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ABSTRACT

DIMENSIONS OF DIVERSITY IN DOMINANT PRAIRIE GRASSES

As anthropogenic influences cause climate change to worsen, extreme events such as droughts

and heat waves are expected to become more frequent. The native prairies of the Central United

States have historically experienced drought, yet continue to support highly productive grassland

communities. Dominant species in these grasslands, such as Andropogon gerardii in the tallgrass

prairie and Bouteloua gracilis in the shortgrass steppe, are drivers of productivity in these ecosys-

tems. Thus, it is necessary to quantify diversity within these key species in order to determine

how these important grasses have been historically shaped as well as how they will respond to fu-

ture climate change. This dissertation seeks to answer (1) How do functionally similar coexisting

dominant grasses differ at the molecular level?, (2) How does plasticity contribute to intraspecific

diversity?, and (3) how does intraspecific diversity vary across the range of one of these less studied

grasses?

To determine transcriptional differences between codominant species A. gerardii and Sorghas-

trum nutans, I performed RNA-seq on watered and droughted tissues, building both species’ tran-

scriptomes using Trinity. These codominant grasses responded differently; specifically, A. gerardii

had greater regulation of stress alleviation transcripts while S. nutans tended to be more sensitive

within 10 key gene-groups related to stress and abscisic acid. These results support previous work

on the physiological level, and demonstrate functional diversity at the gene level within dominant

species in the tallgrass prairie. To explore this community further, I documented variation in plastic

traits across a gradient of water availability in three A. gerardii genotypes. I found that plasticity, in

particular nonlinear plasticity, in morphological and physiological traits was widespread and dif-

fered across genotypes, highlighting the influence of relatively small changes in water availability

on intraspecific diversity. These genotypes also differed in reproductive strategy (flowering versus
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clonal tillering), but all recovered from drought similarly. These results demonstrated that varia-

tion in plasticity patterns may help explain intraspecific diversity and patterns of selection within

a population. Differences in drought response strategy, particularly in terms of transcription and

plasticity diversity, could provide further niche space by which the tallgrass prairie community can

mitigate the effects of future drought.

Lastly, I applied an understanding of dominant species diversity in A. gerardii to the rela-

tively understudied dominant dry steppe species B. gracilis. I performed 2b-RAD genome se-

quencing and a common garden trait and plasticity analysis across both regionally and locally

distributed sites to broadly assess intraspecific diversity in this ecologically and economically im-

portant species. I found substantial intraspecific diversity among sites, specifically showing that

New Mexico sites were distinct in terms of biomass trait distributions and plasticity. While New

Mexico sites were clearly different, all sites were at least somewhat distinct genetically, indicat-

ing some limitations to gene flow. As has been shown in A. gerardii, comprehensive analysis of

intraspecific diversity in this dominant grass will help clarify mechanisms of ecosystem function

as well as conservation and management of the shortgrass steppe ecosystem. Overall, these three

projects highlight dimensions of diversity in dominant prairie grasses, providing useful informa-

tion for predicting how these species and their associated communities are likely to respond to

changing climate.
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Chapter 1

Introduction

Climate change represents a significant threat to ecosystems worldwide (Stocker et al., 2013).

The effects of climate extremes, such as drought, heat waves, and larger rainfall events, have

become more prevalent (Knapp et al., 2015b) and are expected to worsen as global climate shifts

(Wuebbles et al., 2014). Exclusive of global temperature increase, climate change is expected

to produce more climate extremes that have significant impact on biotic community structure and

ecosystem function (Smith, 2011). Of all predicted environmental changes, drought poses the most

significant threat to native, managed, and agricultural ecosystems (Breshears et al., 2005; Cook

et al., 2015; Zhao and Running, 2010). Drought not only negatively impacts growth of individual

species, but has the potential to negatively impact some species and ecosystems more dramatically

than others. Specifically, plant species of the tallgrass prairie vary dramatically in drought tolerance

(Tucker et al., 2011) and tallgrass and shortgrass prairies vary in drought sensitivity (Knapp et al.,

2015a; Sala et al., 2015). On a broader scale, prairies of the American Midwest and Southwest have

historically experienced extreme droughts (Cook et al., 2004; Weaver and Albertson, 1936, 1939;

Weaver et al., 1935) and are likely to experience more extreme droughts in the future (Ault et al.,

2014; Cook et al., 2015; NOAA, 2012). While the negative effects of drought and water limitation

on ecosystems are well studied (Knapp and Smith, 2001; Knapp et al., 2018), mechanisms of

response to drought are not always clear. Indeed, plant responses to drought are complex, involving

both chemical and hydraulic signaling and complex metabolic and transcriptional pathways that

lead to organism-level responses (Chaves et al., 2003; McDowell et al., 2008; McDowell, 2011;

Pinheiro and Chaves, 2011). Understanding drought’s impact on plant species physiology and

morphology, and ultimately communities, remains a pressing challenge (Smith, 2011; Van Loon

et al., 2016) and will be crucial for predicting effects of climate change. In this dissertation, I will

focus primarily on the effects of water availability on dimensions of plant diversity.

At the community level, diversity is a major component of drought response. This diversity

appears at different biological scales, from genomics, gene expression, metabolomics, and phys-
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iology, to morphology, demography, and metacommunity levels. Such dimensions are important

for deciphering mechanisms of drought response (Craine et al., 2013; Felton and Smith, 2017).

Interspecific plant diversity, or diversity among species, significantly impacts ecosystem function

(Cardinale et al., 2013; Naeem et al., 1994), stability (Cadotte et al., 2012; Cardinale et al., 2013;

Gross et al., 2014; Hutchinson, 1959), resistance to invasion (Naeem et al., 2000), and unsur-

prisingly, can mitigate the effects of drought (Van Ruijven and Berendse, 2010). This can occur

through niche partitioning (i.e., more resources can be used more efficiently among species) and

species’ ability to shift in abundance in response to changing conditions, a phenomenon called the

“portfolio effect" (Hallett et al., 2014; Tilman et al., 1998). Communities and ecosystems might

then appear resistant and/or resilient to climate change through species turnover (Alstad et al.,

2016; Jones et al., 2017; Lewthwaite et al., 2017; Schwalm et al., 2017). In the tallgrass prairies of

the American Midwest for example, forbs increased in abundance relative to grasses under precip-

itation manipulation (Jones et al., 2016) while a dominant forb declined compared to other species

under experimental climate extremes (Hoover et al., 2014b). It is important not only to conserve

and manage existing interspecific diversity, but also to understand where diversity changes ecosys-

tem function and how it contributes to mitigating the effects of abiotic stressors.

Interspecific diversity may help buffer the effects of droughts, but a fundamental pattern in

communities is that plants vary in abundance, with one or a few common/dominant species and

many rare species (MacArthur, 1957; Magurran and Henderson, 2003; McGill et al., 2007; Preston,

1948; Rabinowitz, 1981). If a particular plant species is more abundant in the community, then it

follows that this species plays a greater role in ecosystem function, including production (Smith

and Knapp, 2003), stability (Sasaki and Lauenroth, 2011), invasion resistance (Smith et al., 2004),

and other functions. Just as interspecific diversity in communities can mitigate against changing

conditions, the same logic may be applied to smaller scales of biological diversity within dominant

species (Bolnick et al., 2011). For example, given greater genotype diversity within a species, the

likelihood that a genotype is present and has high fitness given a new or fluctuating environment in-

creases. This theory has led to more attention given to intraspecific (within species) diversity. Just
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as community evolution (described by Whitham et al., 2003) relies on a diverse regional species

pool, individual species rely on intraspecific dimensions like genetic diversity, functional diversity,

and phenotypic plasticity, all of which are important for introducing novel traits that may impart

higher fitness under different environments or changing conditions (Booy et al., 2000; Harter et al.,

2015; Manel et al., 2012; Sexton et al., 2002). Intraspecific diversity has been extensively impli-

cated in mitigating responses to climate change (Anderegg, 2015; Gazol and Camarero, 2016; Jung

et al., 2014; Ravenscroft et al., 2014), with dominant plant species playing a key role Avolio et al.

(2013); Hughes et al. (2008); Sasaki and Lauenroth (2011). As plant communities are faced with

increasingly frequent and severe droughts, we must include intraspecific alongside interspecific

diversity, especially in communities with one or a few dominant species.

Because of the complexity of response to drought and the necessity of water for plant function,

it is often challenging to select the appropriate trait to measure the diversity of plant responses. It

is also often unclear whether the trait in question is an adaptation to drought (e.g., smaller plants

are less susceptible to drought damage) or a symptom of it (e.g., plants are smaller because they

lack water). Within plant biology, it is widely recognized that examining multiple traits contributes

to a holistic understanding of drought response (e.g., Mitchell et al., 2008; Skelton et al., 2015),

and that gene expression and molecular signaling play an important role (Chaves et al., 2003). Re-

cently, community ecology has widely adopted multiple traits-based approaches to understanding

community assembly (Griffin-Nolan et al., 2018a; McGill et al., 2006), but there is a recognized

need to quantify diversity (especially intraspecific diversity) across scales (Avolio et al., 2018) and

connect functional diversity to patterns at the genetic level (Violle et al., 2012).

Differences among traits may be important for adaptation and response to drought, but dif-

ferences in plasticity, in terms of trait variance and timing, may also allow plants to survive under

water limited conditions (Gargallo-Garriga et al., 2015; Hoffmann and Sgrò, 2011; Lázaro-Nogales

et al., 2015; Meyer et al., 2014; Wilkins et al., 2009). Yet, diversity in plasticity is often neglected in

studies of functional diversity, whether inter- or intraspecific. Plasticity may be especially impor-

tant in dominant, clonally reproducing plants compared to fixed locally adapted traits by allowing
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it to thrive in multiple environments (Liu et al., 2015). Outside of diversity literature, substantial

work has been done examining plasticity as a trait that can be under selection (Agrawal, 1999;

Scheiner, 1993). Unlike selection, gene flow, or mutation, the effect of plasticity as a metric of di-

versity is not necessarily intuitive, and can serve either to constrain or promote diversity. Changes

in plasticity within species can be adaptive or non-adaptive, making it difficult to predict its im-

portance (Ghalambor et al., 2007; Handelsman et al., 2013). For example, plasticity may constrain

diversity if a single genotype is plastic for a certain trait and is able to fill two niches that could

potentially be filled by two separate genotypes. Thus, it is critical to document both species (in-

terspecific) and genotype (intraspecific) plasticity, as variation in plasticity among genotypes may

lead to different ability to persist under drought.

Assessing multivariate data pertaining to traits and trait plasticity often requires generaliza-

tions, such as classifying species or genotypes into drought coping strategies. A common tool for

categorizing these strategies is the isohydric - anisohydric spectrum (Konings et al., 2016). Specif-

ically, very isohydric plants exhibit strict stomatal regulation to avoid water loss and pause CO2

and other gas exchange, which is sometimes referred to as “drought avoidance”, (McDowell et al.,

2008; McDowell, 2011). Anisohydric plants on the other hand, exhibit little stomatal regulation

but risk damage to vessel anatomy (“drought tolerance”). I extend this categorization of drought

coping strategy more broadly to incorporate other dimensions of functional diversity. For example,

gene expression related to damage repair might be associated with a drought tolerance strategy of

continuing to function during water stress. Although these strategies are typically described with

respect to interspecific diversity, previous work has shown that avoidance and tolerance strategies

are present within single species (Carvajal et al., 2017).

This dissertation seeks to broadly improve our understanding of diversity within dominant

species as it pertains to water limitation. I selected the dominant C4 grasses of the central United

States, Andropogon gerardii, Bouteloua gracilis, and Sorghastrum nutansas the focal study sys-

tems because they are widespread, phenotypically diverse, important for ecosystem function, and

have evolved in a region frequently plagued by droughts (Anderson, 2006; Borchert, 1950). Fur-
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thermore, these plants have shown the capacity to buffer climate change impacts within their re-

spective ecological communities (Collins et al., 2017; Hoover et al., 2014b). Different questions

were focused on each species to account for prior differences in research effort among these three

grasses. Generally, I addressed (1) interspecific transcriptional responses to water limitation, (2) in-

traspecific variation in plasticity, and (3) intraspecific spatiotemporal variation in these key species.

More specifically, in Chapter 2, I address interspecific diversity responses to drought by the

often codominant species A. gerardii and S. nutans, seeking to answer the question (1) How do

codominant species differ in gene expression under drought? I found that the codominant species

A. gerardii and S. nutans differ in these strategies when we consider their gene expression under

water limitation, which has never been shown before in codominant species. In Chapter 3, I focus

on intraspecific diversity of well-studied A. gerardii genotypes from a single population, asking (2)

How do coexisting A. gerardii genotypes differ in functional trait diversity and plasticity? I found

that three genotypes diverged across several functional dimensions (particularly the directionality

of plasticity), indicating different drought response strategies within this well-studied dominant

species. Finally, in Chapter 4, I explore the similarly important, yet heretofore rarely described

dominant species B. gracilis, asking (3) How does intraspecific genomic and functional diversity

vary across space and with climate? This is the first next generation sequencing data from B. gra-

cilis and represents the first comprehensive study of its plasticity, variance, and trait distributions

across local and regional scales. These chapters provide useful information quantifying the high

level of diversity seen in these dominant species, which suggests that they might have the capacity

to cope with some droughts caused by climate change.
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Chapter 2

Gene expression differs in co-dominant prairie grasses under drought

This chapter has previously been published in full.1

2.1 Overview

Grasslands of the Central US are expected to experience severe droughts and other climate

extremes in the future, yet we know little about how these grasses will respond in terms of gene

expression. We compared gene expression in Andropogon gerardii and Sorghastrum nutans, two

closely related co-dominant C4 grasses responsible for the majority of ecosystem function, using

RNA-seq. We compared Trinity assemblies within each species to determine annotated functions

of transcripts responding to drought. Subsequently, we compared homologous annotated gene-

groups across the two species using cross-species meta-level analysis and functional clustering

based on key terms. The majority of variation was found between species, as opposed to between

drought and watered treatments. However, there was evidence for differential responses; A. ger-

ardii allocated gene expression differently compared to S. nutans, suggesting A. gerardii focuses

on stress alleviation (such as oxygen radical scavenging) rather than prevention. In contrast, S.

nutans may employ a drought avoidance strategy by modulating osmotic response, especially with

hormonal regulation. We found S. nutans tended to be more sensitive within 10 key gene-groups

related to stress, abscisic acid, and trichomes, suggesting gene expression may mechanistically

parallel sensitivity at the physiological level. Our findings corroborate phenotypic and physiologi-

cal differences in the field and may help explain the phenotypic mechanisms of these two species

in the tallgrass prairie community under future drought scenarios.

2.2 Introduction

Droughts pressure many ecosystems, including the Central US, and are expected to increase

in frequency and severity (Wuebbles et al., 2014). Through manipulative experiments, ecologists

1Hoffman, AM and MD Smith. Gene expression differs in codominant prairie grasses under drought. Molecular
Ecology Resources 18(2):334-346.
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have learned what we may expect under these scenarios (Fay et al., 2003; Hoover et al., 2014b;

Smith, 2011). Yet, detecting stress within individuals and in ecological communities remains a

problem of scale (Levin, 1992), and selecting responses and tools that are most appropriate for

measuring drought stress remains a challenge. Ecologists have grown increasingly interested in

pairing the molecular responses to drought, such as gene expression and metabolite analysis, with

morphological and physiological data (Lovell et al., 2016) in order to reveal underlying mecha-

nisms. An understanding of gene expression is a critical hurdle revealing these stress response

mechanisms (Johnson et al., 2014; Leakey et al., 2009; Meyer et al., 2014; Swarbreck et al., 2011).

Despite this, ecologists have generated few resources for studying gene expression in non-model

plants, such as the native co-dominant tallgrass prairie species Andropogon gerardii (big bluestem)

and Sorghastrum nutans (indiangrass) of the Central U.S.

High aboveground biomass (Smith and Knapp, 2003), C4 photosynthetic capacity, and com-

munity co-dominance describe both A. gerardii and S. nutans, which are similar in appearance

and traits (Forrestel et al., 2015). Yet, these two grasses differ in their physiological responses

to stress, with these differential responses ultimately cascading to affect ecosystem functioning

(Hoover et al., 2014a). Specifically, S. nutans is more sensitive overall to both soil moisture and

temperature, while A. gerardii is primarily responsive to temperature (Nippert et al., 2009). Under

severe water limitation, S. nutans suffers a greater loss of function (Hoover et al., 2014b) and grows

more gradually than A. gerardii (Nippert et al., 2011). Trichome morphology also differs substan-

tially in these species and could be related to drought prevention, particularly in A. gerardii (Olsen

et al., 2013). These findings suggest that A. gerardii and S. nutans differ in physiological mecha-

nisms for coping with stress, particularly with respect to avoidance versus tolerance or thresholds

of response to climate stress. Investigating gene expression responses in these co-dominant grasses

will improve our understanding of drought response through molecular mechanisms.

A. gerardii and S. nutans cope with and respond to temperature and water stress differently at

the genomic level (Smith et al., 2016; Travers et al., 2007, 2010), reflecting differences in their eco-

physiological performance in the field (Hoover et al., 2014a; Nippert et al., 2009, 2011). However,
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these previous studies utilized heterologous hybridization to the maize (Zea mays) cDNA microar-

ray; it is unclear how many A. gerardii and S. nutans genes are not detected due to nucleotide

dissimilarity to maize probes. Although one RNA-seq transcriptomic resource exists for the A.

gerardii genus (Raithel et al., 2016), high genetic diversity in the A. gerardii species alone (Avolio

et al., 2011) may lead to failed transcript alignments. Next-generation resources are completely

lacking for S. nutans. Therefore, the goal of this study was to conduct the first RNA-seq analysis of

A. gerardii and S. nutans to more rigorously assess molecular mechanisms of differential response

of these species under drought.

We manipulated water availability via soil moisture drying for these two grass species to pro-

vide two controlled conditions: drought vs. watered. We aimed to (1) characterize transcriptome

homology of A. gerardii and S. nutans, (2) determine differential expression within A. gerardii and

S. nutans under drought conditions, and (3) compare differential expression responses among ho-

mologous gene-groups in the two species. Based on ecophysiology in these species and previous

microarray research (Smith et al., 2016; Travers et al., 2007, 2010), we expected expression under

drought and watered treatments to differ for both species. Specifically, S. nutans would have more

extreme differences in gene expression between treatments and more genes overall experiencing

significant change. We expected enriched stress alleviation expression within A. gerardii (such

as heat shock or oxygen scavenging proteins). Conversely, we expected S. nutans to exhibit en-

riched expression of osmotic regulatory processes like aquaporin production, abscisic acid (ABA)

production, or stomatal regulation. Thus, we expected differential expression responses among

homologous gene-groups to encompass these categories. We also expected trichome-related gene-

groups to to be more sensitive within A. gerardii, in agreement with morphological differences

between the two species. This study provides the first next-generation sequencing resource for

comparing these two ecologically important grasses and enhances our depth of knowledge of the

molecular phenotype, response mechanisms, and ecosystem genetics in the tallgrass prairie.
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2.3 Methods

2.3.1 Study species

Andropogon gerardii and Sorghastrum nutans are the most common grass species of the tall-

grass prairie ecosystem of eastern Kansas. Both are self-incompatible polyploid species, where A.

gerardii is typically hexaploid (Keeler, 1990) and S. nutans is typically tetraploid (Riley and Vo-

gel, 1982) (these cytotypes are used in this study). Both reproduce primarily through asexual tiller

formation and experience comparatively low local recruitment from seed germination. Both have

large genomes; hexaploid A. gerardii contains approximately seven gigabases while tetraploid S.

nutans contains approximately six gigabases (Delaney and Baack, 2012; Keeler et al., 1987). Both

species persist during experimental rainfall manipulation, drought, and heat waves (Avolio and

Smith, 2013b; Hoover et al., 2014b), helping prevent loss of ecosystem function under extreme

climatic events in the tallgrass prairie (Smith, 2011).

2.3.2 Plant material, RNA extraction, and sequencing

Common genotypes of both species were collected from the lowlands of Konza Prairie Bi-

ological Station in Manhattan, KS and were clonally propagated in tissue culture (cultured by

SMK Plants, Billings, MT) following Hoffman and Smith (2018). Tissue culture resulted in plants

of approximately the same size and phenological stage. Once rooted, we transplanted plantlets

to Premier pro-mix HP (Griffin Greenhouse Supplies, Inc., Tewksbury, MA). These plant clones

adapted to 70% relative humidity and light irradiance of 37.5 µmol m-2 s-1 in growth chambers

for three weeks. We then transferred plants to the greenhouse with a 28°C daytime temperature,

22°C night temperature, and 16h photoperiod. We initiated drought treatment after one month

of greenhouse acclimation. At this stage, plants were under 30 cm in height and were not root

bound or elongating for flower production. Soil moisture was kept at field capacity, which is ap-

proximately 30% volumetric water content (VWC) in similar experiments using the same media

(Figure I.1). Water was withheld in an uncontrolled drydown for six days to produce an extreme

drought. While this was a relatively short and extreme drought, soils within native tallgrass prairie
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are known to dry down quickly, especially late in the growing season (August) (Nippert and Knapp,

2007). Though droughted and non-droughted treatments were performed distinctly, uncontrolled

drydowns may produce significant variation (Lovell et al., 2016) and may be an important source of

error in this study. In other words, substantially lower VWC in one pot could lead to incorrect con-

clusions about more extreme expression responses. After six days of drought, we collected newly

emerged leaves from two biological replicates within the watered treatment (water not withheld)

and drought treatment (n=2, with two treatments and two species). We immediately flash-froze

leaves in liquid nitrogen and stored tissue at -80°C prior to RNA extraction.

We extracted RNA from leaf tissues using TRIzol reagent (Invitrogen, Carlsbad, CA) and puri-

fied RNA with the RNeasy kit (Qiagen, Valencia, CA) after on-column DNase treatment (Qiagen,

Valencia, CA). Eight total cDNA libraries were multiplexed and sequenced on the Illumina HiSeq

2000 platform to generate 72 bp paired-end reads. Library construction, sequencing, and demulti-

plexing were performed at the Yale Center for Genome Analysis.

2.3.3 De novo assembly

We examined raw data FastQC reports for anomalies using the iPlant Collaborative HTProcess

pipeline, after which we trimmed sequences to suitable length and quality using Trimmomatic (ver-

sion 0.32) (Bolger et al., 2014) (see Supporting Information for more details). Trimmed reads were

assembled in Trinity (version 2.1.1) (Haas et al., 2013) using the Colorado State University Correns

computing cluster, creating an assembly for each species. We chose the Trinity pipeline because it

has been shown to work well with polyploid species, including non-model grasses (Bushman et al.,

2016). To evaluate the quality of the Trinity assemblies, we used (1) Trinity’s built-in evaluation

scripts, (2) read realignment percentage using Bowtie 2 (version 2.2.7) (Langmead and Salzberg,

2012), and (3) Samtools scripts (Li et al., 2009a).

2.3.4 Differential expression within species

Using two Trinity transcript assemblies as references (one for each species), we realigned reads

using Bowtie 2. We then used RSEM (version 1.2.28) to count expression of each transcript (tran-
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script per million, TPM) (Li and Yang, 2011). In other analyses, Trinity transcripts may be known

as genes or contigs. In our analysis, we retained all isoforms of transcripts produced by Trinity.

Although there was weak coverage for many transcripts, we retained all transcripts so as not to

discard any genes with potential ecological relevance. We calculated differential expression across

treatments by comparing negative binomial distributions of transcript counts within edgeR (edgeR

version 3.16.4) (Robinson et al., 2010) using Fisher’s exact tests for each transcript. After normal-

izing across sample coverage using trimmed mean of M-values (TMM), we filtered results for a

false discovery rate of <0.05 (Benjamini-Hochberg method) and minimum log fold change of >1

(2x difference in expression). All statistical analyses were performed using R (version 3.3.0) (R

Core Team, 2018).

2.3.5 Homology and annotation

We used the BLAST+ tool blastn to compare the assembled A. gerardii and S. nutans tran-

scriptomes to existing cDNA resources. We downloaded cDNA for Arabidopsis thaliana, Brachy-

podium distachyon, Hordeum vulgare (barley), Leersia perrieri (cutgrass), Oryza sativa (rice),

Populus trichocarpa (black cottonwood), Setaria italica (foxtail millet), Sorghum bicolor (sorghum),

Triticum aestivum (wheat), and Zea mays (maize) from Ensembl genomes (Kersey et al., 2015).

Other species were downloaded from the Joint Genome Institute Genome Portal (Nordberg et al.,

2014). We used an evalue of e-10 to parameterize all blastn searches. Homology percentages were

determined by calculating the average percentage of identical matches.

We used the Trinotate (version 3.0.1) (Haas et al., 2013) pipeline to annotate transcripts in

the assembled transcriptomes to known genes. First, we used TransDecoder (version 2.1.0) to ex-

tract potential protein coding regions within long open reading frames (ORFs). We simultaneously

aligned these predicted protein regions and Trinity assembled transcriptomes for each species to

the Swiss-Prot database using blastx (The UniProt Consortium, 2015) and Pfam (Finn et al., 2015)

database using blastp. Specific releases of Swiss-Prot and Pfam were required for use with Trino-

tate (see Supporting Information). Hmmer (version 3.1b2) (Finn et al., 2011), SignalP (version

4.1) (Petersen et al., 2011), and Tmhmm (version 2.0c) (Möller et al., 2001) were used to further
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predict and identify protein domains. Gene GO annotations (The Gene Ontology Consortium,

2015) were also retrieved from the Swiss-Prot database. Finally, we downloaded the transcription

factor databases for Zea mays and Sorghum bicolor (Charoensawan et al., 2010). We searched

these databases using Pfam annotations above.

Following annotation, we combined count matrices produced by RSEM with annotations com-

piled by Trinotate. Transcripts with significantly different expression between drought and watered

treatments were examined for Gene Onotology (GO) category enrichment using GOseq (version

1.24.0) (Young et al., 2010) with a P-value cutoff of P<0.05. We also searched for Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway enrichment (using KEGG Mapper Pathway Search

against Z. mays) (Kanehisa et al., 2016), and presence of transcription factors. REVIGO was used

to reduce and visually assess GO enrichment categories (Supek et al., 2011). We also contrasted

the top 400 highly expressed transcripts (average TMM across samples) against the remaining

transcripts for both species (Hoffman and Smith, 2017, Table S4).

2.3.6 Comparative expression between species

We used Swiss-Prot annotations to compare orthologous transcripts between A. gerardii and S.

nutans, hereafter referred to as gene-groups. We chose this approach as opposed to direct sequence

comparison for leniency; A. gerardii and S. nutans transcripts were able to align to different parts

of the same Swiss-Prot annotated gene and different splice variants could be combined as long

as they matched the same annotation. Similar annotation-based comparisons have been used in

other studies (Cui et al., 2015). While using homology to model organisms to compare species is

useful (Sudmant et al., 2015), our indirect comparison approach eliminates any transcripts lacking

model species annotations (Rowley et al., 2011). Moreover, neither direct nor indirect alignment

can account for neofunctionalization, even within species (Duan et al., 2016).

To examine species differences outside of treatment, we compared gene-groups within drought

samples separately from watered samples. For this broader analysis, we summed count expression

within each unique gene-group and normalized across samples using the TMM method. Compar-

isons were made using Fisher’s exact test within edgeR with a false discovery rate of <0.05 and
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minimum log fold change of >1 (2x difference in expression). We analyzed gene-groups for GO

category enrichment, KEGG enrichment, and transcription factors (as above). We then determined

differentially expressed gene-groups across A. gerardii and S. nutans with respect to treatment

using the meta-level analytic method described by Kristiansson et al. (2013). This technique is

powerful for deducing species by environment interactions where multiple orthologs and paralogs

are found within each gene-group, as would be expected comparing species of different ploidies.

We filtered these results for P-values <0.05 and false discovery rate <0.05.

2.3.7 Functional annotation clustering

We clustered all gene-groups from the above analysis by filtering out keywords “stress”, “heat

shock”, “trichome”, “abscisic acid”, “stomata”, and “aquaporin” from all possible annotations.

These categories were determined a priori due to the physiological and morphological differences

between A. gerardii and S. nutans.

2.4 Results

2.4.1 De novo assembly and differential expression

After trimming, we retained 5.33 x 107 total reads for A. gerardii, representing 73% of original

reads. For S. nutans, many more reads were trimmed out, leaving 3.44 x 107 reads (50%). All

samples were between 50-52% GC with all reads between 40-64 base pairs (Hoffman and Smith,

2017, Table S1). Trinity de novo transcriptome assembly produced 64,930 transcripts for A. ger-

ardii with an N50 = 789. Sorghastrum nutans had 47,807 transcripts assembled with an N50=764.

High quality transcriptomes typically observe realignment rates between 70-80% using Bowtie 2;

our realignments met this criteria, with rates between 75-85% (Table 2.1).

In A. gerardii, 106 total transcripts differed significantly between the treatments, with 52 highly

expressed under the drought compared to the watered treatment and 54 transcripts highly expressed

under the watered treatment (Figure 2.1). Sorghastrum nutans regulated slightly fewer transcripts:

85 total transcripts differed, with 39 highly expressed only during drought and 46 only expressed

when watered (Figure 2.1). When we regressed the representative subset of transcripts against
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their coverage using RSEM, A. gerardii expressed an estimated 7300 transcripts, while S. nutans

expressed an estimated 8419 transcripts (Supporting Information, Figure I.2). The discrepancy

between the Trinity transcripts and the transcripts aligned using RSEM indicates many lowly ex-

pressed transcripts or transcripts with low coverage. Generally, A. gerardii retained more gene

isoforms which could be of interest for further studies investigating alternative splicing.

2.4.2 Homology and annotation within species

Andropogon gerardii and S. nutans generally showed the same order of relatedness to all other

species’ transcriptomes at the nucleotide level. The two grasses were most related to other An-

dropogoneae like Sorghum bicolor (93.6-93.8%) and Zea mays (91.4-91.6%). More distant rela-

tionships were observed with other C4 (∼89%) and C3 (∼86%) Poales. Unsurprisingly, eudicots

and one distantly related monocot (Zostera marina) showed the least homology (78.8-80.9%) (Fig-

ure 2.2). Similar order of relatedness was obtained at the protein level (Figure I.5). We matched

81% and 84% of transcripts to annotations or conserved domains for A. gerardii and S. nutans,

respectively. Transmembrane helices (TmHMM) represented 8% of transcripts in A. gerardii, but

S. nutans mapped more (9%), which could correspond to S. nutans greater water response or trans-

port. Andropogon gerardii had far greater transcription factor expression (8%) versus S. nutans

(3%) which could be reflective of greater heat response. Overall, 42% of A. gerardii transcripts

and 45% of S. nutans transcripts mapped to conserved protein domains (Pfam) and 1.5% of tran-

scripts in both species mapped to signal peptide cleavage sites (SignalP).

Gene Ontology (GO) enrichment of differentially expressed transcripts varied between the two

species (Figure 2.3). Enriched biological processes upregulated under drought in A. gerardii in-

cluded dhurrin biosynthesis (plant defense), amino acid salvage, response to stimulus, abscission,

and misfolded protein catabolic processes. In S. nutans, dhurrin biosynthesis was also enriched,

but response to osmotic stress, hypersalinity response, and response to cytokinin were also rep-

resented. Andropogon gerardii molecular functions were enriched in tetrapyrrole (chlorophyll)

binding, oxygenase activity, and transcription factor activity under drought, while S. nutans tran-

scripts were not.
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Figure 2.1: Transcripts differentially expressed in (A) A. gerardii and (B) S. nutans. Drought samples are
indicated “d1” or “d2” while watered samples are indicated “w1” or “w2”. Units are log2 TMM (trimmed
mean of M-values). Bold transcripts map to known transcription factors. Transcripts with asterisk (*) are
found in both species.
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Table 2.1: Summary of transcriptome assembly and quality checks in both species. Proper pairing indicates
both paired end reads aligned together.

A. gerardii S. nutans

Assembly total trinity ’genes’ 35656 29155
total trinity ’transcripts’ 64930 47807
percent GC 49.25 49.2
transcript N50: 789 764
median transcript length 522 514
average transcript length 684.96 670.36
total assembled bases 44474391 32047794

QC average Bowtie 2 realignment 83% 80%
average proper pairing 77% 74%
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Figure 2.2: Homology of both species to known transcriptomes at a per gene basis. Percent match refers to
average percentage of identical matches at the nucleotide level (blastn).
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Using KEGG, we found that for A. gerardii drought-upregulated transcripts most represented

metabolic pathways, glycerolipid metabolism (stored energy), mRNA surveillance pathway (e.g.,

degradation of aberrant transcripts), and spliceosome. Transcripts upregulated under the watered

treatment also included metabolic pathways and spliceosome, but with more emphasis on amino

acid synthesis (Hoffman and Smith, 2017, Table S3). In S. nutans, drought transcripts were

strongly enriched in plant hormone signal transduction, followed by ubiquitin mediated prote-

olysis (protein degradation), and RNA degradation. For watered transcripts, plant hormone signal

transduction was also most represented (Hoffman and Smith, 2017, Table S3). Using homology to

known sequences, we found A. gerardii differentially regulated 17 transcription factors while S. nu-

tans showed differentially expression of 12 (Figure 2.1). Only four similarly annotated transcripts

were found in both species.

2.4.3 Comparative expression between species

Using count data across all shared annotated transcripts, we saw that species separated dramat-

ically in multidimensional space (Figure 2.4). Drought and watered samples were first compared

separately in order to focus on species differences. Within the drought treatment, A. gerardii

and S. nutans differed significantly across 4032 gene-groups. Andropogon gerardii upregulated

gene-groups represented transferase activity, transcription factor activity, flavonoid synthesis and

metabolism, glycosylation, and vesicle GO terms compared to S. nutans. In contrast, S. nutans

gene-groups were most represented by DNA-complexes, regulation and response to stress and

hormones, and RNA and compound binding (Hoffman and Smith, 2017, Table S5). Metabolic

pathways differed in the two species: A. gerardii gene-groups represented a greater proportion of

secondary metabolite biosynthesis, plant hormone signal transduction, citrate cycle, and amino/nu-

cleotide sugar metabolism pathways (Hoffman and Smith, 2017, Table S6). Sorghastrum nutans

gene-groups represented a greater proportion of fatty acid degradation, nucleotide excision repair,

mismatch repair, and thiamine metabolism pathways (Hoffman and Smith, 2017, Table S6). Sig-

nificantly upregulated gene-groups in A. gerardii matched 321 known transcription factors versus

213 transcription factors in S. nutans.
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Compared to the drought treatment, watered plants of the two species diverged significantly

across 4929 gene-groups. Andropogon gerardii watered gene-groups were enriched in cellular and

stem cell proliferation, binding activity, flavonoid synthesis and metabolism, and regulation of bi-

ological processes. In contrast, S. nutans watered upregulated gene-groups represented primary,

nitrogen, and aromatic compound metabolism, negative regulation of transcription, ion binding

activity, and nucleoplasm (Hoffman and Smith, 2017, Table S5). Metabolic pathways were largely

similar to those represented in droughted plants. Andropogon gerardii gene-groups were addition-

ally enriched in the MAPK signaling pathway and glycerolipid metabolism (Hoffman and Smith,

2017, Table S6). Sorghastrum nutans watered gene-groups also represented carbon fixation and

photosynthesis (Hoffman and Smith, 2017, Table S6). Transcription factor matches stayed con-

sistent across treatments, with only one fewer transcription factor upregulated in A. gerardii (320)

and three fewer transcription factors upregulated in S. nutans (210).

We examined differential responses between A. gerardii and S. nutans accounting for multiple

orthologs and paralogs in a meta-level analysis. Of 11,878 gene-groups, we found significantly dif-

ferent responses in 83 (Figure 2.5) indicating a small but present species x environment interaction

overall. These gene-groups were enriched in response to stimulus, response to oxidative stress,

membranes and plastoglobule, tetrapyrrole binding, and ER retention sequence binding GO terms

(Figure 2.6). Of the 83 significantly changing gene-groups, 17 mapped to known transcription

factors.

2.4.4 Functional annotation clusters

Within differentially expressed gene-groups from the meta-level analysis, 10 genes matched the

functional annotation clusters. These included seven stress gene-groups, one trichome group, and

two ABA groups. Sorghastrum nutans appeared more sensitive in five of the seven stress groups

and both ABA groups (MSRB1_ORYSJ, USPAL_ARATH, SALT_ORYSJ, NDUS4_ARATH,

TIL_ARATH, CUT1B_ARATH, and GRPA_MAIZE, Figure 2.7). Andropogon gerardii appeared

more sensitive in one stress group and the trichome group (AFG1_YEAST and MYO17_ARATH,

Figure 2.7).
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Figure 2.5: Differentially expressed gene-groups representing species by environment interaction between
A. gerardii and S. nutans. Units are log2 TMM (trimmed mean of M-values). Bold transcripts map to known
transcription factors.
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Figure 2.6: Gene Ontology (GO) enrichment for differentially expressed gene-groups between A. gerardii

and S. nutans (gene-groups showing a species x treatment interaction). Color represents significance of over-
representation of a specific GO term within these gene-groups upregulated under drought. Size represents
the relative natural log scale frequency of the cluster of transcripts. Horizontal and vertical axes represent
semantic space (SimRel similarity measure).
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2.5 Discussion

In this study, we assembled the first publicly available and comparative transcriptomes for the

tallgrass species Andropogon gerardii and Sorghastrum nutans as a means to understand molecular

phenotypes and pathways. Average realignment of reads back to the transcriptome was greater

than 80%, and 50% of the transcriptome consisted of transcripts longer than 700 bp (N50) for both

species. Both metrics indicate a successful assembly, despite our use of short sequencing reads.

These assemblies will be particularly useful for researchers performing gene expression work on

these species as less sequencing depth is needed when a reference transcriptome is available.

Both species shared between 85-86% homology (blastn alignment) with C3 monocot species,

but between 89-94% withC4 monocots, indicating an important divergence in gene structure. An-

dropogon gerardii showed almost consistently lower similarity to model species compared to S.

nutans, which could be indicative of more unique gene changes in A. gerardii. Since A. gerardii

is hexaploid, it is possible that more paralogous genes have been able to sub- or neofunctionalize

and could benefit from paralog network analysis (Gallagher et al., 2016).

Although A. gerardii expressed fewer estimated genes in the transcriptome, it also had more

lowly expressed genes and a greater percentage matching known transcription factors. Andropogon

gerardii may only appear less sensitive (fewer genes expressed), while in reality a greater diversity

of gene expression could occur via downstream regulation. Greater ploidy and gene duplication has

also been previously connected to more important expression differences in regulatory elements

like transcription factors and ribosomal proteins (Roulin et al., 2013). Sorghastrum nutans mapped

a slightly greater percentage of transmembrane helices, lending support to previous findings on the

importance of aquaporins (Smith et al., 2016). Overall, 17% and 15% of the transcriptomes of A.

gerardii and S. nutans (respectively) were not annotated, indicating many thousands of transcripts

that are unique to either or both species and warrant exploration.

Within species, relatively few transcripts were differentially expressed with the watered treat-

ment. Dhurrin biosynthesis (plant defense) was enriched in the drought treatment for both A.

gerardii and S. nutans. Although metabolism of plant defenses may seem an unusual response
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to drought stress, changing dhurrin content in sorghum has been linked to regulation of pre- ver-

sus post-flowering senescence (Burke et al., 2013). Other categories were unsurprising given the

two species’ differing physiology. Andropogon gerardii emphasized misfolded protein and amino

acid salvage under drought, which could reflect alleviation of the symptoms of drought stress with

greater sensitivity to temperature-induced misfolding. Aberrant mRNA surveillance and spliceo-

some regulation pathways are also implicated in drought tolerance (Lee et al., 2015; Lu et al.,

2016). On the other hand, S. nutans upregulated transcripts related to osmotic and salinity stress

which could reflect its greater sensitivity to soil water content (Nippert et al., 2009). Cytokinin

response and general plant hormone signal transduction enrichment by S. nutans could indicate a

greater emphasis on stomatal regulation through the cytokinin antagonistic relationship with ABA

(Pinheiro and Chaves, 2011). Overall, these annotations suggest A. gerardii may have modified

regulatory elements and tolerates stress symptoms under drought while S. nutans avoided stress

by focusing on water use. This also corroborates physiological data on A. gerardii’s sustained

activity under drought (Hoover et al., 2014a; Knapp, 1985). Like the transcriptome, differentially

expressed genes in A. gerardii also contained more transcription factors, which are widely impli-

cated in drought resistance (Baldoni et al., 2015).

By comparing the annotations of gene-groups in A. gerardii and S. nutans, we may reveal

strategic differences between these two grasses outside of treatment. Nearly 23% more gene-

groups differed between the two species under watered conditions than under drought, suggesting

that the two species may converge on more similar molecular function when stressed. Only watered

S. nutans upregulated carbon fixation and photosynthesis, supporting the notion that S. nutans is

more sensitive in terms of carbon allocation. Greater numbers of transcription factors in A. gerardii

under both drought and watered conditions suggest enhanced plasticity to maintain more constant

carbon acquisition. Compared to S. nutans, A. gerardii gene-groups were highly represented by

transcription factor activity, flavonoid metabolism, and glycosylation (i.e., heat response, Jiang

et al., 2015), meaning that this species may divert more resources toward antioxidant and regulatory

processes compared to S. nutans. In contrast, S. nutans gene-groups were represented by RNA
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binding (e.g., in response to ABA, Ambrosone et al., 2015) and regulation and response to stress

and hormones. Investing greater gene expression dedicated to hormonal signaling could be the

mechanism by which S. nutans is more sensitive to water availability (Nippert et al., 2009; Silletti

and Knapp, 2001). Meanwhile, A. gerardii’s lack of sensitivity could be the result of greater

emphasis on stress alleviation versus prevention. This difference in allocation of gene expression

and strategy could portend community shifts, especially greater variability in production, under

future climate change scenarios. On the other hand, A. gerardii showed more metabolic pathway

hits tied to hormonal regulation and response compared to S. nutans. This could indicate that

despite no expression enrichment of these gene-groups, signaling pathways may be more complex

in A. gerardii and involve more modulators (e.g., MicroRNAs, Ding et al., 2013).

When we performed a meta-level analysis across species and treatment, we found 83 differen-

tially expressed gene-groups, including 10 within the previously mentioned functional annotation

clusters. These 83 genes were enriched in response to oxidative stress (including tetrapyrrole bind-

ing) as well as membranes and plastoglobule, which are tied to osmotic stress. As we suspected,

the key differences between A. gerardii and S. nutans stress response are likely to reflect the abiotic

physiological sensitivities (Nippert et al., 2009).

Focusing on functional clusters of gene-groups may add clarity when comparing responses to

complex stressors like drought. Selecting clusters a priori according to suspected relevance also

prevents bias when data abound. When we explored the 10 differing gene-groups matching our

functional annotation clusters, we saw greater sensitivity by A. gerardii with MYO17_ARATH

(trichome) and AFG1_YEAST (stress) revealed through steeper slope across treatments (Falconer,

1990). Greater sensitivity of MYO17 in A. gerardii is unsurprising considering trichomes are

visibly more abundant on this species in the field and trichome density is known to vary across

populations along a precipitation gradient (Olsen et al., 2013). Trichomes help plants avoid de-

hydration by increasing the boundary layer, thus reducing transpiration (Schreuder et al., 2001)

and could allow less regulation of osmotic balance in A. gerardii. AFG1 acts as a chaperone de-

grading misfolded proteins in yeast and responds to oxidative stress in Arabidopsis (Al Ameri,
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2015); it could reflect greater regulation of A. gerardii gene-groups to alleviate stress. More gene-

groups showed greater sensitivity within S. nutans, however. Of these, one was linked with os-

motic stress (SALT_ORYSJ), three with general stress (USPAL_ARATH, NSUS4_ARATH, and

TIL_ARATH), two with ABA response (CUT1B_ARATH and GRPA_MAIZE), and only one with

oxidative stress (MSRB1_ORYSJ) (Abo-Ogiala et al., 2014; Alvarez et al., 2014; Dinakar et al.,

2016; Kline et al., 2010; Liu et al., 2014; Roy and Nandi, 2017; Udawat et al., 2016; Zhang et al.,

2014). The more sensitive response by these gene-groups in S. nutans could indicate greater stress

response by this species, especially for gene-groups related to water management.

Our results and conclusions would be incomplete without discussion of sample size in this

study. The number of replicates per species and treatment is small (n=2), though not uninformative

within ecology (Lemoine et al., 2016). Therefore, despite best efforts to correct for type I and

II error, we are likely to have missed or incorrectly characterized expression. The number of

differentially expressed genes within species is small compared to other studies (e.g., Bushman

et al., 2016; Dong et al., 2014; Meyer et al., 2014; Wilkins et al., 2009), indicating that our power

to detect differential expression was low. Although care was taken to minimize differences among

plants, we performed an uncontrolled drydown which often leads to variation in water content

(Lovell et al., 2016) and has somewhat limited applicability to field studies. As is seen in Fig.

4, there is variation among droughted plants. Uncontrolled drydowns may lead to variation in

VWC and could have produced more extreme responses in one droughted pot for S. nutans. This

must be taken as a caveat for the analyses comparing the two species. Thus, our results should be

considered as preliminary evidence for differences in these species.

Overall, variation between these two species far outweighed plasticity in gene expression under

different water conditions. This could certainly stem from our limited sample size as well as the

particular type of stress we invoked. Previous research revealing greater sensitivity in S. nutans

(e.g., Hoover et al., 2014b; Nippert et al., 2009; Smith et al., 2016) is corroborated by this study,

but specific mechanisms are likely much more complex. For example, A. gerardii may actually

exhibit greater sensitivity through regulatory elements like transcription factors and may be more
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sensitive with regard to oxidative stress and reactive oxygen species scavenging. Most results

from this study suggest a more passive drought tolerance strategy by A. gerardii versus an active

drought avoidance strategy by S. nutans. However, this study only accounts for one genotype

and a single time point for each species; in the field, plasticity emerging from genotypic diversity

and temporal variation may provide more resistance and resilience to drought and other stressors

(Avolio and Smith, 2013b; Avolio et al., 2013). Going forward, studies involving these two species

should take into account differences in gene expression, including differences in stress, ABA, and

trichome gene-groups as well as differences in metabolic pathway allocation. The transcriptome

resources generated in this study will also serve as templates for future exploration of the molecular

phenotype in these two ecological important grasses, especially as studies using RNA-seq become

more important in ecology.
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Chapter 3

Nonlinear plasticity improves understanding of intraspecific diversity in an ecological model

species

3.1 Overview

Common plant species within ecological communities (dominant species) use intraspecific trait

variation to maintain function under both optimal and stressful conditions. Yet, few studies of

intraspecific diversity in natural populations account for nonlinear plasticity, variation in plastic

traits across a gradient of conditions. We investigated the intraspecific trait differences, plasticity,

and nonlinearities in plasticity under a controlled water availability gradient. We applied these

concepts in the context of future climate change with three genotypes of Andropogon gerardii, the

dominant warm-season grass of the North American tallgrass prairie. This ecosystem is likely to

face more extreme and frequent droughts in the future. Nonlinear plasticity in morphological and

physiological traits was widespread and differed across genotypes, highlighting the influence of

relatively small changes in water availability on intraspecific diversity. Genotypes also differed in

reproductive strategy, but all recovered similarly following drought. We demonstrate that nonlinear

plasticity may help explain intraspecific diversity and patterns of selection within a population. A

better understanding of intraspecific diversity and trait variation in this grass species will provide

more mechanistic insight into its ability to moderate community changes in the tallgrass prairie

under future droughts.

3.2 Introduction

Phenotypic plasticity, or the change in a phenotype exhibited across environments, allows per-

sistence under changing conditions. In plants, phenotypic plasticity is critical for responding to

droughts and unpredictable environments (Lázaro-Nogales et al., 2015; Matesanz et al., 2010).

Plasticity often varies across genotypes (El-Soda et al., 2014), a phenomenon well-codified using

“reaction norms” (Falconer, 1990). Plasticity can also allow species to adapt to novel environments

(Ghalambor et al., 2007). Yet, the majority of phenotypic plasticity studies assess traits in two en-
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vironments (e.g., wet versus dry), failing to consider trait values under intermediate conditions

(Stinchcombe and Kirkpatrick, 2012). In other words, typical plasticity studies must assume lin-

ear relationships, while intermediate environments accommodate emergent nonlinearity between

environment and trait value (Scheiner, 2002). By failing to consider conditions between extremes

(e.g., wet and extreme drought), typical studies may also lack ecological relevance. Detection of

linearity versus nonlinearity not only provides more quantitative detail to plasticity (Morrissey and

Liefting, 2016; Rocha and Klaczko, 2012), but may also reveal greater breadth of intraspecific

diversity. In other words, plasticity is variable across conditions and must also be considered as

a quantitatively variable trait (Nussey et al., 2007). By better assessing changes in plasticity, we

can more accurately describe the intraspecific diversity that allows plant species to cope selective

pressures, such as drought (Benito Garzón et al., 2011; Harter et al., 2015) (Figure 3.1).
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Figure 3.1: Intraspecific trait diversity (a: “genotype effect”) and phenotypic plasticity across genotypes
(b: “genotype and treatment effect”) are critically important for plant drought response. However, it is well
understood that genotypes may differ in the extent of their plasticity or respond differently (c: “interaction
effect”). Such interactions may be nonlinear; when a finer gradient of water availability is applied to (c)
we may observe (d). Plasticity in genotype 1 becomes nonlinear under wetter conditions while plasticity in
genotype 2 becomes nonlinear under dry conditions. In this case (d), genotypes vary in the nonlinearity of
their trait responses and provide greater intraspecific diversity across conditions.
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Overall, intraspecific diversity has widely shown to provide stability in population responses

to variable climate (Cook-Patton et al., 2011; Hughes and Stachowicz, 2004; Hughes et al., 2008;

Reusch et al., 2005) but see Huber et al. (2016) and is integral to deciphering community assembly

(Li et al., 2018). Yet, intraspecific diversity and phenotypic plasticity are less rigorously studied in

non-model species (Tack et al., 2012) and may exclude dominant (abundant or foundational) plant

species. Dominant species are largely responsible for ecosystem structure and function (Sasaki and

Lauenroth, 2011; Smith and Knapp, 2003). Thus, dominant species intraspecific diversity and plas-

ticity is key to understanding how ecosystems will respond to future environmental change. For

instance, the dominant tallgrass prairie grass Andropogon gerardii can comprise more than 80%

of productivity in tallgrass prairie (Smith and Knapp, 2003). This species also exhibits functional

diversity and plasticity among genotypes in response to water limitation. A long-term rainfall

variability manipulation in native tallgrass prairie produced drier soils, leading to selection against

some genotypes of A. gerardii (Avolio et al., 2013). Physiological responses and plasticity in

biomass allocation also varied among genotypes (Avolio and Smith, 2013b). However, intraspe-

cific diversity emerging from nonlinear responses of traits has not been quantified. Accurately

quantifying intraspecific diversity is timely, as selective pressures are only expected to intensify.

North American prairies are expected to experience more frequent and extreme droughts with cli-

mate change (Cook et al., 2015). We must first elucidate intraspecific variation in order to predict

how these unprecedented droughts will influence populations.

While different trait means and variation in plasticity have implications for genotype responses

to water availability, differences in recovery following drought may also be important for native

populations. Post-drought recovery is a critical means by which plants survive in unpredictable

environmental conditions (Carter et al., 2012; Dietrich and Smith, 2016; Lovell et al., 2016; Meyer

et al., 2014; VanderWeide et al., 2014). Grasses in particular may resprout or emerge from dormant

buds (Carter et al., 2012; McDowell et al., 2008) or recover higher levels of gene expression (Meyer

et al., 2014) once favorable conditions return. Like plasticity and other traits, recovery ability is

known to differ among genotypes in other grasses (Cui et al., 2015; Okami et al., 2015; Pirnajmedin
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et al., 2016). For A. gerardii, timing of drought is known to influence biomass and flowering later

in the season (Denton et al., 2017; Dietrich and Smith, 2016), so we might expect a legacy effect of

water limitation. Yet, it is unknown whether genotypes of A. gerardii recover differently following

drought or how recovery may be plastic across water availability.

In this study, we better quantified the breadth of intraspecific diversity in drought response by

including assessment of nonlinear plasticity. Using A. gerardii as the focal ecological species,

we used a soil moisture gradient to assess genotype differences and nonlinearity of plasticity in

response to drought. We examined differences in genotype recovery after a legacy of different

water limitation by restoring water availability at the end of the study. Based on past patterns of

selection, we chose two drought resistant and one drought susceptible genotype for comparison

(Avolio and Smith, 2013b; Avolio et al., 2013). We hypothesized that genotypes would vary in

trait value response to a gradient of soil moisture, broadly indicating intraspecific diversity within-

population. We also suspected nonlinear plasticity would be present across a variety of traits and

would vary among genotypes. Overall, we expected the drought susceptible genotype to be the

most distinct. We also suspected that the two drought resistant genotypes would differ in drought

response strategy to minimize competition in the field. Taken together, these multiple hypotheses

contribute to our understanding of complex variation in intraspecific responses, which may help

maintain ecosystem function in the tallgrass prairie community.

3.3 Methods

3.3.1 Study site and genotype establishment

We performed our study within the context of the Rainfall Manipulation Plots (RaMPs) study

at the Konza Prairie LTER site in Manhattan, KS. The long-term RaMPs study altered precipitation

patterns to produce fewer larger rainfall events, leading to decreased soil water content in altered

plots. This experiment lies within an annually burned remnant tallgrass community by A. gerardii,

a tall perennial C4 grass. This species reproduces primarily by clonal tillering and thrives in annu-

ally burned areas like the RaMPs experiment. We selected three common genotypes of A. gerardii

found within the experiment: G2, G5, and G11 (Avolio and Smith, 2013b), where the number cor-
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responds to each genotype’s ranked abundance. Using flow cytometry, we determined that all three

genotypes were hexaploid, with genome sizes similar to previous findings (Keeler, 1990). While

G2 and G11 were found within altered plots in RaMPs (drier plots), G5 was selected against. All

genotypes were found in ambient plots. In other words, G2 and G11 appear drought resistant while

G5 appears drought susceptible. We then performed meristem tissue culture on these genotypes;

this allowed us to remove maternal effects and propagate a large number of individuals for use in

the greenhouse (Section II.1). Plants were allowed to adjust in misters for 42 days before being

placed in 2.65 L cone-tainer style tree pots (Stuewe & Sons, Tangent, OR) (Figure II.2). These pots

were placed in a greenhouse bay at 30°C with a 16 hour photoperiod supplemented with overhead

lamps. To reduce nutrient limitation, 6g of Osmocote fertilizer was added to each pot. Plants were

watered daily for 29 days until the beginning of the drought study (26 August 2014).

3.3.2 Water availability treatments

We selected 10, 15, 20, and 25 percent volumetric water content (%VWC), as well as satu-

rated %VWC, as our water availability treatments. Because %VWC and gravimetric water content

(GWC) are nearly equivalent at the Konza location (Wilson et al., 2009), we converted GWC of

Konza soils to GWC of Greens Grade media by matching soil water potential (-mPa) of poten-

tiometer curves from both types of soil. In other words, we determined soil water potential at each

treatment within Konza soils and matched the corresponding Greens Grade soil water potential. It

is worth noting from the potentiometer curve that equal declines in %VWC correspond to similar,

but not exactly equal soil water potential values. Thus, we have avoided any sensitivity analyses

(Smith et al., 2017).

Following the adjustment period above, pots were weighed daily, and water was added daily to

achieve the target water availability treatment. Saturated pots were given 500 mL of water daily,

or until water dripped slightly from each pot. The treatment period lasted for 7 weeks for a total

of 10 weeks. Pots were rotated weekly to avoid greenhouse microclimate effects. In total, n=20

pots were allocated to each treatment and genotype for a total of 300 pots (3 genotypes by 5 water

availability treatments = 15 genotype x treatments each with 20 replicates). Due to the destructive
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nature of some measurements, we created subsets of plants for different uses, described below. All

water availability treatments were significantly different after day 20 (Figure II.3).

3.3.3 Physiological measurements

Net photosynthetic rate (Anet), stomatal conductance (gs), maximum PSII efficiency (fv/fm),

evapotranspiration rate, and instantaneous water use efficiency (WUEi) provide information re-

lated to photosynthesis and water use, a process inhibited by drought and predictive of drought

response (Ocheltree et al., 2016). All measurements were performed between 11:00 and 14:00

on a weekly basis during the treatment period using a LI-6400 system (LiCOR Inc., Lincoln, NE,

USA) adjusted to a constant CO2concentration of 400 µmol mol−1. For Anet and gs, the LED

light source was maintained at 2000 µmol mol−1 s−1. Leaves were dark adapted overnight before

performing an fv/fm light saturation flash for 1 s (n=7 replicates per treatment and genotype for

all physiological measurements). We calculated WUEi by dividing Anet by evapotranspiration.

Because of its destructive nature, midday leaf water potential was measured at the end of the treat-

ment period using a Scholander-type pressure chamber (PMS Instruments, Corvallis, OR, USA,

n=3 leaves from separate pots per treatment and genotype).

3.3.4 Morphological measurements

For all replicates (n=20 replicates per genotype and treatment), height, leaf number, and tiller

number were measured weekly throughout the treatment period to the nearest mm. Relative growth

rate was calculated as the natural log of the difference in height between weeks (Philipson et al.,

2012). Biomass was harvested at the end of the treatment period and divided into aboveground and

belowground (including rhizome) biomass (n=7 per treatment and genotype). From each above-

ground biomass sample, a subset of two leaves was removed to measure leaf area (LA) and specific

leaf area (SLA).

Root structural traits are key for plant plasticity and adaptation to drought (Comas et al., 2013).

From the belowground biomass, a subset of roots was removed from each plant to analyze root

architecture. Leaves used for SLA were scanned for area measurement using ImageJ software and
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dried. Root architecture, which includes root length, surface area, diameter, volume, and number

of root tips, was analyzed using WinRhizo software (Regent Instruments, Quebec City, Canada).

Root architecture measurements were scaled according to the proportional weight of the subset

roots compared to the total roots. All biomass was weighed fully hydrated and then dried at 60°C

for 48 h to determine leaf dry matter content (LDMC) and root dry matter content (RDMC). We

also calculated additional metrics: whole plant root to leaf surface area ratio, specific root length

(root length / mass), and specific root surface area (root surface area / mass). Root to leaf surface

area ratio provides a useful indicator of potential water uptake in proportion to carbon uptake ability

(Comas et al., 2013). Although fine roots may be important for resources acquisition, specific root

length may be lower in native species with a conservative drought response strategy (Balachowski

and Volaire, 2018).

3.3.5 Recovery following water availability treatments

Following the primary treatment period, a subset of plants (n=7 per treatment and genotype)

were immediately rewatered to 25% VWC for eight weeks. After this recovery period, above-

ground (leaves) and flowering (including stalks) were harvested, dried, and weighed. Plants were

allowed to recover from clipping for two weeks at which point height was measured to assess

recovery from the rhizome. After recovery from rhizome height measurement, all aboveground

and belowground (including rhizome) biomass was harvested, dried, and weighed. Following re-

watering, Anetand leaf water potentials were measured as above. Aboveground, flowering, and

belowground biomass were also harvested and dried. Height was measured weekly throughout

both recovery periods.

3.3.6 Statistical analyses

Because trait measurements are often correlated (Figure II.4, Figure II.5, Figure II.6, Fig-

ure II.7), data were clustered into principal components (PCs) to determine key functional traits

for further analysis (Table II.1, Table II.2, Table II.3, Table II.4). Because some measurements

are destructive, traits were divided and analyzed in subsets according to the measurements per-
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formed (See Table II.1, Table II.2, Table II.3, and Table II.4 for details on PC loadings and all

traits measured). Recovery data was clustered separately into PCs since the null hypothesis differs

from treatment period data (H0: differences across treatments and genotypes are retained during

recovery). Preliminary analyses determined that day was a significant factor in repeated measures

analysis, so all days of repeated measurements were included when forming PCs. All PCs were

formed using the prcomp() function within R (version 3.4.3) to account for the maximum vari-

ance across traits. Important traits were determined based on loadings from the top two PCs from

each subset (PC1 and PC2, see Table II.1, Table II.2, Table II.3, and Table II.4 for variance ex-

plained). We modeled the posterior distribution of these traits (ŷi) as a Bayesian linear regression.

The following model was used to test the effects of genotype, treatment, and their interaction on

the ith observation of N :

ŷi ∼ normal(xiβ, σ
2)

where x is an N x J matrix of predictors (J represents each of 15 unique genotype, treatment,

and interactions possibilities) and β is a vector of J parameters. Overall, xiβ is a vector of N

predictors. This model had the advantage of allowing us to estimate different slopes for each com-

bination of genotype and treatment rather than the overall effect of each. Effects of treatment,

genotype, and genotype x treatment interaction were considered significant if the J parameter did

not overlap zero. In two cases (recovery flowering biomass and recovery from rhizome), the orig-

inal data contained many zeros so we allowed additional parameters, probability of flowering ϑF

and probability of recovery from rhizome ϑRh to vary between 0 and 1 across genotypes to inform

mixture models. See supplementary material for more details on the statistical models (Text S2).

All models were run simultaneously with three chains using Stan (version 2.17.3, Gelman et al.,

2015), with 5,000 sampling iterations discarded as burn-in and 5,000 iterations retained. All model

parameters converged with Rhat values approaching 1 and normality of residuals maximized (see

Section II.1.1); all models were compiled within R (version 3.4.3, R Core Team, 2018). Error

bars throughout the study described the 95% CI around the posterior distribution of a given trait.
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Plasticity was considered present if there was a treatment effect for a particular genotype. We cat-

egorized the difference between CIs of two adjacent treatments, where non-zero differences were

considered plastic and zero-overlapping values were considered static. If a genotype demonstrated

both static and plastic responses within a particular trait, the plasticity was considered nonlinear.

3.4 Results

3.4.1 Physiological responses to water availability

Physiological traits were typically plastic in response to water availability (significant treat-

ment effect) but trait means did not differ across genotype (Table 3.1). Mean photosynthetic rate

showed a significant genotype x treatment interaction, indicating the pattern of genotype plasticity

could be distinct even without mean trait differences among genotypes or treatments. Stomatal

conductance and evapotranspiration rates sometimes showed significant genotype x treatment in-

teractions, depending on the week (Figure II.8). We also observed large variation in trait value

across weeks (Figure II.8).

Nonlinear plasticity was consistent across physiological traits. For example, photosynthetic

rate increased sharply between 10 and 15%VWC for all genotypes while leveling off at greater

water availability (Figure 3.2a). These patterns differed among genotypes; from 15%VWC, G5

increased photosynthetic rate incrementally, while increases in G2 and G11 continued to show

significant plasticity, leveling off between 20 and 25%VWC (Figure 3.2a). Stomatal conductance

(Figure 3.2b) and evapotranspiration rate (Figure 3.2c) also showed pronounced plasticity between

10 and 15%VWC for all genotypes. However, Genotype 11 also showed additional plasticity stom-

atal conductance and evapotranspiration rate plasticity between 15 and 20%VWC not observed in

the other two genotypes.

3.4.2 Morphological responses to water availability

All morphological traits showed a significant effect of treatment, indicating morphological

plasticity is a key response to water availability in A. gerardii (Table 3.1). Aboveground biomass,

root complexity, and leaf area tended to increase with increasing water availability (Figure 3.3).
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Table 3.1: Important traits, effects, and plasticity types identified from principal component analysis.

Treatment N Key PC loadings Significant

effects

Plasticity

type: G2

Plasticity

type: G5

Plasticity

type: G11

7 week water
availability
treatment

7 Root tips T Linear Nonlinear None
Root length T, GxT Linear Nonlinear None
Root surface area T, GxT Linear Nonlinear Linear
Root volume T, GxT Nonlinear Nonlinear Nonlinear
Leaf area T, GxT Linear Nonlinear Nonlinear
Aboveground biomass T, GxT Nonlinear Nonlinear Nonlinear
Root:leaf surface area G, T, GxT Linear Linear Linear
Specific root length G, T Nonlinear Nonlinear Linear

7 Mean Anet T, GxT Nonlinear Nonlinear Nonlinear
Mean gs T Nonlinear Nonlinear Nonlinear
Mean evap. rate T Nonlinear Nonlinear Nonlinear

20 Max. height G, T, GxT Nonlinear Nonlinear Nonlinear
Max. rel. growth rate G, T, GxT Nonlinear None Nonlinear

7 week water
availability
treatment +
recovery

7 Max. recovery height None
Max. recovery rel. growth rate GxT
Flowering biomass G
Rhizome recovery G
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Figure 3.2: Key physiological traits identified through PC analysis show nonlinear plastic responses of
(a) mean Anet, (b) mean gs, and (c) mean evapotransipiration rate to a gradient of water availability. See
Table 3.1 for significant effects. Error bars represent the 95% CI.
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Root to leaf area ratio declined with increasing water, while specific root length (length to mass

ratio) was greatest at intermediate water availability. We detected some overall mean differences in

genotype trait values; root to leaf surface area ratio tended to be greater overall in G2 and specific

root length was smaller in G11 (Figure 3.3g,h). We also detected genotype x treatment interactions

in six of the eight key traits, indicating that genotypes commonly responded differently depending

on the treatment.
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Figure 3.3: Key morphological traits identified through PC analysis show that genotypes and treatments
differ and plasticity is also often nonlinear. These include (a) aboveground biomass, (b) root length, (c) root
surface area, (d) root tips, (e) root volume, (f) leaf area, (g) root to leaf surface area, and (h) specific root
length. See Table 3.1 for significant effects. Error bars represent the 95% CI.

Nonlinear plasticity was also common (Table 3.1). Overall, G5 showed the greatest nonlinear

plasticity (7 traits) compared to G2 or G11 (3 traits, Table 3.1). Genotype 5 demonstrated nonlin-

ear plasticity in root tips, root length, and root surface area particularly between 10 and 15%VWC,

whereas G2 plasticity was linear throughout and G11 changes were often not significant (Fig-

ure 3.3b,c,d). Leaf area plasticity was nonlinear between 15 and 20%VWC for G5 and G11, but

not for G2 (Figure 3.3f). Genotypes also experienced nonlinear plasticity at different points on the

water availability gradient. Specific root length plasticity was nonlinear between 20 and 25%VWC
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for G2 but between 10 and 15% VWC for G5. In contrast, genotype 11 experienced minimal linear

plasticity in specific root length (Figure 3.3h). While aboveground biomass plasticity was nonlin-

ear for all genotypes, G5 and G11 experienced the greatest increase in biomass between 15 and

20%VWC while G2 experienced the greatest increase between 20 and 25%VWC (Figure 3.3a).

Root volume was plastic for G2 between 25%VWC and saturated conditions, while G5 and G11

root volume was plastic at lower water availability (Figure 3.3e).

We detected genotype, treatment, and genotype x treatment effects for maximum height and

relative growth rate. Height differences among genotypes were apparent before water limitation

began and persisted throughout much of the experiment, with G11 appearing noticeably shorter

(Figure II.9, Figure 3.4a). All genotypes changed little in height between 10 and 15%VWC, but

increased height substantially between 15 and 20%VWC. While all genotypes had distinct heights

at 10 and 25%VWC, G2 and G5 were similar at intermediate%VWC. Genotype 2 and G11 had

the steepest slopes for maximum height plasticity. Relative growth rates differed substantially

depending on the genotype (Figure 3.4b). Genotype 5 showed no plasticity in its consistently low

growth rate. On the other hand, G2 increased its growth rate between 15 and 20%VWC, while

G11 increased consistently between 10 and 20%VWC.

3.4.3 Intraspecific diversity in reproductive strategy and recovery from drought

The most striking difference between genotypes was in their ability to flower during the re-

covery period. Genotype 2 had consistently greater flowering biomass than the other genotypes,

although legacy of low water availability affected ability to flower (Figure 3.5a). The legacy of

water treatment was visible in G2, which showed reduced flowering in pots that had been the dri-

est. While there was some flowering by G11 at 20%VWC, it was not statistically different from

zero. Genotype 5 almost never flowered. When we modeled the probability of flowering regard-

less of treatment, we confirmed large genotype differences, where ϑF = (0.75,0.96) for G2, ϑF =

(0.22,0.54) for G11, and ϑF = (0.02,0.20) for G5. In other words, the posterior probability of flow-

ering was closer to 1 for G2 but closer to zero for the other genotypes. In contrast, recovery from

rhizome was greater in G5 compared to G2 but only at 20%VWC and greater water availability
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Figure 3.4: Maximum height (a) and (b) relative growth rates differ among genotypes and treatments, where
genotypes differ in the pattern of response (GxT) and plasticity is almost always nonlinear. See Table 3.1
for significant effects. Error bars represent the 95% CI.

(Figure 3.5b). When we modeled the probability of recovery from rhizome regardless of treatment,

we confirmed large genotype differences, where ϑRh = (0.09,0.35) for G2, ϑRh = (0.46,0.78) for

G11, and ϑRh = (0.62,0.89) for G5.

While flowering showed extreme differences after recovery, other traits differed little at the

conclusion of the experiment. Maximum heights among genotypes and treatments converged on

similar values (Figure 3.6a). This trait convergence may be due in part to increased growth rates by

G11 at lower %VWC treatments (Figure 3.6b). Temporal data suggests genotypes and treatments

achieved recovery to similar phenotypes by week 12 (Figure II.10). By the end of the experiment

(week 15), root biomass, vegetative biomass, height, and relative growth rate recovered to simi-

lar values across genotypes and treatments (Table II.4) and suggest a full recovery for droughted

treatments. Lack of differences among genotypes post-recovery may indicate a large amount of

variation, however.
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Figure 3.5: Flowering (a) was much greater in genotype 2, while rhizome recovery (b) was greater in
genotype 5. Note that treatments on the x-axis refer to the treatments experienced prior to the recovery
period. See Table 3.1 for significant effects. Error bars represent the 95% CI.
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Figure 3.6: All genotypes and treatments had similar heights (a) during recovery. Relative growth rates (b)
were larger in G11 at low water availability, allowing this genotype to compensate for prior small stature.
Note that %VWC treatments refer to the treatments experienced prior to the recovery period. See Table 3.1
for significant effects. Error bars represent the 95% CI.
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3.5 Discussion

In this study, we used the native species A. gerardii to compare genotypes with a history of

selection, including two drought resistance genotypes and one drought susceptible genotype. We

found strong evidence for different strategies employed by each genotype, which could explain the

persistence of this dominant species in tallgrass prairie. We also found evidence for the importance

of intraspecific diversity within a population, including nonlinear plasticity in drought response

and recovery. While research on nonlinear reaction norms is more common in model species like

Drosophila (Morrissey and Liefting, 2016; Rocha and Klaczko, 2012), this study demonstrates the

utility of quantitative plasticity assessment to further describe intraspecific diversity among coex-

isting genotypes. Such diversity may contribute to a better understanding of community assembly

(Li et al., 2018) and ultimately enhance ecosystem functions like stability under future drought-

induced climate change.

Nonlinear plasticity was widespread among our traits. Conditions under which plasticity was

significant also depended on the trait (e.g., Figure 3.2a versus Figure 3.4a). However, genotypes

also demonstrated differences in the conditions under which nonlinear plasticity occurred, as we

detected with stomatal conductance, specific root length, aboveground biomass, root volume, and

relative growth rate. This type of intraspecific diversity has likely been overlooked in many geno-

type x environment studies consisting of two treatments (Figure 3.1) (Stinchcombe and Kirk-

patrick, 2012). Because within species functional diversity is constrained under smaller spatial

scales (Tack et al., 2012), nonlinear plasticity may be especially important to explain species dy-

namics under different environmental conditions (Figure 3.1). In contrast to typical studies, our

treatments were also precisely controlled to resemble common field conditions. Thus, our study

may more accurately reveal the mechanistic responses leading to coexistence of these genotypes

in the field. Widespread nonlinear plasticity in our study is supported by threshold-like responses

seen in the field at the species level (Hoover et al., 2014a), but here we have demonstrated that

these thresholds may help explain intraspecific patterns of diversity.
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More broadly, we found strong evidence of genotype x treatment interactions and overall treat-

ment plasticity. Plasticity for many traits is likely to be under convergent selection across the entire

species and could be tied to interannual precipitation variability in the field (Vázquez et al., 2017).

However, multiple genotype x treatment interactions indicate different trait values are adopted by

genotypes depending on the conditions, possibly enhancing functions like stability as has been

shown in other species (Ehlers et al., 2008; Reusch et al., 2005). Interestingly, variation among

genotypes decreased under the driest treatment and under saturated conditions, whereas there was

more variation under intermediate wetter conditions. This suggests that under extreme conditions,

genotypes may converge on a common morphological phenotype. Under dry or flooded conditions

the effects of intraspecific diversity for maintaining ecosystem function may therefore diminish.

This pattern may also cause two-treatment studies to underestimate genotype-based differences in

plasticity if the treatments are not carefully chosen.

In our study we detected intraspecific differences, including variation in plasticity, but we also

revealed key overall differences among A. gerardii genotypes. For example, root:leaf surface area

and specific root length appeared to be inherent to genotype and not associated with any treatment.

The most substantial difference we detected was a genotype disparity in flowering stalk production,

from greater than half of individuals flowering in G2 to almost none flowering within G5. Rhizome

recovery appeared inversely related to flowering. These results suggest a possible tradeoff between

allocation to sexual and asexual reproduction, as has been observed in other species (Aliyu et al.,

2010; Liu et al., 2009; Pluess and Stocklin, 2005; Thompson and Eckert, 2004; Van Drunen and

Dorken, 2012). Genotype 2, a drought resistant genotype, appears to prioritize sexual reproduc-

tion. This could lead to greater recombination and hypothetically fitter genotypes (heterosis) when

environments are stressful (Neiman et al., 2014). In contrast, the drought susceptible genotype

G5 prioritizes asexual reproduction through greater biomass under certain conditions and greater

recovery from the rhizome. This suggests a bet-hedging strategy (Niklas and Cobb, 2017). If

the genotype is well suited for a particular environment, its phenotype could be extremely advanta-

geous for competition and persistence. However, if it is poorly adapted, the asexual genotype could
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be selected against. Clonal growth may be advantageous for long term sexual fitness and species

persistence (Barrett, 2015; Van Drunen et al., 2015), but may be poorly suited for short, intense

droughts if tissue has to be maintained. Alternatively, G5 may have overall delayed flowering,

which could also be disadvantageous under drought (Sherrard and Maherali, 2006). In contrast,

G11 seemed able to flower and recover from rhizome at intermediate levels, but generally was

small in stature. Flexibility in reproductive strategy may be advantageous for G11 but come with

costs like reduced overall height (Figure 3.4a). Dominant species are often less phenotypically

diverse than rare counterparts (Umaña et al., 2015), but in this case phenotypic differences among

genotypes may allow this species to maintain dominance over variable climatic conditions through

different reproductive strategies.

As expected, we detected evidence that the drought-susceptible genotype G5 was distinct. Mor-

phological trait analysis suggested that G5 tended to have the greatest biomass across all treat-

ments. While larger size has benefits for fitness and persistence (Younginger et al., 2017), this

genotype may be at a disadvantage for cumulative traits as precipitation events vary intrannually

within tallgrass prairie (Gibson and Hulbert, 1987). The G5 morphological phenotype may be

especially disadvantageous for sudden, late-season droughts. In contrast, the resistant genotypes

may persist under a legacy of drought in the field because of a more conservative approach with

morphological structures (Lopez-Iglesias et al., 2014). These genotypes may remain small be-

cause the likelihood of droughts sometime in the growing season is high and it will be costly to

maintain structures. In this case, greater plasticity for biomass and root structures may actually

be maladaptive by G5 (Harter et al., 2015; Valladares et al., 2007) or a sign of relaxed selection

among non-droughted genotypes from the previous study (Chevin and Lande, 2015). In contrast,

G5 showed limited plasticity for height and relative growth rate. The timing of growth by different

genotypes has substantial effects on ecosystem function in the tallgrass prairie, since timing of

rainfall is known to influence productivity in A. gerardii (Denton et al., 2017; Dietrich and Smith,

2016; La Pierre et al., 2011). During typical droughts, it may be more advantageous to grow

rapidly but only when sufficient resources are available, as G2 and G11 demonstrated with similar
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nonlinear responses over treatments (Figure 3.4) and over time (Figure II.9). These distinct trait

patterns, along with prioritization of asexual reproduction, could explain why G5 was unable to

persist in the field under drier, more variable conditions.

We found supporting evidence for different strategies between two closely related drought re-

sistant A. gerardii genotypes G2 and G11. A fundamental goal of community ecology is explain-

ing why species or genotypes within a species coexist, and much research has been done regarding

differential responses and use of resources (Avolio and Smith, 2013a; Chang and Smith, 2014;

Tilman, 2004; Tilman et al., 2014). We found large differences in reproductive strategy, but also

in root to leaf area ratio, specific root length, overall height, and how nonlinear plasticity was dis-

tributed across treatments. These results suggest that these genotypes differ in allocation strategies.

For example, G2 tended to have greater root to leaf surface area ratio and specific root length, in-

dicating greater investment in root complexity versus aboveground tissues. Genotype 11 appeared

to have less root complexity, which may indicate a more conservative approach to drought (Bal-

achowski and Volaire, 2018). Leaf area and aboveground biomass demonstrated linear plasticity

G2 versus nonlinear plasticity in G11, which changed rapidly between 15 and 20%VWC. Coupled

with height disparity, these differences suggest that G11 may be more resources conservative, or

more drought tolerant versus drought avoidant (Carvajal et al., 2017; McDowell, 2011). Consistent

flowering by G2 could also be a means of drought escape rather than tolerance toward the end of

the growing season (Nicotra and Davidson, 2010). Moreover, height differences indicate these two

genotypes occupy different physical space throughout the tallgrass prairie canopy, which could

minimize competition.

Despite the importance of resilience in ecological communities (Hoover et al., 2014b; Mori,

2016), intraspecific differences in recovery are often neglected. Aside from differences in repro-

ductive strategy among genotypes, the recovery portion of this study provided evidence for A.

gerardii’s ability to recover rapidly once water stress was alleviated (although variation was high).

In addition to the findings above, this suggests that plasticity in growth and biomass has been un-

der strong selection in this species overall. With other climatic factors like temperature aside, this
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could also indicate that legacy of drought on biomass and height can be alleviated in this popula-

tion with enough additional water. This directly contradicts findings in field studies, although such

quantities of water may be unrealistic in the field (Denton et al., 2017; Dietrich and Smith, 2016)

and may be complicated by differences in temperature.

Our results indicate a clear need for intraspecific diversity study looking beyond comparisons

of mean trait values. We demonstrate the contribution of nonlinear plasticity to intraspecific varia-

tion within a native population of A. gerardii. Importantly, nonlinear plasticity was the rule rather

than the exception, indicating that multiple conditions may be necessary to accurately quantify

trait plasticity. Differences in water use strategy among the genotypes here may have implications

for community composition, especially in the context of climate change (Hoover et al., 2017). Our

study suggests that these three A. gerardii genotypes may increase diversity of canopy structure

through timing of growth and plasticity, flowering rates, and other traits. Alongside other studies,

this work demonstrates the importance of understanding within-species responses across ecologi-

cally relevant treatments, allowing us to mechanistically predict how ecological communities with

dominant or foundational species may respond to future drought and selection.
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Chapter 4

Genetic and functional variation across regional and local scales is associated with climate

in a foundational prairie grass

4.1 Overview

Combating selective pressures caused by climate change requires knowledge of within species

diversity, particularly of dominant species within communities. To better understand the fate of the

shortgrass steppe ecosystem of the Central US, we quantified genomic diversity from 17 sites of

the dominant grass species Bouteloua gracilis across regional scales, north-south from New Mex-

ico to South Dakota, and local scales in Northern Colorado. We also quantified trait and plasticity

variation within and among sites in order to link genomes to functional diversity and determined

the extent to which diversity in B. gracilis was related to climate. Genomic sequencing indi-

cated the most pronounced population structure at the regional scale, but sites were also distinct

at a finer spatial distances, indicating that gene flow and/or dispersal may be limited within this

key species. Within a common environment, we found phenotypic evidence for genetic divergence

across traits and plasticity for individual plants, especially for New Mexico sites. Sites also differed

in trait variance, indicating different adaptive potential. When comparing regionally and locally

distributed sites, both differed according to similar traits, chiefly aboveground and total individual

biomass. Finally, we found that traits and plasticity were significantly linked to both temperature

and precipitation climatic variables, specifically temperature during drier seasons, precipitation

seasonality, and median Palmer Hydrological Drought Index (PHDI). Our results indicate a con-

clusive link between genomes, phenotypic variation, and plasticity in this species and suggest a

possible mechanism explaining differential climate responses in B. gracilis-dominated grassland

ecosystems. Moreover, our comprehensive analysis of intraspecific diversity across spatial scales

in this dominant grass will help conservation and management of the shortgrass steppe ecosystem

moving forward.
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4.2 Introduction

Global climate change poses a substantial threat to conservation and management of ecosys-

tems worldwide due to its novel evolutionary pressures (IPCC, 2018). Dry grasslands and their

ecosystem services will be especially affected (Schlaepfer et al., 2017; Sloat et al., 2018) by

droughts, heatwaves, and other drivers (Cook et al., 2015, 2004). Plant communities will be re-

shaped as they face climate change and other stressors, but generally more diverse communities are

more resistant and resilient to change (Hughes and Stachowicz, 2004; Yachi and Loreau, 1999). It

is therefore critical to reveal diversity throughout natural systems to predict how they will respond

to change worldwide.

While much ecological diversity is distributed among species in plant communities, some

ecosystems have pronounced inequality among species abundances, producing one or a few domi-

nant species. These dominant species are often responsible for the majority of ecosystem function

(Avolio et al., 2019). For example, Andropogon gerardii comprises up to 80% of production in tall-

grass prairies (Smith and Knapp, 2003) and Bouteloua gracilis makes up nearly 90% in shortgrass

steppes (Milchunas et al., 1989; Sasaki and Lauenroth, 2011). While species evenness may be low

in such communities, these dominant species can harbor intraspecific diversity that buffers ecosys-

tem change and bolsters ecosystem function (Avolio et al., 2013; Hughes and Stachowicz, 2004;

Oney et al., 2013). Effects of intraspecific diversity can even exceed those of species diversity

(Cook-Patton et al., 2011; Reusch et al., 2005). Thus, an understanding of intraspecific diversity

is essential to quantifying ecological patterns (Albert et al., 2012; Fridley and Grime, 2010). By

revealing intraspecific diversity in dominant species, ecologists will better understand the mecha-

nisms leading to community and ecosystem-level responses to global change and climate (Avolio

et al., 2019).

In order to conclusively link patterns of intraspecific diversity to climate, observations must be

made on spatial scales appropriate to the species and driver in question (Anderson et al., 2010).

Species differ in the spatial scale at which they respond to climate variation (Urban et al., 2016),

which can make approaching diversity in a non-model species challenging. Because plants will

48



have limited ability to track climate change through migration (Jump and Peñuelas, 2005; Pear-

son, 2006), local scales of diversity over which evolution can occur must be examined (Füssel and

Klein, 2006). However, continental-scale data will be essential for predicting other features, such

as range shifts (Parmesan 2006) and population structure (Manel et al., 2003), indicating that a

multi-scale approach might be most appropriate. Alongside different spatial scales, within popu-

lation variation can reveal the capacity of species to adapt to changing conditions (Hoffmann and

Sgrò, 2011; Nicotra et al., 2015) and how such intraspecific variation relates to the local community

(Bolnick et al., 2011; Siefert et al., 2015). However, moving beyond single populations to describe

among population variation reveals how selection pressures have shaped the species under differ-

ent environmental conditions (Vergeer and Kunin, 2011). Integrating intraspecific analysis across

regional and local scales can provide insight into community structuring (Violle et al., 2012), and

thus is key to indicating how a dominant species and its associated communities persist across a

wide range of conditions.

Despite the importance of intraspecific diversity, many studies focus solely on genetic diversity,

without incorporating functional diversity and plasticity. While measures of neutral genome diver-

sity elucidate evolutionary history and information on population structure, knowledge of pheno-

type is required to link such diversity to selective pressures and community-level effects (Hughes

et al., 2008; McGill et al., 2006). Plasticity must also be considered, as it affects species adaptation

to environmental change (Valladares et al., 2014) and can even lead to persistence in changing en-

vironments (Ghalambor et al., 2007; Vázquez et al., 2017). Moving forward, synthesizing genomic

and functional diversity will be critical to understanding dominant species intraspecific diversity

within broader plant communities and applying such knowledge to conservation.

In this study, we quantified intraspecific diversity of the foundational grass species of the Cen-

tral US shortgrass steppe, B. gracilis, in order reveal key dimensions of biodiversity as well as

the capacity of B. gracilis to adapt and persist under future global change scenarios. We used a

novel approach, incorporating within and among site genomic and functional variation across two

spatial scales. We examined seven sites along a regional (New Mexico to South Dakota) climate
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gradient and ten local (Boulder County, Colorado) sites with climatic variation. At each scale, we

assessed diversity by quantifying single nucleotide polymorphisms (SNPs) across the genome and

by measuring functional trait means and variance in a common environment. We also assessed

plasticity in these traits across two moisture conditions. We addressed the following hypotheses:

(1) We expected that sites would be genetically more distinct along the regional versus the lo-

cal scale. If population structure was present, we would observe genomic variation among sites,

as well as differences in genotype richness, evenness, and allelic heterozygosity across sites. (2)

If population structure was present in B. gracilis, then we also expected phenotypic differences

among sites, with regionally distributed sites showing greater distinction. Similarly, if plasticity

contributed to local adaptation, then plasticity means and variances would differ among sites. If

genetic variation contributed strongly to phenotype diversity in B. gracilis, then we would observe

correlations between metrics of within-site diversity (such as genotype richness) and phenotypic

variance. (3) Finally, if B. gracilis is locally adapted with respect to climate, then we would ob-

serve trait-climate or plasticity-climate correlations. Specifically, we expected that B. gracilis, a

drought tolerant species found in water-limited ecosystems, would have functional diversity associ-

ated with precipitation and drought indices. Taken together, tests of these hypotheses will improve

our understanding of this important species’ population structure and phenotypic adaptation to cli-

mate. As a key forage species in dry rangelands, this research also elucidates extant resources for

managers of this ecologically and economically important grass species.

4.3 Methods

4.3.1 Species and site descriptions

Bouteloua gracilis is the dominant grass species of the shortgrass steppe ecosystem, spanning

much of the western Great Plains (Lauenroth and Burke, 2008). A C4, perennial grass, this species

can be long-lived (Fair et al., 1999) and can also occur in other prairies and shrublands through-

out the United States, Canada, and Mexico. Bouteloua gracilis can grow as a bunch grass or can

grow in dense, turf-forming mats via tillering (Wynia, 2007). As the dominant species, B. gra-

cilis plays a substantial role in community structure (Milchunas et al., 1990) and stability (Sasaki
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and Lauenroth, 2011). With additional economic value, B. gracilis is also grazing tolerant and

provides forage for livestock and native herbivores (Lauenroth and Burke, 2008). Populations of

B. gracilis from the Colorado Plateau (Butterfield and Wood, 2015; Tso and Allan, 2018) and

Manitoba, Canada (Phan and Smith, 2000; Phan et al., 2003) are known to have genetic variation.

Foundational texts described B. gracilis as locally adapted to climate (Dayton et al., 1937; Hughes

et al., 1952; Stefferud, 1948), yet this assumption has rarely been tested (but see Butterfield and

Wood (2015)).

Bouteloua gracilis productivity often responds strongly to climate, but results are mixed. Ex-

perimental exclusion of 25% and 50% of precipitation in the shortgrass steppe led to a 40% reduc-

tion in B. gracilis cover over 10 years (Evans et al., 2011). However a shorter term 50% rainfall

exclusion produced greater B. gracilis cover (Byrne et al., 2017). Bouteloua gracilis also increased

production under fewer, larger (more variable) rainfall events (Heisler-White et al., 2008, 2009).

In wetter grasslands like mixed grass prairie, B. gracilis has been shown to increase in abundance

under drought (Knapp et al., 2015a). Conversely B. gracilis-dominated grasslands under more

arid conditions in New Mexico tend to be most sensitive to changes in precipitation (Knapp et al.,

2015a). Such equivocal responses might indicate intraspecific variation for coping with different

water availability conditions.

Fifteen sites were selected for B. gracilis collection based on variable climate (Table 4.1).

These included five sites along a regional north-south gradient in the western Great Plains (large

spatial scale) and ten sites along a local elevational gradient within Boulder County in northern

Colorado (small spatial scale). These sites represent variation in temperature, precipitation, and

aridity that have likely driven B. gracilis evolution throughout its range (Table 4.1). Two additional

sites, Cedar Point and Konza, were also selected for genomic analysis only due to the sites’ status

as intact prairies (Table 4.1).

4.3.2 Quantifying genomic diversity

In order to determine diversity across the genome of B. gracilis, we quantified neutral single

nucleotide polymorphisms using the 2b-RAD method (Wang et al., 2012) on dried leaf tissue.

51



Table 4.1: Summary of sites and climate characteristics. MAT: mean annual temperature; MDR: mean
diurnal range; TS: temperature seasonality; MaxT: maximum temperature of the warmest month; MinT:
minimum temperature of the coldest month; TD: mean temperature of the driest quarter; MAP: mean annual
precipitation; PS: precipitation seasonality; AI: aridity index; EDM: extreme drought months; mPHDI:
median PHDI.

Site County Coordinates MAT (C) MDR (C) TS MaxT (C)

Regional

Sevilleta Socorro, NM 34.3415, -106.622 12.8 12.8 816.2 31.8
Cibola Torrance, NM 34.4919, -106.417 11.4 11.4 779.5 29.5
Comanche Otero, CO 37.6556, -103.669 12.0 12.0 934.0 33.5
SGS Weld, CO 40.8358, -104.763 8.9 8.9 877.0 29.2
Buffalo Gap Pennington, SD 43.8920, -102.063 8.5 8.5 1081.4 30.8
Cedar Point Keith, NE 41.2086, -101.646 9.8 9.8 1003.7 30.6
Konza Riley, KS 39.0754, -96.603 12.1 12.1 1031.1 31.6

Local

Andrus Boulder, CO 40.0462, -105.207 10.2 10.2 857.7 30.2
Rock Creek Broomfield, CO 39.9360, -105.108 10.3 10.3 855.5 30.0
Steele Boulder, CO 40.1497, -105.231 9.8 9.8 857.0 29.9
Rabbit Mountain Boulder, CO 40.2484, -105.217 9.4 9.4 846.2 29.0
Beech Trail Boulder, CO 40.0993, -105.274 9.8 9.8 842.5 29.4
Davidson Mesa Boulder, CO 39.9643, -105.206 9.9 9.9 831.7 29.3
Wonderland Boulder, CO 40.0595, -105.295 9.2 9.2 815.0 28.1
Heil Valley Boulder, CO 40.1536, -105.298 8.4 8.4 801.1 26.6
Kelsall Boulder, CO 39.9167, -105.207 9.6 9.6 827.1 29.0
Walker Ranch Boulder, CO 39.9502, -105.337 6.6 6.6 758.2 24.2
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Table 4.1: Summary of sites and climate characteristics (continued).

Site MinT (C) TD (C) MAP (mm) PS (CoV) AI EDM mPHDI

Regional

Sevilleta -7.5 8.0 277 67.8 0.19 90 -0.46
Cibola -7.7 3.7 336 62.1 0.24 90 -0.46
Comanche -9.0 0.7 323 58.7 0.23 63 0.87
SGS -10.9 -1.3 369 58.9 0.33 88 1.19
Buffalo Gap -13.8 -4.7 422 65.9 0.37 49 1.46
Cedar Point -11.7 -2.4 446 62.4 0.39 80 1.04
Konza -9.3 -1.1 891 51.5 0.76 62 0.84

Local

Andrus -9.8 0.1 454 43.9 0.34 88 1.19
Rock Creek -9.3 0.4 455 44.4 0.35 88 1.19
Steele -10.3 -0.3 449 44.7 0.35 88 1.19
Rabbit Mountain -9.9 -0.5 436 45.7 0.35 88 1.19
Beech Trail -9.8 0.0 460 44.4 0.36 88 1.19
Davidson Mesa -9.3 0.2 480 43.5 0.38 88 1.19
Wonderland -9.3 -0.1 464 42.1 0.38 88 1.19
Heil Valley -9.7 -0.8 444 41.8 0.38 88 1.19
Kelsall -9.5 0.1 482 43.2 0.38 88 1.19
Walker Ranch -11.0 -2.0 455 39.1 0.43 88 1.19
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Briefly, this technique uses IIB restriction enzymes that extract small genomic fragments of equal

bp length, rather than producing long fragments between enzyme restriction sites. We chose this

technique because of its cost effectiveness and ability to produce greater coverage over B. gracilis’

large genome (estimated 36 billion bp, Bennett and Leitch (1997)). Because this technique has

never previously been used on B. gracilis, we also performed an extensive sequencing validation

using 12 genotypes collected from the SGS site with several clonal tillers each. For this sequencing

technique to be valid, clones would need to cluster together with genotypes emerging as separate

branches (Figure III.1). Our final data consisted of 283 individuals from 17 sites.

To prepare libraries for Illumina sequencing, we made several modifications to the original

method, including restriction fragment reduction for large genomes using custom Illumina adapters

(Section III.1). Following sequencing, we processed the genomic fragment data to produce SNPs.

We utilized scripts generated by E. Meyer for SNP processing (http://eli-meyer.github.io/2bRAD_

utilities/#top). Briefly, we clustered reads into distinct loci based on maximum likelihood simi-

larity. We then called genotypes based on frequencies of alleles; major allele frequency >0.995

was considered homozygous and <0.85 was considered heterozygous, with intermediate values

considered ambiguous. After considering only polymorphic loci, we removed any samples with

>85% missing data and narrowed our selection of SNPs to only one per 36bp tag to maximize

locus independence, providing a final dataset of 9,469 SNPs.

4.3.3 Common environment experiment

To quantify within-site diversity in a common environment, we collected crown tissue from

individual clumps of B. gracilis from each site in June 2016 for use in trait and genomic analysis.

Within each site, seventeen individuals were collected >10m apart to avoid collecting clones (But-

terfield and Wood, 2015). Individuals were placed in plastic bags and hydrated with approximately

100mL of water to avoid desiccation. Before treatments began, individuals were transplanted into

homogenized 50% Green’s Grade Fritted Clay and Sun Pro potting mix inside 2.65L “cone-tainer”

style pots (Stuewe & Sons, Tangent, OR). Individuals were clipped to 1cm to equalize early season

growth across all samples, with leaf tissue stored on silica prior to genomic analysis. Pots were
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maintained at water holding capacity and covered with cotton fabric for two weeks to facilitate

successful rooting. See (Bushey et al., in review) for more details on plant collection prior to

treatment.

We performed both a water-limited and a water-abundant treatment in our common environ-

ment to test for plasticity to water availability. Because individuals consist of many clonal tillers

that separate easily, we divided individuals equally into the two distinct water availability treat-

ments, allowing us to balance any genetic differences between treatments. After an acclimation

period (20 days), we allowed pots in the water-limited treatment to dry down to a 10% target

volumetric water content (VWC) while water-abundant pots were held at water-holding capacity.

Water was supplied every two days to reach the treatment target; water addition volumes were

determined using a pot mass by VWC regression (Bushey et al., in review) and were confirmed

using a Campbell Scientific HydroSense II Water Content Sensor with 20 cm probes (Figure III.2).

These treatments were maintained for 14 weeks for n=17 individuals per site (17 x 2 treatments x

15 sites = 510 total).

4.3.4 Phenotypic traits

During the 14-week treatment period, we repeatedly collected both height and flowering data.

Height was measured from the soil surface to the nearest mm (with leaves stretched) approxi-

mately every five days. Because B. gracilis height from each site followed a logistic curve, we

retained the maximum height per individual for statistical analysis. Flowers were trimmed and

collected from flowering stalks as they emerged throughout the experiment because they rapidly

desiccate. Flowers were dried at 55°C for three days after which we measured weight and length

of each flower. We retained total flowering biomass, total flower count, average flower biomass,

and average flower length per individual throughout the experiment.

Productivity of B. gracilis is central to its role as a dominant species in xeric grasslands. Fol-

lowing the 14-week water availability treatment, all individuals were rewatered to pot capacity and

then allowed to dry down completely over approximately 3 weeks. We then harvested individual

plant biomass and divided tissue into aboveground, flower, rhizome, and root categories. Soil was
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rinsed off of rhizome and root tissue using a mesh screen and low-pressure water nozzle. Biomass

was allowed to dry at 55°C for three days prior to weighing. Because some individuals were re-

tained for other analyses (e.g., metabolism or transpiration rates) biomass sample size was lower

for some sites.

In order to determine the effects of site and treatment on plant physiology, we quantified both

predawn and midday leaf water potential (LWP). Predawn leaf samples were cut at approximately

4:00am, acclimated in a plastic bag at full humidity, and measured using a Scholander-type pres-

sure chamber (PMS Instruments). Predawn samples were followed by a paired midday sampling

on the same plant between 12:00pm and 2:00pm on a sunny day. Paired predawn and midday

samples were collected from both treatments to account for any treatment variation. Using these

values, we calculated hydroscape area for each site according to Meinzer et al. (2016). Briefly, hy-

droscape area corresponds to the graphical space where the predawn and midday LWP relationship

deviates from the 1:1 line and represents the conditions over which plant stomata can effectively

control water status. Increasing hydroscape area thus indicates greater anisohydry (drought toler-

ance) on the anisohydry to isohydry (drought avoidance) spectrum Meinzer et al. (2016). In order

to obtain more extreme values of LWP needed to quantify the hydroscape, we also sampled leaves

during the dry down prior to biomass sampling.

4.3.5 Climate variables

To test for climate adaptation, we used long-term data related to temperature and water status

of the sites where tissue samples were collected. Climate data spanning 1970-2000 was collected

from WorldClim (http://worldclim.org/version2) (Fick and Hijmans, 2017). We limited WorldClim

data to several relevant variables to avoid model overfitting: annual mean temperature (C), mean

diurnal range (mean of monthly maximum temperature - minimum temperature, C), temperature

seasonality (temperature standard deviation * 100), maximum temperature of the warmest month

(C), minimum temperature of the coldest month (C), mean temperature of the driest quarter (C),

annual precipitation (mm), and precipitation seasonality (coefficient of variation). We also used

an aridity index derived from 1950-2000 WorldClim data (http://csi.cgiar.org/aridity/) (Trabucco
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and Zomer, 2010). Lastly, we incorporated a longer-term dataset using the Palmer Hydrologi-

cal Drought Index (PHDI) from 1895-2015 (https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/).

From this dataset, we calculated the number of months a site experienced extreme drought during

this period (extreme drought months) and the median PHDI.

4.3.6 Statistical analysis

We quantified allelic differences among sites by performing discriminant analysis of principal

components (DAPC, Jombart et al., 2010), a powerful method for discerning diversity among

pre-determined groups (sites). This required stratified cross-validation of DAPC using increasing

numbers of PCs to avoid overfitting, leaving us with 60 PCs and 66% of the variance retained

along the regional gradient and 60% of the variance retained along the local gradient (discriminant

functions). Using these discriminant functions, we calculated posterior proportions of successful

individual reassignment to original sites, where high probabilities indicate distinct sites and low

probabilities indicate admixture. In order to determine hierarchical genetic relationships among

sites, we generated a UPGMA dendrogram with bootstrap support using the R package adegenet

(Jombart, 2008) utilizing Nei’s distance (Nei, 1978) and 10,000 bootstrap iterations.

Because genomic data can be susceptible to false signals emerging from large datasets, we used

several metrics to robustly quantify the B. gracilis genome. To determine genetic diversity among

sites, we calculated Nei’s Expected Heterozygosity (Hexp, Nei, 1978) and the multilocus geno-

type richness at each site using the R package poppr with Multilocus Style Permutation (Kamvar

et al., 2014). Site genotype evenness was calculated according to Smith and Wilson (1996) us-

ing the codyn package in R (Hallett et al., 2016). We also calculated pairwise allelic distances

among samples at each locus to quantify within-site genotype distance. Genotype distances were

compared between sites using student’s t-test with Bonferroni adjustment.

We used Bayesian hierarchical linear models to determine the effect of pot-level water avail-

ability and site on traits and trait plasticity of individuals. We used the following variable intercept

α and slope β linear model:
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ŷi = αi[j] + βi[j]xi + ǫi

for each individual i within site j, with pot-level VWC x used to determine the trait y response.

These models allowed us to better estimate site-level trait data by accounting for individual and

species-level variance (Gelman, 2006). We used the 95% credible interval (CI) to determine site

level overlap in traits at the average pot water content. The above model also allowed us to estimate

site-level variance emerging from the trait posterior distribution. To assess trait plasticity, we used

a similar model where y represented the difference between treatments and x was the actual pot-

level VWC difference. Traits measured at the site level (e.g., hydroscape) were not input into these

models. See Section III.1 for more details on these models. We used linear discriminant analysis

(LDA) to describe trait differences holistically. In order to link within site genomic variation to

trait variation, we ran linear regressions of genotype richness, evenness, and heterozygosity against

trait and plasticity variance for key traits emerging from the LDA using Bonferroni adjustment.

Lastly, we determined which climate variables were important for explaining intraspecific vari-

ation in B. gracilis. Due to covariance among phenotypic traits, we used a partial Pearson cor-

relation matrix for each climate variable, starting with aboveground biomass and progressively

analyzing all phenotypic traits. We performed this analysis on genome characteristics (richness,

evenness, and heterozygosity) as well as trait means and trait plasticity. Correlation p-values were

adjusted using the Benjamini-Hochberg false discovery rate method.

4.4 Results

4.4.1 Genomic diversity in B. gracilis

Using DAPC, we determined if sites clustered distinctly across the genome. Regionally, we

found that the New Mexico sites, Cibola and Sevilleta, were most distinct across discriminant

functions (Figure 4.1a). To validate these clusters, we calculated the posterior probability of clus-

ter reassignment of each individual, where high probabilities indicate distinct site identity and low

probabilities indicate an admixed individual. Sevilleta was the most distinct (1.00) and contained
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no admixed individuals (Table 4.2, Figure 4.1b,c). While still largely distinct, all other sites along

the regional gradient contained at least one ambiguous individual (Figure 4.1b,c). Konza in eastern

Kansas in particular had several individuals resembling the Cedar Point site in western Nebraska.

Bouteloua gracilis also showed evidence of population structure at the local level, although dif-

ferences were less extreme. Walker Ranch emerged as a distinct cluster across discriminant func-

tions (Figure 4.1d) and had a high reassignment probability (0.94, Table 4.2, Figure 4.1e,f). Rock

Creek, Steele, Davidson Mesa, and Heil Valley were also distinct, while Kelsall and Wonderland

were more admixed (Table 4.2, Figure 4.1e,f). These differences were retained when regional

and local gradients were combined, with Sevilleta and Cibola emerging as the most different sites

overall (Figure III.3). When we considered regionally distributed sites, the hierarchical relation-

ship demonstrated strong bootstrap support for New Mexico sites Sevilleta and Cibola as the basal

lineages, followed by Comanche, then more northern sites (Figure 4.2, Figure III.4).

We also quantified within-site diversity at the genomic level. Using sequence data, we de-

termined SGS to have the greatest richness and evenness at the regional scale compared to other

sites (Table 4.2). The most northern (Buffalo Gap) and southern (Sevilleta) sites had the lowest

richness and evenness, indicating dominance by one or a few genotypes (Table 4.2, Table III.1).

Heterozygosity was highest for Sevilleta and Cibola (Table 4.2). Local genotype richness tended to

be higher than regional, except at Walker Ranch, which consisted of only three distinct genotypes

(Table 4.2). Most sites had high evenness except for Walker Ranch, which was dominated by a

single genotype (Table 4.2). The Walker Ranch genotype not common at other sites and was only

detected at Cibola and Rabbit Mountain (Table III.1). Local sites shared similar heterozygosity

(Table 4.2). Pairwise distances within site closely paralleled genotype richness, with much lower

pairwise distance observed for Walker Ranch (multiple corrected p-values: <0.0001, Figure III.5).

4.4.2 Phenotype and plasticity diversity

We observed widespread trait diversity and plasticity within B. gracilis. Specifically, we an-

alyzed 12 traits and trait plasticity among B. gracilis sites in a common environment to further

determine if sites were genetically distinct. When we considered all traits and sites, we found
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Table 4.2: Genomic characteristics varied among sites. N: sample size of sequenced individuals (not all
sites achieved a goal sample of 17 due to thresholds for low coverage; one randomly selected individual of
each clone was included in SGS); MLG: number of multi-locus genotypes detected (richness); Standardized
MLG: number of multi-locus genotypes detected correcting for sample size; Evar: genotype evenness;
Hexp: Nei’s expected heterozygosity; Reassignment probability: average probability of individuals being
reassigned to their home site.

Site N MLG Standardized MLG Evar Hexp Reassignment probability

Regional

Sevilleta 17 6 5.05 0.53 0.023 1.00
Cibola 17 10 8.11 0.76 0.025 0.94
Comanche 17 7 6.01 0.64 0.015 0.88
SGS 28 25 12.08 0.95 0.017 0.89
Buffalo Gap 16 6 5.44 0.63 0.013 0.94
Cedar Point 16 8 7.36 0.83 0.013 1.00
Konza 16 8 7.17 0.76 0.015 0.75

Local

Andrus 17 14 11.13 0.93 0.015 0.76
Rock Creek 15 15 13.00 1.0 0.017 0.93
Steele 15 11 9.91 0.90 0.013 0.93
Rabbit Mountain 15 12 10.77 0.94 0.013 0.87
Beech Trail 17 12 9.98 0.90 0.013 1.00
Davidson Mesa 17 16 12.43 0.98 0.016 0.94
Wonderland 16 9 7.99 0.81 0.012 0.63
Heil Valley 15 13 11.51 0.96 0.014 0.93
Kelsall 13 11 11.00 0.93 0.016 0.69
Walker Ranch 16 3 2.62 0.26 0.012 0.94
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Figure 4.1: Bouteloua gracilis sites clustered distinctly in space based on the genome. At the regional scale,
(a), and local scale, (d) Discriminant functions LD1 and LD2 from DAPC accounted for 60% of the variance
regionally (a), showing distinct New Mexico sites and 66% of the variance locally (d), showing distinct sites
within Boulder County. Sites with greater than 0s.8 reassignment probability are encircled. (b,e) “Structure”
lines reveal the posterior probability of site assignment of each individual, where solid lines indicate clear
site assignment and mixed lines indicate admixed individuals. Posterior probabilities are plotted by location
across the regional (c) and local (f) gradient.
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Figure 4.2: Hierarchical relationship among regionally distributed B. gracilis sites, where numbers indicate
bootstrapped support for each node.
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non-overlapping trait distributions indicating all traits had a genetic component and that there is

evidence for site evolution within B. gracilis (Figure III.6). Regionally, sites diverged strongly

across biomass traits, namely total and aboveground biomass (Figure 4.3a). Sevilleta and Cibola

had greater total biomass, aboveground biomass, belowground biomass (Figure 4.3b), and max-

imum height compared to other sites. These sites also had among the lowest root:shoot ratios,

lowest predawn and midday LWP, highest flowering mass, and highest belowground biomass (Fig-

ure III.6). Comanche, a site in southern Colorado close to the New Mexico border, tended to be

ranked just below the New Mexico sites for aboveground and total biomass and maximum height,

but had the greatest overall belowground biomass (Figure III.6). Comanche also had greater water

potentials (i.e., closer to zero) compared to Sevilleta and Cibola. Northern sites Buffalo Gap (South

Dakota) and SGS (northern Colorado) had lower biomass compared to other sites. Buffalo Gap

was the shortest, had the lowest average flower mass, and had significantly shorter length flowers

(Figure III.6).

Traits distinguishing sites at the local scale in Boulder County were similar to those differenti-

ating sites at the regional level (total and aboveground biomass), but local sites were more similar

compared to regional sites (Figure 4.4a). Despite being geographically close, total biomass distri-

butions in a common environment differed among Boulder sites (Figure 4.4b). This pattern was

driven largely by one Boulder site, Andrus, which had the lowest aboveground, belowground, rhi-

zome, flowering, and total biomass as well as lowest flower count. A drier site, Rock Creek, had

the greatest biomass in most categories and the lowest water potentials (Figure III.6). The wetter

site Wonderland was the tallest and had the heaviest flowers, while the coldest, wettest site Walker

Ranch was shortest and had the greatest number of flowers. Only root:shoot ratio was similar

among all Boulder sites (Figure III.6).

Nearly every trait (except average flower length) was plastic when we paired genotypes across

our water availability treatment, but plasticity depended on the site (Figure III.7). Trait plasticity

differences among sites were generally less discernable compared to trait means (Figure III.7).

However, sites showed differences in biomass and height plasticity at the regional scale (Fig-
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Figure 4.3: At the regional scale, (a) B. gracilis traits were differentiated by biomass metrics, where (b)
New Mexico sites Sevilleta and Cibola tended to have greater total biomass (sites arranged from smallest to
largest mean values). (c) Regional site plasticity differentiated on belowground and aboveground biomass as
well as maximum height; (d) drier southern sites tended to be more plastic (sites arranged from smallest to
largest mean values). Circular points represent the mean and error bars represent the 95% CI. All intervals
represent the trait means at average experimental pot water content.
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Figure 4.4: At the local scale, (a) B. gracilis traits were differentiated by aboveground and total biomass
metrics, where (b) Andrus had lower total biomass compared to other sites (sites arranged from smallest
to largest mean values). (c) Local site plasticity differentiated on aboveground biomass and flower count;
(d) some sites exhibited non-zero plasticity, but all populations overlapped somewhat in plasticity (sites
arranged from smallest to largest mean values). Circular points represent the mean and error bars represent
the 95% CI. All intervals represent the trait means at average experimental pot water content.
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ure 4.3c). Sevilleta and Cibola had significant (non-zero) plasticity leading to greater above-

ground/total biomass (Figure 4.3d) and height with greater water availability. Boulder sites also

demonstrated some variation in trait plasticity, particularly for aboveground biomass and flower

count (Figure 4.4c) as well as total biomass (Figure III.7). Drier Boulder sites like Rock Creek and

Rabbit Mountain tended to have more plasticity in aboveground biomass, although plasticity inter-

vals overlapped for all sites (Figure 4.4d); Rock Creek also had the greatest flower count plasticity

(Figure III.7). Total biomass was plastic across all locally distributed sites except Andrus.

4.4.3 Phenotype and plasticity variance

In order to assess within-site variation, we modeled trait variance at each site, where greater

variance might implicate greater capacity to adapt to changing conditions. When we considered

all sites, we found unequal variance for each trait except average flower length (Figure III.8). Co-

manche tended to have among the greatest variation in biomass traits (Figure III.8). Sevilleta had

among the greatest variation in predawn and midday LWP. At the local scale, we detected signifi-

cantly different variances among sites for most traits (Figure III.8). Rock Creek and Walker Ranch

had among the greatest trait variance (Figure III.8). Andrus and Kelsall had the smallest variance

in aboveground, belowground, rhizome, and total biomass (Figure III.8). When we assessed all

sites, genomic diversity (richness, evenness, heterozygosity) was not correlated with aboveground

or total biomass variance (adjusted p>0.5, Table III.2).

All traits except predawn LWP exhibited different plasticity variance across sites, indicating

different capacities for plasticity to evolve (Figure III.9). Similar to trait variance, Comanche had

among the largest variance for plasticity of aboveground biomass, belowground biomass, and max-

imum height (Figure III.9). New Mexico sites had among the lowest plasticity variance in height

and individual flower mass. Northern site Buffalo Gap had among the greatest plasticity variance

for rhizome biomass, total biomass, and root:shoot ratio (Figure III.9). Among all sites, Genomic

diversity (richness, evenness, heterozygosity) was not correlated with variation in aboveground or

total biomass plasticity (adjusted p>0.5, Table III.2).
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4.4.4 Local adaptation to climate

Using partial correlation matrices, we found that the B. gracilis genome, mean trait values, and

mean trait plasticity were correlated with climate variables, suggesting local adaptation. While

genotype richness was not related to climate, genotype evenness increased with temperature sea-

sonality (Table 4.3). Heterozygosity increased with increasing mean annual temperature, minimum

temperature, temperature of the driest quarter, and precipitation seasonality, but decreased with in-

creasing median PDHI (Table 4.3). However, these patterns were largely driven by low evenness

at Walker Ranch and high heterozygosity at Sevilleta and Cibola.

Mean trait values were correlated primarily with precipitation-related climate variables. Above-

ground biomass increased with lower annual precipitation (Table 4.3) and with greater tempera-

tures in the driest quarter, lower aridity index, and lower median PDHI (Table 4.3). Although

many traits were correlated, additional variation in rhizome biomass was explained by median

PDHI, where rhizome biomass increased for wetter sites (Table 4.3). Likewise, sites with taller

individuals tended to be hotter and drier while accounting for biomass variation (Table 4.3). Hotter

and drier sites also tended to have lower midday leaf water potentials.

Bouteloua gracilis plasticity was also locally adapted to climate. Like trait means, greater ca-

pacity for water availability plasticity was sometimes linked to temperature. Greater plasticity in

aboveground biomass was found in sites with greater minimum temperatures, while greater plas-

ticity in rhizome biomass came from sites with a larger diurnal range in temperature (Table 4.3).

Total biomass plasticity was greater in drier sites with greater precipitation seasonality (Table 4.3).

Flowers from more arid or seasonal sites also tended to have greater plasticity in length and count

when accounting for variation in other traits (Table 4.3).

4.5 Discussion

4.5.1 Genomic population structure is present across scales

We used trait, trait plasticity, and genomic analysis to quantify intraspecific diversity across a

foundational species, Bouteloua gracilis. We found evidence supporting our first hypothesis that B.
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Table 4.3: Bouteloua gracilis genome, traits, and trait plasticity are correlated with climate variables. MAT:
mean annual temperature; MDR: mean diurnal range; TS: temperature seasonality; MaxT: maximum tem-
perature of the warmest month; MinT: minimum temperature of the coldest month; TD: mean temperature of
the driest quarter; MAP: mean annual precipitation; PS: precipitation seasonality; AI: aridity index; EDM:
extreme drought months; mPHDI: median PHDI. Within cell, above numbers indicate the Pearson partial
correlation coefficient. Below numbers indicate the corrected p-values. Significant (<0.05) p-values are
bolded.

MAT MDR TS MaxT MinT TD MAP PS AI EDM mPDHI

Genomic characteristics

Standardized MLG -0.033 0.218 -0.216 -0.03 0.154 -0.049 0.054 -0.412 -0.029 0.441 0.322
0.9 0.4 0.508 0.908 0.555 0.853 0.836 0.15 0.913 0.129 0.311

Evenness 0.34 -0.32 0.627 0.517 -0.166 -0.19 0.264 0.351 0.222 -0.442 0.034
0.296 0.4 0.028 0.092 0.555 0.722 0.484 0.183 0.612 0.129 0.9

Heterozygosity 0.744 0.236 -0.186 0.494 0.625 0.772 -0.318 0.704 -0.405 0.179 -0.94
0.004 0.4 0.508 0.092 0.038 0.002 0.484 0.01 0.404 0.524 <0.001

Mean traits

Aboveground biomass 0.572 0.202 -0.186 0.262 0.534 0.731 -0.823 0.682 -0.771 0.027 -0.9
0.136 0.863 0.765 0.499 0.261 0.026 0.002 0.066 0.01 0.991 <0.001

Belowground biomass 0.224 0.258 0.558 0.509 -0.238 -0.373 -0.426 0.393 -0.337 -0.641 0.398
0.641 0.863 0.206 0.399 0.672 0.351 0.417 0.357 0.387 0.083 0.28

Rhizome biomass -0.183 -0.244 0.192 -0.039 -0.176 -0.261 0.362 -0.06 0.394 -0.067 0.705
0.641 0.863 0.765 0.957 0.745 0.506 0.583 0.959 0.387 0.991 0.033

Total biomass 0.218 0.036 0.435 0.36 -0.14 -0.142 -0.163 0.596 -0.244 -0.343 -0.421
0.641 0.972 0.41 0.406 0.745 0.715 0.854 0.177 0.6 0.714 0.28

Root:shoot 0.647 0.604 -0.033 0.57 0.418 0.651 0.026 0.032 -0.436 0.254 -0.675
0.136 0.318 0.923 0.399 0.436 0.098 0.94 0.959 0.387 0.798 0.067

Max. height 0.681 0.668 -0.331 0.43 0.68 0.799 -0.564 -0.019 -0.765 0.432 -0.782
0.136 0.318 0.684 0.399 0.261 0.029 0.389 0.959 0.065 0.691 0.033

Predawn LWP -0.181 -0.097 0.118 -0.021 -0.156 -0.209 -0.038 0.071 0.188 -0.346 0.73
0.641 0.972 0.826 0.957 0.745 0.697 0.94 0.959 0.678 0.783 0.067

Midday LWP -0.66 -0.358 0.189 -0.272 -0.569 -0.856 -0.375 0.318 0.175 -0.287 0.469
0.21 0.863 0.773 0.608 0.436 0.029 0.779 0.72 0.678 0.798 0.319

Lifetime flower mass -0.698 -0.05 -0.646 -0.653 0.25 -0.456 0.309 -0.403 0.527 0.836 0.091
0.21 0.972 0.381 0.399 0.745 0.439 0.821 0.688 0.387 0.083 0.847

Flower count -0.35 -0.019 -0.883 -0.691 0.671 0.822 0.343 -0.653 0.377 0.924 -0.805
0.641 0.972 0.206 0.399 0.436 0.117 0.821 0.357 0.6 0.083 0.116

Average flower mass -0.301 -0.571 -0.882 -0.691 0.554 -0.823 0.926 -0.92 0.818 -0.166 -0.263
0.641 0.863 0.206 0.399 0.618 0.188 0.156 0.173 0.323 0.991 0.725

Average flower length 0.836 0.313 -0.398 0.602 0.826 0.229 -0.242 -0.84 -0.901 0.132 0.75
0.355 0.972 0.773 0.518 0.436 0.771 0.896 0.357 0.323 0.991 0.319

Hydroscape area 0.942 0.672 0.837 0.965 -0.164 -0.935 0.513 -0.384 -0.699 -0.014 0.911
0.404 0.863 0.684 0.399 0.895 0.375 0.854 0.959 0.6 0.991 0.319
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Table 4.3: B. gracilis genome, traits, trait plasticity, and climate (continued).

MAT MDR TS MaxT MinT TD MAP PS AI EDM mPDHI

Trait plasticity

Aboveground biomass 0.468 0.325 -0.515 0.076 0.698 0.617 -0.317 -0.041 -0.463 0.337 -0.584
0.339 0.475 0.378 0.862 0.046 0.086 0.528 0.965 0.165 0.759 0.133

Belowground biomass 0.307 0.485 0.094 0.327 0.151 0.125 -0.294 0.275 -0.335 -0.134 -0.203
0.42 0.365 0.947 0.501 0.765 0.782 0.528 0.584 0.331 0.9 0.906

Rhizome biomass 0.445 0.768 -0.051 0.403 0.396 0.26 0.011 -0.113 -0.234 0.249 0.055
0.339 0.026 0.947 0.501 0.362 0.722 0.971 0.855 0.481 0.9 0.906

Total biomass 0.422 0.115 0.142 0.286 0.233 0.494 -0.821 0.776 -0.709 -0.22 -0.719
0.343 0.807 0.947 0.501 0.765 0.308 0.013 0.02 0.059 0.9 0.101

Root:shoot -0.312 -0.298 -0.49 -0.496 0.131 0.069 0.626 -0.557 0.504 0.43 -0.067
0.42 0.613 0.378 0.482 0.765 0.839 0.203 0.287 0.195 0.759 0.906

Max. height 0.764 0.545 -0.006 0.535 0.609 0.659 -0.212 0.292 -0.583 0.116 -0.5
0.122 0.365 0.987 0.482 0.362 0.152 0.743 0.619 0.165 0.9 0.423

Predawn LWP 0.571 0.273 -0.249 0.104 0.573 0.785 -0.665 0.227 -0.67 0.191 -0.577
0.339 0.637 0.947 0.862 0.362 0.086 0.203 0.743 0.165 0.9 0.414

Midday LWP 0.569 0.341 0.647 0.629 -0.546 -0.27 -0.205 0.628 -0.455 -0.459 -0.05
0.339 0.613 0.378 0.482 0.362 0.722 0.751 0.287 0.331 0.759 0.906

Liftime flower mass 0.333 -0.114 0.657 0.453 -0.598 -0.302 -0.141 0.628 -0.302 -0.616 -0.239
0.508 0.807 0.378 0.501 0.362 0.722 0.833 0.315 0.51 0.759 0.906

Flower count -0.491 -0.7 -0.293 -0.445 0.28 -0.562 0.732 -0.952 0.765 0.095 0.498
0.42 0.365 0.947 0.501 0.765 0.59 0.293 0.02 0.165 0.936 0.757

Average flower mass -0.566 -0.715 -0.311 -0.572 0.057 -0.224 0.379 -0.676 0.609 -0.223 -0.213
0.42 0.42 0.947 0.501 0.928 0.782 0.743 0.421 0.331 0.9 0.906

Average flower length 0.095 0.215 -0.204 -0.035 0.323 -0.458 -0.696 -0.023 -0.998 0.062 -0.149
0.905 0.807 0.947 0.965 0.765 0.722 0.528 0.977 0.025 0.938 0.906
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gracilis would exhibit genomic population structure. Specifically, we found that New Mexico sites

emerged as the most genomically distinct. These findings support very recent molecular evidence

for two distinct groups of B. gracilis in the western USA and Central Plains (Avendaño-González

et al., 2019). Avendaño-González et al. (2019) also found that Central Plains B. gracilis was less

diverse and phylogenetically younger, which is supported by our phylogenetic tree (Figure 4.2,

Figure III.4) and heterozygosity measurements (Table 4.2). Our analysis expands on these findings

to provide more detailed resolution at the local and site level. As expected, we found less admix-

ture at the regional versus the local scale. However, few sites within Boulder County exhibited

admixture with other sites, indicating that sites separated by as few as 6 km could be genetically

distinct. Despite some admixture at the local level, our results are consistent with limited gene flow

and seed dispersal in B. gracilis (Anderson, 2003). Many of the Boulder sites are prairie remnants,

so sites should be managed carefully to avoid the negative effects of fragmentation on diversity

(Haddad et al., 2015).

Fine scale genomic analysis can reveal differences that may be cryptic from trait analysis alone.

At the local level, Walker Ranch emerged as a distinct, but genotypically depauperate site. These

findings support anecdotal evidence that this site was revegetated following a wildfire (BASIN,

2000). Although we do not know the origin of seeds used in the Walker Ranch restoration, our

results are consistent with seed sources outside of the local area (Figure III.4). Indeed, commercial

sources of B. gracilis often originate from the southern edge of New Mexico (Robins et al., 2009),

Texas (Butterfield and Wood, 2015) or as far away as Minnesota (Mintenko et al., 2002). Our

findings suggest that outsourcing seeds may not be appropriate to maintain diversity (Gustafson

et al. 2004, but see Winkler et al. 2018).

4.5.2 Genetic differences lead to functional variation among sites

In a common environment, we found that the distributions of traits and plasticity by site could

be non-overlapping, indicating genetic divergence of our sites and a genetic component to the traits

and plasticity we analyzed. Intraspecific variation can account for nearly a third of the variation

among communities (Siefert et al., 2015) which for dominant species, can strongly affect ecosys-
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tem function (Breza et al., 2012). In conjunction with previous research on B. gracilis diversity

(Butterfield and Wood, 2015; Giuliani et al., 2013; Phan and Smith, 2000), our findings suggest

that a proportion of functional variation among semi-arid prairies in North America could be due

to differences within this dominant species.

In support of our second hypotheses, we found that genomic differences were complemented

by functional differences for New Mexico sites. These sites demonstrated greater biomass related

trait distributions in a common environment. Interestingly, similar traits distinguished sites at both

regional and local scales (primarily aboveground and total biomass, Figure 4.3 and Figure 4.4). As

was expected, we observed that intraspecific functional diversity was less pronounced at the local

level compared to regional sites. Much of the variation in total biomass at the local scale was driven

by reduced biomass in the Andrus site. At the time of sampling, Andrus was heavily invaded by

Bromus tectorum. Because we directly transplanted clones from field to greenhouse, it is possible

that the Andrus individuals were susceptible to negative effects of coexistence with B. tectorum

(such as fewer rhizome resources). Indeed, B. tectorum has been shown to affect evolutionary

trajectories in native plant species (Leger and Goergen, 2017). Despite overlapping distributions

for some traits, some sites (e.g., Rock Creek) had nearly twice the total biomass of other sites (e.g.,

Steele), suggesting genomic structure at the local scale could have functional consequences.

Paralleling trait distributions, we observed that New Mexico sites also tended to have greater

plasticity. Variation in plasticity lends further support for functional differences distinguishing

New Mexico sites from others throughout the Great Plains. Interestingly, we found plasticity

tended to differ less among sites than trait means. While this could mean that there are greater

costs associated with the evolution of plasticity (Valladares et al., 2007) compared to trait means in

B. gracilis, we also acknowledge that our paired design, while accounting for genotype, had lower

sample size which could ultimately obfuscate plasticity differences. Our treatment also neglects

the full range of conditions possible for B. gracilis. Despite these caveats, site level plasticity was

more similar at the local level compared to the regional level, indicating that drivers of plasticity

evolution may take place on a larger spatial scale. Our analyses of functional traits and plasticity
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indicate that diversity in B. gracilis is present across different spatiotemporal scales and that a

single scale approach might not completely reveal adaptive patterns (Richardson et al., 2014).

4.5.3 Sites have different adaptive capacity

As the climate changes, plants will rely largely on within-site variation to adapt to new con-

ditions (Nicotra et al., 2015). To quantify differences in ability of B. gracilis sites to adapt, we

assessed within-site variance alongside trait means. We found that trait and plasticity variance de-

pended on the trait in question. Few regional patterns were present with the exception of the south-

ern Colorado site Comanche, where plants demonstrated greater trait mean and plasticity variance

for biomass traits. Greater variance at Comanche could be linked to its distinct monsoon-like

precipitation and high interannual variability (Comrie and Glenn, 1998) and could afford greater

adaptive potential. However, the lack of consistent patterns with respect to trait and trait plasticity

variance indicate that site level responses to climate change could depend strongly on the traits un-

der selection. For example, as droughts become more extreme and unpredictable in the Midwest,

variance in other traits like the ability to desiccate and resprout may be fundamental (Pausas et al.,

2016). Nevertheless, differences in variance at the local scale (e.g., Boulder County) suggests that

even closely situated sites may evolve in response to stress very differently without management.

We found no relationship with genotype richness, evenness, or heterozygosity and biomass and

biomass plasticity variance. Genetic variation is often used as a proxy for adaptive potential, where

more genotypes represent broader trait space (e.g., Avolio and Smith, 2013b; Collins et al., 2018).

However in practice, molecular and phenotypic variation are often poorly correlated (Reed and

Frankham, 2001). Indeed, despite the genotype richness and evenness bottleneck within Walker

Ranch, it maintained substantial phenotypic variance in the traits we measured. It is possible that

variation has been retained primarily in loci contributing to functional variance in this site and

others. Greater heterozygosity in New Mexico sites Sevilleta and Cibola, while not contributing

to trait variance, may however allow greater outcrossing heterosis, useful for coping with future

droughts (Schnable et al. 2013, but see Prill et al. 2014).
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4.5.4 B. gracilis is locally adapted to climate

We used Pearson partial correlation coefficients to examine climate predictors against traits

and trait plasticity to quantify evidence of local adaptation. Generally, drier and hotter sites tended

to have greater biomass and/or height with a greater capacity for plasticity. Similarly, Butterfield

and Wood (2015) found that B. gracilis leaf traits were related to temperature and precipitation.

Intraspecific variation in other dominant species has also been largely driven by climate (Brabec

et al., 2017; Gibson et al., 2013; Giuliani et al., 2013; Johnson et al., 2015; Roybal et al., 2018).

In contrast to species level analysis (Roybal et al., 2018), we observed greater biomass within

drier sites, indicating that different plasticity could play a role in this pattern. Intuitively, trait

means (such as average aboveground biomass) tended to be predicted by climate means (mean

temperature of the driest quarter or median PDHI) while plasticity was better predicted by precip-

itation seasonality. Similar findings linking plasticity and climate variation have been documented

in other plant species (Scheepens et al., 2018). Genomic heterozygosity was strongly linked to

climate, however this pattern was driven largely by New Mexico sites with a longer evolutionary

history. Thus, more work is needed (particularly in the Chihuahuan Desert) to determine if the

substantial effects of climate on traits subsequently affect the genomes of B. gracilis.

While plasticity increased in drier, more variable sites (particularly with biomass), many cooler

sites had high plasticity, indicating that drivers of plasticity might vary by site. For example,

adaptive plasticity in cooler climates could be driven by freezing (e.g., Nicotra and Davidson,

2010; Sexton et al., 2002) or grazing (Coughenour, 1985). Our results indicate that despite high

stress tolerance generally (Levitt, 1972), B. gracilis evolution is driven by climate and will likely

be susceptible to future climate change, as has already been shown in field experiments (Evans

et al., 2011; Knapp et al., 2015a). Although diversity among sites may enhance resistance and

resilience to changing climate, additional studies are needed to determine the relative effects of

heterosis and outbreeding depression on stress tolerance (e.g., Prill et al., 2014).
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4.5.5 Ecosystem implications

Interest in grassland responses to global change has grown substantially in the last decade

(Cherwin and Knapp, 2012; Hsu et al., 2012; Knapp et al., 2015a; Reichmann et al., 2013; Sala

et al., 2012). Specifically, the Shortgrass steppe (SGS) shows greater community turnover with

precipitation variability (Cleland et al., 2013) but Sevilleta exhibits greater sensitivity for produc-

tion with water limitation (Knapp et al., 2015a). Given that both sites are highly dominated by

B. gracilis, mechanisms leading to these differential responses have been elusive. However, this

study provides a possible evolutionary mechanism by which these two ecosystems differ: Genetic

divergence in the dominant species, especially with regard to biomass plasticity, produces distinct

ecosystem level responses. Ecosystem-level effects emerging from intraspecific variation of dom-

inant plant species has been well documented in dominant seagrasses, Populus, and other systems

(Hughes et al., 2008; Schweitzer et al., 2004). Future community biodiversity-ecosystem function

work should consider intraspecific variation (including functional trait variation) alongside other

mechanisms, such as positive or negative species interactions.

The shortgrass steppe is widely considered to be a water-limited and water driven ecosystem

(Lauenroth et al., 1978; Noy-Meir, 1973; Sala et al., 1988, 1992). For example, previous anal-

yses showed less temperature sensitivity compared to precipitation sensitivity along a latitudinal

gradient through the shortgrass and mixed-grass steppes (Mowll et al., 2015) and many experi-

mental and observational droughts have shown dramatic decreases in production relative to control

conditions (e.g., Evans et al., 2011; Knapp et al., 2015a; Rondeau et al., 2013). Yet, our results

indicate that temperature could be significant for driving B. gracilis adaptation. These contrasting

findings suggest that the drivers of ecosystem, community, and evolutionary processes are distinct

but should be considered simultaneously. For example, ecosystem level studies may fail to de-

tect dominant species genetic bottlenecks arising from heat stress while evolutionary studies may

fail to detect production compensation by other species during droughts. Comprehensive under-

standing of semi-arid grasslands dominated by B. gracilis requires both dimensions, thus future
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studies would benefit from examining community and species level responses to precipitation and

temperature stress simultaneously (e.g., Hoover et al., 2014b).

Finally, B. gracilis phenotypic and genetic diversity must be taken into consideration for restora-

tion and forage production. We expanded on findings by Avendaño-González et al. (2019), show-

ing that New Mexico sites were genetically distinct, but we also show for the first time that these

populations are phenotypically distinct from other B. gracilis sites, suggesting that reciprocal trans-

plant to Great Plains sites might not be appropriate. However, as droughts become more frequent

and intense in the Midwest (Cook et al., 2015), introducing novel alleles between New Mexico and

elsewhere could produce greater likelihood of successful evolution in the face of climate change.

Overall, this study provides substantial evidence for genetic and phenotypic diversity in a key

species across both regional and local scales, with important implications for future ecological

research, restoration, conservation, and management of the shortgrass steppe ecosystem.
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Chapter 5

Concluding remarks

A great deal of research effort lies ahead to link dominant species diversity to climate change

drivers. Ecologists have been forward-thinking, designing many manipulative experiments to test

the effects of droughts (Byrne et al., 2017), heat waves (Bergmann et al., 2010), combined stressors

(Hoffman et al., 2018; Hoover et al., 2014b; Smith et al., 2016), and other drivers (Avolio et al.,

2014). Ensuring these are realistically designed to mimic the actual effects of climate change will

be essential going forward (Knapp et al., 2015b, 2017, 2018). Because acquiring resources to de-

sign and construct such experiments remains a challenge, future studies should take advantage of

existing infrastructure to document species level patterns alongside ecosystem effects (e.g., Hoff-

man et al., 2018; Smith et al., 2016). Maintaining these experiments is essential to furthering our

understanding of climate change’s effects on dominant species.

In addition to climate change experiments, resources should be allocated to document diversity

within other dominant species, especially in ecosystems outside of North America. Hundreds of

grass species are ecologically dominant (Edwards et al., 2010), but most of have only been anecdo-

tally documented (Hoffman et al., unpublished data). For example, Themeda triandra, a dominant

C4 grass of African savannas, has never been assessed for genetic diversity or population structure.

While some dominant species, including Leymus chinensis and B. gracilis, have been assessed for

genetic diversity and population structure (Liu et al., 2015, 2007), less is known about how genetic

diversity in these important species might be impacted by climate change, as was shown in A. ger-

ardii by Avolio et al. (2013). Future work must synthesize spatiotemporal variation and structure in

these species at multiple levels of biological organization (e.g., morphological and genetic, Avolio

et al., 2018; Meyer et al., 2014) and importantly, in response to climate change drivers. Although

diversity of different species can be a major component of ecosystem function (Jain et al., 2014),

focusing research efforts on dominant species might make ecosystem function research efforts in

understudied systems more feasible (i.e., less domain expertise needed to identify species from a

large species pool). This might be especially true in communities with a high degree of dominance.
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The extensive work by Avolio, Smith, and colleagues on A. gerardii suggests ample future en-

deavors for lesser studied species like B. gracilis. For example, Avolio et al. (2013) found that neu-

tral genetic diversity was reduced following a field climate change experiment where rainfall timing

was manipulated, resulting in drier soils. Similar analyses should take place with B. gracilis in the

context of existing infrastructure, such as DroughtNet (https://drought-net.colostate.edu/ Knapp

et al., 2017) or the Extreme Drought in Grasslands Experiment (http://edge.biology.colostate.edu/).

As with Avolio et al. (2013), we might expect genotype richness of B. gracilis to decline under

extreme drought, with greater differences among genotypes. Experimental sites should also be

regularly sampled and monitored to determine if and when diversity recovers following drought

(Griffin-Nolan et al., 2018b).

Interestingly, Avolio et al. (2013) found that some genotypes of A. gerardii were more com-

mon than others. In Section 4.4.1 we discovered a similar pattern for B. gracilis. As future work

examines how climate change affects B. gracilis genetic and functional diversity, close attention

should be paid to changes in the genotype abundance distribution, or GADs (analogous to species

abundance distributions, or SADs, Magurran, 2007; Magurran and Henderson, 2003; McGill et al.,

2007). Future research on GADs will benefit from clear hypotheses, such as testing the sampling

effect (Wardle et al., 1999), portfolio effect (Tilman, 1999; Tilman et al., 2006), or multiple pro-

cesses (Vellend, 2010). In general, future work must carefully develop concrete ideas, especially as

ecology becomes integrated with big data, highly multivariate response variables, and data science

methods (Hampton et al., 2013; Marquet et al., 2014; Michener and Jones, 2012).

Following their field studies, Avolio, Smith, and colleagues performed common garden green-

house studies and discovered trait variation among focal genotypes (Avolio and Smith, 2013b).

Following these results, they constructed mesocosm manipulations of genetic diversity (Avolio

et al., 2015). While I found that B. gracilis varied across its range and to some extent locally,

similar experiments to Avolio and Smith (2013b) would be useful in B. gracilis, specifically for

determining the trait and genetic variation more thoroughly within single populations, since B.

gracilis’s exchange of genetic information appears somewhat limited even at small scales (Fig-
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ure 4.1d-f). For example, the Shortgrass Steppe site (SGS) is among the sites with the greatest B.

gracilis dominance (Milchunas et al., 1989), with the greatest negative implications for its local

decline. I found this site to be comparatively diverse (25 distinct genotypes) compared to some

nearby sites in Boulder County. These unique genotypes demonstrated variance in a common envi-

ronment (broad sense heritability), which could indicate some genotypes are more productive than

others and contribute more to ecosystem function (i.e., the sampling effect). However, we do not

know how these genotypes are distributed in communities and whether diverse assemblages “over

yield” in terms of ecosystem function. We also do not know if genetic diversity in B. gracilis is

related to biotic factors, such as presence of invasive species. In Chapter 4, I found that one B.

gracilis site (Andrus) was heavily invaded by Bromus tectorum, but a causal relationship was not

tested. This particular site had the most distinct phenotype of all the Boulder sites. Such findings

suggest that the relationship between species in the community (e.g., invasive species, codominant

plants, presence of herbivores) and B. gracilis genetic and phenotypic diversity in B. gracilis are

worth testing.

Dimensions of biodiversity have been well explored in A. gerardii, including with the addi-

tion of Chapter 2 and Chapter 3 here. These dimensions are worth exploring in B. gracilis. For

example, gene expression has never been documented in B. gracilis, especially in an ecological

context (although some work on MicroRNAs has been performed, Ordóñez-Baquera et al., 2017).

In Chapter 2, I found that codominant grasses A. gerardii and S. nutans differed in gene expres-

sion despite functional similarity. Similarly in Chapter 4, I found that B. gracilis individuals from

different sites were quite distinct. Given their different climates of origin, we might expect New

Mexico and Colorado populations to differ substantially in gene expression responses to water lim-

itation. Gene expression analyses provide insight into the drought response mechanisms used by

individuals in either population, which will provide more clear explanations of patterns observed

in the Sevilleta and Shortgrass Steppe communities under drought. In Chapter 3, I explored the

details of plasticity by describing nonlinearity in A. gerardii’s responses. Those findings validated

and clarified findings by Hoover et al. (2014a), showing that “threshold” responses to water avail-
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ability could vary among genotypes. It is unknown whether such thresholds or nonlinear plasticity

are present in B. gracilis, but given that A. gerardii and B. gracilis have adapted to cope with sim-

ilar pressures (e.g., drought, high temperatures, freezing, and grazing), I hypothesize that similar

results are likely. Finally, while there is some precedent for work on B. gracilis cytotype diversity

(Butterfield and Wood, 2015; Tso and Allan, 2018), cytotype diversity across the center of B. gra-

cilis’s dominance (shortgrass steppes within Colorado and New Mexico) is unknown, presenting a

major obstacle for more in-depth genomic analysis. Research on B. gracilis intraspecific diversity

would benefit greatly from range-wide cytotype + genotype analysis, as has been performed in A.

gerardii (McAllister et al., 2014; McAllister and Miller, 2016).

While most prairies are considered to be water limited rather than temperature sensitive (Mowll

et al., 2015), A. gerardii has been found to be relatively temperature sensitive compared to S. nutans

(Nippert et al., 2009; Silletti and Knapp, 2002; Travers et al., 2007, 2010) although differences are

not always present (Hoffman et al., 2018; Hoover et al., 2014a; Smith et al., 2016). An unexpected

finding from Chapter 4 was B. gracilis’s simultaneous response to water and temperature variables

(Table 4.3). We found that among sites, traits were most often with correlated with mean tem-

perature during the driest quarter, and other metrics of both temperature and aridity (e.g., median

PDHI). Similarly, previous research in the Shortgrass Steppe site (SGS) suggests that over time,

B. gracilis productivity has declined with increasing minimum temperatures (Alward et al., 1999).

These findings not only highlight the immediate need for manipulative temperature experiments

for B. gracilis, but also the concept that drivers within site over time (e.g., minimum temperatures)

may be different from species-level patterns across spatial scales.

Future research must utilize improved knowledge and data collection of intraspecific diversity

in dominant species and diversity among codominants to develop predictive models. Given trait

distributions and the environmental conditions under such distributions, it is possible to project

where species might occur (Webb et al., 2010). This could be particularly important for the dom-

inant grasses described in this dissertation, since their respective ecosystems are quite literally

named after them, and shifting occurrences of these grasses would result in a shifting ecosystem
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landscape. With comprehensive knowledge, intraspecific diversity and trait variation can be incor-

porated into dynamic vegetation models (DVMs) to predict how distributions of species might

change (Snell et al., 2014). Such models will benefit from both niche-based (i.e., traits) and

process-based (i.e., adaptation or fitness) approaches (Morin and Thuiller, 2009). Detailed in-

traspecific analyses will continue to improve models; for example, as models are developed for

B. gracilis, researchers might consider splitting the species into two subspecies based on regional

differences highlighted in Chapter 4 and by Anderson (2006). Likewise, A. gerardii models should

account for thresholds of function described in Chapter 3 and by Hoover et al. (2014a). Concrete

predictions of distributions of these important dominant grasses will help provide stakeholders with

actionable insights, allowing conservation and management of native North American prairies even

in a more variable future.
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Appendix I

I.1 Supplementary methods

I.1.1 Drought experimental design

Pots were saturated before drydown of half the pots to perform the drought treatment. Typ-

ically, saturated pots are approximately 30% volumetric water content (VWC). Figure I.1 comes

from another study using the same media shows that saturated pots are 29.78 ± 1.86% VWC.

Figure I.1: Volumetric water content (% VWC) for a typical experiment using Premier pro-mix HP.

I.1.2 RNA extraction

We extracted RNA from leaf tissues using TRIzol reagent (Invitrogen, Carlsbad, CA) (follow-

ing McCarty, 1986) RNA quantity was measured by a NanoDrop spectrophotometer (NanoDrop

products, Thermo Scientific, Wilmington, DE). Only RNA samples with A260/A280 from 2.0 to

2.2, A260/A230 from 2.2 to 2.5, rRNA ratio (28s/18s) from 1.1 to 1.4 were used in the sequencing

(analyzed via Bioanalyzer by Yale Center for Genome Analysis).

109



I.1.3 De novo assembly

Sequences were uploaded to the iPlant Collaborative database (www.iplantcollaborative.org)

(Goff et al., 2011) using the FTP client Cyberduck (version 4.7.2). Sequences were trimmed using

the HTProcess pipeline through iPlant’s Discovery Environment. The first 12 bases were cropped

(adapters) and any read with a quality score lower than 25 or length shorter than 40 bases was

discarded. Trimmomatic (version 0.32, Bolger et al., 2014) parameters were the same across all

samples: head crop: 12, leading: 3, trailing: 3, sliding window of 4, and average quality cutoff of

25. Trinity was run on the Colorado State University Correns cluster, using 8 CPUs and 64 GB

memory. For further details regarding specific scripts and commands used, please see our online

guide at http://avahoffman.com. To evaluate the quality of the Trinity assemblies, we used (1)

Trinity’s built-in evaluation scripts, (2) read realignment percentage using Bowtie 2 (version 2.2.7,

Langmead and Salzberg, 2012), and (3) Samtools scripts (Li et al., 2009b).

Post-assembly Nx statistics were obtained from the A. gerardii and S. nutans Trinity assemblies

using the TrinityStats.pl script provided by the Trinity install. Bowtie 2 was then used to individ-

ually align transcripts back to the species-specific assembly, allowing us to assess the proportion

of transcripts that realigned. In many cases, Bowtie 1 will detect a high proportion of improper

alignments if there is a higher redundancy among transcripts in the samples. Because the two

species here are polyploid, we chose to use Bowtie 2 despite Trinity’s default use of Bowtie 1.

We also used BLAST+ tool blastx to align assemblies to the Swiss-Prot and TrEMBL databases,

allowing us to assess the completeness of transcripts to known proteins with an evalue cutoff of

e-10 (The UniProt Consortium, 2015). Databases were limited to higher land plants (Euphyllo-

phytes) to maximize computing efficiency at this step. These Swiss-Prot and TrEMBL databases

used for assessing transcript completeness and relationship to known proteins was downloaded

from ftp.uniprot.org on 13 April 2016. Downloaded Swiss-Prot and TrEMBL represented 35,215

and 3,406,188 annotated protein sequences, respectively. Top hit coverage was determined with a

Trinity perl script. In downstream analysis, if no matches were determined, results were examined

with slightly relaxed parameters (e-value of 1e-5 and universal blastx search).
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I.1.4 Differential expression within species

We used RSEM (version 1.2.28, Li and Yang, 2011) to count expression of each transcript

(transcripts per million, TPM). Because many transcripts have weak support from the expression

data (few realignments, or counts), we estimated overall expression by regressing a subset of cov-

erage (between 10 and 250 TPM) against the number of transcripts at each coverage level using

R (version 3.3.0, R Core Team, 2018). This regression’s intercept provides an estimate of total

transcripts expressed from the Trinity assembly (Haas et al., 2013) (Figure I.2). We normalized

across sample coverage using trimmed mean of M-values (TMM, Robinson et al., 2010).

Figure I.2: Regression of the representative subset of transcripts against their coverage using RSEM.

I.1.5 Homology

Transcriptomes were downloaded as gunzipped fasta files on 21 April 2016. Trinity assemblies

were blasted against these at an e-value cutoff of 1e-10.

I.1.6 Differential Expression and Annotation

Because Trinotate requires specific editions of SWISS-PROT and Pfam databases, we

downloaded both from the trinotate website at https://data.broadinstitute.org/Trinity/Trinotate_

v3_RESOURCES/uniprot_sprot.pep.gz and https://data.broadinstitute.org/Trinity/Trinotate_v3_
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RESOURCES/Pfam-A.hmm.gz. Transcriptionfactor.org databases for Zea mays and Sorghum bi-

color were downloaded on 15 May 2016. RSEM version 1.2.28 was used to determine expression

levels among samples. RSEM references were built using Bowtie 2. RSEM expression calculations

were estimated using Bowtie 2 with:

--bowtie2-sensitivity-level = very_sensitive

--bowtie2-mismatch-rate = 0.2|

--bowtie2-k = 10000

Trinity script count_matrix_features_given_MIN_TPM_threshold.pl was used to generate a list

of number of features falling into coverage (transcripts per million, or TPM) bins. This output

was used to perform linear regression of number of features vs. coverage, and estimate overall

expression. We ran edgeR version 3.2 through Trinity using the run_DE_analysis.pl and analyze_

diff_expr.pl scripts. Hmmer (version 3.1b2, Finn et al., 2011), SignalP (version 4.1, Petersen et al.,

2011), and Tmhmm (version 2.0c, Möller et al., 2001) were used to predict and identify protein

domains.

I.2 Supplementary results

I.2.1 De novo assembly

Andropogon gerardii and S. nutans had 1338 and 1161 transcripts that matched reviewed and

annotated proteins by >90% (Swiss-prot), respectively. 7839 transcripts in A. gerardii and 7109

in S. nutans had at least some alignment (>10%) to annotated proteins. When we expanded the

database to include hypothetical unreviewed proteins (TrEMBL), 24,880 total matches were found

for A. gerardii and 20,749 for S. nutans. When we regressed the representative subset of transcripts

against their coverage using RSEM, A. gerardii expressed an estimated 7300 transcripts, while S.

nutans expressed an estimated 8419 transcripts (Figure I.2).

I.2.2 Highly expressed transcripts

We were unsurprised that highly expressed transcripts (>400 TPM) within A. gerardii were

similar among the drought and watered treatments considering the basic metabolic needs of plants.

112



However, droughted A. gerardii expressed multiple transcripts related to polyamine biosynthe-

sis, as well as tetrapyrrole metabolism and biosynthesis that watered transcripts did not. In con-

trast, watered A. gerardii exhibited high expression of ribonucleoprotein movement and saccharide

metabolism, catabolism, and biosynthesis. Compared to A. gerardii, we observed more differ-

ences among highly expressed drought and watered transcripts in S. nutans. Highly expressed

drought transcripts in S. nutans were related to aminotransferases (component of amino acid syn-

thesis), phosphoribulokinases (carbon fixation), ribonucleases (RNA degradation), and aspartate

metabolism. Watered S. nutans highly expressed peptidase and endopeptidase regulation (amino

acid catabolism), photoprotection, and protein modification transcripts.

I.2.3 Comparative expression between species

We performed a non-metric multidimensional scaling among samples (shown plotted in Fig-

ure 2.4 of the main manuscript). The stress value, 0.0657 indicates a good fit (Figure I.3). All

volcano plots are shown in Figure I.4.

Figure I.3: Stress plot for NMDS of all samples performed in the main manuscript.
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Figure I.4: Volcano plots showing transcripts or gene groups differentially expressed. Significantly different
transcripts (A. gerardii drought + watered, S. nutans drought + watered) or gene groups (A. gerardii + S.

nutans drought, A. gerardii + S. nutans watered) are colored red.

I.2.4 Homology

In addition to percent transcript match at the nucleotide level, we also performed an amino

acid similarity search using the tblastx tool. Order of relatedness was similar to the nucleotide

matches, but with lower percentage for proteins (Figure I.5). While percent transcript match at the

nucleotide level can be found in the main text, the proportion of genes with any match over the
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total found in A. gerardii or S. nutansare shown below (Figure I.6). As an example, this shows the

percent of A. gerardii transcripts out of ∼65,000 total with a match to Arabidopsis.

Figure I.5: Homology of both species to known transcriptomes. Percent match refers to average percentage
of identical matches at the protein level (tblastx).

I.3 Supplementary discussion

Within RNA-seq data there is more statistical power when comparing genes with higher expres-

sion. In A. gerardii, polyamine, porphyrin, and tetrapyrrole biosynthesis were highly represented

under drought. All are related to drought tolerance: polyamine biosynthesis enhances photosyn-

thetic efficiency and leaf water status in rice under drought (Farooq et al., 2009), porphyrins help

maintain less negative xylem water potential and oxidative stress (Phung et al., 2011), and some

tetrapyrroles help signal oxidative stress under drought (Nagahatenna et al., 2015; Phung et al.,

2011). In droughted S. nutans, aminotransferases and aspartate metabolism may be linked to ac-

cumulation of amino acids under drought (Berdeja et al., 2015; Malatrasi et al., 2006; Szabados
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Figure I.6: Homology of both species to known transcriptomes. Percent match refers to a proportion of the
number of genes with blastn alignment when comparing two transcriptomes at the nucleotide level.
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and Savouré, 2010), phosphoribulokinase is linked to stabilizing photosynthesis under drought

in sugarcane (Khueychai et al., 2015), and ribonucleases serve a regulatory role under drought

in switchgrass (Hivrale et al., 2015). These differences suggest A. gerardii approached drought

within highly expressed transcripts by coping with reactive oxygen species byproducts, while S.

nutans took a more cautious approach via regulating key metabolic processes differently.
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Appendix II

II.1 Supplementary methods

After establishment of sterile genotype lines, plantlets were propagated at the U.S. Department

of Agriculture National Center for Genomic Resources Preservation (USDA-NCGRP), in Fort

Collins, CO. Boxes were placed in a walk-in growth chamber at the USDA- NCGRP, and provided

a 16 hour photoperiod at 25°C and 20-30% humidity. Plants were allowed to propagate on high-

nutrient M.S. media for 24 days, during which clumps of individuals were produced. Individuals

were then transferred with forceps to boxes containing rooting media. Plants grew roots for 50 days

before being transferred to misting benches at Plant Growth Facilities, Colorado State University.

Transfer to the greenhouse involved rinsing residual media from plant roots with water, weighing

individual fresh plants for covariate analysis, and placing individuals into moist fritted clay media

(Porous Ceramic “Greens Grade”, Profile Products, Buffalo Grove, IL). Height and tiller number

measurements were collected on these individuals for covariate analysis on day 6 (early) and day

32 (late) following transfer (Hoffman and Smith, 2018).

II.1.1 Model details

We chose distributions for data based on whether residuals met normality assumptions. Unless

otherwise noted, we used the likelihood for the ith observation of N total observations:

yi ∼ normal(ŷi, σ
2)

ŷi = xiβ

where x is an NxJ matrix of predictors ( J represents each of 15 unique genotype, treatment,

and interactions possibilities) and β is a vector of J parameters. Overall, xiβ is a vector of N

predictors. We used the following priors unless otherwise specified:
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β ∼ normal(0, 106)

σ2
∼ cauchy(0, 5)

Code for models is available at http://www.avahoffman.com/resources.

Figure II.1: Genotypes of A. gerardii emergent from tissue culture and adjusting prior to the primary
treatment.
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Figure II.2: Genotypes of A. gerardii from left to right: G11, G2, and G5.
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Figure II.3: Gravimetric water content over the course of the primary treatment. Dark green represents
the 25% volumetric water content (VWC), light green represents 20%, orange represents 15%, and red
represents 10%. Calculations from VWC to GWC were performed by comparing soil water potential across
potentiometer curves for Konza soil and fritted clay media.
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Figure II.4: Correlation among A. gerardii morphological traits. See Table II.1 for trait abbreviations.
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Table II.1: Morphological traits used in the principal components analysis. Traits explored further in
Chapter 3 are in bold. Proportion of variances is as follows for PC1 and PC2: 0.596, 0.218. Treatment: 7
week water limitation; n=7 (105 total).

Response variables PC1 loading PC2 loading

SM (starting mass, mg) 0.100065945 0.10480153
Bv (vegetative biomass, g) 0.347638871 -0.24997025
Br (root biomass, g) 0.269300800 -0.13492212
DMCv (leaf dry matter content, mg g−1) -0.078938760 0.07964500
DMCr (root dry matter content, mg g−1) -0.099545253 0.02126078
A:B (shoot:root ratio, g g−1) 0.097004269 -0.13886521
SLA (specific leaf area, mm2 g−1) 0.045515648 -0.08555616
LA (leaf area [scaled], mm2) 0.387546795 -0.33644767
Rl (root length, mm) 0.382717823 0.29707395
Rsa (root surface area, mm2) 0.362234772 0.11047337
Rd (mean root diameter, mm) -0.009574089 -0.17321892
Rv (root volume, mm3) 0.341019127 -0.08252271
Rt (root tips) 0.440063299 0.27032713
Rsa:LA (root to leaf surface area, mm2 mm−2) -0.091265866 0.55415942

SRL (specific root length, mm g−1) 0.114642300 0.42785644

SSA (specific root surface area, mm2 g−1) 0.097958168 0.24744516

Table II.2: Physiological traits used in the principal components analysis. Traits explored further in Chap-
ter 3 are in bold. Proportion of variances is as follows for PC1 and PC2: 0.391, 0.125. Treatment: 7 week
water limitation; n=7 (105 total).

Response variables PC1 loading PC2 loading

SM 0.048162439 0.059002621
µAnet (mean net photosynthetic rate, µmol m−2 s−1) -0.187165271 0.005494838
µgs (mean stomatal conductance, mol H2O m−2 s−1) -0.204531364 -0.027373901
µfo (mean minimal dark adapted fluorescence) -0.070223351 -0.003880752
µfm (mean maximal dark adapted fluorescence) -0.079381770 0.004529034
µfv (mean Fv/Fm or maximum PSII efficiency) -0.003835177 0.003405529
µE (mean evapotranspiration rate, mmol H2O m−2 s−1) -0.181656247 -0.038410593
µWUEi (mean instantaneous water use efficiency, µmol mmol−1) -0.014171862 0.050279510
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Figure II.5: Correlation among A. gerardii physiological traits. See Table II.2 for trait abbreviations.
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Figure II.6: Correlation among A. gerardii growth related traits. See Table II.3 for trait abbreviations.
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Table II.3: Growth traits used in the principal components analysis. Bolded traits were modeled, but the
maximum value of all weeks for each trait was used in the main text (Chapter 3). Subscripts for response
variables indicate the week of measurement. Proportion of variances is as follows for PC1 and PC2: 0.344,
0.187. Treatment: 7 week water limitation; n=20 (300 total).

Response variables PC1 loading PC2 loading

SM 0.03367078 -0.05693340
H2 (height, week 2, cm) 0.04638048 -0.00278920
T2 (tiller count, week 2) -0.07114830 -0.21779420
H4 0.04960002 0.02445134
∆4 (relative growth rate, week 4, ln(cm) week−1) 0.06219766 0.42250066
T4 -0.05466700 -0.19689180

H6 0.03986469 0.01454532
∆6 -0.18791060 -0.17524370
T6 -0.07511290 -0.20861400
H7 0.01255380 0.00563312
∆7 -0.78597650 -0.28081100
T7 -0.03612060 -0.22916480
H8 -0.00823540 0.02571861
∆8 -0.48748400 0.45953188

T8 -0.04098640 -0.24131600
H9 -0.02316700 0.04758371
∆9 -0.26332880 0.39221767

T9 -0.03763280 -0.24054730
H10 -0.02896350 0.06196142
∆10 -0.09513580 0.19425520
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Figure II.7: Correlation among A. gerardii recovery traits. See Table II.4 for trait abbreviations.
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Figure II.8: Physiological measurements by A. gerardii genotype and treatment over time. Heading number
indicates genotype.
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Figure II.9: Height (a) and (b) relative growth rates differ among A. gerardii genotypes, treatments, and
over time. Error bars represent the 95% CI.
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Figure II.10: All A. gerardii genotypes and treatments had similar heights (a) during recovery. Relative
growth rates (b) became similar across genotypes after week 11. Note that treatments (different colors) refer
to the treatments experienced prior to the recovery period. See Table 3.1 for significant effects. Error bars
represent the 95% CI
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Table II.4: Recovery traits used in the principal components analysis. Traits explored further in Chapter 3
are in bold. Subscripts for response variables indicate the week of measurement. Proportion of variances is
as follows for PC1 and PC2: 0.634, 0.156. Treatment: 7 week water limitation + recovery; n=7 (105 total).

Response variables PC1 loading PC2 loading

SM 0.00119545 -0.04316790
Bv -0.02387650 -0.27561150
Bf (flowering biomass, g) 0.18807746 0.51723909

Br 0.02383496 -0.17768430
Brh (rhizome recovery, cm) 0.01623755 -0.76701500

H11 -0.04799900 0.02432013
∆11 -0.95975100 0.10138805
H12 -0.05769140 0.01096925
∆12 -0.05969250 -0.11557920
H13 -0.04260700 0.01185929
∆13 0.14610361 0.01165506
H14 -0.03788540 0.01660715
∆14 0.07759748 0.03697981
H15 -0.03466380 0.03385888
∆15 0.03295917 0.08566641
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Appendix III

III.1 Supplementary methods

See guide prepared by E. Meyer (http://people.oregonstate.edu/~meyere/docs/Preparing2bRAD.

pdf) and Wang et al. (2012) for detail in addition to notes below. Prior to DNA extraction, we dried

leaf samples in coin envelopes on silica gel and processed samples into a fine powder using a Qia-

gen TissueLyser II. With DNA extraction, we produced the highest quality DNA using the Omega

Bio-tek E.Z.N.A. Plant DNA DS kit (for samples high in polysaccharides) compared to higher

throughput kits. Because high quality, concentrated DNA is required for successful library prepa-

ration, we quantified our samples using a Qubit II, followed by an air-drying concentrating step

where samples were allowed to air dry overnight with a porous cover followed by rehydration to

125 ng µl−1. This DNA was then digested overnight using the AlfI IIB enzyme (Fisher Scien-

tific, www.fishersci.com) followed by adapter ligation for Illumina sequencing. In order to further

improve coverage and reduce sequencing costs in the ligation step, we ligated specific Illumina

adapters to target only 1/256 of the AlfI enzyme cut site fragments. In other words, instead of

targeting DNA fragments ending in NN, we targeted only fragments ending in GG for sequencing.

We annealed single-stranded adapters by heating to 97°C and cooling to 25°C in 1°C min−1 in-

crements. Finally, we amplified adapter-ligated fragments using 22 PCR cycles and dual-indexed

Illumina barcodes. After electrophoresis gel size selection of fragments, we quantified samples

using qPCR (BioRad) and pooled samples according to concentration into six “lanes” followed

by an Omega Bio-tek Mag-Bind Total Pure NGS magnet cleanup and concentration step. Pooled

lanes were sequenced on an Illumina HiSeq 4000 and de-multiplexed at the Genomics and Cell

Characterization Core Facility at the University of Oregon in January 2018.

Following sequencing, we processed the genomic fragment data to produce SNPs. We re-

lied extensively on scripts generated by E. Meyer for SNP processing (http://eli-meyer.github.io/

2bRAD_utilities). First, we truncated sequencing reads to 36bp according to the fragment size pro-

duced by the AlfI restriction enzyme, followed by quality filtering of any reads containing more

than 4 bases with a quality score lower than 20. We also removed any reads containing more than
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Bgedge 10 1 1

Bgedge 10 2 1

Bgedge 10 3 1

Bgedge 10 4 1

Bgedge 10 5 1

Bgedge 10 6 1

Bgedge 1 1 1

Bgedge 1 1 2

Bgedge 1 1 3

Bgedge 1 2 1

Bgedge 1 3 1

Bgedge 1 5 1

Bgedge 2 1 1
Bgedge 2 2 1
Bgedge 2 3 1

Bgedge 2 4 1

Bgedge 4 1 1
Bgedge 4 2 1
Bgedge 4 3 1

Bgedge 4 4 1
Bgedge 4 5 1

Bgedge 4 6 1

Bgedge 8 1 1
Bgedge 8 2 1
Bgedge 8 3 1

Bgedge 8 4 1

Bgedge 8 5 1

Bgedge 9 1 1

Bgedge 9 1 2

Bgedge 9 1 3

Bgedge 9 2 1
Bgedge 9 3 1

Bgedge 9 4 1

Bgedge 9 5 1

BgHq 1 1 1

BgHq 1 1 3

BgHq 1 2 1

BgHq 1 3 1

BgHq 1 4 1

BgHq 2 1 1
BgHq 2 2 1

BgHq 2 3 1

BgHq 4 1 1
BgHq 4 2 1
BgHq 4 3 1

BgHq 6 1 1
BgHq 6 3 1
BgHq 6 4 1

BgHq 6 5 1

BgHq 7 1 1
BgHq 7 2 1

BgHq 7 3 1

BgHq 9 1 1

BgHq 9 2 1

BgHq 9 2 2

BgHq 9 2 3

BgHq 9 3 1

BgHq 9 4 1
BgHq 9 5 1

BgHq 9 6 1

BgHq 9 7 1

Figure III.1: B. gracilis clones clustered distinctly, indicating the efficacy of the sequencing technique for
this species. The first number index on each branch tip indicates clone number, second index indicates tiller
replicate, and third index indicates leaf replicate. Dendrogram was generated using the UPGMA method.
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Figure III.2: Water treatments (water limited and non-water limited) were distinct. Data points in the figure
below were collected from 20 August - 18 September.
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12 bases in common with the Illumina adapters since adapter amplification during library prepara-

tion is possible. We then used filtered reads from the highest-coverage sample per site to assemble

a representative de novo reference using RAxML clustering of similar tags. We then aligned all

reads to this reference using SHRiMP, followed by a step to filter out any reads aligning with fewer

than 32 bases to avoid ambiguity arising from matching with multiple tags.

We ran all models using Stan (Gelman et al., 2015) within R (R Core Team, 2018), discarding

25,000 iterations as burn-in and retaining 25,000 model iterations for the posterior distribution. We

confirmed convergence of all parameters with Rhat values of ∼1. We also validated our model with

a posterior predictive check; all observed data and posterior distributions overlapped appropriately

(figures of these checks available upon request).

Table III.1: Common genotypes found across B. gracilis sites.

MLG

126

MLG

14

MLG

70

MLG

159

MLG

204

MLG

18

MLG

168

MLG

45

SGS 4 0 0 0 0 0 0 0
Andrus 3 0 2 0 0 0 0 0
Buffalo Gap 1 0 0 0 0 0 0 1
Beech Trail 2 0 1 0 0 0 0 0
Cibola 0 3 0 0 0 0 6 0
Comanche 0 0 0 0 0 7 0 0
Cedar Point 4 0 0 0 2 0 0 2
Davidson Mesa 0 0 0 0 0 0 0 0
Heil Valley 2 0 0 0 0 0 0 0
Kelsall 3 0 0 0 0 0 0 0
Konza 2 0 0 0 6 0 0 0
Rock Creek 1 0 1 0 0 0 0 0
Rabbit Mountain 1 1 2 0 0 0 0 0
Sevilleta 0 0 0 10 0 0 0 0
Steele 2 0 0 0 0 0 0 3
Wonderland 2 0 5 0 0 0 0 0
Walker Ranch 0 14 0 0 0 0 1 0
Total 27 18 11 10 8 7 7 6
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Figure III.3: Bouteloua gracilis sites clustered distinctly in space based on the genome. Plot space was
determined using DAPC, where discriminant functions LD1 and LD2 account for 57% of the variance.
“Structure” lines reveal the posterior probability of site assignment of each individual, where solid lines
indicate clear site assignment and mixed lines indicate admixed individuals. Probabilities of assignment by
site; Sevilleta: 1.00, Cibola: 0.94, Comanche: 0.88, SGS: 0.82, Andrus: 0.82, Rock Creek: 0.82, Steele:
0.80, Rabbit Mountain: 0.87, Beech Trail: 0.88, Davidson Mesa: 0.94, Wonderland: 0.75, Heil Valley: 0.87,
Kelsall: 0.62, Walker Ranch: 0.94, Buffalo Gap: 0.94, Cedar Point: 0.81, Konza: 0.75.
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Figure III.4: Hierarchical relationship among B. gracilis sites based on the genome. Numbers indicate
bootstrapped support (percent) for each individual node.
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Figure III.5: Pairwise genomic distance within site.
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Figure III.6: Traits were distinct across sites in a common environment, indicating genetic divergence. Bars represent trait distributions at the mean
soil %VWC. Circular points represent the mean and error bars represent the 95% CI. Shades of green and blue represent Boulder, CO sites. Sites are
organized from red-purple based approximately on aridity index.
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Figure III.7: Plasticity of traits was distinct across sites in a common environment, indicating genetic divergence. Circular points represent the mean
and error bars represent the 95% CI. Credible intervals deviating from zero indicate significant plasticity. Shades of green and blue represent Boulder,
CO sites. Sites are roughly organized from red-purple based on aridity index.
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Figure III.8: Trait variance within site was distinct across sites in a common environment. Circular points represent the mean and error bars represent
the 95% CI. Shades of green and blue represent Boulder, CO sites. Sites are roughly organized from red-purple based on aridity index.
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Figure III.9: Trait plasticity variance within site was distinct across sites in a common environment. Circular points represent the mean and error
bars represent the 95% CI. Shades of green and blue represent Boulder, CO sites. Sites are roughly organized from red-purple based on aridity index.
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Table III.2: Results of linear models comparing genome variance and trait or plasticity variance. Adjusted
p-values were generated using Bonferroni correction.

Predict Response Estimate t value p-adj

genotype evenness total biomass variance -10.530 -1.480 1.000
genotype richness total biomass variance -0.612 -1.259 1.000
heterozygosity total biomass variance 139.054 0.334 1.000
genotype evenness aboveground biomass variance -4.102 -2.003 0.797
genotype richness aboveground biomass variance -0.252 -1.797 1.000
heterozygosity aboveground biomass variance 96.204 0.772 1.000
genotype evenness total biomass plasticity variance -1.195 -1.597 1.000
genotype richness total biomass plasticity variance -0.085 -1.714 1.000
heterozygosity total biomass plasticity variance -17.169 -0.387 1.000
genotype evenness aboveground biomass plasticity variance -1.247 -1.054 1.000
genotype richness aboveground biomass plasticity variance -0.081 -1.015 1.000
heterozygosity aboveground biomass plasticity variance 70.576 1.099 1.000
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