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ABSTRACT

AUTOMATED SECURITY ANALYSIS OF THE HOME COMPUTER

Home computer users pose special challenges to the security of their machines. Of-

ten home computer users do not realize that their computer activities have repercussions

on computer security. Frequently, they are not aware about their role in keeping their

home computer secure. Therefore, security analysis solutions for a home computer must

differ significantly from standard security solutions. In addition to considering the proper-

ties of a single system, the characteristics of a home user have to be deliberated. Attack

Graphs (AGs) are models that have been widely used for security analysis. A Personalized

Attack Graph (PAG) extends the traditional AGs for this purpose. It characterizes the inter-

play between vulnerabilities, user actions, attacker strategies, and system activities. Success

of such security analysis depends on the level of detailed information used to build the PAG.

Because the PAG can have hundreds of elements and manual analysis can be error-prone and

tedious, automation of this process is an essential component in the security analysis for the

home computer user. Automated security analysis, which applies the PAG, requires informa-

tion about user behavior, attacker and system actions, and vulnerabilities that are present in

the home computer. In this thesis, we expatiate on 1) modeling home user behavior in order

to obtain user specific information, 2) analyzing vulnerability information resources to get

the most detailed vulnerability descriptions, and 3) transforming vulnerability information

into a format useful for automated construction of the PAG.

We propose the Bayesian User Action model that quantitatively represents the relation-

ships between different user characteristics and provides the likelihood of a user taking a

specific cyber related action. This model complements the PAG by delivering information

about the home user. We demonstrate how different user behavior affects exploit likelihood

in the PAG. We compare different vulnerability information sources in order to identify the

best source for security analysis of the home computer. We calculate contextual similarity of
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the vulnerability descriptions to identify the same vulnerabilities from different vulnerability

databases. We measure the similarity of vulnerability descriptions of the same vulnerability

from multiple sources in order to identify any additional information that can be used to

construct the PAG. We demonstrate a methodology of transforming a textual vulnerability

description into a more structured format. We use Information Extraction (IE) techniques

that are based on regular expression rules and dictionaries of keywords. We extract five types

of information: infected software, attacker/user/system pre-condition, and post-conditions

of exploiting vulnerabilities. We evaluate the performance of our IE system by measuring

accuracy for each type of extracted information.

Experiments on influence of user profile on the PAG show that probability of exploits

differ depending on user personality. Results also suggest that exploits are sensitive to user

actions and probability of exploits can change depending on evidence configuration. The

results of similarity analysis of vulnerability descriptions show that contextual similarity can

be used to identify the same vulnerability across different vulnerability databases. The results

also show that the syntactic similarity does not imply additional vulnerability information.

Results from performance analysis of our IE system show that it works very well for the

majority of vulnerability descriptions. The possible issues with extraction are mainly caused

by: 1) challenging to express vulnerability descriptions by regular expressions and 2) lack of

explicitly included information in vulnerability descriptions.
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Chapter 1

Home Computer User and Security

An estimated 90 million households in the U.S. had personal computers in 2011 [CEN11].

Home computer users are not only interested in searching for content, but also in doing

shopping, banking, entertainment and more [Pew11]. They are a highly diverse group in

terms of needs, wants, resources and abilities. The problem is that many home computer

users do not fully understand the impact of their activities and actions on home computer

security [AC03, BFP08, HY10]. As a result, they are considered as one of the weakest links

in computer security [SBW01]. Home users are a lucrative target for attackers. According

to a Symantec report from 2007 [Sym07], 95% of all targeted attacks were directed towards

home computer users. The standard computer security tools which employ a one-size-fits-all

issues paradigm are not tailored to each user’s needs nor each user’s perception of her/his

role in maintaining security.

For instance, let us consider an example attack shown in Figure 1.1. The attacker wants

to achieve root access privilege on a user’s machine (red box). To succeed with this attempt

she/he sends an email with a link to a phishing website to a home computer user. The home

computer user uses a machine that is vulnerable (has some security holes - blue box). When

the user opens the email and clicks on the link, the attacker can successfully exploit the

user’s system’s vulnerability.

By preventing the user from clicking on the phishing link, we can greatly reduce the

likelihood of the attacker achieving root access privilege. Anecdotal evidence suggests that

different users have different likelihoods of clicking on such email links. We believe that with

a user behavior profile we can estimate this likelihood. Modeling user behavior and incor-

porating it into security analysis for the home computer can allow us to be both proactive

in handling security threats as well as be responsive to user security needs as appropriate.
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Figure 1.1: Example attack.

The security analysis of a home computer system is a process of evaluating system proper-

ties in order to identify weaknesses and improve security. System properties are, for example,

system configuration, access privileges, relationship between system components, existence

of vulnerabilities, etc. Since the user also influences home computer security, additional

factors should be taken into consideration in security analysis of a home computer. These

are user characteristics such as habits, preferences, and personality [AC03, Lea03, AC04].

Security analysis involves identifying attacks that can compromise a system. An attack

on a system can be represented as a sequence of events that leads to the compromise. Such

security scenarios are often modeled as graphs or trees, called Attack Graphs (AGs)/Attack

Trees (ATs). An AT [DCH02, RP05, DPRW07, BEJS10] presents scenarios of possible at-

tacks by enumerating the identified weaknesses of the system and capturing the relationships

between vulnerabilities and other system properties as a conjunction-disjunction (And-Or)

tree. AGs [SHJ+02, JSW02, APRS05] are data structures (analogous to ATs) that represent

the different ways in which an attacker can exploit vulnerabilities to break into a system.

ATs/AGs provide significant information for administrators to understand the threats and

help them improve the security.

The Personalized Attack Graph (PAG) [RHR+11] model extends traditional AGs to

focus on a single standalone system. It characterizes the interplay between vulnerabilities,
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user actions, attacker strategies, and system activities. The more specific information that

is included in the PAG, the more accurate the security analysis can be. Consequently, a

PAG can have hundreds of elements, and manual analysis can be error-prone and tedious.

Moreover, the home computer user does not necessarily have the knowledge about security

to perform such security analysis. Therefore, automation of this process is an essential

component in security analysis for home computer users.

In order to construct the PAG we must have information about user behavior, attacker

and system actions, and vulnerabilities that are present in the home computer. In this

thesis we focus on: 1) modeling home user behavior in order to obtain user specific informa-

tion, 2) analyzing vulnerability information resources to get the most detailed vulnerability

descriptions, and 3) transforming vulnerability information into a format that is useful in au-

tomated construction of the PAG. In the following, we briefly describe the specific challenges

with respect to these objectives.

1.1 Understanding the Home Computer User

Gaining information about the home computer user requires understanding her/his be-

havior. Different user characteristics can impact different vulnerabilities within the home

computer system in a variety of ways. Relevant user characteristics need to be evaluated to

tailor security measures for the home computer system. Different users can have different

habits, behavior, and perceptions of a risk [HRR+12]. These together constitute the user

profile for the home computer system.

In order to model the home computer user, we have to identify which characteristics of

the user should be considered. We have to understand how a computer user makes decisions

and which factors influence these decisions. Another element that should be addressed is the

relationships between different characteristics. For example, does a home computer user’s

self-efficacy depends on that user’s computer knowledge and experiences?

For the purpose of security analysis that uses the PAG we need to define measurements

of the likelihood of home computer user activities. Therefore, we are not only interested
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in identifying the relationships between the user characteristics but also their quantitative

representation.

1.2 Vulnerability Information Resources

For the purpose of building the PAG we have to incorporate up-to-date information

about vulnerabilities and their exploits. Each exploit has to be associated with user actions,

attacker strategies, and system activities. Information about vulnerabilities can be obtained

from multiple Vulnerability Databases (VDs). There is a variety of VDs; some of which

are commercial and others are open-source. They provide information to users and security

managers to help them learn about vulnerabilities, correct them, and not duplicate bugs.

Different VDs can contain different vulnerabilities which can be grouped into three cat-

egories: 1) shared for all, 2) unique for every, and 3) shared for some database. The first

category groups all vulnerabilities that are common in all VDs. The second category gathers

the vulnerability information that is unique for each VD. The last category groups vulnera-

bility information that is present only in some VDs. Also, the vulnerability information can

be expressed in a different way in each of the VDs that makes them incompatible with one

another. Additionally, new vulnerabilities are posted at different times which makes some of

them more up to date than others [Pol05]. Therefore, it is important to obtain vulnerability

information from multiple sources.

The challenge is to decide which VDs should be used as a source for building the PAG.

What factors should the decision be based on? Which characteristic of the VD should de-

termine the choice? One characteristic that could be taken under consideration is Common

Vulnerability and Exposure (CVE) names (or numbers) [CVE13] which are unique and stan-

dardized identifiers of publicly known security vulnerabilities. CVE numbers are also used

across different VDs. Therefore, the usage of such identifiers can be very helpful in a process

of comparing different VDs.

Another concern is the level of detailed vulnerability information which is provided by

the different VDs. Constructing the PAG requires specific information about user actions,
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attacker strategies, and system activities. However, this information cannot always be found

in a single vulnerability description. Therefore, we would like to consider, the possibility of

adding any additional vulnerability information from different sources. However, redundant

and insignificant information is undesirable. Therefore, we would like to check how similar

are the vulnerability descriptions before combining them.

1.3 Transforming Vulnerability Description

Vulnerabilities are exploited via sequences of events (actions on the part of users and

attackers); so to understand whether a vulnerability can be exploited for a given system, one

needs to know the sequence. However, the standard resources for capturing vulnerability

information, VDs, contain textual descriptions that do not necessarily describe the chain of

events that can lead to an exploit. Moreover, the textual description is not useful in auto-

mated analysis. Hence, we would like to transform such a textual vulnerability description

into a more structured one that clearly identifies the pre- and the post-conditions of the ac-

tions leading to the exploit. We would like to extract information such as: infected software,

pre-conditions (user actions, attacker strategies, and system activities and configuration)

and post-conditions of exploiting a particular vulnerability.

Information Extraction (IE) is a process of automatically extracting a small portion of

information from an unstructured source. These small portions are: entities, relationships

between them, and attributes that describe them. The entities are usually noun phrases that

contain one or more tokens. The tokens are atomic parse elements from an unstructured

text that are grouped into specified classes (e.g. names of people, organizations, locations,

etc.).

The main challenges in the process of transforming vulnerability description in order to

build the PAG are: 1) How to recognize interesting elements from the text? 2) How much

information is enough? 3) How do we know if we are missing something? 4) What to do if

necessary information is not in vulnerability description?
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1.4 Thesis Contributions

In this thesis, we make three main contributions. First, we propose a conceptual model

of home computer user behavior. Our model is significantly influenced by two prior models

of human behavior in computer security: Ng, Kankanhalli and Xu’s model [NKX09] and

Claar’s model [Cla11]. The conceptual model helps us to represent the relationships between

different user’s characteristics. In order to measure the likelihood of home computer user

activities we translate the conceptual model into a probabilistic model - Bayesian network,

that is called Bayesian User Action (BUA). In the BUA, the relationships between the user’s

characteristics from the conceptual model are quantified into probability values. The BUA

provides the likelihood of user action which is used in automatic security analysis with the

PAG.

Second, we analyze information collected from three different VDs (NVD, BugTraq, OS-

VDB) over a period of time. We focus on measuring similarities between vulnerability

descriptions from these VDs. We check whether using a similarity score we can identify

the same vulnerability across different VDs. Subsequently, we measure the similarity score

between vulnerability descriptions of the same vulnerability from different VDs in order to

identify any additional vulnerability information.

Third, we propose a method of transforming vulnerability information into a format

useful in automated construction of the PAG. Our IE method is based on manually created

rules that are supported by regular expressions and dictionaries of keywords. We extract

information such as infected software, attacker pre-conditions, user pre-conditions, system

pre-conditions, and post-conditions of exploiting vulnerabilities. We evaluate our IE system

by measuring its accuracy.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background of

security analysis which uses AGs and presents the formal model of the PAG. Next, Chapter 3
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discusses the home computer user model that provides the information about user behavior

to the PAG. Comparison of vulnerability sources is provided in Chapter 4, followed by the

description of the method of structuring vulnerability descriptions in Chapter 5. Finally,

concluding remarks and future work are presented in Chapter 6.
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Chapter 2

Background on Security Analysis Us-
ing Attack Graphs

Attack Graphs (AGs) [SHJ+02, JSW02, APRS05]/Attack Trees (ATs) [DCH02, RP05,

DPRW07, BEJS10] are models used to analyze security risk in a system. Depending on the

design, an AG/AT can answer questions about how an attack can happen or why the attack

can happen. In other words, they present possible scenarios of an attack, or the causes and

effects of actions. They capture all the possible ways in which a system can be attacked and

compromised. They help to analyze the possible attack scenarios by showing the relationship

between the vulnerabilities and system configurations.

For the sake of better understanding this paradigm, let us consider an example AT

shown in Figure 2.1. The nodes in the AT represent different states of the system (possibly

compromised states). These capture the potential subgoals of the attacker. The edges specify

the relationship between the nodes. The root node describes the attacker’s final goal of the

attack, and the interior nodes represent sub-goals that lead to the attack. The leaf nodes

represent initial states which exist in a system. To launch an attack the attacker has to

exploit one or more of these leaf nodes. The attack paths are represented by the branches

in the attack tree. Each transition from one state to another is modeled as a conjunction

(AND) or disjunction (OR) of actions. For example, the nodes (or sub goals) F and G taken

together represent a way in which the root node (goal) can be achieved.

2.1 Modeling Attack Graph as a Bayesian Network

The knowledge of possible attack paths is not enough in security analysis. It is not easy

to predict which of the attack paths will be taken by an attacker. Therefore, researchers have

studied quantitative techniques of security analysis. They have proposed techniques which

8



Figure 2.1: Example AT.

address the most likely attack paths and identify the weakest points [JSW02]. Researchers

have also studied techniques to improve network security by measuring the quantity of secu-

rity ensured by different network configurations [WNJ06, NJOJ03, DPRW07, PDR12]. One

of the techniques is based on the Bayesian network (BN) probabilistic model which allows

one to represent and reason about an uncertain domain [KN11, Kri01].

In the BN representation, nodes correspond to the set of random variables from the un-

certain domain and arcs correspond to direct relationships between them. The variables

can be discrete or continuous. Each node has associated values which the node can take.

The relationship between directly connected nodes is represented as a probability value -

conditional probability. The set of conditional probabilities for all nodes’ relations is called

“conditional probability distribution.” The BN models can be used to reason about the do-

main using conditional probability distributions by taking values from observation nodes (or

evidence) and recalculating the probabilities of any concerned nodes based on that evidence.

The product of this recalculation is a posterior probability which is calculated using Bayes’

Theorem [KN11, Kri01].

Let h be a hypothesis which we would like to check upon some evidence e which can be

written Pr(h|e). The Pr(e) is the probability of the evidence being true, without regard for

the outcome. The Pr(h) is the probability of h prior to any evidence. The Pr(e|h) is the

9



probability of the evidence, given that hypothesis is true.

Pr(h|e) =
Pr(e|h)Pr(h)

Pr(e)

In [FWSJ08, LM05, DKC09, PDR12], a BN is used to model the states of a network

and encode the probabilistic property of the network vulnerabilities. Liu and Man [LM05]

define the BN as a pair (S,P) where S is a network configuration and P is a set of local

probability distributions. Each node encodes a single compromised state, and each edge

represents an exploitation of one or more vulnerabilities. Frigault et al. [FWSJ08] define

an AG as a Dynamic Bayesian Network similar to [LM05]. They base the calculation of

prior probability on the Common Vulnerability Scoring System (CVSS) [MSR07] metric.

Poolsappasit et al.’s [PDR12] Bayesian Attack Graph (BAG) model is derived from the work

by Dewri et al. [DPRW07] and Liu and Man [LM05]. The nodes in the BAG are attributes

which represent “generic properties of system” such as vulnerabilities, system configuration,

execution of operation, and access privileges.

2.2 Personalized Attack Graph (PAG)

A PAG1 is built around a set of exploit trees. The exploit tree is similar to a BAG

except that it includes computer user activities. An example PAG with six exploit trees

resulting in a compromised system (yellow node) is shown in Figure 2.2. The terminal

nodes of the PAG (red, blue, green) collect together known exploits and represent different

possible security compromised states for a home computer system. The leaf nodes represent

the initial state of the system, in Figure 2.2: 1) the software installed in the system (grey),

2) attacker strategies (violet), and 3) user activities that are involved in attack (orange).

Layers in the graph indicate preconditions, but across the graph, the layers are otherwise

insignificant. An arc in the graph is used to represent a state transition that contributes to

a system compromise. The simplest transition is between two nodes (as in the box labeled

1Published first in [URR+13]
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B1). Conjunctive (AND) nodes (as in the box labeled B2) require all preconditions to be

met for a state transition. Disjunctive (OR) branches (as in the box labeled B3) require only

a single branch to be true.

Figure 2.2: Example PAG.

2.2.1 Formal Model of the PAG

The formal model of the PAG is based on the AT presented in [DPRW07]. It is called

“personalized” AG because it explicitly captures user, attacker and system actions, and

tailors the representation to specific home computer systems.

Definition 1 A System Attribute Template (SAT) is a generic property of a system that can

contribute towards a system compromise. It can include, but is not limited to the following:

• system vulnerabilities as reported in different vulnerability databases,

• system configuration, e.g., data availability, use of security tools, open ports, un-patched

software,

• access privileges, e.g., root account, guest account.
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In the bottom left of Figure 2.2, the “SunJRE 1.4.0.02” is an instance of a system con-

figuration SAT, while its parent “CVE-2009-1094 Java CPU” is an instance of a system

vulnerability SAT.

Only some instances of SATs are relevant for a specific system. A successful security

compromise depends on which relevant instances of SATs are present or absent (that is true

or false). Instantiating an attribute template with truth values on the specific instances

allows us to implicitly capture the susceptibility of the system. We define a System Attribute

with such a concept in mind.

Definition 2 A System Attribute, si, is a Bernoulli random variable representing the state

of an instance of a System Attribute Template. It is associated with a state – True/1 or

False/0 – and a probability value, Pr(si), indicating the probability of the state being True/1.

For example, for the system in Figure 2.2, s1=“CVE-2009-1094 Java CPU” is a system

attribute when associated with a truth value, signifying whether the specific vulnerability

exists or not. Pr(s1) is the probability of the attribute being in state True.

Definition 3 A User Attribute Template (UAT) is a generic property of a user that helps

describe the influence of the user on home computer security. It is specified in terms of

parameters that include but are not limited to:

• user system configuration choices, e.g., use of a specific browser,

• user habits or activities, e.g., checking email at specific intervals, clicking indiscrimi-

nately on links,

• a user’s sensitive information (assets) that need to be protected.

The User Attribute Template helps capture a user’s impact on security much the same

way as SAT helps capture the system characteristics. Thus, the UAT contains only those

parameters that are relevant for securing the home system.

Definition 4 A User Attribute, ui, is a Bernoulli random variable representing the state of

an instance of a User Attribute Template. It is associated with a state – True/1 or False/0

– and a probability value, Pr(ui), indicating the probability of the state being True.
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For example, Figure 2.2 shows that the Denial of Service attack can be achieved when the

user opens a flash file with Adobe Flash version 6.0.88.0. Opening a flash file is an instance

of the user habits UAT.

Definition 5 An Attack Attribute Template (AAT) is a generic representation of the con-

ditions set up by an attacker (in terms of actions that the attacker can/has taken) that lead

to exploitation of a vulnerability and enable a successful attack.

It includes, but is not limited to:

• performing scanning of a system

• installing malicious software

• delivering specially crafted messages

Referring to Figure 2.2, “Attacker pdf compromised” is an instance of delivering a specially

crafted component AAT.

Definition 6 An Attack Attribute, ai, is a Bernoulli random variable representing the state

of an instance of an Attack Attribute Template. It is associated with a state – True/1 or

False/0 – and a probability value, Pr(ai), indicating the probability of the state being True.

To analyze a system for potential compromise, we assume that all potential attacks are

known. For a successful attack to take place, the corresponding attributes should have the

value of true. If corresponding values are false (or are rendered false), an attack will not

be successful. Consider, for example, the attacker attribute “Attacker pdf compromised”

(extreme right side of PAG in Figure 2.2). If we expect that the attacker cannot ever

successfully deliver a specially crafted pdf document, this attribute will be false. Thus, we

can be assured that the exploit described by this scenario will never occur. Modeling these

attributes as Bernoulli random variables allows us to compute the probability of a system

being compromised.

Definition 7 Atomic Exploit: Let S be a set of system attributes, U be a set of user at-

tributes, and A be a set of attacker attributes. Let X = S∪U ∪A. Let sj ∈ S, uk ∈ U, al ∈ A
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and xi = (sj, uk, al) ∈ X. Let F , a conditional dependency between a pair of attributes

in X, be defined as F : X × X → [0, 1]. Let xpre, xpost ∈ X be two attributes. Then

AtmExp : xpre → xpost is called an atomic exploit iff

1. xpre 6= xpost, and

2. if xpost = True with probability F(xpre, xpost) > 0, then xpre = True

The attribute xpre is the pre-condition of the exploit denoted as pre(AtmExp) and xpost the

post condition denoted as post(AtmExp).

An atomic exploit allows an attribute xpost to be transformed from xpre with some proba-

bility F(xpre, xpost). It is the simplest state transition that potentially leads to some security

breach in the system. It can be visualized as a graph with two nodes xpre and xpost with an

arc from xpre to xpost (box B1 in Figure 2.2).

Definition 8 Branch-Decomposed Exploit In order to build more complex exploits, let

BranchExp = {xpre1 , . . . , xprek , xpost} ⊆ X be a set of attributes such that if xpost = True

with some non-zero probability,

1. ∀i, xprei = True, or

2. ∃i, xprei = True

then BranchExp is called a Branch-Decomposed Exploit. Case (1) is called an and- de-

composition and has the precondition: pre(BranchExp) = {xpre1 , . . . , xprek}. Case (2) is

called an or-decomposition and has the precondition: pre(BranchExp) = xprei ,∀i = 1, . . . k.

The postcondition of both cases is: post(BranchExp) = xpost.

A branch-decomposed exploit which is an and/or-decomposition is visually represented

as a set of nodes xpre1 , . . . , xprek , xpost with arcs from xprei to xpost. In Figure 2.2, an example

of an or-decomposed branch exploit is the set of attributes enclosed by B3, while an and-

decomposed exploit is the set of attributes enclosed by B2. We will call a set E of attributes

an exploit, if either E is an atomic exploit or a branch-decomposed exploit.
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Definition 9 Exploit Tree – Let X be a set of attributes and E be either an atomic exploit

or a branch-decomposed exploit. An Exploit Tree is a tuple ET = 〈εroot, E ,P〉, where:

1. E = {E1, E2, . . . .En} is a set of exploits defined over the set of attributes X.

• x ∈ X ↔ ∃Ei | x ∈ Ei

• If x ∈ Ei, x 6= εroot|x = post(Ei) then ∃Ej, j 6= i | x ∈ pre(Ej) ∧ @Ek, k 6= j 6=

i|x ∈ pre(Ek)

2. εroot ∈ X is a goal attribute that the attacker wants to be true such that @Ei ∈ E |

εroot ∈ pre(Ei)

3. P is a set of estimated probability distributions. The elements of P are all the Pr(x)’s

associated with attributes x’s in ET .

By the above definition, any proper subtree of an exploit tree is also an exploit tree. An

exploit tree is characterized more by the goal attribute, εroot, that the attacker wants to be

true (as perceived by a security analyst), rather than the other attributes and the associated

state transitions.

A home computer system may have only one exploit tree. However, more often than not,

several goal attributes will be “of interest” to the attacker, requiring several exploit trees.

Moreover, these exploit trees can be related to one another in the sense that rendering a goal

attribute to be true in one tree leads to an attribute in another tree being true. To model

this scenario, we introduce the notion of Personalized Attack Graph.

Definition 10 A Personalized Attack Graph is a set of related exploit trees. It is represented

by a tuple PAG = 〈G1,G2,V1,V2〉, where:

1. G1 = Ep, . . . , Eq and G2 = Em, . . . , En are disjoint sets of exploit trees such that Ei ∈

G1 ↔ Ei 6∈ G2.

2. Let V1 be the set of goal attributes of exploit trees in G1 and V2 the set of goal attributes

in G2 such that V1 ∪ V2 = V, the set of all attributes in G1 and G2 and V1 ∩ V2 = φ.

A goal attribute vi ∈ V1 iff @xk ∈ Ed ∈ G2 | pre(xk) = vi. A goal attribute vj ∈ V2 iff

∃xl ∈ Eb ∈ G1 | pre(xl) = vj.
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Essentially, a PAG is a graph constructed out of the exploit trees, Ei’s, present in a

home system. The set of exploit trees is partitioned into two sets G1 and G2. The set G1

consists of all those exploit trees that have those goal attributes which are goals in themselves

and do not lead to different attributes in other exploit trees being set to true; these goal

attributes are not pre-conditions of any attribute of any exploit tree. These goal attributes

are the terminal nodes of the PAG. The set G2, on the other hand, consists of all those

exploit trees that have goal attributes that, if set to true, can lead to further attributes

in other exploit trees to be set to true as well; these goal attributes are pre-conditions of

some other attributes. To prevent cycles, we explicitly forbid the goal attributes in V to

be pre-conditions of attributes of exploit trees in G2. A cycle in a PAG (if it was allowed

to exist) would contain a sequence of goal attributes of the form v1, v2, . . . , vn, v1 such that

v1 ∈ pre(xa) ∈ pre(xb), . . . ,∈ pre(v2),∈ pre(xk) . . . ∈ pre(v3) . . . ∈ pre(vn) . . . ∈ pre(v1).

By following this sequence the attacker sets to true what has already been set to true,

and is essentially of no value to further risk analysis; this follows from the monotonicity

property [AWK02].

2.3 Vulnerability Databases

The National Vulnerability Database (NVD) [NVD13] is maintained by National

Institute of Standards and Technology Computer Security Division, Information Technol-

ogy’s Laboratory and sponsored by the Department of Homeland Security’s National Cyber

Security Division. The NVD combines the information from all government and some com-

mercial vulnerability resources. It offers a comprehensive search capability, delivers vulner-

ability information statistics, and is updated hourly. The updates can be downloaded from

its web page http://nvd.nist.gov/download.cfm

The NVD is based on Common Vulnerability and Exposure (CVE) names (or num-

bers) [CVE13]. CVE names are distinct identifiers of publicly known security vulnerabili-

ties. A unique identifier is assigned to each vulnerability or exposure by the CVE Numbering

Authority, which also posts them on the CVE website http://cve.mitre.org.
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Open Source Vulnerability Database (OSVDB) [OSVDB13] is an autonomous and

web-based vulnerability database. It was created in August 2002 at the Black Hat [Mos13a]

and Defcon [Mos13b] conferences. It provides exact, detailed, recent, and objective technical

information on security vulnerabilities. This project bridges the commercial and public

institutions. The OSVDB feeds are updated every morning at 1:00am EST, and they include

all stable data from the database. The feeds are available via an API in CSV or XML format.

OSVDB is a relational database, in contrast to NVD’s XML database. OSVDB is based on

its unique vulnerability identifiers. It also includes CVE names.

BugTraq [Sec13] “is a full disclosure moderated mailing list for the detailed discussion

and announcement of computer security vulnerabilities: what they are, how to exploit them,

and how to fix them” [Sec13]. It was created in 1993 by Scott Chasin to address the is-

sues of Internet security. In spite of vendor opposition it publishes full information about

vulnerabilities as soon as it is identified. Since 1995 BugTraq has been a property of Secu-

rity Focus and its vulnerability information is published on Security Focus website with its

unique vulnerability identifiers. It also includes CVE names.
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Chapter 3

Home User Security Risk Model

This chapter concentrates on modeling home computer user behavior for computer secu-

rity. The goal is to obtain user specific information that is required to construct a Personal-

ized Attack Graph (PAG) [URR+13] (see Section 2.2). As a reminder the PAG characterizes

the software vulnerabilities and other attributes within a single system that can lead to

exploits. The PAG captures the interplay between these vulnerabilities, user activities, at-

tacker strategies, and system activities. The user information is represented in the PAG as

user attributes. These attributes are Bernoulli random variables that represent the states

of possible characteristics of the user (e.g., preferences, habits, assets). We model user at-

tributes as user actions that describe user’s characteristics. For instance, the user habit of

using Internet Explorer is expressed as a user action “uses Internet Explorer” or user interest

in using multimedia can be expressed as a user action “opens flash file.”

Let us consider the example PAG shown in Figure 2.2. The orange nodes represent the

possible user actions that are associated with exploiting particular threats. For example, on

the right side the user action which is associated with exploiting vulnerability CVE-2010-

4091 is “OpenPDF.” The attack will be successful if the user opens crafted pdf file. The

PAG requires several types of information about the user and leverages that information

to identify the vulnerabilities that are most severe or likely for a specific home computer

system. Thus, we would like to measure the likelihood of user activities. These probabilities

are critical to determining what poses the strongest threats to a specific home computer

system.

Modeling a user behavior is a difficult problem because of the complexity of human nature.

We have to consider a lot of factors such as: how people understand their computer security,

what their perception of the risk is, how much of their own security are they able to sacrifice

to achieve some goals, and how they perceive threats. Based on available user behavior
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models [Con06, NKX09, CJ10, Cla11] we construct our home user model. Subsequently, we

use this conceptual model as a framework to our Bayesian User Action model, which helps

us measure the likelihoods of user actions. We perform three experiments to check how the

home user model influences the PAG1. We also check the impact of the input accuracy of

estimated prior probabilities from BUA on the user model.

3.1 Background

Over the past two decades, researchers have investigated user behavior in the scope of

computer security, and proposed predictive models [Con06, NKX09, CJ10, Cla11]. The goal

of these models is to predict computer security related behavior of users. The researchers

have considered organizational users [NKX09] as well as home computer users [Con06, CJ10,

Cla11]. They focus on the adoption of security technologies [Con06, NKX09, CJ10, Cla11]

rather than modeling home computer user activities.

Conklin [Con06] bases his Home PC Users Computer Security Behavior model on Dif-

fusion of Innovation Theory, which is used to describe the support of new ideas in response

to an observed need of their usefulness. The application of security to a computer system

is considered to be an adoption of an innovation. The security is applied to the computer

because of a home user’s intention.

Conklin’s model (Figure 3.1) includes five elements:

• Adopter Decision Process - is the central element, which characterizes the process of

decision-making. It influences the rest of the model components and is measured by

the intention of using security software.

• Adopter Characteristics - specifies home user characteristics that influence user inten-

tion with regard to security.

1Part of the experiments results and evaluation published in [URR+13]
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• Characteristics of the Innovation - describes the importance of the specific innovation.

• Communications Channels - are the connections between the source of innovation (e.g.,

news, family, friends, vendors) and system administrator (home user).

• Social Consequences of Adoption - includes home user security experience.

Figure 3.1: Conklin’s research model [Con06] p. 57.
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Claar [Cla11] extends the Health Belief Model (HBM) [Ros66, RSB88] to computer se-

curity. HBM is a psychological model that tries to explain and predict protective health

behavior. It was proposed to address decision-making on health for long or short term dis-

eases. This theory assumes that health-related actions that a person will take, depend on

the person’s beliefs about the following:

• person can avoid certain health disorders,

• person is susceptible to certain health problems,

• following specific advice would be useful in decreasing certain threats.

Figure 3.2 shows Claar’s research model. He adopts the HBM from [RSB88] to include

self-efficacy and demographic factors. These changes help to describe a person’s confidence

in performed actions and expresses the impact of demographic factors. Claar addresses the

behavior cause of adoption and use of only three security technologies: anti-virus, firewall,

and anti-spy-ware.

Ng’s et al.’s [NKX09] approach also uses the HBM. Figure 3.3 illustrates the authors’

research model. Ng et al. do not consider demographic factors. Also, in contrast to Claar’s

model they use a new component in their research model, General security orientation,

which denotes a user’s tendency and interest in regard to usage of computer security tools.

As with the previous model, this is a qualitative model which is quantitatively tested using

survey data. The authors have examined the user behavior related to computer security in

organizations. They focus on adoption of technical security controls in organizations and on

the level of user familiarity with computer security tools.

3.2 Conceptual Model of the Home Computer User

Our conceptual model in Figure 3.4 has been significantly influenced by HBM [RSB88]

and two prior models of human behavior in computer security: Ng, Kankanhalli and

Xu’s [NKX09] and Claar’s [Cla11]. Both models include six primary factors and one mod-

erating factor which can predict a person’s decisions about security. We use these primary
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Figure 3.2: Claar’s research model [Cla11] p. 49.

Figure 3.3: Ng, Kankanhalli and Xu’s research model [NKX09].

factors (perceived susceptibility [NKX09]/vulnerability [Cla11], perceived severity, perceived

benefits, perceived barriers, self-efficacy, and cues to action) and the moderating factor (com-
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puter security usage [Cla11]/behavior [NKX09]) in our model. The moderating factor is the

output node which is called the target node. The six primary factors we use are:

• Perceived severity

Originally HBM [JB84, Ros66] describes the perception of seriousness or severity of

a disease. Claar [Cla11] and Ng, Kankanhalli and Xu [NKX09] define “Perceived

severity” as a user perception of seriousness of a security attack on her/his computer.

Ng et al. also consider possible connection of security incident on user’s job and

organization. We define it as beliefs in the seriousness of possible security violation

from a specific activity and its impact on the user’s home computer security.

The lower the perceived severity about taking an action is, the greater is the motivation

of taking it. It can be influenced by the user’s knowledge or possible effect on user’s

home computer security.

• Perceived benefits

According to HBM [JB84, Ros66], the perceived benefits variable refers to the per-

ception of the effectiveness of adopting a predictive action to reduce the risk. Both

Claar [Cla11] and Ng et al. [NKX09] define it as a user’s belief in the benefit associated

with the usage of security controls. In our research it captures a user’s perception of

effectiveness or benefit of adopting an action or a specific preference. The higher the

perception of the benefits is, the greater is the motivation of taking certain action.

• Perceived barriers

In relation to HBM, perceived barriers variable is related to the perception of the cost

and/or difficulties in taking some health actions. Perceived barriers is considered as

a cost benefit analysis performed by the person who evaluates the action’s usefulness

against perceptions that it may be costly, risky, uncomfortable, etc. Similarly to Claar

[Cla11] and Ng et al. [NKX09], we define the perceived barriers as user’s perception of

cost or disadvantages associated with specific actions or preferences.

The greater perception of the barriers is, the smaller is the motivation of taking par-

ticular action.
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• Risk tolerance

In original HBM [Ros66], this variable illustrates the susceptibility or personal risk. We

define it as an individual’s ability to handle or undertake different degrees of potentially

harmful activities. It is intended to account for the result of studies that have shown

that users are willing to accept risk if the potential benefit is viewed as more important

[Pew11, GDG+05]. Ng et al. [NKX09] call this factor, Perceived susceptibility, while

Claar [Cla11] terms it, Perceived vulnerability.

We believe that the term “Risk Tolerance” is more appropriate, keeping the nature

of the factor in mind. It presents user beliefs about the likelihood of the occurrence

of a security incident. We are considering it as general risk awareness according to

particular user activities. It expresses general user personality (risk taking, harm

avoidance, distrust, etc.).

The greater the risk tolerance is, the higher is the inclination to take particular action.

• Self-efficacy

According to Bandura [Ban77], self-efficacy describes a person’s beliefs that the person

is capable of doing something. It was added to the HBM by Rosenstock et al. [RSB88].

Both Ng et al. [NKX09] and Claar [Cla11] define self-efficacy as a “user self-confident in

his/her skills or ability to practice computer security.” In our research, “Self-efficacy”

captures a user’s belief that he or she is capable of taking specific action. It has been

observed to be an important factor in several home user studies [AC03, AC04, BFP08,

MLC09]. The greater self-efficacy is, the higher is the motivation for taking certain

action.

• Cues to action

As indicated by HBM [JB84, Ros66], cues to action are motivations to change the health

behavior. Similarly to Claar [Cla11] and Ng et al. [NKX09], in our research the “Cues to

action” demonstrate the user’s motivation to cause a change in behavior. We consider

cues such as media reports, friends, security software feedback, etc. Some studies

[AC04, FBP07, SF09] have shown the importance of cues to action that encourage
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users to undertake certain activities. The greater the cues to action are, the higher is

the motivation to take particular action.

Figure 3.4 illustrates our conceptual home user model with all factors and relationships

between them. As in Claar’s work [Cla11], our model includes demographic factors (gen-

der, age, socio-economic, and education) as predictors of a user’s decisions about security.

Inclusion of these demographic factors is supported by other studies: Szewczyk et al.[SF09]

(socio-economic factors) and [FHH+02, MLC09, FBP07] (age and gender). Several studies

[Was10, BWL+12, FBP07] have also shown that a user’s prior experience with computers

and security may affect how the user perceives and acts on security threats. In order to get a

more precise prediction, we divide prior experience into good and bad experience and include

those as two other factors that can predict a user’s decisions about security.

3.3 Predicting User Actions

In order to measure the likelihood of user actions, we use the conceptual home user model

in Figure 3.4 as a schema to the probabilistic model. Because previous researchers have been

successful in modeling users with a Bayesian network (BN) [BFS05, KSO+01, ZA01], we

choose BN as our probabilistic model. We build Bayesian User Action (BUA) model, shown

in Figure 3.5, where according to the graph terminology: 12 user factors are the source

nodes, the target node (user computer action (see Figure 3.4)) is a terminal node, and the

interior nodes are children of pairs of user factors. The terminal node of the BN gives the

probability for a given user’s actions related to the user attributes in the PAG.

For every user attribute from the PAG that is relevant for a given user, we calculate its

user action probability - BUA. A collection of these BUAs is called a Bayesian User Profile

(BUP). Each of the BUAs from a particular BUP provides the posterior probability value

for a specific user attribute in the PAG. To estimate the prior probabilities of the terminal

nodes we rely on expert knowledge and literature.

In this section, we present a more detailed description of the BUA. After finishing the

structure construction of the BUA, we quantify the relationships between connected nodes.
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Figure 3.4: Conceptual Model of Home Computer User; orange - six primary factors from
[NKX09, Cla11] and demographic factors from [Cla11]; green - similar to Prior Experience
form [Cla11] and General security orientation from [NKX09]; blue - proposed by us as a new
demographic factor.

In other words, we build the Conditional Probability Tables (CPT) for each node in the

BUA. To estimate the prior probabilities for the interior nodes, we analyze the ways in

which the demographics influence the primary factors, based on our own studies [BWL+12],

and the analysis of the literature. For instance, according to Szewczyk et al. [SF09], people

with low annual income perceive a low possibility that they can become a target of attack.

Therefore, we believe that the probability of taking some computer actions for those people,

whose perceived severity of action is low and have low income, is higher than for people

with higher socio-economic values. Table 3.1a presents a sample CPT for Perceived Severity

(primary factor) and socio-economic (demographics factor).

The 12 user factors nodes in the BUA (squares on the left, right and top in Figure 3.5) are

used to set evidence (e.g., Low/Medium/High, gender: M/F) for corresponding user factors.
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Figure 3.5: Instantiated Bayesian User Action for likelihood of OpenFlashFile for the hy-
pothetical user; source nodes: 1) green - demographic factors, 2) red - two other factors,
3) yellow - independent variables; terminal node: pink - dependent variable (target node);
Intermediate nodes: blue.

Table 3.1: CPT tables from BUA.

(a) CPT for Perceived Severity influenced by socio-economic
(SecEcon in Figure 3.5).

Perceived Severity socio-economic T F

low low 0.92 0.08
low medium 0.57 0.43
low high 0.41 0.59

medium low 0.75 0.25
medium medium 0.38 0.62
medium high 0.25 0.75

high low 0.57 0.43
high medium 0.18 0.82
high high 0.04 0.96

(b) CPT tables for all Indepen-
dent Variable Nodes

Independent
Variable Values

value

LOW 0.06
MEDIUM 0.29
HIGH 0.65

The evidence set for demographic factors is static for particular user. The evidence set for

the rest of the factors may change depending on user actions. We assume that the 12 user

27



factors nodes are independent and the example CPT for these nodes is shown in Table 3.1b.

Additionally, these CPTs are the same for all user factors.

3.4 Impact of Input Accuracy on User Model

In this section, we investigate effect of possible inaccurate probability estimation on

calculated probabilities. The minor changes in user information should not significantly

impact the target node probability because in the case of large inaccuracy of probability

estimation the calculated target node probability is erroneous.

We define the accuracy as the precision to which the values of estimated probability from

BUA agree with the reality. We set BUA settings for “OpenFlashFile” action for a synthetic

user (Section 3.5.1). The baseline configuration is shown in Figure 3.6 with corresponding

probability value of target node=0.929. This probability is used further as a baseline for

comparison for the model sensitivity. We change one user information setting at a time and

determine the probability from the target node. In this experiment we are interested in any

changes that occur in probability of target node. Therefore, for analysis we use absolute the

value of the difference between the baseline and new resulting probability.

Figure 3.7 shows the degree of changes within the probability of a target node for a

subset of all possible combinations of user information settings. Most of the changes are less

than 0.02, which is very small. Only “PerceivedSeverity” set to “High” produces changes

greater than 0.03. Therefore, we can reason that minor changes to user information do not

significantly impact target node probability. Consequently, the accuracy of predicted user

actions is satisfactory.

3.5 Influence of Bayesian User Profile on PAG

In this section, we examine how different user profiles influence the probability of compro-

mise of the computer system. Do substantial differences between users translate to different

probabilities? We use the example PAG shown in Figure 3.8. First, we examine which ex-

ploits are most crucial for a specific user profile. Second, we analyze how the existence of
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Figure 3.6: Baseline settings for action “OpenFlashFile” for synthetic user profile.

some user attributes in the PAG influence the final probability of the exploits. In the last

experiment we study how the existence of different configurations of user/attacker/system

attributes influences the probability of exploits.

For building and simulating each BUA we use the GeNIe2.0 [DSL13] (development en-

vironment for graphical decision-theoretic models) and SMILE (Structural Modeling, Infer-

ence, and Learning Engine) [DSL13]. The SMILE is a fully portable libraries of C++ classes

implementing graphical decision-theoretic methods. The BUA is implemented in C++ and

the example PAG is built using GeNIe.

3.5.1 User’s Profile

To explain how user profiles can lead to different BUPs with distinct target nodes values,

we present three hypothetical users’ profiles. We set evidence of user’s factors nodes for

those users accordingly to their profiles.
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Figure 3.7: Results showing changes of target node probability depending on user information
settings. On the X axis are user information settings. On Y axis (ABS diff) are the absolute
values of the differences between baseline and probability of the target node with new user
settings.

UserA is a retired person who was recently given a Windows XP machine that runs

Internet explorer (IE). UserA is familiar with the inventory computer system from a recent

job but is a new user of the Internet and email. UserB is a 20-year-old college student

with a portable laptop running Windows7. UserB has used computers since kindergarten,

and is very confident when using them. UserB automatically accepts any dialog that the

browser displays. UserC is a 22-year-old college student who happens to be a computer

science major. UserC is aware of security concerns and is diligent about installing updates

and being observant of what her computer downloads.

As an example, Table 3.2 shows the input to the BUA for UserA and action “OpenFlash-

File.” The inputs to the BUAs for all users are shown in Appendix A. Table 3.3 shows the
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Figure 3.8: Example PAG.

Table 3.2: Input to the BUA for UserA and action “OpenFlashFile.”

User Information Settings
RiskTolerance Low
PerceivedSeverity Low
PBen Medium
PBar High
SEficacy Low
CtoA Medium
Gender F
Age age50
EduLevel High
SocEcon High
ExpGood Low
ExpBad Low

BUP for the three synthetic users and a set of the user attributes from the example PAG

(Figure 3.8). The value 0.015 indicates that the user is unlikely to take this action. The rest

of values are calculated using the BUA for each user attribute from the PAG.

Let us consider the example configuration of the BUA for hypothetical UserA for user

action “OpensFlashFile.” According to the description given above, we can assume that

UserA is unlikely to use any social network or read PDF files. However, there is still a
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Table 3.3: User attributes probabilities of engaging in specific activities.

User Attribute UserA UserB UserC

ClickOnLinkInEmail 0.918919 0.963956 0.95791
OpenFlashFile 0.928524 0.972087 0.962467
DownloadApplet 0.913726 0.963662 0.963956
ExecuteApplet 0.949352 0.959211 0.94205
LDAPconection 0.015 0.978913 0.015
OpenPDF 0.015 0.974756 0.972216
RunJavaWebStartApp 0.867202 0.956325 0.015
ReadEmails 0.967239 0.974509 0.973062

nonzero probability that user can take these actions. For this reason, we assign probability

equal to 0.015 to these attributes. For this example, let us further assume that UserA is a

highly educated female at age of 60 with a very good socio-economic standing, but she has

very low experience in Internet. She has a harm avoidance personality (Risk Tolerance on

low level), and she perceives lower severity for taking this action because she does not know

much about security concerns in Internet. This flash file also contains interesting information

about an upcoming political event; the perceived benefit is at a medium level. But because

she does not know much about the Internet, she is also not sure how to find and run this

file (Perceived Barriers). In addition, she does not feel confident with using computer (Self

Efficacy is at a low level). Nevertheless, because her good friend recommended that she

opens the file, the Cues to Action are set at a medium level. Table 3.2 presents discussed

evidence set configuration.

For each of the user action, similar scenarios are considered, and appropriate BUA con-

figuration is assigned (see Appendix A). The effect of these characteristics is translated

to probability values for the user actions by the corresponding BNs for the other values

presented in Table 3.3.

3.5.2 PAG Configuration

Table 3.4 shows values used for building BN to represent the PAG. We based PAG con-

figuration on information obtained from the NVD. For each of the PAG’s vulnerabilities we
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used the metrics defined in NIST’s Common Vulnerability Scoring System (CVSS) [MSR07].

The CVSS score is a number from 0 to 10, and consists of three metric groups: base,

temporal, and environmental. The base metric group measures the basic characteristics of

vulnerability. It includes two subscores: the exploitability (related exploit range (B AV),

attack complexity (B AC), and level of authentication needed (B AU)) and the impact (con-

fidentiality, integrity, and availability impacts) [CVSScall13]. The temporal metric group

measures a vulnerability change over the time. The environmental metric group measures

the influence of vulnerability within an environment.

The probabilities of vulnerability existence p(e) (e.g., PAG node “CVE-2009-1094 Java-

CPU”) are calculated according to expression given by Poolsappasit et al. [PDR12].

p(e) = 2×B AV ×B AC ×B AU (3.1)

The Base Score is used to define the probabilities of exploiting vulnerability (e.g., PAG node

“CVE-2008-3108 Exploited”). The Impact Subscore expresses the strength of the exploited

threat (e.g., PAG node “Arbitrary code execution”). The Exploitability Subscore is used in

attacker attributes to determine the level of attacker skills to exploit particular vulnerability.

The score values are divided by 10 to obtain the probability range from 0 to 1. In order to

use the probabilities in a BN, the probability 1 is represented as 0.99.

Table 3.4: Probability estimates of system attributes and attacker attributes from NVD’s
CVSS scores.

p(e) Base Impact Exploitability
CVE-2009-1094 0.99968 10 10 10
CVE-2010-4091 0.85888 9.3 10 8.6
CVE-2010-0187 0.85888 4.3 2.9 8.6
CVE-2008-3111 0.99968 10 10 10
CVE-2008-3107 0.99968 10 10 10
CVE-2008-3108 0.99968 10 10 10
CVE-2010-0811 0.85888 9.3 10 8.6
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Figure 3.9: Instantiated PAG for UserA (Refer to Appendix B for the corresponding CPTs).

3.5.3 Experiment Results

Experiment 1 We begin by analyzing how different user profiles impact threats likelihood.

We would like to determine which threats are most critical for a specific user profile. To per-

form the experiment, we apply the three user profiles and observe the posterior probabilities

of the six exploits from the PAG (Figure 3.8 top red nodes and Figure 3.9 top square nodes).

In this experiment, we do not set any evidence related to system or attacker attributes.

Figure 3.9 illustrates the instantiated PAG for UserA.

The probability values for different users profiles that are collected from the top square

nodes in Figure 3.9 are shown in Table 3.5. As can be seen, the probabilities of the threats

do change based on the user profile. In this case, “Arbitrary Code Execution” is critical for

all users because it has the highest probability value for all users. The “DenialOfService”

threat has higher degree of changes between users’ profiles due to the large number of user

attributes in that branch in the PAG. In summary, different user profiles have distinct effect

on threat likelihood.
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Table 3.5: Posterior probabilities for six exploits for each user profile.

Without user attributes UserA UserB UserC
Unauthorized Modification 0.75 0.748 0.749 0.749
Arbitrary Code Execution 0.799 0.792 0.796 0.795
User Access Privilege 0.75 0.748 0.749 0.749
Authentication Bypass 0.489 0.007 0.479 0.007
Root Access Privilege 0.198 0.176 0.186 0.184
Denial of Service 0.843 0.726 0.84 0.685

Experiment 2 We next examine how changes in the presence of user attribute evidence

impacts the final probability of the exploits. We manually set the evidence of specific nodes

to NotExist or Exist as applicable. We then update the BN and read the value of the exploit

nodes (Figure 3.9 top square nodes). We repeat those steps for all users. The no- prefix in

some user attributes indicates the evidence set to NotExist.

Figure 3.10 shows the degree of changes in the probability of the exploits for synthetic

users. We show only some user actions that do affect the probability of exploits. The exploit

“Authentication Bypass,” associated with user action “LDAPconection,” is critical for all

users. There is a significant increase in the probability of exploit for UserA and UserC for

“LDAPconection” action with evidence set to Exist. For UserB, probability of exploit drops

greatly when the evidence of “LDAPconection” action is set to NotExist.

UserA is also susceptible on “RunJavaWebStartApp,” “ReadEmails,” and “ClickOnLink-

InEmail” for which the probabilities vary about 23% between Exist and NotExist evidence.

The most crucial actions for UserB are “ReadEmails,” “ClickOnLinkInEmail,” and “Exe-

cuteApplet noDownloadApplet” for which the probability differs about 20% between Exist

and NotExist evidences. UserC is sensitive to actions “OpenPDF,” “RunJavaWebStartApp,”

“ReadEmails,” and “ClickOnLinkInEmail” for which the probability varies about 18% be-

tween Exist and NotExist evidences.

These results suggest that the exploits are sensitive to the user’s actions, and the prob-

ability can jump dramatically if the user takes the worst-case actions. The results also

suggest that having a clear understanding of the user’s current actions or likely actions can

contribute to selecting which action(s) are important to observe.
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Figure 3.10: Results showing how evidence set at specific user nodes impacts the exploit
likelihoods. On the X axes are the combinations of user attributes existence. On Y axes
(diff) are the differences between exploit probability without any evidence and with evidence
set to Exist/NotExist (prefix “no-” indicates NotExist). The 0 corresponds to the baseline
for comparison.
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Experiment 3 In the following experiment we would like to examine how the presence of

different configurations of evidence for user/attacker/system attributes influences the prob-

ability of exploits. We set evidence only to the initial conditions in the PAG which lead to

particular vulnerabilities. For example, in Figure 3.9 for branch CVE-2010-4091 Exploited

we set evidence only to the nodes: “OpenPDF,” “Attacker PdfCompromised,” and “User

Loads PdfDocument.” First, we calculate the exploit probability without evidence set (base-

line) then we measure the probability of exploits with some configuration of evidence set.

We assess how much the exploit probability changes as a result. The “no-” prefix in some

PAG attributes indicates the evidence set to NotExist.

Figure 3.11 shows the degree of changes in the probability of the exploits for a chosen

subset of all possible combinations of node existence for all users. The most critical con-

figuration contains “Sun JRE 1.4.0.02,” “LDAPconection,” and “RunJavaWebStartApp.”

However, for all users the probabilities of exploit can be decreased by: disabling vulnerable

software (can be very expensive), applying updates if they are available, or simply preventing

the user from taking these critical actions.

In order to understand how probabilities change with the same system configuration

and attacker involvement exploits, depending on the user profile, let us take a closer look

into “DoS” exploit. If UserA does not take “RunJavaWebStartApp” action, the “DoS”

probability drops below baseline. Different situation is for UserB where in order to decrease

the “DoS” probability not only “RunJavaWebStartApp,” but also “LDAPconection” has

to be prevented. For UserC “DoS” probability drops below zero when “ExecuteApplet” or

“OpenPDF” action is set to NotExist.

These results suggest that the probability of exploits is sensitive to different configurations

of evidence for user/attacker/system attributes. Depending on the different user profiles the

probability of exploits can drop or increase compared to the baseline (without any evidence).
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1. OpenPDF,attacker, AcrobatReader 9.4.1
2. noOpenPDF, attacker, AcrobatReader 9.4.1
3. RunJavaWebStartApp, attacker, Sun JRE 1.4.0.02
4. noRunJavaWebStartApp, attacker, Sun JRE 1.4.0.02
5. LDAPconection, attacker, Sun JRE 1.4.0.02
6. noLDAPconection, attacker, Sun JRE 1.4.0.02
7. noRunJavaWebStartApp, noLDAPconection, attacker
  Sun JRE 1.4.0.02
8. RunJavaWebStartApp, LDAPconection, attacker
  Sun JRE 1.4.0.02
9. ReadEmails, ClickOnLinkInEmail,attacker
  WindowsXP Pro SP3
10. noReadEmails, ClickOnLinkInEmail,attacker
  WindowsXP Pro SP3
11. ExecuteApplet noDownloadApplet, attacker
  Sun JRE 1.4.0.02
12. noExecuteApplet DownloadApplet, attacker
  Sun JRE 1.4.0.02

Figure 3.11: Results showing how evidence set at specific user/attacker/system nodes im-
pacts the exploits likelihood. The combinations of node existence are on the X axes, each
number corresponding to different combination. The differences between exploit probability
without any evidence and with evidences set to Exist/NotExist are on the Y axes. The 0
corresponds to the baseline for comparison.
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3.6 Discussion

The home computer users group consists of people of different ages, with different levels

of experiences, personality, interest, etc. In addition, members of this group are vulnerable to

security attacks when they are on the Internet because many of them are not knowledgeable

about computer security issues. In this chapter, we have shown how to model home computer

users to predict the likelihood of their computer activities. We have built a conceptual home

user model and Bayesian User Action. The conceptual home user model has helped us

to identify necessary components of human personality and characterize the relationship

between them. The BUA has been used to obtain the likelihood of user actions. We have

also evaluated the BUA in order to check accuracy of predictions. We have demonstrated

that minor changes do not influence much probability of the target node.

Furthermore, we have developed a proof-of-concept to show how our approach works. We

have shown that we can successfully measure the probability of user action depending on

user personality. We have examined different evidence configurations to study their influence

on the probability of exploits.

In future work, we are going to develop a method of automatic quantification of the

relationships between connected nodes (building CPT). Moreover, the structure of the BUA

should be rebuilt to be able to express user personality in more detail. We are planning to

address these two by applying our ongoing psychology study on home computer user.

The last part is automation of the model. This should be addressed to streamline the

process of modeling user and obtaining probability values which are used in the PAG. The

user will be led through a series of questions, the answer to which will initialize specific

configuration for a given user’s settings. For example, user will be asked for age and gender

to set up appropriate demographic factors. In order to set up the six primary factors (risk

tolerance, perceived severity, perceived benefits, perceived barriers, self-efficacy, and cues to

action) user will answer on specially constructed sets of questions from which the appropriate

conclusions will be derived.
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Chapter 4

Comparing Vulnerability Sources

Automated security analysis for the home computer requires up-to-date information of

possible exploits of vulnerabilities. Each exploit has to be associated with some user, attacker

and system attributes. This information can be collected from multiple sources (VDs) (see

Section 2.3). The question is which VD should be used.

In this chapter we analyze information collected from different VDs. We gather informa-

tion from the most known VDs - NVD, OSVDB, and BugTraq (see Section 2.3). Because

they provide the information in diverse ways and formats, we use different methods to gather

the information over a one week period.

In order to understand the magnitude of differences or similarities between different VDs,

we perform text mining on collected datasets [SHHB00, HMFW12, Tie05, WIZD04]. For

example, let us consider the descriptions of the same vulnerability from the studied VDs

shown in Table 4.1. Each of the descriptions refers to CVE-2013-2503, but in different

words, and provides different levels of information which can be used in further analysis of

a vulnerability.

The knowledge about the level of similarities can help us build a more comprehensive

dataset of vulnerability information. We can extend a vulnerability description with new

information if the similarity score of two vulnerability descriptions indicates that the vul-

nerabilities are the same. For example, from Table 4.1 in BugTraq column, the following

sentence can be found “The Privoxy user will then be prompted for a username and password

that appears to originate from the Privoxy software” which is not present in the other two.

This sentence gives additional information about this vulnerability required to construct the

PAG.

Figure 4.1 shows an exploit tree (definition 9 Section 2.2.1) for the vulnerability CVE-

2013-2503. As we can see, based on the NVD description we can obtain information about

40



nodes 1,2, and 4. However, this is not enough to build an exploit tree. Therefore, we need

additional information about this vulnerability which can be obtained from different VDs

such as BugTraq (3 and 5) and OSVDB (6).

Figure 4.1: Exploit tree from the PAG for CVE-2013-2503.

First, we analyze collected information from each of the VDs. This helps us to identify

which VD provides the most extensive dataset. Omitting any known vulnerability informa-

tion can lead to an incorrect security analysis.

Second, we measure similarities of collected documents. This helps us to recognize how

vulnerability descriptions differ from different sources from each other. Collecting informa-

tion about the same vulnerability from different sources can result in a more comprehensive

description which includes user, attacker, and system attributes.

4.1 Background

The similarity of two documents can be measured as semantic or syntactic similarity.

Semantic similarity defines how similar the concepts of two documents are, while syntactic

similarity describes the similarity between two documents with respect to their structure.

Text documents can be represented as vectors using an algebra model called vector space

model [SWY75, MRS08]. Each of the two documents is treated as a vector in n-dimensional
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Table 4.1: The descriptions of the CVE-2013-2503 from the studied VDs.

NVD OSVDB BugTraq

Privoxy before 3.0.21
does not properly handle
Proxy-Authenticate and
Proxy-Authorization
headers in the client-
server data stream,
which makes it easier for
remote HTTP servers to
spoof the intended proxy
service via a 407 (aka
Proxy Authentication
Required) HTTP status
code.

Privoxy contains a flaw
that is triggered during
the parsing of a request
that contains no Proxy-
Authentication header. The
following response is parsed
through a user’s browser
without any modifications,
which may allow a remote
attacker to spoof a Proxy-
Authentication header and
more easily gain access to
user credentials.

During research into browser
and proxy server handling
of HTTP Response Codes,
an issue with the way that
Privoxy handles HTTP Re-
sponse code 407 ”Proxy Au-
thentication Required” was
discovered. Privoxy in versions
3.0.20 (and possibly prior) ig-
nores the presence of ”Proxy-
Authenticate” and ”Proxy-
Authorization” headers and al-
lows these values to be passed
to and from a remote server
without modification. The
resulting behavior could al-
low a malicious websites to
spoof a Proxy-Authentication
response appearing to origi-
nate from the Privoxy service.
The Privoxy user will then be
prompted for a username and
password that appears to orig-
inate from the Privoxy soft-
ware.

space, where n is the number of unique terms (words or group of words) in the documents.

The terms have weights that represent how often they occur in document. For example,

Figure 4.2 shows 3-dimensional space of three unique terms: t1, t2, t3 and two documents

represented as vectors d1 and d2.

The vector representation of documents in n-dimensional space is called term-document

matrix. In such a M × N matrix rows represent the M terms (dimensions) and columns

denote the N documents. The term-document matrix can have thousands of rows (unique

terms) and hundreds or thousands of columns (documents).

The distance between two document vectors is a measure of the similarity between them

(Figure 4.2). One of the most common ways of calculating distance is the cosine of the angle
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Figure 4.2: Vector documents representation in 3-dimensional space; d1, d2 - documents.

between these two vectors [SM86]. Equation 4.1 shows the formula. The inner product of the

two vectors is divided by the product of their vector lengths. In practice this is calculated

as a sum of the pairwise multiplied vectors’ elements divided by the square roots of the sum

of squares of the elements of each vector.

cosθ = cos(~d1, ~d2) =
~d1 · ~d1
‖~d1‖ ‖~d2‖

=

∑n
i=1 d1id2i√∑n

i=1 d
2
1i ∗

√∑n
i=1 d

2
2i

(4.1)

The cosine similarity value is measured between -1 and 1, where negative indicates dis-

similarity and positive some levels of similarities. However, the cosine similarity measure for

syntactic similarity is based on term frequencies and is a value between 0 and 1. This is

because term frequencies can not be negative. Documents that do not share any terms have

similarity equal to 0. The similarity value increases with the number of common terms.

Huang et al. [HTZJ10] use text mining techniques to classify vulnerability descriptions.

They are interested in identifying vulnerability patterns, causes and system dependencies.

However, during the classification process one vulnerability description can fit into more than

one class - the taxonomy overlap. The authors’ goal is to solve this issue. They represent

the vulnerability description as a text vector and use the Term Frequency-Inverse Document

Frequency (TF-IDF) method to calculate the text feature. The TF-IDF is a feature weighting
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method, where “TF” stands for term frequency in the text, and “IDF” indicates the term

frequency across all studied documents.

Lin et al. [LJL13] propose a new method of similarity measurement. They measure simi-

larity of documents based on the presence or absence of specified features. They also use the

vector text representation and TF-IDF method to calculate the features of compared docu-

ments. We believe that this methodology can be very successful for vulnerability description

similarity measurement.

However, using term frequency to calculate document similarity results in losing order

among words in a sentence. Therefore, two sentences with the same set of words which are

used in different context will be considered to be very similar. Moreover, the vector space

representation fails to recognize the synonyms, which are represented in term vector as sep-

arate terms. Therefore, in order to measure the semantic similarity, some transformation

of term-document matrix has to be performed in order to preserve the context of the docu-

ments. Semantic vectors are used to calculate the semantic similarity between documents.

They are based on word-space model. In this representation the words and concepts are

represented as points in mathematical space. The concepts of similar meaning are close to

each other in that space.

Pandya et al. [PB05] demonstrate a methodology of calculating similarity based on se-

mantics of the text. They represent the text as a set of concepts described in the text.

They use “semantic relatedness” which identifies hidden relationship between the words.

For example, “waiter” and “restaurant” are semantically related but not similar.

Atlam et al. [AFMA03] demonstrate another technique of measuring text similarity, field

association similarity (FA-Sim) method. They consider a document as a sequence of fields.

Their method is based on field association (FA) terms which describe the subjects of the

text. The FA term can be composed of single or multiple terms occurring in document

field and cannot be divided into smaller pieces without losing semantic meaning. The FA

terms allow to measure similarity between documents fields without the need of comparing

all information in these documents.
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4.1.1 Tools

4.1.1.1 Apache Lucene

One of the most common full-featured text search engine libraries is Apache Lucene [Luc13]

written in Java. It is an open source and cross-platform project. It provides indexing and

searching functionality. The documents are represented as a sequence of fields. A field is a

named sequence of terms and term is a sequence of bytes. The information about the terms

is stored in an index. Lucene uses an inverted index, which means that it can list documents

that contain a particular term. In term-document matrix notation, columns represent all

fields of a particular instance of content and rows are all the instances of the content in the

index.

The information flow in Lucene is shown on Figure 4.3. The documents are analyzed

by Analyzer which is responsible for constructing terms. Lucene provides a set of built in

analyzers (e.g., StandardAnalyzer, SimpleAnalyzer), but also provides the opportunity to

construct customized analyzers. The Index Writer builds the index for documents. The

index contains different statistics about terms (e.g., name of document fields in which term

occurs). After constructing the Index (see Figure 4.3), searching for a specific query can be

performed. The results are the similarity scores for matching documents.

4.1.1.2 SemanticVector

SemanticVector [Uni13, WF08] is an open source Java package built by University of

Pittsburgh. It constructs the semantic vectors for terms (words) and documents. Fig-

ure 4.4 shows the information flow for the package. The SemanticVector is based on Lucene

index which is a term-document matrix. It applies Random Projection (in Figure 4.4 Se-

mantic Vector Index) in order to reduce dimensionality and to produce the semantic vec-

tors [BM01, Sah05] (in Figure 4.4 termVectors, documentVectors). Random Projection

assumes that randomly chosen high dimensional vectors are nearly orthogonal [WF08]. The

reduction of orthogonal axes (term vectors) decreases dimensions from the original num-

ber [WF08, WC10]. As a result of the matrix transformation, the term vectors and docu-
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Figure 4.3: Information Flow in Lucene.

ment vectors are created. The document vector is a “weighted sum of the term vectors of

their constituent terms”[WF08]. The Searcher searches for a specific query and produces

the semantic similarity score. The score is calculated between two vectors based on cosine

similarity formula.

4.2 Corpus Collection

In order to identify the source of vulnerability information, we collect vulnerability de-

scriptions from three VDs: NVD, OSVDB and BugTraq. The data were collected during one

week from March 11th to March 18th 2013. Only the newest available feeds were downloaded

on a daily basis using different techniques. The data from NVD was obtained by using a

shell script, OSVDB manually and BugTraq by subscribing to the mailing list. During that

time the NVD was occasionally unavailable because it was recovering from a hacker attack.

Therefore, all vulnerabilities information from the NVD was downloaded at once on March

18th which included vulnerabilities from the past week.
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Figure 4.4: Information Flow in SemanticVector package.

The number of the collected vulnerabilities is a significant part of identifying which

VD provides the most extensive dataset. We count the number of vulnerabilities collected

from the different VD. We would like to determine which vulnerability information is newly

published or updated.

Because of the different ways in which information is provided, we have to process it

differently. Both NVD and OSVDB feeds are in XML format. Therefore, we apply an

XML parser to extract the desirable information. However, they differ in database schema

which results in two different parser approaches. Information from BugTraq is provided as

plain-text; for this reason, we apply a customized scanner to work on text descriptions.

Table 4.2 presents summary statistics of our corpus. The “# of collected entries” in-

dicates how many XML entries or plain-text documents have been collected. The “# of

distinct vulnerabilities” gives the actual number of vulnerabilities. The “updates” column

is everything from the “# of distinct vulnerabilities” which 1) for BugTraq refers to CVE

numbers from the year 2012 or earlier, 2) for OSVDB and NVD is precisely specified as an
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update. The “# of new vulnerabilities” is everything from the “# of distinct vulnerabilities”

that is not considered to be an update. The last column shows the statistics for the textual

description of vulnerabilities for each VD. The length indicates the number of words in the

description. All this information is collected via Java programs as well as manually. For

example, to determine the updates in OSVDB, we build an XML parser which searches for

tag “updated-on.” Note that BugTraq entries include multiple descriptions.

NVD provides the greatest number of distinct vulnerabilities (196). It not only includes

the newly identified vulnerabilities but also provides updates for older entries. OSVDB also

provides both new vulnerabilities and updates. However, the amount of provided informa-

tion is much smaller than the NVD. BugTraq offers new vulnerabilities and few updates.

Moreover, because vulnerability information is distributed by email list in BugTraq, it in-

cludes some information not related to vulnerabilities which we consider as noise. Also,

BugTraq vulnerability descriptions have the greatest mean text length. NVD and OSVDB

have similar mean lengths of textual vulnerability descriptions.

Table 4.2: Analysis of collected vulnerabilities.

VD
# of collected
entries

# of distinct
vulnerabilities

updates
# of new
vulnerabilities

Lengths
of textual
description
Min Max Mean

NVD 196 196 37 159 19 89 38.96
OSVDB 50 50 44 6 26 73 47.08
BugTraq 37 80 15 65 56 2132 486.76

4.3 Similarity Measurement

We represent the vulnerability descriptions as text vectors. We have analyzed both

semantic and syntactic similarity between two vulnerability descriptions which are calculated

using cosine similarity measurement. We calculate semantic similarity in order to identify

the same vulnerability from different VDs. Next, we calculate syntactic similarity in order

to check does the score indicate addition vulnerability information.
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Because NVD is based on CVE numbers, which are standardized and can be found in

other VDs, we use the NVD set as a source of queries. The vulnerability descriptions from

NVD are compared with each vulnerability description from the other VDs. Also, the CVE

numbers help us with similarity score validation, which is computed in order to check the

correctness of our result. In validation process, we only consider those VDs entries which

have the CVE number matching to CVE number from the NVD set.

4.3.1 Syntactic Similarity

Algorithm 1 shows our similarity measurement procedure for syntactic similarity. The

Algorithm 1 The syntactic similarity measurement procedure.

Require: QueriesSet = {files with vulnerability descriptions from NVD}
V DSet = {BugTraq,OSV DB}
AnalyzerSet = {StandardAnalyzer, bi− gramAnalyzer}

Ensure: cosineSimilarityScore
1: for each Analyzer in AnalyzerSet do
2: for each query in QueriesSet do
3: for each V D in V DSet do
4: for each doc in V D do
5: if query.CVE=doc.CVE then
6: term-document matrix = indexer(doc,query,Analyzer)
7: TermFrequencyV ectorDoc=

constructTermFrequencyVector(term-document matrix(doc))
8: TermFrequencyV ectorQuery=

constructTermFrequencyVector(term-document matrix(query))
9: cosineSimilarityScore=cosineSimilarity(TermFrequencyV ectorDoc,

TermFrequencyV ectorQuery)
10: end if
11: end for
12: end for
13: end for
14: end for

similarity score is calculated between a vulnerability description from the NVD set and a

vulnerability description from the other VDs (OSVDB and BugTraq) for the same CVE

number (line 5). In line 6 the Lucene index (or term-document matrix ) for two documents

(query and doc) is constructed. The Analyzer processes documents and constructs the terms.
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In our implementation, we use Lucene’s Standard Analyzer and our own made bi-gram

Analyzer. We believe that using bi-grams can help us obtain more precise similarity scores.

The same software can have multiple vulnerabilities, and its name will be repeated in each

of the vulnerability descriptions. Therefore, it can lead to a deceptive similarity score.

Standard Analyzer first tokenizes the documents according to white space and punctu-

ation. For example, let us consider the phrase “Unspecified vulnerability in HP System

Insight Manager.” It will be tokenized:

[Unspecified] [vulnerability] [in] [HP] [System] [Insight] [Manager].

Next, the Standard Analyzer applies the lower case filter and finally removes stop words.

Therefore, the output of Standard Analyzer looks like this:

[unspecified] [vulnerability] [hp] [system] [insight] [manager].

Our bi-gram Analyzer performs the same steps as the Standard Analyzer, in addition to

which it splits tokenized documents into shingles (contiguous subsequences of tokens) of

size 2. Consequently, the output looks as follows:

[unspecified vulnerability][vulnerability in][in hp][hp system][system insight][insight man-

ager].

For both analyzers, each element in square brackets is a single term which is later used to

build the term frequency vector for each document (lines 7 and 8). Neither of the analyzers

use a stemming filter. Finally, in line 9 the cosine similarity of the two term frequency vectors

(doc and query) is calculated.

Cosine Similarity Calculation

Let as consider Standard Analyzer and the previous phrase with terms set:

[unspecified] [vulnerability] [hp] [system] [insight] [manager]

and query: “System vulnerability in HP system.” which is transformed to the terms set:

[vulnerability][hp][system]

The term frequency vectors for doc and query are shown in the Table 4.3a Consequently the

term frequency vectors are:
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Table 4.3: Terms frequencies in doc and query.

(a) Standard Analyzer

Term doc query
unspecified 1 0

vulnerability 1 1
hp 1 1

system 1 2
insight 1 0

manager 1 0

(b) Bi-gram Analyzer

Term doc query
unspecified vulnerability 1 0

vulnerability in 1 1
in hp 1 1

hp system 1 1
system insight 1 0

insight manager 1 0
system vulnerability 0 1

TermFrequencyVectorDoc={1,1,1,1,1,1}

TermFrequencyVectorQuery={0,1,1,2,0,0}

Therefore, cosine similarity score is:

cosineSimilarityScore =
1 ∗ 0 + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 2 + 1 ∗ 0 + 1 ∗ 0√

12 + 12 + 12 + 12 + 12 + 12 ∗
√

0 + 12 + 12 + 22 + 0 + 0
= 0.67

The same steps are performed with our bi-gram Analyzer but the documents are repre-

sented as bi-grams:

doc: [unspecified vulnerability][vulnerability in][in hp][hp system][system insight][insight man-

ager]

and query: [system vulnerability] [vulnerability in][in hp] [hp system]

The term frequency vectors for doc and query are shown in the Table 4.3b. The cosine

similarity score is:

cosineSimilarityScore = 0.61

4.3.2 Semantic Similarity

Algorithm 2 shows our similarity measurement procedure for semantic similarity. We use

SemanticVector package [Uni13, WF08] to calculate semantic similarity between two docu-

ments. The similarity is calculated between each NVD vulnerability description (query) and

vulnerability description from the other VDs (doc). First, (line 4) term-document matrix is

constructed by the LuceneIndexer with StandardAnalyzer. Next, using the matrix factoriza-

tion method (Random Projection) implemented in the SemanticVector the new termV ectors
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for each term and documentV ectors for each document are created (line 5). Finally, in line

6 the cosine similarity between two document vectors (query and doc) is calculated based

on equation 4.1.

Algorithm 2 The Semantic Similarity Measurement Procedure.

Require: QueriesSet = {files with vulnerability descriptions from NVD}
V DSet = {BugTraq,OSV DB}
StandardAnalyzer = {text analyzer}

Ensure: cosineSimilarityScore
1: for each query in QueriesSet do
2: for each V D in V DSet do
3: for each doc in V D do
4: term-document matrix=LuceneIndexer(doc, query, StandardAnalyzer)
5: [termV ectors, documentV ectors]= RandomProjection(term-document matrix)
6: cosineSimilarityScore = (documentV ectors[query], documentV ectors[doc])
7: end for
8: end for
9: end for

Cosine Similarity Calculation

Let us consider again the two sentences from Section 4.3.1. The SemanticVector package

creates, for each sentence, an appropriate document vector. The corresponding vectors of

dimension 101 are:

documentVector[query]={0.18985608 0.17592032 0.3755809 -0.20466293 -0.12300006 -0.6336946

-0.21024674 0.31266034 0.26139787 0.35081604}

documentVector[doc]={0.268126 0.31391203 0.4206999 -0.022390557 0.19427659 -0.6342604

-0.20027597 0.122592606 0.12114932 0.3771361}

where the numbers are coordinates of the points in mathematical space.

Therefore, cosine similarity score is:

cosineSimilarityScore =
0.891√

0.999 ∗
√

0.999
= 0.891

1Dimension 10 is chosen only for the purpose of explanation.
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4.4 Similarity Score Analysis

The similarity calculation is implemented in JAVA using the Lucene 4.3.0 [Luc13], Se-

manticVector package [Uni13, WF08] and the Apache Commons Mathematics Library ver-

sion 3 [Math13].

In Section 4.4.1, we calculate the semantic similarity between vulnerability description

from NVD and vulnerability description from other VDs in order to identify the same vulner-

ability. Next, for both VDs we check whether there is any relationship between the maximum

similarity score for each NVD vulnerability description and fact that the two compared docu-

ments refer to the same CVE number. Following, we validate the correctness of our semantic

similarity calculation. Does the max similarity score indicate the matching documents?

Section 4.4.2 analyzes the magnitude of differences/similarities between VDs. We check

whether there is any relationship between the syntactic similarity score and additional infor-

mation from different vulnerability descriptions for the same CVE. We consider only those

vulnerability descriptions from NVD that have their equivalent in the OSVDB/BugTraq set.

We calculate the syntactic similarity between two vulnerability descriptions of the same vul-

nerability (the same CVE number) taken from NVD and other VDs. Subsequently, we run

the test of association between the similarity score and additional information from VDs.

4.4.1 Identifying the Same Vulnerability Across Different VDs

Table 4.4 summarizes the results for max score of the semantic similarity measure between

each vulnerability description from NVD vulnerability descriptions set and each vulnerability

description from other VDs. OSVDB has a smaller score than BugTraq. Almost 70% of the

scores for OSVDB are between 0 and 0.4, while for BugTraq about 73% of the scores are

between 0.4 and 0.7. This indicates that vulnerability descriptions from BugTraq are more

similar to NVD’s descriptions. Therefore, we can assume that OSVDB provides vulnerability

descriptions that are: 1) very different from NVD descriptions and/or 2) new vulnerabilities.

Let us now again consider the example vulnerability descriptions from Table 4.1. Based

only on human judgment, the BugTraq description looks more similar to NVD. The ex-
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Table 4.4: Summary of the similarity scores between NVD and OSVDB/BugTraq.

Standard Analyzer
interval of similarity s OSVDB BugTraq

0<s to s<0.3 29.08% 5.10%
s≥0.3 to s<0.4 40.82% 13.78%
s≥0.4 to s<0.5 22.45% 27.04%
s≥0.5 to s<0.6 4.59% 27.55%
s≥0.6 to s<0.7 1.53% 18.88%
s≥0.7 to s<0.8 1.02% 6.63%
s≥0.8 to s≤1 0.51% 1.02%

perimental results validate the human observations. The semantic similarity score for the

BugTraq is 0.73, and for OSVDB 0.34.

4.4.1.1 Test of Association

In this section we check, for both VDs - OSVDB and BugTraq, whether there is any

relationship between the maximum similarity score for each NVD vulnerability description

and the fact that the two compared documents refer to the same CVE number. We run

the statistical test for association - Fisher Exact Test [Fis22] for small sample size because

the number of expected values that are smaller than 1 is more than 5%. Our hypothesis

(HA) is that there is an association between score and correct CVE identification. The null

(H0) hypothesis is that there is no association between max score and the same vulnerability

identification. We reject H0 if p-value < α = 0.05. The contingency tables for both VDs are

shown in Table 4.5. The “Same” column indicates the counts for two documents (NVD and

studied VDs) corresponding to the same CVE number.

The results of the test are shown in Table 4.6. For both VDs we reject H0. This means

that there is an association between max similarity score and the fact that the two compared

documents refer to the same CVE number. Using semantic similarity measurement thus

appears to be appropriate for identifying same/new vulnerabilities.
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Table 4.5: Contingency Table; Same-vulnerability is identified correctly; Not Same-
vulnerability is not identified or identified incorrectly.

(a) OSVDB

Interval of Sim-
ilarity s

Same Not Same Total

0<s to s<0.3 0 57 57
s≥0.3 to s<0.4 2 78 80
s≥0.4 to s<0.5 6 38 44
s≥0.5 to s<0.6 2 7 9
s≥0.6 to s<0.7 3 0 3
s≥0.7 to s<0.8 1 1 2
s≥0.8 to s≤1 1 0 1
Total 15 181 196

(b) BugTraq

Interval of Sim-
ilarity s

Same Not Same Total

0<s to s<0.3 0 10 10
s≥0.3 to s<0.4 0 27 27
s≥0.4 to s<0.5 3 50 53
s≥0.5 to s<0.6 6 48 54
s≥0.6 to s<0.7 2 35 37
s≥0.7 to s<0.8 6 7 13
s≥0.8 to s≤1 2 0 2
Total 19 177 196

Table 4.6: Fisher’s Exact Test for Count Data with α=0.05.

p-value Conclusion
OSVDB 5.06E-08 Reject H0

BugTraq 3.05E-05 Reject H0

4.4.1.2 Similarity Score Validation

Next, we validate the similarity measurements in order to check their correctness. The

steps of validation are shown in Algorithm 3. For both OSVDB and BugTraq the same

steps are performed. First, we identify the matching vulnerability descriptions. We check if

any CVE numbers from the NVD set exist in any document from the queried VDs (line 4).

Additionally, we check manually online entry of both VDs for each CVE number from NVD

set (line 4). The match is found (line 5) if both compared vulnerability descriptions have the

same CVE number. Next, for matched vulnerability descriptions the similarity score for doc

(line 6) is taken along with the maximum similarity score corresponding to particular cve

(line 7) from NVD vulnerability descriptions set. The result will be correct if the similarity

score from a match is equal to the maximum similarity score.

Table 4.7 presents the outcome of the validation steps. We identify 17 matches for OS-

VDB and 23 for BugTraq. 11% of matching documents for OSVDB and 23% for BugTraq

have a similarity score different from max score for the corresponding CVE number. How-
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Algorithm 3 Validation of similarity measurements

Require: CV E = {cve1 . . . cve196}set of CVE numbers from NVD
V D={vd1=BugTraq,vd2= OSVDB}
doc - vulnerability description from the vd

Ensure: similarityScore=[Same,Max]
1: for each cvei in CV E do
2: for each vdi in V D do
3: for each doc in vd do
4: if (doc.contain(cve)=true || searchOnlineEntry.vd(cve)=doc) then
5: matchFound =true
6: Same = TakeSimilarityScore(doc)
7: Max = TakeSimilarityScore(cve)
8: end if
9: end for

10: end for
11: end for

ever, the majority of outcomes is recognized correctly. Therefore, we can conclude that our

approach usually (OSVDB 89% and BugTraq 77%) gives the correct result.

According to Table 4.7, the smallest similarity score for OSVDB is 0.338; hence, we can

conclude that OSVDB entries with smaller than 0.338 similarity score are new vulnerabilities.

BugTraq is different as the similarity scores vary between 0.814 and 0.181. Therefore, making

the same conclusion as for the OSVDB seems to be incorrect. Such a wide range of results can

be caused by a lot of noise in BugTraq textual vulnerability descriptions. As a reminder, the

BugTraq vulnerability descriptions are provided as email messages with much information

non-related to vulnerability which we consider to be a noise.

4.4.2 Identifying Additional Vulnerability Information

In this experiment we would like to check whether there is any relationship between the

syntactic similarity score and additional information from different vulnerability descrip-

tions for the same CVE. The additional information is vulnerability information that is

not included in NVD vulnerability description but is significant for building the PAG. The

additional information is identified manually by us by comparing the NVD vulnerability

descriptions with vulnerability descriptions from others VDs for the same CVE number.
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Table 4.7: Validation results for studied VDs; Same indicates the similarity score for the
two documents corresponding to the same CVE number; Max Score is the highest score for
particular CVE number in NVD matched to any entry from considered VDs.

(a) OSVDB

CVE number Max Score Same
CVE-2013-0913 0.682 0.682
CVE-2013-0969 0.646 0.646
CVE-2013-0970 0.846 0.846
CVE-2013-0973 0.636 0.636
CVE-2013-0976 0.76 0.76
CVE-2013-1814 0.446 0.446
CVE-2013-2503 0.338 0.338
CVE-2013-2549 0.413 0.413
CVE-2013-2550 0.501 0.501
CVE-2013-2551 0.421 0.421
CVE-2013-2552 0.465 0.465
CVE-2013-2553 0.471 0.471
CVE-2013-2554 0.518 0.518
CVE-2013-2555 0.458 0.451
CVE-2013-2556 0.494 0.494
CVE-2013-2557 0.526 0.494
CVE-2013-2566 0.345 0.345

11% of not matching documents

(b) BugTraq

CVE name Max Score Same
CVE-2011-3058 0.584 0.584
CVE-2012-2088 0.416 0.382
CVE-2012-3488 0.508 0.508
CVE-2012-3489 0.502 0.502
CVE-2012-3525 0.551 0.357
CVE-2012-3749 0.643 0.643
CVE-2012-3756 0.74 0.74
CVE-2013-0156 0.458 0.458
CVE-2013-0333 0.537 0.537
CVE-2013-0787 0.44 0.44
CVE-2013-0963 0.544 0.544
CVE-2013-0966 0.715 0.715
CVE-2013-0967 0.814 0.814
CVE-2013-0969 0.71 0.71
CVE-2013-0970 0.817 0.817
CVE-2013-0971 0.69 0.69
CVE-2013-0973 0.74 0.74
CVE-2013-0976 0.779 0.779
CVE-2013-1667 0.574 0.231
CVE-2013-1814 0.589 0.566
CVE-2013-2492 0.436 0.181
CVE-2013-2503 0.732 0.732
CVE-2013-2560 0.507 0.291

23% of not matching documents

We use vulnerability sets constructed in Section 4.4.1.2 Table 4.7 (OSVDB 17 docu-

ments and BugTraq 23 documents). To obtain more accurate similarity prediction for the

BugTraq set, we fix its vulnerability descriptions. We substitute original email messages

with vulnerability descriptions from BugTraq online entry which contain pure vulnerability

descriptions.

We measure syntactic similarity between two vulnerability descriptions for the same CVE

number from NVD and OSVDB/BugTraq. We calculate the syntactic similarity score using

the previously described analyzers. This analysis can help us with identifying the relation-
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ship between the syntactic similarity score and possible additional information included in

different vulnerability descriptions.

Table 4.8 summarizes the similarity scores between NVD vulnerability descriptions and

studied VDs for both analyzers. The range of similarity scores for bi-gram Analyzer for both

OSVDB and BugTraq looks very similar. For the Standard Analyzer, OSVDB has about

70% of the scores between 0.2 and 0.4. For BugTraq and Standard Analyzer, the scores are

spread-out more evenly than for OSVDB.

Table 4.8: Summary of the similarity scores between NVD and OSVDB/BugTraq.

OSVDB BugTraq
Interval of Similarity s Standard bi-gram Standard bi-gram

0<s to s<0.1 0.00% 11.76% 8.70 % 43.48%
s≥0.1 to s<0.2 5.88% 47.06% 17.39% 30.43%
s≥0.2 to s<0.3 23.53% 35.29% 34.78% 21.74%
s≥0.3 to s<0.4 47.06% 5.88% 17.39% 4.35%
s≥0.4 to s<0.5 11.76% 0.00% 17.39% 0.00%

s≥0.5 to s≤1 11.76% 0.00% 4.35% 0.00%

4.4.2.1 Test of Association

In order to check whether there is any relationship between the syntactic similarity score

and additional information from different vulnerability descriptions for the same CVE, we

run the Fisher Exact Test [Fis22] of association. Our hypothesis (HA) is that there is an as-

sociation between score and additional information. The null (H0) hypothesis is that there is

no association between score and additional information. We reject H0 if p-value < α = 0.05.

The contingency tables for both VDs and both Analyzers are shown in Tables 4.9 and 4.10.

The “Add. Inf.” indicates the counts for vulnerability descriptions with any additional

information from studied VDs compared to NVD description for the same CVE number.

The results of the test are shown in Table 4.11. For both VDs and both analyzers we

fail to reject H0 which means that there is no association between score and additional

information. Therefore, we cannot conclude that syntactic similarity score can help us with

identifying additional information from vulnerability descriptions.
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Table 4.9: Contingency Table for OSVDB; Add. Inf. - additional information; No Add.
Inf. - no additional information.

(a) Standard

Interval of
Similarity s

Add.
Inf.

No Add.
Inf.

Total

0<s to s<0.1 0 0 0
s≥0.1 to s<0.2 1 0 1
s≥0.2 to s<0.3 2 2 4
s≥0.3 to s<0.4 2 6 8
s≥0.4 to s<0.5 0 2 2
s≥0.5 to s≤1 0 2 2
Total 5 12 17

(b) bi-gram

Interval of
Similarity s

Add.
Inf.

No Add.
Inf.

Total

0<s to s<0.1 2 0 2
s≥0.1 to s<0.2 2 6 8
s≥0.2 to s<0.3 1 5 6
s≥0.3 to s<0.4 0 1 1
s≥0.4 to s<0.5 0 0 0
s≥0.5 to s≤1 0 0 0
Total 5 12 17

Table 4.10: Contingency Table BugTraq; Add. Inf. - additional information; No Add. Inf. -
no additional information.

(a) Standard

Interval of
Similarity s

Add.
Inf.

No Add.
Inf.

Total

0<s to s<0.1 0 2 2
s≥0.1 to s<0.2 1 3 4
s≥0.2 to s<0.3 2 6 8
s≥0.3 to s<0.4 2 2 4
s≥0.4 to s<0.5 4 0 4
s≥0.5 to s≤1 0 1 1
Total 9 14 23

(b) bi-gram

Interval of
Similarity s

Add.
Inf.

No Add.
Inf.

Total

0<s to s<0.1 4 6 10
s≥0.1 to s<0.2 3 4 7
s≥0.2 to s<0.3 3 2 5
s≥0.3 to s<0.4 0 1 1
s≥0.4 to s<0.5 0 0 0
s≥0.5 to s≤1 0 0 0
Total 10 13 23

Table 4.11: Fisher’s Exact Test for Count Data with α=0.05.

p-value
Standard bi-gram

OSVDB 0.3988 0.1946
BugTraq 0.08055 0.9229

4.5 Discussions

In this chapter we have analyzed three VDs: NVD, OSVDB and BugTraq. We have

examined the amount of new information they offer during a one week period. The most ex-

tensive set is provided by NVD. As we expected, semantic similarity can help with identifying

the same vulnerability from different sources. However, contrary to our expectations, the
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syntactic similarity score does not suggest that vulnerability descriptions from other VDs

contain information based on which the NVD vulnerability descriptions can be extended.

Moreover, the question arises of how important this additional information is and how we

can measure this importance. This is a significant issue because we would like to extend

vulnerability descriptions to contain only significant information. The solution could be

to search for key words which will indicate the concept on which we would like to extend

information. This can be the future direction of this work.

Also, in the future work we are going to extend similarity score measurements on boosting

with key words which would provide us with more relevant information. Therefore, we can

gain more revealing similarity scores. Moreover, we would like to check similarity level

between OSVDB and BugTraq because now we perceive only the similarity between those

two and NVD.
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Chapter 5

Extracting Vulnerability Descriptions

Automatic construction of the PAG is one of the main challenges in automatic security

analysis of the home computer. In order to build the PAG, we need information such as

infected software, pre-conditions (user actions, attacker strategies, and system activities

and configuration) and post-conditions of exploiting vulnerabilities. However, the standard

resources for capturing vulnerability information, Vulnerability Databases (VDs), contain

textual descriptions which do not explicitly describe the chain of events that lead to an

exploit. Such descriptions are also difficult to work with in an automated process.

Let us consider the example of textual vulnerability description shown in Figure 5.1. The

top part describes the vulnerability in plain text and the bottom shows information about

the infected software. As can be seen, we have not clearly specified the chain of events that

lead to exploit.

The EScript.api plugin in Adobe Reader and Acrobat 10.x before 10.0.1, 9.x before 9.4.1,
and 8.x before 8.2.6 on Windows and Mac OS X allows remote attackers to execute
arbitrary code or cause a denial of service (application crash) via a crafted PDF document
that triggers memory corruption, involving the printSeps function. NOTE: some of these
details are obtained from third party information.
∗cpe : /a : adobe : acrobat reader : 10.0 ∗ cpe : /a : adobe : acrobat reader : 9.0 ∗ cpe : /a :
adobe : acrobat reader : 9.1∗

Figure 5.1: Fragment of CVE-2010-4091 vulnerability description

Table 5.1 presents information that we wish to extract. Please notice that we do not

have any direct information about the possible user actions. Therefore, we have to reason,

according to provided information about what the possible user action(s) that can trigger

the exploit is/are. For Figure 5.1 it is “user opens pdf file.”

In this chapter, we show how a textual vulnerability description can be transformed into

a more structured one that is necessary to construct the PAG. We have developed a system
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Table 5.1: Information from CVE-2010-4091 needed to build the PAG.

Infected Software adobe:acrobat reader:10.0
adobe:acrobat reader:9.0
adobe:acrobat reader:9.1

Precondition Attacker a crafted PDF document that triggers memory corruption
Precondition User user opens pdf file

Precondition System The EScript.api plugin involving the printSeps function
Postcondition of Attack execute arbitrary code

cause a denial of service (application crash)

for automatically extracting information from NVD [NVD13] for a set of vulnerabilities

identified by vulnerability scanner OpenVAS [Ope12]1.

We apply an automated Information Extraction (IE) method which is based on manually

created rules. These rules are created by us and based mostly on regular expressions. First,

we discuss our system architecture. We explain how the set of vulnerabilities is constructed.

Next, we explain in detail each element of the system. Finally, we discuss the performance

results of our system.

5.1 Background

5.1.1 Structuring Vulnerability Description

Le et al. [LSHL09] present Vulnerability Property Relationship Graphs (VPRG), a formal

model of web-based vulnerabilities, represented as cause/consequence chains. However, this

model is constructed manually. Subsequently, Le et al. [LL11] present an approach for

automated extraction of the VPRG model from a plain text vulnerability description. The

system relies on the Natural Language Processing Tools Kit, supported by the “Dictionary

of Terms and Relationships” which is responsible for providing information about terms,

concepts, and relationships in the vulnerability descriptions. However, constructing the

dictionary requires significant effort and is prone to errors. Each sentence is partitioned into

1Published in [URHR12]
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entities (noun, prepositional and verb phrases) and behavior (properties which describe the

functionality of the web-application), and restated as a cause/consequence chain.

Mulwad et al. [MLJ+11] use Wikitology as a knowledge based system and computer secu-

rity taxonomy to extract vulnerability information. They collect information from different

sources and classify it to identify possible vulnerability descriptions. Next, the informa-

tion extractor extracts relevant information using knowledge based system taxonomy. This

information is then coded into Web Ontology Language (OWL) for further automated anal-

ysis. The authors provide the methodology to extract only the methods of attack and the

post-condition of attack from vulnerability description. We are interested in extracting more

information such as: infected software and all pre-conditions and post-conditions of exploit-

ing a particular vulnerability that lead to an attack.

5.1.2 Tools

5.1.2.1 OpenVAS

The Open Vulnerability Assessment System (OpenVAS) [Ope12] is an open source vul-

nerability scanning and management system that provides complete analysis by combining

services and security tools. The security scanner is supported by the daily updated feed of

the Network Vulnerability Tests (NVTs), which is responsible for the detection of known and

potential security vulnerabilities. The OpenVAS offers over 25,000 NVTs (as of May 2012)

and is available under the GNU General Public License (GNU GPL). It offers a variety of

audit report formats e.g. XML, HTML, LaTeX, PDF, TXT, etc.

5.1.2.2 Parsers

For the purpose of extraction we use two different parsers:

SAXparser (Simple API for XML) [Meg13] is an event-driven, serial-access mechanism for

accessing XML documents.

Jsoup [Jso12] is an open source project available under the liberal MIT license. It is a Java

library which works with HTML website code. It offers handy API for extraction and data

management. It can parse HTML from an URL, file, or string sources.
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5.2 System Design

Our objectives are to extract information about the necessary pre-conditions of exploiting

a vulnerability and the consequences of its exploit, from plain text vulnerability description.

Similar to [LL11], we use dictionaries to guide the extraction process. However, we store

only the keywords, such as the name of the software. Our approach is based on a set of rules

which use also keywords or phrases e.g., “by,” “via,” “allows remote attacker to.”

Figure 5.2 presents the information flow for our system to convert NVD entries to a

structured form. We use NVD as our source of textual vulnerability descriptions, as well

as the OpenVAS scanner to identify vulnerabilities in a single host. As in [JNO05, WLI07],

a computer is scanned, and an audit report is created and parsed by the customized XML

parser. The output of this step is a list of vulnerabilities. The CVE numbers are extracted

from this list; the vulnerability record for each CVE number in the list obtained from the

NVD in HTML format. The relevant vulnerability information is extracted by the HTML

parser. The result at this point is a textual vulnerability description (Figure 5.1 the NVD

entry CVE-2010-4091).

Further, text processing operations are done on this description by applying a set of

filters. The main goal of the filters is to extract necessary causal information such as infected

software names, action pre-conditions, and post-condition of exploit. The new structured

vulnerability description is constructed by applying all the filters.

5.2.1 CVE Number Extraction

The vulnerabilities identified by OpenVAS are grouped into sets with the same NVT (see

Section 5.1.2.1). The XML report created by the scanner contains a lot of XML elements,

many of which are not relevant to our analysis (such as scanned port, names of the tasks,

etc.). The parser uses sets of rules to parse the XML tree by looking for the relevant XML

elements such as 〈result〉, 〈nvt〉 and 〈cve〉. For each 〈cve〉 element, the list of CVE numbers

associated with the same NVT is extracted. Finally, a single list with all extracted CVEs is

created.
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Figure 5.2: Information flow; red squares denote outside system information, blue rounded
rectangles are processes, and unclosed rectangles are data storage.

We would like to mention that different vulnerability scanners can be used to scan the

single host. However, in order to get the CVE numbers list, the scanner report parser may

need to be customized depending on report’s structure.

5.2.2 HTML Parser

Each CVE number is submitted to the NVD search engine. Using the Jsoup library,

the vulnerability description is extracted from NVD website as HTML code and converted

to plain text. Algorithm 4 shows the extraction process. From HTML (Figure 5.3 shows

example source code for CVE-2010-4091) the vulnerability description is identified (lines 5

and 6). Next, using the class=“fact”, the information about infected software is recognized

(line 7). Finally, the vulnerability description and infected software are convert from HTML

to a plain text (line 8).
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Figure 5.3: Example input for HTML parser.

Algorithm 4 Extraction of Vulnerability Description from the HTML Code.

Require: list={list of items with CVEnumbers }
NVDaddress= {http : //web.nvd.nist.gov/view/vuln/detail?vulnId =}

Ensure: [text, sofListText]={plain text vulnerability description as a String}
1: for item ∈ list do
2: if item from list is CVEnumber then
3: url= NVDaddress + CVEnumber
4: html=connect(url)
5: vulDetail=html.getElementByID(“contents”)
6: overview=vulDetail.getElementByTag(“p”)
7: softwareList=html.getElementByClass(“fact”).select(“*”)
8: [text,sofListText]=convertToText(overview,softwareList)
9: else

10: print “no CVE number”
11: end if
12: end for

5.2.3 Filters

To better understand how the extraction process works, as well as its complexities, we

use the CVE-2010-4091 from Figure 5.1 as an example. Five filter groups are responsible for

identifying distinct information from a vulnerability description. These are 1) infected soft-

ware, 2) pre-condition attacker, 3) pre-condition user, 4) pre-condition system, and 5) post-
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condition of attack. The final step is collating the strings returned from filters into a text file

which forms the new structured VD. The output file for our example is shown in Figure 5.4b.

5.2.3.1 Infected Software Filters

These filters identify the software (by name and version) that is involved in a particular

vulnerability. They are implemented as a Java class. The infected software from Figure 5.1

are: adobe:acrobat reader:10.0, adobe:acrobat reader:9.0, and adobe:acrobat reader:9.1.

Algorithm 5 shows how filters work. First, sofListText (textual software list from HTML

parser) is tokenized according to whitespace (line 1) e.g., token: “cpe:/a:adobe:acrobat

reader:10.0 ”. If the token contains cpe, it is further analyzed (line 3). The token is then

searched for keyWords which provide “start” and “stop” conditions for the extraction (lines 4

and 5). According to the previous example keyWord “start” is cpe:/a:, and the end of ex-

traction phrase is indicated by a whitespace. The process is repeated until all tokens are

checked.

Algorithm 5 Extracting Infected Software.

Require: sofListText={software list from HTML parser}
keyWord={words which support extraction}

Ensure: InfSofList={Infected software list}
1: tokens=tokenize(sofListText)
2: for token ∈ tokens do
3: if token.contain(“cpe”) then
4: indexToStart=token.find(keyWord)
5: indexToStop=token.length()
6: else if ... then
7: ...
8: else
9: ...

10: end if
11: end for

5.2.3.2 Attacker Action Pre-condition Filters

These filters are responsible for extracting information about the attacker’s involvement

in exploiting a vulnerability (as shown in algorithm 6). These filters are implemented as
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two different Java classes. They are based on two main keywords: “via” and “by.” From

Figure 5.1, the phrase: “a crafted PDF document that triggers memory corruption” captures

an attacker pre-condition.

Algorithm 6 presents how filters works. First, the keyWordsStart is identified, in our

example it is “via” (line 2). Next in line 4, the sub-phrase of the text starting from

keyWordsStart is extracted. Subsequently, the sub-phrase is searched for appropriate key-

WordsStop. In this example it is a comma symbol. In the last step line 8, the final phrase is

extracted.

However, in some cases, parsing this description is not straightforward. Consider a phrase

from CVE-2010-0483: “by referencing a (1) local pathname, (2) UNC share pathname, or

(3) WebDAV server with a crafted .hlp file in the fourth argument (aka helpfile argument)

to the MsgBox function”– the keyWordsStart is “by” but we cannot use the first comma

for a terminating condition because we would lose the rest of the information in the list.

Our program currently does not support this kind of extraction. For such a vulnerability

description our program returns only “referencing a (1) local pathname.” However, it can

be handled by extending the filters conditions of the new regular expressions, for example,

by adding a condition to consider the numbers or parentheses.

Algorithm 6 Extracting Attacker Action Pre-conditions.

Require: text={vulnerability description as a String}
keyWordStart, keyWordStop={word or phrase which support extraction}

Ensure: phrase={phrase of Attacker Action Pre-conditions}
1: scan text from left to right
2: indexToStart = text.find(keyWordStart)
3: if indexToStart ≥ 0 then
4: stringToLook = text.substring(indexToStart)
5: indexToStop = stringToLook.find(keyWordStop)
6: if indexToStop ≥ 0 then
7: phrase=substring(keyWordStart, keyWordStop)
8: return phrase
9: end if

10: else
11: return null
12: end if
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5.2.3.3 System Pre-condition Filters

System pre-condition filters identify the system conditions needed for a successful attack,

e.g., the phrase “The EScript.api plugin”. They are implemented as two Java classes. They

are based on two main keywords: “do not properly” and “in.” These filters work similar to

Algorithm 6 with a different set of keywords adapted to this specific extraction. As with the

previous filters, the lack of consistency in vulnerability descriptions leads to added complex-

ity. For instance, in (CVE-2008-3107) “Unspecified vulnerability in the Virtual Machine in

Sun Java Runtime Environment (JRE)”, the keyword “in” is not useful as a cue; therefore,

we have to keep checking contiguous word-tokens until the name of the software is found.

Then the extraction rule stops and returns the whole string. However, system information

is often provided in different places in vulnerability description. Hence, it is very hard to

model the regular expression rules which address these differences.

5.2.3.4 User Action Pre-condition Filters

These filters identify the conditions necessary for the user’s involvement in exploiting a

vulnerability. They are implemented as eight different Java classes; each class is customized

for a specific keyword. The classes are checked in sequence and the suitable one for a

particular vulnerability description is used. In most cases, the descriptions do not include

the conditions necessary for the user’s involvement in exploiting a vulnerability explicitly.

So, our system has to reason from what is there, i.e., check a set of conditions and infer (as

shown in algorithm 7). From our example, the phrase “open pdf document” will be returned.

First, the text is tokenized (line 1). Next, the program searches for a match between

keywords from helpFile and the tokens (line 2-4). If a match is found it returns the appro-

priate userAction.

5.2.3.5 Post-condition Filters

The post-condition filters extract the consequences of exploiting a particular vulnerability.

They are implemented as seven different Java classes with specific keywords. The classes are
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Algorithm 7 Extracting User Action Pre-conditions.

Require: text {vulnerability description as a String}
keyWord {word or phrase which support extraction}
helpF ile {file with keyWords}

Ensure: userAction {user actions associated with exploit}
1: token← tokenize(text)
2: while text hasNext token do
3: get(token)
4: keyWordToCheck=helpF ile.take(keyWord)
5: if token=keyWordToCheck then
6: return userAction
7: break
8: else
9: getNext(token)

10: end if
11: end while

checked in sequence and the suitable one for a particular vulnerability description is used. In

our example, filters will find the phrase “execute arbitrary code or cause a denial of service

(application crash)” which describes the two ways in which exploiting this vulnerability

affects the system.

Algorithm 8 presents how filters works. First, the keyWordsStart is identified; in our

example, it is “allows remote attackers to” (line 2). Next, the sub-phrase of the text start-

ing from keyWordsStart is extracted (line 4). Subsequently, the sub-phrase is searched for

appropriate keyWordsStop, in the studied example it is a “via” word. In the last step, the

final phrase is extracted (line 8).

5.3 Evaluation

We evaluate our program using the evaluation procedure applied in the Message Un-

derstanding Conference (MCU) [Chi92]. According to Nadeau et al. [NS07], the extraction

system is ranked according to two criteria: the ability to find the correct type and the ability

to find the exact text. We will use four measures:

• Correct - elements extracted correctly

• Missing - elements not extracted that should have been
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Algorithm 8 Extracting Post-conditions of Exploit.

Require: text={vulnerability description as a String}
keyWordStart, keyWordStop={word or phrase which support extraction}

Ensure: phrase={phrase of post-conditions of exploit}
1: scan text from left to right
2: indexToStart = text.find(keyWordStart)
3: if indexToStart ≥ 0 then
4: stringToLook = text.substring(indexToStart)
5: indexToStop = stringToLook.find(keyWordStop)
6: if indexToStop ≥ 0 then
7: phrase=substring(keyWordStart, keyWordStop)
8: return phrase
9: end if

10: else
11: return null
12: end if

• Spurious - elements extracted wrongly

• Partial - only the part of the information which should be extracted

Using the above measures the following criteria are defined [Chi92, NS07]:

• Precision - How many of the identified elements are correct?

Precision =
Correct+ 0.5 ∗ Partial

Correct+ Spurious+ Partial

• Recall - How many of the elements that exist are identified?

Recall =
Correct+ 0.5 ∗ Partial

Correct+Missing + Partial

•

F -measure =
(β2 + 1) ∗ Precision ∗Recall

(β2 ∗ Precision) +Recall

The F -measure is calculate for β=1 and from this point it is called F1-measure.

We used 240 vulnerability descriptions identified on a computer running Microsoft Win-

dows XP Professional SP3 with standard configuration. Before collecting the data, the

system was secured and updated. Subsequently, the machine was disconnected from the In-

ternet, and automatic updates were disabled. After a few months, the machine was plugged
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into the Internet and scanned, 244 vulnerabilities were identified. For the purposes of our

analysis, we have dropped four of them because their descriptions greatly differ from the rest:

1) they are very short, 2) they provide information about hardware rather than software,

and 3) they were published in the late ’90s.

We validate the extracted information produced by our system by comparing it manu-

ally with the original descriptions. The results of the comparison are expressed using four

measures described above (correct, missing, spurious, partial). Next, we have calculated the

precision, recall and F1-measure for each type of extracted information (infected software,

precondition attacker, precondition user, precondition system, and postcondition of attack).

5.3.1 Description Accuracy

For each of the 240 vulnerability descriptions, a file with structured vulnerability de-

scription is created. The example output from our system is presented in Figure 5.4b, and

the original description is shown in Figure 5.4a. From the original description we construct

the Gold Standard (ideal output) - Table 5.1. We have compared elementwise the output

from our system (structured description) with its Gold Standard. The results of comparison

are retained for each type of extracted information. Table 5.2 presents results for CVE-

2010-4091. Similarly, we compare each structured vulnerability description with its Gold

Standard.

Table 5.2: Results of the comparison between structured description and Gold Standard for
CVE-2010-4091.

Correct Missing Spurious Partial
Infected Software 55 0 0 0

Pre-condition Attacker 1 0 0 0
Pre-condition User 1 0 0 0

Pre-condition System 1 1 0 0
Post-condition of Attack 2 0 0 0
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The EScript.api plugin in Adobe Reader
and Acrobat 10.x before 10.0.1, 9.x before
9.4.1, and 8.x before 8.2.6 on Windows
and Mac OS X allows remote attackers
to execute arbitrary code or cause a
denial of service (application crash) via a
crafted PDF document that triggers
memory corruption, involving the
printSeps function. NOTE: some of
these details are obtained from third
party information.
∗cpe : /a : adobe : acrobat reader :
10.0 ∗ cpe : /a : adobe : acrobat reader :
9.0 ∗ cpe : /a : adobe : acrobat reader :
9.1∗

(a) Original vulnerability description.

Infected Software:
adobe:acrobat reader:10.0
adobe:acrobat reader:9.0
adobe:acrobat reader:9.1
...

Pre-condition:
attackerAtributes

a crafted PDF document that trig-
gers memory corruption

userAtributes
user opens pdf file

systemAtributes
The EScript.api plugin

Post-condition:
execute arbitrary code
cause a denial of service (application
crash)

(b) Structured vulnerability description produced by our
system.

Figure 5.4: Vulnerability description for CVE-2010-4091 in non-structured (a) and structured
form (b) after extraction.

The performance measurements for each type of extracted information are shown in Ta-

ble 5.3a. The precision of extracted information is very high for almost all of the information.

It means that identified information is in the majority correct. The “Infected Software” is

extracted with perfect accuracy. This is because this information is provided in a very

structured way.

The “Post-condition of Attack” has slightly worse results with precision being 0.985.

However, not all the “Post-condition of Attacks” are recognized by our system (recall 0.796).

Increasing the number of filters that address specific vulnerability descriptions that were not

previously considered can improve the recall.

A similar situation is for the “Pre-condition User” where the precision is very high 0.991

and recall is 0.513. Such poor results are caused by the fact that this information depends on

the context of the description. The accuracy of the system strictly depends on the quality

of the rules for extraction and their ability to infer what is implied. The results can be

improved by extending the set of keywords which support extraction.

73



The main problem of our system is extracting the “Pre-condition System.” This is caused

by a large number of partial identification. Solving this issue is not easy because building

new filters does not guarantee precision and recall improvement. This is because the ways

that the “Pre-condition system” are provided in vulnerability descriptions are challenging

to address by the regular expressions.

Table 5.3: Summary of performance.

(a) Results for five type of extracted information.

Precision Recall F1-measure
Infected
Software

1 1 1

Pre-condition
Attacker

0.984 0.948 0.966

Pre-condition
User

0.991 0.513 0.676

Pre-condition
System

0.656 0.445 0.53

Post-condition
of Attack

0.985 0.796 0.881

(b) Overall system performance.

Precision Recall F1-measure
0.93 0.701 0.8

5.4 Discussions

The vulnerability descriptions available from current VDs are not in a form that expedites

security analyses, especially when the system being analyzed is a single computer. The

descriptions do not readily provide information about the user’s or the attacker’s role in

the vulnerability exploitation. Moreover, in order to construct PAG the causal relationships

between user activities and preferences, attacker strategies, and system activities that lead

to an exploit need to be inferred from the textual description. What complicates matter is

that vulnerabilities are not described in a uniform and consistent manner across different

databases. As a result, it becomes extremely difficult to extract relevant information from

vulnerability databases and synthesize them into a structured description that is suitable for

analysis.
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We have demonstrated a method for automatically extracting vulnerability information

from plain-text. We have evaluated that method on 240 vulnerabilities. The current version

of our program is able to construct descriptions with precision 0.93, recall 0.7 which gives

the F1-measure 0.8. The results are satisfactory. However, when we consider each type of

extracted information separately, we can recognize where our system has issues and where

it performs very well.

Thus, given the variability in vulnerability descriptions, the program’s accuracy is likely

to decrease as new vulnerability descriptions are added. New patterns will need to be added

to the filters to accommodate for the lack of consistency in the prose for the vulnerability

descriptions and the lack of explicitly included information. Therefore, correct extraction

requires an expansion in the number of rules which grows quickly with the number of cases.

Therefore, we should generate the extraction patterns automatically.

In our future work, we plan to address most of the problems stated above. We will

also reduce the human factors that can cause errors in the whole process of extraction. To

accomplish this, we are going to use one of the existing information extraction systems with

a machine learning algorithm to generate extraction patterns. We will build a new IE system

that will use both hand-coded method and the machine learning algorithm.
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Chapter 6

Conclusions and Future Work

Automated security analysis of the home computer can be expressed as a graph structure

called Personalized Attack Graph (PAG). The PAG requires the extensive information about:

1) vulnerabilities present in the home computer, 2) information about home user behavior,

3) attacker strategies, and 4) home computer activities that all together lead to exploiting

the security threats.

In this thesis, we have elaborated on modeling the user behavior and obtaining the

most comprehensive vulnerability descriptions. We have also presented the methodology of

transforming vulnerability information into a format useful in automatic construction of the

PAG.

6.1 Conclusions

We have modeled the home user to obtain information about her/his behavior which

provides information to complement the PAG’s components. We have analyzed the existing

conceptual user models in order to understand the relationships between user characteristics.

This helps us to create our conceptual home user model which addresses home computer user

activities. We have measured the likelihood of these activities by conveying a conceptual

model into a Bayesian network - Bayesian User Action (BUA). We have examined how

different user profiles influence the probability of compromise of the computer system. We

have shown that, depending on user personality, the probability of threats differs. Preventing

the user from taking some actions can improve the security. Furthermore, we have analyzed

the accuracy of our user model. We were interested in identifying how sensitive to changes our

model is. We have demonstrated that minor changes in user information do not significantly

impact the probability of user’s action.
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We have analyzed the Vulnerability Databases (VDs) in order to choose the source of

vulnerability information. Constructing the PAG requires specific information about user

actions, attacker strategies, and system activities which cannot always be obtained from a

single source. We have compared collected information and measured the similarity between

vulnerability descriptions from different VDs. We have demonstrated that calculating se-

mantic similarity can be helpful in identifying the same vulnerability across different VDs.

We have failed in demonstrating that syntactic similarity can help with identifying any addi-

tional significant information about vulnerability. However, we believe that the issue is not

in the concept of using syntactic similarity measurement, but in the method that was used.

We have described a methodology of structuring the textual vulnerability descriptions in

terms of pre- and post-conditions of exploiting vulnerability. The structured vulnerability

descriptions are used in the automatic construction of the PAG. We have implemented a

hand-coded Information Extraction method. Our extraction system is based on manually

created rules, and it structures vulnerability descriptions taken from the National Vulnera-

bility Database. We have constructed five filter groups which are responsible for identifying

distinct information from a vulnerability description (Infected Software, Precondition At-

tacker, Precondition User, Precondition System, and Postcondition of Attack). We have

measured the performance of our system on 240 vulnerability descriptions. We have shown

that our hand-coded system works well for the majority of vulnerability descriptions. We

have identified two issues 1) the need for creating new patterns in order to compensate for

the lack of consistency in the prose for the vulnerability descriptions, and 2) the lack of ex-

plicitly included information in vulnerability descriptions. The correct extraction requires an

expansion in the number of rules which grows quickly with the number of cases. Therefore,

we should generate the extraction patterns automatically.

6.2 Future Work

In future work we are going to analyze more deeply each of presented objectives along

with addressing identified issues. We are going to redefine our BUA to include more details
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about home user personality. We are planning to address it by applying further psychological

study on home computer users. Also, we will automate the mapping of the Bayesian User

Profile (BUP) into the PAG. This should be addressed to streamline the process of modeling

the user and obtaining probability values which are used in the PAG.

Furthermore, in future work we will check different methods of similarity measurements

in order to get additional information about vulnerability. We believe that using keywords

or field association [AFMA03] can greatly improve this similarity measure.

We are going to extend our IE system to address the problems with extraction of some

vulnerability information. We believe that this can be achieved by applying machine learning

algorithm. The machine learning methods are dependent on corpora annotations used to

train machine learning models of extraction [Sar08]. Combining these two methods can

result in a diligent and infallible IE system.
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Appendix A

Input to the BUA for Three Hypothet-
ical Users’ Profiles

Table A.1: Input to the BUA for UserA actions

user actions

User Information
ClickOn
LinkIn
Email

OpenFlash
File

Download
Applet

Execute
Applet

RunJava
WebStar-
tApp

ReadEmails

RiskTolerance Low Low Low Low Low Low

PerceivedSeverity Low Low Low Low Medium Medium

PBen High Medium Medium Low Low High

PBar High High Medium Low High Medium

SEficacy Low Low Low Medium Low Medium

CtoA Medium Medium Medium Medium Low High

Gender F F F F F F

Age age50 age50 age50 age50 age50 age50

EduLevel High High High High High High

SocEcon High High High High High High

ExpGood Low Low Low Medium Low Medium

ExpBad Medium Low High Medium Low Low
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Table A.3: Input to the BUA for UserC actions

user actions

User Information
ClickOn
LinkIn
Email

Open
Flash File

Download
Applet

Execute
Applet

OpenPDF
Read
Emails

RiskTolerance Low Low Medium Low Medium Low

PerceivedSeverity High High High High Medium High

PBen Medium Medium Medium Medium High High

PBar Low Low Low Low Low Low

SEficacy High High High High High High

CtoA Medium Medium Medium Low Medium High

Gender F F F F F F

Age age2029 age2029 age2029 age2029 age2029 age2029

EduLevel Medium Medium Medium Medium Medium Medium

SocEcon Low Low Low Low Low Low

ExpGood Medium Medium Medium Medium Medium High

ExpBad Medium Low Medium Medium Low Medium
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Appendix B

CPTs for Instantiated PAG for UserA

Table B.1: System configuration nodes.

(a)

Adobe Flash
6 0 88 0
T 0.5
F 0.5

(b)

Sun JRE
1 4 0 02
T 0.5
F 0.5

(c)

Acrobat
Reader 9 4 1
T 0.5
F 0.5

(d)

Microsoft Windows
XP Professional SP3
T 0.5
F 0.5

Table B.2: User action nodes.

(a)

UserOpens
FlashFile
T 0.928524
F 0.071476

(b)

User Starts
JavaWebStartApp
T 0.867202
F 0.132798

(c)

User Using Ldap
Connection
T 0.015
F 0.985

(d)

User Loads
PdfDocument
T 0.015
F 0.985

(e)

User read
emails
T 0.967239
F 0.032761

(f)

User click on
link
T 0.918919
F 0.081081

(g)

User download an untrusted
applet or application
T 0.913726
F 0.086274

(h)

User executed a spe-
cially crafted applet
T 0.949352
F 0.050648
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Table B.3: Attacker action nodes.

(a)

AttackAction Flash-
FileCompromised
T 0.86
F 0.14

(b)

Attacker JavaAppWith
Long Vm Argument
T 0.99
F 0.01

(c)

Attacker
Action
T 0.99
F 0.01

(d)

Attacker Pdf-
Compromised
T 0.86
F 0.14

(e)

Attacker has send
phisheing email
T 0.86
F 0.14

(f)

Attacker
Action2
T 0.99
F 0.01

(g)

Attacker
Action3
T 0.99
F 0.01

Table B.4: Vulnerability present in user’s computer nodes.

(a) CVE-2010-0187 AdobeFlash

CVE-2010-0187
AdobeFlash

Adobe Flash
6 0 88 0
T F

T 0.85888 0
F 0.14112 1

(b) CVE-2008-3111 SunJavaMultiple 10

CVE-2008-3111 Sun-
Java Multiple 10

Sun JRE
1 4 0 02
T F

T 0.99968 0
F 0.00032 1

(c) CVE-2009-1094 JavaCPU

CVE-2009-1094
JavaCPU

Sun JRE
1 4 0 02
T F

T 0.99968 0
F 0.00032 1

(d) CVE-2010-4091 OS

CVE-2010-4091
OS

AcrobatReader
9 4 1
T F

T 0.85888 0
F 0.14112 1

(e) Cumulative Security Update of ActiveX
Kill Bits CVE-2010-0811

Cumulative Se-
curity Update of
ActiveX Kill Bits
CVE-2010-0811

Microsoft
Windows XP
Professional
SP3
T F

T 0.85888 0
F 0.14112 1

(f) JRE Virtual Machine Vulnerabilities
CVE-2008-3107

JRE Virtual
Machine Vul-
nerabilities
CVE-2008-3107

Sun JRE
1 4 0 02

T F
T 0.99968 0
F 0.00032 1
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Table B.4: Contd.

(g) JRE Font Processing Vulnerability
CVE-2008-3108

JRE Font
Processing
Vulnerability
CVE-2008-3108

Sun JRE
1 4 0 02

T F
T 0.99968 0
F 0.00032 1

Table B.5: Vulnerability exploited nodes.

(a) CVE-2010-0187 Exploited

CVE-2010-0187 AdobeFlash T F
AttackAction
FlashFileCompromised

T F T F

UserOpensFlashFile T F T F T F T F

CVE-2010-0187
Exploited

T 0.43 0 0 0 0 0 0 0
F 0.57 1 1 1 1 1 1 1

(b) CVE-2008-3111 Exploited

CVE-2008-3111
SunJavaMultiple 10

T F

Attacker
JavaAppWithLongVmArgument

T F T F

User Starts JavaWebStartApp T F T F T F T F

CVE-2008-3111
Exploited

T 0.999 0 0 0 0 0 0 0
F 0.001 1 1 1 1 1 1 1

(c) CVE-2009-1094 Exploited

CVE-2009-1094 JavaCPU T F
User Using Ldap Connection T F T F
AttackerAction T F T F T F T F

CVE-2009-1094
Exploited

T 0.99 0 0 0 0 0 0 0
F 0.01 1 1 1 1 1 1 1

(d) CVE-2010-4091 Exploited

CVE-2010-4091 OS T F
Attacker PdfCompromised T F T F
User Loads PdfDocument T F T F T F T F

CVE-2010-4091
Exploited

T 0.93 0 0 0 0 0 0 0
F 0.07 1 1 1 1 1 1 1
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Table B.5: Contd.

(e) CVE-2010-0811 Exploited

Cumulative Security Update of
ActiveX Kill Bits CVE-2010-0811

T F

Link to crafted website is pre-
sented

T F T F

user click on link T F T F T F T F

CVE-2010-0811
Exploited

T 0.93 0 0 0 0 0 0 0
F 0.07 1 1 1 1 1 1 1

(f) CVE-2008-3107 Exploited

User download an untrusted ap-
plet or application

T F

JRE Virtual Machine Vulnerabil-
ities CVE-2008-3107

T F T F

Attacker Action2 T F T F T F T F

CVE-2008-3107
Exploited

T 0.99 0 0 0 0 0 0 0
F 0.01 1 1 1 1 1 1 1

(g) CVE-2008-3108 Exploited

User executed a specially crafted
applet

T F

JRE Font Processing Vulnerabil-
ity CVE-2008-3108

T F T F

AttackerAction3 T F T F T F T F

CVE-2008-3108
Exploited

T 0.99 0 0 0 0 0 0 0
F 0.01 1 1 1 1 1 1 1

Table B.6: Exploit nodes.

(a) DenialOfService

ParentCVE-2010-0187
Exploited

CVE-2008-3111
Exploited

CVE-2009-1094
Exploited

CVE-2010-4091
Exploited LEAK

State T T T T

Denial Of
Service

T 0.29 0.99 0.99 0.99 0.5
F 0.71 0.01 0.01 0.01 0.5

(b) Root Access Privilege

CVE-2010-0811
Exploited

T F

Root Access
Privilege

T 0.99 0
F 0.01 1

(c) Authentication Bypass

CVE-2009-1094
Exploited

T F

Authentication
Bypass

T 0.99 0
F 0.01 1
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Table B.6: Contd.

(d) User Access Privilege

Parent CVE-2008-
3107 Exploited

CVE-2008-
3108 Exploited LEAK

State T T

User Access
Privilege

T 0.99 0.99 0.5
F 0.01 0.01 0.5

(e) Arbitrary code execution

Parent CVE-2010-
0811 Exploited

CVE-2008-
3107 Exploited

CVE-2008-
3108 Exploited LEAK

State T T T

Arbitrary code
execution

T 0.99 0.99 0.99 0.5
F 0.01 0.01 0.01 0.5

(f) Unauthorized Modification

Parent CVE-2008-3107 Exploited CVE-2008-3108 Exploited
LEAKState T T

Unauthorized
Modification

T 0.99 0.99 0.5
F 0.01 0.01 0.5

Table B.7: System compromised node.

Parent Denial
Of
Service

Authentica-
tion Bypass

Root
Access
Privilege

User
Access
Privilege

Arbitrary
code
execution

Unauthorized
Modification LEAK

State T T T T T T
System Com-
promised

T 1 1 1 1 1 1 0.5
F 0 0 0 0 0 0 0.5

93


