CONSUMPTIVE USE PROGRAM (CUP) MODEL

Morteza N. Orang¹ Richard L. Snyder² J. Scott Matyac³

ABSTRACT

For many years, published crop efficient (K_c) values have been used to estimate crop evapotranspiration (ET_c) from reference evapotranspiration (ET_o). The Consumptive Use Program (CUP) was developed to improve estimates of Kc and ET_c values to aid in California water planning. CUP computes ET_o from mean monthly values for solar radiation, maximum, minimum, and dew point temperature, and wind speed. From this, the program uses a curve-fitting technique to produce daily ET_o and rainfall data for a year. Bare soil evaporation is used to estimate K_c values for the off-season and as a baseline for early season $K_{\rm c}$ calculations. One improvement is to account for the influence of rainfall and/or irrigation frequency on Kc and ETc during initial growth. For tree crops, it is important to account for cover crops, which has not been done in the past. Another improvement is to compute and apply all ET_0 and K_c values on a daily basis to determine crop water requirements. Using new information on midseason $K_{\rm c}$ values and bare soil evaporation, a user-friendly Excel program, CUP, was developed to improve long-term estimates that account for rainfall, cover crop. and immaturity effects. This paper presents the advantages of CUP.

INTRODUCTION

A user-friendly Microsoft Excel computer program, CUP was developed to help growers and water agencies determine crop coefficient (K_c) values and crop evapotranspiration (ET_c). California needs long-term estimates of ET_c for water planning. CUP, written by M. N. Orang with assistance from R. L. Snyder and J. S. Matyac, was designed to account for factors affecting K_c that are generally ignored in other water requirement programs. For example, the program provides estimates of nearly bare soil evaporation during initial growth of crops based on ET_o rates and irrigation or rainfall frequency. Because California growers do not

¹ Associate land and water use analyst, California Department of Water Resources – Division of Planning and Local Assistance, PO Box 942836, Sacramento, CA 94236-0001

² Biometeorologist, University of California, Atmospheric Science, Davis, CA 95616

³ Senior land and water use analyst, California Department of Water Resources – Division of Planning and Local Assistance, PO Box 942836, Sacramento, CA 94236-0001

use metric units, CUP's input and output data are in English units. However, in the near future, the program will be converted to metric and translated into Spanish.

WORKSHEETS

CUP has 14 Excel worksheets. The first six worksheets are "Disclaimer," "HelpAbout," "HELP," "ET_o Zones Map," "ET_o Zones," and "Weather Input." "HelpAbout" provides information about the program. "HELP" explains the components of the program and provides step-by-step instructions for inputting data into the program. "ET_o Zones" contains a map showing 18 zones of similar ET_o rates for California. The map was developed by D. Jones, R.L. Snyder, S. Eching, and H. Gomez-MacPherson. The "Weather Input" worksheet is used to input monthly mean weather data for calculating ET_o.

 ET_o and crop data are entered into the "Input_Output" worksheet, which then displays the summary of inputs and monthly and seasonal outputs. The "Calculations" worksheet shows all of the growth dates and K_c values as well as the daily calculations of ET_o , K_c , and ET_c for each of the growth periods. The " K_c Chart" shows a plot of the calculated seasonal crop coefficients with colored lines representing each growth period. Charts "RainInitGrow" and "IrrigInitGrow" show plots of K_c versus mean ET_o rates. The chart "RainInitGrow" shows the nearly bare soil K_c corresponding to the mean initial growth period ET_o rate and soil wetting frequency by rainfall. The chart "IrrigInitGrow" shows the nearly bare soil K_c corresponding to mean ET_o rate and soil wetting frequency by irrigation.

Rainfall or irrigation wetting frequencies are entered into the "Input_Output" worksheet, and the charts are automatically displayed. If the K_c resulting from surface wetting is bigger than the table value during early crop growth, the larger K_c value is used. There are also summary worksheets for K_c values, ET_o, and ET_c. After data entry, the current crop information and calculated K_c data in the "Input_Output" worksheet can be printed to one row in the "Summary of K_c " worksheet. ET_o data are printed to "Summary of ET_o," and ET_c data are printed to :Summary of ET_c." The chart "ET_o_ET_c" shows a bar graph of ET_o and ET_c totals by month for the current crop information. The "Crop References" worksheet contains estimated growth date and K_c information, which are used as default values in the program.

INPUT_OUTPUT WORKSHEET

Crop information is entered into cells on the left-hand side of the 'Input_Output' worksheet. To enter pan data, 77 is input into the ET_o Zone number cell; to use monthly weather data, 88 is entered into the cell; and to enter raw ET_o data, 99 is input. Next a crop number is entered into the Crop Number cell. CUP provides a

list of crops and crop numbers in the 'Crop References' worksheet. That worksheet also contains the percentage of the season to various growth dates (explained later), K_c values at critical growth points, and sample start and end dates for the season.

Note that the crop numbers have one digit to the left and two digits to the right of a decimal point. The single digit identifies the crop type, and the double digit identifies the crop. When a crop is selected, the growth, K_c value, and default start-end information is automatically used for the calculations. The start date corresponds to planting for field and row crops and to leaf-out date for tree and vine crops. Nondeciduous trees, turfgrass, and pasture crops start on January 1 and end on December 31. If different from the default values, the start and end dates can be changed in the "Input_Output" worksheet.

Initial K_c value for most crops is affected by and, thus, depends on wetting frequency from rainfall and/or irrigation. As canopy shading increases, the contribution of soil evaporation to ET_c decreases while the contribution of transpiration increases. In the "Input_Output" worksheet, the rainfall frequency during early growth is entered to determine a K_c value for nearly bare soil evaporation. Similarly, irrigation frequency is entered and a K_c value determined for nearly bare soil evaporation during initial growth of field and row crops. CUP compares K_c values from the "Crop References" worksheet with those based on rainfall and irrigation frequency and selects the largest of the three for use in calculating ET_c. If no rainfall or irrigation frequency is entered, the K_c value from the A-B column in the "Crop References" worksheet is used as the initial growth K_c value. The starting K_c value for type-2 crops (for example, turfgrass and pasture) and for type-4 crops (for example, subtropical orchards) is not affected by irrigation or rainfall frequency entries.

Cover crops affect ET_c rates, and CUP accounts for the effects. Cover crop start and end dates are entered into cells under "Enter 1st Cover Crop (day/mon)." Because some crops have cover crops in spring and fall but not in the summer, a second set of cover crop dates can be input under "Enter 2nd Cover Crop (day/mon)." During a period with a cover crop, the value 0.35 is added to the "clean cultivated" K_c value. However, the K_c value is not allowed to exceed 1.15 or to fall below 0.90.

The right-hand side of the "Input_Output" worksheet shows the weighted mean K_c , ET_o , ET_c , and seasonal ET_c values by month for the selected crop and input information. The daily mean ET_o rates by month are also shown below the other data. Below that set of cells, there are "Copy/Paste" and "Delete" buttons. When the "Copy/Paste" button is pressed, results of the calculations are sent to "Summary ET_o ," "Summary K_c ," and "Summary ET_c " worksheets. The "Delete" button clears all entries from the summary worksheets. To retain all of the data entries, save the CUP file as an Excel workbook with a different name. To save

only the summary sheets, display the summary sheet and save as a tab or comma delimited file. After saving the desired output data, click the "Delete" button to erase data from the summary worksheets.

CALCULATION

The "Calculation" worksheet shows the selected and input data as well as critical dates for growth and cover crops and the daily calculations of ET_o , K_c , and ET_c values by the growth stages. The main factors affecting the difference between ET_c and ET_o are (1) light absorption by the canopy, (2) canopy roughness, which affects turbulence, (3) crop physiology, (4) leaf age, and (5) surface wetness. When not limited by water availability, both transpiration and evaporation are limited by the availability of energy to vaporize water. Therefore, for unstressed crops, solar radiation (or light) interception by the foliage and soil mainly affect the ET_c rate.

As field and row crops grow, the canopy cover, light interception, and the ratio of transpiration (T) to ET increases until most of the ET comes from T and evaporation (E) is a minor component. The K_c value increases with canopy cover until reaching about 75% cover. For tree and vine crops the peak K_c value is reached when the canopy has reached about 70% ground cover. The difference between the crop types is because light interception is higher for the taller crops.

FIELD AND ROW CROP K_C VALUES

Field and row crop K_c values are calculated using a method similar to that described by Doorenbos and Pruitt (1977). A generalized curve is shown in Figure 1. In their method, the season is separated into initial (date A-B), rapid (date B-C), midseason (date C-D), and late season (date D-E) growth periods. K_c values are denoted K_cA , K_cB , K_cC , K_cD , and K_cE at the ends of the A, B, C, D, and E growth dates, respectively. During initial growth, the K_c values are a constant value, so $K_cA = K_cB$. During the rapid growth period, when the canopy increases from about 10% to 75% ground cover, the K_c value increases linearly from K_cB to K_cC . The K_c values are also at a constant value during midseason, so $K_cC = K_cD$. During late-season, the K_c values decrease linearly from K_cD to K_cE at the end of the season.

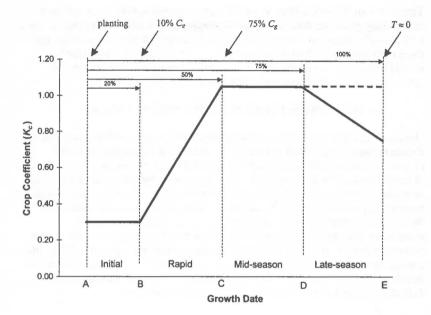


Figure 1. Hypothetical crop coefficient curve for field and row crops using percentage of the season to delineate growth dates. The dashed line is for fresh market crops with no late-season K_c value drop (that is, there is no date D).

Doorenbos and Pruitt (1977) provide estimated number of days for each of the four growth periods to help identify the end dates of growth periods. However, because there are climate and varietal differences and because it is difficult for growers to know when the inflection points occur, irrigators often find this confusing. To simplify this problem, CUP uses percentages of the season from planting to each inflection point rather than days in growth periods (see Figure 1). Irrigation planners need only enter the planting and end dates. The intermediate dates are determined from the percentages, which are easily stored in a computer program.

During initial growth of field and row crops, the default K_c value (K_c 1) is used for K_cA and K_cB unless it is overridden by a K_c value based on rainfall or irrigation frequency. If a soil wetting-based K_c 1 is desired, the irrigation or rainfall frequency is entered in the "Input_Output" worksheet. Then, a graph showing the K_c values curve corresponding to input wetting frequency versus mean ET_o rate is shown in the chart "IrrigInitGrow" or "RainInitGrow," respectively, for irrigation or rainfall entries.

The values for $K_cC=K_cD$ depend on (1) light interception differences, (2) crop morphology effects on turbulence, and (3) physiological differences between the crop and reference crop. Some field crops are harvested before senescence, and there is no late season drop in K_c values (for example, silage corn and fresh market tomatoes). Relatively constant annual K_c values are possible for some crops (for example, turfgrass and pasture) with little loss in accuracy.

DECIDUOUS TREE AND VINE CROP KC VALUES

Deciduous tree and vine crops, without a cover crop, have K_c value curves that are similar to those for field and row crops but without the initial growth period (Figure 2). Default K_c B, K_c C= K_c D= K_c 2 and K_c E= K_c 3 values are given in the "Crop References" worksheet of the CUP. The season begins with rapid growth at leaf out when the K_c value increases from K_c B to K_c C. The midseason period begins at approximately 70% ground cover. Then, unless the crop is immature, the K_c value is relatively fixed between dates C and D until the onset of senescence. For immature crops, canopy cover may be less than 70% during the midseason period. If so, the K_c value will increase from K_c C up to the K_c D as the canopy cover increases. The CUP program does account for K_c value changes of immature tree and vine crops. During late season, the K_c value decreases from K_c D to K_c E, which occurs when the transpiration is near zero.

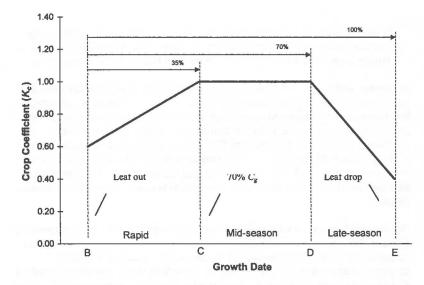


Figure 2. Hypothetical crop coefficient curve for deciduous tree and vine crops using percentage of the season to delineate growth dates. There is no initial growth period, so the season starts at leaf out on date B.

Correcting K_cB for soil evaporation

Initially, the K_c value for deciduous trees and vines (K_cB) is selected from a table of default values. However, ET is mainly soil evaporation at leaf out, so CUP contains the methodology to determine a corrected K_cB , based on the bare soil evaporation.

Correcting for cover crops

With a cover crop, the K_c values for deciduous trees and vines are higher. When a cover crop is present, 0.35 is added to the clean-cultivated K_c . However, the K_c value is not allowed to exceed 1.15 or to fall below 0.90. CUP allows beginning and end dates to be entered for two periods when a cover crop is present in an orchard or vineyard.

Immature trees and vines

Immature deciduous tree and vine crops use less water than mature crops. The following equation is used to adjust the mature K_c values (K_{cm}) as a function of percentage of ground cover (C_g).

If
$$\sin\left(\frac{C_g}{70}\frac{\pi}{2}\right) \ge 1.0$$
 then $K_c = K_{cm}$ else $K_c = K_{cm}\left[\sin\left(\frac{C_g}{70}\frac{\pi}{2}\right)\right]$ (1)

Subtropical orchards

For mature subtropical orchards (for example, citrus), using a fixed K_c value during the season provides acceptable ET_c estimates. However, if higher, the bare soil K_c value is used for the orchard K_c value. For an immature orchard, the mature K_c values (K_{cm}) are adjusted for percentage of ground cover (C_g) using the following criteria.

If
$$\sqrt{\sin\left(\frac{C_g}{70}\frac{\pi}{2}\right)} \ge 1.0$$
 then $K_c = K_{cm}$ or else $K_c = K_{cm}\sqrt{\sin\left(\frac{C_g}{70}\frac{\pi}{2}\right)}$ (2)

Field crops and landscape covers with fixed K_c values

Some field crops and landscape plants (type-2 crops) have a fixed K_c value all year. However, if the significant rainfall frequency is sufficient to have a higher K_c value for bare soil than for the selected crop, then the higher bare soil K_c should be used. CUP permits entry of monthly mean rainfall frequency data. If entered, daily K_c values for bare soil evaporation are computed for the entire year. The higher of the fixed crop K_c value or the bare soil K_c value is used to estimate

ET_c for the crop. If no rainfall frequency data are entered, then the fixed crop K_c value is used.

ESTIMATING BARE SOIL K_C VALUES

A soil evaporation K_c value, based on ET_o and rainfall frequency is needed as a minimum (baseline) for estimating ET_c . It is also useful to determine the K_c value during initial growth for field and row crops ($K_c 1 = K_c A = K_c B$) and the starting K_c for deciduous tree and vine crops ($K_c 1 = K_c B$) based on irrigation frequency. The K_c values used to estimate bare soil evaporation are based on a two-stage soil evaporation method reported by Stroonsnjider (1987) and refined by Snyder et al. (2000). The method provides a K_c values as a function of ET_o rate and wetting frequency that are similar to those published in Doorenbos and Pruitt (1977).

When mean monthly weather and ET_o data are entered into the "Weather Input" worksheet, including the number of significant rainy days per month, CUP calculates a baseline soil evaporation curve. Daily precipitation is considered significant when $P_s>2\times\text{ET}_o$. Whenever, the K_c value for bare soil evaporation is higher than the K_c value based on table or calculated K_c values, the higher K_c value is used.

REFERENCES

Doorenbos, J. and Pruitt, W.O. 1977. Crop water requirements. Rev. 1977. FAO Irrig. and Drain. Paper 24, FAO of the United Nations, Rome. pp. 144.

Snyder, R.L., Bali, K., Ventura, F, and Gomez-MacPherson, H. 2000. Estimating evaporation from bare or nearly bare soil, J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 126(6): 399-403.

Stroosnijder, L. 1987. Soil evaporation: test of a practical approach under semiarid conditions. Neth. J. of Agric. Sci., 35: 417-426.