter. (Snowstorms do produce more than 2" of moisture on occasion. Such storms may pose an avalanche hazard but are not responsible for flooding.) Chances for heavy rain begin in March and reach a peak in May. Probabilities remain high until plummetting near the end of June. Remarkably, very heavy rains are extremely unlikely around the 4th of July. Then probabilities shoot up again to another peak near the end of July. Thereafter, chances for heavy rains decrease to another minimum only to shoot up yet a third time from late September through October.

Each of these peaks in heavy rain activity represents a different mechanism in the atmosphere above Colorado. The spring peak tends to be widespread rains resulting from large, slow-moving disturbances aloft tapping moisture from the Gulf of Mexico. These are frequently all-day or multi-day rains which may snow at higher elevations. The heaviest precipitation from this type of storm is usually found in the eastern foothills of the Rockies. The summer peak is composed of more localized afternoon and evening thunderstorms of short duration that can occur almost anywhere in the State. Heaviest rainfall from these storms is often found at the lowest elevations where the most moisture

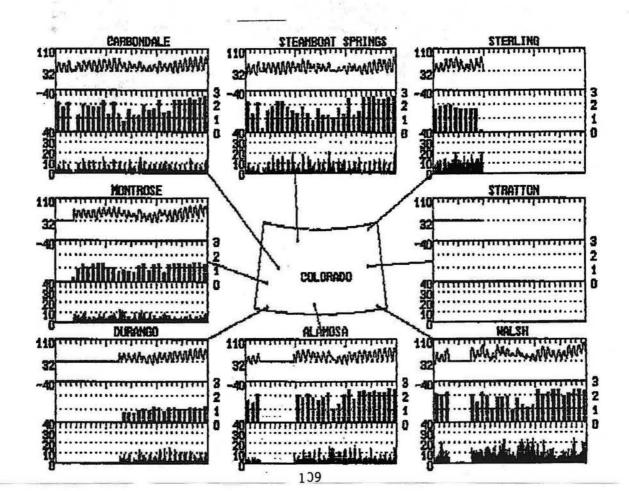

is available to fuel thunderstorm activity or along geographic features where summer airmasses often converge like the Palmer Ridge between Denver and Colorado Springs. Finally, the autumn peak is characterized by more widespread, longer-lasting and less intense rainfall. Southwest Colorado is most at risk for heavy rains during that period since the moisture source is often tropical Pacific moisture swept northward by dying hurricanes.

We have examined maximum 1-day precipitation totals from hundreds of official weather stations in Colorado. The following table highlights some of the key results. These data confirm that the areas most prone to heavy precipitation are predominantly east of the mountains. In the mountains, it is the southern areas where heavy precipitation is most likely. The driest areas are the San Luis Valley and the northwestern valley areas of Moffat and Rio Blanco Counties. This should not be surprising when you stop to think where moisture comes from to feed Colorado storms.

•		lorado	Precipitation Totals
Region	Greatest (inches)	Regional Median (inches)	Most Likely Season
Northeast Plains	5.00	3.55	Summer
East-Central Plains	8.00	3.65	Summer
Southeast Plains	11.08	4.13	Summer
North Front Range	7.60	3.36	Spring (foothills) Summer (plains)
South Front Range	6.46	2.95	Spring (foothills) Summer (plains)
Northern Mountains	3.20	2.27	Autumn/Spring
Central Mountains	4.60	2.05	Winter/Spring/Summe
Southern Mountains	4.90	3.00	Autumn/Winter
San Luis Valley	2.55	1.77	Summer/Autumn
Northwest Valleys	2.33	1.96	Summer/Autumn
West-Central Valleys	3.20	1.87	Summer/Autumn
Southwest Valleys	3.65	2.45	Summer/Autumn

 Number of stations per region ranged from 9 in the San Luis Valley to 46 for the North Front Range. Average record length of 30 years per station. Minimum record length of 10 years. It is critically important to know how much rain could fall in short time periods. Such information is extremely valuable for adequately designing bridges, culverts, drains, storm sewers and any structure that might be affected by heavy rains. Proper planning not only saves property, it also saves lives. But it is not as easy as you might think to anticipate how much precipitation could fall. Let me give you an example.

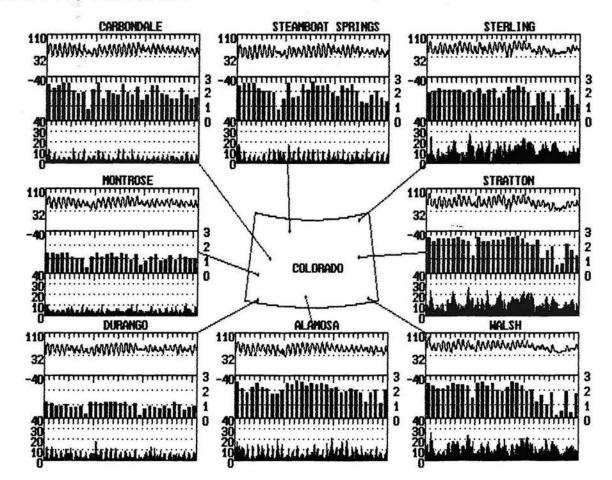
Careful measurements of 24-hour precipitation have been taken for more than 120 years at the official National Weather Service station in Denver. One would think that would be more than adequate to judge the magnitude of heavy rain one might expect and to accurately generate estimates of storms of various return periods (e.g. 100-year storm). As you can see from the following time series, when it comes to maximum daily precipitation, there is no such thing as enough data. Annual maximum 24-hour totals have ranged from less than 1" in 10 of the 120 years of data to more than 3" in 8 years. Interestingly, 5 of those 8 years occurred within a 7-year period around 1970. Denver has never gone more than 13 years without at least one 2-inch rain at the official gage.

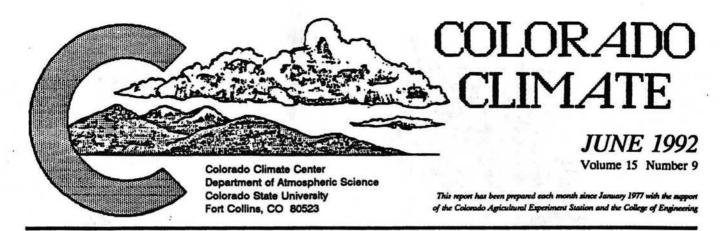

If all you had was the past 115 years of data from 1877-present you would estimate with considerable confidence a 100-year 24-hour rain event of somewhere a little greater than 3.5". Throw 1876 into the sample, however, and what can you say? Was that 6.53" value a freak? - perhaps a 500year storm? Why isn't there a single point between 3.55" (1973) and 6.53"? Well folks, that's what we're up against when we try to establish design criteria from available heavy precipitation data. Statisticians have been challenged with this extreme value problem for years, and there is no perfect solution. It is common practice to group several stations from an area believed to be climatically homogeneous and combine all their records to obtain smoother statistical results. That is probably a valid approach, but it does us very little good here in Colorado where long-term weather stations are much too few in number in and near the mountains to have a large number of "climatically similar" stations to group together.

Daily rainfall data is interesting and available for lots of locations. But the real problems from heavy rains develop amazingly quickly from short-duration intense downpours that are often extremely localized. Accurate long-term measurements of rainfall rates are taken at surprisingly few locations. Next month, I will conclude this discussion with some examples of short duration heavy rains that have been measured in Colorado. I'll also mention an opportunity for new rainfall studies that might be appearing in the next few years. Enjoy your summer.

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

			WTHRNET (NEATHER DATA	APRIL 1992			
	Alanosa	Ourango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
onthly	average temper 46.5	rature ('F) 45.7	48.6	53.2	43.6	38,3	32.0	54.6
onthly Daximum Dinimum	: 77.4 29/14		ine of occurent 15 81.0 29/ 6 24.3 2/	ce ('F day/hour 15 83.7, 29/16 5 23.7 20/ 6	76.3 30/15 13.5 1/6	76.8 10/1 14.9 1/	3 32:8 1/	4 94.3 30/1 4 19.4 1/
sonthly SAM 11 AM 2 PM 5 PM 11 PM	average relat: 65 / 19 28 / 21 19 / 17 20 / 15 40 / 20	ive humidity 42 / 15 25 / 20 21 / 17 21 / 18 37 / 17	/ dewpaint (p 81 / 27 25 / 26 25 / 21 27 / 20 46 / 23	ercent / *F) 36 / 25 35 / 31 28 / 29 27 / 27 42 / 23	82 / 23 35 / 22 28 / 19 23 / 19 59 / 23	1100007	0 /-13 0 /-13 0 /-13	65 / 28 34 / 227 28 / 30 53 / 30
onthly day night	average wind (166 124	direction { 113 50	degrees clocky 229 171	ise from worth) 229 143	24 <u>2</u> 115	56 63	8	133
	Average wind 4.84 ed distributi 2.30 3.37 4.5 4.5 4.5 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	3.28	3.73	4.04 ourly average mp 426 5 0	4.37 h range) 391 252 57 0	2.54 529 150 41 0	0,00 720 0 0	8.84 425 , 164 , 2
monthly	everage daily 1491	total insola 530	ition [8tu/ft ¹ [744	•day } 988	1747	551	O	1606
clearn 60-807 40-607 20-407 0-207	ess" distribut 161 83 42 10	ion [hours ; 2 165 64	er month in ≰p 138 100 79 22	ecified_clearnes 51 70 99 117	s index range 119 90 72 38) 26 18 11	0000	169 67 64 29

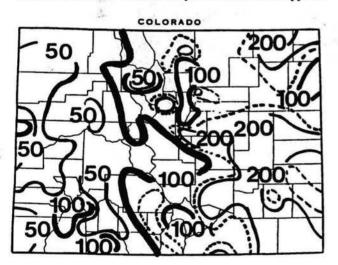

The figure below shows monthly weather at WTHRNET Sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind



			WTHRNET WE	ATHER DATA	NAY 1992			
	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
onthly	average tempe 52.9	rature (*F) 52.1	54.8	58.0	50.3	60.0	59.2	61.0
onthly axinum: inimum:	temperature e 75.7 1/1 26.8 11/	4 74.1 17/		82.2 17/16) 79.0 19/15 23.7 4/ 5	88.7 7/15 29.8 17/ 5		94.3 1/1 37.6 28/
onthly 5 AM 1 AM 2 PM 5 PM 1 PM	average relat 91 / 36 43 / 37 32 / 30 35 / 30 66 / 36	ive humidity 87 / 36 54 / 43 47 / 40 49 / 39 78 / 39	/ dewpoint (per 86 / 35 36 / 34 28 / 30 33 / 31 59 / 34	cent / °F) 76 / 36 49 / 44 40 / 41 40 / 39 64 / 39	87 / 31 38 / 33 30 / 29 35 / 29 71 / 34	32 / 16 19 / 19 18 / 21 16 / 20 22 / 14	78 / 39 41 / 39 34 / 36 32 / 34 59 / 37	81 / 43 49 / 43 39 / 39 40 / 39 64 / 43
day ight	average wind 182 161	direction (205 99	degrees clockwis 228 175	e from north) 250 162	216 123	166 183	137 195	134 177
	479 71	3.65	per hour) 2.88 er month for hou 492 248 4 0	3.57 rly average mph 334 410 0 0	3.41 range) 433 286 21 0	9.78 93 396 251 4	10.60 12 479 249 4	10.05 20 464 258 2
onthly	average daily 2065	total insola 891	tion (Btu/ft ¹ •da 1932	ay) 1146	2003	1839	2074	1897
clearne 0-80% 0-60% 0-40% 0-20%	ss" distribut: 190 125 76 31	ion (hours p 0 2 255 175	er month in spec: 146 113 91 50	ified clearness 49 109 98 177	index range) 143 84 82 59	171 103 84 68	220 98 62 48	194 88 68 80

The State-Wide Picture

The figure below shows monthly weather at WTHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

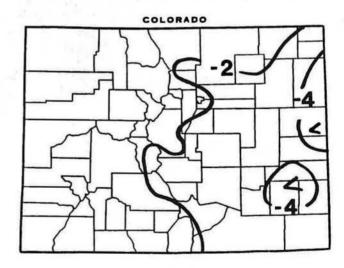


June in Perspective - Stormy East, Dry West and Cool

June often provides plenty of exciting weather, but this year outdid itself. Severe weather watches were issued on more than half the days in June, and thunderstorms popped like popcorn. The Coal Creek weather observer counted a total of 85 separate thunderstorms during the month at his station. A few tornadoes were spotted, but the real story was hail. Hail was reported somewhere in the State on all but four days during the month. Some locations were hit by as many as eight separate hail storms. Wind was also a problem. Many locations recorded wind gusts in excess of 40 mph on at least 5 different days. To add insult to injury, many mountain stations also reported snow.

Precipitation

The wet weather that surprised western Colorado in late May turned its attention to eastern Colorado in June. The mountains and Western Slope had numerous opportu-



June 1992 precipitation as a percent of the 1961-1990 average.

nities for rain early in the month, but not much materialized. Along the Front Range precipitation was erratic. Some locations were inundated (5.78" in Fort Collins) while nearby areas were missed (0.77" at Boulder). Meanwhile, many areas on the Eastern Plains made up for the disappointingly dry weather of April and May. Several locations totalled more than 8" of rain for the month.

Temperatures

There was one decent heatwave across western Colorado in the second half of June. Other than that, hot summer weather just couldn't get organized. New intrusions of cool air moved in every few days. Except for a few localized areas in western Colorado, most of State ended up cooler than average for the month as a whole. Areas east of the mountains were especially chilly – generally two to four degrees cooler than expected. A few places out near the Kansas border were nearly five degrees below average. As a result, crop development slowed considerably.

Departure of June 1992 temperatures from the 1961-90 averages.

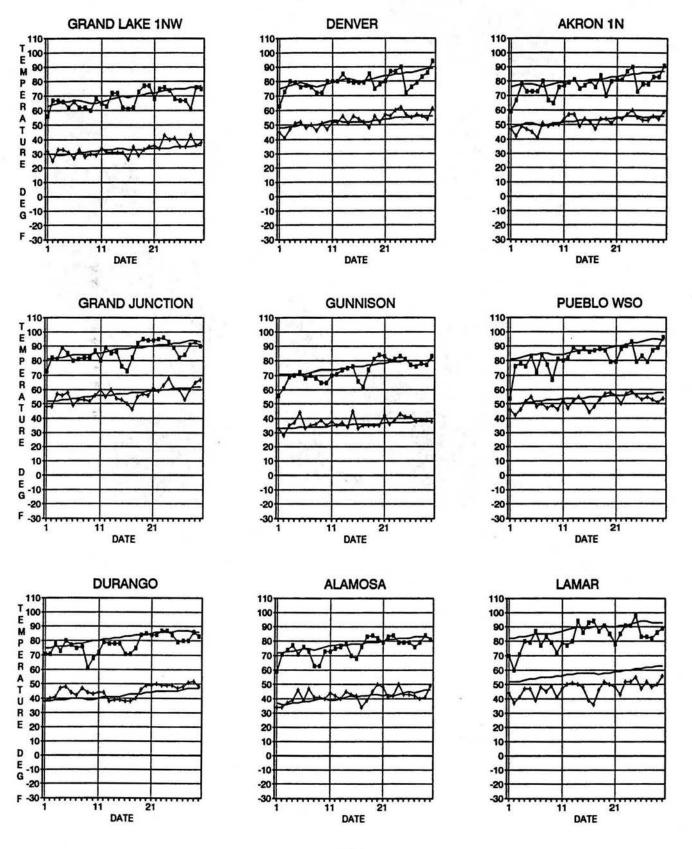
Inside This Issue

June 1992 Daily Weather													
June 1992 Temperature Comparison .			•			•	• •	 	•	•	•		3
June 1992 Precipitation	• •		• •		•	•		 		•		•	4
June 1992 Precipitation Comparison .	• •		• •					 					5
1992 Water Year Precipitation													
Comparative Heating Degree Day Data			•										7

June 1992 Climatic Data
Special Feature - Heavy Rains in a Dry State -
The Rest of the Story 10
Special Feature - A Classic Severe Thunderstorm -
June 24, 1992 Fort Collins, CO 11
JCEM - WTHRNET (June 1992) 13

- 1-2 Widespread steady rains fell east of the mountains on the 1st, and temperatures stayed in the 50s and 60s making it feel like April. Limon, Akron, and many other areas measured more than 1" of welcome rain. Several inches of snow fell in the mountains, and the snow line snuck as far down as Monument. Climax reported 21°F on the 1st, the coldest in Colorado for the month. Skies cleared and temperatures warmed on the 2nd, but many locations had their coolest morning of the month. Limon recorded 39°F.
- 3-11 Most Coloradans enjoyed a lovely early-summer day on the 3rd, but a cold front late in the day brought strong winds and set off a few evening thunderstorms. This initiated a long period of stormy weather. Cool high pressure over the Midwest and Northern Plains helped pump moist air into eastern Colorado. Meanwhile, a series of disturbances from the west and northwest acted as triggers to set off storm development. Large thunderstorms with hail struck northeast Colorado on the 4th. Storms were widespread on the 5th with the southeastern plains getting hit the hardest. The Springfield 7WSW station recorded 2.27". Storms were lighter on the 6th but got rolling late at night over southeastern counties. Springfield received an additional 1.95". Storms were active again on the 7th with several reports of hail and possible tornadoes. On the 8th, storms took aim on the Front Range, hitting north Denver and Ft. Collins with heavy downpours and directly over Colorado on the 9th, and numerous heavy storms again erupted. A dozen towns reported 1"+ rains. Temperatures warmed on the 10-11th, but there was still enough moisture to fuel numerous local storms. At least 8 cities reported hail on the 11th.
- Lingering moist air allowed some thunderstorm 12-16 formation again on the 12th, but drier air then swept in from the southwest in advance of an unusually intense low pressure center over the Intermountain West. Strong, dry southwest winds swept across Colorado on the 13th. Some storms erupted east of the mountains where the dry air collided with moister air out over the plains. Very severe weather exploded over northeast Colorado on the 14th with numerous funnel cloud sightings and hail reports. The storms continued overnight in extreme northeast Colorado dumping at least 2-3" of rain. The Sedgwick 5S weather observer measured 3" diameter hailstones and 2.69" of rain. Julesburg got 2.72". Winds gusting locally to 40 mph or more continued

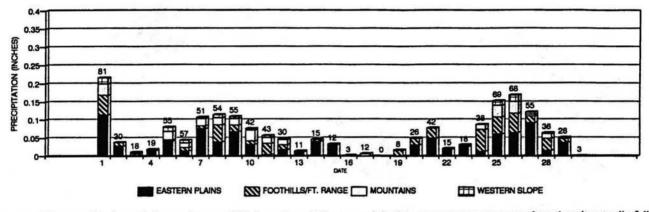
on the 15th. The storm system finally picked up speed and headed northeastward on the 16th. It kicked off a few more storms across northern Colorado as it left, dropping some rain, hail and high-mountain snow in some areas. Cool mountain temperatures accompanied the storm. Fraser reported 23° early on the 16th.


- 17-18 A brief period of seasonally warm, dry and tranquil weather.
- 19-24 Summer heat established itself over western Colorado with temperatures rising into the 90s each day. Uravan hit 100°F 22-23rd, the warmest of the year for the Western Slope. East of the mountains, a new cool front on the 19th spawned widespread hail-producing storms. More severe weather developed in eastern Colorado on the 20th. The Leroy 5 WSW station (near Sterling) reported 3.08" of rain and hail 4 inches deep on the level. Storms were less active 21-23rd, but a few still rumbled east of the mountains each day. Finally, on the 24th, temperatures on the plains began to soar into the 90s only to have a new cold front sneak in. As it did, a potent thunderstorm exploded over Fort Collins dropping nearly 3" of rain and tons of hail in a onehour period (see Special Feature).
- 25-28 A stormy period statewide as weak low pressure aloft combined with cool but moist "upslope" breezes east of the mountains. Temperatures cooled statewide on the 25th, especially over northeast Colorado. Numerous storms still erupted, some containing hail and heavy rain. Sterling measured 1.77" from the storm late on the 26th. Storms were strong in the mountains as well. Yampa recorded 0.62" on the 26th. Storms diminished 27-28th, and temperatures gradually returned to normal.
- 29-30 A very strong spring-like storm pushed in from California. Severe storms seemed likely on the 29th as cool, moist air collided with a hot and dry airmass. A spectacular but mostly harmless tornado was sited near Palmer Lake. Most of the other developing storms were ripped apart by strong winds aloft before they could get organized. On the 30th, Wyoming was buffeted by severe weather, but Colorado only experienced the hot, windy and very dry air circulating around the south side of the large low pressure area. Las Animas finally managed to hit 101°F, the warmest in the State for the month but only their 3rd 100°+ read temperature for the year. Interestingly, their first two occurred on April 30 and May 1, respectively.

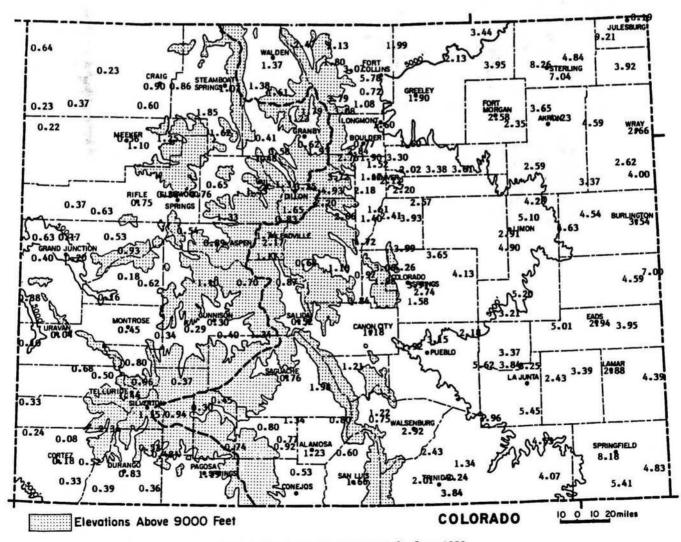
	Weather Extremes			
Highest Temperature	101°	June 30	Las Animas	
Lowest Temperature	21°	June 1	Climax	
Greatest Total Precipitation	9.21"		Sedgwick 5 S	
Least Total Precipitation	0.04"		Uravan	
Greatest Total Snowfall	4.0"		Coal Creek, Hohnholz Ranch,	-1
			Eastonville 5 NW	

Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low tempera-

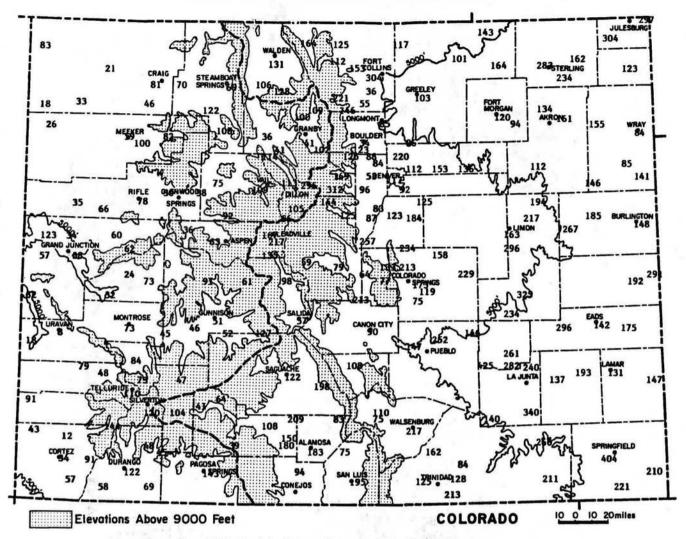
2


tures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

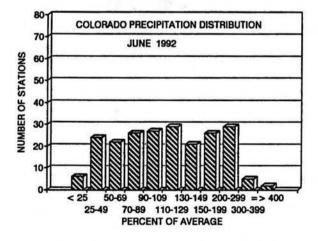
113


JUNE 1992 PRECIPITATION

Precipitation fell somewhere in Colorado on most days during June. Rainfall was heaviest and most widespread from the Front Range out onto the Eastern Plains. For the State as a whole, June 1 was the wettest day of the month with more than 80% of the official stations reporting moisture. While there were numerous heavy thunderstorms and dozens of local downpours of greater than 1", statewide precipitation was not excessive on any other day. That is a common feature of summer storms. Locally, rains may be very great, but rarely are large areas affected at the same time.


COLORADO DAILY PRECIPITATION - JUN 1992

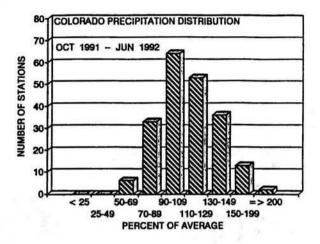
(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

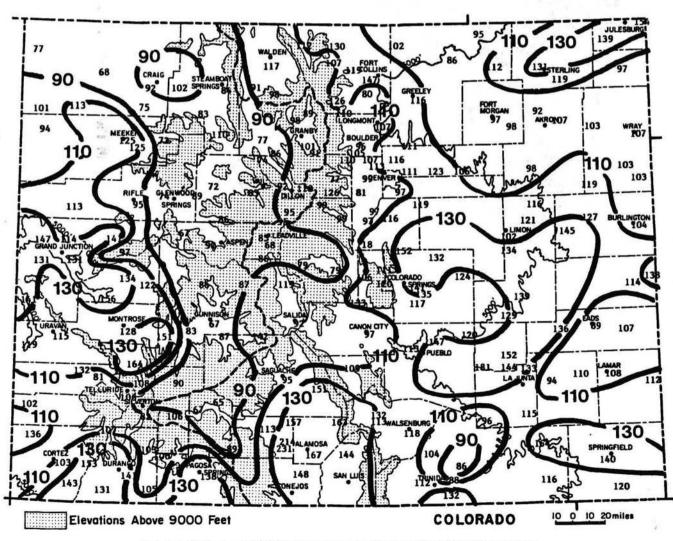


Precipitation Amounts (in inches) for June 1992.

JUNE 1992 PRECIPITATION COMPARISON

June 1992 Precipitation as a Percent of the 1961-90 average.


The variety that our Colorado climate dishes out is always amazing. Once again there were huge variations in precipitation in June ranging from less than 25% of average rainfall in some parts of western Colorado to more than 400% of average at a few spots out on the plains. Sterling had its wettest month since records began in 1910.


JUNE	1992 PRECIPITATION RANKING	
FOR	SELECTED COLORADO CITIES	

Station	Precip.	Rank
Denver	2.02"	36th wettest in 121 years of record (wettest = 4.96° in 1882)
Durango	0.83"	40th wettest in 98 years of record (wettest = 5.53 " in 1927)
Grand Junction	0.17"	39th driest in 101 years of record (driest < 0.01 " in 1916, '61 and '80)
Las Animas	2.43"	27th wettest in 127 years of record (wettest 5.67" in 1965)
Pueblo	3.15"	7th driest in 123 years of record (wettest 7.14" in 1921)
Steamboat Springs	1.02"	36th driest in 86 years of record (driest < 0.01" in 1919)

1992 WATER YEAR PRECIPITATION

The 1992 water year roller coaster ride continues as we alternate between very wet and very dry months. Through the first nine months of the water year, the majority of Colorado's weather stations have received average or above average moisture. The wettest areas, compared to average, are found out on the Eastern Plains, down in the San Luis Valley, and in valley areas of extreme western and southwestern Colorado. A region with drier than average conditions has persisted for most of the year from northwestern Colorado down to the upper Rio Grande basin. This area includes much of the northern and central mountain ranges of Colorado. This pattern, and the timing of this year's precipitation, is resulting in less mountain runoff than average for many major watersheds. But with good low-elevation moisture, water demand has been lessened somewhat.

October 1991-June 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR JUNE 1992

1.00

ALAMOSA AVE 40 100 303 657 1074 1457 1519 1182 1035 732 453 165 8717 GRAND AVE 214 264 468 7 90-91 59 118 201 633 990 1597 1671 1081 954 742 410 172 8628 LAKE 90-91 264 268 350 7 91-92 33 51 280 630 1263 1849 1963 1459 1093 535 350 179 9685 6555 91-92 220 255 427 7 ASPEN AVE 95 150 348 651 1029 1339 1376 1162 1116 798 524 262 8850 GREELEY AVE 0 0 149 4	OCT NOV DEC JAN FEB NAR APR NAY JUN ANN 775 1128 1473 1593 1369 1318 951 654 384 10591 774 1071 1605 1668 1148 1233 979 615 330 10305 739 1169 1468 1735 1354 1118 751 534 383 10153 450 861 1128 1240 946 856 522 238 52 6442 450 723 1309 1246 741 692 492 159 11 5901 450 925 1011 1088 724 665 310 181 37 5523 719 1119 1590 1716 1422 1231 816 543 276 10122
90-91 59 118 201 633 990 1597 1671 1081 954 742 410 172 8628 LAKE 90-91 264 268 350 7 91-92 33 51 280 630 1263 1849 1963 1459 1093 535 350 179 9685 655W 91-92 220 255 427 7 ASPEN AVE 95 150 348 651 1029 1339 1376 1162 1116 798 524 262 8850 GREELEY AVE 0 0 149 4	774 1071 1605 1668 1148 1233 979 615 330 10305 739 1169 1468 1735 1354 1118 751 534 383 10133 450 861 1128 1240 946 856 522 238 52 6442 450 723 1309 1246 741 692 492 159 11 5001 450 925 1011 1088 724 665 310 181 37 5523 719 1119 1590 1714 1422 1231 816 543 276 10122
	450 723 1309 1246 741 692 492 159 11 5901 450 925 1011 1088 724 665 310 181 37 5523 719 1119 1590 1714 1422 1231 816 543 276 10122
90-91 32 13 81 338 589 1161 1081 667 685 511 211 44 5413 90-91 65 179 264 7	771 1059 1664 1787 N N N N 249 N 698 1120 1597 1707 1167 940 661 452 292 9287
VISTA 90-91 66 130 226 641 905 1326 1256 896 983 771 472 207 7879 ANIMAS 90-91 4 0 21 3	296 729 998 1101 820 698 348 102 9 5146 308 624 1220 1113 667 602 352 81 0 4992 350 896 966 943 712 539 242 107 24 4842
90-91 10 4 76 407 N 1249 1223 688 737 438 136 1 N - 90-91 331 402 464 8	817 1173 1435 1473 1318 1320 1038 726 439 10870 861 1141 1556 1550 1207 1210 1068 714 449 10953 826 1245 1461 1471 1296 1186 852 656 495 10733
CITY 90-91 14 12 58 382 548 1098 1004 626 679 459 182 26 5088 90-91 36 11 96 4	448 834 1070 1156 960 936 570 299 100 6531 491 745 1280 1237 779 820 592 245 38 6370 503 1000 1095 1161 827 734 436 272 104 6336
COLORADO AVE 8 25 162 440 819 1042 1122 910 880 564 296 78 6346 LONGMONT AVE 0 6 162 4 Springs 90-91 28 21 83 473 663 1256 1142 750 773 568 219 33 6009 90-91 24 11 101 4	453 843 1082 1194 938 874 546 256 78 6432 481 727 1284 1249 740 699 520 186 28 6050 489 936 1047 1124 786 730 391 201 60 5915
CORTEZ AVE* 5 20 160 470 830 1150 1220 950 850 580 330 100 6665 MEEKER AVE 28 56 261 5 90-91 1 6 151 539 774 1321 1364 879 882 702 335 113 7067 90-91 9 23 121 5	564 927 1240 1345 1086 998 651 394 164 7714 511 885 1406 1458 1047 939 696 358 110 7563 553 1003 1367 1490 1025 758 446 280 138 7312
CRAIG AVE 32 58 275 608 996 1342 1479 1193 1094 687 419 193 8376 MONTROSE AVE 0 10 135 4 90-91 14 18 116 606 876 1547 1544 1095 995 693 398 127 8029 90-91 0 3 81 4	437 837 1159 1218 941 818 522 254 69 6400 470 804 1385 1460 974 768 571 268 49 6833 404 901 1312 1385 911 683 324 176 48 6279
DELTA AVE 0 0 94 394 813 1135 1197 890 753 429 167 31 5903 PAGOSA AVE 82 113 297 6 90-91 0 2 58 416 751 1400 1549 998 742 512 170 26 6624 SPRINGS 90-91 44 108 177 6	608 981 1305 1380 1123 1026 732 487 233 8367 608 910 1538 1432 1038 1002 767 489 227 8340 568 1116 1362 1477 1087 899 577 392 227 8340
DENVER AVE 0 0 135 414 789 1004 1101 879 837 528 253 74 6014 PUEBLO AVE 0 0 89 3 90-91 12 3 64 388 623 1209 1143 684 682 510 174 16 5508 90-91 1 0 34 3	346 744 998 1091 834 756 421 163 23 5465 360 610 1243 1116 730 667 406 103 5273 380 927 1014 958 759 608 309 125 41 5198
DILLON AVE 273 332 513 806 1167 1435 1516 1305 1296 972 704 435 10754 RIFLE AVE 6 24 177 4 90-91 284 355 430 858 1071 1587 1569 1220 1257 1031 691 425 10778 90-91 0 4 69 4	499 876 1249 1321 1002 856 555 298 82 6945 474 824 1433 1462 964 814 605 265 52 6966 475 906 1185 1283 804 660 352 142 57 6009
DURANGO AVE 9 34 193 493 837 1153 1218 958 862 600 366 125 6848 STEAMBOAT AVE* 90 140 370 6 90-91 4 28 118 481 832 1373 1274 842 919 619 364 125 6979 SPRINGS 90-91 129 E 110 255 7	670 1060 1430 1500 1240 1150 780 510 270 9210 700 1013 1683 1613 1223 1120 851 518 262 9477 742 1140 1626 1680 1126 663 595 383 263 9080
EAGLE AVE 33 80 288 626 1026 1407 1448 1148 1014 705 431 171 8377 STERLING AVE 0 6 157 4 90-91 15 23 134 583 934 1568 1536 1052 889 693 355 99 7881 90-91 17 7 68 4	462 876 1163 1274 966 896 528 235 51 6614 437 725 1359 1244 713 716 466 173 8 5933 437 930 1028 1191 731 645 352 142 36 5590
EVERGREEN AVE 59 113 327 621 916 1135 1199 1011 1009 730 489 218 7827 90-91 120 131 219 591 803 1330 1244 937 885 727 430 152 7569 90-91 117 179 267 6	676 1026 1293 1339 1151 1141 849 589 318 9164 635 972 1384 1351 987 1093 828 486 293 8592 595 1013 1264 1291 1057 946 565 450 285 8143
FORT AVE 5 11 171 468 846 1073 1181 930 877 558 281 82 6483 TRINIDAD AVE 0 0 86 3 COLLINS 90-91 19 6 74 460 690 1284 1212 747 703 508 203 41 5947 90-91 4 6 46 3	359 738 973 1051 846 781 468 207 35 5544 334 654 1160 1048 697 709 462 156 12 5288
FORT AVE 0 6 140 438 867 1156 1283 969 874 516 224 47 6520 WALDEN AVE 198 285 501 8 Worgan 90-91 18 7 63 421 730 1343 1248 750 722 489 180 8 5979 90-91 202 258 332 7	822 1170 1457 1535 1313 1277 915 642 351 10466 794 1028 1550 1459 1105 1164 931 587 300 9710
GRAND AVE 0 0 65 325 762 1138 1225 882 716 403 148 19 5683 WALSENBURG AVE 0 8 102 3 JUNCTION 90-91 0 0 28 360 759 1370 1464 919 706 478 136 18 6238 90-91 15 8 53 3	776 1217 1422 1547 1234 1025 700 500 349 9624 370 720 924 989 820 781 501 240 49 5504 311 543 1047 985 646 674 437 141 23 4883 337 818 915 870 717 634 309 163 60 6924
91-92 0 2 37 304 815 1193 1390 788 608 195 53 8 5393 91-92 6 5 90 3 * = AVES ADJUSTED FOR STATION MOVES M = NISSING E = ESTIMATED * = AVES ADJUSTED FOR STAT	· · · · · · · · · · · · · · · · · · ·

117

JUNE 1992 CLIMATIC DATA

1.5.1

10

EASTERN PLAINS

Temperature						Degree Days			ays		Precip	oitation		
Name	Max	Min	Mean	Dep	High	LOW		Heat	Cool	Grow	Total	Dep	XNorm I	# days
NEW RAYMER 21N	72.5	47.4	59.9	-2.5	82	37		152	7	359	3.44	1.04	143.3	16
STERLING	80.1	54.1	67.1	-1.3	92	41		36	107	526	8.26	5.35	283.8	13
FORT MORGAN	79.6	53.6	66.6	-2.0	91	40		41	99	518	2.58	0.43	120.0	10
AKRON FAA AP	77.2	51.8	64.5	-2.4	91	41		68	59	456	3.65	0.94	134.7	14
AKRON 4E	76.5	51.1	63.8	-2.8	89	39	- 31	72	44	442	4.23	1.61	161.5	10
HOLYOKE	75.3	54.5	64.9	-3.9	87	42		57	61	461	3.92	0.74	123.3	13
JOES	77.0	52.8	64.9	-3.6	94	44		60	62	458	3.37	1.07	146.5	7
BURLINGTON	77.8	52.3	65.1	-4.7	94	41	(*)	61	70	461	3.54	1.16	148.7	13
LIMON WSMO	75.6	48.8	62.2	-2.6	89	39		104	26	409	2.91	1.13	163.5	14
CHEYENNE WELLS	80.3	52.4	66.3	-3.1	96	43		38	86	494	4.59	2.21	192.9	11
EADS	78.9	53.8	66.3	-4.5	95	45		49	96	490	2.94	0.87	142.0	10
ORDWAY 21N	80.8	51.5	66.1	-3.4	94	43		46	83	496	3.21	1.84	234.3	16
ROCKY FORD 2SE	83.3	52.8	68.1	-3.8	95	42		32	132	539	3.84	2.48	282.4	12
LAMAR	83.0	47.0	65.0	-7.0	98	36		56	63	484	2.88	0.69	131.5	12
LAS ANIMAS	83.7	54.5	69.1	-4.3	101	45		24	156	555	2.43	0.66	137.3	13
HOLLY	84.2	54.7	69.5	-3.0	99	44		20	162	562	4.39	1.41	147.3	13
SPRINGFIELD TWSW	82.9	53.2	68.0	-2.5	96	44		36	134	534	8.18	6.16	405.0	13
TIMPAS 13SW	82.2	52.6	67.4	-3.2	91	41	- 24	46	126	522	1.96	0.56	140.0	9

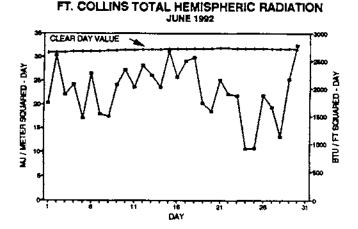
FOOTHILLS/ADJACENT PLAINS

			Tempera	ature			D	Degree Days			Precipitation			
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days	
FORT COLLINS	77.0	51.3	64.1	-1.5	90	41	56	37	447	5.78	3.88	304.2	11	
GREELEY UNC	80.0	52.1	66.0	-2.0	92	41	37	74	495	1.90	0.07	103.8	13	
ESTES PARK	68.1	40.9	54.5	-2.4	79	30	308	0	280	3.79	2.08	221.6	18	
LONGMONT 2ESE	79.2	49.2	64.2	-2.2	92	40	60	43	459	1.60	-0.27	85.6	11	
BOULDER	76.4	49.2	62.8	-2.7	90	34	93	34	423	0.96	-1.27	43.0	13	
DENVER WSFO AP	79.4	52.7	66.1	-0.8	94	41	35	76	497	2.02	0.22	112.2	13	
EVERGREEN	72.0	41.5	56.7	-1.3	88	32	242	3	336	2.18	-0.09	96.0	14	
CHEESMAN	75.0	39.2	57.1	-2.9	84	30	232	0	382	4.72	2.89	257.9	22	
LAKE GEORGE 8SW	69.0	39.5	54.3	-0.8	87	31	316	0	293	1.10	-0.28	79.7	13	
ANTERO RESERVOIR	67.3	34.1	50.7	-1.2	77	25	420	0	268	0.68	-0.46	59.6	10	
RUXTON PARK	62.7	33.6	48.2	-3.0	75	26	498	0	204	1.98	-0.57	77.6	18	
COLORADO SPRINGS	75.0	50.0	62.5	-2.7	87	43	96	28	405	3.91	1.65	173.0	16	
CANON CITY 2SE	77.8	50.5	64.2	-3.5	88	41	63	45	455	1.18	-0.13	90.1	11	
PUEBLO WSO AP	82.1	51.4	66.8	-4.2	96	42	41	100	511	3.15	1.90	252.0	15	
WESTCLIFFE	72.0	38.0	55.0	-3.1	81	29	293	0	338	1.21	0.09	108.0	10	
WALSENBURG	79.1	49.9	64.5	-2.3	87	40	60	54	468	2.92	1.58	217.9	13	
TRINIDAD FAA AP	82.1	49.9	66.0	-2.6	93	39	50	88	495	1.34	-0.24	84.8	11	

MOUNTAINS/INTERIOR VALLEYS

			Temper	ature			D	egree D	ays		Precip	itation	1
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	69.6	36.7	53.1	-0.5	81	27	349	0	299	1.37	0.33	131.7	12
LEADVILLE 2SW	64.8	31.6	48.2	-0.6	75	26	495	0	229	2.17	1.17	217.0	13
SALIDA	76.0	41.6	58.8	-2.0	86	31	180	2	400	0.52	-0.38	57.8	6
BUENA VISTA	73.3	39.7	56.5	-2.7	83	29	247	0	359	0.87	-0.01	98.9	10
SAGUACHE	71.9	41.0	56.4	-2.0	81	32	249	0	336	0.76	0.14	122.6	7
HERMIT 7ESE	68.0	30.7	49.3	-0.6	76	23	463	0	279	0.30	-0.43	41.1	2
ALAMOSA WSO AP	75.6	42.0	58.8	-0.6	84	34	179	1	393	1.23	0.56	183.6	8
STEAMBOAT SPRINGS	73.5	38.6	56.0	0.6	85	31	263	1	359	1.02	-0.53	65.8	10
YAMPA	69.9	41.0	55.4	0.3	80	25	282	1	307	1.62	0.13	108.7	12
GRAND LAKE 1NW	67.6	33.3	50.4	-0.9	77	25	430	0	270	1.79	0.16	109.8	15
GRAND LAKE 6SSW	68.1	35.8	51.9	-0.3	79	28	383	0	282	1.23	-0.00	100.0	13
DILLON 1E	64.9	34.0	49.5	-1.2	76	26	458	0	231	1.31	0.16	113.9	14
CLIMAX	57.7	30.9	44.3	-1.2	71	21	615	0	129	0.83	-0.63	56.8	4
ASPEN 1SW	69.2	36.8	53.0	-2.5	79	28	351	0	294	0.89	-0.52	63.1	10
CRESTED BUTTE	67.2	33.5	50.4	-1.1	78	25	430	0	267	1.10	-0.10	91.7	9
TAYLOR PARK	63.9	34.2	49.0	-0.9	73	28	468	0	216	0.70	-0.44	61.4	5
TELLURIDE	74.4	36.1	55.2	0.3	88	28	285	0	370	1.44	0.14	110.8	10
PAGOSA SPRINGS	74.8	37.9	56.4	-1.2	85	27	251	0	381	1.19	0.36	143.4	8
SILVERTON	64.8	33.2	49.0	-1.2	75	27	474	0	231	1.55	0.26	120.2	11
WOLF CREEK PASS 1	61.1	37.1	49.1	1.3	73	27	471	0	173	0.74	-1.13	39.6	5

WESTERN VALLEYS

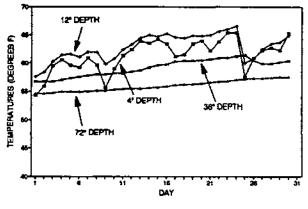

WESTERN VALLETS			Tempera	ature		• •	 Di	egree D	AVS		Precipitation		
Name	Max	Min	Nean	Dep	High	Low	Heat	Cool	Grow	Total	Dep		
CRAIG 459	75.5	44.8	60.2	-0.4	87	35	161	22	400	0.90	-0.20	81.8	13
HAYDEN	76.4	43.5	59.9	-0.5	87	31	158	15	406	0.86	-0.36	70.5	9
MEEKER NO. 2	78.7	42.8	60.7	-0.2	91	33	138	18	426	0.56	-0.38	59.6	9
RANGELY 1E	82.2	51.2	66.7	-0.1	94	42	44	103	509	0.22	-0.60	26.8	3
EAGLE FAA AP	78.8	41.3	60.0	0.0	90	32	150	7	435	0.65	-0.21	75.6	7
GLEMMOOD SPRINGS	79.7	45.1	62.4	-1.2	91	36	111	42	441	0.38	-0.88	30.2	7
RIFLE	82.6	46.4	64.5	0.3	93	39	57	47	479	0.75	-0.20	78.9	6
GRAND JUNCTION WS	86.0	56.4	71.2	-1.2	96	46	8	203	608	0.17	-0.33	34.0	3
CEDAREDGE	83.1	43.2	63.1	-3.0	93	30	89	40	481	0.18	-0.57	24.0	3
PAONIA 1SW	83.1	49.9	66.5	0.1	93	40	48	98	507	0.62	-0.22	73.8	8
DELTA	85.0	50.4	67.7	-0.6	95	42	29	117	530	0.16	-0.34	32.0	2
GUNN 1 SON	73.0	36.9	55.0	-0 .B	84	28	292	0	352	0.30	-0.28	51.7	2
COCHETOPA CREEK	74.1	36.3	55.2	0.1	84	28	286	0	369	0.40	-0.36	52.6	13
MONTROSE NO. 2	80.5	50.6	65.5	-1.1	89	41	48	72	487	0.45	+0.16	73.8	5
URAVAN	88.9	54.2	71.5	0.8	100	46	6	209	596	0.04	-0.41	8.9	3
NORWOOD	76.1	44.7	60.4	-0.2	86	35	139	8	402	0.68	-0.18	79.1	3
YELLON JACKET ZV	78.9	46.7	62.8	-1.2	88	38	89	- 31	442	0.24	-0.31	43.6	4
CORTEZ	80.0	42.7	61.3	-0.8	89	33	114	12	450	0.18	-0.34	34.6	2
DURANGO	77.8	44.7	61.3	-0.8	87	38	123	20	425	0.83	0.15	122.1	8
IGNACIO 1N	77.7	42.0	59.8	-2.3	86	33	150	2	422	0.36	-0.16	69.2	3

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

JUNE 1992 SUNSHINE AND SOLAR RADIATION

	Number of Days			Percent Possible	Average % of
	<u>CLR</u>	<u>PC</u>	<u>CLDY</u>	Sunshine	Possible
Colorado Springs	7	8	14	-	-
Denver	9	11	10	62%	71%
Fort Collins	5	16	9	-	-
Grand Junction	14	11	5	86%	80%
Limon	9	11	10	-	
Pueblo	10	5	15	73%	79%
CLR = Clear	PC	$= \mathbf{P} \mathbf{r}$	arthy Ciou	idy CL	DY= Cloudy

June was an unusually cloudy month east of the mountain with less solar energy than is normally expected. West of the mountains was a different story as blue skies and sunshine were plentiful.



JUNE 1992 SOIL TEMPERATURES

Soil temperatures got off to a cool start in June, recovered in mid-month to more typical values, and then had another setback late in the month. The heavy rain of June 24 cooled the ground even three feet down.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

HATS OFF TO: Mr. John W. Figal of Walsenburg, CO

John Figal took over the Walsenburg weather station back in May 1978. Since then, he has done a superb job monitoring the local climate. Walsenburg looks like a pretty dry place, but they get their share of big storms. In his 14 years observing, he has recorded 39 snowstorms of $\ge 8^{\circ}$.

HEAVY RAINS IN A DRY STATE - THE REST OF THE STORY

Last month we talked about some of the heaviest rains officially measured in Colorado. The majority of the long-term data that is readily available to study storm characteristics is simple once-a-day readings of total precipitation taken by cooperative observers. But as we all know, our heaviest storms are not uniformly spread out over entire 24-hour periods. Most often, especially in mid-summer, the rain falls in brief but intense bursts.

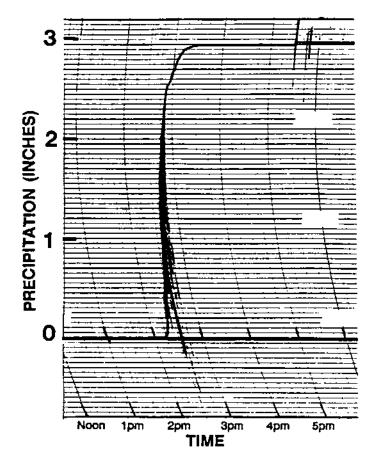
For the past few decades a network of several dozen recording raingages have been operated in Colorado by the National Weather Service. That's not a lot, if you consider the size of our State, but the data have been extremely valuable. Recording raingages register both time and amount of rain, which means it is possible to determine rainfall rates with reasonable accuracy. Data are available in digital form back to 1948 for hourly time increments. The older raingages read to the nearest 0.01". When properly cared for, these gages worked very reliably. Beginning in the 1970s, a gage requiring less human assistance began to replace the older gages. These solarpowered gages can run for long periods unattended. But unfortunately they only register to the nearest 0.10" and to the nearest 15 minutes. We operate both types of recording gages along with two standard manually-read raingages at our Fort Collins weather station.

Some examples of maximum observed 1-hour rainfall totals for a few Colorado locations are listed below. You can be sure that heavier amounts have fallen, but this at least gives an idea of what has been observed.

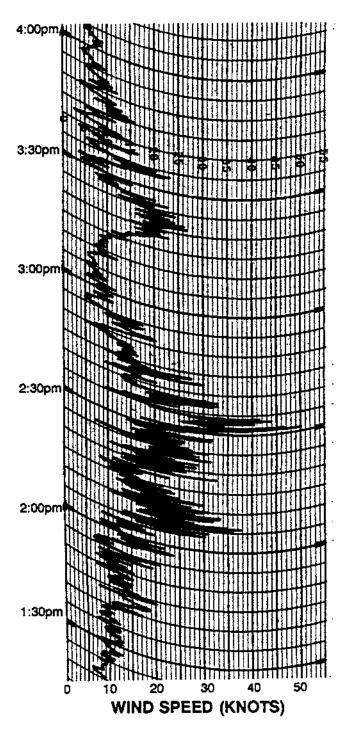
Location	Maximum	Maximum 1-bour rainfall and date				
Denver Stapleton	2.00"	July 25, 1965				
Fort Collins	2.33"	August 18, 1961				
Colorado Springs	2.78"	August 4, 1976				
Pueblo	3.41*	October 8, 1957				
Lake George	3.45*	July 31, 1945				

Data for very short time periods are even harder to come by. Many anecdotal reports can be found of extreme rainfall rates, but actual measurements are few. On July 25, 1965, Denver received 0.68" in 5 minutes. Fort Collins recorded 1.05" of rain in 9 minutes on August 3, 1988. These amounts, impressive as they seem, are totally dwarfed by a few official measurements taken east of Colorado. The national record is a remarkable 1.23" of rain in just one minute. This value was studied and confirmed. That, my friends, is truly deserving of the name "cloudburst." I would be very happy to never experience such a rain here in Colorado.

In recent years, a number of local agencies have begun installing recording raingages to help monitor and respond to storms capable of producing flash floods. The Urban Drainage and Flood Control District (Denver metropolitan area) now operates several automatic gages. There are also networks in the Colorado Springs area and in Boulder County. This trend toward increased data collection is likely to continue. It is my sincere hope that these new networks are collecting high quality data and that data are being carefully stored to aid in future studies. The fact is that even with these new data collection networks, you could still take every single raingage currently in use in Colorado (several hundred in all) and probably fit them all in your hackyard. That gives you an idea of what a tiny area we are actually sampling when we use raingages for monitoring precipitation.


It is hoped that the new weather surveillance radars (NEXRAD) that the National Weather Service will begin using throughout in country in the next few years will greatly enhance our meager precipitation measuring networks. Radar has been used for decades to observe precipitation and judge intensities, but only with the help of modern electronics and computer power is it becoming possible to make good quantitative precipitation estimates over sizable areas. There are several reasons why NEXRAD precipitation estimates may not be as good here in Colorado as they will be in other parts of the country, but hopefully it will be an improvement over what we have now. In the meantime, if you know of any unofficial weather observers who are currently taking careful year-round precipitation measurements, please have them contact our office. We would love to add their information to our State database.

Since raingages aren't everywhere, efforts have been made to estimate, from available data, how much rain could reasonably be expected for given time periods and for various probabilities. About 20 years ago, the National Weather Service's Office of Hydrology completed a statewide analysis for Colorado with support from the U.S. Department of Agriculture Soil Conservation Service. Using available data through 1970, statewide maps were developed showing expected 6 and 24-hour rainfall totals for various return periods. It is this report, NOAA Atlas 2, Precipitation Frequency Atlas for the Western United States, Volume III – Colorado, that most engineers have used during the past two decades to evaluate 2, 5, 10, 25, 50, and 100-year storms. Accurate information is critical for the appropriate design and construction of numerous structures and developments.


Twenty years is a fairly long time, and we now have at least 25% more daily and hourly precipitation data than was available when the NOAA Atlas was developed. As a result, the rumblings are now beginning that will hopefully lead within the next few years to a new precipitation frequency-intensityduration analysis for Colorado. If you or your agency would like to have some involvement in this process, please let us know. For national consistency, it will probably be best to again support the National Weather Service Office of Hydrology in the completion of this project. But it is extremely important that those of us who are familiar with the unique characteristics of Colorado climate and hydrology be directly and personally involved. We don't yet know who may take the lead and provide the majority of funding for this major task. However, it is not too soon to begin to gather a group whose collective expertise can be tapped to improve the analyses of the past. Heavy rains will fall again, and we need to be prepared.

I am not just a climatologist. I also wear the hat of an official weather observer. Shorthy after I began writing this series on heavy rain, we got to experience the real thing at the Colorado State University main campus weather station. Depending on which of our four raingages you looked at, we received anywhere between 2.50" and 3.00" in one hour during the afternoon of 24 June 1992. By the end of the storm, water and floating hail were rushing past our little building and flowing through our outdoor instrument enclosure like a small river – and we thought we were on high ground. Fortunately, all of our equipment worked flawiessly throughout the storm, and I would like to show you the results.

The following five graphs capture the essence of this classic storm better than I could ever describe it in words.

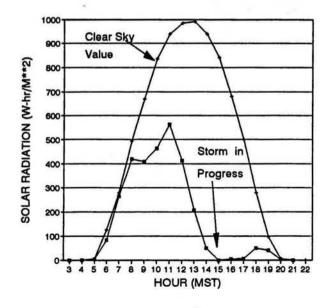
As you study these graphs, try to imagine the situation. The skies grew dark. Distant thunder began to rumble northwest of town. It finally got so dark that the street lights all came on. Suddenly a stiff wind from the northwest brought a sharp drop in temperature. Then, as the winds diminished a bit, lightning began to strike nearby. Everything to the north of campus disappeared into a blur, and you could hear the roar of pounding rain and hail just a few blocks to the north. Just before 2:15pm MST the rain began. At first there were just a few big drops, but within a minute or two it was pouring. Simultaneously, the wind shifted to a northerly direction and gathered speed again.

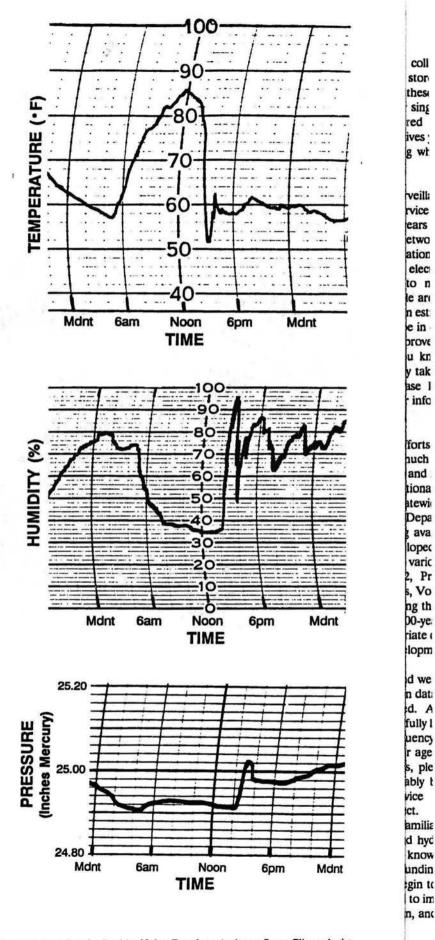
The temperature plummetted, the humidity soared and the barometric pressure surged dramatically upward. Then the hail began. (Note how the precipitation chart jumped erratically during this portion of the storm. The recording raingage is sensitive enough to respond to the impact of each hailstone.) The hail continued for more than 15 minutes. Shorthy after 2:30pm MST, when the hail and rainfall were at their peak intensity, the winds attained their highest velocity – a respectable 50 kt. The hail (stone diameter was $3/4^{\circ}$ briefly

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

at this same time) and wind each separately were sufficient to meet the National Weather Service criteria for a severe thunderstorm. But in combination, they were incredible.

We were beginning to wonder if the end of our comfortable lives was at hand, when suddenly the winds began to let up. The rain continued to pour down, however. When it finally subsided (approximately 2:54pm MST) more than 2.5" of rain had already fallen – not bad for 40 minutes. The hail ended, and winds became quite light. The pressure peaked and the temperature reached its lowest point. On the official thermometers the temperature tumbled a total of 36 degrees F from 86° before the storm hit to a chilly 50° near the end of the storm.

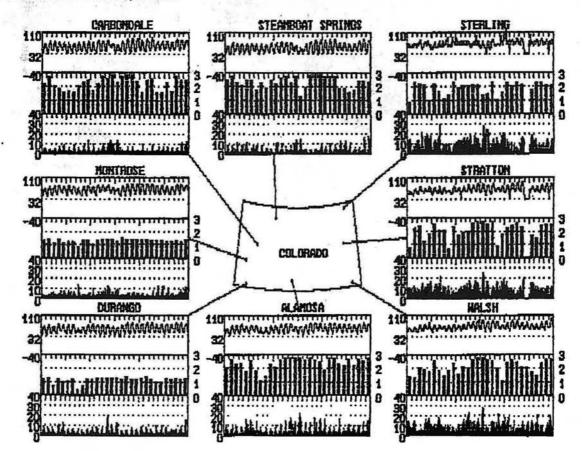

As the rain ended, winds shifted direction and became quite strong again. Now the winds were blowing out the back of the storm as it headed toward Greeley. Soon thereafter, the barometer began a sudden drop. Winds gusted erratically for a little while longer. A few sprinkles of rain continued and the temperature climbed back to something a little more comfortable. At this time, huge lakes of water were covering areas that were supposed to be roads, and people were mopping up water from places it just wasn't supposed to be. But that is what happens when one of the biggies hits. The storm was over.

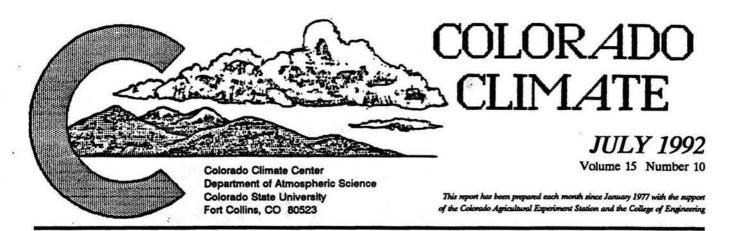

I don't mean to make it sound like this was the worst storm of all time. It wasn't. But it was such a classic in terms of how all the weather elements responded. When your house gets struck by "a biggie," you will most likely experience a lot of these same features. I just hope your neighborhood is designed to handle it.

ALC: N

15

By no means have we exhausted the topic of heavy rain. There is much more we could look into. But I think it's time to move on. I will be out of town for a few weeks, so I hope nothing floats away while I'm gone. Next month we'll delve into a new topic. We will also summarize the results of the Colorado Climate survey that many of you responded to. The results were most interesting.

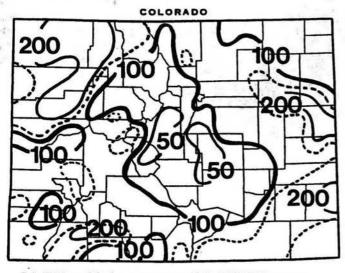



Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

WTHRNET	NEATHER	DATA	JUNE	1992
---------	---------	------	------	------

			WINKNE! P	RAINCH DAIN	JUNE 1447			
	Alanosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
ionthly	average teape 58.2	57,4 F)	59.7	64.B	55.1	67.8	63.5	66.7
wonthly laxisus linisus:	temperature e 92.2 19/1 34.0 2/	streses and t 5 82.0 28/ 5 30.6 17/	ise of occurent 16 90.0 23/1 5 33.4 2/	e ('F day/hou 4 87.3 22/15 5 37.8 2/ 5	1 B5.3 22/13 29.7 2/ 5	125.1 21/ 32.0 17/	8 34.5 24/15 52:0 11/0	95:4 30/1 45:3 3/1
ionthly 5 AM 11 AM 2 PH 5 PH 11 PH	average relat 84 / 38 39 / 39 26 / 32 30 / 31 56 / 36	ive humidity 83 / 36 43 / 43 34 / 39 30 / 35 66 / 38	/ demppint (pr 82 / 34 28 / 34 23 / 31 23 / 29 32 / 34	ercent / *F)	81 / 32 28 / 31 24 / 29 24 / 27 70 / 37	51 / 45 28 / 25 21 / 22 19 34	87 / 48 38 / 50 47 / 49 47 / 48 80 / 51	88 / 52 57 / 51 45 / 50 47 / 50 78 / 53
day ight	average wind 197 157	direction (217 84	degrees clockwi 222 176	ise from north) 269 163	228 124	149 172	140 182	133 194
wind spe o to 3 3 to 12 12 to 24 > 24	ed distributi	speed { miles 3.31 on { hours p 305 14 0	per hour) 2.85 er month for ho 508 204 .8. 0	3.77 purly average mp 315 397 .8 0	3.13 h range } 448 254 14 0	8.54 131 386 200 3	8.46 62 524 132 2	8.76 47 515 153 5
onthly	average daily 2350	total inspla	tion (Btu/ft ²) 2224	day]312	2323	1917	2029	2968
tlparne 60-802 40-602 20-402 0-202	ss" distribut 245 91 47 23	ion (hours p 1 320 99	er sonth in Spi 183 78 70 18	cified clearnes 75 111 110 138	s index range 161 98 59 26) 96 79 37	194 79 88 47	188 102 76 51

The figure below shows conthly weather at WTHRWET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40'F to 110'F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Biu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

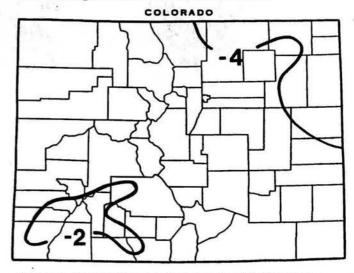


July in Perspective - Cool, Stormy and Changeable

July is supposed to be the time of year with little variation in daily weather. This year, however, numerous cold fronts swept down over Colorado, and day-to-day weather changes were quite dramatic. There were some hot days, but no persisting heatwaves, and humidity and barometric pressure stayed high much of the month. Thunderstorms were common, which is normal for July, but their behavior was a bit unusual – skipping the regular hot spots like the Pikes Peak area and pounding areas like Routt and Moffat counties that are usually quite tranquil in July.

Precipitation

July began with a week of mostly dry weather. Showers and thunderstorms then became numerous and sometimes heavy for the remainder of the month until they


July 1992 precipitation as a percent of the 1961-1990 average.

began to taper off again the last few days of July. Rainfall totals ended up above average for the majority of Colorado with more than 150% of average reported over much of the

east central and southeastern plains and over portions of southwest Colorado. Heavy rains with up to 3 times the average were a welcome surprise in northwestern Colorado where low streamflows and dry conditions have prevailed for several years. Less rain than average fell from the Granby area southeast to Pueblo. Colorado Springs, normally wet and stormy in July, received just 26% of average.

Temperatures

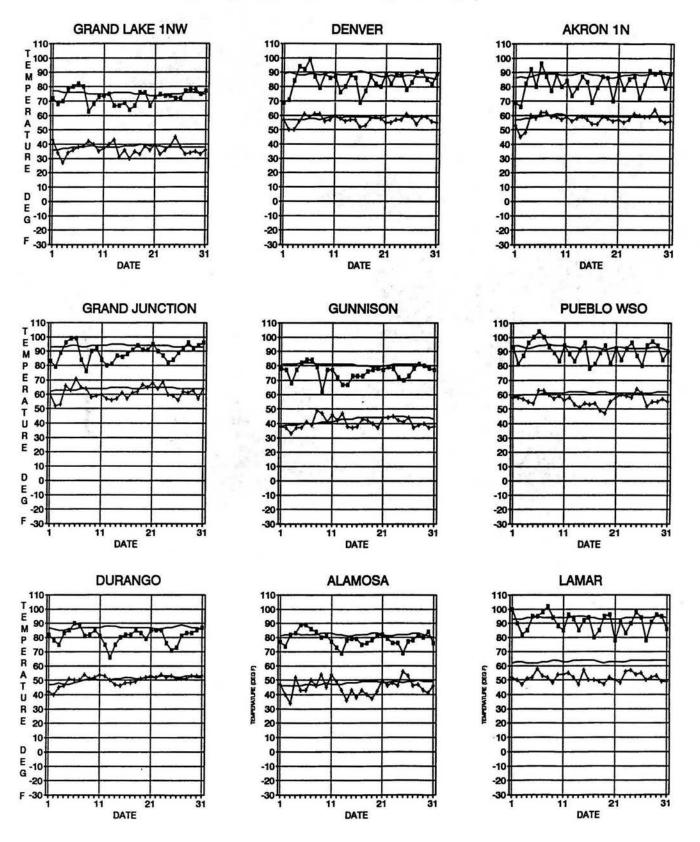
Much of the heartland of the nation experienced an unusually cool July. All of Colorado ended up several degrees below average. Most of western Colorado was 2 to 3 degrees F below average for the month. A few areas east of the mountains were as much as 5 degrees cooler than average. (Remember, large variations from average are typical in winter but are quite unusual for mid summer.) Especially obvious was the lack of daytime warmth. Daytime high temperatures for the month as a whole were as much as 8 degrees below average in northeast Colorado. The cool weather is gradually beginning to take a toll on Colorado agriculture as crops continue to grow and mature slower than usual.

Departure of July 1992 temperatures from the 1961-90 averages.

Inside This Issue							
July 1992 Daily Weather 2	Comparative Heating Degree Day Data 7						
July 1992 Temperature Comparison	July 1992 Climate Data						
July 1992 Precipitation 4	Special Feature - Weather Enthusiasts Come to Colorado 10						
	Special Feature - The ASOS Era Begins						
1992 Water Year Precipitation	Special Feature - Coolest Early Summer Graph 11						

July got off to an unusual start as a strong cold front 1-3 and upper air disturbance crossed the State. Brief thundershowers developed on the 1st and continued during the night and into the morning of the 2nd, most numerous over northern Colorado. There were several reports of snow in the northern mountains above 9,000 feet. Daytime temperatures were only in the 60s over northeastern Colorado on both the 1st and 2nd. Mountain temperatures were even cooler, and Climax had a chilly high of 48° on the 2nd. Skies cleared late on the 2nd, and temperatures dipped to their lowest levels for the month on the 3rd. Many points on the plains were in the 40s, while 20s and 30s were common in the mountains. Fraser's 25° was the coldest in Colorado for July.

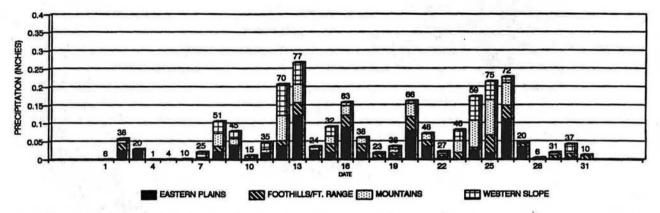
4-7 Perfect summer weather marked the 4th of July with just some scattered afternoon clouds. Then the mercury inched up into the 90s and 100s at lower elevations for the next 3 days - the only noteworthy heatwave of the summer. Uravan hit 101° on the 6th - the hottest temperature on the Western Slope in July. Las Animas came through with the hottest temperature in Colorado - 106° on the 7th. A few widely scattered thundershowers developed each day, helping to cool the afternoon sun, but rainfall totals were scant. Then increased humidity, clouds and more numerous storms moved into western Colorado on the 7th, bringing an end to the brief heatwave. Browns Park in extreme northwest Colorado measured 0.71" of rain on the 7th.


8-10 Much cooler on the 8th. Dense clouds with morning and midday rains held daytime temperatures on the 8th in the 60s and 70s over parts of western Colorado. Crested Butte only reached 54°F. Areas from Craig southward to near Gunnison picked up 0.20 to 0.60" of rain. Walsh reported 1.13" late on the 8th. Most of the showers ended on the 9th, and the 10th was dry over most of the State. An isolated late-day thundershower over Denver dropped a little small hail. Warmer temperatures returned, but most of Colorado continued a bit cooler than average.

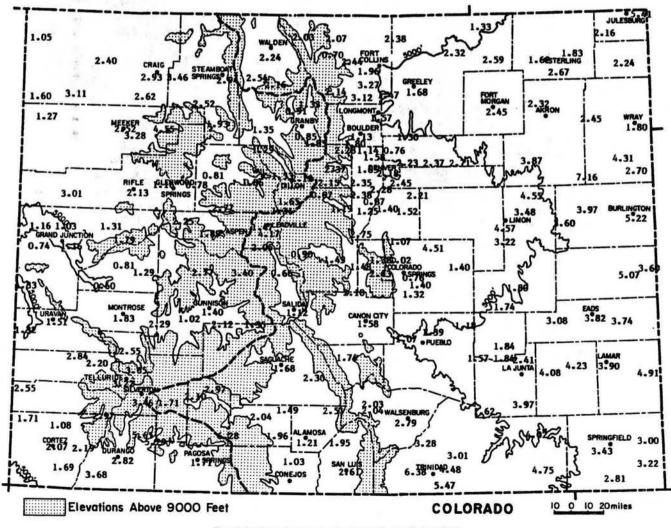
11-14 An impulse of subtropical moisture nosed up across Arizona. As it collided with a slow-moving cold front dropping down from Wyoming and a disturbance aloft, widespread and locally heavy rains and thunderstorms developed. Cortez totalled 1.55" of rain in 3 days 11-13th. Marvine Ranch, east of Meeker, recorded 2.32". Rainfall was less along the eastern foothills (Colorado Springs only received 0.01"), but storms gathered strength out on the plains. Moderate to heavy rains fell in several areas, accompanied by hail at some points. Heavy one-day rainfall totals included 2.12" at Shaw, 2.38" at Holly and 2.84" near Joes. Abnormally cool temperatures again covered most of the State. Rains ended on the 13th, and warmer temperatures developed statewide on the 14th.

- 15-22 Two more cold fronts out of Canada pushed southward over northern and eastern Colorado on the 15th and again on the 19th. Southwestern Colorado was unaffected and enjoyed pleasant summer weather with just afternoon cloud buildups and a few showers and rumbles of thunder. As cooler air moved in on the 15th, thunderstorms, many producing hail, developed across northern and central Colorado. Rifle received 0.82" of rain and hail. Denver measured 0.97". Storms rumbled into the night on the Eastern Plains dropping more than 1" in some areas. Low clouds and fog then lingered on the 16th, and highs only reached the 60s and 70s east of the mountains. More rains fell overnight 16-17th with more than 2" reported northeast of Colorado Springs. Skies then cleared, temperatures warmed and only a few scattered showers developed on the 18th, but storms increased again on 19-20th as the next cold front moved in. Temperatures were again abnormally cool on the 20th (Sterling only hit 70°). Heavy storms late on the 20th moved across southeastern Colorado leaving close to 2" of rain at some reporting stations. Drizzle and fog were reported early on the 21st, but then temperatures warmed quickly but were cooler again on the 22nd.
- 23-26 A trough of low pressure over the West and plenty of subtropical moisture combined to produce a period of cool and wet weather, especially in western Colorado. Heavy storms with hail moved across northwest Colorado on the 23rd. Hayden and Craig each received close to 1" of rain. Widespread heavy rain developed over southwest Colorado on the 24th, and numerous locations reported 1.00-1.50" rains. Some heavy storms moved into eastern Colorado on the 25th and continued overnight. 1.85" of rain soaked Lamar. With cloudy skies, temperatures on the 26th only rose into the 70s over southeast Colorado.
- 27-31 Except for one more front that brought cooler weather again to the Eastern Plains on the 30th, July ended with fairly average temperatures and only a few scattered thundershowers each day. Storms brought little rain, but there were isolated reports of strong, damaging winds.

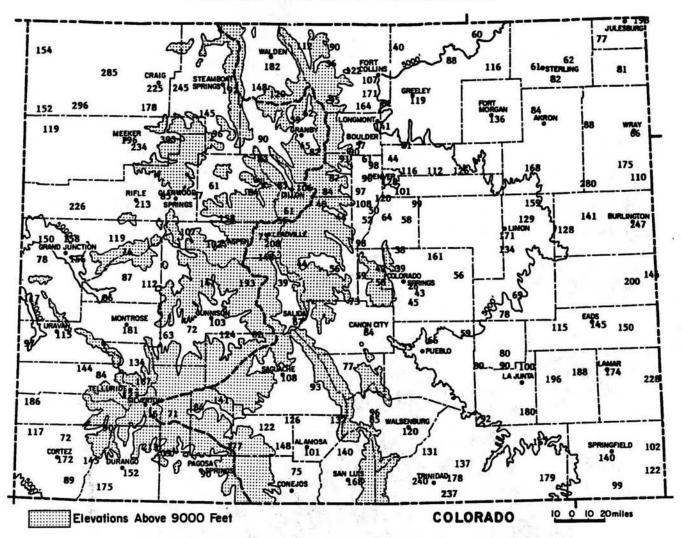
Weather	Extremes	
106°F	July 7	Las Animas
25°F	July 3	Fraser
7.16"	2	Joes 2SE
0.60"		Delta
0.00"		
	106°F 25°F 7.16" 0.60"	25°F July 3 7.16" 0.60"


Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)

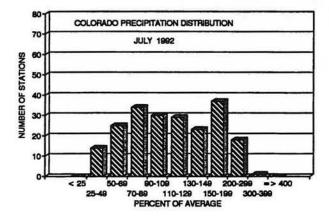
JULY 1992 PRECIPITATION


Traditionally, July is often the wettest month of the year (based on total precipitation averaged over the entire State). This year was no exception, and statewide July precipitation totalled more than 2.20". Storms on the 7-8th, 11-13th, 15-16th, 20th, and 23-26th were responsible for most

of the month's rainfall in Colorado. At least 1/3 of Colorado's official weather stations reported rain on more than half of the days during July indicating that July rains were more widespread than normal.


COLORADO DAILY PRECIPITATION - JUL 1992

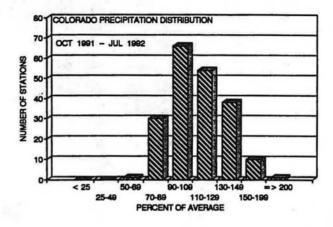
(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

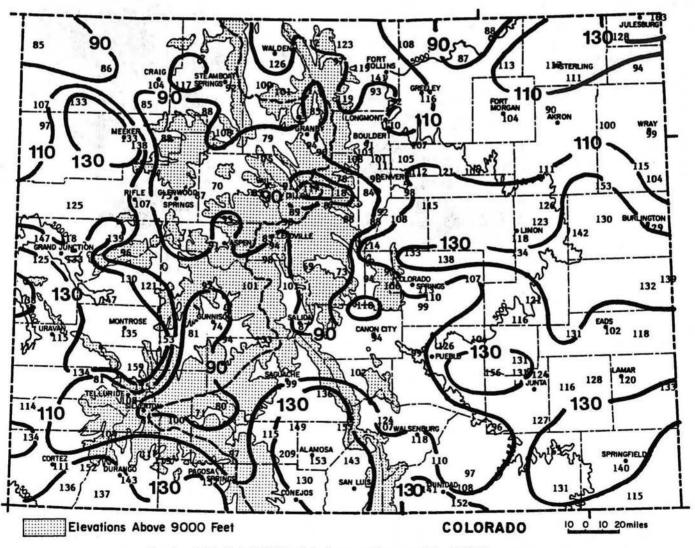


Precipitation Amounts (in inches) for July 1992.

JULY 1992 PRECIPITATION COMPARISON

July 1992 Precipitation as a Percent of the 1961-90 average.


By now it should have become obvious that it is the rule, not the exception, to have great variety in monthly precipitation compared to average. Statewide, July precipitation was a little above average, but sizeable areas were both far above and far below the 1961-1990 average.


JULY 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES

Station	Precip.	Rank
Denver	2.23"	32nd wettest in 121 years of record (wettest = 6.41" in 1965)
Durango	2.82"	17th wettest in 98 years of record (wettest = 5.36" in 1981)
Grand Junction	1.03"	13th wettest in 101 years of record (wettest = 2.72" in 1929)
Las Animas	4.08"	10th wettest in 126 years of record (wettest = 6.30° in 1872)
Pueblo	1.39"	52nd driest in 123 years of record (driest = 0.09 " in 1987)
Steamboat Springs	2.94"	6th wettest in 86 years of record (wettest = 4.98° in 1912)

1992 WATER YEAR PRECIPITATION

Precipitation totals for the first 10 months of the 1992 water year continue their erratic improvement. Many areas in and near the mountains, from Creede and Silverton northward to Grand Lake and Steamboat Springs, continue to show less precipitation than average, but only a few locations have received less than 85% of average. The driest official stations compared to average are Antero Reservoir (4.77", 69% of average) and Eagle (5.99", 70% of average). Most of the rest of Colorado is in good shape. More than 130% of average precipitation has been reported over portions of the Western Slope, the San Luis Valley, and several areas on the Eastern Plains. Standing water and lush, green vegetation on the Plains are testimony to the moist conditions. Despite excellent low-elevation precipitation, streamflow in Colorado's major rivers continues near or below average - a reflection of the low snowpack and warm spring in the mountains earlier this year.

October 1991-July 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR JULY 1992

	Heating	Degree	e Data					Color	ado Cl	imate	Center	(303)	491-8	3545				Heating	Degree	e Data					Color	ado Cl	imate (enter	(303)	491-8	545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
ALAMOSA	AVE 91-92 92-93	40 33 97	100 51	303 280	657 630	1074 1263	1457 1849	1519 1963	1182 1459	1035 1093	732 535	453 350	165 179	8717 9685 97	15		GRAND LAKE 65SW	AVE 91-92 92-93	214 220 277	264 255	468 427	775 739	1128 1169	1473 1468	1593 1735	1369 1354	1318 1118	951 751	654 534	384 383	
ASPEN	AVE 91-92 92-93	95 104 249	150 112	348 335			1339 1369		1162 1124	1116 980	798 660	524 487	262 351	8850 8648 249			GREELEY	AVE 91-92 92-93	0 8 14	0 5	149 119	450 450	861 925	1128 1011		946 724	856 665	522 310	238 181		6442 5523 14
BOULDER	AVE 91-92 92-93	0 17 20	6 7	130 121	357 403	714 831	908 911	1004 901	804 700	775 664	483 321	220 192	59 93				GUNN I SON	AVE 91-92 92-93	111 131 208	188 151	393 371			1590 1597			1231 940	816 661	543 452		10122 9287 208
BUENA Vista	AVE 91-92 92-93	47 63 107	116 87	285 M	577 580	936 1056	1184 1265	1218 1246	1025 1048	983 901	720 568	459 391	184 247	7734 H 107			LAS ANIMAS	AVE 91-92 92-93	0 1 0	0 3	45 59	296 350	729 896	998 966	1101 943	820 712	698 539	348 242	102 107		5146 4842 0
BURLINGTON	AVE 91-92 92-93	6 13 5	5 14	108 106	364 462	762 903	1017 1004	1110 1021	871 751	803 639	459 360	200 173	38 61	5743 5507 5			LEADVILLE	AVE 91-92 92-93	272 343 383	337 364	522 538	817 826	1173 1245			1318 1296	1320 1186	1038 852	726 656		10870 10733 383
CANON	AVE * 91-92 92-93	0 8 2	10 0	100 105	330 379	670 800	870 945	950 870	770 688	740 604	430 331	190 167		5100 4960 2			LINON	AVE 91-92 92-93	8 19 16	6 14	144 171	448 503	834 1000	1070 1095			936 734	570 436	299 272		6531 6336 16
COLORADO SPRINGS	AVE 91-92 92-93	8 16 21	25 16	162 145	440 453	819 954	1042 1048	1122 998	910 788	880 717	564 383	296 219	78 96	6346 5833 21			LONGHONT	AVE 91-92 92-93	0 12 20	6 6	162 133	453 489	843 936	1082 1047		938 786	874 730	546 391	256 201		6432 5915 20
CORTEZ	AVE * 91-92 92-93	5 13 18	20 8	160 161	470 423	830 947	1150 1227	1220 1310	950 892	850 744	580 458	330 266	100 114	6665 6563 18			MEEKER	AVE 91-92 92-93	28 24 23	56 7	261 221	564 553	927 1003	1240 1367	1345 1490		998 758	651 446	394 280		7714 7312 23
CRAIG	AVE 91-92 92-93	32 27 67	58 13	275 230	608 582	996 1080			1193 1078	1094 809	687 497	419 270	193 161	8376 7820 67			MONTROSE	AVE 91-92 92-93	0 0 15	10 0	135 135	437 404	837 901	1159 1312				522 324	254 176	69 48	
DELTA	AVE 91-92 92-93	0 0 6	0 2	94 88	394 383	813 832	1135 1302		890 874	753 625	429 273	167 86	31 29	5903 5980 6			PAGOSA SPRINGS	AVE 91-92 92-93	82 44 120	113 37	297 289	608 568		1305 1362	1380 1477			732 577	487 392	233 251	8367 8099 120
DENVER	AVE 91-92 92-93	0 6 10	0 4	135 118	414 449	789 902	1004 982	1101 1022	879 714	837 673	528 309	253 158	74 35	6014 5372 10	- 21-		PUEBLO	AVE 91-92 92-93	0 1 0	0	89 76	346 380	744 927	998 1014	1091 958		756 608	421 309	163 125	23 41	
DILLON	AVE 91-92 92-93	273 316 364	332 321	513 521		1167 1210			1305 1306		972 805	704 609		10754 10442 364			RIFLE	AVE 91-92 92-93	6 1 12	24 1	177 143	499 475	876 906	1249 1185	1321 1283	1002 804	856 660	555 352	298 142	82 57	
DURANGO	AVE 91-92 92-93	9 6 34	34 2	193 152	493 379	837 940	1153 1179		958 935	862 745	600 430	366 267	125 123			-	STEAMBOAT SPRINGS		90 127 160	140 141	370 394		1060 1140	1430 1626				780 595	510 383	270 263	
EAGLE	AVE 91-92 92-93	33 26 47	80 6	288 208	626 563	1026 972	1407 1358		1148 970	1014 809	705 466	431 289	171 150	8377 7204 47			STERLING	AVE 91-92 92-93	0 5 14	6 1	157 92	462 437	876 930		1274 1191		896 645	528 352	235 142	51 36	
EVERGREEN	AVE 91-92 92-93	59 83 103	113 92	327 311	621 627	916 988	1135 1078		1011 939	1009 887	730 541	489 410		7827 7321 103			TELLURIDE	AVE 91-92 92-93	163 175 180	223 163	396 339			1293 1264			1141 946	849 565	589 450		9164 8143 180
FORT COLLINS		5 11 22	11	171 145	468 457	846 891	1073 1002		930 736	877 681	558 356	281 193	82 56				TRINIDAD	AVE 91-92 92-93	0 3 0	0 2	86 107	359 377	738 876	973 1004	1051 946		781 642	468 289	207 186	35 50	5544 5256 0
FORT MORGAN	AVE 91-92 92-93	0 5 12	64	140 89	438 437	867 947	1156 1025	1283 1193	969 756	874 652	516 332	224 163	47 41				WALDEN	AVE 91-92 92-93	198 193 270	285 209	501 452	822 776		1457 1422				915 700	642 500	351 349	10466 9624 270
GRAND JUNCTION	AVE 91-92 92-93	000	0 2	65 37	325 304	762 815	1138 1193		882 788	716 608	403 195	148 53	19 8	5683 5393 0			WALSENBURG	AVE 91-92 92-93	0 6 5	85	102 90	370 337	720 818	924 915	989 870	820 717	781 634	501 309	240 163	49 60	
	٠	* AVES	AD JUS	TED FO	R STAT	ION NO	OVES	H =	MISSI	NG	E = 1	ESTIMA	TED					٠	= AVES	ADJUS	TED FO	R STAT	ION NO	IVES		MISSI	NG	E •	ESTINA	TED	

JULY 1992 CLIMATIC DATA

EASTERN PLAINS

			Temper	ature			Degree Days Precipit					oitation	E
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm 1	# days
NEW RAYMER 21N	78.5	51.0	64.8	-4.9	95	44	60	61	480	1.33	-0.87	60.5	14
STERLING	85.2	58.0	71.6	-3.1	98	48	14	226	635	1.62	-1.00	61.8	13
FORT MORGAN	84.9	58.3	71.6	-3.6	100	49	12	225	640	2.45	0.65	136.1	8
AKRON FAA AP	82.1	57.2	69.6	-4.0	96	45	18	168	599	2.32	-0.43	84.4	13
HOLYOKE	80.3	58.2	69.2	-5.5	92	48	18	159	599	2.24	-0.51	81.5	12
JOES	82.5	56.6	69.6	-5.4	95	46	15	165	597	7.16	4.61	280.8	10
BURLINGTON	85.4	56.7	71.0	-4.6	98	49	5	199	625	5.22	3.11	247.4	10
LIMON WSMO	80.7	54.4	67.6	-2.9	95	49	16	103	544	4.57	1.91	171.8	13
CHEYENNE WELLS	88.6	54.8	71.7	-3.6	103	43	0	214	625	5.07	2.54	200.4	8
EADS	88.1	59.1	73.6	-3.1	103	51	0	274	671	3.82	1.20	145.8	7
ORDWAY 21N	89.1	56.5	72.8	-3.1	102	49	4	253	643	1.74	-0.48	78.4	8
ROCKY FORD 2SE	90.0	57.9	74.0	-2.8	102	52	0	286	672	1.84	-0.20	90.2	9
LAMAR	90.6	51.7	71.2	-6.4	102	47	2	201	581	3.90	1.67	174.9	9
LAS ANIMAS	90.4	60.4	75.4	-3.7	106	53	0	328	703	4.08	2.00	196.2	9
HOLLY	90.6	59.9	75.3	-3.1	103	54	0	324	700	4.91	2.76	228.4	10
SPRINGFIELD 7WSW	90.1	58.9	74.5	-1.2	102	49	0	300	692	3.43	0.98	140.0	10
TIMPAS 13SW	90.1	58.6	74.4	-2.2	104	54	0	296	679	1.62	-0.13	92.6	7

FOOTHILLS/ADJACENT PLAINS

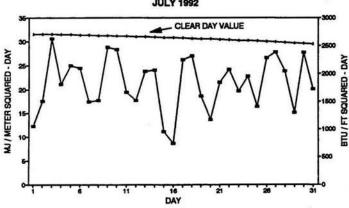
			Tempera	ature			D	egree D	ays		Precipitation			
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	# days	
FORT COLLINS	80.8	54.9	67.8	-3.7	93	44	22	115	556	1.96	0.13	107.1	13	
GREELEY UNC	83.2	55.7	69.4	-4.0	97	47	14	160	591	1.68	0.27	119.1	10	
ESTES PARK	75.5	47.2	61.3	-1.3	86	37	. 111	6	420	2.14	-0.10	95.5	14	
LONGMONT 2ESE	84.5	53.0	68.7	-3.7	102	44	20	146	564	1.57	0.46	141.4	8	
BOULDER	83.0	53.6	68.3	-2.7	98	44	20	129	568	1.13	-0.84	57.4	16	
DENVER WSFO AP	84.1	56.9	70.5	-3.0	99	50	10	187	616	2.23	0.32	116.8	16	
EVERGREEN	77.3	45.9	61.6	-2.2	92	40	103	7	433	2.35	-0.06	97.5	13	
CHEESMAN	80.8	42.1	61.5	-4.0	94	29	112	11	475	2.75	-0.03	98.9	17	
LAKE GEORGE 8SW	72.6	43.5	58.0	-3.0	83	32	208	0	358	1.45	-1.13	56.2	8	
ANTERO RESERVOIR	72.9	38.4	55.6	-2.3	81	32	283	0	361	0.90	-1.13	44.3	8	
RUXTON PARK	68.7	36.8	52.8	-3.3	82	30	372	0	298	2.43	-1.72	58.6	18	
COLORADO SPRINGS	81.6	55.1	68.3	-2.7	96	49	21	131	560	0.76	-2.14	26.2	.11	
CANON CITY 2SE	84.7	55.7	70.2	-3.4	97	50	2	170	605	1.58	-0.30	84.0	9	
PUEBLO WSO AP	90.0	56.4	73.2	-3.8	104	47	0	262	647	1.39	-0.71	66.2	12	
WESTCLIFFE	76.5	41.4	58.9	-4.3	87	34	180	0	418	1.74	-0.51	77.3	11	
WALSENBURG	84.1	55.2	69.6	-2.7	97	45	5	158	599	2.79	0.47	120.3	14	
TRINIDAD FAA AP	86.7	55.6	71.1	-2.9	102	51	0	199	622	3.01	0.82	137.4	17	

MOUNTAINS/INTERIOR VALLEYS

			Temper	ature			D	egree D	ays	Precipitation				
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	XNorm #	# days	
WALDEN	73.8	38.4	56.1	-2.9	82	29	270	0	375	2.24	1.01	182.1	15	
LEADVILLE 2SW	68.7	36.2	52.4	-1.9	77	28	383	0	299	4.17	2.17	208.5	11	
SALIDA	80.9	46.5	63.7	-1.9	91	40	64	32	492	1.12	-0.53	67.9	9	
BUENA VISTA	78.2	45.0	61.6	-3.1	88	38	107	10	450	0.66	-1.03	39.1	11	
SAGUACHE	75.5	45.6	60.5	-3.2	87	39	134	2	401	1.68	0.13	108.4	10	
HERMIT 7ESE	71.7	35.6	53.7	-2.3	81	27	344	0	346	2.10	-0.38	84.7	9	
ALAMOSA WSO AP	79.0	45.2	62.1	-2.8	89	34	97	12	462	1.21	0.02	101.7	10	
STEAMBOAT SPRINGS	77.4	42.0	59.7	-2.2	88	33	160	4	432	2.94	1.41	192.2	14	
YAMPA	74.3	46.5	60.4	-0.6	84	38	140	7	394	1.93	-0.08	96.0	13	
GRAND LAKE 1NW	72.9	36.4	54.6	-2.2	82	27	314	0	362	1.33	-0.80	62.4	18	
GRAND LAKE 6SSW	72.5	39.1	55.8	-2.3	80	30	277	0	355	0.91	-0.62	59.5	12	
DILLON 1E	68.7	37.4	53.1	-3.5	78	28	364	0	298	1.53	-0.26	85.5	15	
CLIMAX	62.3	36.2	49.3	-2.4	76	28	482	0	198	1.31	-1.05	55.5	4	
ASPEN 1SW	72.3	41.3	56.8	-5.2	82	33	249	1	352	1.89	0.04	102.2	12	
CRESTED BUTTE	70.2	37.4	53.8	-3.3	79	27	340	0	319	2.77	0.81	141.3	14	
TAYLOR PARK	66.7	38.1	52.4	-3.6	75	30	379	0	267	3.40	1.64	193.2	11	
TELLURIDE	76.7	41.0	58.9	-1.3	86	30	180	0	420	3.22	0.62	123.8	14	
PAGOSA SPRINGS	79.4	42.4	60.9	-3.4	87	32	120	1	464	1.71	-0.17	91.0	13	
SILVERTON	69.4	38.3	53.8	-1.7	79	30	339	0	311	3.46	0.48	116.1	15	
WOLF CREEK PASS 1	64.2	39.7	52.0	-1.2	75	31	396	0	229	6.28	2.74	177.4	15	

1 7 1

WESTERN VALLEYS

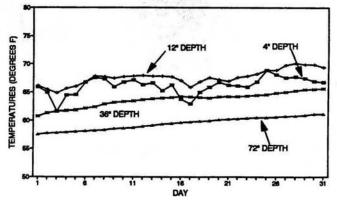

			Tempera	ature				Degree Days Precipitatio					oitation	
Name	Max	Min	Mean	Dep	High	LOW	H	Heat	Cool	Grow	Total	Dep	XNorm :	# day:
CRAIG 4SW	78.8	48.5	63.6	-3.6	90	39		67	31	463	2.93	1.63	225.4	1
HAYDEN	80.2	46.9	63.5	-3.4	88	40		58	20	479	3.46	2.05	245.4	13
MEEKER NO. 2	84.0	46.8	65.4	-1.8	92	38		23	43	524	2.52	1.24	196.9	1
RANGELY 1E	85.5	55.3	70.4	-3.0	95	48		12	184	608	1.27	0.21	119.8	5
EAGLE FAA AP	82.3	46.2	64.2	-2.2	92	38		47	30	497	0.81	-0.50	61.8	13
GLENWOOD SPRINGS	84.1	50.0	67.0	-3.0	95	41		22	92	529	1.16	-0.19	85.9	8
RIFLE	85.7	49.2	67.5	-3.1	95	40		12	94	536	2.13	1.13	213.0	8
GRAND JUNCTION WS	88.9	61.2	75.1	-3.7	99	52		0	319	721	1.03	0.38	158.5	4
CEDAREDGE	86.1	49.4	67.8	-4.3	96	35		29	123	550	0.81	-0.12	87.1	
PAONIA 1SW	86.0	54.6	70.3	-2.5	95	47		9	180	603	1.29	0.14	112.2	10
DELTA	87.1	54.5	70.8	-2.9	98	47		6	193	609	0.60	-0.09	87.0	5
GUNN I SON	75.4	40.6	58.0	-3.6	84	33		208	0	401	1.40	0.05	103.7	
COCHETOPA CREEK	77.2	40.8	59.0	-2.3	86	30		182	2	428	2.12	0.42	124.7	11
NONTROSE NO. 2	82.2	54.3	68.2	-4.3	91	46		15	122	569	1.83	0.82	181.2	5
JRAVAN	90.2	57.7	74.0	-3.0	101	50		0	285	665	1.51	0.20	115.3	10
NORWOOD	78.9	49.6	64.3	-2.1	87	37		58	42	483	2.84	0.87	144.2	10
ELLOW JACKET 2W	82.9	51.7	67.3	-3.1	89	41		17	97	545	1.71	0.26	117.9	8
CORTEZ	84.6	50.6	67.6	-0.4	93	41		18	104	555	2.07	0.87	172.5	8
URANGO	81.1	50.2	65.6	-3.1	90	40		34	59	507	2.82	0.97	152.4	13
IGNACIO 1N	81.9	49.3	65.6	-3.0	90	38		26	52	523	0.00	-1.36	0.0	0

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

JULY 1992 SUNSHINE AND SOLAR RADIATION

	Numi	per of	f Days	Percent Possible	Average % of
			CLDY	Sunshine	Possible
Denver	8	12	11	58%	71%
Fort Collins	7	10	14		
Grand Junction	15	8	8	78%	78%
Limon	7	15	9	-	
Pueblo .	8	13	10	72%	78%
Colorado Springs	7	8	14	-	-
CLR = Clear	PC	= Pa	artly Clou	idy CL	DY= Cloudy

Sunshine and solar radiation were less than average over much of Colorado in July. The greatest differences from average were over northern and eastern parts of the State.


FT. COLLINS TOTAL HEMISPHERIC RADIATION **JULY 1992**

JULY 1992 SOIL TEMPERATURES

Near-surface soil temperatures were cooler than average throughout the month of July as a result of above average precipitation, below average temperature and frequent clouds. Deeper soil temperatures are close to average.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES JULY 1992

HATS OFF TO: Daniel and Linda Goldsberry, of Wolf Creek Pass 1E, Colorado

The Goldsberrys report the dramatic and challenging weather conditions for which Wolf Creek Pass is known. They have only been taking the official observations since 1990, but the Colorado Department of Transportation highway maintenance facility where Dan works has cooperated with the National Weather Service since 1936 to report year-round weather conditions near the Pass. Thanks for your hard work.

WEATHER ENTHUSIASTS COME TO COLORADO

Considering our State's modest population, Colorado has more than its fair share of professional meteorologists and climatologists. With the help of the National Center for Atmospheric Research in Boulder, a large NOAA (National Oceanic and Atmospheric Administration) facility also in Boulder, NOAA cooperative research institutes in both Boulder and Fort Collins, U.S. Air Force facilities near Colorado Springs, the Denver Federal Center, several local offices of the National Weather Service, the Air Pollution Control Division of the Colorado Department of Health, TV weather offices, numerous private businesses, and university programs in meteorology and climatology at Colorado State University, the University of Colorado, the University of Northern Colorado, Metropolitan State College and Denver University, Colorado ends up having hundreds of professionals in meteorology and climatology employed here.

But I want to tell you something - and it shouldn't be much of a surprise. We professionals are seriously outnumbered by a large corps of volunteer weather observers, storm chasers, cloud watchers, and overall weather lovers who don't earn a penny as meteorologists but who have chosen meteorology as a hobby. There are thousands who fall into this category right here in Colorado. If you think you're one of them, then I have some good news for you.

The Association of American Weather Observers (AAWO) is holding its Ninth Annual Meeting right here in Colorado. This is an organization composed primarily of weather-loving hobbyists who like nothing better than to swap weather stories and compare notes on new and old weather stations. As far as I can recall, this is the first meeting of this organization west of the Mississippi River. On October 2-3, 1992 some of the most enthusiastic weather hobbyists from all across the nation will be gathering in Boulder. There will be a few formal presentations given at the meeting, and I am pleased to announce that I will have the opportunity to give a talk to the group on my favorite subject - the amazing climate of Colorado. One of our own Colorado volunteer weather observers and wellknown author of readable books on weather and climate. Richard Keen from the Coal Creek weather station southwest of Boulder, is the featured banquet speaker on Friday evening (October 2).

If there is any way you can find a spare day or two, I would highly recommend that you try to attend all or part of this meeting. You will be amazed by the people – their love for watching the weather is unsurpassed. This will be my first chance to attend one of their meetings, and I am really looking forward to it.

By the way, an interesting part of the meeting will be a discussion of the possible expanded role of volunteer weather observers in the modernized National Weather Service. High technology is a good thing and is critical to weather forecasting. But unfortunately (and this may surprise you), no one has yet been able to develop an electronic device that can measure precipitation and snow better than an enthusiastic human with a decent ruler. As the National Weather Service moves toward greater automation in the coming months, their ability to detect and predict rain and snow may improve, but their ability to measure it precisely at traditional weather station locations may, in fact, deteriorate (see ASOS story later in this issue). Take heart, all you volunteer weather observers. You are needed more than ever.

Come to the Meeting

To reserve a place for yourself at the AAWO Annual Meeting, you must act promptly. Your registration must be received at AAWO headquarters by <u>September 21</u> to guarantee your spot at the meeting.

Ninth Annual Meeting of the Association of American Weather Observers

October 2-3, 1992

The Broker Inn Boulder, Colorado

The meeting begins at 8:30 AM on Friday. There will be a Friday afternoon (October 2) tour of the National Center for Atmospheric Research. The registration fee for the entire program including the Friday evening banquet is \$65. If you can only attend a portion of the program, fees will be lower. To register, send your name, address, daytime telephone number and a check payable to AAWO for your registration fee to:

AAWO

P.O. Box 455 Belvidere, IL 61008-0455

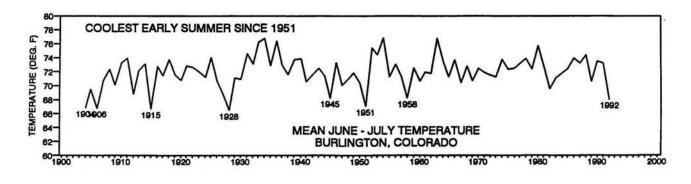
Registrations and questions may also be accepted by phone: (815) 544-5665

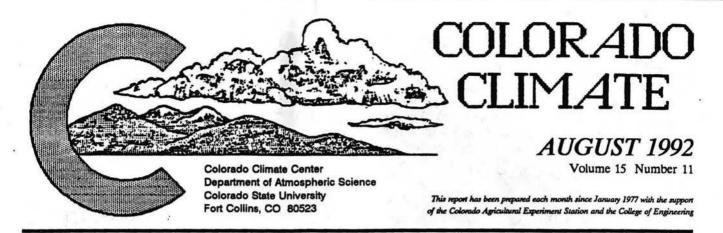
I hope to see you in Boulder!!

Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

Since the first networks of weather stations were established in our country back in the 1800s, there have been occasional modifications made to standard weather instruments and some revisions to standard observational procedures. But considering how much the world has changed over the past century, surface weather observations and basic climate monitoring have remained remarkably unchanged. The greatest previous changes occurred beginning in the 1930s when data requirements for civil aviation forced the establishment of new procedures for observing weather conditions for the benefit of aviation. Efforts have been made to automate these observations and automated weather stations of various levels of complexity have been around now for more than two decades. Unfortunately, it had been too difficult to fully automate these intricate observations so operational surface observations at most airports and National Weather Service offices have continued to be primarily a manual operation.

Well, that is about to change. Starting this fall, the National Weather Service will begin to replace conventional human-based surface weather observations with a new generation of automated weather stations known as ASOS. This transition will be the greatest change in weather data collection in the history of our nation.

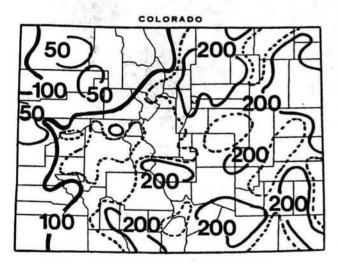

A few of you are familiar with the ASOS acronym, but most of you are not. ASOS stands for Automated Surface Observing System. This new and expensive system of instruments is designed to measure most of the basic weather elements needed for aircraft operations and weather forecasting – temperature, dew point, wind speed and direction, pressure, precipitation amounts and intensities, cloud heights, and visibility. In addition it is intended to detect precipitation, fog and certain other weather conditions and automatically distinguish between rain, snow and freezing rain.


The system has many obvious advantages. It is intended to replace weather observers that need to be trained, managed and paid. It can operate around the clock, update observations at one-minute intervals (compared to the current schedule of hourly observations with occasional special updates) and transmit information quickly and automatically. Climatically there are other advantages. All ASOS weather stations across the country should be nearly identical and have more uniform instrument exposure than at present. Procedures and observing schedules should be consistent, and station upkeep and documentation should be superior. All of this sounds great, as well it should. There is nothing worse than a bored weather observer on a clear night (note: this is an exaggeration). But it is important to realize that ASOS can't do everything and most certainly it won't do most measurements consistently with how humans have done them in the past. Some things it will do better, other things worse. Some things it can't do at all or wasn't designed to – measuring snowfall and accumulation, for example. And after all I have written about the importance of solar energy, ASOS does not have the capability to measure solar radiation. We hope this will be added later. And finally, it has not been totally proven that ASOS can function under all the conditions that nature can dish out, but then neither can humans.

We have known about ASOS for a long time. It has been in development for at least 15 years. But until now, it always seemed like a dream – sweet or nightmarish depending on ones point of view. But now it is here. There are already several units installed and in operational test mode in Colorado. Beginning this fall the first ASOS units are scheduled for commissioning. Alamosa is first on the list and will be followed quickly by Colorado Springs, Pueblo and Denver. Upon commissioning, ASOS takes over and the conventional observations cease.

This has immediate and far-reaching implications for everyone who uses aviation weather observations and anyone involved in climatology. History has shown repeatedly that whenever you change how you measure something, you usually get a different answer. ASOS will provide much more data than we have ever had before. As a result, we will learn many new things. But the records will not be consistent with the records of the past, and that presents some problems. As a climatologist I am trying to prepare myself for this transition. We are the ones who care and fuss the most over little trivial things like a one-degree change in temperature.

Fortunately, the National Weather Service, with the help of a few pushes from the climate research community, is funding some studies of climate data continuity. Hopefully, enough overlap data from both ASOS and conventional observations will be collected so that we can be fairly confident how much impact the ASOS measurements will actually have on our historic records of temperature, precipitation, wind, etc. The Colorado Climate Center is involved in some of these studies, and I intend to report our results to you in a year or so. If you don't hear from me by Christmas 1993, please bother me.

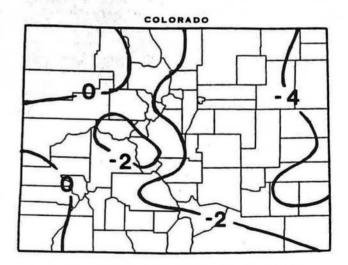


August in Perspective - Cool and Damp

The cool and damp weather pattern that characterized the summer of 1992 continued throughout August, especially east of the mountains. From the Front Range eastward to the borders of Kansas and Nebraska, this has been one of the 5-6 coolest summers this century. Afternoon and evening thunderstorms were numerous throughout the month, but a major autumn-like storm August 23-25th soaked much of Colorado and accounted for a large portion of the month's precipitation total.

Precipitation

There were brief interludes of dry weather during August, but afternoon and evening thunderstorms managed to develop somewhere in the State on most days. The storm of



August 1992 precipitation as a percent of the 1961-1990 average.

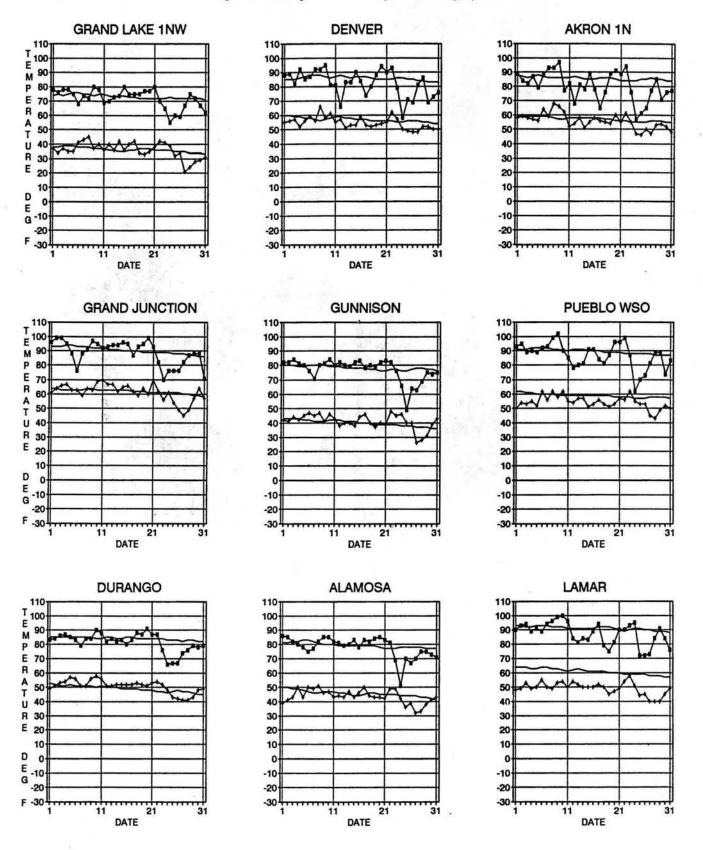
August 23-25th was one of the heaviest statewide precipitation events to hit Colorado in a long time. The result was wetterthan average conditions over most of Colorado with more than 200% of average over much of the South Platte Basin and other scattered areas in eastern and southern Colorado. Western Colorado missed out on much of the action, and some locations, including Craig and Fruita, received less than 50% of average August rainfall. The 0.22" total at Colorado National Monument was just 17% of average.

Temperatures

A series of unusually strong cold fronts plowed across the Front Range and Eastern Plains during August, but western Colorado was shielded and experienced seasonally hot weather. Then the entire state was chilled by near-record cold late in August. For the month as a whole, temperatures ended up slightly warmer than average over extreme southwest and northwest Colorado while the remainder of the State was cooler than normal. The most unusual weather occurred near the Nebraska and Kansas borders where some areas were more than five degrees F below average. At Burlington this was the 2nd coolest August this century second only to 1915. (See Special Feature story on the cool summer, pages 10-12.)

Departure of August 1992 temperatures from the 1961-90 averages.

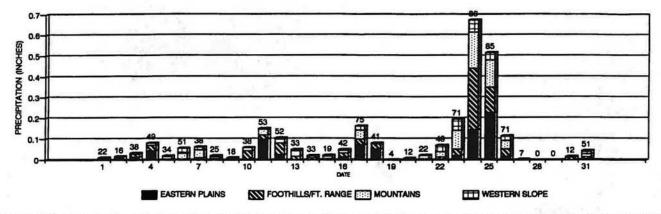
Inside T	his Issue
August 1992 Daily Weather 2	Comparative Heating Degree Day Data 7
August 1992 Temperature Comparison	August 1992 Climate Data 8
August 1992 Precipitation 4	Special Feature - After a Cold Summer, What Lies Ahead 10
August 1992 Precipitation Comparison	Reader Survey Summary 12
1992 Water Year Precipitation	JCEM WTHRNET August 1992 Data 13

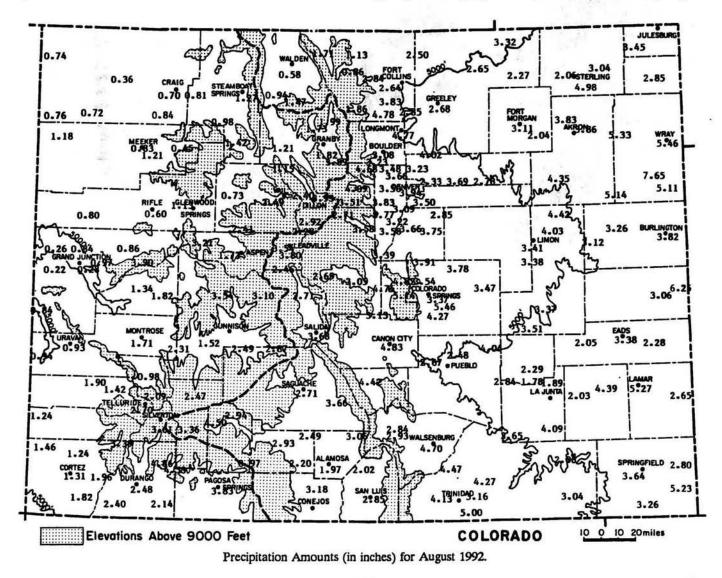

- 1-3 August began with hot, dry days and cool nights over western Colorado. Silverton reported a low of 35°F on the 1st. Temperatures were warm from the mountains eastward until high pressure over Canada pushed cooler, humid air into eastern Colorado 2-3rd producing morning low clouds and fog followed by late-day storms out on the plains.
- 4-7 Cooler, moister air slipped into western Colorado late on the 4th, while high humidity continued east of the mountains. John Martin Dam reported 1.61" of rain from storms late on the 4th. Widespread cloudcover shaded much of the State 5-6th. Scattered heavier thunderstorm activity shifted to western Colorado 5-6th as it became warmer and drier to the east. Low clouds lifted over some of Colorado's western alleys on the 7th, but some afternoon thundershowers redeveloped.
- 8-9 Quite hot over Colorado with only widely scattered thundershowers. The temperature reached 101° on the 9th at Cheyenne Wells and 103° at Pueblo Reservoir, their hottest day of the month.
- 10-17 A large ridge of high pressure prevailed west of Colorado bringing persistent heat to the Western Slope, but the resulting northwesterly winds aloft brought unsettled weather east of the mountains. Much cooler air accompanied by low clouds moved into eastern Colorado on the 10th dropping temperatures by 20 degrees in some areas. Large thunderstorms erupted along the cold front in southeast Colorado. Lamar was soaked with 2.72" of rain, much of it falling in 45 minutes. Fog developed overnight over portions of the Eastern Plains. The 11th was cool east of the mountains with scattered thundershowers. A localized evening storm dropped 1.02" on Longmont. An even stronger push of abnormally cool air dropped across eastern and northern Colorado on the 12th causing dense upslope clouds to develop along the Front Range and holding daytime temperatures in the 60s. Some large thunderstorms developed in southern Colorado. Temperatures moderated but remained below average 13-14th with numerous but fairly light thunderstorms near the mountains. Summer heat appeared briefly on the 15th, but cooler, showery weather returned again the next day. Storms were numerous near the mountains on the 16th, and then big storms rumbled across the plains late at night continuing into the 17th. Heavy rainfall reports included 1.06" at Canon City, 1.70" near Walsh and 2.47" near Idalia.

- 18-20 A relatively dry period statewide with just widely scattered convective showers. Cool temperatures continued east of the mountains on the 18th, but warmed statewide 19-20th. Grand Junction hit 99° on the 20th and Uravan reached 101°F, their hottest of the summer.
- 21-25 Winds aloft backed to the southwest on the 21st causing clouds and showers to increase over the mountains but producing hot, dry weather along the Front Range. Yampa received 0.63" of rain and hail. Hot weather continued east of the mountains on the 22nd. But in western Colorado, strong southwest winds, developing rain and colder temperatures announced the approach of an unusually deep low pressure area for this time of year. On the 23rd, cold high pressure pushed south out of Canada at the same time that the substantial remains of Pacific hurricane Lester combined with the autumn-like storm system over the Great Basin. The result was heavy rains spreading from the Southern Mountains into eastern Colorado on the 24th. The hardest hit areas were west and south of Denver where more than 3 inches of rain accumulated and in the vicinity of Wolf Creek Pass which totalled more than 5 inches of rain from the storm. Rains even changed to snow in the mountains down as low as 9,000 feet in some areas. Two inches of snow were measured near Georgetown, with more on mountain peaks and passes. Many locations set new records for the coldest daytime temperatures for this time of year. Denver and Alamosa only reached highs of 58° and 51°F, respectively, on the 24th. Climax was a chilly 43°F. The chill continued across eastern Colorado on the 25th with scattered showers and drizzle. Later, thunderstorms developed as the upper level low pressure trough passed directly over Colorado. Grand Junction, which missed the moisture from the hurricane, received 0.51" from a storm on the 25th.
- 26-31 Skies cleared and daytime temperatures slowly returned to normal by the 28th. Nights, however, were quite chilly. The 27th was the coldest morning of the month in many locations. Fort Collins tied a record with 39°F. Lows were in the 20s in the mountains, and Fraser hit 18°, the coldest in Colorado in August. A new front moved down from Canada on the 29th keeping eastern Colorado cool for the remainder of August. Temperatures were more seasonal from the mountains westward, and numerous but mostly light afternoon showers and thunderstorms were the rule from the Front Range to Utah 30-31st.

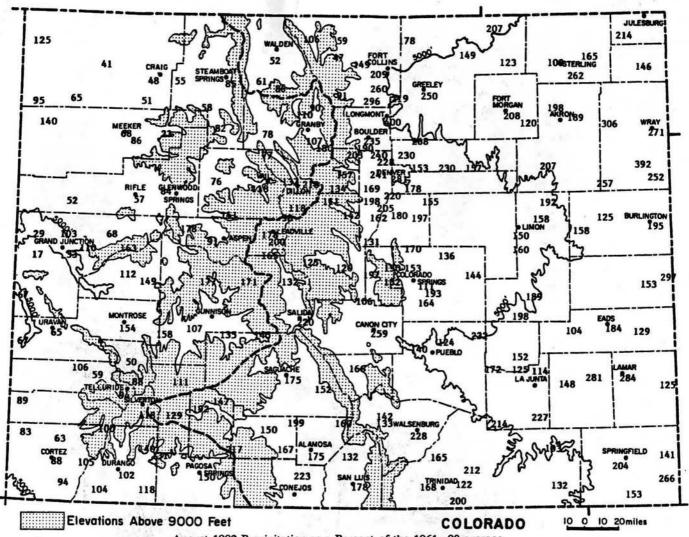
		Weather Extremes	
Highest Temperature	103°F	August 9	Pueblo Reservoir
Lowest Temperature	18°F	August 27	Fraser
Greatest Total Precipitation	8.97"	-	Wolf Creek Pass 1E
Least Total Precipitation	0.22"		Colorado National Monument
Greatest Total Snowfall	2.0"		Cabin Creek, Climax

AUGUST 1992 TEMPERATURE COMPARISON

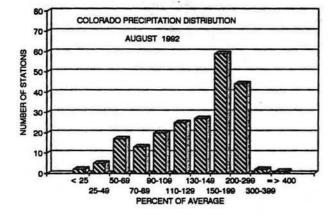

Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)


AUGUST 1992 PRECIPITATION

Scattered and generally light showers and thunderstorms characterized the first half of August with heavier precipitation events 10-12th, and 16-18th. Then along came the "storm of the year" 23-25th as moisture from Pacific Hurricane Lester combined with a strong autumn-like storm to drop heavy, steady rains (and a little mountain snow) over much of Colorado. Statewide, August precipitation averaged over 2.50", well above normal. August 23-25th contributed nearly 1.40" to that total, a very heavy widespread event for this part of the country.



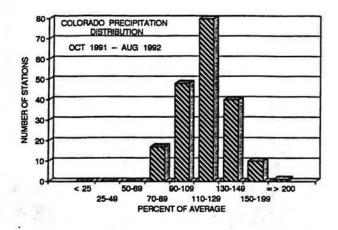
(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)

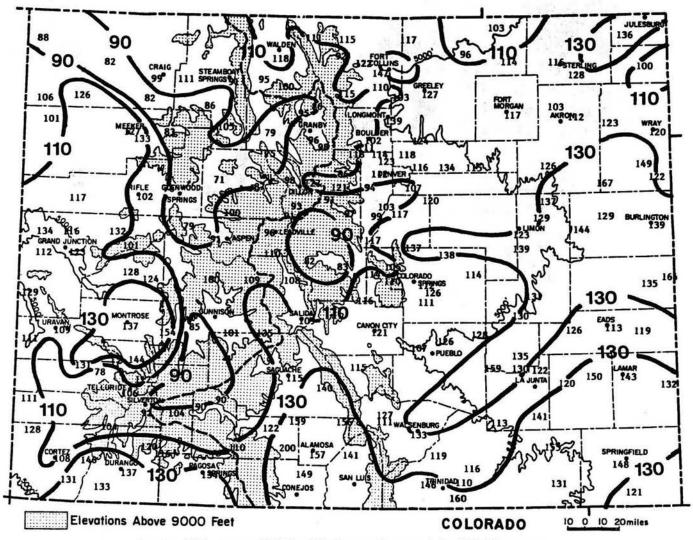


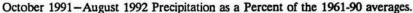
¹³⁸

AUGUST 1992 PRECIPITATION COMPARISON

August 1992 Precipitation as a Percent of the 1961-90 average.


Wet areas greatly outnumbered dry areas in Colorado in August, and several locations set new records for the wettest August including 8.97" at Wolf Creek Pass 1E, 7.65" at Idalia 4NNE and 4.77" at Longmont. But, as usual, local dry spots were also evident. A handful of stations reported less than 50% of average August moisture.


AUGUST 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES


Station	Precip.	Rank
Denver	2.33"	20th wettest in 121 years of record (wettest = 5.85" in 1979)
Durango	2.48"	40th wettest in 98 years of record (wettest = 5.97" in 1947)
Grand Junction	0.84"	47th driest in 101 years of record (driest = 0.02 " in 1903)
Las Animas	2.03"	43rd wettest in 127 years of record (wettest = 5.98" in 1916)
Pueblo	2.48"	33rd wettest in 123 years of record (wettest = 5.85" in 1955)
Steamboat Springs	1.27"	35th driest in 86 years of record (driest = 0.17 " in 1944)

1992 WATER YEAR PRECIPITATION

A so-so winter snowpack and a dry, warm spring resulted in gloomy projections for summer water supplies. In fact, streamflows have been less than average this year. Most major rivers in Colorado have been low since 1988. But plentiful rains and cool temperatures since late May have been very beneficial. As of August 31, 1992, 80% of Colorado's official reporting stations have received average or above precipitation for the 1992 water year. 26% of the weather stations have received at least 130% of average. For much of eastern and southern Colorado this has been a year of plentiful moisture. The only remaining drier than average areas are found in parts of the Northern and Central Mountains and extreme northwest parts of the State. For the most part, rain has been sufficient to substantially offset surface water demands. As a result, reservoir storage is in remarkably good shape statewide considering that this was the 5-6th consecutive year with below average streamflow. Colorado has avoided a dry growing season over the majority of the State for more than a decade.

COMPARATIVE HEATING DEGREE DAY DATA FOR AUGUST 1992

	Heating	Degree	e Data					Color	ado Cl	imate	Center	(303)	491-8	545			Heating	Degre	e Data					Color	ado Cl	imate (enter	(303)	491-8	545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	MAL	FEB	MAR	APR	MAY	JUN	ANN		STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FE8	MAR	APR	MAY	JUN	ANN
ALAHOSA	AVE 91-92 92-93	40 33 97	100 51 131	303 280	657 630	1074 1263		1519 1963	1182 1459	1035 1093	732 535	453 350	165 179	8717 9685 228		GRAND LAKE 65SW		214 220 277	264 255 311	468 427		1128 1169	1473 1468		1369 1354	1318 1118	951 751	654 534		10591 10153 588
ASPEN	AVE 91-92 92-93	95 104 249	150 112 228	348 335	651 610	1029 1106	1339 1369	1376 1410	1162 1124	1116 980	798 660	524 487	262 351			GREELEY	AVE 91-92 92-93	0 8 14	0 5 43	149 119	450 450		1128 1011	1240 1088	946 724	856 665	522 310	238 181		6442 5523 57
BOULDER	AVE 91-92 92-93	0 17 20	6 7 55	130 121	357 403	714 831	908 911	1004 901	804 700	775 664	483 321	220 192	59 93	5460 5161 75		GUNNISON	AVE 91-92 92-93	111 131 208	188 151 M	393 371			1590 1597			1231 940	816 661	543 452		10122 9287 M
BUENA VISTA	AVE 91-92 92-93	47 63 107	116 87 148	285 M	577 580	936 1056		1218 1246	1025 1048	983 901	720 568	459 391	184 247	7734 M 255		LAS ANIMAS		0 1 0	0 3 11	45 59	296 350	729 896	998 966	1101 943	820 712	698 539	348 242	102 107		5146 4842 11
BURLINGTON	AVE 91-92 92-93	13 5	5 14 39	108 106	364 462	762 903	1017 1004	1110 1021	871 751	803 639	459 360	200 173	38 61	5743 5507 44		LEADVILLE	AVE 91-92 92-93	272 343 383	337 364 435	522 538			1435 1461			1320 1186	1038 852	726 656		10870 10733 818
CANON	AVE * 91-92 92-93	0 8 2	10 0 29	100 105	330 379	670 800	870 945	950 870	770 688	740 604	430 331	190 167		5100 4960 31		LINON	AVE 91-92 92-93	8 19 16	6 14 54	144 171			1070 1095		960 827	936 734	570 436	299 272	100 104	6531 6336 70
COLORADO SPRINGS	AVE 91-92 92-93	8 16 21	25 16 53	162 145	440 453	819 954	1042 1048	1122 998	910 788	880 717	564 383	296 219	78 96	6346 5833 74	ie.	LONGMONT	AVE 91-92 92-93	0 12 20	6 61	162 133	453 489		1082 1047		938 786	874 730	546 391	256 201	78 60	
CORTEZ	AVE * 91-92 92-93	5 13 18	20 8 42	160 161	470 423	830 947	1150 1227	1220 1310	950 892	850 744	580 458	330 266	100 114	6665 6563 60		MEEKER	AVE 91-92 92-93	28 24 23	56 7 44	261 221	564 553		1240 1367		1086 1025	998 758	651 446	394 280		7714 7312 67
CRAIG	AVE 91-92 92-93	32 27 67	58 13 64	275 230	608 582			1479 1556	1193 1078	1094 809	687 497	419 270	193 161	8376 7820 131		MONTROSE	AVE 91-92 92-93	0 0 15	10 0 43	135 135	437 404	837 901	1159 1312		941 911	818 683	522 324	254 176	69 48	
DELTA	AVE 91-92 92-93	006	0 2 N	94 88	394 383		1135 1302		890 874	753 625	429 273	167 86	31 29	5903 5980 M		PAGOSA SPR1NGS	AVE 91-92 92-93	82 44 120	113 37 126	297 289	608 568		1305 1362			1026 899	732 577	487 392	233 251	8367 8099 246
DENVER	AVE 91-92 92-93	0 6 10	0 4 35	135 118	414 449	789 902	1004 982	1101 1022	879 714	837 673	528 309	253 158		6014 5372 45		PUEBLO	AVE 91-92 92-93	0 1 0	0 0 15	89 76	346 380	744 927	998 1014	1091 958	834 759	756 608	421 309	163 125		5465 5198 15
DILLON	AVE 91-92 92-93	273 316 364	332 321 381	513 521					1305 1306		972 805	704 609		10754 10442 745		RIFLE	AVE 91-92 92-93	6 1 12	24 1 31	177 143	499 475		1249 1185		1002 804	856 660	555 352	298 142	82 57	6945 6009 43
DURANGO	AVE 91-92 92-93	9 6 34	34 2 49	193 152	493 379		1153 1179		958 935	862 745	600 430	366 267		6848 6463 83		STEAMBOAT SPRINGS		90 127 160	140 141 119	370 394			1430 1626	1500 1680	1240 1126	1150 863	780 595	510 383	270 263	9210 9080 279
EAGLE	AVE 91-92 92-93	33 26 47	80 6 73	288 208	626 563	1026 972	1407 1358	1448 1387	1148 970	1014 809	705 466	431 289	171 150	8377 7204 120		STERLING	AVE 91-92 92-93	0 5 14	6 1 36	157 92	462 437	876 930	1163 1028		966 731	896 645	528 352	235 142		6614 5590 50
EVERGREEN	AVE 91-92 92-93	59 83 103	113 92 167	327 311	621 627	916 988	1135 1078	1199 1123	1011 939	1009 887	730 541	489 410		7827 7321 270		TELLURIDE	AVE 91-92 92-93	163 175 180	223 163 189	396 339			1293 1264			1141 946	849 565	589 450		9164 8143 369
FORT COLLINS	AVE 91-92 92-93	5 11 22	11 1 55	171 145	468 457	846 891	1073 1002		930 736	877 681	558 356	281 193		6483 5558 77		TRINIDAD	AVE 91-92 92-93	0 3 0	0 2 18	86 107	359 377	738 876		1051 946	846 774	781 642	468 289	207 186		5544 5256 18
FORT MORGAN	AVE 91-92 92-93	0 5 12	6 4 40	140 89	438 437	867 947	1156 1025		969 756	874 652	516 332	224 163	47 41	6520 5644 52		WALDEN	AVE 91-92 92-93	198 193 270	285 209 283	501 452			1457 1422				915 700	642 500		10466 9624 553
GRAND JUNCTION	AVE 91-92 92-93	000	0 2 6	65 37	325 304		1138 1193	1225 1390	882 788	716 608	403 195	148 53		5683 5393 6		WALSENBURG	AVE 91-92 92-93	0 6 5	8 5 29	102 90	370 337	720 818	924 915	989 870	820 717	781 634	501 309	240 163		5504 4924 34
	• .	= AVES	AD JUST	ED FO	STAT	ION MO	VES	H =	MISSI	NG	E = 1	ESTIMA	TED				۰,	AVES	ADJUST	TED FOR	STAT	ION NO	VES .	H =	MISSI	NG	E = I	ESTIMAT	ED	

141

AUGUST 1992 CLIMATIC DATA

EASTERN PLAINS

			Temper	ature			D	egree D	ays		Precip	pitation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	# days
NEW RAYMER 21N	77.8	49.4	63.6	-3.6	94	41	106	72	456	3.32	1.72	207.5	10
STERLING	84.5	54.8	69.7	-2.4	100	42	36	188	579	2.06	0.18	109.6	8
FORT MORGAN	82.7	55.2	69.0	-3.5	98	44	40	169	565	3.11	1.62	208.7	8
AKRON FAA AP	80.5	55.7	68.1	-3.3	97	46	47	152	550	3.83	1.90	198.4	9
AKRON 4E	81.2	53.4	67.3	-4.2	98	43	60	138	524	3.86	1.82	189.2	7
HOLYOKE	78.4	55.8	67.1	-5.4	94	44	54	128	533	2.85	0.90	146.2	8
JOES	78.9	54.9	66.9	-6.0	96	45	48	117	526	5.14	3.14	257.0	8
BURLINGTON	80.9	55.5	68.2	-4.9	98	48	39	147	554	3.82	1.87	195.9	8
LIMON WSMO	79.2	52.7	66.0	-2.5	91	45	54	91	502	3.41	1.14	150.2	9
CHEYENNE WELLS	84.1	55.6	69.9	-3.2	101	47	20	179	588	3.06	1.06	153.0	12
EADS	83.8	56.7	70.2	-3.7	97	47	16	189	604	3.38	1.55	184.7	6
ORDWAY 21N	86.4	54.3	70.3	-2.8	100	43	24	199	583	3.51	1.74	198.3	8
ROCKY FORD 2SE	87.5	54.8	71.1	-3.0	99	45	11	208	609	1.78	0.36	125.4	12
LAMAR	87.1	49.2	68.2	-6.9	100	40	32	137	536	5.27	3.42	284.9	8
LAS ANIMAS	87.2	57.0	72.1	-4.2	101	49	11	237	629	2.03	0.66	148.2	12
HOLLY	86.6	57.0	71.8	-3.7	100	44	2	223	636	2.65	0.54	125.6	8
SPRINGFIELD 7WSW	86.6	56.7	71.6	-1.9	96	47	3	215	634	3.64	1.86	204.5	11
TIMPAS 13SW	87.6	57.1	72.4	-1.7	98	49	15	249	633	3.65	1.95	214.7	8

FOOTHILLS/ADJACENT PLAINS

			Temper	ature			D	egree D	ays	× - 11	Precip	pitation	
Name	Max	Min	Mean	Dep	High	Low	Heat	Cool	Grow	Total	Dep	%Norm #	# days
FORT COLLINS	78.8	52.8	65.8	-3.4	94	39	55	88	501	2.64	1.38	209.5	15
GREELEY UNC	81.6	53.3	67.4	-3.8	97	41	43	128	535	2.68	1.61	250.5	10
ESTES PARK	74.2	44.2	59.2	-1.3	81	34	181	8	393	1.86	-0.18	91.2	19
LONGMONT 2ESE	82.3	49.8	66.0	-4.0	97	37	61	100	507	4.77	3.58	400.8	11
BOULDER	80.0	52.6	66.3	-3.2	94	42	55	103	516	3.08	1.77	235.1	16
DENVER WSFO AP	82.3	54.5	68.4	-3.0	95	48	35	148	551	2.33	0.81	153.3	7
EVERGREEN	76.2	42.9	59.5	-2.4	86	30	167	5	414	3.83	1.57	169.5	14
CHEESMAN	78.1	39.2	58.6	-4.9	88	26	189	1	441	3.39	0.81	131.4	15
LAKE GEORGE 8SW	72.7	42.6	57.7	-1.3	80	30	218	0	361	3.05	0.51	120.1	12
ANTERO RESERVOIR	71.9	36.7	54.3	-1.5	80	25	326	0	348	2.69	0.54	125.1	11
RUXTON PARK	67.4	34.8	51.1	-2.8	76	24	423	0	281	5.14	1.26	132.5	17
COLORADO SPRINGS	80.4	52.7	66.5	-2.1	92	39	53	106	517	3.37	0.34	111.2	15
CANON CITY 2SE	82.3	55.7	69.0	-2.1	93	44	29	159	587	4.83	2.97	259.7	14
PUEBLO WSO AP	86.7	54.2	70.5	-3.8	102	43	15	191	585	2.48	0.48	124.0	11
WESTCLIFFE	74.0	40.3	57.2	-3.8	84	28	236	0	383	4.42	1.76	166.2	12
WALSENBURG	82.2	53.7	68.0	-1.8	92	42	29	127	563	4.70	2.64	228.2	15
TRINIDAD FAA AP	85.5	53.9	69.7	-1.9	97	44	18	171	585	4.17	2.16	207.5	13

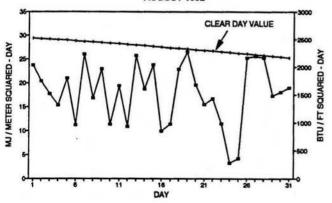
MOUNTAINS/INTERIOR VALLEYS

			Tempera	ature			D	egree D	ays		Precip	oitation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	74.1	37.1	55.6	-0.9	86	20	283	0	382	0.58	-0.53	52.3	10
LEADVILLE 2SW	66.6	34.9	50.8	-1.8	75	25	435	0	267	3.80	1.90	200.0	17
SALIDA	79.1	45.2	62.1	-1.6	88	32	114	31	463	3.68	2.01	220.4	10
BUENA VISTA	77.5	43.0	60.3	-2.0	86	29	148	8	435	2.71	0.66	132.2	11
SAGUACHE	73.9	44.6	59.3	-2.2	83	33	172	2	382	2.71	1.17	176.0	15
HERMIT 7ESE	69.4	36.5	53.0	-1.3	79	24	366	0	310	3.20	0.86	136.8	9
ALAMOSA WSO AP	78.0	43.5	60.7	-1.7	86	32	131	6	444	1.97	0.85	175.9	12
STEAMBOAT SPRINGS	81.4	42.0	61.7	1.5	89	25	119	22	488	1.27	-0.21	85.8	13
YAMPA	75.0	47.4	61.2	1.8	82	33	116	8	406	1.42	-0.30	82.6	9
GRAND LAKE 1NW	72.1	36.0	54.0	-0.9	80	21	332	0	349	1.99	-0.21	90.5	18
GRAND LAKE 6SSW	71.4	38.2	54.8	-1.8	81	25	311	0	339	1.73	0.16	110.2	17
DILLON 1E	69.2	35.6	52.4	-2.4	77	21	381	0	310	2.40	0.65	137.1	16
CLIMAX	61.5	37.9	49.7	-0.1	70	27	469	0	188	2.28	-0.03	98.7	7
ASPEN 1SW	73.5	41.3	57.4	-3.1	83	29	228	0	370	1.75	-0.15	92.1	11
CRESTED BUTTE	70.5	37.4	53.9	-1.8	80	23	335	0	327	3.54	1.54	177.0	17
TAYLOR PARK	65.8	37.8	51.8	-2.3	74	26	401	0	249	3.10	1.29	171.3	14
TELLURIDE	76.2	41.1	58.7	0.2	88	26	189	1	410	2.70	-0.15	94.7	17
PAGOSA SPRINGS	79.3	42.6	61.0	-1.4	87	30	126	8	460	3.83	1.28	150.2	19
SILVERTON	68.6	37.7	53.2	-0.5	77	26	359	0	297	3.61	0.57	118.7	16
WOLF CREEK PASS 1	64.2	38.5	51.4	0.1	76	26	415	. 0	231	8.97	4.84	217.2	21

WESTERN VALLEYS

		18.1	Temper	ature			D	egree D	ays		Precip	oitation	
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	
CRAIG 4SW	82.0	49.0	65.5	0.1	90	31	64	87	515	0.70	-0.75	48.3	7
HAYDEN	81.4	47.7	64.6	-0.2	90	32	70	66	500	0.81	-0.65	55.5	11
MEEKER NO. 2	86.3	47.8	67.0	1.7	95	31	44	117	537	0.83	-0.39	68.0	7
RANGELY 1E	88.2	55.4	71.8	1.1	98	38	23	241	627	1.18	0.34	140.5	6
EAGLE FAA AP	82.4	45.7	64.0	-0.2	91	28	73	50	500	0.73	-0.23	76.0	12
GLENWOOD SPRINGS	85.8	49.2	67.5	-0.5	96	35	49	133	543	1.13	-0.20	85.0	12
RIFLE	86.7	48.9	67.8	-0.9	96	34	31	125	541	0.60	-0.45	57.1	6
GRAND JUNCTION WS	88.7	61.5	75.1	-1.1	99	45	6	328	706	0.84	0.03	103.7	6
CEDAREDGE	85.8	50.0	67.9	-1.9	96	35	53	151	542	1.34	0.15	112.6	10
PAONIA 1SW	86.6	54.7	70.6	-0.1	97	41	30	213	603	1.82	0.60	149.2	11
COCHETOPA CREEK	76.8	41.0	58.9	-0.7	84	26	182	0	422	2.49	0.65	135.3	16
MONTROSE NO. 2	82.9	53.6	68.2	-1.8	92	39	43	148	572	1.71	0.60	154.1	9
URAVAN	92.3	58.9	75.6	0.7	101	42	6	341	688	0.93	-0.49	65.5	12
NORWOOD	79.5	49.4	64.4	0.0	88	38	69	58	486	1.90	0.12	106.7	8
YELLOW JACKET 2W	84.4	52.3	68.3	0.1	93	39	40	149	560	1.46	-0.29	83.4	9
CORTEZ	85.3	51.0	68.1	1.1	92	37	42	147	565	1.31	-0.17	88.5	9
DURANGO	81.6	50.7	66.1	-0.4	91	41	49	92	523	2.48	0.06	102.5	13
IGNACIO 1N	81.6	48.1	64.9	-1.4	90	34	68	69	501	2.14	0.33	118.2	11

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

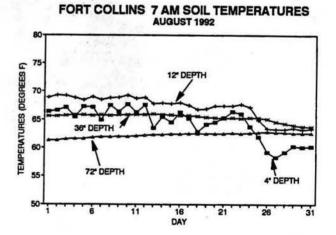

AUGUST 1992 SUNSHINE AND SOLAR RADIATION

	Numt	ber of	f Days	Percent Possible	Average % of
	CLR		CLDY	Sunshine	Possible
Colorado Springs	9	12	10	-	
Denver	6	12	13	56%	72%
Fort Collins	7	11	13	1	
Grand Junction	9	14	8	75%	77%
Limon	9	11	11		
Pueblo	10	12	9	64%	78%

CLR = Clear

PC = Partly Cloudy CLDY= Cloudy

Sunshine and solar radiation were again less than average over much of Colorado. The greatest differences from average were over eastern Colorado. For the entire summer, Denver recorded only 59% of possible sunshine compared to an average of 71%.

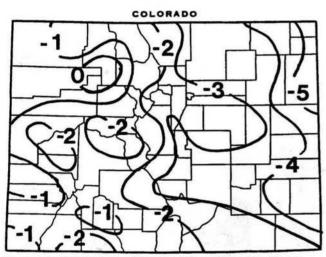


FT. COLLINS TOTAL HEMISPHERIC RADIATION AUGUST 1992

AUGUST 1992 SOIL TEMPERATURES

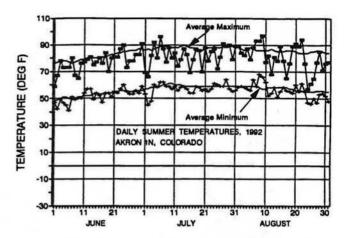
Near-surface soil temperatures stayed below average but reached their highest levels of the summer only to plummet again late in August as cold rain saturated the ground. Deeper soil temperatures remain close to average.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

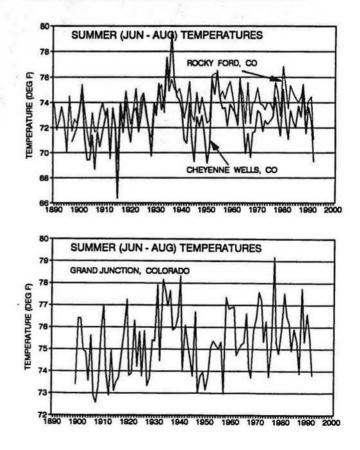

HATS OFF TO: Orville and Helen Altenbern, of Altenbern Ranch, DeBeque, Colo.

With great sadness we say goodbye to Mrs. Orville Altenbern (Helen) who passed away in July. She helped with the daily observations on the Altenbern Ranch since Orville was slowed by a leg injury several months ago. They were in their 50th year of dedicated service as volunteer weather observers. Son Max Altenbern took over the station in August. Altenbern family – thanks so much for what you have done.

143


AFTER A COLD SUMMER, WHAT LIES AHEAD?

There have been colder summers than the one we just experienced here in Colorado in 1992 – but not many. The Eastern Plains were by far the most anomalous, while western Colorado was only a little cooler than average. This fits right in with the seasonal pattern for the entire country. Abnormal lack of summer heat was the rule over broad areas of the United States from the Rockies to New England. Nationally, this was the 3rd coolest summer on record. Only the far West and the southeastern coastal regions experienced temperatures near or above average for the summer. The core of the cool weather was centered over the northern and central plains states where summer temperatures were four to seven degrees F below average. Meanwhile, out West, it was a hot summer with June-August temperatures more than 2°F warmer than average over much of Washington, Oregon and parts of California.

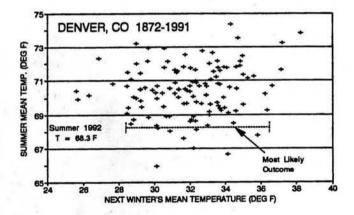


Summer 1992 Temperature Departures from 1961-1990 averages.

The summer of 1992 here in Colorado was characterized by abundant cloudcover, frequent precipitation, a large number of abnormally strong cold fronts and an absence of the typical one to two week heatwave episodes that often occur sometime each summer. There were only a handful of truly hot days all summer, and these were scattered randomly throughout the season. Colorado's traditional hot spot, Las Animas, after reaching the 100-degree mark already on April 30 and 101° on May 1, proceeded to reach the century mark only 7 times during June-August. In fact, they only hit 90° or higher 41 times, 26 days less than usual. Out at Akron, the longest stretch of days with maximum temperatures greater than 80° was just 4 days. Akron had a remarkable 21 days when the daily high temperature stayed below 75° and 12 days cooler than 70°F. Denver recorded only 58.7% of possible sunshine during the summer compared to an average of 71.3%. This was the cloudiest summer in Denver since 1945 and the 4th cloudiest summer during the past 100 years. Just for the record, Denver's cloudiest summers have been: 1912 (686 hours of sunshine), 1927 (727 hours), 1945 (752 hours), 1992 (780 hours), 1951 (785 hours) and 1915 (788 hours).

We pulled out historic temperature data for several locations in Colorado to see how 1992 compared. It is well to note that the last time Colorado experienced cool weather through the entire summer was back in the mid 1960s. There were a few cool summers in the 1940s and early 50s, nothing but hot summers in the 1930s and then a much higher frequency of cool summers from 1928 back to the beginning of recorded temperature history. Eastern and western Colorado are not always hot or cool at the same time, but some of the coolest summers affected the entire state.

Summer (June-August) Temperature Rankings


Station	Jun-Aug mean temp. (Deg F)	Depar- ture from average	Rank
Akron 4E	66.8	-3.7	3rd coolest in 85 years. (coolest = 64.7° in 1915)
Burlington	68.1	-4.7	5th coolest in 89 years (coolest = 66.8° in 1915)
Cheyenne Wells	69.3	-3.3	5th coolest in 96 years (coolest = 66.4° in 1915)
Denver	68.3	-2.3	9th coolest in 121 years (coolest = 66.0° in 1967)
Durango	64.4	-1.4	33rd coolest in 99 years (coolest = 59.9° in 1928)
Grand Junction	73.8	-2.0	20th coolest in 93 years (coolest = 72.6° in 1907)

Beginning in August, our office was besieged by phone calls asking us what to expect for the winter. The cool summer and the episode of August snow in the mountains really got people worried – or at least curious. I had lots of information to offer, of course, but not many direct answers so I sidestepped the question as best I could. I gave vague answers about how warm recent winters have been and how summer is not a good indicator of what winters are normally like. My only strong statement was that I thought it extremely likely that winter would be markedly colder than the summer we had just enjoyed.

If the woolly bear caterpillar can make a winter forecast, then why can't experienced climatologists say anything sensible? Well, for one thing, anyone can make a forecast. But does anyone actually keep score? There have never been formal studies evaluating the success of the woolly bear, the skunk cabbage, carrots and onions, the hoarding squirrels or any other folklore forecasters. Personally, I love weather folklore, but I would never use it to make a winter forecast. Many private meteorologists across the country will offer, for a price of course, a customized long-range forecast for their clients. Most of these meteorologists will list off great long-range forecast successes, but they may not share their failures. Research climatologists, on the other hand, carefully evaluate skills from various long-range forecasting methods, but the results are not very encouraging, especially for our part of the country. Forecast methods that can perform 5% or more better than just flipping a coin are considered excellent for time periods of 30 to 90 days in advance. We are not aware of any techniques that currently achieve this accuracy for Colorado.

Many people have the perception that if we know what the weather has been, we should have a good idea of what lies ahead. This is based on the concept that weather patterns go in cycles. Its true, there are several important cycles – the daynight cycle, the annual cycle and wave motion in the atmosphere are obvious examples. There are some semi-predictable cycles that are evident in the tropical atmosphere-ocean system of which the best known is the El Nino circulation. Beyond that, cycles in weather patterns become quite vague and are rarely useful as simple predictors. In fact, some studies have suggested that the atmosphere behaves much closer to randomly than in any systematic cyclic manner. As a potential forecaster, that doesn't make me feel very confident either. There may be some cyclic processes at work, but they are imbedded in an extremely complex earth-atmosphere-ocean system where conditions are always changing, where everything effects everything else and where skillful long-range forecasts are nearly impossible.

The figure below provides a glimpse of why I don't get too excited about simple statistical long-range forecasting. Using Denver temperature data, the longest temperature record in Colorado (not totally consistent, however, due to several moves and changes in instrumentation – but that's a whole other story), the relationship between summer temperatures and the following winter can be shown. If there was a reasonable relationship between them, sufficient to aid in forecasting, one would note a pattern in the scattered points or some sort of linear relationship. Looking at that graph and knowing that the mean temperature for this past summer at Denver was 68.3°F, about all I can say is "we probably will have a normal winter."

Interestingly, there are some times of the year and certain situations when statistical forecasts do have some skill. A hot July out at Cheyenne Wells, for example, is a reasonable predictor of a hotter than average August. A wet July is also an indicator that the following month may be cooler than average. But the nature of the summer alone does not say much about the winter to come.

Another method that has been used to make longrange forecasts, again with limited success, is called the analog method. You evaluate the weather patterns of recent weeks or months and look for similar conditions from the past. Then you examine what came after those conditions and that becomes your forecast. As an example, let's look at some of the coldest summers on record for eastern Colorado -1904, 1906, 1912, 1915, 1927, 1928, 1950, and 1967. What were winters like in Colorado following these cool summers? I'll begin with 1915 since it was the coolest summer ever recorded for the U.S. and appears to have been meteorologically similar to 1992. The other years will be listed chronologically.

Summer of:

Followed By:

- 1915 Following the remarkably cool summer, the fall, spring and much of the winter were all quite mild. Temperatures were warmer than average most months except for January which was snowy and extremely cold. Mountain snowpack accumulation was less than average.
- 1904 The fall and early winter were pleasant. Winter and early spring were fairly normal, but February was colder than normal. Snowpack accumulation was close to average.
- 1906 Autumn was unsettled with a few big storms. From December into April, temperatures were generally above average. Late spring was cold. Snowpack was fairly normal.
- 1912 Autumn was cool and the winter was colder than average with very cold temperatures in February. Precipitation was generally deficient, although September and February were wetter than average. Snowpack was less than average.
- 1927 A very wet September in southwest Colorado (possibly moisture from a hurricane) was followed by average or above temperatures and somewhat deficient precipitation for most of the fall, winter and early spring. December, however, was colder than average. Snowpack accumulation was below average to average.
- 1928 A mild autumn gave way to a long, cold and snowy winter culminating in an extremely cold February. Snowpack accumulation was above average.

1950 It was generally a mild autumn and winter and a cool spring, but an extreme coldwave in late January-early February set many records and killed fruit trees and other vegetation. Snowpack was below average to average across the mountains.

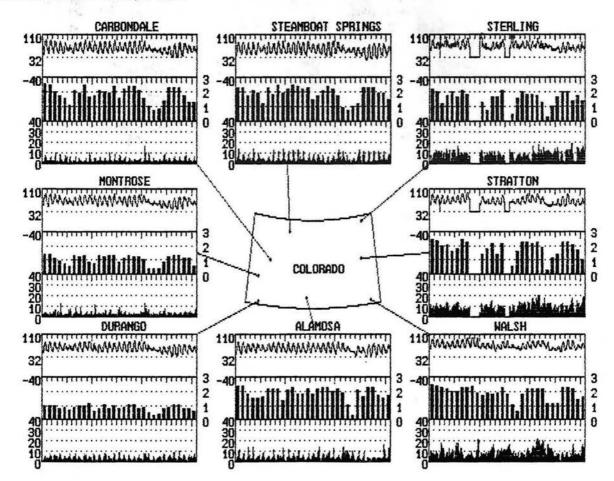
Does any pattern emerge here? It is difficult to say. It does appear that many of the months following cool summers were warmer than average, but 1912 and 1928 were exceptions. There were a number of extreme winter cold episodes in the following winters, but that is very much the nature of winter in our climate. Snowpack, as best we can estimate from the old reports, was generally near or below average for the years following cold summers (except 1928), but streamflow records for those years were not unusually low.

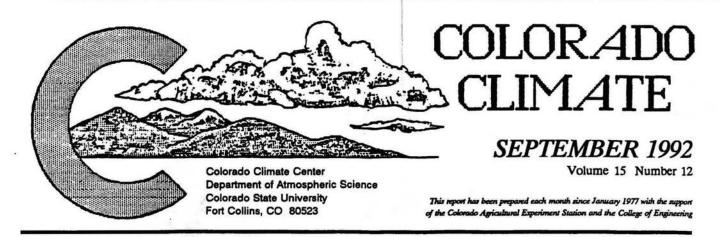
Would you make a huge economic decision based on this sample of 7 years? There are methods that refine this crude analog approach using El Nino information and other large-scale climate indicators. They offer promise, but not precision. In a few years I'll update you on progress.

In case there is not enough uncertainty in this business, this year has an even bigger "?". Last year's gigantic eruption of Mount Pinatubo in the Philippines spewed out incrédible quantities of volcanic material into the upper atmosphere causing a measurable reduction of incoming solar radiation. Past research has shown quite convincingly that the earth's climate is influenced by volcanic activity with cool episodes (on a global scale) often following volcanic activity with a lag of one to three years. Many suggest that the cool summer of 1992 can be attributed, at least partially, to the eruption. There is also more scientific agreement than usual favoring the chances for a cooler than average winter, especially over interior continental areas (that's us).

That exhausts my knowledge on this subject, so this is a good time to stop. Let me add just one thing. I think we should all prepare for a windy winter. That's just a gut feeling.

READER SURVEY SUMMARY

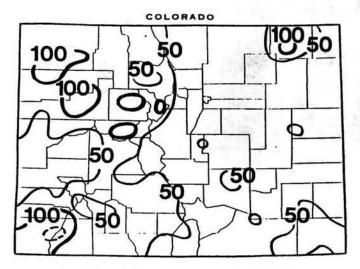

Several months ago we enclosed a letter to all subscribers that included a set of questions. Many of you took the time to answer these questions and spent your own money to mail in your response. Thank you very much!


What we learned is that most of you would rather see more information, not less. You are especially eager to see more special features and in-depth analyses. You offered many suggestions for future topics and I will do my best to oblige. Your ideas were diverse ranging from "how to set up low cost weather stations" to "what does the El Nino mean for Colorado". Snow was an especially appealing topic. We will have great fun attacking all these topics. You were most willing to part with some of the maps and data tables. That is tempting as we look for ways to control our costs. But these same pages contain what is the most essential information to a subset of our long-term subscribers. The precipitation maps become most valuable as historical documents. We find that the maps from 5 or more years ago are used more frequently than the maps from recent months.

Thanks again for your help as we plan for the future. We will continue to strive to produce a useful and educational product. Whether we can continue to provide it free to all subscribers remains uncertain.

			4 () / () / (ATHER DATA	AUGUST 1992			
	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
monthly	average tempe 58.8	erature ('F) 60.6	62.3	65.4	58.3	67.2	63.2	69.6
monthly maximum minimum	: 82.2 21/1	extremes and t 15 85.6 19/ 6 34.5 27/		90.3 2/17	88.3 9/15	113.7 11/ 32.0 2/	9 93.9 8/15 0 32.0 2/0	95.9 9/1 48.9 27/
monthly 5 AM 11 AM 2 PM 5 PM 11 PM	average relat 96 7 44 52 / 48 36 / 42 40 / 40 74 / 46	tive humidity 87 / 44 50 / 50 43 / 48 47 / 46 78 / 47	/ dempoint (per 87 / 43 33 / 38 25 / 35 27 / 34 58 / 40	rcent / *F) 84 / 47 47 / 51 37 / 45 36 / 44 60 / 46	76 / 34 26 / 31 19 / 27 21 / 28 59 / 36	38 / 34 22 / 23 18 / 22 16 / 18 25 / 21	77 / 43 52 / 45 41 / 43 41 / 41 69 / 45	85 / 55 56 / 56 44 / 53 44 / 52 75 / 56
monthly day night	average wind 175 150	direction (198 99	degrees clockwis 202 166	e from north) 227 156	215 106	133 157	129 171	125
- 21	3.75 eed distributi 3 344 2 384 4 16	speed (miles 2,77 ion (hours p 460 284 0 0	per hour) 2,07 er month for hou 586 157 1 0	2.59 erly average ap 501 - 237 2 0	3.02 oh range) 464 263 5 0	6.12 207 487 50 0	7,94 87 547 110 0	8.19 52 557 131 0
monthly	average daily 1871	total insola 829	tion (Btu/ft ² ・0 1817	lay) 1042	1908	1459	1705	1894
"clearne 60-80% 40-60% 20-40% 0-20%	ess" distribut 202 89 70 46	ion { hours p 1 255 154	er month in spec 157 100 70 46	ified clearnes 54 91 75 184	55 index range 154 85 77 37) 144 72 69 83	177 92 51 50	204 95 73 43

The figure below shows monthly weather at WTHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft²/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

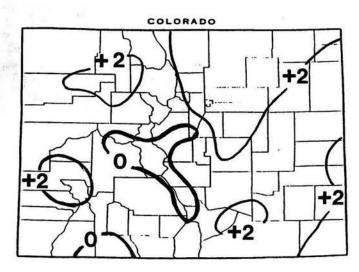


September in Perspective - Warm and Dry

The cool, damp weather pattern that characterized the summer came to a screeching halt and was replaced by warm and predominantly dry weather in September. The jet stream strengthened and dipped southward on several occasions during the month suggesting a continuation of the active weather of summer. However, most of these systems brought little moisture to the State and only briefly interrupted the prevailing warmth and sunshine.

Precipitation

A few small pockets with above average precipitation were found in western Colorado in September, and a heavy storm late on August 31 made Sterling an isolated wet spot



September 1992 precipitation as a percent of the 1961-1990 average.

east of the mountains. Otherwise, the month was much drier than average for most locations. Most of the storm systems in September came from the Pacific and passed Colorado too quickly to tap any moisture from the Gulf of Mexico. The result was a clear line of demarkation with almost no precipitation falling east of the mountain crest.

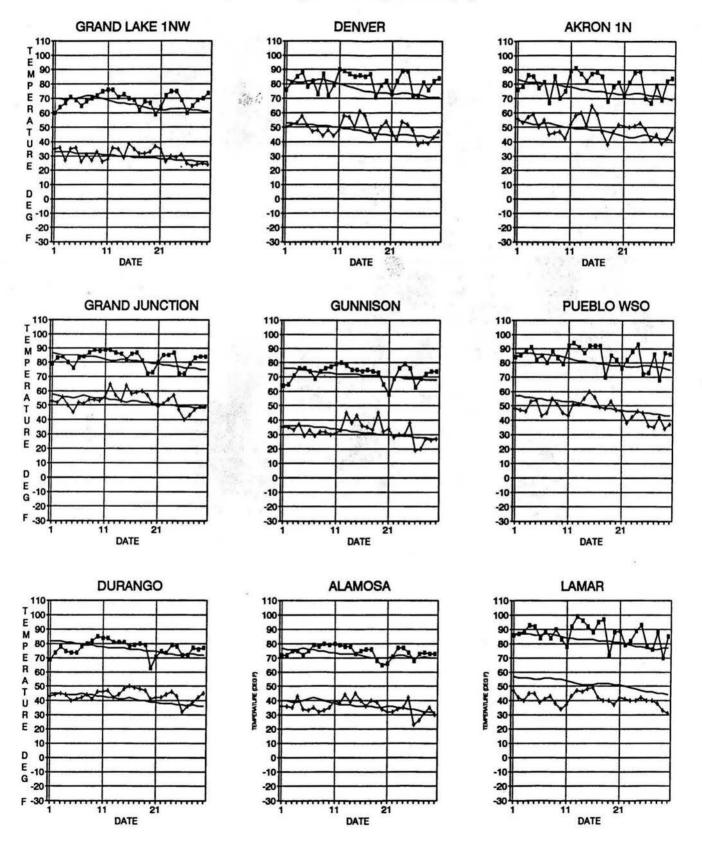
Temperatures

The early freeze that some Coloradans feared (due to the unusually cool summer) failed to materialize, and most of Colorado's major cropland and garden areas made it through September without a killing freeze. There were plenty of ups and downs in daily temperatures east of the mountains, while the Western Slope enjoyed more consistent temperatures. For the month as a whole, almost all of Colorado was warmer than average. Most areas were one or two degrees above average, but some parts of northeast Colorado was more than three degrees F warmer than usual. Slightly cooler than average temperatures were observed in parts of central and southwest Colorado.

Departure of September 1992 temperatures from the 1961-90 averages.

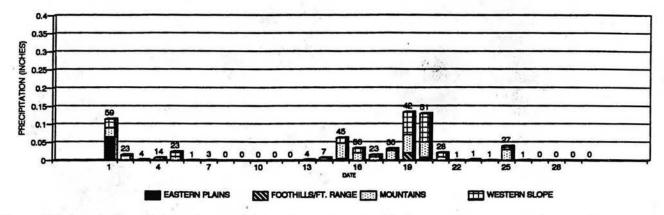
	his Issue
September 1992 Daily Weather 2	Comparative Heating Degree Day Data
September 1992 Temperature Comparison	September 1992 Climate Data 8
September 1992 Precipitation 4	Special Feature - A Review of the
September 1992 Precipitation Comparison	1992 Water Year 10
1992 Water Year Precipitation	JCEM WTHRNET September 1992 Data 13

- 1-4 September 1st was cooler than average as a disturbance aloft crossed the State. Locally heavy storms that had developed on the 31st continued into the early morning over portions of eastern Colorado. Sterling reported 1.94". Some storms developed again during the day on the first. Eagle received 0.46". Warmer and mostly dry weather covered the State 2-3rd although a few scattered convective showers were noted on the 2nd. Clouds and winds increased on the 4th as a strong disturbance moved in from the west. Brief thunderstorms moved across parts of the mountains and Western Slope. Grand Junction reported a 64 mph wind gust. During the late evening, wind gusts to near 50 mph were reported along the Front Range. Some lightning was noted but little rain fell east of the mountains.
- 5-10 Colorado enjoyed dry weather. It was sunny but cool on the 5th. Clouds increased on the 6th as a Pacific cold front approached. Chilly air with some low clouds nosed into northeastern Colorado on the 7th, but much of the rest of the State was sunny and mild. The 8th was warm with temperatures in the 80s in many areas. A rainless cold front raced across northern Colorado early on the 9th accompanied by gusty winds. Almost no change in the mild, dry weather was noted from the mountains westward, but eastern Colorado cooled significantly with temperatures only rising into the 60s and 70s on the 9-10th despite bright sunshine.
- 11-13 After a chilly morning (23° at Fraser), high clouds moved in from the west and temperatures rose rapidly. Denver reached 90° on the 11th. Las Animas and Holly hit 100° and 102°F, respectively on the 12th. Late that day, another gusty, dry cold front pushed across northern Colorado. Winds gusted over 50 mph in parts of the northern Front Range, and a few snowflakes fell high in the mountains. The 13th was dry, breezy and still quite warm.
- 14-17 Low pressure developed off the California coast, and southwesterly winds over the West brought moisture into western Colorado and warm weather to the entire State. A few showers developed in southwest Colorado on the 14th. Storms were most numerous on the 15th with lighter and more scattered showers continuing across western Colorado 16-17th. A few spilled into eastern Colorado. In parts of northeastern Colorado temperatures rose above 80° each day 11-17th, the longest stretch of warm weather of the entire summer. Hollys' 103° on the

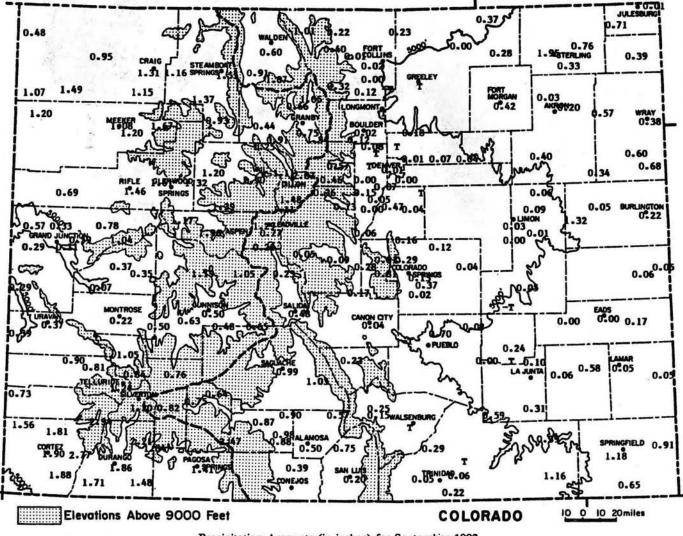

16th was the warmest temperature for the month. A strong cold front on the 17th then rushed across northern and eastern Colorado accompanied by strong winds, brief thunder and sprinkles.

- 18-21 Temperatures were much cooler east of the mountains on the 18th. Meanwhile, a weak but moist upper-level disturbance drifted toward Colorado. Rains began over southwest Colorado on the evening of the 18th and dropped more than 1" at several locations by midday on the 19th (1.02" at Cortez, 1.11" at Durango, and 1.80" at Wolf Creek Lighter rains fell elsewhere in western Pass). Colorado, but only a few showers crossed the mountains leaving most of eastern Colorado dry. An exception was a small portion of southeast Colorado. The Pueblo airport received 0.69" of rain from a thunderstorm on the 19th. Then a secondary disturbance triggered scattered storms on the 20th. Rifle recorded 0.91". Brief scattered showers damped parts of eastern Colorado on the 21st as winds aloft shifted to a northwesterly direction.
- 22-24 High pressure brought clear skies and above average temperatures to all of Colorado 22-23rd. Clouds and winds increased on the 24th in advance of a new Pacific cold front, but temperatures still managed to soar to record or near record levels at several locations. Denver's 89° reading set a new record for the date. Fort Morgan hit 90°F.
- 25-30 A strong cold front crossed Colorado early on the 25th bringing a dose of mountain snow and valley rains and even some nocturnal thunder to the Northern and Central mountains. Walden received 0.38" of moisture including an inch of snow - their first of the year. Winter Park got 3" of snow. Again, the moisture evaporated east of the mountains, and only a few sprinkles were reported. Skies cleared and temperatures dropped to their coldest levels of the month. Several mountain stations reported 18° on the morning of the 26th, and some valleys reported their first freeze of the fall. Except for another dry cool front late on the 27th, the remainder of the month was sunny and mild. With very low humidities, huge day-night temperature ranges were observed. Forty to 50-degree temperature swings were common. The most impressive report came from Browns Park Refuge in northwest Colorado on the 30th - a morning low of 23° and an afternoon high of 86°F. How do you dress for that?

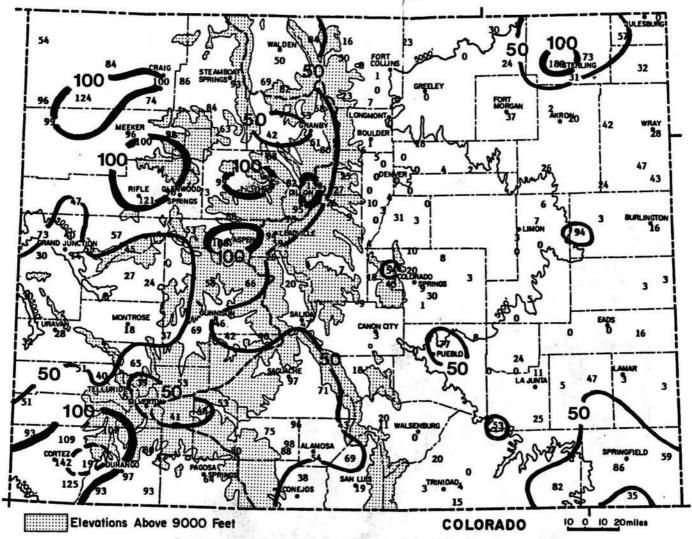
		Weather Extremes	
Highest Temperature	103°F	September 16	Holly
Lowest Temperature	14°F	September 26, 27	Antero Reservoir, Climax,
		and the second second	Hermit, Bonham Reservoir
Greatest Total Precipitation	3.47"	2	Wolf Creek Pass 1E
Least Total Precipitation	0.00"		Evergreen, Eads, and 7 other eastern
			Colorado locations, also numerous Traces.
Greatest Total Snowfall	3"		Winter Park

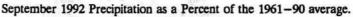

SEPTEMBER 1992 TEMPERATURE COMPARISON

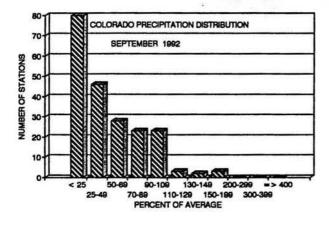
Observed daily high and low temperatures are shown below along with smoothed daily average highs and lows for the 1961-1990 period for nine selected locations. (Note: The time of observation effects the recorded high and low temperatures. Durango, Gunnison and Lamar each take their observations at 8 a.m. Grand Lake takes their daily measurement at 4 p.m. The remaining stations shown below report at midnight.)


SEPTEMBER 1992 PRECIPITATION

The September daily distribution of precipitation changed markedly from the summer months when scattered storms developed almost every day. At this time of year, consecutive days with dry weather statewide is a common trait of our climate and is evident in this month's data. Most of the September precipitation fell early in the month and again in the episode September 14-20th. Some Septembers bring a large, widespread precipitation even to Colorado, but this did not occur this year. Overall, precipitation was well below average.

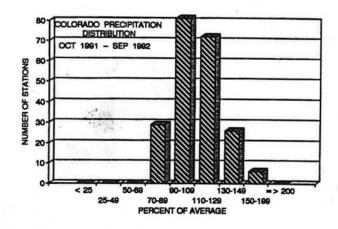

COLORADO DAILY PRECIPITATION - SEP 1992

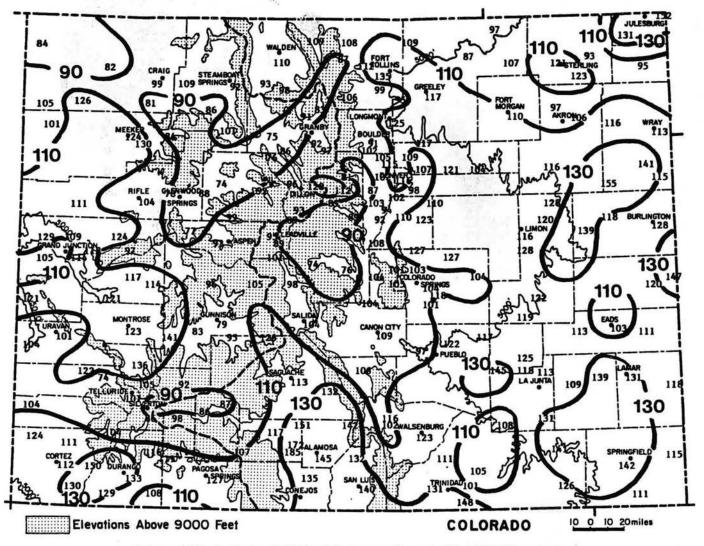

(due to differences in time of observation at official weather stations, precipitation may appear on more days than it actually fell)



Precipitation Amounts (in inches) for September 1992.

SEPTEMBER 1992 PRECIPITATION COMPARISON


The majority of Colorado's weather stations received below average precipitation in September. 43% of the reporting sites received less than 25% of their average moisture. Historically, dry Septembers are fairly common. Most stations have had several occurrences in the past century with less than 0.10" of moisture.


SEPTEMBER 1992 PRECIPITATION RANKING FOR SELECTED COLORADO CITIES

Station	Precip.	Rank
Denver	0.01"	3rd driest in 121 years of record (driest = <0.01 " 1944 and 1892)
Durango	1.86"	47th wettest in 99 years of record (wettest = 7.36" in 1927)
Grand Junction	0.33"	24th driest in 101 years of record (driest = <0.01" in 1953, 1944, 1901, 1892)
Las Animas	0.06"	7th driest in 127 years of record (driest = <0.01" in 1983 and 8 prior yrs)
Pueblo	0.70"	57th wettest in 124 years of record (wettest = 4.50° in 1875)
Steamboat Springs	1.55"	40th wettest in 88 years of record (wettest = 8.15" in 1961)

1992 WATER YEAR PRECIPITATION

Our special feature this month - "A Review of the 1992 Water Year" (pages 10-12) - will be our complete wrapup and evaluation of the 1992 water year. The dry September weather caused a slight expansion of drier than average wateryear conditions across the State, but little overall change in the statewide pattern was noted. The year ended up wetter than average over nearly all of eastern Colorado. The San Luis Valley and portions of southwest Colorado were also quite wet. Drier than average conditions emerged early in the 1992 water year over the higher mountains and northwestern valleys from Silverton northward to Wyoming. These areas improved somewhat through the year but still ended up with only 80 to 95% of their average precipitation. Isolated valley locations such as Eagle, Kremmling and South Park received only about 75% of average for the year. Overall, no areas of Colorado were extremely dry for the year (less than 70% of average), 13% of the State was dry (70-89% of average), 39% was near average (90-110% of average) 33% was wet (111-130% of average) and 15% was very wet (>130% of average).

October 1991-September 1992 Precipitation as a Percent of the 1961-90 averages.

COMPARATIVE HEATING DEGREE DAY DATA FOR SEPTEMBER 1992

	Heat Ing	Degree	e Data					Color	ado Cl	imate (Center	(303)	491-8	545				Reating	Degre	e Data					Color	ado Cl	imate (Center	(303)	491-8	545
STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN			STATION		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ANN
ALAHOSA	AVE 91-92 92-93	40 33 97	100 51 131	303 280 295	657 630	1074 1263	1457 1849	1519 1963	1182 1459	1035 1093	732 535	453 350	165 179	8717 9685 523				AVE 91-92 92-93	214 220 277	264 255 311	468 427 442	775 739	1128 1169	1473 1468	1593 1735	1369 1354	1318 1118	951 751	654 534		10591 10153 1030
ASPEN	AVE 91-92 92-93	95 104 249	150 112 228	348 335 361	651 610	1029 1106	1339 1369	1376 1410	1162 1124	1116 980	798 660	524 487	262 351	8850 8648 838			GREELEY	AVE 91-92 92-93	0 8 14	0 5 43	149 119 59	450 450		1128 1011		946 724	856 665	522 310	238 181		6442 5523 116
BOULDER	AVE 91-92 92-93	0 17 20	6 7 55	130 121 71	357 403	714 831	908 911	1004 901	804 700	775 664	483 321	220 192	59 93	5460 5161 146			GUNN I SON	AVE 91-92 92-93	111 131 208	188 151 M	393 371 M				1714 1707	1422 1167	1231 940	816 661	543 452		10122 9287
BUENA VISTA	AVE 91-92 92-93	47 63 107	116 87 148	285 M 305	577 580	936 1056	1184 1265		1025 1048	983 901	720 568	459 391	184 247	7734 M 560			LAS ANIMAS	AVE 91-92 92-93	0 1 0	0 3 11	45 59 33	296 350	729 896	998 966	1101 943	820 712	698 539	348 242	102 107		5146 4842 44
BURLINGTON	AVE 91-92 92-93	6 13 5	5 14 39	108 106 74	364 462	762 903	1017 1004	1110 1021	871 751	803 639	459 360	200 173	38 61	5743 5507 118			LEADVILLE	AVE 91-92 92-93	272 343 383	337 364 435	522 538 536				1473 1471		1320 1186	1038 852	726 656		10870 10733 1354
CANON	AVE * 91-92 92-93	0 8 2	10 0 29	100 105 73	330 379	670 800	870 945	950 870	770 688	740 604	430 331	190 167	40 63	5100 4960 104			LINON	AVE 91-92 92-93	8 19 16	6 14 54	144 171 133	448 503	834 1000	1070 1095	1156	960 827	936 734	570 436	299 272	100 104	
COLORADO SPRINGS	AVE 91-92 92-93	8 16 21	25 16 53	162 145 91	440 453	819 954	1042 1048	1122 998	910 788	880 717	564 383	296 219	78 96	6346 5833 165			LONGHONT	AVE 91-92 92-93	0 12 20	6 61	162 133 77	453 489	843 936	1082 1047	1194 1124	938 786	874 730	546 391	256 201	78 60	707.77A
CORTEZ	AVE * 91-92 92-93	5 13 18	20 8 42	160 161 122	470 423	830 947	1150 1227	1220 1310	950 892	850 744	580 458	330 266	100 114	6665 6563 182	1 1		MEEKER	AVE 91-92 92-93	28 24 23	56 7 44	261 221 152	564 553		1240 1367	1345 1490	1086 1025	998 758	651 446	394 280		7714 7312 219
CRAIG	AVE 91-92 92-93	32 27 67	58 13 64	275 230 234	608 582			1479 1556	1193 1078	1094 809	687 497	419 270	193 161	8376 7820 365	1		MONTROSE	AVE 91-92 92-93	0 0 15	10 0 43	135 135 87	437 404		1159 1312		941 911	818 683	522 324	254 176	69 48	6400
DELTA	AVE 91-92 92-93	006	0 2 M	94 88 71	394 383	813 832	1135 1302		890 874	753 625	429 273	167 86	31 29	5903 5980 N	341	-8	PAGOSA SPRINGS	AVE 91-92 92-93	82 44 120	113 37 126	297 289 317	608 568	981 1116	1305 1362	1380 1477	1123 1087	1026 899	732 577	487 392	233 251	8367 8099 563
DENVER	AVE 91-92 92-93	0 6 10	0 4 35	135 118 58	414 449	789 902	1004 982	1101 1022	879 714	837 673	528 309	253 158	74 35	6014 5372 103			PUEBLO	AVE 91-92 92-93	0 1 0	0 0 15	89 76 58	346 380	744 927	998 1014	1091 958	834 759	756 608	421 309	163 125	23 41	5465 5198 73
DILLON	AVE 91-92 92-93	273 316 364	332 321 381	513 521 525			1435 1447			1296 1144	972 805	704 609		10754 10442 1270			RIFLE	AVE 91-92 92-93	6 1 12	24 1 31	177 143 113	499 475	876 906	1249 1185		1002 804	856 660	555 352	298 142	82 57	6945 6009 156
DURANGO	AVE 91-92 92-93	9 6 34	34 2 49	193 152 139	493 379	837 940	1153 1179		958 935	862 745	600 430	366 267	125 123	6848 6463 222			STEAMBOAT SPRINGS	AVE * 91-92 92-93	90 127 160	140 141 119	370 394 316			1430 1626		1240 1126	1150 863	780 595	510 383	270 263	9210 9080 595
EAGLE	AVE 91-92 92-93	33 26 47	80 6 73	288 208 209	626 563				1148 970	1014 809	705 466	431 289	171 150	8377 7204 329			STERLING	AVE 91-92 92-93	0 5 14	6 1 36	157 92 70	462 437	876 930	1163 1028	1274 1191	966 731	896 645	528 352	235 142	51 36	6614 5590 120
EVERGREEN	AVE 91-92 92-93	59 83 103	113 92 167	327 311 238	621 627	916 988	1135 1078	1199 1123	1011 939	1009 887	730 541	489 410	218 242	7827 7321 508			TELLURIDE	AVE 91-92 92-93	163 175 180	223 163 189	396 339 313			1293 1264		1151 1057	1141 946	849 565	589 450	318 285	9164 8143 682
FORT	AVE 91-92 92-93	5 11 22	11 1 55	171 145 87	468 457	846 891		1181 1029	930 736	877 681	558 356	281 193	82 56	6483 5558 164			TRINIDAD	AVE 91-92 92-93	0 3 0	0 2 18	86 107 61	359 377	738 876	973 1004	1051 946	846 774	781 642	468 289	207 186		5544 5256 79
FORT NORGAN	AVE 91-92 92-93	0 5 12	6 4 40	140 89 38	438 437	867 947	1156 1025	1283 1193	969 756	874 652	516 332	224 163	47 41	6520 5644 90			WALDEN	AVE 91-92 92-93	198 193 270	285 209 283	501 452 433				1535 1547		1277 1025	915 700	642 500		10466 9624 986
GRAND JUNCT 10N	AVE 91-92 92-93	000	0 2 6	65 37 25	325 304		1138 1193	1225 1390	882 788	716 608	403 195	148 53	19 8	5683 5393 31			WALSENBURG	AVE 91-92 92-93	0 6 5	8 5 29	102 90 54	370 337	720 818	924 915	989 870	820 717	781 634	501 309	240 163	49 60	5504 4924 88
	•	= AVES	AD JUS	TED FO	R STAT	ION MC	VES	H -	MISSI	NG	E = 1	ESTINA	TED					•	AVES	ADJUST	ED FOR	STAT	ION NO	VES	H -	MISSI	IG	E • E	STIMAT	ED	

SEPTEMBER 1992 CLIMATIC DATA

EASTERN PLAINS_

			Temper	ature	1		D	egree D	ays	Precipitation			
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	
NEW RAYMER 21N	75.8	42.3	59.1	1.1	86	24	189	19	400	0.37	-0.83	30.8	5
STERLING	82.9	47.0	64.9	3.2	93	34	70	78	495	1.95	0.92	189.3	2
FORT MORGAN	84.7	47.4	66.0	3.5	92	37	38	78	515	0.42	-0.71	37.2	2
AKRON FAA AP	79.4	50.0	64.7	2.8	91	38	81	81	481	0.03	-1.00	2.9	1
AKRON 4E	80.6	46.1	63.3	1.0	92	30	100	54	466	0.20	-0.78	20.4	3
HOLYOKE	78.1	49.1	63.6	0.9	90	36	99	66	460	0.39	-0.82	32.2	3
JOES	80.6	47.0	63.8	0.5	94	33	83	57	470	0.34	-1.06	24.3	1
BURLINGTON	80.5	48.8	64.6	1.1	95	34	74	72	482	0.22	-1.11	16.5	1
LIMON WSMO	77.3	44.9	61.1	1.2	89	33	133	20	420	0.03	-0.87	3.3	1
CHEYENNE WELLS	84.2	50.5	67.3	3.0	98	38	37	114	531	0.06	-1.69	3.4	2
EADS	83.4	49.2	66.3	1.0	96	38	58	104	508	0.00	-1.36	0.0	0
ORDWAY 21N	85.0	45.2	65.1	1.5	94	36	53	65	502	0.00	-0.95	0.0	0
ROCKY FORD 2SE	88.0	47.8	67.9	1.9	96	35	30	123	547	0.00	-0.97	0.0	0
LAMAR	86.8	41.0	63.9	-2.6	99	31	73	48	504	0.05	-1.28	3.8	1
LAS ANIMAS	87.0	50.6	68.8	1.3	100	38	33	154	550	0.06	-1.12	5.1	1
HOLLY	86.3	50.1	68.2	2.4	103	35	36	137	544	0.05	-1.59	3.0	1
SPRINGFIELD 7WSW	84.4	51.3	67.9	2.1	95	40	24	118	544	1.18	-0.19	86.1	4
TIMPAS 13SW	83.9	51.1	67.5	2.1	94	40	41	121	534	0.59	-0.51	53.6	2

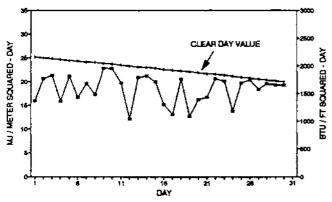
FOOTHILLS/ADJACENT PLAINS

				Temper	ature			D	egree D	ays		Precip	oitation	
Name		Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm #	# days
FORT COLLINS		78.5	46.9	62.7	2.5	87	36	87	28	454	0.02	-1.28	1.5	2
GREELEY UNC		81.5	47.4	64.4	2.3	92	38	59	50	489	0.00	-1.10	0.0	0
ESTES PARK		71.7	40.8	56.2	2.7	78	28	257	1	337	0.32	-1.02	23.9	6
LONGMONT 2ESE		83.5	44.6	64.0	3.3	94	34	77	57	491	0.00	-1.34	0.0	0
BOULDER		79.4	49.4	64.4	3.4	89	36	71	58	483	0.02	-1.88	1.1	1
DENVER WSFO AP	130	81.4	49.0	65.2	2.9	90	38	58	74	497	0.01	-1.24	0.8	1
EVERGREEN		75.1	38.5	56.8	2.7	84	29	238	0	382	0.00	-1.41	0.0	0
CHEESMAN		76.4	32.2	54.3	-2.2	85	22	314	0	403	0.06	-1.25	4.6	1
LAKE GEORGE 8SW		68.9	35.5	52.2	0.4	77	26	375	0	292	0.09	-1.10	7.6	3
ANTERO RESERVOIR		67.7	29.3	48.5	-0.2	76	18	487	0	274	0.05	-0.97	4.9	1
RUXTON PARK	10	65.6	31.4	48.5	1.0	75	23	487	0	240	0.81	-0.97	45.5	2
COLORADO SPRINGS	1	78.3	47.4	62.8	2.2	88	35	91	32	439	0.13	-1.20	9.8	3
CANON CITY 2SE	100	79.8	48.1	63.9	1.3	88	35	73	50	474	0.04	-1.20	3.2	1
PUEBLO WSO AP		84.5	46.7	65.6	-0.0	94	34	58	82	512	0.70	-0.20	77.8	2
WESTCLIFFE		72.2	35.3	53.8	-0.3	79	21	327	0	341	0.23	-1.04	18.1	2
WALSENBURG		81.5	49.1	65.3	2.5	88	35	54	70	515	0.00	-1.19	0.0	0
TRINIDAD FAA AP		81.8	48.7	65.2	1.4	91	33	61	76	502	0.00	-1.23	0.0	Ō

MOUNTAINS/INTERIOR VALLEYS_

			Temper	ature			D	egree D	ays		Precip	itation	1
Name	Max	Min	Mean	Dep	High	LOW	Heat	Cool	Grow	Total	Dep	%Norm	# days
WALDEN	69.0	31.8	50.4	1.8	77	19	433	0	291	0.60	-0.59	50.4	5
LEADVILLE 2SW	63.1	30.6	46.8	0.4	70	23	536	0	203	0.77	-0.53	59.2	9
SALIDA	74.9	37.8	56.3	-0.3	82	24	254	0	380	0.48	-0.54	47.1	5
BUENA VISTA	72.3	36.9	54.6	-0.5	79	29	305	0	345	0.23	-0.90	20.4	5
SAGUACHE	72.1	37.6	54.8	0.7	79	31	298	0	338	0.99	-0.03	97.1	5
HERMIT 7ESE	69.0	27.9	48.4	0.8	76	18	489	0	294	0.75	-0.86	46.6	2
ALAMOSA WSO AP	74.4	35.6	55.0	0.3	80	23	295	0	373	0.50	-0.41	54.9	4
STEAMBOAT SPRINGS	74.4	34.1	54.3	2.1	84	25	316	0	375	1.55	-0.10	93.9	11
YAMPA	70.9	41.0	55.9	4.1	79	29	266	0	319	0.93	-0.53	63.7	9
GRAND LAKE 1NW	68.8	30.7	49.7	1.7	76	23	451	0	290	1.05	-0.73	59.0	13
GRAND LAKE 6SSW	68.0	32.1	50.0	0.6	76	23	442	0	278	0.66	-0.58	53.2	11
DILLON 1E	63.3	31.1	47.2	-0.6	72	23	525	0	210	1.11	-0.24	82.2	9
CLIMAX	58.5	32.0	45.2	2.0	68	18	585	0	137	1.11	-0.41	73.0	7
ASPEN 1SW	68.4	37.2	52.8	-0.2	76	26	361	0	283	1.96	0.16	108.9	14
CRESTED BUTTE	65.1	29.6	47.4	-0.9	73	19	525	0	237	1.19	-0.84	58.6	10
TAYLOR PARK	61.5	31.8	46.6	-0.4	69	22	545	0	181	1.05	-0.54	66.0	6
TELLURIDE	73.6	35.1	54.3	2.3	84	23	313	0	362	1.24	-1.18	51.2	8
PAGOSA SPRINGS	73.6	34.8	54.2	-0.7	81	24	317	0	361	1.41	-0.78	64.4	6
SILVERTON	65.2	30.0	47.6	0.4	73	24	514	0	238	1.20	-1.59	43.0	9
WOLF CREEK PASS 1	60.5	34.6	47.5	2.4	70	26	519	0	164	3.47	-0.85	80.3	8

WESTERN VALLEYS

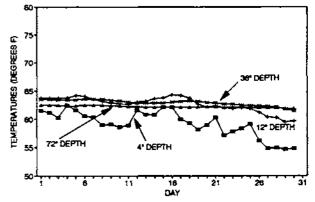

	Temperature					D	egree D	ays	Precipitation				
Name	Max	Nin	Nean	Dep	High	Low	Heat	ັດວາ	Grow	Total	Dep	%Norm	# days
CRAIG 4SW	73.4	40.5	56.9	0.2	83	31	234	0	357	1.31	0.01	100.B	11
HAYDEN	75.2	39.7	57.5	1.4	84	27°	219	0	384	0.86	-0.48	64.2	9
MEEKER NO. 2	79.0	40.6	59.8	2.6	86	28	152	3	443	1.08	-0.04	96.4	10
RANGELY 1E	79.3	46.4	62.8	1.7	86	36	78	22	455	1.20	-0.01	99.2	5
EAGLE FAA AP	77.1	38.4	57.7	2.0	85	27	209	0	416	1.20	-0.01	99.2	9
GLENWOOD SPRINGS	77.5	41.8	59.6	0.4	85	31	153	0	420	1.61	-0.05	97.0	7
RIFLE	81.1	41.1	61.1	1.0	90	29	113	2	466	1.46	0.26	121.7	6
GRAND JUNCTION WS	82.5	52.9	67.7	0.9	89	40	25	114	546	0.33	-0.48	40.7	4
CEDAREDGE	81.4	43.6	62.5	0.8	89	31	83	16	476	0.37	-0.98	27.4	3
PAONIA 1SV	80.2	48.9	64.6	2.3	88	38	54	51	473	0.35	-1.09	24.3	- 4
DELTA	82.6	45.0	63.8	1.1	91	33	71	42	492	0.07	-0.97	6.7	2
COCHETOPA CREEK	72.7	32.5	52.6	1.0	80	19	365	0	347	D.48	-0.66	42.1	- 4
MONTROSE NO. 2	78.5	46.1	62.3	0.8	86	32	87	13	440	0.22	-0.95	18.8	2
URAVAN	85.5	49.2	67.3 (⇒ ¶45 -	94	38	27	104	540	0.37	-0.93	28.5	5
NORWOOD	75.0	43.3	59.1	2.2	82	30	171	4	388	0.90	-0.85	51.4	3
YELLOW JACKET ZW	78.4	45.4	61.9	1.3	86	3.5	97	11	432	1.56	-0.11	93.4	3
CORTEZ	78.6	43.3	60.9	1.5	87	31	122	8	436	1.90	0.57	142.9	5
DURANGO	77.0	43.4	60.2	1.3	85	32	139	2	412	1.86	-0.05	97.4	6
IGNACIO 1N	75.6	39.5	57.5	-0.7	83	30	215	0	391	1.48	-0.10	93.7	6

Data are received by the Colorado Climate Center for more locations than appear in these tables. Please contact the Colorado Climate Center if additional information is needed.

SEPTEMBER 1992 SUNSHINE AND SOLAR RADIATION

		_	_	Percent	Average
	Numt			Possible	% of
	<u>CLR</u>	<u>PC</u>	<u>CLDY</u>	<u>Sunshine</u>	Possible
Colorado Springs	13	13	4	-	_
Denver	13	13	4	76%	74%
Fort Collins	13	13	4	-	-
Grand Junction	16	9	5	83%	79%
Limon	11	14	5	-	-
Pueblo	16	13	1	93%	80%

Sunshine and solar radiation were greater than average over much of Colorado. Sunshine was especially prevalent over southern Colorado. Historically, September is often a very sunny month.


FT. COLLINS TOTAL HEMISPHERIC RADIATION SEPTEMBER 1992

SEPTEMBER 1992 SOIL TEMPERATURES

Near-surface soil temperatures declined reluctantly in September while deep soil temperatures remained near their peak for the summer. Overall, these values are quite typical for this time of year.

These soil temperature measurements were taken at Colorado State University beneath sparse unirrigated sod with a flat, open exposure. These data are not representative of all Colorado locations.

FORT COLLINS 7 AM SOIL TEMPERATURES SEPTEMBER 1992

HATS OFF TO: Ronald Stauffer of Buena Vista, Colorado

Mr. Stauffer has been taking the official weather observations in Buena Vista since 1977. Buena Vista is a place where storms often blow right over, but back on Halloween in 1986 Ron measured a 20" snowfall. Four months later a 19" storm hit. Thanks for your efforts, and keep up the fine work.

A REVIEW OF THE 1992 WATER YEAR

Significant Features

The year began 1 October 1991 and what a fine beginning it was. The first 3 weeks of October seemed like summer with lots of sunshine and temperatures in the 80s at lower elevations. After a brief transition through cooler and wetter autumn weather, winter hit with a vengeance. The coldest and snowiest weather for the entire winter for portions of eastern Colorado occurred during the unlikely period October 28 through November 3rd. Later we learned that this abrupt change to extreme cold took a terrible toll on Colorado in terms of Front Range and Eastern Plains vegetation. Many trees failed to drop their leaves until spring, and huge numbers of trees died or were badly damaged. The only other similar situation in recent memory occurred in October 1969 when subzero weather struck in mid month.

November continued cool and wet over most of the State. A major storm episode in mid-November accounted for most of the month's moisture and, in combination with the late October storm, helped get the winter recreation season in Colorado off to a great start. This proved to be a life saver for the industry as mountain precipitation became very sporadic for the remainder of the winter. It also proved to be the undoing of the San Luis Valley. Deep snowcover helped cold air collect in the valley creating a localized icebox that persisted until spring. For the State as a whole, the cold early-winter weather continued into the first week of December.

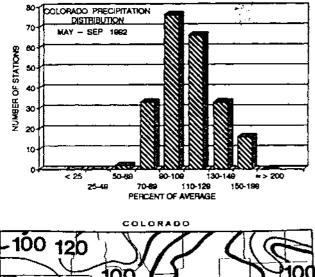
Little did we know at the time, but almost all of the worst winter weather was already behind us by December 3

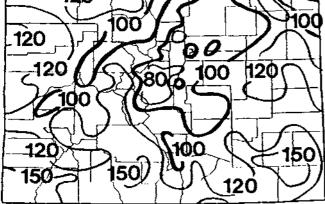
1992 WATER YEAR HIGHLIGHTS

	EVENTS	PATTERNS
ост		Warm and Dry
NOV	Tree-killing cold v	Wave Cold and Snowy
DEC	Some rains on the plain Sunny Holidays - Snot	15
JAN	Jan 7 Snowstorm	Mild, Dry Winter (But Frigid at Alamosa)
FEB	Mountains snows	
MAR	Wet Storms Mar 4 &	
APR	April 30 Heatwave	Unusually Warm and Dry
MAY	Record Rains Wester Late Freeze	rn Slope
JUN	Lots of Hail	Very Cool Summer
JUL	Perfect 4th of July	On The Plains
AUG	Livriana Lastar Dia	Plenty of Moisture
SEP	Hurricane Lester - Big	Nice and Warm
1		

(except in the San Luis Valley). From then until early March, storms were few, winds were light and there was a surprising and unusual lack of arctic air. One brief blast of wind and cold in mid January was the only time temperatures dipped below the zero mark east of the mountains for the remainder of winter. Deriver only dropped below zero F once the entire winter (January 15) compared to an average of 9 days. There were a few significant winter storms, but none of them affected the entire State. It was also an unusual winter out on the Eastern Plains as lots of the November-February moisture came in the form of rain. The storm of January 7 over northeastern Colorado produced blizzard conditions and dropped locally very heavy precipitation for that normally-dry time of year. Mid-February storms that soaked California did contribute much-needed snowfall to the Colorado mountains.

Just as mountain drought seemed inevitable, two spring storms hit Colorado in rapid succession in early March dropping as much moisture statewide in three days as had fallen during the entire previous 3 months. The storm of March 8-9 caught thousands of travellers by surprise and brought travel to a near stand-still for 18 hours along the Front Range urban corridor. More moisture fell late in March, but just as we expected our typical stormy spring weather, the weather pattern reverted to dry and mild.

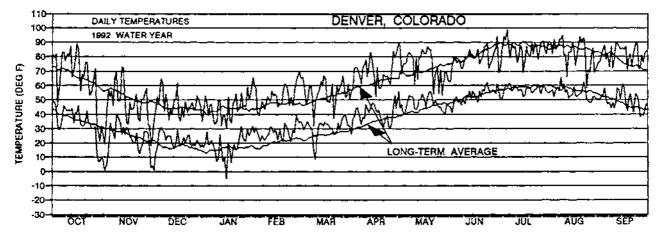

The 1992 Growing Season


Warmer than average weather with very little moisture continued until late May east of the mountains. At the same time, a very unusual late-May surge of moisture brought record-breaking rains to southwest Colorado. Warm temperatures were conducive to a quick start for spring crops, but the lack of spring moisture east of the mountains gave a real scare to farmers and ranchers. The last frost occurred in late April across most low-elevation agricultural areas, but a surprise late-May coldwave brought destructive freezes to areas of extreme eastern Colorado.

The late-May cool spell established a trend that persisted until early September. One cold front after another dropped down from the north bringing much cooler than average conditions, especially east of the mountains. For eastern Colorado it ended up one of the 5 coolest summers in the past 100 years. Most other cool summers were in the early part of this century. Summer rainfall and cloudiness were also greater than average. In June, strong thunderstorms occurred almost every day in eastern Colorado. The frequency of hail (for which long-term records for comparison are not readily available) appeared to be as great as we have ever seen. Urban areas did not have the devastating storms that have characterized some recent years, but damage to crops was considerable. The cool, cloudy weather slowed crop development but also reduced water requirements. Most major watersheds had less than average streamflow as a result of the reduced winter snowpack and the dry spring. However,

irrigation demands were noticeably reduced, and water supplies proved adequate in most areas. The culmination came August 23-25 when moisture left over from Pacific Hurricane Lester joined with an autumn-like Rocky Mountain storm system and produced widespread heavy rains and high-mountain snows. This ended up being the largest precipitation event of the year.

Some farmers wished for less rain and more sun to assist crop development. September came along and granted those wishes. Warmer than average temperatures, little rain and much sunshine allowed crops to mature properly. No early freeze occurred, and most crops yielded well.

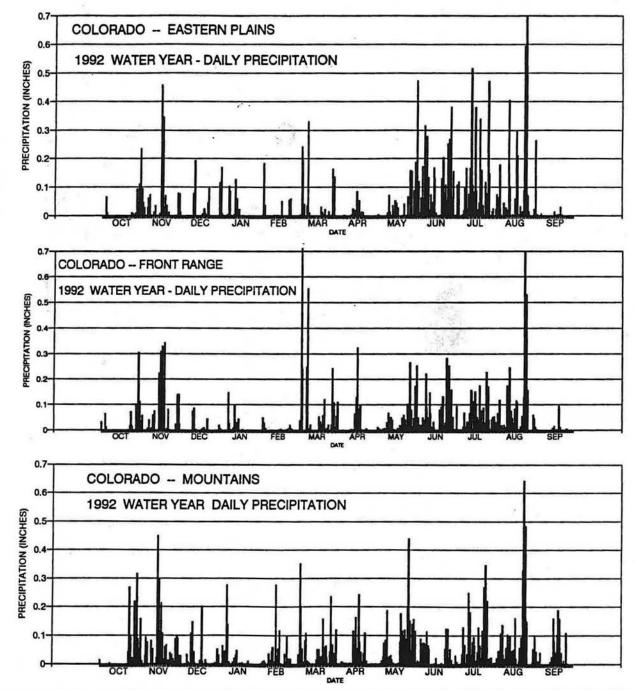

Precipitation for May-September 1992 as a percent of 1961-90 average.

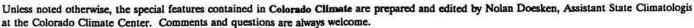
Precipitation for the 1992 growing season May-September ranged from just 3.59" at Delta and 3.80" at Brown's Park Refuge to nearly 18" at Julesburg, 18.23" at Springfield 7WSW and a whopping 23.29" at Wolf Creek Pass. When compared to the 1961-1990 average (see figure on next page), most of the State was wetter than average with the only significant dry areas appearing in the South Platte Basin upstream from Fort Morgan and along a narrow band from Glenwood Springs northeastward to western Larimer County. Even these areas were only slightly below average. The most notable dry spots were South Park (<75% of average), where summer thunderstorm activity was markedly less than usual. and the immediate Boulder area (64% of average) where storms managed to miss them all summer until more than 2.33" fell August 23-25. Overall, 70% of Colorado's official reporting stations received above average growing season precipitation. Only 16% of State received less than 90% of average.

Temperature Summary

It was certainly an interesting and unique year in Colorado. Annual water-year temperatures, which probably have very little meaning but provide a basis for comparison, ended up near average over much of the State. Some areas of northern and eastern Colorado were more than one degree Fahrenheit above average. Alamosa ended up 3° cooler than average as a result or their localized extremely cold winter in combination with a cool summer. Except for the San Luis Valley, it would have been one of the warmer years on record in Colorado had it not been for the cool summer.

The graph below shows daily temperatures throughout the year at one example site. In addition to the destructive late-October coldwave, an interesting feature was the lack of polar air in mid-winter and a lack of any major summer bearwave. The result was a reduced annual temperature than normal in many locations. Fort Collins temperatures, for example, ranged from a low of -2° F on January 15 to a maximum of 94° in August. In most years, Fort Collins temperatures dip to at least -10° and rise into the upper 90s on a few days in summer. The combination of a mild winter, warm spring, warm September and cool summer made it a very comfortable year.

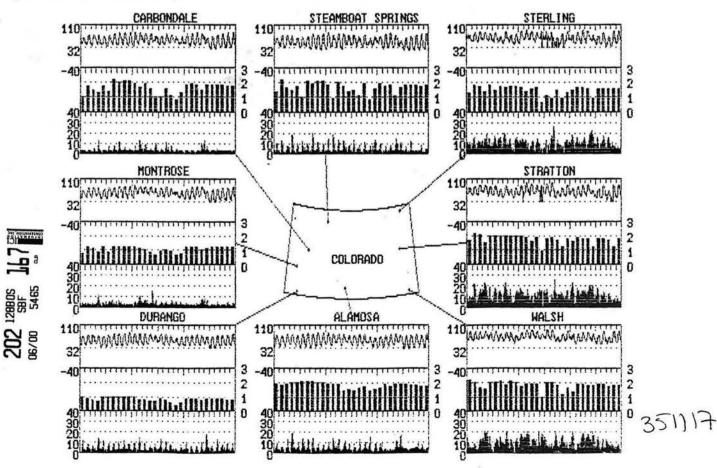



Unless noted otherwise, the special features contained in Colorado Climate are prepared and edited by Nolan Doesken, Assistant State Climatologist, at the Colorado Climate Center. Comments and questions are always welcome.

Precipitation Summary

The figures below show the daily distribution of precipitation through the year in four regions of the State. Very low precipitation was recorded at numerous sites in December, February, April, May and September. This was balanced by very wet monthly totals in portions of Colorado in November, March, and May-August. Total water-year precipitation at official National Weather Service cooperative stations ranged from a minimum of 7.14" at Browns Park Refuge to 47.60" at Wolf Creek Pass 1E. With respect to the 1961-1990 averages, the wettest site was Monte Vista Refuge. Their 13.32" water-year total was 185% of average. The driest site compared to average was the Eagle airport with 7.92", 74% of average. Numerous locations in eastern Colorado received more than 20.00" for the year.

Based on more than 200 reporting stations, wateryear precipitation for 1992 was nearly 1.50" above average statewide. (Longterm average statewide precipitation is a little over 17".) In contrast, preliminary streamflow data for the major rivers in Colorado showed that water-year flows were at or below average. The Yampa River was one of the lowest in the State with only about 60% of the average flow. This demonstrates what happens when the seasonal distribution of precipitation varies. The relatively dry winter and late spring was largely responsible for the low streamflows, since the majority of runoff in Colorado originates as snowpack. The wet period from late May through August contributed greatly to the water-year precipitation surplus. Summer rains, even when excessive, contribute primarily to evapotranspiration and have only a small effect on streamflow.



159

WTHRNET WEATHER DATA SEPTEMBER 1992

	Alamosa	Durango	Carbondale	Montrose	Steamboat Springs	Sterling	Stratton	Walsh
monthly	average temp 55.5	erature ('F) 55.0	55.6	59.6	50.B	62.5	64.2	66.B
monthly Maximum: Minimum:	81.0 9/	15 79.9 10/		4 84.9 11/1	5 82.9 11/13			92.1 13/1 41.7 27/
5 AM 5 AM 11 AM 2 PM 5 PM 11 PM	average relat 82 / 33 30 / 32 19 / 27 20 / 25 53 / 31	tive humidity 84 / 36 40 / 40 30 / 36 28 / 32 67 / 36	/ dewpoint (pe 86 / 35 35 / 33 23 / 29 23 / 28 52 / 31	rcent / *F) 73 / 36 35 / 39 25 / 33 25 / 32 51 / 34	75 / 27 23 / 24 19 / 23 18 / 21 52 / 25	39 / 23 20 / 27 14 / 20 14 / 19 25 / 17	67 / 40 27 / 36 20 / 32 21 / 30 47 / 35	67 / 44 33 / 42 25 / 39 24 / 37 54 / 43
day ight	average wind 176 161	direction (235 101	degrees clockwi 231 164	se from north 254 161	236 116	182 212	127 212	146 200
00000000000000000000000000000000000000	4.30 ed distribut: 298 384 38	speed (miles 3.56 ion (hours p 412 296 12 0	per hour) 2.20 er month for ho 585 132 3 0	2.85 urly average m; 452 266 2 0	3.46 ph range) 457 237 26 0	8.01 113 467 139 1	9.94 23 457 239 1	9.14 49 459 200 0
wonthly	average daily 1802	v total insola 817	tion (Btu/ft ² . 1507	day) 1075	1649	1458	1762	1762
"clearne 60-80% 40-60% 20-40% 0-20%	ess" distribut 243 80 23 7	tion (hours p 1 0 281 79	er month in spe 158 81 64 17	cified clearnes 54 78 81 112	ss index range 159 80 39 20) 178 77 56 29	247 65 22 7	247 66 29 8

The figure below shows monthly weather at WTHRNET sites around the state. Three graphs are given for each location: the top graph displays the hourly ambient air temperature, ranging from -40°F to 110°F, the middle one gives the daily total solar radiation on a horizontal surface, up to 4000 Btu/ft¹/day, and the bottom graph illustrates the hourly average wind speed between 0 and 40 miles per hour.

