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ABSTRACT 
 
 
 

USING BAYESIAN MODEL SELECTION AND CALIBRATION TO IMPROVE 

THE DAYCENT ECOSYSTEM MODEL 

 
 

Process-based biogeochemical models have been developed and used for decades to predict the 

outcomes of real-world ecological processes. These models are based on a theoretical 

understanding of relevant ecological processes and approximated using highly complex 

mathematical equations and hundreds of unknown parameters—requiring calibration using 

physical observations of the system. These models are then used to test scientific understanding, 

estimate pools and fluxes, make predictions for future scenarios, and to evaluate management 

and policy outcomes. To provide a better understanding of the ecological processes, these 

models need to be simple, make accurate predictions, and account for all sources of uncertainty. 

The focus of this dissertation is to develop a Bayesian model analysis framework to meet 

the goal of developing simple and accurate models that fully address uncertainty. This 

framework includes variance-based global sensitivity analysis (GSA) to identify influential 

model parameters, a Bayesian calibration method using sampling importance resampling (SIR) 

to estimate the posterior distribution of unknown model parameters and hyperparameters, and a 

Monte Carlo analysis to estimate the posterior predictive distribution of model outputs. The 

framework accounts for all sources of uncertainty, including the remaining uncertainty over the 

fitted parameters. Additionally, Bayesian model selection is also implemented in the framework 

to determine the most appropriate level of complexity during model development. The 

framework is applied to improve the DayCent ecosystem model in agricultural applications. 
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The DayCent model was improved with several model developments, including NH3 

volatilization, the release of nitrogen (N) from controlled-release N fertilizers (CRNFs) and the 

inhibition of the biological process of nitrification and delay the transformation of NH�� to NO�� 

with nitrification inhibitor (NIs). The model development incorporates key 4R management 

practices that mitigate NH3 and N2O emissions in fertilized upland agricultural soils. In addition, 

I recalibrated the soil organic matter submodel to improve estimation of soil organic carbon (C) 

sequestration potentials to a 30 cm depth for several management practices, including organic 

matter amendment, adoption of no-till management, and addition of synthetic N fertilizers.  

The results showed that the DayCent model predictions of C sequestration and reduction 

in N2O flux as well as NH3 volatilization from several management practices were consistent 

with the field observations. The model result suggested that addition of organic amendments and 

adoption of no-till are viable management option for C sequestration, however, the addition of 

synthetic N fertilizer did not produce a significant level of C sequestration. For NH3 

volatilization, the model also adequately captures the reduction potential of urease inhibitor 

along with the incorporation of urea by mechanical means or with immediate irrigation/rainfall. 

The model also shows promising results in mitigating N2O emissions with both CRNFs and NIs 

in comparison to field observations. The model prediction focuses on estimating greenhouse gas 

(GHG) mitigation potential and estimation of uncertainty arising during model prediction—

enhancing DayCent as a tool for scientific understanding, regional to global assessments, policy 

implementation, and carbon emission trading. Overall, the model improvements enhanced the 

ability of the DayCent model in providing a stronger basis to support policy and management 

decisions associated with GHG mitigationin agricultural soils. 
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CHAPTER 1. INTRODUCTION 
 
 
 

1.1. Overview 

We, as humans, have relied upon agricultural soils for a wide array of services, including food, 

fuel, and fiber in the past, present, and will play an important role for the coming future—

providing the same services for growing populations. Agricultural soils also provide 

opportunities to mitigate global climate change (Paustian et al., 2016; Sanderman et al., 2017). 

Agricultural soils are a net source of greenhouse gases (GHGs) but hold the potential to reduce 

or even become a net sink for GHG emissions, through adoption of best management practices 

(BMPs). However, BMPs vary substantially due to soil heterogeneity, climatic conditions, and 

management practices (Lal, 2004a; Paustian et al., 1997; Smith et al., 2008). Furthermore, the 

reduction of GHGs through carbon sequestration (negative emission) and the reduction of nitrous 

oxide (N2O) emissions should be accomplished without adversely affecting food production.  

Soil contains a large reservoir of carbon (C) greater than terrestrial vegetation, and 

atmospheric CO2 combined (IPCC, 2013). Land conversion for food production has caused a 

loss of 50-75% of the native soil C stocks (Lal et al., 2007; Ogle et al., 2005; Sanderman et al., 

2017) and represents a potential CO2 sink that could return about two-thirds of initial C loss (Lal, 

2004b; Lal et al., 2007; Paustian et al., 1997; Smith, 2004a). Some estimates suggest the level of 

sequestration can offset annual anthropogenic GHG emissions of 8.9 gigatonnes C by adopting 

the “4 per mille” initiative (Minasny et al., 2017)—promoted by the French Ministry of 

Agriculture. However, this initiative has faced criticisms due to limitation based on realistic 

potentials for C sequestration and challenges for widescale adoption (Poulton et al., 2018; 

VandenBygaart, 2018; White et al., 2018), and also N requirements due to the stoichiometric 
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constraints driven by the coupled C and N cycling in the ecosystem (Bertrand et al., 2019). 

Importantly, adopting management practices that enhance organic matter input and/or reduce C 

losses by limiting decomposition can sequester C (Lal et al., 2007; Ogle et al., 2005; Paustian et 

al., 1997) but must also consider the impacts on other GHGs from soils. 

Crop production is by far the single largest use of industrially fixed nitrogen, consuming 

about 80% of the total N production (Galloway et al., 2008; Smil, 1999; Sutton et al., 2012) of 

which only about half is taken up by crops, while the rest is lost to the environment (Erisman et 

al., 2007; Galloway and Cowling, 2002). Increasing N available through the Haber-Bosch 

process, developed in the early 1900s, has alleviated nitrogen limitation in cropland, increased 

crop yield, and improve soil fertility (Vitousek et al., 1997), but also caused some adverse effects 

to human health and the environment (ApSimon et al., 1987; Asman et al., 1998; Bouwman et 

al., 2002a; Erisman et al., 2007). Nitrogen losses from agroecosystem include gas fluxes of NH3, 

N2O, NO2, NO, and N2 as well as leaching and runoff losses of NO��, and are often the major 

pathways other than harvest removal. Management practices that deliver added N more 

efficiently to crops and improve N use efficiency often suppress N losses to the environment 

(Smith et al., 2008). The “4R” nutrient stewardship concept of applying the right source (or 

product) at the right rate, right time, and the right place has been emerging as the BMPs for N in 

agroecosystems.  

In agroecosystems, many practices have been advocated to decrease GHG emissions. 

However, management options often affect more than one source of GHGs, through interactions 

between different mechanisms, sometimes in opposite ways, so the net GHGs reduction depends 

on the cumulative of all GHGs (Robertson et al., 2000; Smith et al., 2008). Additionally, 

different mechanisms and practices often interact with soil and climatic conditions and may not 



3 

be feasible everywhere—requiring region-specific BMPs. Hence, understanding and identifying 

practices that maximize the mitigation potentials through direct measurement requires a 

complete accounting of C and N flows through the ecosystems that are continuous, spatially 

explicit at various scales, and thus, is not feasible as a means of implementing mitigation projects 

or conducting large scale assessments. Alternatively, process-based ecosystem models allow us 

to test hypotheses to better understand the complex interactions present in agricultural soils by 

incorporating controls on biogeochemical processes, integrating knowledge from laboratory and 

plot experiments through model development and calibration exercises (Conant et al., 2011a; Del 

Grosso et al., 2001; Luo et al., 2016; Smith, 2012).  

Although process-based models are extensively used to understand the complexity in an 

ecosystem and its underlining processes, these models are also used as tools for GHG inventories 

and reporting emissions and for decision support systems provide forecasting. The model needs 

to be calibrated or parameterized using observed data, and account for all sources of uncertainty. 

Above all, the model needs to be accurate and as simple as possible following the principle of 

parsimony (Occam’s razor). However, many process-based models rely upon hundreds of model 

parameters for prediction and a relatively small set of empirical data to learn from and hinders 

parameterization. Therefore, my main objective was to develop a statistical model analysis 

framework that leads to data-model integration, incorporating Bayesian model selection, 

Bayesian calibration, and a global sensitivity analysis (GSA) (Figure 1.1). 

The platform incorporates new model development (green arrows) and model calibration 

only of an existing model (blue arrows) (Figure 1.1). When new model development is required, 

the platform can be used to test multiple models with competing hypotheses or nested models 

with different levels of complexity, and objectively evaluates performance with Bayesian model  
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Figure 1.1. The diagram of Bayesian Model Analysis Platform for improving model 
predictability and quantifying model uncertainty. The diagram illustrates two scenarios for (I) 
New model development: competing/nested models were presented and Bayes factors are used 
for the purpose of Bayesian model selection (green arrow). (II) Model calibration only: where a 
previously developed model is further calibrated when a new dataset is available (blue arrow). 
Finally, the model and posterior parameters were used for (III) Monte Carlo Uncertainty 
Analysis to quantify model uncertainty. 
 
selection. Specifically, variable inputs and priors were defined for each model and all the 

proposed models were parameterized with Bayesian calibration methods. Bayes factors were 

estimated by calculating integrated likelihood from the posterior. Then the final model was 
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selected based on the Bayes factor. The final estimates of model output and mitigation potentials 

were estimated using the Monte Carlo Uncertainty Analysis framework.  

For the existing model, a GSA is performed to identify the most influential parameter sets 

using Sobols method and the non-influential parameters were set to their default values. Then, 

the model was parameterized using that Bayesian calibration method that provides a set of joint 

posterior distributions for the unknown model parameters and hyperparameters, quantifying the 

uncertainty in model parameters and the residual error that is not explained by the model 

structure, respectively. The joint posterior distribution can then be used to estimate GHG 

emissions and soil C stock changes with uncertainty using the Monte Carlo Uncertainty Analysis 

framework. The next few sections provide the underlying logic and mathematical basis for this 

framework.  

1.2. Statistical Framework for Bayesian Inference 

Let Τ �x
��t��, Ο �x
��t��, and Μ�x
�∗ �t�, θ� be the true, measured, and modeled value of the 

ecological processes (e.g., SOC stock changes, N2O flux) for the ith site, jth treatment, and year t, 
where xij�t� represents all factors and conditions (e.g., weather, soil texture, management 

practices, etc.) resulting in the truth, and θ is a vector of model parameters. During the model 

development process, only a subset xij∗�t� from xij�t� are considered and used to drive the model, 

because, in practice, all factors and conditions are not known, and known factors may not be 

readily available for modeling. I denote xij∗�t� as variable inputs, which may be available through 

the published literature or available for download from online database systems. 

In situ observations or samples are collected by the investigators for further analysis 

using laboratory methods, as the truth is unknown. I assume that the observations are an 
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unbiased estimator of the truth with some level of variance, resulting in the following 

relationships,  

O �x
��t�� =  T �x
��t��  +  ε
��t�. 
(1.1) εij�t�~N �0, τij2�t��, 

where εij�t� is normally-distributed (Gaussian) measurement error with zero mean and variance 

τij2�t�.  
Under conditions specified by the variable inputs and model parameter vector θ, the goal 

of my research is to use DayCent to predict the true values of GHG emission resulting from 

ecological processes (e.g., SOC stocks, N2O flux). Assuming that DayCent output is not a perfect 

representation of reality, we can express the truth as an additive function of model output plus 

Gaussian error conditioned upon the parameter θ as follows: 

M�x
�∗ �t�, θ� = T �x
��t�� + δ�x
��t�|θ�,      
(1.2) δ�x
��t�|θ�~N�B
��t�|θ, ν
�,�t�|θ�, 

where δ�x
��t�|θ� represents model error with mean Bij�t�|θ, representing the model bias, and 

variance νij2�t�|θ. When the model is an unbiased estimator of the truth, δ�x
��t�|θ� is a zero-

mean Gaussian process (i.e. Bij�t�|θ = 0 for all i, j, and t); otherwise, the model has a bias due to 

insufficient knowledge and imperfect conceptualization of the ecosystem processes presented in 

the model. 

Equations (1.1) and (1.2) account for three major sources of uncertainty: measurement 

error variance, model bias, and model error variance. Because the truth is unknown, we cannot 

separately identify these three sources (Kennedy and O’Hagan, 2001). However, by assuming 
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independence between the model error δ�x
��t�|θ� and the measurement error εijk, Equations 

(1.1) and (1.2) can be combined to allow inference accounting for all sources of uncertainty:  

Ο �x
��t�� −  Μ�x
�∗ �t�, θ� = ε
��t� − δ�x
��t�|θ�~ N�B
��t�|θ,   σ
�,�t�|θ�,      
(1.3) σij2�t�|θ =  �νij2�t�|θ + τij2�t��. 

Now, combining the data across all sites i, treatment j, and year t, we have the data vectors O�0� 

and Μ�0∗, θ�, each of length n (i.e., the number of observation). Applying Equation 1.3 to these 

vectors, we then have  

O�0� − Μ�0∗, θ� = δ�0|θ�,      
(1.4) δ�0|θ�~N�B|θ, Σ|θ�, 

where I have assumed that the error vector δ�0|θ� has a multivariate normal distribution with  

n × 1 mean vector B and n × n covariance matrix Σ given θ. In my analysis, the covariance 

matrix Σ represents the spatiotemporal hierarchical correlation structure in the dataset from 

multiple sites with repeated measures. 

1.3 Bayesian Model Selection 

During model development, it is necessary to make choices about the degree of precision, 

generality, and realism (Levins, 1966) and the appropriate level of complexity in the model 

(Cuddington et al., 2013). These decisions are informed by comparing different candidate 

models to field measurements, and Bayesian model selection provides a framework for making 

the necessary choices to determine the candidate model that is best for the application (Kass and 

Raftery, 1995; Wasserman, 2000). Many models have been developed to understand ecological 

systems and are often based on subject matter theories and hypotheses that vary in their 

underlying mechanistic explanation of the phenomenon of interest. A Bayesian model selection 

method provides a probabilistic framework to identify the most likely model or level of 
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complexity in the model supported by the measured dataset (Kass and Raftery, 1995; 

Wasserman, 2000). In general, using the data D, the Bayes factor provides a probabilistic scheme 

to compare two competing hypotheses presented in the form of mathematical models, or levels 

of complexity in a model, and measured by the posterior odds.  

Suppose we have a total of K models, M6, ⋯ , M8 under consideration and each with 

unknown parameter vectors, θ6, ⋯ , θ8, respectively. From Bayes’ theorem, the posterior 

probability for the model M9 is obtained using the following equation:  

pr�M9|D� =  pr�D|M9�pr�M9�∑ pr�D|M>�pr�M>�8>?6 , (1.5) 

where pr�M9� is the prior probability of the model M9 and pr�D|M9� is the integrated likelihood 

of the model provided by the following integrals:  

pr�D|M9� =  @ pr�D|M9, θ9�pr�θ9|M9�dθ9. (1.6) 

where pr�D|M9, θ9� is the likelihood of the model M9 with parameter vector θ9 and pr�θ9|M9� 

is the prior density of θ9 for model M9. Hence, the posterior odds can be expressed as a product 

of Bayes factor and prior odds for comparing model M
 versus M�as given by the following 

equation:  

B
� = pr�M
|D�pr�M�|D� =  pr�D|M
�pr�D|M��  ∙ pr�M
�pr�M��. (1.7) 

When B
� > 1, the odds favor model M
 over M� and vice versa when B
� < 1.  For 

example, with a Bayes factor B
� = 10, model M
 is ten times more likely than model M�, but if 

B
� = 1/10, then model M
 is ten times less likely. A value of B
� = 1 means both models are 

equally likely.  
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In practice, when no prior information is available about the model, the assumption of 

equal prior probabilities is common and the prior odds equal 1 and the posterior odds equal the 

Bayes factor. However, the evaluation of the Bayes factor requires calculating the integrated 

likelihood (Equation (1.6)), and cannot be evaluated analytically in the case of a process-based 

model. Alternatively, a Monte Carlo method can be applied using the harmonic mean of the 

posterior likelihood (Jeffreys, 1961) to estimate an integrated likelihood as follows: 

prF�D|M9� = G 1m I pr�D|M9, θ9�J���6K
J?6 L�6, (1.8) 

where pr�D|M9, θ9�J�� is the likelihood for model M9 and sample s in the posterior. I used the 

posterior likelihood from the SIR method to estimate the integrated likelihood (See Section 1.5).  

1.4. Global Sensitivity Analysis 

Process-based models are often over parameterized and require an unrealistically large number 

of simulations for Bayesian calibration. Therefore, sensitivity analysis is an important part of 

model development to reduce the number of parameters for conducting a Bayesian calibration 

analysis. Moreover, the dependency of DayCent on hundreds of unknown parameters makes the 

calibration process impractical. In practice, uncertainty is assigned to only a fraction of model 

parameters and it is assumed that other parameters are fixed without error (McAllister et al., 

1994). This assumption may underrepresent uncertainty and may also introduce bias into the 

model output, particularly if influential parameters are set to fixed values. Thus, a global 

sensitivity analysis that adopts a parsimonious principle by identifying the most important or 

‘sensitive’ parameters driving the model, and fixing other non-influential parameters is 

recommended to avoid significantly reducing estimates of model uncertainty (Saltelli et al., 

2008). 
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The sensitivity analysis  can be used to apportion the uncertainty in the model output to 

different sources of uncertainty in the model inputs and can be used to simplify models (Saltelli 

et al., 2004). Specifically, when used with the Monte Carlo framework, the parameter 

uncertainties are propagated through the model output to determine which parameters can be 

fixed without appreciably affecting the model output and the uncertainty, making the model 

more parsimonious (Saltelli et al., 2008), a method known as “Factor Fixing” or “Screening”. 

The variance-based Sobol method (Saltelli, 2002; Sobol, 2001, 1993) is arguably one of 

the most robust and comprehensive global sensitivity methods (Saltelli et al., 2008). Similar to 

the analysis of variance, the method partitions the total variance of the model output into first-

order and higher-order interaction terms and allows the estimation of the proportion of variance 

explained by each parameter. Unlike the local method, for example, one factor at a time (OAT) 

approach, this method takes into consideration the whole parameter space simultaneously in the 

form of a probability density function, including both main effects and interactions between 

parameters (Saltelli et al., 2008). The Sobol method is model-independent, works for both linear 

and nonlinear outputs (Sobol, 2001) and is well suited for complex and highly non-linear 

process-based ecosystem models, such as DayCent. (Homma and Saltelli, 1996; Saltelli, 2002). 

1.5 Bayesian Model Calibration  

Model parameterization is a key step to developing robust applications for estimating SOC stock 

changes, N2O emissions and other model outputs. There are methods based on the optimization 

of parameters, such as the PEST algorithms (Necpálová et al., 2015). However, these 

optimization routines do not generally provide posterior distributions that could be used to 

quantify uncertainty in model predictions. Recent advancement in Bayesian calibration 

techniques has led to methods suitable for addressing uncertainty in both model parameters and 
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predictions. Bayesian calibration is an inverse modeling process that provides a probabilistic 

framework to estimate the joint posterior distribution of the unknown parameters that is 

consistent with the measured, model, and prior understanding. Using Bayes’ theorem the 

posterior distribution p�θ|Ο�0�� of the parameters θ, given the measured data and model output, 

can be represented as a function of likelihood L�Ο�0�|θ� and the prior p�θ�, where the likelihood 

measures the mismatch between the modeled and the measured data, and the prior is the current 

understanding of the distribution of model parameters based on either previous analyses or 

expert knowledge. In many Bayesian analyses, the posterior is known only up to a constant of 

proportionality and requires multidimensional integrals to calculate the normalizing constant. 

However, in most cases, the normalizing constant cannot be evaluated analytically (Gelman, 

2014; Smith and Gelfand, 1992). Additionally, for process-based simulation models such as 

DayCent, model simulations are required to quantify the likelihood and an analytical solution 

does not exist. In this case, Monte Carlo methods provide an effective estimation by updating a 

sample from the prior to a sample of the posterior through the likelihood function (Rubin, 1988; 

Smith and Gelfand, 1992). The joint posterior distribution is defined up to a proportionality 

constant as follows: 

p�θ|Ο�0��  ∝  L�Ο�0�|θ�p�θ�. (1.9) 

In the process, the prior density p�θ� is updated to the posterior density p�θ|Ο�0�� 

through the data likelihood function L�Ο�0�|θ�. When the data contain little information about 

the parameters, the posterior tends to reproduce the prior, hence nothing has been learned with 

the new data. However, as data become more informative, the likelihood L�Ο�0�|θ� outweighs 

the prior and the data dominate the posterior (Box, 1973; Gelman et al., 2014). 
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Many Monte Carlo methods have been developed for this purpose using the Markov 

Chain Monte Carlo (MCMC) approach, such as the Metropolis-Hastings (MH) algorithm 

(Hastings, 1970; Metropolis et al., 1953) and direct simulation such as the sampling importance 

resampling (SIR) algorithm (Rubin, 1988, 1987). The MH algorithm has been used in several 

studies for parameter estimation in process-based  models (Clifford et al., 2014; Hararuk et al., 

2014; Van Oijen et al., 2005; Xu et al., 2006). The MH algorithm follows a random walk through 

a parameter space iteratively. In each step, a new candidate vector is proposed and is accepted or 

rejected. This process is repeated for a large number of iterations with multiple chains to test for 

posterior convergence.  

In contrast to MCMC, the Sampling Importance Resampling (SIR) algorithm is non-

iterative and does not require a random walk through the parameter space. Instead, M random 

samples from the prior are obtained, and then from this, a smaller sample m < M is drawn with 

sample probability proportional to their importance weights—resulting in an approximate sample 

from the joint posterior distribution. In practice, the SIR algorithm has been successfully applied 

in the field of fisheries to a population dynamics model for bowhead whales population (Raftery 

et al., 1995) and to estimate the joint posterior distribution of a 54-parameter model for age-

structured yellowfin sole (McAllister and Ianelli, 1997). Being non-iterative, using the SIR 

algorithm, model simulations can be carried out independently and is advantageous when pairing 

with the inherently parallel nature of high-performance clusters and significantly reduces the 

waiting period compared to MCMC techniques. My approach of utilizing SIR method provides 

an alternative method to MCMC (e.g. Metropolis-Hastings) that lends itself inherently to parallel 

processing and is easily scalable—an important feature and advantage as high-performance 

clusters are becoming more accessible, affordable, and can be leveraged with efficiency. 



13 

The SIR algorithm (Rubin, 1987; Rubin, 1988) is a non-iterative Monte Carlo method 

that aims to generate a sample from the target (i.e., posterior) distribution. First, an independent 

random sample Pθ6, θ,, … . , θRS of size M is drawn from the prior; often, this is relatively simple. 

Second, model simulation is performed for each of the prior sample and likelihood vales were 

calculated. Third, a smaller sample TθU6, θU,, … . , θUKV of size m �m < M� is drawn with or without 

replacement from the initial sample with probabilities, ω�θJ�, proportional to the importance 

ratios or equivalently to the likelihood when the prior is also the “importance function” (Givens 

et al., 1995; Punt and Hilborn, 1997; Smith and Gelfand, 1992). Therefore, in the SIR algorithm, 

the likelihood gives the resampling weights, and parameters that produce higher goodness of fit 

between the measured and modeled output are more likely to be retained in the posterior.  

The posterior sample generated using the SIR algorithm is a set of approximate draws 

from the posterior distribution, and the approximation improves as M increases (i.e. M → ∞) 

(Gelman, 1993; Givens et al., 1995; Rubin, 1988). In practice, the choice of M should be large 

enough to achieve greater sampling efficiency (McAllister and Ianelli, 1997). It is also important 

that the prior to cover the entire support of the posterior (Gelman et al., 2014; Smith and 

Gelfand, 1992). When the prior is a poor approximation of the posterior, which may arise when 

no information is available about the distributional form of the model parameters, the algorithm 

becomes less efficient and results in few very large weights and many small weights. In this 

situation, Gelman et al. (2014) suggested sampling without replacement to produce a more 

realistic intermediate approximation between the prior and the target densities. In the case of 

moderately informative importance weights, both samplings with or without replacement will 

produce similar results. In summary, the SIR algorithm has been proposed as one of the simplest 
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and most versatile Bayesian Monte Carlo methods for drawing samples from the posterior 

(Rubin, 1987; Rubin, 1988; Smith, 1991). 

The calibration of DayCent model parameters using the SIR algorithm can be 

summarized as follows. First, a joint prior density function was constructed with independent 

uniform density functions for influential DayCent model parameters determinded by the GSA. 

Second, from the joint prior density function, I drew a large (M =  1,000,000) independent 

random sample Pθ6, θ,, … . , θRS, where each θ was a vector of DayCent parameters.  The sample 

was drawn using Latin hypercube sampling techniques that effectively represent the parameter 

space by complete stratification on all parameters, which gives a more efficient representation of 

the parameter space (at a given sample size) than simple random sampling (Mckay et al., 1979; 

Owen, 1992; Stein, 1987). All other DayCent parameters were fixed to their default values. 

Third, the DayCent model was run for all treatments in the calibration sites for all M parameter 

sets Pθ6, θ,, … . , θRS and modeled estimates of the output of interest (e.g, N2O and SOC) 

corresponding to each of the measurements were stored. Fourth, for each of the initial samples 

Ps = 1, 2, … , MS,  I evaluated the likelihood function L�Ο�0�|θJ� assuming that the error was 

defined by the mismatch between the measured and modeled emissions or SOC stocks following 

a multivariate Gaussian distribution with a zero-mean vector and variance-covariance matrix Z, 

addressing the spatiotemporal correlation of the dataset. Fifth, I calculated the standardized 

importance weights; Pω�θ6�, ω�θ,�, … . , ω�θR�S using the following formula: 

ω�θJ� =  [�\�0�|]^�∑ [�\�0�|]^�_̂̀ a , (1.10) 

where L�Ο�0�|θJ� is the likelihood function for the sbc sample. Sixth, I resampled (m =1000) the 

parameter set TθU6, θU,, … . , θUKV without replacement from the initial set of  parameters 

Pθ6, θ,, … . , θRS based on probabilities proportional to the weights  Pω�θ6�, ω�θ,�, … . , ω�θR�S.  
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When all steps were completed, I had m samples TθU6, θU,, … . , θUKV  to approximate the posterior 

distribution. These samples were used to construct the marginal posterior densities of the model 

parameters using a kernel density estimator.  

The likelihood updates the prior to obtain the posterior (Equation 1.9), where the 

likelihood is specified according to the distribution of the error or mismatch between the 

observed and the modeled estimates. As quality and quantity of observations increases, the 

observed data tends to dominate the posterior distribution and priors become less and less 

influential or even completely fade away in terms of their impact on the results (Box, 1973). In 

my analysis, I use datasets with repeated measures from multiple experiment sites and are highly 

correlated in both space and time. Some of this correlation may have been explained by the 

model simulation through the correlation in their variable inputs and model processes, but the 

model may not have explained all of the correlation. The correlation structure not explained by 

the model output, if present, should be incorporated in the variance-covariance matrix to 

correctly estimate uncertainty (Cressie et al., 2009; Hoeting, 2009). 

Therefore, I assumed that the error in my dataset follows a multivariate Gaussian 

distribution with a zero mean and variance-covariance matrix Z. Assumption of a Gaussian 

distribution with zero-mean is commonly made in practice because of convenience and 

flexibility, and more importantly, is often realistic. Therefore, in my analysis, I assume that the 

error between the observed and the modeled follow a multivariate normal distribution, i.e., 

�O − M� ~MVN�0, Σ�, resulting in the following likelihood: 

L�O|θ� =  �2π��f/,|Σ|�6/,exp h− 6, �O − M�iΣ�6�O − M�j, (1.11) 

where, n is the number of observation O and M are vectors of measured values, respectively,  

Σ−1 is the inverse of the variance-covariance matrix,  T defines the transpose of a vector and |Σ| 
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denotes the determinant of the covariance matrix Σ. Here, for simplicity, I drop the variable input 

x from the notation. For computational efficiency, I used log-likelihood in all of the calculations 

instead of the likelihood itself, resulting in the following log-likelihood function. 

l�O|θ�  ∝  − 12 log|Σ| − 12 �O − M�iΣ�6�O − M� (1.12) 

In theory, it is possible to conceptualize and assign hyper-parameters to the components 

of the variance-covariance matrix reflecting the hierarchical correlation structures presented in 

the dataset. However, in practice adopting a full Bayesian analysis demands a full and careful 

consideration of prior information regarding the hyper-parameters (Kennedy and O’Hagan, 

2001).  Fixing hyper-parameters with plausible estimates has been adopted in many studies 

(Braswell et al., 2005; Hurtt and Armstrong, 1996; Kennedy and O’Hagan, 2001; McAllister and 

Ianelli, 1997; Sacks et al., 2006; Van Oijen et al., 2005), but this only impacts the uncertainty 

through ‘second-order’ effects that can often be neglected without losing much information 

about the uncertainty (Kennedy and O’Hagan, 2001). Furthermore, when a prior for the variance 

was included, McAllister and Ianelli, (1997) found SIR became inefficient in practice, and fixing 

at its model value appeared to be a reasonable remedy and did not lead to bias in the posterior. In 

my analysis, I used the restricted maximum likelihood (REML) estimator within the linear 

mixed-effect (LME) framework to estimate the most plausible fixed values for the hyper-

parameters (i.e. component of Σ  matrix). The model included two levels of nested random 

effects (site and year within site) to account for the spatiotemporal dependencies in the dataset 

that was used to calibrate DayCent (see Pinheiro et al., 2010). 

1.6. Model Prediction using Monte Carlo Approach 

The final step in the Bayesian model analysis framework is to use a Monte Carlo approach to 

propagate uncertainty through the DayCent model application and derive prediction intervals. 
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The resulting prediction intervals address the uncertainty associated with model parameters, but 

also the unexplained error in model predictions based on the hyperparameters. The 

hyperparameters quantify uncertainty associated with parameters in other sub-models and also 

imperfect representation of processes in the DayCent model structure.  

I applied the Monte Carlo approach using the sample from the joint posterior probability 

distribution of the parameters and hyperparameters, applying the model iteratively for many 

replicates (e.g., 1000). The Monte Carlo analysis can also address uncertainties in model inputs, 

such as weather data and edaphic characteristics. The main purpose or quantities of interest are 

the estimates and associated uncertainty for model output and GHG mitigation potentials of 

agricultural soils. The method assigns uncertainties by propagating the error in the parameters 

and hyper-parameters, which are influenced by uncertainties associated with model structure and 

the measurement error.  

1.7 Organization of Dissertation 

The dissertation is about the development and improvement (meaning, equation formulation, 

model selection, and calibration) of the DayCent process-based ecosystem model, which has an 

intermediate level of complexity. I focused on developing new model algorithems and making 

model predictions for several management practices, assessing their mitigation potentials, and 

quantifying uncertainty on the predictions. The dissertation is organized into five chapters, 

including this chapter with an introduction to the Bayesian model platform and highlighting 

some of the ecological and modeling challenges of our time. Chapter 2 presents a Bayesian 

model analysis framework and includes GSA to identify a set of most influential parameters, a 

sampling importance resampling (SIR) algorithm to draw a sample from the joint posterior 

distribution of model parameters and a Monte Carlo simulation to estimate prediction 
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uncertainty. The framework is then applied to the DayCent ecosystem model to reduce 

uncertainty on model prediction of SOC stocks of various management form various long-term 

experimental sites and stock differences within sites between two practice; (1) with and without 

farmyard manure, (2) adoption of no-till, and (3) with and without synthetic N fertilizer 

application. Chapter 3 detailed the development of six different models of varying complexity 

for NH3 volatilization integrated into DayCent. All six models were calibrated using SIR 

algorithm and Bayesian model selection techniques to identify the most appropriate level of 

complexity supported by the measurement dataset. Three management options were evaluated to 

reduce NH3 volatilization, including mechanical incorporation of urea; incorporation with 

irrigation/rainfall events; and use of urease inhibitor, a stabilized enhanced efficiency N fertilizer 

with urease inhibitors. Chapter 4 provides model development and improvement, application of 

GSA, and SIR algorithm to quantify reduction factors for N2O emissions when switching from 

conventional N fertilizer to two enhanced efficiency nitrogen fertilizers. Model development 

incorporates the N release for controlled-release N fertilizer (CRNFs) and nitrification inhibitors 

(NIs) as a stabilized N product that inhibits the transformation of NH�� to NO��. Chapter 2-4 are 

formatted as per individual publication requirements and contain abstracts, introductions, 

materials and methods, discussions, and conclusions. Chapter 5, summarizes the results and 

finding from the previous three chapters (i.e., 2-4) and possible future directions. 
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CHAPTER 2: MODELING AMMONIA VOLATILIZATION FROM UREA APPLICATION 

TO AGRICULTURAL SOILS: DAYCENT MODEL DEVELOPMENT 

 
 

2.1. Summary 

Nitrogen (N) loss through ammonia �NH�� volatilization in agricultural soils is a significant 

source of atmospheric NH�, contributing to low N use efficiency in crops, risk to human health, 

environmental pollution, and is an indirect source of nitrous oxide �N,O� emissions. My 

objective was to develop an ammonia volatilization method within the DayCent ecosystem 

model that incorporates key 4R management practices that influence NH� volatilization 

associated with application of urea-based nitrogen fertilizers to agricultural soils. The NH� 

volatilization method was developed with Bayesian calibration using sampling importance 

resampling (SIR) methods and Bayes factors to select the level of complexity in the model that 

best represents NH� volatilization given the observed data. The final model included urea 

hydrolysis and the influence of urease inhibitors; short-term soil pH changes following 

fertilization; fertilizer incorporation into the soil (mechanically and through 

irrigation/precipitation); and specification of the fertilizer placement method (i.e. broadcast vs. 

banding and surface vs incorporated). DayCent predicts NH� volatilization with a root-mean-

squared error (RMSE) of 158 (95% interval ranging from 133 to 192), bias of 7 (95% interval 

ranging from -106 to 102) g NH3-N ha-1 day-1, and with a Bayesian R2 value of 0.39 (95% 

interval ranging from 0.17 to 0.62). Furthermore, the model incorporates key management 

options influencing NH� volatilization related to placement method and fertilizer type with and 

without urease inhibitors that can be used to evaluate management and policy options for 

reducing losses of NH3 from urea fertilization. 
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2.2. Introduction 

Crop production is by far the single largest use of synthetic nitrogen (N) fertilizer, consuming 

about 80% of the total global production (Erisman et al., 2007; Galloway et al., 2008). 

Approximately 10-20% of fertilizer applied to agricultural soil is estimated to be volatilized as 

ammonia �NH�� to the atmosphere, and the volatilization rates vary based on management 

practices, particularly fertilizer types and application rates, as well as climatic conditions and 

edaphic characteristics (Bouwman et al., 2002a; Pan et al., 2016; Sommer et al., 2001). It is a 

significant pathway of N loss from cropping systems and a major source of atmospheric NH�, 

contributing to air pollution, reducing N use efficiency, and negatively impacting human health 

and the environment. Some of the environmental impacts include soil acidification, 

eutrophication of surface water, and loss of biodiversity (ApSimon et al., 1987; Asman et al., 

1998; Bouwman et al., 2002a; Erisman et al., 2007; Roelle and Aneja, 2002). In addition, it is 

also an indirect source of nitrous oxide �N,O� emissions due to the N cascade effect in the 

environment (Galloway et al., 2003). Furthermore, a molecule of N,O is a more potent 

greenhouse gas relative to carbon dioxide contributing about 300 times more to the warming 

effect in the atmosphere than CO2 over a 100-year time horizon (Schlesinger and Bernhardt, 

2013), and N,O is also a dominant ozone-depleting substance (Ravishankara et al., 2009). 

Several physical and chemical processes are involved with NH� volatilization from 

fertilized soil (Freney et al., 1983; Misselbrook et al., 2005; Sommer et al., 2001). Following 

application of urea to the soil, urea is rapidly hydrolyzed by extracellular enzyme urease into 

plant-available NH�� (Kissel et al., 1988). The process can be summarized by two subsequent 

reactions in Equation 2.1 and 2.2: 
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CO�NH,�, + 2H,O + H�     opqrJq     sttttttu 2NH�� + HCO��, (2.1) 

HCO�� + H�  ⇌  CO, +  H,O. (2.2) 

Both reactions consume H� and raise soil pH temporarily (Kissel et al., 1988; Sommer et al., 

2001). With higher soil pH, the ratio of NH� to NH�� increases and so does the potential for NH� 

volatilization (Freney et al., 1983; Sommer et al., 2001). However, the change in soil pH is also 

affected by the initial pH and the buffering capacity of the soil (Curtin et al., 1996). 

There are several management practices that reduce NH� volatilization (Engel et al., 

2011; Holcomb et al., 2011; Pan et al., 2016; Rochette et al., 2013a) following the 4R nutrient 

stewardship paradigm, i.e., right type, right rate, right placement and right timing of fertilizer 

applications (Bruulsema et al., 2009). For example, surface applied urea has a higher NH� 

volatilization rate compared to sub-surface banding or deep placement (Pan et al., 2016). When 

urea is placed deeper in the soil profile, losses are lower due to soil resistance to the upward 

diffusion of gaseous NH� and subsequent conversion of NH� to NH��, along with a greater 

retention of NH�� in the soil (Freney et al., 1983; Sommer et al., 2001). Therefore, incorporating 

urea deeper into the soil profile through mechanical incorporation is  recommended to reduce 

NH� loss (Bouwmeester et al., 1985; Rochette et al., 2013a). Alternatively, applied urea can be 

effectively moved deeper in the soil profile by rainfall or irrigation, depending on the timing and 

intensity of rainfall or irrigation after application (Black et al., 1987; Holcomb et al., 2011). The 

opportunity for deeper incorporation without mechanical incorporation into the soil can also be 

accomplished by treating urea with urease inhibitors. The inhibitors effectively delay urea 

hydrolysis, allowing more time for rainfall or irrigation to move urea deeper and diffuse through 

the soil profile (Dawar et al., 2011a; Engel et al., 2011; Pan et al., 2016; Watson et al., 1994). 
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Process-based models can provide a useful framework for understanding and predicting 

ecological responses (Del Grosso et al., 2012). These models are used to test scientific 

understanding, make predictions for future scenarios, and evaluate management and policy 

outcomes. DayCent (Parton et al., 1998) is an ecosystem model that can be used to evaluate the 

fate of applied N in crop production systems, but needs further development to improve the 

prediction of NH� volatilization.  

My objective was to further develop the DayCent model to predict NH� volatilization 

from urea-based fertilizer applications to agricultural soils, along with modeling the influence of 

key management practices associated with 4R recommendations for reducing N losses from the 

soil. I focused on development of the model to simulate urea-based fertilizers with or without 

urease inhibitor and different methods of fertilizer placement on  NH� volatilization. DayCent 

has been well tested for capturing the influence of different rates of N applications on crop yield 

and N2O emissions (Fitton et al., 2014), and so that functionality was not further tested here. This 

study enhances the prediction capability of DayCent for estimating N losses from soils in support 

of management and policy decisions, while also providing insights into key uncertainties 

requiring further research. 

2.3. Materials and Methods 

I applied a framework with Bayesian model calibration and selection methods to determine the 

most appropriate level of complexity for the model (Kass and Raftery, 1995; Wasserman, 2000), 

and to minimize uncertainty in the parameters to the extent possible given the observed 

measurement data from multiple sites.  There are four main parts to the model development and 

testing: (1) development of six levels of complexity for modeling NH� volatilization, (2) 

Bayesian calibration of the model using the sampling importance resampling (SIR) algorithm, 
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(3) Bayesian model ranking and selection using Bayes factors, and (4) performance evaluation 

via comparison of the model to measured NH� losses. 

2.3.1. DayCent Model 

DayCent (Del Grosso et al., 2001; Parton et al., 1998) is an ecosystem model of intermediate 

complexity and operates on a daily time step. It is designed to simulate the flow of carbon (C), 

and nitrogen (N) among several pools in plant-soil systems. The model simulates key ecosystem 

processes related to the N cycle including N uptake by plants, mineralization and 

immobilization, nitrification and denitrification, nitrate �NO�� leaching, and N trace gas fluxes 

�N,O, NOw, N,�. The model simulates NH� volatilization from plant tissue associated with plant 

harvest, senescence, and grazing removal. It also models soil temperature and the flow of water 

through a multi-layered soil profile. DayCent simulates plant growth and water use based on 

green leaf area index (GLAI) as a function of green leaf weight ratio and accumulation of 

aboveground biomass (Zhang et al., 2020). Changes in green leaf weight ratio are dependent on 

heat units, and GLAI incorporates the influence of plant canopy cover on both photosynthesis 

and evapotranspiration (ET). Growth rates based on photosynthetic capacity are further 

constrained by soil water and nitrogen availability. 

The previous version of the model assumes that N from urea fertilizer is immediately 

converted to NH��, which is evenly distributed in the 0-10 cm layer, and does not dynamically 

simulate N losses from NH� volatilization in the soil. In this work, I developed algorithms for 

similating N losses that could be incorporated into DayCent and tested algorithms with varying 

levels of complexity to model NH� volatilization loss, based on the following processes and 

drivers of emissions: a) urea hydrolysis, b) effect of N placement on NH� volatilization (i.e., 

broadcast vs banded and surface application vs incorporation), c) effect of vertical and lateral 
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movement of urea with rainfall and irrigated water, d) short-term soil pH changes driven by the 

addition of urea, and e) effect of soil buffering capacity on soil pH change. 

2.3.2. Experimental Sites 

The dataset for model calibration and selection consisted of eight field locations in the United 

States (Table 2.1). One study included five sites from a cold and dry region in the state of 

Montana with measurements during late-fall, winter, and early spring (Engel et al., 2017, 2011). 

The other three sites included a rain-fed experiment in Minnesota (Thapa et al., 2015), an 

irrigated site in Colorado (Halvorson et al., 2016; Jantalia et al., 2012), and a site with warm and 

wet conditions in Louisiana (Tian et al., 2015). Collectively the dataset consisted of a total of 42 

site-year-treatment combinations for a total of 479 individual observations of NH� emissions. 

Treatments mostly consisted of plots with applications of urea and urea treated with urease 

inhibitors, but some sites also included control plots with no fertilization. 

Table 2.1. Experimental sites used for Bayesian model calibration and selection along with 
reported soil properties that were used in DayCent model simulation. 

Site Locations Lat. Long. Sand Silt Clay pH References 

Baton Rouge, LA 30.35 -91.17 0.347 0.448 0.205 6.2 Tian et al. (2015) 

Fergus County, MT 47.37 -110.08 0.284 0.362 0.354 6.3 Engel et al. (2017) 

Fergus County, MT 47.37 -110.10 0.263 0.454 0.283 7.3 Engel et al. (2017) 

Fort Collins, CO 40.65 -104.99 0.409 0.254 0.337 7.6 
Halvorson et al. 
(2016) Jantalia et 
al. (2012) 

Gallatin County, MT 45.79 -111.59 0.338 0.286 0.375 8.4 Engel et al. (2011) 

Glyndon, MN 46.91 -96.61 0.088 0.587 0.325 8.4 Thapa et al. (2015) 

Hill County, MT 48.53 -110.90 0.455 0.311 0.234 6.4 Engel et al. (2011) 

Hill County, MT 48.84 -110.06 0.616 0.226 0.159 5.5 Engel et al. (2011) 
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2.3.3. Model Development 

For model development, it is necessary to make choices about the degree of precision, generality, 

and realism (Levins, 1966) and the appropriate level of complexity in the model (Cuddington et 

al., 2013). I identified six processes and drivers that influence the rate of NH� volatilization for 

model development and testing (Table 2.2). These processes and drivers were chosen for the 

following reasons: (1) they could be accommodated within the structural framework of DayCent, 

(2) input variables were reported in the publication or were easily available from other sources, 

and (3) the processes covered both variation in management practices and environmental factors 

that influence NH� volatilization from agricultural soils. 

Six candidate levels of model complexity PM6, M,, ⋯ , MxS were developed in this study 

(Table 2.2). M6 is the full model that includes all the processes considered and drivers of 

emissions. The other candidates, M,, M�, M�, My, and Mx, include subsets of the processes and 

drivers, of which Mx is the least complex and only includes urea hydrolysis and a simple NH� 

diffusion process that depends on soil temperature and baseline soil pH. 

Table 2.2. List of processes and six levels of complexity in the NH3 volatilization model that was 
tested in the DayCent model framework.  The process is included if the value is 1 and excluded 
if the value is 0. 
Processes M1 M2 M3 M4 M5 M6 

Urea Hydrolysis 1 1 1 1 1 1 

Diffusion of NH3 1 1 1 1 1 1 

Depth Effect on NH3 Diffusion 1 1 1 0 0 0 

N Concentration Factor 1 1 1 0 0 0 

Increase in Soil pH 1 1 0 1 1 0 

Soil Buffering Capacity 1 0 0 0 1 0 
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2.3.3.1. Urea Hydrolysis 

The rate of urea hydrolysis is assumed to follow an enzymatic reaction represented by simple 

Michaelis-Menten kinetics (Cabrera et al., 1991; Dalal, 1975; Paulson and Kurtz, 1970; Pettit et 

al., 1976; Tabatabai, 1973), in which the reaction rate increases with urea concentration until 

there is saturation of the enzyme activity. When a urease inhibitor is added, the inhibitor binds 

with the free enzyme blocking the hydrolytic action of the urease enzyme and slows the 

hydrolysis process by shifting the reaction curve (Chou and Talalay, 1977). The rate of urea 

hydrolysis with or without the addition of a urease inhibitor is modeled using Equation 2.3: 

UHprbq =  | VKrw × }U~KR +  Ko� + }U~� × f�i × f�R, (2.3) 

where UHprbq is the rate of urea hydrolysis (ppm sec-1), VKrw is the maximum urea hydrolysis 

rate that is achieved by the system (ppm sec-1), and }U~ is the urea concentration (ppm). The KR 

factor (ppm) is Michaelis constant representing the urea concentration at which the reaction rate 

is half of VKrw, and Ko� (ppm) is the additional effect of urease inhibitors on the Michaelis 

constant (Ko� = 0 with no urease inhibitor applied). The rate of urea hydrolysis is known to 

increase with increasing temperature (Moyo et al., 1989; Sahrawat, 1984; Xu et al., 1993) and 

soil moisture (Kumar and Wagenet, 1984; Sahrawat, 1984). The influence of soil temperature, 

f�i, and soil moisture, f�R, are modeled as scalers on the rate of urea hydrolysis and range from 0 

to 1.  

The effect of temperature on urea hydrolysis is modeled as a sigmodal curve with 

increasing rates associated with increasing temperature (Equation 2.4): 

f�i = 66 � ���a  × qw�T�����  × i^���V, (2.4) 
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where TJ�
> is the average soil temperature in °C, and the exact shape of the sigmoid curve is 

determined by two parameters β�ia and  β�i�. Additionally, the effect of soil moisture on 

hydrolysis is assumed to be linear and increases with water-filled pore space (WFPS) as 

represented by Equation 2.5: 

f�R =  β�Ra +  β�R� × WFPS, (2.5) 

where β�Ra and β�R� are the intercept and the slope term for the equation. 

2.3.3.2. Diffusion of Gaseous NH� 

The rate of NH� loss to the atmosphere, volNH� (g NH�-N ha-1 day-1), is controlled by the 

transfer coefficient Kr (day-1) and the amount of NH�� (g N ha-1) present in the soil as follows: 

volNH� =  Kr × NH��. (2.6) 

Furthermore, I assumed that the transfer coefficient is affected by soil temperature, soil pH, and 

incorporation depth as represented in Equation 2.7: 

Kr = 8���6 � qw�T����� ���×��� ���∗ i^����V × f�q�bc, (2.7) 

where KKrw (day-1) is the maximum potential transfer coefficient; TJ�
> is the average soil 

temperature (°C); f�q�bc is the scaler effect of incorporation of urea on ammonia volatilization 

through mechanical operations or leaching associated with precipitation or irrigation; and α�, 

α��, and α�i are model parameters. 

2.3.3.3. Depth Effect on NH� Diffusion 

I modeled the combined effect of fertilizer incorporation depth through mechanical and 

irrigation/precipitation using Equation 2.8, 2.9, and 2.10: 
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f�q�bc� = min�f��R, f����� (2.8) 

f���� = UFpqK� ∗ expT−α� × I��V (2.9) 

f��R = expT−αR × IDRV (2.10) 

where f��R is the scaling factor for the incorporation depth IDR (in mm) at the time of 

application, IDR is the depth of mechanical incorporation (in cm), f���� is the scaling factor for 

water input, I�� is the amount of water infiltration (in mm), UFpqK� is the remaining fraction of 

applied urea at time t, and  αR and α¡ are model parameters. In the model, I assumed that only 

the remaining urea can be moved deeper in the soil profile via leaching. After hydrolysis of urea 

to NH��, the N is considered immobile based on the model structure. 

2.3.3.4. Urea and NH�� Concentration Factor 

When urea is applied to the soil, there is a localized increase in N concentration around the 

granules. In addition, a higher concentration of urea is found with banded applications compared 

to broadcasting. The applied urea is rapidly hydrolyzed to form NH�� and the remaining urea also 

moves away from the localized area in the soil both vertically and laterally creating a 

concentration profile (Dawar et al., 2011b; Singh and Nye, 1984). In addition to the 

incorporation depth, I represented the concentration profile as a fraction of soil volume occupied 

by the localized concentration in order to model the effect of both lateral and vertical movement 

on a daily time step using Equation 2.11: 

CFUb = CFUb�6 +  FRUb ∗ �1 − CFUb�6� ∗ g�WFPS� ∗ g�ST�, (2.11) 

where CFUb is concentration factor of urea or the fractional volume of soil covered by urea at t 
days after urea application, and FRUb is the fraction of urea remaining after t days. At the time of 
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the urea application (i.e. t = 0), FRU� = 1 and CFU� is a parameter input. Furthermore, 

g�WFPS�  is the scaling factor (0-1) for relative soil water content defined by Equation 2.12 

below: 

g�WFPS� =  £ �¤¥�¤¦           WFSP ≤ FC    1                  WFSP > FC , (2.12) 

where WFPS and FC are the water-filled pore space and field capacity of the first three DayCent 

soil layers (i.e. 0-10cm). The term g�ST� is the scaling factor for soil temperature and is 

represented by the following equation: 

g�ST� =  ¨ 0                      Temp ≤ 0©ª«. �i�i∗           0 < Temp < ST∗    1                     Temp ≥  ST∗ , (2.13) 

where ST∗ is the maximum soil temperature at or above which urea is uniformly distributed 

across the 0-10 cm soil layer. In the field, the initial fraction of soil volume in which urea is 

concentrated depends on the type and mode of application. Application mode is an input to the 

model that is dynamically updated every time step following the fertilizer addition using 

Equation 2.11, 2.12, and 2.13.  

Once the concentration factor for urea is calculated, I estimate the concentration factor of 

NH�� �CFAb� (vol vol-1) by taking the weighted average of NH�� already in the soil, new NH�� 

from mineralization and deposition, and the amount of NH�� added through the fertilization 

events. During the calculation, I assume that NH�� from mineralization is uniformly distributed 

within the 0-10 cm soil layer. In addition, the f�q�bc�  and CFAt are also adjusted for new NH�� 

from mineralization using a weighted average until reaching an equilibrium state (i.e., uniformly 

distributed) in the absence of additional synthetic N fertilizer additions. 
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2.3.3.5. Increase in Soil pH 

During urea hydrolysis, the reaction consumes a net of one H� ion for each NH�� formed 

(Equation 3.1), which raises soil pH (Kissel et al., 1988; Rochette et al., 2013b). Furthermore, 

when NH�� is consumed by other processes in the soil, such as plant uptake, nitrification, and 

ammonia volatilization, H� ions are released back to the soil and counter the increase in soil pH. 

Thus, I modeled the short-term increase in soil pH as a function of fraction of N applied as urea 

�UFNA�, titratable acidity to pH 9 �TA9�, NH�� concentration, and concentration factor for 

ammonium �CFA� to account for the localized pH change as follows:  

dpH = ∆pH × �1 − exp h−β�� × �o¤°©∗±°�²³´i©µ× ¦¤© �j�, (2.14) 

where dpH is the change in soil pH, ∆pH is the difference between reference pH (i.e., 9) minus 

initial soil pH, }NH��~ is the ammonium concentration (ppm) per total soil and β�� is a model 

parameter. 

2.3.3.6. Soil Buffering Capacity 

I modeled the soil buffering capacity based on a study by Curtin et al. (1996) derived from a 

diverse suite of 59 agricultural soils from Saskatchewan, Canada. The regression equations are 

derived from chemical analyses to titratable acidity of pH 9 as follows: 

TA9 = 180 × �γ� + γ6 × OC × ∆pH + γ, × clay × ∆pH�, (2.15) 

where TA9 is the titratable acidity to pH 9 (ppm), ∆pH is the difference between reference pH 

(i.e., 9) and initial soil pH, OC is the soil organic carbon (g g-1), and clay is the fraction of clay in 

the soil. 
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2.3.4. Bayesian Calibration and Model Selection 

Bayesian calibration was applied to all six levels of complexity in the model separately to 

estimate the joint posterior distribution of the unknown model parameters. I implemented a non-

iterative Monte Carlo method of Sampling Importance Resampling (SIR) algorithm (Morris, 

1987; Rubin, 1988) to generate an approximate sample from the posterior distribution, similar to 

the analysis in Gurung et al. (2020). I assigned independent uniform priors for each of the model 

parameters constrained within the minimum and the maximum values. Parameter bounds were 

based on information found in previously published journal articles and best approximations 

provided by the DayCent development team (Table 2.3). The likelihood is based on the 

assumption that the data collected from the same sites and years are correlated both spatially and 

temporally and the covariance is estimated with linear-mixed-effect (LME) model framework 

with two level of random effects for site and site by year, as presented in Gurung et al., (2020).  

Many models have been developed to understand ecological systems and are often based 

on subject matter theories and hypotheses that vary in their underlying mechanistic explanation 

of the phenomenon of interest. A Bayesian model selection method provides a probabilistic 

framework to identify the most likely model or level of complexity in the model supported by the 

measured dataset (Kass and Raftery, 1995; Wasserman, 2000). In general, using the data D, 

Bayes factor provides a probabilistic scheme to compare two competing hypotheses presented in 

the form of mathematical models, or levels of complexity in a model, and measured by the 

posterior odds. When comparing M
 versus M�, the posterior odds can be expressed as a product 

of Bayes factor and prior odds given by the following equation: 

B
� =  pr�D|M
�pr�D|M�� ∙ pr�M
�pr�M��. (2.16) 
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Table 2.3. Lower and upper bounds of independent uniform prior distributions and definitions 
for NH� volatilization model parameters. 
Parameters Lower Upper Distribution   Definitions CFU� 0.001 0.05 uniform   Fraction of soil volume covered by urea 

at the time of application  KR 5 500 uniform   Michaelis constant (ppm) for urea 
hydrolysis Ko� 50 1000 uniform   Urease inhibitor effect on Michaelis 
constant (ppm) for urea hydrolysis β�ia 5 50 uniform   Soil temperature parameter for Vmax 
(urea hydrolysis) β�i� 0.05 1 uniform   Soil temperature parameter for Vmax 
(urea hydrolysis) β�� 0 6 uniform   Parameter for pH change function (>0) 

α� 0 1.5 uniform   Precipitation + irrigation effect on 
ammonia volatilization rate αR 0 1.75 uniform   Effect of incorporation depth on 
ammonia volatilization rate KKrw 0.00001 0.1 uniform   Maximum rate of ammonia volatilization 

α�� 0.1 2 uniform   Parameter for the effect of soil pH on the 
rate of ammonia volatilization α�i 0.01 1 uniform   Effect of soil temperature on the rate of 
ammonia volatilization VKrw 0.0005 0.02 uniform   Maximum potential rate of urea 
hydrolysis (ppm/sec) β�Ra 0 0.75 uniform   Intercept for soil moisture effect on urea 
hydrolysis β�R� 0.05 2 uniform   Slope for soil moisture effect on urea 
hydrolysis γ� -2 2 uniform   Intercept term for estimation of titratable 
acidity to pH 9 γ6 50 68 uniform   Effect of SOC and initial pH on 
estimation of titratable acidity to pH 9 γ, 3 5.5 uniform   Effect of clay and initial pH on 
estimation of titratable acidity to pH 9 ST∗ 5 35 uniform   Soil temperature threshold Limiting 
diffusion of urea in soil  

 
When B
� > 1, the odds favor model M
 over M� and vice versa when B
� < 1.  For 

example, with a Bayes factor  B
� = 10, model M
 is ten times more likely than model M�, but if 

B
� = 1/10, then model M
 is ten times less likely. A value of B
� = 1 means both models are 
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equally likely. A formal interpretation of the Bayes factor as a scale of evidence is provided in 

Table 2.4 with seven major categories. Similar evidence is also recommended using log6� scale 

by (Jeffreys, 1961). 

Table 2.4. Jeffreys’ scale of evidence using Bayes factors for hypothesis testing associated with 
model selection. 

Bayes factor Interpretation 

B
�  <  1100 Decisive evidence for M� 1100  < B
�  <  110 Strong evidence for M� 110  < B
�  <  13.2 Substantial evidence for M� 13.2  < B
�  <  3.2 Weak evidence (1 neutrol) 3.2 < B
�  <  10 Substantial evidence for M
 10 < B
�  <  100 Strong evidence for M
 B
�  <  100 Decisive evidence for M
 
 

In practice, when no prior information is available about the model, the assumption of 

equal prior probabilities is common and the prior odds equal 1 and the posterior odds equal the 

Bayes factor. However, the evaluation of the Bayes factor requires calculating the integrated 

likelihood, and cannot be evaluated analytically in the case of a process-based model. 

Alternatively, a Monte Carlo method can be applied using the harmonic mean of the posterior 

likelihood (Jeffreys, 1961) to estimate an integrated likelihood as follows: 

prF�D|M9� = G 1m I pr�D|M9, θ9�J���6K
J?6 L�6, (2.17) 

where pr�D|M9, θ9�J�� is the likelihood for model M9 and sample s in the posterior. I used the 

posterior likelihood from the SIR method to estimate the integrated likelihood. Additionally, I 
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calculated standard goodness-of-fit measures—root mean squared error (RMSE), model bias, 

and Bayesian R2 (Galman et al., 2019) to evaluate the different levels of model complexity, using 

Equation 2.18, 2.19, and 2.20 respectively.  

RMSEJ =  ¼1n I�P
J − O
�,f

?6 , (2.18) 

BiasJ =  1n I�P
J − O
�,f

?6 , (2.19) 

Bayesian RJ, =  Explained varianceExplained variance + Residue Variance , (2.20) 

where, P
Jand O
 are the model prediction for parameter set θJ and observed NH3 volatilization 

and n is the sample size of the dataset. The goodness-of-fit measures were calculated for both the 

prior and the posterior. In addition, point estimates for all three goodness-of fit statistics were 

estimated based on maximum a posterior (MAP) estimate of the parameters after the calibration. 

The MAP estimates are the mode of the posterior parameter distribution, i.e., highest posterior 

density for the model parameters, and is considered the single best parameter set for the joint 

posterior probability distribution. 

2.4. Results 

2.4.1. Bayesian Calibration  

All six levels of complexity in the model were calibrated using SIR algorithm with 1 million 

initial samples from the prior and 1,000 resampling draws without replacement to approximate 

the posterior. In Table 2.5, I have provided the mean and range (2.5 and 97.5 percentile) of root-

mean-squared errors (RMSE), model bias (Bias), and Bayesian R, (Gelman et al., 2019) of 

model predictions from both the prior and posterior distributions. 
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The calibration process reduces the error in predicting NH� volatilization from the prior 

by a factor (mean RMSE of prior divide by mean RMSE of the posterior) between 1.72 and 2.15. 

For all six models, the SIR algorithm successfully retained parameter sets that produce lower 

RMSE, lower absolute bias, and higher R, values along with narrower ranges in the posterior 

parameter distributions compared to the prior distributions (Table 2.5). 

Table 2.5. Mean and range (2.5 and 97.5 percentiles in the parenthesis) for the Root-Mean-
Square Error (RMSE), Model Bias, and Bayesian R, for all six levels of model complexity from 
simulations with the prior and posterior parameter distributions. Point estimates for RMSE, Bias, 
and Bayesian R, values are also included for Maximum a Posterior Probability (MAP). Units for 
RMSE and Bias are in g NH3-N ha-1 day-1.  

        Model Complexity     

    M1 M2 M3 M4 M5 M6 

        

P
ri

or
 

RMSE 
281 

(183, 832) 
280 

(183, 834) 
280 

(185, 826) 
355 

(177, 709) 
354 

(178, 707) 
351 

 (179, 707) 

Bias 
46 

(-632, 155) 
45 

(-635, 155) 
48 

(-620, 155) 
 -151 

(-576, 150) 
 -149 

(-572, 150) 
 -143  

(-564, 150) 

R2 
0.12 

(0.0, 0.52) 
0.12 

(0.0, 0.52) 
0.12 

(0.0, 0.52) 
0.35 

(0.0, 0.55) 
0.35 

(0.0, 0.54)  
0.35  

(0.0, 0.54) 

P
os

te
ri

or
 RMSE 

160 
(133, 193) 

158 
(133, 192) 

163 
(140, 196) 

165 
(149, 201) 

165 
(150, 198) 

168 
(151, 203) 

Bias 
8 

(-100, 103) 
7 

(-106, 102) 
7 

(-105, 105) 
 -39 

(-122, 42) 
 -36 

(-120, 47) 
 -38 

(-124, 48) 

R2 
0.39 

(0.2, 0.6) 
0.39 

(0.17, 0.6) 
0.36 

(0.15, 0.59) 
0.35 

(0.17, 0.5) 
0.34 

(0.15, 0.52) 
0.34 

(0.14, 0.5) 

M
A

P
 

RMSE 124 110 126 144 155 151 

Bias 14 -9 -34 -9 -58 -53 

R2 0.60 0.71 0.57 0.35 0.47 0.42 

 
2.4.2. Bayesian Model Selection  

The levels of complexity in the model are ranked as follows based on the Bayes factors: M, >
M6 > M�  > M� > My > Mx (Table 2.6). Two out of the six models, M6 (full model) and M, 

have relatively higher posterior model probabilities of 0.385 and 0.5, respectively. All other 



36 

models have posterior model probabilities of < 0.07, and therefore are less likely to represent the 

dynamics associated with NH� volatilization. 

Table 2.6. Pairwise Bayes Factors �B
�� for model complexity, and overall posterior probabilities 
(pr�M9|D��. Larger posterior probabilities imply that the level of model complexity is more 
likely to better represent NH� volatilization based on the measurement data. 

 M1 M2 M3 M4 M5 M6 

M1 
 0.77 5.61 17.09 23.74 59.71 

M2 1.30  7.27 22.16 30.78 77.40 

M3 0.18 0.14  3.05 4.23 10.64 

M4 0.06 0.05 0.33  1.39 3.49 

M5 0.04 0.03 0.24 0.72  2.51 

M6 0.02 0.01 0.09 0.29 0.40   pr�M9|D� 0.385 0.500 0.068 0.023 0.016 0.007 

 
I found limited evidence that the two highest levels of complexity in the model (M6 and 

M,) differed in their ability to predict NH� volatilization. Specifically, the Bayes factor B,6 of 

1.3 provides weak evidence in favor of model complexity associated with M,. However, there is 

strong evidence that the final model should include the levels of complexity in M6 and M, 

compared to further reducing complexity represented in  M� with B6� and B,� values of 5.61 and 

7.27, respectively, or the even simpler levels of complexity represented in M�, My, and Mx, with 

corresponding Bayes factors greater than 10. Therefore, the results suggest that the appropriate 

level of complexity is represented by M6 or M,, with M, slightly favored, suggesting that the 

additional complexity in the model introduced by representing soil buffering capacity is not 

needed if I apply the law of parsimony. Therefore, the level of complexity in M, was adopted, 

and soil buffering capacity was treated as constant for all sites based on the mean value reported 

by Curtin et al. (1996). 
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2.4.3. Posterior Parameter Distributions and Performance Evaluation for the Final Model 

The SIR algorithm reduces the variance of several model parameters in the final model �M,� and 

produced marginal posteriors with smaller ranges and higher densities compared to the prior 

(Figure 2.1, Table 2.7). Out of 15 model parameters considered for calibration, some parameters 

(e.g., CFU�, KR, αR, and α��) showed a considerable reduction in uncertainty, while others 

showed moderate (e.g., Ko�, β�ia , β�i�, α�i, VKrw, and ST∗) or almost no change from the prior 

parameter distributions (e.g. β��, α�, KKrw, β�Ra, and β�R�) .  

Table 2.7.  Marginal posterior distributions for parameters in model M2 for estimating NH3  
volatilization loss including the maximum a posteriori (MAP) estimates, i.e., mode, 25th and 75th 
percentiles in the distribution (P25 and P75), and minimum and maximum values.  

Parameter Lower P25 median P75 Upper MAP 

CFU0 0.0013 0.0029 0.0057 0.0110 0.0408 0.0014 KM 8.0000 36.0000 86.5000 193.2500 439.0000 43.0000 KUI 223.8750 489.7500 682.0000 846.7500 983.0500 660.0000 βST1 5.4198 9.7475 17.3350 31.3575 47.5903 15.1500 βST2 0.0533 0.1020 0.3113 0.5352 0.9173 0.8666 βpH 0.2390 1.8745 3.2604 4.6576 5.8562 4.8156 αW 0.0238 0.3823 0.7916 1.1613 1.4679 0.9173 αM 0.2102 0.5113 0.6816 0.8644 1.4615 0.7583 Kmax 0.0129 0.0371 0.0583 0.0787 0.0983 0.0656 αpH 1.1898 1.5655 1.7503 1.8859 1.9900 1.5618 αST 0.0243 0.1608 0.3592 0.5968 0.9543 0.1220 Vmax 0.0027 0.0088 0.0134 0.0168 0.0197 0.0166 βSM1 0.0310 0.2713 0.4352 0.5919 0.7305 0.5910 βSM2 0.1121 0.6946 1.1613 1.5927 1.9513 1.6890 ST∗ 5.5098 9.4500 14.4100 20.8325 32.6630 5.7400 
 

Overall, the modeled NH� loss as the percentage of applied N agrees fairly well with 

observations in the measurement dataset (Figure 2.2), with a mean Bayesian R, of 0.39 and 95%  
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Figure 2.1. Marginal posterior density (light grey area) and priors (dark grey dashed line) for 
model parameters. 
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Figure 2.2. Modeled versus measured cumulative NH� volatilization loss as % of fertilizer N 
applied as urea only (circle) and urea with urease inhibitors (traingle).  The error bars represent 
95% posterior prediction intervals. 
 
central credible intervals between 0.17 and 0.62. For the MAP estimates, calibration achieved a 

higher R, value of 0.71. The comparison between the RMSE from the prior (280, ranging from 

183-834 g NH3-N ha-1 day-1) and the posterior RMSE (158, ranging from 133-192 g NH3-N ha-1 

day-1) shows that the Bayesian calibration reduced model uncertainty by a factor of 1.8. 

Additionally, the calibration is also effective in reducing the model bias from the prior of 45 

(ranging from -635 to 155) to the posterior of 7 (ranging from -106 to 102) g NH3-N ha-1 day-1. 

The model also predicted reduction in NH� volatilization when urease inhibitor were applied 

with a median reduction factor (RF) of -54.5% similar to that of the measured RF (Figure 2.3). 

Even with similar median values for both measured and the modeled data, Figure 2.3 shows that 

the spread of the modeled values were higher compared to the measurements. However, the 

model was not able to predict the outliers in the measured dataset, particularly the case where 
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urease inhibitors led to an increase in NH� volatilization or reduction exceeding >80%.  (Figure 

2.3). This may be an anomaly in the measurement dataset, but there was no basis for removing 

this data point given the information in the publication. Even though the model does capture the 

general patterns, the prediction intervals of the model for both percentage loss (Figure 2.2) and 

mitigation potentials associated with application of urease inhibitors (Figure 2.3) were large, 

leading to relatively low precision in model predictions. 

 

 
Figure 2.3. Distribution of NH� volatilization reduction factor (%) presented in a boxplot for the 
measured and the modeled datasets. 
 
2.5. Discussion 

A sub-model estimating losses of N from ammonia volatilization following urea-based 

fertilization has been included in the DayCent ecosystem model, accounting for key drivers and 

4R management practices that can reduce volatilization from urea-based N fertilization. I used 

Bayes factors and followed the principle of parsimony to determine the appropriate level of 

complexity in the model. The final model, ¾,, includes a) urea hydrolysis, b) diffusion of 
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gaseous NH� from the soil system, c) the effect of fertilizer placement on NH� volatilization (i.e. 

broadcast vs. banding and surface vs incorporated), d) the effect of intensity and timing of 

irrigation and/or precipitation on NH� volatilization after fertilizer application, and e) the 

influence of short-term changes in soil pH on NH� volatilization. These drivers explained NH� 

volatilization slightly better than the model structure that included the dynamic effect of soil 

buffering capacity on pH change. Following Curtin et al. (1996), I modeled soil buffering 

capacity as a function of clay content, SOC concentration, and initial soil pH, with a positive 

relationship between clay and SOC and a negative relationship between intial soil pH and 

buffering capacity. These relationships suggest that there is higher buffering capacity for soils 

with high clay and SOC contents and a low initial soil pH. Even though soil buffering capacity is 

important in regulating increases in soil pH, modeling site level variability associated with 

buffering capacity did not contribute much to the estimation of NH� volatilization compared to 

other processes, according to the data informing the Bayesian analysis. The experimental sites in 

my analysis have a high mean initial soil pH of  7.2 compared to the mean soil pH of 6.35 in the 

underlying data that were used to develop the relationship for my model (Curtin et al., 1996). 

The calibration dataset, therefore, likely has soils with lower buffering capacity and may explain 

why the candidate model that included this process did not have a larger Bayes factor compared 

to the model that excluded this process. Additionally, soil buffering capacity is a secondary 

effect as represented in the model structure and further research could possibly improve the 

model in the future with a more detailed representation of buffering capacity including clay 

mineralogy. Regardless, more observations of NH� volatilization with a larger range of pH 

values are likely needed to adequately inform the model calibration analysis about the influence 

of buffering capacity. 
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Placement of N deeper is the soil is one of the 4R practices (Right Place) and the model 

simulated reductions of NH� emissions with mechanical incorporation. The reduction is higher 

with increasing depth and the result suggests a significant reduction with incorporation below 5 

cm (Figure 2.4). My results are consistent with the model proposed by Rochette et al. (2013a) of 

negligible NH� emissions and maximum N retention when urea is incorporated at depths >7.5 

cm. Using the posterior distribution of model parameters associated with mechanical 

incorporation, DayCent estimated a reduction in NH� emissions of 97% (65% to >99%) with an 

incorporation depth of 5 cm compared to a surface application. Furthermore, if N is incorporated 

at depths of 2.5 cm or 7.5 cm, DayCent predicted a reduction of 81% (34%, 94%) and 99% (0%, 

79%) reduction, respectively (Figure 2.4). 

 
Figure 2.4. Scaling factor for NH� volatilization loss by depth (cm) with mechnical incorporation 
relative to surface-application of fertilizer. 
 

Similar to mechanical incorporation, DayCent predicted reductions in NH� emissions 

with addition of water through irrigation and/or precipitation (Figure 2.5), consistent with the 

empirical model proposed by Holcomb et al., (2011). DayCent showed that, with water 
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infiltration of 5 to 10 mm from irrigation or precipitation on the same day of fertilization, NH� 

emissions are reduced by 98% (11%, >99%) and 99% (0%, 21%), respectively (Figure 2.5). This 

reduction is higher than Holcomb et al., (2011) mainly due to simulation of leaching through the 

profile with deeper flows from irrigation and all forms of precipitation, rather than only rainfall 

and irrigation inputs of water. However, uncertainties in the effect of water inputs on NH� 

volatilization are significantly higher compared to mechanical incorporation. Furthermore, I 

included the effect of delayed water input by adjusting reduction factors proportionally to the 

fraction of urea remaining. This assumption is consistent with the findings reported by Black et 

al. (1987) in which there was a 95% reduction when irrigation water is applied within 3 hours of 

urea fertilization. In contrast, delaying irrigation by 2 days reduces NH3 volatilization by only 

7% due to the rapid rate of urea hydrolysis (Black et al. 1985). When urease inhibitors are added 

with urea, the model extends the time for precipitation/irrigation events to reduce NH� 

volatilization through diffusion and leaching deeper in the profile. 

Simulating NH�volatization enhances the representation of 4R practices in DayCent 

because previous versions did not represent fertilizer placement or urease inhibitors. The 4R 

nutrient stewardship paradigm is designed to maximize crop uptake while minimizing nutrient 

loss to the environment (Murrell et al., 2009). With the improvements, DayCent can simulate the 

effect of rate, type, timing and placement of fertilizers on N retention in the soil and their 

influence on NH� volatilization from addition of ammonium �NH���, nitrate �NO���, and urea 

�CO�NH,�,�, which are three primary forms of synthetic N applied to agricultural soil. Further 

development and/or testing is needed to represent the effect of other N fertilizers on NH� 

volatilization from agricultural soils, including slurry and/or manure, urine patches, and addition 

of anhydrous ammonia. 
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Figure 2.5. Scaling factor for NH� volatilization loss with leaching of fertilizer below the soil 
surface due to irrigation or precipitation compared to no leaching. 
 
2.6. Conclusion 

DayCent predicts NH� volatilization at different N rates, timing, and placement—key principles 

of the 4R nutrient stewardship paradigm. Furthermore, the model is able to predict the 

cumulative loss and mitigation potential when urea is applied with or without urease inhibitors—

a key 4R recommendation (Right Type). This development enhances the ability of DayCent to 

evaluate best management practices for reducing environmental pollution. As more data become 

available, expanding both spatially and temporally, the Bayesian model selection and 

parameterization framework is designed to allow further testing and refinement of the model 

structure for NH� volatilization, and updating of the parameters with new information embodied 

in the measurement data. 
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CHAPTER 3: MODELING NITROUS OXIDE MITIGATION POTENTIAL OF ENHANCED 

EFFICIENCY NITROGEN FERTILIZERS FROM AGRICULTURAL SYSTEM 

 
 

3.1. Summary 

Agriculture soils are responsible for a large proportion of global nitrous oxide (N2O) 

emissions—a potent greenhouse gas and ozone depleting substance. Enhanced-efficiency 

nitrogen (N) fertilizers (EENFs) can reduce N2O emission from N-fertilized soils, but their effect 

varies considerably due to a combination of factors, including climatic conditions, edaphic 

characteristics and management practices. In this study, I further developed the DayCent 

ecosystem model to simulate two EENFs: controlled-release N fertilizers (CRNFs) and 

nitrification inhibitors (NIs) and evaluate their N2O mitigation potentials. I implemented a 

Bayesian calibration method using the sampling importance resampling (SIR) algorithm to 

derive a joint posterior distribution of model parameters. The joint posterior distribution can be 

applied to estimate posterior predictions of N2O reduction factors when EENFs are adopted in 

place of conventional N fertilizer. The resulting distribution of median reduction factors were -

11.9% (-51.7% and 0.58%) for CRNFs and -26.7% (-61.8% to 3.1%) for NIs, which is 

compatible to the distribution of measured reduction factors in the dataset. By incorporating 

EENFs, the DayCent ecosystem model is able to simulate a broader suite of options to identify 

best management practices for reducing N2O emissions.  

3.2. Introduction 

Nitrogen (N) fertilizer applied to agriculture soils accounts for a majority of anthropogenic 

nitrous oxide (N2O) emissions (Bouwman et al., 2002b; Mosier and Kroeze, 2000; Reay et al., 

2012) and agriculture is responsible for about 70% of global anthropogenic sources (Tian et al., 



46 

2020). Nitrous oxide (N2O) from soil is primarily produced by the microbial driven process of 

nitrification and denitrification (Firestone M.K., and Davidson, 1989), although other processes 

may also contribute to emissions (Butterbach-Bahl et al., 2013). N2O emissions from agricultural 

soils are driven by N management practices, particularly the addition of inorganic fertilizers and 

manure (Mosier et al., 1998). It is an important greenhouse gas (GHG) and has approximately 

298 times (100 year time horizon) the global warming potential of carbon dioxide (CO2) on a 

mass basis while also contributes to the depletion of stratospheric ozone (Crutzen and Ehhalt, 

1977; Ravishankara et al., 2009). 

Enhanced-efficiency N fertilizers (EENFs) have shown a potential for mitigating N2O 

emissions from N-fertilized agricultural soils (Akiyama et al., 2010; Eagle et al., 2017; Thapa et 

al., 2016), and have emerged as an important management option for mitigating N losses from 

agroecosystems (Halvorson et al., 2014; Sha et al., 2020; Trenkel, 2010). I studied two EENFs 

that can reduce N2O emissions: (1) controlled-released N fertilizers (CRNFs) and (2) nitrification 

inhibitors (NIs). Best management practices can incorporate EENFs based on the 4R paradigm 

for nutrient stewardship (right source at right rate, right placement and right timing of fertilizer 

application). The rate, pattern, and duration of N release from CRNFs are predictable and 

controllable during preparation but may vary under field conditions (Halvorson et al., 2014; 

Shaviv, 2001; Timilsena et al., 2015; Trenkel, 2010). CRNFs constantly release N fertilizers into 

the soil, maintain low mineral N concentrations, and extend the availability for plant uptake with 

a release pattern more in synchrony with the crop’s N requirements that minimizes 

environmental losses (Naz and Sulaiman, 2016; Shaviv and Mikkelsen, 1993; Trenkel, 2010). 

NIs  stabilize N fertilizer in the form of NH�� in the soil (Trenkel, 2010). Specifically, NIs inhibit 

the biological process of nitrification and delay the transformation of  NH�� to NO�� for a certain 
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period of time (four to ten weeks). Maintaining N in the form of NH�� prevents gaseous loss from 

both nitrification and denitrification as well as leaching of NO�� below the rooting zone to the 

groundwater.  

Meta-analyses have been performed to quantify the effect of EENFs on N2O emissions 

compared to conventional fertilizers (Akiyama et al., 2010; Eagle et al., 2017; Han et al., 2017; 

Thapa et al., 2016; Wolt, 2004; Zhang et al., 2019). Significant reductions in N2O emissions 

have been reported in these studies for CRNFs and NIs (Eagle et al., 2017; Thapa et al., 2016; 

Wolt, 2004; Zhang et al., 2019). However, the N2O reduction from EENFs varies due to a 

combination of factors including type and rate of N applied, soil properties, climatic factors, and 

management practices. Despite meta-analysis synthesizing results from many field studies 

reporting N2O reductions, the measurements are not spatially continuous resulting in data gaps 

for some region, making it difficult to derive empirical reduction factors from EENFs for all 

farms that may adopt these types of fertilizers.  

 In contrast to an empirical method to estimate reduction in N2O from EENFs, I developed 

a process-based mechanistic approach within the DayCent ecosystem model for EENFs. The 

dynamic N release from CRNFs and the effectiveness of NIs on inhibiting nitrification are 

modeled as influenced by environmental conditions. There are several advantages of using a 

process-based biogeochemical model (DayCent) instead of empirical models. DayCent accounts 

for N2O emissions during both nitrification and denitrification in a daily time step and accounts 

for factors influencing emissions patterns (N inputs, climate, soil, plant growth) at a finer time 

scale than most empirical methods. Furthermore, DayCent predictions of N2O emissions have 

been validated and agree reasonably well with field measurements (Del Grosso et al., 2010, 

2005). Previously, Del Grosso et al. (2009) implemented an algorithm to represent the impact of 
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NIs in DayCent with a simple approach defined by two parameters: reduction in nitrification and 

duration of the effect. Similar approaches have been adopted for the DNDC model in a modified 

version developed specifically for conditions in New Zealand (Giltrap et al., 2010). The model 

adopted a simplified exponential function of time to represent the degradation of NIs that did not 

account for impacts of soil properties. Further development of DNDC has been proposed by Li et 

al. (2020) for modeling the effect of NIs by incorporating soil properties, ratio of fertilizer to 

NIs, and soil parameters (i.e. temperature, moisture, and pH). To my knowledge, more advanced 

approaches have not been published for modeling CRNFs in process-based models. 

 The objective of this study is to develop a dynamic modeling approach for CRNFs and 

NIs as influenced by the soil properties and other related drivers such as weather patterns and 

irrigation management. I focused on the N2O emissions from agricultural soils and reduction 

potentials of EENFs compared to conventional fertilizers. Furthermore, I implemented a 

Bayesian framework developed by Gurung et al. (2020) to calibrate the model parameters and 

evaluate results using field data from the Greenhouse gas Reduction through Agricultural Carbon 

Enhancement network of experimental sites in the United  States (GRACEnet).  

3.3. Materials and Methods 

3.3.1. Data Sources 

Most of the N2O flux measurements used for model development were obtained from the 

GRACEnet research programs initiated by the USDA Agricultural Research Service and 

described in detail by Del Grosso et al. (2013). In brief, the dataset includes site descriptors (e.g., 

weather, soil class, spatial attributes), experimental design (e.g., factors manipulated, 

measurements performed, plot layouts), management information (e.g., planting and harvesting, 

fertilizer types and amounts), and N2O-flux measurements needed for model development and 
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testing for agroecosystems and follows USDA-ARS GRACEnet protocols (Parkin and Venterea, 

2010). The experimental sites used for the Bayesian calibration of model parameters included 

paired plots treated with conventional N fertilizer and EENFs, and also included control plots 

without N fertilizer (Table 3.1). Collectively the dataset consisted of a total of 155 site-year-

treatment combinations for a total of 7,503 individual observations of N2O fluxes, 27 seasonal 

paired reduction factors for CRNFs, and 40 seasonal paired reduction factors for NIs.  

3.3.2. DayCent Model 

DayCent (Del Grosso et al., 2001; Parton et al., 1998) is a process-based ecosystem model of 

intermediate complexity and simulates the flow of carbon (C), and N in a plant-soil system on a 

daily time step. The model simulates N2O emissions from both nitrification and denitrification 

(Del Grosso et al., 2000; Parton et al., 2001), where a fraction of nitrified N is emitted as N2O, 

and N2O emissions from denitrification are a function of soil NO�� concentration, water-filled 

pore space (WFPS), heterotrophic respiration, and soil texture. Furthermore, nitrification is 

calculated as a function of modeled soil NH�� concentration, WFPS, soil temperature, pH, and 

soil texture (Parton et al., 2001, 1996). In DayCent, nitrification increases with soil temperature, 

and the highest potential rates occur during the warmest month of the year. Limitations on 

nitrification due to moisture stress and O2 availability for microbial activity are modeled as a 

function of WFPS where nitrification peaks at ~50% WFPS and decreases below and above this 

value. In DayCent, nitrification is also limited by pH and modeled with an exponentially 

decreasing curve in which there are lower nitrification rates as conditions become more acidic. In 

addition to N2O emission, DayCent also simulates key ecosystem processes related to N cycle 

including N uptake by plants, mineralization and immobilization, NO�� leaching, and other trace 

gas fluxes (NOx, NH3, and N2). Recent DayCent model developments include routines to 
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represent urea hydrolysis with or without urease inhibitors and volatilization loss of NH3 

(Gurung et al. in review), plant growth and water use based on green leaf area index (Zhang et 

al., 2020, 2018), and N2O flux during freeze-thaw events (Del Grosso et al, in prep). 

Table 3.1. N2O study locations, crops, treatments, and measurement years that were used for the 
Bayesian model calibration. All sites except Becker, MN are part of GRACEnet network. The 
abbreviations for the N fertilizers are urea ammonium nitrate, UAN; ammonium nitrate, AN; a 
controlled-release, polymer-coated urea, ESN; a stabilized urea containing urease and 
nitrification inhibitors, SuperU; and a stabilized UAN solution containing urease and nitrification 
inhibitors, UAN+AP. 
Site Locations Lat. Lon. Fert-Type Crop Years Reference 

ARDEC, 40.65 -105.00 Zero-N corn 2007-2014 Halvorson et al. (2010a) 

CO 
  

UAN 
  

Halvorson et al. (2011) 
   

urea 
  

Halvorson and Del 
Grosso (2013)    

SuperU 
  

Halvorson and Del 
Grosso (2012)    

ESN 
  

Halvorson et al. (2010b) 
   

UAN+AP 
  

Halvorson et al. (2016) 

Becker, 45.39 -93.89 Zero-N corn 2009-2010 Maharjan et al. (2014) 

MN   urea    

   SuperU    

   ESN    

Bowling 
Green, 

36.99 -86.44 Zero-N corn 2009-2011 Sistani et al. (2011) 

KY 
  

urea 
   

   AN    

   UAN    

   SuperU    

   ESN    

   UAN+AP    

Kimberly, 42.53 -114.36 Zero-N corn 2013-2015 Dungan et al. (2017) 

ID 
  

Urea barley 
  

   
SuperU alfalfa 
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Rosemount, 44.75 -93.07 Zero-N corn 2008-2010 Venterea et al. (2011) 

MN 
  

urea 
   

   SuperU    

   ESN    

St. Paul, 44.99 -93.17 Zero-N corn 2011-2012 Maharjan & Venterea 
(2013) 

MN   urea  2014-2015 Venterea et al. (2016) 

   SuperU    

   ESN    

 
3.3.3. Model Development 

DayCent model developments for this study include controlled-release N fertilizers (CRNFs) and 

nitrification inhibitors (NIs). Furthermore, I also developed a variable N2O rate from nitrification 

as a function of WFPS primarily controlled by O2 availability, which is discussed in the next 

section. 

3.3.3.1. Fraction of Nitrified N Loss as N2O 

In previous versions of the DayCent model, N2O emissions are a constant proportion of NH�� 

oxidized to NO�� during nitrification. To improve the model, I assumed that the rate of N2O 

during nitrification is sensitive to O2 availability (Khalil et al., 2004; Kool et al., 2011) and 

modeled this relationship as a function of soil WFPS using a sigmoidal curve (Figure 3.1). This 

allowed the model to more dynamically represent N2O emission associated with nitrification as 

follows:  

g¡ = �N,Oadjust_ max − N,Oadjust_min �1 +  exp �−�N,Oadjust�fbÀ�b + N,Oadjust_WPFS × avgWFPS}t~ ��, (3.1) 

N,Oadjust}t~ =  N,OadjustK
f +  g¡ (3.2) 
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Figure 3.1. Conceptual diagram of fraction of nitrified N loss as N2O from nitrification, which is 
controlled by water-filled pore space between a minimum (N2Oadjust_min) and maximum value 
(N2Oadjust_max). 
  
where N,Oadjust_max and  N,Oadjust_min are maximum and minimum fraction of N2O loss 

during nitrification; N,Oadjust_Intcpt and N,Oadjust_WPFS are the intercept and the slope 

term of the logistic WFPS curve, avgWFPS}t~ is the average WFPS of 0-10cm of DayCent soil 

layer and [t] represents the time index, measured in units of days. Although not directly related to 

the EENFs, I adopted this important control on nitrified N losses of N2O based on recent 

published research with the goal of improving the model’s ability to represent impacts of 

EENF’s on N2O emissions (i.e., including the WFPS control on nitrified N losses of N2O 

improved the model’s estimation of N2O emissions overall from convention fertilizers and the 

reductions associated with EENFs). 

3.3.3.2. Controlled-Release Nitrogen Fertilizers (CRNFs) 

The cumulative release of N from CRNFs is modeled using the Gompertz equation (Equation 

3.2) with a sigmoidal pattern (Figure 3.2) and controlled by soil temperature and moisture (Du et 

al., 2006; Trenkel, 2010). In general, the characteristics of the release pattern of CRNFs are 

defined by the time required for 80% of the release �T_EIGHTY ÃÄ tÅ�� and the lag time 
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�CRFLAMBDA or ÆÇÈÉ� in free water at a given reference temperature (Trenkel, 2010). 

Therefore, I modeled N release with the following equation: 

N¦Ê¤}t~ =  100 ∗ �1 − exp �−exp�μ¦Ê¤ ∗ e�6� ∗ �λ¦Ê¤ − tqÍÍ}t~� + 1���, (3.3) 

where N¦Ê¤}t~ is the cumulative N release (%) at time t,  ÎÇÈÉ is the maximum rate of release at 

the inflection point, λ¦Ê¤ is the lag term, and tqÍÍ}t~ is the adjusted cumulative effective time for N 

release from CRNFs, which is influenced by temperature and moisture conditions. The soil 

temperature and moisture conditions of the field vary daily so the temperature effect is handled by 

adjusting the effective time �tqÍÍ� of release with Q6� temperature coefficient and moisture 

conditions using the following equation:  

tqÍÍ}t~ =  tqÍÍ}t − 1~ + h2odly}t~ ∗ �Q6�¦Ê¤�Ði^���}b~ � i�6� Ñ, (3.4) 

where Q6�¦Ê¤ (i.e. CRF_QTEN) is the temperature coefficient, TJ�
>}t~ is the soil temperature �℃�, 

T� is the reference temperature �23 ℃�, and h2odly}t~ is the delayed effect on CRNF release due 

to soil moisture availability. Soil water is required for the release of N from CRNFs because water 

dissolves the N fertilizer as the water diffuses through the polymer coating, which then releases 

the N to the soil at a controllable rate (Azeem et al., 2014; Du et al., 2006). The delayed effect of 

soil moisture availability is modeled using the maximum relative soil water content since N 

application. Furthermore, to satisfy the condition of 80% release at tÅ�, I defined μ¦Ê¤ as a function 

λ¦Ê¤ and tÅ� as follows: 

μ¦Ê°¤ =  �ln �−ln �0.8�� − 1 �exp �1� ∗ �λ¦Ê¤ − tÅ��, (3.5) 

and consequently, the Gompertz release curve is defined by three parameters (Q6�¦Ê¤, λ¦Ê¤ and tÅ�� 

for the reference temperature without water limitation. 
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Figure 3.2. N release characteristics of the Gompertz model (solid sigmoidal line),  μ¦Ê¤ is the 
maximum rate of release at the inflection point, λ¦Ê¤ is the lag term, and tÅ� is the numbers of 
days after fertilizer application date when 80% of CRNF is released to the soil. 
 
3.3.3.3. Nitrification Inhibitors 

Nitrification inhibitors delay the transformation of NH�� to NO�� by slowing the bacterial 

oxidation of  NH�� (Trenkel, 2010), but the effect declines over time due to the decomposition of 

applied inhibitor by both biotic and abiotic factors (Kelliher et al., 2014; Prasad and Power, 

1995; Wolt, 2000). Different soil factors can affect the effectiveness of NIs on inhibition of 

nitrification, of which soil temperature and soil moisture are the most significant (Prasad and 

Power, 1995), but leaching of NIs deeper in the soil can also limit their effectiveness because 

NH�� tends to be more common in the topsoil (Trenkel, 2010).  

In an early study, the effect of nitrification inhibitors was implemented in DayCent by 

reducing calculated nitrification rates by 50% for two months after the inhibitor is applied (Del 

Grosso et al., 2009) based on data from Bronson et al. (1992). Here I test the hypothesis that the 

effectiveness of NIs is dynamic and decreases over time as a function of soil temperature and soil 

water dynamics (Figure 3.3) (Di et al., 2014; Kelliher et al., 2014; Prasad and Power, 1995; 

Trenkel, 2010; Williamson et al., 1996), based on  Equation 3.5 and 3.6:  
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�ÓÔÕÖ}Ô~ =  1 − �1 − �ÓÔÕÖ}0~� ∗ min�1.0, ×�ØÙÚÙ}Ô~, ØÛÖ}Ô~��, (3.6) 

f�CTST}t~, CWF}t~�
= exp�−�FINHIB1 ∗ CTST}t~ + FINHIB2 ∗ CWF}t~
+ FINHIB3��, 

(3.7) 

where �ÓÔÕÖ}0~ (i.e., NINHIB) and �ÓÔÕÖ}Ô~  represent the effectiveness of NIs on nitrification 

(0-1; unitless) at application date (maximum reduction potential) and after t days,  ØÙÚÙ}Ô~ and 

ØÛÖ}Ô~ are cumulative truncated soil temperature �℃� and cumulative water infiltration (cm) 

below the third soil layer (i.e., 10 cm) in modeled profile after t days, and FINHIB1, FINHIB2, 

and FINHIB3 are model parameters.  

 
Figure 3.3. Conceptual model of the effectiveness of NIs on nitrification (y-axis) with full-
inhibition (i.e. NitRF}0~ or maximum reduction potential) and no-inhibition (i.e., no effect or 
multiplier of 1), at time t�, t6, and t, across the x-axis based on the time of NI application, time 
until the NI is fully effective, and non-effective, respectively. 
 
3.3.4. Bayesian Model Calibration Framework 

The Bayesian model calibration framework incorporates a variance-based global sensitivity 

analysis (GSA) using Sobol method (Jansen, 1999; Saltelli, 2002; Sobol, 2001) to identify 
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influential model parameters associated with the prediction of N2O emissions. Once the 

influential parameters are identified by GSA, the sampling importance resampling (SIR) method 

is applied to estimate the posterior distribution of model parameters and posterior prediction of 

N2O reduction factors of EENFs. 

3.3.4.1. Global Sensitivity Analysis 

Variance-based GSA was performed to quantify the relative importance of parameters that have 

a significant influence on model output. The analysis permits us to identify a group of parameters 

with the most influence that can be used to make the model more parsimonious (Saltelli et al., 

2008), a method known as “Factor Fixing” or “Screening.” My analysis used the Sobol method 

(Saltelli, 2002; Sobol, 2001) to identify influential parameters using estimated log-likelihood of 

model output. Similar to analysis of variance, the method partitions the total variance of the 

model output into first-order and higher-order interaction terms to estimate the proportion of 

variance explained by each parameter. The method is model independent, works for both linear 

and nonlinear outputs (Sobol, 2001), and is well suited for complex and highly non-linear 

process-based ecosystem models, such as DayCent (Gurung et al., 2020). Furthermore, this 

method is arguably one of the most robust and comprehensive GSA methods available (Saltelli et 

al., 2008).  

Seventeen model parameters were considered for the GSA and can be grouped based on 

association with five different processes (Table 3.2). Three parameters are associated with 

CRNFs, four parameters with NIs, six parameters with nitrification, one parameter with 

denitrification, and a total of four parameters for N uptake by plants. Four parameters that 

control the plant N uptake are fraction of soil N available to plants (FAVAIL(1)), minimum and 

maximum C:N ratio of new plant growth during the seedling (i.e. with zero plant biomass), and 
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biomass level above which the minimum and maximum C:N ratio stays constant (BIOMAX). 

Out of the seventeen model parameters, eleven were introduced with the EENF model 

developments in this study, and the other six parameters were included because initial testing 

showed that these parameters, which are associated with N cycling, may have important 

interactions with the EENFs to influence the reduction in N2O emissions. I assumed a uniform 

independent prior defined by the lower and upper bound of the distribution (Table 3.2).  

3.3.4.2. Sampling Importance Resampling 

The sampling importance resampling (SIR) algorithm (Rubin, 1988, 1987) is used for Bayesian 

calibration to generate a sample from the joint posterior distribution of model parameters. The 

method is described in detail by Gurung et al. (2020) and presented here in brief. The method is a 

non-iterative Monte Carlo method that aims to generate a sample from the target distribution. 

First, I draw 1,000,000 (1M) independent random samples Pθ6, θ,, … . , θ6RS from the prior using 

Latin hypercube sampling (LHS) techniques. The LHS effectively subdivides the parameter 

space by complete stratification on all parameters and is considered more efficient for 

distributing the sample across the domain of the parameter space compared to simple random 

sampling (McKay et al., 1979; Owen, 1992; Stein, 1987). Second, for each sampleθJ, I simulated 

N2O emissions and calculated importance weights ω�θJ�. Third, I derived the posterior 

distribution by resampling 1,000 (1K) times without replacement TθU6, θU,, … . , θU68V from the 

initial 1M samples of N2O emissions and associated parameters sets based on probabilities 

proportional to the importance weights. 
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Table 3.2. Prior distribution and definition of seventeen parameters for global sensitivity 
analysis. 
Parameters Lower Upper Distribution Definitions 

T_EIGHTY �tÅ�� 25 100 Uniform Duration (days) for 80% release of 
applied CRNF at the reference 
temperature 

CRFLAMDA �ÆÇÈÉ� 0 30 Uniform Lag period (days) for CRNF release 

CRF_QTEN �Ü6�ÇÈÉ� 1 10 Uniform Temperature coefficient for CRNF 
T_EIGHTY �tÅ�� 0.001 0.3 Uniform Maximum reduction factor on 

nitrification rates due to nitrification 
inhibitors 

FINHIB(1) 0 0.01 Uniform Parameter for reduction factor curve 
associated with nitrification inhibitor 

FINHIB(2) 0 0.08 Uniform Parameter for reduction factor curve 
associated with nitrification inhibitor 

FINHIB(3) -5 0 Uniform Parameter for reduction factor curve 
associated with nitrification inhibitor 

MaxNitFrac 0.1 0.4 Uniform Maximum fraction of ammonium 
that is converted to nitrate during 
nitrification  

N2Oadjust_min 0.003 0.03 Uniform Minimum proportion of nitrified N 
lost as N2O 

N2Oadjust_max1 0 0.07 Uniform Maximum proportion of nitrified N 
lost as N2O 

N2Oadjust_Intcpt 5 7.5 Uniform Intercept for logistic curve 
representing the proportion of 
nitrified N lost as N2O  

N2Oadjust_WFPS 15 35 Uniform Slope for the effect of average 
WFPS on the logistic function 
representing the proportion of 
nitrified N lost as N2O 

CO2Denitr_1 0.1 1 Uniform Coefficient for CO2 effect on 
denitrification 

BIOMAX 200 800 Uniform Biomass level above which the 
minimum and maximum C/N ratios 
of the new shoot increments are 
constant  

PRAMN(1,1) 10 30 Uniform Minimum C/N ratio with zero 
biomass 

PRAMN(1,2) 20 80 Uniform Minimum C/N ratio with biomass 
greater than or equal to BIOMAX 

FAVAIL(1) 0.1 0.4 Uniform Fraction of N available to plants 

1 To satisfy the theoretical requirement that parameter N2Oadjust_max ≥ N2Oadjust_min, 
N2Oadjust_max is set to the sum of N2Oadjust_min and the distribution defined in the parameter 
draws. 
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3.3.4.3. Data-likelihood 

In my analysis, I used data from multiple experimental sites with repeated measurements 

that are highly correlated in both space and time. Proper estimation of uncertainty requires the 

correlation structure to be incorporated into the variance-covariance matrix when computing the 

likelihood (Battese et al., 1988; Cressie et al., 2009; Hoeting, 2009). Therefore, I use the 

restricted maximum likelihood (REML) estimator within the linear mixed-effect (LME) model 

framework with two levels of nested random effects for sites (spatial) and years (time) to account 

for spatiotemporal correlations present in the dataset. Furthermore, I used 15-day average N2O 

fluxes from field measurements and modeled values to compute the log-likelihood of the 

modeled emissions using the following equation: 

Ý�Þ|ß�  ∝  − 6, ÝÃà|Σ| − 6, �¾ − Þ�áΣ�6�M − Þ�, (3.8) 

where â is the number of 15 days average N2O flux, Þ and ¾ are vectors of measured and 

modeled values, respectively,  Σ�6 is the inverse of the variance-covariance matrix, Ù defines the 

transpose of a vector and |Σ| denotes the determinant of the covariance matrix Σ. 
In my analysis, I used the prior as the “importance function” making the importance 

weights proportional to the likelihood (Givens et al., 1995; Punt and Hilborn, 1997; Smith and 

Gelfand, 1992), and calculated the standardized importance weights; 

Pã�ß6�, ã�ß,�, … . , ã�ßä�S using the following formula: 

ã�ßå� =  æ�\|çè�∑ æ�\|çè�aéè`a , (3.9) 

where ê�Ο|ßå� is the likelihood value for the ëìí sample. As a result, the likelihood acts as the 

resampling weights and parameter sets producing higher goodness-of-fit are more likely to be 

retained in the posterior. The SIR algorithm has been proposed as one of the simplest and most 
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versatile Bayesian Monte Carlo methods for drawing samples from the posterior (Rubin, 1988, 

1987; Smith, 1991) and is suitable for complex process-based models such as DayCent. 

3.4. Results 

3.4.1. Global Sensitivity Analysis 

The two most sensitive parameters were both associated with nitrification and included the 

maximum fraction of nitrified N that is lost as N2O (N2Oadjust_max), and the maximum fraction 

of NH�� that can be nitrified in a day (MaxNitFrac) (Figure 3.4). The third most sensitive 

parameter was the soil CO2 concentration effect on denitrification (CO2Denitr_1), which is used 

as a proxy for labile C availability in DayCent. The next five most sensitive parameters are all 

associated with EENFs that control the release of N from CRNFs or reduction efficiency of NIs 

on nitrification rate. The remaining parameters were not sensitive to N2O production based on 

the measurement dataset. Only the top 13 parameters in the sensitivity ranking were included in 

the Bayesian calibration with the SIR method, which made the analysis more parsimonious. 

3.4.2. Posterior Estimates of Model Parameters 

The dataset did provide sufficient information to improve the calibration of the three most 

sensitive parameters using the SIR method, producing marginal posteriors with smaller ranges 

and higher densities compared to the prior (Figure 3.5, Table 3.3). There was limited information 

in the measurement data to inform the other parameters and reduce the uncertainty in their prior 

distributions.  

The posterior mean values were very similar to the maximum a posteriori (MAP) 

estimates for most model parameters except for one of the parameters in the reduction curve 

associated with nitrification inhibitors (FINHIB1), and the intercept for logistic curve 

representing the proportion of nitrified N lost as N2O (N2Oadjust_Intcpt) (Table 3.3). 
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Figure 3.4. Ranked model parameters based on the total sensitivity indices with 95% bootstrap 
confidence interval using 100 replicates of the log-likelihood values. The parameters were 
ordered based on their sensitivity, with the most sensitive parameters at the top. 
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Figure 3.5. Marginal posterior density (light grey) for DayCent model parameters and uniform 
priors (dark grey dashed line) ranked from most sensitive to the least sensitive (A-M) according 
to the global sensitivity indices. 
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Table 3.3. Summary statistics including mean, median, and standard deviation (Std.) of the 
marginal posterior distribution of thirteen DayCent model parameters and three hyperparameters 
associated with the spatio-temporal correlation of the dataset and the maximum a posteriori 
(MAP) estimates.  

Parameter Mean Median Std. MAP 

T_EIGHTY �tÅ�� 63.37 63.11 20.55 61.13 

CRFLAMDA �λ¦Ê¤� 15.11 14.79 8.54 17.17 

CRF_QTEN �Q6�¦Ê¤� 5.64 5.65 2.56 6.29 

NINHIB 0.14 0.14 0.08 0.20 

FINHIB1 0.0045 0.0043 0.0029 0.0001 

FINHIB2 0.040 0.040 0.023 0.044 

FINHIB3 -2.75 -2.84 1.37 -2.43 

MaxNitFrac 0.14 0.13 0.03 0.11 

N2Oadjust_max 0.0043 0.0040 0.0010 0.0043 

N2Oadjust_Intcpt 6.27 6.29 0.73 5.01 

N2Oadjust_WFPS 24.71 24.50 6.00 30.97 

CO2Denitr_1 0.15 0.14 0.04 0.11 

PRAMN11 18.82 18.08 5.76 16.02 σJ
bq,  10.44 10.06 1.88 14.34 σJ
bq×îqrp,  12.46 12.30 1.16 12.17 σpqJ,  175.65 177.18 6.79 155.91 
 
The correlations between most parameters were weak (i.e., < 0.25 in absolute value) except for 

the three most sensitive parameters, which all have moderate negative correlations (-0.37 to -

0.26). Furthermore, the uncertainty is dominated by the random effects associated with the 

unexplained error variance �σpqJ, �, followed by site by year �σJ
bq×îqrp, �, and site �σJ
bq, � 

hyperparameters. The MAP estimates (i.e., mode of the posterior distribution) are the most likely 

parameters given the measurement dataset, and therefore are the single best parameter set in the 

joint probability distribution. 
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3.4.3. Posterior Prediction of Reduction Factors 

The mitigation potentials of EENFs were investigated by calculating the reduction factors by 

subtracting N2O emissions associated with conventional N fertilizer from EENFs. I compared the 

distribution of reduction factors from three different estimates, (1) measured reduction factors 

determined by the measurement window for the crop growing season, (2) model estimates for the 

growing season matching the measurement window, and (3) model estimates of reduction factor 

for the year (Figure 3.6). The model produces very similar distributions of reduction factors for 

both CRNFs and NIs compared to the measurement windows for the growing season.  However, 

the model produces lower median reduction factors for annual N2O emissions. 

 
Figure 3.6. Comparison between the measured (Meas.), modeled with measurement period data 
(Mod. (Season)), and modeled with annual (Mod. (Annual)) N2O Reduction Factors (%) for 
CRNF and NI. 
 
  The model estimates a median reduction factor of -11.9% (-51.7% and 0.58%) for 

CRNFs and -26.7% (-61.8% to 3.1%) for NIs, compared to the measured reduction factor for 

CRNFs of -13.0% (-62.8% to 80%) and -28.5% (-60.8% to 12.9%) for NIs (Note: the numbers in 

the parenthesis are 95% posterior prediction intervals). However, the model has more uncertainty 

associated with reduction factors for individual experimental treatment plots (Figure 3.7).  In 
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addition, the model mostly estimated a reduction in N2O emissions with EENFs compared to the 

control with conventional fertilizer even though a small number of the measurement had higher 

N2O emissions for the EENF treatments.  

 
Figure 3.7. Modeled versus measured N2O Reduction Factors (%) for CRNFs (circle) and NIs 
(triangle) with 95% posterior prediction intervals. 

 
I also evaluated the time series patterns in the daily modeled emissions compared to the 

measurements from GRACEnet sites (Figure 3.8). The posterior estimates from DayCent and the 

measurements consistently showed that the EENFs initially produce significantly lower N2O 

fluxes following fertilizer events and similar N2O fluxes for the rest of the year with slightly 

higher N2O fluxes later in the growing season. However, this shift in pattern to higher emissions 

later in the season did not offset the reductions in N2O emissions that occurred early in the 

growing season for most experimental data, leading to a net reduction in N2O emissions over the 
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year (Figure 3.6). Additionally, the EENFs also produce higher N2O fluxes during the spring 

thaw period compared to the conventional fertilizers, but there are no measurements during this 

time period to evaluate the modeled pattern. 

 I also compared the dynamic approach for modeling NIs to the more static representation 

of the inhibitor effect with  a constant reduction of 50% for 2 months based on Del Grosso et al., 

(2009).  Other model improvements were retained in this comparison by setting parameter values 

at the MAP estimates (Table 3.3). I also made model predictions with the dynamic NIs model 

using the MAP parameter estimates. Both models produce similar Root-mean square error 

(RMSE), bias statistics, and Pearson correlation for the paired treatment differences, with at 

RMSE of 14.18 and 14.13 g N2O-N ha-1 day-1; bias of -0.4 and 0.5 g N2O-N ha-1 day-1; and 

Pearson correlation of 0.21 and 0.22 for dynamic NI effect and static effect models, respectively. 

However, the dynamic NI model generates smooth N2O differences, whereas the constant model 

sometimes generated a sharp increase in N2O at the end of the two months period, particularly at 

the Bowling Green site, which is an artifact of nitrogen being retained as NH�� for a set period of 

time rather than a gradual decline in the effectiveness of the inhibitor (Figure 3.8).  
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Figure 3.8. Posterior predictions (black line) and 95% central posterior prediction intervals (grey 
band) for the CRNF (first column), dynamic NI model (second column), and static NI routine 
(i.e., Del Grosso et al. 2009) (third column), and measured N2O-flux differences (black dots) 
between EENFs (CRNF and NI) and conventional fertilizer for ARDEC, CO (first row); 
Bowling Green, KY (second row); and St. Paul, MN (third row). Values at 0 imply that there is 
no difference between the treatment and control, while values below 0 represent a reduction in 
N2O emissions in the treatment with EENFs compared to the control, and values above 0 
represent an increase in N2O emissions in the plot with EENFs. 
 
3.5. Discussion 

Overall, DayCent was able to capture the mean effect of EENFs on N2O reductions based on the 

experimental dataset. With CRNFs the model suggests a reduction of -11.9% (-51.7% and 

0.58%), which is lower than reported reduction factor of -35% (-58% and -14%) by Akiyama et 

al. (2010) and -20% (-27% and -11%) reported by Thapa et al. (2016), but similar to reduction 

factor of -16% (-36% and 8%) reported by Han et al. (2017) and -5% (-18% and 7%) by Eagle et 

al. (2017). DayCent results also suggested that NIs are more effective in reducing N2O compared 

to CRNFs (Figure 3.6) with a reduction factor of -26.7% (-61.8% to 3.1%). Higher reductions for 

NIs have been reported by published meta-analysis. For example, Akiyama et al., (2010) and 

Thapa et al., (2016) both reported reduction factors of -38% (-44% and -31%), Han et al., (2017) 
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reported -44% (-48% and -39%) with NI, and a reduction factor of -25% (-39% and -13%) is 

reported by Eagle et al., (2017). Furthermore, reduction factors reported by Eagle et al., (2017) 

are based on North American corn-based systems, and more comparable in terms of the level of 

emission reductions estimated in my model-based analysis than other meta-analyses that are 

based on global datasets. 

I also further improved the representation of nitrification in DayCent by incorporating a 

dynamic estimation of nitrified-N that is emitted as N2O rather than assuming a constant rate of 

N2O emissions from nitrification (i.e., 1.2%). The dynamic rate depends on WFPS as an 

indicator for O2 availability. Following Kool et al. (2011), I hypothesized that two distinct 

pathways lead to N2O production during the transformation of NH�� to NO��. In an aerobic 

environment, oxidation of hydroxylamine �NH,OH� during autotrophic and heterotrophic 

nitrification contributes to N2O formation (nitrifier nitrification) (Sutka et al., 2003). With 

increasing WFPS, when the soil environment reaches sub-oxic conditions, nitrifying micro-

organisms reduce nitrite �NO,�� to N2O (nitrifier-denitrification) (Wrage et al., 2001).  

Most N2O emissions are released following N applications especially during the growing 

season, but significant N2O fluxes have also been observed during freeze-thaw cycle (FTC) 

(Dusenbury et al., 2008; Pelster et al., 2019; Risk et al., 2013). Models that do not estimate N2O 

emissions from FTC could underestimate global agricultural N2O emissions by 17 to 28% 

(Wagner-Riddle et al., 2017). Empirical reduction factors for EENFs only capture reductions 

during the growing season because of a lack of measurements during other times of the year 

including FTC. By comparing the modeled reduction factor between the growing season and 

annual values, the effectiveness of EENFs was reduced by 50% for CRNFs and 35% for NIs in 

DayCent model simulations. The main reason for the reduced effectiveness in the model is due to 
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N2O emissions during the FTC with slightly higher N2O from EENF simulations during these 

events in late winter or early spring (Figure 3.8), mainly driven by higher mineral N in model 

simulations for the EENF plots during the spring thaw (Figure not shown). My findings raise a 

concern about reduction potentials that are based on empirical factors, particularly in northern 

latitudes where FTC is more frequent.  Field research is needed to better understand the trends in 

mineral N content and emissions associated with EENFs for the entire annual cycle including the 

potential for emission pulses surrounding FTC. 

The differences were not as great as I anticipated between modeling NIs with a dynamic 

approach incorporating environmental controls on the effectiveness of the inhibitors compared to 

static representation of reductions in nitrification rates (Del Grosso et al. 2009). Both models 

produce similar results based on the statistics, but the static representation produces an artificial 

pulse in N2O at the end of the fixed two-month period.  This is due to the nature of the step 

function in the static approach when the model simulates the 50% inhibition for two months and 

then switches to no inhibition. The dynamic inhibition model, in contrast, starts with the highest 

level of inhibition and gradually declines as the NI decays. The dynamic model is arguably more 

realistic with an exponential decay of NIs (Kelliher et al., 2014) and dependency on the NI 

concentration for inhibition effectiveness that is associated with the dynamic function (Di and 

Cameron, 2004).   

Comprehensive research has also found a large number of chemicals having NI properties 

(Prasad and Power, 1995) and several products have gained popularity (Trenkel, 2010). 

Reduction factors for individual types of NIs have been estimated, however, most NIs are not 

significantly different from each other (Akiyama et al., 2010; Eagle et al., 2017; Thapa et al., 

2016). Among all NIs, Dicyandiamide (DCD) is the most commonly applied NIs in experiments 
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including GRACEnet sites, and therefore DayCent has been more fully tested for this type of 

inhibitor. It is noteworthy that several publications have reported that DCD is highly sensitive to 

temperature with decreasing half-life as temperatures increase (Di and Cameron, 2004; Kelliher 

et al., 2008; Prasad and Power, 1995). Additionally, DCD is also readily soluble in water and 

susceptible to leaching, thus lowering its efficiency (Prasad and Power, 1995; Williamson et al., 

1996). Moreover, most NIs are reported as sensitive to soil temperature and soil moisture 

dynamics (Prasad and Power, 1995; Trenkel, 2010), hence, the method and model is likely 

representative of a broader suite of NIs that are available on the market.   

Furthermore, EENFs applied at GRACEnet sites often combine urease inhibitor N-(n-

butyl) thiophosphoric triamide (NBPT) with DCD, so the independent effect of NIs from urease 

inhibitors was not possible to evaluate with this dataset. However, a meta-analysis performed by 

Akiyama et al. (2010) found that the urease inhibitors, such as NBPT, had no significant effect 

on N2O emission and therefore I expect that the majority of the reductions in N2O emissions was 

due to the application of NIs in these experiments. Regardless, further model testing of DayCent 

should be done in the future as more field research is completed for a broader suite of inhibitor 

types and application of NIs without urease inhibitors, as well as to re-evaluate the dynamic 

inhibition model compared to the static approach for simulating the NI effect. 

CRNFs are mainly conventional soluble fertilizers with protective coatings or are a 

water-insoluble with semi-permeable or impermeable coatings of porous materials (Shaviv, 

2001; Trenkel, 2010). In the presence of water, the coating protects the N and leads to a slow 

release to the soil in a controllable manner. First, the protective coating allows moisture to 

diffuse into the CRNFs products, then dissolves the N fertilizer and creates a N solution. The 

subsequent N release through the protective coating is also influenced by the soil temperature. 
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Following the best management practices (BMPs) for fertilizer, CRNFs aim to release N in 

synchrony with the plant demand to avoid a surplus of plant-available N in the soil and N loss to 

the environment through nitrification, denitrification, leaching, and volatilization (Timilsena et 

al., 2015; Trenkel, 2010). Many products have been studied with the properties of CRNFs, and 

there are a variety of release patterns (Shaviv, 2001; Timilsena et al., 2015; Trenkel, 2010). 

The dataset used in the analysis focused on a controlled-release, polymer-coated urea, 

ESN, which has been used in most experiments at GRACEnet sites. During the manufacturing 

process, the desired release pattern is achieved by varying the polymer coating composition or 

thickness, which influences release patterns as noted above (Shaviv, 2001; Trenkel, 2010).  Most 

ESN was applied during the corn-growing seasons at GRACEnet sites and the posterior 

parameter distributions are suitable for simulations with corn or crops with a similar growing 

period. Further testing is needed to confirm if the current model calibration is sufficiently general 

to represent other CRNFs. Regardless, DayCent can be easily adapted to other CRNFs with a 

sigmoidal release pattern given sufficient experimental data for model calibration.  

The use of EENFs has been considered as a potential mitigation method to reduce N 

losses to the environment and also improve nutrient use efficiency in crops according the 4R 

nutrient management paradigm. In addition to N2O reductions, CRNFs and NIs also can 

effectively reduce NO�� leaching (Eagle et al., 2017; Zhang et al., 2019), NH3 volatilization loss 

(Zhang et al., 2019), nitric oxides (NOx) (Akiyama et al., 2010) and may improve crop yields 

(Abalos et al., 2014; Zhang et al., 2019).  

3.6. Conclusion 

Adoption of EENFs as an alternative to conventional fertilizers can reduce N2O emissions, but 

the reduction potentials are affected by a variety of factors, including climatic conditions, 
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edaphic characteristics, and management practices. Process-based models that represent the N 

cycle may be a viable tool to understand the effect of individual factors and their interactions and 

make predictions about the benefit of EENFs for individual farms to regional, continental and 

global scales. Moreover, Bayesian calibration using the SIR method has been applied in this 

study to estimate appropriate parameter values for simulation of EENFs in DayCent, as well as 

quantifying model uncertainty—a critical requirement for scientific understanding and policy 

implementation for N2O mitigation programs associated with agricultural management. 

Incorporating model development for EENFs into process-based models will provide a platform 

to better understand the multiple aspects of N dynamics and identify best management practices 

with the “4R” nutrient stewardship paradigm, particularly application of right source of N.
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CHAP: BAYESIAN CALIBRATION OF THE DAYCENT ECOSYSTEM MODEL TO 

SIMULATE SOIL ORGANIC CARBON DYNAMICS AND REDUCE MODEL 

UNCERTAINTY 

 
 

4.1. Summary 

Benefits of carbon sequestration in agricultural soils are well recognized, and process-based 

models have been developed to better understand sequestration potential. However, most studies 

ignore the uncertainty arising during model prediction—a critical requirement for scientific 

understanding, policy implementation and carbon emission trading. Furthermore, the 

dependencies created in process-based models due to many parameters and a relatively small set 

of empirical data hinder parameterization. I have implemented a Bayesian approach using the 

sampling importance resampling (SIR) method to calibrate the DayCent ecosystem model for 

estimating soil organic carbon (SOC) stocks, and to quantify uncertainty in model predictions. A 

SOC dataset compiled from 19 long-term field experiments, representing 117 combinations of 

management treatments, with 491 measurements of SOC, was split into independent datasets for 

model calibration and evaluation. The most important DayCent model parameters were identified 

through a global sensitivity analysis (GSA) for parameterization and SIR was used to calibrate 

the model and produce posterior distributions for the most sensitive parameters. On average, the 

Bayesian calibration reduced the model uncertainty by a factor of 6.6 relative to the uncertainty 

associated with the prior. The Bayesian model analysis framework will allow for ongoing 

updates to the model as new datasets and model structural improvements are made in future 

research, and overall provide a stronger basis for models to support policy and management 

decisions associated with GHG mitigation through C sequestration in agricultural soils.  
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4.2. Introduction 

Soil organic carbon (SOC) is a major pool in the global carbon cycle. It contains more carbon 

(C) than terrestrial vegetation and atmospheric CO2 combined (IPCC, 2013). Annually, a large 

portion of photosynthetically-fixed C enters the soil as plant residues and is released back to the 

atmosphere through the activity of the microbial decomposer community (Paustian et al., 2000). 

Even a small change in this exchange of C between the soil and the atmosphere may have a large 

impact on the global carbon cycle. Moreover, less than a percentage increase in these SOC 

stocks per year may represent a significant level of C sequestration and reduction in 

anthropogenic greenhouse gas (GHG) emissions. The rate of C sequestration varies regionally 

and by land-use type with high potential in managed agroecosystems (Álvaro-Fuentes et al., 

2017; Sanderman et al., 2017). 

Currently, about 11% (1.5 billion hectares) of the earth’s land surface is in crop 

production (Bruinsma, 2003). Much of this land has lost 50-75% of the native C stocks from the 

top soil layer (Lal et al., 2007; Ogle and Paustian, 2005; Sanderman et al., 2017) during the long 

history of intensive cultivation (Sanderman et al., 2017) and represents a potential CO2 sink (Lal, 

2004a; Paustian et al., 1997; Smith, 2004a). Adopting management practices that enhance 

organic matter input and/or reduce C losses by limiting decomposition can sequester C (Lal et 

al., 2007; Ogle and Paustian, 2005; Paustian et al., 1997) with a potential of gaining back about 

two thirds of initial C loss (Lal et al., 2007). It has also recently been promoted as a policy 

mechanism by the French Ministry of Agriculture to meet reduction commitments through “4 per 

mille Initiative for Food Security and Climate” (Minasny et al., 2017). However, monitoring and 

verification of SOC stock changes are required to incorporate SOC sequestration into mitigation 

programs (Smith, 2004b), and integrating measurements with process-based modeling provides a 
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viable method to quantify C sequestration for monitoring purposes (Conant et al., 2011a; Luo et 

al., 2016; Smith et al., 2012). 

Although process-based models are extensively used to predict SOC stocks, such as 

DayCent (Del Grosso et al., 2001; Parton et al., 1998), RothC (Jenkinson and Rayner, 1977), 

DNDC (Changsheng Li et al., 1992), and EPIC (Izaurralde et al., 2006), uncertainty associated 

with model structure and parameterization are difficult to quantify and may account for the 

majority of uncertainty in model predictions (Ogle et al., 2010). Advancements in Bayesian 

calibration techniques have led to methods suitable for addressing uncertainty in both model 

parameters and predictions and the techniques have been used to model SOC dynamics (e.g. 

Clifford et al., 2014; Hararuk et al., 2014; Van Oijen et al., 2005; Xu et al., 2006). The method 

provides a probabilistic framework in which the posterior distributions of the uncertain model 

parameters are first estimated, and then the predictive distributions of the model outputs are 

computed (Gelman, 2014; Smith, 1991). Using Bayes’ theorem (Bayes and Price, 1763), the 

posterior distribution is derived from the data likelihood and the prior distribution, where the 

likelihood measures the goodness of fit between the modeled and the measured dataset and the 

prior is the current understanding of the distribution of model parameters based on either 

previous analyses or expert knowledge. 

Monte Carlo methods have been developed for conducting Bayesian calibration using a 

Markov Chain Monte Carlo (MCMC) approach, such as the Metropolis-Hastings (MH) 

algorithm (Hastings, 1970; Metropolis et al., 1953) and direct simulation such as the sampling 

importance resampling (SIR) method (Rubin, 1988, 1987). The MH algorithm has been used in 

several studies for parameter estimation of SOC simulation models (Ahrens et al., 2014; Clifford 

et al., 2014; Dechow et al., 2019; Sakurai et al., 2012; Van Oijen et al., 2005; Xu et al., 2006). 
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The MH algorithm follows a random walk through a parameter space iteratively. In each step, a 

new candidate vector is proposed and is accepted or rejected. This process is repeated for a large 

number of iterations with multiple chains to test for posterior convergence. 

In contrast to MCMC, the SIR method is non-iterative and does not require a random 

walk through the parameter space. Instead, a large number of samples from the prior are 

obtained, and then from this, a smaller sub-sample is drawn with sample probability proportional 

to their importance weights—resulting in an approximate sample for a joint posterior 

distribution. In practice, the SIR method has been successfully applied in the field of fisheries 

(McAllister and Ianelli, 1997; Raftery et al., 1995), but to my knowledge the SIR method has not 

been applied to a process-based simulation model of SOC. 

In a Bayesian procedure, it is desirable to account for uncertainty in all model parameters, 

but more parameters can require an unrealistically large number of simulations to identify the 

posterior probability distribution for parameters. Process-based models often have hundreds of 

uncertain parameters that makes the calibration process impractical. In practice, uncertainty is 

assigned to only a fraction of model parameters and it is assumed that other parameters are fixed 

without error (McAllister et al., 1994). This assumption may underrepresent uncertainty and may 

also introduce bias into the model output if influential parameters are not included in the 

parameterization. Thus, a global sensitivity analysis (GSA) that adopts a parsimonious principle 

by identifying the most influential or ‘sensitive’ parameters driving variation in model results is 

recommended to avoid significantly reducing estimates of model uncertainty (Saltelli et al., 

2008).  

The objective of this study is to implement a Bayesian model analysis framework that 

quantifies and possibly reduces uncertainty in model predictions of SOC stocks and stock 
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differences in the top 0-30 cm of agricultural soils (Figure 4.1). First, a variance-based GSA 

using the Sobol method (Jansen, 1999; Saltelli, 2002; Sobol, 2001, 1993) is performed to identify 

influential model parameters associated with predicting SOC stocks (Figure 4.1A). Non-

influential parameters are fixed to default values, making the model more parsimonious (Saltelli 

et al., 2008). Second, the sampling importance resampling (SIR) method is applied to estimate 

the posterior distribution of parameters (Figure 4.1B) identified as influential during the GSA. 

Finally, a Monte Carlo analysis is used to estimate posterior predictive distributions of SOC 

stocks and stock differences (Figure 4.1C) based on the parameter distributions from the 

Bayesian analysis. The proposed framework is applied to DayCent ecosystem model to evaluate 

parameter uncertainty for the soil organic matter module. During the calibration process, instead 

of estimating posterior distributions of model parameters for each site separately, I treated the 

model parameters as population-level variables and estimated only one joint posterior 

distribution. This enables the application of DayCent to simulate SOC beyond the experimental 

sites in the calibration dataset, and fully quantify uncertainty in the model predictions. DayCent 

has been used to simulate ecosystem responses due to land-use change and change in 

management practices in cropland and grassland (Cheng et al., 2014; Del Grosso et al., 2008; 

Ogle et al., 2010; Parton and Rasmussen, 1994) and the effect of climate change in agricultural 

system (Parton et al., 2007; Robertson et al., 2018). DayCent has also been used to quantify C 

stock changes and GHG fluxes from agricultural soils for the U.S. National Greenhouse Gas 

Inventory compiled by the U.S. Environmental Protection Agency and reported annually to the 

UN Framework Convention on Climate Change (EPA, 2019).  
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Figure 4.1. Flow Chart Diagram of the Bayesian model analysis framework 
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4.3. Materials and Methods 

4.3.1. DayCent Ecosystem Model 

DayCent (Del Grosso et al., 2001; Parton et al., 1998) is a daily time-step version of the 

CENTURY (Parton et al., 1987) ecosystem model with intermediate complexity and simulates 

the flows of carbon (C) and nitrogen (N) through plant-soil systems. DayCent includes several 

sub-models to simulate plant production, decomposition of litter and SOC, soil water, and 

temperature dynamics. The SOC sub-model consists of three (active, slow, and passive) soil C 

pools. The active pool has a short turnover time of months to a few years and represents soil 

microbes and microbial products. The slow pool includes resistant plant material and soil-

stabilized microbial products with a turnover time up to a few decades. The physically and 

chemically stabilized SOC, which is very resistant to decomposition is the passive pool and has a 

turnover time on century time scales. In DayCent, carbon transfer between pools is determined 

by decay rates and controlled by C transfer efficiency parameters. The decay rates for all the 

three pools are influenced by climatic variables and the soil properties, while the tillage and/or 

physical disturbances only affect the decay rates for active and slow pools. Carbon transfer 

efficiencies are also influenced by soil texture. The site-specific variable inputs required for 

DayCent simulations are daily maximum and minimum temperatures, precipitation, scheduling 

of irrigation, site-specific soil properties, current and historic land use, management practices 

such as grazing, cultivation and planting schedules, organic matter inputs, fertilizer inputs and 

soil disturbance through tillage management. 

 4.3.2. Experimental Sites 

A literature review was conducted to obtain data for calibration and evaluation of the model. 

Experimental sites were selected from published SOC studies based on the following set of 



80 

criteria: (a) the duration of the experiment must be at least 15 years or greater, (b) there must be 

at least two repeated measurements over the duration of the study for a given treatment, (c) SOC 

measurement data must be available to a depth of 30 cm or enough information for a reasonable 

extrapolation to 30 cm, and d) site-specific variable inputs were available for the DayCent 

simulations. When SOC measurements were not available to 30 cm, SOC estimates to 30 cm 

were calculated based on the C stocks of the nearest depth increment. In some cases, the authors 

of the papers were contacted to obtain additional information needed for the simulations that was 

not included in the publications. 

The final SOC dataset for the analysis consisted of 19 long-term experimental sites with a 

total of 117 combinations of management treatments across all sites and 491 measured SOC 

stocks. The dataset was further divided into two sets for model calibration and independent 

evaluation. The dataset for the model calibration included 8 long-term experimental sites with a 

combined 56 site by treatment combinations and a total of 270 measurements (Table 4.1). The 

remainder of the 11 long-term experimental sites were used for model evaluation with a 

combined 61 site by treatment combinations and a total of 221 measurements (Table 4.2). The 

experimental sites have well-documented management activities including crop rotation 

histories, residue management, tillage practices, cover crop usage, fertilizer application rates, 

irrigation, and organic amendments for the duration of the experiment, and also have reported 

edaphic characteristics including soil texture, soil pH, and soil drainage status that are required 

for DayCent simulations. Additionally, hydric properties needed for model inputs were 

calculated using equations in Saxton et al., (1986). Daily maximum and minimum temperature 

and precipitation for the experimental sites in the United States were acquired from PRISM  
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(PRISM Climate Group, 2018), in Canada from NARR (Mesinger et al., 2006), and for rest of 

the sites from MsTMIP (Huntzinger et al., 2015). 

For each of the experimental sites, SOC pools (state variables) were initialized with 

several thousand years of simulation under grassland vegetation, historical weather data, and 

edaphic characteristic to reach a steady-state condition. In DayCent and many ecosystem models, 

model initialization of SOC pools is crucial and if the state variables are not initialized within a 

reasonable range of steady-state conditions then there can be considerable drift in modeled SOC 

stocks, which may introduce significant bias into estimates of SOC stock changes (Falloon and 

Smith, 2000). After establishing the state variables at steady-state conditions, recent cultivation 

histories were simulated for the long-term experiments allowing the state variables to reach 

values consistent with known cultivation histories of the regions prior to the start of the 

experiment. These histories were based on information provided in the published literature for 

the experiment (Table 4.1) or from general cultivation histories that are used in the U.S. National 

Greenhouse Gas Inventory (EPA, 2019). 

Table 4.1. SOC study locations and treatments used for the Bayesian model calibration. 
Treatment abbreviation are MN = mineral nitrogen additions; Omad = organic amendment; TILL 
= tillage change; CR = crop rotation; BF = bare fallow plots; GR = grazing intensity and n is the 
number of observations for the study location. 

Locations Lat. Lon. Sand Silt Clay n 
Length 
(years) 

Trt. References 

Broadbalk 
Rothamsted, 
UK 

51.8 -0.4 18 57 25 54 153 
MN 
Omad 
BF 

e-RA (2013) 
Jenkinson, 
(1990) 

Cheyenne 
Wyoming, 
USA 41.2 -105 68 16 16 6 21 GR 

Schuman et al., 
(1999) 
Manley et al., 
(1995)  
Ingram et al., 
(2008) 

Grignon 
France 48.9 1.9 16 54 30 11 48 BF 

 
Barré et al., 
(2010) 
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Mead 
Kansas, USA 41.2 -96 5 60 35 9 17 

CR 
Omad 

Lesoing and 
Doran (1997) 

Pendleton 
Oregon, 
USA 

45.4
4 

-118 18 60 22 
10
3 

64/55 
MN 
Omad 
TILL 

Machado et al., 
(2008) 
Machado, (2011) 
Rasmussen and 
Smiley (1997) 
Rasmussen and 
Rohde, (1988) 

South 
Charleston 
Ohio, USA 

40 -83.5 15 65 20 9 29 Till 
Dick et al. 
(1997) 

Swift Current 
Saskatchewa
n, Canada 

50.3 -108 25 49 26 60 30 
Till 
CR 

Maillard et al., 
(2018) 

Wooster 
Ohio, USA 

48.8 -82.0 25 60 15 18 31 
CR 
Till 

Dick et al. 
(1997) 

 
Table 4.2. SOC study locations used for independent model evaluation. Treatment abbreviations 
are the same as in Table 4.1. 

Locations Lat. Lon. Sand Silt Clay n 
Length 
(years) 

Trt. References 

Bad 
Lauchstadt 
Germany 

51.4 11.9 11 68 21 18 96 BF 
Omad 

Jensen et al., 
(1997)  
Smith et al., 
(1997)  
Powlson et 
al., (1998) 
Molina et al., 
(1997) 
Ludwig et al., 
(2007) 

Dixon 
Springs 
Illinois, USA 

37.4 -88.7 4 77 19 24 20 TILL Kitur et al., 
(1994) 
Olson et al., 
(2010) 

Hoytville 
Ohio, USA 

41.0 -84.0 21 39 40 13 42 CR 
Till 

Dick et al. 
(1997) 

Lethbridge 
Alberta, 
Canada 

49.7 -113 46 23 31 45 80 CR 
MN 

Monreal and 
Janzen, 
(1993) 

Lexington 
Kentucky, 
USA 

38.1 -84.5 9 61 30 12 22 Till 
MN 

Frye et al. 
(1997) 
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Mandan 
North 
Dakota, USA 

46.8 -101 29 53 18 4 87 GR Frank et al., 
(1995) 
Liebig et al., 
(2006) 

Morrow 
Illinois, USA 

40.1 -88.2 8 67 25 14 115 MN Khan et al., 
(2007) 

Park Grass 
Rothamsted, 
UK 

51.5 0.5 12 66 22 19 146 MN e-RA (2013) 

Rosemount 
Minnesota, 
USA 

44.7 -93.1 16 60 24 30 22 TILL 
MN  
RR 

Clapp et al., 
(2000) 
Dolan et al., 
(2006) 

Saginaw 
Michigan, 
USA 

43.4 -84.1 9 44 47 21 20 CR Christensen 
(1997) 

 
4.3.3. Global Sensitivity Analysis 

The first step in the Bayesian model analysis framework is to conduct a variance-based GSA to 

quantify the relative importance of parameters that have a significant influence on model output 

(Figure 4.1A). The analysis permits us to identify a group of parameters with the most influence 

and allows a framework to fix other less influential parameters to a reasonable value, making the 

model more parsimonious (Saltelli et al., 2008), a method known as “Factor Fixing” or 

“Screening”. My analysis used the Sobol method (Jansen, 1999; Saltelli, 2002; Sobol, 2001, 

1993) to estimate the sensitivity index, which measures the influence of individual parameters or 

groups of parameters on the model output. Like the analysis of variance, the method partitions 

the total variance of the model output into first-order and higher-order interaction terms and 

allows the estimation of the proportion of variance explained by each parameter. 

The Sobol method is model-independent, works for both linear and nonlinear outputs 

(Sobol, 2001) and is well suited for complex and highly non-linear process-based ecosystem 

models, such as DayCent. This method takes into consideration the whole parameter space 

simultaneously in the form of a probability density function, includes both main effect and 
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interactions between parameters, and is arguably one of the most robust and comprehensive 

global sensitivity methods (Saltelli et al., 2008). I used log-likelihood value computed from the 

mismatch between the measured and modeled to determine the sensitivity for the GSA.  

Even though DayCent has hundreds of model parameters, here I only considered a total of 17 

parameters that directly relate to SOC processes and the soil organic matter decomposition sub-

routine in DayCent. For the GSA, I assigned independent uniform priors separately for each of 

the 17 model parameters (Table 4.3). These parameters control the decay rate of the SOC pools 

and C transfer efficiency. DayCent model parameters associated with other processes, such as 

plant production, influence the modeled SOC, but in an indirect manner through these 17 

parameters. 

Table 4.3. Default parameter values, prior distributions and definitions for the 17 parameters in 
soil organic matter decomposition sub-routine of DayCent.  

Parameters Default Lower Upper Distribution Definitions 

'DEC4' 0.0025 0.001 0.005 uniform 
Maximum decomposition rate of 
passive pool 

'TEFF(1)' 14 5 30 uniform 
Temperature (°C) at the inflection 
point for the temperature curve 

'DEC5(2)' 0.12 0.07 0.25 uniform 
Maximum decomposition rate of 
slow pool 

'TEFF(2)' 0.15 0.05 0.3 uniform Slope of line at inflection point 

Till_Eff 10 5 15 uniform 
Tillage Multiplier on 
decomposition  

'PS1S3(2)' 0.032 0.02 0.06 uniform 
Slope for clay effect on C 
transfer efficiency active to 
passive  

'PMCO2(2)' 0.55 0.35 0.7 uniform 
Fraction of C loss as CO2 from 
soil metabolic pool 

'WEFF(2)' 9 6 15 uniform Moisture effect on decomposition 

'P2CO2(2)' 0.55 0.5 0.8 uniform 
Fraction of C loss as CO2 during 
decomposition from slow pool 

'PS1S3(1)' 0.003 0.002 0.005 uniform 
Clay effect on C transfer 
efficiency from active to passive 

'PS2S3(1)' 0.003 0.002 0.005 uniform 
Clay effect on C transfer 
efficiency from slow to passive  
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'PS1CO2(2)' 0.55 0.4 0.8 uniform 
Fraction  C loss as CO2 from soil 
structural to slow pool 

'P1CO2A(2)' 0.17 0.1 0.25 uniform 
Sand effect on C loss as CO2 
from active pool (Intercept) 

'P1CO2B(2)' 0.68 0.55 0.74 uniform 
Sand effect on C loss as CO2 
from active pool (slow) 

'WEFF(1)' 30 25 35 uniform Moisture effect on decomposition 

'PS2S3(2)' 0.009 0.006 0.013 uniform 
Clay effect on C transfer 
efficiency slow to passive pool 
(Slope) 

'P3CO2' 0.55 0.5 0.9 uniform 
fraction of C loss as CO2 during 
decomposition from passive pool 

 
4.3.4. Bayesian Calibration 

The next step in the Bayesian model analysis framework is Bayesian calibration using the SIR 

method (Figure 4.1B). This approach to parameterization is an inverse modeling process that 

provides a probabilistic framework to estimate the joint posterior distribution of the uncertain 

model parameters that is consistent with the measured data given the model structure and prior 

understanding of the parameters. Using Bayes’ theorem, the posterior distribution p�θ|Ο�0�� of 

the parameters θ, given the measured data and model output, can be represented as a function of 

likelihood L�Ο�0�|θ� and the prior p�θ�, where the likelihood measures the mismatch between 

the modeled and the measured data, and the prior provides our level of understanding about the 

parameters. The joint posterior distribution is defined up to a proportionality constant as follows: 

p�θ|Ο�0��  ∝  L�Ο�0�|θ�p�θ�. (2.5) 

In the process, the prior density p�θ� is updated to the posterior density p�θ|Ο�0�� through the 

data likelihood function L�Ο�0�|θ�. When the data contain little information about the 

parameters, the posterior tends to reproduce the prior, hence nothing has been learned with the 

new data. However, as data become more informative, the likelihood L�Ο�0�|θ� outweighs the 

prior and the data dominate the posterior (Box, 1973; Gelman, 2014).  
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The SIR method (Rubin, 1988, 1987) is a non-iterative or direct Monte Carlo method that 

updates the sample from the prior to generate a sample from the posterior by adopting a particle 

filter based on importance weights, ω�θJ� (Givens et al., 1995; Punt and Hilborn, 1997; Smith 

and Gelfand, 1992). Therefore, in the SIR method, parameters that produce higher goodness of 

fit between the measured and modeled SOC stocks are more likely to be retained in the posterior. 

The calibration of DayCent model parameters using the SIR method can be summarized as 

follows (Figure 4.2). First, the posterior sample generated using the SIR method is a set of 

approximate draws from the posterior distribution, and the approximation improves as M 

increases (i.e. M → ∞) (Gelman, 1993; Givens et al., 1995; Rubin, 1988). In practice, the choice 

of M should be large enough to achieve greater sampling efficiency (McAllister and Ianelli, 

1997). Therefore, I drew a large (M =  1,000,000) independent random sample Pθ6, θ,, … . , θRS 

from the prior using the Latin hypercube sampling method (McKay et al., 1979; Owen, 1992; 

Stein, 1987), where each θ was a vector of DayCent parameters. All other DayCent  

parameters were fixed to their default values. Second, the DayCent model was run for all 

treatments in the calibration sites for all M parameter sets Pθ6, θ,, … . , θRS and modeled SOC 

values corresponding to each of the measurements were stored. For each of the initial samples 

Ps = 1, 2, … , MS, I evaluated the likelihood function L�Ο�0�|θJ� assuming that the error was 

defined by the mismatch between the measured and modeled SOC stocks. I assumed a 

multivariate Gaussian distribution with a zero-mean vector and variance-covariance matrix Z to 

address the spatiotemporal correlation of the dataset. I calculated the standardized importance 

weights; Pω�θ6�, ω�θ,�, … . , ω�θR�S using the following formula: 

ω�θJ� =  [�\�0�|]^�∑ [�\�0�|]^�_̂̀ a , (2.8) 
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where L�Ο�0�|θJ� is the likelihood function for the sbc sample. Third, I resampled (m =1000) the 

parameter set TθU6, θU,, … . , θUKV without replacement from the initial set of  parameters 

Pθ6, θ,, … . , θRS based on probabilities proportional to their importance weights  

Pω�θ6�, ω�θ,�, … . , ω�θR�S. When all steps were completed, I had m samples TθU6, θU,, … . , θUKV  

to approximate the posterior distribution. These samples were used to construct the marginal 

posterior densities of the model parameters with a kernel density estimator and posterior 

predictive distribution of SOC stocks and stocks differences. 

 
Figure 4.2. Illustration of the Sampling Importance Resampling (SIR) method. Open circles 
represent samples with higher and solid circles with lower importance weights. 
 

4.3.5. Model Prediction using Monte Carlo Approach 

The final step in the Bayesian model analysis framework is to use a Monte Carlo approach to 

propagate uncertainty through the DayCent model application and derive prediction intervals for 

SOC stocks and stock differences (Figure 4.1C). The resulting prediction intervals address the 

uncertainty associated with model parameters, but also the unexplained error in model 

predictions based on the hyperparameters. The hyperparameters quantify uncertainty associated 
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with paremeters in other sub-models and also imperfect representation of processes in the 

DayCent model structure.  

I applied the Monte Carlo approach by making joint probability draws from the 

parameter distributions and hyperparameters, applying the model iteratively for 1000 replicates. 

For external evaluation of the results, I simulated the 11 long-term experimental sites and 

compared the distributions of modeled to measured values. In addition, I conducted the Monte 

Carlo analysis with both prior and posterior distributions of the model parameters to demonstrate 

the reduction in uncertainty associated with the model analysis framework. The Monte Carlo 

analysis can also address uncertainties in model inputs, such as weather data and edaphic 

characteristics.  

The analysis was performed using the R programming language for Linux version 3.5.0 

(R Development Core Team, 2018) using the snowfall package (Knaus, 2010), sensitivity 

package for GSA (Iooss et al., 2020) and lhs package for Latin Hypercube sampling (Carnell, 

2009). All the plots for the publication were generated using the package ggplot2 (Wickham, 

2016). 

4.4. Results 

4.4.1. Global Sensitivity Analysis 

Total sensitivity indices for each of the 17 model parameters are plotted in Figure 4.3. 

Parameters with total sensitivity indices > 2.5% were considered influential, which includes 9 

parameters, while the remaining parameters were fixed to their default values. The threshold 

value of 2.5% captures the most influential parameters with goal of minimizing the overall 

number of parameters in the Bayesian analysis. Too many parameters could lead to an 

unrealistically large number of simulations to identify the posterior probability distributions for 
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parameters. Arguably, this threshold allows for inclusion of some parameters in the Bayesian 

analysis that have a relatively minor influence on the variability in modeled SOC stocks, but 

could be retained without creating computational limitations for the Bayesian analysis.  

The three most influential parameters are related to decomposition processes, including 

(1) optimum decomposition rate of the passive pool (DEC4), (2) the effect of temperature on 

decomposition (TEFF(1)), and (3) optimum decomposition rate of the slow pool (DEC5(2). 

Additionally, my analysis shows that modeled SOC stocks are also sensitive to the tillage effect 

on decomposition (Till_Eff) and the effect of clay on C transfer efficiency (PS1S3(2)) from 

active to passive pool.  

 
Figure 4.3. Ranked DayCent parameters based on the total sensitivity indices with 95% bootstrap 
confidence interval using 100 replicates. 
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4.4.2. Posterior Estimates of Model Parameters 

The SIR method produced marginal posteriors with smaller ranges and higher densities than the 

priors (Figure 4.4), indicating that the measurement dataset was informative for the Bayesian 

calibration. Some of the parameters (e.g. TEFF(1), DEC5(2)) show a considerable reduction in 

uncertainty over the priors, while others shows moderate to low levels of change in the 

probability density of likely values from the prior distributions (e.g. PMCO2(2)).  

 
Figure 4.4. Marginal posterior density (light grey area) and uniform priors (dark grey dashed 
line) for DayCent parameters. The parameters are ordered according to the total sensitivity 
indices from highest to lowest (A-I) 
 

The 95% posterior intervals of optimum decay rates for the slow and passive pools vary 

between 0.07 to 0.16 and 0.0022 to 0.0048, respectively, implying a turnover time between 6 to 

14 and 200 to 500 years for the two pools. In DayCent, the optimum decay rate assumes that the 

temperature and the moisture are not the limiting factors for decomposition. Incorporating 

climatic conditions generally reduced decomposition rates due to less than optimal moisture and 
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temperature conditions at some point during the annual cycle, leading to longer realized turnover 

times for carbon in these pools. 

The parameter associated with the temperature effect on decomposition, TEFF(1), varies 

between 12 to 21 degree C and peaked around 17 degrees C, suggesting that decomposition is 

most sensitive to temperature changes within this range. In DayCent, the tillage parameter 

increases decomposition for a short period of time after soil disturbance, and the analysis found 

the rate is elevated by a factor of 7 to 15 times with the median value of 12. Moreover, at the site 

level, uncertainty is dominated by the random effects associated with the site (σJ
bq, �, followed by 

site by year (σJ
bq×îqrp, � and unexplained error variance (σ,�  (see Table 4.4). The random effects 

and unexplained error variance are hyperparameters that address spatio-temporal variability in 

the measurements and processes that are not perfectly predicted by the model, and allow for a 

full estimation of model error (See Supplementary Material for more information). The 

uncertainty in the random effects and residual error also includes uncertainties associated with 

additional parameters in other sub-models (e.g., plant production), and may also be related to 

unknown legacy effects of past history that is not captured in model initialization, as well as 

limitations in the mechanistic understanding represented in the model structure. 

 The correlation coefficients between parameters (Figure 4.5), suggesting a few of the 

parameters are highly correlated. Moderate to high correlations occur among the decomposition 

parameters (e.g. DEC5(2) and Till_Eff, DEC5(2) and TEFF(1)). The correlation plot (Figure 4.5) 

also suggests that there is very low correlation among parameters associated with transfer 

efficiency of carbon (P2CO2(2), PMCO2(2), and PS1S3(2)) , and between parameters associated 

with carbon transfer efficiency and decomposition (DEC5(2), Till_Eff, TEFF(1), TEFF(2), 

WEFF(2) and DEC4). Parameters with moderate to high correlations tend to complement each 
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other through the multiplicative equations that are used to estimate decomposition rates, which 

also suggests that the SOC dataset is highly informative as a whole for decomposition 

parameters, but not informative enough to separate the effect of these parameters individually. 

Table 4.4. Summary of posterior distributions for DayCent model parameters and standard 
deviation for the random effects including the maximum a posteriori (MAP) estimates with the 
highest posterior density (i.e., best fit parameters in the joint probability distribution). Note: the 
MAP is the parameter value that should be used in a deterministic application of the model based 
on this analysis. 

Parameters 

Posterior quantiles  
2.5% 25% median 75% 97.5% MAP 

'DEC4' 0.0022 0.0029 0.0035 0.0041 0.0048 0.0043 

'TEFF(1)' 12.4657 15.5257 17.0523 18.4347 20.6576 16.7717 

'DEC5(2)' 0.0714 0.0856 0.0991 0.1178 0.1592 0.0866 

'TEFF(2)' 0.1411 0.2077 0.2458 0.2740 0.2973 0.2781 

Till_Eff 6.9301 9.9467 11.8702 13.5081 14.8353 14.0079 

'PS1S3(2)' 0.0233 0.0394 0.0481 0.0551 0.0596 0.0525 

'PMCO2(2)' 0.3604 0.4556 0.5383 0.6199 0.6882 0.5039 

'WEFF(2)' 6.9183 9.4635 11.2136 12.8777 14.7449 9.4755 

'P2CO2(2)' 0.5020 0.5221 0.5577 0.6128 0.7482 0.5162 ïåðìñ,  
0.0418 0.0541 0.0619 0.0727 0.1171 0.0672 

 ïòñóô×åðìñ,  0.0054 0.0060 0.0063 0.0066 0.0074 0.0058 

ï, 
0.0047 0.0048 0.0049 0.0049 0.0050 0.0047 
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Figure 4.5. Correlation coefficients among DayCent model parameters in the posterior 
 
4.4.3. Posterior Model Predictions 

The Bayesian calibration significantly reduced the posterior prediction intervals of SOC stocks 

based on a comparison of model results for the prior and posterior distributions of model 

parameters (Figure 4.6). On average, the Bayesian calibration reduced the prediction uncertainty 

in the calibration datasets by a factor of 6.6, with a coefficient of variation of 211% (193% to 

234%) based on the prior parameter distribution and 32% (30% to 34%) with the posterior 

parameter distribution. Similarly, the coefficient of variation for the posterior was 33% (30% to 

39%) for the external evaluation dataset. I also compared the distribution of root-mean-squared 

errors (RMSE) and model bias between application of DayCent model with the prior and the 

posterior parameter distribution. The SIR method produced posterior parameter distributions 

with lower RMSE values and less bias than the prior parameter distributions (Figure 4.7). 
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Figure 4.6. Prior prediction intervals (grey line) and posterior prediction intervals (black lines) 
for SOC stocks (natural log transformed) in the (A) calibration and (B) Evaluation dataset along 
with the posterior median SOC stocks (black dots) and the dashed (dark grey) line represent the 
1:1 relationship. Prediction intervals were defined by the 95% central prediction intervals. 
 

The predicted median value and the measured SOC values were distributed around the 

1:1 line for the simulations based on the posterior parameter distribution (i.e., there would be 

complete agreement between the measured and modeled values if the relationship was plotted 

exactly on the 1:1 line in the graph), and shows a positive association between the measured and 

the modeled SOC stocks for both the calibration and evaluation dataset (Figure 4.8). The 

calibrated model was able to predict the measured low and high SOC values for both calibration 

and evaluation datasets. The relationship is stronger with the calibration dataset, which is 

expected given that the model is parameterized to these locations. 

The estimates of SOC stock difference and associated prediction intervals for the 

calibrated DayCent model suggest that there is more agreement between measured and modeled 

SOC differences for organic amendment treatments in both calibration and evaluation datasets, 

compared to other practices (Figure 4.9). Tillage conversion from a full-till to no-till system and  
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Figure 4.7. Violin plots of the distribution of root-mean square error (RMSE) and model bias for 
the prior and posterior model parameters in the calibration dataset and the posterior model 
parameters in the evaluation dataset. The units are in tonnes C ha-1 (natural log transformed). 
 

 
Figure 4.8. Comparison of natural-log transformed SOC stock estimates between measurements 
and the posterior medians (black dots) with 95% central posterior prediction interval (light grey 
lines) associated with the (A) calibration and (B) evaluation datasets. The diagonal dashed line 
represents the 1:1 line where the model predictions match the measurements. 
 
addition of synthetic N fertilizer shows less agreement between the measured and the modeled 

SOC differences (Figure 4.9). Additionally, I estimated the time series of SOC stock differences 

after treatment change from three long-term experimental sites within the calibration sites 
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(Figure 4.10). The SOC stock differences between the additions of 35 metric tonnes ha-1 year-1 of 

fresh farmyard manure (FYM) vs. no application of FYM at the Broadbalk site were captured by 

the model reasonably well based on the comparison to field data (Figure 4.10A). The resulting 

plots show a rapid increase in SOC stocks with the FYM treatment in both modeled and 

measured patterns. Furthermore, posterior prediction intervals for the SOC differences includes 

“zero” only for the first five years (Figure 4.10A) after the start of the experiment—suggesting 

high confidence in the model estimates of C sequestration with FYM treatment after 5 years. The 

model result also suggests that the FYM treatment reaches a new equilibrium around 1950 when 

the slope approaches zero. SOC differences increase again in the late 1980s, which is due to 

higher carbon input through residue return (e-RA, 2013). Similar results were also found 

between treatments with or without organic amendments for both calibration and evaluation 

sites.  

Modeled and measured trends in SOC stock differences were similar for tillage 

conversion from full-till to no-till at Wooster site (Figure 4.10B) and the posterior prediction 

intervals include “zero” until 23 years after tillage conversion. Modeled and measured patterns 

had similar timelines and rates of increase for other sites with tillage treatments. 

The nitrogen fertilizer experiment at Pendleton site also had a similar trend with good 

agreement between the experimental and modeled data (Figure 4.9C). However, the mean stock 

differences increased slightly only after about 10 years of the experiment, and the posterior 

prediction intervals for the SOC stock differences always included “zero” even after 60 years of 

management changes. Similar trends were found for most of the experimental sites with N 

fertilizer treatments. 
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Figure 4.9. Comparison of treatment differences between the measurements and the posterior 
medians with 95% central posterior prediction intervals. The vertical plots include for (A) 
Calibration and (B) Evaluation datasets, and the horizontal plots are the management treatments, 
including (1) Omad: SOC differences between addition of organic amendments vs no organic 
amendments, (2) Tillage: SOC differences between No-Till vs Full-Till, and (3) Syn. N-Fert: 
SOC differences between recommended Synthetic N-fertilization rates vs Zero N controls in the 
rows. The diagonal dashed line represents the 1:1 line where the model predictions match the 
measurements. 
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Figure 4.10. Posterior prediction (black line), 95% central posterior prediction intervals (light 
grey band) (uncertainty in model parameters and hyper-parameters), and measured SOC stock 
differences (black dots) between treatment and control for (A) Broadbalk: farmyard manure 
(FYM) treatment vs. no farmyard manure plots, (B) Wooster: no-till vs. full-till plots, and (C) 
Pendleton: 180 kg N/ha vs. control with no N fertilization.  
 

4.5. Discussion 

This study demonstrates the use of the SIR method in a Bayesian model analysis framework to 

calibrate the DayCent ecosystem model with repeated SOC measurements from several long-

term study sites and constrained by the theoretical limits of the parameters based on prior 

knowledge of the model dynamics (Figure 4.1). In the calibration process, I treated the model 

parameters as population-level variables, meaning the resulting posterior distributions of model 

parameters are appropriate for application to the entire population of soils represented by these 

experiments. Uncertainty may arise due to unresolved processes in the model application that 

lead to biases in results if parameterization from one site is used to simulate ecosystem dynamics 

at another site (Luo and Schuur, 2020). It is possible to develop parameters that are region or 

site-specific to reduce uncertainty for a sub-population when applying the DayCent model. 

However, this may also restrict the model application to specific sites or region in the domain of 

interest, depending on the availability of data for parameterization. It was beyond the scope of 

the study to develop site or region-specific parameters, but this could be accomplished with the 
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methods provided in this study. The posterior distribution of model parameters from this study 

are suitable for application from individual sites to continental scales in which the experimental 

sites are located. The resulting prediction intervals fully quantify the uncertainty in model error 

based on posterior distribution of parameters and hyperparameters, and there is no evidence of 

bias from the independent evaluation of model results (Figure 4.7-4.9). Furthermore, the 

framework can incorporate uncertainty in model input data (Figure 4.1C), such as weather 

patterns and edaphic characteristics although I did not address model input uncertainty in my 

analysis.  

Among the 17 parameters tested, decay rate of slow and passive pools, temperature effect 

on decay rate, soil disturbance through tillage, and soil texture have most impact on soil organic 

carbon dynamics in agricultural soils based on the DayCent model structure (Figure 4.3). 

Necpálová et al., (2015) also found that decay rates for the slow and passive pools and 

temperature effect on decomposition were highly sensitive to modeled SOC at an agricultural 

experimental site in the Central United States near Ames, Iowa. The sensitivity analysis indicates 

that agricultural management has a large influence on variation in SOC dynamics based on 

turnover of the slow and passive pools of soil organic matter, as well as temperature, texture and 

cultivation modifiers to the decay rates. Temperature sensitivity of soil organic matter is highly 

debated (Conant et al., 2011b; Davidson and Janssens, 2006; Frey et al., 2013), and appears 

related to recalcitrance of soil organic matter (Bosatta and Ågren, 1999; Conant et al., 2008; 

Craine et al., 2010; Fierer et al., 2005) and response of the microbial community to changes in 

temperature (Liang et al., 2017; Schimel, 2013; Wieder et al., 2013). Texture, particularly, clays 

are well-known to impact soil organic matter dynamics through mineral associated organic 

matter that reduces decomposition rates, and this form of protection is thought to be more 
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important in ecosystems dominated by herbaceous vegetation, such as grasslands and annual 

croplands, compared to forest with woody dominated vegetation (Cotrufo et al., 2019).  

I focused on predictions of C sequestration for three potential mitigation practices, 

addition of farmyard manure (FYM), reducing tillage disturbance, and mineral fertilization. My 

estimates of field-level prediction uncertainty for SOC stocks and stock differences are relatively 

high, but FYM provided a higher level of C sequestration and accuracy on a consistent basis 

based on the model predictions, and manure amendments are known to increase SOC stocks 

(Jiang et al., 2018; Maillard and Angers, 2014). The model also predicts increases in C stocks 

with adoption of no-till management in the top 30 cm of the profile. This effect does vary with 

deeper depths and depends on the climate and soil conditions (Ogle et al., 2019; Sun et al., 

2020). Further model development in DayCent will be needed to represent the impact of tillage 

on SOC dynamics in the subsoil. In contrast, the results are not conclusive that the addition of 

synthetic N fertilizer will sequester C in soils due to high prediction uncertainty relative to 

expected increase in SOC. Furthermore, previous research has suggested that mineral 

fertilization is less effective as a C sequestration practice than other management options and 

may even lead to losses of SOC (Jiang et al., 2018; Khan et al., 2007; Salinas-Garcia et al., 

1997). 

 Even though my analysis reduces the RMSE and bias in the model and is also able to 

reduce prediction uncertainty (Figure 4.7 and 4.8), my estimates of site-level prediction 

uncertainty are still relatively high, and are driven by measurement error, in addition to model 

structural and parameter uncertainty. There are several ways to improve upon the analysis in this 

study and reduce uncertainty in the future. 



101 

The first option for improving the framework is to refine data collection from 

experimental sites to reduce measurement uncertainty. The underlying premise of a Bayesian 

analysis implies that when the data are highly informative and have low measurement error, the 

data dominate the posterior and the choice of priors diminishes (Box, 1973). However, spatial 

variation in soils can lead to a large amount of sampling error in measurement data (Conant et 

al., 2011a). Consequently, an effective sampling protocol is needed to minimize sampling error 

and to detect changes in SOC (Conant and Paustian, 2002). While the experimental sites that 

were used in this study provide a wealth of information for SOC research and model 

development, the measured SOC stocks were often estimated with only a few replicates or even 

with a single measurement, which contributed to higher measurement error. More sites and 

greater replication could better constrain uncertainty in model predictions, along with a site-level 

sampling design that addresses local variation in SOC stocks (Conant et al., 2003; Conant and 

Paustian, 2002; Spencer et al., 2011; VandenBygaart, 2006). Also, the majority of long-term 

experiments used in my analysis were from North America and Europe. While some of these 

studies have been ongoing for more than 100 years, the limited spatial coverage of these data 

imposes limitations on the usage of the model or at least contributes to additional uncertainty 

when applied in other regions. The establishment of soil monitoring network sites coupled with 

effective sampling protocols at a national or even global scale would further improve model 

calibration and prediction (Smith et al., 2012). Achieving high-quality SOC datasets will address 

a critical gap for model calibration and evaluation, which in turn will likely improve ecosystem 

models and lead model applications that provide a stronger basis for policy development and 

management in support of soil health, food security and climate change programs. 
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The second option involves improving model structure in DayCent with new scientific 

findings or alternative models could be used in the Bayesian model analysis framework to reduce 

uncertainty. Traditional ecosystem-scale biogeochemical models simulate SOC with 

conceptually defined pools that are not measurable, which limits options for model calibration. 

Recent advancement in understanding of plant litter decomposition, SOM formation, and the 

chemical composition of stable soil C have led to development of models with more of a focus 

on microbial dynamics in recent years that may improve the process-based representation of soil 

organic matter dynamics. These models incorporate the flow of C through food webs and 

highlight the role of soil biota (Stockmann et al., 2013), and some of the models are embracing 

new paradigms emerging from the latest research on soil organic matter dynamics, such as the 

MEMS (Cotrufo et al., 2013; Robertson et al., 2019) and Millennial models (Abramoff et al., 

2018). These models are also focus on SOC pools that are measurable that may improve model 

structure and reduce structural uncertainty. 

In addition to refining model structure, the process of model initialization of SOC pools 

could be refined with less reliance on a model simulation to steady-state conditions. Studies have 

suggested that initialization to equilibrium conditions does not provide high precision in the 

initial levels of SOC for process-based model simulations (Carvalhais et al., 2008; Wutzler and 

Reichstein, 2007). Developing better ways to initialize the state variables will likely improve 

model performance and reduce uncertainty. One example of an alternative method is a Bayesian 

Accept-Reject method implemented by (Yeluripati et al., 2009). 

The third option involves expanding the Bayesian calibration of model parameters to a 

broader set of processes beyond just the soil organic matter sub-model. One of the major 

challenges in calibrating the DayCent ecosystem model is the dependencies among the hundreds 
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of parameters and model outputs. By only considering the model output of SOC stocks, I were 

able to focus on a limited number of model parameters directly affecting the turnover times of 

SOC pools and C transfer efficiencies. Furthermore, a variance-based GSA was performed to 

identify influential parameters and set non-influential parameters to the most likely value—

making the model more parsimonious. This approach does not capture the indirect effects of 

other parameters and processes that are represented in DayCent, such as those represented in the 

water and plant production sub-models. Uncertainty associated with additional model parameters 

in other sub-models is quantified in the hyperparameters in the form of random effects associated 

with site and year within site (see Supplemental Materials) and residual error. This study 

provides an initial set of results, however, that can be expanded in the future to incorporate other 

components of the model with adequate measurement datasets that address multiple outputs from 

the model. 

Lastly, it is important to recognize that site-level prediction uncertainty is large when 

considering all sources of uncertainty. However, these uncertainties may be reduced when 

predicting SOC dynamics over larger spatial and temporal extents, for example at a regional or 

national scale. Specifically, the random errors associated with site level prediction may cancel 

out as they are aggregated across sites to larger scales, and reduce uncertainty in the estimates of 

SOC stocks and stock differences. For example, (Ogle et al., 2010) have shown that the 

uncertainty associated with SOC stock changes from 1990 to 2000 in US croplands were greater 

than 600% at the site scale but less than 25% during the same time period at the national scale.  

4.6. Conclusions 

In this study, I demonstrated a framework to reduce uncertainty in model predictions of SOC 

stocks and stock differences from a process-based model by combining a global sensitivity 
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analysis to determine influential model parameters, Bayesian calibration using the SIR method to 

generate approximate posterior probability distributions for DayCent model parameters, and 

application of a Monte Carlo approach to propagate uncertainty through the model and derive 

posterior prediction intervals for SOC estimates (Figure 4.1). Uncertainty in model predictions 

was reduced by a factor of 6.6 with application of this framework to the DayCent Ecosystem 

Model, relative to application of the model with the prior parameter distributions.  

This framework is designed to incorporate new information in the future to further reduce 

uncertainty. Some key ways to reduce these uncertainties include a) improving the measurement 

datasets by increasing the spatial and temporal coverage of data as well as the data collection 

methods, b) refining the model structure or applying other models that are more accurate 

estimators of SOC dynamics, and c) expanding the Bayesian calibration to include other 

processes and associated parameters that indirectly affect soil organic matter dynamics. Finally, 

even though the proposed framework is applied to SOC dynamic model within DayCent, it is 

model independent and can applied to any process-based model. The Bayesian model analysis 

framework can be used to quantify and reduce uncertainty in process-based model predictions of 

SOC dynamics, and ultimately support policy programs that intend to reduce GHG emissions 

through C sequestration in agricultural soils.  
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CHAPTER 5: CONCLUSION AND FUTURE DIRECTION 
 
 
 

The research presented in this dissertation provides an insightful example of process-based 

model development by incorporating theoretical understanding of the mechanisms affecting 

model outcomes. Using Bayesian model calibration, selection, and prediction, this dissertation 

provides tools for ecosystem ecologists to identify an accurate model to predict the outcome and 

quantify uncertainty in model predictions from management practices in agroecosystems. All 

model developments were integrated into the DayCent ecosystem model. With the DayCent 

model structure including many dependencies among different mechanisms, its account for GHG 

mitigation potential of management practices in a robust manner.  

 The Bayesian model analysis framework was successful in reducing uncertainty on 

model parameters and estimating SOC stocks and stocks differences (Chapter 2). Analysis of 

model output on C sequestration potential suggests that the application of FYM provide the 

highest level of sequestration, the adoption of no-till also provides some C sequestration but 

requires a long time before there is a significant positive impact, however, the addition of 

synthetic N fertilizer was not a viable option. The Bayesian model selection provided refinement 

on the model structure for NH3 volatilization (Chapter 3). The updated model was able to predict 

the cumulative loss and mitigation potential when urea is applied with or without a urease 

inhibitor. With additional model development to incorporate CRNFs and NIs (Chapter 3), 

DayCent was able to predict the distribution of reduction factors for N2O emissions when EENFs 

were adopted as alternative fertilizers. 

Adopting the “4R” nutrient stewardship principle of using the right source at the right 

rate, right timing, and the right place is recommended to identify BMPs for N fertilizers. 



106 

However, many experimental sites have only evaluated one or two factors at a time, limiting the 

generality of results that may be impacted by multiple factors to fully understand the 

environmental benefits. With the model development in my dissertation research, one can test 

additional “what if” scenarios to identify potential BMPs using the DayCent ecosystem model. 

These model improvements provide a stronger basis for models to support policy and 

management decisions associated with GHG mitigation through C sequestration and reductions 

in N2O emissions from agricultural soils.  

In agricultural soil, gain or loss of SOC and N2O emissions are major sources of GHGs, 

along with the exception of methane from paddy rice cultivation. In addition, a significant 

amount (>60%) of applied N can be lost through NH3 volatilization. In my dissertation, I only 

evaluated some of the submodels in DayCent and their associated parameters that directly affect 

the model output of interest. Known processes such as crop production, N uptake by plants, NO�� 

leaching and other trace gases also interact with the level of C sequestration and N2O emissions. 

Improving other parts of the model using the Bayesian model platform would likely further 

enhance the ability of DayCent to more accurately predict mitigation potentials. The framework 

is also suitable for expanding to new model features when additional data become available. 

Additionally, ecosystem models are attempting to represent high levels of complexity, 

leading to many challenges and are always being questioned. As a result, model improvement is 

an ongoing process as our understanding of ecosystems is expanded. Additionally, many 

competing models similar to DayCent are also operational, for example, DNDC, EPIC, and 

RothC. New models have also emerged, for example, MEMS and Millennial incorporating the 

flow of C through food webs and highlight the role of soil biota. These are examples of 

ecosystem models with different hypotheses and model structures for understanding the same 
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ecosystem processes. Ensembles can be based on Bayesian model averaging (BMA), which 

combines predictive distributions from several models, and may reduce uncertainty in 

predictions by addressing a broader representation of mechanistic understanding. This can be 

tested by extending the platform in future research. 

Lastly, the method developed in my dissertation using Bayesian model calibration, 

selection, and prediction is model-independent, works for both linear and non-linear models as 

well as complex process-based ecosystem models. This platform allowed for further 

development of the DayCent ecosystem model, providing accurate results with quantification of 

uncertatinty that can be used to support mangement and policy decisions associated with 

agricultural soils related to climate change and greenhouse gas mitigation. 
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