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ABSTRACT

IMPLICIT SOLVATION USING THE SUPERPOSITION APPROXIMATION APPLIED TO

MANY-ATOM SOLVENTS WITH STATIC GEOMETRY AND ELECTROSTATIC DIPOLE

Large-scale molecular aggregation of organic molecules, such as perylene diimides, is a phe-

nomenon that continues to generate interest in the field of solar light-harvesting. Functionalization

of the molecules can lead to different aggregate structures which in turn alter the spectroscopic

properties of the molecules. To improve the next generation of perylene diimide solar cells a

detailed understanding of their aggregation is necessary. A critical aid in understanding the

spectroscopic properties of large-scale aggregating systems is molecular simulation. Thus de-

velopment of an efficient and accurate method for simulating large-scale aggregating systems at

dilute concentrations is imperative.

The Implicit Solvation Using the Superposition Approximation model (IS-SPA) was originally

developed to efficiently model nonpolar solvent–solute interactions for chargeless solutes in TIP3P

water, improving the efficiency of dilute molecular simulations by two orders of magnitude. In the

work presented here, IS-SPA is developed for charged solutes in chloroform solvent. Chloroform

is the first solvent model developed for IS-SPA that is composed of more than one Lennard-Jones

potential. Solvent distribution and force histograms were measured from all-atom explicit-solvent

molecular dynamics simulations, instead of using analytic functions, and tested for Lennard-Jones

sphere solutes of various sizes. The level of detail employed in describing the 3-dimensional

structure of chloroform is tested by approximating chloroform as an ellipsoid, spheroid, and

sphere by using 3-, 2-, and 1-dimensional distribution and force histograms respectively.

A perylene diimide derivative, lumogen orange, was studied for its unfamiliar aggregation

mechanism in chloroform and tetrahydrofuran solvents via Fourier-transform infrared and 2-

dimensional infrared spectroscopies as well as all-atom explicit-solvent molecular dynamics sim-

ulations and quantum mechanical frequency calculations. Molecular simulations identified two

categories of likely aggregate dimer structures: the expected �-stack structure, and a less familiar

edge-sharing structure where the most highly charged atoms of the perylene diimide core are
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strongly interacting. Quantum mechanical vibrational frequency calculations were performed

for various likely dimer aggregate structures identified in molecular simulation and compared

to experimental spectroscopic results. The experimental spectra of the aggregating system share

qualities with the edge-sharing dimer frequency calculations however larger aggregate structures

should be tested.

A violanthrone derivative, violanthrone-79 (V-79), was studied for its differing aggregation

mechanisms in chloroform and tetrahydrofuran solvents via Fourier-transform infrared and 2-

dimensional infrared spectroscopies as well as all-atom explicit-solvent molecular dynamics sim-

ulations and quantum mechanical frequency calculations. The �-stacking aggregate structure of

V-79 is supported by all methods used, however, the type of�-stacking orientations are different be-

tween the two solvents. Chloroform supports parallel �-stacked aggregates while tetrahydrofuran

supports anti-parallel�-stacked aggregates which show differing vibrational energy delocalization

between the aggregated molecules.

The publications in chapters 3 and 4 demonstrate the power of combining experimental spec-

troscopy and computational methods like molecular dynamics simulations and quantum mechan-

ical frequency calculations, however, they also show how having larger simulations with multiple

solute molecules are needed. This is why developing IS-SPA to be used for these simulations is

necessary. Further developments to IS-SPA are discussed regarding the importance of various sym-

metries of chloroform and the subsequent dimensionalities of the histograms used to describe its

distribution and Lennard-Jones force. Two methods for describing the Coulombic forces of chloro-

form solvation are discussed and tested on oppositely charged Lennard-Jones sphere solutes. The

radially symmetric treatment fails to capture the Coulombic forces of the spherical solute system

from all-atom explicit-solvent molecular dynamics simulations. A dipole polarization treatment is

presented and tested for the charged spherical solute system which better captures the Coulombic

forces measured from all-atom explicit-solvent molecular dynamics simulations.

Additional considerations for the improvement of IS-SPA and the developments in this work

are presented. The dipole polarization approximation outlined in chapter 5 assumes that each

chloroform is a static dipole, allowing the dipole magnitude to fluctuate as well as polarize is

a more physically rigorous approximation that will likely improve the accuracy of Coulombic
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forces in IS-SPA. A novel method, drawn from the knowledge gained studying chloroform, for the

efficient modeling of new solvent types including flexible solvent molecules in IS-SPA is discussed.
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Chapter 1

Introduction

The goal of my graduate research at Colorado State University was to develop an implicit solva-

tion model for chloroform to be used in molecular simulations probing large-scale aggregation in

systems like the perylene diimide (PDI) and violanthrone systems my research group was studying

spectroscopically. In our spectroscopic experiments it was a common theme to observe an inter-

esting shift or change in the spectrum, likely due to aggregation, but require quantum mechanical

(QM) calculations to identify what vibrational modes of the molecule were involved. This process

of comparing experimental vibrational spectra to the QM vibrational frequency calculations of the

probe molecule worked well for systems where the method of aggregation was already known or

easily guessed. However, for systems where the method of aggregation was less constrained or

understood, the parameter space of likely aggregation structures and thus spectral changes due

to mode coupling was far too large to explore manually. For this reason we started using molec-

ular dynamics (MD) simulations to understand what structures were likely responsible for the

spectroscopic features we were observing experimentally. Combining MD simulations with QM

frequency calculations of the most likely small aggregate structures found in MD proved to be a

useful technique in our two publications presented in chapters 3 and 4. However, if the aggregation

mechanism was more complex perhaps requiring many more than two solute molecules to form,

the simulation of a much larger aggregate system was prohibitively expensive using standard

all-atom methods of MD. This necessitated the development of a method to increase the efficiency

of MD simulations without sacrificing the accuracy of all-atom MD simulations.

In my project, we have used all-atom explicit-solvent molecular dynamics (AESMD) simulations,

where every atom is modeled and propagated explicitly to give high-accuracy results with regard

to the intermolecular structures found in aggregates. However, AESMD simulations are computa-

tionally expensive because every solute and solvent atom requires a force for the propagation of the

system; as system size grows the computational time required for sampling becomes intractable.

The vast number of solvent atoms in these systems in many cases far outnumber the solute atoms

and thus take the majority of the computation time. Compounding the problem is the fact that
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many of the solvent atoms are located in the bulk of the solvent where their behavior is typically

uninteresting.

For an MD simulation to be physically relevant the solvent behavior must be accurate, however

the computational time spent in the bulk of the solvent is in some sense wasted as the forces calcu-

lated have little to no direct effect on the solute being studied. For instance, for a protein simulation

in water, the water needs to behave accurately when near the protein and impart appropriate forces

but for the water molecules that are 20 or 30 Å away their behavior is either unimportant in ref-

erence to Lennard-Jones (LJ) forces or is uninteresting and somewhat generalizable for long-range

Coulombic forces. For aggregating systems where the simulation is run at a specific concentration

to mimic experimental studies, the solutes might start the simulation dispersed throughout the

box with a large solvent-accessible surface area, however as they aggregate some of that surface

area gets replaced with other solutes. Eventually when the solutes of the system are aggregating

together there ends up being a vast volume of the simulation box where there are only solvents

which is again essentially wasted computational time.

To effectively simulate large aggregating systems we need a method that is both efficient and

accurate. AESMD simulations are accurate at simulating molecular systems but lack the efficiency

to do so effectively as those systemcs increase in size. Other implicit solvation models either lack

the accuracy, such as Poisson–Boltzmann1 and generalized Born2 models, or lack the efficiency,

such as reference interaction site models,3,4 to make them viable solutions to this problem.

Figure 1.1: Chemical structure of Lumogen Orange a PDI derivative.

1Baker, N. A. Current Opinion in Structural Biology 2005, 15, 137–143.
2Onufriev, A.; Bashford, D.; Case, D. A. The Journal of Physical Chemistry B 2000, 104, Publisher: American Chemical

Society, 3712–3720.
3Chandler, D.; Andersen, H. C. The Journal of Chemical Physics 1972, 57, 1930–1937.
4Beglov, D.; Roux, B. The Journal of Chemical Physics 1996, 104, 8678–8689.
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The importance of developing more efficient simulation methods can be seen by looking at the

first two manuscripts from my work, chapter 3 and 4. In these studies we measured an experimental

observable like the one shown in figure 1.2, where the vibrational spectrum of Lumogen Orange

(LO)—a PDI derivative (figure 1.1)—is evolving over the course of hours. From an experimental

perspective it is difficult to say what molecular-level details are leading to this event apart from

some kind of general aggregation. To understand what the molecular structure of this aggregation

is we would need to have structures to use for quantum mechanical frequency calculations. So we

must have a way to generate likely structures of our aggregating system.
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Figure 1.2: FTIR spectra of LO in chloroform at 5 mM concentration. The time separation between each
spectrum is 15 minutes. The two lower frequency modes (1585 cm−1 and 1595 cm−1) are ring
vibrations of the perylene core that do not grow in as a function of time. The two higher
frequency modes (1665 cm−1 and 1705 cm−1) are carbonyl vibrations that both blue-shift and
grow in intensity as a function of time, especially the high energy carbonyl mode.

One way to identify likely structures of aggregation is measure a potential of mean force (PMF) of

the simplest aggregate system, a LO dimer, using AESMD simulations. The PMF, figure 1.3, which

shows free energy as a function of center-of-mass separation distance between the solutes, allows us

to see the most likely structures of our dimer aggregate. In the case of LO we found two minima: the

expected �-stacked structure for a PDI, and an unexpected edge-on structure where the negatively

charged oxygens of the imide-group interact with the positively charged bay-hydrogens of the
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perylene core.5 Generating this PMF was important for this work because it identified several

structures to calculate vibrational spectra from that ended up enhancing our understanding of

the chemistry we were observing spectroscopically. The problem with our approach was that it

could not be scaled up to a system size more representative of the experimental system because

our simulations were performed with AESMD.

Figure 1.3: PMF of LO in AESMD as a function of center-of-mass displacement between the two LO
molecules. Representative dimer structures for each well are shown in color-coded inset im-
ages that correspond to the �-stacked and edge-on dimer structures respectively.

AESMD simulations are useful and important tools for accurately simulating the systems they

model but they are too expensive to simulate a large aggregate system like ours especially at

experimental solute concentrations. In AESMD the same amount of time is being spent on each

solvent atom as each solute atom. At the experimental concentration used in our first study,5 5

mM LO in chloroform, there are roughly 135 chloroform atoms per solute atom so the solvent is

taking the vast majority of the computational time in our simulation. To approach a more physical

system size of tens or hundreds of LO solute molecules where there are enough solutes to form

5Mattson, M. A. et al. The Journal of Physical Chemistry B 2018, 122, 4891–4900.
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more complex multi-molecular aggregates we will need a tool that allows us to model the solvation

of our system accurately but without the massive amount of time spent on the solvent.

The Implicit Solvation Using the Superposition Approximation (IS-SPA) model seeks to accom-

plish this very thing for TIP3P water.6 IS-SPA works by representing the solvent as an analytic

function for both the distribution and Lennard-Jones (LJ) force functions and using Monte-Carlo

integration in simulation to approximate the mean solvent force for each solute atom. IS-SPA was

developed only for chargeless solutes, so to expand this tool to be used for our systems, PDI and

violanthrone solutes in chloroform solvent, we will need to consider how the LJ force can be treated

for a multi-atom solvent and how the Coulombic force will be treated in the context of IS-SPA.

In chapter 2, I outline the background theory of IS-SPA and cover some details of how the

method was implemented in my work. Chapters 3 and 4 are manuscripts focused on LO and

violanthrone-79 chemical systems respectively with equal parts experimental spectroscopy, molec-

ular simulation and frequency calculation. The manuscripts highlight the need for a method to

run larger simulations of these aggregating systems. Chapter 5 contains developments in IS-SPA

that have been made for implementing chloroform solvent at different levels of complexity for

both LJ and Coulombic forces. Chapter 6 poses some of my ideas for further improving IS-SPA for

existing solvent systems as well as developing IS-SPA for fundamentally different solvents. Finally,

appendices 1 and 2 contain a guide for setting up molecular simulations in AMBER7 and links to

the codes written and used for the work presented in this dissertation.

6Lake, P. T.; McCullagh, M. Journal of Chemical Theory and Computation 2017.
7Case, D. et al. AMBER16 Package.
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Chapter 2

Methods

2.1 All-Atom Molecular Dynamics

All-atom explicit-solvent molecular dynamics (AESMD) simulations calculate the forces on every

solute and solvent atom of the system explicitly for propagation. AESMD simulations are useful

for the modeling of chemical systems because the explicit modeling of each atom results in a high

degree of accuracy compared to other models that might coarse-grain solute or solvent atoms to

attain higher efficiency. For this reason, we will use AESMD simulations as the gold standard when

assessing the accuracy of our implicit solvation theory, Implicit Solvation Using the Superposition

Approximation (IS-SPA).6 Specifically, we will be seeking to reproduce the potential of mean

force (PMF) of a dimerizing molecular system as a first step in modeling large-scale molecular

aggregation.

To measure the PMF, umbrella sampling (US) can be used to enhance the sampling of less stable

configurations along the collective variable. US-MD simulations enhance the sampling of barriers

by applying an artificial biasing potential to the collective variable which constrains the simulation

to sample configurations near the minimum of the biasing potential. In the case of our chemical

system, Lumogen Orange (LO), US alone was insufficient to ergodically sample the barrier of

dimerization as a function of center-of-mass separation distance between the two LO molecules so

replica-exchange umbrella sampling (REUS) was used.

2.1.1 Replica-Exchange Umbrella Sampling

REUS simulations are a type of US simulation where the biasing potentials get periodically

swapped with neighboring potentials in an attempt to further enhance the sampling within and

between each US window.8–10 Sometimes in US simulations, such as our LO simulations in chloro-

form, the configurations sampled in the bias-window on one side of a barrier are incongruous with

those sampled in the bias-window on the other side of the barrier. For instance, if a dimer system is

6Lake, P. T.; McCullagh, M. Journal of Chemical Theory and Computation 2017.
8Sugita, Y.; Okamoto, Y. Chemical Physics Letters 1999, 314, 141–151.
9Sugita, Y.; Kitao, A.; Okamoto, Y. The Journal of chemical physics 2000, 113, 6042–6051.

10Fukunishi, H.; Watanabe, O.; Takada, S. The Journal of Chemical Physics 2002, 116, 9058–9067.
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biased on the left side of the barrier it may preferentially sample certain configurations where, for

example, the molecules are minimally rotated with respect to each other as the molecules separate

and climb the barrier. However, when biased to the right side of the barrier it may be preferred

for the molecules to come together in a rotated geometry due to the nature of the most stable

states on the far-side of the barrier. In a situation like this, where the states sampled on one side

of a barrier have distinctly different orientations with the states sampled on the other side of the

barrier, we can sometimes get non-ergodic sampling which manifests as individual bias-window

PMFs unsmoothly stitching together in the overlap region along the collective variable between

the two window-bias minima as shown in figure 2.1a.
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Figure 2.1: The PMF of dimerization of LO measured using (a) US and (b) REUS to sample the center-of-
mass separation distance between the two molecules. The unsmoothly stitched windows in (a)
are the result of non-ergodic sampling between those windows.

To ameliorate this situation REUS can increase the number of configurations sampled between

adjacent biasing windows by increasing the diversity of starting configurations of the system as

it begins the process of crossing the barrier. By diversifying the starting configurations of the

dimer as it moves from its previous window to its current exchanged window, the dimer more

fully samples the overlap between adjacent windows thus allowing for a smoother PMF as shown

in figure 2.1b.
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2.2 IS-SPA Theory

In AESMD simulations the solvent behavior and effect on the solute is captured by explicitly

modeling every atom of the solvent. However, in solvated MD simulations where the solute

behavior is the forcus of study, what is important is capturing the average behavior of the solvent

on the solute because the average force on solute 8, 〈 f8〉 is related to the potential of mean force

(PMF) of that solute 8 through the gradient,

〈 f8〉 = ∇8

free energy
i.e. PMF︷          ︸︸          ︷[

) ln�(X# )
]

(2.1)

where ) is the temperature in units of energy and 〈 f8〉 is the mean force on the 8th solute atom.

The right hand side of equation (2.1) is the gradient of the negative free energy with respect to

the 8th solute which gives the mean force since �(X# ) is the distribution of the solutes. The PMF

is the free energy of the system along the chosen collective variable. Getting the PMF correct

is important because it is the connection to the thermodynamics of the system. Getting the free

energy, PMF, correct means that the Boltzmann weightings of each state are correct, which means

that the connection to thermodynamics is there. Thus the goal of an implicit solvation model is to

accurately predict the mean force of the solvent on the solutes without having to simulate all of

the solvent degrees of freedom, thus increasing efficiency.

One of the most fundamental things a solvent does to a solute is apply a force to it. This is what

the Implicit Solvation using the Superposition Approximation6 (IS-SPA) model tries to replicate

through implicit solvation. The mean force a molecule feels from a solvent can be represented

exactly as,

〈 f8〉solvent = �

∫
dr f8 ,solvent(r − X8) 6(r ;X# ) (2.2)

where r represents the position of a solvent, and X8 is the position of the 8th solute atom. The mean

force on solute particle 8 from the solvent, 〈 f8〉solvent, is equal to the force that a solvent molecule at

a given distance, |r − X8 |, would put on solute atom 8, fi, solvent(r − X8), multiplied by the relative

probability with respect to bulk of a solvent molecule being at that location given by the solvent

6Lake, P. T.; McCullagh, M. Journal of Chemical Theory and Computation 2017.
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distribution function 6(r ;X# ), which takes into account all solute positions X# to give the solvent

density at r . This is all integrated for all possible solvent locations, dr , and the relative probability

is turned into an absolute probability with the bulk density of the solvent, �. An example system

is shown in figure 2.2 with solvent forces acting on solute atoms from an infinitesimal solvent

volume.

Figure 2.2: The average force of the solvent is calculated for each solute atom. Each solvent position is
weighted by the molecular distribution function. Depicted are two attractive forces that the
solvent at dr is exerting on solute atoms 8 and 8 + 1.

Equation (2.2) has two components that describe the nature of the solvent: the direct force, and

the molecular density. There are a number of approximations that can be made to simplify these

components, the first we will discuss is an approximation for the molecular distribution function,

6(r ;X# ).

2.2.1 Superposition Approximation

The first approximation we use is the Kirkwood Superposition Approximation11 (SPA) to turn

the complicated functional form of 6(r ;X# ), which is the distribution function of solvent around

the entire solute molecule, into a much simpler form by breaking the molecular form into the

product of the radial distribution functions of each solute atom 8, 68(|r − X8 |).

11Kirkwood, J. G. The Journal of Chemical Physics 1935, 3, 300–313.
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6(r ;X# )︸    ︷︷    ︸
whole

molecule

≃

#∏
8=1

individual
atoms︷        ︸︸        ︷

68 (|r − X8 |) (2.3)

By employing SPA in this situation, we go from having an intractable 3#-dimensional problem

for the molecular distribution function to a set of # tractable atomic distribution functions and

their product. The SPA performs well for non-bonded systems but fails for bonded systems. It

fails in locations where the atomic distribution functions constructively interfere and you get the

unphysical result of multiplicative density close to the solutes.

2.2.2 Histogram Atomic Distribution and Force Functions

We used histograms measured from explicit simulation data for modeling the individual atomic

densities and forces. Histograms were used because chloroform has a non-spherical LJ potential

unlike TIP3P water12 which was used in the initial development of IS-SPA.6

Using histograms for the density and force has the advantage of being sampled directly from

AESMD simulation data. The histograms aren’t constrained to follow a particular functional form

which makes them more flexible as well as more generally applicable than analytic forms for

modeling the solvent. However, histograms are discrete so they require interpolation. There are

many methods for interpolating between discrete data, the method employed in this work is cubic

spline interpolation. Cubic spline interpolation is briefly discussed along with other relevant

processes performed for the use of histograms later in sections 2.2.2.5 and 2.2.2.6.

2.2.2.1 Dimensionality of Histograms

Chloroform has a tetrahedral geometry with C3E symmetry where the axis of rotation is the polar

axis of the molecule, the C-H bond. To completely model a chloroform molecule we would need

3# = 15 degrees of freedom to explicitly control the position of each atom. However, this is what

we are trying to get away from with implicit solvation so we can make a few hopefully reasonable

assumptions and model chloroform satisfactorily with 3 degrees of freedom or less as shown in

12Jorgensen, W. L. et al. The Journal of Chemical Physics 1983, 79, 926–935.
6Lake, P. T.; McCullagh, M. Journal of Chemical Theory and Computation 2017.
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figure 2.3. In this section, for the sake of brevity, the magnitude of the separation vector between

solute and solvent, |r − X8 |, will be replaced with A.

Figure 2.3: Depiction of the 3 intermolecular degrees of freedom of chloroform with respect to a spherical
solute particle. The distance from solvent to solute where the vector r points from solvent center
to solute, the polar tilt angle with respect to r , �, and the azimuthal twist angle of the solvent
about its polar axis, ). In practice the cosine of the tilt angle is used so that the Jacobian is
unity. Thus cos� = 1 corresponds to the hydrogen pointing towards the solute and cos� = −1
corresponds to the hydrogen pointing away from the solute.

If we assume that chloroform has a rigid structure such that its internal coordinates can’t be

deformed we are left with 3# − (3# − 6) = 6 degrees of freedom corresponding to the three

translations and three rotations of the solvent. The three translational degrees of freedom can be

further simplified to a scalar distance between the solute atom and the chloroform because the

solute atoms are spherically symmetric. Furthermore, the rotations can be simplified from two

degenerate rotations that correspond to a polar axis tilt about x and y and one rotation about the

polar axis, z; to the tilt of the polar axis with respect to r , �, and the twist about the polar axis, ),

resulting in a total of two rotations. We will call these three variables: A, cos�, and ), where A is the

distance from solute center to the carbon of chloroform, cos� = r̂ · p̂ i.e. the tilt of the chloroform

dipole vector with respect to the solute, and ) the azimuthal twist angle of the chlorines about the

polar axis.

2.2.2.2 3-Dimensional Histograms: Ellipsoidally Symmetric Solvent Approximation

An example of a 3-dimensional histogram of the density, 6(A, cos�, )), is shown in figure 2.4.

Each individual plot is a 2-dimensional plot of density as a function of A and cos� at a given ),

6(A, cos�; )).
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Each individual 6(A, cos�; )) plot has the distance A on the abscissa and the polar tilt cos� on

the ordinate. So the top row of pixels is the 6(A) of chloroform when the hydrogen is pointing

towards the solute. Each subsequent row is the 6(A) at a different polar tilt until we reach the

bottom row which is the 6(A) of chloroform when the hydrogen is pointing away from the solute.

The general oblate shape of chloroform can be seen from these plots by the bulge of the first

solvation shell enhancement as a function of cos�. For example, a perfectly spherical solvent

would have the exact same 6(A) for all cos� and ), so all the ) plots would look identical each

with the density enhancement (dark blue stripe) straight up and down.

It can be seen that ) = 0 radians (figure 2.4a) corresponds to one of the chlorine atoms pointing

towards the solute whereas ) = �/3 (figure 2.4j) corresponds to the solute being half way between

two chlorines. The first solvation shell bulges more as a function of cos� when ) = 0 radians

because the chlorine is between the solute and the carbon atom of the solvent. However, as )

increases the bulge of the first solvation shell becomes less prominent because the solute is able to

wedge itself in-between the two chlorines.

Implementation Considerations: First, the histograms are analytically extrapolated, (section

2.2.2.6), to small distances until the histograms reach a predetermined cut-off value which was

±1000 in the case of all simulations shown here. After the analytically extrapolated values have

been added the histograms require some sort of interpolation. Cubic spline interpolation is used

to capture the curvature that is especially important in regions of quick change in the underlying

function where linear interpolation would overestimate or underestimate a function’s value. To

that point, the logarithm of the distribution function is interpolated instead of the distribution

function itself because ln 6(A; cos�, )) varies more gradually than 6(A; cos�, )) and interpolation

of a more gradually varying function is more accurate.

Calculating the second derivatives required for cubic spline interpolation requires knowledge

of the first derivatives at both endpoints, H′1 and H′= . Since we are interpolating ln 6(A; cos�, )) the

derivative at small distance, H′1, will be the value of the force at that distance which is something

that is already calculated during the analytic extrapolation. The first derivative at the long distance

endpoint, H′= , will be zero.
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Figure 2.4: The distribution function 6(A, cos�, )) between chloroform and a spherical solute particle with
Amin = 5.0 Å and charge 0.0 @4 as a function of A, cos�, and ). ) = 0 radians corresponds to a
twist where a chlorine atom is pointing towards the solute, whereas ) = �/3 radians corresponds
to the solute being halfway between two chlorines.

In the model system in IS-SPA, section 2.2.3, a solvent is placed in a certain cell and then oriented

within that cell such that it samples all orientations relative to each solute. The solute–cell dis-

placement distance, A, is interpolated first for all (cos�, )) arrays which results in a 2-dimensional

array for each solute, e.g. 61(cos�, ); A) and 62(cos�, ); A). The cos� and ) dimensions are splined

using symm_tridag subroutine in code 2.9 since the data along cos� and ) are symmetric about

their endpoints e.g. cos�0 = cos�1, cos�<+1 = cos�< , and )0 = )1, );+1 = ); where the actual

sampled data spans 1–< and 1–; for cos� and ) respectively; this is visually depicted in figure 2.5.

This process is performed in the set_tmp_arrays subroutine of code 2.7. Once the 2-dimensional
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(cos�, ); A) plane has been splined along cos� and ) the relevant values are interpolated and

bicubic interpolation is used to determine the unknown value.

Figure 2.5: Depiction of symmetry of temporary array created for a cell in a 3-dimensional IS-SPA calculation.
Since both cos� and ) histograms span a half-period range, the array is symmetric about the
boundary.

2.2.2.3 2-Dimensional Histograms: Spheroidally Symmetric Solvent Approximation

If we assume that the variability in the density and force is insignificant in the )-dimension then

we can instead represent chloroform with 2-dimensional histograms i.e. approximate chloroform

as a spheroid for the density and force by averaging the functions over ) in the following manner,

6(A, cos�) =

∫
d) 6(A, cos�, ))∫

d)
(2.4)

for the distribution function and,

5 (A, cos�) =

∫
d) 6(A, cos�, )) 5 (A, cos�, ))∫

d) 6(A, cos�, ))
(2.5)

for the force, where 6(A, cos�, )) is the weighting term in the weighted average of the force in

equation (2.5).

In other words, in the 2-dimensional case chloroform is approximated as an oblate spheroid. An

oblate spheroid has two unique axes, the polar axis which is shorter and the degenerate equatorial

axes which are longer.
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The resultant distribution function in figure 2.6 has the intensity of its first solvation shell

enhancement dispersed relative to the individual ) plots in figure 2.4 for medial values of cos�

where the )-distributions in figure 2.4 differ and concentrated for extreme values of cos� where

they are similarly invariable in ).
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Figure 2.6: 6(A, cos�) shows the ellipticity of chloroform as a function of � for an Amin = 5 Å and 0.0 @4
charge solute. cos� = 1 is when the hydrogen is pointing towards the solute, and cos� = −1 is
when the hydrogen is pointing away from the solute.

Implementation Considerations: For each cell in the model system (section 2.2.3) the polar-tilt

orientation, cos�, must be sampled for both solutes. The solute–cell displacement, A, is spline-

interpolated first for each cos� array which results in a 1-dimensional array for each solute, e.g.

61(cos�; A) and 62(cos�; A). This cos� array is then interpolated via cubic spline interpolation

using symm_tridag in code 2.9 because the data along cos� is symmetric about the endpoints such

that cos�0 = cos�1 and cos�<+1 = cos�< where the actual histograms in cos� span from 1 to <.

2.2.2.4 1-Dimensional Histograms: Spherically Symmetric Solvent Approximation

To simplify even further we can average the density and force over cos� and ),

6(A) =

∫
dcos�

∫
d) 6(A, cos�, ))∫

dcos�
∫

d)
(2.6)

5 (A) =

∫
dcos�

∫
d) 6(A, cos�, )) 5 (A, cos�, ))∫

dcos�
∫

d) 6(A, cos�, ))
(2.7)
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Figure 2.7: Chloroform distribution function 6(A) around Amin = 5 Å and charge 0.0 @4 solute averaged over
cos� and ).

Representing chloroform with equations (2.6) and (2.7) is analogous to approximating chloro-

form as a sphere i.e. the only important variable in modeling the solvent density and force is the

distance between it and the solute atom, A. This is referred to as approximating the solvent as

a sphere because a sphere has infinite rotational symmetry, i.e. there is no change in the sphere

upon rotation about its center, only position matters. If sufficiently accurate, modeling chloroform

as a sphere would be ideal because the sampling and interpolation of a 1-dimensional histogram

is much simpler and more efficient than using higher dimensional histograms. The resultant

distribution function is shown in figure 2.7.

Implementation Considerations: Since all of the orientational degrees of freedom are averaged

over when treating chloroform as a sphere, the only interpolation used in the case of 1-dimensional

histograms is spline interpolating the solute–cell displacement, A, with the splint subroutine in

code 2.9.

2.2.2.5 Cubic Spline Interpolation

Cubic splines were chosen for interpolating the histogram data because they can be efficiently

calculated and interpolated on the fly. Numerical Recipes13 also has a cubic spline subroutine as

13Press, W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second; Cambridge England: 1996;
Vol. 1.
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well as a spline interpolation subroutine already written in fortran which was altered for use in

this work. A spline function is composed of a polynomial between each pair of data points with

continuous derivatives across the entire spline where the level of derivative that retains continuity

is determined by the order of the spline. Cubic splines are popular because they produce an

interpolated function that is continuous in the second derivative and smoothly varying in the first

derivative.

The specifics of how spline interpolation works is covered in great detail in Numerical Recipes in

Fortran 77.13 However, in short, with knowledge of the points in the dataset as well as the slopes

of the function at the two extremes, a set of equations is obtained for the values and the second

derivatives at each data point. Solving this set of equations results in a set of second derivatives

for each data point given. The spline functions are linear in the second derivative and cubic in the

0-order derivative.

For data sets that exhibit some symmetry the spline equations can be altered slightly. Instead

of providing the first derivative at the extremes of the input data set, if the function is symmetric

such that the function and its derivatives at the 1st point would be identical to those at the 0th point

and the value and derivative at the # th and (# + 1)th would also be identical, the equations can be

altered such that no first derivatives are required. This fact was exploited when running IS-SPA of

chloroform when the solvent was modeled with 2 and 3 degrees of freedom, A, cos�, and ), and

can be seen in the fortran subroutines symm_spline and symm_splint as compared to the general

non-symmetric subroutines spline and splint all contained in code 2.9.

Another direct result of histograms being measured from simulation data is that they do not have

value in the regions where there was no sampling. Given infinite sampling time and infinitesimal

bin sizes the histograms would smoothly transition from regions of plentiful sampling to those of

negligible sampling. However, since our simulation data and thus our histograms do not have this

quality we have to find a way of continuing the histogrammed data into those regions in a manner

that is physically motivated. These smooth transitions are important because the forces that are

imparted in regions of poor sampling, like small separations distances A, are large and thus have

13Press, W. H. et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second; Cambridge England: 1996;
Vol. 1.
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a large effect on the physics when they occur. We call this process of smoothly transitioning the

histogrammed data, analytic extrapolation.

2.2.2.6 Analytic Extrapolation of Histograms

In all of the IS-SPA codes that use histogram input for 6(A) and 5 (A) there are issues of poor

sampling near the solute particles. At small A the distribution function goes to 0, (or equivalently

ln 6(A) goes to −∞), and the LJ force goes to +∞. In an effort to smoothly transition these functions

to their respective end-behaviors in a rigorous and physically motivated manner we implemented

a process that we refer to as analytic extrapolation. Analytic extrapolation is the process by which

we stitch together the measured histogram data with idealized data from an ab initio calculation

of a single solute and solvent in vacuum.

−9
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−3

0

3

0 3 6 9

ln 6(A0)

A0

ln 6ideal(A0)

ln
6
(A
)

A [Å]

ln 6(A; cos�, ))
ln 6ideal(A; cos�, ))

Figure 2.8: Illustration of analytic extrapolation for a distribution function in A at a particular cos� and ).
For all A bins smaller than A0 the shifted ideal distribution is used where the shift is shown by
the red arrow.

The idealized data is the direct distribution and force of a single solute and solvent as a function

of A, cos�, and ) matching the same A, cos�, and ) of the histogrammed data. At small A

when the measured data has no sampling, the ideal data is added to create a smooth transition

to the end-behavior. This process is done to the 3-dimensional histograms before any averaging

over ) or cos� occurs. Once the functions are analytically extrapolated the weighted averages in
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sections 2.2.2.3 and 2.2.2.4 over cos� and ) are performed. This is done in the spline_hist_array

subroutine of the various IS-SPA fortran codes 2.5 and 2.8.

Figure 2.8 shows an example of a measured distribution function histogram ln 6(A; cos�, ))with

its corresponding ideal distribution function ln 6ideal(A; cos�, )). All values to the left of the first bin

with a count in it, A0, are given the value of the ideal distribution shifted by ln 6(A0)−ln 6ideal(A0), (red

arrow), such that the shifted ideal distribution function passes through ln 6(A0). These techniques

are used in all of the IS-SPA fortran codes to varying extents.

To test our approximations outlined above we have used two systems: the model system and

the molecular system. Each system has been simulated using AESMD and IS-SPA. In the model

system the IS-SPA results are obtained by numerically integrating equation (2.2). For the molecular

system the IS-SPA results are generated via Monte Carlo integration.

2.2.3 Model System

To test our approximations we use the model system depicted in figure 2.9. This system was

simulated explicitly with AMBER 167 via umbrella sampling (US) simulations as well as replicated

with various levels of IS-SPA theory.

Figure 2.9: Schematic of the simple model system that was used to compare IS-SPA and AESMD.

The model system is a pair of custom made solutes in the chloroform-box solvent included in

AMBER 16.14 We created the spherical solute particles with LJ potential parameters of & = 0.152

kcal/mol and Amin = 5 Å and 7 Å as shown in equation (2.8) and figure 2.10.

7Case, D. et al. AMBER16 Package.
14Cieplak, P.; Caldwell, J.; Kollman, P. Journal of Computational Chemistry 2001, 22, 1048–1057.
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DLJ(A) = &

[( Amin

A

)12
− 2

( Amin

A

)6
]

(2.8)

where the LJ potential, DLJ, is shown in terms of the potential well minimum distance, Amin, and the

depth of the well, &, as a function of separation distance between the particles, A. The value of & used

is the same as that of an oxygen atom in the generalized AMBER force field (GAFF).15 The values

for Amin were chosen to reflect the size of a small general solute rather than being representative

of a particular chemical species. All subsequent references to explicit results in this section are

referencing the AESMD simulations of this model system. In later experiments the solutes were

given equal and opposite charges ranging from 0.0 @4 to 1.0 @4 in 0.1 @4 increments, where @4 is the

elementary charge, with solute 1 positively charged and solute 2 negatively charged.
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Figure 2.10: Potential energy for the two custom-made spherical solutes with no charge using the LJ potential
energy in equation (2.8).

This model system was chosen because it is the simplest system for which we can calculate

a PMF to compare IS-SPA results to the explicit ones IS-SPA is trying to replicate. The solute

particles were given radii larger than a typical atom because the majority of interesting solutes

that will be studied will be on this size scale or larger and smaller solute particle size may lead

to problems arising from the relative scale of the solute and solvent being nearly the same. The

solutes are spherical to simplify the analysis of the system by taking any orientational degrees of

15Wang, J. et al. Journal of Computational Chemistry 2004, 25, 1157–1174.
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freedom away from the solute, thus allowing us to focus only on the orientation of the solvent

when pertinent.

2.2.4 Measuring Molecular Dynamics Simulation

IS-SPA is a bottom-up approach implicit-solvation model. This means that it tries to replicate

the microscopic properties of the solvent. To build the distribution function and force function

histograms for equation (2.2) for the solvent, the explicit-solvent from AESMD simulations must

be studied first.

Measurements from AESMD simulations are required for the model system to test the solvent

distribution and force function histograms. Once the model system mean force calculations are

complete the chemical system must be fit to and chemical system simulations can be run using the

fitted atomic distribution and force histograms.

2.2.4.1 Model System Measurements

The model system pictured in figure 2.9 must be run with the explicit all-atom version of

the solvent that you wish to replicate, which in the case of this work is the built-in AMBER

chloroform box.14 Measurements of this system were taken with the homebuilt code in appendix 2.1

which collects 3-dimensional histograms of the ellipsoidally symmetric distribution and force

functions of chloroform for both solutes in the model system independently, 68(|r − X8 |, cos�, ))

and f8 ,solv(|r − X8 |, cos�, )). Only solvent molecules on the far side of the solutes are measured

to reduce the effect of the other solute on the solvent e.g. for solute 1 only solvents in the shaded

region on the left of figure 2.11 are measured and vis versa for solute 2.

The code 2.1 works by looping through all the solvent molecules in all frames of the MD

simulation and binning them into (A, cos�, )) bins for the relevant solute. First, the solvent is

determined to be in one of the three zones (i, ii, iii) in figure 2.11. Then, depending on the zone,

the solvent distance to the relevant solute is measured and binned into the histogram for (i, iii) or

the solvent is skipped for ii. The cos�-bin is determined by calculating the dot-product of p̂ and r̂ .

The )-bin is determined by calculating the angle between the normal vectors of the planes �HCCl

14Cieplak, P.; Caldwell, J.; Kollman, P. Journal of Computational Chemistry 2001, 22, 1048–1057.
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Figure 2.11: Schematic showing the measurement of the model system explicit MD simulation. A solvent is
shown in the sampling region, i, for solute 1 with all of the solvent vectors, angles, and planes
necessary for the calculation of A, cos�, and ). The sampling region iii is used for solute 2 and
the region ii is ignored.

and �HC1 and wrapping it into the
[
0: �3

]
range. Measuring the angle between the planes will give

the correct ) regardless of the cos� tilt.

The 3-dimensional force histogram from each solvent is measured by calculating the sum of the

forces from all five atoms of the solvent and projecting them along the three orthogonal solvent

vectors, r , s, and t . The result is three force histograms: fr (|r − X8 |, cos�, )), fs(|r − X8 |, cos�, )),

and ft (|r −X8 |, cos�, )) where fr represents the force projection along r̂ i.e. ( f · r̂), fs the projection

along ŝ i.e. ( f · ŝ), and ft the projection along t̂ i.e. ( f · t̂). In subsequent codes these forces are

averaged into lower dimensional force histograms. Finally, the force histograms are averaged by

dividing by the number of counts in each (A, cos�, )) bin and the distribution histogram is volume

corrected and normalized.

If the solvent is being modeled with the 2 or 3-dimensional distribution and force functions,

there can be appreciable components of the force that do not lie solely along r , especially at close

separation distances. To illustrate this fact, figures 2.12, 2.13, and 2.14 are the components of the

force that lie a long r , s, and t respectively.

The force along r behaves similarly for all cos� in that it transitions from attractive at large A to

repulsive at short A. This general behavior is characteristic of a LJ force between two atoms. The

ellipsoidal symmetry of chloroform can be seen in figure 2.12 just as was described in section 2.2.2.2

for figure 2.4.
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Figure 2.12: The 3-dimensional force projected along r , the separation vector of solvent carbon atom and
solute center. The blue/black forces are repulsive between solvent and solute, the red bins are
attractive.

The force along s behaves differently as a function of cos�. The direction of s is determined in

code 2.1 by t via t × r which results in s always being orthogonal to r and t and in the plane of

p and on the same side of r as p. So when cos� crosses zero the direction of s flips. This is what

gives fs the sign flipping quality as a function of cos�. The fact that the hydrogen is smaller than

the chlorines vertically offsets that sign change along cos�.

The force along t comes from one of the chlorines being closer to the solute than another and

impinging a force orthogonal to r as well as the polar plane that s resides in.
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Figure 2.13: The 3-dimensional force projected along s, the solvent vector orthogonal to r and in the plane
of p. The blue/black forces correspond to the solute being pushed along s, the red bins are
forces along −s.
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Figure 2.14: The 3-dimensional force projected along t , the third solvent vector orthogonal to both r and s.
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2.2.4.2 Chemical System Measurements

Once the level of theory for the solvent has been tested on the model system and has reproduced

the mean force or PMF sufficiently it is time to move on to a chemical system. For my work,

the solute chosen was a perylene diimide derivative called Lumogen Orange (LO). LO AESMD

simulations were run with the same explicit chloroform solvent model as the model system. The

PMF of dimerization was measured via umbrella sampling AESMD simulations. AESMD belly

simulations, where the atoms of the solute and solvent are effectively frozen in place by setting

their masses to be 1× 109 g/mol, were also performed for a LO monomer. The umbrella sampling

MD simulations of the dimer allow for the measuring of the PMF and mean force of dimerization.

The belly simulation of the monomer allows for the fitting of the atomic distribution and force

histograms of the solvent about the fixed solute atoms.

To calculate the atomic distribution functions to be used in equation (2.3) we first numerically

map the molecular distribution function using the belly simulation to histogram a 3-dimensional

grid of the simulation box about the fixed LO molecule. After the explicit molecular distribution

function has been collected, via belly simulation and 3D binning script 2.2, it is fitted with #

individual radial distribution function histograms centered on each of the solute atoms. Two

example slices of the 3-dimensional density grid for LO are shown in figure 2.15a,c. This is the

data that is fit to using codes 2.3 and 2.4. The resulting fits are shown in figure 2.15b,d.
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Figure 2.15: (a,b) GH-plane, and (c,d) GI-plane slices of the 3-dimensional solvent distribution function
6(r ;X# ) of LO from (a,c) AESMD, and (b,d) the histogram fit using equation 2.3. The bins are
0.25 Å side-length cubes and the solute atoms are colored by (a,c) their GAFF atom types in
MD simulation, and (b,d) their symmetric atom type for histogram fitting.

2.2.5 Fitting Histograms

The histogrammed explicit box data shown in figure 2.15a,c is used to fit the product of radial

distribution functions for each solute atom resulting in the fitted molecular distribution function

in figure 2.15b,d. The fitting is performed by codes 2.3 and 2.4. The following is a brief description

of how the fitting is accomplished.

If you have an analytic function with three parameters then you need to fit 3# parameters for

the molecule in IS-SPA, where # is the number of unique atom types in the molecule. With a

histogram this gets much worse. You need to fit a �8 for every bin in the histogram which gets

to be an intractable number of parameters quickly especially when considering multidimensional

histograms.
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�(A) =
#∑
8

�8 [Θ(A − A8) − Θ(A − A8 + 3A)] (2.9)

where, Θ(A) is the Heaviside step function. Equation (2.9) is essentially saying that the histogram

fit function, �(A), is composed of # independent points, �8 , that each span their respective domains

from A − A8 to A − A8 + 3A.

In practice this was done by choosing a number of unique atom types in the solute and fitting

to the results from code 2.2 which are plotted in figure 2.15a,c. So for a given atom type each �8

is being adjusted to best fit its respective spherical shell around all atoms of that type. The fitting

metric used for the first guess was "2,

"2
=

∑
8

(
H8 − 5 (G8 ; 
)

)2

�2
8

(2.10)

where the sum is over all data points H8 , which are the cells in our 3-dimensional distribution file

in figure 2.15a,c. 5 (G8 ; 
) is the fit function at the location of the 8th cell, G8 , given the values of

all the histograms of all the solute atom types at that location. Each term of the sum is weighted

by the variance of the data point �8 assuming Poissonian statistics. The Poisson distribution,

equation 2.11, is used for determining the variance because the data we are fitting to is derived

from counting measurements.

%(# ;�) =
�# 4−�

# !
(2.11)

where %(# ;�) is the probability of observing the value # given the average observation value

�. For the Poisson distribution in the classical inference the average observed value of # , 〈#〉, is

unsurprisingly the distribution average �, which can be proven by solving for 〈#〉 in,

〈#〉 =

∞∑
#=0

# %(# ;�) (2.12)

= �

and the variance of # is equal to � as well which can be found by solving,
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〈#2〉 − 〈#〉 =

(
∞∑

#=0

#2 %(# ;�)

)
−

(
∞∑

#=0

# %(# ;�)

)2

(2.13)

=
(
�2 − �

)
− (�)2

= �

However, for the data we are looking at, we are given a measurement # and we want to know

what the average value of the distribution function � is given that measurement, this is called

Bayesian inference

2.2.5.1 Bayesian Inference

The probability of the distribution having the average � given an observation from that dis-

tribution, # . In other words, you have this underlying probability distribution and you take a

measurement of it and get a value, # . Given that value # , what is the probability that the average

of the distribution is �? The probability from equation (2.11) is the same but the variables flip.

%(�; #) =
�# 4−�

# !
(2.14)

With this distribution we want to derive the mean distribution-average 〈�〉, and the variance

of that distribution-average Var(�). It is important to note that while # , the number of counts

generally or in our case the measured 6(A) which is related to the number of counts, is a discrete

variable, the average-value � is a continuous variable. Therefore, when # is the variable sums

will be used, as in equations (2.12) and (2.13), and when � is the variable integrals will be used to

reflect the discrete or continuous nature of the variables respectively. The mean can be derived by

the continuous analogue of equation (2.12),

〈�〉 =

∞∫
0

d� � %(�; #) (2.15)

= (# + 1)
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where the # is the measurement we are given from the data set e.g. the number of counts in a

given bin or in our case the measured 6(A) from MD simulation. Somewhat surprisingly we get

that, given a measurement of # , the mean average-value is (# + 1). For the variance of � we solve

the continuous analogue of equation (2.13),

〈�2〉 − 〈�〉2
=

©­«
∞∫

0

d� �2 %(�; #)
ª®¬
−

©­«
∞∫

0

d� � %(�; #)
ª®¬

2

(2.16)

= (# + 2)(# + 1) − (# + 1)2

= (# + 1)

However, for the histogram fitting codes 2.3 and 2.4 we are fitting the distribution function 6(A)

which is related to the free energy by,

� = −) ln 6(A) (2.17)

= −) ln�

where ) is the temperature in units of energy. The substitution in the second line of equation (2.17)

can be made because the single measurement of the distribution function, # , is sampled from the

underlying distribution with average, �, and the free energy is determined by the average not a

single measurement. We can substitute this into the posterior probability (2.14), and then solve for

the mean free energy 〈�〉,

〈�〉 =

∞∫
−∞

d� � %(�; #) (2.18)

where the limits of integration reflect the fact that the Helmholtz free energy, �, can span the range

(−∞,∞). We can simplify the integral in terms of its limits by changing the variable of integration

to be 6(A) or � which only spans [0,∞).
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〈�〉 =

∞∫
0

d� �(�) %(�; #) (2.19)

= −
)

# !

∞∫
0

d� ln� �# 4−�

Then using integration by parts we arrive at,

〈�〉# = )

(
$ −

#∑
:=1

:−1

)
(2.20)

where $ is the Euler-Mascheroni constant defined by,

$ ≡ lim
G→∞

[
− ln G +

G∑
:=1

:−1

]
(2.21)

= −

∞∫
0

dG 4−G ln G

The variance of � is calculated in the same manner as equation (2.16) with,

〈�2〉 − 〈�〉2
=

©­«
∞∫

0

d� �(�)2 %(�; #)
ª®¬
−

©­«
∞∫

0

d� �(�) %(�; #)
ª®¬

2

(2.22)

=
©­«
)2



�2

6
−

#−1∑
:=0

(: + 1)−2 +

(
$ −

#−1∑
:=0

(: + 1)−1

)2

ª®¬
− (〈�〉# )

2

=

(
)2

{
�2

6
−

#∑
:=1

:−2

}
+ 〈�〉2

#

)
− (〈�〉# )

2

= )2

{
�2

6
−

#∑
:=1

:−2

}

where 〈�〉# is the mean free energy given the observation value # as shown in equation (2.20).

So, in codes 2.3 the result from equation (2.22) is used to calculate the weightings for each term in

"2, �2
8 .
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Now that we have the data that we are fitting to we want to minimize "2 in equation (2.10). This

is done by finding the root of the first derivative,

%"2

%
=<
=

cells∑
8

2
(
H8 − 5 (G8 ; 
)

)
�2
8

(
−
% 5 (G8 ; 
)
%
=<

)
= 0 (2.23)

where the first derivative of the fitting function with respect to one of the fitting parameters 
=<

for the 8th cell is,

% 5 (G8 ; 
)
%
=<

=
d

d
=<


atoms∑

9


0 918 9


(2.24)

=

atoms∑
9

�=0 9�<18 9

where = is the atom type, < is the distance to the 8th cell from atom =, 0 9 is the atom type of

atom 9, and 18 9 is the distance from atom 9 to cell 8. In other words, the elements of the sum in

equation (2.24) that are non-zero are the ones where = is equal to 0 9 and < is equal to 18 9 .

The (% 5 /%
=<) term, equation (2.24), gives two delta functions which means that whole (%"2/%
=<)

term only survives when both delta functions are non-zero. This means that (%"2/%
=<) only has

non-zero value in bins forming cells that fall into spherical shells around atoms of the same type

=.

The fitting result from code 2.3 serves as a first guess for the Poisson regression fitting code 2.4.

2.2.5.2 Poisson Regression

Just as in the case of "2 we are minimizing the negative logarithm of a multivariate Gaussian

distribution, in Poisson regression we minimize the negative logarithm of a multivariate Poisson

distribution,

− ln%(# ;�) =
cells∑
8

ln #8! + �8 − #8 ln�8 (2.25)

where the #8’s are the observed number of counts of a solvent being in a particular cell in the

simulation, and the�8’s are the parameters of the distribution, the true underlying average number
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of counts. We are fitting atomic distribution functions in the form of histograms for each solute

atom to these parameters using SPA so we have,

ln�8 =

atoms∑
9


0 918 9 (2.26)

where 0 9 is the atom type of atom 9, 18 9 is the distance of the cell 8 from that atom 9, and 
0 918 9 is

the value of the histogram from atom 9 in cell 8. �8 is akin to the distribution function 6(A) and

each 
 is the reduced free energy of being at that distance from that atom. In order to minimize

equation (2.25) we must take the derivative and set it equal to zero. The derivative is given by,

%(− ln%)

%
0 918 9

=

cells∑
8

(
1 −

#8

�8

)
%

%
0 918 9

�8 (2.27)

=

cells∑′

8

(
1 −

#8

�8

)
�8

=

cells∑′

8

(�8 − #8)

where the prime (′) on the sum denotes only cells that have a �8 with an 
0 918 9 term, i.e. within the

spherical shell of atom 9 at distance 18 9 . This happens because the derivative of the exponential

gives the function back if the variable is present in the exponential and is zero otherwise e.g.

d
dG (4G+H) = (G + H)′4G+H = 4G+H . This is a non-linear equation in our fitting parameters 
 because

�8 = 4

09 189 . Unlike "2 this can not be solved analytically so we must take iterative steps to attempt

to find the minimum. The second derivative of equation (2.25) is used to judge the direction and

magnitude of each step along each parameter,

%2(− ln%)

%
0 918 9%
0:18:

=

cells∑′′

8

�8 (2.28)

where the double prime (′′) is where the two spherical shells intersect.

A few resultant atomic distribution function fits from this procedure are shown in figure 2.16.
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Figure 2.16: Fitted atomic distribution histograms of a few LO atom types. The distribution functions are fit
and interpolated as the natural logarithm of 6(A).
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Chapter 3

Elucidating Structural Evolution of Perylene Diimide

Aggregates Using Vibrational Spectroscopy and Molecular

Dynamics Simulations‡

3.1 Overview

Perylene diimides (PDIs) are a family of molecules that have potential applications to organic

photovoltaics. These systems typically aggregate cofacially due to �-stacking interactions between

the aromatic perylene cores. In this study, the structure and characteristics of aggregated N,N’-

bis(2,6-diisopropylphenyl)- 3,4,9,10-perylenetetracarboxylic diimide (common name lumogen or-

ange), a perylene diimide (PDI) with sterically bulky imide functional groups, were investigated

using both experimental vibrational spectroscopy and molecular dynamics (MD) simulations.

Samples of lumogen orange dispersed in chloroform exhibited complex aggregation behavior, as

evidenced by the evolution of the FTIR spectrum over a period of several hours. While for many

PDI systems with less bulky imide functional groups aggregation is dominated by �-stacking in-

teractions between perylene cores, MD simulations of lumogen orange dimers indicated a second,

more energetically favorable aggregate structure mediated by "edge-to-edge" interactions between

PDI units. Two-dimensional infrared spectroscopy together with orientational statistics obtained

from MD simulations were employed to identify and rationalize aggregation-induced coupling

between vibrational modes.

‡The molecular simulation, quantum mechanical calculations, and writing of this paper were done by Max Mattson.

The experimental methods were performed by Thomas Green. This article was published with the following citation

information: Mattson, M. A., Green, T. D., Lake, P. T., McCullagh, M., & Krummel, A. T. (2018). Elucidating structural

evolution of perylene diimide aggregates using vibrational spectroscopy and molecular dynamics simulations. The

Journal of Physical Chemistry B, 122(18), 4891-4900.
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3.2 Introduction

Perylene diimides (PDIs) represent a class of organic molecules that have generated increasing

interest for their use in solar energy applications.16–18 They have been identified as potential

alternatives to fullerene-based electron acceptors in bulk heterojunction solar cells due to their

photostability, high electron mobility, and improved spectral overlap with the solar spectrum,

allowing them to participate in solar light harvesting.19 One key consideration in developing PDI

systems is aggregation, which has a strong influence on the optical properties of these systems. The

aggregation and self-assembly of PDI systems have been the subject of significant investigation.20,21

Typically, the dominant driving force for aggregation in these systems is �–� interactions between

perylene cores, often leading to highly ordered column-like structures.22 On one hand, thin films

of PDI aggregates have been reported to exhibit very long exciton migration length scales (>2 �m),

suggesting that PDI aggregates should effectively transport excitons to charge separation sites; on

the other hand, formation of these extended structures can have deleterious effects due to increased

charge carrier trapping.23,24

A recent study of PDI thin films indicated that the morphology of polycrystalline PDI films plays

an important role in the conductivity of the film and decreasing the structural order of the films

had a positive effect on conductivity.25 Reports detailing the influence of the microscopic structure

on charge transport in PDI aggregate/conductive polymer blended films have also indicated that

small disordered PDI aggregate domains are preferred due to reduced excimer-like relaxation.26

Several studies have explored the influence of functionalization of PDI molecules on the resulting

aggregates.27–30 For example, sterically bulky functional groups attached at the imide position have

16Tang, C. W. Applied Physics Letters 1986, 48, 183–185.
17Zhang, X. et al. Advanced Materials 2013, 25, 5791–5797.
18Zhou, E. et al. Angewandte Chemie International Edition 2011, 50, 2799–2803.
19Nielsen, C. B. et al. Accounts of Chemical Research 2015, 48, 2803–2812.
20Zang, L.; Che, Y.; Moore, J. S. Accounts of Chemical Research 2008, 41, 1596–1608.
21Chen, S. et al. Chemical Reviews 2015, 115, 11967–11998.
22Würthner, F. et al. Chemical Communications 2006, 1188–1190.
23Keivanidis, P. E.; Howard, I. A.; Friend, R. H. Advanced Functional Materials 2008, 18, 3189–3202.
24Mäkinen, A. J. et al. Physical Review B 1999, 60, 14683–14687.
25Russ, B. et al. Advanced Materials 2014, 26, 3473–3477.
26Ye, T. et al. ACS Applied Materials & Interfaces 2013, 5, 11844–11857.
27Balakrishnan, K. et al. Journal of the American Chemical Society 2006, 128, 7390–7398.
28Shao, C. et al. Chemistry – A European Journal 2012, 18, 13665–13677.
29Fennel, F. et al. Journal of the American Chemical Society 2013, 135, 18722–18725.
30Kaiser, T. E. et al. Angewandte Chemie International Edition 2007, 46, 5541–5544.
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been employed to inhibit �-stack aggregate extension beyond dimerization by blocking additional

molecules from interacting with the perylene core. In some cases, PDI functionalization has been

reported to lead to complex aggregation behavior with more than one aggregate structure.28–30

Another strategy for tuning intermolecular interactions employs so-called foldamers, or covalently

linked PDI molecules with flexible linkers that allow the PDI units to aggregate but restrict the pos-

sible geometries available. A recent report identified one such system with two distinct aggregate

structures in solution, with very different luminescent behavior.31 Clearly, a detailed understand-

ing of the structure and structural dynamics of solution phase PDI aggregates is a necessity in

designing the next generation of high-efficiency PDI-based bulk heterojunction solar cells.

Infrared spectroscopy is a technique well suited to the investigation of aggregate structure

due to the sensitivity of vibrational frequencies and oscillator strengths to changes in vibrational

coupling and local environment or solvation. Two-dimensional infrared (2D IR) spectroscopy

provides additional information through analysis of cross-peaks, which reflect coupling between

vibrational modes. Structural information can be inferred then by combining experimental results

with computational work. These approaches have been applied in the past to elucidate the structure

of peptide oligomers,32 proteins,33–35 and DNA,36,37 as well as metal-carbonyl structures38,39 and

aggregates of polyaromatic hydrocarbons.40

In this work, we employ a combination of linear IR and 2D IR spectroscopy together with molec-

ular dynamics simulations to investigate the structure and structural evolution of aggregated sam-

ples of N,N’-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic diimide (common name

lumogen orange). We report evidence of the initial formation of �-stacked aggregates that over

the course of several hours convert to extended aggregates. The slow-forming aggregate appears

28Shao, C. et al. Chemistry – A European Journal 2012, 18, 13665–13677.
29Fennel, F. et al. Journal of the American Chemical Society 2013, 135, 18722–18725.
30Kaiser, T. E. et al. Angewandte Chemie International Edition 2007, 46, 5541–5544.
31Samanta, S.; Chaudhuri, D. The Journal of Physical Chemistry Letters 2017, 8, 3427–3432.
32Zanni, M. T. et al. The Journal of Physical Chemistry B 2001, 105, 6520–6535.
33Wang, L. et al. Journal of the American Chemical Society 2011, 133, 16062–16071.
34Moran, S. D.; Zanni, M. T. The Journal of Physical Chemistry Letters 2014, 5, 1984–1993.
35Ganim, Z.; Tokmakoff, A. Biophysical Journal 2006, 91, 2636–2646.
36Krummel, A. T.; Mukherjee, P.; Zanni, M. T. The Journal of Physical Chemistry B 2003, 107, 9165–9169.
37Peng, C. S.; Jones, K. C.; Tokmakoff, A. Journal of the American Chemical Society 2011, 133, 15650–15660.
38Anna, J. M.; King, J. T.; Kubarych, K. J. Inorganic Chemistry 2011, 50, 9273–9283.
39Oudenhoven, T. A. et al. The Journal of Chemical Physics 2015, 142, 212449.
40Cyran, J. D.; Krummel, A. T. The Journal of Chemical Physics 2015, 142, 212435.

37



to form due to interactions between partially negative oxygen and partially positive hydrogen

atoms on the molecules’ periphery. Finally, we employ MD simulations of lumogen orange dimers

and electronic structure calculations of selected dimer structures to extrapolate the structural and

spectral features of the dimer to the experimental results acquired from a distribution of aggregate

structures. These results lay the groundwork for investigations into the role of nuclear motions on

charge transport in these aggregate systems; thus, these results will assist in the rational design of

future PDI-based organic photovoltaics.

3.3 Experimental Methods

3.3.1 Sample Preparation

Lumogen orange (N,N’-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic diimide) was

obtained from Tokyo Chemical Industry Co. and used as received. Chloroform was used as the

solvent for all experiments. A 0.75 mM solution of lumogen orange in chloroform was prepared

to investigate isolated molecules, and a 5 mM solution was prepared to investigate aggregates. All

solutions were sonicated for 5 min before preparing samples for spectroscopic measurements.

3.3.2 Linear IR and 2D IR Spectroscopy

Samples for spectroscopy were prepared by sandwiching an aliquot of the solution of interest

between two CaF2 windows along with a 250 �m Teflon spacer to set the path length of the sample

cell. FTIR spectra were recorded on a Vertex 70 FTIR spectrometer over the frequency range 1585–

1740 cm−1 with 1 cm−1 resolution, in order to monitor the carbonyl and ring vibrational modes

accessible for 2D IR experiments.

The 2D IR instrumentation employed here has been described in detail previously.41 Briefly, the

output of a regeneratively amplified Ti:sapphire femtosecond laser system (<50 fs, 2.6 W, centered

at 785 nm) was delivered to an optical parametric amplifier fitted with a difference frequency

generation stage to produce mid-IR pulses that were centered at 6 �m with a 1200 nm full width

at half-maximum (fwhm) and approximately 150 fs in duration. A ZnSe wedge split the output

into a probe beam with 5% of the total pulse energy and a pump beam containing the remaining

41Cyran, J. D.; Nite, J. M.; Krummel, A. T. The Journal of Physical Chemistry B 2015, 119, Publisher: American Chemical
Society, 8917–8925.
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95% of the pulse energy. The pump beam was directed into a home-built acousto-optic mid-IR

pulse shaper in order to generate phase-stable pulse pairs with a controlled delay, �. The delay

was scanned up to a 2500 fs maximum delay with 25 fs steps. Group velocity and third-order

dispersion corrections were written into the acoustic masks to correct for dispersion resulting from

transmission through the germanium acousto-optic modulator as well as other transmissive optics.

A four-frame phase-cycling scheme and a partially rotating frame (1400 cm−1) were applied via

the pulse shaper in order to eliminate the transient absorption signal and pump scatter in the final

2D IR spectra. The resulting colinear pulse pairs were focused into the sample. The probe line

passed through a computer-controlled variable delay line to control the delay time between the

second and third laser pulses, TF , before being focused into the sample. The pump pulses and

probe pulse were overlapped spatially and temporally in the focal plane of the sample. The probe

was recollimated and steered to a monochromator and 64-element mercury cadmium telluride

(MCT) array detector. The probe frequency axis, $probe, is generated from the array detector, and

the pump frequency axis, $pump, is generated by taking the Fourier transform of the signal at

each pixel on the array detector with respect to �. Taking into account the experimental geometry,

optical components, optical layout, and time delays employed, the resulting spectra have 13 cm−1

spectral resolution on the pump axis and 2.0 cm−1 spectral resolution along the probe axis.

3.4 Computational Methods

3.4.1 Molecular Dynamics

Enhanced sampling molecular dynamics (MD) simulations were performed using replica ex-

change umbrella sampling (REUS) in the NAMD molecular dynamics software package42 to sample

the potential energy surface of dimerization between two lumogen orange molecules in chloro-

form as a function of the center-of-mass distance between the two molecules. Lumogen orange was

parametrized using GAFF,15 and charges were found with RESP;43 the AMBER chloroform box

was used for the solvent.44 Harmonic biasing potentials were placed 0.5 Å apart along the collective

variable axis and were given spring constants of 20.0 kcal mol−1 Å−2. These parameters were used

42Phillips, J. C. et al. Journal of Computational Chemistry 2005, 26, 1781–1802.
15Wang, J. et al. Journal of Computational Chemistry 2004, 25, 1157–1174.
43Bayly, C. I. et al. The Journal of Physical Chemistry 1993, 97, 10269–10280.
44Fox, T.; Kollman, P. A. The Journal of Physical Chemistry B 1998, 102, 8070–8079.
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because they struck a nice balance of ensuring sufficient sampling overlap between neighboring

windows, while maintaining a strong enough bias to ensure sampling of barrier regions, as well

as an exchange probability between neighboring windows of ∼10%. The resultant center-of-mass

distances were analyzed using the weighted histogram analysis method (WHAM)45 to build the

potential of mean force (PMF). The PMF was constructed using a home-built binning script to

check for nonergodicity among the biased windows. Each window in the REUS simulations was

run for 100 ns in the NVT ensemble with a total of 25,000 exchange attempts per window with its

neighbors.

3.4.2 Quantum Calculations

Vibrational frequency calculations were performed using Gaussian 0946 for the lumogen orange

monomer and dimer structures that were representative of the most common structures in each

stable dimer configuration. The APFD functional was used for its dispersive properties to stabi-

lize �-stacking interactions between the two monomers. During the geometry optimization, the

�-stacked dimer stabilized near its starting orientation taken from REUS trajectories due to the

dispersive element of the APFD functional. However, the 11 Å dimer would change orientations

drastically from the starting point to the geometry-optimized structure. To keep the starting struc-

tures intact, which were taken from MD simulations, the two meta-carbons on the R-groups of each

molecule were frozen in their starting positions for the geometry optimization; this protocol will

lead to imaginary frequencies, because these carbons were not in minima of the potential energy

surface. To handle this issue, each frozen meta-carbon was given a mass of 1000 AMU to effec-

tively remove their contribution from the vibrational frequency calculation. As a result, the 11 Å

dimers were effectively frozen in their starting configurations, able to rotate or translate minimally

relative to one another. The protocol described here is essential because the relative orientations of

the monomers in the dimer configuration govern the strength and nature of vibrational coupling

between the monomer units. Without instituting this position constraining procedure, the 11 Å

dimers change relative orientations and positions significantly during the geometry optimization.

45Kumar, S. et al. Journal of Computational Chemistry 1992, 13, 1011–1021.
46Frisch, M. et al. Gaussian Inc, Wallingford CT, 2013 2013.
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3.5 Results and Discussion

The experimental FTIR spectrum of 0.75 mM lumogen orange dissolved in chloroform contained

three peaks in the frequency range 1570–1780 cm−1. This sample was taken to represent isolated

(i.e., unaggregated) PDI, as the concentration was less than the critical aggregation concentration

(approximately 2 mM); this was further evidenced by UV-visible spectroscopy of the samples with

0.75 and 5.0 mM concentration in lumogen orange, respectively (see the Supporting Information,

Figure 3.6). Electronic structure calculations were employed to assign the observed peaks in the

spectrum (Figure 3.1). There are four calculated carbonyl vibrational modes in PDI; however,

two are dark modes possessing much lower oscillator strengths than the others. The high energy

carbonyl mode at 1786 cm−1 consists of symmetric carbonyl stretches on each imide group that are

antisymmetric with the other imide group. This mode is paired with a dark carbonyl mode at 1791

cm−1 where all carbonyls are symmetric with each other. The lower energy carbonyl mode at 1752

cm−1 consists of carbonyl stretches predominantly on one imide that are antisymmetric from each

other but symmetric with the other imide. Finally, there is a lower intensity mode at 1753 cm−1

that shares the same symmetry as the 1752 cm−1 mode but with more of the oscillator strength on

the other imide. Using the calculated spectrum, the FTIR peaks centered at 1705 and 1667 cm−1

were assigned as carbonyl stretching modes with transition dipoles oriented along the major and

minor molecular axes, respectively. The peak at 1596 cm−1 was attributed to the ring motions of

the perylene core, with its transition dipole oriented along the major molecular axis (Figure 3.1,

inset). It should be noted that the lower intensity peak at approximately 1580 cm−1 was attributed

to a ring mode; however, it is not included in the analysis presented here.

At increased concentration (5 mM), the profile of the FTIR spectrum was observed to evolve over

time. Spectra were collected at 15 min intervals over the course of several hours to investigate the

molecular origin of this temporal evolution (Figure 3.2A). Initially, the FTIR spectrum resembled

that of the monomer solution (monomer FTIR spectrum scaled for concentration represented by the

dashed line in Figure 3.2A), with three peaks approximately equal in intensity. As time progressed,

the high-energy carbonyl peak dramatically increased in intensity and concomitantly shifted to

higher frequency. These results suggest the formation of a new type of aggregate structure. Further

visual inspection of the spectra collected during the first 1.5 h revealed that the intensity growth
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Figure 3.1: Experimental FTIR spectrum of 0.75 mM in chloroform (top) and calculated vibrational spectrum
of isolated lumogen orange using the APFD functional (bottom). The frequency axis of the
calculated spectrum is unscaled. The inset depicts the PDI molecule represented as a rectangle
with the transition dipoles of the relevant vibrational modes depicted as color-coded arrows
(arbitrary length), which represent the vibrational modes responsible for the corresponding
shaded IR peaks.

was asymmetric, favoring the high-energy side of the peak (see Figure 3.2A, inset). This was

a clear indication that the FTIR peak was comprised of multiple convoluted peaks. In order to

describe these dynamics with mode-specificity, each FTIR spectrum was fit to Lorentzian peaks,

the frequency and area of which were then analyzed individually.

Table 3.1: Summary of FTIR fit results.
t=0 min t=360 min

freq fwhm area freq fwhm area
peak (cm−1) (cm−1) (a.u.) (cm−1) (cm−1) (a.u.)

1 1596 8 12 1596 7 11
2 1606 6 1 1606 8 2
3 1662 10 10 1663 12 17
4 1668 11 9 1671 8 7
5 1701 7 7 1706 11 31
6 1706 8 9 1711 12 87
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Parts B and C of Figure 3.2 depict the best fit of the initial and final FTIR spectra. Fit results are

summarized in Table 1. In this analysis, we focus specifically on the two peaks—peak 5 and peak

6—comprising the high-energy carbonyl peak in the FTIR spectra. Both of these peaks exhibited

similar trends in their frequency shift and peak areas as a function of time. Initially, at t = 0 min, the

center frequency of peak 6 was determined to be 1705.9 cm−1 (Figure 3.2E). After approximately

45 min, the peak began to shift to higher frequency, shifting to approximately 1710 cm−1 after 120

min before beginning to plateau. At t = 360 min, the peak was centered at 1711.3 cm−1. The area

of peak 6 was observed to increase approximately linearly over the entire time scale investigated.

Peak 5 was initially centered at 1700.8 cm−1 and shifted to 1705.7 cm−1 over the course of the

experiment. Although the frequency shift of peak 5 also began to plateau, it was less abrupt than

peak 6. The area of this peak was also observed to increase linearly over the investigated time

range.

These results were interpreted to reflect a change in aggregate structure, leading to a shift in the

vibrational frequencies, accompanied by extended aggregate growth, which influences oscillator

strength and therefore peak area. MD simulations were employed to further elucidate the possible

dimer unit cell structures that contribute to the aggregates that were formed.

To investigate the likely structural conformations that contribute to the aggregate structures,

MD simulations were used to construct the PMF (Figure 3.3A) as a function of the center-of-

mass distance between two PDI cores. The PMF suggests that there are two stable center-of-mass

distances where the PDIs are interacting. The first is the well at ∼3.6 Å which is synonymous with

a �-stacking interaction, as shown in the inset diagram. The second is the broad well at ∼11.4 Å

which consists of dimer structures where the edge of one PDI core is interacting with the other

PDI molecule. Many of the structures from this "edge-on" well are stabilized by an interaction

between the carbonyl oxygen of one PDI and a bay-position hydrogen of the other PDI, reminiscent

of the nonclassical hydrogen bonds observed in napthalenediimide self-assemblies.47,48 The peak

of the barrier at ∼5.5 Å between the �-stack minimum and the edge-on minimum is an effect of the

solvent (see Figure 3.7 in the Supporting Information). This center-of-mass separation corresponds

47Ponnuswamy, N. et al. In Constitutional Dynamic Chemistry, Barboiu, M., Ed.; Topics in Current Chemistry; Springer:
Berlin, Heidelberg, 2012, pp 217–260.

48Tambara, K. et al. Organic & Biomolecular Chemistry 2014, 12, 607–614.
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Figure 3.2: (A) Temporal evolution of the FTIR spectrum of 5 mM lumogen orange. Spectra were collected
at 15 min intervals for 6 h total; the dashed line reflects the monomer FTIR spectrum scaled
for concentration. (B and C) The best fits of the first and last spectra in the series, respectively.
(D and E) Frequency (solid circles) and area (open circles) of peak 5 and peak 6 from the fits,
respectively, as a function of time.

to structures where the faces of the PDI cores are too far away to �-stack but too close to participate

in the edge-on nonclassical hydrogen bonding.

There are two aspects of Figure 3.3A that are surprising: edge-on is the most energetically

stable center-of-mass separation, and there is a large barrier to �-stack, which is not typically the
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Figure 3.3: (A) PMF as a function of center-of-mass distances during dimerization of lumogen orange. (B-G)
(red) Orientational statistics from the 3.6 Å well. (H-M) (blue) Orientational statistics from the
11 Å well.
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case with molecules that share the PDI core. In relation to what leads to this PMF result, we

have conducted MD simulations to calculate the PMFs of PDI cores with a range of R-groups

(see Figure 3.8 in the Supporting Information). As the chain-like R-groups become more rigid,

the PMFs form more stable interactions at larger center-of-mass distances. However, as the R-

group becomes more sterically bulky and less able to lie flat in the plane of the core, there is a

decreased stability at distances between 5 and 10 Å, where the cores are too close to have the

edge-on interaction but before the PDI cores are close enough to �-stack. Study of the aggregation

of PDIs is usually in relation to its propensity to �-stack;27,28,49 however, the PMF resultant from

the REUS MD simulations for lumogen orange shows that there are two favorable center-of-mass

separation distances for the PDI dimer: ∼3.6 and ∼11 Å separation. The 3.6 Å separation distance

corresponds to a cofacially�-stacked dimer. The 11 Å separation distance corresponds to an "edge-

on" aggregate where the edge of one PDI is interacting with the other PDI (see the Figure 3.3A insets

for representative structures) which, as mentioned previously, is the most energetically favorable

position in the PMF. This creates a unique situation among the PDIs tested here of having two

distinct dimer conformations.

MD simulations yielded orientational statistics describing the distribution of structures corre-

sponding to each well in the PMF. The orientations of the PDI molecules relative to one another can

be uniquely described with a total of six parameters: three distance and three angular. Histograms

of each orientational parameter are plotted in Figure 3.3 with a corresponding inset depiction of

each parameter. The distance parameters, slide, shift, and rise, describe the translation of one

PDI along the long axis, short axis, and axis perpendicular to the perylene face, respectively. The

angular parameters, roll, tilt, and twist, describe the rotation about the long, short, and perylene-

face-normal axes, respectively.

The relative orientation of the �-stacked dimer (Figure 3.3B-G) is narrowly distributed in the

MD simulations, whereas the 11 Å dimer is not. All three distance parameters for the �-stack

dimer (Figure 3.3B-D) have standard deviations <2 Å. The angular parameters (Figure 3.3E,F) have

standard deviations <20° for roll and tilt. Twist has a larger standard deviation because the flat

cores of the PDIs can stay�-stacked with cofacial contact and twist significantly before the sterically

27Balakrishnan, K. et al. Journal of the American Chemical Society 2006, 128, 7390–7398.
28Shao, C. et al. Chemistry – A European Journal 2012, 18, 13665–13677.
49Sukul, P. K. et al. Chemical Communications 2011, 47, 11858–11860.
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hindering R-groups obstruct further rotation. This simplifies the assignment of the vibrational

spectra for the �-stacked dimer because the ensemble of significantly contributing structures is

small. However, in the 11 Å dimer, there are a broad range of possible structures because each

orientational parameter is at least moderately disperse. This complicates matters spectroscopically

because the ensemble of potential significantly contributing structures is large. This dispersity

may occur in part because the PMF was calculated for a dimer only and the addition of more

lumogen orange molecules could facilitate a more stable and narrowly distributed orientational

distribution for the monomer units with respect to one another.

The results of the MD simulations suggest three dominant structures in this system: cofacial

aggregates mediated by �–� interactions between the conjugated perylene diimide cores, an

"edge-on" aggregate likely formed through interactions between the partially negatively charged

oxygen atoms and weakly positively charged hydrogen atoms in the bay positions of neighboring

PDI molecules, and isolated PDI monomers. Equilibrium constants were calculated from the

REUS dimer PMF and found to be 77.42 for the reaction of �-dimers to edge-on dimers and

6.51 × 10−5 Å−3 for the reaction from the edge-on dimer to two PDI monomers. In order to guide

the assignment of experimental spectral features, electronic structure calculations were performed

for dimer structures from each minimum on the PMF surface. Because the 11 Å minimum in

the PMF is broad, implying that many structures are energetically very similar, spectra of several

structures within this minimum were calculated.

The calculated IR stick spectra of isolated lumogen orange and a �-stack dimer, convolved

with Lorentzian functions with an 8 cm−1 line width, are presented in Figure 3.4A. The �-stack

dimer spectrum is very similar to the isolated PDI spectrum. However, whereas each peak in

the isolated PDI is comprised of only one mode with significant oscillator strength, the peaks in

the �-stack spectrum are comprised of several modes close in frequency with significant oscillator

strength. The�-stack modes are comprised of similar atomic motions compared with the monomer

calculation, but they are delocalized over both molecules. For example, the high energy carbonyl

mode in the �-stack dimer has the same symmetric carbonyl stretch as the monomer high energy

carbonyl mode; however, the atomic motion is delocalized across both molecules. Despite these

differences, the relative intensities of the peaks and their peak widths are very similar between

42Phillips, J. C. et al. Journal of Computational Chemistry 2005, 26, 1781–1802.
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Figure 3.4: (A) Calculated IR spectrum of a �-stacked dimer (red) compared to the calculated spectrum of
the isolated species (black). (B-F) Calculated IR spectra of representative structures from the 11
Å well (blue) compared to the calculated spectrum of isolated lumogen orange (black).

these two spectra, which makes assignment of experimental spectra to one of these two species

ambiguous. We will discuss differentiating between these two species using 2D IR spectroscopy

below. Parts B-F of Figure 3.4 depict the calculated spectra of five different "edge-on" dimer

structures extracted from the 11 Å minimum in the PMF. Similar to the �-stacked dimers, each

peak is comprised of multiple modes. Comparing the spectra, it is evident that, while these five

structures produce unique spectra, there are some general trends that appear to be common across
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each of the spectra. In general, the intensity of the high-energy carbonyl mode relative to the

ring mode tends to be increased for the "edge-on" dimers as compared with the isolated PDI

spectra. The lower energy carbonyl peak also tends to be broadened in the dimer spectra. These

general trends are in reasonable agreement with the experimental FTIR spectra collected toward

the end of the time-lapse experiments. In these experimental data, the high-energy carbonyl peak

grows in significantly and shifts to higher frequency by approximately 5 cm−1, and the low energy

carbonyl mode broadens slightly, with the fwhm increasing from approximately 15 to 20 cm−1.

On the basis of these trends in the simulated spectra, taken together with the molecular dynamics

results, we assign the slow evolution of the experimental FTIR spectrum to reflect the formation

of "edge-on" interactions within the growing aggregates. This assignment is also supported by

the observation that the experimental peak areas grow significantly, indicating the formation of

extended aggregates. Such extended growth of �-stacked aggregates is unlikely due to steric

hindrance from the functional groups attached to the nitrogen atoms of the PDI.

It should be noted that there is a discrepancy between the ring mode in the simulated and

experimental spectra. While the ring mode in several of the simulated dimer spectra was shifted

to lower frequency compared to the isolated PDI spectrum, there was no observed shift in the

ring mode in the experimental data. However, it is likely that the experimental spectra represent

an ensemble of several aggregate structures corresponding to the 11 Å minimum from the PMF,

considering the PDI spectrum continues to evolve after 6 h. It is also likely that, as small aggregates

extend, the range of possible structures becomes narrowed.

While linear spectra were sufficient to assign the formation of "edge-on" aggregates, the simu-

lated spectra of the isolated PDI and �-stacked dimer were too similar to unambiguously assign

experimental spectra. Use of 2D IR spectroscopy, however, did allow differentiation between these

species. Parts A and B of Figure 3.5 present 2D IR spectra of isolated lumogen orange and ag-

gregated lumogen orange, respectively. The probe axis is expanded to focus on the ring mode

region. In both the isolated PDI spectrum and the aggregate spectrum, the ground state bleach

and anharmonically shifted excited state emission peaks corresponding to the E = 0 → 1 and

E = 1 → 2 transitions of the ring mode are clearly visible at $pump = 1600 cm−1 and $probe = 1600

and 1594 cm−1, respectively. If the ring mode was coupled to other vibrational modes, additional

peak pairs would be evident located at the probe frequency of the ring mode and at the frequency
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of the other mode along the pump axis. For example, if the ring mode was coupled to the lower

energy carbonyl mode, cross-peaks would appear in the spectrum at $pump = 1667 cm−1 and $probe

= 1600 and 1594 cm−1. Although there is some noise in the spectrum of the isolated PDI due to the

lower concentration, there is no peak pair at the frequency of the carbonyl mode, indicating a lack

of coupling between these two modes. This was expected on the basis of the electronic structure

calculations, which indicated that the transition dipoles of the low energy carbonyl mode and the

ring mode are nearly orthogonal. In the 2DIR spectrum of the aggregate, however, there is a pair

of cross-peaks between the ring mode and the low energy carbonyl mode. This can be rationalized

by considering the orientational statistics from the MD simulations. Due to the steric hindrance

from the imide functional groups, the �-stack aggregate forms with an almost 90° twist between

individual PDI units. One consequence of this twist angle, together with the very small distance

between �-stacked PDI molecules (<4 Å), is that the transition dipole of the ring mode of one PDI

unit in the dimer becomes aligned nearly parallel (antiparallel) with the transition dipole of the

carbonyl of its neighbor, thus facilitating intermolecular coupling. The presence or absence of this

cross-peak, then, can be used to differentiate between the isolated PDI and the �-stack aggregate.

In order to reliably assign the molecular species based on this peak in the 2D IR spectrum, it was

necessary to rule out the possibility that the cross-peak is present in the low concentration sample

but obscured by the noise. In other words, is it possible that the cross-peak is present regardless

of aggregation state and it becomes apparent in the high concentration spectrum simply due to

typical Beer’s law concentration dependence? We addressed this question in the following manner:

the intensity of the high concentration spectrum was corrected for concentration, assuming a linear

relationship between absorbance and concentration. This concentration-corrected intensity could

then be compared to the level of noise in the low concentration spectrum. If the corrected signal

intensity rises above two standard deviations of the noise level in the low-concentration spectrum,

then the cross-peak would be visible if it was present in the low concentration spectrum. Figure 3.5C

depicts slices of the 2D IR spectra at the pump frequency corresponding to the center of the cross-

peak and the diagonal peak of the ring mode. The noise level was quantified by calculating the

average and standard deviation of the signal of the frequency range of the ring mode E = 0 → 1

and E = 1 → 2 transitions on the array axis at pump frequencies that are not resonant with any

other transitions. This average plus one and two standard deviations is represented by the dashed
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Figure 3.5: (A) 2DIR spectrum of 5 mM lumogen orange in CHCl3. The red box highlights the region
containing the cross-peaks reporting on coupling between carbonyl and ring vibrational modes.
Subsequent 2DIR spectra were collected with higher resolution in this region. (B) 2DIR spectra
of 0.75 mM lumogen orange in chloroform and the model of unaggregated lumogen orange de-
picting transition dipoles. (C) 2DIR spectrum of 5 mM lumogen orange scaled for concentration
assuming Beer’s law, in order to allow direct comparison of signals between the two samples.
The model depicts a �-stacked dimer (shifted horizontally for clarity) demonstrating that the
transition dipole of the ring mode (red arrow) becomes almost parallel with respect to the transi-
tion dipole of the low energy carbonyl mode (green arrow) of its neighbor due to the large twist
angle between molecules. (D) Slices taken from the 2DIR spectra taken at pump frequencies
corresponding to the low-energy carbonyl peak. Dashed lines indicate one and two standard
deviations of the noise above the average level in the 0.75 mM spectrum, which were utilized to
determine cross-peaks present in the spectra.
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black and red lines, respectively. The concentration-corrected intensity exceeds both of these levels,

suggesting that it is very unlikely that the cross-peak is the result of concentration alone. New

coupling due to the aggregate structure contributes to the appearance of the cross-peak in the high

concentration 2DIR spectrum.

3.6 Conclusion

Linear and 2D IR spectroscopy together with MD simulations were employed to probe the

structure and temporal evolution of PDI aggregates. A new aggregation state, other than the

typical �-stack, has been discovered, resulting in three dominant aggregation states for lumogen

orange in chloroform, namely, �-stacked dimers and "edge-on" dimers as well as unaggregated

lumogen orange. IR spectra of each of these species were calculated, and comparison of calculated

spectra to experimental FTIR data revealed the formation of the "edge-on" aggregate over the course

of several hours. Although linear FTIR spectroscopy was insufficient to distinguish between �-

stacked aggregates and unaggregated lumogen orange, 2D IR measurements revealed aggregation-

induced coupling between the carbonyl stretching and ring vibrational modes. Additional work

is currently underway to investigate the vibrational coupling and dynamics of these aggregate

structures as well as investigate the new edge-on state.

3.7 Supporting Information

3.7.1 Computational Methods

3.7.1.1 Molecular Dynamics

Enhanced sampling Molecular Dynamics (MD) simulations were performed using Umbrella

Sampling (US), and Replica Exchange Umbrella Sampling (REUS) in the AMBER and NAMD

molecular dynamics software packages respectively. All simulations were of the Perylene Diimide

(PDI) derivatives dissolved in chloroform with the center-of-mass distance between PDIs as the

collective variable. Umbrella Sampling simulations were performed first on each PDI derivative.

If there were no apparent issues with sampling ergodicity then the potential of mean force, (PMF),

calculated using the US results. For the PDI derivatives that showed ergodicity issues REUS simu-

lations were performed to enhance the sampling across simulation windows. All PDI derivatives

52



were parameterized using in the same methods described in the Computational Methods section

of this paper.

Figure 3.6: UV-VIS spectra of 0.75mM (red) and 5.0 mM (black) lumogen orange in CHCl3, representing
unaggregated and aggregated samples, respectively.

Figure 3.7: PMF of lumogen orange dimer simulated in CHCl3 and in vacuum.
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Figure 3.8: Influence of imide functional group on calculated dimer PMF.
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Chapter 4

Vibrational Properties of Solvent Dependent

Violanthrone-79 Aggregates Using Two-Dimensional

Infrared Spectroscopy and Molecular Dynamics

Simulations‡

4.1 Overview

Violanthrone based compounds have received attention for their strong absorption in the visible

spectral range as well as their charge transport properties and the application of these charac-

teristics for materials sciences. Violanthrone derivatives are also known for their propensity to

aggregate via �–� stacking, which affects their absorption and charge transport properties. There-

fore, it is of critical importance to understand what factors influence these �-stacking interactions.

Violanthrone-79 samples in chloroform and tetrahydrofuran were studied for their notable spec-

tral differences in the carbonyl region which suggest differences in the self-assembled structures.

FTIR spectra were compared to quantum frequency calculations from structures generated using

molecular dynamics simulations showing that tetrahydrofuran supports a larger ratio of parallel

�-stacked aggregates while chloroform supports antiparallel �-stacked aggregates. Furthermore,

two-dimensional infrared spectroscopy showed differences in the rate of vibrational energy trans-

fer between these two systems, suggesting differences in the vibrational energy delocalization

between the two aggregate structures which was corroborated by quantum mechanical vibrational

frequency calculations.

4.2 Introduction

Understanding molecular aggregation driven by �-stacking is critical for understanding how

materials processing may impact the utility of organic dyes in photoelectrochemical cells. �–�

‡This manuscript is currently in preparation for submission. The molecular simulation and quantum calculations in

this paper as well as much of the writing was performed by Max Mattson. The experimental methods and initial

writing were done by Chris Kuhs.
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interactions between aromatic molecules are an important driving force for the self-assembly of

DNA,50,51 protein tertiary structure,52,53 and polycyclic aromatic hydrocarbons (PAH)5,40,41 such

as violanthrone and perylene diimide derivatives. Polycyclic aromatic hydrocarbons are organic

species with fused polyaromatic cores that are of interest because of their varied uses in the

materials sciences.

Functionalized PAHs have led to technological advancements in solar cells,54 laser dyes,55 and

liquid crystals.56 However, tailoring functional groups on the PAH core is only one avenue through

which the aggregation characteristics can be manipulated. The choice of solvent is also crucial in

determining the structural characteristics of PAH aggregates. Consequently, the effect of solvent

on �–� interactions has been the topic of several studies.57–59 Polar solvents will promote �–�

interaction as explained by solvophobic theory. However, the effect of solvent polarity on aggregate

structure and energy delocalization therein, concepts that are critical in photoelectrochemical cells,

is still unclear. Molecular orientation within aggregates and its impact on energy delocalization

can be explored by employing experimental techniques that examine vibrational characteristics

in PAH aggregates. In doing so, the effect of solvent on structural and energy delocalization

properties can be better understood.

One PAH that has received attention over the years for its charge transport and absorptive prop-

erties is violanthrone. Violanthrone is a PAH that has been used as an analog to asphaltenes, but

it has also shown promise as an organic dye for solar cell technology due to its large aromatic core

making it ideal for absorbing solar radiation. Recently, investigations have examined how the po-

larity of the solvent influences the degree of �–� interactions in violanthrone aggregates.60 These

efforts have revealed that non-polar solvents promote �–� interaction, which is in contrast with

other aromatic �-stacking systems. However, little work has been done to understand how the

structural characteristics of violanthrone aggregates are influenced by solvent effects or how the

aggregate structural characteristics influence the movement of vibrational energy through the ag-

gregate. In this work, natural vibrational modes of violanthrone-79 (V-79), shown in figure 4.1, are

used to characterize the aggregate structures formed in chloroform (HCCl3) and tetrahydrofuran

(THF) solvents.

Vibrational spectroscopy experiments, including Fourier-transform infrared (FTIR) spectroscopy

and two-dimensional infrared (2DIR) spectroscopy, are powerful techniques to observe the struc-
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Figure 4.1: Chemical structure of violanthrone-79 (V-79). The vibrational spectrum of V-79 is dominated by
the carbonyl stretching modes as well as the in-plane ring modes.

tural and dynamic characteristics of a molecular system. The vibrational modes of a molecular

aggregate are sensitive to changes in the local solvent environment as well as the aggregate structure

itself. 2DIR spectroscopy provides structural information on molecular aggregates through the

examination of cross-peaks observed in the spectra. Additionally, 2DIR experiments can be used to

probe dynamic properties of a system by monitoring how the peak shapes and intensities change

as a function of delay times between pulses in the experiments. 2DIR spectroscopy experiments

have been used to better understand the structure of molecular systems such as DNA,50 proteins,52

PAHs,5 and anti-HIV agents.61 Chemical dynamics investigated with 2DIR spectroscopy have con-

tributed to our understanding of solvent dynamics and structural dynamics of water,62 dipeptides,

and membranes.63 In this work, we take advantage of these strengths of 2DIR experiments to study

molecular aggregates of V-79 in HCCl3 and THF solvents. Specifically, we consider the manner

in which the aggregate structures influence the vibrational energy delocalization within the V-79

aggregates. In addition, the experimental results are compared to quantum mechanical (QM)

vibrational frequency calculations from molecular structures generated using molecular dynamics

(MD) simulations. Solvent-dependent aggregate structures of V-79 are observed and changes in

the spectra and the vibrational energy transfer between V-79 molecules within the aggregates are

discussed.
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4.3 Experimental and Computational Methods

4.3.1 Sample Preparation

V-79 was purchased from Ark Pharma and used without further purification. HCCl3 and THF

were purchased from Fisher scientific. Samples of V-79 where prepared at 10 mM concentration in

each solvent and sonicated to insure full solvation prior to aggregation. Aliquots of stock solutions

were placed between two calcium fluoride (CaF2) windows with a 250 �m spacer. FTIR spectra

were collected with 1 cm−1 spectral resolution as an average of 64 spectra using a Bruker Vertex 70

spectrometer.

4.3.2 2DIR Spectroscopy

The 2DIR spectrometer used in this study has been described in detail elsewhere.40,41 Briefly,

ultrafast mid-IR pulses were generated using a Ti:Sapphire regenerative amplifier to pump an

optical parametric amplifier (OPA). The regenerative amplifier produces <50 fs laser pulses centered

at 790 nm with an average pulse energy of 2.7 mJ at a repetition rate of 1 kHz. The OPA generates

mid-IR light centered at 5800 nm with 9 �J of energy per pulse. A 90:10 beam splitter is used to

direct 90% of the mid-IR light to a home-built pulse shaper used to generate the pulse pairs with the

specific time-delays required to pump the sample and generate third-order signal. The remaining

10% of the mid-IR light from the OPA is used as a probe-pulse. An off-axis parabolic mirror is

used to focus the pump and probe beams onto the sample in the pump-probe beam geometry. A

retro-reflector set on a computer-controlled stage is used to control the time-delay of the probe

pulse relative to the pump-pulses. The computer controlled time-delay is also used to control

the timing between the second and third laser pulses when collecting 2DIR spectra as a function

of coherence time, )F . A second off-axis parabolic mirror collimates the third-order signal field

emitted from the sample and directs it into a Horiba Triax 190 spectrometer. The spectrometer is

used to frequency resolve the signal across a 64-element mercury cadmium telluride array detector.

The resulting spectral resolution is ∼5 cm−1.

The acousto-optic modulator mid-IR pulse shaper is used to control the amplitude and phase

of the individual frequencies in the mid-IR optical pulse.64–66 This allows the relative phase- and

time-delays between the pulses generated in the pulse-pair to be altered with each acoustic wave.

The pump-pulse delay was scanned from 0 ps to 2.5 ps with 0.025 ps steps and a 1400 cm−1
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rotating frame was applied to allow for faster data collection.66 )F-dependent 2DIR spectra were

collected from 0 ps to 7.5 ps. For the first 4 ps the )F step size was 0.1 ps, for 4–7.5 ps the steps

were changed to 0.5 ps steps. Additional pulse-shaping was used in some data sets to remove

contributions from quantum beating and coherence transfer. The pump-pulses were clipped at

1615 cm−1 to only pump the vibrational modes above 1615 cm−1. The pump-pulses were truncated

in the frequency domain by blocking a portion of the beam at the Fourier plane of the pulse shaper.

This approach allowed for the carbonyl normal mode to be pumped without pumping the normal

modes associated with the ring vibrations of V-79.

Polarization dependent 2DIR experiments were conducted on V-79 aggregates in both solvents

to determine relative angles between vibrational normal modes. For these experiments, 2DIR

spectra were collected in both XXXX and XXYY polarization configurations. The polarizations

were controlled using a half-waveplate and wire grid polarizer combination in the pump beam

path to rotate the beam 90°. Furthermore, a wire grid polarizer was placed in the probe beam path

to insure a single polarization of mid-IR light was reaching the sample.

4.3.3 Molecular Dynamics Simulations

The computational methods employed in this work have been described previously.5 MD simula-

tions were performed using Replica Exchange Umbrella Sampling (REUS) in the NAMD molecular

dynamics software package,42 to sample the potential energy surface of dimerization between two

V-79 molecules in HCCl3 and THF as a function of center-of-mass distance between the two

molecules. V-79 was parameterized using GAFF15 and charges were found with RESP;43 for

solvents the AMBER HCCl3 box was used,44 and a self-parameterized THF model was used. Har-

monic biasing potentials were placed 0.5 Å apart along the collective variable axis and were given

spring constants of 20.0 kcal mol−1 Å−2. The resultant center-of-mass distances were analyzed

using the weighted histogram analysis method (WHAM)45 to build the potential of mean force

(PMF). The PMF was constructed using a home built binning script to check for ergodicity among

the biased windows. Each window in the REUS simulations was run for 100 ns in the NVT

ensemble.
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4.3.4 Quantum Calculations

Vibrational frequency calculations were performed using APFD 6-311g* in Gaussian 1667 for

the V-79 dimer structures that were representative of the two most probable �-stacked dimer

configurations. The APFD functional was used for its dispersive properties to stabilize �-stacking

interactions between the two monomers. During the geometry optimization four atoms on each

molecule were frozen to keep the relative orientation of the molecules stable; the atoms chosen

were not active in the pertinent normal modes being studied in this work. As stated in our

previous work,5 this will lead to imaginary frequencies in vibrational modes comprised of these

atoms, so we also gave each frozen atom a mass of 1000 AMU to effectively remove its contribution

from the vibrational frequency calculation. As a result, each of the V-79 dimer structures were

effectively frozen in their initial configurations, able to rotate or translate minimally relative to one

another. The protocol described here is essential because the relative orientations of the monomers

in the dimer configuration govern the strength and nature of vibrational coupling between the

monomer units. Without instituting this position constraining procedure, the dimers change

relative orientations and positions significantly during the geometry optimization and differences

in relative orientations and thus the resulting vibrational spectra are lost.

4.4 Results and Discussion

The linear FTIR spectra of 10 mM V-79 in HCCl3 and THF are shown in figure 4.2a,b respectively.

Each spectrum contains four distinct spectroscopic features, denoted 
, �, �, and �. This investiga-

tion focuses on the features 
 and � which correspond to the in-plane ring stretching motions and

carbonyl stretching motions of V-79, respectively. Spectral features � and � are ignored because of

their relatively low intensity.

Comparing � in both solvents reveals clear differences in absorption intensity, width, and center

frequency of the peaks. There are several possible scenarios that may give rise to the observed

differences in these peaks. The most likely scenarios are: V-79 exists as different aggregate

structures in these two different solvent environments, or the local environment surrounding the

carbonyl bonds in V-79 is simply more homogeneous in THF as compared to HCCl3, or the carbonyl

stretching modes in V-79 are reporting on both contributions—changes in aggregate structure and
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changes in the local environment. In THF, � is fit to a Lorentzian function with a full width at half

max (FWHM) of 10.3±0.25 cm−1 and a center peak position of 1647±1 cm−1 (figure 4.6). In contrast,

the line shape of � for V-79 aggregates in HCCl3 suggests the carbonyls in the aggregate exist in

a more inhomogeneous local environment as evidenced by the Gaussian line shape centered at

1641 cm−1 with a FWHM of 13.89±0.09 cm−1 (figure 4.6). MD simulations and QM calculations

were used to investigate the effect of aggregate structure on the observed spectral features. Theory

and experiment combine to provide a better understanding of the spectral differences in the two

solvents.

Figure 4.2: FTIR and 2DIR spectra of V-79 in (a,c) HCCl3, and (b,d) THF. Each sample was prepared at a 10
mM concentration.

The 2DIR spectra of V-79 in HCCl3 and THF are shown in figures 4.2c,d respectively. Within

each spectrum there are three spectral features of interest. The diagonal peaks corresponding to 


and � are located at approximately $pump = $probe = 1580 cm−1 and $pump = $probe = 1640 cm−1

respectively. The differences in peak shape and intensity of the 2DIR feature located at $pump =
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$probe = 1640 cm−1 is related to the differences in line shape discussed above. The third feature in

the 2DIR spectra that is a focus of this investigation is the cross-peak between the 
 and � modes

located at the spectral coordinates $pump = 1640 cm−1 , $probe = 1580 cm−1. The intensity of this

cross-peak relative to the diagonal feature located at $pump = $probe = 1640 cm−1 will be used to

inform the vibrational dynamics in the V-79 aggregates formed in each solvent.

MD simulations and QM frequency calculations were performed on V-79 dimers to visualize

potential aggregate structures and what spectral features each structure exhibited. The PMF of

V-79 dimerization in HCCl3 and THF were generated from REUS MD simulations as a function of

center-of-mass distance between monomers. Each PMF is dominated by one minimum at 3.6 Å

separation distance shown in figure 4.7. The observed center-of-mass separation is indicative of a

�-stacked dimer. There is no evidence of non-ergodic sampling between the bias windows, thus we

are confident in this result. Further orientational analysis was done on the structures found at the

PMF minimum corresponding to the dimer state to extract information regarding the molecular

geometries present in the PMF minimum of the V-79 aggregates in each solvent. The orientational

analysis was composed of six orthogonal helical parameters as in our previous work.5 All structures

in the dimer state in both HCCl3 and THF fell under narrow unimodal distributions in all helical

parameters except for one bimodal distribution corresponding to the presence of both antiparallel

and parallel �-stacking dimer structures. In the parallel geometry the alkyl tails of both molecules

are on the same side of the�-stacked cores and the antiparallel geometry has one monomer rotated

180° such that the alkyl tails are on opposite sides of the �-stacked cores, figure 4.3 insets. The

MD simulations showed the ratio of antiparallel to parallel stacks are solvent dependent, with a

ratio of 11:1 in HCCl3 and 2.5:1 in THF, antiparallel to parallel. Based on the difference in ratio of

antiparallel to parallel stacks found in MD simulations, it can be hypothesized that the difference

in experimentally observed spectra is originating from differing ratios of antiparallel and parallel

�-stacks in HCCl3 and THF.

QM frequency calculations were performed on the antiparallel and parallel dimer structures

to determine the differences in their vibrational spectra. The results of the QM frequency cal-

culations on the antiparallel and parallel dimer configurations isolated from MD simulations are

shown in figures 4.3a,b respectively. These spectra are truncated to show only the modes related

to the carbonyl region of the dimer; the calculated frequencies have not been shifted, because only

62



the relative position of the vibrational energies are considered. These results show each dimer

configuration contains four different carbonyl vibrational modes. However, the antiparallel con-

figuration’s center frequency is lower, 1735 cm−1, than the parallel configuration, 1745 cm−1. This

shift is consistent with the experimental results, figure 4.2b, which showed HCCl3 with a lower

frequency carbonyl stretch, �, than the corresponding mode in THF. This supports our findings

from MD that HCCl3 promotes antiparallel stacking more than THF. Additionally, the carbonyl

motions in the antiparallel dimer are localized to a single monomer for each normal mode in the

QM frequency calculations whereas the carbonyl motions in the parallel dimer are delocalized

across the dimer for each normal mode. This implies that vibrational energy is localized across the

aggregate in the antiparallel �-stack and delocalized for the parallel �-stack. 2DIR experiments

were used to investigate the extent of energy delocalization in the V-79 aggregates formed in HCCl3

and THF.

Figure 4.3: Vibrational spectra from QM frequency calculations for (a) the antiparallel and (b) the parallel
V-79 dimer configurations. Each spectrum contains four vibrational modes dominated by the
carbonyl stretching motions in the dimer depicted by the stick spectrum. The stick spectra are
convoluted with Gaussian line widths with FWHM = 10 cm−1. The inset images depict the
general arrangements of the respective dimers.

Vibrational energy delocalization can be observed experimentally through examining popula-

tion transfer with 2DIR. Population transfer within V-79 molecular aggregates was studied by

considering the cross relaxation between vibrational modes. The orientation of the molecules

within an aggregate will fluctuate thereby producing fluctuations in the coupling between their
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vibrational modes. This can be represented with the time-dependent Hamiltonian shown in

equation (4.1).

�(C) =
©­«
~$� + ~ �$�(C) ��� + ����(C)

��� + ����(C) ~$� + ~ �$�(C)

ª®¬
(4.1)

where �$� and �$� are the time-dependent fluctuations in the frequencies of modes � and � with

mean frequencies $� and $� respectively. ��� is the vibrational coupling term between modes

� and � with time-dependent fluctuations ����. The fluctuations in the coupling term result in

changes in the relative intensity between cross- and diagonal-peaks as a function of probe delay

time, )F . Quantifying this relative intensity change can provide the time scales of vibrational

energy transfer though an aggregate. The polarization-dependent 2DIR measurements indicated

the angle between the vibrational modes of interest were not 90° in either solvent. Thus, the

vibrational coupling in these aggregates is assumed to be in the weak coupling limit. Having

made this distinction, a rate of energy transfer can be derived from equation (4.1) by diagonalizing

the Hamiltonian and assuming the weak coupling limit.68

: =
2(3/~)2�

1 + ~(Δ$/~)2�2 (4.2)

Time-dependent clipped pump 2DIR experiments were used to compare vibrational energy

transfer within the two aggregate systems. The pump spectra were clipped such that the ring mode


 was not pumped, removing contributions from coherence transfer in the cross-peak intensity.

Representative clipped pump spectra for )F equal to 0, 3, and 5 ps are shown in figure 4.4 for V-79

aggregates formed in HCCl3 (figure 4.4a-c) and THF (figure 4.4d-f). In figure 4.4 the red boxes

indicate the integrated areas used to determine the change in peak intensity plotted in figure 4.5.

The ratio of the integrated intensity between the cross-peak located at the spectral coordinates,

$pump = 1640 cm−1 , $probe = 1580 cm−1, and the diagonal peak at $pump = $probe = 1640 cm−1

was calculated at each time step. The ratio of integrated intensities is used to track the relative

change in intensity, thereby taking into account the loss in intensity from the vibrational life time.

Plots of the ratios of integrated intensities as a function of)F are shown in figure 4.5. Exponential

fits of the data in figure 4.5 give cross relaxational energy transfer rates of 7.2±1.4 ps−1 in HCCl3
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Figure 4.4: Clipped pump 2DIR spectra of the carbonyl region and cross-peak. The red boxes indicate
the regions that were integrated to determine the peak ratio between the cross-peak and the
diagonal-peak. Each row corresponds to a different )F time (a,d) 0 ps, (b,e) 3 ps, and (c,f) 5 ps.

and 4.4±1.2 ps−1 in THF. The slower rate observed in HCCl3 systems suggests vibrational energy

is more localized in these aggregates in comparison to those in THF. Therefore, based on the

delocalization of the atomic motions in the QM frequency calculations of the parallel dimer, we

would expect to find more parallel aggregate structures in THF than in HCCl3 which is supported

by our findings from MD.
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Figure 4.5: Ratio of the integrated intensity between the diagonal peak and cross-peak in the 2DIR spectra
of V-79 in THF (red) and HCCl3 (black). The points are the experimental values and the lines
are generated by fitting the data to extract the time for cross relaxational energy transfer in the
aggregates of V-79.

4.5 Conclusion

The collective results from the experiments, MD simulations, and QM calculations in this work

have revealed the propensity of each solvent, HCCl3 and THF, to support the formation of dif-

ferent V-79 self-assembled structures. HCCl3 is found to support the formation of antiparallel

�-stacking V-79 aggregates, while THF is found to facilitate the formation of parallel �-stacking

V-79 aggregates. Furthermore, the QM calculations demonstrated that vibrational energy was lo-

calized in antiparallel aggregates; in contrast, vibrational energy of the carbonyl stretching modes

are delocalized to the V-79 monomers in the parallel dimers. Finally, time-dependent 2DIR mea-

surements showed notably slower vibrational energy delocalization in V-79 aggregates formed in

HCCl3 compared to THF. The hypothesis that HCCl3 supports the formation of V-79 aggregates

that have significantly more antiparallel �-stacks, whereas THF supports the formation of V-79

aggregates that are relatively split antiparallel and parallel �-stacking interactions is confirmed.
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Thus, solvent choice can be a parameter used to tailor aggregate structures to specific applications

in photochemical technologies.

4.6 Supporting Information

Figure 4.6: FTIR spectra of the carbonyl spectral region of V-79 aggregates in HCCl3, black, and in THF,
blue. The spectral feature of the aggregate formed in HCCl3 is best fit using a Gaussian line
shape. The spectral feature of the aggregate formed in THF is best fit to a Lorentzian.

Figure 4.7 shows the PMFs of V-79 in HCCl3 and THF as a function of center of mass distance

between the V-79 molecules. Both PMFs have their global minimum at 3.6 Å indicating a �-stacked

structure. All orientational analysis was done on dimer structures within this minimum.
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Figure 4.7: PMFs of V-79 in HCCl3 and THF as a function of center of mass separation distance between the
two V-79 molecules.
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Chapter 5

Development of IS-SPA for Chloroform

5.1 Non-Spherical Solvent

Development of IS-SPA for chloroform is the first time IS-SPA is being used for a solvent that

is more than a single spherically symmetric LJ potential. IS-SPA was originally developed for the

Transferable Intermolecular Potential with 3 Points (TIP3P) model of water.12 TIP3P has a static

geometry with point charges corresponding to each atom and a single LJ potential for the whole

molecule centered on the oxygen atom. Chloroform, figure 5.1, has five atoms all of which have LJ

potentials and charges in the model used in this work.14 The bonds and angles of chloroform are

flexible allowing the molecule to deform from its equilibrium structure. Because of the smaller size

of the hydrogen, the chlorines lie in nearly the same plane as the carbon atom giving the molecule

an almost disk-like shape with �3E symmetry about the CH axis. The hydrogen is positively

charged at 0.266 @4 , the carbon is negatively charged at −0.385 @4 , and the chlorines are negligibly

charged at 0.040 @4 giving this model of chloroform a dipole moment of 0.2915 @4Å where @4 is

the elemental charge. The LJ parameters for each atom are detailed in table 5.1

(a) Molecular structure. (b) Space-filling model.

Figure 5.1: The structure of chloroform the model solvent used to expand the IS-SPA theory to non-spherical
solvent molecules.

There are three notable qualities that chloroform possesses that were either absent from TIP3P or

not addressed in the original development of IS-SPA for TIP3P: a flexible internal structure of the

solvent, a non-spherical LJ potential brought on by multiple atoms, and the presence of a dipole in

12Jorgensen, W. L. et al. The Journal of Chemical Physics 1983, 79, 926–935.
14Cieplak, P.; Caldwell, J.; Kollman, P. Journal of Computational Chemistry 2001, 22, 1048–1057.
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the solvent and its effect on charged solutes. The deformation of the solvent would present itself at

close distances where the solvent molecules are packed up against the solute and deformed from

equilibrium structure. However, since the distribution and force data we are using is measured

directly from simulation this quality should be implicitly captured in our histograms. The use of

analytic extrapolation for these functions at small values of A would be one potential place where

this could resurface in a problematic way because equilibrium structure chloroform is used for the

analytic extrapolation. However, for all cases we have encountered, the analytic extrapolation has

smoothly transitioned the histograms to their respective end-behaviors without noticeable kinks

in the transition from measured to ideal data.

Table 5.1: AMBER chloroform LJ parameters.
A B & rmin

atom [kcal/mol/Å12] [kcal/mol/Å6] [kcal/mol] [Å]
H 5.031 × 102 5.621 × 100 0.016 2.374
C 1.043 × 106 6.756 × 102 0.109 3.816
Cl 5.452 × 106 2.662 × 103 0.325 4.000

Since chloroform is non-spherical it would be reasonable to assume that modeling its non-

spherical shape would be important. In IS-SPA we would accomplish this by considering higher

dimensionality representations of the solvent as outlined in sections 2.2.2.2 to 2.2.2.4 on pages 11

to 15. However, as shown in figures 5.2 and 5.3, surprisingly the higher dimensional representations

have minimal increase in the accuracy of the mean force of the model system and this minimal

increase in accuracy of the 3-dimensional or ellipsoidal symmetry system comes at a great price

in terms of efficiency. To get a sense of how much more expensive the 3-dimensional model is

than the 1-dimensional, to generate the mean force curves for figures 5.2 and 5.3 the 3-dimensional

model takes 38 hours running in parallel on 8 CPUs and the 1-dimensional model takes 30 seconds

on only 1 CPU. The small improvement to the barrier accuracy of the 3-dimensional model is not

worth this extreme difference in efficiency if the added accuracy is not required to capture the

correct physics.

The model system simulations were performed without the direct interaction between the two

solutes for debugging purposes and because adding in the direct solute–solute force afterwards
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Figure 5.2: The 1, 2, and 3-dimensional distribution and force histogram mean forces are overlaid on the
explicit MD mean force. (a) Mean solvent force 〈 f 〉solvent and (b) total force (〈 f 〉solvent + fsolute) as
a function of solute separation distance ' in the Amin = 5.0 Å model system.

is trivial. As the solutes start to overlap in figure 5.2a at distances below 5 Å the IS-SPA models

begin to deviate significantly from the explicit. While this may appear to be a problem at first

glance all of the deviations at these close distances would, in the case of real solute atoms, be

occurring at large repulsive forces when the direct interaction term is included as in figure 5.2b.

So the important range for the models to be accurate over is all distances larger than ∼ 4 Å in the

case of Amin = 5 Å solutes. This is evidenced by the steep incline seen in figure 5.2b where the

force increases rapidly at distances below ∼5 Å. Any disagreement between IS-SPA and explicit at

distances below this are occurring at large repulsive forces that have minimal probability of being

sampled in simulation.

For the Amin = 5 Å model system all of the IS-SPA mean forces overestimate the position of the

repulsive barrier by about 1 Å. While the 3-dimensional histogram does reproduce the repulsive

force barrier the best of all the models–it mirrors the explicit with a slightly flatter barrier than the

other two–the total difference between all three models is not significant. All three dimensionalities

have their repulsive barriers at the same overestimated distance and they all tend towards the same

values at large ' with the overall shape of the oscillations from AESMD being reproduced.

One hypothesis for this overestimation of the distance at which the barrier occurs is that the

solutes are about the same size as the chloroform molecule and that perhaps there is some minimum

relative size the solute has to be for our model to work correctly. To test this hypothesis we
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conducted the same analysis on a model system with Amin = 7 Å. The commensurate mean force

figures for this system are shown in figure 5.3.
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Figure 5.3: The 1, 2, and 3-dimensional distribution and force histogram mean forces are overlaid on the
explicit MD mean force. (a) Mean solvent force 〈 f 〉solvent and (b) total force (〈 f 〉solvent + fsolute) as
a function of solute separation distance ' in the Amin = 7.0 Å model system.

The barrier position problem is improved in the Amin = 7 Å solute system suggesting that there

may be a minimum solute size limitation to the model, however further simulations as a function

of Amin distance would have to be performed to demonstrate this fully.

5.2 1-Dimensional Histogram Considerations

Since all three symmetry representations of chloroform are very similar in terms of the mean

forces they predict we have chosen to use the 1-dimensional or spherical representation because it

is the simplest to implement and the most efficient. The 1-dimensional representation effectively

treats chloroform as a sphere by using distribution and force histograms, 6(A) and 5 (A) respectively,

that only depend on separation distance A. However, since chloroform is not a sphere there is the

question of where to measure the center of the solvent from. A first approximation is the carbon

atom as this would be the center of a homonuclear tetrahedral molecule, but since the hydrogen

has a significantly smaller Van der Waals radius than the chlorines, the carbon actually lies closer to

the hydrogen side of the excluded-volume of the chloroform molecule. To explore the significance

of the center position of chloroform we have run 1-dimensional simulations with distribution and
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force data collected using a center position that is offset from the carbon towards the chlorines as

depicted in figure 5.4.

Figure 5.4: The solvent–solute separation vector r shown from carbon center, r� , and excluded offset center,
r3, where the red point represents the new center of excluded volume of the chloroform some
distance 3 offset from the carbon in the direction of the chlorines.

The difference in the distribution and force as a function of offset distance 3 is minimal as seen

in figure 5.5. There are however some minor differences in the peak height and shape of the

distribution function in figure 5.5a. To assess the impact of these minor differences the mean force

as a function of offset should be examined. Figure 5.6 shows the mean force as a function of

solute–solute separation distance for the 1-dimensional histogram representation for both Amin = 5

Å and Amin = 7 Å solute sizes. The three offset distance curves are almost indistinguishable at

relevant distances, (A > 4 Å and A > 6 Å respectively), which confirms that the offset distance is

not an important variable for the LJ interactions in the model system.
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particle with three different center offset distances, 3.
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Figure 5.6: 1-dimensional mean force plots for a range of solvent center offsets, 3. (a) Mean solvent force
〈 f 〉solvent and (b) total force (〈 f 〉solvent + fsolute) as a function of solute separation distance ' in the
Amin = 5.0 Å model system. (c) Mean solvent force 〈 f 〉solvent and (d) total force (〈 f 〉solvent + fsolute)

as a function of solute separation distance ' in the Amin = 7.0 Å model system.

To assess whether the accuracy of the 1-dimensional model is sufficient, we must compare

the LJ and Coulombic parts and test the model on a molecular system via IS-SPA numerical

integration. For these calculations both LJ and Coulombic forces were modeled as 1-dimensional,

i.e. spherically-symmetric. In the context of electrostatics, this means that the Coulombic forces

were treated as monopolar since they emanate from a point and diverge radially.

The comparison of each force and PMF for the model system with charge ±1.0 @4 in figures 5.7

and 5.8 for the Amin = 5 and 7Å solutes respectively. The separated forces in figures 5.7a and 5.8a

show that the LJ components of IS-SPA capture the general trends and features of the explicit LJ

force. Treating the solvent as radially symmetric electrostatically does not reproduce the repulsive

force that is present in the explicit solvent. Since the IS-SPA radial Coulombic force hovers around
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Figure 5.7: Model system mean force and PMF results of IS-SPA with radial Coulombic forces as a function of
solute–solute distance ' compared to AESMD for Amin = 5 Å and @ = ±1.0 @4 solute particles. (a)
Mean force for the LJ and Coulombic portions separately. (b) Total force with direct solute–solute
term. (c) PMFs of LJ and Coulombic portions separately. (d) Total PMF with direct solute–solute
term. Each panel also includes a dashed red curve that is the Coulombic force or PMF assuming
the solvent is a constant density dielectric which is explained in section 5.3.

zero as a function of ', the resultant total force and PMF wells are significantly over exaggerated.

These differences show that representing chloroform as radially symmetric electrostatically is not

sufficient but they do not identify why it is insufficient. This is more clearly seen by analyzing the

difference vectors on each atom of our model molecular system LO.

Using our molecular model system LO, we compared the average LJ and Coulombic forces on

each solute atom between explicit and IS-SPA, the results of which are shown in figure 5.9. All

difference vectors have been scaled up by a factor of 2 so as to be more easily visible for viewing

purposes. Examination of the difference in forces shows that the LJ forces are under-predicted in

general by IS-SPA with the most solvent exposed external atoms having difference vectors pointing

inward from the solvent. This fits with what is expected of LJ forces which are dominated by
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Figure 5.8: Model system mean force and PMF results of IS-SPA with radial Coulombic forces as a function of
solute–solute distance ' compared to AESMD for Amin = 7 Å and @ = ±1.0 @4 solute particles. (a)
Mean force for the LJ and Coulombic portions separately. (b) Total force with direct solute–solute
term. (c) PMFs of LJ and Coulombic portions separately. (d) Total PMF with direct solute–solute
term. Each panel also includes a dashed red curve that is the Coulombic force or PMF assuming
the solvent is a constant density dielectric which is explained in section 5.3.

their strongly repulsive behavior from external pressure on the system,69 which IS-SPA seems

to be systematically underpredicting albeit minimally. The Coulombic forces however, are not

predicted with the same degree of accuracy, the forces on the most charged atoms deviate in a

manner which implies that the Coulombic force requires a dipole component.

The necessity of a dipole component to the Coulombic force is most clearly evidenced by the

forces on the negatively charged oxygen and positively charged carbonyl carbon of LO, (circled

in green in figure 5.9). The difference vectors of these two atoms point in opposite directions

transverse to the majority of the solvent exposed volume around them. The directions of these

difference forces are indicative of a dipole force because the electric field of a dipole emanates

69Weeks, J. D.; Chandler, D.; Andersen, H. C. The Journal of Chemical Physics 1971, 54, 5237–5247.
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Figure 5.9: 〈 f 〉
(explicit)
solvent − 〈 f 〉

(IS-SPA)
solvent difference vectors for LJ forces (top), and Coulombic forces (bottom). The

green dashed circles are around the carbonyl carbon and oxygen, the two most highly charged
atoms in the molecule, which have difference vectors characteristic of an electrostatic dipole force
in the Coulombic difference vectors (bottom).

from the positive pole to the negative pole in a toroidal fashion. Thus a solvent molecule near the

carbonyl group with its dipole oriented perpendicular to the carbonyl bond would produce a field

that would pass through both solute atoms perpendicular to the carbonyl bond between them.

This field would therefore produce forces on each atom perpendicular to the carbonyl bond and

in opposite directions due to the opposite charges on the atoms which is exactly what is seen in

figure 5.9. While a 1-dimensional treatment of the LJ forces may be sufficient, it seems as though

a more complex treatment of the Coulombic forces is required.

5.3 Dipole Coulombic Forces in IS-SPA

5.3.1 Polarization Theory

The dipole component of a field is the second term of the multipolar expansion after the

monopole term. The electric field of a dipole is described by,

Kdip(r) =
1

4�&0

1
A3

(
3(p · r̂)r̂ − p

)
(5.1)

where r̂ is the unit vector of the separation vector between the dipole and the point in space, r , and

p is the dipole vector in the physics definition, i.e. p points from negative pole to positive pole. So,

if we know the direction and magnitude of the solvent dipole at a given position we can calculate
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the force on the solute charge via equation 5.1 and the Lorentz force, L = @K, where @ is the charge

of the solute atom. Thus we must find a way to predict what the average solvent polarization

vector, p, is at a given location, r , given solute positions X# .

We begin by defining the energy of a dipole in an external field that will form the Boltzmann

factor for our probability distribution. In the presence of an electric field dipoles preferentially

orient themselves parallel with the field to minimize their potential energy Ddip,

Ddip = −K · p (5.2)

where K is the external electric field and p is the dipole moment. Using the energy of a dipole in a

field we can calculate the probability of a dipole being in a given alignment relative to the external

field K,

P(cos�) ∝ 4−Ddip(cos�)/) dcos� (5.3)

∝ 4+�? cos�/) dcos�

where � is the magnitude of the electric field, ? is the magnitude of the dipole moment, and �

is the angle between K and p, and ) is the temperature in units of energy. We can determine the

average alignment of a dipole with static magnitude, ?〈p̂〉 = ?〈cos�〉, in a field by solving for

〈p̂〉 = 〈cos�〉,

〈cos�〉 =

−1∫
1

dcos� cos� P(cos�)

−1∫
1

dcos� P(cos�)

(5.4)

= coth(�) −
1
�

(5.5)

where the final result is the Langevin function of the reduced-field � = �?/) which is plotted in

figure 5.10. At small field strengths the dipoles respond linearly, aligning more and more as the

field builds in strength. However, as the field continues to grow in magnitude the polarization
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levels off to a value of one. This is because in our treatment above we assumed a static dipole

moment, i.e. the dipole cannot stretch or compress, so the maximum polarization is that of complete

alignment i.e., 〈cos�〉 = ±1, depending on the sign of the field.
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Figure 5.10: The mean polarization, 〈cos�〉, of a static dipole follows the Langevin equation as a function
of reduced-field strength, �.

Now that we have a method for finding the average polarization given a field, the final piece is

finding the field that is polarizing the dipoles. This is determined by calculating the superposition

of all the solute generated fields at the solvent location r given solute positions X8 ,

9mf(r) =

#∑
8=1

98(r − X8) (5.6)

where 9mf(r) is the reduced mean field felt by solvent particles at r , and 98(r−X8) is the reduced-field

at r from the 8th solute at Xi .

In practice we measure the polarization of the solvent around a charged solute particle and then

solve for the reduced mean field that would yield that polarization using the inverse Langevin

function approximated by,70

70Kröger, M. Journal of Non-Newtonian Fluid Mechanics 2015, 223, 77–87.
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ℒ−1(G) ≈
3G − G(6G2 + G4 − 2G6)/5

1 − G2 (5.7)
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Figure 5.11: Mean polarization for the Amin = 5 Å model system as a function of solvent–solute distance,
A, for the positive solute particle (a) and negative solute particle (b). Both plots include the
polarization prediction from assuming a constant density dielectric medium in dashed green.

For the Amin = 5 Å solute model system the mean polarization for the positive and negative

particles are shown in figure 5.11. The mean polarization has structure that oscillates about

the theoretically predicted polarization of a constant density dielectric (CDD) medium. These

oscillations and deviations are stronger for the negative solute particle but still present for both.

The presence of these oscillations is something of a mystery because they occur in Stockmayer

fluids that have their LJ space filling shape decoupled from their dipole direction.71 While this is

an interesting result, for our purposes here it is merely a set of data that can be used as input to

generate the mean field as a function of distance, �mf(A), shown in figure 5.12.

5.3.2 Long Range Behavior

The structure that is present in both the mean polarization and the mean field at shorter distances,

figures 5.11 and 5.12, will be captured in IS-SPA by cubic spline interpolation of the measured

data. Coulombic forces however have significant magnitude at long range which means we need

to approximate this behavior to make up for our measurements that only extend out to distance

of 25 Å. We approximate this long range behavior by assuming that the field at large distances are

correctly described by a CDD. The polarization density of a CDD goes linearly with the field via,

71Adams, D. J.; Rasaiah, J. C. Faraday Discussions of the Chemical Society 1977, 64, 22.
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Figure 5.12: Reduced mean field for the Amin = 5 Å system as a function of distance from the charged solute
for the positive solute particle (a) and negative solute particle (b). The mean field is calculated
by solving equation (5.7) where G = 〈cos�〉. Both plots include the mean field prediction from
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V = &0(&A − 1)K (5.8)

where &0 is the vacuum permittivity, &A is the dielectric constant of the medium, and V is the

polarization density. At large distances the field from a point charge in a CDD will be correctly

described by,

K(A) =
@

4�&0&A

1
A2 r̂ (5.9)

where @ is the charge of the point charge generating the field, and A is the separation distance from

the charge to the point in space being polarized. Also, the magnitude of the polarization density

from equation (5.8) can be related to microscopic details via,

|V | = �?〈cos�〉 (5.10)

where � is the number density of the solvent, ? is the static dipole moment of the solvent, and

〈cos�〉 is the average orientation of the dipole relative to the field. Putting everything together

and solving for the orientation gives,

〈cos�〉 =
@

4��?

(
1 −

1
&A

)
1
A2 (5.11)
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for the long range alignment of the solvent dipoles to the field from a solute charge. In all figures

that contain relevant Coulombic results the CDD equivalent has been overlaid on the data to show

the agreement at large distances between the theory and the measured data. Since there is good

agreement between the measured data at large distances, (A > 18 Å), the approximation of treating

explicit chloroform as a CDD at large distances appears to be valid.

5.3.3 Application to Model System

To test the implementation of the dipole Coulombic force and the CDD approximation in IS-SPA

we calculate the mean force and PMF as a function of solute–solute distance in our model system

described in section 2.2.3. The LJ force is calculated in the same manner as was done previously by

spline interpolating the LJ force histogram. The Coulombic force, because of its long range nature,

is solved in a manner based on where the solvent lies with respect to the interaction volumes of

the two solutes. Figure 5.13 shows the interaction volumes for the model system at a particular

separation distance '.

Figure 5.13: Depiction of the interaction volumes in the model system for a particular separation distance '.
The interaction volume of solute 1 is shown in green, solute 2 in red, shared volume in orange,
and all other volume in blue.

The interaction volume refers to the spherical volume centered around a solute with a radius

determined by the histogrammed input data, in this case the 9mf(A) histogram, which has measured

data out to 25 Å as seen in figure 5.12. Examining our mean field data, the measured data concur
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with the theoretical CDD prediction for both charges at all A ≥ 18 Å so the interaction volume

radii could be safely truncated to 18 Å with CDD used for all distances greater than 18 Å. For

solvents that are within the interaction volumes of both solutes, (orange in fig. 5.13), the mean field

is calculated by summing the interpolated values of the 9mf(A) histogram from each solute. For

solvents within the interaction volume of only one solute, as the volume element dr is in figure 5.13

for solute 1, the mean field histogram is interpolated for solute 1 and the theoretical field in a CDD,

eq. 5.9, is used to determine 98(r−X8) for solute 2. The polarization is determined using the inverse

Langevin function in equation (5.7) with the mean field as the argument. For all of the volume

outside of the interaction volumes, (blue in fig. 5.13), an analytic correction term is used.

fout(X) =



−

@1@2
4�&0

(
1 − 1

&A

) [
'(8Acut−3')

24A4
cut

−
log(1+'/Acut)

8'2 + Acut
8'('+Acut)2

− '2

32A4
cut

+ 3
16A2

cut

]
X̂ , ' < 2Acut

−
@1@2
4�&0

(
1 − 1

&A

) [
2

3'2 −
1

8'2 log
(
'+Acut
'−Acut

)
+

Acut('
2+A2

cut)

4'('2−Acut)2

]
X̂ , ' > 2Acut

(5.12)

where Acut is the maximum distance of the measured data histogram.

The mean forces and PMFs of LJ and Coulomb interactions were calculated individually and

plotted in figure 5.14 for Amin = 5 Å solutes with ±1.0 @4 charge. Panels a and b contain the

individual parts and total of the mean force respectively, and panels c and d display the individual

parts and total of the PMF respectively. The individual forces from IS-SPA follow the same trends

as the explicit ones. They only deviate minimally and are often times opposite in sign such that

the error from the LJ force cancels with the Coulomb force error. The resultant cancellations end

up smoothing out the total force compared to the explicit which has appreciable oscillations at

distances larger than 7 Å, despite this difference IS-SPA still captures the overall shape of the well

remarkably well. The solvent forces, figure 5.14a, also follow the expected behavior of the LJ force

favoring dimerization and the Coulombic force destabilizing dimerization. Since the system is

under external pressure all of the solvent molecules on average are pushing in on the solutes,

thus any reduction in volume that the solutes can undergo by dimerizing will be favored by the

LJ solvent force. Solvent Coulombic forces in general rip apart dimers because the alignment of

solvent dipoles along the solute dimer field put forces on the dimer atoms that repel them from

each other. The PMFs are perhaps even more compelling with many of the deviations of the force
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being smoothed out by integration. The final result of which is the total PMF in panel 5.14d where

the explicit and IS-SPA curves are nearly identical.
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Figure 5.14: Model system mean force and PMF results of IS-SPA with dipole Coulombic forces as a function
of solute–solute distance ' compared to explicit MD for Amin = 5 Å and @ = ±1.0 @4 solute
particles. (a) Mean force for the LJ and Coulombic portions separately. (b) Total force with
direct solute–solute term. (c) PMFs of LJ and Coulombic portions separately. (d) Total PMF with
direct solute–solute term. Each panel also includes a dashed red curve that is the Coulombic
force or PMF assuming the solvent is a CDD.

Figures 5.14a,b also include the force assuming the two solute charges are in CDD, and fig-

ures 5.14c,d show the total PMF of the CDD potential energy. In the panels with the total forces

and PMFs (fig. 5.14b,d) the dashed LJ and CDD curve demonstrates how modeling the solvent

solely as a CDD would perform. As is evidenced by the depth of the well the CDD under-stabilizes

the contact pair of the solutes for two reasons: it does not account for the attractive LJ force from

the solvent seen in figure 5.14a at contact distances A ≤ 6.5 Å, and it over predicts the Coulomb

screening at those same distances. This originates from the fact that the solvent itself has volume
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exclusion to it such that the solvent dipole can only get so close to the solute. Also, because of the

finite size of the solvent it packs into shells of enhanced and diminished density which give both

the Van der Waals and electrostatic components structure that CDD by definition lacks. Evidently

these two qualities are important for reproducing the explicit mean force and PMF because the

results of using solely CDD are do not agree with the explicit results.
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Figure 5.15: Model system mean force and PMF results of IS-SPA with dipole Coulombic forces as a function
of solute–solute distance ' compared to explicit MD for Amin = 7 Å and @ = ±1.0 @4 solute
particles. (a) Mean force for the LJ and Coulombic portions separately. (b) Total force with
direct solute–solute term. (c) PMFs of LJ and Coulombic portions separately. (d) Total PMF with
direct solute–solute term. Each panel also includes a dashed red curve that is the Coulombic
force or PMF assuming the solvent is a CDD.

The equivalent figure to 5.14 for Amin = 7 Å solutes is shown in figure 5.15. The same trends

in mean force and PMF persist for the charged Amin = 7 Å solute, with smoothed out oscillations

compared to the explicit but similar overall shape. It is somewhat surprising that the results are

not more accurate considering the marked improvement of the uncharged model system. Further
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study of the effect of solute particle size would be interesting for the charged solutes as well as the

uncharged solutes because of the somewhat inconsistent results present at this point.

Overall the approximations of chloroform as a sphere in LJ potential and as a dipole in electro-

static potential appear to be valid approximations that will lead to an implicit model for chloroform

with a promising degree of accuracy and efficiency compared to AESMD simulations. The next

step to test this theory will be to generate the difference vector plots (fig. 5.9) using the dipole

IS-SPA theory presented here. Finally, the LO PMF will be generated and compared to the explicit

PMF, figure 1.3.
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Chapter 6

Future Work

Firstly, to wrap up the results and story presented in chapter 5, a powerful figure to generate

would be the force difference vector figure for LO with dipole Coulombic forces and compare to the

monopolar version, figure 5.9. If our hypothesis was correct the Coulombic force difference vectors

that were circled should be diminished in intensity and perhaps not pointing in opposite directions

any more. The pointing of the vectors will depend on how well the dipole approximation matches

the explicit solvent dipole forces as well as how much other terms of the electrostatic force are

effecting the solute atoms. Finally, the PMF of LO from IS-SPA simulation should be calculated

and compared to the AESMD PMF, figure 1.3.

With the results shown in chapter 5 we are very near to having a full story for a publication

that includes both the development for chloroform and the dipole additions to IS-SPA. Section 6.1

outlines a further development that could improve the accuracy of the Coulombic dipole approxi-

mation of IS-SPA if necessary in the future. Section 6.2 outlines another expansion to IS-SPA that

is focused on solvent molecules that are flexible and/or solvent molecules that are composed of

distinctly different parts such as a polar group bonded to a non-polar.

6.1 Dynamic Dipole in IS-SPA

In the event of needing further refinement to the Coulombic force in IS-SPA I think one ap-

proximation to refine would be the static dipole approximation. Previously we assumed that the

dipole magnitude, ?, was static and solved for the alignment of the dipole, 〈cos�〉, as a function of

solvent–solute displacement, A, and arrived at equation (5.5). If we instead solve for the alignment

of the dipole when the magnitude is allowed to fluctuate in a Gaussian distribution about a mean,

?0, we go from equation (6.1) to (6.2),

P(?, cos�) ∝ 4K·p/)�(? − ?0) ?
2 d? dcos� (6.1)

∝ 4K·p/) 4−(?−?0)
2/2�2

?2 d? dcos� (6.2)
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where ?0 is the mean dipole magnitude, and �2 is the variance of the fluctuations. As before, K

is the external electric field vector, p is the dipole moment vector, ) is the temperature in units

of energy, and ? is the dipole magnitude variable. The delta-function in equation (6.1) which

represents the dipole being fixed at a magnitude of ?0 is replaced in equation (6.2) by a Gaussian

distribution centered at the mean dipole magnitude, ?0.

This time instead of solving for only the average alignment 〈cos�〉 because we were using the

approximation ? = ?0, we solve for ?〈cos�〉 which is the average dipole moment.

?〈cos�〉 =

∞∫
0
?2 d?

1∫
−1

dcos� ? cos� P(?, cos�)

∞∫
0
?2 d?

1∫
−1

dcos� P(?, cos�)

(6.3)

which eventually yields,

?〈cos�〉
?0

=
(2�2�2 − 1) sinh � + �(1 + �2�4) cosh �

2�(sinh � + ��2 cosh �)
(6.4)

where � is the reduced-field, (� = ?0�/)), and � is the fractional variance, (�2 = �2/?2
0).
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Figure 6.1: ?〈cos�〉/?0, equation (6.4), as a function of reduced field �. (a) For fractional variance � = 0,
same behavior as a static dipole (fig. 5.10), asymptotically approaching complete polarization,
〈cos�〉 = 1. (b) For � > 0 the behavior at large � is linear in � with slope of �2/2.

The behavior of the dynamic dipole, equation (6.4), converges to static dipole behavior, equa-

tion 5.10, when � = 0, figure 6.1a, which is consistent. When � > 0, (fig. 6.1b) i.e. the dipole

magnitude is allowed to fluctuate, the polarization follows the same sigmoidal behavior as the
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Langevin function for small � but for large � the polarization is linear in � with a slope of �2/2. In

other words, the dynamic dipole behaves like a static dipole at small field strengths, aligning its

dipole along the field, but can continue to be polarized at large fields by stretching the dipole once

it is already aligned.

Another consideration for the dipole expansion to IS-SPA is the location of the dipole within the

solvent’s excluded volume. The offset parameter 3 did not make much difference on either the LJ

or the Coulombic force data but perhaps for other solvents it may end up being important. My

thought is that perhaps it would be important to mark the location of the dipole inside the solvent

molecule. If for example the solvent has a large excluded volume with a dipole on one side of the

volume, perhaps it would be important then to keep track of where the dipole is located with an

offset distance 3.

6.2 IS-SPA Applied to Flexible Solvent Molecules

In my independent research proposal I outlined a method for applying IS-SPA to flexible solvents.

This section is a brief outline of the core idea of that proposal.

So far IS-SPA has been used to model both water and chloroform by simplifying the solvent to

spherically symmetric particles where the only degree of freedom is the distance between solvent

and solute. For more complicated solvents that require orientational information, other degrees

of freedom would need to be sampled. For example, one for the position and another for the

orientation, assuming only one orientational degree of freedom is sufficient. The more degrees of

freedom required to place a solvent particle the more expensive the algorithm.

For inflexible solvents such as water and chloroform, the internal degrees of freedom can be

ignored. A more complicated version of modeling these solvents in IS-SPA would be to define

the distribution and force functions, 68(|r − X8 |) and f8 ,solv(r − X8), as 3-dimensional functions of

separation distance |r −X8 |, polar tilt angle �, and azimuthal twist angle ), with respect to the so-

lutes: 68(|r −X8 |, �, )) and f8 ,solv(|r −X8 |, �, )). Even though using 3-dimensional functions would

be more complicated than the previously mentioned 1-dimensional functions, the Monte Carlo

sampling situation is still tractable for the fact that the solvents are assumed to have completely

fixed internal degrees of freedom. However, if the solvent molecule is flexible and can sample

an array of intramolecular conformations of its own, such as alkanes like pentane or hexane, the
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process of placing a solvent in the Monte Carlo integration becomes more complicated. Pentane

is an ideal model solvent for studying this expansion to IS-SPA. It lacks appreciable charge on any

of its atoms thus requiring only LJ force considerations. It has enough atoms to be flexible and has

more than one stable conformation necessitating the expansion of IS-SPA. Butane would also be

sufficient except that it is gaseous at STP whereas pentane is a liquid.

One method of simplifying pentane from a physical perspective is modeling each pentane

molecule as a bonded chain of five unified atoms similar to the transferable potentials for phase

equilibria (TraPPE)72 model which has unique force fields for CH2 and CH3 groups respectively.

However, unified atom approaches like TraPPE still require the computation of large numbers of

degrees of freedom like AESMD simulations, the number of solvent atoms is just decreased by a

scalar factor equal to the average number of atoms in the unified atoms.

Simplifying pentane from the perspective of IS-SPA would be to model each pentane as a single

spherical or perhaps ellipsoidal particle. However since pentane is flexible the IS-SPA approach

becomes complicated quickly because there is the question of how to sample the internal degrees

of freedom of the solvent. One option is to place the methyl groups of pentane one-by-one

by sampling the intramolecular distribution function and model each methyl group as a single

particle analagous to water and chloroform in previous IS-SPA development. Another is to place

each pentane preconfigured in its most likely configurations, as measured from MD simulation as

a function of dihedral angle, to avoid having to sample an intramolecular distribution function in

addition to the intermolecular distribution function already being sampled. A third option, and

the focus of this section, is the methyl-atom strategy detailed below.

6.2.1 Methyl-Atom Strategy

The methyl-atom strategy uses the mechanics, approximations, and efficiency of 1-dimensional

spherical IS-SPA but places individual coarse-grained methyl groups, methyl-atoms, instead of

placing entire pentane molecules. In pentane there are three symmetrically unique methyl-groups

as shown in figure 6.2a: the terminal CH3 groups, the CH2 groups bound to the terminal groups,

and the middle CH2 group represented by the methyl-atom types Sa , Sb, and Sc respectively.

Each methyl-atom type has a unique distribution and force function as measured from AESMD

simulation data, figure 6.3. These data suggest the methyl groups of pentane can be coarse-grained
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Figure 6.2: (a) Pentane molecule with the symmetrically unique methyl-atoms labeled Sa , Sb, and Sc.
(b) Solute solvated by explicit pentane coarse-grained into a chain of five unified methyl group
particles. (c) Solute solvated by methyl-atoms randomly placed around the solute for the Monte
Carlo integration in IS-SPA.

into spherically symmetric methyl-atom particles, making the Monte Carlo sampling 1-dimensional

and thus more efficient than placing and orienting explicit methyl groups.

In this strategy the individual methyl-atoms are placed around the solute for the Monte Carlo

integration without correlation to what other methyl-atoms are in the vicinity i.e. they are not

bound to each other as depicted in figure 6.2b but instead are completely independent particles as

in figure 6.2c. In this respect this strategy is unphysical because in explicit pentane the presence of

a terminal CH3 group would mean a CH2 group would have to be near by since they are bound, but

with methyl-atoms there could be a Sa group without a Sb group near it. However, as long as the

mean force on the solutes is accurately captured the PMF will be captured as well. Since there is this

potential for unphysical results it may be important to develop an algorithm for deciding whether

a methyl-atom can be physically placed in a given volume where an entire pentane molecule might

not fit. Also it is a likely complication that a ratio of the types of methyl-atoms in pentane will

need to be satisfied during Monte Carlo sampling; two terminal Sa groups to two Sb groups to

one middle Sc type methyl-atoms in a pentane molecule.

The explicit data measured from MD simulation, (points) in figure 6.3b,d,f, are calculated by

projecting the sum of the forces from each atom of a particular methyl group onto the separation

vector of the carbon atom and solute. The result is an orientationally averaged force from that
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Figure 6.3: Symmetrically unique methyl-atom radial distribution functions (a,c,e) and forces (b,d,f) of
pentane, black points correspond to CH3 groups and red points to CH2 groups. The forces are fit
to single LJ force functions.

methyl group i.e. a coarse-grained spherically symmetric methyl group force. The distribution

functions, figure 6.3a,c,e, are measured using the carbon position.

Fitting to single LJ force functions shown in figure 6.3b,d,f and table 6.1 demonstrate that there

are discrepancies between the explicit methyl-atom force and a single fitted LJ force. Each methyl-

atom also has a unique distribution function as seen in figure 6.3a,c,e which would be used for

weighting the respective methyl-atoms.

Adding flexible solvent implicitization capability to IS-SPA opens up possibilities of more types

of systems for large scale molecular simulations that would have been previously unfeasible.
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Table 6.1: The LJ parameters from the fits shown in figure 6.3b,d,f for the LJ force functional form: 5!�(A) =

−4&
[
12

(
�
A

)13
− 6

(
�
A

)7
]
.

Methyl-atom & [kcal/mol] � [Å]
Sa (CH3) 0.198639 4.13053
Sb (CH2) 0.193287 4.14888
Sc (CH2) 0.188080 4.14888
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1 Prepare Molecule for AMBER MD Simulation

1.1 Making a Molecule in Gaussian

Save molecule built in gview as ’filename.gjf’. This gives a file with atom types and position-

s/bondings. Make sure that the first section of code has the following lines:
%nprocshared=6

%mem=20GB

%RWF=filename.rwf

%NoSave

%chk=filename.chk

# b3lyp/6-311g* opt symmetry=none

comment line

0 1

C x y z

...

The first set of lines beginning with the ’%’ character are lines that contain different settings that

pertain to how the job should be run on the computer. The first line is the number of processors

used including multi-threading, i.e. a quad-core CPU with multi-threading could have a total of

8 for its value of nprocshared. The second line is the amount of memory the calculation can use.

Sometimes when a segmentation fault error occurs, decreasing this value makes the calculation

run more efficiently with regard to memory usage, and the error can be avoided. The third line is

the name of the read-write-file which is a file Gaussian uses to store information over the course

of the calculation. The NoSave line just says to not save the read-write-file once the calculation is

complete. The following line sets the file name for the check-file which is a non-human-readable

file with additional information that is not kept in the log-file.

The line preceded by the ’#’ character contains the level of theory and type of calculation that is

to be run. The functional and the basis set are the first two terms, opt is the type of calculation,

and any additional arguments can be set such as symmetry. Then there is a blank line, a comment

line, another blank line, and then the charge and multiplicity followed by the atom types and

coordinates.

The coordinates section should always be followed by a blank line, even when there are no other

sections in the job-file.

Run the job using Gaussian 1667 with the following command in a bash terminal:
g16 < filename.gjf > filename.log

67Frisch, M. et al. Gaussian 16 Revision A. 03. 2016; Gaussian Inc.
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1.1.1 Frequency Calculation

Take the final coordinates from the optimization log-file and paste them over the old coordinates

in an identical format to the geometry optimization job-file. Rename the chk, rwf, and gjf

accordingly so that they are distinguished as being the part of the frequency calculation. Now, the

line that is preceded by the ’#’ character has to be changed to run a frequency calculation.

#p b3lyp/6-311g* freq=(noraman,hpmodes) symmetry=none

where the hpmodes flag denotes high-precision modes. The symmetry flag is essential if transition-

dipole-moments i.e. ’dipole derivatives’ are going to be used in analysis at all.

1.1.2 Generate Electro-Static Potential from Optimized Geometry

From optimized geometry, generate an electrostatic potential (ESP) using Hartree-Fock 6-31g*

basis.
#p hf/6-31g* SCF=Tight Pop=MK IOp(6/33=2)

Next, charges are found using the ESP. Extract ESP info from log-file into a mol2 file format,

espgen -i filename_esp.log -o filename.esp

Convert the Gaussian output file into an antechamber file format.

antechamber -i filename_esp.log -fi gout -o filename.ac -fo ac

Create the RESP input files. The second command is for molecules have degenerate atoms with

identical charges.

respgen -i filename.ac -o filename.respin1 -f resp1

respgen -i filename.ac -o filename.respin2 -f resp2

At this point, the respin1 and respin2 files should be checked. The flags at the beginning

should be fine. The atom list first gives the total charge and number of atoms. Then each atom is

given a mass and degeneracy. respin1 should have all unique charges, i.e. a value of 0. respin2

connects degenerate atoms.

Finally, the charges are calculated:

resp -O -i filename.respin1 -o filename.respout1 -e filename.esp -t filename.qout1

resp -O -i filename.respin2 -o filename.respout2 -e filename.esp -q filename.qout1

-t filename.qout2

Use antechamber to combine the geometry and charges together into a mol2 file.

antechamber -i filename.ac -fi ac -o filename.mol2 -fo mol2 -c rc -cf filename.

qout2
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If an error occurs at this step it may be due to the fact that Amber14 and AmberTools1573 are

not being used. These instructions were originally formulated for Amber14. However, an error

entitled ’weird valence error’ may come up if using the Amber16 and AmberTools177. If this

happens, run the Gaussian ESP calculation but skip the rest of the commands previously listed

and instead run these two commands to make the mol2 file:
antechamber -i filename_esp.log -fi gout -o filename.mol2 -fo mol2

antechamber -i filename.mol2 -fi mol2 -o filename.mol2 -fo mol2 -c rc -cf filename.

qout1

A name needs to be prescribed for the molecule which is generically named ’MOL’. For this

example we will choose the name ’ABC’.

# on linux

sed -i -e "s/MOL/ABC/g" -e "s/ABCECULE/MOLECULE/g" filename.mol2

# on mac

sed -e "s/MOL/ABC/g" -e "s/ABCECULE/MOLECULE/g" filename.mol2 > filename.mol2

The command parmchk2 finds appropriate force fields for the molecules that are not standard.

parmchk2 -i filename.mol2 -f mol2 -o filename.frcmod

Then load the molecule into tleapwith the following commands:

tleap

> source leaprc.ff14SB

> source leaprc.gaff

> ABC = loadmol2 filename.mol2

> loadamberparams filename.frcmod

> saveoff ABC filename.lib

> loadoff solvents.lib

Put all of these commands into a setup-file and then just run ’source setup-file’ in tleap.

The ’>’ characters signify a command entered into the tleap terminal and should be omitted from

setup-file. ABC is the residue name as before. The filename’s are the files that were created in

previous steps. The last line is only needed in Amber16 and AmberTools17 since some solvents

are not loaded by default.

If duplicates of the molecule are desired we can make another file called ’duplicate-file’ and

source it in tleapwith the following contents or we can just enter into tleap:

73Case, D. et al. AMBER14 Package.
7Case, D. et al. AMBER16 Package.
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tleap

> test = combine {ABC ABC}

> translate test.2 {x y z}

The number 2 after test indicates that the second ABC residue in the unit ’test’ will be translated

by x, y, and z. So this process can be extrapolated for more ABC residues.

Next, show the box size required to fit just the residues in ’test’. In this example we will add use

the chloroform solvent from Amber,
> solvateShell test CHCL3BOX 0.1

And then add solvent. The solvateBox command adds G Å of solvent between the box G edge

and the G edge given from the solvateShell command. Boxes should be roughly cubic. GPU

simulations require ≥ 7500 atoms.

> solvateBox test CHCL3BOX {x y z}

If this command gives an error about not recognizing an atom type in the solvent, run:

> CHCL3BOX = loadamberparams frcmod.chcl3

And then, finally run:

saveAmberParm test test.prmtop test.inpcrd

The prmtop and inpcrd files are the parameter and starting coordinate files, respectively, that

we will use in our Amber MD simulations.

For non-standard solvent, add in solvent with GROMACS74. The following command creates a

box with 7 nm sides and attempts to fit 1500 molecules from ’solvent_name.pdb’.

antechamber -i filename.mol2 -fi mol2 -o filename.pdb -fo pdb

gmx insert-molecules -ci solvent_name.pdb -nmol 1500 -box 7 7 7 -o thf-box.pdb

The .gro file might be able to be written as a .pdb file but if not, use VMD to convert the .gro

to a .pdb file. Then, make a new set of AMBER prmtop and inpcrd files by entering the following

with tleap.
load leaprc.gaff

source leaprc.gaff

BUT = loadmol2 BUT.mol2 # load molecule parameters

loadamberparams BUT.frcmod

saveoff BUT BUT.lib

x = loadpdb butane-box.pdb # load molecule coordinates with molecule name as above

setBox x "vdw"

saveAmberParm x test.prmtop test.inpcrd

74Pronk, S. et al. Bioinformatics 2013, 29, 845–854.
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Then these AMBER files can be used to equilibrate the solvent box. Once we have an equilibrated

solvent box, we can use GROMACS to solvate our solute in that new solvent.
gmx insert-molecules -ci PDI_vacuum_no_box.pdb -box 5.85 5.85 5.85 -nmol 1 -o

PDI_vacuum_box.pdb

gmx editconf -f PDI_vacuum_box.pdb -center 2.93 2.93 2.93 -o

PDI_vacuum_box_centered.pdb

gmx solvate -cp PDI_vacuum_box_centered.pdb -cs THF.pdb -o

PDI_solvated_box_centered.pdb

where 5.85 is the length in nanometers of the full solvent box sides. 2.93 is half that length, so as

to place the PDI’s in the center of the box.

THF.pdb is the equilibrated solvent box (only THF) with dimensions 5.85×5.85×5.85 nanometers.

1.1.3 Restraints

When adding a restraint into an AMBER simulation like a harmonic spring between two atoms.

The atom numbers in the Amber restraint file are the VMD index value +1.

2 Code

2.1 Model System IS-SPA Histogram Measurement Code: gr2d.p2.py

# python3

# Compute Radial Distribution Function as a Function of r, cos(theta), and phi [

Spread into 3D ] around an LJ sphere pair

import numpy as np

import sys

import os

import MDAnalysis

from math import *

def cosPhi_2_phi(cosPhi):

if cosPhi > 1:

return 0

elif cosPhi < -1:

return np.pi

else:

return np.arccos(cosPhi)

def wrap_phi(phi):

if phi >= pi23:

return phi-pi23, 1;

elif pi3 < phi < pi23:

return pi23-phi, -1;

else:

return phi, 1;

def compute_pbc_dr(r1,r2,box,hbox):
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dr = r1 - r2 # dr points from r2 to r1

if dr < -hbox:

dr += box

elif dr > hbox:

dr -= box

return dr;

def t_dot_rcl(dot,sign):

if dot < 0:

return sign*(-1);

else:

return sign;

## Read configuration file and populate global variables

def parse_config_file(cfgFile):

global topFile, trajFile, outFile, histDistMin , histDistMax , binDistSize ,

histThetaMin , histThetaMax , binThetaSize , T, soluteResname , solventResname , d,

histPhiMin , histPhiMax , binPhiSize , nAtomTypes

trajFile = []

f = open(cfgFile)

for line in f:

# first remove comments

if ’#’ in line:

line, comment = line.split(’#’,1)

if ’=’ in line:

option, value = line.split(’=’,1)

option = option.strip()

value = value.strip()

print("Option:", option, " Value:", value)

# check value

if option.lower()==’topfile’:

topFile = value

elif option.lower()==’trajfile’:

trajFile.append(value)

elif option.lower()==’outfile’:

outFile = value

elif option.lower()==’hist_dist_min’:

histDistMin = float(value)

elif option.lower()==’hist_dist_max’:

histDistMax = float(value)

elif option.lower()==’bin_dist_size’:

binDistSize = float(value)

elif option.lower()==’hist_theta_min’:

histThetaMin = float(value)

elif option.lower()==’hist_theta_max’:

histThetaMax = float(value)

elif option.lower()==’bin_theta_size’:

binThetaSize = float(value)

elif option.lower()==’hist_phi_min’:

histPhiMin = float(value)

elif option.lower()==’hist_phi_max’:

histPhiMax = float(value)

elif option.lower()==’bin_phi_size’:

binPhiSize = float(value)

elif option.lower()==’temperature’:

T = float(value)

elif option.lower()==’solute_resname’:

soluteResname = value

elif option.lower()==’solvent_resname’:

solventResname = value

elif option.lower()==’offset’:

d = float(value)

elif option.lower()==’number_solute_atoms’:
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nAtomTypes = int(value)

else :

print("Option:", option, " is not recognized")

# set some extra global variables

global kT, histDistMin2 , histDistMax2 , nDistBins , nThetaBins , nPhiBins , pi23, pi3

# Boltzmann Constant in kcal/mol.K

k_B = 0.0019872041

kT = k_B * T

# Distances [in Angstroms]

histDistMin2= histDistMin*histDistMin

histDistMax2= histDistMax*histDistMax

# Histogram bins

nDistBins = int((histDistMax - histDistMin)/binDistSize)

# Cosine Theta Histogram bins

nThetaBins = int((histThetaMax - histThetaMin)/binThetaSize)

# Phi Histogram bins

nPhiBins = int((histPhiMax - histPhiMin)/binPhiSize)

# global constants

pi23 = 2*pi/3. # FIXME: this should be incorporated into the config file somehow.

Like a radian of symmetry and half of that value.

pi3 = pi/3.

f.close()

## Read prmtop file and populate global variables

def parse_prmtop_bonded(topFile):

global bond_fc,bond_equil_values ,angle_fc,angle_equil_values ,dihedral_fc ,

dihedral_period ,dihedral_phase ,nbonh,nbona,ntheta,ntheth,nphia,nphih,bondsh,bondsa,

anglesh,anglesa,dihedralsh ,dihedralsa ,n_atoms,n_types,atom_names ,atom_type_index ,

nb_parm_index ,lj_a_coeff ,lj_b_coeff

param = open(topFile,’r’)

pointers = np.zeros(31,dtype=int)

lines = param.readlines()

for i in range(len(lines)):

if lines[i][0:14] == ’%FLAG POINTERS’:

for j in range(4):

temp = lines[i+2+j].split()

for k in range(len(temp)):

pointers[j*10+k] = int(temp[k])

n_atoms = pointers[0]

n_types = pointers[1]

nbonh = pointers[2]

nbona = pointers[12]

ntheth = pointers[4]

ntheta = pointers[13]

nphih = pointers[6]

nphia = pointers[14]

numbnd = pointers[15]

numang = pointers[16]

numtra = pointers[17]

n_type_lines = int(ceil(n_atoms/10.))

n_name_lines = int(ceil(n_atoms/20.))

n_nb_parm_lines = int(ceil(n_types*n_types/10.))

n_lj_param_lines = int(ceil((n_types*(n_types+1)/2)/5.))

n_bond_lines = int(ceil(numbnd/5.))

n_angle_lines = int(ceil(numang/5.))

n_dihedral_lines = int(ceil(numtra/5.))
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n_bondsh_lines = int(ceil(nbonh*3/10.))

n_bondsa_lines = int(ceil(nbona*3/10.))

n_anglesh_lines = int(ceil(ntheth*4/10.))

n_anglesa_lines = int(ceil(ntheta*4/10.))

n_dihedralsh_lines = int(ceil(nphih*5/10.))

n_dihedralsa_lines = int(ceil(nphia*5/10.))

bond_fc = np.zeros(numbnd,dtype=float)

bond_equil_values = np.zeros(numbnd,dtype=float)

angle_fc = np.zeros(numang,dtype=float)

angle_equil_values = np.zeros(numang,dtype=float)

dihedral_fc = np.zeros(numtra,dtype=float)

dihedral_period = np.zeros(numtra,dtype=float)

dihedral_phase = np.zeros(numtra,dtype=float)

SCEE_factor = np.zeros(numtra,dtype=float)

SCNB_factor = np.zeros(numtra,dtype=float)

bondsh_linear = np.zeros(3*nbonh,dtype=int)

bondsa_linear = np.zeros(3*nbona,dtype=int)

bondsh = np.zeros((nbonh ,3),dtype=int)

bondsa = np.zeros((nbona ,3),dtype=int)

anglesh_linear = np.zeros(4*ntheth,dtype=int)

anglesa_linear = np.zeros(4*ntheta,dtype=int)

anglesh = np.zeros((ntheth ,4),dtype=int)

anglesa = np.zeros((ntheta ,4),dtype=int)

dihedralsh_linear = np.zeros(5*nphih,dtype=int)

dihedralsa_linear = np.zeros(5*nphia,dtype=int)

dihedralsh = np.zeros((nphih ,5),dtype=int)

dihedralsa = np.zeros((nphia ,5),dtype=int)

atom_names = []

atom_type_index = np.zeros((n_atoms),dtype=int)

nb_parm_index = np.zeros(n_types*n_types,dtype=int)

lj_a_coeff = np.zeros((n_types*(n_types+1))//2,dtype=float)

lj_b_coeff = np.zeros((n_types*(n_types+1))//2,dtype=float)

if lines[i][0:25] == ’%FLAG BOND_FORCE_CONSTANT’:

for j in range(n_bond_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

bond_fc[j*5+k] = float(temp[k])

if lines[i][0:22] == ’%FLAG BOND_EQUIL_VALUE’:

for j in range(n_bond_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

bond_equil_values[j*5+k] = float(temp[k])

if lines[i][0:26] == ’%FLAG ANGLE_FORCE_CONSTANT’:

for j in range(n_angle_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

angle_fc[j*5+k] = float(temp[k])

if lines[i][0:23] == ’%FLAG ANGLE_EQUIL_VALUE’:

for j in range(n_angle_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

angle_equil_values[j*5+k] = float(temp[k])

if lines[i][0:29] == ’%FLAG DIHEDRAL_FORCE_CONSTANT’:

for j in range(n_dihedral_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

dihedral_fc[j*5+k] = float(temp[k])

if lines[i][0:26] == ’%FLAG DIHEDRAL_PERIODICITY’:

for j in range(n_dihedral_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

dihedral_period[j*5+k] = float(temp[k])

if lines[i][0:20] == ’%FLAG DIHEDRAL_PHASE’:

for j in range(n_dihedral_lines):
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temp = lines[i+2+j].split()

for k in range(len(temp)):

dihedral_phase[j*5+k] = float(temp[k])

if lines[i][0:23] == ’%FLAG SCEE_SCALE_FACTOR’:

for j in range(n_dihedral_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

SCEE_factor[j*5+k] = float(temp[k])

if lines[i][0:23] == ’%FLAG SCNB_SCALE_FACTOR’:

for j in range(n_dihedral_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

SCNB_factor[j*5+k] = float(temp[k])

if lines[i][0:24] == ’%FLAG BONDS_INC_HYDROGEN’:

for j in range(n_bondsh_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

bondsh_linear[j*10+k] = int(temp[k])

for j in range(nbonh):

bondsh[j][0] = bondsh_linear[j*3]

bondsh[j][1] = bondsh_linear[j*3+1]

bondsh[j][2] = bondsh_linear[j*3+2]

if lines[i][0:28] == ’%FLAG BONDS_WITHOUT_HYDROGEN’:

for j in range(n_bondsa_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

bondsa_linear[j*10+k] = int(temp[k])

for j in range(nbona):

bondsa[j][0] = bondsa_linear[j*3]

bondsa[j][1] = bondsa_linear[j*3+1]

bondsa[j][2] = bondsa_linear[j*3+2]

if lines[i][0:25] == ’%FLAG ANGLES_INC_HYDROGEN’:

for j in range(n_anglesh_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

anglesh_linear[j*10+k] = int(temp[k])

for j in range(ntheth):

anglesh[j][0] = anglesh_linear[j*4]

anglesh[j][1] = anglesh_linear[j*4+1]

anglesh[j][2] = anglesh_linear[j*4+2]

anglesh[j][3] = anglesh_linear[j*4+3]

if lines[i][0:29] == ’%FLAG ANGLES_WITHOUT_HYDROGEN’:

for j in range(n_anglesa_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

anglesa_linear[j*10+k] = int(temp[k])

for j in range(ntheta):

anglesa[j][0] = anglesa_linear[j*4]

anglesa[j][1] = anglesa_linear[j*4+1]

anglesa[j][2] = anglesa_linear[j*4+2]

anglesa[j][3] = anglesa_linear[j*4+3]

if lines[i][0:28] == ’%FLAG DIHEDRALS_INC_HYDROGEN’:

for j in range(n_dihedralsh_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

dihedralsh_linear[j*10+k] = int(temp[k])

for j in range(nphih):

dihedralsh[j][0] = dihedralsh_linear[j*5]

dihedralsh[j][1] = dihedralsh_linear[j*5+1]

dihedralsh[j][2] = dihedralsh_linear[j*5+2]

dihedralsh[j][3] = dihedralsh_linear[j*5+3]

dihedralsh[j][4] = dihedralsh_linear[j*5+4]

if lines[i][0:32] == ’%FLAG DIHEDRALS_WITHOUT_HYDROGEN’:

for j in range(n_dihedralsa_lines):

temp = lines[i+2+j].split()

109



for k in range(len(temp)):

dihedralsa_linear[j*10+k] = int(temp[k])

for j in range(nphia):

dihedralsa[j][0] = dihedralsa_linear[j*5]

dihedralsa[j][1] = dihedralsa_linear[j*5+1]

dihedralsa[j][2] = dihedralsa_linear[j*5+2]

dihedralsa[j][3] = dihedralsa_linear[j*5+3]

dihedralsa[j][4] = dihedralsa_linear[j*5+4]

if lines[i][0:15] == ’%FLAG ATOM_NAME’:

for j in range(n_name_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

atom_names.append(temp[k])

if lines[i][0:21] == ’%FLAG ATOM_TYPE_INDEX’:

for j in range(n_type_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

atom_type_index[j*10+k] = float(temp[k])

if lines[i][0:26] == ’%FLAG NONBONDED_PARM_INDEX’:

for j in range(n_nb_parm_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

nb_parm_index[j*10+k] = float(temp[k])

if lines[i][0:25] == ’%FLAG LENNARD_JONES_ACOEF’:

for j in range(n_lj_param_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

lj_a_coeff[j*5+k] = float(temp[k])

if lines[i][0:25] == ’%FLAG LENNARD_JONES_BCOEF’:

for j in range(n_lj_param_lines):

temp = lines[i+2+j].split()

for k in range(len(temp)):

lj_b_coeff[j*5+k] = float(temp[k])

# initialize arrays for 3D g(r,cos(theta),phi)

def initialize_arrays():

# NOTE

# g(r) array has both the g(r) values and the counts for each atomtype.

# Gc[atomtypes , distbin, thetabin, phibin]

Gc = np.zeros((nAtomTypes , nDistBins , nThetaBins , nPhiBins), dtype=float)

Gr = np.zeros((nAtomTypes , nDistBins , nThetaBins , nPhiBins), dtype=float)

# NOTE

# Force array has the force, its square, the std.dev. of the force, and its square

for each atomtype.

# FrLJ[atomtypes , <f.r>/<f.s>/<f.t>, distbin, thetabin, phibin]

FrLJ = np.zeros((nAtomTypes , 3, nDistBins , nThetaBins , nPhiBins), dtype=float)

# FrC[atomtypes , <f.r>/<f.s>/<f.t>, distbin, thetabin, phibin]

FrC = np.zeros((nAtomTypes , 3, nDistBins , nThetaBins , nPhiBins), dtype=float)

return Gc, Gr, FrLJ, FrC;

# loop through trajectory

def iterate(Gc, FrLJ, FrC):

u = MDAnalysis.Universe(topFile, trajFile[0]) # initiate MDAnalysis Universe.

soluSel = u.select_atoms(’resname ’ + soluteResname)

solvSel = u.select_atoms(’resname ’ + solventResname)

nSolv = len(solvSel) # number of solvent atoms

cosPhi2Phi = np.vectorize(cosPhi_2_phi) # cosPhi -> phi conditions

wrapPhi = np.vectorize(wrap_phi) # phi -> wrapped phi conditions

wrapPbc = np.vectorize(compute_pbc_dr) # wrap vector difference in pbc box

tDotRcl = np.vectorize(t_dot_rcl) # change sign based on t vector orientation

for igo in range(len(trajFile)):

u.load_new(trajFile[igo])
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print("Now analyzing trajectory file: ", trajFile[igo])

for ts in u.trajectory: # Loop over all time steps in the trajectory.

# Progress Bar

sys.stdout.write("Progress: {0:.2f}% Complete\r".format((ts.frame+len(u.

trajectory)*(igo))/(len(u.trajectory)*len(trajFile))*100))

sys.stdout.flush()

box = u.dimensions[:3]## define box and half box here so we save division

calculation for every distance pair when we calculate ’dist’ below.

hbox = u.dimensions[:3]/2

# Compute all pairwise distances

if nAtomTypes == 2:

ljDr = wrapPbc(soluSel.atoms[0].position , soluSel.atoms[1].position ,

box, hbox)# Calculate the vector (ljDr) between the two LJ particles.

for a in soluSel.atoms:

# Calculate r,cosTh,phi bin

pCH = wrapPbc(solvSel.atoms[np.arange(0,nSolv ,5)].positions , solvSel.

atoms[np.arange(1,nSolv ,5)].positions , box, hbox)

np.divide( pCH, np.sqrt(np.einsum(’ij,ij->i’,pCH,pCH))[:,None], out=

pCH) # normalize pCH

rSolv = solvSel.atoms[np.arange(1,nSolv ,5)].positions - d*pCH

rSolv = wrapPbc(a.position, rSolv, box, hbox)

pCCl = wrapPbc(solvSel.atoms[np.arange(2,nSolv ,5)].positions , solvSel.

atoms[np.arange(1,nSolv ,5)].positions , box, hbox)

if nAtomTypes == 2:

if a.index == 0:

ip = np.where( np.dot(rSolv,ljDr)>0 ) # far side from solute

elif a.index == 1:

ip = np.where( np.dot(rSolv,ljDr)<0 ) # far side from solute

rSolv = np.delete(rSolv,ip,axis=0)

pCH = np.delete(pCH,ip,axis=0)

pCCl = np.delete(pCCl,ip,axis=0)

ir = np.where( np.einsum(’ij,ij->i’,rSolv,rSolv) >= histDistMax2 )

rSolv = np.delete(rSolv,ir,axis=0)

pCH = np.delete(pCH,ir,axis=0)

pCCl = np.delete(pCCl,ir,axis=0)

rSolvDist = np.sqrt(np.einsum(’ij,ij->i’,rSolv,rSolv))

cosTh = np.divide( np.einsum(’ij,ij->i’,pCH,rSolv), rSolvDist) # +1

when pCH points toward solute

nLJCH = np.cross(pCH, rSolv)

nHCCl1 = np.cross(pCH, pCCl)

cosPhi = np.divide( np.einsum(’ij,ij->i’,nLJCH,nHCCl1), np.sqrt(np.

einsum(’ij,ij->i’,nLJCH,nLJCH)*np.einsum(’ij,ij->i’,nHCCl1,nHCCl1)) )

cosPhi = cosPhi2Phi( cosPhi ) # apply cosPhi_2_phi to cosPhi, cosPhi

is now converted into phi

phi,sign = wrapPhi( cosPhi ) # apply wrap_phi to phi

distBin = np.ndarray.astype( rSolvDist/binDistSize , np.int)

thetaBin = np.ndarray.astype( (cosTh-histThetaMin)/binThetaSize , np.

int)

phiBin = np.ndarray.astype( (phi-histPhiMin)/binPhiSize , np.int)

distBin[distBin == nDistBins] = -1

thetaBin[thetaBin == nThetaBins] = -1

phiBin[phiBin == nPhiBins] = -1

# compute lj and coulomb force atom-by-atom

solvAtomInd = solvSel.atoms[np.arange(0,nSolv ,1)].indices

solvAtomPos = solvSel.atoms[np.arange(0,nSolv ,1)].positions

solvAtomChg = solvSel.atoms[np.arange(0,nSolv ,1)].charges

111



# Delete all atoms associated with residues that have been deleted

previously above before calculating force to save time

if nAtomTypes == 2:

ipa = np.append(np.append(np.append(np.append( ip[0]*5, ip[0]*5+1)

, ip[0]*5+2), ip[0]*5+3), ip[0]*5+4) # list of atoms to remove based on "residue"

dot product removal list

solvAtomInd = np.delete(solvAtomInd ,ipa,axis=0) # remove atoms

that belong to previously deleted residues: dot product

solvAtomPos = np.delete(solvAtomPos ,ipa,axis=0) # remove atoms

that belong to previously deleted residues: dot product

solvAtomChg = np.delete(solvAtomChg ,ipa,axis=0) # remove atoms

that belong to previously deleted residues: dot product

ira = np.append(np.append(np.append(np.append( ir[0]*5, ir[0]*5+1), ir

[0]*5+2), ir[0]*5+3), ir[0]*5+4) # list of atoms to remove based on "residue"

distance removal list

solvAtomInd = np.delete(solvAtomInd ,ira,axis=0) # remove atoms that

belong to previously deleted residues: distance

solvAtomChg = np.delete(solvAtomChg ,ira,axis=0) # remove atoms that

belong to previously deleted residues: distance

solvAtomPos = np.delete(solvAtomPos ,ira,axis=0) # remove atoms that

belong to previously deleted residues: distance

index = n_types*(atom_type_index[a.index]-1) + atom_type_index[

solvAtomInd]-1

nbIndex = nb_parm_index[index]-1

rSolvAtom = wrapPbc(a.position, solvAtomPos , box, hbox)

rSolvAtomDist2 = np.einsum(’ij,ij->i’,rSolvAtom ,rSolvAtom)

r6 = np.power(rSolvAtomDist2 , -3)

# LJ

fSolvAtomLJ = np.einsum(’i,ij->ij’,(r6 * (12*r6*lj_a_coeff[nbIndex] -

6*lj_b_coeff[nbIndex]) / rSolvAtomDist2), rSolvAtom) # force vectors

fSolvLJ = fSolvAtomLJ[np.arange(0,len(fSolvAtomLJ),5)] + fSolvAtomLJ[

np.arange(1,len(fSolvAtomLJ),5)] + fSolvAtomLJ[np.arange(2,len(fSolvAtomLJ),5)] +

fSolvAtomLJ[np.arange(3,len(fSolvAtomLJ),5)] + fSolvAtomLJ[np.arange(4,len(

fSolvAtomLJ),5)] # summed force vector from residue atoms

# Coulomb

fSolvAtomC = 332.05595 * a.charge * solvAtomChg[:,None] * rSolvAtom *

np.sqrt(r6)[:,None]

fSolvC = fSolvAtomC[np.arange(0,len(fSolvAtomC),5)] + fSolvAtomC[np.

arange(1,len(fSolvAtomC),5)] + fSolvAtomC[np.arange(2,len(fSolvAtomC),5)] +

fSolvAtomC[np.arange(3,len(fSolvAtomC),5)] + fSolvAtomC[np.arange(4,len(fSolvAtomC)

,5)] # summed force vector from residue atoms

tSolv = np.cross(rSolv,pCH) # t vector

np.divide(tSolv, np.sqrt(np.einsum(’ij,ij->i’,tSolv,tSolv))[:,None],

out=tSolv) # normalize t vector

tDot = np.einsum(’ij,ij->i’,tSolv,pCCl)

sign = tDotRcl(tDot,sign)

sSolv = np.cross(tSolv,rSolv) # s vector

np.divide(sSolv, np.sqrt(np.einsum(’ij,ij->i’,sSolv,sSolv))[:,None],

out=sSolv) # normalize s vector

fLJr = np.einsum(’ij,ij->i’,fSolvLJ,rSolv)/rSolvDist # force along r

fLJs = np.einsum(’ij,ij->i’,fSolvLJ,sSolv)

fLJt = np.einsum(’ij,ij->i’,fSolvLJ,tSolv)

fCr = np.einsum(’ij,ij->i’,fSolvC,rSolv)/rSolvDist # force along r

fCs = np.einsum(’ij,ij->i’,fSolvC,sSolv)

fCt = np.einsum(’ij,ij->i’,fSolvC,tSolv)

np.add.at(Gc[a.index], tuple(np.stack((distBin,thetaBin ,phiBin))), 1)

np.add.at(FrLJ[a.index][0], tuple(np.stack((distBin,thetaBin ,phiBin)))

, fLJr)

np.add.at(FrLJ[a.index][1], tuple(np.stack((distBin,thetaBin ,phiBin)))

, fLJs)

np.add.at(FrLJ[a.index][2], tuple(np.stack((distBin,thetaBin ,phiBin)))

, fLJt)

np.add.at(FrC[a.index][0], tuple(np.stack((distBin,thetaBin ,phiBin))),

fCr)
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np.add.at(FrC[a.index][1], tuple(np.stack((distBin,thetaBin ,phiBin))),

fCs)

np.add.at(FrC[a.index][2], tuple(np.stack((distBin,thetaBin ,phiBin))),

fCt)

def average_Fr(Gc, FrLJ, FrC):

# Average LJ radial force for each distance and cos(theta) bin

for a in range(nAtomTypes):

np.divide(FrLJ[a][0], Gc[a], out=FrLJ[a][0], where=Gc[a][:,:,:]!=0)

np.divide(FrLJ[a][1], Gc[a], out=FrLJ[a][1], where=Gc[a][:,:,:]!=0)

np.divide(FrLJ[a][2], Gc[a], out=FrLJ[a][2], where=Gc[a][:,:,:]!=0)

np.divide(FrC[a][0], Gc[a], out=FrC[a][0], where=Gc[a][:,:,:]!=0)

np.divide(FrC[a][1], Gc[a], out=FrC[a][1], where=Gc[a][:,:,:]!=0)

np.divide(FrC[a][2], Gc[a], out=FrC[a][2], where=Gc[a][:,:,:]!=0)

def volume_correct(Gc, Gr):

## Volume Correct

for a in range(nAtomTypes):

for i in range(nDistBins):

for j in range(nThetaBins):

for k in range(nPhiBins):

Gr[a, i, j, k] = Gc[a,i,j,k] / (4*pi*((i+0.5)*binDistSize +

histDistMin)**2)

def normalize_Gr(Gr):

## Normalize

## have to normalize after volume correction because the ’bulk’ g(r) value changes

after volume correction.

norm_points = 10

for a in range(nAtomTypes):

# normalize by the last ’norm_points’ distance points

g_norm = 0.

for k in range(nPhiBins):

for j in range(nThetaBins):

for i in range(norm_points):

g_norm += Gr[a, -(i+1), j, k]

g_norm /= float(norm_points*nThetaBins*nPhiBins)

for k in range(nPhiBins):

for j in range(nThetaBins):

for i in range(nDistBins):

Gr[a, i, j, k] /= g_norm

def write_out_1(outFile, Gc, Gr, FrLJ, FrC):

## Open Output File

out = open(outFile,’w’)

out.write("## 1: Distance Bin\n")

out.write("## 2: Cos(theta) Bin\n")

out.write("## 3: Phi/3 Bin\n")

out.write("## 4: g(r)\n")

out.write("## 5: <fLJ . r>\n")

out.write("## 6: <fLJ . s>\n")

out.write("## 7: <fLJ . t>\n")

out.write("## 8: <fC . r>\n")

out.write("## 9: <fC . s>\n")

out.write("## 10: <fC . t>\n")

out.write("## 11: g(r) Counts\n")

for i in range(nDistBins):

for j in range(nThetaBins):
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for k in range(nPhiBins):

out.write("%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f

%10.5f %10.5f %10.5f\n" %((i+0.5)*binDistSize+histDistMin , (j+0.5)*binThetaSize+

histThetaMin , (k+0.5)*binPhiSize+histPhiMin , Gr[0,i,j,k], FrLJ[0,0,i,j,k], FrLJ

[0,1,i,j,k], FrLJ[0,2,i,j,k], FrC[0,0,i,j,k], FrC[0,1,i,j,k], FrC[0,2,i,j,k], Gc[0,

i,j,k]))

## Close Output File

out.close

def write_out_2(outFile, Gc, Gr, FrLJ, FrC):

## Open Output File

out = open(outFile,’w’)

out.write("## 1: Distance Bin\n")

out.write("## 2: Cos(theta) Bin\n")

out.write("## 3: Phi/3 Bin\n")

out.write("## 4: g(r) +\n")

out.write("## 5: g(r) -\n")

out.write("## 6: <fLJ . r> +\n")

out.write("## 7: <fLJ . s> +\n")

out.write("## 8: <fLJ . t> +\n")

out.write("## 9: <fLJ . r> -\n")

out.write("## 10: <fLJ . s> -\n")

out.write("## 11: <fLJ . t> -\n")

out.write("## 12: <fC . r> +\n")

out.write("## 13: <fC . s> +\n")

out.write("## 14: <fC . t> +\n")

out.write("## 15: <fC . r> -\n")

out.write("## 16: <fC . s> -\n")

out.write("## 17: <fC . t> -\n")

out.write("## 18: g(r) Counts +\n")

out.write("## 19: g(r) Counts -\n")

for i in range(nDistBins):

for j in range(nThetaBins):

for k in range(nPhiBins):

out.write("%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f

%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f\n" %((

i+0.5)*binDistSize+histDistMin , (j+0.5)*binThetaSize+histThetaMin , (k+0.5)*

binPhiSize+histPhiMin , Gr[0,i,j,k], Gr[1,i,j,k], FrLJ[0,0,i,j,k], FrLJ[0,1,i,j,k],

FrLJ[0,2,i,j,k], FrLJ[1,0,i,j,k], FrLJ[1,1,i,j,k], FrLJ[1,2,i,j,k], FrC[0,0,i,j,k],

FrC[0,1,i,j,k], FrC[0,2,i,j,k], FrC[1,0,i,j,k], FrC[1,1,i,j,k], FrC[1,2,i,j,k], Gc

[0,i,j,k], Gc[1,i,j,k]))

## Close Output File

out.close

# main program

def mainLJ():

# read in command line argument (cfg file)

cfgFile = sys.argv[1]

print(’Reading input and initializing’)

# read cfg file

parse_config_file(cfgFile)

# parse the prmtop file

parse_prmtop_bonded(topFile)

##########

# initialize 2D arrays

# initialize with total dist, theta, and phi bins
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Gc,Gr,FrLJ,FrC = initialize_arrays()

# loop through trajectory and calculate g(r,cos[theta]), force(r,cos[theta]),

boltzmann(r,cos[theta])

print(’Looping through trajectory time steps...’)

iterate(Gc, FrLJ, FrC)

# average the force and boltzmann by the g(r,cos[theta])

print(’Volume correcting...’)

average_Fr(Gc, FrLJ, FrC)

# volume correct g(r,cos[theta])

volume_correct(Gc, Gr)

# normalize g(r,cos[theta])

normalize_Gr(Gr)

# write 2D output file: Gc, frc, boltz, integrated_force

print(’Write 2D output file’)

if nAtomTypes == 1:

write_out_1(outFile, Gc, Gr, FrLJ, FrC)

elif nAtomTypes == 2:

write_out_2(outFile, Gc, Gr, FrLJ, FrC)

print(’All Done!’)

# Run Main program code.

mainLJ()

2.2 Chemical System IS-SPA 3D Histogram Measurement Code: gr3d.p2.py

# python3

import numpy as np

import MDAnalysis

import time

import math

import sys

# FILE VARIABLES

configFile = sys.argv[1]

psf = None

outname = None

coordDcd = None

forceDcd = None

param = None

coord = None

force = None

temperature = None

dims = None

hdims = None

debug = False

junkCounter = 0 # counter used for debugging

# DEFUALT GLOBAL VARIABLES

rMin = 0

rMax = 25

binSize = 0.1

binCount = 0

elecPermittivity = 8.854e-12 # electrical permittivity of vacuum C^2/Jm
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boltzmann = 1.9872041e-3 # boltzmann constant in kcal/(K mol)

rho = 0

epsilon = [] # list of epsilon values for all non-solvent atoms

lj_rMin = [] # list of rMin values for all non-solvent atoms

d = 0 # offset from central carbon to center of volume exclusion

# Set debug mode from config file

def setDebug(cF):

global debug

txt = open(cF, ’r’)

line = txt.readline()

while line != "END CONFIG\n":

if line == "DEBUG MODE: ON\n":

debug = True

line = txt.readline()

# Get name of PSF file from config file

def getPsf(cF):

global psf

print(’\n\t***DCD Analysis***’)

if debug:

print(’\t\tDebug Mode ON’)

else:

print(’\t\tDebug Mode OFF’)

txt = open(cF, ’r’)

while psf is None:

line = txt.readline()

if line == ’PSF FILE:\n’:

psf = txt.readline()[:-1]

if debug:

print(’PSF File: {}’.format(psf))

elif line == ’END CONFIG FILE\n’:

print(’No PSF file found in config.’)

break

# Get name of PSF file from config file

def getOut(cF):

global outname

txt = open(cF, ’r’)

while outname is None:

line = txt.readline()

if line == ’OUTPUT FILE NAME:\n’:

outname = txt.readline()[:-1]

if debug:

print(’OUTPUT File: {}’.format(outname))

elif line == ’END CONFIG FILE\n’:

print(’No OUTPUT file found in config.’)

break

# Get name of Coordinate DCD files from config file

def getCoordDCDs(cF):

global coordDcd

coordDcd = []

txt = open(cF, ’r’)

while len(coordDcd) == 0:

line = txt.readline()

if line == ’COORD DCD FILES:\n’:

line = txt.readline()

while line != ’\n’:

if line == ’END CONFIG\n’:

print(’NO DCD FILES FOUND IN CONFIG’)

coordDcd.append(line[:-1])
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line = txt.readline()

if debug:

print(’Coordinate DCD files: {}’.format(coordDcd))

# Set coordinate max/min and binsize

def getCoordBounds(cF):

global dims,hdims

txt = open(cF,’r’)

line = txt.readline()

length1 = len("MIN DISTANCE: ")

length2 = len("MAX DISTANCE: ")

length3 = len("BIN SIZE: ")

length4 = len("OFFSET: ")

length5 = len("ATOM1: ")

length6 = len("ATOM2: ")

length7 = len("ATOM3: ")

global rMin, rMax, binSize, binCount, d, atom1, atom2, atom3

# scan config file for coord and bin values

while line != "END CONFIG\n":

line = txt.readline()

if line[:length1] == "MIN DISTANCE: ":

rem = -1 * (len(line) - length1)

rMin = int(line[rem:-1])

elif line[:length2] == "MAX DISTANCE: ":

rem = -1 * (len(line) - length2)

rMax = int(line[rem:-1])

elif line[:length3] == "BIN SIZE: ":

rem = -1 * (len(line) - length3)

binSize = float(line[rem:-1])

elif line[:length4] == "OFFSET: ":

rem = -1 * (len(line) - length4)

d = float(line[rem:-1])

elif line[:length5] == "ATOM1: ":

rem = -1 * (len(line) - length5)

atom1 = str(line[rem:-1])

elif line[:length6] == "ATOM2: ":

rem = -1 * (len(line) - length6)

atom2 = str(line[rem:-1])

elif line[:length7] == "ATOM3: ":

rem = -1 * (len(line) - length7)

atom3 = str(line[rem:-1])

# Define subset of data without solvent

def parseWater():

# select all atoms that are not water or hydrogen

if debug:

print("\n--Reading DCD Data--\n\t- Parsing out WATER...\n")

global ionsCoord ,ionsForce

global H2OCoord,H2OForce

H2OCoord = coord.select_atoms("resname CL3")

ionsCoord = coord.select_atoms("resname PDI")

# Initialize MD Analysis

def initMDA():

global coord, dims, hdims, rMax, binCount, debug,force

m = False # Swtiched to True if user requests an rMax value greater than the

system allows

# coordinate universe

coord = MDAnalysis.Universe(psf, coordDcd)

dims = [coord.dimensions[0], coord.dimensions[1], coord.dimensions[2]]

hdims = [dims[0]/2,dims[1]/2,dims[2]/2]

rMaxLimit = np.sqrt((dims[0]**2) + (dims[1]**2) + (dims[2]**2))
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if rMax > rMaxLimit:

rMax = rMaxLimit

m = True

binCount = int((rMax - rMin)/binSize)

if debug:

print("--Dimensions of System--")

print("\tTotal System Dimensions: {} A x {} A x {} A".format(dims[0], dims[1],

dims[2]))

print("\tMin Interparticle Distance Considered: {} A".format(rMin))

if m:

print("\tMax Interparticle Distance Considered: {} A\tThe requested rMax

value was bigger than the simulation box size permits, and was truncated".format(

rMax))

else:

print("\tMax Interparticle Distance Considered: {} A".format(rMax))

print("\tBin Size Used: {}".format(binSize))

print("\tBin Count: {}".format(binCount))

print("\tExcluded Volume Offset: {}".format(d))

# Truncate solvent out of the data

parseWater()

# Print log data

printLogData(debug)

# Print log data

def printLogData(d):

if d:

global ionsCoord

print("--Simulation Log Info--")

# print list of atoms being considered

print("DCD coord universe:", len(ionsCoord), "atom(s)")

for i in range(0, len(ionsCoord)):

print("\t", ionsCoord[i])

# some general log info

print("\nNumber of time steps in coordinate trajectory:", len(coord.trajectory

))

# Iterate through all pairs of particles in all simulations ,

# identifying each pair of particles , performing computations ,

# and storing the results in a data set

def iterate():

global plots,dims,hdims

ngo=0

nWat=len(H2OCoord.atoms)

hrMax=0.5*rMax

nH2O=np.zeros((binCount ,binCount ,binCount),dtype=np.int)

pH2O=np.zeros((binCount ,binCount ,binCount ,3),dtype=np.float)

p2H2O=np.zeros((binCount,binCount,binCount ,3,3),dtype=np.float)

if debug:

print("-- Iterating through all particle pairs in first time step to establish

pair types")

for ts in coord.trajectory: # Iterate through all time steps

dims = [coord.dimensions[0], coord.dimensions[1], coord.dimensions[2]]

hdims = [dims[0]/2.,dims[1]/2.,dims[2]/2.]

ngo+=1

sys.stdout.write("Progress: {0:.2f}% Complete\r".format((float(ts.frame) /

float(len(coord.trajectory))) * 100))

sys.stdout.flush()

# Compute radial vectors
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if ts.frame <= 0:

# Compute solute vectors

axes=np.zeros((3,3),dtype=float) # these dimensions because each atom

position is a 3 element sequence

sel1 = atom1 # "resid 1 and name "+atom1

sel2 = atom2

if atom3 != ’.’: # NOTE: for LJ sphere dimer simulations use atom3 = . in

the config file

sel3 = atom3

sel1_univ = coord.select_atoms(sel1)

sel2_univ = coord.select_atoms(sel2)

if atom3 != ".":

sel3_univ = coord.select_atoms(sel3)

# Atom positions

if atom3 != ’.’:

atom1_pos = sel1_univ.atoms[0].position

atom2_pos = sel2_univ.atoms[0].position

atom3_pos = sel3_univ.atoms[0].position

else:

atom1_pos = sel1_univ.atoms[0].position

atom2_pos = sel1_univ.atoms[1].position

atom3_pos = np.zeros(3, dtype=float)

# Find 3 axes of solute

r1 = atom2_pos -atom1_pos

r1 /= np.sqrt(np.dot(r1,r1))

t1 = atom3_pos -atom1_pos

r3 = np.cross(r1,t1)

r3 /= np.sqrt(np.dot(r3,r3))

r2 = np.cross(r3,r1)

r2 /= np.sqrt(np.dot(r2,r2))

# Define 3 axes of solute

axes[0] = r1

axes[1] = r2

axes[2] = r3

rCen=np.zeros(3)

mtot=0

for a in ionsCoord:

rCen+=a.position*a.mass

mtot+=a.mass

rCen=rCen/mtot

if debug:

print("-- Printing the .crd file")

outCrd = open(outname+".p2.crd", ’w’)

ntyp=0

i=-1

typlist=[]

atyp=np.zeros(len(ionsCoord),dtype=np.int)

for a in ionsCoord:

i+=1

inew=1

for jtyp in typlist:

if a.type_index == jtyp[1]:

atyp[i]=jtyp[0]

inew=0

if inew == 1:

ntyp+=1

typlist.append([ntyp,a.type_index])

atyp[i]=ntyp

i=0

outCrd.write("{:4d} {:4d}\n".format(len(ionsCoord),ntyp))

for a in ionsCoord:

rNew = np.dot(axes,a.position -rCen)
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outCrd.write("{:3d} {:12.6f} {:12.6f} {:12.6f}\n".format(atyp[i],rNew

[0],rNew[1],rNew[2])) # write rotated solute coordinates

#outCrd.write("{:3d} {:12.6f} {:12.6f} {:12.6f}\n".format(atyp[i],a.

position[0]-rCen[0],a.position[1]-rCen[1],a.position[2]-rCen[2]))

i+=1

outCrd.close()

# Calculate x,y,z bin

#rWat=H2OCoord.atoms[np.arange(1,nWat,5)].positions -rCen # original

rWat = H2OCoord.atoms[np.arange(1,nWat,5)].positions - rCen # C center

pWat = H2OCoord.atoms[np.arange(1,nWat,5)].positions - H2OCoord.atoms[np.

arange(0,nWat,5)].positions # points from H --> C

np.divide(pWat, np.sqrt(np.einsum("ij,ij->i",pWat,pWat))[:,None], out=pWat) #

normalize by magnitude , make them all unit vectors

rWat += d*pWat # center of excluded volume. Add because p points from H-->C

rWat = np.einsum(’ij,kj->ki’,axes,rWat) # XXX rotate into solute axes

pWat = np.einsum(’ij,kj->ki’,axes,pWat) # XXX rotate into solute axes

ir = np.where(np.any(abs(rWat)>hrMax,axis=1))

rWat = np.delete(rWat,ir,axis=0)

pWat = np.delete(pWat,ir,axis=0)

pWat2=np.einsum(’ij,ik->ijk’,pWat,pWat)

ix=np.ndarray.astype((rWat[:]+hrMax)/binSize,np.int)

np.add.at(nH2O,tuple(ix.T),1)

np.add.at(pH2O,tuple(ix.T),pWat)

np.add.at(p2H2O,tuple(ix.T),pWat2)

#p0=np.linalg.norm(pWat[0])

#print(p0)

#p02=p0**2

dxH2O=1/(binSize**3*0.00750924*ngo)

#np.divide(pH2O,p0*nH2O[:,:,:,None],out=pH2O,where=nH2O[:,:,:,None]!=0)

np.divide(pH2O,nH2O[:,:,:,None],out=pH2O,where=nH2O[:,:,:,None]!=0)

#np.divide(p2H2O,p02*nH2O[:,:,:,None,None],out=p2H2O,where=nH2O[:,:,:,None,None

]!=0)

print("Writing output file ==> {}.p2.gr3".format(outname))

outFile = open(outname+".p2.gr3", ’w’)

outFile.write("# 1: X Axis # 8: Counts\n")

outFile.write("# 2: Y Axis\n")

outFile.write("# 3: Z Axis\n")

outFile.write("# 4: g(r)\n")

outFile.write("# 5: px(r)\n")

outFile.write("# 6: py(r)\n")

outFile.write("# 7: pz(r)\n")

#outFile.write("{:12d}\n".format(binCount*binCount*binCount))

for i in range(binCount):

for j in range(binCount):

for k in range(binCount):

outFile.write("{:7.3f} {:7.3f} {:7.3f} {:18.12f} {:18.12f} {:18.12f}

{:18.12f} {:8d}\n".format((i+0.5)*binSize-hrMax ,(j+0.5)*binSize-hrMax,(k+0.5)*

binSize-hrMax,nH2O[i][j][k]*dxH2O,pH2O[i][j][k][0],pH2O[i][j][k][1],pH2O[i][j][k

][2],nH2O[i][j][k]))

#outFile.write("# 1: X Axis # 8: px(r) Off-Diagonal Variance\n")

#outFile.write("# 2: Y Axis # 9: py(r) Off-Diagonal Variance\n")

#outFile.write("# 3: Z Axis # 10: pz(r) Off-Diagonal Variance\n")

#outFile.write("# 4: g(r) # 11: On-Diagonal Variance\n")

#outFile.write("# 5: px(r) # 12: On-Diagonal Variance\n")

#outFile.write("# 6: py(r) # 13: Counts\n")

#outFile.write("# 7: pz(r)\n")

#outFile.write("{:7.3f} {:7.3f} {:7.3f} {:18.12f} {:18.12f} {:18.12f}

{:18.12f} {:18.12f} {:18.12f} {:18.12f} {:18.12f} {:18.12f} {:8d}\n".format((i+0.5)

*binSize-hrMax ,(j+0.5)*binSize-hrMax ,(k+0.5)*binSize-hrMax,nH2O[i][j][k]*dxH2O,pH2O

[i][j][k][0],pH2O[i][j][k][1],pH2O[i][j][k][2],p2H2O[i][j][k][0][0],p2H2O[i][j][k

][0][1],p2H2O[i][j][k][0][2],p2H2O[i][j][k][1][1],p2H2O[i][j][k][1][2],nH2O[i][j][k

]))

outFile.close()
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####

# main program

def main():

# access global var for config file

global configFile , pdb

start = time.time()

# Read config setting for debug mode

setDebug(configFile)

# Get name of PSF file from config file

getPsf(configFile)

# Get name of OUTPUT file from config file

getOut(configFile)

# Get names of Coord DCD files from config file

getCoordDCDs(configFile)

# Define coordinate min/max and bin size

getCoordBounds(configFile)

# Initialize MD Analysis

initMDA()

# Iterate over time steps, and perform MD calculations

iterate()

end = time.time()

t = end - start

print("\nTotal running time: {:.2f} sec".format(t))

# Main program code

main()

2.3 Fitting IS-SPA 3D Histogram "2: SPA.poisson.omp.rc16.sym.f

This code was written by Dr. Peter "Rex" Lake with minor alterations by myself.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PROGRAM fit_gr

include ’omp_lib.h’

integer nmax,mpts,hmax

parameter(nmax=96,mpts=500000000,hmax=160)

double precision y(mpts),x(3,mpts),wy(mpts)

double precision rmin(nmax)

double precision xpos(3,nmax)

double precision g(nmax*hmax)

double precision g2(nmax*hmax),g3(nmax*hmax)

integer ni(nmax*hmax)

integer imap(nmax*hmax)

double precision nc(nmax*hmax,nmax*hmax)

double precision nc2(nmax*hmax,nmax*hmax)

integer ityp(nmax),inow(nmax)

double precision xnow,xmax,y0,e0,s0,p1,p2,p3, binSize

integer i,j,jmin,npts,ntyp,npar,k,jp,kp,nmat,igo,ncpu,jt

integer ncmts

character*128 crdF, gr3F, outF

C

call omp_set_dynamic(.false.)

C !xxx
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open(20,file=’poisson1.inp’,status=’old’)

read(20,*)

read(20,’(a)’) crdF

read(20,*)

read(20,’(a)’) gr3F

read(20,*)

read(20,’(a)’) outF

read(20,*)

read(20,*) y0

read(20,*)

read(20,*) ncpu

read(20,*)

read(20,*) ncmts

read(20,*)

read(20,*) npts

read(20,*)

read(20,*) binSize

close(20)

write(6,*) ’crd File: ’, crdF

write(6,*) ’gr3 File: ’, gr3F

write(6,*) ’Output File: ’, outF

write(6,*) ’One Count Density: ’, y0

write(6,*) ’CPUs: ’, ncpu

write(6,*) ’Comment Lines: ’, ncmts

write(6,*) ’Data Lines (gr3): ’, npts

write(6,*) ’Bin Size: ’, binSize

C !xxx

C read in the molecule coordinates and types

open(20,FILE=crdF,STATUS=’old’)

read(20,*) npar,ntyp

print*, ’Number of Atoms and Types ==> ’, npar, ntyp

do i=1,npar

read(20,*) ityp(i),xpos(1,i),xpos(2,i),xpos(3,i)

enddo

close(20)

C y0 = is the density value of a single count

e0=dlog(y0) -0.577215665d0

s0=3.1415926535898d0**2/6.d0

C

do i=1,nmax*hmax

do j=1,nmax*hmax

nc(j,i)=0.d0

enddo

g(i)=0.d0

ni(i)=0

enddo

C read in the distribution function

open(20,FILE=gr3F,STATUS=’old’)

C read(20,*) npts

do i = 1, ncmts !xxx

read(20,*)

end do

do i=1,npts

read(20,*) x(1,i),x(2,i),x(3,i),y(i) !,p1,p2,p3

jp=int(y(i)/y0+0.1d0)

y(i)=e0

wy(i)=s0

do j=1,jp

y(i)=y(i)+1.d0/dble(j)

wy(i)=wy(i)-1.d0/dble(j*j)

enddo

wy(i)=1.d0/wy(i)

do j=1,npar

jt=ityp(j)

xnow=(x(1,i)-xpos(1,j))**2+
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& (x(2,i)-xpos(2,j))**2+

& (x(3,i)-xpos(3,j))**2

if(xnow.lt.256.d0) then

k=int(dsqrt(xnow)/0.1d0)+1

k=hmax*(jt-1)+k

ni(k)=ni(k)+int(wy(i)+0.1d0)

endif

enddo

enddo

close(20)

C

write(6,*) ’finding rmin’

C do i=1,ntyp

C rmin(i)=1000.d0

C enddo

C do i=1,npts

C if(wy(i).gt.1.d0/s0+0.001d0) then

C do j=1,npar

C jt=ityp(j)

C xnow=(x(1,i)-xpos(1,j))**2

C & +(x(2,i)-xpos(2,j))**2

C & +(x(3,i)-xpos(3,j))**2

C if(xnow.lt.rmin(jt)) rmin(jt)=xnow

C enddo

C endif

C enddo

C do i=1,ntyp

C write(6,*) rmin(i)

C enddo

nmat=0 !debug

do i=1,ntyp

jp=(i-1)*hmax+1

j=1

do while(ni(jp).le.1)

jp=jp+1

if (ni(jp).eq.1) print*, ’shit’,i

j=j+1

enddo

nmat=nmat+hmax-j+1

rmin(i)=dble(j-1)*0.1d0

rmin(i)=rmin(i)*rmin(i)

enddo

print*, ’nmat:’, nmat

C

write(0,*) ’looping over grid’

do i=1,npts

if(wy(i).gt.0.1d0) then

igo=1

j=1

jt=ityp(j)

do while (igo.gt.0)

xnow=(x(1,i)-xpos(1,j))**2

& +(x(2,i)-xpos(2,j))**2

& +(x(3,i)-xpos(3,j))**2

if(xnow.gt.rmin(jt)) then

xnow=dsqrt(xnow)

inow(j)=int(xnow/0.1d0)+1

if(inow(j).le.hmax) then

inow(j)=hmax*(jt-1)+inow(j)

igo=igo+1

else

inow(j)=0

endif

else

igo=0
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endif

if(j.eq.npar) then

if (igo.gt.1) then

igo=-1

else

igo=0

endif

else

j=j+1

jt=ityp(j)

endif

enddo

C

if(igo.eq.-1) then

do j=1,npar

jp=inow(j)

if(jp.gt.0) then

g(jp)=g(jp)+wy(i)*y(i)

do k=1,npar

kp=inow(k)

if(kp.gt.0) then

nc(kp,jp)=nc(kp,jp)+wy(i)

endif

enddo

endif

enddo

endif

endif

enddo

C

write(0,*) ’reordering matrix’

nmat=0

do i=1,hmax*nmax

if(nc(i,i).gt.0.5d0) then

C if(mod(i,hmax).ne.120.or.i.eq.120) then

nmat=nmat+1

if(nmat.ne.i) then

do j=1,hmax*nmax

nc(j,nmat)=nc(j,i)

enddo

do j=1,hmax*nmax

nc(nmat,j)=nc(i,j)

enddo

g(nmat)=g(i)

endif

imap(i)=nmat

C else

C nmat=nmat+1

C do j=1,hmax*nmax

C nc(nmat,j)=0.d0

C enddo

C nc(nmat,nmat)=1.d0

C jp=imap(i-hmax)

C nc(nmat,jp)=-1.d0

C g(nmat)=0.d0

C imap(i)=nmat

C imap(i)=0

C endif

else

imap(i)=0

endif

enddo

C

write(0,*) ’total:’,nmat
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do i=1,nmat

do j=1,nmat

nc2(j,i)=nc(j,i)

enddo

g2(i)=g(i)

enddo

call inv(nc,g,nmat,ncpu)

C

do i=1,nmat

g3(i)=-g2(i)

do j=1,nmat

g3(i)=g3(i)+nc2(j,i)*g(j)

enddo

enddo

C

open(20,FILE=outF,STATUS=’unknown’)

jp=0

do i=1,ntyp

do j=1,hmax

jp=jp+1

xnow=(j-0.5d0)*0.1d0

kp=imap(jp)

if(kp.eq.0) then

write(20,*) xnow,0.d0,i,0.d0

else

write(20,*) xnow,g(kp),i,g3(kp)

endif

enddo

enddo

close(20)

C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine inv(mat,val,nmat,ncpu)

include ’omp_lib.h’

integer nmax,hmax

parameter(nmax=96,hmax=160)

double precision mat(nmax*hmax,nmax*hmax)

double precision val(nmax*hmax)

integer irow2(20),icol2(20)

double precision big2(20)

integer ipiv(nmax*hmax)

integer i,j,k,irow,icol,nmat,imat,ncpu,tid

integer indxc(nmax*hmax),indxr(nmax*hmax)

double precision big,pivinv,dum

C

do i=1,nmat

ipiv(i)=0

enddo

C

do i=1,nmat

do j=1,ncpu

big2(j)=0.d0

enddo

C$OMP parallel num_threads(ncpu) default(none)

C$OMP& private(j,k,tid)

C$OMP& shared(i,nmat,ipiv,mat,big2,irow2,icol2)

tid=omp_get_thread_num()+1

C$OMP do schedule(guided)

do j=1,nmat

if(ipiv(j).eq.0) then

do k=1,nmat

if(ipiv(k).eq.0) then
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if(abs(mat(j,k)).ge.big2(tid)) then

big2(tid)=abs(mat(j,k))

irow2(tid)=j

icol2(tid)=k

endif

endif

enddo

endif

enddo

C$OMP enddo

C$OMP end parallel

big=big2(1)

irow=irow2(1)

icol=icol2(1)

do j=2,ncpu

if(big2(j).gt.big) then

big=big2(j)

irow=irow2(j)

icol=icol2(j)

endif

enddo

ipiv(icol)=ipiv(icol)+1

C

if(irow.ne.icol) then

C$OMP parallel do schedule(static) num_threads(ncpu) default(none)

C$OMP& private(j,dum)

C$OMP& shared(nmat,mat,irow,icol)

do j=1,nmat

dum=mat(irow,j)

mat(irow,j)=mat(icol,j)

mat(icol,j)=dum

enddo

C$OMP end parallel do

dum=val(irow)

val(irow)=val(icol)

val(icol)=dum

endif

indxr(i)=irow

indxc(i)=icol

pivinv=1.d0/mat(icol,icol)

mat(icol,icol)=1.d0

C$OMP parallel do schedule(static) num_threads(ncpu) default(none)

C$OMP& private(j,dum)

C$OMP& shared(nmat,mat,icol,pivinv)

do j=1,nmat

mat(icol,j)=mat(icol,j)*pivinv

enddo

C$OMP end parallel do

val(icol)=val(icol)*pivinv

C

C$OMP parallel do schedule(guided) num_threads(ncpu) default(none)

C$OMP& private(j,dum,k)

C$OMP& shared(nmat,mat,icol,val)

do j=1,nmat

if(j.ne.icol) then

dum=mat(j,icol)

mat(j,icol)=0.d0

do k=1,nmat

mat(j,k)=mat(j,k)-mat(icol,k)*dum

enddo

val(j)=val(j)-val(icol)*dum

endif

enddo

C$OMP end parallel do

enddo
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C

C do i=nmat,1,-1

C if(indxr(i).ne.indxc(i)) then

C do j=1,nmat

C dum=mat(j,indxr(i))

C mat(j,indxr(i))=mat(j,indxc(i))

C mat(j,indxc(i))=dum

C enddo

C endif

C enddo

C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

2.4 Poisson Regression Fitting Code: SPA.poisson2.omp.rc16.sym.f

This code was written by Dr. Peter "Rex" Lake with minor alterations by myself.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PROGRAM fit_gr

include ’omp_lib.h’

integer nmax,mpts,hmax

double precision boxSize

parameter(nmax=96,mpts=500000000,hmax=160,boxSize=25.d0)

double precision y,hy0 ,y0

double precision rmin(nmax)

double precision x(3,nmax)

double precision g(nmax*hmax)

double precision a(nmax*hmax,nmax*hmax)

double precision b(nmax*hmax),b0(nmax*hmax)

integer ityp(nmax),inow(nmax),imin(2,nmax)

double precision xnow,xmax,p1,p2,p3,x1,x2,x3

double precision dnow,dmax,gnow,r0,r2

double precision lnp, binSize

integer ix,iy,iz,ip,ir,istop,ncell

integer i,j,jmin,npts,ntyp,npar,k,jp,kp,nmat,igo,ncpu,ngo,jt

character*128 crdF, gr3F, outF, pos1F

integer ncmts

integer ib(nmax*hmax)

integer bins

C

call omp_set_dynamic(.false.)

C !xxx

open(20,file=’poisson2.inp’,status=’old’)

read(20,*)

read(20,’(a)’) crdF

read(20,*)

read(20,’(a)’) gr3F

read(20,*)

read(20,’(a)’) pos1F

read(20,*)

read(20,’(a)’) outF

read(20,*)

read(20,*) y0

read(20,*)

read(20,*) ncpu

read(20,*)

read(20,*) ncmts

read(20,*)

read(20,*) npts

read(20,*)

read(20,*) binSize

127



close(20)

write(6,*) ’crd File: ’, crdF

write(6,*) ’gr3 File: ’, gr3F

write(6,*) ’Poisson1 File: ’, pos1F

write(6,*) ’Output File: ’, outF

write(6,*) ’One Count Density: ’, y0

write(6,*) ’CPUs: ’, ncpu

write(6,*) ’Comment Lines: ’, ncmts

write(6,*) ’Data Lines (gr3): ’, npts

write(6,*) ’Bin Size: ’, binSize

C !xxx

C Half the density reported in a cell with one count.

hy0=y0*0.5d0

C

C read in the molecule coordinates and types

open(20,FILE=crdF,STATUS=’old’)

read(20,*) npar,ntyp

print*, ’Number of Atoms and Types ==> ’, npar, ntyp

do i=1,npar

read(20,*) ityp(i),x(1,i),x(2,i),x(3,i)

enddo

close(20)

C read in previous fit - determine imin

open(20,FILE=pos1F,STATUS=’unknown’)

nmat=0

do i=1,ntyp

imin(1,i)=nmat

do j=1,hmax

read(20,*) xnow,gnow

if(dabs(gnow).lt.1.d-6) then

imin(2,i)=j

rmin(i)=xnow

else

nmat=nmat+1

g(nmat)=gnow

endif

enddo

rmin(i)=rmin(i)+0.05d0

rmin(i)=rmin(i)*rmin(i)

enddo

close(20)

C

do i=1,nmat

b0(i)=0.d0

enddo

C read in the distribution function

write(0,*) ’reading g(r)’

open(20,FILE=gr3F,STATUS=’old’)

C read(20,*) npts

do i = 1, ncmts !xxx

read(20,*)

end do

do i=1,npts

read(20,*) x1,x2,x3,y !,p1,p2,p3

if(y.gt.hy0) then

igo=1

j=1

do while (igo.gt.0)

jt=ityp(j)

r2=(x1-x(1,j))**2+(x2-x(2,j))**2+(x3-x(3,j))**2

if(r2.lt.256.d0) igo=igo+1

if(r2.lt.rmin(jt)) igo=0

j=j+1

128



if((igo.ne.0).and.(j.gt.npar)) igo=-igo

end do

if(igo.lt.-1) then

do j=1,npar

jt=ityp(j)

r2=(x1-x(1,j))**2+(x2-x(2,j))**2+(x3-x(3,j))**2

if (r2.lt.256.d0) then

r0=dsqrt(r2)

ir=int(r0/0.1d0)+1

k=imin(1,jt)+ir-imin(2,jt)

if (k==0) then !debug

print*, ’k is 0!’, jt,imin(1,jt),ir,imin(2,jt),r0

flush(6)

end if

b0(k)=b0(k)-y

endif

enddo

endif

endif

enddo

close(20)

do i=1,nmat

if (b0(i).eq.0) print*, i, nmat, npts

end do

print*, ’Donee’

C

istop=0

do while (istop.eq.0)

do i=1,nmat

do j=1,nmat

a(j,i)=0.d0

enddo

b(i)=b0(i)

ib(i)=0

enddo

C

write(0,*) ’looping over grid’

bins=int(2*boxSize/binSize+0.1d0)

print*, ’bins of box:’, bins

do ix=1,bins

x1=(dble(ix)-0.5d0)*binSize-boxSize

do iy=1,bins

x2=(dble(iy)-0.5d0)*binSize-boxSize

do iz=1,bins

x3=(dble(iz)-0.5d0)*binSize-boxSize

C

igo=1

gnow=0.d0

j=1

jt=ityp(j)

do while (igo.gt.0)

xnow=(x(1,j)-x1)**2+(x(2,j)-x2)**2+(x(3,j)-x3)**2

if(xnow.gt.rmin(jt)) then

xnow=dsqrt(xnow)

ip=int(xnow/0.1d0)+1

if(ip.le.hmax) then

ip=imin(1,jt)+ip-imin(2,jt)

gnow=gnow+g(ip)

inow(j)=ip

igo=igo+1

else

inow(j)=0

endif

else
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igo=0

endif

if(j.eq.npar) then

if (igo.gt.1) then

igo=-1

else

igo=0

endif

else

j=j+1

jt=ityp(j)

endif

enddo

C

if(igo.eq.-1) then

gnow=dexp(gnow)

do j=1,npar

jp=inow(j)

if(jp.gt.0) then

b(jp)=b(jp)+gnow

ib(jp)=ib(jp)+1

do k=1,npar

kp=inow(k)

if(kp.gt.0) then

a(kp,jp)=a(kp,jp)+gnow

endif

enddo

endif

enddo

endif

enddo

enddo

enddo

C

write(0,*) ’total:’,nmat

call inv(a,b,nmat,ncpu)

dmax=0.d0

do i=1,nmat

dnow=dabs(b(i))

if(dnow.gt.dmax) dmax=dnow

g(i)=g(i)-b(i)

enddo

C

write(0,*) dmax

if (dmax.lt.0.01d0) istop=1

C

open(20,FILE=outF,STATUS=’unknown’)

jp=0

do i=1,ntyp

do j=1,imin(2,i)

xnow=(j-0.5d0)*0.1d0

write(20,*) xnow,0.d0,i,-1

enddo

do j=imin(2,i)+1,hmax

jp=jp+1

xnow=(j-0.5d0)*0.1d0

write(20,*) xnow,g(jp),i,ib(jp)

enddo

enddo

close(20)

enddo

C lnp=0.d0

C write(0,*) ’reading g(r)’
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C write(fname ,887) lett(ngo)

C open(20,FILE=fname,STATUS=’old’)

C read(20,*) npts

C do i=1,npts

C read(20,*) x1,x2,x3,y,p1,p2,p3,wy

C

C igo=1

C gnow=g0

C j=1

C jt=ityp(j)

C do while (igo.gt.0)

C xnow=(x(1,j)-x1)**2+(x(2,j)-x2)**2+(x(3,j)-x3)**2

C if(xnow.gt.rmin(jt)) then

C xnow=dsqrt(xnow)

C ip=int(xnow/0.1d0)+1

C if(ip.le.hmax) then

C ip=imin(1,jt)+ip-imin(2,jt)

C gnow=gnow+g(ip)

C inow(j)=ip

C igo=igo+1

C else

C inow(j)=0

C endif

C else

C igo=0

C endif

C if(j.eq.npar) then

C if (igo.gt.1) then

C igo=-1

C else

C igo=0

C endif

C else

C j=j+1

C jt=ityp(j)

C endif

C enddo

CC

C if(igo.eq.-1) then

C ncell=ncell+1

C lnp=lnp+lgamma(wy+1.d0)+dexp(gnow)-wy*gnow

C

C endif

C

C enddo

C close(20)

C write(0,*) ’-ln(p)=’,lnp

C write(0,*) ’ncell=’,ncell

C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine inv(mat,val,nmat,ncpu)

include ’omp_lib.h’

integer nmax,hmax

parameter(nmax=96,hmax=160)

double precision mat(nmax*hmax,nmax*hmax)

double precision val(nmax*hmax)

integer irow2(20),icol2(20)

double precision big2(20)

integer ipiv(nmax*hmax)

integer i,j,k,irow,icol,nmat,imat,ncpu,tid

integer indxc(nmax*hmax),indxr(nmax*hmax)
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double precision big,pivinv,dum

C

do i=1,nmat

ipiv(i)=0

enddo

C

do i=1,nmat

C write(0,*) i

do j=1,ncpu

big2(j)=0.d0

enddo

C$OMP parallel num_threads(ncpu) default(none)

C$OMP& private(j,k,tid)

C$OMP& shared(i,nmat,ipiv,mat,big2,irow2,icol2)

tid=omp_get_thread_num()+1

C$OMP do schedule(guided)

do j=1,nmat

if(ipiv(j).eq.0) then

do k=1,nmat

if(ipiv(k).eq.0) then

if(abs(mat(j,k)).ge.big2(tid)) then

big2(tid)=abs(mat(j,k))

irow2(tid)=j

icol2(tid)=k

endif

endif

enddo

endif

enddo

C$OMP enddo

C$OMP end parallel

big=big2(1)

irow=irow2(1)

icol=icol2(1)

do j=2,ncpu

if(big2(j).gt.big) then

big=big2(j)

irow=irow2(j)

icol=icol2(j)

endif

enddo

ipiv(icol)=ipiv(icol)+1

C

if(irow.ne.icol) then

C$OMP parallel do schedule(static) num_threads(ncpu) default(none)

C$OMP& private(j,dum)

C$OMP& shared(nmat,mat,irow,icol)

do j=1,nmat

dum=mat(irow,j)

mat(irow,j)=mat(icol,j)

mat(icol,j)=dum

enddo

C$OMP end parallel do

dum=val(irow)

val(irow)=val(icol)

val(icol)=dum

endif

indxr(i)=irow

indxc(i)=icol

pivinv=1.d0/mat(icol,icol)

mat(icol,icol)=1.d0

C$OMP parallel do schedule(static) num_threads(ncpu) default(none)

C$OMP& private(j,dum)

C$OMP& shared(nmat,mat,icol,pivinv)

do j=1,nmat
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mat(icol,j)=mat(icol,j)*pivinv

enddo

C$OMP end parallel do

val(icol)=val(icol)*pivinv

C

C$OMP parallel do schedule(guided) num_threads(ncpu) default(none)

C$OMP& private(j,dum,k)

C$OMP& shared(nmat,mat,icol,val)

do j=1,nmat

if(j.ne.icol) then

dum=mat(j,icol)

mat(j,icol)=0.d0

do k=1,nmat

mat(j,k)=mat(j,k)-mat(icol,k)*dum

enddo

val(j)=val(j)-val(icol)*dum

endif

enddo

C$OMP end parallel do

enddo

C

C do i=nmat,1,-1

C if(indxr(i).ne.indxc(i)) then

C do j=1,nmat

C dum=mat(j,indxr(i))

C mat(j,indxr(i))=mat(j,indxc(i))

C mat(j,indxc(i))=dum

C enddo

C endif

C enddo

C

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

2.5 IS-SPA 1-Dimensional: isspa1.1D.f90

! USAGE: ./this_file.x -cfg [CONFIGURATION FILE] -hist [3D HIST FILE]

!

!

! ^

! z|

! |

! | ^

! | /y

! | /

! <_______O_______|_______O_______ >

! -x 1 2 +x

! <-----R

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Modules !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! data for the density and force tables.

module histData

use prec

real(kind=dp),allocatable :: histDist(:), histCosTh(:), histPhi(:), g(:,:,:,:),

fLJr(:,:,:,:), fLJs(:,:,:,:), fLJt(:,:,:,:), &

& fCr(:,:,:,:), fCs(:,:,:,:), fCt(:,:,:,:), gc(:,:,:,:)

real(kind=dp),allocatable :: g2D(:,:,:), fLJr2D(:,:,:), fLJs2D(:,:,:), fCr2D(:,:,:)

, fCs2D(:,:,:)
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real(kind=dp),allocatable :: g1D(:,:), fLJr1D(:,:), fCr1D(:,:), g1D2(:,:), fLJr1D2

(:,:), fCr1D2(:,:)

real(kind=dp) :: histDistStepSize , histCosThStepSize , histPhiStepSize

integer :: histDistBins , histCosThBins , histPhiBins

end module histData

! data from the config file.

module cfgData

use prec

use constants

real(kind=dp),allocatable :: x_axis(:), z_axis(:), R_axis(:), fAvg(:,:), u_dir(:,:)

real(kind=dp) :: RStepSize , xzStepSize , R_min, R_max, xz_range , cfgCosThStepSize ,

cfgPsiStepSize , T, cut, offset, soluteChg(2), radius

character(len=8) :: c_explicit_R

integer :: cfgRBins , cfgCosThBins , cfgPhiBins , cfgPsiBins , nThreads

!

integer :: xBins, zBins

real(kind=dp) :: density = 0.00750924_dp ! numerical density of chloroforms per

Angstrom**3

real(kind=dp) :: cosTh_max = 1_dp

real(kind=dp) :: cosTh_min = -1_dp

real(kind=dp) :: phi_max = pi/3_dp

real(kind=dp) :: phi_min = 0_dp

real(kind=dp) :: psi_max = 2_dp*pi

real(kind=dp) :: psi_min = 0_dp

end module cfgData

! data for calculating cosTh value.

module angleData

use prec

real(kind=dp),allocatable :: sinThetaLF(:), cosThetaLF(:), sinPhiLF(:), cosPhiLF(:)

, sinPsiLF(:), cosPsiLF(:)

real(kind=dp) :: rSolv1(3), rSolv2(3), rSolvn(2), cosTh(2), phi(2), sSolv1(3),

tSolv1(3), sSolv1n, tSolv1n

!$omp THREADPRIVATE( rSolv1, rSolv2, rSolvn, sSolv1, sSolv1n, tSolv1, tSolv1n,

cosTh, phi )

end module angleData

! testing arrays for force and g(r)

module ctrlData

use prec

real(kind=dp),allocatable :: frcSPA(:,:,:,:), grSPA(:,:), explicitDist(:)

integer :: crdLines

logical :: explicit_R

end module ctrlData

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Main Program !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program compute_avgForce

use prec

implicit none

character(len=128) :: histFile, cfgFile, outFile

real(kind=dp) :: omp_get_wtime , ti, tf, seconds

integer :: hours, minutes

ti = omp_get_wtime()

! make list of average direct force from ’collapsed ’ file.

call parse_command_line(cfgFile)
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! read config file

call read_cfg(cfgFile, histFile , outFile)

! make list of average direct force from ’collapsed ’ file.

call make_hist_table(histFile)

! Now that we have the relevant information spline the g and f arrays along r.

call spline_hist_array

! read in LJ--LJ dist array from file

call R_list

! setup for computing the average force integral.

call setup_compute_avg_force

! compute average force integral.

call compute_avg_force

! integrate average force to get PMF.

call integrate_force

! write PMF output file

call write_output(outFile)

! Write time taken to finish calculation.

tf = omp_get_wtime()

hours = (tf-ti)/3600

minutes = mod((tf-ti),3600d0)/60

seconds = mod(mod((tf-ti),3600d0),60d0)

write(*,*) "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

write(*,’(a,i4,a,i2,a,f6.3,a)’) "Total time elapsed: ", hours, "h ", minutes, "m

", seconds, "s"

flush(6)

end program compute_avgForce

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Subroutines !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! parse commandline for relevant files.

subroutine parse_command_line(cfgFile)

implicit none

character(len=128) :: cfgFile

character(len=16) :: arg

integer :: i

logical :: cfgFileFlag , cfgExist

cfgFileFlag = .false.

cfgExist = .false.

i=1

do

call get_command_argument(i,arg)

select case (arg)

case (’-cfg’)

i = i+1

call get_command_argument(i,cfgFile)

cfgFileFlag=.true.

INQUIRE(FILE=cfgFile, EXIST=cfgExist)

write(*,*) ’Config File: ’, cfgFile
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write(*,*) ’Config File Exists: ’, cfgExist

case default

write(*,*) ’Unrecognized command-line option: ’, arg

write(*,*) ’Usage: compute_avgForce.x -cfg [cfg file]’

stop

end select

i = i+1

if (i.ge.command_argument_count()) exit

end do

if (cfgFileFlag.eqv..false.) then

write(*,*) "Must provide a cfg file using command line argument -cfg [cfg file

name]"

stop

end if

! ’ERROR STOP’ if either file doesn’t exist

if (cfgExist.eqv..false.) then

write(*,*) ’cfg file does not exist’

error stop

end if

flush(6)

end subroutine parse_command_line

! read python cfg file for g(r) parameters

subroutine read_cfg(cfgFile, histFile , outFile)

use cfgData

implicit none

character(len=128) :: cfgFile, histFile, outFile

character(len=256) :: line

character(len=32) :: firstWord , sep

integer :: ios

logical :: outFileFlag , histFileFlag , histExist , RstepSizeFlag , xzStepSizeFlag ,

RmaxFlag , RminFlag , xzRangeFlag , &

& thetaBinsFlag , phiBinsFlag , psiBinsFlag , c_explicit_RFlag , TFlag, cutFlag,

radiusFlag , offsetFlag , nThreadsFlag , &

& soluteChgFlag

histFileFlag = .false.; histExist = .false.

outFileFlag = .false.

RstepSizeFlag = .false.

xzStepSizeFlag = .false.

c_explicit_RFlag = .false.

RmaxFlag = .false.

RminFlag = .false.

xzRangeFlag = .false.

thetaBinsFlag = .false.

phiBinsFlag = .false.

psiBinsFlag = .false.

TFlag = .false.

cutFlag = .false.

radiusFlag = .false.

offsetFlag = .false.

nThreadsFlag = .false.

soluteChgFlag = .false.

ios = 0

open(20,file=cfgFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

136



call split(line,’=’,firstWord , sep)

if (line .ne. "") then

if (firstWord .eq. "hist_file") then

read(line,’(a)’) histFile

write(*,*) "Histogram File: ", histFile

histFileFlag = .true.

INQUIRE(FILE=histFile , EXIST=histExist) ! check if it exists

else if (firstWord .eq. "out_file") then

read(line,*) outFile

write(*,*) "Output File: ", outFile

outFileFlag = .true.

else if (firstWord .eq. "RStepSize") then

read(line,*) RStepSize

write(*,*) "PMF Step Size: ", RStepSize

RstepSizeFlag = .true.

else if (firstWord .eq. "xzStepSize") then

read(line,*) xzStepSize

write(*,*) "Solvent Grid Step Size: ", xzStepSize

xzStepSizeFlag = .true.

else if (firstWord .eq. "explicit_R") then

read(line,*) c_explicit_R

write(*,*) "Use Explicit R Values: ", c_explicit_R

c_explicit_RFlag = .true.

else if (firstWord .eq. "R_max") then

read(line,*) R_max

write(*,*) "R Maximum Value: ", R_max

RmaxFlag = .true.

else if (firstWord .eq. "R_min") then

read(line,*) R_min

write(*,*) "R Minimum Value: ", R_min

RminFlag = .true.

else if (firstWord .eq. "xz_range") then

read(line,*) xz_range

write(*,*) "XZ - Range: ", xz_range

xzRangeFlag = .true.

else if (firstWord .eq. "theta_bins") then

read(line,*) cfgCosThBins

write(*,*) "Theta Bins: ", cfgCosThBins

thetaBinsFlag= .true.

else if (firstWord .eq. "phi_bins") then

read(line,*) cfgPhiBins

write(*,*) "Phi Bins: ", cfgPhiBins

phiBinsFlag= .true.

else if (firstWord .eq. "psi_bins") then

read(line,*) cfgPsiBins

write(*,*) "Psi Bins: ", cfgPsiBins

psiBinsFlag= .true.

else if (firstWord .eq. "temperature") then

read(line,*) T

write(*,*) "Temperature (K): ", T

TFlag= .true.

else if (firstWord .eq. "bicubic_cutoff") then

read(line,*) cut

write(*,*) "Bicubic/Bilinear Cutoff: ", cut

cutFlag= .true.

else if (firstWord .eq. "solute_radius") then

read(line,*) radius

write(*,*) "Solute radius: ", radius

radiusFlag= .true.

else if (firstWord .eq. "offset") then

read(line,*) offset

write(*,*) "Solvent offset distance: ", offset

offsetFlag= .true.

else if (firstWord .eq. "num_threads") then

read(line,*) nThreads
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write(*,*) "Number of Parallel Threads: ", nThreads

nThreadsFlag= .true.

else if (firstWord .eq. "solute_charge") then

read(line,*) soluteChg(1)

soluteChg(2) = -soluteChg(1)

write(*,*) "Solute Charges: ", soluteChg

soluteChgFlag= .true.

end if

end if

end do

close(20)

if (histFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’hist_file ’ value"

stop

end if

if (histExist.eqv..false.) then

write(*,*) "Config file must point to a ’hist_file ’ that exists: ", histFile, "

doesn’t exist."

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (RstepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’RStepSize ’ value"

stop

end if

if (xzStepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xzStepSize ’ value"

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (c_explicit_RFlag.eqv..false.) then

write(*,*) "Config file must have a ’explicit_R ’ value"

stop

end if

if (RmaxFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_max’ value"

stop

end if

if (RminFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_min’ value"

stop

end if

if (xzRangeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xz_range’ value"

stop

end if

if (thetaBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’theta_bins ’ value"

stop

end if

if (phiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’phi_bins’ value"

stop

end if

if (psiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’psi_bins’ value"

stop

end if
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if (TFlag.eqv..false.) then

write(*,*) "Config file must have a ’temperature ’ value"

stop

end if

if (cutFlag.eqv..false.) then

write(*,*) "Config file must have a ’bicubic_cuttoff ’ value"

stop

end if

if (radiusFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_radius ’ value"

stop

end if

if (offsetFlag.eqv..false.) then

write(*,*) "Config file must have a ’offset’ value"

stop

end if

if (nThreadsFlag.eqv..false.) then

write(*,*) "Config file must have a ’num_threads ’ value"

stop

end if

if (soluteChgFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_charge ’ value"

stop

end if

flush(6)

end subroutine read_cfg

! read force file and make a lookup table.

subroutine make_hist_table(histFile)

use histData; use cfgData

implicit none

character(len=128) :: histFile

character(len=512) :: line

integer :: ios, ios2, i, j, k, nHistLines

real(kind=dp),allocatable :: histTmp(:,:)

! read number of lines in histFile and allocate that many points in temporary

histogram list, histTmp.

ios = 0; nHistLines = -1

open(20,file=histFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if (line(1:1) .ne. "#") then

nHistLines = nHistLines + 1

end if

end do

close(20)

write(*,*) "nHistLines", nHistLines

allocate( histTmp(19,nHistLines) )

! populate hist arrays

ios = 0; i = 1

open(20,file=histFile)

! read file ignoring comment lines at the beginning

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if ((line(1:1) .ne. "#") .and. (ios .ge. 0)) then

! r cos(Th) phi/3

read(line,*) histTmp(1,i), histTmp(2,i), histTmp(3,i), &

! g(r)+ g(r)-

& histTmp(4,i), histTmp(5,i), &
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! <fLJ.r>+ <fLJ.s>+ <fLJ.t>+

& histTmp(6,i), histTmp(7,i), histTmp(8,i), &

! <fLJ.r>- <fLJ.s>- <fLJ.t>-

& histTmp(9,i), histTmp(10,i), histTmp(11,i), &

! <fC.r>+ <fC.s>+ <fC.t>+

& histTmp(12,i), histTmp(13,i), histTmp(14,i), &

! <fC.r>- <fC.s>- <fC.t>-

& histTmp(15,i), histTmp(16,i), histTmp(17,i), &

! gc(r)+ gc(r)-

& histTmp(18,i), histTmp(19,i)

i = i + 1

end if

end do

close(20)

! Unique value determination

do i = 1, nHistLines

if (i .eq. 1) then

histDistBins = 1

ios = 0; ios2 = 0

else ! i = 2, nHistLines

if (( histTmp(1,i) .lt. (histTmp(1,i-1)-1d-6) ) .or. ( histTmp(1,i) .gt. (

histTmp(1,i-1)+1d-6) )) then

! note: this statement will trigger when a value in the first column (dist

) is different than the value in the row

! before it.

histDistBins = histDistBins + 1

end if

if (( histTmp(2,i) .gt. (histTmp(2,1)-1d-6) ) .and. ( histTmp(2,i) .lt. (

histTmp(2,1)+1d-6) ) .and. ( ios .eq. 0 ) .and. &

& ( ios2 .eq. 1 )) then

! note: this statement will trigger when i = histCosThBins+1 because it

finds the first repeated element

histCosThBins = (i - 1)/histPhiBins

ios = 1

end if

if (( histTmp(3,i) .gt. (histTmp(3,1)-1d-6) ) .and. ( histTmp(3,i) .lt. (

histTmp(3,1)+1d-6) ) .and. ( ios2 .eq. 0 )) then

! note: this statement will trigger when i = histPhiBins+1 because it

finds the first repeated element

histPhiBins = i - 1

ios2 = 1

end if

end if

end do

write(*,*) "Histogram Distance Bins: ", histDistBins

write(*,*) "Histogram Cosine Theta Bins: ", histCosThBins

write(*,*) "Histogram Phi Bins: ", histPhiBins

allocate( histDist(histDistBins), histCosTh(histCosThBins), histPhi(histPhiBins), g

(2,histDistBins ,histCosThBins ,histPhiBins), &

& fLJr(2,histDistBins ,histCosThBins ,histPhiBins), fLJs(2,histDistBins ,

histCosThBins ,histPhiBins), &

& fLJt(2,histDistBins ,histCosThBins ,histPhiBins), fCr(2,histDistBins ,

histCosThBins ,histPhiBins), &

& fCs(2,histDistBins ,histCosThBins ,histPhiBins), fCt(2,histDistBins ,

histCosThBins ,histPhiBins), &

& gc(2,histDistBins ,histCosThBins ,histPhiBins) )

! populate arrays that will be used in the rest of the calculation from temp array

do i = 1, histDistBins ! the values written out from python script are at half

-bin distances

histDist(i) = histTmp(1,histCosThBins*histPhiBins*(i-1)+1)

end do

do i = 1, histCosThBins
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histCosTh(i) = histTmp(2,histPhiBins*(i-1)+1)

end do

do i = 1, histPhiBins

histPhi(i) = histTmp(3,i)

end do

do i = 1, histDistBins

do j = 1, histCosThBins

do k = 1, histPhiBins

g(1,i,j,k) = histTmp( 4, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! g(r,cos,phi)+ currently g

g(2,i,j,k) = histTmp( 5, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! g(r,cos,phi)- currently g

fLJr(1,i,j,k) = histTmp( 6, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.r>(r,cos,phi) +

fLJs(1,i,j,k) = histTmp( 7, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.s>(r,cos,phi) +

fLJt(1,i,j,k) = histTmp( 8, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.t>(r,cos,phi) +

fLJr(2,i,j,k) = histTmp( 9, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.r>(r,cos,phi) -

fLJs(2,i,j,k) = histTmp(10, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.s>(r,cos,phi) -

fLJt(2,i,j,k) = histTmp(11, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.t>(r,cos,phi) -

fCr(1,i,j,k) = histTmp(12, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.r>(r,cos,phi) +

fCs(1,i,j,k) = histTmp(13, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.s>(r,cos,phi) +

fCt(1,i,j,k) = histTmp(14, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.t>(r,cos,phi) +

fCr(2,i,j,k) = histTmp(15, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.r>(r,cos,phi) -

fCs(2,i,j,k) = histTmp(16, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.s>(r,cos,phi) -

fCt(2,i,j,k) = histTmp(17, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.t>(r,cos,phi) -

gc(1,i,j,k) = histTmp(18, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! gc(r,cos,phi) +

gc(2,i,j,k) = histTmp(19, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! gc(r,cos,phi) +

end do

end do

end do

histDistStepSize = histDist(2) - histDist(1)

write(*,*) "Histogram Distance Step Size: ", histDistStepSize

histCosThStepSize = histCosTh(2) - histCosTh(1)

write(*,*) "Histogram Cosine Theta Step Size: ", histCosThStepSize

histPhiStepSize = histPhi(2) - histPhi(1)

write(*,*) "Histogram Phi Step Size: ", histPhiStepSize

flush(6)

end subroutine make_hist_table

! spline the r dimension of each theta phi stack and then average over phi for 2D

subroutine spline_hist_array

use constants; use functions; use histData; use cfgData; use idealSolv

implicit none

integer :: ia, ir, ith, iphi, imin, igo, igo1, igo2

real(kind=dp) :: norm_factor , boltz, boltz_sum

real(kind=dp),allocatable :: idealHist(:,:,:,:,:), idealHist2D(:,:,:,:), u02D

(:,:), idealHist1D(:,:,:), u01D(:)
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integer,allocatable :: ispline(:,:), ispline2D(:)

integer :: ispline1D

!real(kind=dp) :: xx, yy !debug

!integer :: rTmp !debug

write(*,*) ’Editing input histogram arrays with ideal arrays in 3D...’

! Calculate a 4D array idealHist(lj+/lj-,g/f,r,th,phi)

allocate( idealHist(2,13,histDistBins ,histCosThBins ,histPhiBins), ispline(

histCosThBins ,histPhiBins), ispline2D(histCosThBins) )

idealHist = 0_dp; ispline = 0_dp

call ideal_CL3(histDistBins ,histDistStepSize ,histCosThBins ,cosTh_min ,cosTh_max ,

histPhiBins ,phi_min,phi_max,radius,offset,T, &

& soluteChg , idealHist)

! Spline the log(g) and force arrays using ideal values for the slopes at small r.

This populates the second derivative arrays.

! This requires ideal values that have been averaged over phi.

allocate( idealHist2D(2,9,histDistBins ,histCosThBins) )

idealHist2D = 0_dp

call ideal_3D_to_2D(idealHist ,histDistBins ,histCosThBins ,histPhiBins , idealHist2D)

allocate( idealHist1D(2,5,histDistBins) )

idealHist1D = 0_dp

call ideal_2D_to_1D(idealHist2D ,histDistBins ,histCosThBins , idealHist1D)

! Allocate explicit data arrays for 3D -> 2D transformation

allocate( g2D(2,histDistBins ,histCosThBins), fLJr2D(2,histDistBins ,histCosThBins),

fLJs2D(2,histDistBins ,histCosThBins), &

& fCr2D(2,histDistBins ,histCosThBins), fCs2D(2,histDistBins ,histCosThBins), u02D

(histDistBins ,histCosThBins) )

g2D = 0_dp; fLJr2D = 0_dp; fLJs2D = 0_dp; fCr2D = 0_dp; fCs2D = 0_dp; u02D = 0_dp

! Allocate explicit data arrays for 2D -> 1D transformation

allocate( g1D(2,histDistBins), fLJr1D(2,histDistBins), fCr1D(2,histDistBins), u01D(

histDistBins) )

g1D = 0_dp; fLJr1D = 0_dp; fCr1D = 0_dp; u01D = 0_dp

allocate( g1D2(2,histDistBins), fLJr1D2(2,histDistBins), fCr1D2(2,histDistBins) )

g1D2 = 0_dp; fLJr1D2 = 0_dp; fCr1D2 = 0_dp

! Edit the input hist arrays to more smoothly transition to -/+ infinity with the

help of idealHist.

do ia = 1, 2 ! which solute

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

imin = 0

! Normalization factor or each theta phi array.

norm_factor = gc(ia,histDistBins ,ith,iphi)/(g(ia,histDistBins ,ith,iphi)*4*

pi*histDist(histDistBins)**2)

! Find the first non-zero g(r) bin for each theta/phi array and set ’imin’

to that ’ir’ index

find: do ir = 1, histDistBins

if (g(ia,ir,ith,iphi).gt.1d-6) then

imin = ir

exit find

end if

end do find

! Note: Add the ideal values to bins with no sampling. And half counts to

bins that probably should have had sampling.

igo = 0
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do ir = histDistBins , 1, -1

if (ir.ge.imin) then

if (g(ia,ir,ith,iphi).gt.1d-6) then

g(ia,ir,ith,iphi) = log(g(ia,ir,ith,iphi)) ! g is ln(g) now

else ! note: This is a zero bin where there probably should have

been something. So put a half count in.

g(ia,ir,ith,iphi) = log(real(0.5,dp)/(4*pi*histDist(ir)**2)/

norm_factor)

fLJr(ia,ir,ith,iphi) = idealHist(ia, 2,ir,ith,iphi)

fLJs(ia,ir,ith,iphi) = idealHist(ia, 3,ir,ith,iphi)

fLJt(ia,ir,ith,iphi) = idealHist(ia, 4,ir,ith,iphi)

fCr(ia,ir,ith,iphi) = idealHist(ia, 8,ir,ith,iphi)

fCs(ia,ir,ith,iphi) = idealHist(ia, 9,ir,ith,iphi)

fCt(ia,ir,ith,iphi) = idealHist(ia,10,ir,ith,iphi)

end if

else if (ir.lt.imin) then ! .lt.imin ==> in the region of no sampling.

Set the FE (log(g)) to the direct energy

! shifted by a constant energy term , the difference between the

last sampled indirect and direct energies.

! ln(g(r<r0)) = -u_dir(r)/T - ( u_pmf(r0)/T - u_dir(r0)/T )

! ln(g(r<r0)) = -u_dir(r)/T + ln(g(r0)) - u_dir(r0)/T

g(ia,ir,ith,iphi) = ( -idealHist(ia,1,ir,ith,iphi) + idealHist(ia,1,

imin,ith,iphi) ) + g(ia,imin,ith,iphi) ! ln(g)

if ((g(ia,ir,ith,iphi).lt.cut).and.(igo.eq.0)) then ! the largest r

to go past the cutoff

ispline(ith,iphi) = ir

igo = 1

end if

fLJr(ia,ir,ith,iphi) = idealHist(ia, 2,ir,ith,iphi)

fLJs(ia,ir,ith,iphi) = idealHist(ia, 3,ir,ith,iphi)

fLJt(ia,ir,ith,iphi) = idealHist(ia, 4,ir,ith,iphi)

fCr(ia,ir,ith,iphi) = idealHist(ia, 8,ir,ith,iphi)

fCs(ia,ir,ith,iphi) = idealHist(ia, 9,ir,ith,iphi)

fCt(ia,ir,ith,iphi) = idealHist(ia,10,ir,ith,iphi)

end if

end do ! ir

end do ! iphi

end do ! ith

! Set all ln(g) values past the largest r bin to reach the cuttoff to the

cuttoff value.

igo = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((g(ia,ir,ith,iphi).lt.-abs(cut)).and.(igo.eq.0)) then

g(ia,1:ir,ith,iphi) = -abs(cut)

igo = 1

end if

end do

igo = 0

end do

end do

! Set all LJ forces past (to the left of) the first (largest r) bin to reach the

cutoff to the cutoff value.

igo = 0; igo1 = 0; igo2 = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((fLJr(ia,ir,ith,iphi).gt.abs(cut)).and.(igo.eq.0)) then

fLJr(ia,1:ir,ith,iphi) = abs(cut)

igo = 1

end if

if ((fLJs(ia,ir,ith,iphi).gt.abs(cut)).and.(igo1.eq.0)) then
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fLJs(ia,1:ir,ith,iphi) = abs(cut)

igo1 = 1

end if

if ((fLJt(ia,ir,ith,iphi).gt.abs(cut)).and.(igo2.eq.0)) then

fLJt(ia,1:ir,ith,iphi) = abs(cut)

igo2 = 1

end if

end do

igo = 0; igo1 = 0; igo2 = 0

end do

end do

! Set all C forces past (to the left of) the first (largest r) bin to reach the

cutoff to the cutoff value.

igo = 0; igo1 = 0; igo2 = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((abs(fCr(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo.eq.0)) then

fCr(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,8,ir,ith,iphi))

* abs(cut)

igo = 1

end if

if ((abs(fCs(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo1.eq.0)) then

fCs(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,9,ir,ith,iphi))

* abs(cut)

igo1 = 1

end if

if ((abs(fCt(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo2.eq.0)) then

fCt(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,10,ir,ith,iphi)

) * abs(cut)

igo2 = 1

end if

end do

igo = 0; igo1 = 0; igo2 = 0

end do

end do

! do ir = 1, histDistBins !debug

! print*, ’g3D: ’, ir, g(ia,ir,1,1) !debug

! end do !debug

! Average the 3D input histograms into 2D

write(*,*) ’Averaging input histograms from 3D into 2D for solute: ’,ia

! Find the minimum value of u(phi; r,th) ==> u02D(r,th)

! dim=3 in this case means the phi dimension. Replace the array in phi at each r

,th with the minimum value of the array,

! making an array u02D(r,th).

u02D = minval(-g(ia,:,:,:),dim=3)

! do ir = 1, histDistBins !debug

! print*, ’u0_2D: ’,ir, u02D(ir,1) !debug

! end do !debug

do ith = 1, histCosThBins

do ir = 1, histDistBins

boltz_sum = 0_dp

do iphi = 1, histPhiBins

boltz = exp(g(ia,ir,ith,iphi) + u02D(ir,ith))

!print*, ’boltz: ’, g(ia,ir,ith,iphi), u02D(ir,ith), boltz !debug

g2D(ia,ir,ith) = g2D(ia,ir,ith) + exp(g(ia,ir,ith,iphi)) ! g is g

!print*, ’g2Dloop: ’, ith,ir,iphi, g2D(ia,ir,ith) !debug

fLJr2D(ia,ir,ith) = fLJr2D(ia,ir,ith) + (boltz * fLJr(ia,ir,ith,iphi))

! fLJ.r

fLJs2D(ia,ir,ith) = fLJs2D(ia,ir,ith) + (boltz * fLJs(ia,ir,ith,iphi))

! fLJ.s
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fCr2D(ia,ir,ith) = fCr2D(ia,ir,ith) + (boltz * fCr(ia,ir,ith,iphi)) !

fC.r

fCs2D(ia,ir,ith) = fCs2D(ia,ir,ith) + (boltz * fCs(ia,ir,ith,iphi)) !

fC.s

boltz_sum = boltz_sum + boltz ! denominator for averaging over phi

end do

!print*, ’boltz_sum: ’, boltz_sum !debug

g2D(ia,ir,ith) = log(g2D(ia,ir,ith) / real(histPhiBins ,dp)) ! finish

average over phi by dividing and converting to log(g)

if (g2D(ia,ir,ith).lt.-abs(cut)) g2D(ia,ir,ith) = -abs(cut)

fLJr2D(ia,ir,ith) = fLJr2D(ia,ir,ith) / boltz_sum

fLJs2D(ia,ir,ith) = fLJs2D(ia,ir,ith) / boltz_sum

fCr2D(ia,ir,ith) = fCr2D(ia,ir,ith) / boltz_sum

fCs2D(ia,ir,ith) = fCs2D(ia,ir,ith) / boltz_sum

end do

!print*, ith, fLJr2D(ia,1:40,ith) !debug

end do

! do ir = 1, histDistBins !debug

! print*, ’g2D: ’, ir, g2D(ia,ir,1) !debug

! end do !debug

! Average the 2D input histograms into 1D

write(*,*) ’Averaging input histograms from 2D into 1D for solute: ’,ia

u01D(:) = minval(-g2D(ia,:,:),dim=2)

! do ir = 1, histDistBins !debug

! print*, ’u0_1D: ’,ir, u01D(ir) !debug

! end do !debug

do ir = 1, histDistBins

boltz_sum = 0_dp

do ith = 1, histCosThBins

boltz = exp(g2D(ia,ir,ith) + u01D(ir))

!print*, ’boltz: ’, g2D(ia,ir,ith), u01D(ir), boltz !debug

g1D(ia,ir) = g1D(ia,ir) + exp(g2D(ia,ir,ith)) ! g1D is g

fLJr1D(ia,ir) = fLJr1D(ia,ir) + (boltz * fLJr2D(ia,ir,ith)) ! fLJ.r

fCr1D(ia,ir) = fCr1D(ia,ir) + (boltz * fCr2D(ia,ir,ith)) ! fC.r

boltz_sum = boltz_sum + boltz ! denominator for averaging over theta

end do

!print*, ’boltz_sum: ’, boltz_sum !debug

g1D(ia,ir) = log(g1D(ia,ir) / real(histCosThBins ,dp)) ! finish average over

cosTh by dividing and converting to log(g)

fLJr1D(ia,ir) = fLJr1D(ia,ir) / boltz_sum

fCr1D(ia,ir) = fCr1D(ia,ir) / boltz_sum

end do

!print*, ’fLJ1D: ’, fLJr1D(ia,1:40) !debug

! After the averaging is done enforce the cutoff

do ir = 1, histDistBins

if (g1D(ia,ir).lt.cut) then

g1D(ia,ir) = cut

ispline1D = ir

end if

if (fLJr1D(ia,ir).gt.abs(cut)) then

fLJr1D(ia,ir) = -cut

end if

if (abs(fCr1D(ia,ir)).gt.abs(cut)) then

fCr1D(ia,ir) = sign(real(1,dp),idealHist1D(ia,4,ir))*cut

end if

end do

! spline g1D for the solute

call spline(histDist ,g1D(ia,:),ispline1D ,histDistBins ,(idealHist1D(ia,2,

ispline1D)+idealHist1D(ia,4,ispline1D)),real(0,dp), &

& g1D2(ia,:))

call spline(histDist ,fLJr1D(ia,:),ispline1D ,histDistBins ,idealHist1D(ia,3,

ispline1D),real(0,dp), fLJr1D2(ia,:))
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call spline(histDist ,fCr1D(ia,:),ispline1D ,histDistBins ,idealHist1D(ia,5,

ispline1D),real(0,dp), fCr1D2(ia,:))

end do ! ia

! note: write out the effective input histogram after averaging/alterations.

write(*,*) ’Writing input histogram after averaging/alterations to "input_hist.out"

...’

open(91,file=’input_hist.out’,status=’replace’)

write(91,*) ’# 1. Distance’

write(91,*) ’# 2. g+’

write(91,*) ’# 3. fLJ.r+’

write(91,*) ’# 4. fC.r+’

write(91,*) ’# 5. g-’

write(91,*) ’# 6. fLJ.r-’

write(91,*) ’# 7. fC.r-’

do ir = 1, histDistBins

write(91,*) histDist(ir), g1D(1,ir), fLJr1D(1,ir), fCr1D(1,ir), g1D(2,ir),

fLJr1D(2,ir), fCr1D(2,ir)

end do

close(91)

! note: write out the ideal histogram after averaging/alterations.

write(*,*) ’Writing ideal histogram after averaging/alterations to "ideal_hist.out"

...’

open(92,file=’ideal_hist.out’,status=’replace’)

write(92,*) ’# 1. Distance’

write(92,*) ’# 2. g+’

write(92,*) ’# 3. fLJ.r+’

write(92,*) ’# 4. fC.r+’

write(92,*) ’# 5. g-’

write(92,*) ’# 6. fLJ.r-’

write(92,*) ’# 7. fC.r-’

do ir = 1, histDistBins

write(92,*) histDist(ir), -idealHist1D(1,1,ir), idealHist1D(1,2,ir), idealHist1D

(1,4,ir), -idealHist1D(2,1,ir), &

& idealHist1D(2,2,ir), idealHist1D(2,4,ir)

end do

close(92)

!debug

! write(*,*) ’Writing ideal histogram after averaging/alterations to "ideal_3D.out"

...’

! open(93,file=’ideal_3D.out’,status=’replace ’)

! write(93,*) ’# 1. Distance’

! write(93,*) ’# 2. cosTheta’

! write(93,*) ’# 3. Phi’

! write(93,*) ’# 4. g+’

! write(93,*) ’# 5. fLJ.r+’

! write(93,*) ’# 6. fC.r+’

! write(93,*) ’# 7. g-’

! write(93,*) ’# 8. fLJ.r-’

! write(93,*) ’# 9. fC.r-’

! do ir = 1, histDistBins

! do ith = 1, histCosThBins

! do iphi = 1, histPhiBins

! write(93,*) histDist(ir), histCosTh(ith), histPhi(iphi), -idealHist(1,1,

ir,ith,iphi), idealHist(1,2,ir,ith,iphi), &

! & idealHist(1,8,ir,ith,iphi), -idealHist(2,1,ir,ith,iphi), idealHist

(2,2,ir,ith,iphi), idealHist(2,8,ir,ith,iphi)

! end do

! end do

! end do

! close(93)

!debug difference between ideal and measured
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!rTmp = int(real(4,dp)/histDistStepSize)

!print*, rTmp, histDistStepSize

!do ith=1,histCosThBins

!write(55,*) histCosTh(ith), g2D(rTmp,ith), idealhist2D(1,rTmp,ith)

!end do

!debug

!do ir=1,histdistbins

!write(45,*) histDist(ir), g1D(ir), g1D2(ir), idealHist1D(1,ir), fLJr1D(ir),

idealHist1D(2,ir)

!end do

!do ir=1,100*histdistbins

!xx = ir*(histDistStepSize/100_dp)

!call splint(histDist,g1D,g1D2,histDistBins ,xx, yy)

!write(55,*) xx, yy

!end do

!write(65,*) histDist(ispline1D), g1D(ispline1D)

end subroutine spline_hist_array

! read LJ--LJ displacements from file

subroutine R_list

use cfgData; use ctrlData

implicit none

integer :: ios, i

character(len=16) :: junk

character(len=128) :: line

if (c_explicit_R .eq. ’no’) then

explicit_R = .false.

else if (c_explicit_R .eq. ’yes’) then

explicit_R = .true.

ios = 0; crdLines = -1

open(20,file=’crd_list.out’,status=’old’)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

crdLines = crdLines + 1

end do

close(20)

allocate( explicitDist(crdLines) )

ios = 0

open(20,file=’crd_list.out’,status=’old’)

do i = 1, crdLines

read(20,*,iostat=ios) junk, explicitDist(i)

end do

close(20)

end if

end subroutine R_list

! setup for the average force integral

subroutine setup_compute_avg_force

use cfgData; use angleData; use ctrlData

implicit none

integer :: i

real(kind=dp) :: psiLF

write(*,*) "Setting up for average force iteration..."

if (explicit_R .eqv. .true.) then
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cfgRBins = crdLines

write(*,*) "Number of R Bins: ", cfgRBins

else if (explicit_R .eqv. .false.) then

cfgRBins = int( (R_max - R_min)/RStepSize + 1 )

if (cfgRBins .eq. 0) then

cfgRBins = 1

end if

write(*,*) "Number of R Bins: ", cfgRBins

end if

xBins = int( (2 * xz_range)/xzStepSize )

write(*,*) "Number of X Bins: ", xBins

zBins = int( (xz_range)/xzStepSize )

write(*,*) "Number of Z Bins: ", zBins

! allocate array sizes for axes and average force

allocate( R_axis(cfgRBins), fAvg(2,cfgRBins), x_axis(xBins), z_axis(zBins) )

R_axis = 0_dp; fAvg = 0_dp; x_axis = 0_dp; z_axis = 0_dp

! allocate arrays for control arrays

! frcSPA(solutes, LJ/C, x, z)

allocate( frcSPA(2, 2, xBins, zBins), grSPA(xBins, zBins) )

! Distance Axes

do i = 1, cfgRBins

if (explicit_R .eqv. .true.) then

R_axis(i) = explicitDist(i)

else if (explicit_r .eqv. .false.) then

R_axis(i) = (i-1) * RStepSize + R_min

end if

end do

do i = 1, xBins

x_axis(i) = (i-1) * xzStepSize - xz_range + xzStepSize/2_dp

end do

do i = 1, zBins

z_axis(i) = (i-1) * xzStepSize + xzStepSize/2_dp

end do

! ANGLES

allocate( cosThetaLF(cfgCosThBins), sinThetaLF(cfgCosThBins), sinPsiLF(cfgPsiBins),

cosPsiLF(cfgPsiBins) )

! Theta

! tilt off of z

cfgCosThStepSize = (cosTh_max - cosTh_min) / real(cfgCosThBins , dp)

do i = 1, cfgCosThBins

cosThetaLF(i) = (i-0.5_dp)*cfgCosThStepSize - cosTh_max

sinThetaLF(i) = sqrt(abs(1_dp-cosThetaLF(i)**2))

end do

write(*,*) "Config Cos(Theta) Step Size: ", cfgCosThStepSize

! Psi

! processison about z

cfgPsiStepSize = (psi_max - psi_min) / real(cfgPsiBins , dp)

do i = 1, cfgPsiBins

psiLF = (i+0.5_dp)*cfgPsiStepSize

sinPsiLF(i) = sin(psiLF)

cosPsiLF(i) = cos(psiLF)

end do

write(*,*) "Config Psi Step Size: ", cfgPsiStepSize

end subroutine setup_compute_avg_force

! do the average force integral

subroutine compute_avg_force
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use cfgData; use histData; use angleData; use ctrlData; use constants; use

functions

implicit none

integer :: r, i, j, ip, omp_get_thread_num !, omp_get_num_threads

real(kind=dp) :: gx1, gx2, f1lj, f1c, f2lj, f2c, f

write(*,*) "Computing average force..."

flush(6)

! Calculate the average force integral for top half of bisecting plane of cylinder

do r = 1, cfgRBins ! loop lj--lj distances

frcSPA = 0_dp; grSPA = 0_dp

!$omp PARALLEL DEFAULT( none ) &

!$omp PRIVATE( ip, i, j, gx1, gx2, f1lj, f1c, f2lj, f2c, f ) &

!$omp SHARED( nThreads, r, xBins, zBins, cut, R_axis, x_axis, z_axis, histDist,

histDistBins , g1D, g1D2, fLJr1D, fLJr1D2, &

!$omp& fCr1D, fCr1D2, frcSPA, grSPA ) &

!$omp NUM_THREADS( nThreads )

if ((omp_get_thread_num().eq.0).and.(r.eq.1)) then

write(*,*) ’Parallel CPUs: ’, nThreads

!write(*,*) ’Parallel CPUs: ’, omp_get_num_threads()

flush(6)

end if

!$omp DO SCHEDULE( guided )

do ip = 1, (xBins*zBins)

! Convert single index ’ip’ to the x and z indicies ’i’ and ’j’ respectively.

i = int((ip-1)/zBins)+1 ! x integer

j = mod(ip-1,zBins)+1 ! z integer

rSolv1(1) = -R_axis(r)/2_dp - x_axis(i)

rSolv1(2) = 0_dp

rSolv1(3) = -z_axis(j)

rSolvn(1) = euclid_norm(rSolv1)

rSolv2(1) = R_axis(r)/2_dp - x_axis(i)

rSolv2(2) = 0_dp

rSolv2(3) = -z_axis(j)

rSolvn(2) = euclid_norm(rSolv2)

if (rSolvn(1).gt.histDist(histDistBins)) then

gx1 = 0_dp

else

call splint(histDist ,g1D(1,:),g1D2(1,:),histDistBins ,rSolvn(1), gx1) !

solute 1

end if

if (rSolvn(2).gt.histDist(histDistBins)) then

gx2 = 0_dp

else

call splint(histDist ,g1D(2,:),g1D2(2,:),histDistBins ,rSolvn(2), gx2) !

solute 2

end if

gx1 = exp(gx1+gx2)

if (gx1 .gt. 1d-6) then ! if gx1 == 0 then don’t waste time with the rest of

the calculation

if (rSolvn(1).gt.histDist(histDistBins)) then ! solute 1

f1lj = 0_dp; f1c = 0_dp

else

call splint(histDist ,fLJr1D(1,:),fLJr1D2(1,:),histDistBins ,rSolvn(1), f

)

f1lj = f

call splint(histDist ,fCr1D(1,:),fCr1D2(1,:),histDistBins ,rSolvn(1), f)

f1c = f

end if

if (rSolvn(2).gt.histDist(histDistBins)) then ! solute 2

f2lj = 0_dp; f2c = 0_dp
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else

call splint(histDist ,fLJr1D(2,:),fLJr1D2(2,:),histDistBins ,rSolvn(2), f

)

f2lj = f

call splint(histDist ,fCr1D(2,:),fCr1D2(2,:),histDistBins ,rSolvn(2), f)

f2c = f

end if

frcSPA(1,1,i,j) = frcSPA(1,1,i,j) + (gx1 * f1lj * (-rSolv1(1)/rSolvn(1)))

! (f.r)*g.R^{hat} solute 1 lj

frcSPA(1,2,i,j) = frcSPA(1,2,i,j) + (gx1 * f1c * (-rSolv1(1)/rSolvn(1)))

! (f.r)*g.R^{hat} solute 1 c

frcSPA(2,1,i,j) = frcSPA(2,1,i,j) + (gx1 * f2lj * ( rSolv2(1)/rSolvn(2)))

! (f.r)*g.R^{hat} solute 2 lj

frcSPA(2,2,i,j) = frcSPA(2,2,i,j) + (gx1 * f2c * ( rSolv2(1)/rSolvn(2)))

! (f.r)*g.R^{hat} solute 2 c

grSPA(i,j) = grSPA(i,j) + gx1 ! gx1 is the SPA at this point

end if

end do !ip

!$omp END DO

!$omp END PARALLEL

! Add each cell forces to average and normalize

do i = 1, xBins

do j = 1, zBins

fAvg(1,r) = fAvg(1,r) + (frcSPA(1,1,i,j) + frcSPA(2,1,i,j)) * real(0.5,dp)

* z_axis(j) ! lj

fAvg(2,r) = fAvg(2,r) + (frcSPA(1,2,i,j) + frcSPA(2,2,i,j)) * real(0.5,dp)

* z_axis(j) ! Coulomb

!fAvg(1,r) = fAvg(1,r) + (frcSPA(1,1,i,j) + frcSPA(2,1,i,j)) * z_axis(j) !

lj

!fAvg(2,r) = fAvg(2,r) + (frcSPA(1,2,i,j) + frcSPA(2,2,i,j)) * z_axis(j) !

c

frcSPA(1,1,i,j) = frcSPA(1,1,i,j)/grSPA(i,j)

frcSPA(1,2,i,j) = frcSPA(1,2,i,j)/grSPA(i,j)

frcSPA(2,1,i,j) = frcSPA(2,1,i,j)/grSPA(i,j)

frcSPA(2,2,i,j) = frcSPA(2,2,i,j)/grSPA(i,j)

end do !z again

end do !x again

call write_test_out(r) ! write grSPA and frcSPA arrays

! NOTE : After the fact multiply all elements by 2*pi*density/8/pi/pi (2*2pi*pi

/3 (4pi**2)/3 steradians from orientations)

! Number density of chloroform per Angstrom**3 == 0.00750924

fAvg(1,r) = fAvg(1,r)*2*pi*density*xzStepSize*xzStepSize

fAvg(2,r) = fAvg(2,r)*2*pi*density*xzStepSize*xzStepSize

end do !r

end subroutine compute_avg_force

! integrate the average force from ’compute_avg_force ’ to get the PMF.

subroutine integrate_force

use cfgData; use ctrlData

implicit none

integer :: d, f

allocate( u_dir(2,cfgRBins) )

u_dir = 0_dp

do f = 1, 2

if (explicit_R .eqv. .false.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(f,cfgRBins) = fAvg(f,cfgRBins) * RStepSize
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else

u_dir(f,cfgRBins -(d-1)) = u_dir(f,cfgRBins -(d-2)) + fAvg(f,cfgRBins -(d

-1)) * RStepSize

end if

end do

else if (explicit_R .eqv. .true.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(f,cfgRBins) = fAvg(f,cfgRBins) * (R_axis(cfgRBins)-R_axis(

cfgRBins -1))

!print*, (R_axis(cfgRBins)-R_axis(cfgRBins -1))

else

! FIXME: is the delta R part of this correct?

u_dir(f,cfgRBins -(d-1)) = u_dir(f,cfgRBins -(d-2)) + fAvg(f,cfgRBins -(d

-1)) * &

(R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

! it looks like the first value is getting printed twice. Also, the

values might be wrong. Should it be (d-1) and

! (d-0)? instead of -2 and -1?

!print*, (R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

end if

end do

end if

end do

end subroutine integrate_force

! write force out and g(r) out to compare against explicit

subroutine write_test_out(r)

use cfgData; use ctrlData

implicit none

integer :: r, i_f, i, j

character(len=32) :: temp, filename

character(len=8) :: frmt

i_f = (r-1) * int(RStepSize*10)

frmt = ’(I3.3)’ ! an integer of width 3 with zeroes on the left

write(temp,frmt) i_f ! converting integer to string using ’internal file’

filename=’hist1D_output.’//trim(temp)//’.dat’

open(35,file=filename ,status=’replace’)

write(6,*) "Writing test file: ", filename

write(35,*) "# 1. X Distance"

write(35,*) "# 2. Z Distance"

write(35,*) "# 3. g(r)"

write(35,*) "# 4. Force.r + LJ"

write(35,*) "# 5. Force.r + Coulomb"

write(35,*) "# 6. Force.r - LJ"

write(35,*) "# 7. Force.r - Coulomb"

write(35,*) "# "

do j = 1, zBins

do i = 1, xBins

write(35,898) x_axis(i), z_axis(j), grSPA(i,j), frcSPA(1,1,i,j), frcSPA(1,2,i

,j), frcSPA(2,1,i,j), frcSPA(2,2,i,j)

end do

end do

close(35)

flush(6)

898 format (2(1x,es14.7),5(1x,es14.7))

end subroutine write_test_out
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! write output file

subroutine write_output(outFile)

use cfgData

implicit none

character(len=128) :: outFile

integer :: r

open(35,file=outFile,status=’replace’)

write(6,*) "Writing output file: ", outFile

write(35,*) "# 1. R Distance"

write(35,*) "# 2. <f>_LJ"

write(35,*) "# 3. <f>_Coulomb"

write(35,*) "# 4. PMF LJ"

write(35,*) "# 5. PMF Coulomb"

do r = 1, cfgRBins

write(35,899) R_axis(r), fAvg(1,r), fAvg(2,r), u_dir(1,r), u_dir(2,r)

end do

close(35)

flush(6)

899 format (5(1x,es14.7)) ! scientific format

end subroutine write_output

2.6 IS-SPA 2-Dimensional: isspa1.2D.f90

! USAGE: ./this_file.x -cfg [CONFIGURATION FILE] -hist [3D HIST FILE]

!

!

! ^

! z|

! |

! | ^

! | /y

! | /

! <_______O_______|_______O_______ >

! -x 1 2 +x

! <-----R

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Modules !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! data for the density and force tables.

module histData

use prec

real(kind=dp),allocatable :: histDist(:), histCosTh(:), histPhi(:), g(:,:,:), fr

(:,:,:), fs(:,:,:), ft(:,:,:), g2(:,:), &

& fr2(:,:), fs2(:,:), gc(:,:,:), gTmp1(:,:), gTmp2(:,:), frTmp1(:,:), fsTmp1

(:,:)

real(kind=dp),allocatable :: g2D(:,:), fr2D(:,:), fs2D(:,:), g2D2(:,:), fr2D2

(:,:), fs2D2(:,:)

real(kind=dp) :: histDistStepSize , histCosThStepSize , histPhiStepSize

integer :: histDistBins , histCosThBins , histPhiBins

!$omp THREADPRIVATE( gTmp1, gTmp2, frTmp1, fsTmp1 )

end module histData

! data from the config file.

module cfgData

use prec

use constants

real(kind=dp),allocatable :: x_axis(:), z_axis(:), R_axis(:), fAvg(:), u_dir(:)
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real(kind=dp) :: RStepSize , xzStepSize , R_min, R_max, xz_range , cfgCosThStepSize ,

cfgPsiStepSize , T, cut, offset

character(len=8) :: c_explicit_R

integer :: cfgRBins , cfgCosThBins , cfgPhiBins , cfgPsiBins , radius

!

integer :: xBins, zBins

real(kind=dp) :: density = 0.00750924_dp ! numerical density of chloroforms per

Angstrom**3

real(kind=dp) :: cosTh_max = 1_dp

real(kind=dp) :: cosTh_min = -1_dp

real(kind=dp) :: phi_max = 2_dp*pi/3_dp ! 2pi/3 is sufficient for a molecule with

C3 symmetry.

real(kind=dp) :: phi_hmax = pi/3_dp

real(kind=dp) :: phi_min = 0_dp

real(kind=dp) :: psi_max = 2_dp*pi

real(kind=dp) :: psi_min = 0_dp

end module cfgData

! data for calculating cosTh value.

module angleData

use prec

real(kind=dp),allocatable :: sinThetaLF(:), cosThetaLF(:), sinPhiLF(:), cosPhiLF(:)

, sinPsiLF(:), cosPsiLF(:)

real(kind=dp) :: rSolv1(3), rSolv2(3), rSolvn(2), cosTh(2), phi(2), sSolv1(3),

tSolv1(3), sSolv1n, tSolv1n

!$omp THREADPRIVATE( rSolv1, rSolv2, rSolvn, sSolv1, sSolv1n, tSolv1, tSolv1n,

cosTh, phi )

end module angleData

! testing arrays for force and g(r)

module ctrlData

use prec

real(kind=dp),allocatable :: frcSPA(:,:,:), grSPA(:,:), explicitDist(:)

integer :: crdLines

logical :: explicit_R

end module ctrlData

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Main Program !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program compute_avgForce

use prec

implicit none

character(len=64) :: histFile, cfgFile, outFile

real(kind=dp) :: omp_get_wtime , ti, tf, seconds

integer :: hours, minutes

ti = omp_get_wtime()

! make list of average direct force from ’collapsed ’ file.

call parse_command_line(cfgFile)

! read config file

call read_cfg(cfgFile, histFile , outFile)

! make list of average direct force from ’collapsed ’ file.

call make_hist_table(histFile)

! Now that we have the relevant information spline the g and f arrays along r.
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call spline_hist_array

! read in LJ--LJ dist array from file

call R_list

! setup for computing the average force integral.

call setup_compute_avg_force

! compute average force integral.

call compute_avg_force

! integrate average force to get PMF.

call integrate_force

! write PMF output file

call write_output(outFile)

! Write time taken to finish calculation.

tf = omp_get_wtime()

hours = (tf-ti)/3600

minutes = mod((tf-ti),3600d0)/60

seconds = mod(mod((tf-ti),3600d0),60d0)

write(*,*) "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

write(*,’(a,i4,a,i2,a,f6.3,a)’) "Total time elapsed: ", hours, "h ", minutes, "m

", seconds, "s"

flush(6)

end program compute_avgForce

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Subroutines !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! parse commandline for relevant files.

subroutine parse_command_line(cfgFile)

implicit none

character(len=64) :: cfgFile

character(len=16) :: arg

integer :: i

logical :: cfgFileFlag , cfgExist

cfgFileFlag = .false.

cfgExist = .false.

i=1

do

call get_command_argument(i,arg)

select case (arg)

case (’-cfg’)

i = i+1

call get_command_argument(i,cfgFile)

cfgFileFlag=.true.

INQUIRE(FILE=cfgFile, EXIST=cfgExist)

write(*,*) ’Config File: ’, cfgFile

write(*,*) ’Config File Exists: ’, cfgExist

case default

write(*,*) ’Unrecognized command-line option: ’, arg

write(*,*) ’Usage: compute_avgForce.x -cfg [cfg file]’

stop

end select
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i = i+1

if (i.ge.command_argument_count()) exit

end do

if (cfgFileFlag.eqv..false.) then

write(*,*) "Must provide a cfg file using command line argument -cfg [cfg file

name]"

stop

end if

! ’ERROR STOP’ if either file doesn’t exist

if (cfgExist.eqv..false.) then

write(*,*) ’cfg file does not exist’

error stop

end if

flush(6)

end subroutine parse_command_line

! read python cfg file for g(r) parameters

subroutine read_cfg(cfgFile, histFile , outFile)

use cfgData

implicit none

character(len=64) :: cfgFile, histFile, outFile

character(len=128) :: line

character(len=32) :: firstWord , sep

integer :: ios

logical :: outFileFlag , histFileFlag , histExist , RstepSizeFlag , xzStepSizeFlag ,

RmaxFlag , RminFlag , xzRangeFlag , &

& thetaBinsFlag , phiBinsFlag , psiBinsFlag , c_explicit_RFlag , TFlag, cutFlag,

radiusFlag , offsetFlag

histFileFlag = .false.

histExist = .false.

outFileFlag = .false.

RstepSizeFlag = .false.

xzStepSizeFlag = .false.

c_explicit_RFlag = .false.

RmaxFlag = .false.

RminFlag = .false.

xzRangeFlag = .false.

thetaBinsFlag = .false.

phiBinsFlag = .false.

psiBinsFlag = .false.

TFlag = .false.

cutFlag = .false.

radiusFlag = .false.

offsetFlag = .false.

ios = 0

open(20,file=cfgFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

call split(line,’=’,firstWord , sep)

if (line .ne. "") then

if (firstWord .eq. "hist_file") then

read(line,’(a)’) histFile

write(*,*) "Histogram File: ", histFile

histFileFlag = .true.

INQUIRE(FILE=histFile , EXIST=histExist) ! check if it exists

else if (firstWord .eq. "out_file") then

read(line,*) outFile

155



write(*,*) "Output File: ", outFile

outFileFlag = .true.

else if (firstWord .eq. "RStepSize") then

read(line,*) RStepSize

write(*,*) "PMF Step Size: ", RStepSize

RstepSizeFlag = .true.

else if (firstWord .eq. "xzStepSize") then

read(line,*) xzStepSize

write(*,*) "Solvent Grid Step Size: ", xzStepSize

xzStepSizeFlag = .true.

else if (firstWord .eq. "explicit_R") then

read(line,*) c_explicit_R

write(*,*) "Use Explicit R Values: ", c_explicit_R

c_explicit_RFlag = .true.

else if (firstWord .eq. "R_max") then

read(line,*) R_max

write(*,*) "R Maximum Value: ", R_max

RmaxFlag = .true.

else if (firstWord .eq. "R_min") then

read(line,*) R_min

write(*,*) "R Minimum Value: ", R_min

RminFlag = .true.

else if (firstWord .eq. "xz_range") then

read(line,*) xz_range

write(*,*) "XZ - Range: ", xz_range

xzRangeFlag = .true.

else if (firstWord .eq. "theta_bins") then

read(line,*) cfgCosThBins

write(*,*) "Theta Bins: ", cfgCosThBins

thetaBinsFlag= .true.

else if (firstWord .eq. "phi_bins") then

read(line,*) cfgPhiBins

write(*,*) "Phi Bins: ", cfgPhiBins

phiBinsFlag= .true.

else if (firstWord .eq. "psi_bins") then

read(line,*) cfgPsiBins

write(*,*) "Psi Bins: ", cfgPsiBins

psiBinsFlag= .true.

else if (firstWord .eq. "temperature") then

read(line,*) T

write(*,*) "Temperature (K): ", T

TFlag= .true.

else if (firstWord .eq. "bicubic_cutoff") then

read(line,*) cut

write(*,*) "Bicubic/Bilinear Cutoff: ", cut

cutFlag= .true.

else if (firstWord .eq. "solute_radius") then

read(line,*) radius

write(*,*) "Solute radius: ", radius

radiusFlag= .true.

else if (firstWord .eq. "offset") then

read(line,*) offset

write(*,*) "Solvent offset distance: ", offset

offsetFlag= .true.

end if

end if

end do

close(20)

if (histFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’hist_file ’ value"

stop

end if

if (histExist.eqv..false.) then
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write(*,*) "Config file must point to a ’hist_file ’ that exists: ", histFile, "

doesn’t exist."

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (RstepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’RStepSize ’ value"

stop

end if

if (xzStepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xzStepSize ’ value"

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (c_explicit_RFlag.eqv..false.) then

write(*,*) "Config file must have a ’explicit_R ’ value"

stop

end if

if (RmaxFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_max’ value"

stop

end if

if (RminFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_min’ value"

stop

end if

if (xzRangeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xz_range’ value"

stop

end if

if (thetaBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’theta_bins ’ value"

stop

end if

if (phiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’phi_bins’ value"

stop

end if

if (psiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’psi_bins’ value"

stop

end if

if (TFlag.eqv..false.) then

write(*,*) "Config file must have a ’temperature ’ value"

stop

end if

if (cutFlag.eqv..false.) then

write(*,*) "Config file must have a ’bicubic_cuttoff ’ value"

stop

end if

if (radiusFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_radius ’ value"

stop

end if

if (offsetFlag.eqv..false.) then

write(*,*) "Config file must have a ’offset’ value"

stop

end if
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flush(6)

end subroutine read_cfg

! read force file and make a lookup table.

subroutine make_hist_table(histFile)

use histData

use cfgData

implicit none

character(len=64) :: histFile

character(len=64) :: junk

character(len=512) :: line

integer :: ios, ios2, i, j, k, nHistLines

real(kind=dp),allocatable :: histTmp(:,:)

! read number of lines in histFile and allocate that many points in temporary

histogram list, histTmp.

ios = 0; nHistLines = -1

open(20,file=histFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if (line(1:1) .ne. "#") then

nHistLines = nHistLines + 1

end if

end do

close(20)

!write(*,*) "nHistLines", nHistLines

allocate( histTmp(8,nHistLines) )

! populate hist arrays

ios = 0; i = 1

open(20,file=histFile)

! read file ignoring comment lines at the beginning

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if ((line(1:1) .ne. "#") .and. (ios .ge. 0)) then

! dist cos(Th) phi/3 g(r)+ g

(r)- <f.r>+ <f.s>+ <f.t>+

read(line,*) histTmp(1,i), histTmp(2,i), histTmp(3,i), histTmp(4,i), junk,

histTmp(5,i), histTmp(6,i), histTmp(7,i), &

! gc(r)+ gc(r)-

& histTmp(8,i), junk

i = i + 1

end if

end do

close(20)

! Unique value determination

do i = 1, nHistLines

if (i .eq. 1) then

histDistBins = 1

ios = 0; ios2 = 0

else ! i = 2, nHistLines

if (( histTmp(1,i) .lt. (histTmp(1,i-1)-1d-6) ) .or. ( histTmp(1,i) .gt. (

histTmp(1,i-1)+1d-6) )) then

! note: this statement will trigger when a value in the first column (dist

) is different than the value in the row

! before it.

histDistBins = histDistBins + 1

end if

if (( histTmp(2,i) .gt. (histTmp(2,1)-1d-6) ) .and. ( histTmp(2,i) .lt. (

histTmp(2,1)+1d-6) ) .and. ( ios .eq. 0 ) .and. &

& ( ios2 .eq. 1 )) then
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! note: this statement will trigger when i = histCosThBins+1 because it

finds the first repeated element

histCosThBins = (i - 1)/histPhiBins

ios = 1

end if

if (( histTmp(3,i) .gt. (histTmp(3,1)-1d-6) ) .and. ( histTmp(3,i) .lt. (

histTmp(3,1)+1d-6) ) .and. ( ios2 .eq. 0 )) then

! note: this statement will trigger when i = histPhiBins+1 because it

finds the first repeated element

histPhiBins = i - 1

ios2 = 1

end if

end if

end do

write(*,*) "Histogram Distance Bins: ", histDistBins

write(*,*) "Histogram Cosine Theta Bins: ", histCosThBins

write(*,*) "Histogram Phi Bins: ", histPhiBins

allocate( histDist(histDistBins), histCosTh(histCosThBins), histPhi(histPhiBins), g

(histDistBins ,histCosThBins ,histPhiBins), &

& fr(histDistBins ,histCosThBins ,histPhiBins), fs(histDistBins ,histCosThBins ,

histPhiBins), &

& ft(histDistBins ,histCosThBins ,histPhiBins), gc(histDistBins ,histCosThBins ,

histPhiBins) )

! populate arrays that will be used in the rest of the calculation from temp array

do i = 1, histDistBins ! the values written out from python script are at half

-bin distances

histDist(i) = histTmp(1,histCosThBins*histPhiBins*(i-1)+1)

end do

do i = 1, histCosThBins

histCosTh(i) = histTmp(2,histPhiBins*(i-1)+1)

end do

do i = 1, histPhiBins

histPhi(i) = histTmp(3,i)

end do

do i = 1, histDistBins

do j = 1, histCosThBins

do k = 1, histPhiBins

g(i,j,k) = histTmp(4, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! g(r,cos,phi) currently g

fr(i,j,k) = histTmp(5, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.r>(r,cos,phi)

fs(i,j,k) = histTmp(6, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.s>(r,cos,phi)

ft(i,j,k) = histTmp(7, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.t>(r,cos,phi)

gc(i,j,k) = histTmp(8, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! gc(r,cos,phi)

end do

end do

end do

histDistStepSize = histDist(2) - histDist(1)

write(*,*) "Histogram Distance Step Size: ", histDistStepSize

histCosThStepSize = histCosTh(2) - histCosTh(1)

write(*,*) "Histogram Cosine Theta Step Size: ", histCosThStepSize

histPhiStepSize = histPhi(2) - histPhi(1)

write(*,*) "Histogram Phi Step Size: ", histPhiStepSize

flush(6)

end subroutine make_hist_table
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! spline the r dimension of each theta phi stack and then average over phi for 2D

subroutine spline_hist_array

use constants

use functions

use histData

use cfgData

use idealSolv

implicit none

integer :: i, ir, ith, iphi, imin, igo, ir2, igo1, igo2

real(kind=dp) :: x, y, norm_factor , boltz, boltz_sum

real(kind=dp),allocatable :: idealHist(:,:,:,:), idealHist2D(:,:,:), u0(:,:)

integer,allocatable :: ispline(:,:), ispline2D(:)

!real(kind=dp) :: xx, yy !debug

write(*,*) ’Editing input histogram arrays with ideal arrays in 3D...’

! Calculate a 4D array idealHist(g/f,r,th,phi)

allocate( idealHist(7,histDistBins ,histCosThBins ,histPhiBins), ispline(

histCosThBins ,histPhiBins), ispline2D(histCosThBins) )

idealHist = 0_dp; ispline = 0_dp

call ideal_CL3(histDistBins ,histDistStepSize ,histCosThBins ,cosTh_min ,cosTh_max ,

histPhiBins ,phi_min,phi_hmax,radius,offset,T, &

& idealHist)

! Edit the input hist arrays to more smoothly transition to -/+ infinity with the

help of idealHist.

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

imin = 0

! Normalization factor or each theta phi array.

norm_factor = gc(histDistBins ,ith,iphi)/(g(histDistBins ,ith,iphi)*4*pi*

histDist(histDistBins)**2)

! Find the first non-zero g(r) bin for each theta/phi array and set ’imin’ to

that ’ir’ index

find: do ir = 1, histDistBins

if (g(ir,ith,iphi).gt.1d-6) then

imin = ir

exit find

end if

end do find

! Note: Add the ideal values to bins with no sampling. And half counts to

bins that probably should have had sampling.

igo = 0

do ir = histDistBins , 1, -1

if (ir.ge.imin) then

if (g(ir,ith,iphi).gt.1d-6) then

g(ir,ith,iphi) = log(g(ir,ith,iphi))

else ! note: This is a zero bin where there probably should have been

something. So put a half count in.

g(ir,ith,iphi) = log(real(0.5,dp)/(4*pi*histDist(ir)**2)/norm_factor

)

fr(ir,ith,iphi) = idealHist(2,ir,ith,iphi)

fs(ir,ith,iphi) = idealHist(3,ir,ith,iphi)

ft(ir,ith,iphi) = idealHist(4,ir,ith,iphi)

end if

else if (ir.lt.imin) then ! .lt.imin ==> in the region of no sampling. Set

the FE (log(g)) to the direct energy shifted by

! a constant energy term , which is the last sampled indirect energy.

! ln(g(r<r0)) = -u_dir(r)/T - ( u_pmf(r0)/T - u_dir(r0)/T )

! ln(g(r<r0)) = -u_dir(r)/T + ln(g(r0)) - u_dir(r0)/T

g(ir,ith,iphi) = ( -idealHist(1,ir,ith,iphi) + idealHist(1,imin,ith,

iphi) ) + g(imin,ith,iphi)
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if ((g(ir,ith,iphi).lt.cut).and.(igo.eq.0)) then ! the largest r to go

past the cutoff

ispline(ith,iphi) = ir

igo = 1

end if

fr(ir,ith,iphi) = idealHist(2,ir,ith,iphi)

fs(ir,ith,iphi) = idealHist(3,ir,ith,iphi)

ft(ir,ith,iphi) = idealHist(4,ir,ith,iphi)

end if

end do

end do

end do

! Set all forces past the first (largest r) bin to reach the cutoff to the cutoff

value. !debug

! igo = 0; igo1 = 0; igo2 = 0

! do iphi = 1, histPhiBins

! do ith = 1, histCosThBins

! do ir = histDistBins , 1, -1

! if ((fr(ir,ith,iphi).gt.-cut).and.(igo.eq.0)) then

! fr(1:ir,ith,iphi) = -cut

! igo = 1

! end if

! if ((fs(ir,ith,iphi).gt.-cut).and.(igo1.eq.0)) then

! fs(1:ir,ith,iphi) = -cut

! igo1 = 1

! end if

! if ((ft(ir,ith,iphi).gt.-cut).and.(igo2.eq.0)) then

! ft(1:ir,ith,iphi) = -cut

! igo2 = 1

! end if

! end do

! igo = 0; igo1 = 0; igo2 = 0

! end do

! end do

! Average the 3D input histograms into 2D

write(*,*) ’Averaging input histograms from 3D into 2D...’

allocate( g2D(histDistBins ,histCosThBins), fr2D(histDistBins ,histCosThBins), fs2D(

histDistBins ,histCosThBins), &

& u0(histDistBins ,histCosThBins) )

g2D = 0_dp; fr2D = 0_dp; fs2D = 0_dp; u0 = 0_dp

! Find the minimum value of u(phi; r,th) ==> u0(r,th)

! dim=3 in this case means the phi dimension. Replace the array in phi at each r,th

with the minimum value of the array, making

! an array u0(r,th).

u0 = minval(-g(:,:,:),dim=3)

do ith = 1, histCosThBins

do ir = 1, histDistBins

boltz_sum = 0_dp

do iphi = 1, histPhiBins

boltz = exp(g(ir,ith,iphi) + u0(ir,ith))

g2D(ir,ith) = g2D(ir,ith) + exp(g(ir,ith,iphi)) ! g is g

fr2D(ir,ith) = fr2D(ir,ith) + (boltz * fr(ir,ith,iphi)) ! f.r

fs2D(ir,ith) = fs2D(ir,ith) + (boltz * fs(ir,ith,iphi)) ! f.s

boltz_sum = boltz_sum + boltz ! denominator for averaging over phi

end do

g2D(ir,ith) = log(g2D(ir,ith) / real(histPhiBins ,dp)) ! finish average over

phi by dividing and convert to log(g)

fr2D(ir,ith) = fr2D(ir,ith) / boltz_sum

fs2D(ir,ith) = fs2D(ir,ith) / boltz_sum

end do
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! After the average is done enforce lowest value to cutoff

do ir2 = 1, histDistBins

if (g2D(ir2,ith).lt.cut) then

g2D(ir2,ith) = cut

fr2D(ir2,ith) = -cut

fs2D(ir2,ith) = -cut

ispline2D(ith) = ir2

end if

end do

end do

! note: write out the effective input histogram after averaging/alterations.

write(*,*) ’Writing input histogram after averaging/alterations to "input_hist.out"

...’

open(91,file=’input_hist.out’,status=’replace’)

write(91,*) ’# 1. Distance’

write(91,*) ’# 2. Cosine Theta’

write(91,*) ’# 3. g’

write(91,*) ’# 4. f.r’

write(91,*) ’# 5. f.s’

write(91,*) ’#’

write(91,*) ’#’

do ir = 1, histDistBins

do ith = 1, histCosThBins

write(91,*) histDist(ir), histCosTh(ith), g2D(ir,ith), fr2D(ir,ith), fs2D(ir,

ith)

end do

end do

close(91)

! Spline the log(g) and force arrays using ideal values for the slopes at small r.

This populates the second derivative arrays.

! This requires ideal values that have been averaged over phi.

allocate( idealHist2D(5,histDistBins ,histCosThBins) )

call ideal_3D_to_2D(idealHist ,histDistBins ,histCosThBins ,histPhiBins , idealHist2D)

allocate( g2D2(histDistBins ,histCosThBins), fr2D2(histDistBins ,histCosThBins),

fs2D2(histDistBins ,histCosThBins) )

g2D2 = 0_dp; fr2D2 = 0_dp; fs2D2 = 0_dp

do ith = 1, histCosThBins

call spline(histDist ,g2D(:,ith),ispline2D(ith),histDistBins ,idealHist2D(2,

ispline2D(ith),ith),real(0,dp), g2D2(:,ith))

call spline(histDist ,fr2D(:,ith),ispline2D(ith),histDistBins ,idealHist2D(4,

ispline2D(ith),ith),real(0,dp), fr2D2(:,ith))

call spline(histDist ,fs2D(:,ith),ispline2D(ith),histDistBins ,idealHist2D(5,

ispline2D(ith),ith),real(0,dp), fs2D2(:,ith))

end do

!debug

!do ith = histCosThBins , histCosThBins

!do ir = 1, histDistBins

!write(45,*) histDist(ir), histCosTh(ith), g2D(ir,ith), g2D2(ir,ith),

idealHist2D(1,ir,ith)

!end do

!end do

!do ith = histCosThBins , histCosThBins

!do ir = 1, histDistBins*100

!xx = ir*(histDistStepSize/100_dp)

!call splint(histDist,g2D(:,ith),g2D2(:,ith),histDistBins ,xx, yy)

!write(55,*) xx, yy

!end do

!end do

end subroutine spline_hist_array
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! read LJ--LJ displacements from file

subroutine R_list

use cfgData

use ctrlData

implicit none

integer :: ios, i

character(len=16) :: junk

character(len=64) :: line

if (c_explicit_R .eq. ’no’) then

explicit_R = .false.

else if (c_explicit_R .eq. ’yes’) then

explicit_R = .true.

ios = 0; crdLines = -1

open(20,file=’crd_list.out’,status=’old’)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

crdLines = crdLines + 1

end do

close(20)

allocate( explicitDist(crdLines) )

ios = 0

open(20,file=’crd_list.out’,status=’old’)

do i = 1, crdLines

read(20,*,iostat=ios) junk, explicitDist(i)

end do

close(20)

end if

end subroutine R_list

! Populate the temporary (cosTh) arrays into a loop.

subroutine set_tmp_arrays

use histData

use angleData

use functions

implicit none

integer :: j

!real(kind=dp) :: xx,yy !debug

! Evaluate the splines for every theta point at these distances and save those

arrays at gTmp1, gTmp2, frTmp1, fsTmp1. The

! numbers refer to which solute they correpsond to. These arrays are saved and used

until the next distance bin.

do j = 1, histCosThBins

if ((rSolvn(1).gt.histDist(histDistBins)).and.(rSolvn(2).gt.histDist(

histDistBins))) then

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,histDist(histDistBins),

gTmp1(1,j))

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,histDist(histDistBins),

gTmp2(1,j))

call splint(histDist ,fr2D(:,j),fr2D2(:,j),histDistBins ,histDist(histDistBins)

, frTmp1(1,j))

call splint(histDist ,fs2D(:,j),fs2D2(:,j),histDistBins ,histDist(histDistBins)

, fsTmp1(1,j))

else if ((rSolvn(1).gt.histDist(histDistBins)).and.(rSolvn(2).lt.histDist(

histDistBins))) then

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,histDist(histDistBins),

gTmp1(1,j))
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call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,rSolvn(2), gTmp2(1,j))

call splint(histDist ,fr2D(:,j),fr2D2(:,j),histDistBins ,histDist(histDistBins)

, frTmp1(1,j))

call splint(histDist ,fs2D(:,j),fs2D2(:,j),histDistBins ,histDist(histDistBins)

, fsTmp1(1,j))

else if ((rSolvn(1).lt.histDist(histDistBins)).and.(rSolvn(2).gt.histDist(

histDistBins))) then

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,rSolvn(1), gTmp1(1,j))

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,histDist(histDistBins),

gTmp2(1,j))

call splint(histDist ,fr2D(:,j),fr2D2(:,j),histDistBins ,rSolvn(1), frTmp1(1,j)

)

call splint(histDist ,fs2D(:,j),fs2D2(:,j),histDistBins ,rSolvn(1), fsTmp1(1,j)

)

else

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,rSolvn(1), gTmp1(1,j))

call splint(histDist ,g2D(:,j),g2D2(:,j),histDistBins ,rSolvn(2), gTmp2(1,j))

call splint(histDist ,fr2D(:,j),fr2D2(:,j),histDistBins ,rSolvn(1), frTmp1(1,j)

)

call splint(histDist ,fs2D(:,j),fs2D2(:,j),histDistBins ,rSolvn(1), fsTmp1(1,j)

)

end if

end do

! Spline the Tmp arrays along theta.

do j = 1, histCosThBins

call symm_tridag(histCosThStepSize ,gTmp1(1,:),histCosThBins , gTmp1(2,:))

call symm_tridag(histCosThStepSize ,gTmp2(1,:),histCosThBins , gTmp2(2,:))

call symm_tridag(histCosThStepSize ,frTmp1(1,:),histCosThBins , frTmp1(2,:))

call symm_tridag(histCosThStepSize ,fsTmp1(1,:),histCosThBins , fsTmp1(2,:))

end do

!debug

!do j = 1, histCosThBins

!write(65,*) histCosTh(j), gTmp1(1,j), gTmp1(2,j)

!end do

!do j = 1, histCosThBins*100

!xx = j*(histCosThStepSize/100_dp)-1_dp

!call symm_splint(histCosTh ,histCosThStepSize ,gTmp1(1,:),gTmp1(2,:),

histCosThBins ,xx, yy)

!write(75,*) xx, yy

!end do

!print*, histCosThStepSize/6_dp

end subroutine set_tmp_arrays

! setup for the average force integral

subroutine setup_compute_avg_force

use cfgData

use angleData

use ctrlData

implicit none

integer :: i

real(kind=dp) :: psiLF

write(*,*) "Setting up for average force iteration..."

if (explicit_R .eqv. .true.) then

cfgRBins = crdLines

write(*,*) "Number of R Bins: ", cfgRBins

else if (explicit_R .eqv. .false.) then

cfgRBins = int( (R_max - R_min)/RStepSize + 1 )

if (cfgRBins .eq. 0) then

cfgRBins = 1
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end if

write(*,*) "Number of R Bins: ", cfgRBins

end if

xBins = int( (2 * xz_range)/xzStepSize )

write(*,*) "Number of X Bins: ", xBins

zBins = int( (xz_range)/xzStepSize )

write(*,*) "Number of Z Bins: ", zBins

! allocate array sizes for axes and average force

allocate( R_axis(cfgRBins), fAvg(cfgRBins), x_axis(xBins), z_axis(zBins) )

R_axis = 0_dp; fAvg = 0_dp; x_axis = 0_dp; z_axis = 0_dp

! allocate arrays for control arrays

allocate( frcSPA(2, xBins, zBins), grSPA(xBins, zBins) )

! Distance Axes

do i = 1, cfgRBins

if (explicit_R .eqv. .true.) then

R_axis(i) = explicitDist(i)

else if (explicit_r .eqv. .false.) then

R_axis(i) = (i-1) * RStepSize + R_min

end if

end do

do i = 1, xBins

x_axis(i) = (i-1) * xzStepSize - xz_range + xzStepSize/2_dp

end do

do i = 1, zBins

z_axis(i) = (i-1) * xzStepSize + xzStepSize/2_dp

end do

! ANGLES

allocate( cosThetaLF(cfgCosThBins), sinThetaLF(cfgCosThBins), sinPsiLF(cfgPsiBins),

cosPsiLF(cfgPsiBins) )

! Theta

! tilt off of z

cfgCosThStepSize = (cosTh_max - cosTh_min) / real(cfgCosThBins , dp)

do i = 1, cfgCosThBins

cosThetaLF(i) = (i-0.5_dp)*cfgCosThStepSize - cosTh_max

sinThetaLF(i) = sqrt(abs(1_dp-cosThetaLF(i)**2))

end do

write(*,*) "Config Cos(Theta) Step Size: ", cfgCosThStepSize

! Psi

! processison about z

cfgPsiStepSize = (psi_max - psi_min) / real(cfgPsiBins , dp)

do i = 1, cfgPsiBins

psiLF = (i+0.5_dp)*cfgPsiStepSize

sinPsiLF(i) = sin(psiLF)

cosPsiLF(i) = cos(psiLF)

end do

write(*,*) "Config Psi Step Size: ", cfgPsiStepSize

end subroutine setup_compute_avg_force

! do the average force integral

subroutine compute_avg_force

use cfgData

use histData

use angleData

use ctrlData

use constants

use functions

implicit none
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integer :: r, i, j, ip, ithLF, ipsiLF, tid, omp_get_thread_num ,

omp_get_num_threads

real(kind=dp) :: gx, gx2, fx(2)

write(*,*) "Computing average force..."

flush(6)

! Note: until I find a better way to do this. This is how I will allocate the Tmp

arrays.

!$omp PARALLEL DEFAULT( none ) PRIVATE( tid ) SHARED( histCosThBins )

! Allocate temporary wrapped angular arrays for spline interpolation here because

they are THREADPRIVATE and need to be allocated

! for each cpu. The first index determines whether it’s the f(x);2nd deriv.

allocate( gTmp1(2,histCosThBins), gTmp2(2,histCosThBins), frTmp1(2,histCosThBins),

fsTmp1(2,histCosThBins) )

!$omp END PARALLEL

! Calculate the average force integral for top half of bisecting plane of cylinder

do r = 1, cfgRBins ! loop lj--lj distances

frcSPA = 0_dp; grSPA = 0_dp

!$omp PARALLEL DEFAULT( none ) &

!$omp PRIVATE( ip, i, j, ithLF, ipsiLF, gx, gx2, fx ) &

!$omp SHARED( r, xBins, zBins, cut, R_axis, x_axis, z_axis, cfgCosThBins ,

cfgPsiBins , histCosTh , histCosThBins , &

!$omp& histCosThStepSize , cosTh_min , frcSPA, grSPA )

!!$omp NUM_THREADS( 1 )

if ((omp_get_thread_num().eq.0).and.(r.eq.1)) then

write(*,*) ’Parallel CPUs: ’, omp_get_num_threads()

flush(6)

end if

!$omp DO SCHEDULE( guided )

do ip = 1, (xBins*zBins)

! Convert single index ’ip’ to the x and z indicies ’i’ and ’j’ respectively.

i = int((ip-1)/zBins)+1 ! x integer

j = mod(ip-1,zBins)+1 ! z integer

!if ((i.eq.19).and.(j.eq.2)) then !debug

rSolv1(1) = -R_axis(r)/2_dp - x_axis(i)

rSolv1(2) = 0_dp

rSolv1(3) = -z_axis(j)

rSolvn(1) = euclid_norm(rSolv1)

rSolv2(1) = R_axis(r)/2_dp - x_axis(i)

rSolv2(2) = 0_dp

rSolv2(3) = -z_axis(j)

rSolvn(2) = euclid_norm(rSolv2)

! Populate and wrap the arrays for taking the derivatives for bicubic

interpolation at this distance.

call set_tmp_arrays

! Loop through orientations of solvent at x(i) and z(j)

do ithLF = 1, cfgCosThBins

do ipsiLF = 1, cfgPsiBins

if ((rSolvn(1) .lt. 1d-6) .or. (rSolvn(2) .lt. 1d-6)) then

gx = 0_dp ! avoid NaNs in calc_angles

else

call calc_angles(ipsiLF, ithLF)

call symm_splint(histCosTh ,histCosThStepSize ,gTmp1(1,:),gTmp1(2,:),

histCosThBins ,cosTh(1), gx) ! solute 1

call symm_splint(histCosTh ,histCosThStepSize ,gTmp2(1,:),gTmp2(2,:),

histCosThBins ,cosTh(2), gx2) ! solute 2

gx = exp(gx+gx2)

end if
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if (gx .gt. 1d-6) then ! if gx == 0 then don’t waste time with the rest

of the calculation

call symm_splint(histCosTh ,histCosThStepSize ,frTmp1(1,:),frTmp1(2,:)

,histCosThBins ,cosTh(1), fx(1))

call symm_splint(histCosTh ,histCosThStepSize ,fsTmp1(1,:),fsTmp1(2,:)

,histCosThBins ,cosTh(1), fx(2))

frcSPA(1,i,j) = frcSPA(1,i,j) + (gx * fx(1) * (-rSolv1(1)/rSolvn(1))

) ! (f.r)*g.R^{hat}

frcSPA(2,i,j) = frcSPA(2,i,j) + (gx * fx(2) * (-sSolv1(1)/sSolv1n))

! (f.s)*g.R^{hat}

grSPA(i,j) = grSPA(i,j) + gx

end if

end do !psi

end do !theta

!end if !debug

end do !ip

!$omp END DO

!$omp END PARALLEL

! Add each cell forces to average and normalize

do i = 1, xBins

do j = 1, zBins

fAvg(r) = fAvg(r) + ((frcSPA(1,i,j) + frcSPA(2,i,j)) * z_axis(j))

frcSPA(1,i,j) = frcSPA(1,i,j)/grSPA(i,j)

frcSPA(2,i,j) = frcSPA(2,i,j)/grSPA(i,j)

grSPA(i,j) = grSPA(i,j)/cfgCosThBins/cfgPsiBins

end do !z again

end do !x again

call write_test_out(r) ! write grSPA and frcSPA arrays

! NOTE : After the fact multiply all elements by 2*pi*density/8/pi/pi (2*2pi*pi

/3 (4pi**2)/3 steradians from orientations)

! Number density of chloroform per Angstrom**3 == 0.00750924

fAvg(r) = fAvg(r)/real(2,dp)*density*xzStepSize*xzStepSize*cfgCosThStepSize*

cfgPsiStepSize

end do !r

end subroutine compute_avg_force

! rotate two solvent vectors ’h’ for the dipole and ’l’ for the Cl1 via a twist ’phi’,

tilt ’theta’, and procession about z ’psi’

! for lj particles 1 and 2.

subroutine calc_angles(ipsiLF, ithLF)

use cfgData

use angleData

use functions

use constants

implicit none

integer :: ithLF, ipsiLF

real(kind=dp),dimension(3) :: h

! make rotated solvent dipole vector at origin

h(1) = sinPsiLF(ipsiLF)*sinThetaLF(ithLF)

h(2) = -cosPsiLF(ipsiLF)*sinThetaLF(ithLF)

h(3) = cosThetaLF(ithLF)

! calculate cos(theta1) and cos(theta2) of the solvent to lj-spheres 1 and 2

respectively.

cosTh(1) = dot_product(rSolv1, h) / rSolvn(1)

cosTh(2) = dot_product(rSolv2, h) / rSolvn(2)

tSolv1 = cross_product(rSolv1,h) ! this is (r1 x p) ie. the t vector

sSolv1 = cross_product(tSolv1,rSolv1)
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tSolv1n = euclid_norm(tSolv1)

sSolv1n = euclid_norm(sSolv1)

end subroutine calc_angles

! integrate the average force from ’compute_avg_force ’ to get the PMF.

subroutine integrate_force

use cfgData

use ctrlData

implicit none

integer :: d

allocate( u_dir(cfgRBins) )

u_dir = 0_dp

if (explicit_R .eqv. .false.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(cfgRBins) = fAvg(cfgRBins) * RStepSize

else

u_dir(cfgRBins -(d-1)) = u_dir(cfgRBins -(d-2)) + fAvg(cfgRBins -(d-1)) *

RStepSize

end if

end do

else if (explicit_R .eqv. .true.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(cfgRBins) = fAvg(cfgRBins) * (R_axis(cfgRBins)-R_axis(cfgRBins -1))

!print*, (R_axis(cfgRBins)-R_axis(cfgRBins -1))

else

! FIXME: is the delta R part of this correct?

u_dir(cfgRBins -(d-1)) = u_dir(cfgRBins -(d-2)) + fAvg(cfgRBins -(d-1)) * &

(R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

! it looks like the first value is getting printed twice. Also, the values

might be wrong. Should it be (d-1) and

! (d-0)? instead of -2 and -1?

!print*, (R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

end if

end do

end if

end subroutine integrate_force

! write force out and g(r) out to compare against explicit

subroutine write_test_out(r)

use cfgData

use ctrlData

implicit none

integer :: r, i_f, i, j

character(len=32) :: temp, filename

character(len=8) :: frmt

i_f = (r-1) * int(RStepSize*10)

frmt = ’(I3.3)’ ! an integer of width 3 with zeroes on the left

write(temp,frmt) i_f ! converting integer to string using ’internal file’

filename=’hist2D_output.’//trim(temp)//’.dat’

open(35,file=filename ,status=’replace’)

write(6,*) "Writing test file: ", filename

write(35,*) "# 1. X Distance"

write(35,*) "# 2. Z Distance"

write(35,*) "# 3. g(r)"
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write(35,*) "# 4. Force.r"

write(35,*) "# 5. Force.s"

write(35,*) "# "

do j = 1, zBins

do i = 1, xBins

write(35,898) x_axis(i), z_axis(j), grSPA(i,j), frcSPA(1,i,j), frcSPA(2,i,j)

end do

end do

close(35)

flush(6)

898 format (5(1x,es14.7))

end subroutine write_test_out

! write output file

subroutine write_output(outFile)

use cfgData

implicit none

character(len=64) :: outFile

integer :: r

open(35,file=outFile,status=’replace’)

write(6,*) "Writing output file: ", outFile

write(35,*) "# 1. R Distance"

write(35,*) "# 2. Avg Force"

write(35,*) "# 3. PMF"

do r = 1, cfgRBins

write(35,899) R_axis(r), fAvg(r), u_dir(r)

end do

close(35)

flush(6)

899 format (3(1x,es14.7)) ! scientific format

end subroutine write_output

2.7 IS-SPA 3-Dimensional: isspa1.3D.f90

! USAGE: ./this_file.x -cfg [CONFIGURATION FILE] -hist [3D HIST FILE]

!

!

! ^

! z|

! |

! |

! | /y

! |/

! <_______O_______|_______O_______ >

! -x 1 2 +x

! <-----R

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Modules !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! data for the density and force tables.

module histData

use prec

real(kind=dp),allocatable :: histDist(:), histCosTh(:), histPhi(:), g(:,:,:), fr

(:,:,:), fs(:,:,:), ft(:,:,:), g2(:,:,:), &
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& fr2(:,:,:), fs2(:,:,:), ft2(:,:,:), gc(:,:,:), gTmp1(:,:,:), gTmp2(:,:,:),

frTmp1(:,:,:), &

& fsTmp1(:,:,:), ftTmp1(:,:,:)

real(kind=dp) :: histDistStepSize , histCosThStepSize , histPhiStepSize

integer :: histDistBins , histCosThBins , histPhiBins

integer,allocatable :: ispline(:,:)

!$omp THREADPRIVATE( gTmp1, gTmp2, frTmp1, fsTmp1, ftTmp1 )

end module histData

! data from the config file.

module cfgData

use prec

use constants

real(kind=dp),allocatable :: x_axis(:), z_axis(:), R_axis(:), fAvg(:), u_dir(:)

real(kind=dp) :: RStepSize , xzStepSize , R_min, R_max, xz_range , cfgCosThStepSize ,

cfgPhiStepSize , cfgPsiStepSize , T, cut, &

& offset, radius, soluteChg(2)

character(len=8) :: c_explicit_R

integer :: cfgRBins , cfgCosThBins , cfgPhiBins , cfgPsiBins

!

integer :: xBins, zBins

real(kind=dp) :: density = 0.00750924_dp ! numerical density of chloroforms per

Angstrom**3

real(kind=dp) :: cosTh_max = 1_dp

real(kind=dp) :: cosTh_min = -1_dp

real(kind=dp) :: phi_max = 2_dp*pi/3_dp ! 2pi/3 is sufficient for a molecule with

C3 symmetry.

real(kind=dp) :: phi_hmax = pi/3_dp

real(kind=dp) :: phi_min = 0_dp

real(kind=dp) :: psi_max = 2_dp*pi

real(kind=dp) :: psi_min = 0_dp

end module cfgData

! data for calculating cosTh value.

module angleData

use prec

real(kind=dp),allocatable :: sinThetaLF(:), cosThetaLF(:), sinPhiLF(:), cosPhiLF(:)

, sinPsiLF(:), cosPsiLF(:)

real(kind=dp) :: rSolv1(3), rSolv2(3), rSolvn(2), cosTh(2), phi(2), sSolv1(3),

tSolv1(3), sSolv1n, tSolv1n

!$omp THREADPRIVATE( rSolv1, rSolv2, rSolvn, sSolv1, sSolv1n, tSolv1, tSolv1n,

cosTh, phi )

end module angleData

! testing arrays for force and g(r)

module ctrlData

use prec

real(kind=dp),allocatable :: frcSPA(:,:,:), grSPA(:,:), explicitDist(:)

integer :: crdLines

logical :: explicit_R

end module ctrlData

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Main Program !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program compute_avgForce

use prec
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implicit none

character(len=128) :: histFile, cfgFile, outFile

real(kind=dp) :: omp_get_wtime , ti, tf, seconds

integer :: hours, minutes

ti = omp_get_wtime()

! make list of average direct force from ’collapsed ’ file.

call parse_command_line(cfgFile) !, outFile)

! read config file

call read_cfg(cfgFile, histFile , outFile)

! make list of average direct force from ’collapsed ’ file.

call make_hist_table(histFile)

! Now that we have the relevant information spline the g and f arrays along r.

call spline_hist_array

! read in LJ--LJ dist array from file

call R_list

! setup for computing the average force integral.

call setup_compute_avg_force

! compute average force integral.

call compute_avg_force

! integrate average force to get PMF.

call integrate_force

! write PMF output file

call write_output(outFile)

! Write time taken to finish calculation.

tf = omp_get_wtime()

hours = (tf-ti)/3600

minutes = mod((tf-ti),3600d0)/60

seconds = mod(mod((tf-ti),3600d0),60d0)

write(*,*) "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

write(*,’(a,i4,a,i2,a,f6.3,a)’) "Total time elapsed: ", hours, "h ", minutes, "m "

, seconds, "s"

flush(6)

end program compute_avgForce

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Subroutines !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! parse commandline for relevant files.

subroutine parse_command_line(cfgFile)

implicit none

character(len=128) :: cfgFile

character(len=16) :: arg

integer :: i

logical :: cfgFileFlag , cfgExist

cfgFileFlag = .false.

cfgExist = .false.

i=1
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do

call get_command_argument(i,arg)

select case (arg)

case (’-cfg’)

i = i+1

call get_command_argument(i,cfgFile)

cfgFileFlag=.true.

INQUIRE(FILE=cfgFile, EXIST=cfgExist)

write(*,*) ’Config File: ’, cfgFile

write(*,*) ’Config File Exists: ’, cfgExist

case default

write(*,*) ’Unrecognized command-line option: ’, arg

write(*,*) ’Usage: compute_avgForce.x -cfg [cfg file]’

stop

end select

i = i+1

if (i.ge.command_argument_count()) exit

end do

if (cfgFileFlag.eqv..false.) then

write(*,*) "Must provide a cfg file using command line argument -cfg [cfg file

name]"

stop

end if

! ’ERROR STOP’ if either file doesn’t exist

if (cfgExist.eqv..false.) then

write(*,*) ’cfg file does not exist’

error stop

end if

flush(6)

end subroutine parse_command_line

! read python cfg file for g(r) parameters

subroutine read_cfg(cfgFile, histFile , outFile)

use cfgData

implicit none

character(len=128) :: cfgFile, histFile, outFile

character(len=256) :: line

character(len=128) :: firstWord , sep

integer :: ios

logical :: outFileFlag , histFileFlag , histExist , RstepSizeFlag , xzStepSizeFlag ,

RmaxFlag , RminFlag , xzRangeFlag , &

& thetaBinsFlag , phiBinsFlag , psiBinsFlag , c_explicit_RFlag , TFlag, cutFlag,

radiusFlag , offsetFlag , soluteChgFlag

histFileFlag = .false.

histExist = .false.

outFileFlag = .false.

RstepSizeFlag = .false.

xzStepSizeFlag = .false.

c_explicit_RFlag = .false.

RmaxFlag = .false.

RminFlag = .false.

xzRangeFlag = .false.

thetaBinsFlag = .false.

phiBinsFlag = .false.

psiBinsFlag = .false.

TFlag = .false.

cutFlag = .false.
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radiusFlag = .false.

offsetFlag = .false.

soluteChgFlag = .false.

ios = 0

open(20,file=cfgFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

call split(line,’=’,firstWord , sep)

if (line .ne. "") then

if (firstWord .eq. "hist_file") then

read(line,’(a)’) histFile

write(*,*) "Histogram File: ", histFile

histFileFlag = .true.

INQUIRE(FILE=histFile , EXIST=histExist) ! check if it exists

else if (firstWord .eq. "out_file") then

read(line,*) outFile

write(*,*) "Output File: ", outFile

outFileFlag = .true.

else if (firstWord .eq. "RStepSize") then

read(line,*) RStepSize

write(*,*) "PMF Step Size: ", RStepSize

RstepSizeFlag = .true.

else if (firstWord .eq. "xzStepSize") then

read(line,*) xzStepSize

write(*,*) "Solvent Grid Step Size: ", xzStepSize

xzStepSizeFlag = .true.

else if (firstWord .eq. "explicit_R") then

read(line,*) c_explicit_R

write(*,*) "Use Explicit R Values: ", c_explicit_R

c_explicit_RFlag = .true.

else if (firstWord .eq. "R_max") then

read(line,*) R_max

write(*,*) "R Maximum Value: ", R_max

RmaxFlag = .true.

else if (firstWord .eq. "R_min") then

read(line,*) R_min

write(*,*) "R Minimum Value: ", R_min

RminFlag = .true.

else if (firstWord .eq. "xz_range") then

read(line,*) xz_range

write(*,*) "XZ - Range: ", xz_range

xzRangeFlag = .true.

else if (firstWord .eq. "theta_bins") then

read(line,*) cfgCosThBins

write(*,*) "Theta Bins: ", cfgCosThBins

thetaBinsFlag= .true.

else if (firstWord .eq. "phi_bins") then

read(line,*) cfgPhiBins

write(*,*) "Phi Bins: ", cfgPhiBins

phiBinsFlag= .true.

else if (firstWord .eq. "psi_bins") then

read(line,*) cfgPsiBins

write(*,*) "Psi Bins: ", cfgPsiBins

psiBinsFlag= .true.

else if (firstWord .eq. "temperature") then

read(line,*) T

write(*,*) "Temperature (K): ", T

TFlag= .true.

else if (firstWord .eq. "bicubic_cutoff") then

read(line,*) cut

write(*,*) "Bicubic/Bilinear Cutoff: ", cut

cutFlag= .true.

else if (firstWord .eq. "solute_radius") then
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read(line,*) radius

write(*,*) "Solute radius: ", radius

radiusFlag= .true.

else if (firstWord .eq. "offset") then

read(line,*) offset

write(*,*) "Solvent offset distance: ", offset

offsetFlag= .true.

else if (firstWord .eq. "solute_charge") then

read(line,*) soluteChg(1)

soluteChg(2) = -soluteChg(1)

write(*,*) "Solute Charges: ", soluteChg

soluteChgFlag= .true.

end if

end if

end do

close(20)

if (histFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’hist_file ’ value"

stop

end if

if (histExist.eqv..false.) then

write(*,*) "Config file must point to a ’hist_file ’ that exists: ", histFile, "

doesn’t exist."

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (RstepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’RStepSize ’ value"

stop

end if

if (xzStepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xzStepSize ’ value"

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (c_explicit_RFlag.eqv..false.) then

write(*,*) "Config file must have a ’explicit_R ’ value"

stop

end if

if (RmaxFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_max’ value"

stop

end if

if (RminFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_min’ value"

stop

end if

if (xzRangeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xz_range’ value"

stop

end if

if (thetaBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’theta_bins ’ value"

stop

end if

if (phiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’phi_bins’ value"

stop
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end if

if (psiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’psi_bins’ value"

stop

end if

if (TFlag.eqv..false.) then

write(*,*) "Config file must have a ’temperature ’ value"

stop

end if

if (cutFlag.eqv..false.) then

write(*,*) "Config file must have a ’bicubic_cuttoff ’ value"

stop

end if

if (radiusFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_radius ’ value"

stop

end if

if (offsetFlag.eqv..false.) then

write(*,*) "Config file must have a ’offset’ value"

stop

end if

if (soluteChgFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_charge ’ value"

stop

end if

flush(6)

end subroutine read_cfg

! read force file and make a lookup table.

subroutine make_hist_table(histFile)

use histData

use cfgData

implicit none

character(len=128) :: histFile

character(len=64) :: junk

character(len=512) :: line

integer :: ios, ios2, i, j, k, nHistLines

real(kind=dp),allocatable :: histTmp(:,:)

! read number of lines in histFile and allocate that many points in temporary

histogram list, histTmp.

ios = 0; nHistLines = -1

open(20,file=histFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if (line(1:1) .ne. "#") then

nHistLines = nHistLines + 1

end if

end do

close(20)

!write(*,*) "nHistLines", nHistLines

allocate( histTmp(8,nHistLines) )

! populate hist arrays

ios = 0; i = 1

open(20,file=histFile)

! read file ignoring comment lines at the beginning

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if ((line(1:1) .ne. "#") .and. (ios .ge. 0)) then
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! ! new_format dist cos(Th) phi/3 g(r)+ g(r)-

<fLJ.r>+ <fLJ.s>+ <fLJ.t>+

! read(line,*) histTmp(1,i), histTmp(2,i), histTmp(3,i), histTmp(4,i), junk,

histTmp(5,i), histTmp(6,i), histTmp(7,i), &

! ! fLJ.r- fLJ.s- fLJ.t- fC.r+ fC.s+ fC.t+ fC.r- fC.s- fC.t- gc(r)+

gc(r)-

! & junk, junk, junk, junk, junk, junk, junk, junk, junk, histTmp(8,i

), junk

! old_format dist cos(Th) phi/3 g(r)+ g(r)-

<fLJ.r>+ <fLJ.s>+ <fLJ.t>+

read(line,*) histTmp(1,i), histTmp(2,i), histTmp(3,i), histTmp(4,i), junk,

histTmp(5,i), histTmp(6,i), histTmp(7,i), &

! gc(r)+ gc(r)-

& histTmp(8,i), junk

i = i + 1

end if

end do

close(20)

! XXX: Unique value determination -- TESTING

do i = 1, nHistLines

if (i .eq. 1) then

histDistBins = 1

ios = 0; ios2 = 0

else ! i = 2, nHistLines

if (( histTmp(1,i) .lt. (histTmp(1,i-1)-1d-6) ) .or. ( histTmp(1,i) .gt. (

histTmp(1,i-1)+1d-6) )) then

! note: this statement will trigger when a value in the first column (dist

) is different than the value in the row

! before it.

histDistBins = histDistBins + 1

end if

if (( histTmp(2,i) .gt. (histTmp(2,1)-1d-6) ) .and. ( histTmp(2,i) .lt. (

histTmp(2,1)+1d-6) ) .and. ( ios .eq. 0 ) &

.and. ( ios2 .eq. 1 )) then

! note: this statement will trigger when i = histCosThBins+1 because it

finds the first repeated element

histCosThBins = (i - 1)/histPhiBins

ios = 1

end if

if (( histTmp(3,i) .gt. (histTmp(3,1)-1d-6) ) .and. ( histTmp(3,i) .lt. (

histTmp(3,1)+1d-6) ) .and. ( ios2 .eq. 0 )) &

then

! note: this statement will trigger when i = histPhiBins+1 because it

finds the first repeated element

histPhiBins = i - 1

ios2 = 1

end if

end if

end do

write(*,*) "Histogram Distance Bins: ", histDistBins

write(*,*) "Histogram Cosine Theta Bins: ", histCosThBins

write(*,*) "Histogram Phi Bins: ", histPhiBins

allocate( histDist(histDistBins), histCosTh(histCosThBins), histPhi(histPhiBins), g

(histDistBins ,histCosThBins ,histPhiBins), &

& fr(histDistBins ,histCosThBins ,histPhiBins), fs(histDistBins ,histCosThBins ,

histPhiBins), &

& ft(histDistBins ,histCosThBins ,histPhiBins), gc(histDistBins ,histCosThBins ,

histPhiBins) )

! populate arrays that will be used in the rest of the calculation from temp array

do i = 1, histDistBins ! the values written out from python script are at half

-bin distances
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histDist(i) = histTmp(1,histCosThBins*histPhiBins*(i-1)+1)

end do

do i = 1, histCosThBins

histCosTh(i) = histTmp(2,histPhiBins*(i-1)+1)

end do

do i = 1, histPhiBins

histPhi(i) = histTmp(3,i)

end do

do i = 1, histDistBins

do j = 1, histCosThBins

do k = 1, histPhiBins

g(i,j,k) = histTmp(4, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! g(r,cos,phi)

fr(i,j,k) = histTmp(5, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.r>(r,cos,phi)

fs(i,j,k) = histTmp(6, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.s>(r,cos,phi)

ft(i,j,k) = histTmp(7, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! <f.t>(r,cos,phi)

gc(i,j,k) = histTmp(8, (i-1)*histCosThBins*histPhiBins + (j-1)*histPhiBins

+ k) ! gc(r,cos,phi)

end do

end do

end do

histDistStepSize = histDist(2) - histDist(1)

write(*,*) "Histogram Distance Step Size: ", histDistStepSize

histCosThStepSize = histCosTh(2) - histCosTh(1)

write(*,*) "Histogram Cosine Theta Step Size: ", histCosThStepSize

histPhiStepSize = histPhi(2) - histPhi(1)

write(*,*) "Histogram Phi Step Size: ", histPhiStepSize

flush(6)

end subroutine make_hist_table

! spline the r dimension of each theta phi stack.

subroutine spline_hist_array

use constants

use functions

use histData

use cfgData

use idealSolv

implicit none

integer :: i, ir, ith, iphi, imin, igo

real(kind=dp) :: x, y, norm_factor

real(kind=dp),allocatable :: idealHist(:,:,:,:,:)

! Calculate a 4D array idealHist(g/f,r,th,phi)

allocate( idealHist(2,13,histDistBins ,histCosThBins ,histPhiBins), ispline(

histCosThBins ,histPhiBins) )

idealHist = 0_dp; ispline = 0_dp

call ideal_CL3(histDistBins ,histDistStepSize ,histCosThBins ,cosTh_min ,cosTh_max ,

histPhiBins ,phi_min,phi_hmax,radius,offset,T, &

& soluteChg , idealHist)

! Edit the input hist arrays to more smoothly transition to -/+ infinity with the

help of idealHist.

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

imin = 0

! Normalization factor or each theta phi array.
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norm_factor = gc(histDistBins ,ith,iphi)/(g(histDistBins ,ith,iphi)*4*pi*

histDist(histDistBins)**2)

! Find the first non-zero g(r) bin for each theta/phi array and set ’imin’ to

that ’ir’ index

find: do ir = 1, histDistBins

if (g(ir,ith,iphi).gt.1d-6) then

imin = ir

exit find

end if

end do find

! NOTE: Add the ideal values to bins with no sampling. And half counts to

bins that probably should have had sampling.

igo = 0

do ir = histDistBins , 1, -1

if (ir.ge.imin) then

if (g(ir,ith,iphi).gt.1d-6) then

g(ir,ith,iphi) = log(g(ir,ith,iphi))

else ! note: This is a zero bin where there probably should have been

something. So put a single count in.

g(ir,ith,iphi) = log(real(0.5,dp)/(4*pi*histDist(ir)**2)/norm_factor

)

fr(ir,ith,iphi) = idealHist(1,2,ir,ith,iphi)

fs(ir,ith,iphi) = idealHist(1,3,ir,ith,iphi)

ft(ir,ith,iphi) = idealHist(1,4,ir,ith,iphi)

end if

else if (ir.lt.imin) then ! .lt.imin ==> in the region of no sampling. Set

the FE (lng) to the direct energy shifted by

! a constant energy term , which is the last sampled indirect energy.

! ln(g(r<r0)) = -u_dir(r)/T - ( u_pmf(r0)/T - u_dir(r0)/T )

! ln(g(r<r0)) = -u_dir(r)/T + ln(g(r0)) - u_dir(r0)/T

g(ir,ith,iphi) = ( -idealHist(1,1,ir,ith,iphi) + idealHist(1,1,imin,ith

,iphi) ) + g(imin,ith,iphi)

if ((g(ir,ith,iphi).lt.cut).and.(igo.eq.0)) then ! the largest r to go

past the cutoff

ispline(ith,iphi) = ir

igo = 1

end if

fr(ir,ith,iphi) = idealHist(1,2,ir,ith,iphi)

if (fr(ir,ith,iphi).gt.-cut) then

fr(ir,ith,iphi) = -cut

end if

fs(ir,ith,iphi) = idealHist(1,3,ir,ith,iphi)

if (fs(ir,ith,iphi).gt.-cut) then

fs(ir,ith,iphi) = -cut

end if

ft(ir,ith,iphi) = idealHist(1,4,ir,ith,iphi)

if (ft(ir,ith,iphi).gt.-cut) then

ft(ir,ith,iphi) = -cut

end if

end if

end do

end do

end do

! note: write out the effective input histogram after averaging/alterations.

write(*,*) ’Writing input histogram after averaging/alterations to "input_hist.out"

...’

open(91,file=’input_hist.out’,status=’replace’)

write(91,*) ’# 1. Distance’

write(91,*) ’# 2. Cosine Theta’

write(91,*) ’# 3. Phi [0->pi/3]’

write(91,*) ’# 4. g’

write(91,*) ’# 5. f.r’

write(91,*) ’# 6. f.s’
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write(91,*) ’# 7. f.t’

do ir = 1, histDistBins

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

write(91,*) histDist(ir), histCosTh(ith), histPhi(iphi), g(ir,ith,iphi),

fr(ir,ith,iphi), fs(ir,ith,iphi), &

& ft(ir,ith,iphi)

end do

end do

end do

close(91)

allocate( g2(histDistBins ,histCosThBins ,histPhiBins), fr2(histDistBins ,

histCosThBins ,histPhiBins), &

& fs2(histDistBins ,histCosThBins ,histPhiBins), ft2(histDistBins ,histCosThBins ,

histPhiBins) )

g2 = 0_dp; fr2 = 0_dp; fs2 = 0_dp; ft2 = 0_dp

! Spline the g and force arrays using ideal values for the slopes at small r. This

populates the second derivative arrays.

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

call spline(histDist ,g(:,ith,iphi),ispline(ith,iphi),histDistBins ,idealHist

(1,2,ispline(ith,iphi),ith,iphi),dble(0), &

& g2(:,ith,iphi))

call spline(histDist ,fr(:,ith,iphi),ispline(ith,iphi),histDistBins ,idealHist

(1,5,ispline(ith,iphi),ith,iphi),dble(0), &

& fr2(:,ith,iphi))

call spline(histDist ,fs(:,ith,iphi),ispline(ith,iphi),histDistBins ,idealHist

(1,6,ispline(ith,iphi),ith,iphi),dble(0), &

& fs2(:,ith,iphi))

call spline(histDist ,ft(:,ith,iphi),ispline(ith,iphi),histDistBins ,idealHist

(1,7,ispline(ith,iphi),ith,iphi),dble(0), &

& ft2(:,ith,iphi))

end do

end do

end subroutine spline_hist_array

! read LJ--LJ displacements from file

subroutine R_list

use cfgData

use ctrlData

implicit none

integer :: ios, i

character(len=16) :: junk

character(len=64) :: line

if (c_explicit_R .eq. ’no’) then

explicit_R = .false.

else if (c_explicit_R .eq. ’yes’) then

explicit_R = .true.

ios = 0; crdLines = -1

open(20,file=’crd_list.out’,status=’old’)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

crdLines = crdLines + 1

end do

close(20)

allocate( explicitDist(crdLines) )

ios = 0
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open(20,file=’crd_list.out’,status=’old’)

do i = 1, crdLines

read(20,*,iostat=ios) junk, explicitDist(i)

end do

close(20)

end if

end subroutine R_list

! Populate and wrap the temporary (cosTh,phi) arrays into a torus.

subroutine set_tmp_arrays

use histData

use angleData

use functions

implicit none

integer :: j, k

! Evaluate the splines for every theta,phi point at these distances and save those

arrays at gTmp1, gTmp2, frTmp1, fsTmp1,

! ftTmp1. The numbers refer to which solute they correpsond to. These arrays are

saved and used until the next distance bin.

do j = 1, histCosThBins

do k = 1, histPhiBins

if ((rSolvn(1).gt.histDist(histDistBins)).and.(rSolvn(2).gt.histDist(

histDistBins))) then

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,histDist(histDistBins

-1), gTmp1(1,j,k))

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,histDist(histDistBins

-1), gTmp2(1,j,k))

call splint(histDist ,fr(:,j,k),fr2(:,j,k),histDistBins ,histDist(

histDistBins -1), frTmp1(1,j,k))

call splint(histDist ,fs(:,j,k),fs2(:,j,k),histDistBins ,histDist(

histDistBins -1), fsTmp1(1,j,k))

call splint(histDist ,ft(:,j,k),ft2(:,j,k),histDistBins ,histDist(

histDistBins -1), ftTmp1(1,j,k))

else if (rSolvn(1).gt.histDist(histDistBins)) then

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,histDist(histDistBins

-1), gTmp1(1,j,k))

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,rSolvn(2), gTmp2(1,j,

k))

call splint(histDist ,fr(:,j,k),fr2(:,j,k),histDistBins ,histDist(

histDistBins -1), frTmp1(1,j,k))

call splint(histDist ,fs(:,j,k),fs2(:,j,k),histDistBins ,histDist(

histDistBins -1), fsTmp1(1,j,k))

call splint(histDist ,ft(:,j,k),ft2(:,j,k),histDistBins ,histDist(

histDistBins -1), ftTmp1(1,j,k))

else if (rSolvn(2).gt.histDist(histDistBins)) then

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,rSolvn(1), gTmp1(1,j,

k))

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,histDist(histDistBins

-1), gTmp2(1,j,k))

call splint(histDist ,fr(:,j,k),fr2(:,j,k),histDistBins ,rSolvn(1), frTmp1

(1,j,k))

call splint(histDist ,fs(:,j,k),fs2(:,j,k),histDistBins ,rSolvn(1), fsTmp1

(1,j,k))

call splint(histDist ,ft(:,j,k),ft2(:,j,k),histDistBins ,rSolvn(1), ftTmp1

(1,j,k))

else

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,rSolvn(1), gTmp1(1,j,

k))

call splint(histDist ,g(:,j,k),g2(:,j,k),histDistBins ,rSolvn(2), gTmp2(1,j,

k))

call splint(histDist ,fr(:,j,k),fr2(:,j,k),histDistBins ,rSolvn(1), frTmp1

(1,j,k))
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call splint(histDist ,fs(:,j,k),fs2(:,j,k),histDistBins ,rSolvn(1), fsTmp1

(1,j,k))

call splint(histDist ,ft(:,j,k),ft2(:,j,k),histDistBins ,rSolvn(1), ftTmp1

(1,j,k))

end if

end do

end do

! Note: Wrap g values first before calculating derivatives.

! Wrap all 4 corners

gTmp1(1,0,0) = gTmp1(1,1,1)

gTmp1(1,histCosThBins+1,0) = gTmp1(1,histCosThBins ,1)

gTmp1(1,0,histPhiBins+1) = gTmp1(1,1,histPhiBins)

gTmp1(1,histCosThBins+1,histPhiBins+1) = gTmp1(1,histCosThBins ,histPhiBins)

gTmp2(1,0,0) = gTmp2(1,1,1)

gTmp2(1,histCosThBins+1,0) = gTmp2(1,histCosThBins ,1)

gTmp2(1,0,histPhiBins+1) = gTmp2(1,1,histPhiBins)

gTmp2(1,histCosThBins+1,histPhiBins+1) = gTmp2(1,histCosThBins ,histPhiBins)

frTmp1(1,0,0) = frTmp1(1,1,1)

frTmp1(1,histCosThBins+1,0) = frTmp1(1,histCosThBins ,1)

frTmp1(1,0,histPhiBins+1) = frTmp1(1,1,histPhiBins)

frTmp1(1,histCosThBins+1,histPhiBins+1) = frTmp1(1,histCosThBins ,histPhiBins)

fsTmp1(1,0,0) = fsTmp1(1,1,1)

fsTmp1(1,histCosThBins+1,0) = fsTmp1(1,histCosThBins ,1)

fsTmp1(1,0,histPhiBins+1) = fsTmp1(1,1,histPhiBins)

fsTmp1(1,histCosThBins+1,histPhiBins+1) = fsTmp1(1,histCosThBins ,histPhiBins)

ftTmp1(1,0,0) = ftTmp1(1,1,1)

ftTmp1(1,histCosThBins+1,0) = ftTmp1(1,histCosThBins ,1)

ftTmp1(1,0,histPhiBins+1) = ftTmp1(1,1,histPhiBins)

ftTmp1(1,histCosThBins+1,histPhiBins+1) = ftTmp1(1,histCosThBins ,histPhiBins)

! Wrap all 4 edges

gTmp1(1,0 , 1:histPhiBins) = gTmp1(1,1 , 1:histPhiBins)

gTmp1(1,histCosThBins+1 , 1:histPhiBins) = gTmp1(1,histCosThBins , 1:histPhiBins)

gTmp1(1,1:histCosThBins , 0) = gTmp1(1,1:histCosThBins , 1)

gTmp1(1,1:histCosThBins , histPhiBins+1) = gTmp1(1,1:histCosThBins , histPhiBins)

gTmp2(1,0 , 1:histPhiBins) = gTmp2(1,1 , 1:histPhiBins)

gTmp2(1,histCosThBins+1 , 1:histPhiBins) = gTmp2(1,histCosThBins , 1:histPhiBins)

gTmp2(1,1:histCosThBins , 0) = gTmp2(1,1:histCosThBins , 1)

gTmp2(1,1:histCosThBins , histPhiBins+1) = gTmp2(1,1:histCosThBins , histPhiBins)

frTmp1(1,0 , 1:histPhiBins) = frTmp1(1,1 , 1:histPhiBins)

frTmp1(1,histCosThBins+1 , 1:histPhiBins) = frTmp1(1,histCosThBins , 1:histPhiBins)

frTmp1(1,1:histCosThBins , 0) = frTmp1(1,1:histCosThBins , 1)

frTmp1(1,1:histCosThBins , histPhiBins+1) = frTmp1(1,1:histCosThBins , histPhiBins)

fsTmp1(1,0 , 1:histPhiBins) = fsTmp1(1,1 , 1:histPhiBins)

fsTmp1(1,histCosThBins+1 , 1:histPhiBins) = fsTmp1(1,histCosThBins , 1:histPhiBins)

fsTmp1(1,1:histCosThBins , 0) = fsTmp1(1,1:histCosThBins , 1)

fsTmp1(1,1:histCosThBins , histPhiBins+1) = fsTmp1(1,1:histCosThBins , histPhiBins)

ftTmp1(1,0 , 1:histPhiBins) = ftTmp1(1,1 , 1:histPhiBins)

ftTmp1(1,histCosThBins+1 , 1:histPhiBins) = ftTmp1(1,histCosThBins , 1:histPhiBins)

ftTmp1(1,1:histCosThBins , 0) = ftTmp1(1,1:histCosThBins , 1)

ftTmp1(1,1:histCosThBins , histPhiBins+1) = ftTmp1(1,1:histCosThBins , histPhiBins)

! Centered difference method to find derivatives.

! First index: 1 = g(cosTh,phi;R), 2 = dg/dcosTh, 3 = dg/dphi, 4 = d2g/dcosTh/dphi

do j = 1, histCosThBins

do k = 1, histPhiBins

gTmp1(2,j,k) = (gTmp1(1,j+1,k)-gTmp1(1,j-1,k))/(2*histCosThStepSize)

gTmp1(3,j,k) = (gTmp1(1,j,k+1)-gTmp1(1,j,k-1))/(2*histPhiStepSize)

gTmp1(4,j,k) = (gTmp1(1,j+1,k+1)-gTmp1(1,j+1,k-1)-gTmp1(1,j-1,k+1)+gTmp1(1,j

-1,k-1))/(4*histCosThStepSize*histPhiStepSize)

gTmp2(2,j,k) = (gTmp2(1,j+1,k)-gTmp2(1,j-1,k))/(2*histCosThStepSize)

gTmp2(3,j,k) = (gTmp2(1,j,k+1)-gTmp2(1,j,k-1))/(2*histPhiStepSize)

gTmp2(4,j,k) = (gTmp2(1,j+1,k+1)-gTmp2(1,j+1,k-1)-gTmp2(1,j-1,k+1)+gTmp2(1,j

-1,k-1))/(4*histCosThStepSize*histPhiStepSize)

frTmp1(2,j,k) = (frTmp1(1,j+1,k)-frTmp1(1,j-1,k))/(2*histCosThStepSize)

frTmp1(3,j,k) = (frTmp1(1,j,k+1)-frTmp1(1,j,k-1))/(2*histPhiStepSize)
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frTmp1(4,j,k) = (frTmp1(1,j+1,k+1)-frTmp1(1,j+1,k-1)-frTmp1(1,j-1,k+1)+frTmp1

(1,j-1,k-1)) / &

& (4*histCosThStepSize*histPhiStepSize)

fsTmp1(2,j,k) = (fsTmp1(1,j+1,k)-fsTmp1(1,j-1,k))/(2*histCosThStepSize)

fsTmp1(3,j,k) = (fsTmp1(1,j,k+1)-fsTmp1(1,j,k-1))/(2*histPhiStepSize)

fsTmp1(4,j,k) = (fsTmp1(1,j+1,k+1)-fsTmp1(1,j+1,k-1)-fsTmp1(1,j-1,k+1)+fsTmp1

(1,j-1,k-1)) / &

& (4*histCosThStepSize*histPhiStepSize)

ftTmp1(2,j,k) = (ftTmp1(1,j+1,k)-ftTmp1(1,j-1,k))/(2*histCosThStepSize)

ftTmp1(3,j,k) = (ftTmp1(1,j,k+1)-ftTmp1(1,j,k-1))/(2*histPhiStepSize)

ftTmp1(4,j,k) = (ftTmp1(1,j+1,k+1)-ftTmp1(1,j+1,k-1)-ftTmp1(1,j-1,k+1)+ftTmp1

(1,j-1,k-1)) / &

& (4*histCosThStepSize*histPhiStepSize)

end do

end do

! xxx: Wrap x1 derivatives

! Wrap all 4 corners

gTmp1(2,0,0) = -gTmp1(2,1,1)

gTmp1(2,histCosThBins+1,0) = -gTmp1(2,histCosThBins ,1)

gTmp1(2,0,histPhiBins+1) = -gTmp1(2,1,histPhiBins)

gTmp1(2,histCosThBins+1,histPhiBins+1) = -gTmp1(2,histCosThBins ,histPhiBins)

gTmp2(2,0,0) = -gTmp2(2,1,1)

gTmp2(2,histCosThBins+1,0) = -gTmp2(2,histCosThBins ,1)

gTmp2(2,0,histPhiBins+1) = -gTmp2(2,1,histPhiBins)

gTmp2(2,histCosThBins+1,histPhiBins+1) = -gTmp2(2,histCosThBins ,histPhiBins)

frTmp1(2,0,0) = -frTmp1(2,1,1)

frTmp1(2,histCosThBins+1,0) = -frTmp1(2,histCosThBins ,1)

frTmp1(2,0,histPhiBins+1) = -frTmp1(2,1,histPhiBins)

frTmp1(2,histCosThBins+1,histPhiBins+1) = -frTmp1(2,histCosThBins ,histPhiBins)

fsTmp1(2,0,0) = -fsTmp1(2,1,1)

fsTmp1(2,histCosThBins+1,0) = -fsTmp1(2,histCosThBins ,1)

fsTmp1(2,0,histPhiBins+1) = -fsTmp1(2,1,histPhiBins)

fsTmp1(2,histCosThBins+1,histPhiBins+1) = -fsTmp1(2,histCosThBins ,histPhiBins)

ftTmp1(2,0,0) = -ftTmp1(2,1,1)

ftTmp1(2,histCosThBins+1,0) = -ftTmp1(2,histCosThBins ,1)

ftTmp1(2,0,histPhiBins+1) = -ftTmp1(2,1,histPhiBins)

ftTmp1(2,histCosThBins+1,histPhiBins+1) = -ftTmp1(2,histCosThBins ,histPhiBins)

! Wrap all 4 edges

gTmp1(2,0 , 1:histPhiBins) = -gTmp1(2,1 , 1:histPhiBins)

gTmp1(2,histCosThBins+1 , 1:histPhiBins) = -gTmp1(2,histCosThBins , 1:histPhiBins)

gTmp1(2,1:histCosThBins , 0) = gTmp1(2,1:histCosThBins , 1)

gTmp1(2,1:histCosThBins , histPhiBins+1) = gTmp1(2,1:histCosThBins , histPhiBins)

gTmp2(2,0 , 1:histPhiBins) = -gTmp2(2,1 , 1:histPhiBins)

gTmp2(2,histCosThBins+1 , 1:histPhiBins) = -gTmp2(2,histCosThBins , 1:histPhiBins)

gTmp2(2,1:histCosThBins , 0) = gTmp2(2,1:histCosThBins , 1)

gTmp2(2,1:histCosThBins , histPhiBins+1) = gTmp2(2,1:histCosThBins , histPhiBins)

frTmp1(2,0 , 1:histPhiBins) = -frTmp1(2,1 , 1:histPhiBins)

frTmp1(2,histCosThBins+1 , 1:histPhiBins) = -frTmp1(2,histCosThBins , 1:histPhiBins

)

frTmp1(2,1:histCosThBins , 0) = frTmp1(2,1:histCosThBins , 1)

frTmp1(2,1:histCosThBins , histPhiBins+1) = frTmp1(2,1:histCosThBins , histPhiBins)

fsTmp1(2,0 , 1:histPhiBins) = -fsTmp1(2,1 , 1:histPhiBins)

fsTmp1(2,histCosThBins+1 , 1:histPhiBins) = -fsTmp1(2,histCosThBins , 1:histPhiBins

)

fsTmp1(2,1:histCosThBins , 0) = fsTmp1(2,1:histCosThBins , 1)

fsTmp1(2,1:histCosThBins , histPhiBins+1) = fsTmp1(2,1:histCosThBins , histPhiBins)

ftTmp1(2,0 , 1:histPhiBins) = -ftTmp1(2,1 , 1:histPhiBins)

ftTmp1(2,histCosThBins+1 , 1:histPhiBins) = -ftTmp1(2,histCosThBins , 1:histPhiBins

)

ftTmp1(2,1:histCosThBins , 0) = ftTmp1(2,1:histCosThBins , 1)

ftTmp1(2,1:histCosThBins , histPhiBins+1) = ftTmp1(2,1:histCosThBins , histPhiBins)

! xxx: Wrap x2 derivatives

! Wrap all 4 corners
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gTmp1(3,0,0) = -gTmp1(3,1,1)

gTmp1(3,histCosThBins+1,0) = -gTmp1(3,histCosThBins ,1)

gTmp1(3,0,histPhiBins+1) = -gTmp1(3,1,histPhiBins)

gTmp1(3,histCosThBins+1,histPhiBins+1) = -gTmp1(3,histCosThBins ,histPhiBins)

gTmp2(3,0,0) = -gTmp2(3,1,1)

gTmp2(3,histCosThBins+1,0) = -gTmp2(3,histCosThBins ,1)

gTmp2(3,0,histPhiBins+1) = -gTmp2(3,1,histPhiBins)

gTmp2(3,histCosThBins+1,histPhiBins+1) = -gTmp2(3,histCosThBins ,histPhiBins)

frTmp1(3,0,0) = -frTmp1(3,1,1)

frTmp1(3,histCosThBins+1,0) = -frTmp1(3,histCosThBins ,1)

frTmp1(3,0,histPhiBins+1) = -frTmp1(3,1,histPhiBins)

frTmp1(3,histCosThBins+1,histPhiBins+1) = -frTmp1(3,histCosThBins ,histPhiBins)

fsTmp1(3,0,0) = -fsTmp1(3,1,1)

fsTmp1(3,histCosThBins+1,0) = -fsTmp1(3,histCosThBins ,1)

fsTmp1(3,0,histPhiBins+1) = -fsTmp1(3,1,histPhiBins)

fsTmp1(3,histCosThBins+1,histPhiBins+1) = -fsTmp1(3,histCosThBins ,histPhiBins)

ftTmp1(3,0,0) = -ftTmp1(3,1,1)

ftTmp1(3,histCosThBins+1,0) = -ftTmp1(3,histCosThBins ,1)

ftTmp1(3,0,histPhiBins+1) = -ftTmp1(3,1,histPhiBins)

ftTmp1(3,histCosThBins+1,histPhiBins+1) = -ftTmp1(3,histCosThBins ,histPhiBins)

! Wrap all 4 edges

gTmp1(3,0 , 1:histPhiBins) = gTmp1(3,1 , 1:histPhiBins)

gTmp1(3,histCosThBins+1 , 1:histPhiBins) = gTmp1(3,histCosThBins , 1:histPhiBins)

gTmp1(3,1:histCosThBins , 0) = -gTmp1(3,1:histCosThBins , 1)

gTmp1(3,1:histCosThBins , histPhiBins+1) = -gTmp1(3,1:histCosThBins , histPhiBins)

gTmp2(3,0 , 1:histPhiBins) = gTmp2(3,1 , 1:histPhiBins)

gTmp2(3,histCosThBins+1 , 1:histPhiBins) = gTmp2(3,histCosThBins , 1:histPhiBins)

gTmp2(3,1:histCosThBins , 0) = -gTmp2(3,1:histCosThBins , 1)

gTmp2(3,1:histCosThBins , histPhiBins+1) = -gTmp2(3,1:histCosThBins , histPhiBins)

frTmp1(3,0 , 1:histPhiBins) = frTmp1(3,1 , 1:histPhiBins)

frTmp1(3,histCosThBins+1 , 1:histPhiBins) = frTmp1(3,histCosThBins , 1:histPhiBins)

frTmp1(3,1:histCosThBins , 0) = -frTmp1(3,1:histCosThBins , 1)

frTmp1(3,1:histCosThBins , histPhiBins+1) = -frTmp1(3,1:histCosThBins , histPhiBins

)

fsTmp1(3,0 , 1:histPhiBins) = fsTmp1(3,1 , 1:histPhiBins)

fsTmp1(3,histCosThBins+1 , 1:histPhiBins) = fsTmp1(3,histCosThBins , 1:histPhiBins)

fsTmp1(3,1:histCosThBins , 0) = -fsTmp1(3,1:histCosThBins , 1)

fsTmp1(3,1:histCosThBins , histPhiBins+1) = -fsTmp1(3,1:histCosThBins , histPhiBins

)

ftTmp1(3,0 , 1:histPhiBins) = ftTmp1(3,1 , 1:histPhiBins)

ftTmp1(3,histCosThBins+1 , 1:histPhiBins) = ftTmp1(3,histCosThBins , 1:histPhiBins)

ftTmp1(3,1:histCosThBins , 0) = -ftTmp1(3,1:histCosThBins , 1)

ftTmp1(3,1:histCosThBins , histPhiBins+1) = -ftTmp1(3,1:histCosThBins , histPhiBins

)

! xxx: Wrap cross derivatives

! Wrap all 4 corners

gTmp1(4,0,0) = gTmp1(4,1,1)

gTmp1(4,histCosThBins+1,0) = gTmp1(4,histCosThBins ,1)

gTmp1(4,0,histPhiBins+1) = gTmp1(4,1,histPhiBins)

gTmp1(4,histCosThBins+1,histPhiBins+1) = gTmp1(4,histCosThBins ,histPhiBins)

gTmp2(4,0,0) = gTmp2(4,1,1)

gTmp2(4,histCosThBins+1,0) = gTmp2(4,histCosThBins ,1)

gTmp2(4,0,histPhiBins+1) = gTmp2(4,1,histPhiBins)

gTmp2(4,histCosThBins+1,histPhiBins+1) = gTmp2(4,histCosThBins ,histPhiBins)

frTmp1(4,0,0) = frTmp1(4,1,1)

frTmp1(4,histCosThBins+1,0) = frTmp1(4,histCosThBins ,1)

frTmp1(4,0,histPhiBins+1) = frTmp1(4,1,histPhiBins)

frTmp1(4,histCosThBins+1,histPhiBins+1) = frTmp1(4,histCosThBins ,histPhiBins)

fsTmp1(4,0,0) = fsTmp1(4,1,1)

fsTmp1(4,histCosThBins+1,0) = fsTmp1(4,histCosThBins ,1)

fsTmp1(4,0,histPhiBins+1) = fsTmp1(4,1,histPhiBins)

fsTmp1(4,histCosThBins+1,histPhiBins+1) = fsTmp1(4,histCosThBins ,histPhiBins)

ftTmp1(4,0,0) = ftTmp1(4,1,1)

ftTmp1(4,histCosThBins+1,0) = ftTmp1(4,histCosThBins ,1)
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ftTmp1(4,0,histPhiBins+1) = ftTmp1(4,1,histPhiBins)

ftTmp1(4,histCosThBins+1,histPhiBins+1) = ftTmp1(4,histCosThBins ,histPhiBins)

! Wrap all 4 edges

gTmp1(4,0 , 1:histPhiBins) = -gTmp1(4,1 , 1:histPhiBins)

gTmp1(4,histCosThBins+1 , 1:histPhiBins) = -gTmp1(4,histCosThBins , 1:histPhiBins)

gTmp1(4,1:histCosThBins , 0) = -gTmp1(4,1:histCosThBins , 1)

gTmp1(4,1:histCosThBins , histPhiBins+1) = -gTmp1(4,1:histCosThBins , histPhiBins)

gTmp2(4,0 , 1:histPhiBins) = -gTmp2(4,1 , 1:histPhiBins)

gTmp2(4,histCosThBins+1 , 1:histPhiBins) = -gTmp2(4,histCosThBins , 1:histPhiBins)

gTmp2(4,1:histCosThBins , 0) = -gTmp2(4,1:histCosThBins , 1)

gTmp2(4,1:histCosThBins , histPhiBins+1) = -gTmp2(4,1:histCosThBins , histPhiBins)

frTmp1(4,0 , 1:histPhiBins) = -frTmp1(4,1 , 1:histPhiBins)

frTmp1(4,histCosThBins+1 , 1:histPhiBins) = -frTmp1(4,histCosThBins , 1:histPhiBins

)

frTmp1(4,1:histCosThBins , 0) = -frTmp1(4,1:histCosThBins , 1)

frTmp1(4,1:histCosThBins , histPhiBins+1) = -frTmp1(4,1:histCosThBins , histPhiBins

)

fsTmp1(4,0 , 1:histPhiBins) = -fsTmp1(4,1 , 1:histPhiBins)

fsTmp1(4,histCosThBins+1 , 1:histPhiBins) = -fsTmp1(4,histCosThBins , 1:histPhiBins

)

fsTmp1(4,1:histCosThBins , 0) = -fsTmp1(4,1:histCosThBins , 1)

fsTmp1(4,1:histCosThBins , histPhiBins+1) = -fsTmp1(4,1:histCosThBins , histPhiBins

)

ftTmp1(4,0 , 1:histPhiBins) = -ftTmp1(4,1 , 1:histPhiBins)

ftTmp1(4,histCosThBins+1 , 1:histPhiBins) = -ftTmp1(4,histCosThBins , 1:histPhiBins

)

ftTmp1(4,1:histCosThBins , 0) = -ftTmp1(4,1:histCosThBins , 1)

ftTmp1(4,1:histCosThBins , histPhiBins+1) = -ftTmp1(4,1:histCosThBins , histPhiBins

)

end subroutine set_tmp_arrays

! setup for the average force integral

subroutine setup_compute_avg_force

use cfgData

use angleData

use ctrlData

implicit none

integer :: i

real(kind=dp) :: phiLF, psiLF

write(*,*) "Setting up for average force iteration..."

if (explicit_R .eqv. .true.) then

cfgRBins = crdLines

write(*,*) "Number of R Bins: ", cfgRBins

else if (explicit_R .eqv. .false.) then

cfgRBins = int( (R_max - R_min)/RStepSize + 1 )

if (cfgRBins .eq. 0) then

cfgRBins = 1

end if

write(*,*) "Number of R Bins: ", cfgRBins

end if

xBins = int( (2 * xz_range)/xzStepSize )

write(*,*) "Number of X Bins: ", xBins

zBins = int( (xz_range)/xzStepSize )

write(*,*) "Number of Z Bins: ", zBins

! allocate array sizes for axes and average force

allocate( R_axis(cfgRBins), fAvg(cfgRBins), x_axis(xBins), z_axis(zBins) )

R_axis = 0_dp; fAvg = 0_dp; x_axis = 0_dp; z_axis = 0_dp

! allocate arrays for control arrays

allocate( frcSPA(3, xBins, zBins), grSPA(xBins, zBins) )
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! Distance Axes

do i = 1, cfgRBins

if (explicit_R .eqv. .true.) then

R_axis(i) = explicitDist(i)

else if (explicit_r .eqv. .false.) then

R_axis(i) = (i-1) * RStepSize + R_min

end if

end do

do i = 1, xBins

x_axis(i) = (i-1) * xzStepSize - xz_range + xzStepSize/2_dp

end do

do i = 1, zBins

z_axis(i) = (i-1) * xzStepSize + xzStepSize/2_dp

end do

! ANGLES

allocate( cosThetaLF(cfgCosThBins), sinThetaLF(cfgCosThBins), sinPhiLF(cfgPhiBins),

cosPhiLF(cfgPhiBins), sinPsiLF(cfgPsiBins), &

& cosPsiLF(cfgPsiBins) )

! Theta

! tilt off of z

cfgCosThStepSize = (cosTh_max - cosTh_min) / real(cfgCosThBins , dp)

do i = 1, cfgCosThBins

cosThetaLF(i) = (i-0.5_dp)*cfgCosThStepSize - cosTh_max

sinThetaLF(i) = sqrt(abs(1_dp-cosThetaLF(i)**2))

end do

write(*,*) "Config Cos(Theta) Step Size: ", cfgCosThStepSize

! Phi

! twist about z

cfgPhiStepSize = (phi_hmax - phi_min) / real(cfgPhiBins , dp)

do i = 1, cfgPhiBins

phiLF = (i+0.5_dp)*cfgPhiStepSize

sinPhiLF(i) = sin(phiLF)

cosPhiLF(i) = cos(phiLF)

end do

write(*,*) "Config Phi Step Size: ", cfgPhiStepSize

! Psi

! processison about z

cfgPsiStepSize = (psi_max - psi_min) / real(cfgPsiBins , dp)

do i = 1, cfgPsiBins

psiLF = (i+0.5_dp)*cfgPsiStepSize

sinPsiLF(i) = sin(psiLF)

cosPsiLF(i) = cos(psiLF)

end do

write(*,*) "Config Psi Step Size: ", cfgPsiStepSize

end subroutine setup_compute_avg_force

! do the average force integral

subroutine compute_avg_force

use cfgData

use histData

use angleData

use ctrlData

use constants

use functions

implicit none

integer :: r, i, j, ip, ithLF, iphiLF, ipsiLF, tid, omp_get_thread_num ,

omp_get_num_threads

real(kind=dp) :: gx, gx2, fx(3)
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write(*,*) "Computing average force..."

flush(6)

! Note: until I find a better way to do this. This is how I will allocate the Tmp

arrays.

!$omp PARALLEL DEFAULT( none ) PRIVATE( tid ) SHARED( histCosThBins , histPhiBins )

! Allocate temporary wrapped angular arrays for bicubic interpolation here because

they are THREADPRIVATE and need to be

! allocated for each cpu. The first index determines whether it’s the f(x);df/dx1;

df/dx2;d2f/dx1dx2.

allocate( gTmp1(4,0:histCosThBins+1,0:histPhiBins+1), gTmp2(4,0:histCosThBins+1,0:

histPhiBins+1), &

& frTmp1(4,0:histCosThBins+1,0:histPhiBins+1), fsTmp1(4,0:histCosThBins+1,0:

histPhiBins+1), &

& ftTmp1(4,0:histCosThBins+1,0:histPhiBins+1) )

!$omp END PARALLEL

! Calculate the average force integral for top half of bisecting plane of cylinder

do r = 1, cfgRBins ! loop lj--lj distances

frcSPA = 0_dp; grSPA = 0_dp

!$omp PARALLEL DEFAULT( none ) &

!$omp PRIVATE( ip, i, j, ithLF, iphiLF, ipsiLF, gx, gx2, fx ) &

!$omp SHARED( r, xBins, zBins, cut, R_axis, x_axis, z_axis, cfgCosThBins ,

cfgPhiBins , cfgPsiBins , histCosTh , histPhi, &

!$omp& histCosThBins , histPhiBins , histCosThStepSize , histPhiStepSize ,

cosTh_min , phi_min, frcSPA, grSPA )

!!$omp NUM_THREADS( 1 )

if ((omp_get_thread_num().eq.0).and.(r.eq.1)) then

write(*,*) ’Parallel CPUs: ’, omp_get_num_threads()

flush(6)

end if

!$omp DO SCHEDULE( guided )

do ip = 1, (xBins*zBins)

! Convert single index ’ip’ to the x and z indicies ’i’ and ’j’ respectively.

i = int((ip-1)/zBins)+1

j = mod(ip-1,zBins)+1

rSolv1(1) = -R_axis(r)/2_dp - x_axis(i)

rSolv1(2) = 0_dp

rSolv1(3) = -z_axis(j)

rSolvn(1) = euclid_norm(rSolv1)

rSolv2(1) = R_axis(r)/2_dp - x_axis(i)

rSolv2(2) = 0_dp

rSolv2(3) = -z_axis(j)

rSolvn(2) = euclid_norm(rSolv2)

! Populate and wrap the arrays for taking the derivatives for bicubic

interpolation at this distance.

call set_tmp_arrays

! Loop through orientations of solvent at x(i) and z(j)

do ithLF = 1, cfgCosThBins

do iphiLF = 1, cfgPhiBins

do ipsiLF = 1, cfgPsiBins

if ((rSolvn(1) .lt. 1d-6) .or. (rSolvn(2) .lt. 1d-6)) then

gx = 0_dp ! avoid NaNs in calc_angles

else

call calc_angles(ipsiLF, ithLF, iphiLF)

call bicubic_int(cut,histCosTh ,histPhi,histCosThBins ,histPhiBins ,

histCosThStepSize ,histPhiStepSize ,cosTh_min ,&

& phi_min,gTmp1,cosTh(1),phi(1), gx) ! solute 1

call bicubic_int(cut,histCosTh ,histPhi,histCosThBins ,histPhiBins ,

histCosThStepSize ,histPhiStepSize ,cosTh_min ,&

& phi_min,gTmp2,cosTh(2),phi(2), gx2) ! solute 2
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gx = exp(gx+gx2)

end if

if (gx .gt. 1d-6) then ! if gx == 0 then don’t waste time with the

rest of the calculation

call bicubic_int(cut,histCosTh ,histPhi,histCosThBins ,histPhiBins ,

histCosThStepSize ,histPhiStepSize ,cosTh_min ,&

& phi_min,frTmp1,cosTh(1),phi(1), fx(1))

call bicubic_int(cut,histCosTh ,histPhi,histCosThBins ,histPhiBins ,

histCosThStepSize ,histPhiStepSize ,cosTh_min ,&

& phi_min,fsTmp1,cosTh(1),phi(1), fx(2))

call bicubic_int(cut,histCosTh ,histPhi,histCosThBins ,histPhiBins ,

histCosThStepSize ,histPhiStepSize ,cosTh_min ,&

& phi_min,ftTmp1,cosTh(1),phi(1), fx(3))

frcSPA(1,i,j) = frcSPA(1,i,j) + (gx * fx(1) * (-rSolv1(1)/rSolvn

(1))) ! (f.r)*g.R^{hat}

frcSPA(2,i,j) = frcSPA(2,i,j) + (gx * fx(2) * (-sSolv1(1)/sSolv1n

)) ! (f.s)*g.R^{hat}

frcSPA(3,i,j) = frcSPA(3,i,j) + (gx * fx(3) * (-tSolv1(1)/tSolv1n

)) ! (f.t)*g.R^{hat}

grSPA(i,j) = grSPA(i,j) + gx

end if

end do !psi

end do !phi

end do !theta

end do !ip

!$omp END DO

!$omp END PARALLEL

! Add each cell forces to average and normalize

do i = 1, xBins

do j = 1, zBins

fAvg(r) = fAvg(r) + ((frcSPA(1,i,j) + frcSPA(2,i,j) + frcSPA(3,i,j)) *

z_axis(j))

frcSPA(1,i,j) = frcSPA(1,i,j)/grSPA(i,j)

frcSPA(2,i,j) = frcSPA(2,i,j)/grSPA(i,j)

frcSPA(3,i,j) = frcSPA(3,i,j)/grSPA(i,j)

grSPA(i,j) = grSPA(i,j)/cfgCosThBins/cfgPhiBins/cfgPsiBins

end do !z again

end do !x again

call write_test_out(r) ! write grSPA and frcSPA arrays

! NOTE: After the fact multiply all elements by 2*pi*density/8/pi/pi ((2*2pi*pi

/3)=(4pi**2)/3 steradians from orientations)

! Number density of chloroform per Angstrom**3 == 0.00750924

fAvg(r) = fAvg(r)/real(4,dp)/pi*3_dp*density*xzStepSize*xzStepSize*

cfgCosThStepSize*cfgPhiStepSize*cfgPsiStepSize

end do !r

end subroutine compute_avg_force

! rotate two solvent vectors ’h’ for the dipole and ’l’ for the Cl1 via a twist ’phi’,

tilt ’theta’, and procession about z ’psi’

! for lj particles 1 and 2.

subroutine calc_angles(ipsiLF, ithLF, iphiLF)

use cfgData

use angleData

use functions

use constants

implicit none

integer :: iphiLF, ithLF, ipsiLF

real(kind=dp),dimension(3) :: h, x, y
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! make rotated solvent dipole vector at origin

h(1) = sinPsiLF(ipsiLF)*sinThetaLF(ithLF)

h(2) = -cosPsiLF(ipsiLF)*sinThetaLF(ithLF)

h(3) = cosThetaLF(ithLF)

! calculate cos(theta1) and cos(theta2) of the solvent to lj-spheres 1 and 2

respectively.

cosTh(1) = dot_product(rSolv1, h) / rSolvn(1)

cosTh(2) = dot_product(rSolv2, h) / rSolvn(2)

! make rotated vector that represents the x-axis projection of one of the Cl

vectors.

x(1) = cosPhiLF(iphiLF)*cosPsiLF(ipsiLF) - sinPhiLF(iphiLF)*cosThetaLF(ithLF)*

sinPsiLF(ipsiLF)

x(2) = cosPhiLF(iphiLF)*sinPsiLF(ipsiLF) + sinPhiLF(iphiLF)*cosThetaLF(ithLF)*

cosPsiLF(ipsiLF)

x(3) = sinPhiLF(iphiLF)*sinThetaLF(ithLF)

! calculate plane-normal vectors for LJ-C-H and LJ-C-Cl1

! note: use the cross product of the lj-c (rsolv1) and c-h (h) vectors, and the lj-

c (rsolv1) and c-cl (l) vectors

y = cross_product(h,x)

phi(1) = atan2( dot_product(y,-rSolv1) / (euclid_norm(y)*rSolvn(1)), dot_product(x

,-rSolv1) / (euclid_norm(y)*rSolvn(1)))

phi(2) = atan2( dot_product(y,-rSolv2) / (euclid_norm(y)*rSolvn(2)), dot_product(x

,-rSolv2) / (euclid_norm(y)*rSolvn(2)))

! phi [-pi,pi] --> phi’’ [0,pi/3]

if ((phi(1) .gt. phi_hmax) .and. (phi(1) .lt. phi_max)) then

phi(1) = phi_max - phi(1)

else if ((phi(1) .gt. phi_max) .and. (phi(1) .lt. pi)) then

phi(1) = phi(1) - phi_max

else if ((phi(1) .gt. -pi) .and. (phi(1) .lt. -phi_max)) then

phi(1) = -(phi(1) + phi_max)

else if ((phi(1) .gt. -phi_max) .and. (phi(1) .lt. -phi_hmax)) then

phi(1) = phi(1) + phi_max

else if ((phi(1) .gt. -phi_hmax) .and. (phi(1) .lt. phi_min)) then

phi(1) = -phi(1)

end if

if ((phi(2) .gt. phi_hmax) .and. (phi(2) .lt. phi_max)) then

phi(2) = phi_max - phi(2)

else if ((phi(2) .gt. phi_max) .and. (phi(2) .lt. pi)) then

phi(2) = phi(2) - phi_max

else if ((phi(2) .gt. -pi) .and. (phi(2) .lt. -phi_max)) then

phi(2) = -(phi(2) + phi_max)

else if ((phi(2) .gt. -phi_max) .and. (phi(2) .lt. -phi_hmax)) then

phi(2) = phi(2) + phi_max

else if ((phi(2) .gt. -phi_hmax) .and. (phi(2) .lt. phi_min)) then

phi(2) = -phi(2)

end if

tSolv1 = cross_product(rSolv1,h) ! this is (r1 x p) ie. the t vector

sSolv1 = cross_product(tSolv1,rSolv1)

tSolv1n = euclid_norm(tSolv1)

sSolv1n = euclid_norm(sSolv1)

end subroutine calc_angles

! integrate the average force from ’compute_avg_force ’ to get the PMF.

subroutine integrate_force

use cfgData

use ctrlData

implicit none
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integer :: d

allocate( u_dir(cfgRBins) )

u_dir = 0_dp

if (explicit_R .eqv. .false.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(cfgRBins) = fAvg(cfgRBins) * RStepSize

else

u_dir(cfgRBins -(d-1)) = u_dir(cfgRBins -(d-2)) + fAvg(cfgRBins -(d-1)) *

RStepSize

end if

end do

else if (explicit_R .eqv. .true.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(cfgRBins) = fAvg(cfgRBins) * (R_axis(cfgRBins)-R_axis(cfgRBins -1))

!print*, (R_axis(cfgRBins)-R_axis(cfgRBins -1))

else

! FIXME: is the delta R part of this correct?

u_dir(cfgRBins -(d-1)) = u_dir(cfgRBins -(d-2)) + fAvg(cfgRBins -(d-1)) * &

(R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

! it looks like the first value is getting printed twice. Also, the values

might be wrong. Should it be (d-1) and

! (d-0)? instead of -2 and -1?

!print*, (R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

end if

end do

end if

end subroutine integrate_force

! write force out and g(r) out to compare against explicit

subroutine write_test_out(r)

use cfgData

use ctrlData

implicit none

integer :: r, i_f, i, j

character(len=32) :: temp, filename

character(len=8) :: frmt

i_f = (r-1) * int(RStepSize*10)

frmt = ’(I3.3)’ ! an integer of width 3 with zeroes on the left

write(temp,frmt) i_f ! converting integer to string using ’internal file’

filename=’hist3D_output.’//trim(temp)//’.dat’

open(35,file=filename ,status=’replace’)

write(6,*) "Writing test file: ", filename

write(35,*) "# 1. X Distance"

write(35,*) "# 2. Z Distance"

write(35,*) "# 3. g(r)"

write(35,*) "# 4. Force.r"

write(35,*) "# 5. Force.s"

write(35,*) "# 6. Force.t"

do j = 1, zBins

do i = 1, xBins

write(35,898) x_axis(i), z_axis(j), grSPA(i,j), frcSPA(1,i,j), frcSPA(2,i,j),

frcSPA(3,i,j)

end do

end do

close(35)
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flush(6)

898 format (6(1x,es14.7))

end subroutine write_test_out

! write output file

subroutine write_output(outFile)

use cfgData

implicit none

character(len=128) :: outFile

integer :: r

open(35,file=outFile,status=’replace’)

write(6,*) "Writing output file: ", outFile

write(35,*) "# 1. R Distance"

write(35,*) "# 2. Avg Force"

write(35,*) "# 3. PMF"

do r = 1, cfgRBins

write(35,899) R_axis(r), fAvg(r), u_dir(r)

end do

close(35)

flush(6)

899 format (3(1x,es14.7)) ! scientific format

end subroutine write_output

2.8 IS-SPA 1-Dimensional with Dipole CDD: isspa2.1D.f90

! USAGE: ./this_file.x -cfg [CONFIGURATION FILE]

!

!

! ^

! z|

! |

! | ^

! | /y

! | /

! <_______O_______|_______O_______ >

! -x 1 2 +x

! <-----R

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Modules !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! data for the density and force tables.

module histData

use prec

real(kind=dp),allocatable :: histDist(:), histCosTh(:), histPhi(:), g(:,:,:,:),

fLJr(:,:,:,:), fLJs(:,:,:,:), fLJt(:,:,:,:), &

& fCr(:,:,:,:), fCs(:,:,:,:), fCt(:,:,:,:), gc(:,:,:,:)

real(kind=dp),allocatable :: g2D(:,:,:), fLJr2D(:,:,:), fLJs2D(:,:,:), fCr2D(:,:,:)

, fCs2D(:,:,:)

real(kind=dp),allocatable :: g1D(:,:), fLJr1D(:,:), fCr1D(:,:), emf1D(:,:), g1D2

(:,:), fLJr1D2(:,:), fCr1D2(:,:), emf1D2(:,:), &

& avgCosTh(:,:)

real(kind=dp) :: histDistStepSize , histCosThStepSize , histPhiStepSize

integer :: histDistBins , histCosThBins , histPhiBins

real(kind=dp),allocatable :: longRange(:) !debug
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end module histData

! data from the config file.

module cfgData

use prec

use constants

real(kind=dp),allocatable :: x_axis(:), z_axis(:), R_axis(:), fAvg(:,:), u_dir(:,:)

real(kind=dp) :: RStepSize , xzStepSize , R_min, R_max, xz_range , cfgCosThStepSize ,

cfgPsiStepSize , T, cut, offset, soluteChg(2), radius

character(len=8) :: c_explicit_R

integer :: cfgRBins , cfgCosThBins , cfgPhiBins , cfgPsiBins , nThreads

!

integer :: xBins, zBins

real(kind=dp) :: density = 0.00750924_dp ! numerical density of chloroforms per

Angstrom**3

real(kind=dp) :: dipole_moment = 0.2915_dp ! magnitude of dipole moment chloroform

in q_e * AA

real(kind=dp) :: dielectric = 4.39_dp ! reduced dielectric constant of chloroform

real(kind=dp) :: cosTh_max = 1_dp

real(kind=dp) :: cosTh_min = -1_dp

real(kind=dp) :: phi_max = pi/3_dp

real(kind=dp) :: phi_min = 0_dp

real(kind=dp) :: psi_max = 2_dp*pi

real(kind=dp) :: psi_min = 0_dp

end module cfgData

! data for calculating cosTh value.

module angleData

use prec

real(kind=dp),allocatable :: sinThetaLF(:), cosThetaLF(:), sinPhiLF(:), cosPhiLF(:)

, sinPsiLF(:), cosPsiLF(:)

real(kind=dp) :: rSolv1(3), rSolv2(3), rSolvn(2), cosTh(2), phi(2), sSolv1(3),

tSolv1(3), sSolv1n, tSolv1n

!$omp THREADPRIVATE( rSolv1, rSolv2, rSolvn, sSolv1, sSolv1n, tSolv1, tSolv1n,

cosTh, phi )

end module angleData

! testing arrays for force and g(r)

module ctrlData

use prec

real(kind=dp),allocatable :: frcSPA(:,:,:,:), grSPA(:,:), explicitDist(:)

integer :: crdLines

logical :: explicit_R

end module ctrlData

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Main Program !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program compute_avgForce

use prec

implicit none

character(len=128) :: histFile, cfgFile, outFile

real(kind=dp) :: omp_get_wtime , ti, tf, seconds

integer :: hours, minutes

ti = omp_get_wtime()

! make list of average direct force from ’collapsed ’ file.

call parse_command_line(cfgFile)

! read config file

call read_cfg(cfgFile, histFile , outFile)
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! make list of average direct force from ’collapsed ’ file.

call make_hist_table(histFile)

! Now that we have the relevant information spline the g and f arrays along r.

call spline_hist_array

! read in LJ--LJ dist array from file

call R_list

! setup for computing the average force integral.

call setup_compute_avg_force

! compute average force integral.

call compute_avg_force

! integrate average force to get PMF.

call integrate_force

! write PMF output file

call write_output(outFile)

! Write time taken to finish calculation.

tf = omp_get_wtime()

hours = (tf-ti)/3600

minutes = mod((tf-ti),3600d0)/60

seconds = mod(mod((tf-ti),3600d0),60d0)

write(*,*) "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

write(*,’(a,i4,a,i2,a,f6.3,a)’) "Total time elapsed: ", hours, "h ", minutes, "m

", seconds, "s"

flush(6)

end program compute_avgForce

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!! Subroutines !!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! parse commandline for relevant files.

subroutine parse_command_line(cfgFile)

implicit none

character(len=128) :: cfgFile

character(len=16) :: arg

integer :: i

logical :: cfgFileFlag , cfgExist

cfgFileFlag = .false.

cfgExist = .false.

i=1

do

call get_command_argument(i,arg)

select case (arg)

case (’-cfg’)

i = i+1

call get_command_argument(i,cfgFile)

cfgFileFlag=.true.

INQUIRE(FILE=cfgFile, EXIST=cfgExist)

write(*,*) ’Config File: ’, cfgFile

write(*,*) ’Config File Exists: ’, cfgExist

case default
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write(*,*) ’Unrecognized command-line option: ’, arg

write(*,*) ’Usage: compute_avgForce.x -cfg [cfg file]’

stop

end select

i = i+1

if (i.ge.command_argument_count()) exit

end do

if (cfgFileFlag.eqv..false.) then

write(*,*) "Must provide a cfg file using command line argument -cfg [cfg file

name]"

stop

end if

! ’ERROR STOP’ if either file doesn’t exist

if (cfgExist.eqv..false.) then

write(*,*) ’cfg file does not exist’

error stop

end if

flush(6)

end subroutine parse_command_line

! read python cfg file for g(r) parameters

subroutine read_cfg(cfgFile, histFile , outFile)

use cfgData

implicit none

character(len=128) :: cfgFile, histFile, outFile

character(len=256) :: line

character(len=32) :: firstWord , sep

integer :: ios

logical :: outFileFlag , histFileFlag , histExist , RstepSizeFlag , xzStepSizeFlag ,

RmaxFlag , RminFlag , xzRangeFlag , &

& thetaBinsFlag , phiBinsFlag , psiBinsFlag , c_explicit_RFlag , TFlag, cutFlag,

radiusFlag , offsetFlag , nThreadsFlag , &

& soluteChgFlag

histFileFlag = .false.; histExist = .false.

outFileFlag = .false.

RstepSizeFlag = .false.

xzStepSizeFlag = .false.

c_explicit_RFlag = .false.

RmaxFlag = .false.

RminFlag = .false.

xzRangeFlag = .false.

thetaBinsFlag = .false.

phiBinsFlag = .false.

psiBinsFlag = .false.

TFlag = .false.

cutFlag = .false.

radiusFlag = .false.

offsetFlag = .false.

nThreadsFlag = .false.

soluteChgFlag = .false.

ios = 0

open(20,file=cfgFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

call split(line,’=’,firstWord , sep)

if (line .ne. "") then
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if (firstWord .eq. "hist_file") then

read(line,’(a)’) histFile

write(*,*) "Histogram File: ", histFile

histFileFlag = .true.

INQUIRE(FILE=histFile , EXIST=histExist) ! check if it exists

else if (firstWord .eq. "out_file") then

read(line,*) outFile

write(*,*) "Output File: ", outFile

outFileFlag = .true.

else if (firstWord .eq. "RStepSize") then

read(line,*) RStepSize

write(*,*) "PMF Step Size: ", RStepSize

RstepSizeFlag = .true.

else if (firstWord .eq. "xzStepSize") then

read(line,*) xzStepSize

write(*,*) "Solvent Grid Step Size: ", xzStepSize

xzStepSizeFlag = .true.

else if (firstWord .eq. "explicit_R") then

read(line,*) c_explicit_R

write(*,*) "Use Explicit R Values: ", c_explicit_R

c_explicit_RFlag = .true.

else if (firstWord .eq. "R_max") then

read(line,*) R_max

write(*,*) "R Maximum Value: ", R_max

RmaxFlag = .true.

else if (firstWord .eq. "R_min") then

read(line,*) R_min

write(*,*) "R Minimum Value: ", R_min

RminFlag = .true.

else if (firstWord .eq. "xz_range") then

read(line,*) xz_range

write(*,*) "XZ - Range: ", xz_range

xzRangeFlag = .true.

else if (firstWord .eq. "theta_bins") then

read(line,*) cfgCosThBins

write(*,*) "Theta Bins: ", cfgCosThBins

thetaBinsFlag= .true.

else if (firstWord .eq. "phi_bins") then

read(line,*) cfgPhiBins

write(*,*) "Phi Bins: ", cfgPhiBins

phiBinsFlag= .true.

else if (firstWord .eq. "psi_bins") then

read(line,*) cfgPsiBins

write(*,*) "Psi Bins: ", cfgPsiBins

psiBinsFlag= .true.

else if (firstWord .eq. "temperature") then

read(line,*) T

write(*,*) "Temperature (K): ", T

TFlag= .true.

else if (firstWord .eq. "bicubic_cutoff") then

read(line,*) cut

write(*,*) "Bicubic/Bilinear Cutoff: ", cut

cutFlag= .true.

else if (firstWord .eq. "solute_radius") then

read(line,*) radius

write(*,*) "Solute radius: ", radius

radiusFlag= .true.

else if (firstWord .eq. "offset") then

read(line,*) offset

write(*,*) "Solvent offset distance: ", offset

offsetFlag= .true.

else if (firstWord .eq. "num_threads") then

read(line,*) nThreads

write(*,*) "Number of Parallel Threads: ", nThreads

nThreadsFlag= .true.
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else if (firstWord .eq. "solute_charge") then

read(line,*) soluteChg(1)

soluteChg(2) = -soluteChg(1)

write(*,*) "Solute Charges: ", soluteChg

soluteChgFlag= .true.

end if

end if

end do

close(20)

if (histFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’hist_file ’ value"

stop

end if

if (histExist.eqv..false.) then

write(*,*) "Config file must point to a ’hist_file ’ that exists: ", histFile, "

doesn’t exist."

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (RstepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’RStepSize ’ value"

stop

end if

if (xzStepSizeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xzStepSize ’ value"

stop

end if

if (outFileFlag.eqv..false.) then

write(*,*) "Config file must have a ’out_file’ value"

stop

end if

if (c_explicit_RFlag.eqv..false.) then

write(*,*) "Config file must have a ’explicit_R ’ value"

stop

end if

if (RmaxFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_max’ value"

stop

end if

if (RminFlag.eqv..false.) then

write(*,*) "Config file must have a ’R_min’ value"

stop

end if

if (xzRangeFlag.eqv..false.) then

write(*,*) "Config file must have a ’xz_range’ value"

stop

end if

if (thetaBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’theta_bins ’ value"

stop

end if

if (phiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’phi_bins’ value"

stop

end if

if (psiBinsFlag.eqv..false.) then

write(*,*) "Config file must have a ’psi_bins’ value"

stop

end if

if (TFlag.eqv..false.) then

write(*,*) "Config file must have a ’temperature ’ value"
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stop

end if

if (cutFlag.eqv..false.) then

write(*,*) "Config file must have a ’bicubic_cuttoff ’ value"

stop

end if

if (radiusFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_radius ’ value"

stop

end if

if (offsetFlag.eqv..false.) then

write(*,*) "Config file must have a ’offset’ value"

stop

end if

if (nThreadsFlag.eqv..false.) then

write(*,*) "Config file must have a ’num_threads ’ value"

stop

end if

if (soluteChgFlag.eqv..false.) then

write(*,*) "Config file must have a ’solute_charge ’ value"

stop

end if

flush(6)

end subroutine read_cfg

! read force file and make a lookup table.

subroutine make_hist_table(histFile)

use histData; use cfgData

implicit none

character(len=128) :: histFile

character(len=512) :: line

integer :: ios, ios2, i, j, k, nHistLines

real(kind=dp),allocatable :: histTmp(:,:)

! read number of lines in histFile and allocate that many points in temporary

histogram list, histTmp.

ios = 0; nHistLines = -1

open(20,file=histFile)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if (line(1:1) .ne. "#") then

nHistLines = nHistLines + 1

end if

end do

close(20)

write(*,*) "nHistLines", nHistLines

allocate( histTmp(19,nHistLines) )

! populate hist arrays

ios = 0; i = 1

open(20,file=histFile)

! read file ignoring comment lines at the beginning

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

if ((line(1:1) .ne. "#") .and. (ios .ge. 0)) then

! r cos(Th) phi/3

read(line,*) histTmp(1,i), histTmp(2,i), histTmp(3,i), &

! g(r)+ g(r)-

& histTmp(4,i), histTmp(5,i), &

! <fLJ.r>+ <fLJ.s>+ <fLJ.t>+

& histTmp(6,i), histTmp(7,i), histTmp(8,i), &
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! <fLJ.r>- <fLJ.s>- <fLJ.t>-

& histTmp(9,i), histTmp(10,i), histTmp(11,i), &

! <fC.r>+ <fC.s>+ <fC.t>+

& histTmp(12,i), histTmp(13,i), histTmp(14,i), &

! <fC.r>- <fC.s>- <fC.t>-

& histTmp(15,i), histTmp(16,i), histTmp(17,i), &

! gc(r)+ gc(r)-

& histTmp(18,i), histTmp(19,i)

i = i + 1

end if

end do

close(20)

! Unique value determination

do i = 1, nHistLines

if (i .eq. 1) then

histDistBins = 1

ios = 0; ios2 = 0

else ! i = 2, nHistLines

if (( histTmp(1,i) .lt. (histTmp(1,i-1)-1d-6) ) .or. ( histTmp(1,i) .gt. (

histTmp(1,i-1)+1d-6) )) then

! note: this statement will trigger when a value in the first column (dist

) is different than the value in the row

! before it.

histDistBins = histDistBins + 1

end if

if (( histTmp(2,i) .gt. (histTmp(2,1)-1d-6) ) .and. ( histTmp(2,i) .lt. (

histTmp(2,1)+1d-6) ) .and. ( ios .eq. 0 ) .and. &

& ( ios2 .eq. 1 )) then

! note: this statement will trigger when i = histCosThBins+1 because it

finds the first repeated element

histCosThBins = (i - 1)/histPhiBins

ios = 1

end if

if (( histTmp(3,i) .gt. (histTmp(3,1)-1d-6) ) .and. ( histTmp(3,i) .lt. (

histTmp(3,1)+1d-6) ) .and. ( ios2 .eq. 0 )) then

! note: this statement will trigger when i = histPhiBins+1 because it

finds the first repeated element

histPhiBins = i - 1

ios2 = 1

end if

end if

end do

write(*,*) "Histogram Distance Bins: ", histDistBins

write(*,*) "Histogram Cosine Theta Bins: ", histCosThBins

write(*,*) "Histogram Phi Bins: ", histPhiBins

allocate( histDist(histDistBins), histCosTh(histCosThBins), histPhi(histPhiBins), g

(2,histDistBins ,histCosThBins ,histPhiBins), &

& fLJr(2,histDistBins ,histCosThBins ,histPhiBins), fLJs(2,histDistBins ,

histCosThBins ,histPhiBins), &

& fLJt(2,histDistBins ,histCosThBins ,histPhiBins), fCr(2,histDistBins ,

histCosThBins ,histPhiBins), &

& fCs(2,histDistBins ,histCosThBins ,histPhiBins), fCt(2,histDistBins ,

histCosThBins ,histPhiBins), &

& gc(2,histDistBins ,histCosThBins ,histPhiBins) )

! populate arrays that will be used in the rest of the calculation from temp array

do i = 1, histDistBins ! the values written out from python script are at half

-bin distances

histDist(i) = histTmp(1,histCosThBins*histPhiBins*(i-1)+1)

end do

do i = 1, histCosThBins

histCosTh(i) = histTmp(2,histPhiBins*(i-1)+1)

end do
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do i = 1, histPhiBins

histPhi(i) = histTmp(3,i)

end do

do i = 1, histDistBins

do j = 1, histCosThBins

do k = 1, histPhiBins

g(1,i,j,k) = histTmp( 4, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! g(r,cos,phi)+ currently g

g(2,i,j,k) = histTmp( 5, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! g(r,cos,phi)- currently g

fLJr(1,i,j,k) = histTmp( 6, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.r>(r,cos,phi) +

fLJs(1,i,j,k) = histTmp( 7, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.s>(r,cos,phi) +

fLJt(1,i,j,k) = histTmp( 8, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.t>(r,cos,phi) +

fLJr(2,i,j,k) = histTmp( 9, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.r>(r,cos,phi) -

fLJs(2,i,j,k) = histTmp(10, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.s>(r,cos,phi) -

fLJt(2,i,j,k) = histTmp(11, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fLJ.t>(r,cos,phi) -

fCr(1,i,j,k) = histTmp(12, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.r>(r,cos,phi) +

fCs(1,i,j,k) = histTmp(13, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.s>(r,cos,phi) +

fCt(1,i,j,k) = histTmp(14, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.t>(r,cos,phi) +

fCr(2,i,j,k) = histTmp(15, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.r>(r,cos,phi) -

fCs(2,i,j,k) = histTmp(16, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.s>(r,cos,phi) -

fCt(2,i,j,k) = histTmp(17, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! <fC.t>(r,cos,phi) -

gc(1,i,j,k) = histTmp(18, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! gc(r,cos,phi) +

gc(2,i,j,k) = histTmp(19, (i-1)*histCosThBins*histPhiBins + (j-1)*

histPhiBins + k) ! gc(r,cos,phi) +

end do

end do

end do

histDistStepSize = histDist(2) - histDist(1)

write(*,*) "Histogram Distance Step Size: ", histDistStepSize

histCosThStepSize = histCosTh(2) - histCosTh(1)

write(*,*) "Histogram Cosine Theta Step Size: ", histCosThStepSize

histPhiStepSize = histPhi(2) - histPhi(1)

write(*,*) "Histogram Phi Step Size: ", histPhiStepSize

flush(6)

!print*, ’look4’, g(1,30,1,1), g(2,30,1,1)

end subroutine make_hist_table

! calculate reduced mean field emf1D(r) from g(r,cosTh,phi)

subroutine reduced_mean_field(ia)

use histData; use functions

implicit none

integer :: ia, ir, ith, iphi

real(kind=dp) :: boltz, boltz_sum

real(kind=dp),allocatable :: u02D(:,:)

! real(kind=dp) :: x, y1, y2 !debug
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write(*,*) ’Calculating reduced mean field...’; flush(6)

allocate( u02D(histDistBins ,histCosThBins) )

u02D = 0_dp

u02D = minval(-g(ia,:,:,:),dim=3)

avgCosTh(ia,:) = 0_dp

do ir = 1, histDistBins

boltz_sum = 0_dp

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

boltz = exp(g(ia,ir,ith,iphi) )!- u02D(ir,ith)) ! i think this should be a

+ sign but the data looks wrong when it is.

avgCosTh(ia,ir) = avgCosTh(ia,ir) + (boltz * histCosTh(ith))

boltz_sum = boltz_sum + boltz

end do

end do

if (abs(boltz_sum).lt.1.0d-6) then

avgCosTh(ia,ir) = 0_dp

else

avgCosTh(ia,ir) = avgCosTh(ia,ir) / boltz_sum

end if

end do

do ir = 1, histDistBins

emf1D(ia,ir) = (3*avgCosTh(ia,ir) - avgCosTh(ia,ir)*(6*avgCosTh(ia,ir)**2 +

avgCosTh(ia,ir)**4 - 2*avgCosTh(ia,ir)**6)/5.) &

& / (1-avgCosTh(ia,ir)**2) ! inverse Langevin function

end do

if (ia.eq.2) then !debug

open(99,file=’emf.out’,status=’replace’)

write(99,*) ’# 1. Distance’

write(99,*) ’# 2. emf +’

write(99,*) ’# 3. <p> +’

write(99,*) ’# 4. emf -’

write(99,*) ’# 5. <p> -’

!do ir = 1, histDistBins*100

!x = ir/100.0/10.0

!call splint(histDist,emf1D(1,:),emf1D2(1,:),histDistBins ,x, y1)

!call splint(histDist,emf1D(2,:),emf1D2(2,:),histDistBins ,x, y2)

!write(99,*) x, y1, y2

!end do

do ir = 1, histDistBins

write(99,*) histDist(ir), emf1D(1,ir), avgCosTh(1,ir), emf1D(2,ir), avgCosTh

(2,ir)

end do

close(99)

end if

end subroutine reduced_mean_field

! spline the r dimension of each theta phi stack and then average over phi for 2D

subroutine spline_hist_array

use constants; use functions; use histData; use cfgData; use idealSolv

implicit none

integer :: ia, ir, ith, iphi, imin, igo, igo1, igo2

real(kind=dp) :: norm_factor , boltz, boltz_sum

real(kind=dp),allocatable :: idealHist(:,:,:,:,:), idealHist2D(:,:,:,:), u02D(:,:),

idealHist1D(:,:,:), u01D(:)

integer,allocatable :: ispline(:,:), ispline2D(:)

integer :: ispline1D

!real(kind=dp) :: xx, yy !debug

!integer :: rTmp !debug
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write(*,*) ’Editing input histogram arrays with ideal arrays in 3D...’

! Calculate a 4D array idealHist(lj+/lj-,g/f,r,th,phi)

allocate( idealHist(2,13,histDistBins ,histCosThBins ,histPhiBins), ispline(

histCosThBins ,histPhiBins), ispline2D(histCosThBins) )

idealHist = 0_dp; ispline = 0_dp

call ideal_CL3(histDistBins ,histDistStepSize ,histCosThBins ,cosTh_min ,cosTh_max ,

histPhiBins ,phi_min,phi_max,radius,offset,T, &

& soluteChg , idealHist)

!print*, ’look1’, idealHist(1,1,30,1,1), idealHist(2,1,30,1,1) !debug

! Spline the log(g) and force arrays using ideal values for the slopes at small r.

This populates the second derivative arrays.

! This requires ideal values that have been averaged over phi.

allocate( idealHist2D(2,9,histDistBins ,histCosThBins) )

idealHist2D = 0_dp

call ideal_3D_to_2D(idealHist ,histDistBins ,histCosThBins ,histPhiBins , idealHist2D)

allocate( idealHist1D(2,5,histDistBins) )

idealHist1D = 0_dp

call ideal_2D_to_1D(idealHist2D ,histDistBins ,histCosThBins , idealHist1D)

! Allocate explicit data arrays for 3D -> 2D transformation

allocate( g2D(2,histDistBins ,histCosThBins), fLJr2D(2,histDistBins ,histCosThBins),

fLJs2D(2,histDistBins ,histCosThBins), &

& fCr2D(2,histDistBins ,histCosThBins), fCs2D(2,histDistBins ,histCosThBins), u02D

(histDistBins ,histCosThBins) )

g2D = 0_dp; fLJr2D = 0_dp; fLJs2D = 0_dp; fCr2D = 0_dp; fCs2D = 0_dp; u02D = 0_dp

! Allocate explicit data arrays for 2D -> 1D transformation

allocate( g1D(2,histDistBins), fLJr1D(2,histDistBins), fCr1D(2,histDistBins), u01D(

histDistBins) )

g1D = 0_dp; fLJr1D = 0_dp; fCr1D = 0_dp; u01D = 0_dp

allocate( g1D2(2,histDistBins), fLJr1D2(2,histDistBins), fCr1D2(2,histDistBins),

emf1D(2,histDistBins), &

& emf1D2(2,histDistBins), avgCosTh(2,histDistBins) )

g1D2 = 0_dp; fLJr1D2 = 0_dp; fCr1D2 = 0_dp; emf1D = 0_dp; emf1D2 = 0_dp

! Edit the input hist arrays to more smoothly transition to -/+ infinity with the

help of idealHist.

do ia = 1, 2 ! which solute

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

imin = 0

! Normalization factor or each theta phi array.

norm_factor = gc(ia,histDistBins ,ith,iphi)/(g(ia,histDistBins ,ith,iphi)*4*

pi*histDist(histDistBins)**2)

! Find the first non-zero g(r) bin for each theta/phi array and set ’imin’

to that ’ir’ index

find: do ir = 1, histDistBins

if (g(ia,ir,ith,iphi).gt.1d-6) then

imin = ir

exit find

end if

end do find

! Note: Add the ideal values to bins with no sampling. And half counts to

bins that probably should have had sampling.

igo = 0

do ir = histDistBins , 1, -1

if (ir.ge.imin) then
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if (g(ia,ir,ith,iphi).gt.1d-6) then

g(ia,ir,ith,iphi) = log(g(ia,ir,ith,iphi)) ! g is ln(g) now

else ! note: This is a zero bin where there probably should have

been something. So put a half count in.

g(ia,ir,ith,iphi) = log(real(0.5,dp)/(4*pi*histDist(ir)**2)/

norm_factor)

fLJr(ia,ir,ith,iphi) = idealHist(ia, 2,ir,ith,iphi)

fLJs(ia,ir,ith,iphi) = idealHist(ia, 3,ir,ith,iphi)

fLJt(ia,ir,ith,iphi) = idealHist(ia, 4,ir,ith,iphi)

fCr(ia,ir,ith,iphi) = idealHist(ia, 8,ir,ith,iphi)

fCs(ia,ir,ith,iphi) = idealHist(ia, 9,ir,ith,iphi)

fCt(ia,ir,ith,iphi) = idealHist(ia,10,ir,ith,iphi)

end if

else if (ir.lt.imin) then ! Analytic Continuation: .lt.imin ==> in the

region of no sampling. Set the FE (log(g)) to

! the direct energy shifted by a constant energy term , the

difference between the last sampled indirect and

! direct energies.

! ln(g(r<r0)) = -u_dir(r)/T - ( u_pmf(r0)/T - u_dir(r0)/T )

! ln(g(r<r0)) = -u_dir(r)/T + ln(g(r0)) - u_dir(r0)/T

g(ia,ir,ith,iphi) = ( -idealHist(ia,1,ir,ith,iphi) + idealHist(ia,1,

imin,ith,iphi) ) + g(ia,imin,ith,iphi) ! ln(g)

!print*, ’look2’, idealHist(ia,1,30,1,1) !debug

if ((g(ia,ir,ith,iphi).lt.cut).and.(igo.eq.0)) then ! the largest r

to go past the cutoff

ispline(ith,iphi) = ir

igo = 1

end if

fLJr(ia,ir,ith,iphi) = idealHist(ia, 2,ir,ith,iphi)

fLJs(ia,ir,ith,iphi) = idealHist(ia, 3,ir,ith,iphi)

fLJt(ia,ir,ith,iphi) = idealHist(ia, 4,ir,ith,iphi)

fCr(ia,ir,ith,iphi) = idealHist(ia, 8,ir,ith,iphi)

fCs(ia,ir,ith,iphi) = idealHist(ia, 9,ir,ith,iphi)

fCt(ia,ir,ith,iphi) = idealHist(ia,10,ir,ith,iphi)

end if

end do ! ir

end do ! iphi

end do ! ith

! Set all ln(g) values past the largest r bin to reach the cuttoff to the

cuttoff value.

igo = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((g(ia,ir,ith,iphi).lt.-abs(cut)).and.(igo.eq.0)) then

g(ia,1:ir,ith,iphi) = -abs(cut)

igo = 1

end if

end do

igo = 0

end do

end do

call reduced_mean_field(ia) ! this way the emf1D is made with the already

analytically continued g(r,th,phi) which is ln(g)

! Set all LJ forces past (to the left of) the first (largest r) bin to reach the

cutoff to the cutoff value.

igo = 0; igo1 = 0; igo2 = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((fLJr(ia,ir,ith,iphi).gt.abs(cut)).and.(igo.eq.0)) then

fLJr(ia,1:ir,ith,iphi) = abs(cut)
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igo = 1

end if

if ((fLJs(ia,ir,ith,iphi).gt.abs(cut)).and.(igo1.eq.0)) then

fLJs(ia,1:ir,ith,iphi) = abs(cut)

igo1 = 1

end if

if ((fLJt(ia,ir,ith,iphi).gt.abs(cut)).and.(igo2.eq.0)) then

fLJt(ia,1:ir,ith,iphi) = abs(cut)

igo2 = 1

end if

end do

igo = 0; igo1 = 0; igo2 = 0

end do

end do

! Set all C forces past (to the left of) the first (largest r) bin to reach the

cutoff to the cutoff value.

igo = 0; igo1 = 0; igo2 = 0

do iphi = 1, histPhiBins

do ith = 1, histCosThBins

do ir = histDistBins , 1, -1

if ((abs(fCr(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo.eq.0)) then

fCr(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,8,ir,ith,iphi))

* abs(cut)

igo = 1

end if

if ((abs(fCs(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo1.eq.0)) then

fCs(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,9,ir,ith,iphi))

* abs(cut)

igo1 = 1

end if

if ((abs(fCt(ia,ir,ith,iphi)).gt.abs(cut)).and.(igo2.eq.0)) then

fCt(ia,1:ir,ith,iphi) = sign(real(1,dp),idealHist(ia,10,ir,ith,iphi)

) * abs(cut)

igo2 = 1

end if

end do

igo = 0; igo1 = 0; igo2 = 0

end do

end do

! do ir = 1, histDistBins !debug

! print*, ’g3D: ’, ir, g(ia,ir,1,1) !debug

! end do !debug

! Average the 3D input histograms into 2D

write(*,*) ’Averaging input histograms from 3D into 2D for solute: ’,ia

! Find the minimum value of u(phi; r,th) ==> u02D(r,th)

! dim=3 in this case means the phi dimension. Replace the array in phi at each r

,th with the minimum value of the array,

! making an array u02D(r,th).

u02D = minval(-g(ia,:,:,:),dim=3)

! do ir = 1, histDistBins !debug

! print*, ’u0_2D: ’,ir, u02D(ir,1) !debug

! end do !debug

do ith = 1, histCosThBins

do ir = 1, histDistBins

boltz_sum = 0_dp

do iphi = 1, histPhiBins

boltz = exp(g(ia,ir,ith,iphi) + u02D(ir,ith))

!print*, ’boltz: ’, g(ia,ir,ith,iphi), u02D(ir,ith), boltz !debug

g2D(ia,ir,ith) = g2D(ia,ir,ith) + exp(g(ia,ir,ith,iphi)) ! g is g

!print*, ’g2Dloop: ’, ith,ir,iphi, g2D(ia,ir,ith) !debug
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fLJr2D(ia,ir,ith) = fLJr2D(ia,ir,ith) + (boltz * fLJr(ia,ir,ith,iphi))

! fLJ.r

fLJs2D(ia,ir,ith) = fLJs2D(ia,ir,ith) + (boltz * fLJs(ia,ir,ith,iphi))

! fLJ.s

fCr2D(ia,ir,ith) = fCr2D(ia,ir,ith) + (boltz * fCr(ia,ir,ith,iphi)) !

fC.r

fCs2D(ia,ir,ith) = fCs2D(ia,ir,ith) + (boltz * fCs(ia,ir,ith,iphi)) !

fC.s

boltz_sum = boltz_sum + boltz ! denominator for averaging over phi

end do

!print*, ’boltz_sum: ’, boltz_sum !debug

g2D(ia,ir,ith) = log(g2D(ia,ir,ith) / real(histPhiBins ,dp)) ! finish

average over phi by dividing and converting to log(g)

if (g2D(ia,ir,ith).lt.-abs(cut)) g2D(ia,ir,ith) = -abs(cut)

fLJr2D(ia,ir,ith) = fLJr2D(ia,ir,ith) / boltz_sum

fLJs2D(ia,ir,ith) = fLJs2D(ia,ir,ith) / boltz_sum

fCr2D(ia,ir,ith) = fCr2D(ia,ir,ith) / boltz_sum

fCs2D(ia,ir,ith) = fCs2D(ia,ir,ith) / boltz_sum

end do

!print*, ith, fLJr2D(ia,1:40,ith) !debug

end do

! do ir = 1, histDistBins !debug

! print*, ’g2D: ’, ir, g2D(ia,ir,1) !debug

! end do !debug

! Average the 2D input histograms into 1D

write(*,*) ’Averaging input histograms from 2D into 1D for solute: ’,ia

u01D(:) = minval(-g2D(ia,:,:),dim=2)

! do ir = 1, histDistBins !debug

! print*, ’u0_1D: ’,ir, u01D(ir) !debug

! end do !debug

do ir = 1, histDistBins

boltz_sum = 0_dp

do ith = 1, histCosThBins

boltz = exp(g2D(ia,ir,ith) + u01D(ir))

!print*, ’boltz: ’, g2D(ia,ir,ith), u01D(ir), boltz !debug

g1D(ia,ir) = g1D(ia,ir) + exp(g2D(ia,ir,ith)) ! g1D is g

fLJr1D(ia,ir) = fLJr1D(ia,ir) + (boltz * fLJr2D(ia,ir,ith)) ! fLJ.r

fCr1D(ia,ir) = fCr1D(ia,ir) + (boltz * fCr2D(ia,ir,ith)) ! fC.r

boltz_sum = boltz_sum + boltz ! denominator for averaging over theta

end do

!print*, ’boltz_sum: ’, boltz_sum !debug

g1D(ia,ir) = log(g1D(ia,ir) / real(histCosThBins ,dp)) ! finish average over

cosTh by dividing and converting to log(g)

fLJr1D(ia,ir) = fLJr1D(ia,ir) / boltz_sum

fCr1D(ia,ir) = fCr1D(ia,ir) / boltz_sum

end do

!print*, ’fLJ1D: ’, fLJr1D(ia,1:40) !debug

! After the averaging is done enforce the cutoff

do ir = 1, histDistBins

if (g1D(ia,ir).lt.cut) then

g1D(ia,ir) = cut

ispline1D = ir

end if

if (fLJr1D(ia,ir).gt.abs(cut)) then

fLJr1D(ia,ir) = -cut

end if

if (abs(fCr1D(ia,ir)).gt.abs(cut)) then

fCr1D(ia,ir) = sign(real(1,dp),idealHist1D(ia,4,ir))*cut

end if

end do

! spline g1D for the solute
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call spline(histDist ,g1D(ia,:),ispline1D ,histDistBins ,(idealHist1D(ia,2,

ispline1D)+idealHist1D(ia,4,ispline1D)),real(0,dp), &

& g1D2(ia,:))

call spline(histDist ,fLJr1D(ia,:),ispline1D ,histDistBins ,idealHist1D(ia,3,

ispline1D),real(0,dp), fLJr1D2(ia,:))

call spline(histDist ,fCr1D(ia,:),ispline1D ,histDistBins ,idealHist1D(ia,5,

ispline1D),real(0,dp), fCr1D2(ia,:))

call spline(histDist ,emf1D(ia,:),ispline1D ,histDistBins ,real(0,dp),real(0,dp),

emf1D2(ia,:))

end do ! ia

! note: write out the effective input histogram after averaging/alterations.

write(*,*) ’Writing input histogram after averaging/alterations to "input_hist.out"

...’

open(91,file=’input_hist.out’,status=’replace’)

write(91,*) ’# 1. Distance’

write(91,*) ’# 2. g+’

write(91,*) ’# 3. fLJ.r+’

write(91,*) ’# 4. fC.r+’

write(91,*) ’# 5. emf.r+’

write(91,*) ’# 6. g-’

write(91,*) ’# 7. fLJ.r-’

write(91,*) ’# 8. fC.r-’

write(91,*) ’# 9. emf.r-’

do ir = 1, histDistBins

write(91,*) histDist(ir), g1D(1,ir), fLJr1D(1,ir), fCr1D(1,ir), emf1D(1,ir), g1D

(2,ir), fLJr1D(2,ir), fCr1D(2,ir), emf1D(2,ir)

end do

close(91)

! note: write out the ideal histogram after averaging/alterations.

write(*,*) ’Writing ideal histogram after averaging/alterations to "ideal_hist.out"

...’

open(92,file=’ideal_hist.out’,status=’replace’)

write(92,*) ’# 1. Distance’

write(92,*) ’# 2. g+’

write(92,*) ’# 3. fLJ.r+’

write(92,*) ’# 4. fC.r+’

write(92,*) ’# 5. g-’

write(92,*) ’# 6. fLJ.r-’

write(92,*) ’# 7. fC.r-’

do ir = 1, histDistBins

write(92,*) histDist(ir), -idealHist1D(1,1,ir), idealHist1D(1,2,ir), idealHist1D

(1,4,ir), -idealHist1D(2,1,ir), &

& idealHist1D(2,2,ir), idealHist1D(2,4,ir)

end do

close(92)

open(93,file=’3dhist.out’,status=’replace’)

write(93,*) ’# 1. Distance’

write(93,*) ’# 2. cosTh’

write(93,*) ’# 3. phi’

write(93,*) ’# 4. g+’

write(93,*) ’# 5. g-’

do ir = 1, histDistBins

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

write(93,*) histDist(ir), histCosTh(ith), histPhi(iphi), g(1,ir,ith,iphi),

g(2,ir,ith,iphi)

end do

end do

end do

close(93)

!print*, ’look4’, g(1,30,1,1), g(2,30,1,1)
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!debug

write(*,*) ’Writing ideal histogram after averaging/alterations to "ideal_3D.out"

...’

open(94,file=’ideal_3D.out’,status=’replace’)

write(94,*) ’# 1. Distance’

write(94,*) ’# 2. cosTheta’

write(94,*) ’# 3. Phi’

write(94,*) ’# 4. g+’

write(94,*) ’# 5. fLJ.r+’

write(94,*) ’# 6. fC.r+’

write(94,*) ’# 7. g-’

write(94,*) ’# 8. fLJ.r-’

write(94,*) ’# 9. fC.r-’

do ir = 1, histDistBins

do ith = 1, histCosThBins

do iphi = 1, histPhiBins

write(94,*) histDist(ir), histCosTh(ith), histPhi(iphi), -idealHist(1,1,ir

,ith,iphi), idealHist(1,2,ir,ith,iphi), &

& idealHist(1,8,ir,ith,iphi), -idealHist(2,1,ir,ith,iphi), idealHist

(2,2,ir,ith,iphi), idealHist(2,8,ir,ith,iphi)

end do

end do

end do

close(94)

!debug difference between ideal and measured

!rTmp = int(real(4,dp)/histDistStepSize)

!print*, rTmp, histDistStepSize

!do ith=1,histCosThBins

!write(55,*) histCosTh(ith), g2D(rTmp,ith), idealhist2D(1,rTmp,ith)

!end do

!debug

!do ir=1,histdistbins

!write(45,*) histDist(ir), g1D(ir), g1D2(ir), idealHist1D(1,ir), fLJr1D(ir),

idealHist1D(2,ir)

!end do

!do ir=1,100*histdistbins

!xx = ir*(histDistStepSize/100_dp)

!call splint(histDist,g1D,g1D2,histDistBins ,xx, yy)

!write(55,*) xx, yy

!end do

!write(65,*) histDist(ispline1D), g1D(ispline1D)

end subroutine spline_hist_array

! read LJ--LJ displacements from file

subroutine R_list

use cfgData; use ctrlData

implicit none

integer :: ios, i

character(len=16) :: junk

character(len=128) :: line

if (c_explicit_R .eq. ’no’) then

explicit_R = .false.

else if (c_explicit_R .eq. ’yes’) then

explicit_R = .true.

ios = 0; crdLines = -1

open(20,file=’crd_list.out’,status=’old’)

do while(ios>=0)

read(20,’(a)’,IOSTAT=ios) line

crdLines = crdLines + 1
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end do

close(20)

allocate( explicitDist(crdLines) )

ios = 0

open(20,file=’crd_list.out’,status=’old’)

do i = 1, crdLines

read(20,*,iostat=ios) junk, explicitDist(i)

end do

close(20)

end if

end subroutine R_list

! setup for the average force integral

subroutine setup_compute_avg_force

use cfgData; use angleData; use ctrlData

implicit none

integer :: i

real(kind=dp) :: psiLF

write(*,*) "Setting up for average force iteration..."

if (explicit_R .eqv. .true.) then

cfgRBins = crdLines

write(*,*) "Number of R Bins: ", cfgRBins

else if (explicit_R .eqv. .false.) then

cfgRBins = int( (R_max - R_min)/RStepSize + 1 )

if (cfgRBins .eq. 0) then

cfgRBins = 1

end if

write(*,*) "Number of R Bins: ", cfgRBins

end if

xBins = int( (2 * xz_range)/xzStepSize )

write(*,*) "Number of X Bins: ", xBins

zBins = int( (xz_range)/xzStepSize )

write(*,*) "Number of Z Bins: ", zBins

! allocate array sizes for axes and average force

allocate( R_axis(cfgRBins), fAvg(2,cfgRBins), x_axis(xBins), z_axis(zBins) )

R_axis = 0_dp; fAvg = 0_dp; x_axis = 0_dp; z_axis = 0_dp

! allocate arrays for control arrays

! frcSPA(solutes, LJ/Coulomb, x, z)

allocate( frcSPA(2, 2, xBins, zBins), grSPA(xBins, zBins) )

! Distance Axes

do i = 1, cfgRBins

if (explicit_R .eqv. .true.) then

R_axis(i) = explicitDist(i)

else if (explicit_r .eqv. .false.) then

R_axis(i) = (i-1) * RStepSize + R_min

end if

end do

do i = 1, xBins

x_axis(i) = (i-1) * xzStepSize - xz_range + xzStepSize/2_dp

end do

do i = 1, zBins

z_axis(i) = (i-1) * xzStepSize + xzStepSize/2_dp

end do

! ANGLES
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allocate( cosThetaLF(cfgCosThBins), sinThetaLF(cfgCosThBins), sinPsiLF(cfgPsiBins),

cosPsiLF(cfgPsiBins) )

! Theta

! tilt off of z

cfgCosThStepSize = (cosTh_max - cosTh_min) / real(cfgCosThBins , dp)

do i = 1, cfgCosThBins

cosThetaLF(i) = (i-0.5_dp)*cfgCosThStepSize - cosTh_max

sinThetaLF(i) = sqrt(abs(1_dp-cosThetaLF(i)**2))

end do

write(*,*) "Config Cos(Theta) Step Size: ", cfgCosThStepSize

! Psi

! processison about z

cfgPsiStepSize = (psi_max - psi_min) / real(cfgPsiBins , dp)

do i = 1, cfgPsiBins

psiLF = (i+0.5_dp)*cfgPsiStepSize

sinPsiLF(i) = sin(psiLF)

cosPsiLF(i) = cos(psiLF)

end do

write(*,*) "Config Psi Step Size: ", cfgPsiStepSize

end subroutine setup_compute_avg_force

! do the average force integral

subroutine compute_avg_force

use cfgData; use histData; use angleData; use ctrlData; use constants; use

functions

implicit none

integer :: r, i, j, ip, omp_get_thread_num !, omp_get_num_threads

real(kind=dp) :: gx1, gx2, flj, emfVec(3), emf, fx1, fx2, polMeanVec(3), emfVecMag

write(*,*) "Computing average force..."; flush(6)

allocate(longRange(cfgRBins)) !debug

! Calculate the average force integral for top half of bisecting plane of cylinder

do r = 1, cfgRBins ! loop lj--lj distances

! do r = cfgRBins, cfgRBins ! loop lj--lj distances !debug

frcSPA = 0_dp; grSPA = 0_dp

!$omp PARALLEL DEFAULT( none ) &

!$omp PRIVATE( ip, i, j, gx1, gx2, fx1, fx2, flj, emfVec, emf, polMeanVec ,

emfVecMag ) &

!$omp SHARED( nThreads, r, xBins, zBins, cut, R_axis, x_axis, z_axis, histDist,

histDistBins , g1D, g1D2, fLJr1D, fLJr1D2, &

!$omp& fCr1D, fCr1D2, emf1D, emf1D2, frcSPA, grSPA, soluteChg , dielectric ,

density, dipole_moment ) &

!$omp NUM_THREADS( nThreads )

if ((omp_get_thread_num().eq.0).and.(r.eq.1)) then

write(*,*) ’Parallel CPUs: ’, nThreads

!write(*,*) ’Parallel CPUs: ’, omp_get_num_threads()

flush(6)

end if

!$omp DO SCHEDULE( guided )

do ip = 1, (xBins*zBins)

! Convert single index ’ip’ to the x and z indicies ’i’ and ’j’ respectively.

i = int((ip-1)/zBins)+1 ! x integer

j = mod(ip-1,zBins)+1 ! z integer

rSolv1(1) = -R_axis(r)/2_dp - x_axis(i)

rSolv1(2) = 0_dp

rSolv1(3) = -z_axis(j)

rSolvn(1) = euclid_norm(rSolv1)
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rSolv2(1) = R_axis(r)/2_dp - x_axis(i)

rSolv2(2) = 0_dp

rSolv2(3) = -z_axis(j)

rSolvn(2) = euclid_norm(rSolv2)

!if ((i.eq.350).and.(j.eq.200)) print*, ’x,z,r1,r2’, x_axis(i), z_axis(j),

rSolvn !debug 1

!if ((i.eq.350).and.(j.eq.200)) print*, ’r1,r2’, rSolv1, rSolv2 !debug 1

if (rSolvn(1).gt.histDist(histDistBins)) then

gx1 = 0_dp

else

call splint(histDist ,g1D(1,:),g1D2(1,:),histDistBins ,rSolvn(1), gx1) !

solute 1 density

end if

if (rSolvn(2).gt.histDist(histDistBins)) then

gx2 = 0_dp

else

call splint(histDist ,g1D(2,:),g1D2(2,:),histDistBins ,rSolvn(2), gx2) !

solute 2 density

end if

gx1 = exp(gx1+gx2)

if ((gx1.gt.1d-6).and.((rSolvn(1).le.histDist(histDistBins)).or.(rSolvn(2).le

.histDist(histDistBins)))) then ! inside vol

if (rSolvn(1).gt.histDist(histDistBins)) then

! outside solute 1 interaction volume use ideal field in CDD

emfVec = (coulomb_const_kcalmolAq2/dielectric*soluteChg(1)/rSolvn(1)

**2) * (-rSolv1/rSolvn(1))

fx1 = 0_dp ! LJ force is zero

else

call splint(histDist ,fLJr1D(1,:),fLJr1D2(1,:),histDistBins ,rSolvn(1),

flj) ! lj force

call splint(histDist ,emf1D(1,:),emf1D2(1,:),histDistBins ,rSolvn(1), emf

) ! field

emfVec = emf * rSolv1/rSolvn(1)

!print*, ’emf:’, emf !debug

fx1 = flj

!if ((i.eq.350).and.(j.eq.200)) print*, ’emf1’, emf !debug 1

end if

if (rSolvn(2).gt.histDist(histDistBins)) then ! solute 2

! outside solute 2 interaction volume use ideal field in CDD

emfVec = emfVec + (coulomb_const_kcalmolAq2/dielectric*soluteChg(2)/

rSolvn(2)**2) * (-rSolv2/rSolvn(2))

fx2 = 0_dp ! LJ force is zero

else

call splint(histDist ,fLJr1D(2,:),fLJr1D2(2,:),histDistBins ,rSolvn(2),

flj)

call splint(histDist ,emf1D(2,:),emf1D2(2,:),histDistBins ,rSolvn(2), emf

)

emfVec = emfVec + emf * rSolv2/rSolvn(2)

fx2 = flj

!if ((i.eq.350).and.(j.eq.200)) print*, ’emf2’, emf !debug 1

!if ((i.eq.350).and.(j.eq.200)) print*, ’emf_sum’, emfVec !debug 1

end if

emfVecMag = euclid_norm(emfVec)

polMeanVec = (tanh(emfVecMag)**(-1) - (emfVecMag)**(-1))*emfVec/emfVecMag

! Langevin fxn Emf --> <p> @ cell

! Once you have the polariztion via Langevin, calculate force

emfVec = soluteChg(1)*dipole_moment*coulomb_const_kcalmolAq2/rSolvn(1)**3

* &

& (3*dot_product(rSolv1/rSolvn(1),polMeanVec) * rSolv1/rSolvn(1) -

polMeanVec) ! dipole force solute 1
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frcSPA(1,2,i,j) = frcSPA(1,2,i,j) - (gx1 * emfVec(1)) ! fd*g.R^hat coulomb

solute 1

!if ((i.eq.350).and.(j.eq.200)) print*, ’frc1’, euclid_norm(emfVec) !debug

1

emfVec = soluteChg(2)*dipole_moment*coulomb_const_kcalmolAq2/rSolvn(2)**3

* &

& (3*dot_product(rSolv2/rSolvn(2),polMeanVec) * rSolv2/rSolvn(2) -

polMeanVec) ! dipole force solute 2

frcSPA(2,2,i,j) = frcSPA(2,2,i,j) + (gx1 * emfVec(1)) ! fd*g.R^hat coulomb

solute 2

!if ((i.eq.350).and.(j.eq.200)) print*, ’frc2’, euclid_norm(emfVec) !debug

1

frcSPA(1,1,i,j) = frcSPA(1,1,i,j) + (gx1 * fx1 * (-rSolv1(1)/rSolvn(1))) !

(f.r)*g.R^{hat} lj solute 1

frcSPA(2,1,i,j) = frcSPA(2,1,i,j) + (gx1 * fx2 * ( rSolv2(1)/rSolvn(2))) !

(f.r)*g.R^{hat} lj solute 2

grSPA(i,j) = grSPA(i,j) + gx1 ! gx1 is the SPA at this point

end if

end do !ip

!$omp END DO

!$omp END PARALLEL

! NOTE: Long range correction to mean force for Constant Density Dielectric

medium at large distances

emfVecMag = -soluteChg(1)*soluteChg(2)*coulomb_const_kcalmolAq2*(1-dielectric

**(-1)) * &

& ( (R_axis(r)*(8*histDist(histDistBins)-3*R_axis(r)))/(24*histDist(

histDistBins)**4) &

& - log(1+R_axis(r)/histDist(histDistBins))/(8*R_axis(r)**2) &

& + histDist(histDistBins)/(8*R_axis(r)*(R_axis(r)+histDist(histDistBins))

**2) &

& - R_axis(r)**2/(32*histDist(histDistBins)**4) &

& + 3/(16*histDist(histDistBins)**2) )

! Add each cell forces to average and normalize

do i = 1, xBins

do j = 1, zBins

fAvg(1,r) = fAvg(1,r) + (frcSPA(1,1,i,j) + frcSPA(2,1,i,j)) * real(0.5,dp)

* z_axis(j) ! lj

fAvg(2,r) = fAvg(2,r) + (frcSPA(1,2,i,j) + frcSPA(2,2,i,j)) * real(0.5,dp)

* z_axis(j) ! Coulomb

frcSPA(1,1,i,j) = frcSPA(1,1,i,j)/grSPA(i,j) ! lj solute 1

frcSPA(2,1,i,j) = frcSPA(2,1,i,j)/grSPA(i,j) ! lj solute 1

frcSPA(1,2,i,j) = frcSPA(1,2,i,j)/grSPA(i,j) ! coulomb solute 2

frcSPA(2,2,i,j) = frcSPA(2,2,i,j)/grSPA(i,j) ! coulomb solute 2

end do !z again

end do !x again

call write_test_out(r) ! write grSPA and frcSPA arrays

! NOTE : After the fact multiply all elements by 2*pi*density/8/pi/pi (2*2pi*pi

/3 (4pi**2)/3 steradians from orientations)

! Number density of chloroform per Angstrom**3 == 0.00750924

fAvg(1,r) = fAvg(1,r)*2*pi*density*xzStepSize*xzStepSize

fAvg(2,r) = fAvg(2,r)*2*pi*density*xzStepSize*xzStepSize !debug+ emfVecMag !

with long range correction added

longRange(r) = emfVecMag !debug

end do !r

!debug

open(95,file=’longRange.out’,status=’replace’)

do r = 1, cfgRBins

write(95,*) R_axis(r), longRange(r)

end do
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close(95)

end subroutine compute_avg_force

! integrate the average force from ’compute_avg_force ’ to get the PMF.

subroutine integrate_force

use cfgData; use ctrlData

implicit none

integer :: d, f

allocate( u_dir(2,cfgRBins) )

u_dir = 0_dp

do f = 1, 2

if (explicit_R .eqv. .false.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(f,cfgRBins) = fAvg(f,cfgRBins) * RStepSize

else

u_dir(f,cfgRBins -(d-1)) = u_dir(f,cfgRBins -(d-2)) + fAvg(f,cfgRBins -(d

-1)) * RStepSize

end if

end do

else if (explicit_R .eqv. .true.) then

do d = 1, cfgRBins

if (d .eq. 1) then

u_dir(f,cfgRBins) = fAvg(f,cfgRBins) * (R_axis(cfgRBins)-R_axis(

cfgRBins -1))

!print*, (R_axis(cfgRBins)-R_axis(cfgRBins -1))

else

! FIXME: is the delta R part of this correct?

u_dir(f,cfgRBins -(d-1)) = u_dir(f,cfgRBins -(d-2)) + fAvg(f,cfgRBins -(d

-1)) * &

(R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

! it looks like the first value is getting printed twice. Also, the

values might be wrong. Should it be (d-1) and

! (d-0)? instead of -2 and -1?

!print*, (R_axis(cfgRBins -(d-1))-R_axis(cfgRBins-d))

end if

end do

end if

end do

end subroutine integrate_force

! write force out and g(r) out to compare against explicit

subroutine write_test_out(r)

use cfgData; use ctrlData

implicit none

integer :: r, i_f, i, j

character(len=32) :: temp, filename

character(len=8) :: frmt

i_f = (r-1) * int(RStepSize*10)

frmt = ’(I3.3)’ ! an integer of width 3 with zeroes on the left

write(temp,frmt) i_f ! converting integer to string using ’internal file’

filename=’hist1D_output.’//trim(temp)//’.dat’

open(35,file=filename ,status=’replace’)

write(6,*) "Writing test file: ", filename

write(35,*) "# 1. X Distance"

write(35,*) "# 2. Z Distance"

write(35,*) "# 3. g(r)"
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write(35,*) "# 4. Force.r + LJ"

write(35,*) "# 5. Force.r + Coulomb"

write(35,*) "# 6. Force.r - LJ"

write(35,*) "# 7. Force.r - Coulomb"

write(35,*) "# "

do j = 1, zBins

do i = 1, xBins

write(35,898) x_axis(i), z_axis(j), grSPA(i,j), frcSPA(1,1,i,j), frcSPA(1,2,i

,j), frcSPA(2,1,i,j), frcSPA(2,2,i,j)

end do

end do

close(35)

flush(6)

898 format (2(1x,es14.7),5(1x,es14.7))

end subroutine write_test_out

! write output file

subroutine write_output(outFile)

use cfgData

implicit none

character(len=128) :: outFile

integer :: r

open(35,file=outFile,status=’replace’)

write(6,*) "Writing output file: ", outFile

write(35,*) "# 1. R Distance"

write(35,*) "# 2. <f>_LJ"

write(35,*) "# 3. <f>_Coulomb"

write(35,*) "# 4. PMF LJ"

write(35,*) "# 5. PMF Coulomb"

do r = 1, cfgRBins

write(35,899) R_axis(r), fAvg(1,r), fAvg(2,r), u_dir(1,r), u_dir(2,r)

end do

close(35)

flush(6)

899 format (5(1x,es14.7)) ! scientific format

end subroutine write_output

2.9 Fortran Function Subroutines: functions.f90

! general fortran functions

module functions

use prec

implicit none

contains

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Euclidian Norm or Magnitude of vector. If fortran compiler is older than fortran

2008 ’euclid_norm ’ replaces ’norm2’

function euclid_norm(v)

implicit none

real(kind=dp) :: euclid_norm ! output

real(kind=dp),intent(in) :: v(:) ! input

integer :: i

euclid_norm = 0_dp

do i = 1, size(v)

euclid_norm = euclid_norm + v(i)**2

end do
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euclid_norm = sqrt(euclid_norm)

end function euclid_norm

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! calculate cross product of two vectors, ’a’ and ’b’

function cross_product(a, b)

implicit none

real(kind=dp), dimension(3) :: cross_product ! output

real(kind=dp), intent(in) :: a(:), b(:) ! inputs not to be changed

cross_product(1) = a(2)*b(3) - a(3)*b(2)

cross_product(2) = a(3)*b(1) - a(1)*b(3)

cross_product(3) = a(1)*b(2) - a(2)*b(1)

end function cross_product

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! rotate ’v’ about x in 3D by ’a’ radians to give the rotated vector

function rotate_x(a, v)

implicit none

real(kind=dp), intent(in) :: a, v(:) ! inputs not to be changed

real(kind=dp), dimension(3) :: rotate_x ! output

rotate_x(1) = v(1)

rotate_x(2) = cos(a) * v(2) - sin(a) * v(3)

rotate_x(3) = sin(a) * v(2) + cos(a) * v(3)

end function rotate_x

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! rotate ’v’ about y in 3D by ’a’ radians to give the rotated vector

function rotate_y(a, v)

implicit none

real(kind=dp), intent(in) :: a, v(:) ! inputs not to be changed

real(kind=dp), dimension(3) :: rotate_y ! output

rotate_y(1) = cos(a) * v(1) + sin(a) * v(3)

rotate_y(2) = v(2)

rotate_y(3) = -sin(a) * v(1) + cos(a) * v(3)

end function rotate_y

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! rotate ’v’ about z in 3D by ’a’ radians to give the rotated vector

function rotate_z(a, v)

implicit none

real(kind=dp), intent(in) :: a, v(:) ! inputs not to be changed

real(kind=dp), dimension(3) :: rotate_z ! output

rotate_z(1) = cos(a) * v(1) - sin(a) * v(2)

rotate_z(2) = sin(a) * v(1) + cos(a)* v(2)

rotate_z(3) = v(3)

end function rotate_z

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! NOTE: the following tridiag, spline, and bicubic interpolation subroutines are

adopted from Numerical Recipies in FORTRAN 2nd Ed.

! note: all lines marked with the ’xxx’ flag are changes to the original NR code.

! Solves for a vector u(1:n) of length n the tridiagonal linear set given by

equation (2.4.1). a(1:n), b(1:n), c(1:n), and r(1:n)

! are input vectors and are not modified. The parameter NMAX is the maximum

expected value of n.

subroutine tridag(a,b,c,r,u,n)

implicit none

integer :: n !, NMAX

real(kind=dp) :: a(n), b(n), c(n), r(n), u(n)

! parameter :: (NMAX=500)

integer :: j

real(kind=dp) :: bet, gam(n) !, gam(NMAX) ! One vector of workspace , gam

is needed.

if ((b(1).lt.1d-6) .and. (b(1).gt.-1d-6)) then ! ie. it’s equal to zero xxx
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! If this happens then you should rewrite your equations as a set of order N

-1, with u2 trivially eliminated.

write(*,*) ’ERROR: tridag: rewrite equations’

error stop

end if

bet = b(1)

u(1) = r(1)/bet

! Decomposition and forward substitution.

do j = 2, n

gam(j) = c(j-1)/bet

bet = b(j) - a(j)*gam(j)

if ((bet.lt.1d-6) .and. (bet.gt.-1d-6)) then ! ie. it’s equal to zero xxx

write(*,*) ’ERROR: tridag failed’ ! Algorithm fails; see below.

error stop

end if

u(j) = (r(j) - a(j)*u(j-1))/bet

end do

! Backsubstitution.

do j = n-1, 1, -1

u(j) = u(j) - gam(j+1)*u(j+1)

end do

end subroutine tridag

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Solves for a vector u(1:n) of length n the tridiagonal linear set given by

equation (2.4.1). a(1:n), b(1:n), c(1:n), and r(1:n)

! are input vectors and are not modified. The parameter NMAX is the maximum

expected value of n.

subroutine symm_tridag(dx,y,n, u)

implicit none

integer :: n

real(kind=dp) :: dx, y(n), u(n)

! locally defined

real(kind=dp) :: a(n), b(n), c(n), r(n)

integer :: j

real(kind=dp) :: bet, gam(n)

! symmetric system

a(1) = 0_dp

a(2:n) = dx/real(6,dp)

b(1) = 5*dx/real(6,dp)

b(2:n-1) = 2*dx/real(3,dp)

b(n) = b(1)

c(1:n-1) = dx/real(6,dp)

c(n) = 0_dp

r(1) = (y(2)-y(1))/dx

do j = 2, n-1

r(j) = ((y(j+1)-y(j)) - (y(j)-y(j-1))) / dx

end do

r(n) = -(y(n)-y(n-1))/dx

bet = b(1)

u(1) = r(1)/bet

! Decomposition and forward substitution.

do j = 2, n

gam(j) = c(j-1)/bet

bet = b(j) - a(j)*gam(j)

if ((bet.lt.1d-6) .and. (bet.gt.-1d-6)) then ! ie. it’s equal to zero xxx
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write(*,*) ’ERROR: symm_tridag failed’ ! Algorithm fails; see below.

error stop

end if

u(j) = (r(j) - a(j)*u(j-1))/bet

end do

! Backsubstitution.

do j = n-1, 1, -1

u(j) = u(j) - gam(j+1)*u(j+1)

end do

end subroutine symm_tridag

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., y_i = f(x_i

), with x_1 < x_2 < ... < x_n, and given

! values ’yp1’ and ’ypn’ for the first derivative of the interpolating function at

points 1 and n, respectively , this

! routine returns an array y2(1:n) of length n which contains the second

derivatives of the interpolting function at the

! tabulated points x_i. If ’yp1’ and/or ’ypn’ are equal to 1*10^30 or larger, the

routine is signaled to set the

! corresponding boundary condition for a natural spline, with zero second

derivative on that boundary.

subroutine spline( x, y, nmin, n, yp1, ypn, y2 ) !xxx

implicit none

integer :: nmin !xxx

integer :: n

real(kind=dp),intent(in) :: yp1, ypn, x(:), y(:)

real(kind=dp),intent(inout) :: y2(:)

! Locally defined variables

integer :: i, k

real(kind=dp) :: p, qn, sig, un, u(n)

y2(nmin) = -0.5_dp !xxx

u(nmin) = ( 3_dp / (x(nmin+1)-x(nmin)) ) * ( (y(nmin+1)-y(nmin)) / (x(nmin+1)-x(

nmin)) - yp1 ) !xxx

! this is the decomposition loop of the tridiagonal algorithm. y2 and u are used

for temporary storage of the decomposed

! factors.

do i = nmin+1, n-1 !xxx

sig = ( x(i)-x(i-1) ) / ( x(i+1)-x(i-1) )

p = sig * y2(i-1) + 2

y2(i) = (sig-1_dp) / p

u(i) = ( 6_dp * ( (y(i+1)-y(i)) / (x(i+1)-x(i)) - (y(i)-y(i-1)) / (x(i)-x(i

-1)) ) / (x(i+1)-x(i-1)) - sig*u(i-1) ) / p

end do

qn = 0.5_dp

un = ( 3_dp / (x(n)-x(n-1)) ) * ( ypn - (y(n)-y(n-1)) / (x(n)-x(n-1)) )

y2(n) = ( un - qn * u(n-1) ) / ( qn * y2(n-1) + 1_dp )

do k = n-1, nmin, -1 ! this is the backsubstitution loop of the tridiagonal

algorithm. !xxx

y2(k) = y2(k) * y2(k+1) + u(k)

end do

end subroutine spline

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! spline of a symmetric function like f(x)=cos(x) with equal spacing of x values,

ie. constant dx

subroutine symm_spline( dx, y, nmin, n, y2 ) !xxx dx instead of x-array

implicit none

integer :: nmin !xxx

integer :: n
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real(kind=dp) :: dx, y(n), y2(n)

! Locally defined variables

integer :: i, k

real(kind=dp) :: p, qn, un, u(n)

y2(nmin) = -0.2_dp !xxx symmetric system

u(nmin) = ( 6_dp*(y(nmin+1)-y(nmin)) / (5_dp*dx**2) ) !xxx symmetric system

! this is the decomposition loop of the tridiagonal algorithm. y2 and u are used

for temporary storage of the decomposed

! factors.

do i = nmin+1, n-1 !xxx replaced all ’sig’ values with 1/2

p = y2(i-1)/2_dp + 2

y2(i) = (-0.5_dp) / p

u(i) = ( (3_dp * (y(i+1)-2_dp*y(i)+y(i-1)) / dx**2) - u(i-1)/2_dp ) / p

end do

qn = 0.2_dp !xxx symmetric system

un = 6_dp*(y(n-1)-y(n)) / (5_dp*dx**2) !xxx symmetric system

y2(n) = ( un - qn * u(n-1) ) / ( qn * y2(n-1) + 1_dp )

do k = n-1, nmin, -1 ! this is the backsubstitution loop of the tridiagonal

algorithm. !xxx

y2(k) = y2(k) * y2(k+1) + u(k)

end do

end subroutine symm_spline

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with

the xa_i’s in order), and given the

! array y2a(1:n), which is the output from ’spline’ above (2nd derivtive of ya),

and given a value of x, this routine returns a

! cubic-spline interpolated value y.

subroutine splint(xa,ya,y2a,n,x, y)

implicit none

integer :: n

real(kind=dp) :: xa(:), ya(:), y2a(:), x, y

! Locally defined variables

integer :: k, khi, klo

real(kind=dp) :: a, b, h

! We will find the right place in the table by means of bisection. This is

optimal if sequential calls to this routine

! are at random values of x. If sequential calls are in order, and closely

spaced, one would do better to store previous

! values of klo and khi and test if they remain appropriate on the next call.

klo = 1

khi = n

do

if (khi-klo .eq. 1) exit ! do while loop with this exit statement instead of

a goto like Numerical Recipies has.

k = (khi+klo)/2

if (xa(k) .gt. x) then

khi = k

else

klo = k

end if

end do

! khi and klo now bracket the input value of x.

h = xa(khi)-xa(klo)

if (h .eq. 0_dp) then

write(*,*) ’ERROR: bad xa input in subroutine: splint’ ! the xa’s must be

distinct.

error stop
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end if

! cubic spline polynomial is now evaluated.

a = (xa(khi)-x)/h

b = (x-xa(klo))/h

y = a*ya(klo) + b*ya(khi) + ((a**3-a) * y2a(klo) + (b**3-b) * y2a(khi)) * (h**2)

/6_dp

end subroutine splint

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine symm_splint(xa,dx,ya,y2a,n,x, y)

implicit none

integer :: n

real(kind=dp) :: xa(n), dx, ya(n), y2a(n), x, y

! Locally defined variables

integer :: k, khi, klo

real(kind=dp) :: a, b

! We will find the right place in the table by means of bisection. This is

optimal if sequential calls to this routine

! are at random values of x. If sequential calls are in order, and closely

spaced, one would do better to store previous

! values of klo and khi and test if they remain appropriate on the next call.

klo = 0

khi = n+1

do

if (khi-klo .eq. 1) exit ! do while loop with this exit statement instead of

a goto like Numerical Recipies has.

k = (khi+klo)/2

if (xa(k) .gt. x) then

khi = k

else

klo = k

end if

end do

! khi and klo now bracket the input value of x.

! cubic spline polynomial is now evaluated.

if (klo.eq.0) then

a = (xa(khi)-x)/dx

b = 1-a

y = a*ya(khi) + b*ya(khi) + ((a**3-a) * y2a(khi) + (b**3-b) * y2a(khi)) * (dx

**2)/6_dp

elseif (khi.eq.n+1) then

b = (x-xa(klo))/dx

a = 1-b

y = a*ya(klo) + b*ya(klo) + ((a**3-a) * y2a(klo) + (b**3-b) * y2a(klo)) * (dx

**2)/6_dp

else

a = (xa(khi)-x)/dx

b = (x-xa(klo))/dx

y = a*ya(klo) + b*ya(khi) + ((a**3-a) * y2a(klo) + (b**3-b) * y2a(khi)) * (dx

**2)/6_dp

end if

end subroutine symm_splint

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Use the 16 surrounding grid points to take the x1, x2, and cross derivatives

using centered differencing and then calls bcuint.

! However, if all of the grid point values are below a certain cutoff (-10**4) then

call bilinear interpolation instead.

subroutine bicubic_int(cut, x1a,x2a,n1,n2,dx1,dx2,x1min,x2min,ya,x1,x2, ansy)!,

ansy1,ansy2)

implicit none

integer :: n1, n2
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real(kind=dp) :: x1a(n1), x2a(n2), ya(4,0:n1+1, 0:n2+1), dx1, dx2, x1min,

x2min, x1, x2 ! input

! todo: x1a = histCosTh(:), x2a = histPhi(:), dx1 = histCosThStepSize , dx2 =

histPhiStepSize , ya = gTmp1(ir,:,:),

! x1 = cosTh(1), x2 = phi(1), ansy = gx

! locally defined

integer :: lj, lk, uj, uk

real(kind=dp),dimension(4) :: y, y1, y2, y12

real(kind=dp) :: cut, ansy, ansy1, ansy2

! todo: first need to identify what the 4 points surrounding the desired point

are. These are points 1-4 circled in NR p.117

! todo: pass this routine the actual variable value for one of the solutes to

get a float_index.

lj = floor((x1-x1min)/dx1 + 0.5_dp)

lk = floor((x2-x2min)/dx2 + 0.5_dp)

uj = lj+1

uk = lk+1

! todo: perhaps after calculating the indicies I could ask if the yvalues are

less than or greater than -10**4 and then either

! proceed with the bicubic interp or do bilinear interp.

! Interpolation cuttoff:

if ((ya(1,lj,lk).le.cut).and.(ya(1,uj,lk).le.cut).and.(ya(1,lj,uk).le.cut).and.(

ya(1,uj,uk).le.cut)) then

! Note: if below the cutoff then bilinear interpolation

call bilin_interp(x1a,x2a,n1,n2,dx1,dx2,x1min,x2min,ya(1,:,:),x1,x2, ansy)

else

! Note: if above the cutoff then bicubic interpolation

! Define points 1-4 from NR. 1 = (lj,lk); 2 = (uj,lk); 3 = (uj,uk); 4 = (lj,

uk). Into 1D arrays as needed by the other subs

! and then call bcuint with all the arrays arranged appropriately for it.

y(1) = ya(1,lj,lk)

y(2) = ya(1,uj,lk)

y(3) = ya(1,uj,uk)

y(4) = ya(1,lj,uk)

! gradient along x1

y1(1) = ya(2,lj,lk)

y1(2) = ya(2,uj,lk)

y1(3) = ya(2,uj,uk)

y1(4) = ya(2,lj,uk)

! gradient along x2

y2(1) = ya(3,lj,lk)

y2(2) = ya(3,uj,lk)

y2(3) = ya(3,uj,uk)

y2(4) = ya(3,lj,uk)

! cross derivative

y12(1) = ya(4,lj,lk)

y12(2) = ya(4,uj,lk)

y12(3) = ya(4,uj,uk)

y12(4) = ya(4,lj,uk)

! todo: build in a way of handling cosTh(1) and cosTh(2) and multiplying them

without having to call bicubic_int , (the

! current subroutine), twice.

if (lj.lt.1) lj = 1; uj = lj+1 ! wrap the indicies for the x-axes

if (uj.gt.n1) uj = n1; lj = uj-1

if (lk.lt.1) lk = 1; uk = lk+1

if (uk.gt.n2) uk = n2; lk = uk-1

call bcuint(y,y1,y2,y12,x1a(lj),x1a(uj),x2a(lk),x2a(uk),x1,x2, ansy,ansy1,

ansy2)

end if

end subroutine bicubic_int

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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! Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as

described in bcucof); x1l and x1u, the lower

! and upper coordinates of the grid square in the 1- direction; x2l and x2u

likewise for the 2-direction; and x1,x2, the

! coordinates of the desired point for the interpolation. The interpolated function

value is returned as ansy, and the

! interpolated gradient values as ansy1 and ansy2. Note: this routine calls bcucof.

subroutine bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2, ansy,ansy1,ansy2)

real(kind=dp) :: ansy,ansy1,ansy2,x1,x1l,x1u,x2,x2l,x2u,y(4),y1(4),y12(4),y2

(4)

integer :: i

real(kind=dp) :: t,u,c(4,4)

call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) ! Get the c’s.

if (x1u.eq.x1l.or.x2u.eq.x2l) then

write(*,*) "ERROR: bad input in subroutine: bcuint"

end if

t=(x1-x1l)/(x1u-x1l) ! Equation (3.6.4).

u=(x2-x2l)/(x2u-x2l)

ansy=0.

ansy2=0.

ansy1=0.

do i=4,1,-1 ! Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)

ansy2=t*ansy2+(3.*c(i,4)*u+2.*c(i,3))*u+c(i,2)

ansy1=u*ansy1+(3.*c(4,i)*t+2.*c(3,i))*t+c(2,i)

end do

ansy1=ansy1/(x1u-x1l)

ansy2=ansy2/(x2u-x2l)

return

end subroutine bcuint

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Given arrays y,y1,y2, and y12, each of length 4, containing the function,

gradients , and cross derivative at the four grid

! points of a rectangular grid cell (numbered counterclockwise from the lower left)

, and given d1 and d2, the length of the grid

! cell in the 1- and 2- directions , this routine returns the table c(1:4,1:4) that

is used by routine bcuint for bicubic

! interpolation.

subroutine bcucof(y,y1,y2,y12,d1,d2, c)

implicit none

real(kind=dp) :: d1,d2,c(4,4),y(4),y1(4),y12(4),y2(4)

integer :: i,j,k,l

real(kind=dp) :: d1d2,xx,cl(16),wt(16,16),x(16)

save :: wt

data wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4 &

& ,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4 &

& ,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2 &

& ,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2 &

& ,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2 &

& ,10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2 &

& ,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1 &

& ,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

d1d2=d1*d2

do i=1,4 ! Pack a temporary vector x.

x(i)=y(i)

x(i+4)=y1(i)*d1

x(i+8)=y2(i)*d2

x(i+12)=y12(i)*d1d2

end do

do i=1,16 ! Matrix multiply by the stored table.

xx=0.

do k=1,16

xx=xx+wt(i,k)*x(k)

end do
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cl(i)=xx

end do

l=0

do i=1,4 ! Unpack the result into the output table.

do j=1,4

l=l+1

c(i,j)=cl(l)

end do

end do

return

end subroutine bcucof

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! bilinearly interpolate

subroutine bilin_interp(x1a,x2a,nx1,nx2,dx1,dx2,x1Min,x2Min,ya,x1,x2, ansy)

implicit none

! input/output data

integer :: nx1, nx2

real(kind=dp) :: x1a(nx1), x2a(nx2), dx1, dx2, x1Min, x2Min, ya(0:nx1+1,0:nx2+1)

, x1, x2

! locally defined data

integer :: ix1l, ix1u, ix2l, ix2u

real(kind=dp) :: f_index, x1l, x1u, x2l, x2u, x1d, x2d, ansy, x1Int, x2Int

! x1

f_index = (x1 - x1Min) / dx1 + 0.5_dp ! take into account half-bin positions

ix1l = floor(f_index) ! get flanking r indicies

if (ix1l .ge. nx1) then

ix1l = nx1

ix1u = nx1

else if (ix1l .lt. 1) then

ix1l = 1

ix1u = 1

else

ix1u = ix1l + 1

end if

x1l = x1a(ix1l)

x1u = x1a(ix1u)

if ((x1 .lt. x1l) .or. (x1 .gt. x1u)) then

x1Int = x1l ! when x1 is outside the bounds it gets set to x1l=x1u.

else

x1Int = x1

end if

! x2

f_index = (x2 - x2Min) / dx2 + 0.5_dp ! so index values start at 1

ix2l = floor(f_index) ! get flanking x2 indicies

if (ix2l .ge. nx2) then

ix2l = nx2

ix2u = nx2

else if (ix2l .lt. 1) then

ix2l = 1

ix2u = 1

else

ix2u = ix2l + 1

end if

x2l = x2a(ix2l)

x2u = x2a(ix2u)

if ((x2 .lt. x2l) .or. (x2 .gt. x2u)) then

x2Int = x2l

else

x2Int = x2

end if

! Note: set fractional distances

if ( ix1l .eq. ix1u) then ! if x1u=x1l then x1d would become a NaN.
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x1d = 1_dp

else

x1d = (x1Int-x1l)/(x1u-x1l)

end if

if ( ix2l .eq. ix2u ) then ! if x2u=x2l then x2d would become a NaN.

x2d = 1_dp

else

x2d = (x2Int-x2l)/(x2u-x2l)

end if

ansy = (ya(ix1l,ix2l)*(1-x1d) + ya(ix1u,ix2l)*x1d)*(1-x2d) + (ya(ix1l,ix2u)*(1-

x1d) + &

& ya(ix1u,ix2u)*x1d)*x2d

end subroutine bilin_interp

end module functions
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