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ABSTRACT 

 
 

SECURE, ACCURATE, REAL-TIME, AND HETEROGENEITY-RESILIENT  
 

INDOOR LOCALIZATION WITH SMARTPHONES 
 

The advent of the Global Positioning System (GPS) reformed the global transportation 

industry and allowed vehicles to not only localize themselves but also to navigate reliably and in 

a secure manner across the world at high speeds. Today, indoor localization is an emerging IoT 

domain that is poised to reinvent the way we navigate within buildings and subterranean locales, 

with many benefits, e.g., directing emergency response services after a 911 call to a precise 

location (with sub-meter accuracy) inside a building, accurate tracking of equipment and inventory 

in hospitals, factories, and warehouses, etc. While GPS is the de-facto solution for outdoor 

positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, 

including dense city centers, urban canyons, and inside buildings and other covered structures, 

where GPS signals are severely attenuated or totally blocked, and affected by multipath 

interference. Thus, very different solutions are needed to support localization in indoor locales.  

Popular solutions for indoor positioning with high accuracy leverage wireless radio signals, 

such as WiFi, Bluetooth ultra-wideband (UWB), etc. Due to the existing widespread deployment 

of WiFi access points (WAPs) in most indoor locales, using WiFi for indoor localization can lead 

to low-cost solutions. Many localization algorithms that utilize these wireless signals have been 

proposed, e.g., based on the principles of proximity, trilateration, triangulation, and fingerprinting. 

Studies have shown that fingerprinting-based algorithms deliver higher accuracy, without stringent 

synchronization or line-of-sight requirements and enable greater error resilience in the presence of 

frequently encountered multipath signal interference effects, than other alternatives. 
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A fingerprinting-based approach for indoor localization has two phases. In an offline phase, 

location-tagged wireless signal signatures, i.e., fingerprints, at known indoor locations are captured 

along a path and stored in a database. Each fingerprint in the database consists of a location and 

wireless signal characteristics, e.g., received signal strength (RSSI; which varies as a function of 

distance from the WAP), from visible WAPs at that location. This phase requires great manual 

effort of collecting several fingerprints at each location and comes at considerable cost. In the 

online phase, the observed RSS on the user’s mobile device is used to query the fingerprint 

database and determine location (potentially after some interpolation). Such WiFi-based 

fingerprinting is a promising building block for low-cost indoor localization with mobile devices. 

Unfortunately, there are many unaddressed challenges before a viable WiFi fingerprinting 

based solution can be realized: (i) the algorithms used for the matching of fingerprints in the online 

phase have a major impact on accuracy, however the limited CPU/memory/battery resources in 

mobile devices requires careful algorithm design and deployment that can trade-off accuracy, 

energy-efficiency, and performance (localization decision latency); (ii) the diversity of mobile 

devices poses another challenge as smartphones from different vendors may have varying device 

characteristics leading to different fingerprints being captured at the same location; (iii) security 

vulnerabilities due to unintentional or intentional WiFi jamming and spoofing attacks can create 

significant errors which must be overcome; and (iv) short-term and long-term variations in WAP 

power levels and the indoor environments (e.g., adding/moving furniture, equipment, changes in 

density of people) can also introduce errors during location estimation, that often corrected by the 

expensive collecting new fingerprints.   

In this dissertation, we propose a new real-time machine learning based framework called 

SARTHI that addresses all of the abovementioned key challenges towards realizing a viable indoor 
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localization solution with smart mobile devices. To enable energy-efficient enhancements in 

localization accuracy, SARTHI includes lightweight yet powerful machine learning algorithms 

with a focus on achieving a balance between battery life and response time. To enable device 

heterogeneity resilience, we analyzed and identified device diversity invariant pattern matching 

metrics that can be incorporated into a variety of machine learning based indoor localization 

frameworks. SARTHI also addresses the challenges associated with the security of fingerprinting-

based indoor localization frameworks in the presence of spoofing and jamming attacks. This is 

achieved by devising a novel methodology for training and deploying deep-learning algorithms 

that are specifically designed to be resilient to the vulnerabilities associated with intentional power 

level variation-based attacks. Finally, SARTHI addresses the challenges associated with short-term 

and long-term variations in WiFi fingerprints using novel low-overhead relativistic learning-based 

deep-learning algorithms that can deliver high-accuracy while simultaneously minimizing the 

fingerprint collection effort in the offline phase. 
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1. INTRODUCTION 

 

This chapter outlines the challenges associated with the domain of fingerprinting-based 

indoor localization and the necessities of addressing these challenges at different levels of 

abstraction using novel and energy-efficient pattern-matching approaches that enable reliable 

performance across a diverse set of mobile devices under real-world conditions. This chapter also 

gives a general overview of the contributions of this dissertation. 

 

1.1. INDOOR LOCALIZATION BACKGROUND 

The advent of the Global Positioning System (GPS) reformed the global transportation 

industry and allowed vehicles to not only localize themselves but also to navigate reliably and in 

a secure manner across the world at high speeds. Today, indoor localization is an emerging IoT 

domain with a similar purpose and is poised to reinvent the way we navigate within buildings and 

subterranean locales, with many benefits, e.g., directing emergency response services after a 911 

call to a precise location inside a building, accurate tracking of equipment and inventory in 

hospitals, factories, and warehouses, etc. While GPS is the de-facto solution for outdoor 

positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, 

including dense city centers, urban canyons, and inside buildings and other covered structures, 

where GPS signals are severely attenuated or totally blocked, and affected by multipath 

interference. Thus, very different solutions are needed to support localization in indoor locales. 

Towards this goal, a few decades worth of academic research has been performed in the 

direction of enabling indoor localization and navigation services [1]. In recent times, indoor 

location-based services are also experiencing an upsurge in interest from the industry [2]. 
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Technology giants such as Apple [3] and Google [4] are focusing on enabling standardization of 

indoor localization technology. Apple in 2019, included Ultra-Wide-Band (UWB) radio 

transceivers in an attempt to avail spatial-awareness services to their users [5]. The inclusion of 

UWB in Apple devices has enabled iPhone users to locate nearby items such as keychains. In 

2021, Apple announced their indoor maps program that utilizes WiFi fingerprinting (see section 

1.1.5) to locate and navigate users in an indoor environment [3]. Google has been working with 

authorities at airports, malls, stadiums, and other public indoor environments to extend Google 

Maps to the indoor environment. As a part of this program, the authorized owner of a building 

shares the floorplan blueprint with Google Maps. The blueprint is then integrated into the Maps 

application, such that zooming into a building of the Maps UI presents the user with detailed 

information of floorplan and associated indoor landmarks [6].  However, this feature only allows 

the user to view the indoor map and the actual localization of the user is still carried out by the 

GPS, if available, which delivers poor accuracy. In recent years, Google has introduced a new 

IEEE WiFi standard (IEEE 802.11 MC), that would enable smartphones to localize themselves 

using the Time of Flight (see section 1.1.2) based approach known as Round Trip Time (RTT) [4]. 

The widespread adoption of this standard would enable Google to  seamlessly extend their Maps 

application on smartphones, used by millions of people every month, to the indoor environment.  

Given the ubiquitous presence of smartphones within the populous, its growing 

computational capabilities (section 1.2.4), and its rich suite of sensors and radios, smartphones 

have become the platform of choice for the purpose of indoor localization. Both Apple and Google 

have focused on enabling indoor localization through their smartphone platforms to deliver indoor 

localization services.  
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On the other hand, networking hardware companies such as Aruba have heavily invested in 

iBeacon (Bluetooth) and other wireless networking hardware to deliver indoor localization 

services for enterprise networks [7]. Retail outlets such as Target [8] now allow shoppers to locate 

and navigate themselves within shopping isles. Further, given the relatively inexpensive nature of 

infrastructure options available for enabling indoor location-based services, several small-scale 

business ventures are attempting to monopolize on the opportunity by enabling indoor localization 

services in public settings such as schools [9], airports [10], shopping malls [8], and so on [11]. To 

further highlight the central role of smartphones for indoor localization within the community of 

academia and industry, we note that all localization platforms discussed in the subsection so-far 

utilize various localization methods on smartphones to either compute and/or deliver localization 

information to the users. 

 

 

Figure 1. Taxonomy of indoor localization methods. 

 

A hierarchical description of the taxonomy of all known indoor localization methods is 

captured in Figure 1. Each indoor localization technique described in Figure 1 requires 

methodology specific radios and sensing equipment. Employing a specific kind of sensing scheme 

such as radio signals for indoor localization introduces domain specific challenges. Some common 

challenges associated with utilizing radio signals arise from the interactions of these signals with 
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environmental objects and artifacts. The radio signal that is being observed at a specific location 

could have traveled directly from the source to the receiver, also called Line of Sight (LoS) 

communication. Alternatively, a signal may have reflected off walls and other environmental 

objects to reach the receiver following multiple paths (Multipath), also called Non-Line of Sight 

(NLOS) communication.  Another commonly known aspect of radio signals traveling in the indoor 

environment is shadowing, where certain locations observe no or degraded reception as the signals 

get blocked by a nearby object (see section 1.1.5). These environmental interactions can severely 

impact on the quality of the indoor localization methodology being used.  

To overcome methodology specific limitations and challenges, a realistic consumer-ready 

indoor localization framework can consist of a hybrid combination of these methodologies that 

utilize a diverse set of sensors and radios. In the following sub-sections, we discuss the various 

indoor localization methods, associated sensors and radios, and their known adoptions in the 

industry [9] [12].  

 

 

Figure 2. A graphical representation of the trilateration indoor localization process. 
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1.1.1. DISTANCE-BASED TRILATERATION 

Indoor localization using trilateration is carried out using a series of distance estimations 

between the smartphone and external beacons. Figure 2 depicts the process of localizing a receiver 

in a two-dimensional space. The location of the receiver is in reference to the location of the 

beacons. With distance measurements at a minimum of three unique known locations, a two-

dimensional position relative to the beacons can be established. The critical differentiating aspect 

between distance-based trilateration, Time Difference of Arrival (TDoA) and Time of Flight or 

Time of Arrival (ToF/ToA) techniques are the methodologies used to capture the distance between 

the beacon and the receiver. Given the ubiquity of smartphones, they are often chosen as the 

receivers. This is because contemporary smartphones consist of a wide variety of sensors and 

radios thereby enabling flexibility in the choice of the specific type of  beacon that could be 

deployed such as WiFi, Bluetooth and/or UWB. Utilizing pre-deployed WiFi Access Points (APs) 

can drive down the deployment costs associated with the indoor localization infrastructure. 

The simplest form of distance estimation employed for trilateration is using the signal power 

and distance relationship on a given floorplan. The measure of signal power can be indirectly 

established through Received Signal Strength Indicator (RSSI) or more recently Channel State 

Information (CSI). The measure of the RSSI or CSI values change proportionally to the distance 

from its origin and this can be used to estimate the distance to a beacon. While this methodology 

can be applied using any radio beacon, such as Bluetooth, Zigbee, Ultra-Wide-Band (UWB) etc. 

an early example of research in the RSSI distance estimation using WiFi radios is the EZ 

localization algorithm [13], whereas the work in [14] utilizes CSI to passively evaluate the distance 

between the CSI beacon and the receiver. But such estimations are often error prone because of 

interference and multipath effects (NLOS environments). It also requires the distance model to be 
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established and maintained for each radio beacon independently. Given the limitations and very 

high maintenance requirements associated with this approach, RSSI/CSI-distance estimation-

based trilateration has not been observed to be widely adopted in the real-world. 

In order to overcome the challenge of building independent RSSI-distance models for each 

radio source (such as a WiFi AP), researchers proposed the Time of Flight (ToF) or Time of Arrival 

(ToA) ranging approach. It works on the idea of measuring the time it takes for a signal to travel 

from a source to a receiver or vice versa and then using the time taken to estimate the distance 

between various (minimum three for localization on a 2D floorplan) pairings of radio sources to 

the target smartphone’s user [15].  

Multilateration is an extension of ToA/ToF based methodology. This approach involves a 

signal sent from a mobile point, which is received by two or more fixed points. The difference in 

time at which each of the fixed points receives the signal corresponds to the difference in distance 

between the mobile point and each of the fixed points [16] [17]. An alternate method is to have 

each of the fixed points send out a signal simultaneously and to calculate the position based on the 

difference in time at which these signals are received by the mobile point. These strategies can be 

used to find the location of the mobile point in relation to the fixed points. One constraint of this 

approach is that the fixed points require a method for precise time synchronization. Smartphones 

do not contain radios that are designed for multilateration by default, so radio-based methods 

would require external sensors and/or beacons limiting the ubiquity of this approach. ToA/TDoA-

based approaches also require an accurate measurement of time between a signal being transmitted 

and received. Considering, that these timing measurements need to be carried out synchronously 

at the transmitter and receiver end, trilateration-based approaches require highly specialized 
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hardware that is not yet widely available in the off-the-shelf in the off-the-shelf devices available 

to consumers.  

As an alternative to maintaining and synchronizing the clocks on several devices, the Round-

Trip-Time (RTT) approach utilizes the time it takes for a signal to travel from the signal source to 

the receiver and then back to the transmitter. This approach only requires the one of the transmitter-

receiver pairs to maintain timing information. The RTT based approach is now supported by newer 

smartphones and WiFi APs that support the RTT standard are sold by Google. Given that it has 

been accepted as an IEEE standard, we expect more WiFi AP manufacturers to adapt this RTT 

standard.  

 

1.1.2. TRIANGULATION 

In an effort to reduce the number of transceivers involved in the localization process, 

triangulation-based indoor localization captures the angles of the user carrying a transceiver at a 

minimum of two known locations. Figure 3 depicts the process of indoor localization using only 

two receivers. Given the angle at which the transmitter/beacon is in reference to the receiver 

enables the localization of the beacon with reference to the known locations of the receivers. This 

reduces the number of unique pieces of hardware required for triangulation-based methods by one. 

The only sensor in a typical smartphone that can estimate an angle to a known location is the 

magnetometer, which is prone to interference. Due to this fact, triangulation-based systems using 

a smartphone require the addition of other external sensors. Angle-of-arrival (AoA) techniques are 

often used to determine the angle between an array of receiving antennas and a transmitting source. 

One technique to measure the arrival angle is similar to the time difference of arrival (TDoA) and 

is accomplished by measuring the time difference at which the signal arrives at each antenna in 
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the array to calculate an incident angle to the array. Another method is based on spacing the 

antennas in the array a known wavelength apart and measuring the phase difference of the received 

signal between each of the antennas to calculate an incident angle [18]. An external antenna array 

would be required to measure AoA in smartphones as these devices do not contain such an array. 

 

 

Figure 3: A graphical representation of triangulation-based indoor localization. 

 

It is important to note that both Triangulation and Trilateration-based techniques are 

adversely affected by interactions with indoor objects and artifacts leading to multipath signals 

and shadowing. 

 

1.1.3. DEAD RECKONING 

Dead reckoning refers to the class of techniques in which sensor data is used along with the 

previously known position to determine the current position. The most commonly used strategy in 

this area is known as pedometer-based dead reckoning. This strategy works by first detecting and 

then counting steps and using this data with stride length information to estimate distance traveled. 

Figure 4 shows a simplistic strategy for step detection in FootPath (indoor navigation) [19]. Steps 
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can be detected if there is a difference in acceleration 𝑝 on the low-pass filter in the vertical 

direction in a given time window.  

 

 

Figure 4. Detection of steps using accelerometer data on a smartphone [19]. 

 

In [20], stride length is modeled to have a linear relationship with step frequency, whereas 

[21] models the motion of the pelvis as an inverted pendulum to approximate stride length. A 

heading (direction) estimation is achieved with magnetometers and horizontal acceleration data. 

The step count, along with stride length and heading estimate combine to form a movement vector. 

This movement vector can be applied to a previous location to approximate the current location. 

The motion sensors found in smartphones (the accelerometer, gyroscope, and magnetometer) are 

capable of high sampling and update rates and allow such pedometer dead reckoning [22], [23] 

[24]. The pedometer-based approach has its challenges, e.g., distance calculations can accumulate 

errors because of an imperfect stride length estimation or irregular walking pattern. This approach 

is also ineffective for alternate means of transportation that do not require a step motion such as 

wheelchairs, moving walkways, and subway trains, among others. 
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Given that dead reckoning first assumes that the initial location is known, it is often used in 

conjunction with other indoor localization techniques formulate a larger framework that can be 

deployed in the real world. Additionally, all forms of dead reckoning approaches discussed in this 

sub-section accumulate error over time. Researchers have proposed utilizing map matching [25] 

and particle filters [26] [27] in attempts to limit the error accumulation.  

 

1.1.4. VISUAL LOCALIZATION 

One or more of the smartphone’s cameras can be used as input data sources for localization 

through a variety of methods. A key requirement is that the camera must be exposed and 

unobstructed for these localization strategies to be effective. 

The camera on a smartphone can be used for recognition of visual cues in the environment 

(visual recognition). A company called ByteLight uses different coded pulses in overhead LED 

lighting within a building that can be picked up by a smartphone camera to indicate that the device 

is located within a certain section of that building [28]. 

 

 

Figure 5. Estimation of motion vectors captured using a smartphone camera pointed towards 

the floor [29]. 
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Camera information can also be important for detecting motion and rotation. A process 

known as optical flow measures the distance at which points of interest move. If the distance 

between the camera and various points of interest is known, the distance traveled can be 

extrapolated. Optical flow is commonly used for indoor flying drones by using a camera pointed 

at the ground to estimate change in location and speed [30]. As shown in Figure 5, smartphone 

cameras have also been used to capture the optical flow of the room floor for direction and velocity 

estimation [29]. But floors that lack visual features or are reflective lead to reduced accuracy. 

As compared to other indoor localization methodologies discussed so far, visual localization 

presents itself as the most human like methodology. However, most works are highly sensitive 

indoor contextual changes, such as furniture movement, people blocking camera view, and camera 

perspective. Additionally, smartphone camera based indoor localization technologies targeted 

towards human are also restrictive in terms of the carry-mode of the smartphone. For example, a 

user might wish to place the smartphone in their pocket instead of pointing it to the localization 

environment and listen to step-by-step voice navigation, which is not possible using smartphone 

camera-based indoor localization. Certain privacy concerns might also arise, as the user of the 

camera-based indoor localization application may inadvertently capture and report the faces, 

presence, and actions of other humans in their environment.  

In the following sections, we discuss fingerprinting based indoor localization, which 

attempts to alleviate the limitations and challenges associated with many of the indoor localization 

techniques discussed so far. 
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1.1.5. FINGERPRINTING-BASED INDOOR LOCALIZATION 

Popular solutions for indoor positioning with high accuracy leverage wireless radio signals, 

such as WiFi, Bluetooth ultra-wideband (UWB), etc. Due to the existing widespread deployment 

of WiFi Access Points (APs) in most indoor locales, using WiFi for indoor localization can lead 

to low-cost solutions. Many localization algorithms that utilize these wireless signals have been 

proposed, e.g., based on proximity, trilateration, triangulation, and fingerprinting. Studies have 

shown that fingerprinting-based algorithms deliver higher accuracy, without stringent 

synchronization or line-of-sight requirements and enable greater error resilience in the presence of 

frequently encountered multipath signal interference effects. An additional advantage to using 

WiFi fingerprinting-based indoor localization frameworks comes from the ubiquitous nature of 

smartphones [21] that come packed with a suite of sensors and can execute high-complexity 

algorithms in real-time. This further trims down the deployment costs associated with 

fingerprinting-based indoor localization. 

However, given the benefits of fingerprinting-based indoor localization over conventional 

approaches, it comes with its own set of challenges. The following section presents a brief 

overview of fingerprinting-based indoor localization on smartphones followed by an in-depth 

discussion of the challenges associated with it. 

 

1.2. OVERVIEW OF FINGERPRINTING-BASED INDOOR LOCALIZATION 

As presented in Figure 6, the fingerprinting-based approach for indoor localization 

conventionally consists of two phases. In an offline phase (Figure 6: left), location-tagged wireless 

signal signatures, i.e., fingerprints, at known indoor locations or Reference Points (RPs) are 
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captured and stored in a database. Each fingerprint in the database consists of an RP and wireless 

signal characteristics, e.g., RSSI, from visible APs at that location.  

It is important to note that the observed RSSI for a particular AP, such as AP2 in Figure 6, 

is an artifact of several unique interactions between the signal and the environment. For example, 

the RSSI for AP 2 at reference point L2 is observed not only due to the fading of signal power 

over the distance, but also the signal-attenuation due to the pillar (shadowing), signal scattering 

over sharp objects and the reception of a multipath signals. As highlighted in the previous section, 

such factors induce an adverse effect on localization techniques that only rely on the distance-

based relationships between the transmitter receiver pair. In contrast, fingerprinting takes into 

account the environmental signal interactions along with the transmitter receiver distance 

relationships when localizing a user. For example, the fingerprint captured at L2 has the unique 

attribute of a degraded RSSI for AP2 (from -50 dB at L1 to -74 dB at L2 in Figure 6) and is a part 

of the fingerprint database. The database of fingerprints is used to train a Machine Learning (ML) 

model, such that the RSSI fingerprints are the input features to the model, and the locations are the 

output features. The ML model is then deployed on the user’s smartphone or a cloud like service.   
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Figure 6. The offline (left) and online (right) phases of a fingerprinting-based indoor 

localization framework using three WiFi Access Points [31]. 

 

In the online phase (Figure 6: right), the observed RSSIs of the visible APs on the user’s 

mobile device is used to query the localization ML model and determine location. It is important 

to note that the RSSI fingerprint captured in the online phase may not be perfectly identical to the 

fingerprints observed in the offline phase (RSSI of AP2 changes in Figure 6). The goal of the ML 

model is to identify the location in the offline phase whose fingerprint is the most similar to the 

one observed in the online phase.  

Such WiFi-based fingerprinting is a promising building block for low-cost indoor 

localization with mobile devices. Unfortunately, there are many unaddressed challenges before a 

viable WiFi fingerprinting based solution can be realized: (i) the algorithms used for the matching 

of fingerprints in the online phase have a major impact on accuracy, however the limited 

CPU/memory/ battery resources in mobile devices requires careful algorithm design and 
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deployment that can trade-off accuracy, energy-efficiency and performance (decision latency); (ii) 

the diversity of mobile devices poses another challenge as smartphones from different vendors 

may have varying device characteristics leading to different fingerprints being captured at the same 

location; (iii) security vulnerabilities due to unintentional or intentional WiFi jamming and 

spoofing attacks can create significant errors which must be overcome; and (iv) short-term and 

long-term variations in AP power levels and the indoor environments (e.g., adding/moving 

furniture, equipment, changes in density of people) can also introduce errors during location 

estimation. 

 

1.2.1. SMARTPHONE HETEROGENEITY 

Perceived WiFi RSSI values for a given location captured by different smartphones can vary 

significantly. Figure 7 shows the impact of smartphone heterogeneity on the mean RSSI (vertical-

axis) and its standard deviation (shaded region) for various WiFi APs (horizontal-axis) at a given 

location using smartphones noted as LG V20 (LG), BLU Vivo 8 (BLU) and OnePlus 3 (OP3). 

Figure 7 (top) shows how the captured RSSI values (y-axis) of APs visible at the same location 

(x-axis) are different on the LG smartphone and the OP3 smartphone. Figure 7 (bottom) shows 

even worse variations on the mean and standard deviation of the captured RSSI for the LG and 

BLU smartphones. These variations are a function of device specific characteristics such as WiFi 

chipset, antenna sensitivity etc. and create errors in fingerprinting-based localization.  

For the realization of fingerprinting-based indoor localization across heterogenous 

platforms, there is a critical need for designing and developing frameworks that are resilient to 

such variations in RSSI. 
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Figure 7. Impact of device heterogeneity on the mean and standard deviation of WiFi signal 

strength (RSSI) for WiFi access points at the same location in a building across the pairs of 

smartphones: LG V20 vs OnePlus3 (top) and LG V20 vs BLU Vivo 8 (bottom) [32]. 

 

1.2.2. TEMPORAL VARIATION IN FINGERPRINTING 

An emerging challenge for fingerprinting-based indoor localization (especially WiFi-based) 

arises from the fluctuations that occur over time in the RSSI values of APs. Such temporal-

variations in RSSI can arise from the combination of a myriad of environmental factors, such as 

human movement, radio interference, changes in furniture or equipment placement, etc. This issue 

is further intensified in cases where WiFi APs are removed or replaced by net-work administrators, 

causing the underlying fingerprints across the floorplan to change considerably. This leads to 

catastrophic loss in localization accuracy over time.  

A naïve approach to overcome such a challenge would be to re-capture fingerprints across 

RPs once the framework tends to lose its localization accuracy and re-train the machine learning 

model. However, capturing fingerprints across the floorplan is an expensive and time-consuming 

endeavor. In an effort to reduce the costs associated with capturing fingerprints, researchers have 
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also proposed crowdsourcing-based approaches. Unfortunately, given the inconsistent temporal 

variations, device heterogeneity and human error from capturing crowdsourced fingerprints such 

approaches tend to deliver limited resilience. 

 

1.2.3. SECURITY VULNERABILITIES IN FINGERPRINTING 

Given the rising public adoption of indoor localization, researchers have raised concerns 

regarding the privacy and security of fingerprinting-based frameworks. Some of these security 

vulnerabilities are discussed here. 

 

1.2.3.1.   USER LOCATION PRIVACY 

Recent works in the domain of fingerprinting-based indoor localization propose the use and 

deployment of resource intensive machine learning models that require large amounts of memory 

and computational capabilities [33] [34] [35]. Considering these frameworks need to be deployed 

on smartphone-like embedded platforms that may not meet such resource requirements, 

researchers propose deploying the models on cloud-based platforms or similar remote services. 

Such as approach compromises the privacy of the user as their location data may be intentionally 

or unintentionally shared with malicious third parties. To meet the security challenge, researchers 

now promote energy-efficient models that can be deployed on the smartphones themselves. 
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Figure 8. The representation of a WiFi spoofing and jamming attack on a floorplan (left) on 

only three APs and possible impact on WiFi fingerprints (right). Each WiFi fingerprint 

(right) is represented as a single channel black and white image, with pixel intensities 

indicating RSSI strength. Each fingerprint image on the right is designed to capture RSSI 

for 81 APs (9 × 9). A pixel with a red marker indicates a maliciously altered WiFi RSSI [31] 

using one or more malicious APs. 

 

1.2.3.2.   ACCESS POINT JAMMING OR INTERFERENCE  

Fingerprinting-based indoor localization relies on the observed signals of APs. A malicious 

third party could place signal jammers (narrow band interference) in the vicinity. Such a jammer 

would both be able to create signal inference with trusted APs (non-malicious APs) thereby 

manipulating the observed signal strength of the user and be able to completely block the trusted 

AP from transmitting, leading to the user’s smartphone to lose visibility of the AP.  Such a scenario 

is depicted in Figure 8, where the malicious WiFi Access Point (mAP2) interferes with the signals 

from the trusted AP2 to manipulate the observed signal strength at the mobile device, leading to 

the alteration of inputs to the localization model. 

 

1.2.3.3.   MALICIOUS ACCESS POINTS OR SPOOFING 

Spoofing is the mode of attack where the malicious third-party places transmitters in the 

vicinity of the indoor locale such that the transmitter broadcasts packets with the Media Access 
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Control (MAC) addresses of other legitimate and trusted APs. The MAC address could be obtained 

by a person walking within the target indoor locale or be dynamically captured by the malicious 

transceiver. A single transmitter may also be able to spoof packets of many APs with a variable 

output of power. This would enable the malicious AP to create a dynamic attack pattern that would 

be hard to detect and avoid. As presented in Figure 8, a combination of jamming and inference 

enables the malicious mAP2 to modify the RSSI for AP2 at the mobile device. A single malicious 

mAP could spoof packets of multiple APs (up to 10 shown in right of Figure 8), leading to 

degraded localization quality.  

 

1.2.4. ENERGY LIMITATIONS OF SMARTPHONES 

While the computational capabilities of smartphones have grown exponentially over the 

previous decade, such battery powered devices are heavily budgeted by their energy capacity. 

Figure 9 presents the growth in the technical specifications of the Apple iPhone since its inception 

in 2007. We observe that the specifications that are directly associated with computational 

capabilities i.e., CPU speed, RAM, and storage exhibit an exponential growth ranging between 30-

60× over a period of 14 years. In comparison, battery capacity is observed to have grown by a 

meager 4×. Such a trend indicates that while we have gained the ability to execute high-complexity 

memory intensive workloads through energy-efficient SoCs (System-on-Chips) and heavily 

optimized software, the duration of time a smartphone is likely to last before it needs to be charged 

again (battery life) remains limited.  

Such a challenge prompts researchers in the domain of indoor localization to design and 

deploy frameworks that take into consideration the energy requirements of several components 
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such as for motion (accelerometer, magnetometer etc.), wireless technologies (WiFi, Bluetooth 

etc.), cameras, and localization algorithms (neural networks, K-Nearest-Neighbor etc.).  

 

 
Figure 9. Trends in the technical specifications of the Apple iPhone from 2007 to 2021. The 

iPhone Pro, Max and SE categories are not considered. The CPU speed is computed as the 

summation of the number of cores times the maximum clock speed. 

 

1.3. DISSERTATION OVERVIEW 

In summary, there is a crucial need for a holistic fingerprinting-based indoor localization 

framework that can work on smartphones and overcome the aforementioned challenges in an 

energy-efficient and reliable manner. Such a framework is not easy to conceptualize because of 

the interdependencies that arise while attempting to address these challenges simultaneously. For 

example, enabling security against spoofing and jamming attacks, resilience to temporal variations 

and device heterogeneity may require increasing the complexity of machine learning models 

deployed on the smartphone, however, it may adversely affect the battery life of the device and 

also the responsiveness of the overall localization framework. 
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Figure 10. Overview of the proposed SARTHI indoor localization framework with specific 

working sub-components (blue) and input features and considerations (yellow). 

 

To address these issues, we propose a real-time indoor localization framework (SARTHI) 

that utilizes deep learning and statistical methods to address the abovementioned challenges in a 

holistic manner. Figure 10 shows a high-level overview of the SARTHI framework with our 

published contributions describing various aspects of this framework. SARTHI is a multi-faceted 

fingerprinting-based indoor localization framework that combines distinct novel innovations 

targeted towards performance enhancement and domain-specific challenges namely fingerprint 

pattern matching using deep-leaning, temporal variation resistance, heterogeneity and security 

management approaches that can be fused with classical dead-reckoning based motion estimation 

techniques.  

The design and deployment of our proposed framework SARTHI considers several real-

world limitations and information resources such as user device information and characteristics, 

uncertainty in user movement and environment, indoor map features and intelligent use of inertial 

sensor data. Further details as captured in this dissertation are organized as follows: 



22 
 

In Chapter 2, we analyze the root cause of the device heterogeneity problem and its impact 

on fingerprinting-based indoor localization. We conduct an in-depth analysis of fingerprinted data 

to highlight the importance of using data driven pattern matching approaches for heterogeneous 

device-based indoor localization. Based on this analysis, we identified computationally 

inexpensive metrics. These metrics are then employed in the proposed light-weight indoor 

localization framework PortLoc, designed to deliver consistent localization accuracy when ported 

to heterogeneous smartphones. PortLoc was benchmarked against the state-of-the-art approaches 

using a suite of fingerprints collected using multiple heterogenous smartphones from various 

vendors across a diverse set of environmental conditions. 

In Chapter 3, we extended and applied our observations from PortLoc to overcome its 

shortcomings and move towards the realization of a robust indoor localization framework 

SHERPA-HMM. In this work, we formulated the indoor localization problem as a Hidden Markov 

Model (HMM) that utilizes heterogeneity resilient metrics for reliable user path prediction. 

SHERPA-HMM is designed towards portability across heterogenous smartphones. It employs a 

lightweight software-based approach to combine unreliable noisy fingerprints over distinct 

smartphones and pattern matching/filtering to achieve superior localization accuracy. 

In Chapter 4, we first formulate fingerprinting-based indoor localization as a classification 

problem such that each location or RP on the floorplan is represented as a class or label. We then 

adapted Convolutional Neural Networks (CNNs) to create a novel deep-learning-based indoor 

localization framework CNNLOC. To achieve this, we first proposed a new approach to transform 

RSSI fingerprints into images, which are then used to train a CNN model centered towards 

improving the localization robustness and accuracy. A hierarchical architecture is then 

implemented to scale the CNN across real-world buildings with many floors, rooms, and corridors. 
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Through extensive experimental evaluations we conclude that CNNLOC outperformed 

traditionally proposed machine learning approaches (such as K-Nearest-Neighbor and Support 

Vector Machines) and deep-learning-based models in terms of accuracy. 

In Chapter 5, we identified and modeled various AP-based attacks that impact the 

localization accuracy of deep-learning-based indoor localization frameworks, such as the 

frameworks. For the first time, we conducted an in-depth experimental analysis on the impact of 

AP-based attacks on CNN and feed-forward DNN (Deep Neural Network) based indoor 

localization frameworks across indoor paths. Towards overcoming security risks associated with 

spoofing and jamming attacks on indoor localization-based localization platforms, we propose a 

novel methodology for constructing AP attack resilient deep learning models to create a secure 

version of the CNNLOC framework (which we call S-CNNLOC) for robust and secure indoor 

localization. S-CNNLOC is compared against the performance of CNNLOC for a varying number 

of malicious AP nodes, and across a diverse set of indoor paths. To further highlight the 

generalizability of our approach, we evaluated its effectiveness on a conventional feed forward 

DNN based indoor localization framework. 

In Chapter 6, we analyze the impact of CNN model depth on an indoor localization 

framework in terms of the achievable prediction latency, localization accuracy, and smartphone 

battery life (location inference energy). For the first time, we adapt and explore the paradigm of 

conditional computing in the context of deep learning based indoor localization frameworks. The 

goal of the proposed framework to achieve a balance between several competing aspects of an 

indoor localization framework such as prediction latency, memory footprint, inference energy and 

the model complexity. We propose a novel localization framework that can dynamically adapt to 

the accuracy and latency needs of the target mobile platform at run-time. We compare the 
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performance of our proposed technique against state-of-the-art deep learning based indoor 

localization framework over a diverse set of target mobile devices and indoor environments. 

In Chapter 7, we propose STONE, a framework that delivers stable and long-term indoor 

localization with mobile devices, without any re-training. We perform an in-depth analysis on how 

indoor localization accuracy can vary across different levels of temporal granularity (hours, days, 

months, year). We then adapt a Siamese triplet-loss centric neural encoder for fingerprinting-based 

indoor localization and propose temporal variation-aware fingerprint augmentation for robust 

fingerprinting-based indoor localization. The selection of training samples (triplets) is a critical 

aspect of training of Siamese neural networks and towards this we develop a floorplan-aware 

triplet selection algorithm that is crucial to the fast convergence and efficacy of our Siamese 

encoder-based approach. We also explore design tradeoffs and evaluate STONE against the state-

of-the-art indoor localization frameworks. 

Chapter 8 concludes this dissertation. We summarize our comprehensive body of research 

in this chapter and make recommendations for future work. 
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2. PORTLOC: A PORTABLE DATA-DRIVEN INDOOR LOCALIZATION 

FRAMEWORK FOR SMARTPHONES  

 

The arrival of Global Positioning System (GPS) technology has revolutionized the way we 

navigate around the world. Today, every smartphone comes with a built-in GPS that is invaluable 

for outdoor navigation. Indoor localization technology holds a similar potential to disrupt the way 

we navigate within spaces that are unreachable by GPS, e.g., malls, buildings, and tunnels. Several 

startups such as IndoorAtlas, Target (Shopkick), and Zebra have already started to provide services 

that can help customers find products within a store [11] [36]. 

Unlike GPS for outdoor localization, no standardized solution exists for indoor localization. 

Therefore, a myriad of techniques have been developed that use various sensors and radio 

frequencies. Some commonly utilized radio signals are Bluetooth, RFID, UWB (Ultra-Wide 

Band), and WiFi [2]. Among these, WiFi based indoor localization has been the most widely 

researched, due to its low setup costs and easy availability. Indeed, WiFi access points are already 

deployed in most indoor locales and all smartphones support WiFi connectivity. 

Despite the advantages of WiFi based indoor localization, there are also some drawbacks. 

WiFi signals suffer from weak wall penetration, multipath fading, and shadowing effects. These 

challenges make it difficult to establish a direct mathematical relationship between Received 

Signal Strength Indicator (RSSI) and distance from WiFi Access Points (WAPs). These issues 

have served as a motivation to use fingerprinting-based techniques. Fingerprinting is based on the 

idea that different locations indoors exhibit a unique signature of WAP RSSI values. Due to its 

independence from the RSSI-distance relationship, fingerprinting overcomes some of the 

aforementioned drawbacks associated with WiFi based indoor localization. 
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Fingerprinting is usually carried out in two phases. In the first phase (offline or training 

phase), the RSSI values for visible WAPs are collected along paths of interest. The resulting 

database of values may further be used to train models (e.g., machine learning-based) for location 

estimation. In the second phase (online or testing phase), the models are used to predict the location 

of a user based on visible WAP RSSIs.  

A majority of the literature that utilizes fingerprinting employs the same smartphone for 

(offline) data collection and (online) location prediction [37] [38] [39]. This assumes that in a real-

world setting, users would have access to the same smartphone as the one utilized in the offline 

phase. Today’s diverse smartphone market, consisting of various brands and models, largely 

invalidates such an assumption. In reality, the smartphone user base is a distribution of 

heterogeneous mobile devices that vary in antenna gain, WiFi chipset, antenna shape, OS version, 

etc. 

Recent works have shown that the perceived RSSI values for a given location captured by 

different smartphones can vary significantly [40]. This variation degrades the localization accuracy 

achieved through conventional fingerprinting. Therefore, there is a need for portable, device 

heterogeneity-aware fingerprinting techniques. 

 

2.1. MOTIVATION AND CONTRIBUTION 

In this chapter, we present a robust, lightweight, data-driven WiFi RSSI-based fingerprinting 

framework (PortLoc) that is portable across heterogeneous mobile devices with minimal accuracy 

loss. The main contributions of our work are: 

• we conduct an in-depth analysis of fingerprinted data to highlight the importance of using data-

driven pattern matching approaches for heterogeneous device-based indoor localization;  
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• we identify computationally inexpensive metrics that can be used to compare fingerprint 

features; 

• we design the PortLoc framework for truly portable WiFi fingerprinting-based indoor 

localization;  

• we create a set of benchmarks by collecting fingerprints with multiple heterogeneous devices 

across buildings, for testing the performance of PortLoc against state-of-the-art localization 

techniques. 

 

2.2. RELATED WORK 

Addressing the challenges associated with WiFi fingerprinting-based indoor localization. 

Recent work on improving WiFi fingerprinting exploits the increasing computational capabilities 

of smartphones. For instance, more sophisticated Convolutional Neural Networks (CNN) and 

ensemble learning are being used in smartphones to improve indoor localization accuracy [38] 

[39] [41]. One of the concerns with utilizing such techniques are the severe energy limitations on 

mobile devices. Pasricha et al. [37] proposed an energy efficient fingerprinting-based technique. 

However, all prior work, including [37], is plagued by the same major drawback, i.e., the lack of 

device heterogeneity across the offline and online phases. This drawback leads to localization 

solutions that are untested for real-world scenarios. 

In general, devices used by localization solution providers to collect WiFi fingerprints across 

locations in the offline phase are different from the devices owned by the users in the online phase. 

Some of the known factors that introduce device heterogeneity include different WiFi antennas, 

smartphone design materials, hardware drivers, and the OS. Techniques to overcome this issue fall 

into two major categories: calibration-based methods and calibration-free methods.   
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The simplest calibration-based approach for heterogeneous device calibration is to acquire 

RSSI values and location data manually for each new device [42], which is however not very 

practical. Once RSSI information is collected, manual calibration can be performed through 

transformations such as weighted-least square optimizations and time-space sampling [43]. These 

techniques can be aided by crowdsourcing schemes. However, such approaches suffer from 

accuracy degradation [44]. 

In calibration-free fingerprinting, the fingerprinting data is translated into a standardized 

form that is portable across devices. One such approach, known as Hyperbolic Location fingerprint 

(HLF) [45] uses the ratios of individual WAP RSSI values to form the fingerprint. Unfortunately, 

HLF significantly increases the dimensionality of the training data in the offline phase. The Signal 

Strength Difference (SSD) approach [46] reduces the dimensionality by taking only independent 

pairs of WAPs into consideration. But this approach causes accuracy deterioration. Improvement 

in accuracy through Procrustes-based shape analysis and uniform scaling of RSSI values was 

proposed in [40]. The RSSI values are standardized through a Signal Tendency Index (STI), while 

maintaining the dimensionality of the training data. The STI based technique was shown to 

perform better than SSD and HLF. Since STI is used in conjunction with Weighted Extreme 

Learning Machines (WELMs) for best performance, it is a computationally expensive technique. 

Also, the overall experiments are performed with a highly limited set heterogeneous smartphones, 

in a one-room-environment that is heavily controlled by the authors. In contrast, our PortLoc 

framework is a mobile friendly computationally inexpensive approach that is tested over a wide 

range of environments and heterogeneous mobile devices under realistic settings 
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                                                                 (a) 

 
                                                                (b) 

Figure 11. (a) Benchmark paths for indoor localization, (b) Smartphones used in 

experiments. 

 

2.3. ANALYSES OF HETEROGENEOUS FINGERPRINTS 

In this section, we first present an analysis of the impact of smartphone heterogeneity on a 

conventional indoor localization technique: Euclidean-based KNN.  

To capture the impact of device heterogeneity we observe the performance of the KNN 

technique to localize six users with six distinct devices (Figure 11(b)) on five benchmark paths 

(Figure 11(a)). Figure 12 shows the localization accuracy across all smartphones and paths, for 

four scenarios where the KNN model was trained on four different smartphones. The most 
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interesting observation is that the best results are achieved when the device under test is identical 

in the (offline) training and (online) testing phases. For example, the average localization accuracy 

of KNN remains stable (< 2meters) when trained with OP3 on all paths (Figure 12(d)). But this 

trend does not hold when the training device is not the same as the testing device. For example, 

training on the BLU smartphone leads to severe deterioration in accuracy in the Engr_Lab path 

when testing with the MOTO, SS7, and OP3 smartphones (Figure 12(a)). For the Engr_Lab path 

in Figure 12(c), we observe that the average error can be 8x between the best-case scenario (LG – 

LG), and worst-case scenario (LG – OP3). This suggests that a non-portable fingerprinting-based 

localization framework may be extremely unreliable and unpredictable. However, the degradation 

due to device heterogeneity is not always observable, and KNN may be able to deliver acceptable 

results in some cases. Examples of such instances are in Figure 12(b) for the Glover, Engr_Lab 

and Engr_Office paths. From the results in Figure 12, we set the acceptable limit on average error 

to two meters and focus only on cases where the average error from KNN is beyond the acceptable 

error limit.  

To better comprehend the cause of degradation in performance due to heterogeneity, we 

conduct another experiment. As KNN only takes into consideration the raw RSSI strength values 

of APs, we compare the best performing heterogeneous training-testing pair (LG–HTC) to the 

worst performing pair (LG–OP3) in terms of observed RSSI as seen on the Engr_Lab path in 

Figure 12(c). For this experiment, we collected 100 RSSI fingerprints each using the LG, HTC, 

and OP3 smartphones at the same location on the Engr_Lab path. 

The RSSI values for the best and the worst performing training-testing device pairs are 

presented in Figure 13(a) and Figure 13(b), respectively. The solid lines represent the mean values, 

whereas the shaded regions represent the standard deviations of RSSI values. From Figure 13(a), 
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there is a significant overlap in the RSSI values for the LG and HTC devices. This translates to a 

shorter Euclidian distance and therefore, produces good results using KNN. On the other hand, in 

Figure 13(b) we observe only slight overlap in the RSSI fingerprints. This gap in overlap leads to 

the deterioration of localization accuracy for the LG–OP3 device pair. 

Another observation that can be made from Figure 13 is that the individual RSSI values of 

both fingerprints grow and drop at the same WAP. Therefore, a metric that captures this pattern of 

similarity for the two fingerprints should deliver better accuracy for our purposes. This serves as 

the core motivation for our proposed PortLoc framework, discussed next. 

 

Sciences      Lib_Study       Glover       Engr_Office       Engr_Lab 

 
(a) Trained with BLU                  (b) Trained with HTC 

 
(c) Trained with LG                  (d) Trained with OP3 

Figure 12. Average Error for various benchmark paths using KNN algorithm. 
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(a) RSSI values of WAPs for LG–HTC device pair (best–case) 

 
(b) RSSI values of WAPs for LG–OP3 device pair (worst–case) 

 Figure 13. Average RSSI values of each WAP for training and testing pairs. Shaded regions 

represent the standard deviation of RSSI. 

 

2.4. PORTLOC FRAMEWORK 

In this section, we first discuss the fingerprinting and fingerprint management process 

required by PortLoc. Then we present two variants of PortLoc based on two pattern matching 

metrics to enable heterogeneity-resilient indoor localization. 

 

2.4.1. WIFI FINGERPRINTING 

 We utilize both the 2.4 GHz and 5 GHz WiFi frequencies to capture the RSSI of a WAP 

along with its Media Access Control (MAC) address and the location (x-y coordinate) at which 

the sample was taken. The MAC address allows us to uniquely identify a WAP. The RSSI values 

for WAPs visible at each location are stored in a tabular form with the MAC addresses and the 

location as table headers, such that each row vector of RSSI values represents a fingerprint for the 

location in that row. Fingerprints are collected along an indoor path on a smartphone, by the user. 
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This manual step is essential for any fingerprinting technique.  It is important to note that the 

deliverable accuracy from any fingerprinting-based localization approach is directly correlated to 

the granularity of sampling along a path. We chose to sample at 1-meter intervals along paths, to 

achieve a sufficient accuracy of a few meters. 

 

2.4.2. FINGERPRINTING DATABASE PRE-PROCESSING 

The captured fingerprints can be easily polluted by the temporarily visible WiFi hotspots or 

third party owned WiFi APs. Utilizing such RSSI values in our fingerprints can significantly 

reduce the overall reliability and security of our localization framework. Therefore, we only 

capture and maintain RSSI values for trusted MAC addresses that are found to be reliable WAP 

sources. Further analysis of data revealed that WAPs with very low RSSI values (< -90dB) were 

highly unstable and made it difficult to maintain the shape of the RSSI fingerprint. This led us to 

filter out all RSSI values that are lower than -90dB. These pre-processing steps help to improve 

the overall stability of PortLoc 

 

2.4.3. RSSI DATA-AWARE CORRELATION METRICS 

To predict the users’ location in the online phase of PortLoc, we compute the similarity 

metrics discussed below, for the fingerprint of the unknown location and the database of known 

locations. The weighted sum of the locations in the fingerprinting database that produce the 

greatest value is the new predicted location. The number of similar locations taken into 

consideration is set to be the square-root of the fingerprinted samples per location taken in the 

offline phase. 
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Spearman’s Correlation Coefficient (SPRMN): In Figure 13, we observed that individual 

RSSI values for different smartphones may be further apart, but the RSSI values rise-and-fall 

together. When two or more variables increase (or decrease) in the same direction, but not always 

at the same rate, they are known as monotonically dependent variables. SPRMN is a non-

parametric test of the monotonic relationship between two variables. SPRMN for a given sample 

is represented by 𝑟𝑠 and by design is constrained as −1 < 𝑟𝑠 < 1. 

If the increase in one variable is followed by a decrease in the other variable, this is called 

an inverse monotonic relationship and is represented by a negative value. A positive value suggest 

that the variables increase and decrease together. The magnitude of 𝑟𝑠 represents the strength of 

the positive or negative correlation between the two variables.  

Zero Normalized Cross-Correlation (ZNCC): ZNCC is a popular metric in the field of signal 

processing, single particle analysis, and image matching. It is a measure of similarity between two 

time-series as a function of displacement. Unlike Spearman’s correlation, ZNCC is not bounded 

within a range, instead it is purely based on the magnitude of the time-series. The higher the 

magnitude, the stronger the match between the two time-series, for the selected time displacement. 

For our purposes, we assume each fingerprint to be a time-series and calculate the value of ZNCC 

for zero displacement. 

 

2.5. EXPERIMENTS 

2.5.1. EXPERIMENTAL SETUP 

2.5.1.1.   HETEROGENEOUS DEVICES AND FINGERPRINTING 

To investigate the impact of device heterogeneity, we employed 6 different smartphones 

(Figure 11(b)). Note that three of the devices have the same chipset. This allows us to explore the 

impact of device heterogeneity based on chipsets and vendors. We created an Android application 



35 
 

that recorded the x-y coordinate from the user and included a scan button. Once the scan button 

was pressed, 10 consecutive WiFi scans were conducted with an interval of 1 second. The RSSI 

value for each WAP and its MAC address was recorded in an SQLite database, and then processed 

as described in section 1.3. 

 

2.5.1.2.   INDOOR PATHS FOR LOCALIZATION BENCHMARKING 

We compared the accuracy and stability of PortLoc and frameworks from prior work on five 

indoor paths in different buildings on our campus. (Figure 11(a); each fingerprinted location is 

denoted by a blue dot). The path lengths varied between 60 to 80 meters. 

Each path was selected due to its salient features that may impact indoor localization. The 

Glover building is one of the oldest buildings on campus and constructed from wood and concrete. 

This path is surrounded by a combination of labs that hold heavy metallic equipment as well as 

large classrooms with open areas. A total of 81 unique WAPs are visible on this path. The 

Behavioral Sciences (Sciences) and Library (Lib_Study) are relatively new buildings on campus 

that have a mix of metal and wooden structures with open study areas and bookshelves. We 

observed 130 and 300 unique WAPs on the Sciences and Lib_Study paths, respectively. The 

Engr_Office path is on the second floor of the engineering building that is surrounded by small 

offices and covered by 180 WAPs overall. The Engr_Lab path is in the engineering basement and 

is surrounded by labs consisting of a sizable amount of electronic and mechanical equipment with 

about 120 visible WAPs. Both of these paths have large quantities of metal and electronics that 

lead to noisy WiFi fingerprints and can hinder indoor localization efforts.  
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2.5.1.3.   COMPARISON WITH PREVIOUS WORK 

We selected three prior works to compare against PortLoc. The first work (LearnLoc/KNN 

[47]) is a non-parametric approach based on the idea that similar data when observed as points in 

a multi-dimensional space would be clustered together. The second work (Rank Based 

Fingerprinting (RBF) [48]) claims that the rank of WAPs in a vector of ranked WAPs based on 

RSSI values remains stable across heterogeneous smartphones. Each vector of ranked WAPs 

represents a point in a Euclidian space, and these points for a given location on a floor map would 

be very close to each other. The third work combines Procrustes analysis and Weighted Extreme 

Learning Machines (WELM) [40] to predict the location of a user. Procrustes analysis allows the 

technique to scale and superimpose the RSSI fingerprints of heterogeneous devices and denote the 

strength of this superimposition as the Signal Tendency Index (STI). The STI metric is used to 

transform the original RSSI fingerprints, and then later used to train a WELM model in the online 

phase with the help of cloud servers. 

 

2.5.2. EXPERIMENTAL RESULTS 

2.5.2.1.   ACCURACY COMPARISON FOR BENCHMARKING PATHS 

 Figure 14 shows the localization error across indoor benchmark paths for the two variants 

of PortLoc (PL_SPRMN, PL_ZNCC) and the prior works (KNN, RBF, STI-WELM).  

The first notable observation from Figure 14, is that the RBF technique performs the worst 

on all paths. The baseline non-heterogeneity aware technique, KNN, significantly outperforms 

RBF on all benchmark paths. KNN also performs better than STI-WELM and PL_SPRMN in most 

cases. PL_ZNCC delivers superior accuracy as compared to prior works RBF and STI-WELM. 

On the Glover path, where we observed the least impact of smartphone heterogeneity, PL_ZNCC 

closely tracks KNN performance. 
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Figure 14. Average error and standard deviation (σ) for indoor benchmark paths and 
localization frameworks. 

 

Unfortunately, Figure 14 does not compare the performance of localization frameworks on 

individual devices, and thus misrepresents the stability of KNN and other techniques across paths. 

 

2.5.2.2.   DETAILED PERFORMANCE OF LOCALIZATION TECHNIQUES 

In the localization experiences of six users carrying smartphones from distinct vendors. The 

paths along with the training phase device combinations were chosen based on the analysis of the 

plots in Figure 12. We chose to focus on cases that demonstrated significant deterioration in 

localization error (above 2 meters) for the non-heterogeneity aware baseline KNN technique.  

From Figure 15(a), HTC is the most stable device for KNN, i.e., is least affected by 

heterogeneity. In all other situations, localization is heavily impacted by heterogeneity. Figure 

15(a) is also the only case where RBF performs better than KNN. This suggests that the observed 

order of strengths of RSSI values for WAPs remain relatively stable in the case of Figure 15(a) as 

compared to all other plots in Figure 15. Another notable aspect is that this improvement is not 

maintained when the training device is replaced by HTC in Figure 15(b) for the same benchmark 
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path. Overall, in Figure 15(a) and (b), PortLoc variants outperform RBF and STI-WELM 

whenever the localization error from the baseline KNN technique is greater than two meters.  

We observe that the RBF technique performs the worst when there is a significant amount 

of metal in the surrounding environment. This is the case for the engineering building paths 

(Engr_Lab and Engr_Office) and the path in the Glover building. The perturbations in the WiFi 

AP RSSI values due to the metallic surroundings cause the ranks of the AP RSSI values to become 

highly unstable. 

From Figure 15, we also observe that the PortLoc variants outperform STI-WELM in most 

training-testing device pairs. We believe PortLoc is able to deliver superior performance as it is a 

purely pattern matching based approach. On the other hand, the STI-WELM framework identifies 

the closest sampled locations from the offline phase using the shape matching based STI metric. 

The fingerprints of these closest locations are then used to train a WELM based neural network in 

the online phase itself. This neural network model is not specially designed for pattern matching, 

and sacrifices predictability of localization error for faster training time in the online phase.  

It is interesting to note that under certain situations PL_SPRMN performs worse than STI-

WELM, such as on the Glover (Figure 15(c)), Lib_Study (Figure 15(d)) and Sciences (Figure 15 

(e)). But in all of these cases PL_ZNCC outperforms PL_SPRMN and STI-WELM. In contrast, 

the PL_SPRMN technique seems to perform slightly better than PL_ZNCC in some training-

testing combinations for the engineering building paths (Figure 15(a), (b), (f)). These observations 

suggest that there is no clear and obvious winner among the two variants of PortLoc. We also note 

that for most paths in Figure 15, PortLoc variants, especially PL_ZNCC, perform closest to KNN 

in the case of non-significant heterogeneity-based accuracy loss. Our work thus strongly motivates 

the intelligent combination of computationally inexpensive pattern matching based techniques to 
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enhance the effectiveness of device heterogeneity aware localization frameworks that utilize 

fingerprinting.  

 

KNN         RBF        STI-WELM      PL_SPRMN         PL_ZNCC 

(a) Trained with LG at Engr_Lab       (b) Trained with HTC at Engr_Lab

 
(c) Trained with OP3 at Glover          (d) Trained with MOTO at Lib_Study 

 
(e) Trained with SS7 at Sciences                    (f) Trained with LG at Engr_Office 

Figure 15. Average Error for various techniques for benchmark paths and training devices. 
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2.6. CONCLUSION 

In this chapter, we have established that the proposed PortLoc framework is a 

computationally inexpensive solution to the device heterogeneity problem in the fingerprinting-

based indoor localization domain. The advantage of establishing portable machine learning models 

that can be easily ported across devices with minimal loss in localization accuracy is a crucial step 

towards the actuation of fingerprinting-based localization frameworks in the real world.  
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3. A HIDDEN MARKOV MODEL BASED SMARTPHONE HETEROGENEITY  

RESILIENT PORTABLE INDOOR LOCALIZATION FRAMEWORK 

 

The arrival of Global Positioning System (GPS) technology within smartphones has 

revolutionized the way we navigate in the outdoor world. Today, indoor localization technology 

holds a similar potential to disrupt the way we navigate within indoor spaces that are unreachable 

by GPS. An example scenario is localizing patients, staff, and equipment in large hospitals and 

assisted living facilities. Precise location information can allow first responders closest to a patient 

to be notified in emergencies. Some startups (e.g., Shopkick, Zebra) are also beginning to provide 

indoor localization services that can help customers locate products inside a store [11].  

Unlike GPS for outdoor localization, no standardized solution exists for indoor localization. 

Therefore, a myriad of techniques have been developed that use various sensors and radio 

frequencies. Some commonly utilized radio signals are Bluetooth, ZigBee, and WiFi [2]. Among 

these, WiFi based indoor localization has been the most widely researched, due to its low setup 

cost and easy availability. Today, WiFi access points are deployed in most indoor locales around 

the world and all smartphones support WiFi connectivity. 

Despite the advantages of WiFi based indoor localization, there are also some drawbacks. 

Many prior solutions perform indoor localization by measuring WiFi Received Signal Strength 

Indicator (RSSI) values and calculating distance from WiFi Access Points (WAPs). These works 

assume that wireless signal strength reduces in a deterministic manner as a function of distance 

from a signal source (i.e., WAP). But WiFi signals suffer from weak wall penetration, multipath 

fading, and shadowing effects in real-world environments, making it difficult to establish a direct 

mathematical relationship between RSSI and distance from WAPs. These issues have served as a 
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motivation for using fingerprinting-based techniques. Fingerprinting is based on the idea that each 

indoor location exhibits a unique signature of WAP RSSI values. Due to its independence from 

the RSSI-distance relationship, fingerprinting can overcome some of the aforementioned 

drawbacks with WiFi based indoor localization. 

Fingerprinting is usually carried out in two phases. In the first phase (called offline or 

training phase), the RSSI values for visible WAPs are collected along indoor paths of interest. The 

resulting database of values may further be used to train models (e.g., machine learning-based) for 

location estimation. In the second phase (online or testing phase), the models are deployed on 

smartphones and used to predict the location of the user carrying the smartphone, based on real-

time readings of WAP RSSI values on the smartphone.  

A majority of the literature that utilizes fingerprinting employs the same smartphone for 

(offline) data collection and (online) location prediction [34] [38] [39] [47]. This assumes that in 

a real-world setting, users would have access to the same smartphone as the one used in the offline 

phase. But today’s diverse smartphone market, with various brands and models, largely invalidates 

such an assumption. In reality, the smartphone user base is a distribution of heterogeneous devices 

that vary in antenna gain, WiFi chipset, OS version, etc. [49] [50] [51] [52] [53].  

Recent work has shown that the perceived WiFi RSSI values for a given location captured 

by different smartphones can vary significantly [40]. This variation degrades the localization 

accuracy of conventional fingerprinting. Therefore, there is a need for portable and device 

heterogeneity-aware fingerprinting techniques. In this chapter, we present a lightweight WiFi RSSI 

fingerprinting framework for Smartphone Heterogeneity Resilient Portable localization with 

Hidden Markov Models (SHERPA-HMM) that is portable across smartphones with minimal 

accuracy loss. The novel contributions of our work are: 
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• We conduct an in-depth analysis of WiFi fingerprinting across smartphones to emphasize the 

importance of device heterogeneity-resilient indoor localization; 

• We formulate the indoor localization problem as a Hidden Markov Model (HMM) that utilizes 

heterogeneity resilient metrics for user path prediction; 

• We design the SHERPA-HMM framework for portable WiFi fingerprinting-based indoor 

localization; SHERPA-HMM employs a lightweight software-based approach to combine 

noisy fingerprints over distinct smartphones and pattern matching/filtering to improve location 

accuracy; 

• We evaluate SHERPA-HMM against state-of-the-art localization techniques, across a variety 

of Android-based smartphones that are used for indoor localization along paths in real 

buildings.to the state-of-the-art. 

 

3.1 RELATED WORK 

Since the establishment of wireless RF signal based indoor localization a few decades ago, 

a significant level of advancement has been achieved in this area. In general, most indoor 

localization techniques fall under three major categories: 1) static propagation model-based, 2) 

triangulation/trilateration-based, and 3) fingerprinting-based. Early in-door localization solutions 

used static propagation model-based techniques that relied on the relationship between distance 

and WiFi RSSI gain [13]. These techniques only work well in open indoor areas as they do not 

take into consideration any form of multipath effects or shadowing due to walls and other indoor 

obstacles that invalidate the direct distance-RSSI relationship. This method also required the 

creation of a gain model for each individual Wireless Access Point (WAP) or WiFi router, which 

is a cumbersome undertaking. Triangulation/Trilateration-based methods use geometric properties 
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such as the distance between multiple APs (Trilateration) and the smartphone [54] or the angles at 

which signals from two or more WAPs are received [55]. Such methodologies may be more 

resilient to smartphone heterogeneity but are not resilient to multipath and shadowing effects. 

Some recent work has also investigated multipath effects for triangulation [56], but the proposed 

approach cannot be implemented on commodity smartphones, and hence has limited scalability. 

WiFi fingerprinting-based approaches associate several sampled lo-cations (reference 

points) with the RSSI measured with respect to multiple WAPs [2] [38] [47]. These techniques are 

relatively resilient to multi-path reflections and shadowing as the reference point fingerprint 

captures the characteristics of these effects leading to improved indoor localization. Fingerprinting 

techniques use some form of machine learning techniques to associate WiFi RSSI captured in the 

online phase to the ones captured at the reference points in the offline phase. Recent work on 

improving WiFi fingerprinting exploits the increasing computational capabilities of smartphones. 

For instance, sophisticated Convolutional Neural Networks (CNNs) have been proposed to im-

prove indoor localization accuracy on smartphones [38]. One of the concerns with utilizing such 

techniques is the vast amounts of training data required by these models to achieve high accuracy. 

This is a challenge as the collection of fingerprints for training is an expensive manual endeavor 

and often the lack of training data leads to poor accuracy.  

To overcome this limitation, researchers often resort to building more complex frameworks 

that utilize hybrid techniques such as combining fingerprinting with dead reckoning [57] [58]. 

Dead reckoning refers to the use of inertial sensors and a previous known location to predict a 

future location. However, dead reckoning accumulates errors over time, and needs to be further 

augmented via map matching to be useful. Map matching utilizes compute intensive particle 

filtering based approaches along with the knowledge of known physical features on a map to 
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improve localization accuracy [25] [59]. These systems assume that the location of a user in real 

time is given by a distribution of particles. The location of every particle is then individually 

updated at every location prediction cycle and interaction of these particles with known physical 

features such as walls is also captured. Such methodologies often lead to highly compute intensive 

solutions. Utilizing such com-plex frameworks levy high energy and computational requirements 

on resource constrained smartphone platforms, despite their improving capabilities. In [37], an 

energy-efficient hybrid fingerprinting approach was proposed. However, most prior work, 

including [37], is plagued by the same drawback, i.e., lack of support for smartphone heterogeneity 

across both the offline and online phases. This leads to solutions that perform poorly in real-world 

scenarios. 

The most intuitive approach for calibration to address device heterogeneity is to acquire 

RSSI values and location data manually for each new mobile device [42]. This is unfortunately 

not very practical. Once RSSI information is collected, manual calibration can be performed 

through transformations such as weighted-least squares optimizations and time-space sampling 

[42] [43] [60]. These techniques can be aided by crowdsourcing schemes. However, such 

approaches still suffer from accuracy degradation across devices [46]. 

In calibration-free fingerprinting, the fingerprinting data is translated into a standardized 

form that is portable across devices. One such approach, known as Hyperbolic Location 

Fingerprint (HLF) [45] uses the ratios of individual WAP RSSI values to form the fingerprint. But 

HLF significantly increases the dimensionality of the training data in the offline phase. The Signal 

Strength Difference (SSD) approach [46] reduces dimensionality by taking only independent pairs 

of WAPs into consideration. Improvement in accuracy over this approach through Procrustes-

based shape analysis and uniform scaling of RSSI values was proposed in [40]. The RSSI values 
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are standardized via a Signal Tendency Index (STI), while maintaining the dimensionality of the 

training data. The STI-based technique was shown to perform better than SSD and HLF. However, 

as STI is used in conjunction with Weighted Extreme Learning Machines (WELMs) for best 

performance, it is very computationally expensive. Also, the experiments in [40] are performed 

with a limited set of smartphones, in a one-room-environment that is heavily controlled by the 

authors. 

In contrast, our SHERPA-HMM framework provides a novel and computationally 

inexpensive approach that is tested for a wider set of environments and multiple mobile devices in 

realistic indoor settings. 

 

3.2 HETEROGENEOUS FINGERPRINT ANALYSIS 

We begin with an analysis of the impact of smartphone heterogeneity on a state-of-the-art 

indoor localization technique: Euclidean-based KNN [37]. To capture the impact of device 

heterogeneity we observe the performance of the KNN technique to localize six users on five 

benchmark paths (Figure 16) using six distinct devices (Table 1).  

Figure 17 shows the boxplots (distribution) for localization error (in the online/testing phase) 

across all smartphones and indoor paths, for four scenarios where the KNN model was trained on 

four different smartphones. The most interesting observation is that, in general, the least error is 

achieved when the device under test is identical in the (offline) training and (online) testing phases. 

For example, the average localization error of KNN remains stable (< 2 meters) when trained and 

tested with the OP3 mobile device on all paths (Figure 17(d)). But this trend does not hold when 

the training device is not the same as the testing device. For example, training on the LG device 

leads to severe deterioration in accuracy in the Engr_Labs path when testing with the OP3, BLU, 
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and MOTO smartphones (Figure 17(c)). For the Engr_Labs path in Figure 17(a), the average error 

can be 6× between the best-case training-testing scenario (BLU–BLU), and worst-case scenario 

(BLU–OP3). This suggests that a fingerprinting-based indoor localization framework can be 

extremely unreliable and unpredictable, due to device heterogeneity. 

Wood     Concrete     Metal     Electronics 

 

Figure 16. Benchmark paths for indoor localization (with path lengths and WAP density, 

and salient path features). 

Table 1: Details of smartphones used in experiments. 

Smartphone Chipset Android Version 

OnePlus 3 (OP3) Snapdragon 820 8.0 

LG V20 (LG) Snapdragon 820 7.0 

Moto Z2 (MOTO) Snapdragon 835 8.0 

Samsung S7 (SS7) Snapdragon 820 7.0 

HTC U11 (HTC) Snapdragon 635 8.0 

BLU Vivo 8 (BLU) MediaTech Helio P10 7.0 
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Sciences  Engr_Labs  Engr_Office  Glover   Lib_Study 

 
(a) Trained with BLU smartphone 

 
(b) Trained with HTC smartphone 

 
(c) Trained with LG smartphone 

 
(d) Trained with OP3 smartphone 

Figure 17. Error distribution for benchmark paths using KNN. 

 

The RSSI values for the best and the two poorly performing training-testing device pairs are 

shown in Figure 18. The solid lines represent the mean values, whereas the shaded regions 

represent the standard deviations of RSSI values. From Figure 18(a), it can be observed that there 
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is a significant overlap in the RSSI values for the LG and HTC devices. This translates into a 

shorter Euclidian distance and therefore, produces good results using KNN. On the other hand, in 

Figure 18(b) we observe almost no overlap in the RSSI fingerprints. Instead, an in-consistent gain 

difference can be observed across the two devices. Further, in Figure 18(c), it can be seen that the 

BLU device exhibits a significant amount of noise due to variation in the WAP RSSI values for 

consecutive scans, which can be attributed to its less stable WiFi chipset, compared to the other 

mobile devices. This leads to severe misprediction when using Euclidian-based KNN. An 

interesting observation that can be made from looking at Figure 18 is that the overall shape of the 

fingerprints is similar, including in Figure 18(c), where the shape is similar to the mean fingerprint 

for the BLU device. 

From Figure 18(c), the greater amount of noise from the BLU device is apparent as compared 

to the other devices, such as the HTC. Identifying and quantifying such noise when using a device 

for localization (i.e., in the online phase, which is distinct from the offline phase where the 

localization technique is trained) would allow us to take additional steps to improve localization 

accuracy. However, it is difficult to identify if a device is capturing noisy fingerprints in the online 

phase, given a limited set of fingerprints along a path. One approach to quantifying noisy readings 

could be to check for the Euclidian distance across consecutive scans in the online phase. Since 

consecutive online scans are conducted using the same device, they should not change significantly 

over short distances and be similar in terms of Euclidian distance. 
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(a) LG–HTC device pair (trained on LG, tested on HTC) 

 
(b) LG–OP3 device pair (trained on LG, tested on OP3) 

 
(c) LG–BLU device pair (trained on LG, tested on BLU) 

Figure 18. RSSI values of each WAP for training and testing pairs. Shaded regions depict 

the standard deviation. 

 

To test this hypothesis, we walked over the Engr_Labs indoor path with the BLU (most noisy 

fingerprints) and HTC (most stable fingerprints) smartphones while capturing WiFi fingerprints 

with consecutive scans during the walk. Figure 19 depicts the distribution of the Euclidian distance 

between consecutively captured WiFi fingerprints for the BLU and HTC devices over the 

Engr_labs path. From Figure 19, we observe that the consecutive scan distances for the HTC 

device are dis-tributed over a very short range, denoting a stable collection of WiFi fingerprints. 

However, the distances for the BLU device are distributed over a much wider range due to the 

variation/noise over consecutive WiFi scans. This approach can be used to identify mobile devices 

that capture unstable fingerprints during the online phase. 
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HTC         BLU 

 

Figure 19. Probability distribution of the Euclidian distance across consecutive pairs of scans 

using the HTC and BLU smartphones on the Engr_Labs indoor path. 

 

The discussion in this section suggests that a portable methodology that captures the pattern 

of similarity across fingerprints from heterogeneous smartphones and is able to overcome the noisy 

behavior of the testing devices, in an energy efficient manner, should deliver better accuracy for 

indoor localization. These observations serve as the motivation for our proposed SHERPA-HMM 

framework for lightweight and portable localization, as discussed in Section 3.4. The next section 

provides a background on HMMs that are used by SHERPA-HMM. 

 

3.3 HIDDEN MARKOV MODEL (HMM) FORMULATION 

In this section, we discuss the formulation of the indoor localization process as a Hidden 

Markov Model (HMM). An HMM statistical prediction model is one that estimates the next hidden 

state given the transition probability of moving from the current hidden state to the next hidden 

state and probabilities of observable states [61]. HMMs are particularly renowned for identifying 

patterns that change with time and have applications in the area of handwriting recognition [62], 

activity recognition [63], speech synthesis [64], etc. In this chapter, we utilize WiFi RSSI pattern 
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similarity as observable (non-hidden) states and predict the user’s location or path taken by user 

which are not directly observable (hidden states).  

 
Figure 20. Reference points represented as states in a Hidden Markov Model with given 

transition probabilities from one state to another. 

 

As shown in Figure 20, we can translate the indoor localization process into a Markov 

process by first assuming that discrete localizable locations (denoted by Ln, Ln+1, Ln+2…) on the 

indoor floor plan are the states. As there is no direct way of checking if the predicted position or 

state in the online phase is correct, these states are referred to as hidden states. Further, for a given 

path taken by a user in the online phase, there may be certain known probabilities of going from 

one hidden state to another. From Figure 20, we observe that a user is 80% likely to go to the next 

state and 20% likely to stay on the same states at any given time-step (Sn). In our case, we assume 

that a user moving on a path is equally likely to move in all directions by a finite amount.  

The probabilities of transitioning from one state to another are also referred as the transition 

probabilities and are mathematically represented as a matrix. The transition matrix Tr is of size [L 

× L], where L is number of discrete hidden states (locations in our case). The probability value at 

Tr [i,j] is the transition probability of going from state i to state j in the next state transition. 

Additionally, the observable state information is mathematically expressed through the emission 

matrix E [K × S], where K is the number of observable states and S is the number of subsequent 

measurements of the observable states. In the context of our work, the observable states are the 

“WiFi pattern similarity” of a scanned unknown WiFi fingerprint (online RSSI vector) with respect 
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to the WiFi fingerprints associated with known locations (offline RSSI vectors). The setup of the 

emission matrix is discussed in the next section. 

An HMM utilizes information from the observable states (emission matrix) and known 

transition probabilities (transition matrix) to identify a the most likely path or series of hidden 

states. This is achieved through the Viterbi algorithm [61]. The Viterbi algorithm identifies the 

most likely sequence of hidden states (Viterbi path) given the observed probabilities of observed 

states. More details on the Viterbi algorithm can be found in [61]. 

 

3.4 SHERPA-HMM FRAMEWORK 

In this section, we first discuss the WiFi fingerprinting phase and fingerprint pre-processing 

required by SHERPA-HMM. Section 3.4.1 describes the offline training phase database created in 

SHERPA-HMM. Section 3.4.4 describes the software-based SHERPA-HMM framework and its 

main components that are used in the online testing phase: a noise resilient fingerprint sampling, 

a pattern matching metric, HMM-based location predictor, and additional optimizations. 

 

3.4.1. WIFI FINGERPRINTING  

We utilize both the 2.4 GHz and 5 GHz WiFi bands to capture the RSSI of a WAP along 

with its Media Access Control (MAC) address and the location (x-y coordinate) at which the 

sample (fingerprint) was taken. The MAC address allows us to uniquely identify a WAP. The 

average RSSI values for WAPs obtained through multiple scans at each location are stored in a 

tabular form, such that each row of RSSI values (fingerprint vector) characterizes a unique 

location. Fingerprints are collected along indoor paths with a smartphone. This step is essential for 

any fingerprinting technique. Note also that the deliverable accuracy from any fingerprinting-
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based approach is correlated to the granularity of sampling along a path. We chose to fingerprint 

at 1-meter intervals along indoor paths, with the eventual goal of achieving a localization accuracy 

of within 2 meters.  

 

3.4.2. FINGERPRINT DATABASE PRE-PROCESSING 

The captured fingerprints can be easily polluted by temporarily visible untrusted WiFi 

hotspots. Utilizing such RSSI values in our fingerprints can significantly reduce the overall 

reliability and security of our localization framework. Therefore, we only capture and maintain 

RSSI values for trusted MAC addresses that are found to be reliable WAP sources (e.g., by 

checking for visible WAPs across several days and times-of-day). This pre-processing step helps 

to improve the overall stability of the SHERPA-HMM framework. 

 

3.4.3. SHERPA-HMM OFFLINE/TRAINING PHASE  

In the training phase, a dataset containing the means of all fingerprints taken at each sampled 

reference point (x-y coordinates shown as blue dots in Figure 16) is established and is stored in a 

tabular form identical to the fingerprinting dataset. Instead of storing multiple RSSI vector 

fingerprints for each reference point location, the mean RSSI dataset represents a collection of 

RSSI vectors where the noise in individual samples has been averaged out. The noise in the training 

phase dataset is heavily dependent on the smartphone used (as was observed in Figure 18). 

Therefore, storing the mean of RSSI vectors per reference point is an essential step to ensure the 

portability of the training database across heterogeneous mobile devices. 
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3.4.4. SHERPA-HMM ONLINE/TESTING PHASE 

3.4.4.1.   MOTION-AWARE PREDICTION DEFERRAL 

Scanning for WiFi fingerprints is one of the most energy intensive aspects of fingerprinting-

based indoor localization frameworks. In the real-world, the user may choose to stop and look at 

the surroundings while on a path. Any WiFi scans or location prediction cycles that may take place 

while the user has stopped would be wasted. To avoid such a scenario, SHERPA-HMM tracks the 

number of steps taken by the user as he or she walks along a path. SHERPA-HMM defers scanning 

for WiFi fingerprints until it detects that a significant number of steps have been taken since the 

last location of the user was predicted. Based on the experiments performed in section 3.6, we 

know that the average localization error over all paths for our framework is close to 2 meters and 

also the average step length of 0.5 meters can be assumed based on [65]. Therefore, SHERPA-

HMM only scans for WiFi fingerprints once the user has taken at least four steps since the last 

location prediction started.  

 

3.4.4.2.   NOISE RESILIENT FINGERPRINT SAMPLING  

Noise in the testing phase presents a problem as it leads to degraded localization accuracy. 

As observed in Figure 18(c), scanned WiFi fingerprints in the testing phase can be significantly 

impacted by noise. Also, the extent of noise observed varies from device to device. Therefore, the 

shape of a single offline (training) fingerprint, based on only one WiFi scan, may not match that 

of the online (testing) fingerprint from a noisy device. To overcome this challenge, we propose a 

methodology to reduce the impact of observed noise across heterogeneous smartphones and 

establish a prominent pattern match across the training dataset and the online phase samples.  

As previously addressed, the mean RSSI vectors shown in Figure 18 are more reliable for 

establishing a pattern match across heterogeneous devices instead of individually scanned RSSI 
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fingerprints. Furthermore, recent advances in smartphone technology have led to the development 

of robust WiFi support in smartphones. From our preliminary experiments, we found that some 

smartphones (Table 1) can deliver up to 1 scan in a second. These observations support the idea 

of executing multiple WiFi scans in the online phase and using their mean for each location 

prediction.  

Our framework opportunistically increases the number of scans required per prediction from 

1 to 3 using the approach described in the next section (section 3.4.3). Once multiple consecutive 

WiFi scans are completed, their mean fingerprint is calculated and used to predict a user’s location. 

The online phase mean fingerprint is compared with the mean fingerprint vectors from the offline 

database in the next step which uses Pearson’s Cross-Correlation (PCC; discussed in section 3.4.4). 

The location prediction is then made using a lightweight HMM model with PCC-based values 

embedded in the emission matrix (discussed in section 3.4.4.5). 

 

3.4.4.3.   SMART NOISE REDUCTION WITH BOOSTED SCANS PER PREDICTION 

The key motivation behind considering multiple WiFi scans per location prediction is to 

overcome any unpredictable noise across fingerprints from heterogeneous devices. However, too 

many WiFi scans can undesirably reduce the battery life of a smartphone. To strike a balance 

between battery life and indoor localization accuracy, SHERPA-HMM identifies situations in the 

localization process where consecutive fingerprints are noisy and lead to degraded localization 

performance. In such situations, SHERPA-HMM boosts the number of WiFi scans per prediction 

from one to up to three scans. To achieve this, SHERPA-HMM keeps a track of two quantities: 

maximum movable distance (𝐷𝑚𝑎𝑥) and consecutive scan distance threshold (CSDT). 

The maximum distance a user can move within two consecutive predictions is limited. From 

preliminary analysis and our previous work [66], we found that in the situations where noisy 
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fingerprints lead to highly erroneous localization predictions, the distance between consecutive 

predictions is over a threshold of distance a human can move in the allotted time. If the distance 

between consecutive location predictions is larger than 𝐷𝑚𝑎𝑥, its respective flag is set and 

SHERPA-HMM resorts to conducting a second scan. The maximum movable distance (𝐷𝑚𝑎𝑥) 

threshold is governed by the following equation: 𝐷𝑚𝑎𝑥  =  (𝑇𝑠𝑐𝑎𝑛  +  𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡)  × 𝑆𝑔𝑎𝑖𝑡  (1) 
 

where 𝑇𝑠𝑐𝑎𝑛  and  𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 are the times to complete the consecutive WiFi scans and to predict the 

user’s location respectively, and 𝑆𝑔𝑎𝑖𝑡  is the average gait speed of the user. In our case,  𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 was not significantly variable across smartphones and therefore, an upper bound value for  𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 was empirically set to be 0.5 second for the devices shown in Table 1. Also, an upper 

bound gait speed of 2 m/s was used for 𝑆𝑔𝑎𝑖𝑡  based on a large-scale study performed on human 

gait speeds. A preliminary analysis found that the time taken for 1 WiFi scan (number of default 

scans) was heavily dependent on the smartphone being employed and even varied for each 

smartphone itself. Therefore, SHERPA-HMM utilizes a timer on the smartphone to record the time 

taken for consecutive WiFi scans at run-time and uses that value as 𝑇𝑠𝑐𝑎𝑛  in equation (1). 

The consecutive scan distance threshold (CSDT) is the maximum allowable noise across 

consecutive scanned fingerprints above which we label the fingerprints as noisy. The value of 

CSDT is estimated based on the Euclidian distance between the fingerprints collected by the 

training device at each reference point. The assumption is that if the noise over consecutive scans 

is low, consecutive WiFi fingerprints captured by the same device should be very close in terms 

of Euclidian distance. Based on a preliminary analysis performed on the HTC and BLU devices 

(Figure 19) the value of CSDT was set to 25dB. For our setup with the SHERPA-HMM 

framework, if the Euclidian distance between the first two consecutive scans is above CSDT, the 
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noise threshold flag is set, and a third WiFi scan is conducted. The mean of all three WiFi scans is 

then used to predict the user’s location. However, it is important to note that some of the noise 

resilience comes from the use of HMMs, therefore noise threshold alone may not guaranty 

degraded localization performance.  

If both the noise threshold flag and the distance threshold flags are set, then SHERPA-HMM 

resorts to conducting three scans per location prediction until at least one of the flags are reset. It 

is important to note that in contrast to our previous work SHERPA [66] that utilizes three scans 

per prediction by default, the revised SHERPA-HMM framework only utilizes one scan per 

prediction by default, and only occasionally boosts up to three scans per prediction. In this manner, 

our revised framework delivers low-latency predictions in real-time. 

 

3.4.4.4.   HETEROGENEITY RESILIENT PATTERN MATCHING: PCC  

Pearson’s Cross-Correlation (PCC) [67] is measure of linear correlation between two 

vectors. It is a popular metric in the field of signal processing and pattern matching for voice. A 

2D version of PCC is also used in image processing for template matching, a method used for 

identifying any incidences of a pattern or an object within a template image. PCC between a 

template vector (T) and a sample vector (X) can be expressed as:  𝑃𝐶𝐶 = 𝑐𝑜𝑣(𝑇, 𝑋)𝜎𝑇 𝜎𝑋  (2) 

 

where, cov(T, X) represents the covariance and 𝜎𝑇 and 𝜎𝑋 are their respective standard 

deviations. PCC is limited to a range of -1 to 1, where the sign represents negative or positive 

linear relationship, respectively, and the magnitude represents the strength of a linear relationship. 

For our purposes, a positive high value of PCC would suggest a strong similarity between the 
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template (offline database in our case) and the sample (online mean fingerprint in our case). From 

(2), we observe that PCC is directly proportional to covariance (dot product of fingerprints) and 

inversely proportion to the standard deviation of sample X and T. Therefore, a sample exhibiting a 

high level of covariance with the template and a low standard deviation is likely to produce a 

stronger PCC. 

 

3.4.4.5.   SHAPE SIMILARITY FOCUSED HIDDEN MARKOV MODEL    

As discussed in section 3.3, there are two inputs to a Hidden Markov Model: the transition 

matrix and the emission matrix. The transition matrix remains the same for a given path, whereas 

the emission matrix is updated and fed to the Viterbi algorithm in each prediction cycle. 

The transition matrix describes the probability of moving from one location (hidden state) 

to the next. We set up the transition matrix such that a user at a location can move in any direction 

by two steps in each prediction cycle. For example, on a linear path a user at the location with label 

l has equal probability to go to the locations with label: l – 2, l – 1, l + 1, l + 2 (0.25 each) in the 

next prediction cycle.  

The formulation of the emission matrix is the most critical component of the proposed 

framework. The emission matrix at any stage of the prediction cycle is given by E [L × S], where 

L is the number of locations and S is the number of WiFi scans conducted so far. At each location 

prediction cycle once one or more WiFi scans have been completed (as discussed in section 3.4.3), 

the PCC for each of the RSSI vectors of training data and the online mean RSSI vector is 

calculated. These PCC values now form a column vector of length L. The PCC column vector is 

normalized such that the sum of its values is 1. The normalized PCC column vector is now 

appended at the end of the emission matrix and fed to the Viterbi algorithm along with the 

transition matrix. The Viterbi algorithm in turn produces a series of the most likely reference points 



60 
 

or locations (Viterbi path) that the user has visited in the last S prediction cycles. The last location 

of the series of reference points is the predicted location of the user. 

 

3.4.4.6.   OPTIMIZING EMISSION MATRIX FOR PREDICTION TIME 

In the real-world, a user may walk a very long path before reaching their final destination. 

This would result in a very large emission matrix, as each location prediction event will add one 

new column to the emission matrix. This will improve the overall localization accuracy of the user 

at each prediction cycle, however, it will also slow down the time it takes to produce a location 

prediction. 

Even though we expect the location prediction of the user to improve as the emission matrix 

size increases, it may take its toll on battery life and prediction time. Therefore, to maintain the 

QoS for the SHERPA-HMM framework, we limit the maximum number of columns for the 

emission matrix to a limit called Scan Memory (Sm). Based on our analysis in section 3.6, we set 

the Sm to a value of 3. In this manner, the Viterbi algorithm at max predicts the last 3 locations 

the user has been to, based on the last 3 WiFi scan events. This optimization limits the location 

inference time in a predictable manner and in-effect optimizes our framework for energy 

consumption. Thus, the hardware overheads of implementing WBR are low and reasonable.  

 

3.5. EXPERIMENTAL STUDIES 

3.5.1. HETEROGENEOUS DEVICES AND FINGERPRINTING 

To investigate the impact of smartphone heterogeneity, we employed six different 

smartphones (shown in Table 1). This allows us to explore the impact of device heterogeneity 

based on varying chipsets and vendors. We created an Android application that recorded the x-y 
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coordinate from the user and included a scan button. Once the scan button was pressed, multiple 

WiFi scans were performed. The RSSI value and MAC address for each WAP were recorded in 

an SQLite database, and then pre-processed (section 3.4.2). 

3.5.2. INDOOR PATHS FOR LOCALIZATION BENCHMARKING 

We compared the accuracy and stability of SHERPA-HMM and frameworks from prior 

work on five indoor paths in different buildings at a University campus. These paths are shown in 

Figure 16; with each fingerprinted location or reference point denoted by a blue dot. The path 

lengths varied between 60 to 80 meters, and the number of visible WAPs along these paths varied 

from 78 to 218. Each path was selected due to its salient features that may impact indoor 

localization. The Glover building is one of the oldest buildings on campus and constructed from 

wood and concrete. This path is surrounded by a combination of labs that hold heavy metallic 

equipment as well as large classrooms with open areas. The Behavioral Sciences (Sciences) and 

Library (Lib_Study) are relatively new buildings on campus that have a mix of metal and wooden 

structures with open study areas and bookshelves. The Engr_Office path is on the second floor of 

the engineering building that is surrounded by small offices. The Engr_Labs path is in the 

engineering basement and is surrounded by labs consisting a sizable amount of electronic and 

mechanical equipment. Both engineering paths are in the vicinity of large quantities of metal and 

electronics that lead to noisy WiFi fingerprints and can hinder indoor localization. A total of 6 

users, each carrying a smartphone from a different vendor, walked on each indoor path and 

collected samples (fingerprints) for each location on that path. This set of data was utilized in the 

training phase. For the testing/online phase, each of these 6 users walked on each of these paths in 

a random manner, generating 10 walks each varying from 20 to 50 meters in length. 
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3.5.3. COMPARISON WITH PRIOR WORK 

We selected four prior works to compare against SHERPA-HMM. The first work 

(LearnLoc/KNN [37]) is a lightweight non-parametric approach based on the idea that similar data 

when observed as points in a multi-dimensional space would be clustered together. Thus, given a 

vector of WiFi fingerprints in the testing phase, KNN identifies the K closest fingerprints based 

on Euclidean distance within its training model and produces the weighted sum of the coordinates 

of those K fingerprints. The second work (Rank Based Fingerprinting (RBF) [48]) claims that the 

rank of WAPs in a vector of ranked WAPs based on RSSI values remains stable across 

heterogeneous devices. It is functionally similar to KNN with the only difference being that each 

RSSI fingerprint vector in the training and testing phases is sorted and re-populated to store the 

rank of WAPs instead of raw RSSI values. The third work combines Procrustes analysis and 

Weighted Extreme Learning Machines (WELM) [40] to predict the location of a user. Procrustes 

analysis allows the technique to scale and superimpose the RSSI fingerprints of heterogeneous 

devices and denote the strength of this superimposition as the Signal Tendency Index (STI). The 

STI metric is used to transform the original RSSI fingerprints, and then used to train a WELM 

model in the online phase (STI-WELM) with the help of cloud servers. Lastly, we also compare 

SHERPA-HMM, to our previous work SHERPA [66], that utilizes a Pearson Correlation-based 

pattern matching metric to identify locations that are associated with offline WiFi fingerprints, and 

employs lightweight optimizations to deliver high accuracy indoor localization predictions in real-

time. 
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3.6. EXPERIMENTAL RESULTS 

3.6.1. SENSITIVITY ANALYSIS ON SCANS PER PREDICTION 

 To quantify the potential improvement of using mean RSSI vectors in our framework, we 

conducted a sensitivity analysis to compare the accuracy results for SHERPA-HMM using a single 

RSSI vector and the vectors formed by considering the mean of 1 to 5 scanned fingerprints. Figure 

21 depicts the overall localization error for various values of scans per prediction over individual 

benchmark paths. Even though the overall errors for the Engr_Office and Glover paths are 

significantly lower than the other paths (discussed further in section 3.6.3), there is a similar trend 

in reduction of localization error for all paths as the number of scans per prediction increases. The 

most significant reduction is observed when moving from 1 to 2 scans per prediction, whereas 

there is almost no reduction as we move from 4 to 5 scans. This observation solidifies our claim 

of improvement in accuracy by using more than one scans per prediction, as was discussed in detail 

in section 3.4.4.2.  

It is important to note that scans per prediction not only impacts the localization accuracy 

but also the energy consumed per prediction. A single WiFi scan can consume a notable amount 

of energy (~2400mJ when using LG). This motivated us to explore the most suitable value of 

maximum scans per prediction for SHERPA-HMM’s online phase. If the value is too small, such 

as the case for the Lib_Study path in Figure 21 there might not be a significant improvement in 

localization accuracy. However, if the value is too large, the smartphone may end up consuming a 

significant amount of energy for an insignificant improvement. From Figure 21, we observe that 

for most benchmark paths, a majority of the improvement is achieved by conducting only 3 

consecutive scans. Therefore, the upper limit on scans per prediction is set to 3 for our framework. 
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We increase the number of scans per prediction from 1 to 3 in an intelligent manner, as discussed 

in section 3.4.4.3. 

 

Sciences     Engr_Labs     Engr_Office    Glover      Lib_Study 

 

Figure 21. Variation in localization error for different values of scans per prediction (x axis) 

across various path benchmarks. 

 

3.6.2. SENSITIVITY ANALYSIS ON SCAN MEMORY 

The scan memory variable discussed in section 3.4.4.6 can significantly impact the 

performance characteristics of the proposed SHER-PA-HMM framework. To quantify this, we 

perform a sensitivity analysis on the scan memory variable in an effort strike a balance between 

prediction latency and localization accuracy. Figure 22(a) and (b) present the trends on Viterbi 

path search times and average localization error across all devices on various paths in our 

benchmark suite. For this experiment, we analyze the change in Viterbi path search time and 

localization error when the scan memory (emission matrix width) ranges from 1 to 5. Setting the 

value of 1 for scan memory translates into only using the latest WiFi scan for location prediction 

without any historical knowledge, whereas a value of 5 suggests that the latest WiFi scan along 
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with previous four WiFi scan events were utilized to identify the current location. The results for 

this experiment were averaged out over all the devices. 

From Figure 22(a), we observe that the time taken by the Viterbi algorithm to deduce the 

most likely path taken increases linearly as scan memory is increased in the range from 1 to 5. This 

trend is consistent across the paths. We observe that the overall search time is generally the highest 

for the Glover path. This is mainly due to the fact that the Glover path is the longest benchmark 

path with 88 reference locations. Each reference location translates into a unique state in the 

Hidden Markov model. This increases the number of rows in the emission matrix. In Figure 22(a), 

we also observe that the search time grows by 5× as scan memory is increased from 1 to 5. 

From Figure 22(b), we observe that as we increase scan memory the drop in localization 

error is most significant up to the point where scan memory is 3, beyond which we observe 

diminishing returns. Another notable aspect is that the most improvement is observed in the 

Lib_Study path. This can be attributed to the fact that the Lib_Study has a more complex zig-zag 

like path. This observation also highlights the prospective improvements that can be gained by 

using HMM models in more complex paths and dynamically increasing scan memory at run-time 

in an intelligent manner. 

From our observations in Figure 22(a) and Figure 22(b), we set the value of scan memory 

for our HMM formulation to 3. This allows us to minimize the localization error without 

significantly impacting the overall prediction time of our proposed indoor localization framework. 

It is also important to note that the value of scan memory that delivers the best accuracy highly 

depends on the state space of the path. The user is responsible for identifying a good value of state 

space for each path individually. 
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 Sciences     Engr_Labs     Engr_Office    Glover     Lib_Study 

 
(a) Viterbi path search time w.r.t scan memory 

 
(b) Localization error in meters w.r.t scan memory 

Figure 22. Variation in localization error and Viterbi path search time over scan memory 

for various benchmark paths. 

 

3.6.3. PERFORMANCE OF LOCALIZATION TECHNIQUES 

 Figure 23 shows the individual plots that represent the contrast in the localization 

experiences of six users carrying smartphones from dis-tinct vendors. The paths along with the 

training phase device combinations were chosen based on the analysis of the plots in Figure 17. 

We focus on a subset of cases that demonstrate significant deterioration in error (> 2 meters) for 

the KNN technique. 
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 SHERPA-HMM      SHERPA      KNN      STI-WELM     RBF 

      
           (a) Trained by LG at Engr_Labs                      (b) Trained by BLU at Engr_Labs 

 

      
           (c) Trained by OP3 at Lib_Study                     (d) Trained by LG at Engr_Office 

 

       
         (e) Trained by HTC at Sciences                          (f) Trained by SS7 at Sciences 

Figure 23. Localization error for various techniques on benchmark paths across training 

devices. 

 

 From Figure 23(a), it can be observed that HTC is the most stable de-vice for KNN, i.e., is 

least affected by heterogeneity. In all other situations, localization error is heavily impacted by 

heterogeneity. Overall, in Figure 23(a) and (b), SHERPA-HMM can be seen to outperform RBF 

and STI-WELM whenever the localization error from KNN is > 2 meters. SHERPA-HMM is also 

better than our SHERPA in most cases. We observe that RBF performs the worst when there is a 

significant amount of metal structures in the environment. This is the case for the engineering 

building paths (Engr_Labs, Engr_Office) and the path in the Sciences building. The perturbations 

in the WiFi WAP RSSI values due to the metallic surroundings cause the ranks of the WAP RSSI 

values to become highly unstable. We noted that RBF performed better than KNN for a few walks, 

but this was averaged out by poor results from other iterations of the same walk.   
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From Figure 23, we also observe that SHERPA-HMM outperforms STI-WELM in most 

training-testing device pairs, other than the non-heterogeneous cases (e.g., LG boxplot in 8(a), 

BLU boxplot in 8(b), etc.). SHERPA-HMM is able to deliver better performance in most cases as 

it is a purely pattern matching approach along a path. STI-WELM identifies the closest sampled 

locations from the offline phase using the scaling and shape matching based STI metric. The 

fingerprints of these closest locations are then used to train a WELM based neural network in the 

online phase. The work in [40] (STI-WELM) assumes a constant gain across heterogeneous 

devices which is not the case (from Figure 17) and does not compensate for noise across 

smartphones. The neural network model itself is not especially designed for pattern matching, and 

sacrifices predictability of localization error for faster training time in the online phase. Further, a 

neural network-based localization framework such as STI-WELM requires extremely large sets of 

training data which may not a be a realistic and scalable approach for indoor environments. In the 

few cases that SHERPA-HMM is outperformed by STI-WELM, SHERPA-HMM still performs 

within the acceptable range of accuracy and is very close to STI-WELM in terms of median error. 

We also note that for most paths considered in Figure 23, SHERPA-HMM outperforms KNN. In 

the few cases where it is outperformed by KNN, its accuracy loss is very low.  

In some of the cases such as in Figure 23(d), we observe that SHER-PA-HMM delivers 

relatively higher localization error as compared to SHERPA. We found that the major cause of 

this was that the HMM model falsely predicts that a user has turned back when the user is actually 

moving forward along a path. This is caused by noisy fingerprints and the fact that we are using a 

simple transition matrix where the probability of the user moving in any direction is the same. 

Also, we do not utilize other motion sensors such as magnetic and gyroscope to identify situations 
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where the user is changing directions. However, even with this drawback SHERPA-HMM is able 

to meet our tar-get accuracy of 2 meters across the board. 

The experiments performed in this work revealed that certain devices such as the low-cost 

BLU smartphone produce particularly noisy and inconsistent WiFi RSSI measurements. Even 

though SHERPA-HMM attempts to minimize the impact of noise by taking into account multiple 

WiFi scans for each location prediction, users should be wary of the quality limitations of such 

low-cost devices, especially when using them for indoor localization and navigation. 

 

3.6.4. COMPARISON OF EXECUTION TIMES 

 To highlight the lightweight design of our approach, we show the mean execution time of 

location predictions for SHERPA-HMM and prior work frameworks executing on the OP3 device. 

For brevity, results for only one path (Lib_Study) are shown. The specific path was chosen for this 

experiment as it was the largest one with 13,080 data points (60 meters × 218 WAPs) available. 

The OP3 device was randomly chosen as we expect the overall trends of this experiment to re-

main the same across smartphones. 

The results of this experiment are shown in Figure 24. The RBF technique is found to take 

over 2 seconds to execute. This behavior can be attributed to the fact that RBF requires sorting of 

WiFi RSSI values for every scanned fingerprint in the testing phase, unlike any of the other 

techniques. STI-WELM takes the least time to predict locations. However, the highly degraded 

accuracy with STI-WELM, especially in the presence of device heterogeneity (as seen in Figure 

23) is a major limitation for STI-WELM. After STI-WELM (Figure 24), SHERPA is one of the 

quickest localization frameworks with an average prediction time of 0.43 seconds that is slightly 

lower than the lightweight Euclidean-based KNN approach that takes 0.47 seconds for a 
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prediction. Finally, SHERPA-HMM delivers its prediction results in 0.48 seconds which is only 

slightly higher than KNN. As compared to SHERPA, SHERPA-HMM takes ~0.05 seconds longer 

but has proven to deliver significantly better results as shown in section 3.6.3.  

In summary, from the results presented in this section, it is evident that our proposed 

SHERPA-HMM framework for is a promising approach that provides highly accurate, lightweight, 

smartphone heterogeneity-resilient indoor localization. A major strength of this framework is that 

it can be easily ported across smartphones without the need of any calibration effort or cloud-based 

service to execute. 

 

 

Figure 24. Mean indoor location prediction time for SHERPA-HMM and frameworks from 

prior work for the Lib_Study path using the OnePlus3 device. 

 

3.7. CONCLUSION AND FUTURE WORK 

In this chapter, we proposed the SHERPA-HMM framework that is a computationally 

lightweight solution to the mobile device heterogeneity problem for fingerprinting-based indoor 

localization. Our analysis in this work provides important insights into the role of mobile device 

heterogeneity on localization accuracy. SHERPA-HMM was able to deliver superior levels of 
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accuracy as compared to state-of-the-art in-door localization techniques using only a limited 

number of samples for each fingerprinting location. We also established that developing 

algorithms that can be easily ported across devices with minimal loss in localization accuracy is a 

crucial step towards the actuation of finger-printing-based localization frameworks in the real 

world. 

As part of our future work, we would like to focus on improving the reliability of the 

proposed framework through incorporating inertial and magnetic information in the HMM 

formulation. This would greatly reduce the chances of the Viterbi algorithm from predicting false 

user movement direction changes. Another improvement could be to dynamically increase the scan 

memory variable such that user predictions are made with higher confidence in situations where 

the online fingerprint is noisy. 
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4. ADAPTING CONVOLUTIONAL NEURAL NETWORKS FOR INDOOR 

LOCALIZATION WITH SMART MOBILE DEVICES1 

 

Existing outdoor location-based services have transformed how people navigate, travel, and 

interact with the world around them. Now, indoor localization techniques are emerging that have 

the potential to extend this outdoor experience across indoor locales. Industry is beginning to 

provide indoor location-based services to improve customer experience. For instance, Google can 

suggest products to its users through targeted indoor location-based advertisements [68]. Stores 

such as Target in the USA are beginning to provide indoor localization solutions to help customers 

locate products in a store and find their way to these products [8]. Services provided by these 

companies combine GPS, cell towers, and WiFi data to estimate the user’s location. However, in 

the indoor environment where GPS signals cannot penetrate building walls, the accuracy of these 

geo-location services can be in the range of tens of meters, which is insufficient in many cases 

[69]. 

Many of the latest indoor localization techniques exploit radio signals, such as Bluetooth, 

UWB (Ultra-Wide Band) [70], RFID (Radio Frequency Identification) [33], or other customized 

radios. The key idea is to use characteristics of radio signals (e.g., signal strength or triangulation) 

to estimate user location relative to a radio beacon (wireless access point). But these techniques 

suffer from multipath effects, signal attenuation, and noise-induced interference [47]. Also, as 

these techniques require specialized wireless radio beacons to be installed in indoor locales, they 

are costly and thus lack scalability for wide-scale deployment. 

 

1 The work presented in this chapter was conducted in collaboration with Ayush Mittal 
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WiFi based fingerprinting is perhaps the most popular radio-signal based indoor localization 

technique being explored today. WiFi is an ideal radio signal source for indoor localization as most 

public or private buildings are pre-equipped with WiFi access points (APs). Lightweight 

middleware-based fingerprinting frameworks have been shown to run in the background to deliver 

location-based updates on smartphones [71]. Fingerprinting with WiFi works by first recording 

the strength of WiFi radio signals in an indoor environment at different locations. Then, a user 

with a smartphone can capture WiFi received signal strength indication (RSSI) data in real-time 

and compare it to previously recorded (stored) values to estimate their location in that environment. 

Fingerprinting techniques can deliver an accuracy of 6 to 8 meters [2], with accuracy improving 

as the density of APs increases. However, in many indoor environments, noise and interference in 

the wireless spectrum (e.g., due to other electronic equipment, movement of people, operating 

machinery, etc.) can reduce this accuracy. Combining fingerprinting-based frameworks with dead 

reckoning can improve this accuracy somewhat [37]. Dead reckoning refers to a class of techniques 

where inertial sensor data (e.g., from accelerometer, gyroscope) is used along with the previously 

known position data to determine the current location. But dead reckoning is known to suffer from 

error accumulation (in inertial sensors) over time. Also, these techniques are not effective for 

people using wheelchairs or moving walkways.  

The intelligent use of machine learning (ML) techniques can help to overcome noise and 

uncertainty during fingerprinting-based localization [37]. While traditional ML techniques work 

well at approximating simpler input-output functions, computationally intensive deep learning 

models are capable of dealing with more complex input-output mappings and can deliver better 

accuracy. Middleware-based offloading [72] [73] and energy enhancement frameworks [37] [47] 

[50] [74] may be a route to explore for computation and energy-intensive indoor localization 
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services on smartphones. Furthermore, with the increase in the available computational power on 

mobile devices, it is now possible to deploy deep learning techniques such as Convolutional Neural 

Networks (CNNs) on smartphones. A CNN is a special type of Deep Neural Network (DNN) that 

is geared towards image matching and recognition. The most popular aspect of CNN is that it can 

automatically identify essential input features that make the most impact towards the correctness 

of the final output. This process is known as feature learning. Prior to deep learning, feature 

learning was an expensive and time intensive process that had to be conducted manually. CNN has 

been extremely successful in complex image classification problems and is finding applications in 

many emerging domains, e.g., self-driving cars [75]. 

In this chapter, we propose a new and efficient framework that uses CNN-based WiFi 

fingerprinting to deliver a superior level of indoor localization accuracy to a user with a 

smartphone. Our approach utilizes widely available WiFi APs without requiring any 

customized/expensive infrastructure deployments. The framework works on a user’s smartphone, 

within the computational capabilities of the device, and utilizes the radio interfaces for efficient 

fingerprinting-based localization. The main novel contributions of this chapter can be summarized 

as follows: 

• We developed a new technique to extract images out of location fingerprints, which are then 

used to train a CNN that is designed to improve indoor localization robustness and accuracy; 

• We implemented a hierarchical architecture to scale the CNN, so that our framework can be 

used in the real world where buildings can have large numbers of floors and corridors;  

• We performed extensive testing of our algorithms with the state-of-the-art across different 

buildings and indoor paths, to demonstrate the effectiveness of our proposed framework. 
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4.1 RELATED WORK 

Several efforts aim to address the challenges in the domain of indoor localization. Here we 

summarize some of the key efforts. 

Several RFID [33], [76] based indoor localization solutions that use proximity-based 

estimation techniques have been proposed. But the hardware expenses of these efforts increase 

dramatically with increasing accuracy requirements. Also, these approaches cannot be used with 

smartphones and require the use of specialized hardware. Indoor localization systems that use 

UWB [70] and ultrasound [77] [78] have similar requirements for additional (costly) infrastructure, 

and a lack of compatibility for use with commodity smartphones. 

Triangulation based methods, such as [79], use multiple antennas to locate a person or object. 

But these techniques require several antennas and regular upkeep of the associated hardware. Most 

techniques therefore favor using the more lightweight fingerprinting approach, often with WiFi 

signals. UJIIndoorLoc [80] describes a technique to create a WiFi fingerprint database and 

employs a KNN (K-Nearest Neighbor) based model to predict location. Their average accuracy 

using KNN is 7.9 meters. Dead reckoning techniques use the accelerometer to estimate the number 

of steps, a gyroscope for orientation, and a magnetometer to determine the heading direction. Such 

techniques have been employed in [20] and [23], but have shown to deliver poor localization 

accuracy results when used alone. 

Radar [81] and Indoor Atlas [10] proposed using hybrid indoor localization techniques. 

Radar [81] combines inertial sensors (dead reckoning) with WiFi signal propagation models, 

whereas Indoor Atlas [10] combines information from several sensors such as magnetic, inertial, 

and camera sensors, for localization. LearnLoc [37] combines non-deep ML models, dead 
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reckoning techniques, and WiFi fingerprinting to trade-off indoor localization accuracy and energy 

efficiency during localization on smartphones.   

A few efforts have begun to consider deep learning to assist with indoor localization. The 

work in [82] presents an approach that uses DNNs with WiFi fingerprinting. The accuracy of the 

DNN is improved by using a Hidden Markov Model (HMM). The HMM takes temporal coherence 

into account and maintains a smooth transition between adjacent locations. But our analysis shows 

that the fine location prediction with the HMM fails in cases such as when moving back on the 

same path or taking a sharp turn. HMM predictions are also based on the previous position acquired 

through the DNN and hence, can be prone to error accumulation. DeepFi [35] and ConFi [83] 

propose approaches that use the Channel State Information (CSI) of WiFi signals to create 

fingerprints. But the CSI information in these approaches was obtained through the use of 

specialized hardware attached to a laptop. None of the mobile devices available today have the 

ability to capture CSI data. Due to this limitation, it is not feasible to implement these techniques 

on smartphones. Deep Belief Networks (DBN) [84] have also been used for indoor localization, 

but the technology is based on custom UWB beacons that lead to very high implementation cost. 

In summary, most of the above-mentioned frameworks either require additional costly 

infrastructure or cannot be deployed on smart mobile devices. Our implementation-based analysis 

shows that these frameworks can become slow and resource intensive if used for large buildings 

with multiple floors and corridors.  

Our proposed framework in this chapter, CNN-LOC, overcomes the shortcomings of these 

state-of-the-art indoor localization approaches. CNN-LOC creates input images by using RSSI of 

WiFi signals that are then used to train a CNN model, without requiring any specialized 

hardware/infrastructure. CNN-LOC is easily deployable on current smartphones. The proposed 
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framework also integrates a hierarchical scheme to enable scalability for large buildings with 

multiple floors and corridors/aisles.  

 

4.2 CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) are specialized DNNs with a focus on image 

classification. They are highly resilient to noise in the input data and have shown to deliver 

excellent results for complex image classification tasks. The smallest unit of any neural network 

(NN) is a perceptron and is inspired by the biological neuron present in the human brain. 

Here y is the output, which is a weighted sum of the inputs 𝑥𝑖, with a weighted bias (𝑤0). 

NNs have inter-connected layers, and in each layer, there are several perceptrons, each with its 

own tunable weights and biases. Each layer receives some input, executes a dot product, and passes 

it to the output layer or the hidden layer in front of it [85]. This output is often applied to an 

activation function that gives an input-output mapping defined by logistic regression. The most 

common activation functions used are sigmoid and tanh functions. The goal of an NN is to 

approximate a functional relationship between a set of inputs and outputs (training phase). The 

resulting NN then represents the approximated function that is used to make predictions for any 

given input (testing phase). 

While an NN often contains a small number of hidden layers sandwiched between the input 

and output layer, a Deep Neural Network (DNN) has a very large number of hidden layers. DNNs 

have a much higher computational complexity but in turn are also able to deliver very high 

accuracy. CNNs are a type of DNN that include several specialized NN layers, where each layer 

may serve a unique function. CNN classifiers are used to map input data to a finite set of output 

classes. For instance, given different animal pictures, a CNN model can be trained to categorize 
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them into different classes such as cats, dogs, etc. CNNs also make use of Rectified Linear Units 

(ReLu) as their activation function, which allows them to handle non-linearity in the data. 

In the training phase, our CNN model uses a feed forward deep learning algorithm. To update 

the weights during the training phase, a Stochastic Gradient Descent (SGD) algorithm is used. 

Adam [86], an optimized version of SGD, is used to optimize the learning process. The algorithm 

is designed to take advantage of two well-known techniques: RMSprop [87] and AdaGrad [88]. 

SGD maintains a constant learning rate for every weight update in the network. In contrast, Adam 

employs an adaptive learning rate for each network weight; with the learning rate being adapted 

as the training progresses. RMSprop uses the mean (first-order moment) of past squared gradients 

and adjusts the weights based on how fast the gradient changes. Adam, to optimize the process, 

uses the variance (second-order moment) of past gradients and adjusts the weights accordingly.  

 

 

Figure 25. The architecture of a sample Convolutional Neural Network (CNN). 

 

The structure of the CNN in CNN-LOC is inspired from the well-known CNN architectures, 

LeNet [89] and AlexNet [85]. Our CNN architecture is shown in Figure 25. The first hidden layer 

is partially connected to the input layer. This hidden layer only looks at a specific region of the 

input image at a time, and this region is known as a filter. The filter is shown by a rectangle (red-

dotted lines). Each layer performs a convolution of a small region of the input image with the filter 
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and feeds the result to the ReLu activation function. Therefore, we refer to each layer as [Conv-

ReLu]. To capture more details from the input image we can use a larger number of filters. For 

each filter, we get a feature map. For the first layer of [Conv-ReLU], we used 32 filters to create a 

set of 32 feature maps. We used five hidden layers of [Conv-ReLU], but only two are shown for 

brevity. The number of filters and layers are derived through empirical analysis as discussed in 

section 4.4. A ‘stride’ parameter determines the quantity of pixels that a filter will shift, to arrive 

at a new region of the input image to process. The stride and other ‘hyperparameters’ of our CNN 

are further discussed in section 4.4. In the end, a fully connected layer helps in identifying the 

individual class scores (in our case each class is a unique location). The class with the highest 

score is selected as the output. In this layer, all the neurons are connected to the neurons in the 

previous layer (green-dotted-lines).  

In a conventional CNN, a pooling layer is used to down-sample the image when the size of 

the input image is too big. In our case, the input image is small and therefore we do not need this 

step. We want our CNN to learn all the features from the entire image. 

 

4.3 CNNLOC FRAMEWORK 

4.3.1. OVERVIEW  

An overview of our CNN-LOC indoor localization framework is shown in Figure 26. In the 

framework, we utilize the available WiFi access points (APs) in an indoor environment to create 

an RSSI fingerprint database. Our framework is divided into two phases. The first phase involves 

RSSI data collection, cleaning, and pre-processing. This pre-processed data is used to create a 

database of images. Each image represents a WiFi RSSI based signature that is unique to a location 

(i.e., x-y co-ordinate). This database of images is used to train a CNN model. The trained model 
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is deployed on a smartphone. In the second phase, real time AP data is converted into an image 

and then fed to the trained CNN model to predict the location of the user. The CNN model predicts 

the closest block that was sampled as the users’ location. A detailed description of the pre-

processing is described in the next section. 

 

4.3.2. PRE-PROCESSING OF RSSI DATA 

The process of image database creation begins with the collection of RSSI fingerprints as 

shown in the top half of Figure 26. The RSSI for various APs are captured along with the 

corresponding x and y coordinates at the training locations. We only maintain information for 

known WiFi APs and hence clean the captured data. This ensures that our trained model is not 

polluted by unstable WiFi APs. On the RSSI scale, values typically range between -95 dB (lowest) 

to -0 dB (highest). We normalize the RSSI values on a scale from 0 and 100, where 0 represents 

the weak or null signal, and 100 represents the strongest signal. 

Assume that while fingerprinting an indoor location, a total of K APs are discovered at N 

unique locations. These combine to form a two-dimensional matrix of size 𝑁 × 𝐾. Then the 

normalized RSSI fingerprint at the Nth location, denoted as lN, is given by a row vector [r1, r2, …, 

rK], denoted by RN. Therefore, each column vector, [w1, w2,…, wN] would represent the normalized 

RSSI values of the Kth AP at all N locations, denoted by WK. We calculate the Pearson Correlation 

Coefficient (PCC) [90] between each column vector WK and the location vector [l1, l2, …, lN]. The 

result is a vector of correlation values denoted as C. PCC is useful in identifying the most 

significant APs in the database that impact localization accuracy. The coefficient values range 

across a scale of -1 to +1. If the relationship is -1, it represents a strong negative relationship, 
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whereas +1 represents a strong positive relationship, and 0 implies that the input and output have 

no relationship. 

 

 

Figure 26. An overview of the CNN-LOC framework. 

 

 

Figure 27. Unique images created for locations l1 and l2. The green icons represent locations 

that are fingerprinted along an indoor path. The two locations shown are 10 meters apart. 

 

We only consider the magnitude of the correlation as we are only concerned with the strength 

of the relationship. APs with very low correlation with the output coordinates are not useful for 

the purpose of indoor localization. Therefore, we can remove APs whose correlation to the output 

coordinates is below a certain threshold (|PCC| < 0.3). This removes inconsequential APs from the 
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collected WiFi data and helps reduce the computational workload of the framework. The 

normalized RSSI data from the remaining high-correlation APs is used to create an RSSI image 

database, as explained in the next section. 

 

4.3.3. RSSI IMAGE DATABASE  

In this section, we present our approach to convert RSSI data for a given location into a 

greyscale image. A collection of these images for all fingerprinted locations forms the RSSI Image 

Database. To form greyscale images, a Hadamard Product (HP) [91] is calculated for each R and 

C. HP is defined as an element wise multiplication of two arrays or vectors:  

𝐻𝑃 = ∑ 𝑅𝑖 ∘ 𝐶𝑁
𝑖=1  (3) 

 

The dimension of each HP is 1 × 𝐾. Then, the HP matrix is reshaped into a 𝑝 × 𝑝 matrix, 

which represents a 2D image as shown in Figure 27. The HP is padded with zeros in the case that 

K is less than p2. Therefore, we now have a set of N images of size 𝑝 × 𝑝 in our database. These 

images are used to train the CNNs.  

Figure 27 shows two images (IMG_l1 and IMG_l2) of size 7×7 created for two unique 

fingerprints (signatures) associated with two different locations. Each pixel value is scaled on a 

scale of 0 to 255. The patterns in each of these images will be unique to a location and change 

slightly as we move along an indoor path.  

In equation (3), the product of PCC and normalized RSSI value for each AP is used to form 

a matrix. Its purpose is to promote the impact of the APs that are highly correlated to fingerprinted 

locations. Even though there may be attenuation of WiFi signals due to multipath fading effects, 

the image may fade but will likely still have the pattern information retained. These patterns that 
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are unique to every location can be easily learned by a CNN. The hyperparameters and their use 

in CNN-LOC is discussed next. 

 

4.3.4. HYPERPARAMETERS 

The accuracy of the CNN model depends on the optimization of the hyperparameters that 

control its architecture which is the most important factor in the performance of CNN. A smaller 

network may not perform well, and a larger network may be slow and prone to overfitting. There 

are no defined rules in deep learning that help in estimating the appropriate hyperparameters. 

Identifying the optimal values for the CNN hyperparameters is an empirical process and requires 

several iterations of experimentation and analysis. The estimated hyperparameters are also highly 

dependent on the input dataset. Below, we discuss results of our analysis of CNN hyperparameters 

for our indoor localization problem domain. 

• Number of hidden layers: A large number of hidden layers lead to longer execution times and 

conversely, fewer hidden layers may produce inaccurate results. We found that 5 layers of 

[Conv-ReLU] works best for our domain. 

• Size of filter: This defines the image area that the filter considers at a time, before moving to 

the next region of the image. A large filter size might aggregate a large chunk of information 

in one pass. The optimum filter size in our case was found to be 2×2. 

• Stride size: The amount of pixels a filter moves by is dictated by the stride size. We set it to 1 

because the size of our image is very small and we do not wish to lose any information. 

• Number of filters: Each filter extracts a distinct set of features from the input to construct 

different feature maps. Each feature map holds unique information about the input image. The 

best results were obtained if we started with a lower number of filters and increased them in 
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the successive layers to capture greater uniqueness in the patterns. There were 32 filters in the 

first layer and were doubled for each subsequent layer up to 256 filters such that both the fourth 

and fifth layer had 256 filters. 

 

4.3.5. INTEGRATING HIERARCHY FOR SCALABILITY  

Our CNN-LOC framework is designed to scale up to larger problem sizes than that handled 

by most prior efforts. For this purpose, we enhanced our framework by integrating a hierarchical 

classifier. The resulting hierarchical classifier employs a combination of smaller CNN modules, 

which work together to deliver a location prediction. Figure 28 shows the hierarchical decision 

structure of the framework. Each CNN module has a label that starts with C. The CNN in the first 

layer (C1) classifies the floor numbers, and then in the next layer, C20 or C21 identify the corridor 

on that floor. Once the corridor is located, one of the CNNs from the third layer (C30 – C35) will 

predict the fine-grain location of the user. It is important to note that the CNN models in the third 

layer actually represent two models each, i.e., C30 includes both CNN models for the x and y axis. 

In this manner, we avoid using the hierarchal classifier twice for each axis. 

 

 

Figure 28. A general architecture for the hierarchical classifier. 
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4.4 EXPERIMENTS 

4.4.1. EXPERIMENTAL SETUP 

This section describes the CNN-LOC implementation and experimental results that were 

conducted on three independent indoor paths as described in Table 2. The corridors on the path 

are divided into a grid and labelled sequentially from 1 to N. Each square in the grid has an area 

of 1 m2 and represents a “class”. This allows us to treat indoor localization as a classification 

problem for CNN. Figure 29 shows an example of a path covered in the library building with 

labeled squares. Each label further translates into an x-y coordinate. Five WiFi scans were 

conducted at each square during the fingerprinting (training) phase. 

 

Table 2. Indoor paths used in experiments. 

Building Path Length (m) Shape 

Library 30 U shape 
Clark A 35 Semi-octagonal 
Physics 28 Square shape 

 

 

Figure 29. Library building path divided into a grid, with squares along the path labeled 

sequentially from 1 to 30. 

 

An Android application was built to collect WiFi fingerprints (i.e., RSSI samples from 

multiple APs at each location) and for testing. The application is compatible with Android 6.0 and 
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was tested on a Samsung Galaxy S6. After fingerprint data collection, the data was pre-processed 

as described in the previous section for the CNN model. The entire data set is split into training 

and testing samples, so we can check how well our models perform. We used 1/5th of the total 

samples for testing and 4/5th of the samples were used for training. Also, we implemented different 

CNN models for location estimation along different axes. Thus, we use a dedicated CNN model 

to predict the x coordinate of a location. Similarly, a separate CNN model predicts the y 

coordinates. The output from these models is combined to get the final results. 

 

4.4.2. EXPERIMENTAL RESULTS  

We compared our CNN-LOC indoor localization framework with three other indoor 

localization frameworks from prior work. The first work we implemented is based on the approach 

in [92] and employs Support Vector Regression (SVR). This approach forms one or more 

hyperplanes in a multidimensional space such that it segregates similar data points, which are then 

used for regression. The second work is based on the KNN technique from [37], which is a non-

parametric approach that is based on the idea that similar input will have similar outputs. Lastly, 

we compare our work against a DNN based approach [82] that improves upon conventional NNs 

by incorporating a very large number of hidden layers. All of these techniques supplement the 

WiFi fingerprinting approach with a machine learning model to provide robustness against noise 

and interference effects. Our experiments in the rest of this section first discusses the localization 

accuracy results for the techniques. Subsequently, we also discuss results for the scalability of our 

framework using a hierarchical classification enhancement approach. Lastly, we contrast the 

accuracy of our framework with that reported by other indoor localization techniques.  
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4.4.2.1.   INDOOR LOCALIZATION ACCURACY COMPARISON 

Figure 30 shows the paths predicted by the four techniques, for the indoor path in the Clark 

building. The green dots along the path represent the points where WiFi RSSI fingerprint samples 

were taken to create the training dataset. The distance between each of the green dots is 1 meter. 

In the training dataset, each green dot is converted into an image. The testing phase consists of the 

user walking along this path, and the red lines in Figure 30 show the paths predicted by the four 

techniques. It is observed that KNN [37] and SVR [92] stray off the actual path the most, whereas 

DNN and CNN-LOC perform much better. This is likely because KNN and SVR are both 

regression-based techniques where the prediction is impacted by neighboring data points. In cases 

where the sampled points are very close to each other, there may not be enough variation across 

neighboring samples for the regression-based techniques to work properly. The transition from 

one location to another is smoother for CNN as it is able to distinguish between closely spaced 

sampling locations due to our RSSI-to-image conversion technique. From Figure 30, it is evident 

that our CNN-LOC framework produces stable predictions for the Clark path.  

Figure 31 shows a bar graph that summarizes the average location estimation error for the 

various techniques on the three different indoor paths considered. We found that the KNN 

approach is the least reliable among all techniques with a mean error of 5.5 meters and large 

variations across the paths. The SVR-based approach has a similar mean error as the KNN 

approach. The DNN based approach shows lower error across all of the paths. But it does not 

perform consistently across all of the paths and the mean error is always higher than that for CNN-

LOC. This may be due to the fact that the filters in CNN are set up to focus on the image with a 

much finer granularity than the DNN approach is capable of. We also observe that all techniques 

perform the worst in the Physics department. This is due to the fact that the path in the Physics 

department is near the entrance of the building and has a lower density of WiFi APs as compared 
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to the other paths. The Library and Clark paths have a higher density of WiFi APs present; hence, 

better accuracy can be achieved. Our proposed CNN-LOC framework is the most reliable 

framework with the lowest mean error of less than 2 meters.  

 

 

Figure 30. Path traced using different techniques. 

 

4.4.2.2.   CNN-LOC SCALABILITY ANALYSIS 

We discuss results for the hierarchal CNN-LOC (Section 4.5) here. We consider a scenario 

when CNN-LOC is required to predict a location inside a building with two floors and with three 

corridors on each floor. The length of each corridor is approximately 30 meters. We combined 

several small CNNs (in our case 9 small CNNs), such that a smaller number of weights are 

associated with each layer in the network than if a single larger CNN was used.  
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Figure 31. Comparison of indoor localization techniques. 

 

We first analyzed the accuracy of predictions, for CNN-LOC with and without the 

hierarchical classifier. For the first and second layer of the hierarchical classifier (shown in Figure 

28), the accuracy is determined by the number of times the system predicts the correct floor and 

corridor. We found that floors and corridors were accurately predicted 99.67% and 98.36% of 

times, respectively. For the final layer, we found that there was no difference in accuracy between 

the hierarchal and the non-hierarchal approach. This is because in the last level both the approaches 

use the same model.  

Figure 32 shows the benefits in terms of time taken to generate a prediction with the 

hierarchical versus the non-hierarchical CNN-LOC framework. We performed our experiment for 

four walking scenarios (“runs”) in the indoor environment (building with two floors and with three 

corridors on each floor). We found that the hierarchical CNN-LOC model only takes 2.42ms to 

make a prediction on average, whereas the non-hierarchical CNN-LOC takes longer (3.4ms). Thus, 

the hierarchical classifier represents a promising approach to reduce prediction time due to the 
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fewer number of weights in the CNN layers in the hierarchical approach, which leads to fewer 

computations in real-time.  

 

 

Figure 32. Execution time for Hierarchical CNN. 

 

4.4.2.3.   ACCURACY ANALYSIS WITH OTHER APPROACHES 

Our experimental results in the previous sections have shown that CNN-LOC delivers better 

localization accuracy over the KNN [37], DNN [82] and SVR [92] frameworks. The UJIIndoorLoc 

[80] framework is reported to have an accuracy of 4 to 7 meters. Our average accuracy is also 

almost twice that of RADAR [81].  If we consider frameworks that used CSI (DeepFi [35] and 

ConFi [83]), our accuracy is very close to both at just under 2 meters. However, [35] and [83] use 

special equipment to capture CSI and cannot be used with mobile devices. In contrast, our 

proposed CNN-LOC framework is easy to deploy on today’s smartphones, does not require any 

specialized infrastructure (e.g., custom beacons), and can be used in buildings wherever WiFi 

infrastructure pre-exists.  
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4.5. CONCLUSIONS 

In this chapter, we presented the CNN-LOC framework that uses WiFi fingerprints and 

convolutional neural networks (CNNs) for accurate and robust indoor localization. We compared 

our work against three different state-of-the-art indoor localization frameworks from prior work. 

Our framework outperforms these approaches and delivers localization accuracy under 2 meters. 

CNN-LOC has the advantage of being easily implemented without the overhead of expensive 

infrastructure and is smartphone compatible. We also demonstrated how a hierarchical classifier 

can improve the scalability of this framework. CNN-LOC represents a promising framework that 

can deliver reliable and accurate indoor localization for smartphone users.  
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5. OVERCOMING SECURITY VULNERABILITIES IN DEEP LEARNING BASED 

INDOOR LOCALIZATION FRAMEWORKS ON MOBILE DEVICES 

 

In the early 1980’s, the unintended deviation of a commercial airliner from its designated 

path due to unreliable navigation equipment led to 269 casualties [93]. This prompted U.S. 

authorities to recognize the need for a reliable global localization solution. As a result, the Global 

Positioning System (GPS) being built for the U.S military, when completed, was promised to be 

available for public use. In the subsequent decade, GPS technology was completely 

commercialized [94]. These historic events reformed the global transportation industry and 

allowed vehicles to not only localize themselves but also to navigate reliably. To further enhance 

security of GPS based services, recent works have started to focus on the modeling and 

characterization of GPS spoofing [95] and time reliability-based attacks [96] and further propose 

the utilization of crowdsourcing methodologies to detect and localize spoofing attacks [97]. 

Regardless of such advances the recent history of attacks on GPS for outdoor navigation [98], [99] 

motivates stronger security features. On the other hand, indoor localization is an emerging 

technology with a similar purpose and is poised to reinvent the way we navigate within buildings 

and subterranean locales [2]. However, on the academic front, limited attention is being paid 

towards securing indoor localization and navigation frameworks against malicious attacks and 

ensuring that the future indoor localization frameworks are reliable.  

Almost two decades of research has contributed to the evolution of the indoor localization 

and navigation domain. Several commercial solutions and standards are being established today to 

enable indoor localization in the public sector. For example, recently a new standard for WiFi was 

established in collaboration with Google that would allow anyone to set up their own localization 
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system by sharing their indoor floor map and the WiFi router positions on that map with Google 

[4]. Nowadays, companies such as Amazon and Target are also starting to track customers at their 

stores [11]. With an increasing number of startups in the area of indoor localization services 

security concerns pertaining to the commercialization of such technology are almost never 

discussed. 

The explosion in the commercialization of indoor localization technology can be attributed 

to its usefulness for a wide variety of non-critical and critical applications. For example, depending 

on the context of the situation [100], navigating students to the correct classroom may represent 

non-critical applications, where some factor of unreliability would not lead to any serious 

repercussions. However, there are some applications in a time-critical response context and need 

an enhanced level of reliability and security. Such scenarios include navigating medical staff and 

equipment closest to a patient in the correct room at a hospital in real-time or notifying emergency 

responders to the location of a person in case of a serious health hazard such as a heart attack, 

collapse, or fire. 

Unfortunately, malicious third parties can exploit the vulnerabilities of unsecured indoor 

localization components (e.g., WiFi Access Points or WAPs) to produce incorrect localization 

information [101], [102]. This may lead to some inconvenience in non-critical contexts (e.g., a 

student arrives at the wrong classroom), but can lead to dire consequences in more critical contexts 

(e.g., medical staff are unable to locate vital equipment or medicine needed for a patient in an 

emergency; or emergency response personnel are misdirected, causing a loss of lives). Tainted 

information from intentional or unintentional sources can lead to even more egregious real-time 

delays and errors. Therefore, similar to outdoor navigation systems, establishing secure and 
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reliable indoor localization and navigation systems holds an uncontested importance in this 

domain. 

Despite much research on indoor localization solutions, the security and reliability concerns 

of the proposed indoor localization frameworks are often overlooked. The vulnerabilities and 

associated security methodologies that can be applied to an indoor localization framework are 

often tailored to the localization method used and a generalized security and reliability framework 

is not available. 

For the purpose of indoor localization, at one end of the spectrum are 

triangulation/trilateration-based methods that either use geometric properties such as the distance 

between multiple APs and the receiver/smartphone, [54], [103] (trilateration) or the angles at 

which signals from two or more APs are received [102], [104] (triangulation). Such techniques are 

often prone to Radio Frequency (RF) interference and malicious node-based attacks. Some work 

has been done to overcome these vulnerabilities through online evaluation of signals and packets 

[105]. However, these indoor localization frameworks are inherently not resilient to multipath 

effects, where the RF signal reaches a destination after being reflected across different surfaces, 

and shadowing effects, where the RF signal fades due to obstacles. Some recent work has 

investigated multipath effects for triangulation [56], but these works do not apply to commodity 

smartphones (expected to be the de-facto portable device for indoor localization) and hence, have 

limited applicability. 

On the other end of the spectrum are fingerprinting based methods that associate selected 

indoor locations (reference points) with a unique RSSI (Received Signal Strength Indicator) 

signature obtained from APs accessible at that location [37], [38] (fingerprinting is discussed in 

more detail in section 5.1). These techniques have proven to be relatively resilient to multi-path 
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reflections and shadowing, as the reference point fingerprint captures the characteristics of these 

effects, leading to improved indoor localization. However, fingerprinting requires a more elaborate 

offline-phase (i.e., setup) than triangulation/trilateration methods, where RSSI fingerprints need to 

be captured across indoor locations and stored in a fingerprint database, before being able to 

support localization or navigation (by referring to the database) in the online-phase, in real-time. 

Fingerprinting-based techniques are not only vulnerable to interference and malicious node-

based attacks but are also prone to database corruption and privacy/trust issues (discussed in the 

next section). Amongst the mentioned vulnerabilities, RSSI interference and malicious node or AP 

attacks are significantly easier to perform as they only require the attacker to gain physical access 

into the indoor location where the attack needs to take place. Once the attacker is at the site, they 

could, for instance, deploy battery powered AP units that would either interfere with the 

localization AP signals or spoof valid AP nodes. Moreover, a single malicious AP unit is capable 

of spoofing multiple packets for multiple valid APs in the area. 

 

 

Figure 33. Average indoor localization error (in meters). Fingerprinting techniques based on 

deep neural networks (DNNs), convolutional neural networks (CNNs), support vector 

machines (SVM), and k-nearest-neighbor (KNN). Results are shown for two different indoor 

paths. 
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Simple fingerprinting-based indoor localization frameworks that use techniques such as 

KNN (k-nearest-neighbor) can utilize outlier detection-based techniques to overcome some 

security issues [106]. However, recent work on improving WiFi fingerprinting accuracy has tended 

to exploit the increasing computational capabilities of smartphones and utilize more powerful 

machine learning techniques. For instance, sophisticated convolutional neural networks (CNNs) 

[38] have been proposed and shown to improve fingerprint-based indoor localization accuracy on 

smartphones. Figure 33 shows the improvements when using CNN and deep neural network 

(DNN) [82] [107] [108] based localization approaches as compared to more traditional techniques 

such as KNN [37] and support vector machines (SVM) [92]. Based on the improvements achieved 

through CNN- and DNN-based algorithms, indoor localization solutions in the future are expected 

to benefit from the use of deep learning methodologies that have the potential to significantly 

reduce localization errors. However, to date, no studies have been performed to assess the impact 

on accuracy for malicious AP attacks on deep learning based indoor localization. 

In this chapter, we present a novel method to overcome the security vulnerabilities of deep 

learning based indoor localization frameworks. We use the recent deep learning-based localization 

framework from [38] as an example and propose security enhancements for it. The novel 

contributions of our work are: 

• We identify and model various AP-based attacks that impact the localization accuracy of 

deep learning-based indoor localization frameworks, such as the frameworks from [38] and 

[82]; 
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• For the first time, we conduct an in-depth experimental analysis on the impact of AP-based 

attacks on CNN [38] and DNN [82] based indoor localization frameworks across indoor 

paths;  

• We present a novel methodology for constructing AP attack resilient deep learning models 

to create a secure version of the CNNLOC framework from [38] (which we call S-CNNLOC) 

for robust and secure indoor localization; 

• We compare the performance of S-CNNLOC against CNN-LOC for a varying number of 

malicious AP nodes, and across a diverse set of indoor paths. 

 

5.1. BACKGROUND AND RELATED WORK 

5.1.1. RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)  

RSSI is a measurement of the power of a received radio signal transmitted by a radio source. 

The RSSI is captured as the ratio of the received power (𝑃𝑟) to a reference power (𝑃𝑟𝑒𝑓, usually set 

to 1mW). The value of RSSI is reported in dBm and is given by: 

𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚) = 10 ∙ 𝑙𝑜𝑔 𝑃𝑟𝑃𝑟𝑒𝑓 (4) 

 

The received power (𝑃𝑟) is inversely proportional to the square of the distance (d) between 

the transmitter and receiver in free space and is given by: 

𝑃𝑟 = 𝑃𝑡 ∙ 𝐺𝑡 ∙ 𝐺𝑟 ( 𝜆4𝜋𝑑)2
 (5) 

 

where 𝑃𝑡 is the transmission power, 𝐺𝑡 is the gain of transmitter, 𝐺𝑟 is the gain of receiver, 

and λ is the wavelength. This inverse relationship between the received power and distance has 
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often been used by researchers to localize wireless receivers with respect to transmitters at known 

locations, e.g., estimating the location of a user with a WiFi capable smartphone from a WiFi AP. 

However, the free space models based on equations (4) and (5) do not extend well for practical 

applications. In reality, the propagation of radio signals is influenced by various effects. Figure 34 

illustrates some of these effects as a radio signal travels from its source (WAP2) towards location 

(L2). The signals transmitted from WAP2 get scattered at the edges of the pillar, reflect off walls, 

and get attenuated as they pass through the pillar to reach the reference point L2. Also, the signals 

from WAP2 follow different paths (called multipath traversal) to reach location L2. These effects 

lead to an RSSI reading at L2 that does not correspond to equation (5) which was designed to 

function in free space. 

 

  

Figure 34. A representation of the offline and online phases in the fingerprinting process for 

indoor localization, for a given floorplan. 

 

5.1.2. FINGERPRINT-BASED INDOOR LOCALIZATION 

Since the first efforts on fingerprinting-based indoor localization about two decades ago, 

such as with the work in RADAR [81], a significant level of advancement has been achieved in 

this area. However, the general premise of fingerprinting based indoor localization has remained 

unchanged. As shown in Figure 34, fingerprinting-based localization is carried out in two phases. 

In the first phase (called the offline or training phase), the RSSI values for visible WiFi APs 



99 
 

(WAPs) are collected for a given floorplan at reference points L1, L2, L3 etc. identified by some 

coordinate system. The RSSI fingerprint captured at a given reference point consists of RSSI 

values (in dBm) for the WAPs in the vicinity and the X-Y coordinate of the reference point. The 

resulting database of location-tagged RSSI fingerprints (Figure 34) is then used to train models 

(e.g., machine learning-based) for location estimation such that the RSSI values are the input 

features, and the reference point location coordinates are the target (output) features. The trained 

machine learning model is then deployed to a mobile device as shown in the offline phase of Figure 

34. In the second phase (called online or testing phase), the devices are used to predict the (X-Y 

coordinate) location of the user carrying the device, based on real-time readings of WAP RSSI 

values on the device. Contrary to the supervised learning approach discussed so far, some recent 

work also explores adapting semi-supervised deep reinforcement learning to deliver improved 

accuracy when very limited fingerprinting data is available in the training phase [109]. One of the 

major advantages of using fingerprinting-based techniques over other methods (e.g., 

trilateration/trilateration) is that knowledge of environmental factors such as multipath signal 

effects and RF shadowing are captured within the fingerprint database (such as for the reference 

point L2 in Figure 34) in the offline phase and thus leads to improved localization accuracy in the 

online phase, compared to other methods.  

An important aspect of fingerprinting-based indoor localization is the choice of the signal-

source utilized. Some commonly used signal-source options include Ultra-Wide-Band (UWB) 

[70], Bluetooth [110], ZigBee [111], and WiFi [37]. The choice of signal directly impacts the 

achievable localization accuracy as well as the associated setup and maintenance costs. For 

example, UWB APs need to be specially purchased and deployed at the target site, however, they 

have been shown to deliver a higher level of accuracy than many other signal types. On the other 
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hand, WiFi based indoor localization frameworks have gained traction due to the ubiquitous 

availability of WiFi access point (WAPs) in indoor locales and the fact that most people nowadays 

carry smartphones that come equipped with WiFi transceivers, making WAP-based indoor 

localization a cost-effective and popular choice [37], [38]. For this reason, in our work, we assume 

the use of WAPs as signal sources for fingerprinting-based indoor localization. 

 

5.1.3. CHALLENGES WITH INDOOR LOCALIZATION 

As a result of the popularity of WiFi fingerprinting, efforts in recent years have been made 

to overcome its limitations, such as energy-efficiency [37], variations due to device heterogeneity 

[32] [40] [66], and temporal degradation effects on localization accuracy [112]. However, in recent 

years as indoor localization services are beginning to be prototyped and deployed, researchers have 

raised concerns about the privacy, security, and other vulnerabilities associated with 

fingerprinting-based localization. Some commonly identified vulnerabilities and their mitigation 

strategies are discussed in the rest of this section. 

Offline-Phase Database Security: The indoor localization fingerprint database consists of 

three pieces of information in each entry of the database: WAP Media Access Control (MAC) 

addresses, RSSI values of these WAPs, and the associated reference point location tag (e.g., XY 

co-ordinate of a location). A malicious third-party, may corrupt the database by changing the RSSI 

values associated with the MAC addresses or change the location where the samples were taken. 

This kind of an attack can completely jeopardize the functionality of an indoor localization 

framework, as the offline database holds the most crucial information required for any 

fingerprinting-based indoor localization framework to function. To mitigate such issues, 

researchers have proposed techniques such as outlier detection-based identification of corrupted 
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information [101], [102] and performing continuous sanity checks on the database using 

checksums [113]. Alternatively, even if the attackers are able to read the database, they can use 

the information such as reference point locations and WAP MAC addresses to launch other forms 

of attacks, as discussed next. 

User Location Privacy: Some recently proposed indoor localization techniques exploit 

resource intensive machine learning models that need to be executed on the cloud or some other 

form of remote service, instead of the user’s mobile device. These frameworks may compromise 

the user’s privacy by either intentionally or unintentionally sharing the user’s location with a third 

party. The leaked location and background information from one user can then be correlated to 

other users for their information [114]. However, recent advances have been able to optimize the 

execution of complex machine learning models on resource constrained mobile devices such that 

the location prediction computation does not need to be offloaded to the cloud or other types of 

remote services [38].  

AP Jamming or Interference: An attacker may deteriorate the quality of localization 

accuracy in a specific region indoors by placing signal jammers (narrow band interference) in the 

vicinity [115], [105]. The jammer can achieve this goal by emitting WiFi signals to fill a wireless 

channel, thereby producing signal interference with any non-malicious WAPs on that channel. 

Alternatively, the jammer can also continuously emit WiFi signals on a channel such that 

legitimate WAPs never sense the channel to be idle and therefore do not transmit any information 

[116]. Such an attack may cause a mobile device to lose visibility of WAPs, reducing localization 

accuracy or preventing localization from taking place altogether.   

Malicious AP Nodes or Spoofing: In this mode of attack, a malicious third-party places one 

or more transmitters at the target location to spoof the MAC address of valid WAPs used by the 
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fingerprinting-based localization framework. The MAC address could have been obtained by a 

person capturing WiFi information while moving in the target area. Alternatively, this information 

could have been leaked through a compromised fingerprint database. Also, the behavior of the 

malicious nodes in each case may change over time. The detection of spoofing-based attacks is 

also an active area of research in the robot localization domain. Approaches proposed include the 

empirical analysis of data collected at a post-localization phase [117] and using machine learning 

[118]. However, both works solely focus on detecting a spoofing attack either in real-time or 

offline. Techniques such as the one presented in [119] allow for the identification of malicious 

nodes using linear regression on data collected over a certain period of observation time. However, 

any delay in the mitigation of WAP-based attacks in real-time would leave the indoor localization 

framework vulnerable and may lead to tainted predictions, thereby disrupting the localization 

services or giving the attacker a window of opportunity. 

Environmental Alterations: Changes or alterations in the indoor environment can induce 

unpredictable changes to the WAP-based fingerprints in the online phase. Such alterations could 

include moving furniture or machinery, or renovations in the building. Crowdsourcing-based 

techniques, e.g., [120], that update fingerprints on-the-fly may be more resilient to such effects, 

given that ample number of (crowd-sourced) fingerprint samples are collected in the area where 

the changes took place. However, deep learning based techniques may need to be retrained to 

accommodate for the changes, which may take several hours and thus be impractical for real-time 

adaptation. 

From the discussion in this section, one observation is that launching attacks, such as 

jamming and spoofing, is relatively easy if the attacker is able to access the indoor location. Given 

the recent interest in deep learning-based fingerprinting to improve indoor localization accuracy 
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[38], [82], [109] there is a critical need to analyze and address security vulnerabilities for such 

solutions. However, to date, no prior work has explored the impact of malicious AP-based attacks 

on the accuracy and reliability of deep learning based indoor localization frameworks. Our goal in 

this work is to show, for the first time, how deep learning-based indoor localization frameworks 

such as CNNLOC [38] can be vulnerable to malicious AP-based attacks and further propose a 

methodology to address such vulnerabilities without loss in localization accuracy, on commodity 

mobile devices.  

 

5.2. CNNLOC FRAMEWORK OVERVIEW 

5.2.1.  CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks (CNNs) are a form of deep neural networks that are specially 

designed for image classification. They have been shown to deliver significantly higher 

classification accuracy as compared to conventional DNNs due to their enhanced pattern 

recognition capabilities. Note that from this point onward we use the term DNN to identify deep 

learning models that do not consist of convolutional layers. As shown in Figure 35, a CNN model 

has three main functional components or layers: convolution+ReLU (Regularized Linear Unit), 

pooling, and fully connected layers. The CNN model learns patterns in images by focusing on 

small sections of the image, known as a frame, from the input layer. The frame moves over a given 

image in small strides. Each convolutional layer consists of filter matrices that hold weight values. 

In the first layer, convolutional operations (dot products) are performed between the current input 

frame and filter weights followed by the ReLU activation function. The pooling layer is 

responsible for down sampling the output from a convolution+ReLU unit, thereby reducing the 

computational requirements by the next set of convolution layers. The final classification is 
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performed using a set of fully connected layers that often utilize a SoftMax activation function to 

calculate the probability distributions for various classes. In the testing phase of a CNN model, the 

class with the highest probability is the output prediction. Further details on the design of CNNs 

can be found in [38] and [89].  

 

5.2.2. INDOOR LOCALIZATION WITH CNNLOC 

The CNNLOC indoor localization framework [38] consists of two major components in the 

offline phase. The first component involves capturing the RSSI fingerprints for different locations, 

and then converting each RSSI fingerprint vector that is tied to a location (reference point) into an 

image tied to the same location. The second component of the offline phase is the training of a 

CNN model using the images created previously. In the online phase, the same process is used to 

create an image (based on observed RSSI values), which is fed into the trained CNN model for 

location prediction.  

 

 
Figure 35. A general representation of the various components of a convolutional neural 

network (CNN). 

 

A simplified overview of the process of converting an RSSI fingerprint vector into an image 

is shown in Figure 36. The RSSI vector consists of RSSI values in the range of -100 to 0 dBm (low 
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signal strength to high signal strength). These values are normalized to a range of 0 to 255, which 

corresponds to the pixel intensity on the image. The dimensions of the RSSI image are set to be 

the closest square to the number of visible WAPs on the path. For example, in Figure 36, the RSSI 

vector has a size of 8, and the closest square would have 9 pixels in it, therefore, the dimensions 

of the image are set to 3×3. A pixel with zero intensity is padded at the end to increase the size of 

the vector as shown in Figure 36. The generated image then becomes a part of the offline database 

of images used to train a CNN. In the online phase, this same process of image creation is used 

with the RSSI vector observed by the user at any location, and the resulting image is fed to the 

trained CNN model to get a location prediction. It is important to note that in the online phase of 

CNNLOC, the input image will always remain the same size as in the offline phase, such that each 

pixel in the image corresponds to specific MAC IDs. In case a specific MAC ID observed in the 

offline phase is no longer visible in the online phase, the pixel value corresponding to that MAC 

ID is set to zero. 

 

 

Figure 36. A simplified overview of the conversion of an RSSI fingerprint to an image in the 

CNNLOC indoor localization framework. 

 



106 
 

5.3. LOCALIZATION SECURITY ANALYSIS 

In this section, we perform a WAP RSSI vulnerability analysis on the deep learning-based 

indoor localization frameworks presented in [38] (CNNLOC) and [82] (which uses DNNs). For 

this study, we modeled the two deep learning frameworks and contrasted their performance for the 

two indoor paths shown in Figure 37. The Office and Glover paths in the figure are 64 and 88 

meters long and the reference locations used to capture WiFi RSSI are marked by blue dots. A 

detailed discussion on the salient features of these and other indoor benchmark paths we consider 

can be found in the experiments section (Section 5.6). We used an HTC U11 smartphone [121] to 

capture WiFi fingerprints along the indoor paths and test for localization accuracy. 

A WAP-based security attack may include either WAP spoofing or WAP jamming. To 

establish the impact of such WAP-based attacks on localization accuracy, we must identify the 

behavior of the WiFi RSSI fingerprints in the presence of one or more malicious WAP nodes (WiFi 

spoofers/jammers). In our experience, the tainted fingerprint in the online phase will exhibit one 

of three behaviors: 1) the RSSI values from one or more visible WAPs exhibits a significant 

increase or decrease as compared to its offline counterpart, 2) a WAP whose RSSI value is usually 

not visible at the current reference point becomes visible, and 3) a WAP that is usually visible at 

the current reference point is no longer visible. As the range of received RSSI values from WAPs 

is between -100 to 0 dBm, the impact of the malicious WAP behavior on the fingerprints is to 

induce fluctuations in WAP RSSI values within this range, for the impacted fingerprints. 
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Figure 37. Two indoor benchmark paths (Glover and Office) with reference points denoted 

by blue markers. The path lengths and WiFi densities are denoted at the top of the maps. 

 

Figure 38 shows the fingerprint images generated using an RSSI fingerprint based on the 

methodology described in CNNLOC [38]. Each image has a resolution of 9×9. The original RSSI 

vector (fingerprint) consists of 78 WAP values and is presented in its image form in Figure 38(a). 

This image (Figure 38(a)) is not tainted by malicious WAPs (mWAPs) in the surrounding area, 

and therefore is labeled as “mWAP0”. The image labeled “mWAP2” (Figure 38(b)) is generated 

for the case when two WAPs out of 78 are malicious WAPs that generate spurious signals between 

-100 dBm to 0 dBm (their impact can be clearly seen with the two non-white pixels on the bottom 

half of the image). Similarly, Figure 38(c)-(f) show the generated images when the number of 

malicious WAPs is increased to 4, 6, 8, and 10, respectively. For most of these images, the tainted 

pixel values can be visually identified, and simple image local smoothing filters [122] may be 

applied to remove them. However, such filtering is not always possible. For instance, in Figure 

38(d) with 6 malicious WAPs, we observe only 5 tainted pixels that are visually decipherable as 

compared to the untainted image (Figure 38(a)). This is because the sixth noisy pixel is a very 

minor disturbance that is hard to detect visually. Unfortunately, the datapoint represented by this 
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sixth pixel can have a significant impact on localization accuracy. Such scenarios also exist for the 

case of mWAP8 (Figure 38(e)) and mWAP10 (Figure 38(f)). 

 

 
(a) mWAP0 

 
(b) mWAP2 

 
(c) mWAP4 

 
(d) mWAP6 

 
(e) mWAP8 

 
(f) mWAP10 

Figure 38. Fingerprint images generated from RSSI vectors using the methodology described 

in CNNLOC; (a) represents the “mWAP0” fingerprint image that should be ideally 
generated when the initial RSSI vector is not tainted by a malicious WAP (mWAP=0); (b)-

(f) show fingerprint images in the presence of different number of malicious WAPs. The label 

“mWAPX” indicates X malicious WAPs, which introduce fluctuations in the RSSI values of 
the pixels corresponding to these WAPs. 

 

To test the vulnerability of deep learning-based indoor localization frameworks in the 

presence of malicious WAPs, we analyzed the impact of a varying number of malicious WAPs on 

the localization accuracy of a CNN-based [38] and a DNN-based [82] indoor localization 

framework. The results of this experiment are shown in Figure 39. We captured the average indoor 

localization error for the Office and the Glover paths (shown earlier in Figure 37) for an increasing 

number of malicious WAP nodes (along the x-axis). For a scenario with malicious WAPs (e.g., 

mWAP = 1), we randomly selected the location of the malicious WAP over 100 trials and averaged 

the resulting localization error. From Figure 39, we observe that the average localization error of 

both CNN and DNN learning models increases monotonically in a majority of cases. The results 
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highlight the vulnerability of deep neural network based indoor localization models towards WAP-

based attacks. Also, the CNN model for both paths is somewhat more vulnerable to malicious 

WAP-based attacks as compared to the DNN model. One possible explanation for this may be that 

CNN models are more sensitive to changes in patterns in the image as compared to variations 

across RSSI value inputs for the DNN model.  

 

 

Figure 39. Results for the impact of malicious WAPs on deep learning model accuracy on the 

Office and Glover paths. Average localization error for the CNN [38] and DNN [82] 

localization frameworks is shown for an increasing number of malicious WAPs. 

 

To further analyze the accuracy degradation of these deep learning models, we present the 

worst-case localization error for the two deep learning models in Figure 40. We can observe that 

the worst-case localization errors for DNN and CNN models are significantly higher than the 

average errors shown in Figure 39 as the number of malicious WAPs are increased. With only 1 

malicious WAP, the localization error in the worst case can be higher by up to 20× for both paths 

and deep learning models. The worst-case localization error for the CNN model goes above 50 
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meters with only 6 malicious WAPs for the Glover path, which would put a user’s predicted 

location at a completely different area on an indoor floorplan! The DNN model appears to be much 

more significantly impacted than the CNN model when it comes to worst case localization error. 

From these experiments, it can be concluded that deep learning based indoor localization 

frameworks are highly vulnerable to WAP-based attacks. There is thus a strong motivation to 

improve attack resilience for these frameworks, to achieve both robust and high accuracy indoor 

localization. Even though DNN and CNN based models used for our experiments in this section 

produce a relatively similar level of degradation in localization accuracy, in the rest of the chapter 

we focus on addressing vulnerabilities for indoor localization systems that utilize CNN models. 

This is because CNNs have several advantages over DNNs when used for localization. A drawback 

of DNN models is that their computational complexity increases significantly with increase in 

hidden layers, which is not the case for CNN models [35]. The pooling layers in CNN models 

reduce the overall footprint after each convolutional layer, thereby reducing the computation 

required by the successive set of layers. Therefore, localization solutions that utilize CNN models 

instead of DNN models are inherently more scalable and energy-efficient [89].  Also, CNN models 

are better at identifying patterns in image data than DNNs, which make CNNs a more viable 

solution to overcome device heterogeneity issues (that are more readily apparent in image form) 

with indoor localization when using mobile devices [48].  

The new observations and related discussions in this section highlight the importance of 

securing deep learning models against WAP-based attacks and serve as the motivation for our 

proposed security enhancements in this work, that aim to secure deep learning models used for 

indoor localization. We discuss the specific attack models and associated assumptions made in our 

work in the next section. 
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Figure 40. Worst-case localization error for CNN and DNN, with respect to increasing 

number of malicious WAPs on the Office and Glover paths. 

 

5.4. PROBLEM FORMULATION 

We now describe our problem objective and the assumptions associated with establishing a 

secure (WAP RSSI attack resilient) CNN-based indoor localization framework called Secure-

CNNLOC (S-CNNLOC). The assumptions for our framework are: 

• The offline fingerprint sampling process is carried out in a secure manner such that the 

collected fingerprints only consist of trusted non-malicious WAPs. 

• The offline generated fingerprint database is comprised of images, each with a tagged reference 

point location; this database is stored at a secure, undisclosed location. 

• A CNN model is trained using the offline fingerprint database and is encrypted and packaged 

as a part of an indoor localization app that is deployed on mobile devices. 
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• Once the localization app is installed by a user, the CNN model can only be accessed by that 

app.  

• As the user moves about an indoor path, their mobile device conducts periodic WiFi scans; 

and the localization app translates the captured WiFi RSSI information into an image.  

• The generated image is fed to the CNN model within the localization app on the mobile device, 

and the user’s location is updated in real-time on a map displayed on the device. 

• The process of WiFi scanning, fingerprint to image conversion, and location prediction 

continues until the user quits the localization app on their mobile device. 

We make the following assumptions about the indoor environment: 

• An attacker can physically access one or more of the indoor locales and paths in the online 

phase for which the indoor localization framework has been trained and set-up. 

• The attacker can carry a smartphone equipped with WiFi or any other portable battery powered 

WiFi transceiver to capture data about WiFi access points (WAPs). 

• The offline generated fingerprint database is secured and cannot be accessed by any malicious 

third party. 

• It is generally known (to the attacker) that the indoor localization framework utilizes a deep 

learning-based approach, such as CNNs, to predict a user’s location. 

• The attacker is capable of conducting the analysis described in the previous section and place 

malicious WAP nodes at any randomly chosen locations along the indoor paths or locales that 

are being targeted for a service disruption attack. 
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• The attacker can walk about an indoor path and collect WiFi fingerprints while capturing steps 

taken and walking direction data, similar to the approach described in [123]; this would allow 

anyone with a smartphone to create their own fingerprint database which can be used to more 

strategically place WiFi jammers or spoofed WAPs as discussed in earlier sections. 

Problem Objective: Given the above assumptions, our objective is to create a secure CNN-

based indoor localization framework (called S-CNNLOC) that is deployed on mobile devices and 

is resilient to malicious WAP RSSI attacks, by minimizing their impact on the localization 

accuracy at run-time (i.e., in the online phase). 

 

5.5. S-CNNLOC FRAMEWORK 

In this section, we discuss the design of our S-CNNLOC framework to overcome the 

vulnerability of the CNNLOC [38] indoor localization framework against malicious WAP-based 

jamming and spoofing attacks in indoor environments.  

 

5.5.1. OFFLINE FINGERPRINT DATABASE EXTRAPOLATION 

One of the major limitations of the CNNLOC framework comes from the small number of 

offline fingerprints considered per reference point (10 fingerprints in [38]). In general, deep 

learning models often require a large number of samples per class to produce good results. 

However, capturing WiFi fingerprints in any indoor localization framework is a time-consuming 

manual endeavor that is quite expensive to scale in volume (in terms of samples per reference 

point).  
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                                   (a)                                                                        (b) 

Figure 41. An overview of the offline extrapolation of RSSI fingerprints and noise induction 

in the extrapolated fingerprints. The noisy and extrapolated set of RSSI fingerprints are 

converted into images and used to train the CNN model in our proposed S-CNNLOC 

framework. 

 

To overcome this limitation, in our S-CNNLOC framework, we extrapolate the offline 

fingerprint database such that we obtain a larger number of samples per reference point. An 

overview of this process is presented in Figure 41(a). We sample a total of S RSSI fingerprints at 

each location (reference point) from L1 to LP, such that the RSSI vector has K WAPs (i.e., vector 

size is K). The complete set of fingerprints that are manually collected at P locations become the 

offline fingerprint database. The distribution of each WAP RSSI at a given location is modeled by 

their means and variances. This step is repeated for each reference point in the offline fingerprint 

database. The mean and standard deviations along with the reference location information are 

temporarily stored in tabular forms and are referred to as the seed tables (Figure 41(a)). The seed 

tables can be represented as: 
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𝜇𝑆(𝑖,𝑗), 𝜎𝑆(𝑖,𝑗)2 , 𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝑃] (6) 
 

where 𝜇𝑆(𝑖,𝑗) and the 𝜎𝑆(𝑖,𝑗)2  are the tables that contain the means and variances of S WAP RSSIs 

for each location. These mean and variance seed tables (also shown in Figure 41(a)) can now be 

used to extrapolate a larger fingerprint database. 

To generate a new offline fingerprint for a given reference point, the normal distribution 

based on the mean and variance (from the seed tables) for each WAP RSSI in each reference point 

fingerprint is randomly sampled Q times: 𝑅𝑆𝑆𝐼(𝑖,𝑗)~𝑁(𝜇𝑆(𝑖,𝑗), 𝜎𝑆(𝑖,𝑗)2 ) ∀ 𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝑃] (7) 
 

where RSSI(i, j) is the RSSI in dBm of the ith WAP at the jth reference point; and N represents the 

normal distribution. By randomly sampling each WAP from the reference point in seed tables, we 

generate Q new RSSI fingerprint vectors for the given reference point. Through this random 

sampling-based data extrapolation approach, we capture different combinations of RSSI values in 

a fingerprint and also scale the size of our offline dataset beyond the few samples that were 

collected in the offline phase. The complete set of Q RSSI vector fingerprints per reference point 

is the extrapolated fingerprint database, as shown in Figure 41(a). Subsequently, the extrapolated 

fingerprint database is fed to the next stage where we deliberately induce noise in the fingerprints 

in the database, as discussed next.  

 

5.5.2. MALICIOUS BEHAVIOR INDUCTION 

From our analysis of CNN-based indoor localization in section 5.3, we observed that 

fluctuations in one individual pixel value of the WiFi fingerprint image can lead to significant 

deterioration in the localization accuracy. This behavior can be attributed to the fact that the trained 
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CNN model is only good at making predictions for images (or RSSI information) that it has 

previously seen. Therefore, the CNNLOC framework becomes vulnerable to minor deviations or 

noise in the images that can be induced by WAP-based attacks or WiFi jammer attacks in the 

online phase, when the trained CNN model is used for location inference. 

CNN models are designed to recognize one or more patterns within images that may be very 

different from each other, or may only have slight differences from each other. In our approach, 

we conjecture that relatively small-scale variations within and between images constructed from 

WAP RSSI values (for the purpose of pattern recognition for indoor localization) can be learned 

to be ignored by a CNN model. One way to accomplish this is by integrating an image filter with 

the CNN prediction model. A recent work [124] has shown how a salt and pepper noise filtering 

technique can provide some noise resilience for general image processing with CNNs. A separate 

set of convolutional layers are used in [124] whose sole purpose is to denoise an image. However, 

such an approach would be extremely inefficient for our problem as it would require using two 

different CNNs: one for denoising and another for classification, which would increase prediction 

time. Moreover, using an additional CNN would increase the memory footprint of our framework, 

which is a big concern for resource-constrained mobile devices.  

We propose to use a single CNN-model for both image denoising and classification. Based 

on our analysis presented in section 5.3, we decide to conceptually model malicious behaviors 

such as WAP spoofing, WAP jamming, and even environmental changes as random fluctuations 

in the fingerprint data and expect the CNN model to be resilient to such fluctuations. Thus, by a 

calculated introduction of noise in the input dataset that is used in the training phase of the CNN 

model, we hope to teach the model to learn to ignore noise (due to malicious WAPs) in the 

inference phase. Towards this goal, as shown in Figure 41(b), for each fingerprint in the “clean” 
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(mWAP0) extrapolated database generated as discussed in the previous sub-section, M copies are 

constructed in a separate table. Then each of the M fingerprint vectors are fed to the proposed noise 

induction module that introduces random fluctuations in the WAP RSSI values, based on an upper 

limit (Ø) that is set by the user. The noise induction module (Figure 41(b)) has three major 

components. For a given RSSI vector, the noise level selector submodule picks values from a 

discrete uniform distribution such thatθ~U{0, ∅}, where “θ” is the number of WAPs in the RSSI 

vector whose RSSI value would be altered by the noise induction module. The random WAP 

selector arbitrarily identifies the set of WAP candidates “𝑊𝜃”, where each WAP candidate “𝑤𝑐” 

is picked to be between 1 to K as described by the expression: 𝑤𝑐~ 𝑈{1, 𝐾},   𝑐 ∈ [1, 𝜃] 
                                       𝑠. 𝑡. , 𝑊𝜃 = {𝑤1, 𝑤2, 𝑤3 … 𝑤𝜃} 

(8) 

The newly generated RSSI vectors (𝑅𝑆𝑆𝐼(𝑖,𝑗)𝑁𝑜𝑖𝑠𝑦) are tainted by random noise at the ith WAP 

position, if the WAP was chosen by the random WAP selector submodule as shown by equation 

(9): 

𝑅𝑆𝑆𝐼(𝑖,𝑗)𝑁𝑜𝑖𝑠𝑦 = { 𝐼,                𝑖𝑓 𝑖 ∈ 𝑊𝜃𝑅𝑆𝑆𝐼(𝑖,𝑗),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                           𝑗 ∈ [1, 𝑃], 𝐼~𝑈{−100,0} 
(9) 

 

where I represents noise sampled from a discrete uniform distribution between -100 dBm to 

0 dBm, RSSI(i, j) is the clean (untainted) RSSI from equation (9) and P is the number of reference 

points on a benchmark path for which fingerprint data has been collected. Thus, our proposed 

approach generates RSSI vectors that may have up to Ø noise-induced RSSI WAP values. Having 

a uniform distribution of 0 to Ø malicious WAPs ensures that the CNN model trained using the 
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generated data is resilient to a range of malicious WAP numbers and locations in the localization 

environment in the testing phase. 

Following this process for all fingerprints in the clean training database, we generate 

G=Q×M fingerprints per reference point. The final number of RSSI fingerprints in the secure AP 

attack resilient (SAAR) database constructed by following the processes described in this section 

is G×P, where P is the number of reference points on a benchmark path. The SAAR training 

database is then used to train the CNN model which is subsequently deployed as an app on a mobile 

device and used to make online (real-time) location predictions for the user carrying the mobile 

device. 

 

5.6. EXPERIMENTS 

5.6.1. EXPERIMENTAL SETUP 

We initially compare the accuracy and stability of our proposed (S-CNNLOC) framework 

to its vulnerable counterpart (CNNLOC [38]) using two benchmark paths. These paths are shown 

in Figure 37 with each fingerprinted location (reference point) denoted by a blue marker. The paths 

were selected due to their salient features that may impact location accuracy in different ways. The 

64-meter Office path is on the second floor of a relatively recently designed building with a heavy 

use of wood, plastics, and sheet metal as construction materials. The area is surrounded by small 

offices and has a total of 156 WAPs visible along the path. The Glover path is from a very old 

building with materials such as wood and concrete used for its construction. This 88-meter path 

has a total of 78 visible WAPs and is surrounded by a combination of labs (heavy metallic 

equipment) and classrooms with open areas (large concentration of users).  
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In the offline phase for S-CNNLOC, a user carried the HTC U11 smartphone and traversed 

the path with reference points at 1-meter intervals and captured 10 WiFi scans at each reference 

point, storing the scanned values tagged with the corresponding reference point location data. The 

fingerprint sampling and storage methodology within the smartphone is similar to that described 

in CNNLOC [38]. The trained S-CNNLOC model was deployed as an Android app on the HTC 

U11 smartphone. The values of Q and M  are set to 100 and 10 respectively. Based on these values 

of Q and M, the Office path has 64000 samples and the Glover path has 88000 samples. To study 

the impact of malicious WAPs on indoor localization performance, we used a real WiFi transceiver 

[125] to induce interference (from spoofing/jamming) and obtain “tainted” RSSI values in the 

vicinity of the indoor paths. These values were observed in the online phase. For some of our 

scalability studies where we consider the impact of multiple malicious WAPs, multiple such 

transceivers were considered, to generate multiple “tainted” RSSI values. 

 

5.6.2. EXPERIMENTAL RESULTS 

5.6.2.1.   ANALYSIS OF NOISE INDUCTION AGGRESSIVENESS 

We first performed a sensitivity analysis on the value of Ø (upper limit of noise induction; 

discussed in Section 5.2). Several CNN models were trained: S-CNNLOC1 (Ø = 0; no malicious 

WAPs), S-CNNLOC2 (Ø = 1), up to S-CNNLOC20 (Ø = 20), using the fingerprint data collected 

during the offline phase. Then the devised models were tested with fingerprints observed along 

the indoor paths in the online phase, in the presence of different numbers of malicious WAPs. 

Figure 42 shows the heatmap for the mean localization errors (in meters) with annotated 

standard deviation of various scenarios on the Office path (Figure 42(a)) and the Glover path 

(Figure 42(b)). The y-axis shows various S-CNNLOC variants with different values of Ø varying 
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from 1 to 20. The x-axis shows the number of malicious nodes (mWAPs) present in the online 

phase. In Figure 42, the bright yellow cells of the heatmap, with higher annotated values, represent 

an unstable and degraded localization accuracy whereas the darker purple cells, with lower 

annotated values, represent stable and higher levels of localization accuracy. Each row of pixels 

in the heatmaps of Figure 42(a) and (b) represents the vulnerability of the specific S-CNNLOC 

model to an increasing number of mWAP nodes. 

 

 
                                 (a) Office                                                           (b) Glover 

Figure 42. Heatmaps for the mean localization prediction errors with their annotated 

standard deviation for the Office (top) and Glover (bottom) benchmark paths. Results are 

shown for our proposed S-CNNLOC framework with Ø = 0, Ø = 1, … Ø = 20 (y-axis). 

 

It can be observed that the S-CNNLOC0 model is least resilient to an increasing number of 

mWAPs on both paths. However, as the value of Ø is increased for the S-CNNLOC models, they 

per-form significantly better than S-CNNLOC0 (as illustrated by the darker rows for these 

models). This is because the S-CNNLOC0 model is not trained to mitigate variations for WAP 

RSSI values. Another observation is that beyond Ø = 18, the standard deviation and mean error 

for low values of malicious WAPs (mWAPs < 4) starts increasing for both paths. This is because 

highly noisy images in the SAAR database are unable to retain the original pattern required to 
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localize in safer environments (no malicious WAPs) or the opted CNNLOC model is unable to 

recognize underlying patterns in the input fingerprint images. 

Overall, we observe that training the S-CNNLOC models with fingerprint extrapolation and 

noise induction (via the generated SAAR database) leads to better localization accuracy. Based on 

the results of these experiments we found that S-CNNLOC18 delivers good results across both 

paths. Therefore, we use the value of Ø = 18 in SAAR to train S-CNNLOC and use it for the rest 

of our experiments. Henceforth, whenever we refer to S-CNNLOC, we are referring to S-

CNNLOC18 (S-CNNLOC with Ø=18).  

 

 
                                      (a) Office                                                      (b) Glover 

Figure 43. Localization performance of CNNLOC with a varying number of malicious WAPs 

(from 0 to 20) in the online phase. 

 

5.6.2.2.   COMPARISON OF ATTACK VULNERABILITY 

In this section, we contrast the performance of our proposed S-CNNLOC framework with 

CNNLOC [38]. Figure 43(a)-(b) show the cumulative distribution function (CDF) of the 

localization error for the CNNLOC models in the presence of different numbers of malicious 

WAPs (from 0 to 20 malicious WAPs per observed fingerprint), for the Office and Glover paths. 

The most immediate observation from the results is that the localization errors are significantly 
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low (less than 1 meter for a majority of scenarios) when there are no malicious WAPs (CNNLOC-

mWAP0), However, in both the Office (Figure 43(a)) and the Glover paths (Figure 43(b)), 

localization accuracy degrades as the number of malicious WAPs are increased. This degradation 

in accuracy does not scale linearly with increasing malicious nodes. For example, in the Office 

path, increasing the malicious AP nodes from 16 to 20 does not significantly increase the 

localization errors. A similar observation can be made from the Glover path in Figure 43(b), where 

the localization error does not scale by much when going from 12 malicious WAPs to 16 and 20.  

An important aspect to note from looking at Figure 43 is the significant drop in localization 

accuracy when going from a scenario with no malicious WAPs (CNNLOC-mWAP0) to a scenario 

with one malicious WAP (CNNLOC-mWAP1). This accuracy drop is apparent on both paths, and 

clearly depicts the high vulnerability of unsecured CNN models to the presence of even a single 

malicious WAP node.  

From Figure 43, we can conclude that a malicious third party can significantly degrade the 

localization accuracy of a CNN-based indoor localization model such as CNNLOC [38], with just 

a very small number of malicious WAP nodes.  

Figure 44 highlights the resiliency of the S-CNNLOC model towards malicious WAP based 

attacks, for the same setup as for the experiment with CNNLOC in Figure 43, where the number 

of malicious WAPs in the online phase is varied from 0 to 20. We observe that 95-percentile of 

the localization error for the S-CNNLOC model, when under attack by up to 20 malicious WAP 

nodes (S-CNNLOC-mWAP20), remains under 2.5 meters for the Office path (Figure 44(a)) and 

under 3.5 meters for the Glover path (Figure 44(b)). The S-CNNLOC model for the Office path 

performs better than for the Glover path as the WiFi density on the Office path is about 2× the 
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WiFi density of the Glover path, and thus malicious WAPs only impact a small fraction of the total 

WAPs along the Office path.  

 

 
(a) Office 

 
(b) Glover 

Figure 44. Localization performance of our S-CNNLOC with a varying number of malicious 

WAPs (from 0 to 20) in the online phase. 

 

In summary, based on the results shown in Figure 43 and Figure 44, we observe that our S-

CNNLOC framework is about 10× more resilient to accuracy degradation in the average case, as 

compared to its unsecure counterpart CNNLOC [38], for the Office and Glover paths.  

 

5.6.2.3.   EXTENDED ANALYSIS ON ADDITIONAL BENCHMARK PATHS 

We conducted further experimental analysis on a more diverse set of benchmark indoor 

paths. Table 3 presents the salient features of the three new benchmark paths used in this analysis. 

The benchmark path suite shown in Table 3 consists of the EngrLabs, LibStudy and the Sciences 

paths, with a description of environmental factors that may affect the localization performance of 

WiFi based indoor localization frameworks. Each path has a length ranging from 58 to 68 meters 

and 10 WiFi fingerprint samples were collected at 1-meter intervals on each path, similar to what 

we did with the Office and Glover paths described earlier. The EngrLabs path is in an old building 
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mostly made of concrete and is surrounded by labs consisting of heavy metallic instruments. The 

LibStudy and Sciences paths are situated in relatively newer buildings consisting of large amounts 

of metallic structures. The LibStudy path is in the library and is in a relatively open area and is 

usually heavily populated at most times. The Sciences path is surrounded by large classrooms. 

Figure 45 presents the means and standard deviations of the localization error with our 

proposed S-CNNLOC and the CNNLOC [38] framework on each of the three paths while it is 

under the influence of 2 to 20 malicious WAPs in the online phase. We observe an increasing trend 

in mean and standard deviations of localization errors on all three paths for both S-CNNLOC and 

CNNLOC. However, we observed that the mean localization error of CNNLOC on all three paths 

is always more than 4× the average error for S-CNNLOC. For some situations, such as for 2 and 

4 malicious WAPs on the EngrLabs and Sciences paths, the localization error for CNNLOC is 

about 25× higher (worse) on average as compared to its S-CNNLOC counterpart. The accuracy 

along the Libstudy path is relatively less affected than for the other paths. This can again be 

attributed to the fact that the LibStudy path has an unusually dense WiFi network compared to the 

EngrLabs and Sciences paths, and thus a relatively fewer number of malicious WAPs do not have 

as much of an impact on accuracy. These experiments with additional benchmark paths indicate 

that our proposed S-CNNLOC framework scales well over a wide variety of indoor paths with 

different environmental features whereas the unsecured CNNLOC [38] framework experiences a 

significant degradation in its localization error. The S-CNNLOC model consistently reduces the 

vulnerability of the proposed localization framework and thus represents a promising solution to 

secure deep learning-based indoor localization frameworks. 
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Table 3: Additional benchmark paths and their features. 

Path Name Length (m) Number of WAPs Environmental Features 

EngrLabs 62 120 electronics, concrete, labs 
LibStudy 68 300 wood, metal, open area 
Sciences 58 130 metal, classrooms 
Office 64 156 wood, concrete 
Glover 88 78 wood, metal, concrete 

 

 
(a) EngrLabs 

 
(b) LibStudy 

 
(c) Sciences 

 
(d) Office 

 
(e) Glover 

Figure 45. The average localization error and its standard deviation of the proposed S-

CNNLOC framework as compared to CNNLOC for the benchmark path suite from Table 

3. 

 

5.7. GENERALITY OF PROPOSED APPROACH  

In this section, we highlight the generality and the versatile nature of our proposed security 

aware approach by applying it to another deep learning-based approach proposed in [82]. We first 

present a discussion of the proposed work in [82]. Later, we use WiFi fingerprints generated in 

section 5.5.1 to train the secure-DNN (SDNN) model and compare its prediction accuracy results 

to the conventional methodology described in [82].  
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5.7.1. DENOISING AUTOENCODER BASED DNN FRAMEWORK 

The DNN-based approach in [82] consists of three stages in the online phase. In the first 

stage, features are extracted from the RSSI fingerprints using a Stacked Denoising Autoencoder 

(SDA). The SDA’s output is fed to a four-layer DNN model in the second stage that delivers a 

coarse location prediction. In the final stage, additional Hidden Markov Model (HMM) is used to 

finetune the coarse localization perdition received from the DNN model. 

 

 
(a) Office 

 
(b) Glover 

Figure 46. Heatmaps for the mean localization prediction errors with their annotated 

standard deviation for the Office (top) and Glover (bottom) benchmark paths. Results are 

shown for our proposed S-DNN framework with Ø = 0, Ø = 2, … Ø = 20 (y-axis). 

 

The SDA enables the DNN model to identify and learn stable and reliable features from the 

input fingerprint information. Intuitively, SDA achieves this by zeroing-out input features based 

on a predefined probability and identifying input features that have a significant impact on the 

output. Further, the HMM allows for greater resistance to minor variations in WAP RSSI over 

time. 
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5.7.2. SECURITY AWARE DNN TRAINING IN THE OFFLINE PHASE 

To train the SDNN model we use the augmented security aware fingerprints used to train 

the SCNNLOC model in the previous section. The only difference being that the fingerprints are 

not converted into images. To identify the stable value of Ø for noise induction module, we 

perform a sensitivity analysis using DNN models as done in section 5.7.1. The results for this 

experiment are captured in Figure 46.  

In Figure 46, we observe that the mean localization errors for the baseline SDNN0 models 

for the Office and Glover paths increase by 48x and 13x in the presence of 20 malicious nodes 

respectively. For SDNN models trained with a larger value of Ø (14, 16, 18), the localization error 

remains lower as the number of malicious nodes in the online phase increase. For simplicity, we 

set the value of Ø to 18 for all paths. Beyond this point any reference to an SDNN model refers to 

DNN model [82] trained with Ø = 18. In the next subsection, we present an extended analysis on 

the performance of SDNN as compared to a conventional unsecured DNN model.  

Figure 47 presents an analysis on the stability of the conventional unsecured DNN-based 

framework [82] as compared to secure-DNN (SDNN) model in the presence of an increasing 

number of malicious WAPs on a set of versatile paths with varying environmental characteristics 

as discussed in Table 3. From Figure 47, we observe the prediction accuracy of the conventional 

DNN-based approach presented in [82] systematically degrades (increased average error) as the 

number of stochastically placed malicious WiFi access points on various paths are increased. The 

SDA stage in [82] is supposed to learn prominent features by learning to encode prominent input 

features (ignoring noise) in the training phase. However, the noise in the training features over a 

short period of time is significantly lower and different from the addition of malicious WAPs in 

the online prediction phase. Due to the fact that the SDA does not learn to denoise malicious 
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fingerprints in the training phase the prediction accuracy of the method proposed in [82] degrades 

with the introduction of malicious WAPs in the testing or online phase. Further, the HMM model 

is unable to stabilize the final location prediction because it is designed to improve the fine-grain 

location based on the assumption that the consecutive coarse-grain predictions from the DNN are 

sufficiently close together. However, in the presence of malicious WAPs this assumption does not 

hold for the coarse-grain predictions causes the HMM to deliver unstable results. 

On the other hand, the SDA component of the SDNN-based model learns to denoise and 

ignore malicious WAPs. This is achieved through stochastically zeroing out RSSI values, 

identifying stable trusted WAPs and denoising malicious WAPs over various fingerprints. As 

observed for various paths in Figure 47, this greatly improves SDNN’s resilience to malicious 

WAPs in the online phase and delivers up to 10x better mean prediction accuracy such as in the 

case of 16 malicious WAPs on the EngrLabs path. 

A notable aspect of our proposed approach is that it allows for the deep learning model to 

ignore malicious WAPs in the testing phase, however, the extent of resilience to the malicious 

WAP-based attacks is dependent on the deep learning model’s ability to identify underlying pattern 

in the training fingerprints. Deep learning models such as CNNs and SDA-based approaches are 

more likely to deliver promising results as they are both designed to identify underlying stable 

patterns in the training phase. However, designing a deep learning model that delivers the best 

results in all situations is beyond the scope of this work.  
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(a) EngrLabs 

 
(b) LibStudy 

 
(c) Sciences 

 
(d) Office 

 
(e) Glover 

Figure 47. The average localization error and its standard deviation of the proposed S-DNN 

framework as compared to DNN for the benchmark path suite from Table 3. 

 

Through experiments performed and the discussion of presented results, we can conclude 

that our proposed approach delivers superior stability of prediction accuracy of deep-learning-

based models over a versatile set of benchmark paths. Furthermore, since our proposed approach 

of securing deep-learning-based models focuses on the training dataset instead of the model 

design, it can be generalized to a wide variety deep learning based indoor localization frameworks.  

 

5.8. CONCLUSIONS 

In this chapter, for the first time, we presented a vulnerability analysis of deep learning based 

indoor localization frameworks that are deployed on mobile devices, in the presence of wireless 

access point (WAP) spoofing and jamming attacks. Our analysis highlighted the significant 

degradation in localization accuracy that can be induced by an attacker with very minimal effort. 

For instance, our experimental studies suggest that an unsecured convolutional neural network 
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(CNN) based indoor localization solution can place a user up to 50 meters away from their actual 

location, with attacks on only a few WAPs. Based on our new observations, we devised a novel 

solution to provide resilience against such attacks and demonstrated it on a CNN-based localization 

framework to address its vulnerability to intentional RSSI variation-based attacks. To further 

highlight the generality of our proposed security aware approach we implemented it on a Deep 

Neural Network (DNN) based indoor localization solution. Our proposed vulnerability resilient 

framework was shown to deliver up to 10× superior localization accuracy on average, in the 

presence of threats from several malicious attackers, compared to the unsecured CNN and DNN-

based localization framework. 
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6. QUICKLOC: OPTIMIZING LATENCY FOR DEEP LEARNING BASED INDOOR 

LOCALIZATION WITH MOBILE DEVICES 

 

The commercialization of GPS technology in the 1980’s completely reformed the 

transportation industry, simplifying the process of navigation for large ships and airplanes which 

were dependent on less reliable maps and compasses at the time. A major turning point was the 

development of the digital GPS ASIC created by Rockwell International, in 1988, using gallium 

arsenide (GaAs) semiconductor technology [126]. This enabled the first ever handheld GPS 

receiver to be produced for military applications. Further improvements over the next two decades 

led to the ubiquitous integration of GPS technology into mobile phones [94]. This empowered 

individuals to the point where bulky printed maps were no longer needed by automobile drivers 

and revolutionized outdoor terrestrial navigation around the globe.  

Today, increasing capabilities of smart mobile devices are at a tipping point where they can 

now support localization and navigation technology within indoor environments, which promises 

to further remold the way humans interact within indoor spaces. As GPS signals cannot penetrate 

through into indoor locales, highly computationally expensive methods are required that can 

continuously capture and process wireless signals to support localization. Fortunately, inexpensive 

and ubiquitously owned smartphones today are computationally capable enough to support high-

complexity machine learning models that can be fed by a dense suite of high-fidelity wireless 

interfaces and sensors on the device. Many researchers are pushing the boundaries on state-of-the-

art design optimizations to achieve high-accuracy and real-time indoor localization capabilities on 

smartphones. 
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The advances in the indoor localization and navigation domain over the past decade have 

enabled new commercial and medical applications. Several solutions and standards are being 

recognized today to enable indoor localization in the public sector. A recent example is the new 

standard for WiFi that was established in collaboration with Google [4]. The new standard would 

allow anyone to set up their own localization system by sharing their indoor floor map and the 

WiFi router positions on that map with Google. Nowadays, companies such as Amazon and Target 

are also starting to track customers at their stores [11]. Indoor localization has found its 

applications in the medical industry by enabling the tracking of parkinsonian patients as they suffer 

from attacks associated with freezing of their walk gait [127]. However, such commercial or 

medical applications require high-quality (high accuracy and low response time) localization 

solutions and custom hardware components to be deployed at the target location, which drives up 

the setup and deployment costs. 

One way to limit the setup and deployment costs associated with indoor localization services 

is to use relatively reliable wireless signal sources that are available freely. Due to the boom in the 

internet and network connectivity across the world in the previous decade, WiFi routers (access 

points) have become essential and a commonplace feature within indoor locales such as malls, 

warehouses, hospitals, and schools. Consequently, several recent efforts have focused on 

delivering high-accuracy localization and navigation solutions for the indoors through a technique 

called WiFi fingerprinting. Note that fingerprinting is an approach that is applicable for 

localization in both indoor and outdoor environments, although it is more widely used for indoor 

environments, whereas trilateration-based approaches (e.g., GPS) are more common for outdoor 

environments. 
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Indoor WiFi fingerprinting is based on the idea that each indoor location exhibits a unique 

signature that is comprised of WiFi signal strengths from visible WiFi routers at that location 

[128]. Such WiFi Access Point (WAP) Received Signal Strength Indicator (RSSI) values, along 

with the MAC IDs of these WAPs are captured across various indoor locations during a 

preprocessing phase, and used to train a model (e.g., machine learning based) that can be deployed 

on mobile devices. Post-deployment, this model can be used to predict a precise indoor location, 

given the WiFi RSSI and MAC ID values observed at the location. Alternatively, localization 

techniques have been proposed that are based on some form of distance relationship between the 

signal source and destination, such as triangulation [129] and trilateration [55]. However, these 

approaches suffer from weak wall penetration, multipath fading, and shadowing effects in real-

world environments, making it difficult to establish a direct mathematical relationship between 

RSSI and distance from WAPs. By eliminating this distance relationship between the computed 

user location and WiFi signal source, WiFi fingerprinting with machine learning models is able to 

overcome the aforementioned challenges. Fingerprinting also has the advantage of not requiring 

knowledge of the precise locations of WAPs in an indoor locale, enabling non-intrusive 

localization. 

The overall performance of a machine learning-based indoor localization and navigation 

framework can be evaluated through metrics such as accuracy, response-time, and scalability of 

the covered area. Further, the indoor localization framework may be subject to design constraints 

such as energy consumption, sensor type, and sensor resolution (fidelity). These constraints can 

be highly stringent when the indoor localization frameworks are deployed on off-the-shell 

commodity smartphones which have a limited energy budget and utilize severely power-limited 

processors. While simpler machine learning models such as K-Nearest-Neighbors (KNNs) and 
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Support Vector Machines (SVMs) are scalable, and incur lower energy costs and response times, 

these models have been shown to be outperformed by more complex and computationally 

expensive models such as feed-forward deep neural networks (DNNs) and convolutional neural 

networks (CNNs) that have higher response (inference) times. Moreover, it has been shown that 

increasing the depth of these neural networks leads to significantly improved localization accuracy 

but this comes at a cost of higher response times and energy.  

Therefore, there is a compelling motivation for designing deep-learning based indoor 

localization frameworks with a focus on the optimization of their respective deep-learning models 

such that we can strike a balance between their response-time, energy and achievable localization 

accuracy. In this chapter, we present a novel approach for optimizing Convolutional Neural 

Networks (CNNs) for indoor localization that can be deployed on mobile devices towards the goal 

of meeting accuracy requirements (best achievable accuracy through state-of-the-art techniques), 

while minimizing response times. Our novel contributions in this work are as follows: 

• We conduct an in-depth experimental analysis on the impact of CNN model depth on an 

indoor localization framework in terms of the achievable prediction latency and localization 

accuracy; 

• For the first time, we adapt and explore the paradigm of conditional computing in the context 

of deep learning based indoor localization frameworks; 

• We propose a novel localization framework that can dynamically adapt to the accuracy and 

latency needs of the target mobile platform at run-time;  
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• We compare the performance of our proposed technique against state-of-the-art deep 

learning based indoor localization framework over a diverse set of target mobile devices and 

indoor environments. 

 

6.1. BACKGROUND AND RELATED WORK 

6.1.1. RECEIVED SIGNAL STRENGTH INDICATOR (RSSI) 

RSSI is a measurement of the power of a received radio signal transmitted by a radio source. 

The RSSI is captured as the ratio of the received power (𝑃𝑟) to a reference power (𝑃𝑟𝑒𝑓, usually set 

to 1mW). The value of RSSI is reported in dBm and is given by: 

𝑅𝑆𝑆𝐼 (𝑑𝐵𝑚) = 10 ∙ 𝑙𝑜𝑔 𝑃𝑟𝑃𝑟𝑒𝑓 
(10) 

The received power (𝑃𝑟) is inversely proportional to the square of the distance (d) between 

the signal transmitter and signal receiver in free space and is given by: 

𝑃𝑟 = 𝑃𝑡 ∙ 𝐺𝑡 ∙ 𝐺𝑟 ( 𝜆4𝜋𝑑)2
 (11) 

 

where (𝑃𝑟) is the transmission power, 𝐺𝑡 is the gain of transmitter, 𝐺𝑟  is the gain of receiver, and 

λ is the wavelength. This inverse relationship between the received power and distance has often 

been used by researchers to localize wireless receivers with respect to transmitters at known 

locations, e.g., estimating the location of a user with a WiFi capable smartphone from a WiFi 

WAP. However, the free space models based on equations (10) and (11) do not extend well for 

practical applications. In real environments, the propagation of radio signals suffers from 

attenuations and interference due to multipath propagation from signal scattering, reflection, and 
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diffraction on obstacles (such as walls, furniture, equipment, people, etc.). Such multipath and 

shadowing effects cause unpredictable variations in RSSI values at the receiver, thereby severely 

degrading the performance of free space model based indoor localization approaches, to the point 

of rendering them impractical for direct use [13].  

 

6.1.2. INDOOR LOCALIZATION METHODOLOGIES 

Since the inception of wireless radio frequency (RF) based localization a couple of decades 

ago, a considerable amount of progress has been made in this domain. Here we summarize some 

of the most noteworthy advancements in this area.  

An RF based indoor localization framework, such as one relying on WiFi RF signals, can be 

classified into three broad sub-domains, i) static propagation based, ii) trilateration or triangulation 

based, and iii) fingerprinting based.  

Static propagation model-based techniques are established on the idea that there is a direct 

correlation between the source signal strength and the distance at which this signal strength is 

measured. This concept is implemented at design-time by first making signal strength 

measurements at constant distance intervals from a source in a straight line. The drop in the signal 

strength in relation to the distance is captured as a static propagation model [55] [60] [130]. Finally, 

at run-time the location of the user is predicted based on the received signal strength that will 

correspond to a specific distance from source value in the model. Such static propagation models 

are only known to work under extremely controlled conditions with open areas, and no activity. 

They are often used in conjunction with an error correction system such as Bayesian filters [60] or 

additional receivers [129] that recalibrate the model over time. However, the RF signal propagation 

path between every user and source may be unique due to interactions with objects around them. 
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Further, RF transceiver characteristics can vary across devices and manufacturers, which adds to 

the scalability issues and unpredictability of such models in real-world environments.   

Triangulation and trilateration-based techniques utilize multiple signal transceivers (e.g., 

WAPs) to locate people or assets in an indoor environment. They use distance measurements at 

run-time (by measuring time of flight) such as the distance between multiple WAPs and a mobile 

device (trilateration) [4] [55], or the angles at which the signals from two or more WAPs are 

received (triangulation) [56]. These techniques have shown to deliver higher accuracy and stability 

than static propagation models. The techniques can also tolerate device heterogeneity induced 

uncertainty, to a limited extent (albeit at a high maintenance cost for hardware and software 

support) [44]. However, these techniques (including Google’s RTT [3]) have several limitations, 

e.g., they need physical locations of all WAPs which is information that may be difficult (or 

impossible) to obtain in many indoor locales; they require strict clock synchronization among 

WAPs and the receiver which is not easy to consistently achieve over time; and they may need 

sophisticated transceivers that are not available in most commodity mobile devices and WiFi 

Access Points. These techniques also do not work well due to signal interactions with objects in 

the environment that induce signal multipath, shadowing, and variation in propagation speed 

through materials other than air [131]. 

Fingerprinting techniques and their viable implementations can utilize machine learning 

domain to overcome the aforementioned challenges associated with signal interactions and 

maintenance costs. Our work therefore utilizes this approach. We discuss prior work in this area 

in the next sub-section. 
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6.1.3. FINGERPRINTING-BASED INDOOR LOCALIZATION 

Due to the limitations of the static propagation model-based and triangulation or 

trilateration-based techniques, researchers are now increasingly focusing on fingerprinting-based 

indoor localization techniques. Fingerprinting can be implemented in two ways: 1) custom 

infrastructure based: where custom AP beacons are installed in indoor environments based on 

Ultra-Wide Band (UWB) [131], Bluetooth [110] or Zigbee [111], and 2) infrastructure-free: where 

freely available signal sources such as earth’s magnetic field [57] [132] [133] and WiFi [80] are 

utilized. The former approach lacks scalability and suffers from high costs. Moreover, smartphones 

do not have transceivers for protocols such as UWB and Zigbee. The latter approach, because of 

its low cost and ease of setup, is therefore more preferable.  

A generalized view of an infrastructure-free WiFi RSSI fingerprinting-based indoor 

localization framework is presented in Figure 48. Such frameworks usually consist of two phases: 

the offline (or training) phase and the online (or testing) phase. From Figure 48, we note that the 

offline phase consists of the user collecting WiFi fingerprints to create an RSSI fingerprint 

database. Each row of this database consists of RSSIs for various WAPs observed at a given 

location (reference point). The row of RSSI information is also known as an RSSI vector. One 

may collect RSSI vectors at each reference location multiple times (e.g., at different times of the 

day or week) to capture a broader range of RF signal behavior at that location. The same database 

is then used to train a Machine Learning (ML) model, where the RSSI vector is the input and the 

reference location is the output of the model. This model is finally deployed on to the mobile 

device that will be used by the end user for indoor localization. As discussed before, deploying 

indoor localization ML models on smartphones is becoming a common practice due to various 

infrastructure costs and computational capability benefits. 
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In the online or testing phase, as shown in Figure 48, the target mobile device captures an 

RSSI vector as a user moves across an indoor space. The RSSI vector is then fed to the ML model 

on the mobile device, that in turn predicts the location of the user. This process of capturing RSSI 

vectors and then predicting the user’s location continues to occur in a cyclic fashion to create an 

ongoing stream of location prediction cycles. The time taken to complete a prediction cycle (i.e., 

prediction latency) and the accuracy of the predicted location are two key metrics that describe the 

responsiveness and effectiveness of an indoor localization framework. A truly real-time 

localization framework is expected to be responsive to the user’s movement, providing continuous 

predictions (approximately taking no more than a few tens of milliseconds for each prediction), 

while maintaining an acceptable level of location prediction accuracy. 

Over the previous decade, the area of fingerprinting-based indoor localization has been 

heavily explored. UjindoorLoc [80] describes a technique to create a WiFi fingerprint database 

and employs a KNN (K-Nearest Neighbor) based model to predict location. Their average 

accuracy using KNN is 7.9 meters. Radar [81] and Indoor Atlas [10] are early works that proposed 

using hybrid indoor localization techniques. Radar [81] combined inertial sensors (dead reckoning) 

with WiFi signal propagation models, whereas Indoor Atlas [10] combined information from 

several sensors such as magnetic, inertial, and camera sensors, for indoor localization. LearnLoc 

[37] combined non-deep ML models with inertial sensor data and WiFi fingerprinting to propose 

a framework that trades-off indoor localization accuracy and energy efficiency on smartphones. 
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Figure 48. A generalized overview of the online and offline phases of fingerprinting-based 

localization frameworks. 

 

As the computational capabilities of smartphones have increased in recent years, researchers 

have begun to explore the possibilities of deploying more complex algorithms such as DNNs on 

mobile devices towards the goal of attaining higher localization accuracies. Publicly available 

neural network frameworks such as TensorFlow and PyTorch have enabled rapid prototyping of 

complicated deep learning models and can be deployed on mobile devices with ease. The work in 

[82] presents an approach that uses DNNs and Hidden Markov Models (HMMs) for WiFi RSSI 

fingerprinting. DeepFi [35] and ConFi [83] propose approaches that use the Channel State 

Information (CSI) of WiFi signals to create fingerprints. But the CSI information in these 

approaches was obtained through the use of specialized hardware attached to a laptop. None of the 

smartphones available today have the ability to capture CSI data. Due to this limitation, it is not 

feasible to implement these techniques on smartphones. Deep Belief Networks (DBN) [33] have 

also been used for indoor localization, but the proposed technology is heavily reliant on custom 

UWB beacons that lead to a very high implementation cost. The work in [134] presents a deep-

learning-based indoor localization framework that fuses fingerprints from two sources: WiFi, and 

magnetic signals, to produce the user’s location estimate. A limitation of all of these prior works 
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on deep learning and fingerprinting based indoor localization is that they focus solely on indoor 

localization accuracy, without considering the responsiveness (i.e., prediction latency 

performance) of the proposed frameworks. The responsiveness of a fingerprinting-based indoor 

localization framework is heavily dependent on the prediction latencies of their respective machine 

learning models, as well as the specific mobile device platform that the model is deployed on. True 

real-time indoor localization can only be achieved if the time to sample signal fingerprints and 

producing a location prediction is small enough that there is no lag between user movement and 

location prediction displayed on the user’s mobile device. 

In summary, existing indoor localization frameworks focus extensively on prediction 

accuracy, however, very limited attention is placed on architectural optimization of existing deep 

learning models for lower prediction time and energy. To the best of our knowledge, there are no 

works in the area of fingerprinting-based indoor localization that explicitly focus on the 

optimization of deep learning models with an emphasis on reducing response-time with no loss (or 

gain) in accuracy. These factors are critical to achieve consistent performance and scaling of deep 

learning based indoor localization frameworks across a variety of mobile devices. Towards the 

end goal of creating responsive real-time indoor localization frameworks we propose the QuickLoc 

framework that adapts the early exit deep learning based architectural design philosophies 

presented in [135] and [136] to the domain of indoor localization, for the first time. QuickLoc has 

the capability to strike a balance between response time while maintaining high indoor localization 

accuracy. 
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6.2. CNNLOC FRAMEWORK OVERVIEW 

In this section, we discuss the concepts associated with the WiFi fingerprinting-based indoor 

localization framework proposed in [38], called CNNLOC. We utilize CNNLOC as the baseline 

work due to the benefits of using WiFi RSSI only indoor localization and deep learning as 

highlighted in the previous section, as well as due to the fact that this recent work has been 

deployed on mobile devices and shown to outperform other solutions in the indoor localization 

problem domain. Our goal in this work is to improve upon the performance achievable by 

CNNLOC. However, please note that the design methodology proposed in this chapter can be 

applied to other deep learning frameworks as well, such as [33] [35] [38] [83] [134]. 

 

6.2.1 CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks (CNNs) are a form of deep neural networks that are specially 

designed and optimized for image classification. They have been shown to deliver significantly 

higher classification accuracy as compared to conventional fast-forward only DNNs due to their 

enhanced pattern recognition and feature extraction capabilities. 

 

 

Figure 49. An example of a Convolutional Neural Network (CNN) design. 
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As shown in Figure 49, a typical CNN model has three main functional components (or types 

of layers): convolutional layers (that perform “convolve” operations), pooling layers (that “pool” 

or downsample the activations), and fully connected layers (that feed flattened data to the output 

for predictions). Convolutional and fully connected layers also have associated activation 

functions (“activate” operations) whose role is to introduce non-linearity into the neural network 

model, allowing the model to learn complex, non-linear patterns. ReLu (Rectified Linear Units) 

and its variants (such as leaky ReLu) are the most popular activation functions in the pattern 

recognition domain.  

In general, CNN models learn patterns in images by focusing on small sections of the image, 

known as a frame, as shown in Figure 49. The frame moves over a given image in small strides. 

Each convolutional layer consists of filters (matrices) that hold weight values. The layer involves 

convolutional operations (dot products) performed between the current input frame and filter 

weights followed by passing the result through the activation function. The pooling layer is 

responsible for down sampling the output from a convolutional layer, thereby reducing the 

computational requirements by the next set of convolution layers. A set of fully connected layers 

is typically utilized after potentially multiple convolutional and pooling layers, to reduce the depth 

of activations (i.e., data propagating through the CNN) before a final classification can be 

performed. Typically, a SoftMax activation function is applied to the output of the last fully 

connected layer, to generate the probability distribution for the classes being predicted by the 

model. In the testing (or inference) phase of a CNN model, an image is fed to the model which in 

turn produces class probabilities. The class with the highest probability is identified as the output 

prediction. Further details on the design of CNNs can be found in [89] and [85]. 
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6.2.2 INDOOR LOCALIZATION WITH CNNLOC 

The CNNLOC indoor localization framework [38] consists of two major components in the 

offline phase. The first component involves capturing the RSSI fingerprints for different indoor 

locations, and then converting each RSSI fingerprint vector that is associated with a location 

(reference point) into an image associated with the same location. The second component of the 

offline phase is the training of a CNN model using the images created from RSSI vectors. In the 

online phase, the same process is used to create an image (based on observed RSSI values), which 

is fed into the trained CNN model for location prediction.  

 

 

Figure 50. Converting RSSI fingerprint vectors to RSSI images. 

 

A simplified overview of the process of converting an RSSI fingerprint vector into an image 

is shown in Figure 50. The RSSI vector consists of RSSI values in the range of -100 to 0 dBm (low 

signal strength to high signal strength). These values are normalized to a range of 0 to 255, which 

corresponds to the pixel intensity on the image. The dimensions of the RSSI image are set to be 

the closest square to the number of visible WAPs on the path. For example, in Figure 50, the RSSI 

vector has a size of 3, and the closest square would have 4 pixels in it, therefore, the dimensions 

of the image are set to 2×2. A pixel with zero intensity is padded at the end to increase the size of 
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the vector as shown in Figure 50. The generated image then becomes a part of the offline database 

of images used to train the CNN model.  

In the online phase, this same process of image creation is used with the RSSI vector 

observed by the user at any location, and the resulting image is fed to the trained CNN model to 

get a location prediction. It is important to note that in the online phase of CNNLOC, the input 

image will always remain the same size as in the offline phase, such that each pixel in the image 

corresponds to the RSSI value from a WAP with a specific MAC IDs. In case a specific MAC ID 

observed in the offline phase is no longer visible in the online phase, we set the RSSI value for it 

to -100 dBm. This results in the pixel value corresponding to that MAC ID being set to zero. 

 

6.3. LOCALIZATION INFERENCE ANALYSIS 

We begin with an analysis of the impact of model depth on the state-of-the-art indoor 

localization framework CNNLOC [38] described in the previous section. To capture the impact, 

we train three unique CNN models for the paths shown in Figure 51 and deploy them on the four 

mobile devices summarized in Table 4. The first model has only one layer of convolution, the 

second model has two layers, and the third model has three layers of convolution. Due to small 

input image sizes, our models do not have pooling layers [38]. It is important to note that each of 

these models are trained to cover all of the paths shown in Figure 51. More details about the indoor 

paths and devices are covered in Section 6.6 Further, to curtail the complexity of this experiment, 

we utilize the same hyperparameters for the convolutional layers as in the model described in 

section 6.5.1. 
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Figure 51. Indoor paths in different buildings for indoor localization analysis. Reference 

locations (where RSSI values were recorded to train the CNN models) along the indoor paths 

are indicated by orange dots. 

 

Table 4: Details of smartphones used in experiments. 

Smartphone Chipset CPU Freq. RAM 

OnePlus 3 (OP3) Snapdragon 820 2350 MHz 6 GB 

Moto Z2 (MZ2) Snapdragon 835 2350 MHz 4 GB 

Samsung S6 (GS6) Exynos 7420 2100 MHz 3 GB 

Samsung S7 (GS7) Snapdragon 820 2300 MHz 4 GB 

 

Figure 52 depicts the variation of model prediction accuracy and average latency for CNN 

models of varying depths deployed on the four different mobile devices. Considering the fact that 

smartphone chipsets are usually heterogenous in nature and consists of complex cores (clocked at 

higher frequencies) and simpler cores (clocked at lower frequencies), we report the latency values 

for situations where the model is specifically executed on the core clocked at the highest frequency 
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available. For each CNN model depth increment, we added an additional convolutional layer to 

the model. The most obvious observation is that in general the deepest model incurs significantly 

higher prediction (inference) latency. The model with three convolutional layers is up to 8x slower 

(OP3 device) than its shallow single convolutional layer counterpart. By increasing the model 

depth, we are able to boost the localization accuracy from 85% to 95%. However, this boost in 

localization accuracy comes at a hefty price of higher localization time. On the other hand, this 

observation also indicates that the patterns associated with 85% of the fingerprints are easily 

identifiable and utilizing deeper models is actually inefficient for most of the path covered by the 

user.  

Prediction (inference) latency is a critical factor for the fulfillment of real-time indoor 

localization and navigation through fingerprinting. This is especially true for hybrid indoor 

localization frameworks that combine various techniques such as fingerprinting, dead reckoning, 

and particle filters at the same time to produce consistent high-fidelity results. For example, an 

indoor localization framework that depends on a machine learning model to inform other 

subsystems and aims to update the smartphone display every time the user moves by a 10th of a 

meter, requires the predicted location to update every 30 milliseconds (assuming an average 

movement speed of 3m/s [137]). This is only achievable if the indoor localization framework is 

able to pre-process the fingerprint and produce an inference from the deep learning model at a 

latency that does not exceed approximately 30 milliseconds, based on our empirical experience 

with deploying and running such models for indoor localization on smartphones. In Figure 52, we 

observe that the 3-layer model is unable to deliver such latency on most mobile devices. We also 

tested CNN models with more than 3 layers (results omitted for brevity) and found a much higher 
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inference latency with those deeper models, which made them not very well suited to our real-time 

indoor localization inference time goals.  

 

 

Figure 52. Relationship between CNN model depth, average prediction latency, and accuracy 

for the four smartphones. 

 

Another observation from Figure 52 is the variation in prediction latency across the various 

mobile devices. While the latencies of OP3, MZ2 and GS7 devices are similar for a model depth 

with depth 1, the latencies for the models with a depth of 2 and 3 vary greatly. These localization 

latencies of the same CNN model are significantly dependent on the specifications and 

optimizations for the target mobile device. By comparing the device configurations in Table 4 and 

Figure 52, we conjecture that the DRAM specifications may play a crucial role in determining the 

prediction latency of the CNNLOC model. Further, we noted from our analysis that depending on 

the type of core the model workload is allocated to, the localization latency could be up to 3× 

worse than the ones reported in Figure 52. 
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As smartphones are powered by batteries and thus, limited by an energy budget, utilizing 

deep models for a task that can be accomplished using a shallower model wastes computational 

resources that could have been allotted to other tasks to further improve localization accuracy, 

such as direction estimation, via sensor fusion with inertial sensors, and using particle (or Kalman) 

filters [24] [138] [139]. Further, as we scale up the number of reference points on which RSSI 

readings are measured during the training phase, and the number of WAPs, the model depth and 

complexity needed to achieve accurate indoor localization will also increase. This will in turn 

result in higher prediction latencies, which will create a challenge for the deployment of such 

models on mobile devices. 

The observations from the analysis in this section suggest a critical need for indoor 

localization frameworks that can deliver high localization accuracy without trading off localization 

latency and that can also perform consistently across a wide variety of heterogeneous mobile 

devices. 

 

6.4. CONDITIONAL EARLY EXIT MODELS 

From our analysis in the previous section, we observe that a shallower model is able to 

predict 85% of the locations accurately. This observation suggests that we do not need to use a 

deeper model to predict the user’s location in every prediction cycle. Even though the deeper model 

can predict the user’s location more accurately on average, it comes at the considerable cost of 

higher inference latency. Further, as the technique in CNNLOC [38] and other similar techniques 

are scaled up, the high complexity of the deployed model may become a barrier from its ubiquitous 

use in resource constrained devices such as smartphones and smartwatches. 
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Towards the goal of optimizing the inference latency of the indoor localization model, we 

exploit the observation that a large portion the WiFi fingerprints in the training dataset can be 

learned easily and effectively by simpler models. However, we also want to ensure that locations 

that can benefit from a deeper model can actually leverage the benefits of additional layers for 

improved prediction accuracy. To realize such an implementation, we build on the idea of early 

exit in deep learning models, as proposed in [135] and [136]. We explore the possibility of 

branching the computation after each convolutional operation to achieve an acceptable response 

based on uncertainty sampling methods such as confidence difference, confidence ratio, or 

entropy. These are discussed later in this section.  

 

 

Figure 53. Early exit strategy depicted as a state machine. 

 

The adapted conditional exit strategy can be captured as a state machine and is depicted in 

Figure 53. The input to the state machine is an image that is fed to the convolutional neural 

network. After each convolutional layer or stage, the output is fed to an exit path. The output class 

probabilities produced at the end of the exit path are then fed to an uncertainty sampling method. 

The satisfactory result of the uncertainty sampling method is used to recognize the validity of the 

predicted class at the current exit stage. In case we are confident of the model output at the current 

exit stage, the current prediction is accepted. In the case that we are not confident of our early 

prediction, we continue on to the next convolutional stage and evaluate the output of that stage for 
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conditional exit. In this manner, we expect a reduction in the inference time for a majority of the 

location prediction cycles through uncertainty sampling based early exits.  

Consider the example that was shown in Figure 48 earlier. The model is fed an input image 

of a car and produces the probabilities for various vehicle classes, such as a tank, boat, bus etc. 

While the class probability of a bus is the highest, the probability of the input image being a car is 

only slightly lower. Such behavior is expected as the images of buses and cars may have similar 

features such as wheels and large windows. However, a CNN model is likely to easily differentiate 

between a boat and a car due to dissimilar features or patterns in the images. In this manner, if 

input images of a CNN model have significantly varying features, they can be easier to identify 

using shallow models. Further, the distribution of probabilities across the various output classes 

(as seen in Figure 48) can be utilized to capture the model’s confidence in its prediction. The class 

of techniques used for this purpose are known as uncertainty sampling methods. A subset of these 

methods is explored in this work for our problem of fingerprinting-based indoor localization. The 

explored methods are described below: 

• Least Confidence: This is the difference between the most confident prediction and 100% 

confidence; 

• Margin of Confidence: This is the difference between the most confident and the second most 

confident prediction; 

• Ratio of Confidence: This is the ratio between the top two highest class probabilities (most 

confident); 

• Entropy: This is a concept derived from information theory that describes the level of 

uncertainty associated with one possible outcome, compared to all other outcomes [140]. 
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The early exit strategy reduces inference latency by limiting the overall computation 

required for each prediction (inference). Other well-known techniques such as model compression 

[141] [142] and quantization [143] are orthogonal to this method and can be applied in conjunction 

with this approach. Based on the proposed early exit strategy, several predictions follow a shorter 

path to completion thereby establishing shallower computational paths, with lower latencies. This 

is also a highly beneficial behavior as shallower models are less likely to be a victim of the 

vanishing gradient problem [144]. Shallower models in our problem domain are sometimes able 

to identify some locations accurately that might be harder for deeper models to predict accurately, 

due to this issue. In our experiments, we found evidence of this phenomenon, where utilizing early 

exit models allowed for improving localization accuracy under some conditions.  

 

 

Figure 54. Overall flow of computation with conditional early exits for the proposed 

QuickLoc indoor localization framework. 

 

It is important to noted in Figure 53 depicts the early exit model behavior as a state machine, 

it does not capture the specific conditional early exit model design presented in this work. The 

early exit path depicted in Figure 53may contain one or more neural network layers that are not a 

part of the original CNN model. We present the detailed process for creating the early exit model 
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that we used in the proposed QuickLoc fingerprinting-based indoor localization framework in the 

next section. 

 

6.5 QUICKLOC FRAMEWORK 

In this section, we discuss the design of our QuickLoc framework for the purpose of reducing 

inference latency.  

6.5.1. QUICKLOC CNN MODEL DESIGN 

The proposed model design for this work is depicted in Figure 54 and the number of 

parameters in each layer is presented in Table 5. The baseline model consists of three convolutional 

layers each with a small kernel size of 2×2 and a stride size of 1. A small kernel size is chosen as 

the RSSI fingerprint images have a small resolution as discussed in CNNLOC [38]. We further 

utilize the same filter size in each layer to maintain simplicity in this exploration. A real-world 

deployment could have different filter sizes at each convolutional layer. The baseline model is 

designed such that the number of filters is increased as the depth of the model increases. This 

forces the CNN model to learn increasing number of complex features as the model depth 

increases. The first convolutional layer “Conv2D_1” consists of 32 filters producing only 160 

parameters, followed by the second layer “Conv2D_2” with 64 filters (8.2K parameters) and 

finally, the third convolutional layer “Conv2D_3” consists of 128 filters (32.8K parameters). Each 

convolutional layer is followed by a ReLu activation function, as in [38]. 

Based on our discussion in the previous section, we attempt to perform an early exit after 

each convolutional stage. The first early exit attempt (EEA1) comes after Conv2D_1 and only 

consists of a single output layer. Each fully connected output layer consists of 342 neurons (same 

as the total number of reference points) followed by the Softmax activation function. In EEA2, an 
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additional convolutional layer “Conv2D_4” with only a few filters (8 filters producing 2K 

parameters) is attached before the output layer. From Table 5, we observe that all of the output 

layers consist of a large number of parameters. As the QuickLoc model adds multiple output layers 

to the baseline model, the resulting model is expected to have a larger memory footprint. An 

analysis into memory footprint at run-time is presented in section 6.7.5. Further, the 

hyperparameter selection of the two early exit branches is discussed in the next subsection. 

Table 5: Number of parameters in the QuickLoc model. 

QuickLoc Layer Number of Parameters 

Conv2d_1 160 
EEA1 Output 9,204,246 

Conv2d_2 8,256 
Conv2d_4 2,056 

EEA2 Output 1,994,886 
Conv2d_3 32,896 

Output 31,913,046 
 

6.5.2. QUICKLOC MODEL TRAINING 

The training process for the model presented in Figure 54 begins with the baseline CNN 

models design and training as discussed in [38]. To highlight the full potential of our proposed 

technique we chose to train a single model for all of the buildings in our dataset instead of a model 

for each building.  

Once the baseline model is established, the first early exit stage (Conv2D_1+ EEA1) is 

created by training the layers on the EEA1 path such that the weights associated with the 

convolutional layers of the baseline model (Conv2D_1) are frozen and remain unchanged in the 

training process. Once the layers associated with the exit path have been trained, they are manually 

attached to the full baseline model. This process is repeated for each convolutional layer in the 

baseline CNN model. 
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While designing the layers on each early exit path, two design philosophies are followed. 

The first is that the depth of the early exit itself is generally directly proportional to the depth of 

convolutional stage whose output is fed to the early exit. In this manner, we note that EEA2 is 

computationally more expensive than EEA1. The second is that the computational expense of an 

early exit should be significantly lower than the remaining computation in the baseline model. It 

is important to note that the expense of a computational path is dependent on several factors such 

as number of layers, number of parameters in each layer, and the types of layers. The proposed 

design in this work considers all of these factors. 

 

6.5.3. UNCERTAINTY SAMPLING THRESHOLD 

At each early exit attempt, the confidence associated with the predicted output is calculated 

through class probabilities using one of the various uncertainty sampling techniques presented in 

the previous section. If the uncertainty of the predicted class is within an acceptable threshold, the 

location prediction at the current early exit is accepted. The value of these thresholds and the 

acceptable range is dependent on the type of uncertainty sampling method used. A sensitivity 

analysis on the choice of the uncertainty sampling technique is presented in the experimental 

section (section 6.7.1). 

 

6.5.4. POST-DEPLOYMENT CONFIGURATION ADAPTIVITY 

From our analysis shown in Figure 52, we observe that the performance of a CNN model 

can vary significantly across different devices. Subtle variations such as SoC type and DRAM size 

can lead to significant performance variations for the same CNN model. Due to this behavior, a 
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one-for-all CNN model solution is inefficient and is likely to deliver inconsistent inference time 

on new devices not evaluated in the training phase.  

Another notable challenge of the proposed early exit strategy is the computational or latency 

penalty due to inferences that are unable to confidently exit on any of the early exit attempts. The 

latencies associated with inferences or location predictions that completely fail to exit early would 

be generally greater than the baseline CNN model without early exit attempts. 

 

 

Figure 55. Contents of QuickLoc app package depicting tunable uncertainty sampling 

threshold (𝜽𝑼𝑺) and early exit switches as configurable parameters. 

 

To overcome these challenges, we implemented the capability of enabling or disabling early 

exit paths once the model has been deployed on a smartphone and is in the testing phase. This is 

due to the fact that there may be multiple combinations of the ways the proposed early exit CNN 

model in the QuickLoc framework can be configured. For example, a model that only has EEA1 

enabled, may deliver higher accuracy and lower inference time than a model with both EEA1 and 

EEA2 enabled. Once the model has been deployed on a smartphone, it undergoes a self-

configuration process using a limited set of RSSI fingerprints and associated reference points to 
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identify an early exit configuration and uncertainty sampling threshold that delivers the best 

results.  

Figure 55 depicts the various components of the QuickLoc indoor localization application 

(testing phase) and associated tunable parameters. The application also consists of a small set of 

labeled training data used for calibrating the various control knobs of the QuickLoc model. For 

each EEA, there are two control parameters: self-enable/disable switch and uncertainty sampling 

threshold value. Once the application is installed on a smartphone in the testing phase, the labeled 

training data is utilized to identify a localization error and inference latency for each possible 

configuration of the QuickLoc model (EEA and 𝜃𝑈𝑆). This would allow us to identify multiple 

configurations that deliver higher accuracies than the baseline (no early exit) at lower inference 

latencies. We present an analysis later in section 6.7.3 that uses this approach to explore multiple 

configurations of the model across different smartphone devices.  

For the purpose of this work, the default configuration is the one that produces a reduction 

in prediction latency with no loss in localization accuracy. However, in practice, the QuickLoc 

configuration can also be adjusted on-demand to meet specific latency goals at run-time. The 

benefit of such an approach is the ability to trade off latency with accuracy in the testing phase. 

For example, when using QuickLoc in combination with dead reckoning, one may choose to 

change the QuickLoc configuration with higher inference latency and lower localization error at 

run-time if the user is detected to be moving slower. To understand the impact of the various early 

exit configurations we present a sensitivity analysis on various devices later in section 6.7.2. 
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6.6. EXPERIMENTAL SETUP 

6.6.1 HETEROGENEOUS DEVICE SPECIFICATIONS 

To capture the variation in performance across heterogeneous devices, we first design and 

train the QuickLoc model based only on the OP3 device characteristics and then deploy our indoor 

localization model onto three other smartphones with unique hardware specifications in the testing 

phase. The specifications for each of these devices is captured in Table 4. This allows us to explore 

the impact of device specification heterogeneity such as DRAM and SoC type that can impact 

localization latency. Such a model design and training process is adopted to simulate a real-world 

scenario where the specifications of the target mobile platform may be unknown when deploying 

QuickLoc on new device. 

 

6.6.2. INDOOR PATHS FOR LOCALIZATION BENCHMARKING 

We compare the localization accuracy and latency for the proposed QuickLoc framework 

using a benchmark dataset with 342 reference locations. The benchmark spans over a large 

university campus with varying environmental conditions and WiFi WAP densities. The dataset 

covers four buildings. The paths within these buildings are shown in Figure 51; with each orange 

dot indicating a reference point on a path within the building that is one meter apart. The paths 

vary from 70 to 90 meters in length and the number of visible WAPs along these paths varies 

between 78 to 218. We collected data on these reference points at different times, and performed 

post-processing on the collected data to eliminate temporary WAPs, e.g., mobile hotspots created 

by individuals in the buildings.  

The path sections in Engineering Building One consist of labs, mechanical equipment, and 

office spaces. This path was specifically chosen as it has the largest amount of electrical and 
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magnetic devices in its vicinity, that interacts with WiFi signals to produce noisy fingerprints. The 

psychology and library buildings were recently renovated with a mix of wooden and metallic 

structures in its surrounding environment. The path sections are mostly surrounded by large halls 

and classrooms such that the impact of multi-path effects and shadowing is relatively lower as 

compared to other buildings. Finally, the last building covered is an engineering building 

(Engineering Two). This is the most versatile path section covered. It is one of the oldest buildings 

on campus and mostly constructed of wood and concrete. The building consists of labs with 

metallic equipment, office spaces, and large classroom halls. The reference points for fingerprints 

over all buildings are 1-meter apart. Ten fingerprint samples per reference location were collected. 

The WiFi fingerprints in this benchmark were captured in the offline phase while holding the 

smartphones at an average height of 1.5 meters above ground such that the device screen is zenith 

facing. Testing (online phase) was performed by 5 users with heights varying between 175-192 

cm. The users held the device close to their chest height while facing the smartphone display. 

 

6.6.3. COMPARISON WITH PREVIOUS WORK 

The performance of QuickLoc is compared to its non-early exit capable counterpart 

CNNLOC [38], which is the baseline model in our analysis. Additionally, we compare QuickLoc 

with conventional machine learning indoor localization frameworks that utilize K-Nearest 

Neighbor (KNN) [37] and Support Vector Regression (SVR) [92]. The KNN-based indoor 

localization framework [37] algorithm is based on the idea that the RSSI fingerprints at a given 

reference point would be close to each other in the Euclidian space. The SVR-based framework 

[92] attempts to create a set of hyperplanes, based on groups of RSSI fingerprints, each associated 

with a specific reference point. These frameworks utilize relatively light-weight machine learning 
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algorithms that lead to lower inference latency. The purpose of comparing QuickLoc against the 

works in KNN [37] and SVR [92] is to contrast the inference latency and accuracy of QuickLoc 

against known light-weight indoor localization platforms. 

 

6.6.4. DEPLOYMENT AND EVALUATION 

The early exit model is trained as described in section 6.5.2. The uncertainty sampling 

methods and threshold values for each early exit was empirically evaluated and set based on the 

OP3 device in the offline phase. The trained early exit model and the baseline models are deployed 

on smartphones using an Android app with timers for capturing latency. Once deployed, QuickLoc 

automatically reconfigures itself for the target smartphone. This is a one-time process that occurs 

at the first launch of the QuickLoc app.  

We deployed the QuickLoc on smartphones using Tensorflow Lite and used the official C-

based benchmarking application [145] over the Android Debug Bridge (ADB) to capture latency 

and memory requirements. This allows us to minimize the impact variations produced by the 

Android OS application manager layer. The energy analysis presented in section 6.7, is conducted 

by capturing battery drain characteristics attained using the BatteryManager API for Android 

[146]. We do not perform any form of post-training quantization on our Tensorflow Lite models. 

However, doing so would only further improve the inference latency of the QuickLoc model at the 

cost of localization accuracy. Lastly, WiFi RSSI fingerprint scans took anywhere from 1.5 to 4 

seconds, depending on the smartphone being tested. As we move towards the eventual goal of real-

time localization, higher sampling (scan) rates are needed. Recent efforts to enable monitor mode 

for WiFi chipsets for smartphones are a step in that direction, by enabling more frequent packet-

by-packet updates to WAP RSSIs [147] [148]. 
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6.7. EXPERIMENTAL RESULTS 

6.7.1. SENSITIVITY ANALYSIS FOR UNCERTAINTY SAMPLING 

In this subsection, we present results for a sensitivity analysis on the type of uncertainty 

sampling technique and its associated threshold value for our proposed QuickLoc model. The 

sensitivity analysis is conducted on the OP3 mobile device as it shows the least variation in 

prediction latency (Figure 52). Through the selection of this device we intend to describe the 

performance of QuickLoc on a smartphone whose prediction latency is the least flexible and hence, 

is expected to produce the least improvement. For simplicity, we utilize the same threshold values 

for EEA1 and EEA2 (both enabled).  

Figure 56 presents the average localization errors and the prediction latencies on the left and 

right vertical axes, respectively; and the uncertainty threshold values on the horizontal axes, for 

the four uncertainty sampling techniques described in section 6.5.3 (margin of confidence, least 

confidence, ratio of confidence, and entropy). The dashed horizontal red lines and green lines 

represent the localization error and latencies (respectively) for the baseline CNNLOC framework. 

We observe that the performance of QuickLoc is greatly impacted by the choice of uncertainty 

sampling method. In Figure 56, we observe that the Least Confidence method performs the worst 

as there are no configurations of the uncertainty threshold value for which QuickLoc delivers 

higher accuracy at a lower latency than the baseline CNNLOC model. In contrast, Margin of 

Confidence and Entropy produce the most configurations with both improved latency and 

localization accuracy. Due to the logarithmic nature of localization error for the entropy method, 

it may not be the best choice for a framework variant that throttles the uncertainty threshold for a 

tradeoff between localization accuracy and latency. More analysis on this subject is presented in a 
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later subsection.  From the analysis presented in this section, the margin of confidence is the best 

choice for the OP3 device. However, the appropriate adaptive configuration for each device may 

be unique for QuickLoc in the online phase on the target smartphone. The next sub-section 

highlights QuickLoc’s configuration flexibility for various devices. 

 

 

Figure 56. A comparison of average localization errors, in meters, and prediction latency 

across four uncertainty sampling techniques for QuickLoc (QL) as compared to the baseline 

CNNLOC framework. 

 

6.7.2. SENSITIVITY ANALYSIS ON DEVICE HETEROGENEITY 

Next, we explored the impact of device heterogeneity on achievable latency and localization 

error for QuickLoc as compared to the non-early exit model in CNNLOC [38].  
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Each curve in Figure 57 depicts the variation in achievable localization error with its 

associated latency. The curves are captured by varying the threshold parameter of the margin of 

confidence uncertainty sampling method across both EEA1 and EEA2. The star markings denote 

the baseline prediction latencies across various devices.  We can make two observations from 

Figure 57. First, we note that for the devices excluding GS6, there exist several threshold values 

in QuickLoc that will produce significant reductions in latency and improved localization error. 

The reduction in localization error can be attributed to the enhanced learning capabilities 

introduced by the shorter exit paths that lead to fewer mispredictions due to the vanishing gradient 

problem. The second observation is that the user can achieve an exponential reduction in 

localization error by trading off some latency at run-time.  

 

 

Figure 57. Achievable localization error with respect to prediction latency for four mobile 

devices. Baseline localization error and latency for each device is marked by the star symbol 

(the green and orange stars overlap). 
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Unfortunately, in this analysis QuickLoc is unable to achieve any improvement in latency 

for the GS6 device. However, it is important to note that Figure 57 only presents results for 

QuickLoc configurations where both EEA1 and EEA2 are enabled. As we observe from the results 

in the next subsection, there may be other configurations that deliver better results.  

 

6.7.3 ANALYSIS OF EARLY EXIT PATH CONFIGURATION 

Figure 58 presents the best achievable latency for each mobile device under various early 

exit configurations while meeting the baseline accuracy target requirements. We found that the 

best results (least latency) for each device are achieved when EEA1 is disabled (i.e., only EEA2 is 

enabled) as denoted by the green bars. 

 

 

Figure 58. QuickLoc (QL) device performance under various early exit branch 

configurations. 

 

In case of the GS6 device, we observe that there are no latency improvements when both the 

early exit paths are enabled (EEA1+EEA2) compared to CNNLOC. The localization latency 

further degrades when only EEA1 is enabled for GS6. It is important to note that while different 
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EEA configurations had no impact on the OP3 device, it had a significant impact on the GS6 

device. This observation highlights the significance of having multiple EEA paths that can be 

configured for an unknown device in the online phase. 

 

6.7.4 ANALYSIS OF INFERENCE ENERGY 

The variation in smartphone specifications can greatly impact the energy required to perform 

a given task. Further, as smartphones are energy constrained devices that run on batteries, 

prediction latency alone does not dictate framework efficiency. To better highlight the energy 

savings (energy efficiency) of QuickLoc, we profiled the energy required per location prediction 

(inference energy) across various smartphones and QuickLoc configurations. The results of this 

analysis are shown in Figure 59. 

 

 

Figure 59. QuickLoc (QL) inference energy under various early exit branch configurations. 

 

Figure 59, we observe QL: EEA2 consumes the least energy across all devices, as in Figure 

58. This is because of the large number parameters in the EEA1 output layer that need to be 

processed every time and are held in memory as the model attempts to exit at EEA1. However, the 
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per-device inference energy trends do not follow the inference latency trends from Figure 58. 

Through Figure 59, we observe that the MZ2 device consumes the least energy per prediction as 

opposed to the OP3 device which has the fastest inference time. In general, we observe up to 45% 

reduction of inference energy (GS7) with QuickLoc as compared to baseline model. 

 

6.7.5. ANALYSIS ON MEMORY FOOTPRINT 

In this subsection, we present an analysis of the memory overhead of QuickLoc under 

various configurations. As the model utilized by QuickLoc has additional layers compared to the 

baseline work in CNNLOC [38], there is an increase in the memory required to deploy the model 

on a smartphone. 

 

 

Figure 60. QuickLoc memory footprint with respect to CNNLOC. 

 

Figure 60 describes the memory footprint of QuickLoc under various early exit 

configurations as compared to CNNLOC [38]. The most notable observation from Figure 60is the 

25% increment in memory footprint when both the early exit branches are enabled (QL: 

EEA1+EEA2). This is followed by QL: EEA1 which has a 22% increment in memory footprint as 

compared to CNNLOC [38]. This behavior is mainly attributed to the very large number of 

parameters in the output later of EEA1 (9.2M parameters) as compared to EEA2 (1.9M 

parameters). QL: EEA2 only incurs a 3% increase in memory footprint and is therefore the most 
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favorable configuration in general, based on experiments performed in the previous sub-section.  

From this point onward, we use QL: EEA2 as the default configuration for QuickLoc when 

comparing it against prior works (Section 6.8.6).  

While the memory footprint for QuickLoc is always expected to be higher than the baseline 

model, the specific increase we observe in our experiments is highly dependent on various factors 

such as original model complexity, number of early exit paths (or branches) enabled at the time of 

deployment, and the layer hyperparameters on each early exit path. Due to these factors, we advise 

caution when adapting ideas from QuickLoc into other model designs.  

6.8.6. OVERALL QUICKLOC PERFORMANCE 

Figure 61 and Figure 62 describe the accuracy and latency of QuickLoc (QL: EEA2 variant) 

as compared to CNNLOC [38], and non-deep machine learning frameworks that employ support 

vector regression (SVR) [92], and K-nearest Neighbor (KNN) [37]. As we do not cover the impact 

of device heterogeneity on model accuracy in this work, the results are only presented for the OP3 

smartphone. We also utilize the same configuration of QuickLoc (QL: EEA2 with 𝜃US2 = 0.82) 

for both the accuracy and latency results.  

 

 

Figure 61. The average localization error in meters for various indoor localization 

frameworks. 
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Figure 62. The prediction latency of various indoor localization frameworks with respect to 

QuickLoc. 

 

From Figure 61, we observe that both CNNLOC [38] and QuickLoc deliver a considerable 

localization accuracy improvement over KNN [37] and SVR [92]. From the analysis presented in 

Figure 62, we observe that through QuickLoc we are able to achieve up to 42% reduction in 

prediction latency (GS7) while maintaining our target baseline localization accuracy (0.13 meters) 

achieved through CNNLOC [38]. Further, QuickLoc enables us to achieve inference latencies 

comparable to relatively light-weight non-deep learning indoor localization frameworks in most 

cases, while outperforming them on the OP3 device. The reason for QuickLoc having lower 

latency than KNN and SVR on the OP3 device is not entirely clear. We believe that the hardware 

on the OP3, specifically the DRAM, is geared towards faster and better locality-exploiting burst 

I/O modes at a cost of higher current draw (1750 mA; in contrast the GS7 only required an average 

current draw of 1300 mA), which may explain the lower latency for QuickLoc’s access patterns 

on the OP3 device.  

In summary, the QuickLoc indoor localization framework presented in this work 

significantly improves prediction latency without any loss in localization accuracy across 
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smartphones and indoor locales. Further, it enables a new form of run-time adaptiveness for deep-

learning-based indoor localization frameworks that trades-off localization accuracy, inference 

latency, and energy against run-time memory footprint.  

 

6.8. CONCLUSIONS  

In this chapter, we presented an in-depth analysis of a deep learning based indoor localization 

framework that is expected to deliver accurate results on various mobile devices in real-time. Our 

analysis highlighted the significant lack of consistent performance across varying deep learning 

model depths and across diverse mobile devices. To overcome this challenge, we proposed the 

novel QuickLoc framework, that is able to adapt the localization latency for the target device 

through early exit strategies and reduce average localization error at the same time. 
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7. SIAMESE NEURAL ENCODERS FOR LONG-TERM INDOOR LOCALIZATION 

WITH MOBILE DEVICES 

 

Contemporary geo-location services have eliminated the need for burdensome paper-based 

navigational maps that were dominant in the past. Owing to the localization technologies of today, 

our physical outdoor reality is now augmented by an additional layer of virtual map-based reality. 

Such a revolutionary shift has dramatically changed many aspects of human experience: geo-

location data is now used for urban planning and development (roads, location of hospitals, 

telecom network design, etc.), augmented reality video games (Pokémon Go, Ingress Prime) and 

has even helped realize entirely new socio-cultural collaborations (Facebook marketplace, Meetup, 

etc.) [149].  

Unfortunately, due to the limited permeability of GPS signals within indoor environments, 

such services cannot be easily extended into buildings such as malls, hospitals, schools, airports, 

etc. Indoor localization services can pro-vide immense value, e.g., during emergency evacuations 

or when locating people indoors in need of critical medical attention. In the future, such services 

could inform the architects of building design and make augmented indoor living a reality. 

Towards this goal, indoor localization is experiencing a recent upsurge in interest [2], including 

from industry (e.g., Google [4], Apple [3]). 

Although substantial progress has been made in this area (see section 7.2), recent works 

suggest fingerprinting-based indoor localization as the most favorable solution [2] [31] [38] [123] 

[150] [151] [152]. While any form of radio fingerprinting works, the ubiquitous deployment of 

WiFi Access Points (APs), and the superior localization accuracies achieved through it make WiFi 

the clear choice of radio infrastructure to support in-door fingerprinting.  
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Conventionally, fingerprinting-based indoor localization consists of two phases. The first 

phase, known as the offline phase, comprises of capturing WiFi signal characteristics, such as 

RSSI (Received Signal Strength Indicator) at various indoor locations or Reference Points (RPs) 

in a building. The RSSI values from all APs observable at an indoor RP can be captured as a vector 

and represents a fingerprint associated with that RP. Such fingerprints collected across all RPs 

form a dataset, where each row in the dataset consists of an RSSI fingerprint along with its 

associated RP location. The collection of fingerprints to form the dataset is known to be a very 

time-consuming endeavor [37]. Consequently, publicly available datasets only contain a few 

fingerprints per RP (FPR). Using such datasets, a machine learning (ML) model can be trained and 

deployed on mobile devices (e.g., smartphones) equipped with WiFi transceivers. In the second 

phase, called the online phase, WiFi RSSI captured by a user is sent to the ML model running on 

the user-carried device, and used to compute and then update the user’s location on a map of the 

indoor locale on the user’s device display, in real time. Deploying such models on the user device 

instead of the cloud enables better data privacy, security, and faster response times [2]. 

Recent works report improved indoor localization accuracy through the use of deep learning-

based classifiers [31] [38]. This is attributed to their superior ability at discerning underlying 

patterns within fingerprints. Despite these improvements, factors such as human activity, signal 

interferences, changes to furniture and materials in the environment, and also removal or 

replacement of WiFi APs (in the online phase) introduce changes in the observed RSSI fingerprints 

over time that can degrade accuracy [123] [151] [152]. For instance, our experiments suggest that 

in frameworks designed to deliver mean indoor localization error of 0.25 meters, these factors 

degrade error to as much as 6 meters (section 7.4.) over a short period of 8 months. Most prior 
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efforts in the indoor localization domain often overlook the impact of such temporal variations 

during the design and deployment stages, leading to significant degradation of accuracy over time.  

In this chapter, we introduce STONE, a framework that delivers stable and long-term indoor 

localization with mobile devices, without any re-training. The main contributions of this work are: 

• Performing an in-depth analysis on how indoor localization accuracy can vary across different 

levels of temporal granularity (hours, days, months, year); 

• Adapting the Siamese triplet-loss centric neural encoders and proposing variation-aware 

fingerprint augmentation for robust fingerprinting-based indoor localization; 

• Developing a floorplan-aware triplet selection algorithm that is crucial to the fast convergence 

and efficacy of our Siamese encoder-based approach; 

• Exploring design tradeoffs and comparing STONE with state-of-the-art indoor localization 

frameworks. 

 

7.1. BACKGROUND AND RELATED WORK 

Broadly approached, indoor localization methodologies can be classified into three 

categories: (i) static propagation model-based, (ii) triangulation/trilateration-based, and (iii) 

fingerprinting-based [2]. Static propagation modeling approaches depend on the correlation 

between distance and WiFi RSSI gain, e.g., [13]. These techniques are functionally limited to open 

indoor areas given that multipath or shad-owing effects of signals attributed to walls and other 

indoor obstacles are not considered. These methods also required the cumbersome creation of a 

gain model for each individual AP. Triangulation/Trilateration-based methods use geometric 

properties such as the distance between multiple APs and the mobile device [54] (trilateration) or 

the angles at which signals from two or more APs are received [56] (triangulation). While such 
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methodologies may be resistant to mobile device specific variability (device heterogeneity), they 

are not resilient to multipath and shadowing effects [31]. As discussed in Section 7.1, WiFi 

fingerprinting-based approaches associate sampled locations (RPs) with the RSSI captured across 

several APs [31] [32] [38] [66] [123] [150] [151] [152]. These techniques are known to be resilient 

to multi-path reflections and shadowing as the RP fingerprint captures the characteristics of these 

effects leading to more accurate localization than with the other two approaches.  

Fingerprinting generally employs ML to associate WiFi RSSI captured in the online phase 

to the ones captured at the RPs in the offline phase [81] [153]. Recent work on im-proving WiFi 

fingerprinting exploits the increasing computational capabilities of smartphones. For instance, 

Convolutional Neural Networks (CNNs) have been proposed to im-prove indoor localization 

accuracy on smartphones [31] [38] [154]. One major concern with fingerprinting is the enormous 

effort required to manually collect fingerprints for training. Openly available fingerprint datasets 

often only consist of a few fingerprints per RP [152]. This motivates the critical need for indoor 

localization frameworks that are competitive with contemporary deep-learning-based frameworks 

but require fewer fingerprints to be deployed.   

An emerging challenge for fingerprinting-based indoor localization (especially WiFi-based) 

arises from the fluctuations that occur over time in the RSSI values of APs [32] [123] [151] [155], 

[156]. Such temporal-variations in RSSI arise from the combination of many environmental 

factors, such as human movement, radio interference, changes in furniture or equipment 

placement, etc. This issue is further intensified when WiFi APs are removed or replaced by 

network administrators, changing the underlying fingerprint considerably [37]. This leads to a 

catastrophic loss in localization accuracy over time (discussed in section 7.4). 
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The most straightforward approach to overcome temporal variation is to capture a large 

number of fingerprints over a long period of time (in offline phase).  A deep-learning model trained 

using such a dataset would demonstrate resilience to degradation in localization accuracy as it 

witnesses (learns) the temporal fluctuations of RSSI values at various RPs. The work in [151] 

proposes such an approach by training an ensemble of models with fingerprints collect-ed over a 

period of several hours. The authors then take a semi-supervised approach, where the models are 

refit over weeks using a mix of originally collected labeled fingerprints and pseudo-labeled 

fingerprints generated by the models. This process is repeated over several months to demonstrate 

the strength of this approach. However, the collection of fingerprints at a high granularity of RPs 

(small distance be-tween RPs) over a long period of time in the offline phase is not scalable in 

practice.  

To overcome the challenge of lack of available tempo-rally diverse fingerprints per RP, the 

authors in [155] propose a few-shot learning approach that delivers reliable accuracy using a few 

fingerprints per RP. The contrastive loss-based approach prevents the model from overfitting to 

the training fingerprints used in the offline phase. Unfortunately, their approach is highly 

susceptible to long-term temporal variations and removal of APs in the online phase. This forces 

the authors to recalibrate or re-train their model using new fingerprints every month.  

Attempting to achieve calibration-free indoor localization, some researchers propose the 

standardization of fingerprints into a temporal-variation resilient format [123] [157]. One such 

approach, known as GIFT [123], utilizes the difference between individual AP RSSI values to 

form a new finger-print vector. However, instead of being associated with a specific RP, each 

GIFT fingerprint is associated with a specific user movement vector from one RP to another. How-
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ever, GIFT degrades in accuracy over the long-term and is also highly susceptible to removal of 

APs (section 7.4).  

Considering the general stability of simple non-parametric approaches over the long term, 

such as K-Nearest-Neighbor (KNN), the authors in [158] propose Long-Term KNN (LT-KNN), 

which improves the performance of KNN in situations where several APs are removed. However, 

LT-KNN fails to deliver the superior accuracies promised by deep-learning approaches and needs 

to be re-trained on a regular basis.  

In summary, most indoor localization solutions are simply unable to deliver stable 

localization accuracies over time. The few prior efforts that aim to achieve stable long-term 

localization either require large amounts of fingerprints per RP captured over time, or frequent re-

training (refitting) of the model using newly collected fingerprints. Our proposed STONE 

framework provides a long-term fingerprinting-based indoor localization solution with lower 

overhead and superior accuracy than achieved by prior efforts in the do-main, without requiring 

any re-training. 

 

7.2. SIAMESE NETWORK AND TRIPLET LOSS: OVERVIEW 

A Siamese network is a few-shot learning (requiring few labeled samples to train) neural 

architecture containing one or more identical networks [159] [160]. Instead of the model learning 

to associate an input image with a fixed label (classification) through an entropy-based loss 

function, the model learns the similarity between two or more inputs. This prevents the model from 

overfitting to the relationship be-tween a sample and its label. The loss function for a Sia-mese 

network is often a Euclidean-based loss that is either contrastive [159] or triplet [160]. 
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Figure 63. An example architecture of a Siamese encoder with triplet loss. A single CNN 

network is used, i.e., all the models share the same weights. 

 

A Siamese network encoder using contrastive loss was proposed in DeepFace [159] for facial 

recognition. DeepFace focuses on encoding the input faces such that they are either pushed 

together or pulled apart in the embedded space based on whether they belong to the same person 

or not. The work in FaceNet [160] further improved on this idea using triplet loss that 

simultaneously pushes together and pulls apart faces of the same person and different persons, 

respectively. 

An architectural representation of the Siamese model used in STONE (inspired by FaceNet) 

is presented in Figure 63. The Siamese network consists of a single deep neural architecture. Note 

that given the specific model details (covered in section 7.3.4), the model itself can be treated as a 

black-box system.  

The model in Figure 63 can be represented as 𝑓(𝑥)  ∈ 𝑅𝑑 that embeds an image 𝑥 into a 𝑑-

dimensional Euclidean embedding space. Therefore, the images 𝑥𝑖𝑎(anchor), 𝑥𝑖𝑝(positive) and 



177 
 

𝑥𝑖𝑛(negative) are embedded to form encodings 𝑓(𝑥𝑖𝑎), 𝑓(𝑥𝑖𝑝) and 𝑓(𝑥𝑖𝑛) respectively, such that 

they belong in the same 𝑑-dimensional embedded hyperspace, i.e., ||𝑓(𝑥)||2 = 1. The anchor in a 

triplet is the reference label’s sample with respect to which other label’s samples are selected for 

the triplet. The triplet-based approach enables few-shot learning, as a single input to the training 

process is a combination of three different samples. Given a training set of k-classes and n-samples, 

the conventional classification approach [31] [38] [54] has a total of k×n samples to learn from. In 

contrast, the triplet loss-based approach has 3 samples per input, where each sample can be selected 

in k×n ways, i.e., a total of (k×n)3 inputs generated from the same dataset. 

The goal of the overall Siamese encoder is to ensure that the anchor image is closer to all 

other images of the same label (positives), than it is to any image of other labels (negatives). Based 

on this discussion, the embeddings should satisfy equation (12) ‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑝)‖22 ≤  ‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑛)‖22 (12) 

 

However, it is important to note that equation (12) can be trivially solved if 𝑓(𝑥) = 0. 

Therefore, the margin 𝛼 is introduced to enforce the stability of equation (12). Finally, the triplet 

loss function 𝐿(𝑥𝑖𝑎 , 𝑥𝑖𝑝, 𝑥𝑖𝑛) that is to be minimized is given as: 𝐿 =  ‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑝)‖22 −  ‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑛)‖22 + 𝛼 ≤ 0  (13) 

 

The authors of FaceNet [160] remark that to achieve rapid convergence it is important to 

select triplets that violate the constraint in equation (13). Thus, for each triplet, we need to select 

a hard-positive 𝑥𝑖𝑝 that poses great dissimilarity with the anchor, and a hard-negative 𝑥𝑖𝑛 that poses 

great similarity with the anchor 𝑥𝑖𝑎. This may require the selection of triplets that satisfy both: 
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 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖𝑝‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑝)‖22, 
𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑖𝑛‖𝑓(𝑥𝑖𝑎) − 𝑓(𝑥𝑖𝑛)‖22 

(14) 

 

Evaluating 𝑎𝑟𝑔𝑚𝑖𝑛 and 𝑎𝑟𝑔𝑚𝑎𝑥 across the whole dataset is practically infeasible. To 

overcome this challenge, we present a novel and low-complexity indoor localization domain-

specific approach for triplet selection in Section 7.3.5. 

Once the embeddings for the training dataset have been produced, the embeddings and 

associated labels can be used to formulate a non-parametric model such as KNN. Later, this KNN 

model combined with the encoder can be used to classify an unlabeled sample as a known label.  

Based on our discussion above, there are three salient features of Siamese networks that fit 

well to the challenges of long-term fingerprinting-based indoor localization: (i) Instead of 

associating a sample to its label, it learns the relationship between the samples of labels, (ii) 

Learning relationships between samples promotes generalization and suppresses the model’s 

tendency to overfit the label-sample relationship, and (iii) It requires fewer samples per class/label 

to achieve good performance (few-shot leaning). Siamese networks will tend to avoid overfitting 

the training fingerprints and can minimize the offline fingerprint collection effort. The next section 

describes our framework that takes this approach for learning and classifying fingerprints.  

 

7.3. STONE FRAMEWORK 

7.3.1. OVERVIEW 

A high-level overview of the proposed framework is presented in Figure 64. We begin in the 

offline phase (annotated by red arrows), where we capture RSSI fingerprints for various RPs across 

the floorplan. Each row in the fingerprint dataset consists of the RSSI values for each AP visible 
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across the floorplan and its associated RP. These fingerprints are used to train the Siamese encoder 

depicted in Figure 63. Once the Siamese encoder is trained, the encoder network itself is then used 

to embed the RSSI fingerprints in a d-dimensional hyperspace. The encoding of each RSSI vector 

and its associated RP, from the offline phase, form a new dataset. This new dataset is then used to 

train a non-parametric model. For our work, we chose the KNN classifier. At the end of the offline 

phase, the Siamese encoder and the KNN model are deployed on a mobile device. 

 In the online phase (green arrows), the user captures an RSSI fingerprint vector at an RP 

that is unknown. For any WiFi AP that is not observed in this phase, its RSSI value is assumed to 

be -100, ensuring consistent RSSI vector lengths across the phases. This fingerprint is pre-

processed (see Section IV.B) and sent to the Siamese model. The encoding produced is then passed 

on to the KNN model, which finally predicts the user’s location.  

 

 

Figure 64. An overview of the STONE indoor localization framework depicting the offline 

(red arrows) and online (green arrows) phases. 

 

In the following subsections, we elaborate on the main components of the STONE 

framework shown in Figure 64.  
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7.3.2. RSSI FINGERPRINTING PREPROCESSING 

The RSSI for various WiFi APs along with their corresponding RPs are captured within a 

database as shown in Figure 64. The RSSI values vary in the range of -100 to 0 dB, where -100 

indicates no signal and 0 indicates a full (strongest) signal. The RSSI values captured are then 

normalized to a range of 0 (weakest) to 1 (strongest) signal. Finally, each RSSI vector is padded 

with zeros such that the length of the vector reaches its closest square. Each vector is then reshaped 

as a square image. This process is similar to the one covered by the authors in [31]. At this stage, 

in the offline phase, we have a database of fingerprint images and their associated RPs, as shown 

in Figure 64. 

 

7.3.3. LONG-TERM FINGERPRINT AUGMENTATION 

A major challenge to maintain long-term stability for fingerprinting-based indoor 

localization is the removal of WiFi APs post-deployment (i.e., in the online phase) [152]. In the 

offline phase, it would be impossible to foretell which specific APs may be removed or replaced 

in the future. In the STONE framework, once an AP is removed or replaced, its RSSI value is set 

to -100. This translates into a pixel turning off in the input fingerprint image. STONE enables long-

term support for such situations by emulating the removal of APs (turning off pixels of input 

images). When generating batches to train the Siamese encoder, we randomly set the value of a 

percentage of observable APs (p_turn_off) to 0. The value of p_turn_off is picked from a uniform 

distribution as described by: 𝑝_𝑡𝑢𝑟𝑛_𝑜𝑓𝑓 =  𝑈(0.0, 𝑝_𝑢𝑝𝑝𝑒𝑟 ) (15) 
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where, p_upper is the highest percentage of visible APs that can be removed from a given 

fingerprint image. For the experiments in section VI, we chose an aggressive value of 

p_upper=0.90. 

 

7.3.4. CONVOLUTIONAL NEURAL ENCODER 

Given the superior pattern learning abilities of CNNs, we employ stacked convolutional 

layers to form the Siamese encoder. An architectural overview of the encoder is shown in Figure 

63. We use 2 convolutional layers (conv) with filter size of 2×2 with the stride set to 1 and 

consisting of 64 and 128 filters, respectively. They are followed by a fully connected (FC) layer 

of 100 units. The length of the embedding (encoder output or last layer) was empirically evaluated 

for each floorplan independently. Based on our analysis, we chose a value for this hyperparameter 

in the range of 3 to 10. To enhance the resilience of STONE to short-term RSSI fluctuations, 

Gaussian noise (σ = 0.10) is added to the model input (as shown in Figure 63). Dropout layers are 

also interleaved between convolution layers to improve generalizability of the encoder. It is 

important to note that while the presented convolutional architecture functions well for our 

experiments and selected datasets, it may need slight modifications when porting to other datasets 

with a different feature space. 

 

7.3.5. FLOORPLAN-AWARE TRIPLET SELECTION ALGORITHM 

The choice of samples selected to form the triplets have a critical impact on the efficacy of 

the training and accuracy of the Siamese encoder. For a limited set of available fingerprints per 

RP (6-9 in our experiments), there are very few options in selecting a hard-positive. However, 

given an anchor fingerprint, selecting a hard-negative is a greater challenge due to the large number 
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of candidate RPs across the floorplan. The motivation for our proposed triplet selection strategy is 

that RPs that are physically close to each other on the floorplan would have RSSI fingerprints that 

are the hardest to discern. This strategy is specific to the domain of fingerprinting-based indoor 

localization as the additional information of the relationship between different labels (location of 

labels with respect to each other) may not be available in other domains (such as when comparing 

faces).  

 To implement our hard-negative selection strategy, we first pick an RSSI fingerprint from 

an anchor RP, chosen at random. For the given anchor 𝑅𝑃𝑎, we then select the negative 𝑅𝑃𝑛 using 

a probability density function. Given the set of all K RPs, {𝑅𝑃1, 𝑅𝑃2, … 𝑅𝑃𝑘}, the probability of 

selecting the ith RP as the hard-negative candidate is given by a bivariate Gaussian distribution 

around the anchor RP as described by the expression: 𝑃(𝑅𝑃𝑖)~𝑁2(𝜇𝑎 , 𝜎),   𝑠. 𝑡. 𝑃(𝑅𝑃𝑎) = 0 (16) 

 

where 𝑃(𝑅𝑃𝑖) is the probability of selecting it as the hard-negative and 𝑁2 represents a 

bivariate Gaussian probability distribution that is centered around the mean at the anchor (𝜇𝑎). 

However, another anchor fingerprint should never be chosen as the hard-negative, and therefore 

we set the probability of selecting an anchor to zero. The expression in (16) ensures that the RPs 

closest to the anchor RP have the highest probability of being sampled. This probability then drops 

out as we move away from the anchor. The bivariate distribution is chosen based on the assumption 

that the indoor environment under test is two-dimensional (a single floor). Once the anchor and 

the negative RPs are identified for a given triplet, the specific RSSI fingerprint for each is randomly 

chosen. This is because we have only a few fingerprints per RP, and so it is easy to cover every 

combination. 
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The proposed triplet selection strategy is subsequently used to train the Siamese model as 

discussed in Section IV.A, whose output is then used to train the KNN model in the offline phase.  

In the online phase, the encoder and the KNN model are deployed on the mobile device and 

used to locate the user on the floorplan, as illustrated in Figure 64(lower half). 

 

7.4. EXPERIMENTS 

7.4.1. EXPERIMENTAL SETUP 

We evaluated the effectiveness of STONE across three large indoor paths derived from a 

publicly available dataset as well as based on our own measurement across multiple buildings. The 

next two subsections describe these paths, while the last subsection summarizes prior work that 

we compare against.   

 

 

Figure 65. Indoor floorplans for long-term indoor localization evaluation, annotated with 

number of visible WiFi APs along the paths and RPs along the paths. Vertical scales show 

temporal granularities across months (left-UJI) and collection instances (right-Basement 

and Office).  
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7.4.1.1. FINGERPRINTING TEST SUIT: UJI 

STONE was evaluated on the public dataset UJI [152]. This dataset covers two floors within 

a library. However, due to high floorplan similarity across the two floors, we present the results 

for floor 3, for brevity. The dataset consists of fingerprints that are collected for the RPs along 

paths, with multiple fingerprints per RP that are collected at different instances of time. We utilize 

RPs from the dataset for which the fingerprints (up to 9) were collected on the same day for training 

the models we compared. The data from the following 15 months is used for testing. The UJI 

floorplan we considered is presented in Figure 65 (bottom left of the figure). The RPs on the 

floorplan form a grid like structure over a wide-open area, which is different from the corridors 

evaluated for the Basement and Office indoor paths, discussed next.  

 

7.4.1.2. FINGERPRINTING TEST SUITE: OFFICE AND BASEMENT 

We also evaluated STONE at finer and broader granularity levels of hours, days, and months. 

The floorplan and associated details for these paths, captured from real buildings accessible to us, 

are presented in Figure 65. The fingerprints were captured from two separate indoor spaces: 

Basement (61 meters in length) and Office (48 meters in length). An LG V20 mobile device was 

used to capture fingerprints along paths. While the Office path fingerprints are captured in a section 

of a building with newly constructed faculty offices, the basement path is surrounded by large labs 

that contain heavy metallic equipment. The Office and Basement paths are thus unique with respect 

to each other (and also the UJI path) in terms of environmental noise and multipath conditions 

associated with the paths. Each measured fingerprint location is annotated by an orange dot (Figure 

65) and measurements are made 1 meter apart. A total of 6 fingerprints were captured per RP at 

each collection instance (CI), under a span 30 seconds. The first three CIs (0–2), for both paths 

were on the same day, with each CI being 6 hours apart. The intention was to capture the effect of 
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varying human activity across different times in the day; thus, the first CI is early in the morning 

(8 A.M), the second at mid-day (3 P.M), and the third is late at night (9 P.M). The following 6 CIs 

(3–8) were performed across 6 consecutive days. The remaining CIs (9–15) were performed on 

the following months, i.e., each was ≈30 days apart. 

Figure 66 depicts the ephemerality of WiFi APs on the Basement and Office paths across 

the 16 CIs (CIs:0–15 over a total span of 8 months). A black mark indicates that the specific WiFi 

AP (x-axis) was not observed on the indicated CI (y-axis). While capturing fingerprints across a 

duration of months, we did not observe a notable change in AP visibility up to CI:11. Beyond that, 

≈20% of WiFi APs become unavailable. Note that the UJI dataset shows an even more significant 

change in visible WiFi APs of ≈50% around month 11; however, this change occurs much sooner 

in our paths, at C1:11, which corresponds to month 4 after the first fingerprint collection in CI:0. 

For the Office and Basement paths, we utilized a subset of CI:0 (fingerprints captured early in the 

morning) for the offline phase, i.e., training occurs only on this subset of data from CI:0. The rest 

of the data from CI:0 and CIs:1–15 was used for testing.  

 

 

Figure 66. Ephemerality of WiFi APs across various collection instances for the Basement 

and the Office indoor paths. 
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7.4.1.3. COMPARISON WITH PRIOR WORK 

We identified four state-of-the-art prior works to compare against our proposed STONE 

framework. The first work, LearnLoc or KNN [37] is a lightweight non-parametric approach that 

employs a Euclidean distance-based metric to match fingerprints. The technique in the work is 

incognizant of temporal-variation and serves as a one of the motivations for our proposed work. 

The second work, LT-KNN [158], is similar to [37] but has enhancements to maintain localization 

performance as APs are removed or replaced over time. LT-KNN achieves this by imputing the 

RSSI values of APs that have been removed (are no longer observable on the floorplan) using 

regression. The KNN model is re-trained using the imputed data to maintain localization accuracy 

over time. The third work, GIFT [123], achieves temporal-variation resilience by matching the 

change in the gradient of WiFi RSSI values as the user moves along a path on the floorplan. 

Fingerprint vectors are used to represent the difference (gradient) between two consecutive WiFi 

scans and are associated with a movement vector in the floorplan. Lastly, the fourth work, SCNN 

[31], is a deep learning-based approach that has been designed to sustain stable localization 

accuracy in the presence of malicious AP spoofing. While SCNN is not designed to be temporally 

resilient, it is intended to maintain accuracy under the conditions of high RSSI variability. This 

makes SCNN an excellent candidate for our work to be compared against. 

 

7.4.2. EXPERIMENTAL RESULTS: UJI 

Figure 67 presents the mean localization error in meters (lower is better) for the proposed 

STONE framework and the four other prior fingerprinting-based indoor localization techniques 

across 15 months of the UJI dataset. Between months 1-2, we observe that most previous works 

(KNN, SCNN, LT-KNN) experience a sharp increase in localization error. Given that there is no 

temporal-variation in the training and testing fingerprints for month 1, previous works tend to 
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overfit the training fingerprints, leading to poor generalization over time. In contrast, STONE 

remains stable and delivers ≈1 meter accuracy by not overfitting to the training fingerprints in 

month 1. We can also observe that GIFT provides the least temporal-resilience and has the highest 

localization error over time. The localization errors of STONE, SCNN, KNN and LT-KNN are 

around 2 meters (or less) up to month 10, followed by a severe degradation for KNN and SCNN. 

The significant change in APs at month 11, as discussed earlier, negatively impacts frameworks 

that are not designed to withstand the AP removal-based temporal-variation. In general, STONE 

outperforms all frameworks from months 2–11 with up to 30% improvement over the best 

performing prior work, LT-KNN, in month 9. Owing to the long-term fingerprint augmentation 

used in STONE, it remains stable and performs very similar to LT-KNN beyond month 11. Over 

the entire 15-month span, STONE achieves ≈0.3-meter better accuracy on average than LT-KNN. 

Most importantly, LT-KNN requires re-training every month with newly collected (anonymous) 

fingerprint samples, whereas no re-training is required with STONE over the 15-month span.  

 

 

 

Figure 67. Comparison of localization error of various fingerprinting-based indoor 

localization frameworks over 15 months for the UJI indoor path. 
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7.4.3. EXPERIMENTAL RESULTS: OFFICE AND BASEMENT 

Figure 68 depicts the contrast in mean indoor localization errors across localization 

frameworks for the Office and Basement indoor paths. Similar to the previous results, most 

frameworks (especially SCNN and GIFT) tend to overfit the training fingerprints in CI:0 followed 

by a sharp increase in localization error for CI:1. It is worth noting that there is merely a difference 

of 6 hours between CI:0 and CI:1. In contrast to previous works, STONE undergoes the least 

increase in localization error initially (CI:0–1), followed by a fairly slow increase in localization 

error. We observe that across both indoor paths, GIFT and SCNN tend to perform the worst overall. 

While both these techniques show some resilience to temporal variation at the hourly (CIs:0–2) 

and the daily scale (CIs:3–8), they both tend to greatly lose their efficacy at the scale of months 

(CIs:9–15). GIFT’s resilience to very short-term temporal variation is in consensus with the 

analysis conducted by its authors, as it is only evaluated over a period of few hours [123]. We also 

note that SCNN performs worse on the Office and Basement paths, as compared to with the UJI 

path (previous subsection). This may be due to the larger number of classes (RPs) in the Office 

and Basement paths. Both KNN and LT-KNN perform well (1–2 meters of localization error) on 

the Basement path. However, the localization error of KNN tends to increase in later CIs, 

particularly on the Office path. STONE outperforms LT-KNN across most collection instances, 

including up to and beyond CI:11. STONE delivers sub-meter of accuracies over a period of weeks 

and months and performs up to 40% better than the best-known prior work (LT-KNN) over a span 

of 24 hours (CI:1–3 in Figure 68(b)), with superior localization performance even after 8 months. 

On average, over the 16 CI span, STONE achieves better accuracy than LT-KNN by ≈0.15 meter 

(Basement) and ≈0.25 meter (Office). As discussed earlier, STONE achieves this superior 

performance without requiring re-training, unlike LT-KNN which must be re-trained at every CI. 
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Overall, we attribute the superior temporal-variation resilience of STONE, to our floorplan-

aware triplet selection, long-term AP augmentation, and also the nature of Siamese encoders that 

learn to differentiate between inputs instead of learning to classify a specific pattern as a label is 

also credited. 

 

 

 
(a) Basement 

 
(b) Office 

Figure 68. Localization errors of various frameworks over CIs for the Basement and Office 

indoor paths. Results for CI:0 are enlarged in the inset. 

 

7.4.4. RESULTS: SENSITIVITY TO FINGERPRINTS PER RP 

Considering that STONE is explicitly designed to deliver the best temporal-resilience using 

minimal fingerprints, we performed a sensitivity analysis by varying the number of fingerprints 

per RP (FPR) across all indoor paths considered, to study its impact on localization error. Figure 

69 depicts the mean localization error as a heatmap (x-axis: timescale, y-axis: FPR) for different 
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variants of STONE, each trained using a different number of FPRs. The final column in Figure 

69represents the mean localization error across the timeline. The experiment is repeated 10 times 

with shuffled fingerprints to avoid any form of fingerprint selection bias. From the figure, we 

observe that for all three indoor paths, the STONE framework when trained using 1 FPR performs 

the worst; conversely increasing FPR beyond 4 does not produce notable improvements. Overall, 

these results show that STONE is able to produce competitive indoor localization accuracy in the 

presence of temporal-variations using as few as 4 FPR. To contrast this with a conventional 

classification-based approach, SCNN [31] is deployed using as many as 8 FPR (2×) and is unable 

to deliver competitive localization errors over time. Moreover, mobile devices can take several 

seconds to capture a single fingerprint (WiFi scan), thus reducing the number of FPRs in the 

training phase can save several hours of manual effort. 

            

 

Figure 69. Sensitivity analysis on STONEs performance across varying number of 

fingerprints per RP (FPR) on UJI, Basement, and Office paths. Numbers in the heatmap 

cells show the obtained mean localization error. 
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7.5. CONCLUSION 

In this chapter, we presented an effective temporal-variation resilient fingerprinting-based 

indoor localization framework called STONE. Our approach was evaluated against four state-of-

the-art indoor localization frameworks across three distinct indoor paths. The experimental results 

indicate that STONE often delivers sub-meter localization accuracy and when compared to the best 

performing prior work, delivers up to 40% better accuracy over time, without requiring any re-

training or model updating after the initial deployment. The ideas highlighted in this work, 

culminating in the STONE framework, represent promising directions for achieving low-overhead 

stable and long-term indoor localization with high-accuracy, while requiring the use of only a 

handful of fingerprints per reference point.  
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8. CONCLUSION AND FUTURE WORK SUGGESTIONS 

 

8.1. RESEARCH CONCLUSION 

 

In this dissertation, we present a framework for accurately and efficiently localizing people 

and assets within GPS-deprived indoor environments through state-of-the-art machine learning 

and statistical models that are suitable to be deployed on a smartphone and other similar energy-

bound embedded platforms. Through critical experimental evaluations, we first identified core 

challenges in the domain such as device heterogeneity, temporal variations, and security that 

directly impact the performance of a fingerprinting-based indoor localization as described by 

energy-efficiency, prediction latency, accuracy and reliability of the framework. Contemporary 

fingerprinting-based indoor localization frameworks lack a holistic approach that can jointly tackle 

the aforementioned challenges. In this dissertation, we demonstrate that by using careful analysis 

of fingerprints and then using intelligent fingerprint augmentation methods, energy cognizant 

deep-learning models and a holistic approach towards framework design, we can accomplish the 

goals of practical indoor localization.  

Towards this, we propose a real-time deep learning-based indoor localization framework 

(SARTHI) that is able to address the abovementioned challenges in a holistic manner. SARTHI uses 

a combination of (i) light-weight parametric and non-parametric pattern-matching models for to 

achieve exceptional localization accuracies, (ii) device heterogeneity resilient metrics, (iii) novel 

methodologies to overcome temporal variation through deep-learning, and (iv) generalized 

approaches to sensor fusion combining the aforementioned techniques with step and heading 

estimation. SARTHI employs information from several sources such as wireless signal 
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characteristics, inertial sensors, indoor map features, user device specific information and 

uncertainties from the user and their environment to deliver practical real-time indoor positioning.  

Apart from these state-of-the-art advancements, SARTHI also recognizes and resolves 

previously unknown security challenges in the domain of fingerprinting-based indoor localization 

using deep-learning. Finally, SARTHI is designed bearing in mind the energy and computational 

limitations of embedded platforms such as smartphones. The superior advantages of SARTHI are 

validated through rigorous experimental evaluations performed against previously best-known 

works in the domain. 

PortLoc is the first contribution of SARTHI. PortLoc presents an in-depth analysis of WiFi 

RSSI fingerprints. This analysis highlights the importance of using data-driven pattern matching 

approaches for heterogenous device-based indoor localization. Based on this analysis, 

computationally inexpensive metrics that can be used to compare and match fingerprints are 

identified. PortLoc is designed to be a truly portable (device heterogeneity resilient) WiFi 

fingerprinting-based indoor localization solution. The efficacy of PortLoc is evaluated on a 

benchmark suit containing fingerprints collected across multiple buildings using several 

smartphones from various vendors.  

Our next contribution SHERPA-HMM is a hidden Markov model-based portable indoor 

localization framework that employs heterogeneity resilient distance metrics. The identification of 

such metrics generalizes the problem such that the localization accuracy for a variety non-

parametric (KNN, SVM etc.) models can be improved. Further, SHERPA-HMM uses a lightweight 

software-based approach to combine noisy fingerprints over distinct smartphones and pattern 

matching/filtering to improve location accuracy. The proposed approach was evaluated against 

state-of-the-art localization techniques, across a variety of Android-based smartphones that are 
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used for indoor localization along paths in real buildings. The evaluations were performed for both 

localization accuracy and energy requirements when deployed on smartphones. 

Next, we propose CNNLOC, a novel technique to extract images out of location fingerprints. 

The work adapts convolutional neural networks to the domain of indoor localization towards 

improving robustness and accuracy. A hierarchical architecture to scale is proposed such that the 

framework can be used in the real world where buildings can have large numbers of floors and 

corridors. CNNLOC is evaluated against three different state-of-the-art indoor localization 

frameworks from prior work. The proposed framework outperformed these approaches and 

delivered localization accuracy of under 2 meters. 

Given the rapid adaption of deep-learning in the domain of fingerprinting-based indoor 

localization, for the first time, a vulnerability analysis of deep learning based indoor localization 

frameworks that are deployed on mobile devices, in the presence of wireless access points jamming 

and jamming attacks is presented. The analysis in chapter 5 revealed significant degradation of 

localization accuracy that can be induced by an attacker with very minimal effort. Based on the 

evaluations performed, a novel solution is devised to provide resilience against jamming and 

spoofing attacks. The secure variant of the proposed approach, Secure-CNNLOC, was found to 

deliver up to 10× superior localization accuracy on average, in the presence of threats from several 

malicious attackers, compared to the unsecured CNN and DNN-based localization framework. 

Towards the goal of optimizing the cumbersome deep-learning approaches, QuickLoc was 

proposed as an integral component of SARTHI. The contribution first presented an analysis of the 

impact of CNN model depth on an indoor localization framework in terms of the achievable 

prediction latency and localization accuracy. From the analysis it was observed that the superior 

localization accuracies achieved through the use of deep-learning approaches such as CNNs came 
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at an ever-expanding cost of localization latency and memory requirement (model footprint). To 

overcome this challenge, for the first time, QuickLoc adapted and explored the paradigm of 

conditional computing (and early exit) in the context of deep learning based indoor localization. 

In this contribution, a novel localization framework was proposed that can dynamically adapt to 

the accuracy and latency needs of the target mobile platform at run-time. A comprehensive analysis 

of several real work factors that affect the performance and deployability of indoor localization 

were tested, such as, inference energy, memory footprint and device heterogeneity. Sensitivity 

analysis for specific to the domain of conditional computing such as, uncertainty sampling and 

early exit path configurations were also presented. 

Lastly, we propose STONE, a Siamese neural encoder for long-term indoor localization with 

mobile devices. In STONE, we performed a comprehensive analysis on the impact different levels 

of temporal granularity (hours, days, months, year) on the achievable indoor localization accuracy 

using fingerprinting. STONE contributes to the domain by adapting a Siamese triplet-loss centric 

neural encoder for the purpose of indoor localization. Given that the selection of triplets is critical 

for the efficient convergence of the model (as discussed in chapter 7), we propose a floorplan-

aware triplet selection algorithm that plays a crucial role in the training efficacy and localization 

performance of the overall framework. Based on our analysis of the long-term fingerprinting data, 

we additionally proposed temporal variation centric fingerprint augmentation methodologies for 

resilience against the removal of access points in the online phase over a period of a year. From 

the experimental evaluations, we found that STONE is able to deliver superior performance 

utilizing a small number of fingerprints per reference point (FPR). This is because STONE adapts 

the domain of few-shot learning to fingerprinting-based indoor localization. The ability to deliver 

competitive accuracies using a low FPR is critical, as it elevates the human effort of collecting 
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fingerprints in the offline phase, which is an expensive endeavor. Finally, we rigorously evaluated 

the STONE framework with state-of-art works in the domain. STONE establishes its superiority by 

delivering up to 40% improvement in localization accuracy over time using half the FPR as 

compared to previous works. 

 

8.2. SUGGESTIONS FOR FUTURE WORK 

With rapid growth in the computational capabilities of embedded platforms such as 

smartphones and improvements in the domain of pattern matching achieved through higher 

complexity deep-learning techniques, the performance of fingerprinting-based indoor localization 

frameworks would continue to improve. Through this dissertation we expect to lay the groundwork 

on top of which future advancements can be made. Given the nature of the core challenges in the 

domain of fingerprinting-based indoor localization (as discussed in chapter 1), and the current 

state-of-the-art deep learning technologies and its associated trends, we envision the following as 

the likely directions of our future work: 

 

• Offline phase fingerprint collection effort reduction: Collecting high-quality fingerprints in the 

offline phase for the purpose of training machine learning models is an expensive manual 

endeavor [161] [162] [163] [164]. This burden is further intensified when fingerprints are 

required to be collected again while attempting to maintain the localization accuracy over time 

[165] [166]. The work in chapter 7 proposes a few-shot based approach that can alleviate the 

burden of fingerprint collection by requiring fewer sampler per reference point. However, 

owing to removal and replacement of APs and other environmental changes, even few-shot 

based approaches are bound to degrade in localization accuracy over long durations of time. 
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As an alternative to the collection of fingerprints across the whole floorplan, methodologies 

can be developed that help identify a small number of strategically selected reference points, 

on a given floorplan, such that they minimize the impact of temporal variation on localization 

accuracy. 

• Fingerprint augmentation methodologies for training deep learning models: In several 

chapters across this dissertation, we have used various fingerprint augmentation strategies that 

help with the convergence of the deep-learning models (chapter 4) and alleviate the impact of 

temporal variation (chapter 7) or enable security (chapter 5). Various previous works also 

employ fingerprint augmentation methodologies for improved generalization and fast 

convergence of deep-learning models [167] [168] [169]. However, all such previous works, 

including ours, limit the evaluation of the augmentation method only to the specific sub-

problem (such as device heterogeneity or temporal variation) only. At this time, there are no 

known experimental studies that evaluate the generalizability of fingerprint augmentation 

techniques across multiple domain challenges such as temporal variation, device heterogeneity 

and security in a cohesive manner. Further, even though many recent works adapt techniques 

from the domain of computer vision that has well established methodologies and APIs [170] 

[171] for image augmentation, there are no well-established standards or APIs for fingerprint 

augmentation available to the academics or engineers. Our future work will focus on filling 

this gap in this knowledge. 

• Fingerprint-centric noise reduction and AP inpainting: The work proposed in chapter 7 

enables resilience to short term noise, and AP removal through fingerprint augmentation. 

However, the specific deep-learning architecture employed is not designed towards this goal. 

It would be possible to improve upon resilience to short-term variational resilience and AP 
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removal by instead focusing on developing deep learning architectures and loss functions that 

are specifically designed towards reverting the fingerprints visible in the online phase to 

fingerprints as they were visible in the offline phase (back to the fingerprint). Considering the 

applications of vision-based systems in the domain of indoor localization, pixel inpainting 

could be adapted to “in-paint” the missing APs over time [172] [173] [174]. Such 

methodologies would enable us to segregate, the overall challenge into subcomponents that are 

handled by specialized models particularly designed to deal with the subcomponent.  

• Attention-based approaches for device heterogeneity resilience: Invariability to device 

heterogeneity is crucial to the realization of fingerprinting-based indoor. The work in chapter 

2 proposes and evaluates methodologies for improving device heterogeneity resilience through 

intelligent metrics. Recent works in the domain of natural language translation and computer 

vision have proposed attention and memory-based mechanisms that augment deep-learning 

models. Attention-based approaches [175] [176] [177] [178] have demonstrated improvements 

in these areas through improved pattern matching and also lower the computational 

requirements of the model deployed on the platform. Our future works will focus on adapting 

attention-based mechanisms to further improve resilience to device heterogeneity that is 

evaluated over long periods of time. 

• Lifelong learning and controlled forgetting for reduced maintenance fingerprinting-based 

indoor localization: The work in chapter 7 proposes a methodology for indoor localization that 

is resilient to real-world temporal variation scenarios. While the Stone framework delivers 

sustained indoor localization accuracy over temporal variations including removal of WiFi 

APs, there is a general overall trend of degrading accuracy. Our evaluations of Stone and other 

state-of-the-art works in the domain suggest the need of retraining the deep-learning model 
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associated with the indoor localization frameworks. Unfortunately, collecting new fingerprints 

across the floorplan come at considerably high costs. Alternatives, such as crowdsourcing of 

fingerprints generally yields poor quality of samples limiting the achievable localization 

accuracy through re-training [179]. It is important to note, that acquiring unlabeled fingerprints 

or those fingerprints whole associated reference points or location is unknown are considerably 

easy to acquire. In such a scenario, fingerprints as observed on the user’s device could be 

anonymously shared with the cloud. Our future works will attempt to monopolize on the trove 

of unlabeled fingerprints captured in the online phase (semi-supervised lifelong learning [180] 

[181]), to further improve the localization accuracy of the indoor localization frameworks in a 

semi-supervised continuous learning manner. 

• Advanced adversarial approaches for enhanced security of fingerprinting-based indoor 

localization frameworks: Securing the indoor localization framework from third party attacks 

is of exceptional importance [117] [118] [119]. This is especially important under situations 

where indoor localization platforms are being used under critical conditions of life and safety 

such as fire evacuation, or by human-based mining operations. In chapter 5, we briefly 

evaluated an attack-methodology for convolutional model based indoor localization 

frameworks and present a training methodology that can overcome spoofing and Jamming 

attacks. Such attacks in the domain of deep learning are known as data poisoning and evasion 

attacks. There are however attack methodologies such as adversarial attacks have not been 

modeled and evaluated in the domain of fingerprinting-based indoor localization. Some such 

popular attack methodologies include limited-memory Broyden-Fletcher-Goldfarb-Shanno 

(BFGS), Jacobian-based Saliency Map Attack (JSMA), Deepfool, Carlini & Wagner Attack 

(C&W), Generative Adversarial Networks (GAN), and so on [182]. For the safety-critical 
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realization of fingerprinting-based indoor localization our future works will focus on the 

evaluation, resilience, and detection of such attack methodologies. 

• Temporal variation aware anomaly detection: Several recent works in the domain of 

fingerprinting-based indoor localization focus on detecting spoofing or jamming attacks over 

long-periods of time [117] [118] [119]. These spoofing and jamming attack are detected as 

anomalies in the expected distribution of fingerprints visible on the floorplan. Most previous 

works are incognizant of temporal variations in the is signal characteristics that may be 

observed in the online phase. This may lead the deployed anomaly detection mechanism to 

falsely trigger when sufficient temporal variations have occurred. On the other hand, anomaly 

detection mechanisms [183] could also be used as a trigger to notify the indoor localization 

maintenance team of a possible requirement of fingerprint re-collection. Again, is such a 

scenario, an attacker might forcefully trigger such a system, such that fingerprints are re-

collected on the floorplan. As covered across this dissertation, the collection of fingerprints in 

the offline phase can come at a significant financial cost, and so this mechanism can be used 

to attack an indoor localization company’s financial stability. To safeguard against such 

scenarios, our future works will focus on the challenge of security and temporal variations 

jointly. The goal of such work would be to create spoofing and jamming detection mechanisms 

that are differentiable from temporal variations.  

• Handling unpredictability from embedded OS: Device heterogeneity can manifest itself in 

various ways. For example, in chapters 2 and 3, we focus on aspects of device heterogeneity 

such as antenna gain that may impact the perceived RSSI signal characteristics. Later, in 

chapter 6, we focus on aspects of device heterogeneity that impact the latency of indoor 

localization deep-learning model deployed due to the variations in the memory and 
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computational capabilities across various devices. Another source of device heterogeneity is 

expressed through the use of traditional operating systems (non-real time operating systems) 

[184]. When a WiFi fingerprint scan is initiated on the user’s smartphone in the online phase, 

a new background process or thread may be created that is supposed to return with the scan 

results. However, there are no guarantees associated with when the process is actually 

executed, the time it takes to execute the process and the time it takes to return the results to 

main foreground indoor localization application. All of these timings can vary considerably 

across devices, as hinted in chapter 6 by the unique WiFi scan retrieval times across various 

smartphones. Such unpredictability could severely affect the real-timeliness of the indoor 

localization framework, especially when fusing the fingerprinting-based localization results 

with other methodologies such as dead reckoning. Our future works will focus on the design 

and development of fusion techniques that take into consideration timing-based 

unpredictability associated with the lack real-time task scheduling and execution of the various 

components of an indoor localization framework. 

• Deep learning-based movement vector prediction: In the domain of fingerprinting-based 

indoor localization, machine learning classification and regression models are used to predict 

the user’s location. Most regression-based models have the ability to predict the user’s location 

as an x-y coordinate on the floorplan. Where the floorplan is considered to be a continuous 

surface. One the other hand, classification-based models are deployed such that the user’s 

location is predicted to be a tile on the floorplan grid. The classification-based gained more 

popularity in the domain of WiFi RSSI fingerprinting, given the upper limits of achievable 

localization accuracy. However, both of these approaches overlook the fact that in the online 

phase, the user may be walking while capturing an RSSI fingerprint. This implies that the RSSI 
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values captured are associated with the movement vector of the user and not a particular 

location on the map. At this time, there are no known works that utilize only one fingerprint to 

produce the user’s movement vector on a floorplan. Future works will need to address this 

challenge. 

• Optimizing high-complexity deep-learning models towards improved energy and latency for 

embedded platforms: As we improve the localization accuracy of deep-learning based indoor 

localization frameworks, we continue to train and deploy deep-learning models that take up 

more memory and require higher computational capabilities on the device they are deployed 

on. Given the secure nature of deploying the deep-learning model on smartphones (information 

is not shared across a network), indoor localization frameworks specifically targeted to be 

deployed on embedded platforms remain popular. However, this trend hints on the need for 

memory and latency optimizations that would be needed to realize high-complexity deep-

learning based indoor localization models on smartphones. While compression and 

quantization-based model optimizations have been evaluated in the past, it is impertinent that 

we focus on deep-learning model architecture and domain specific optimizations [185]. One 

such example is that attention layers designed to handle RSSI information may not require 64-

bit data types. This is because normalized WiFi RSSI values only range between 0 to 1, with 

a requirement of only two decimal points (7 bits). In this case, the output of an attention layer 

(unweighted Luong style [175]) only needs to hold up to 4 decimal points (14 bits).  

• Combining Channel State Information for superior resilience to device heterogeneity and 

temporal variation:  The Channel State Information (CSI), at the physical layer of the Open 

Systems Interconnect (OSI) model, contains the amplitude and phase information of each sub-

carrier that is used to represent the attenuation and frequency deviation characteristics of the 
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signal propagating from the transmitter to the receiver. The amplitude attenuation occurs 

during the propagation of a transmitted signal and its interactions with environmental artifacts 

such as walls, pillars etc. leading to multipath and shadowing effects. Recent works such as in 

[185], have demonstrated that CSI fingerprints contain more discernable information than 

RSSI fingerprints leading to superior localization accuracy using fingerprinting-based 

localization in the indoor environment. Unfortunately, ubiquitously available off-the-shelf 

smartphones lack the relatively expensive networking hardware required to capture real-time 

CSI fingerprints in the online phase. However, it may be practical to capture CSI and RSSI 

fingerprints for each reference point on a given floorplan in the offline phase using specialized 

hardware. By identifying and learning the relationship between the CSI and RSSI fingerprints 

for various reference points, new synthetic RSSI fingerprints could be extrapolated. Given that 

CSI fingerprints contain more information about the environment than conventional RSSI 

fingerprints [185], the synthetic RSSI fingerprints may be used to train machine learning 

models that are relatively resilient to minor environmental fluctuations that lead to degradation 

in localization quality over time and across heterogenous devices. In the online phase, 

conventional RSSI fingerprints would be captured by the smartphone and fed to the machine 

learning model trained using synthetic RSSI fingerprints to achieve superior localization 

quality. Future work could evaluate the feasibility of such an approach. 
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