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ABSTRACT OF DISSERTATION

AN ECHO STATE MODEL OF NON-MARKOVIAN REINFORCEMENT LEARNING

There exists a growing need for intelligent, autonomous control strategies that operate in

real-world domains. Theoretically the state-action space must exhibit the Markov property

in order for reinforcement learning to be applicable. Empirical evidence, however, suggests

that reinforcement learning also applies to domains where the state-action space is approx-

imately Markovian, a requirement for the overwhelming majority of real-world domains.

These domains, termed non-Markovian reinforcement learning domains, raise a unique set

of practical challenges. The reconstruction dimension required to approximate a Markovian

state-space is unknown a priori and can potentially be large. Further, spatial complexity

of local function approximation of the reinforcement learning domain grows exponentially

with the reconstruction dimension.

Parameterized dynamic systems alleviate both embedding length and state-space dimen-

sionality concerns by reconstructing an approximate Markovian state-space via a compact,

recurrent representation. Yet this representation extracts a cost; modeling reinforcement

learning domains via adaptive, parameterized dynamic systems is characterized by insta-

bility, slow-convergence, and high computational or spatial training complexity.

The objectives of this research are to demonstrate a stable, convergent, accurate, and

scalable model of non-Markovian reinforcement learning domains. These objectives are

fulfilled via fixed point analysis of the dynamics underlying the reinforcement learning

domain and the Echo State Network, a class of parameterized dynamic system [30].

Understanding models of non-Markovian reinforcement learning domains requires under-

standing the interactions between learning domains and their models. Fixed point analysis

iii



of the Mountain Car Problem reinforcement learning domain, for both local and nonlocal

function approximations, suggests a close relationship between the locality of the approx-

imation and the number and severity of bifurcations of the fixed point structure. This

research suggests the likely cause of this relationship: reinforcement learning domains exist

within a dynamic feature space in which trajectories are analogous to states. The fixed point

structure maps dynamic space onto state-space. This explanation suggests two testable hy-

potheses. Reinforcement learning is sensitive to state-space locality because states cluster

as trajectories in time rather than space. Second, models using trajectory-based features

should exhibit good modeling performance and few changes in fixed point structure.

Analysis of performance of lookup table, feedforward neural network, and Echo State

Network (ESN) on the Mountain Car Problem reinforcement learning domain confirm these

hypotheses. The ESN is a large, sparse, randomly-generated, unadapted recurrent neural

network, which adapts a linear projection of the target domain onto the hidden layer. ESN

modeling results on reinforcement learning domains show it achieves performance compa-

rable to lookup table and neural network architectures on the Mountain Car Problem with

minimal changes to fixed point structure. Also, the ESN achieves lookup table caliber per-

formance when modeling Acrobot, a four-dimensional control problem, but is less successful

modeling the lower dimensional Modified Mountain Car Problem. These performance dis-

crepancies are attributed to the ESN’s excellent ability to represent complex short term

dynamics, and its inability to consolidate long temporal dependencies into a static memory.

Without memory consolidation, reinforcement learning domains exhibiting attractors

with multiple dynamic scales are unlikely to be well-modeled via ESN. To mediate this

problem, a simple ESN memory consolidation method is presented and tested for stationary

dynamic systems. These results indicate the potential to improve modeling performance in

reinforcement learning domains via memory consolidation.

Keith A. Bush
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Spring 2008
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Chapter 1

Introduction

A driving force in reinforcement learning research is the growing need for intelligent, au-

tonomous control strategies that operate in real-world domains. Many real-world problems

involve a high-dimensional, nonlinear, dynamic, and continuous-valued state-space that is

only partially observable through signals containing some degree of noise; a mathematically

challenging place, indeed. Applying reinforcement learning within this domain, therefore,

requires function approximation techniques that learn even when the domain’s simplifying

assumptions, the popular “gridworld”, for example, have been relaxed and replaced by pa-

rameterized, discrete-time dynamic systems which are both nonlinear and non-Markovian.

These function approximation requirements are, unfortunately, difficult to fulfill due to

mathematical and practical challenges of adapting parameterized dynamic systems, which

are notoriously sensitive to changes in the observable dynamics. Overcoming these chal-

lenges and satisfying the unique requirements of non-Markovian reinforcement learning

domains are the foundation of the research problem studied in this document. This intro-

ductory chapter is organized into sections presenting the research motivation, description

of the problem, objectives, approach, and an overview of the remainder of this document.

1.1 Linking Histories with Horizons

In the physical world, time is the medium of change. Knowledge of temporal structure,

therefore, is a core component of intelligence. Temporal knowledge emerges through de-

composition of history, extraction of its core structural features, and from these features

synthesis of accurate, robust predictive models. The task literally is, as Elman titled his
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seminal work of recurrent network modeling, “Finding Structure in Time” [18].

In a sense, the ability to accurately predict the future via a model is a measure of in-

telligence. A model is only as sophisticated as its mathematical foundations. The accuracy

of a system’s model is directly dependent on the extent to which that system is mathe-

matically described and understood. The accuracy of future predictions derived from this

model, therefore, are similarly dependent. Increasing model prediction accuracy is a means

of increasing system understanding and, arguably, intelligence.

Temporal structure in the real-world, however, cannot simply be extracted from a static,

albeit complex, historical record. Even the most precise predictive ability is wasted without

the corresponding ability to act on the prediction. Goal-directed action, therefore, must

supplement knowledge. Uniting these tools defines the challenge of intelligent decision

making in the real-world.

Actions evoke changes in the world’s structure. Goal-directed action is analogous to a

premeditated change of the world’s future where the change moves the world closer to an

intended goal. Knowledge of temporal structure, therefore, requires understanding beyond

that of extrapolating future trends based on structure embedded in history. It requires the

profound ability to premeditate possible futures over a temporal horizon and to organize

these futures based on their utility of achieving the goal.

While seemingly daunting, the problem of constructing models that link real-world his-

tories with premeditated, unrealized horizons is mathematically well-defined. The process,

termed non-Markovian reinforcement learning is the marriage of two independent research

fields: nonlinear system identification, also termed predictive modeling, which studies the

accurate prediction of future events based on mathematical models extracted from historical

data, and reinforcement learning, which is a technique for assessing and organizing utility

embedded in the premeditation of possible futures over a temporal horizon. For more than

twenty years these fields, respectively, have been fertile ground for research. The need for

intelligent, autonomous control strategies, however, is driving these long-distinct fields of

research together.

The research proposed in this document investigates a small subset of challenges that
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are important, and in some cases unique, to the unification of predictive modeling and

reinforcement learning. To develop these challenges, however, it is first necessary to outline

the premise of reinforcement learning and non-Markovian state spaces, as well as the myriad

of technical challenges that exist in modeling these spaces.

1.2 Non-Markovian Reinforcement Learning Domains

To understand the focus of this research, this document presents a sequence of concepts,

each building on the previous to arrive at the research problem of interest. First I in-

troduce canonical reinforcement learning, which exhibits a Markovian state-space. I then

remove the assumption of a Markovian state-space and discuss what challenges this poses

for reinforcement learning—the non-Markovian reinforcement learning problem. I also

discuss the restrictions this imposes on practical non-Markovian reinforcement learning

implementations—adaptive, parameterized dynamic systems.

The assessment and organization of goal-achieving value1 embedded in premeditated

futures can be achieved through the state-action-value model of learning. In this model,

the value associated with a state varies according to the action taken by the agent existing

in that state. In other words the value is a function of both the state and the action taken

while in that state.

For this functional relationship to be correct the state-space must be complete. By

completeness it is assumed that all information necessary to determine the next state of

the world is contained in the current state. Completeness also assumes that a world can

only exist in one state and that a unique action drives the current state into one and only

one new state. In a complete state-space, therefore, the agent can influence the next state

of the world only through its action selection. A complete state-space exhibits the Markov

property [73], hence the term Markovian state-space. The Markov property is usually

assumed in reinforcement learning and, therefore, is omitted when describing a problem

1In the reinforcement learning literature, utility is termed value. Canonical reinforcement learning nomen-
clature will be used throughout this document.
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having a Markovian state-space.

Reinforcement learning provides the mathematical description of how to construct state-

action-values. The description is based, as the name implies, on an agent receiving rein-

forcement signals in response to interaction with the environment. Reinforcement signals

are transformed into state-action-values as follows. Each unique action transitions the agent

from the current state into a new state. The action and new state, together, form a state-

action pair. The reinforcement signal issued by the environment is a scalar function of the

state-action pair as well as the desired goal, which is also a function of state-action pair.

The state-action-value is the maximum sum of future reinforcement signals that can

be received when transitioning through the state-action space. That is, the current state-

action-value is defined by summing over the reinforcement signals received by a sequence of

state-action pairs, assuming that at each transition the action maximizing state-action-value

is selected.

State-action pairs that achieve the goal receive the maximum reinforcement signal. Any

state-action chain maximizing the sum of reinforcement signals must include the goal.

Therefore, the action maximizing the state-action-value of a state determines the action

necessary to achieve the goal from that state. If the reinforcement signal mapping function

is constructed such that the maximum value is zero (i.e., the goal state-action pair) and all

other state-action pairs receive a value less than zero, then the state-action chain maximiz-

ing the sum of reinforcement signals will not only include the goal, but it will also be the

shortest chain possible, and, therefore, optimal in the sense of minimum actions necessary

to achieve the goal. This is the premise of reinforcement learning.

1.3 Complications of non-Markovian Domains

Theoretically, the state-action space must exhibit the Markov property in order for reinforce-

ment learning to be applicable [73]. Empirical evidence, however, suggests that reinforce-

ment learning also applies to domains when the state-action space is only approximately

Markovian [12, 49, 50, 51].

The absence of complete state adds a significant complication to the reinforcement learn-
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ing problem. The nonlinear system identification community resolves this problem with a

theoretical tool, Takens theorem [74]. Takens theorem states that the Markov property

can be approximately reconstructed for a non-Markovian domain by temporally embedding

multiple, sequential incomplete states into a single higher-dimensional state. This can be

thought of as transfer of temporal information to spatial information. Takens theorem pro-

poses that there exists, for some unknown temporal length, an incomplete state embedding

which possesses the Markov property and approximates the original state-space.

While Takens theorem provides a theoretical solution to the problem of incomplete state

representation, it raises additional practical challenges. For a given problem, the length of

the embedding is unknown a priori and can potentially be large. The dimensionality of the

state-space is an important practical limitation in reinforcement learning because the size of

the approximation of the state-action values grows, potentially, exponentially with the di-

mension of the state-space. Any but the smallest embedding is, therefore, undesirable as an

approximate state. These two points suggest that approximation of state-action-values us-

ing adaptable, parameterized dynamic systems is desirable when learning via reinforcement

signal in an incomplete state-space.

Parameterized dynamic systems alleviate both embedding length and state-space dimen-

sionality concerns by adapting a compact, dynamic representation that spans the observable

state-space over a potentially infinite time-span. Yet this solution comes at a price. Mod-

eling non-Markovian reinforcement learning domains via adaptive, parameterized dynamic

systems is characterized by numerous technical challenges: instability, slow-convergence,

and high cost of either computational or spatial complexity.

1.4 Objectives

The long-range objective of this research is development of reinforcement learning methods

applicable to the real-world. This goal is, at present, unrealistic. As with many scien-

tific experiments, identifying a suitable level of problem constraint is difficult. One way to

view this challenge is to imagine problem constraints as layers of insulation that protect

the elegant mathematical principles from the unforgiving complexity, dimension, and chaos
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of the real-world. Peeling back these layers broadens the range of applicable problem do-

main at the expense of greater experimental complexity and reduced ability to analyze and

understand experimental results.

A realistic objective for this research is to investigate, identify, and understand tech-

niques that successfully model constrained non-Markovian reinforcement learning domains.

Ideally, these techniques should be stable, convergent, accurate and scalable. The

amount of problem constraint is determined by the technique of interest. Constraints can

be relaxed until the technique fails. The following challenges of applying reinforcement

learning to real-world domains, therefore, evoke poignant, high-level questions that form

the foundation of this research.

Dynamic side-effects: To what extent does instability, slow convergence, and cost of pa-

rameterized dynamic system adaptation influence reinforcement learning in non-Markovian

domains? What are the consequences of these influences?

State-of-the-art: How has machine learning methodology addressed these modeling chal-

lenges? Are current methods sufficient for modeling non-Markovian reinforcement learning

domains?

Next Generation: Can knowledge gained through the study of reinforcement learning within

dynamic systems suggest improvements to existing methods?

In the following section the experiments and methods developed to achieve these objectives

are described. Results of these experiments, their analysis, and the resulting contribution

are also summarized.

1.5 Approach

The objectives of this research are to identify techniques that successfully model non-

Markovian reinforcement learning domains. The approach used to fulfill these objectives re-

lies on two tools—fixed point analysis of the dynamics underlying the reinforcement learning

domain and the Echo State Network, a non-Markovian modeling architecture. Experiments
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and results using these techniques are developed below.

As a preliminary step to understanding non-Markovian domains, the interactions be-

tween Markovian reinforcement learning domains and their models were studied. During

this step, it was assumed that reinforcement learning is a dynamic system, and it may

be subjected to fixed point analysis. Fixed point analysis of the Mountain Car Problem

reinforcement learning domain, when the domain is modeled via both local and non-local

function approximations, provides useful generalizations of reinforcement learning dynam-

ics. The locality of the function approximation determines both the number and impact of

fixed point changes during learning; locality induces more, but less significant, changes to

the fixed point structure; non-locality induces fewer, but more significant, changes to fixed

point structure. Why is this occurring?

Research into this phenomena suggests a likely answer. Reinforcement learning domains

exist within a fundamental feature space. In this space trajectories are analogous to states.

The fixed point of the domain maps this dynamic space onto the state-space. Understanding

this fundamental structure suggests two things: reinforcement learning is sensitive to state-

space locality because states naturally cluster as trajectories in time more so than they

group in space; domain models that utilize inherently trajectory based features should

exhibit good modeling performance and very few changes in fixed point structure. With

this insight, the remainder of the research focused on exploring the modeling performance of

the Echo State Network (ESN) in multiple reinforcement learning domains: Mountain Car

Problem, Modified Mountain Car Problem (i.e., single pendulum swing-up), and Acrobot

(i.e., double pendulum swing-up).

The ESN is a large, sparse, randomly-generated, unadapted recurrent neural network,

termed the reservoir. The ESN is trained by learning a set of linear weights, the read-

out, which project the target domain onto the reservoir, a dynamic basis, which generates

trajectory based features, called echoes. The structure of the reservoir provides all of the

properties desired for reinforcement learning: stability, scalability, and robustness.

Experimental results show that the ESN achieves performance comparable to lookup

table and neural network architectures on the Mountain Car Problem and Acrobot but is
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less successful in modeling Modified Mountain Car. Further investigation attributes this

failure to the ESN’s inability to consolidate long temporal structure into a high-level, static

memory. Without this type of memory, reinforcement learning domains exhibiting multiple

dynamic scales are unlikely to be well-modeled via ESN.

An architecture for memory consolidation is proposed and tested in Chapter 7, termed

Mixture of Readouts (MoR). MoR is an ESN analog to Mixture of Experts. The concept of

MoR is that a stationary attractor may be decomposed into several smaller attractors. A

fixed ESN is assumed to be able to achieve better modeling performance on each of these

attractors individually, rather than the entire attractor when unique readouts are trained

to model individual components of the attractor. Results gathered for both the Lorenz and

Mackey-Glass attractors indicate that MoR improves modeling performance, in some cases

substantially, for both open-loop and closed-loop time-series prediction. The open-loop

results suggest that the MoR could be used as a simple memory consolidation technique

when modeling reinforcement learning domains.

1.6 Overview

The remainder of this document details the specific mathematics, relevant prior work, ap-

proach, and experimental case studies that address the objectives and results highlighted

above. Chapters 2 and 3 progress through past research leading up to the formation of these

research questions, including mathematical details and historical perspective of the trends

within reinforcement learning and predictive modeling. Chapter 3 also provides detailed

motivation for the ESN architecture chosen to model the reinforcement learning domain.

Chapter 4 presents the reinforcement learning domain as a dynamic system modeling prob-

lem and also presents results illustrating the experimental techniques and challenges faced

in this research. Full non-Markovian case studies for the Mountain Car Problem are given

in Chapter 5 and for the more complex Modified Mountain Car and Acrobot Problems in

Chapter 6. Abstraction and memory consolidation techniques for non-Markovian predictive

modeling architectures are suggested in Chapter 7. Research conclusions and an assessment

of future research directions are presented Chapters 8 and 9, respectively.
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Chapter 2

Reinforcement Learning Domains

Predictive modeling via adaptive, parameterized dynamic systems is the architectural glue

that binds together an inherently non-Markovian world with a purely Markovian learning

framework. The importance of predictive modeling to the non-Markovian reinforcement

learning problem merits a thorough review. This review is given in Chapter 3. Successfully

modeling non-Markovian reinforcement learning domains in practice, however, depends on

subtle, mathematical details buried within the reinforcement learning framework, and par-

ticularly, the interaction of these mathematics with non-Markovian state-spaces. This chap-

ter elucidates these mathematics, moving through the reinforcement learning framework,

non-Markovian domains, nonlinear dynamic systems, and non-Markovian reinforcement

learning domains.

2.1 Definition of the Problem

Choosing appropriate, goal-directed actions is the heart of intelligent, real-world interaction.

Reinforcement learning is a technique for optimally solving multistep decision problems with

mathematical foundations rooted in the theory of dynamic programming. Reinforcement

learning is best characterized as learning through interaction with an environment [73].

The characterization has five components: agent, environment, reward function, value

function, and policy function. The agent is the entity that observes the environment,

learns, make decisions, and acts. The environment is the world, or a model of the world.

The reward function is a mapping of the value of the environment’s current state with

respect to a desired goal, which is represented as a scalar reinforcement signal, also termed
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the reward signal. The value function is a mapping of the environment’s current state onto

the sum of expected reinforcement signals received along a trajectory that is initialized at

the current state.

The goal of reinforcement learning is to learn a policy function, or simply policy, which

is a mapping from the current state to an action, such that the expected sum of future

reinforcement signals is maximized. This process directly implies learning from experience

by interacting with the environment. The agent observes the state of the world, performs

an action, and observes the reinforcement signal corresponding to the world’s new state. If

the agent selects actions that maximize the reinforcement signals then over time the value

function will converge to the maximum expected sum of future reinforcement signals.

While reinforcement learning defines the means of characterizing the optimal solution

of a multistep decision problem, it does not specifically outline how to build this solution.

Reinforcement learning only outlines a method for approximating the value function when

the optimal policy (i.e., the action that exactly maximizes the reward signal for the current

state) is known. The optimal policy cannot be guaranteed without the exact value function.

This argument introduces a paradox—how can one be known without the other?

2.1.1 The Actor-Critic Method

A solution to this paradox is termed the actor-critic method for reinforcement learning.

The policy, or actor, is a mapping of the current state onto the action that maximizes the

value function. The critic is simply another name for the value function. The input to the

critic is dependent on the type of reinforcement learning technique used. One possibility

is to use the current state, which is the notation in this section. Another possibility is to

input both the current state and action, as in SARSA [73], outlined in the next section. In

practice, for non-trivial sized state vectors, s, mappings are approximated via parameterized

functions. The policy is denoted π(s). The value function is denoted V (s). These functions

are adapted iteratively.

If the adaptation is slow enough and if the parameterized functions are capable of

representing actor and critic functions, respectively, then over many interactions with the
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environment, these functions will converge to their optimal representations, denoted, π∗(s)

and V ∗(s), respectively. The process is one of mutual information sharing. The critic builds

a representation of expected future rewards associated with actions taken from the current

state. The actor uses this representation to learn the action that maximizes future rewards.

As the actor biases action selection, the critic biases the accuracy of its representation to

those states visited most often, and therefore, to the rewards received in those states.

The actor-critic method provides a conceptually well-defined mechanism for converging

to the optimal policy, π∗(s). Mathematically, however, there exist a number of challenges to

overcome. Many implementations of reinforcement learning exist that differ with respect to

the structure of the value function and the manner in which the actor and critic functions

are updated. In this thesis, state-action-reward-state-action (SARSA) method is used.

2.1.2 SARSA Reinforcement Learning

Reinforcement learning theory is predicated on the ability to construct the policy and value

function. These mappings are explicit functions of states, s. Reinforcement learning also

assumes there exists an action-space where the resultant state, st+1, is a mapping, f , from

the current state, st and action, at,

st+1 = f(st, at). (2.1)

where only scalar actions, a, are considered. These assumptions require a reinforcement

learning domain to be Markovian, which implies the state is completely observable and the

state-transition function is known a priori.1 Assuming a Markovian domain, the expected

value of the sum of expected future rewards may be defined in a state-action-reward-state-

action (SARSA) framework. The value function, V ∗, becomes an action-value function, Q∗,

which is a mapping of the state-action pair (st, at) onto the sum of expected future rewards

received by selecting the action, at, based on the current policy, such that at = π(st). The

1In this research only deterministic functions, f , are used for experimentation. In this case entries in the
transition function take on values of either 1.0 or 0.0.
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state-action-value function is defined by the recurrence:

Q∗(st, at) = rt+1 + γQ∗(st+1, at+1) (2.2)

where r is the reinforcement signal and γ is a parameter on the range (0, 1) which guaran-

tees a finite summation over an infinite horizon. Equation 2.2 assumes that Q∗ is known.

Without a priori knowledge of Q∗, an approximation, Q, must be constructed iteratively.

Assume that the current estimate of Q contains error, δt, at time t. Then Equation 2.2 can

be rewritten as

Q(st, at) + δt = rt+1 + γQ∗(st+1, at+1)

δt = rt+1 + γQ∗(st+1, at+1) − Q(st, at)

δt = rt+1 + γ (Q(st+1, at+1) + δt+1) − Q(st, at) (2.3)

where δt is termed the temporal difference error or TD-error. Using TD-error to improve

the approximation of state-action value is formulated as

Q(st, at) = Q(st, at) + αδt, (2.4)

where α is a small constant value. Over many applications of TD-error to the current Q

estimate, the chosen action approaches the optimal action, defined as

at = arg max
a

Q(st, a). (2.5)

It can be shown that δt → 0 as t → ∞, and, therefore, Q → Q∗ [73].

Equation 2.5 is modeled iteratively. It is assumed there exists some parameterized

function describing the tendency, p(st, at), to select action at given state st. It is also

assumed that the policy selects the action exhibiting the maximum tendency. To achieve

the optimal policy, the tendency, p, is updated to increase or decrease the tendency of at

being selected when st is revisited at a future time. The update is,

p(st, at) = p(st, at) + βδt, (2.6)

where δt is the correction to the tendency for the current iterate and β is a small constant

value. Over many applications of TD-error, the tendency, p, of the action which maximizes
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Q for state st will converge to a maximum and the tendency of all other possible actions will

tend toward a minimum. Thus, the policy π will select the action maximizing the expected

sum of future rewards.

Equations 2.2, 2.4, and 2.6 form the mathematical basis of SARSA reinforcement learn-

ing. Equations 2.4 and 2.6 provide the framework for implementing actor-critic reinforce-

ment learning in terms of st and at. In practice, parameterized, generalized function ap-

proximations serve as functions Q(st, at) and p(st, at). Modification of Q and p based on

TD-error (i.e., Equations 2.4 and 2.6) depend on the specific function approximation tech-

nique.

Most real-world problems are constrained such that the agent cannot observe the exact

state of the world, s. Often only an incomplete or partial state, s̃, is observable. This type

of domain is one type of partially observable Markov decision problem or non-Markovian

domain. In this case, it is no longer possible to explicitly represent future rewards, which

violates the most basic premise of reinforcement learning. Fortunately, this violation can be

overcome by approximately reconstructing the underlying Markovian domain. Techniques

for doing this are described in the next section.

2.2 Applied Non-Markovian Reinforcement Learning

The non-Markovian reinforcement learning domain is a hybrid of constructs fulfilling mul-

tiple tasks: approximate reconstruction of complete state-spaces from incomplete observa-

tions via temporal embeddings, automatic adjustment of temporal embedding lengths from

observed dynamics, and formation of actor and critic mappings from the reconstructed state-

space. This section steps through these constructs, culminating in the formal notations of

the non-Markovian reinforcement learning problem.

2.2.1 Non-Markovian Domains

A Markovian system is characterized by a state vector st which explicitly contains all

information such that there exists a mapping, f , of the next system state, st+1 = f(st).

This is termed complete state. In contrast, non-Markovian domains are characterized by an
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observable state vector, s̃t, for which no mapping, f , exists that satisfies s̃t+1 = f(s̃t). This

is often termed incomplete state.

As stated in the previous section, incomplete state violates a fundamental assumption

in the derivation of SARSA, Equation 2.1. There does, however, exist a means of cir-

cumventing this violation. The complete system state can be approximately reconstructed

from a trajectory of observable, incomplete states. This approach is motivated by Takens’

Theorem [74].

Takens’ Theorem states that under certain circumstances (i.e., a noiseless system ob-

served with infinite precision), the state-space underlying a time-series can be reconstructed

by projecting the time-series into higher dimension. The projection of the time-series

into state-space is solved by introducing delay coordinates. The time-series’ complete

state, st can be reconstructed via s̃E
t where s̃E

t is an E-dimensional point defined as

s̃E
t = {s̃t, s̃t−1, ..., s̃t−(E−1)}.

The minimum value E that reconstructs the system’s underlying state-space is termed

the intrinsic embedding dimension, E∗. Takens’ Theorem guarantees that an embedded

state-space of dimension E∗ preserves the dynamics of the original time-series. A system’s

embedding dimension, however, is most often not known a priori. Empirically estimating

the embedding dimension via correlation dimension is computationally expensive and the

technique does not scale for high-dimensional embeddings [71].

Takens’ Theorem implies, therefore, that a non-Markovian, incomplete state-space can

be transformed, approximately, into a complete, Markovian state-space by projection of the

observable, incomplete state-space into a higher dimensional embedding space. This theo-

rem motivates the use of tap-delay input streams and recursive state descriptions for non-

linear system identification problems by supposing that these mechanisms act as an explicit

or implicit embedding, respectively. Adaptive, parameterized dynamic systems utilizing re-

cursive state descriptions are particularly useful in that some can, in theory, approximately

reconstruct a complete state-space from incomplete observations while simultaneously tun-

ing the implicit embedding dimension to fit the underlying dynamics. These traits will be

discussed in greater detail in Chapter 3
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2.2.2 Nonlinear Dynamic Systems

In previous sections the concept of state transition was introduced as a discrete mapping

f such that st+1 = f(st, at).
2. Many real-world domains, however, are not discrete. Real-

world domains are modeled by differential equations. Staying in line with notation already

introduced, differential equations have the form:

∂s

∂t
= ṡ,

ṡ = f(s). (2.7)

Generally, when f is a nonlinear mapping, no analytical solution to Equation 2.7 exists. The

system, however, can be discretized and simulated via numerical integration. One simple

technique for doing this is the Euler method:

st+1 − st

∆t
= f(st),

st+1 = ∆tf(st) + st,

st+1 = f(st), (2.8)

where ∆t is a discrete, typically small, unit of time. Equation 2.8 conforms to the notation

introduced in previous sections to describe evolution of state.

There potentially exists enormous complexity within Equation 2.7. Imagine that the

system state is comprised of N dimensions. Then Equation 2.7 defines an N -dimensional

vector field (i.e., the instantaneous direction and velocity of the evolution of the system).

For non-trivial systems f is a high-dimensional, parameterized nonlinear function. The

structure of the vector field, ṡ, provides insight into the potential long-term behavior of the

system. Analysis of dynamic systems is a large, diverse field of research, but a few basic

concepts are sufficient for providing context with respect to this research.

The study of vector fields centers around two topographic features. The first feature

exists where ṡ = 0. This is a fixed point. The second feature is the closed trajectory,

commonly called a limit cycle. Both the fixed point and limit cycle indicate equilibria in

2In the general case, at is assumed to an element of the state, st.
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the vector field where the long-term behavior of the system is well-defined, either constant

(static equilibrium) or periodic (dynamic equilibrium).

As important as the location of equilibria is the qualitative shape of the vector field near

these features. If the vector field points toward an equilibrium it is classified as an attractor

(i.e., an attractive, or stable, equilibrium). Otherwise, if the vector field points away from

the feature, it is classified as a repellor, or unstable equilibrium. Both fixed points and

limit cycles are classified in this way. This is a brief, informal address of a very challenging,

mathematically rigorous subject [71].

The difficult, often maddening, aspect of dealing with parameterized differential equa-

tions is that the equilibria of the vector field can change as the parameters change. This

change may be the number, location, or stability of the equilibria, or some combination of

changes. When the features of a vector field change via parameter modification either in

number, stability, or both, then the parameter configuration evoking this change is called a

bifurcation. Bifurcations can be parameter configurations in which small perturbations of

the parameters of f (Equation 2.8) induce large qualitative changes in the evolution of the

dynamic system (i.e., vector field, ṡ).

The vector fields of dynamic systems, specifically their equilibria and bifurcations, are

critical concepts to understanding the intention of this research and are developed further

when non-Markovian modeling architectures are introduced in succeeding sections. These

architectures are built upon parameterized differential equations. Training methods for

these architectures constitute directed walks through the parameter space, potentially ex-

posing these architectures to bifurcations. The impact of bifurcations on non-Markovian

training methods is a fundamental exploration of this work.

2.2.3 Modeling Reinforcement Learning as a Dynamic System

Reinforcement learning domains are dynamic systems. What makes these domains chal-

lenging is that the recurrence describing the current prediction target, which determines

the current decision, is dependent on future rather than historic state. Compare this with

the general nonlinear dynamic system modeling task, the goal of which is to learn a re-
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cursive function that reproduces a known time-series with minimal error. In the case of

reinforcement learning, however, the approximate recursive function actually generates the

time-series as it learns.

The goal of learning is to reproduce the optimal time-series, which is defined by the opti-

mal policy and value functions, respectively. Samples of this time-series and these functions

are, unfortunately, unknown. Learning is shaped, rather, by the reinforcement signals. The

trajectory of the approximate recursive function is driven toward the optimal trajectory

via reinforcement signals. During learning, the underlying attractor of the dynamic system

described by the approximate recursive function changes. Reinforcement learning problems,

therefore, inherently exhibit nonstationary attractors.

To better comprehend the dynamics of reinforcement learning, it is necessary to de-

rive and fully expand an approximation to the optimal state-action value function, Q∗,

Equation 2.9. The value of the target, Q∗, is a sum of expected future rewards over a

potentially infinite horizon. If we assume a finite horizon of k future rewards, the result is

the approximate state-action-value function, Q, shown in Equation 2.10.

Q∗(st, at) = rt+1 + γQ∗(st+1, at+1) (2.9)

= rt+1 + γ(rt+2 + γQ∗(st+2, at+2))

= rt+1 + γrt+2 + γ(γ(rt+3 + γQ∗(st+3, at+3))

...

= rt+1 + γrt+2 + γ2rt+3 + ... + γk−1rt+k + γkQ∗(st+k, at+k)

≈ rt+1 + γrt+2 + γ2rt+3 + ... + γk−1rt+k (2.10)

Assuming a Markovian state-space, a function, f1, may be constructed that maps the current

state, st, onto the future state, st+1, as in Equation 2.11,

st+1 = f1(at, st). . (2.11)

Using Equation 2.11, the future reward, rt+1, can be defined as a function, f2, of known
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quantities—the current state and action,

rt+1 = f2(at, st+1)

= f2(at, f1(at, st)). (2.12)

Substitution of Equations 2.11 and 2.12 into Equation 2.10 yields the form of a parameter-

ized dynamic approximation to the reinforcement learning problem,

Q(st, at) = f2(at, f1(at, st)) + γf2(at+1, f1(at+1, st+1)) + γ2f2(at+2, f1(at+2, st+2))

+... + γk−1f2(at+k, f1(at+k, st+k)).

The current action can be approximated by a function, f3, of the current state, analogous

to the actor, given by Equation 2.14,

at = arg max
a

(Q∗(a, st)) (2.13)

≈ f3(st). (2.14)

Through substitution and expansion of functional arguments, an approximation of the entire

reinforcement learning problem can be defined in terms of the current state, st. This

representation removes all dynamics, yielding a single pattern matching problem, presented

in Equations 2.15—2.18.

Q(st) = f2(f3(st), f1(f3(st), st)) + γf2(f3(st+1), f1(f3(st+1), st+1))

+γ2f2(f3(st+2), f1(f3(st+2), st+2))

+... + γk−1f2(f3(st+k), f1(f3(st+k), st+k)) (2.15)

st+1 ≈ f1(f3(st), st) (2.16)

st+2 ≈ f1(f3(f1(f3(st), st)), f1(f3(st), st)) (2.17)

...

st+k ≈ f1(f3(f1(f3(f1(f3(...f1(f3(st), st)...)))))), f1(f3(f1(f3(...f1(f3(st), st)...))))

(2.18)

Equations 2.15—2.18 provide a static view of the dynamics underlying reinforcement

learning. Without knowledge of the actual function themselves, specific conclusions about
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the surface described by Q(st) are not possible. However, understanding how Q depends

on the functions defining state transitions, rewards, and action selection does imply certain

difficulties of modeling reinforcement learning via function approximation.

The general architecture of Equation 2.15 is a sum of k terms defining individual future

rewards, analogous to Equation 2.10. Each of the terms is a function of the state at time t+k

in the future. Another gross feature of importance is the relationship between successive

system states, st+i, i = 1, ..., k. Each state further into the future is a function of the

composition, f1(f3(·)), taking the previous state as input. The final relevant feature of

Equation 2.15 is that, as in Equation 2.10, each term is preceded by a constant, γ, taken

to an exponent, i− 1, i = 1, ..., k. As stated earlier, γ is a scalar defined on the range [0, 1].

Therefore, each succeeding term of Equation 2.15 influences the target, Q(st), exponentially

less than the previous term.

Examination of the dependence of Equation 2.15 is relevant with respect to several

known sources: the system state st and functions, f1, f2, and f3. For the purposes of this

discussion, the problem can be simplified by assuming that iteration over the actions a is

feasible. This will determine the action maximizing Q and function f3 becomes exact.

Surprisingly, Q(st) is linear with respect to the reward function, f2. Due to the recursive

embedding of compositions, f1(f3(·), st), Q is exponentially dependent in time with respect

to the state transition function, f1. The state, st, is exponentially dependent on past

state through recursive application of the state transition function. In terms of potential

dependence on approximated functional components, the surface of Q(st) is influenced by

the topology of the reward function surface, and, if this shape is sensitive to input variation,

the measurement accuracy of the system’s state and approximation accuracy of the system’s

state transition function.

Expanding the recursion, as in Equations 2.15–2.18, also allows for a snapshot view of

the bifurcation problem, particularly challenging when functions f1 and f3 are nonlinear.

Determining analytically what impacts adaptation of functional parameters has on the

prediction of Q is very challenging because these adaptations have exponentially growing

impact on the predictions of future rewards.

19



The impact of state and functional approximation error is particularly troublesome

when attempting to guarantee stability. Guaranteeing system stability during adaptation of

control decisions is a well-known problem that combines reinforcement learning with robust

control theory. This problem has been studied previously [43] and will not be addressed

here.

The implications of functional approximation error on the accuracy of Q value predic-

tions is significant, but not, actually, insurmountable in practice. There is no requirement

that the approximation of Q(st) be constructed from recursions of function f1, only that

the information to be modeled takes this form. Further, the complexity of the surfaces of

Equations 2.15—2.18 cannot be determined from the compositions of nonlinear functions.

In practice, approximations of Q may be much less sensitive to parameter adaptation and

approximation error of st. As evidence, given slow adaptation and multiple trials, function

approximations have successfully modeled Q for a range of control problems [40].

In a non-Markovian state-space, however, the dynamics governing the reinforcement

learning domain are more complex. The premise of this dissertation focuses on the rein-

forcement learning consequences of substituting complete state st with a non-Markovian

function approximation.

2.2.4 Non-Markovian State Approximation

When unavailable, complete state may be approximately reconstructed from a temporal

embedding of prior observables,

st ≈ g1(s̃
E
t ). (2.19)

However, as discussed in a previous section, the intrinsic embedding dimension E∗ is almost

always unknown a priori. Therefore, an implicit reconstruction of the state-space must be

used,

st ≈ g2(s̃t,xt)

xt = g3(s̃t−1,xt−1), (2.20)

where s̃t is the observable, incomplete state and xt is a recursive, contextual representation

20



of past observables. In this format the parameterized dynamic system in Equation 2.20

represents all historic information necessary to reconstruct the transition function of the

system state, st.

Combining Equation 2.20 with Equation 2.11 yields,

st+1 ≈ f1(at, g2(s̃t,xt))

xt = g3(s̃t−1,xt−1).

Assume that the parameterized dynamic system is adapted in such a way that it encapsu-

lates the necessary information of the intrinsic embedding dimension, E∗, giving,

st+1 ≈ f1(at, g2(s̃t, g3(s̃t−1, g3(s̃t−2, g3(st−3, g3(..., g3(st−E∗ ,xt−E∗)...)))).

Substituting for action, at,

st+1 ≈ f1(f3(g2(s̃t, g3(s̃t−1, g3(s̃t−2, g3(s̃t−3, g3(..., g3(s̃t−E∗ ,xt−E∗)...)))), (2.21)

g2(s̃t, g3(s̃t−1, g3(s̃t−2, g3(s̃t−3, g3(..., g3(s̃t−E∗ ,xt−E∗)...)))).

Comparing this result to Equation 2.16, it is humbling to consider the approximation er-

ror and sensitivity placed on function g3, the parameterized dynamic system forming the

implicit embedding of historical context. As with any function approximation, there are

consequences of non-Markovian state approximation. First, approximation error will exist

in the estimation of state, st. The second consequence is substantially greater. Change in

approximation of st grows exponentially with E for function g3. Drawing on the Q approx-

imation influence of st, adaptation of function g3 becomes problematic. These derivations

imply important consequences; an adaptive parameterized dynamic system reconstructing

complete state for approximation of Q must: 1) be very accurate and 2) undergo

minimal adaptation, or ideally, no adaptation at all.

The consequences of utilizing parameterized dynamic systems to model non-Markovian

domains require a search for architectures that satisfy these two criteria. In Chapter 3,

predictive modeling theory and architectures are reviewed with particularly emphasis placed

on parameterized dynamic systems, concluding with a review of the Echo State Network,
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an architecture well-suited to satisfying the requirements stated above. In Chapters 5 and

6, the Echo State Network is studied as a model of several classic reinforcement learning

problems in the non-Markovian domain.
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Chapter 3

Predictive Modeling

The research proposed in this document is comprised of two techniques: non-Markovian

reinforcement learning, described in the previous chapter, and the technique that bridges

the gap between a non-Markovian environment and a Markovian learning representation,

predictive modeling. Predictive modeling has a mature literature but most of this literature

is irrelevant to the questions addressed in this work. However, to understand the relation-

ship between predictive modeling and non-Markovian reinforcement learning, described in

Chapter 2, it is important to review the literature as it developed through time. Predic-

tive modeling is a classic example of iterative advancement—each breakthrough solved an

existing problem only to introduce a more challenging problem.

The remainder of this chapter will first build a working vocabulary of predictive model-

ing. Specifically, I will develop taxonomies of architecture, training, and performance eval-

uation, as well as a brief discourse on the theoretical limits of predictability. An overview

of predictive modeling advancements will precede an in-depth review of the literature in-

volved with the most recent and powerful modeling methods, the recurrent and reservoir

architectures.

3.1 Prediction Architecture Taxonomy

Predictive models are mathematical tools that forecast a system’s approximate future state

trajectory from its historical state trajectory. This technique is separate from, but often

applied in parallel with, dynamic models based on first principles. In this scenario the

predictive models are termed observers [?], however, the terminology is often interchange-
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able. Within the context of this research a predictive model extracts a system’s description

directly from the historical state with zero a priori knowledge of first principles. This

definition includes complex, abstract systems where no first principle descriptions exist.

Predictive models have grown from the earliest linear regression models such as auto-

regressive moving average (ARMA) models to more recent and substantially more powerful

nonlinear recurrent models. The progression from mathematically well-defined regression

techniques to poorly understood nonlinear techniques does not come without cost. Rather,

this transformation has driven predictive modelers to embrace the necessary, albeit nebu-

lous, tools of the nonlinear optimization trade: heuristics and search. This difference in

representation, linear versus nonlinear, and the unique mathematical tools accompanying

each, demarks the most significant theoretical divide among predictive model architectures.

At the implementation level, however, predictive model architectures are also discrimi-

nated by their mechanism of feature extraction. Features are extracted from historical data

in two forms—explicit and implicit. Explicit feature extraction builds temporal features by

direct transformation of a relevant, finite-length sequence of historical data at each time-

step. In contrast, implicit feature extraction builds an internal, dynamic representation of

historical data which makes no rigorous assumption of relevant time frame.

Consider the space of predictive architectures. The primary parameters of this space

are model complexity, linear or nonlinear, and feature representation, explicit or implicit.

These discriminants are not mutually exclusive; nonlinearity and implicit features subsume

linearity and explicit features, respectively. To make each architecture unique in this space,

however, requires a third parameter, training method. Figure 3.1 depicts the space of

predictive architectures. For brevity, Figure 3.1 only expands the training dimension for

the major nonlinear recurrent neural network architectures.

The training dimension is multimodal and is best represented as a tree of algorithms.

Each training mode implies a branch of this tree. In the taxonomy presented in Figure 3.1

the first mode of training is model dynamics—adaptive or stochastic. The second mode

is the method of cost function minimization, which is often improperly referred to as the

training mechanism. The leaves of this hierarchy are labeled with the predictive architec-
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Figure 3.1: Representation of the taxonomy of predictive modeling. The space of predictive
architectures is 3-dimensional, parameterized by model complexity, feature extraction tech-
nique, and training method. The training method dimension is multimodal and is expanded
for the RNN architecture.

ture.

This decomposition is useful in this research in that it makes clear distinction between

embedded, recurrent, and (stochastically-recurrent) reservoir architectures. These are the

categories chosen to present relevant prior work. Using this spatial representation of predic-

tive architectures, relevant prior predictive modeling research will be addressed in temporal

progression of advancements. Relevant relationships between successive advances will be

drawn between the three architectural features.

3.2 Prediction Performance Criteria

The literature discusses three performance attributes of predictive models: accuracy, train-

ability, and scalability. Respectively, these attributes attempt to quantitatively or qual-

itatively assess how accurately an architecture can predict future states, how reliably an

architecture can reproduce predictions, and the dimension to which the state-space of a

problem may grow before the architecture can no longer generate useful predictions. Also,

it is important to note that there exist limits to the predictability of certain domains. The

end of this section will briefly address literature relating the theoretical limits of predictabil-
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ity as a property of chaotic systems.

3.2.1 Accuracy

The broadest measurement of predictive model accuracy is generalized mean-squared pre-

diction error. This measurement is defined as the mean-squared prediction error over a

test dataset that is temporally contiguous with, but not included in, datasets used to train

and validate the model. Define the model output at time t as s̃(t) which approximates the

system’s true state, s(t). Then prediction error is

e(t) = s(t) − s̃(t) + η(t), (3.1)

where η(t) is noise. This defines a single prediction error point of the network. Typically,

recurrent networks model the target system’s entire temporal trajectory, s(t), t ∈ Ttest,

such that expanding the cost of prediction error over an entire trajectory and computing

the mean of the sum of squares of this trajectory gives the error measure desired:

Emse
test =

1

Ttest

Ttest
∑

t=1

e(t)2. (3.2)

Predictions are categorized in two very different ways, open versus closed loop, which

are differentiated as follows. Model output is a function of the input u(t) = (s(t),a(t)),

where a(t) is external influence acting on the system, such that s̃(t) = f(u(t)). Open-loop

predictions are computed by supplying the true state of the system at time t as input for

predictions at time t + 1, giving u(t) = (s(t),a(t)).

Closed-loop prediction error is computed by supplying the value of the model prediction

at time t − 1 as input for predictions at time t, therefore, u(t) = (s̃(t − 1),a(t)). In the

general case, closed-loop error is significantly more representative of the model’s predictive

capability but is also more difficult to minimize and can lead to performance measurements

that are wildly varying or numerically undefined. To avoid numerical instability problems

that arise in closed-loop error measurement, researchers often substitute closed-loop predic-

tion steps, T closed
test as the performance measure. T closed

test is an integer defining the number of

closed-loop predictions made by the model before squared prediction error exceeded some
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threshold, ǫ, which is formally defined,

T closed
test = arg max

t

(

e(t)2 < ǫ
)

. (3.3)

3.2.2 Trainability

Trainability is often measured in conjunction with accuracy, but it is a unique performance

attribute. Trainability is a measure of the convergence speed and robustness of a training

method. This measure may be generated numerous ways. For a given time-series, train-

ability could be the number of steps required to achieve minimum prediction error coupled

with the percentage of random training instantiations that fall within ǫ of the minimum

prediction error. A number of other metrics may satisfy this attribute. For instance, it

is relevant to examine the cumulative distribution of minimum prediction errors achieved

through random restart to highlight weaknesses in the architecture.

3.2.3 Scalability

Scalability is the ability of an architecture to maintain accuracy and trainability as problem

size increases. Problem size is defined as the dimensionality of the problem’s state-space.

Like trainability, no clean definition of this metric exists. Alternatively, maintenance of

accuracy is not necessary for an architecture to scale (i.e., exhibit scalability). For an archi-

tecture to scale, it need only exhibit predictive utility as problem size increases. Therefore,

accuracy may decay as long as the architecture remains useful in a problem dependent

context. If so, the architecture is scalable.

3.2.4 Limits of Predictability

While the theory of how it may be possible to learn a predictive model based on histori-

cal data is well-defined, there also exists a body of work dictating the theoretical limits of

predictability. These limits apply to a specific class of dynamic systems—chaotic systems.

While there exists disagreement of what exactly constitutes a chaotic system, three proper-

ties are almost universally accepted [71]. To qualify as chaotic, a system must be determin-

istic, exhibit aperiodic behavior in the long-term, and be sensitive to initial conditions. The

third property is that which makes prediction of chaotic systems most troublesome. This
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sensitivity emerges from exponential divergence of trajectories initiated from neighboring

states. This property is quantified by a positive Liapunov exponent.

Using the notation of Strogatz [71], given two initial system conditions, point x0 and a

neighboring point x0 + δ0 such that perturbation δ0 is very small, then the distance sepa-

rating these trajectories at the n-th iteration, δn is given by |δn| ≈ |δ0|e
nλ. The divergence

at the n-th iterate is exponentially proportional to the initial perturbation. Parameter λ

is the Liapunov exponent of the system. A chaotic system must have a positive Liapunov

exponent.

Positive Liapunov exponents are a serious limitation of predictive models. The con-

sequences of this limitation with respect to this research, however, are not serious. The

predictive model is used in this research as a mechanism of assembling historical informa-

tion to predict a single time step in the future. Specifically, the model need only predict

the 1-st iterate of the action-value function. It is the action-value, Q, itself which encapsu-

lates system state information over the temporal horizon—not the predictive model. The

effect of exponential divergence is minimized because the current state is observed at each

iteration—closed loop iterative predictions are unnecessary. Therefore, the limitations of

predictability imposed by Liapunov do not directly apply.

3.3 Embedded Architectures

Revisiting the space of predictive architectures shown in Figure 3.1, it is, as presented

above, possible to describe an architecture by any of the three parameters: model, feature,

or training method. However, discourse is most natural if the architectures are distinguished

according to their feature space first, followed by differences in their model complexity and

training. In this section, I will review the broadest classes of embedded architectures. A

similar methodology applies to subsequent divisions of recurrent architectures.

3.3.1 Linear Models

The most common predictive architecture, and certainly the oldest, is the class of embedded

linear architectures, used widely in control, economic forecasting, and scientific modeling,
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termed the auto-regressive moving-average (ARMA) model [46]. ARMA is a linear com-

bination of two unique model architectures, the auto-regressive (AR) and moving-average

(MA) models. These architectures are very simple. AR assumes that future state is a lin-

early weighted sum of a finite history. The AR model is uniquely determined by choosing

parameter, p, defining the length of the finite history used for the prediction. Regression

maps the historical patterns onto the future states over a sequence of training data, and

this fit is optimal in the least-squared sense. The moving average architecture is similar,

but defines future model state as a linearly weighted sum of q historical means, where each

mean, µi, i = 1, 2, ..., q, is built by averaging i historical state values starting at the current

state. This architecture introduces a notation of frequency domain—low frequency informa-

tion is captured by averages computed from long sequences and high frequency information

is captured by averages computed from short sequences. Again, regression is used to fit the

linear mapping. The ARMA model is a linearly combination of the AR and MA models.

Constructing and training an ARMA is inexpensive. The only training uncertainty is

proper choice of values p and q such that generalization error is minimized. However, due to

the model’s training efficiency, iterative search of these parameters is often feasible, making

a recurrent linear model of little use. This fact is the reason that the linear-recurrent

space of models is neglected in Figure 3.1. Finding the optimal embedded linear model is

tractable.

The primary drawback of the ARMA model is that it is linear. Real-world problems

of interest are generally not linear, thereby limiting this model’s utility. ARMA modeling

can be found in some of the earliest literature, and has long been the model of choice in

virtually every scientific field from engineering to economics. The limitations of the linear

model, however, are a force of innovation in machine learning. The world is nonlinear, and

it must be approximated by models of nonlinear complexity. The next section describes

a successful architecture born by the limitations of the ARMA model. Many other linear

model architectures are available, particularly those developed by the system identification

field (i.e., extended Kalman filtering). For a complete treatment, see [46, 32].
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3.3.2 Nonlinear Models

Training efficiency drops drastically when linear model complexity does not apply. The

parameters of nonlinear function approximations, in general, cannot be found analytically.

Among nonlinear function approximations, the artificial feed-forward neural network (FNN)

trained via error-backpropagation [65] has gained wide popularity. The FNN is a parame-

terized general function approximation constructed as a multistep nonlinear transformation:

1. linear projection of M -dimensional inputs into N -dimensional space, R
M → R

N

2. point-wise nonlinear transformation in high-dimension, R
N → R

N

3. linear projection to P -dimensional output space, R
N × R

P

4. point-wise nonlinear transformation in lower-dimension, R
P × R

P

The only constraint on this transformation is that the nonlinear transformation be differ-

entiable. Note, the transformation defined above applies only for a two-layer network. In

the general case the FNN can have any number of layers. Between Step 2 and Step 3 there

may exist any number of linear projections, R
N × R

N , coupled with point-wise nonlinear

transformations, R
N → R

N .

Gradient descent is the most widely applied method for training the FNN. Gradient

descent is supervised learning, and, in the context of an FNN, this method is called back-

ward propagation of errors, or backpropagation [65]. Theoretically, backpropagation is the

FNN specific application of the derivative chain-rule. The requirement of the nonlinear

transformation being differentiable ensures that the chain-rule can be iteratively applied to

each step of the transformation. The trainable parameters of the first linear projection are

the hidden weights, Whid, and the trainable parameters of the second linear projection are

the output weights, Wout.

Backpropagation is performed by computing the derivative of the FNN output’s error

with respect to the parameters, Whid and Wout, respectively. This derivative is interpreted

as the the slope of the error surface in parameter space. The FNN parameters are modified

by adjusting them in the direction of lower error, which is the descent direction of the slope.
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A small step is taken in this direction, and the parameters are modified. This process is

repeated iteratively until the gradient is sufficiently small (ideally zero), which indicates the

model has reached the bottom of a basin in the error surface.

Despite its generality and well-defined, computationally-tractable training rule, the FNN

possesses a significant weakness; the trainable parameter space is typically high-dimensional

and contains many local optima. Another practical challenge is identification of training

parameters that balance function approximation accuracy with generality. A large body

of literature exists in identifying and resolving the nuances of neural network training,

including, but not limited to: high-order derivatives [10, 52, 1], adaptive gradient descent

methods [28, 19], statistical methods [14, 17], and nonlinear preprojection of the input

data [53, 60, 42].

3.4 Recurrent Architectures

A mathematically well-defined way to represent arbitrarily long temporal features compactly

(i.e., in closed form) is to represent them recursively. Of particular use is a class of nonlinear

recurrences subsumed under the general description of recurrent neural networks (RNN).

The RNN is, essentially, a feed-forward neural network in which the high-dimensional feature

space (hidden state) of the previous prediction step is mapped onto itself to enhance input

of the current prediction step, thereby defining the recurrence.

While structurally very similar to the FNN, the RNN functionality is governed by an en-

tirely different mathematical realm—nonlinear dynamic systems. Self-reference (i.e., map-

ping the hidden state onto itself) adds representation capability. Unfortunately, it also

introduces mathematical challenges well-known to the field of dynamic systems: bifurca-

tions, instability, and chaos.

The remainder of this section will mathematically outline the standard fully recurrent

modeling problem and then examine the most common training techniques. In the next

section, an architecture will be introduced that avoids the problems of bifurcations and

instability in the temporal recurrence. It is this architecture, the reservoir architecture,

which will be used as the model of non-Markovian domains in this research.
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Figure 3.2: General schematic of the standard recurrent network model. Solid arrows
indicate trainable weights.

3.4.1 Standard Recurrent Network Model

Many RNN architectures exist, but training methods are largely independent of the recur-

rent architecture. Therefore, theoretical descriptions of training methods are aided by a

unified model. Consider a system where the true state is defined as vector s(t) of size P .

Consider that an external influence vector a(t) of size A acts on this system. The proto-

typical recurrent architecture for modeling this system is termed the standard recurrent

network model (SRNM). The SRNM is a two-layer fully recurrent network mapping the

input vector, u(t) = (s(t),a(t)), of size M = P + A, onto the approximate system state,

s̃(t). The SRNM possesses a recurrently connected hidden layer containing state x(t) of

size N . The state of the output layer is identical to the approximate system state, s̃t. A

depiction of the SRNM is provided in Figure 3.2.

The input state and hidden state of the SRNM are separate entities. When evaluating

an RNN, however, the mathematics are best represented when the input and hidden states

are concatenated along with a bias to form vector y(t) of size N + M + 1 such that:

y(t) = (x1(t − 1), ..., xN−1, xN (t − 1), u1(t), u2(t), ..., uM (t), 1)T

The recurrent topology is then defined by the matrix Whid, which is of size (N +M +1)×N .
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The output layer defined by matrix Wout of size (N + 1) × P maps the vector z(t),

z(t) = (x(t), 1)T (3.4)

onto the approximate future system state, s̃(t). Thus, temporal evolution of the SRNM

hidden and output states can be defined by the recurrences,

x(t) = f
(

WT
hid · y(t)

)

s̃(t) = g
(

WT
out · z(t)

)

For all experiments in this research, f(·) is hyperbolic tangent (i.e., tanh) and g(·) is the

identity function.

This standardized architecture was chosen to allow for nonlinear recurrent connectivity

with bounded hidden state while permitting full dynamic range over the output state vector.

This form largely mimics the ultimate architecture defined by Pedersen [58] and is analogous

to the majority of RNN architectures found in the literature.

3.4.2 SRNM Training Problem

Almost invariably, recurrent network training minimizes the model’s generalized mean-

squared cost. This measurement is defined as the mean-squared cost over a training dataset

that is temporally contiguous with but not included in the validation and testing datasets.

The cost function is more than prediction error. The cost function, J(t), can be formulated

in multiple ways, but a generic definition is

J(t) =
1

2
|e(t)|2 + Jmisc(t), (3.5)

where e(t) is defined in Equation 3.1 and Jmisc is a miscellaneous cost term reserved for

introducing additional penalty terms, such as the regularization penalty, into the total cost

estimate. Recurrent networks train over an entire temporal trajectory of a system, s(t),

t = 1, 2, ..., Ttrain where Ttrain is the size of the training dataset. The prediction error over

an entire trajectory is the total cost, Jtot, defined as

Jtot =

Ttrain
∑

t=1

J(t). (3.6)
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3.4.3 Gradient Training Methods

The success of gradient techniques for training traditional FNNs has been influential in their

use for training RNNs. Gradient descent training of recurrent networks has been attempted

in numerous forms:

• static recurrent weights with backpropagation, Jordan and Elman networks [38, 39,

18];

• approximate first derivative backpropagation, backpropagation through time [77];

• exact first order derivative backpropagation, real-time recurrent learning [81];

• exact second order derivative backpropagation, real-time recurrent learning [58]; and

• trajectory modeling, Atiya-Parlos recurrent learning [4, 68].

The application of gradient descent techniques to recurrent networks, however, has had

limited success. While the technique has been demonstrated to work effectively on small,

academic problems it has failed to scale to larger problems—the exception being back-

propagation through time (in conjunction with EKF), which, in the company of expertly

manipulated training data and parameter initializations, has been demonstrated on large,

challenging real-world problem instances [20]. The reasons for limited RNN application are

long convergence times, training instability, and sensitivity to training parameters.

The literature also contains work outlining progress in explaining the theoretical limi-

tations of RNN gradient descent training, notably Amari [2] and the dissertation work of

Pedersen [58], which detail the effects of ill-conditioning in RNN training. No technique

however addresses the problem of bifurcations in the RNN parameter space. Gradient

techniques are unlikely to work effectively in the online training of dynamic system mod-

els because the gradient gives no indication of the presence or proximity of bifurcations.

Weight updates in the direction of the gradient can unwittingly push the RNN through a

bifurcation. This particular weakness of RNN gradient training is known [23]. Bifurcation

exposure is averted by avoiding the online training problem.
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Minimizing generalized prediction error is the objective of RNN training. All gradient

descent algorithms suffer from potential overfitting of the training data when cost incorpo-

rates only prediction error. Two widely known techniques exist for improving generalization

of an RNN: regularization [24] and pruning [45].

Regularization defines the technique of modifying the cost function to include the mag-

nitude of the parameter matrices. Nonzero parameters cause this magnitude to grow and

are added to the squared prediction error as part of Jmisc in Equation 3.5. By changing

gradient descent to optimize over a prediction surface that is also a parameter surface, the

regularization term provides a resistance to overfitting and undesirable complexity. Depend-

ing on the dominant cost term, the gradient direction of improvement will either minimize

prediction error, minimize parameter magnitude, or a minimize a linear combination of

both.

Pruning is the process of removing or “zeroing” weights from the recurrence portion

of the RNN which have small saliency, or influence, on prediction training error. Pruning

trades a small increase in prediction error for a large decrease in network complexity [45].

Pruning is performed by constructing a local approximation of the error function with

respect to the parameters, computing the salience of each parameter based on the derivative

of this approximation, and iteratively eliminating parameters having minimal influence on

prediction until the desired trade-off is achieved.

The literature of RNN training via gradient descent is substantial. This summary

has touched only the most well-known and prominent gradient methods. For an excel-

lent overview, see [57]. Also, this summary has not addressed a significant technical de-

bate within the RNN community concerning the “vanishing gradient” problem reported by

Hochreiter. For a detailed examination of this problem, see [27, 26].

3.4.4 Statistical Training Methods

The Kalman filter [41] was designed to model any unknown process governed by a linear

dynamical system in the presence of noise. The Kalman filter models this system by esti-

mating the most likely hidden state, given the training data. This technique is extensible to
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a parameterized function approximation by assuming that the approximation’s parameters

comprise part of the state of the unknown process. The technique improves estimation

of the internal state by maintaining covariance information on state element interactions.

These interactions are related to higher order statistical information on the approximation’s

parameterized error surface.

The extended Kalman filter (EKF) is a nonlinear extension of the Kalman filter. The

nonlinear portion is linearized locally in an additional step. Once linearized, the EKF is

solved as a Kalman filter [83]. The extended Kalman filter has been shown to successfully

train RNNs on very hard problems and is utilized in real-world industrial applications [20].

This technique was also shown to be related to the RTRL gradient technique [83, 82].

3.4.5 Sampling-based Training Methods

The Alopex algorithm [7, 8, 75, 17] is a general sampling-based optimization algorithm that

can be used to optimize the parameters of a neural network. Alopex works by randomly

perturbing model weights and associating these perturbations with increases or decreases

in prediction error. Correlations between beneficial perturbations are used to modify the

likelihood of future perturbations. An annealing schedule is used to slowly decrease pertur-

bations over time. A recent modification to Alopex that incorporates particle filtering [25]

has demonstrated significantly improved performance on a nonlinear non-Markovian, finan-

cial forecasting task. However, in spite of this advance, Alopex has not been demonstrated

to be competitive with well-tuned gradient and statistical methods.

3.4.6 Search Methods

The use of genetic algorithms (GA) and evolutionary algorithms (EA) for constructing or

optimizing networks is a recent but growing field of exploration. There exists evidence

that in combination, evolution and learning can achieve performance greater than either

individual technique.

An excellent general treatise of applying genetic algorithms to neural models is provided

in [67]. An argument of the advantages of evolutionary algorithms over genetic algorithms is

made in [3]. In both surveys, the case is made that search methods are favorable. The prob-
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lem of competing conventions, multiple equivalent solutions induced by the symmetry of

neural networks, however, makes genetic encoding of networks inefficient. No general mech-

anism for overcoming the competing conventions problem has been found and it remains

the single largest theoretical barrier to GA implementation of training neural networks.

The specific use of evolutionary simulated search for application in reinforcement learn-

ing and control domains is well-posed by Whitley [78]. Wielend utilized genetic algorithms

to train neural networks that solved the double pendulum swing-up and the jointed pen-

dulum control problems [79, 80]. GAs were also used to achieve comparable performance

to gradient methods for training neural networks to solve classic control problems [78].

The potential superiority of search to gradient methods has been posed for RNN training

due, specifically, to the stability and convergence limitations of gradient methods in these

domains.

3.5 Reservoir Architectures

The Echo State Network (ESN), and related Liquid State Machine, are models of temporal

learning designed to avoid the slow convergence, computational complexity, stiffness, and

instability of recurrent network learning algorithms [30]. ESNs rely on the inherent dy-

namics of a large, stochastically generated, sparsely connected recurrent structure in which

many small, loosely-coupled dynamical systems interact with the input data to form a rich

set of features. Interest in these systems has spawned a community of research covering

the echo state network, liquid state machine, and a related technique, backpropagation-

decorrelation [68, 69], bundled under a unified title, reservoir computing. With respect

to non-Markovian reinforcement learning, what separates the reservoir architecture from

other architectures is that it possess all three positive attributes: 1) ESN training is equally

amenable to online and batch training, 2) the ESN cannot bifurcate, and 3) training is fast,

efficient, and convergent in the least-squares sense.

The remainder of this section is organized as follows. First the mechanics ESN pre-

diction and training are presented. Subsequent sections detail the state-of-the-art research

conducted on the ESN architecture, including memory analysis and performance improve-
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ment.

3.5.1 Echo State Network Model

Consider a system where the true state is defined as vector s(t) of size P and the external

influence is a vector a(t) of size A. The ESN is a two-layer stochastically generated, sparsely

connected recurrent network mapping the input vector,

u(t) = (s(t),a(t), 1)T (3.7)

of size M = P +A onto the approximate system state at the next time-step, s̃(t). The ESN

possesses a recurrently connected hidden layer having state x(t) of dimension N . The state

of the output layer is identical to the approximate system state, s̃(t). A depiction of the

ESN architecture is given in Figure 3.3.

The ESN contains three separate connection topologies: input connections onto the

hidden nodes, Win, of size M × N ; recurrent connections within the hidden layer, Whid,

also termed the reservoir, of size N × N ; and the output mapping from the hidden state

vector onto the approximate system state, Wout. To improve performance, Wout maps an

embellished hidden state vector, z(t), defined as,

z(t) = (u(t),x(t))T (3.8)

of size M +N +1, thereby giving Wout size (M +N +1)×P . Thus, the temporal evolution

of the ESN is defined in recurrence relations,

x(t) = f
(

WT
inu(t) + WT

hidx(t − 1)
)

(3.9)

s̃(t) = g
(

WT
outz(t)

)

(3.10)

where activation function f(·) is typically tanh or a spiking neural network form [30] and

g(·) is the identity function. The ESN training rule is defined as linear regression applied

to the over-specified system of linear equations,

BWout = S. (3.11)
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Figure 3.3: General schematic of an Echo State Network. Dashed arrows indicate static,
stochastically-assigned weights. Solid arrows indicate weights trained via linear regression.

B is a matrix having Ttrain rows where Ttrain is the total number of training samples. Each

row of B is the vector z(t)T . Each row of the constraint matrix, S, is the true state vector

s(t), t = 1, ..., Ttrain.

The ESN requires specification of three parameters, N , α, ρ. As defined above, N is the

number of hidden states (i.e., echo states). The scaling factor, α, when applied as a scalar

multiple of Whid guarantees global stability [30] if,

α < 1/ | λmax | (3.12)

where λmax is the maximum absolute eigenvalue of Whid. The density parameter, ρ, deter-

mines the percentage of nonzero entries in Whid.

3.5.2 ESN Research: Recent Advances

The disadvantage of the ESN is exactly the attribute which engenders its strengths. The

stochastically generated reservoir connection weights, Win and Whid are not adapted at any

time. Therefore, if the reservoir does not satisfy the assumption that its dynamics are “rich

enough” then the ESN will have difficulty modeling challenging dynamic systems. This

weakness has been high-lighted both by critics and supporters [61, 30]. The current focus of

ESN research has revolved around four directions: improved reservoir design, online adap-
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tation of reservoir dynamics, analysis of reservoir computability, and practical application.

This section will expand on these research directions.

Reservoir Design: Jaeger has been the primary proponent of hand designing reservoirs to

match particular problem dynamics [30, 32]. He has developed a number of rules of thumb

that are intuitive and easy to apply: tuning spectral radius to system dynamics, input

and bias scaling weights to saturation characteristics, and nonlinear dynamic models to a

target system’s intrinsic time-scale. In a related work, Jaeger formulates the short-term

memory capabilities of the ESN reservoir and suggests design rules-of-thumb for tuning the

reservoir’s memory-curve characteristics [31]. As practical proof of these simple techniques,

independent researchers (including this author) have reproduced impressive published non-

Markovian modeling results on very difficult problems including near “best known” results

for closed-loop prediction of the Mackey-Glass time-series in both mildly (τ = 17) and very

chaotic (τ = 30) regimes [30, 61].

Ozturk and Principe have taken an information theoretic approach to reservoir design.

By linearizing the reservoir and examining poles, they use maximum entropy principles

to uniformly distribute the poles within the unit circle in the complex plane, creating a

quasi-orthogonal dynamic basis. In the absence of a priori system knowledge, a maximally

decorrelated dynamic basis is the best that can be achieved [55, 56].

Adaptation of Reservoir Dynamics: ESN reservoir dynamics have been adapted both offline

and online. The best example of offline adaptation was reservoir topology adaptation using

next ascent local search [11]. The impact of this work was the demonstration of easily

accessible and accurate gradient information within topologically local neighborhoods in

the reservoir. More directly applicable to this research is the adaptive bias approach [56]

proposed by Ozturk and Principe. The primary result of this work demonstrated that

the magnitude of the constant input bias influences the effective (i.e., dynamic) spectral

radius of the reservoir. Based on a correlation between spectral radius and the frequency

of reservoir dynamics, input bias manipulation can be used to tune reservoir dynamics to
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the problem online.

Reservoir Computability: Recent work using the ESN as an analytical model has demon-

strated the efficiency of performing predictive modeling tasks using random dynamic basis

functions exhibiting “near chaotic” dynamics (i.e., bordering chaos just inside the ordered

regime of the ordered-chaotic dynamic envelope) [6].

ESN Applications: The ESN architecture solves many training issues of the fully connected

RNN. Solving these problems has made non-Markovian modeling easily accessible to a

number of practical and theoretical applications including reinforcement learning [12], fast,

effective nonlinear system identification [59, 76], cognitive modeling [63] and real-time mo-

bile network modeling [33, 35].

3.6 Recurrent Actor-Critic Models in Discrete Space

The research considered in this proposal is partially motivated by prior research of Mizu-

tani and Dreyfus [49, 50, 51] that attempted non-Markovian reinforcement learning un-

der several simplifying assumptions: discrete space; finite, static time-dependencies; and

model availability. This research successfully modeled, via the Elman network architecture,

non-Markovian reinforcement learning of a shortest-path problem. The problem was for-

mulated as the traversal of a binary tree, beginning at the root. The traversal was made

non-Markovian artificially by penalizing specific multinode transition patterns. While the

problem domain is excessively simple, this research simultaneously demonstrated three im-

portant components of non-Markovian reinforcement learning:

Representability: Both the actor and critic function were modeled via a fully recurrent

Elman network trained via error backpropagation.

Accuracy: The actor and critic models were explicitly non-Markovian and the Elman net-

work successfully represented these functions with very high accuracy.
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Convergence: Under the static environment described by the short-path domain, the actor-

critic method converged to policy and action-value function approximations that were near

optimal.

3.7 Discussion

The requirements of non-Markovian reinforcement learning, outlined in Chapter 2, com-

bined with a review of the broad literature of predictive modeling, direct attention to

the ESN architecture as the most amenable to the task at hand. Based on theoretical

properties, the ESN exhibits the stability necessary to serve as a non-Markovian model of

reinforcement learning. Further, the ESN has demonstrated excellent learning performance

on complex nonlinear prediction problems using a simple, convergent training mechanism.

Open questions addressed in this research are the applicability of the ESN, and particularly

its training mechanism, to nonstationary attractors. In the particular case of reinforcement

learning, online interaction between the system and the model induce this nonstationarity.

To identify the ESN’s suitability in this environment, I first assesses the mobility of the

reinforcement learning domains in the general sense. In Chapter 4, interactions between

the reinforcement learning domain and the model of state-action value (i.e., critic) are stud-

ied for both local and nonlocal functions approximations. Building on this understanding,

the feasibility of the ESN model is studied on both simple and complex non-Markovian

reinforcement learning domains in Chapters 5 and 6, respectively.
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Chapter 4

Modeling Reinforcement Learning

Domains as Dynamic Systems

This research approaches the reinforcement learning problem as a nonlinear, dynamic system

modeling problem. When viewed as a dynamic rather than static system, interactions

between temporal-difference updates, the environment, and the modeling architecture may

be considered in ways not easily accessible to a statistical approach. Consideration of these

interactions transforms the practical difficulties of modeling reinforcement learning domains

from state-space sampling and convergence to those encountered when modeling dynamic

systems—attractor mobility and bifurcations.

As an example, the Mountain Car Problem, a widely-known and well-understood rein-

forcement learning domain, is studied as a dynamic modeling problem. Approximations of

the domain, realized in the form of policies, determine the attractor’s structure. Variations

in this approximation are described, culminating in the attractor of the near-optimal policy

found via lookup table. With these relationships in mind, the dynamics of the learning

process may be addressed. Contrasts are drawn between the learning dynamics of a highly

local model, the lookup table, and a non-local approximation, the feedforward neural net-

work. Once these dynamics are presented, the problem of attractor mobility may be framed.

This problem is inherent to reinforcement learning. An experimental framework for testing

mobility is presented and a study of attractor mobility in response to the architecture of

the critic model is carried out. Ways of minimizing the impact of attractor mobility in

reinforcement learning are proposed. These methods will be investigated experimentally in
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Figure 4.1: Diagram of the Mountain Car Problem.

Chapter 5 when the problem domain is expanded to include non-Markovian reinforcement

learning.

4.1 Case Study: The Mountain Car Problem

The Mountain Car problem (MCP) is a second-order, nonlinear dynamic system with low-

dimensional, continuous-valued state and action spaces [73]. In this section specifics of the

problem dynamics and constraints are introduced. An approximate, near-optimal solution

to the problem is presented and the dynamic structure of this solution is analyzed.

MCP is a one-dimensional abstraction of a simple environment—a car trapped within

a valley. This system is depicted graphically in Figure 4.1. Starting from any initial state,

the goal of the problem is to drive the car up the valley’s side and escape in as few steps

as possible. The challenge is that the car does not possess enough force to drive directly

up the side. Instead, the car must rock back and forth along the bottom of the valley to

build enough momentum to escape. The problem is typically complicated by the placement

of a perfectly inelastic barrier halfway up one side of the valley. This barrier introduces a

discontinuity in the physics of the problem. When this barrier exists, the goal of the problem
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is to drive the car out of the valley on the side opposite the barrier. Exact constraints of

the MCP vary. The system used in this research is defined by the following differential

equation,

ẍ = −bẋ + gm cos (3x) +
aτ

m
, (4.1)

where the coefficient of friction b = 0.3, force of gravity, g = 9.8, car mass, m = 0.2, and

maximum force, τ = 0.2. The action, a, is drawn from the set a = {−1, 0, 1}. The inelastic

boundary is defined as follows,

ẋ =

{

ẋ, if x > −1.2;
0.0, else.

(4.2)

The goal state is defined as x ≥ 0.5. The reward, r, is defined as

r =

{

−1, if x > 0.5;
0, else.

(4.3)

4.2 Mobility in the Reinforcement Learning Domain

The reinforcement learning problem is a dynamic system. Unlike most dynamic systems,

however, the underlying attractor of the reinforcement learning domain is inherently mobile,

where mobility is defined as either bifurcation or displacement of the dynamic system’s

equilibria.

To define mobility formally two functions, fp(·) and sc(·), are presented which determine

the existence of a fixed point and the stability class of a fixed point, respectively, for an

input state, s. Thus,

fp(s) =

{

1, if ṡ = 0 and s̈ = 0;
0, else.

sc(s) =

{

[sign
(∂(ṡ+∆ṡ)

∂t

)

, sign
(∂(ṡ+∆ṡ)

∂t

)

], if fp(s) = 1;
null, else.

Using these identifying functions, the current mobility of the system, Mt, can be defined as

the sum of all mobility events, ms, in the state-space, S, at time t, given by

Mt =
∑

st∈St

mst
, and

mst
=







1, if fp(st) 6= fp(st−1)
else if fp(st) = fp(st−1) and sc(st) 6= sc(st−1)

0, else.
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Figure 4.2: The recurrent pathway that is the source of attractor mobility in the reinforce-
ment learning domain.

These definitions provide a course measure of changes occurring within the structure of a

dynamic system. How does this relate to reinforcement learning?

The temporal interactions of reinforcement learning are presented graphically in Fig-

ure 4.2. This figure shows future state, st+1, as a function of the current state, st, and

action, at. But the action, at, is a function of the state and the parameters of the Q-

function, via the actions selected by the actor, in this case the function arg max(a, Q(s, a)),

also given in Equation 2.14. The action selected is guaranteed to be the optimal action,

a∗t , if Q = Q∗. Likewise, over a sequence of actions from initialization to goal, the policy π

is the optimal policy, π∗, if Q = Q∗. The attractor underlying the reinforcement learning

domain is formed by the policy π interacting with system dynamics, forming trajectories

in state-space, by Equation 2.11. Thus, the attractor is static only if the policy π is static,

which by Equation 2.14, requires Q to be unchanging.

Reinforcement learning attempts to minimize the error between Q and Q∗ by modifying

the parameters of the critic in the direction of the TD-error update, Equation 2.3. Examined

in this way, attractor mobility in reinforcement learning is a direct result of approximation

errors of Q. TD-error, δt, must exist if Q 6= Q∗. If actively learning, then updating the

critic, Qt+1 = f(Qt, δt), updates the policy, πt+1, which changes the system’s underlying

attractor. The result is attractor mobility.
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In the dynamic system sense, reinforcement learning exhibits two properties: 1) during

learning, parameters of the Q-function follow a trajectory through time, and 2) within any

particular instance of time, the current manifestation of the reinforcement learning problem

is defined by a dynamic system, having an underlying attractor.

4.2.1 Policy Driven Dynamics

The intent of this section is to demonstrate how reinforcement learning heuristics, used to

guide Q-function approximations, induce mobility of the reinforcement learning domain’s

attractor. Before getting to the actual learning heuristic, several intermediate attractor

configurations are presented that are likely to be visited during learning of the MCP. The

attractors are presented in Figure 4.3. The attractors have been plotted by generating

trajectories over predefined policies where the initial conditions are sampled on a discrete

grid. For clarity, the gross attractor features have been highlighted to indicate equilibria and

direction of flow. In practice the underlying attractors will exhibit much less homogeneous

structure.

With no a priori knowledge, there exists no historic experience to build a Q-function

approximation. The result is that no intelligent policy exists in this case. Two policy con-

figurations well-suited to this case are provided in Figure 4.3(a) and (b), the no action and

random action policies, respectively. These attractors exhibit similar fixed point structure,

a stable spiral. From almost every initial configuration of position and velocity, the state

space evolves in a trajectory that approaches the stable fixed point at the center of the

spiral. This is a configuration typical of a conserved system where energy dissipates. The

qualifier “almost every states evolves to the equilibrium” is justified because there exist

several initial conditions that lead directly to the goal state. In these cases, the position

is far enough advanced to the goal and the velocity has a high enough positive value such

that a trajectory reaching the goal is inevitable without action. It should also be pointed

out for the random action policy that all policies of this type will be different. Random

sampling of actions during system evolution, however, does not greatly change the global

dynamic structure.
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Now consider policies which do admit a priori information. These policies are based on

knowledge of the MCP and its solution. The first of these policies, shown in Figure 4.3(c),

propels the agent uphill at all times. The attractor underlying the dynamic system formed

by this rule exhibits two stable spirals on either side of the floor of the valley of the MCP.

This result is intuitive. Without alternating between positive and negative actions, the

agent pushes in a single direction until the slope of the valley becomes too great and the

force of gravity overpowers the agent’s force. The agent, still pushing, redescends toward the

valley floor until the force is sufficient to accelerate upwards. This process will repeat, until

the initial momentum contained within the agent is dissipated by the frictional coefficient

of the problem, b. A second feature of this attractor is the appearance of a saddle point

equilibrium at x ≈ 0.4. The saddle point marks a separation of the state-space in which the

agent’s force, combined with initial positive velocity cannot overcome the dissipative force

of gravity and friction.

Figure 4.3(d), is an attractor structure that will be revisited in this research repeatedly.

The policy exhibited here is one of velocity maximization. However, the maximization of

velocity only occurs when −0.75 ≤ x ≤ −0.25. Outside of this interval the agent takes no

action. This policy simulates a commonly observed intermediate Q-function configuration

observed during on-line reinforcement learning in which the agent develops a highly efficient

escape policy that suddenly degenerates. Dynamically the attractor in this configuration

exhibits a stable limit cycle encircling a unstable spiral centered on the MCP’s valley floor.

The stability of the limit cycle arises from the agent being repelled from the fixed point

at the valley floor but becoming “confused” when its position moves outside the interval

defined above. This confusion causes the agent to redescend into the valley. The limit

cycle forms, approximately, at edges of the interval defining the transition from velocity

maximization to no-operation. The structure of this attractor must be compared to that

of velocity maximization, depicted in Figure 4.3(e). Removal of the “confusion boundary”

allows the agent to maximize velocity throughout the entire state-space. This change in

policy has a dramatic effect on the structure of the underlying attractor. In this case, the

limit cycle has vanished and the unstable spiral dominates a majority of the state space.
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The saddle point has again appeared in the attractor dividing the physical limits of the

system under near-optimal policy decisions.

Finally, the attractor underlying the optimally solved MCP is depicted in Figure 4.3(f).

Note the similarity of this attractor to that of velocity maximization. The primary difference

between these attractors is the structure of the unstable spiral along a trajectory connecting

the fixed point at x ≈ −0.6 with the saddle point. Trajectories falling inside this spiral curve

away. This nonlinear structure is the result of the minimum path criteria of reinforcement

learning. Trajectories in the optimal solution must be as short as possible. Therefore,

velocity maximization, while a good policy, is sub-optimal. The goal of MCP is to maximize

velocity toward the goal.

4.2.2 Learning with Minimum Mobility

When reinforcement learning is viewed as the evolution of an attractor through time, it is

possible to describe the ideal learning trajectory. Ideal, not only in creating an optimal

policy, but rather, creating an optimal policy while satisfying useful constraints, such as

minimum mobility. Using structural analysis of the system’s underlying attractor it is

possible to quantify the learning trajectory. For the purposes of this research the best

reinforcement learning trajectory is one that finds an optimal policy with the minimum

change to the system’s underlying dynamics, a minimum mobility pathway, between the

initial policy, built without a priori knowledge, and the final, optimized policy.

At the beginning of this section, the formal definition of mobility was presented. This

definition expressed mobility as changes to observed structure of the attractor underlying

the reinforcement learning domain. While this provides a means of measuring changes to

the attractor, a deeper understanding of fundamentals of attractor mobility is useful.

The structure of a nonlinear dynamic system may be approximated by linearizing the

system locally about its fixed points and computing the eigenvalues of this system. The

structural characteristics of the attractor about the fixed points may be locally determined

by these fixed points. For example, fixed points in a 2-dimensional system, having eigenval-

ues λ1 and λ2, are characterized by the left hand diagram in Figure 4.4, where the x-axis is
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the determinant, λ1λ2, and the y-axis is the trace, λ1 + λ2.

The righthand plot of Figure 4.4 shows an idealized MCP trajectory moving through

this space, joining the initial attractor structure, the stable spiral at point(a), with the final

attractor structure, the unstable spiral at point (c), coinciding with a saddle point at point

(d). Viewed in eigenvalue space the learning trajectory of MCP makes sense. The system’s

eigenvalues have values mapping to the initial attractor, point (a), and then transform to

values mapping onto the final attractor structure (points c and d). The shortest trajectory

between points (a) and (c) in this space must cross at some point (b). With eigenvalues

mapping onto point (b), the system will include a center fixed point, a class of point of

which limit cycles are a part.

The rigor of attractor structure in 2-dimensional eigenspace provides conceptual under-

standing of the types of attractor structures expected as a reinforcement learning domain

evolves. These concepts will appear throughout this research as interactions between func-

tion approximations and reinforcement learning are investigated.

Further, use of the Echo State Network as a non-Markovian model is motivated by

demonstrating that the trajectory-based feature space of the dynamic basis exhibits less

mobility than static state-space mappings. Demonstrating this, and understanding why

51



dynamic trajectories serve as stable, robust feature spaces is the unifying theme between

this chapter and Chapters 5 and 6.

4.3 Approximate Optimal Solution

A solution to the MCP can be approximated, near-optimally, using a lookup table of the

critic’s state-action-value surface. The critic was modeled via a lookup table of 3-dimensions.

The table was indexed according to the following discretizations of the state-action space:

action, a, was drawn from the set {−1, 0, 1}; position, x, was discretized on the range

[−1.2, 0.5] at intervals of 0.1; velocity, ẋ, was discretized on the range [−2.7, 2.7] at intervals

of 0.1. The total number of parameters in this function approximation was 3×18×55 = 2970.

The lookup table was trained via SARSA, specified by Algorithm 1, given in Appendix A.

Thirty state-action-value function approximations were learned. Learning terminated

when the function approximation converged, defined as the absolute value of the most recent

1000 TD-errors (i.e., Equation 2.3) summing to a value less than the threshold = 0.001.

The tables were averaged for smoothness, creating the approximation of the optimal state-

action-value function.

4.4 Structural Analysis of the Mountain Car Attractor

In Chapter 2, the reinforcement learning problem was derived such that Equations 2.15—

2.18 completely describe the domain’s dynamics in terms of state, s. In the case of the

MCP, the state is a vector, s = {x, ẋ}. This state-space can be used to describe the MCP’s

underlying attractor, assuming a policy of argmax(a, Q(s, a), as depicted in Figure 4.3(f).

During a brief description of nonlinear dynamic systems in Chapter 1, an attractor was

characterized in terms of the location and stability of its equilibria. In this section I analyze

the equilibria of the MCP’s underlying attractor. This analysis will later be used as a

reference for the transient dynamics observed while learning in a reinforcement learning

domain.

The MCP state is comprised of both position, x, and velocity, ẋ. However, when

examining the location and stability of equilibria in this domain, ẋ = 0 can be assumed
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because the time-derivative of position is velocity. Plotting the MCP’s attractor in one

dimension at ẋ = 0 yields Figure 4.5. Equilibria of the attractor exist at points where the

velocity derivative (i.e., acceleration) is zero, depicted as a dashed line. These fixed points

have been labeled with x-symbols.

The MCP attractor exhibits three fixed points at x ≈ {−0.545, 0.388, 0.418}. Further,

the stability of fixed points can be approximated by observing the sign of the velocity

derivative when I perturb the velocity slightly away from zero, ±ǫ, and recompute the

velocity derivative. The signs of the velocity derivative at small perturbations (i.e., ǫ =

∆ẋ = 0.1) are plotted with respect to their fixed points in Figure 4.5. The signs of ±ǫ

perturbations can take on four combinations, having various dynamic significance:

sign (−ǫ, ǫ) =







{+, +} or {−,−}, semi-stable fixed point,
{+,−}, stable fixed point, and
{−, +}, unstable fixed point.

(4.4)

Stable fixed points are attractive from both positive and negative perturbations of veloc-

ity. This implies that the trajectory within the state-space is decelerating and approaching

this point—much like a basin of attraction. In contrast, unstable fixed point indicate that

state-space trajectories accelerate away from the fixed point, akin to a topological peak.

Semi-stable fixed points indicate simultaneous acceleration and deceleration on opposing

velocity half-planes. These types of fixed points are physically difficult to imagine but

could be considered small plateaus in a physical system with little momentum and high

friction.

The advantage of viewing a reinforcement learning domain in terms of fixed point anal-

ysis is that it allows for concise interpretation of the interactions between the agent and the

system’s dynamics. Given our knowledge of the agent, the valley’s minima is known to be

at x = −0.6, which is the epicenter of any rocking motion to escape. The nearby opposing

semi-stable fixed points at x = 0.4 form a saddle. This point marks the force limitations

of the agent. The center of the saddle is a point where the force of the agent is sufficient

to exactly counter-balance the effects of gravity with zero acceleration—a highly unstable

equilibrium point, but one with two clear diverging trajectories seen in Figure 4.3(f). In
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situations where the agent’s velocity is less than zero, it must redescend into the valley to

achieve escape velocity. At velocities above zero, sufficient force exists to drive straight out

of the valley. This saddle point marks the true decision boundary of the MCP. The agent

must learn this location exactly to optimize its escape. Any misapplication of force near

this point could lead to highly sub-optimal control.

Approximating the number, location, and stability of fixed points of the MCP’s under-

lying attractor provides a quantitative measure of the attractor’s structure. As stated in

Chapter 1, bifurcations are changes in the number or stability of fixed points in an attractor,

and represent fundamental changes to the dynamics of the system. Therefore, the ability to

identify bifurcations provides a means of understanding how the underlying attractor, and,

therefore, the solution space of a reinforcement learning domain, is changing through time.

These calculations form one component of attractor mobility analysis, and they provide

a means of measuring how state-action-value function approximation architectures behave

during reinforcement learning.
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Figure 4.5: Fixed point and stability analysis of a lookup table based approximation to the
Mountain Car Problem.

4.5 Attractor Mobility during Reinforcement Learning

Analysis of the underlying attractor of a reinforcement learning problem is useful as a

means of interpretation—understanding how the system and control decisions interact. Re-

inforcement learning, however, is not simply a technique for finding a system’s underlying
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attractor, but rather, the process of evolving the underlying attractor given no a priori

information—a substantially more challenging problem. This problem is difficult in that

the state-action-value function, which defines the attractor via the argmax(a) function,

is unknown, and, therefore, intermediate decisions (i.e., action selections) are likely to be

suboptimal.

The learning of the state-action-value function requires the parameters of the function

approximation to be adapted online—each intermediate approximation of the state-action-

value function also forms a dynamic system having an underlying attractor, resulting in

underlying attractor mobility.

While known theoretically, mobility in the underlying attractor of a reinforcement learn-

ing problem is not well-studied. In this section I identify both bifurcations and mobility in

the MCP reinforcement learning domain and relate these features to learning performance.

The information gained from this study is valuable in that it provides a means of repre-

senting and comparing, quantitatively, the underlying structures of reinforcement learning

domains. It also provides a pathway to discovering the dynamics of online reinforcement

learning with function approximations, which is an important step in designing learning

architectures that function well in reinforcement learning domains.

4.5.1 Attractor Mobility in an Explicitly Local Model

To illustrate attractor mobility, I compute the location and stability of fixed points in the

attractor described via lookup table approximation of the state-action-value function. This

lookup table is trained using Algorithm 1 in Appendix A. These fixed points, labeled by

stability-class, are plotted with respect to the number of training steps. Fixed points are

computed and plotted every 1000 training steps. The results of this learning experiment

for the first 106 learning steps are presented in Figure 4.6.

Two important learning artifacts are obvious from Figure 4.6. First, local update of the

table lookup model does not eliminate attractor mobility—bifurcations and displacements of

fixed points is prevalent throughout the early stages of learning. Second, both the stability

class and locality of the fixed points stabilize over time. Attractor mobility is driven by the
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Figure 4.6: Bifurcation diagram of a lookup table based approximation to the Mountain Car
Problem during learning. Fixed point based representation of attractor structure is highly
local, however, emergence of the qualitative attractor features is visible through time. The
attractor structure after after 104, 105, 2 × 105, and 3 × 105 updates, was explored as
trajectories in state-space in Figure 4.6, corresponding to points (a—d).

impact of TD-error updates on the function approximation, which is in turn dictated by

the optimality of the state-action-value surface. Parameters of a function approximating a

surface which is close to optimal should be adapted very little. This minimizes, but does

not omit, the approximation’s exposure to bifurcations.

It can be argued that local updates to the parameterized approximation of the state-

action-value function do not prevent non-local changes in the dynamics of the reinforcement

learning domain. Non-local updates have been called the weakness of the neural network

function approximations in reinforcement learning [44, 62]. The use of lookup tables with

highly-localized Q updates does reduce the non-local dynamic impact of local updates, but

it does not omit them. The impact is a matter of degree. The key feature of the lookup

table is that experiences are modeled exactly at the local level. Every experience the agent

receives is incorporated into the state-action-value surface only at the precise locality of

approximation. Thus, the impact of a local approximation can be global with respect to

the attractor, but remains local with respect to the state-action-value surface.

It would be useful to understand attractor mobility of the MCP with respect to a
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Figure 4.7: Example MCP attractors constructed from learning interactions between the
system dynamics and the lookup table function approximation.

function approximation with a non-local update and relate this mobility to learning perfor-

mance. Quantitative measurement of attractor mobility and its performance implications

are presented in the next section.

4.5.2 Attractor Mobility in a Non-local Model

Compared with a lookup table approximation, the temporal development of the state-action-

value function can differ substantially when using a generalized, parameterized non-local

function approximation, such as a neural network. The most significant difficulty in learn-

ing with this type of model is the loss of long-term memory in local approximations. In a

neural network, each point of new information interacts, potentially, with every parameter
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in the approximation. This interaction arises from the complete connectivity of the neural

network model. During both feedforward and backpropagation phases, the input and error,

respectively, are combined with every weight of the network. In the case of online learning,

such as a reinforcement learning domain, locality of information is learned through tem-

poral repetition of dispersed state-space information. To achieve this dispersion in control

problems, randomness is added to the policy.

In this example I model the MCP with a neural network having 50 hidden units plus

a constant bias. The internal nonlinear logistic function is tanh and the output layer is

linear. The input domain is the complete state-action space, u = {ẋ, x, a}, and the output

domain is the state-action-value, Q. Thus, this approximation has 3 × 51 = 153 trainable

hidden weights and 51 × 1 = 51 trainable output weights for a total of 204 parameters.

All parameters are initially drawn uniformly from a range of [−0.1, 0.1]. The parameters

are then adapted online via backpropagation of errors with fixed learning rates of 0.05 and

0.001 for the hidden and output layers, respectively. Probability of selecting a random

action varied throughout learning according to a prescribed schedule. The probabilities

S = [0.8, 0.5, 0.1, 0.01, 0.0] were drawn in order every 25 × 103 steps1 with an additional

1000 steps at S = 0.8 preceding the start of the schedule. Greedy actions were selected via

a = arg max
a

Q(s, a), a ∈ {−1, 0, 1}.

The initial position of the car was sampled uniformly from the range, x0 = [−1.2, 0.5], and

initial velocity, ẋ0 = 0, was always 0. The neural network was trained via SARSA, according

to Algorithm 2, given in Appendix A. Figure 4.8 shows the position and stability-class of

the fixed points approximated for a single MCP attractor modeled via neural network. The

fixed points were calculated every 1000 training steps.

The speed of convergence of neural network approximation is quite good. Within just

200 × 103 learning steps, the attractor is very near its approximate local optimum, as

measured by escapes per 1000 steps. The number of bifurcations observed in the neural

1In Algorithm 1, maxsteps = 5000 and R = 5
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network is also less than the lookup table at equivalent levels of experiences, but this is

clearly related to the smoothness of the approximation—the locality of the lookup table

causes, potentially, many local changes in the velocity derivative at ẋ = 0. Each weight in

the lookup table at ẋ = 0 is trained independently and may present a jagged surface, shown

in Figures 4.7(a),(b), and (c).

The non-local impact of bifurcations in either case, however cannot be distinguished.

The trend in this learning example is that the neural network possesses less noise in it’s de-

scription of the attractor compared with the lookup table and that it achieves an equilibrium

at an equally fast rate.

Two other features of Figure 4.8 to point out are: 1) the inverse correlation between

randomness of policy selection and the number of escapes and 2) the temporal coincidence

of escape performance with step-change decreases in the probability of random action. Both

of these features are expected. Exploration should correlate with attractor mobility because

it constitutes and explicit divergence from the optimal policy, π∗. Likewise, increasing ex-

ploitation of the learned attractor should increase performance if the attractor was correctly

learned. However, large increases in performance suggest that the learning schedule was

not ideally constructed for this learning trial because the percentage of exploration was

artificially decreasing performance in portions of the space well-learned.

4.5.3 Limit Cycles in Mountain Car

Figures 4.9(a—f) depict snapshots of the MCP attractor during the learning trial presented

in Figure 4.8. These snapshots were chosen because they highlight a problem common in

neural network approximation of MCP, oscillation between unstable spiral and limit cycle

structure of the fixed point modeling the valley floor. Figures 4.9(a—c) depict the early

formation of the unstable spiral structure at x ≈ −0.4. This sequence of events follows

the expected attractor mobility pathway in 2-dimensional space, depicted in Figure 4.4.

At some point in this sequence of attractor structures, the eigenvalue configuration of the

model crosses from the 4th to the 1st quadrant of the determinant-trace space. Once the

unstable spiral has formed, returning to the stable spiral configuration is not desirable. In
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Figure 4.8: Bifurcation diagram of a feed-forward neural network approximation to the
Mountain Car Problem. The attractor’s structure was explored after 20 × 103, 6 × 104,
1× 105, 1.4× 105, 1.8× 105, and 2.2× 105 learning steps, indicated by points (a—f) in the
figure and explored as state-space trajectories in Figure 4.9(a—f), respectively.

actual learning trials, the attractor is often seen changing from the unstable spiral structure

to that of a stable spiral or limit cycle structure. In fact, this process occurs frequently

during learning. Figures 4.9(c—e), depict the intermediate formation of a limit cycle, plot

(e), between two unstable spiral configurations, plots (a) and (f).

To understand how and why these spurious intermediate structures occur, I want to

consider the attractor from a different perspective. Using the fixed point structure of the

attractor of the optimal-policy as a guide for partitioning the attractor’s trajectories we

can gain fundamental understanding of this spurious problem. To do this I connect the

unstable spiral minimal pathway to the goal from the lowest value of Q to the saddle point.

I further partition the state-space using the saddle point’s structure2. I then label opposing

sides of these boundaries. The result of this partitioning process is depicted graphically in

Figure 4.10. The partitioning of the state-space in this way allows the entire reinforcement

2The saddle point discriminates the nearby vector field into quadrants defined by the eigenvectors of the
linearized system.
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structures are partitioned in state space by the MCP attractor’s fixed point structure.

learning problem to be unrolled into a set of four quasi-linear trajectories, which describe

pathways of maximal gradient ascent of the Q-surface. The equilibria of the attractor,

literally, form the structural boundaries of this intrinsic state space.

The formation and disappearance of limit cycles in MCP is related to this intrinsic

state-space. Because the quasi-linear space is the direction of gradient ascent, opposing

ends of this space differ significantly in Q-value. When this space is coiled up into the

complete state-space, the left plot in Figure 4.10, points having vastly different Q-value

often lie next to each other, particularly along the curve joining the two fixed points.

However, in the intrinsic space of the MCP, these point lie far apart. This property of

MCP is depicted by the two regions shaded gray in Figure 4.10. In state-space, these

shaded regions are contiguous. In the quasi-linear space, the regions are fractured. This

illustrates the temporal relationships among points in these regions—points close together

in state-space are temporally separated by the structure of the escape trajectories.

Non-local function approximations attempting to model Q-values along the boundaries

of the intrinsic space will tend to bleed approximation across the line. These misapproxi-

mations induce the agent to make suboptimal decisions during the escape process. These

suboptimal decision lead the agent to lose momentum and fail to escape, forming a cycle of
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the state-space, as shown in the sequence of Figures 4.9(c) and (d). This cycle is reinforced

by the fact that the agent took a greedy decision, but the underlying approximation failed

to represent this decision. Therefore the cycle is reinforced in the approximation, likely in-

ducing further cycling of the state-space. The result is the transition of the unstable spiral

to that of a limit cycle. If this process occurs sufficiently early in the learning schedule then

exploration, fortunately, allows the cycle to be broken and the spiral to be reestablished.

Representing the problem in state-space, rather than intrinsic space, is a motivating factor

in the use of a fundamentally dynamic feature space, described in Chapter 5.

4.6 Analysis of Learning via Dynamic Features

Another question of interest is whether the dynamic temporal evolution of the attractor

underlying the MCP determines learning performance. To aide in this study, I generate

1000 learning trials of MCP using the same parameters as those used to generate Figure 4.8.

For each trial, fixed point locations, fixed point stability classes, and the number of escapes

were recorded every 1000 learning steps. Each trial was run for 155 × 103 training steps.

The performance of a trial was measured as the total number of escapes achieved during

learning steps 101 × 103—155 × 103. Analysis of the distribution of performance over the

trials indicated that a natural break between successful trials and unsuccessful trials occurs

at 1500 total escapes. This threshold was used to divide the trials into two classes in which

the number of unsuccessful trials accounted for 13.6% of the total.

This experiment is intended to address two questions. First, can the success of a trial

be predicted early in the learning process from the development of the attractor? Can the

structural features relevant to distinguishing successful from unsuccessful trials be deter-

mined? As a corollary to this question, can the role of stochasticity in the determination of

success be characterized?

To construct a classifier, the fixed point structure of individual learning trials was em-

bedded in time. First, the dimensionality of the state space was reduced by eliminating

positions which contain no fixed points. This reduced the dimensionality of the state-space

from 18 points to 9 points. Once reduced, the fixed point structure was concatenated,
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sequentially, at each time-step. K-means clustering, k = 2, was then used to group the

embeddings into two classes based on spatio-temporal structure of the fixed points. This

embedding and clustering procedure was repeated for learning steps 10 × 103—100 × 103.

Once clustered, the labels assigned to successful and unsuccessful trials were used to de-

termine the percentage of true positive classifications of each trial type. These percentages

were calculated for each embedding length, resulting in the data presented in Figure 4.11.

The results of Figure 4.11 show that an embedding length of 38 × 103 learning steps,

the classification accuracy rises from random (i.e., ≈ 50%) to non-random levels. For

unsuccessful trials, classification accuracy peaks at approximately 83% and 41×103 learning

steps. Classification accuracy of successful trials rises to 93% by 45 × 103 and improves

gradually to 99% by 100 × 103. These results provide evidence that the most significant

temporal changes in the attractor’s fixed point structure occur slightly before 40E3 learning

steps and that these changes are, essentially, all-or-nothing. Once the attractor evolves along

one of two trajectories, this evolution is deterministic with respect to the success or failure

of the learning trial.
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Figure 4.11: Fixed point feature space prediction of learning success. 1000 learning trials
were separated into two classes, successful and unsuccessful. The threshold for learning
success was defined to be ≥ 1500 total escapes occurring in learning steps 101×103—155×
103. Fixed point structure of the trials was embedded in time and classified with K−means
cluster, k = 2. At an embedding length of 38×103 learning steps, the classification accuracy
rises from random (i.e., ≈ 50%) to non-random levels. For unsuccessful trials, classification
accuracy peaks at approximately 83% and 41 × 103 learning steps. Classification accuracy
of successful trials rises to 93% by 45 × 103 and improves gradually to 99% by 100 × 103.
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A secondary observation of Figure 4.11 is that unsuccessful trials are more difficult to

predict from the spatio-temporal structure of their fixed points than successful trials. This

difference indicates that successful trials are structurally homogeneous, while the spatio-

temporal structure of unsuccessful trials are relatively less similar, and are, therefore, less

cleanly modeled by the assumptions of K-means.

If possible, it would be insightful to understand exactly what spatio-temporal fixed

point structure is exhibited by the two classes of learning trials and if this structure makes

sense from a dynamic perspective of learning. To identify this structure principal component

analysis (PCA) was performed on the classification dataset described above. However, PCA

of the whole dataset only provides a picture of spatio-temporal structure, not causality.

Instead, PCA was performed on three datasets: the subset of unsuccessful trials; the subset

of successful trials; and the entire dataset. A summary of the results of this analysis is

presented in Figure 4.12.

PCA is a statistical analysis method that decomposes a dataset from a coordinate sys-

tem, or basis, derived from measurements (i.e., the dataset) into a coordinate system derived

from the differences and similarities within the dataset—an intrinsic basis. Specifically, PCA

decomposes the dataset into a set of ordered eigenvectors which define orthogonal direc-

tions of variance in the data, and a set of eigenvalues, also ordered, corresponding to the

amount of variance in the data along each of the eigenvectors’ directions. Figure 4.12(a),

depicts the first principal component of unsuccessful trials, Figure 4.12(b) represents the

first component of successful trials, and Figure 4.12(c) depicts the first four components

of all trials, ordered clockwise by variance starting from the top-left. The y-axis of these

figures is the reduced state-space (i.e., the location and stability class) of the fixed points

constructed from nonzero rows of the original fixed point space as presented in Figures 4.6

and 4.8.

The results of Figure 4.12 suggest that the two largest components of variance in the data

result from the variance contributed by the unsuccessful and successful trials, respectively.

The first component of data subset of unsuccessful trials is nearly identical to the first

component of the total dataset. Less obvious, the first component of the data subset of
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successful trials is also very similar to the second principal component of the total dataset.

The sign of the direction is opposite, indicated by the opposite shades of gray, but this

implies that it is a similar direction of variation.

Therefore, the dataset is structurally divided between learning trajectories that are

structurally unsuccessful and those that are successful with heavy variance among the second

class. Within the first principal components of the respective subsets of data, there also

exists evidence of why the two distinct classes of attractor form, and this evidence is rooted

in the trajectory of the attractor’s dynamic components. Inspection of the first principal

component of the unsuccessful trials indicates variance in the region of the saddle point

(x = 0.2) at approximately 38 × 103 learning steps. This feature corresponds, temporally,

with an increase in classification accuracy. Compare this spatio-temporal feature with

analogous sections of Figure 4.12(b). The black band of Figure 4.12(a) is noticeably absent

from Figure 4.12(b). Because it is known that high-quality solutions of the Mountain Car

problem contain fixed point structure at approximately this position, evident from fixed

point analysis of the near optimal attractor in Figure 4.3(f), and that there exists almost

zero variance in this feature in the successful trials, it can be concluded that the black band

in this region of Figure 4.12(a) is evidence of the absence or incorrect stability class of the

saddle point in many, but not all, unsuccessful learning trials. It is very likely, therefore,

that a significant component in the failure of learning in Mountain Car can be attributed to

the loss of saddle point structure in the attractor at approximately 38× 103 learning steps.

This would explain, possibly, the entire classification of successful components and a large

portion of unsuccessful trials. It is difficult, however, to explain why the remaining 17% of

unsuccessful trials cannot be classified. In this case, these trials would be those which have

saddle point structure at x = 0.2 yet are still unsuccessful.

One possible explanation of how misclassified unsuccessful trials can be resolved is by

the light and dark gray bands at x = [−0.8,−0.6] in Figure 4.12(a). In nearly all cases

of unsuccessful learning, a stable fixed point would be expected at x = −0.6. However,

visual inspection of the fixed point structure of unsuccessful trials indicates that this is not

always true. In fact, several unsuccessful trials have unstable fixed points in this region,
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very much like the successful trials. An example of this artifact is Figure 4.9(d). While

counter-intuitive, this behavior can be explained by the locality of fixed point stability

analysis. This analysis does not consider the possibility of a stable limit cycle encircling

the fixed point. In this scenario, the fixed point could evaluate as unstable, but the global

behavior with respect to this location is stable (i.e., attractive). The limit cycle, while not

correctly identified, is functioning much like a stable fixed point in these unsuccessful trials.
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Figure 4.12: Principal components analysis of fixed point features of the Mountain Car
Problem. (a) First principal component of unsuccessful learning trials. (b) First principal
component of successful learning trials. (c) First four principal components of all trials,
ordered clock-wise in decreasing variance starting from the top-left.

4.7 Discussion

Framing reinforcement learning as a dynamic system facilitates construction of spatio-

temporal structure within the learning architecture, which explains, with high accuracy,
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learning performance. Principal component analysis of the temporal fixed point features

indicates that success or failure of the learning process is rooted in the creation or destruc-

tion of key dynamic features of the learning domain’s underlying attractor. The results of

this analysis also indicates that, while the structure of the attractor determines learning,

the likelihood of a modeling architecture evolving the necessary structure is stochastic.

The structural significance of the underlying attractor and the mobility of the attractor

during learning indicate that a state-space representation of the state-action-value function

is unsuitable. Ideally, reinforcement learning would be modeled in a space directly related to

the structural components involved in learning—features of the underlying attractor. With

higher-level features, such as fixed point structures commonly found in nonlinear dynamic

systems, the complexity of the state-action-value space could be drastically reduced. The

use of options [?], conceptually, is a step in this direction.

Attractor mobility also motivates the problem of modeling reinforcement learning to one

of population dynamics. Experimental evidence suggests that a percentage of attractors

trained on the problem will successful evolve the necessary structures to achieve learning.

Therefore, constructing a learning agent from a population of models, each used as a voting

element in a winner-takes-all selection of intermediate actions, would increase the probabil-

ity that intermediate actions are selected based on dynamic features conducive to learning.

This is a way of reducing the impact of attractor mobility and bifurcations on learning

success. In theory, these agents could maintain sufficient diversity in the parameter space

of a learning architecture such that if one or more bifurcations were to occur in the minority

of models, the correct attractor structure could still be learned. This technique would be

essential to on-line reinforcement learning.

Finally, the most important result of this analysis is the impact attractor mobility has

on the probability of obtaining good learning solutions. This is true even when the complete

system state-space is known. For incomplete state architectures, however, the outcome is

potentially more dire, as was discussed for state-space representations in MCP inducing limit

cycles during learning. Recurrent architectures possess inherent parameterized dynamic sys-

tems which are subject to bifurcation. The existence of attractor mobility dictates that the
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parameter space of the model will be subject to perturbations, which in turn exposes these

parameterized dynamic architectures to bifurcations. The potential stability consequences

for attractor mobility require consideration of incomplete state-space architectures which

minimize the impact of mobility on learning.
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Chapter 5

Modeling Mountain Car Problem

via Echo State Network

Chapter 4 studied the dynamics of reinforcement learning when modeled via local and

non-local function approximations in complete, Markovian state-space. The results of this

study were threefold: 1) the attractors underlying reinforcement learning domains are highly

mobile, 2) mobility is largely a result of exploration early in learning and misapproximation

of Q during later stages of learning, and 3) the evolution of an attractor when modeled via

non-local function approximation influences long-term learning performance.

Is attractor mobility avoidable? Particularly, does attractor mobility occur in dynamic

feature spaces, such as ESNs? These are interesting questions because dynamic feature

spaces are constructed from the system’s intrinsic dynamics. Beyond the minimum neces-

sary to evolve the initial attractor to the final learned attractor, based on the results of

Chapter 4, attractor mobility is largely dependent on the structure of the feature space. If

the feature space is the intrinsic feature space of the problem, mobility is expected to be

minimal.

Another question often raised in the use of fixed dynamic bases is complexity issues

stemming from a lack of adaptation. With respect to reinforcement learning, this would

require demonstration that the basis is rich enough to represent the reinforcement learning

domain’s attractor throughout the learning trajectory from initialization to convergence.

Also, if the dynamic basis is suitable for representing reinforcement dynamics, it would be

expected that the learning performance would accelerate compared to static, non-local ap-
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proximations. Accelerated learning is expected because the target domain projects linearly

onto the dynamic basis and does not require adaptation of the features.

The goal of this chapter is to study modeling performance of the ESN in the MCP

domain under both low and high speed learning schedules. To achieve this goal, first, a

brief tutorial on practical ESN functionality is provided. The construction and behavior

of the ESN implementation of the dynamic basis with respect to reinforcement learning

is described. An example of MCP attractor dynamics is provided when the MCP domain

is modeled via ESN. Finally, the performance of the ESN in learning the MCP compared

to traditional Markovian architectures is analyzed. The analysis focuses on the ESN’s

representations of the reinforcement learning domain and provides guidance as to where the

architectures strengths and weaknesses exist.

5.1 Design and Training Considerations in Reinforcement

Learning

The principle difficulty in using the ESN architecture effectively is construction of a suitable

reservoir that well-represents the dynamics of the problem at hand. This problem is well-

known, encompassing both the reservoir richness problem [30, 56, 61, 11, 13], as well as

the vagaries of reservoir design [30, 32, 36]. In the past, the ESN has been applied to

applications in complex, nonlinear system identification—modeling static attractors.

For the purposes of this research, however, the interest is that of constructing a reservoir

that well-represents a reinforcement learning domain, which, as described in Chapter 4,

exhibits mobility. This section provides a practical framework for understanding, designing,

and implementing an ESN for this task. First, basic ESN behavior and function is discussed.

Building on this description, the remainder of the section details the design and training of

the ESN in reinforcement learning domains.

5.1.1 Echo States: A Tutorial

The ESN is a dynamic basis. In short, the ESN projects a time-series into a high-dimensional

space onto which future predictions of the time-series may be mapped, linearly, by the

solution of an over-specified system of linear equations, given in Equation 3.11. A conceptual
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barrier to the use of the Echo State Network as a non-Markovian state-space approximation

is proper understanding of what role the ESN architecture has in forming this system of

equations. While the recurrent equations of the ESN are formally presented in Chapter 3,

real ESN intuition may be found in a practical example.

Figure 5.1 depicts, temporally, the evolution of ESN internal state to external stim-

ulation. As its name implies, the ESN “echoes” information about inputs through time.

Differences between input sequences result in differences between the ESN echoes. When

multiple inputs are presented to the ESN in sequence, the echoes of the various inputs

interact nonlinearly. Step-by-step description of this behavior is as follows.

Figure 5.1 depicts the response of two identical ESNs under differing external input

sequences. Initially, the internal state of the ESN is 0. Without external stimuli, the

internal states of both ESNs remain silent. After two seconds of simulation time a small,

positive external stimulus is input to each ESN. Conceptually, we can imagine this pulse

input as a stone dropping into a pool of liquid. This external stimulus perturbs the ESNs

internal state, much like ripples forming on the surface of perturbed liquid. Because the

ESN is updated deterministically, Equation 3.9, both ESNs exhibit identical responses to

identical inputs. After ten seconds of simulation a second external stimulus is applied to

each ESN. The top ESN in Figure 5.1 receives a positively valued stimulus. The bottom

ESN receives an negatively valued stimulus of the same magnitude. In response to the two

external stimuli, the internal states of the two ESNs diverge through time. Between 10 and

40 simulation seconds, the internal states of the ESNs both slowly settle back to near zero.

The example given above is designed to highlight several features of ESN behavior:

1) temporal evolution of the internal state is deterministic, 2) temporal evolution of the

internal state is unique for a unique input sequence (i.e., ESN dynamics are point-wise

separable), and 3) temporal evolution of the internal state converges to zero without external

stimulation (i.e., ESN dynamics are stable). Combined, these properties allow the ESN to

act as a dynamic basis, a space on which a dynamic system may be mapped, linearly. How

is this done? A dynamic system that is a function of the input sequences in Figure 5.2

may be modeled by assigning weights to each element of the ESN’s internal state. The
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Figure 5.1: Example dynamic response from identical reservoirs under two unique input
sequences.

time-series of the underlying system may then be reconstructed by the weighted summation

of the echo states trajectory. The purpose of Equation 3.11 is to determine the weights that

reconstruct the target system optimally in the least squares error sense.

5.1.2 Designing a Dynamic Basis for Reinforcement Learning

The difference in building a basis for a traditional dynamic system and that of a reinforce-

ment learning domain is rooted in interactions between the action, system dynamics, and

the sum of future rewards, Q, as given in Equations 2.15–2.18. Unlike nonlinear system

identification tasks that map a current state, or current state and action pair, onto future

states, the dynamic system of the reinforcement learning domain maps the state-action pair

onto an approximate sum of expected future rewards signals.

This difference has several consequences. First, and most important, is that the predic-

tion output influences the selection of the action received as an input, as in Equation 2.5.

Equilibria within the reinforcement learning domain result from the function approximation

of future rewards, which directly influence system dynamics. This is a significant difference

from system identification in which the model passively observes the system’s dynamics and

searches for parameter values that best mimic these dynamics.
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Another consequence of the reinforcement learning problem is that there exists an inher-

ent, dynamic asymmetry to the target function—summation of future rewards. Therefore,

the dynamic structure of the system and the target may be very different. An example

of this difference is observed in MCP. When solved optimally, the summation of expected

future reward signals is a monotonically increasing function along a trajectory, whereas, the

system’s dynamics are largely periodic.

An additional concern arising in a goal-directed problem domain, particularly that of

MCP which is a path minimization problem, is that achieving the goal induces a reset

of the system state to some random initialization. There is no obvious way of dealing

with a system reset with respect to the internal dynamics of the ESN. For example, if

the internal dynamics of the ESN are reset along with the system state, then the ESN’s

internal dynamics will require several iterations to suppress transient contextual signals

resulting from this restart. In essence, a restart of the ESN’s internal state destroys the

quasi-Markovian state representation maintained in the reservoir’s dynamics.

The final and most difficulty piece of this process is to consider flexibility of representa-

tions between the beginning and end of learning. The attractor of a reinforcement learning

domain changes during learning. The echo state space itself must also be able to alter it’s

representation of the attractor through time. This is challenging because the final attractor

structure will, in general, not be known a priori.

5.1.3 Reservoir Details

Reservoirs are stochastically generated, random nonlinear projections of the system’s dy-

namics. As described in Chapter 3, the distribution of ESN features are determined by the

ESN’s density, spectral radius, and transfer function. These interactions have been explored

previously for stationary attractors [56, 30, 47, 11]. The knowledge transfer between sta-

tionary attractors and nonstationary attractors, however, has not been studied. Without

a literature to guide design decisions, the design focused on manipulating the reservoir’s

high-level parameters to satisfy four criteria in decreasing order of importance: 1) system

dynamics, 2) reward signal structure, 3) horizon length, and 4) attractor mobility.
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Based on these criteria and a suite of preliminary parameter studies, the ESN architec-

ture tasked with learning the MCP was constructed according to the following parameters.

The input vector was non-Markovian, u = {x, b}, where x is position and b = 0.2 is the

constant bias. The reservoir state, x, was of size N = 100. The input mapping, Win,

density was 0.5, supplied with nonzero values sampled uniformly on the range [−0.14, 0.14].

The reservoir mapping, Wres, had a density of 0.04 nonzero values sampled uniformly from

the set {−1, 1}. Wres was normalized by the absolute value of its maximum eigenvalue

and then scaled by α = 0.9. No noise was added to the reservoir state during computation.

The system is entirely feed-forward. Without feedback of the current prediction of Q, it

is difficult to construct successive predictions without a large body of asymmetric echoes.

Asymmetry in the ESN is difficult to generate due to periodicity of the echo states—highly

asymmetric echoes are possible, but do not occur with sufficient frequency. To facilitate

asymmetry, the squares of the echoes were added to the embellished echo state, such that

z = {u,x,x2}. This is a common augmentation of the basic ESN model [33, 32].

5.1.4 The Spiking Neural Network Model

One decision of utmost importance in designing ESN dynamics is the nonlinear transfer

function. Static parameterized function approximations generally utilize tanh or sigmoid.

These functions exhibit properties well-suited to these architectures. When employed as

the transfer function in the ESN, however, the dynamics of the reservoir tend toward high

frequency oscillations. To ameliorate this problem, the spiking neural network model has

been employed [30, 36] having the following mathematical form,

ẋ =
1

C
(−ax + tanh (Winu + Wresx)) , (5.1)

where C > 0 is the reservoir’s time constant and a is the leak rate of the individual neural

unit. Integrating numerically via Euler’s method produces,

xt+1 =

(

1 −
a∆t

C

)

xt +
∆t

C
tanh (Winu + Wresxt) . (5.2)

The spiking neuron model mimics some of the dynamic behaviors of more sophisticated

biologically inspired models while remaining mathematically simple [30, 36]. An advantage
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of this model is that it incorporates memory into the individual neural elements. The neural

elements individually maintain historical context, much like a momentum, and are resistant

to high-frequency perturbations. With proper selection of constants C and a this transfer

model facilitates smooth dynamic feature representation of the systems studied in this work.

For the experiments described in this chapter, the time constant was assigned C = 0.44,

the leak rate was a = 0.9, and the neural model integration time-step was set to that of the

problem integration time-step, ∆t = 0.1. These parameters are in line with reservoirs used

to model problems of similar dynamics and are known to be robust to variation [30, 36].

5.1.5 Observing the Echoes Dynamically

The design process of the echoes was carried out primarily by trial and error, starting

from a template reservoir, described above, that exhibited good dynamics for a challenging

stationary attractor system identification task [30]. Once constructed, the parameters of

the system may be examined with respect to the following tunable parameters:

Saturation of the echo states: The input and recurrent weight sizes can be reduced to lessen

the possibility of input summations saturating the tanh nonlinearity of Equation 5.2. This

can also be achieved by reducing the spectral radius of Wres to increase the echo decay

rate.

Echo time-scales: Adjusting the neural leak rate a and time constant C varies the time

constants of echo states.

Non-linear augmentation of the ESN: The asymmetry of the sum of expected future reward

signals can be addressed at the level of the embellished echo state. Non-linear transforma-

tions of the echoes, such as the squares, concatenated to the base embellished echo state, z,

can achieve dynamics well-suited to modeled a monotonically increasing nonlinear function.

Transients: The echo state was reset to 0 upon restart or initialization of the system state.

Transient effects can be controlled through manipulation of the reservoir’s spectral radius.

The spectral radius of a reservoir is positively correlated with the number of iterations it

will exhibit transients.

Echo diversity: Maximizing the rank of the echoes (i.e., the number of linearly independent
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echo trajectories) best ensures diversity without a priori knowledge. Sparseness in the

reservoir, controlled through small values of ρ, facilitates full rank echoes [11].

Using these tools, the reservoir may be tuned such that it is well-suited to linear mapping

of the learning problem. This is a difficult, ill-defined problem, which is why trial and error

was employed to find suitable reservoir parameters for these learning experiments. Fig-

ure 5.2(a) depicts the evolution the three most highly weighted echoes.1 The approximate

sum of future rewards, predicted by the reservoir during this learning trial, are presented

in Figure 5.2(b) as reference. While examining this figure, remember that the temporal

evolution of the echoes is influenced by the static recurrent connectivity of the reservoir,

the linear readout weights (used to predict Q and select actions), and the constraints of the

transfer function.

Figure 5.2(a) illustrates the temporal aspect of attractor mobility within the echo states.

During the earliest phase of learning, without much experience, the ESN echoes are disorga-

nized. The disorganization is the result of the large percentage of random actions injected

into the reservoir due to state-space exploration, as well as misapproximation of Q resulting

in poor action selection. As a result, the readout is poorly mapped onto the Q-function,

and, therefore, only the most gross predictions are possible, as evident in the leftmost plot

of Figure 5.2(b). Over the succeeding phases of learning the echoes evolve into highly struc-

tured trajectories and the Q-function takes on a quasi-monotonically increasing structure.

In summary, Figure 5.2 illustrates the difficulty of static analysis of the echo states. The

dynamics of the echoes evolve through time as the attractor underlying the reinforcement

learning domain is discovered.

5.1.6 Finite Horizon Training

The most compelling reason for modeling a system via dynamic bases is that the basis may

be trained, optimally, through linear regression [30]. Reinforcement learning, however, is an

inherently on-line process. The optimal state-action value function defining the expected

1The MCP was learned and the three largest weights were selected from the final configuration of the
readout.
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Figure 5.2: Example of echo state dynamics as the attractor structure changes through time
in three parts: (a) initial training, intermediate attractor structure, and optimized attractor
structure. Trajectories are plotted for the three most highly weighted echoes (echoes 74, 99,
and 21, of 103 total, in decreasing order of weighting); (b) the corresponding approximate
Q is depicted for reference.

sum of future rewards over an infinite horizon is never known, but the direction of this

function with respect to the current approximation is known. This direction is given by

the temporal difference error (TD), defined previously in Equation 2.3. Typically, when

learning the state-action value function the TD-error is used as a gradient.

Gradient descent is not always necessary. The future can often be well-approximated

with a finite horizon [22] as approximated in Equations 2.10. When a finite horizon is

admitted in the training of the model, then a specific target, Qt, can be constructed for

the regression problem. Using this target, the ESN readout can be trained to project the

maximal sum of future rewards over a finite horizon onto the ESN reservoir via linear

regression, as defined in the training of the ESN, Equation 3.11. For the purposes of

establishing the utility of the ESN in modeling the MCP reinforcement learning domain, a

finite horizon was assumed, having length h = 20.
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This horizon length, and those selected for experiments described in Chapter 6, were

chosen based on theoretical and empirical results of past research [31, 32], as well as prac-

tical experience working with ESNs when modeling reinforcement learning domains. The

maximal memory capacity of the ESN is the reservoir size, N [31]. In practice, however,

the effective memory length is much less, on the order of N/2. Experience shows that the

maximal horizon length that may be accurately modeled via ESN is N/2 with performance

increasing as this length decreases below this upper bound. This is a useful rule-of-thumb to

use when modeling reinforcement learning with ESN. The horizon length should be chosen

long enough to capture the entire length of the near-optimal trajectory. The ESN necessary

to model this horizon should have a size N > 2h, with performance increasing as N ≫ 2h.

The exact size of the ESN also depends on the problem constraints. In this chapter the

initial position may be anywhere on the range x = [−1.2, 0.5]. In the next chapter the initial

position will always be a fixed state. When the range of initial conditions are smaller, the

ESN may be of a size closer to the ideal outlined in the rule-of-thumb.

5.1.7 Attractor Mobility Effects on Batch Versus On-line Updates

One particular motivation for using linear regression to solve for the linear weights mapping

the reservoir onto the target is the noise of the ESN’s dynamic basis. As it is generated

stochastically, the basis contains a distribution of dynamic features. It would be expected

that at any given time in the learning process, a large fraction of the ESN’s dynamics

will not be useful in modeling the reinforcement learning domain’s underlying attractor.

In fact, it would be expected that only a small fraction of the echoes are relevant to the

problem’s dynamic structure. Therefore, while the ESN update equations are deterministic,

Equations 3.9 and 3.10 the echoes contain structural noise that must be addressed.

In the past, the ESN was used in nonlinear system identification tasks in which the

attractor is stationary. In these instances, batch and recursive linear regression for least

squares error minimization are equal. In the case of a mobile attractor the model parameters

and the resultant attractor interact via the system’s dynamics. Therefore the batch and

on-line update schemes differ drastically in building domain representations.
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Various methods of state-action value update may be employed. For the purpose of

this research the goal was to select a method that works for the ESN architecture so that

the feature space, as opposed to the training method, may be examined. Unlike complete

state representations, the ESN state-space reconstruction is a nonlinear projection of his-

torical state information. The echo is context. Unfortunately, the echoes are not one-to-one

mappings.

This is a crucial point of working with ESNs. The echo state at some time, t, depends

on the pathway taken to achieve the system state at time, t. The historical pathway is

embedded, implicitly, in the echo state. Embedding, however, can be harmful when random

actions are selected to explore the state-action space. No clean way of dealing with this

problem is apparent. When a batch update is used to train the ESN’s readout, however,

the interactions of the echoes, and inherent noise of the random moves embedded in the

context, are lessened. For the MCP experiments I employ a windowed update rule where

the window varies from 20×103–50×103 steps, depending on the complexity of the problem.

5.2 Dynamics of ESN Learning of Mountain Car

Analysis of the attractor underlying the MCP in Chapter 4 demonstrated that, while fully

defined in a single, two-dimensional state representation, the attractor also resides in four

piece-wise one-dimensional spaces, as shown in Figure 4.10. These one-dimensional spaces

are constructed with trajectories determined by the gradient information of the state-action

value function and are partitioned by the fixed point structure of the reinforcement learning

domain. These linear spaces are the intrinsic feature space of the problem.

A natural way to decompose the MCP’s domain is, therefore, to consider the Q-values

not as a function of position, velocity, and action as is the case of Markovian reinforcement

learning domains, but as trajectories (i.e., recursive functions) in state-action space. The

motivation behind utilizing a dynamic basis, such as ESN, to model the MCP reinforce-

ment learning domain is that it naturally produces trajectories in this space. The echoes

are nonlinear dynamic projections of the current learning trajectory. By working in tra-

jectory space the ESN avoids the types of bifurcations experienced by Markovian function
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approximations. The ESN generates a set of linear trajectories which are then combined

linearly to form the underlying attractor. Thus, it would be expected that minimal bifur-

cations occur during learning. Rather, it would be expected that the underlying attractor

smoothly changes as the weightings of individual trajectories adapt through experience.

5.2.1 Fixed Point and Stability Computations

To test this assertion, fixed point analysis of the attractor underlying the MCP, modeled via

ESN, was performed during learning. This analysis was analogous to that done in Chapter 4,

but was changed to accommodate for the ESN lacking a velocity input. The fixed points of

the ESN can be computed analogous to that of Markovian approximations. The stability,

however, cannot be computed similarly, because the initial input cannot be perturbed ±∆ẋ.

Further, a problem with computing the fixed point structure is the influence of the echoes in

control decisions. With the ESN’s echo state reset to 0, the Q value, and therefore action, a,

and velocity, ẋ, are completely determined by x, b, and the linear readout weights associated

with these inputs. To compute the fixed point and stability the following technique was

employed. After reset the system was iterated. As in Chapter 4, the fixed point location

was computed where the velocity of this iteration was equal to zero. From this new position,

positive and negative actions were taken, approximating the positive and negative velocity

perturbations. The velocity between the the first and second iterates were computed to

assess the stability of this point. Of course, the accuracy of this stability classification,

computed in this manner, will be lower than a direct perturbation of velocity, but it is

suitable for the purposes of fixed point analysis in a simple attractor.

5.2.2 Attractor Mobility with ESN

An example of fixed point and stability analysis for a single learning trial of ESN on MCP is

depicted in the bifurcation and performance trace of Figure 5.3. As was predicted, attractor

bifurcations, and even fixed point changes, are less frequent for the ESN as compared to

the local and non-local Markovian function approximations studied in Chapter 4. After an

initial learning period, approximately 35 × 103 steps, during which mobility events occur

with some frequency, the fixed point structure settles. We see a major bifurcation event
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occurring at 105E3 training steps. A selection of attractor plots made in conjunction with

the example mobility trace are shown in Figure 5.4, and are used to graphically depict the

impact of this bifurcation event on escape performance, which is seen to take a large drop at

this point in learning. Two attractor structures leading up to this bifurcation are depicted

in Figures 5.4(a) and 5.4(b), generated at 95×103 and 100×103 training steps, respectively.

In these plots the unstable spiral rotation tightens. A possible explanation for this is that

the ESN is trying to minimize path length. A tighter spiral would shorten the path from

points in state space that have the longest minimum path to the goal. The result, however,

is a limit cycle formation at 105 × 103 learning steps. The attractor structure returns to a

loose unstable spiral at 110 × 103 learning steps.

The limit cycle formation at 105×103 learning steps is the cause of the precipitous drop

in escape efficiency observed. Trajectories initialized at s = {−1.2, 0} are captured by the

limit cycle. Because of the inelastic nonlinear boundary at x = −1.2, nearly two-thirds of

the trajectory state space is captured by this cycle, making escape without restart nearly

impossible within a policy having minimal random action.

This example highlights a drawback of using dynamic features in reinforcement learn-

ing. Dynamic features have, potentially, global impact on the underlying attractor of the

reinforcement learning domain. Conversely, the early phases of learning, characterized by

high exploration probability have less impact on the feature’s structure. Trajectory based

features are amalgamations of many action decisions and are difficult to perturb.

This result, in conjunction with the mobility traces and attractors of Chapter 4 suggest

that the feature representation itself, rather than exploration, determine the mobility of the

underlying attractor, and that the ESN initialized with a robust, global representation of

the problem domain. In succeeding sections ESN escape performance compared to tradi-

tional architectures in the Markovian domain in both a static and dynamic context will be

discussed followed by an analysis of how the ESN is approximating this state space and an

assessment of the this approach’s strengths and weaknesses.
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Figure 5.3: Bifurcation diagram of an echo state network approximation to the Mountain
Car Problem during learning. Fixed point based representation of attractor structure is
highly global. A global bifurcation event is visible in the fixed point structure at 95 × 103,
100 × 103, 105 × 103, and 110E3 learning steps. This event is explored as trajectories in
state-space in Figure 5.4, corresponding to points (a–d).

5.3 Performance Evaluation

MCP is a pathway minimization problem. Escaping the valley, itself, is not a challenging

problem. The attractor structure is simple enough to be satisfied by suboptimal approxi-

mations. Rather, the performance of an architecture on this problem is measured in three

ways: decision quality (measured as minimal decisions to achieve goal), model complex-

ity (number of trainable parameters), and training complexity (number and computational

complexity of training steps). In the case of the latter two criteria, they are measured with

respect to an achieved level of decision quality. Stemming from the lack of comparable

architectures for modeling continuous valued, non-Markovian reinforcement learning do-

mains, the performance of the ESN is compared to traditional mechanisms for solving these

domains: a lookup table approximation and neural network function approximation. The
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lookup table serves as a performance upper bound. The neural networks provide realistic

performance assessments—numbers of trainable parameters compared to input information

(complete versus incomplete state space) to gauge the level of performance that the echo

state feature space can achieve.

The direct performance comparison was constructed as follows. 150 learning trials were

performed using the ESN construction parameterized (as described above) for each of two

training methods: backpropagation of TD-errors (learning rate, r = 0.0005, discount factor

γ = 0.9), and linear regression over a finite horizon of length h = 20. The ESN received an

incomplete input state vector s = {x, a}.

To compare the performance of local Markovian, non-local Markovian, and non-local

non-Markovian approximations, the following experimental set-up was used. Each architec-

ture was trained on the MCP, parameterized as described in Chapter 4. 150 learning trials

were performed for lookup table and neural network architectures defined in Chapter 4.

A smaller (25 hidden unit) neural network architecture was also included. All Markovian

architectures received the complete MCP state, s = {x, ẋ, a}.

5.3.1 Results

The results of the performance comparison are summarized in Figure 5.5. Figure 5.5 is a

histogram in which performance is measured as the maximum escapes per thousand training

steps (EPT) observed over the trial. This is recorded on the x-axis. The percentage of trials

in which this performance was observed is recorded on the y-axis. Performance is discretized

such that 25 bins span the performance envelope of all architectures.

Results of this experiment are not surprising. The best performing architecture is the

lookup table, which converged to a near-optimal solution in 100% of all trials of approxi-

mately 56.5 EPT. This result outperforms all non-local approximation architectures stud-

ied. This performance profile can be considered the best possible result for the purposes of

comparison.

The remaining four plots depict results of the non-localized function approximations.

Assuming normal distribution of the data, the 200 parameter ESN trained via linear re-
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gression, ESNlr, performance difference was statistically significant compared to the 100

parameter neural network, NN100, with significance (Pr < 8.854E − 8) and the 200 pa-

rameter neural network, NN200, with significance (Pr < 0.001952). In this comparison,

NN200 performed best with 36.87 ± 1.91 EPT. This outperformed ESNlr having a per-

formance distribution of 34.86 ± 7.22 EPT and the performance of NN100 which achieved

31.69 ± 1.19 EPT. These performances were significantly better than that of ESN trained

via backpropagation of TD-errors, ESNtd, which achieved only 11.74 ± 2.75 EPT.

Intuition with respect to the plot of ESNlr performance in Figure 5.5 suggests that

that ESNlr performance is multimodal, rather than normally distributed, with one op-

tima centered around approximately 40 EPT, and at least one other optima correlated

to the distribution of NN100 and possibly a third mode correlating with the performance

of ESNtd, respectively. This multimodality, however, is more likely an artifact of locally

optimal control strategies that achieve sub-optimal MCP performance. This result makes

sense because the performance of the ESN architecture is known to distribute normally for

systems in which the attractor is static. If a mobile attractor is considered to be a sequence

of static attractors, then the performance of the ESN would be expected to exhibit multi-

modality. Reservoirs having poor features would fail to capture portions of the underlying

attractor. Once the probability of exploration dropped to zero, these ESNs would converge

to suboptimal policies.

5.4 ESN Feature Analysis

A challenging aspect of working with dynamic bases is determining how these architectures

reconstruct the state-space. The ESN’s echo states are high-dimensional, random dynamic

projections of the underlying system dynamics, but to be successful they must exhibit

properties that would be expected of a Markovian representation of the system. Markovian

states connect locally in physical (i.e., real-world) domains. Therefore, I would also expect

the echo state representation to exhibit local connectivity.

I can assess, qualitatively, the local connectivity of the echo space by clustering the echo

states via K-means. Using the learned cluster centers as labels, I can assign an echo state
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Figure 5.5: MCP performance comparison of Markovian and non-Markovian approximation
critics: ESN trained via TD-error, ESN trained via regression of a finite horizon, h = 20,
FNN (25 hidden units) trained via TD-error, FNN (50 hidden units) trained via TD-error,
and a lookup table, discretized at increments of 0.1 on the state space.

cluster label to each point in the complete state-space of the MCP. The labels act as a

gross visualization of the Markovian reconstruction of the non-Markovian state-space. This

visualization is presented in Figure 5.6(a). In this plot, individual symbols represent the

labels of the clusters, K = 20.

A few details of this representation should be discussed. First, the observable incomplete

state of the problem was position, s = x. Therefore, the echo states must reconstruct a

velocity representation and map this representation onto the position. Thus, the echo state

space should cluster both on the x-axis, and, where the velocity plays a significant roll in

the expected sum of future rewards, on the ẋ-axis as well.

In fact, it is observed that the echo states cluster in a spiral pattern, which falls roughly

along the lines of the partition of the underlying piecewise linear space depicted in Fig-

ure 4.10. This clustering pattern is a fundamental decomposition of the domain, differ-

entiating between points of similar position only when this differentiation is important in

determining the expected sum future reward signals.
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The approximate minimum path from the most negative Q-value to the goal has been

superimposed onto Figures 5.6(a) and (b) for reference. This line allows the inefficiency

incurred by the echo state-space, as marked within the gray boxes, to be easily observed.

Echo state clusters cross over the minimum path line. This is a suboptimal representation

because points below this line, optimally, map onto a = −1 and points above map to a = 1.

This line marks the policy decision boundary and ensures the minimum path to goal is

preserved.

Because the echo states are not properly distinguishing between regions of the complete

state-space with significantly different trajectories in the optimal MCP attractor, we know

that the ESN is operating sub-optimally. Why is this the case? The answer requires

thinking in terms of how the ESN represents the state space—dynamic projections of the

system trajectory. Trajectories both above and below the policy decision boundary are

similar. Only when trajectories near the decision boundary approach the saddle point at

x ≈ 0.4 does the differentiation become clear. What the ESN lacks is a global awareness

between trajectories above and below the line, which in feature space reside very far apart,

as depicted in Chapter 4, Figure 4.10. This issue will addressed in detail in Chapter 7,

where contextual insufficiency of echoes can be addressed.

Figure 5.6(b) provides a global perspective of the echo state-space’s discrimination

power. In this figure the actual policy selected by the agent is plotted at each state vis-

ited. In MCP the optimal policy rule, with few exceptions, is to maximize acceleration.

The policy should include as few no-operations (a = 0) as possible. As is evident in Fig-

ure 5.6(b), the ESN solution has few no-operations. Figure 5.6(b) also confirms the concerns

addressed previously—the representation problems made along the policy decision bound-

ary produce sub-optimal actions. Actions below the policy decision boundary on the range

x ≈ [−0.5, 0.3] and above zero velocity should be in the negative (a = −1). In this plot, the

pathway is sub-optimally kept long by pushing the car as far up the positive valued valley

as physics will allow before retouring the valley floor.
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Figure 5.6: Analysis of echo state reconstruction of the Markovian state-space. (a) Marko-
vian state-space visited during a segment of learning in the MCP for the ESN critic. Point
labels correspond to the cluster ids of the K-means clusters of the echo states used to predict
Q of this state. (b) Corresponding policy decisions chosen by the ESN critic.

5.5 Temporal Learning Comparisons

Previously in this chapter the performance of the ESN architecture was compared to that of

local and non-local Markovian function approximations statically. One must also consider

the temporal evolution of the performance of these architectures to understand, not just

what is learned, but how this performance evolves through time under training schedules

of varying lengths. This analysis is composed of two parts, a performance component, in

which the time-evolution of escape efficiency is compared among architectures are compared,

and a dynamic analysis component in which the time-evolution of the attractor is studied

alongside performance.

5.5.1 Performance Comparisons

Temporal evolution of learning efficiency on MCP was studied by varying the length of

the learning schedule and the architecture used to approximate the state-action value func-

tion, Q. Learning schedules were used to incorporate random actions into the policies of

the non-local function approximations. For the neural network architectures, the learn-
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ing schedule was Snn = [0.8, 0.8, 0.5, 0.1, 0.01, 0.01, 0.0]. The ESN architecture was found

to train best on a slightly different schedule Sesn = [0.8, 0.8, 0.5, 0.3, 0.1, 0.05, 0.01]. For

each level of randomness the agent was permitted to learn over a finite length of steps

such that step = [1000, 5000, 5000, 5000, 5000, 5000, 5000, 5000]. Further, these finite inter-

vals of learning were repeated N times, such that the number of training steps equaled

[[10001, 10002, ..., 1000N ], [50001, 50002, ..., 5000N ], ...]. These schedules enabled precise con-

trol over the rate at which the randomness injected into the policy dissipated compared to

number of experiences observed. To examine performance of the architectures over a range

of learning speeds, the number of iterations over each element of the learning schedule, S,

was varied, N = 1, 2, ..., 5. For each architecture, and for each value N , thirty learning

trials were run. The number of escapes per thousand training steps (EPT) was recorded at

intervals of 1000 steps. The final five EPT values were averaged for each trial and this mean

was averaged over the thirty learning trials. The results of these experiments are summa-

rized in Table 5.2. For each configuration the mean of the final five maximum results over

all the thirty trials was also recorded. These results are summarized in Table 5.1.

Table 5.2 contains two results of interest. First, the mean escape efficiency of the ESN

under learning schedules of length 93 × 103–155 × 103 are comparable to that of the non-

local function approximations. The local lookup table results are presented for means of

comparing the ESN results to that of a solution that converges to a near-optimal policy for

the MCP. The second result is that for the shortest length schedules, 31×103 and 62×103,

the ESN performs significantly worse. This is surprising. One possible explanation is

the length of the linear regression window, which was fixed at 50 × 103 steps for these

experiments. For the shortest length schedules, a window of this size would include a large

percentage of high exploration echo states. While random action states are not included in

training, these actions are implicitly embedded in the echo states which follow. This could

add significant noise and negatively effect precision of the linear readout.

One concern of the ESN architecture so far overlooked is the stochasticity of its features.

ESNs are commonly compared to alternate techniques by training multiple ESNs and then

comparing both the distribution and the best possible result against architectures having
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Maximum Escapes (per thousand steps)

Learning Schedule Length (steps)
Input Model Weights 31E3 62E3 93E3 124E3 155E3

Table† 2970 23.5 40.0 49.0 54.0 56.5
[x, ẋ,a] NN25 126 36.7 37.4 36.2 36.0 35.8

NN50 256 35.9 33.5 35.1 35.5 36.1

[x,a] ESNlr 206 39.4 39.8 43.4 42.6 42.6

Table 5.1: Temporal comparison of maximum escape performance for varying length learn-
ing schedules. †Note, no learning schedule was used in conjunction with the lookup table
approximation, only an upper limit on training steps was employed.

learned features. This is true for stationary attractors and should hold for nonstationary

attractors as well. On average the ESN performs about as well as trained Markovian

architectures at longer schedule lengths but less well on higher-speed training schedules.

However, if we observe the maximum result over all 30 trials, Table 5.1, the ESN is the

superior nonlocal function approximation method. Therefore, over a set of learning trials,

the distributions defining the reservoir generate a reservoir instance that exhibits high-

performance. This result held over all five training schedule lengths when compared to the

neural network function approximations.

This result is beneficial in understanding the strengths of the dynamic basis model of

reinforcement learning. For any given trial, we expect performance to be on average about

as good as that of an adapted representation. However, adaptation can induce local optima.

In this case, allows the global optima for the current instance to be realized. Thus, if we

generate enough instances of the ESN, our expectation for identifying near-optimal solutions

increases.

5.5.2 Mobility Comparisons

The final analysis of dynamic representations of the MCP examines how each architecture

studied interacts with the problem. To create a global perspective of attractor structure

the following experiment was performed. For all trials used to create the performance

experiments in the previous section, the fixed point structure of the attractor during learning

was recorded. A mobility event was defined as a change in the fixed point structure between
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Mean ± Std. Dev. Escapes (per thousand steps)

Learning Schedule Length (steps)
Model 31E3 62E3 93E3 124E3 155E3

Table† 15.3±2.6 26.9±3.7 41.7±3.6 45.7±3.6 49.9±3.1
NN25 22.6±15.2 28.6± 8.6 28.5± 5.0 28.1± 8.4 27.9± 8.2
NN50 27.2±11.0 27.3± 6.0 28.9±3.9 29.6± 3.4 30.1± 3.2

ESNlr 17.8±11.5 19.4±12.8 29.4±10.8 29.2±11.6 29.0±12.3

Table 5.2: Temporal comparison of mean escape performance for varying length learning
schedules. ∗Note, no learning schedule was used in conjunction with the lookup table ap-
proximation, only an upper limit on training steps was employed.

successive observations at a discrete position of the state-space, discretized x = [−1.2, 0.5]

at intervals of ∆x = 0.1. Observations were made every time performance was recorded,

every 1000 learning steps. For each time step, the number of mobility events were averaged,

forming a single time-series for each trial. These time-series of mean mobility events were

plotted with respect to the percent of learning schedule completed. Thus, all trials from

the previous experiment can be compared, regardless of actual length of schedule. These

results are summarized in Figure 5.7.

This picture, when taken in context with the performance results presented above and

the attractor snapshots, provide enormous insight into how different architectures inter-

act with reinforcement learning domains. The lookup table representation exhibits a high

number of mobility events throughout the early stages of learning, despite substantial per-

formance increases as presented in Table 5.2. At time periods equivalent to the end of

the learning schedule, the table’s mean escape efficiency approaches 88% of the optimum,

while exhibiting a little more than two mobility events. The attractor is still undergoing

structural changes, but these changes are very small. The mobility events must be taken

in context of the representation scale. The size of the feature determines the impact of the

mobility event on the global attractor structure.

In contrast, the ESN architecture maintains a relatively low number of mobility events

throughout learning, even under very high exploration phases of the learning schedule–under

one event per thousand in the early learning stages to approximately 0.25 mobility events per

thousand under the later low-exploration phases of learning. Despite the lack of fundamental
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Figure 5.7: Temporal evolution of mobility events across all critic architectures and all
training schedule lengths. Mobility events were plotted where temporal information was
mapped to percentage of training schedule completed.

changes in the attractor structure, Table 5.2, shows marked performance improvement over

this learning curve. Moreover we see a wide variance in learning over the entire learning

schedule. From this we can expect that, while the attractor fixed points are not changing,

the nonlinear structure around these fixed points is changing. Circumstantial evidence,

depicted in Figure 5.4, supports this view of the ESN’s low mobility profile. The structure

of the unstable spiral is changing, even as the fixed point at its center remains stable. ESN

mobility events also seem to correlate with global shifts in the attractor structure, unlike

the highly localized events exhibited by the lookup table.

Most interesting are the changes in the attractor structure induced by the nonlocal-

ized, Markovian feature representations learned via the neural network architecture. The

attractor structure seems to exhibit properties of both localized and nonlocalized feature

representations.

In the early phases of learning, as depicted in the types of attractor structural changes

shown in Figure 4.9, the mobility effects are both numerous and highly nonlocal. The at-
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tractor makes large iterative changes in structure and is very susceptible to exploration.

However as exploration decreases the attractor structure quickly settles and the number of

mobility events more than halves. This is also supported circumstantially by Figure 4.9 in

which it can be observed that the attractor structure late in learning is focused on non-

linear deformation of the unstable spiral as opposed to changing the fundamental dynamic

structure, which has a fixed point effect of shifting the location rather than the stability

class of the fixed point.

5.6 Discussion

What insight can be drawn from applying the ESN architecture to solving the MCP? First,

the ESN is quite capable of building high-quality representations of this domain. The ESN is

competitive with traditional Markovian nonlocal function approximation structures despite

receiving only non-Markovian input. The ESN solves the problem in a unique way, relying

on linear combinations of trajectories to determine the current control decision. This allows

the ESN to work in the intrinsic feature space of the problem—the dynamic structure,

which exhibits lower dimensionality. This implies that the ESN should scale to higher

dimensional problems more easily than state-space representations. This will be explored

more in Chapter 6.

There are, however, inherent drawbacks of using the ESN’s dynamic representation.

First, on a path minimization problem, the negative effects of transients and the implicit

embedding of random actions in the echo state likely induce decision inefficiency. Second,

it is difficult to predict the dynamics of a reinforcement learning problem a priori. As was

discussed in this chapter, the ESN has difficulty discriminating between local trajectories

with long-term future consequences. This is a representation weakness of the ESN. If

the ESN does not initially exhibit sufficient representation power, it will not adapt during

learning. Particularly, no advantage was taken of the Q-values predicted by the ESN. These

values are significant indicators of long term future dependencies. Therefore, the ESN was

able to successfully predict Q for most non-Markovian states, but it experienced difficulty

in discriminating between certain non-Markovian states where the local trajectories were
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similar but modeled vastly different Q-values. If predicted Q-value were used to embellish

the echo states, the ESN could achieve a higher-level of representation, making the non-

Markovian structure more robust to long-term temporal dependencies. A method for doing

this has already been developed and its use in the reinforcement domain will be discussed

in Chapter 7.
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Chapter 6

Modeling Complex Decision

Problems with ESN

In past chapters the dynamics of a simple non-Markovian reinforcement learning domain,

the MCP, were investigated. While a good benchmark for study and comparison of the ESN

architecture to past, complete state representations, other domains are required to ascer-

tain the scalability of the ESN architecture; scalability in terms of either greater temporal

complexity or greater dimensionality. To identify the scalability of ESN two non-Markovian

reinforcement learning case studies are presented: Modified Mountain Car and Acrobot.

Dynamically, these problems are analogous to the single and double pendulum swing-up

problems, respectively, differing primarily in the parameterization of the state-space and

constraints on the action space. These domains provide a measured scale-up from MCP.

In Modified Mountain Car, the attractor complexity increases over MCP in a predictable

way, allowing for comparison to the studies in Chapter 4 and 5. Acrobot is the capstone

case-study for this research. This domain exhibits complex dynamics, higher dimension-

ality, and multiplicity of goal states that does not occur in either of the Mountain Car

variants. Successful learning of this problem in non-Markovian state-space via ESN marks

an incremental improvement in reinforcement learning.

6.1 The Modified Mountain Car Problem

The Modified Mountain Car Problem (MMCP) is a more complex and challenging variant

of the Mountain Car Problem. The system dynamics of the problem are identical, but the

96



−0.5 0.0 0.5 1.0 1.5

Position

Position
Initial

Goal
Region

Boundaries Wrap

Goal: Stay within goal region for T       steps
goal

Figure 6.1: Diagram of the Modified Mountain Car Problem
.

problem constraints and the learning objective are different, which induce changes to the

attractor underlying the learning problem. In the MMCP, depicted graphically in Figure 6.1,

the perfectly inelastic wall and the goal state are removed. The boundaries of the state-

space are shifted such that x = [−0.524, 1.572]. Shifting the bounds of the problem centers

the peak of the mountain in the center of the state-space at x = 0.523. Moreover the left and

right boundaries are defined such that they bisect the valleys on either side of the peak and

the endpoints of the state-space wrap (i.e., when the position goes beyond the state-space

range the agent proceeds with equivalent velocity from the opposing boundary. The goal-

state of the problem is also changed such that the goal is achieved if 0.373 < xg < 0.673. For

additional complexity, the goal-state is parameterized such that xg must be achieved during

Tgoal contiguous time-steps. This constraint requires the agent to balance the car within

∆x of the peak of the mountain. Modifying the MCP in this way effectively transforms the

problem into a variant of the pendulum swing-up learning problem with the requirement

that the pendulum remain balanced for at least Tgoal steps.
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6.1.1 Dynamics of the Modified Mountain Car Problem

The MMCP, when learned, exhibits two dynamic regimes, shown in Figure 6.3. Initially,

the problem is identical to the MCP. Without a priori knowledge, a no-operation or ran-

dom policy results in a global, stable attractor, as was seen in Figures 4.3(a) and (b). The

attractor evolves in parallel to the attractor of the MCP until the agent achieves the goal

state. Achieving the goal state facilitates the formation of a small, stable limit cycle circum-

scribing the peak of the mountain. This limit cycle’s radius is determined by two factors,

either the allowable limits of the balanced region, ∆x, or, if ∆x is sufficiently large, the

physics of the system. As was the case of the MCP, the MMCP attractor exhibits saddle

points between the mountain peak at x = 0.523 and the valley floor at x = 1.572 and

x = −0.524, respectively. Because the MMCP is symmetric, two such saddle points emerge

that define the intersection of the unstable spiral centered on the valley floor and the limit

cycle centered about the mountain peak. These structures and fixed points are highlighted

in Figure 6.3(a).

The attractor structure of MMCP is incrementally more complex than that of the MCP

by the addition of the stable limit cycle. This incremental change, in the dynamic sense,

however, is a much more challenging problem. The model must be able to represent two

dynamic structures, which exist at two different levels of granularity. The large unstable

spiral requires a gross policy with long sequences of opposing actions to move the car out of

the valley. In contrast, the goal region requires a fine-grain policy to balance the car within

the goal region for Tgoal training steps to achieve the goal state.

6.1.2 Reward Shaping

The complexity of the MMCP raises an additional problem beyond that of attractor repre-

sentation. Unlike a lookup table approximation, which, through fine-grain storage of past

experiences, guarantees the goal will eventually be achieved, function approximations pro-

vide no such guarantees. As described in Chapter 4, a combination of random exploration

and deterministic exploitation of the learned Q-system is used; first to achieve the goal and

then incrementally refine the minimum pathway from the initial state to the goal state. In
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difficult learning problems, however, the ease with which a learning schedule may be con-

structed such that function approximation can initially achieve the goal state diminishes.

This is a well-known problem and has been studied extensively [54]. The solution to this

problem is a technique called reward shaping. The premise of reward shaping is a carrot-

and-stick approach. Initially, the goal is defined as an easily achieved constraint compared

with the final, desired goal state. Intermediate goal states are used to slowly transition from

an initial “easy” goal, to the final “challenging” goal. Reward shaping enables the agent

to learn intermediate Q-systems while ensuring the agent achieves goals regularly. Regular

experience of the goal state is critical to function approximation because of the tendency

for approximations to forget past experiences [48, 64, 21].

In the experiments of this chapter, reward shaping was used to transition the problem

from that of a swing up problem, identical to the MCP, to a swing up and balance problem,

the MMCP. As described above, the goal state for the MMCP is defined spatio-temporally.

The agent must position the car in the goal range 0.373 < x < 0.673 for Tgoal consecutive

steps. Initially the value of the Tgoal is relatively small. This goal allows the agent to quickly

learn the swing-up problem. Slowly, over many learning trials, the value of Tgoal is raised

such that the agent transitions from learning swing-up only to swing-up and balance, which

has a more complex policy.

6.1.3 ESN Learning Performance

The following experiments were run to test ESN modeling performance on the MMCP.

The agent always observed the same initial state, sinit = (xinit, ẋinit), where xinit = 1.572

and ẋinit = 0. This corresponds to the car starting at the base of the valley with no

initial velocity. Initially, the goal was defined as balancing the car within the goal region

for Tgoal = 3 time-steps (0.15 simulated seconds). The goal was shaped according to the

following schedule, Tgoal = {3, 5, 6, 7, 8, 9, 10}, where changes to Tgoal were invoked at time-

steps [20 × 103, 35 × 103, 50 × 103, 80 × 103, 110 × 103, 140 × 103]. The final Tgoal = 10 was

defined to simulate a temporary balancing of the car for 0.5 simulation seconds, which was

deemed appropriate to demonstrate the ESN had captured the fine-grain control of the car.
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Figure 6.2: ESN modeling performance on the Modified Mountain Car Problem: a) overall
mean and best 10% mean ESN performance; b) maximum ESN performance.

Indefinite balance is best achieved by linearizing the problem domain near the goal and

utilizing two controllers, a learned nonlinear controller (such as the ESN) for initial swing-

up and balance and linear controller for indefinite balance. By balancing for 0.5 seconds,

the ESN is able to reduce the size of the non-Markovian state-space to a degree where a

lookup table approximation to the non-Markovian domain is feasible by explicit temporal

embedding.

The reward signal for the goal state was 0. All other states received a reward signal of -1.

As in previous experiments, a learning schedule was used to balance exploration of the state-

space and exploitation of the Q-value function approximation. The learning schedule was

[0.8, 0.5, 0.3, 0.1, 0.05, 0.01, 0.0]. Changes between subsequent values of the schedule were

invoked at time-steps [35 × 103, 50 × 103, 65 × 103, 80 × 103, 95 × 103, 110 × 103, 125 × 103].
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Preliminary experiments indicated that the reservoir dynamics described in Chapter 5

were sufficient to represent the problem when the ESN size was increased to N = 200,

twice the reservoir size required to represent the original MCP. As was done for the MCP,

the embellished echo state, z, was concatenated with its square to better facilitate the

asymmetry of the echo states. Thus, the total number of trainable parameters in this

architecture was 2× 203 = 406. The finite horizon for this problem was 150 training steps.

As in the MCP, regression was used to train the linear readouts over the finite horizon of

computed Q-values. Regression was performed every 1000 learning steps over a regression

window of 20E3 historical training steps. 150 ESNs of this size were trained with these

parameters. The results of this training are summarized in Figure 6.2.

Figure 6.2 is divided into two results. Figure 6.2(a) reports both the mean ESN per-

formance over all trials, and the mean performance over the best 15 trials (i.e., best 10%).

Note, escapes are averaged over each 5000 training step segment of the learning trials. Fig-

ure 6.2 shows that the average performance of the ESN was approximately 2 escapes per

thousand steps. The best 10% of ESNs however, were able to satisfy the learning problem

with mean policy lengths of 62.5 steps, clearly suboptimal, more than twice the estimated

optimal path length of 27.9 steps.1

Figure 6.2(b) depicts the performance of the overall best ESN trial. This ESN achieved

peak performance of more than 35 goals per thousand training steps, equivalent to an

average of 28.6 steps per goal, very near the best performance expected for this learning

problem.2 These results indicate that the MMCP problem is significantly more difficult for

the ESN to represent compared with MCP, even though the attractor structure of MCP is

replaced by a single trajectory (i.e., the MMCP only has a single start state instead of a

continuum of start states as described for MCP in Chapter 4). The reasons for this difficulty

1Near-optimal performance was defined as the maximum lookup table policy length of the MCP problem
plus 10 additional balance steps.

2Presenting the data in terms of both goals per thousand training steps and steps per goal serves two
purposes. The MCP data presented in Chapters 4 and 5 use the first set of units, which I consider the
best indicator of performance over an attractor. The second set of units is appropriate for the MMCP and
Acrobot Problem because all trajectories begin at a unique initial state.
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are addressed below.

6.1.4 ESN Performance Analysis

The ESN performance distribution is generated by random initializations of the reservoir.

Not all ESNs perform equally well, and therefore it is necessary to consider the distribution

of ESN performance over many restarts to estimate its performance capabilities. While the

best ESNs of the experimental trials have been shown capable of learning the MMCP, the

severity of performance drop-off between the very best members of the distribution and the

mean performance should be explained. What makes the MMCP so challenging for the

ESN?

The answer is that the policy required to achieve the MMCP goal state is more complex

and more difficult to represent. The attractor of the learned MMCP problem contains a

second dynamic component beyond that of MCP, a limit cycle surrounding the goal region in

the low-velocity region, which must be accurately represented to achieve the goal state. The

likelihood of a given ESN reservoir containing sufficient richness to represent an attractor

decreases as the level of complexity of the attractor increases [13]. Fewer ESNs will be

randomly instantiated from a parameter set that have suitable richness. As is often the

case in function approximation, finding the right parameters for the reservoir is paramount.

Those reservoirs that do contain suitable internal dynamics, however, are capable of learning

the problem, as demonstrated in Figure 6.2(b).

To demonstrate the complexity of the MMCP policy and to demonstrate how represen-

tation capability of ESNs on the MMCP distributes through different learning trials, two

representations of the experimental data have been constructed, Figures 6.4 and 6.3(b),

respectively.

Figure 6.4 depicts the unique policies learned for the best seven ESNs in terms of mean

performance over the final 15E3 training steps, which correspond to full exploitation of the

learned attractor, ǫ = 0.0. Because all trials start at the same state, xinit, the policies may

be presented visually, side-by-side, as tree traversals. Each node of the tree corresponds

to a time-step of the system, and the edges of the trees represent actions. The depth of
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the tree corresponds to time. The shorter the traversal, the better the policy. Policies

depicted in Figure 6.4 have been divided (depicted as different line types) into three classes:

best policy found, equal to 28 steps; polices within twice the best policy length, and those

policies greater than twice the best policy length.

Figure 6.4 facilitates visual recognition of several features of the data. First, the best

policies are not, in fact, all contained within the best ESN. In fact, these policies are

distributed throughout the best ESNs. Therefore, the performance of the ESN was not

dictated by the number of best policies found, but by the number of times this policy was

exhibited during this interval of the training schedule. It is also apparent that the best

policy exhibits two structures. In the 1st, 4th, and 5th ESNs, the best policy exhibits long,

steadily increasing sequences of contiguous -1 and 1 actions, which then terminate with

small -1 and 1 action perturbations. This would be expected as the canonical policy of

the MMCP problem. Contiguous action sequences constitute the policy of swinging out

of the valley floor, and the final sequence of actions constitute the fine-grain, balancing

decisions necessary to stay within the goal region long enough to achieve the goal state.

The best policies exhibited by the 2nd and 7th ESNs, however, are quite different. These

policies exhibit large contiguous sequences of actions -1 and 1 terminated by a no-operation

(action=0). These policies focus on a longer escape trajectory of the valley floor, which

achieves an optimal velocity at the transition between the unstable spiral and the limit

cycle of the goal region such that the agent can coast to achieve the goal. In one respect,

this policy is better in that it requires fewer changes in action. However, it would seem that

these policies do not have low velocity in the goal region and are taking full advantage of

the width of the goal region to achieve the goal state.

This analysis can be confirmed by examining the best policies in state-space, depicted

in Figure 6.3(b). Figure 6.3(b) presents the state-space differently than the actual state-

space. The boundaries of the plot have been changed such that the goal region has been

shifted from the center of the state-space to the left. This places the boundary wrap (i.e.,

x = 1.572) more central in the figure so the unstable spiral of the problem’s underlying

attractor is more evident.
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Figure 6.3: Modified Mountain Car attractors: a) ideal attractor structure; b) empirical
attractor structure for the best policies.

The policies in Figure 6.3(b) are plotted as trajectories originating from sinit =

(1.572, 0). It is clear that two classes of trajectory exist for the best policies. One class, the

first described above, minimizes the path length to reaching the goal region. Once inside the

goal region, many small trajectory adjustments are made to ensure that the car stays within

the confines of the reward region for 0.5 simulation seconds. The second class of trajectory

follows the outer edge of the unstable spiral. The trajectory enters the goal region with

high velocity and uses the system’s intrinsic dynamics to slow the car. This trajectory is

analogous to the second policy, described above, which reduces the car’s velocity to remain

within the goal region long enough to achieve the goal. Overall, however, the best policies

fall well within the ideal attractor structure expected for the learned problem, given in

Figure 6.3(a).

6.2 Acrobot

The ESN shows promise as a model for non-Markovian reinforcement learning domains in

very low-dimensional space. Does the ESN architecture scale? To answer this question the

ESN was applied to modeling the Acrobot Problem, presented graphically in Figure 6.5.

Acrobot is dynamically equivalent to the double pendulum swing-up problem with con-
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straints placed on the action space. As with double pendulum, Acrobot consists of two

masses attached via rigid links, having zero mass, at a joint which rotates 360 degrees. One

link of the system is attached to a stationary joint which also rotates through 360 degrees.

The double pendulum configuration always starts with the links parallel, pointing to the

ground, with zero initial angular velocity—the dead hang position. Unlike some pendulum

control problems, however, torque may only be applied to the system at the joint connecting

the links and not at the base joint. This configuration simulates the actions of a gymnast

on the high-beam apparatus, attempting to achieve a hand stand position from an initial

dead hang by flexing muscles in the torso.

The double pendulum is a dynamically complex problem, known to behave chaoti-

cally [15]. Because of its simplicity of form, yet complexity of behavior, it has been well-

studied as a control problem [15, 9]. Reinforcement learning of the swing-up problem has

also been studied [72]. In this section the performance of the ESN as a model of the Acrobot

domain is described and analyzed. First the system is described mathematically, followed

by a description of the partially observable state-space, and particularly, the goal region

105



θ
1

θ2

tip

Goal: Raise tip above this line

Joint
Anchored

Joint
Torqued

Figure 6.5: Diagram of the Acrobot Problem.

subset of this space. The section is concluded by a performance assessment of the ESN

model of Acrobot.

6.2.1 Equations of Motion

The state-space of the Acrobot problem is s = {θ1, ω1, θ2, ω2} where θ1 and θ2 are the

link angles and ω1 and ω2 are the respective angular velocities. The differential equations

describing the motion of the Acrobot are:

∂θ1

∂t
= ω1, (6.1)

∂θ2

∂t
= ω2, (6.2)

∂ω̇1

∂t
= (l2m1gl1 sin(θ1) + l2m2gl1 sin(θ1) + l21m2θ

2
2l2 cos(∆) sin(∆) + (6.3)

m2l1l
2
2ω1 sin(∆))/(l21l2(−m2 − m1 + m2 cos2(∆))), and

∂ω̇2

∂t
= (−l1l2m1m2g cos(∆) sin(θ1) + l1m1m2gl2 sin(θ2) − (6.4)

l1l2m
2
2g cos(∆) sin(θ1) + l1m

2
2gl2 sin(θ2) − l1m1a −

l1m2a − m1m2l
2
1ω

2
1l2 sin(∆) − m2

2l
2
1ω

2
1l2 sin(∆) +

l1l
2
2m

2
2ω

2
2 cos(∆) sin(∆))/(l1l

2
2m2(−m2 − m1 + m2 cos(∆)2))
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where the following variables are defined,

∆ = θ1 − θ2,

l1, l2 = lengths of links, and

m1, m2 = masses.

The parameter values used for Acrobot in this research are the same as those used

in past experiments [72]. Link lengths and masses were each 1.0. Force of gravity was,

g = −9.8. As described above, torque may only be applied to the central joint. The action

space for the central joint was discretized such that a = {−1, 0, 1}. The problem was always

initialized in the full dead-hang position with zero velocity, thus, sinit = (π, 0, π, 0). The

non-Markovian domain omitted velocity information. Therefore, s̃init = (π, π). The state-

space was not wrapped, therefore, full inversion in observable state-space corresponds to any

coupling of even multiples of π, s̃inversion = (pπ, qπ), where p, q ∈ 2i, i ∈ Z. Likewise, the

dead hang position in observable state-space corresponds to any coupling of odd multiples

of π, s̃deadhang = (pπ, qπ), where p, q ∈ 2i + 1, i ∈ Z. The goal of the problem is defined as

rotating the tip of the outer link above 1.0.

6.2.2 ESN Learning Performance in the Acrobot Domain

While the complete state-space of Acrobot cannot be visualized, the partially observable

state-space of link angles can be. The attractor underlying this system lies on a torus. The

angle of the inner link carves a circle in state-space. Rotation of the outer link about this

circle forms the surface of the torus. Any trajectory in observable state-space, if wrapped,

lies on the surface of this torus. The physics of the problem gives intuition about how the

learned policy should achieve the goal. The small amount of torque allowed to manipulate

the central joint requires the agent to learn an oscillating policy of steadily increasing period.

Therefore, at first, the policy should consist of high frequency action sequences alternating

between -1 and 1. The frequency of these alternations should continuously decrease as

the duration of each action sequence increases. This will build enough momentum for the

system to rotate the tip of the outer link above a height of 1.0, which is equivalent to one
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full link-length above the central joint. The reward signal for achieving a goal state is 0,

otherwise the reward signal is -1, making this a minimum path length decision problem.

Because the system is four-dimensional and the goal is a one-dimensional function of the

observable state, an infinite number of goal states exist. Moreover, in observable state-space

four different goal states exist that are equidistant from s̃init. From the perspective of a

multistep decision problem, Acrobot is hard for several reasons: the state-space is four-

dimensional—large for fine-grain lookup table representation; the dynamics of the system

are chaotic; the small amount of torque applicable on any given step requires long policies

to achieve the region; and the goal is a region, rather than a state, and is symmetric about

the initial state-space.

6.2.3 Exploration and Reward Shaping in Acrobot

As described previously for MMCP, difficult learning problems sometimes require reward

shaping to insure that the agent experiences goal states on a regular basis. The complexity

of Acrobot makes achieving the goal state via random exploration of the state-action space

very unlikely. For example, no goals were achieved using ǫ = 0.9 for 500 × 103 training

steps. This in turn makes modeling the Acrobot problem via function approximation par-

ticularly difficult, due to the lack of goal state experiences under learning schedules having

high probabilities of exploration. To achieve the full learning problem, reward shaping

was employed. The height of the goal state was initialized at 0.5 and then slowly raised

to 1.0 according to the following schedule, [5, 7, 9, 10], where changes in the goal height

were invoked at training steps [35 × 103, 65 × 103, 95 × 103], respectively. These changes

to the goal state were made in parallel to scheduled decreases in the probability of ex-

ploration, [0.8, 0.5, 0.1, 0.05, 0.01, 0.005, 0.0], where changes were invoked at training steps

[35 × 103, 65 × 103, 90 × 103, 110 × 103, 130 × 103, 150 × 103].

6.2.4 ESN Modeling Performance in the Acrobot Domain

Preliminary experiments indicate that the reservoir parameters were sufficient to represent

the Acrobot problem when the ESN size was increased to N = 400. The integration

time-step of the leaky integrator logistic function was changed to ∆t = 0.2 to match the
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integration time-step of the Acrobot simulation, which had an integration time-step of

∆t = 0.05, but, unlike the MCP simulations, the Acrobot simulation followed the structure

set down by Sutton [72]. These rules require that the simulation be iterated 4 times between

each control decision with an effective ∆t = 0.2. The finite horizon used to approximate the

Q-values of this problem was 200. As in both the MCP and MMCP experiments, regression

was used to train the linear readouts. Regression was performed every 1000 time-steps

over a window of 20 × 103 echo states. Also, as in previous experiments, the regression

was performed over the echo states and the squared echo states, added to ensure sufficient

asymmetry of the reservoir’s dynamics. Thus the total number of trainable parameters was

2× 404 = 808. 150 learning trials were performed using this parametric configuration. The

results of learning performance are summarized in Figure 6.6.

Figure 6.6(a) compares the mean ESN learning performance of all trials versus the 10%

best performing ESNs. ESNs were ranked by the number of goals achieved under 100%

exploitation (i.e., ǫ = 0.0). Note, escapes were averaged over each 5000 training step seg-

ment of the learning trials. Unlike results presented for the MMCP, the distribution of

ESN performance for the Acrobot problem is tight. The 10% best ESNs achieve maximum

performance of 6.57 goals per thousand steps, equivalent to 152.2 steps per goal. In con-

trast, overall mean performance of all ESNs peaks at 5.3 goals per thousand training steps,

equivalent to 188.7 steps per goal.

Figure 6.6(b) depicts the maximum best performance achieved by an ESN, which peaks

at 9.2 goals achieved per thousand training steps equivalent to 109.0 steps per goal. The

individual best goal achieving trajectory over all trials was 87 steps. The results for the

overall mean ESN , best 10% mean ESN, and maximum ESN performances are best com-

pared to results reported [72]. Sutton used an 18,648 parameter CMAC (i.e., multiresolution

lookup table) to approximate the Acrobot using a complete representation of the state (i.e.,

both angles and angular velocities were accessible to the function approximations). This

approximation converged to approximately 85-90 steps per goal.3

3These numbers are reconstructed from results in [72], which are reported graphically using a logarithmic
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Figure 6.6: ESN modeling performance on Acrobot: a) overall mean and best 10% mean
ESN performance; b) maximum ESN performance.

6.2.5 Analysis of ESN Learning Performance on Acrobot

This section attempts to build an understanding of the structure of the policy learned by the

ESN and to provide some insight into why the ESN is capable of representing this system,

despite its complexity. To do this the characteristics of the best performing ESN over all

150 trials in both policy space, Figure 6.7, and state-space, Figure 6.8 are analyzed.

In Figure 6.7 the policy (i.e., trajectory) length, policy, learning schedule, and goal

schedule are plotted in parrallel through time. In Figure 6.7(a) a dashed line was included,

which marks the approximate policy length found via CMAC with complete state informa-

tion [72]. This line is assumed to be the near-optimal solution to the system. The purpose

dependent axis.
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of these plots is to demonstrate several features of ESN learning when the dynamics of the

reservoir are well-suited to represent the domain. For orientation a few features of Fig-

ure 6.7 must be pointed out. First, the independent axis is plotted in trials, rather than

learning steps. This accounts for the steep increase in both the learning and goal schedules

seen in the lower plots of Figure 6.7. Trials only restart if the agent achieves the goal or

the 5,000 learning step limit is reached. Therefore, it is reasonable to expect that the vast

majority of goals are achieved only after the learning schedule favors exploitation of the

learned Q-values. Second, the policies in Figure 6.7(b) are plotted similarly to the policies

in Figure 6.4 as tree traversals. Diagonal lines (left and right), correspond to actions -1

and 1, respectively. Vertical lines indicate a no-op (action=0). Time runs from the root of

the traversal to the leaf. For plotting purposes, policies were truncated to lengths of 150

actions. Third, it should be noted that the upper performance plot is presented with a

logarithmic dependent axis.

The primary result presented in Figure 6.7 is evidence that the ESN is capable of near-

optimal performance in the Acrobot domain given only partial state information. Trials 280,

and 560—576, exhibit policy lengths of 87 and 94 steps, respectively. This performance is

in the range of the best known learned performance on Acrobot [72, 9], and is achieved

within 600 learning trials, very similar to the 500 learning trials required for the CMACS

approximation to converge.

Second, policy plots provide useful insights into the learning behavior of the ESN. Of

these, the most evident feature is empirical confirmation of anticipated behavior of learning

via regression. Randomness injected into the policies during early trials persists in the ESN

model long after the learning schedule has transitioned to an exploitation regime. Visual

inspection of the policy plots for the first 20 actions shows an emergent structure as the

learning schedule trends toward ǫ = 0.0. At this point in the learning schedule long policy

structure develops, up to approximately 40 actions, but disorder in the policies persists until

approximately the 475th trial, after which policies exhibit primarily parallel structure out

to 100 actions. The entrainment of random actions into the echo state is a serious weakness

of the ESN and does not, at present, have a solution.
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An additional benefit of visualizing policies as tree traversals is the ease with which

policies may be compared to the best policies in the exploitation regime. The structure

of the highly efficient policies of trials 560—576 may be easily compared to that of their

neighbors, and discrepancies, particularly early in the policies, may be identified as cracks in

the structure of the plot. The decision point, and action selection, where suboptimal policies

diverge from the best policies is easily identified, as are temporal structural trends in what

the ESN has learned, both in the space of policies and temporal evolution of trials. Of these,

the result most striking is the sub-optimality of policies in the exploitation regime. Sub-

optimality begins early in the action selection process. Structural differences occur within

the first 10-15 actions, after which the policy structure mimics that of the best policies.

The sensitivity of the action space is apparent in that these small divergences from the best

policies cause the policy length to increase greatly. This implies that small errors early in

the policy are important (i.e., the goal state sought by the best policies was not achieved

by this sub-optimal policy). This type of behavior is highly indicative of bifurcations in the

learned attractor as was discussed in Chapters 4 and 5.

The structure of the policies at any ǫ = 0 point in the learning trial depicts exactly

what the ESN has learned to that point. Polices, however, do not provide intuition into

how the agent is interacting with the system in the state-space. This intuition must come

from an understanding of the how the policy influences the attractor underlying the learning

problem. Because the Acrobot is a 4-dimensional attractor it cannot be viewed directly.

Instead, we must rely on partial representations of the attractor, such as Figure 6.8.

Figure 6.8 depicts three plots of the attractor underlying the Acrobot learning problem

in partially observable state-space (angles only) in three regimes of the learning schedule.

Figure 6.8(a) depicts all policies followed by the ESN when the goal height was set to 1.0 (the

full learning problem). Note, gray circles in all plots indicate the goal regions. Figure 6.8(b)

depicts a subset of the policies in Figure 6.8(a) where ǫ = 0 (i.e., complete exploitation).

Finally, Figure 6.8(c) depicts the two best policies (87 and 94 steps, respectively) in state-

space.

The contrast between Figures 6.8(a) and (b), shows us that the ESN is capturing es-
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Figure 6.7: Best ESN performance and policy versus learning trials on Acrobot: a) perfor-
mance for each trial in the learning sequence and b) policy used for each trial.

sential state-space information. As exploitation of the ESN increases, the policies learned

by the ESN avoid large portions of the state-space, constraining the agent to a region of

θ1 = [0, 2π] and θ2 = [−8π, 10π]. As is evident from both Figures 6.8(a) and (b), the state

space of the outer link is explored considerably more than that of the inner link, a result of

the system’s dynamic constraints. The Acrobot contains no friction to oppose the rotation

of the joints. Over time, adding torque to the system will achieve very high velocities for

the outer link, and, subsequently, the inner link. Once the links attain high rotational

velocities, the odds of achieving a goal state increase. This is important for achieving the

goal state when the probability of random exploration is high, but is detrimental to learning

efficient policies. The agent does, however, learn to ignore high angle regimes and focus on
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the state-space immediately surrounding the start state, sinit = (π, π), a benefit of using a

minimum path reward structure.

Figure 6.8(c) provides insight into the structure of the attractor underlying the Acrobot

domain. The two shortest policies learned by this ESN after 500 trials constrain the Acrobot

to an unstable spiral structure in the partial state space s̃ = (θ1, θ2). The best policy finds

a goal region without leaving the state-space range [0, π]. Cross-referencing this state-space

information with the policy depicted in Figure 6.7 at trials 560—576, provides a visualization

of what is learned. This policy is an alternating sequence of -1 and 1 subsequences, where

the frequency of alternation increases in time. This policy is exactly what would be expected

for this problem. Alternating torque on the central joint would cause the inner link to rock

back and forth. As maximum angle of the inner link’s swing increases, torque must be

applied to the central joint for longer periods of time. Eventually, a sufficient deflection of

the inner link allows the tip of the outer link to rotate above the goal height.

Because the structure of the incomplete state-space is an unstable spiral for the best

policy, it is possible to determine the structure of the complete state-space and construct

the attractor underlying this learning problem. Based on the unstable spiral structure of the

angular space, the angular velocities as functions of time will be two out of phase oscillations

that grow in magnitude. The angular velocity in the phase plane will also be an unstable

spiral structure. Therefore, the attractor underlying the Acrobot reinforcement learning

domain is a 4-dimensional unstable spiral, which confirms previously reported results [9].

This motivates how the ESN architecture well-models this problem and why the distribution

of performances for the ESN architectures are tightly coupled. While high-dimensional, the

4-dimensional unstable spiral exhibits only one dynamic component, which exists at only one

scale. As is evident in lower dimensional experiments, the ESN architecture is well-suited

to representing the unstable spiral attractor at low-dimension. Higher dimensions, while

making the attractor harder to distinguish based on experience, once found, is well-modeled

by the ESN architecture.

The results in this chapter provide some insight into ESN learning of the full inverted

variant of Acrobot (i.e., where the goal is defined as ‖ s̃−s̃inversion ‖< ǫ for some small value,
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ǫ). It would be expected that this problem is extremely difficult for the ESN to model using

the basic training method defined in this research. This difficulty is anticipated because the

inverted variant (swing-up and balance) would require the ESN to represent two attractor

components, an unstable spiral and a limit cycle, at two different scales of control granularity

in 4-dimensional space. While capable of doing this, it is very difficult to envision a training

algorithm that would succeed in building sufficient experience for the ESN to develop this

attractor. Thoughts on how this might be achieved are relegated to Chapter 7 and 8 where

alternate training techniques for the ESN architecture are reviewed.
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Chapter 7

Mixtures of Readouts

ESN predictions are linear mappings of the reservoir. If the reservoir is not initialized with

dynamics appropriate for the target system, the well-known “reservoir richness” problem,

then linear mappings of this basis will fail to accurately model the target system. Without

adaptation the reservoir is altered only through random reinitialization. Complex domains,

however, may require hundreds or thousands of reinitializations, and in some cases, no

suitable reservoir may be found [61]. The reservoir richness problem also occurs in the

modeling of reinforcement learning domains, evident by the poor modeling performance of

the ESN on the low-dimensional and dynamically simple Modified Mountain Car domain,

described in Chapter 6.

To overcome this limitation, a body of literature devoted to machine learning and signal

processing techniques for reservoir design and adaptation now exists: reservoir design with

a priori knowledge of target dynamics [30], linearization and pole analysis [56], spectral

radius tuning via input bias adaptation [56], reservoir topology optimization via next ascent

local search [11], reservoir adaptation via intrinsic plasticity [70], and adaptation of global

reservoir parameters via gradient descent [36].

All of these techniques, however, directly or indirectly manipulate the dynamics of

the reservoir. For instance, the intrinsic plasticity rule and gradient descent adapt the

reservoir topology and connection weights, either online or batchwise. Alternatively, search

requires batchwise alteration of reservoir topology and recomputation of reservoir dynamics

to determine fitness. These approaches, unfortunately, circumvent the original echo state

approach’s greatest advantage over adapted recurrent networks—the reservoir’s readouts
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may be trained via linear regression [30].

One way to bridge the disconnect between efficient training of linear readouts and the

need for reservoir adaptation is through decomposition of the ESN training problem [13]. A

way to decompose the problem is to temporally embed the state-space of the target system

and identify clusters in this embedded space. Linear readouts can then be trained via

regression to fit separate dynamic subsystems to the samples in each cluster. This insight

links ESN training with the mixture of experts (MoE) framework—a hierarchical modeling

approach in which the influence of local expert approximations are mixed based on higher-

level features of the state space. MoE includes both unsupervised and supervised learning

techniques [29, 37]. The replacement of the ESN readout layer by a MoE is termed mixture

of readouts (MoR). This distinction is for clarity in the literature rather than a claim of

novelty.

This chapter contributes to the reservoir adaptation literature in several ways. The

training of reservoir readouts into the MoR framework is formally recast. This framework

permits adaptation of the projection of the target system onto the reservoir while preserv-

ing the ability to train the readouts via linear regression. This work also demonstrates how

unsupervised modeling of the reservoir’s state-space can exploit previously unused informa-

tion to improve prediction performance with minimal increase in computational overhead.

This work also connects reservoir computing with earlier application of MoE to time-series

prediction [5], the primary contribution of this work being the replacement of embedded

temporal feature vectors with the reservoir’s state-space. While the technique is developed

and demonstrated for stationary attractors, it may be possible to apply this technique to

nonstationary attractors, such as those found in reinforcement learning domains.

The remainder of this chapter is organized as follows. First, the MoR framework, train-

ing algorithm, and motivation are discussed. Next, performance results are presented for

the MoR applied to the Lorenz and Mackey-Glass chaotic dynamic systems. The chapter

is closed with comments on the performance potential of the MoR approach in modeling

nonstationary reinforcement learning domains.
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7.1 Mixture of Readouts

Mixture of readouts is the reservoir computing analog to unsupervised mixture of experts

(MoE) [29, 37]. The primary contribution of MoR is its applicability to efficient learning

of predictive models. In this section the MoR framework is developed assuming a two

level hierarchy. The lower level contains the linear readouts acting as local experts. The

higher level contains the mixture model which determines the strength (or mixture) of

expertise needed to predict the next system state. Generalization to multilayer hierarchies,

multiple reservoirs, other reservoir implementations, and supervised mixture models are

easily accommodated.

7.1.1 The MoR Framework

Consider a discrete dynamic system having state vector s(t) that is to be modeled via MoR.

The MoR consists of a reservoir, readout, and mixture model, defined below.

Reservoir: As described in Chapter 3, the ESN reservoir is a stochastically-generated,

sparsely-connected recurrent network, which stores a rich, dynamic feature-set of system

history. The reservoir has an internal hidden state, x(t), of dimension N and contains three

separate connection topologies: Win of size N × M + 1 is a mapping from the input, u(t),

onto the hidden state where u(t) = [ s(t), b ], s(t) is the system state at time t, having size

M , and b is the scalar input bias; Whid of size N × N is a recurrent mapping within the

hidden state; and Wback of size N × M is a recurrent mapping from the predicted future

system state, s̃(t), onto the hidden state.

The reservoir update is defined by the recurrence in Equation 3.9, where activation

function f(·) is the logistic function or a leaky integrator [30, 36]. Reservoir topology is

configured by parameters α and ρ in addition to dimension N . The scaling factor, α, when

applied as a scalar multiple of Whid guarantees global stability [30] if α < 1/ | λmax | where

| λmax | is the maximum eigenvalue magnitude of Whid. This condition guarantees that

point-wise separability of the dynamics approaches zero independent of the input sequence.

The density parameter, ρ, determines the percentage of nonzero entries in Whid.

Readout: The readout consists of a set, W, of K readout matrices, Wk, k ∈ K, each of
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size M × 2M + N + 1. Each readout matrix defines a linear mapping from the embellished

reservoir state, z(t) = [ u(t), x(t), s̃(t − 1) ], onto the predicted future state, s̃(t).

Mixture Model: The mixture model is a function, M, mapping a feature vector, v(t), onto

a vector of mixture coefficients, m(t) = M(v(t)). Vector m(t) is comprised of K elements,

mk(t), k ∈ K. Each mk(t) is a scalar weight corresponding to the kth readout, Wk.

MoR prediction of future state for each time t, therefore, is a weighted sum over the

products of the readout matrices and embellished reservoir state vectors,

s̃(t) =
∑

k∈K

mk(t)Wk z (t) . (7.1)

7.1.2 Training the Readouts via Unsupervised Mixture Model

The ESN is trained analytically [30] by regression over the system of linear equations,

ZWout = S. (7.2)

Wout is the ESN’s trainable linear readout. Each row of the model matrix, Z, is the

embellished reservoir state vector, z(t), t = 1,...,T where T is the number of samples in

the training dataset. Each row of the constraint matrix, S, is the system state vector s(t),

t = 1,...,T . This simple, efficient training method is what makes the ESN, and reservoir

computing in general, so attractive for predictive modeling.

When generalizing the ESN to MoR, however, depending on the type of mixture model

used, the training method can change. When the mixture model is trained by supervised

learning, the linear readouts cannot be trained by regression because the readout matrices,

Wk, and the mixture coefficients, mk, are no longer independent. In this case it is necessary

to train the readouts via gradient descent or a statistical process. An unsupervised mixture

model, however, preserves the training problem presented in Equation 7.2. In this case,

the mixture weights and the readout weights are independent. Therefore, Equation 7.2

can be modified from a single regression to that of K regressions over the system of linear

equations,

Z̃kWk = S̃k. (7.3)
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Z̃k is a matrix of size T × 2M + N + 1 having rows, mk(t)z(t), t = 1,...,T . S̃k is a matrix

of size T × M having rows, mk(t)s(t), t = 1,...,T .

7.1.3 Motivation

A mathematical framework was developed above that adds complexity to both the ESN

readout and the training algorithm. To justify adding complexity insight is needed into how

the echo state reservoir interacts with system history, how this behavior limits prediction

performance, why this limitation occurs systematically during ESN construction, and how

MoR decreases these deficiencies. This section builds this justification.

For this discussion an actual MoR example will be used, which is summarized in Fig-

ure 7.1. The Mackey-Glass time-series (detailed in the experimental methods section) shown

in Figure 7.1(a) is modeled via ESN using Equation 3.11. Ten ESNs are trained in this way

and the squared training errors are depicted as time-series in Figure 7.1(c). These time-series

are summed in Figure 7.1(b) to illustrate correlations between the individual sequences.

There are three important features of Figures 7.1(a,b, & c). First, strong correlations

exist between the error sequences. Second, these temporal correlations are roughly consis-

tent with periodic (and half-periodic) behavior observable in the time-series. Finally, the

variance of temporal errors across individual sequences is relatively small. Thus, it can be

concluded that randomly generated ESNs, once trained, consistently fail to approximate

specific locations in the time-series’ underlying attractor. This aspect of ESN training has

been observed across numerous dynamic systems.

The next step of our reasoning requires the transformation of temporal analysis to

spatial analysis. The original time-series can be embedded to build a higher dimensional

state-space that, according to Takens Theorem [74], preserves the original system dynam-

ics. The example has an embedding dimension of 13, which means that each embedded

state is a 13-dimensional projection of consecutive points in the time-series. To visualize

this state-space a Sammon mapping [66] is constructed. The Sammon mapping is a dimen-

sionality reduction technique that preserves relative distances between points as dimensions

are removed. Figure 7.1(d) depicts the embedded state space of one error sequence from
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Figure 7.1: Conceptual diagram of mixture of readouts (MoR): (a) time-series, (b,c) tempo-
ral sequences of ESN training error, (d) Sammon map of the system’s embedded attractor,
scaled by training error, (e) Sammon map of system’s echo state attractor, scaled by training
error, (f) Sammon map of the system’s echo state attractor, scaled by open-loop generaliza-
tion error, and (g) example K-mean trained mixture model. Voronoi regions are separated
by a dashed line.

Figure 7.1(c) projected down to two dimensions. The size and line-thickness of the circles

in Figure 7.1(d) are scaled by the magnitude of error in the original sequence. It can be

seen that, after training, two specific regions of the attractor contain the majority of error.

This is another aspect of ESN training, which is consistent across dynamic systems—the

reservoir often is not rich enough to represent the underlying attractor.

This claim can be supported by directly observing which echo states contain the training

error. To do this ESN theory is consulted. The embellished echo state, z(t), represents a

linear projection of the system’s attractor. The echoes represent an approximate embedding

of the time-series and preserve the dynamics of the attractor’s state-space. The dimension-

ality of the echo states can be reduced via Sammon map and label the points by their
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training error, as shown in Figure 7.1(e). This figure graphically presents two observations

seen over numerous dynamic systems and ESN configurations. First, the echo states do, in

fact, approximate an embedding of the system’s attractor. Second, ESN training localizes

error into dynamically compact regions of the attractor.

Why do these errors occur and why do they cluster? Regression error results from

representing a complex system with a simpler model—this is also true of regression over

complex attractors. The probability that a random reservoir can linearly model complex

dynamics is low. More likely, certain dynamics of the attractor can be modeled with little

error. Other dynamics will contribute varying degrees of error to the linear fit. This explains

the existence of error but not its locality.

Complex attractors are generally composed of many pieces. Each of these pieces exhibit

simple dynamics but combine to form complex global dynamics. Attractor complexity,

therefore, is relative to the point of observation. Seemingly complex dynamics, when viewed

from any single, local observation point, may seem trivial. Taking this argument one step

further, an attractor would be simple if its complex dynamics were viewed piecewise as a

sequence of locally simple dynamic systems. Dynamic locality can be observed by comparing

the upper and lower portions of the attractor depicted in Figure 7.1(d).

As described above, each dynamic component of the attractor will contribute some

amount of error of the linear fit. Dynamics of the attractor that are poorly modeled by

the reservoir will contribute the greatest amount of error. Because of dynamic locality, the

points of the attractor exhibiting these dynamics will be relatively close together. Therefore,

the error associated with these points will also lie close together on the attractor. In

addition, sources of training error generally correspond to sources of generalization error

(i.e., testing error, either open or closed loop) having similar or greater severity. An example

of this artifact is shown in Figure 7.1(f).

These error clusters can be removed by exploiting dynamic locality—the MoR approach.

Using a mixture model to partition the attractor enables the regression problem to be broken

into K dynamically local regressions. This reduces the number of constraints that regression

must satisfy to project the system onto the reservoir. In turn this increases the probability
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that a random reservoir will exhibit dynamics suitable to the regression problem. In short,

one complex regression problem is replaced with K local regressions. As an illustration, a

K-means (details below) mixture model partitioning is shown in Figure 7.1(g). Each local

dynamic component is plotted using a unique symbol.

7.1.4 Training the Mixture Model

The focus of this chapter is training of a Gaussian mixture model of the reservoir’s dynam-

ics via the expectation maximization (EM) method. Also studied is the K-means method,

a special case of EM, which has particularly efficient training properties. Our interest in

unsupervised models is the identification of gross characteristics of target system dynamics.

One difference between EM and K-means, for our purposes, is the interpretation of bound-

aries between clusters. Because K-means enforces strict set assignment, this restriction can

be interpreted as a hard boundary. In contrast, the continuous probabilistic membership

assignment of the Gaussian mixture model acts as a soft boundary where a data point may

belong to more than one set. The trade-off between hard and soft boundaries is a mat-

ter of performance versus overfitting; K-means clustering is computationally inexpensive

compared to EM but is more likely to over fit the training data.

Expectation maximization (EM) [16] is an unsupervised modeling technique which, as-

suming a dataset is probabilistically distributed, finds maximum likelihood parameters for

a set of K multivariate models. Each of the K models has an associated distribution and

weight. The technique utilizes two steps, an, expectation, E-step, which computes an ex-

pectation of the likelihood that the model fits the data, and a maximization, S-step, which

modifies model parameters to maximize the expectation of the E-step. The E and M

steps are repeatedly iteratively until model likelihood converges. Given a feature of the

state-space (e.g. a time-series embedding or an echo state), the EM algorithm, computes a

mixture vector.

K-means is a special case of the EM technique. K-means assumes that the dataset is

drawn from a set of K multivariate Gaussians, which have covariance matrices equal to

the identity matrix. The weights of all Gaussians are also assumed to be equal. These
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restrictions enforce strict set assignment. Each data point must belong to one and only one

of the K Gaussian models. The mixture vector of K-means, therefore, is binary valued.

In fact, K-means training is K times cheaper than EM. This is possible because of the

mixture coefficients of hard partitions are binary. The linear regression of Equation 7.3 can

be decomposed into K linear regressions. Because the matrices Z̃k and S̃k are binary valued,

the individual problems can be condensed to those portions corresponding to mixture values

of 1.0. This effectively makes expense of building the MoR for K-means less than or equal

to that of Equation 3.11 plus the cost of building the mixture model.

7.2 Experiments

The MoR approach is explored empirically by its performance on two well-known chaotic

systems: Lorenz and Mackey-Glass, τ = 17. Of particular interest are the arguments for

and against higher levels of mixture model complexity, particularly when the reservoir’s

echo state is the feature vector used to learn the mixture model.

MoR performance is measured by closed-loop iterations. However, our definition of

a closed-loop iteration is more stringent than previous experiments [61, 13, 30] and is

computed as follows. The trained reservoir is brought into equilibrium by teacher forced

iteration over the training sequence [30]. At this point in past experiments [61, 13, 30],

A single, closed-loop run over the test sequence was performed, terminating when the

squared prediction error exceeded a predefined threshold. The performance was defined

as the number of iterations completed before the threshold is exceeded. This method,

however, generated high variance. Using closed-loop disturbances decreases the variance in

our performance measurements. Closed-loop disturbances are defined below.

The state of the reservoir is recorded at the end of equilibration. At the first closed-

loop prediction step a uniformly distributed disturbance on the range [-ǫ, ǫ] is added to

the input. The closed-loop is then run freely to termination. The system is reset to the

end of equilibration, randomly disturbed, and rerun. The mean and variance from a single

reservoir, measured over multiple, disturbed closed-loop runs comprise a data point. These

measurements were then repeated multiple times over the ESN parameter configuration to
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determine performance for that class of ESN.

7.2.1 Case Study: Lorenz

To test MoR on a multidimensional state-space its prediction performance on the 3-

dimensional Lorenz attractor is studied. The attractor was generated by fourth order

Runge-Kutta numerical integration of the Equations:

ẋ = σ(x − y)

ẏ = x(ρ − z) − y

ż = xy − βz

where ρ = 28, σ = 10, β = 8/3, ∆t = 0.01. MoR performance was tested for a range of

reservoir sizes, N , and number of model components, K, using reservoir dynamics similar to

previous Lorenz studies [35]. Consistent reservoir dynamics were enforced across reservoirs

of various size N by scaling ρ. This scaling ensured that the average number of connections

to each element of x(t) remained constant as N varied. Performance results (threshold =

0.01 and ǫ = 0.002) averaged over 30 disturbances and 30 reinitializations, using a K-means

mixture model, are presented in Figure 7.2(a).

Prediction performance for all reservoirs improved (by ≈ 63% for the largest reservoir,

N = 500, and up to ≈ 525% for N = 75) as K varied. All MoRs improved for K = 2 model

components, which is not surprising. Examination of a 2-dimensional Sammon map of an

example (N = 100) echo state trajectory, Figure 7.2(b), shows a decomposition into two

ellipsoidal distributions, which are well-modeled by Gaussians. Points in the mapping are

plotted with symbols representing model membership (a dashed line divides the Voronoi

regions). MoR clusters the distributions intuitively. It can also be observed that one of

the partitions absorbed the central state-space, which is critical to K-means mixture model

success because it prevents overfitting at the attractor’s transition point.

7.2.2 Case Study: Mackey-Glass, τ = 17

The Lorenz attractor is a system that is well-represented by a Gaussian mixture model.

This is not true of all attractors. This study works with the Mackey-Glass (MG), τ = 17,
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Figure 7.2: MoR modeling of the Lorenz attractor: (a) MoR generalization error of K-
means trained echo-state mixture model as ESN size, N , and model components, K, vary;
(b) Sammon map of the echo state with partition boundaries, K = 2. Voronoi regions are
separated by a dashed line.

attractor—a system that is not cleanly represented by a Gaussian mixture model. Our MG

attractor was generated via 4th-order Runge-Kutta numerical integration of the system of

equations:

ẋ = α
x(t − τ)

(1 + x(t − τ)β)
− γx(t)

ESN dynamics and parameters were identical to those used in previous ESN experiments on

MG [30] corresponding to best known performance for a single reservoir: α = 0.2, β = 10,

γ = 0.1, τ = 30, ∆t = 0.1 and x0 = [0, 0.2].

The attractor was studied with two experiments. First, MoR was performed using a

K-means mixture model that takes an embedding, E = 13, of consecutive system states as

the feature vector, which corresponds to the motivational example in Figure 7.1(d). MoR

performance from this configuration for a range of reservoir sizes and number of model

components is summarized in Figure 7.3(a). These results have several interesting features:

performance increases dramatically for the smallest reservoir, no performance improvement

occurs for the largest reservoirs, and for all reservoir sizes a precipitous drop using K = 2

mixture model components is observed.

Figures 7.1(d & e) aid in understanding this drop in performance. The difference be-
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Figure 7.3: MoR modeling of the Mackey-Glass attractor: (a) MoR generalization error of
K-means trained embedded state-space mixture model as ESN size, N , and model compo-
nents, K, vary; (b) Sammon map of the embedded system state with partition boundaries,
K = 2. Voronoi regions are separated by a dashed line.

tween the embedded state and echo state attractor is one of detail. Dynamics of the system

are preserved in both attractors, but the details of the state-space dynamics are blurred

by the echo state attractor. Lack of dynamic detail in the echo state representation al-

lows unsupervised partitions to cut across locally homogeneous dynamics of the underlying

attractor—an incorrect partition. Because the ESN reservoir is randomly generated, how-

ever, the partition localizations vary over trials. Poor localization increases generalization

error.

The severity of performance decrease at K = 2 is an artifact of the MG attractor and is

not a general feature of MoR. This explanation is illustrated in Figure 7.3(b). The embedded

states have been plotted with symbols according to their partition membership. The sizes

of the symbols are proportional to the generalization error of the point when K = 1. When

partitioning MG into two dynamic regimes, the partition boundary, unfortunately, aligns

with errors localized during regression. This is the worst-case scenario for generalization

because it partitions the most important points (i.e., highest error) into separate regression

problems, which allows them to be over fit.
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Figure 7.4: Open-loop MoR modeling of the Mackey-Glass attractor: (a) training error, (b)
test error.

7.3 Extending MoR to Reinforcement Learning Domains

The MoR approach was originally envisioned for stationary attractors. However, there are

compelling arguments that it could be useful for improving ESN modeling performance of

nonstationary attractors, such as reinforcement learning domains. The first argument is al-

ready well-established, by learning examples provided in Chapters 5 and 6. A nonstationary

attractor can be approximated as a series of intermediate static attractors. This notion mo-

tivates the training of the ESN readout weights via windowed linear regression. Improved

modeling of the intermediate attractors would provide higher quality state-action pairs for

future training windows, which could, in theory, improve performance of the ESN archi-

tecture in these domains. The second argument is based on the structure of reinforcement

learning predictions compared to system prediction tasks. In reinforcement learning, un-

like in system identification studies, open-loop prediction is allowable. The MoR approach

is substantially more successful in improving performance in these circumstances, because

step-wise state update ameliorates the accumulation of error at partition boundaries seen

in the closed-loop studies of Mackey-Glass and Lorenz studies, described in previous sec-

tions. As an example, the training and testing prediction performance on the Mackey-Glass

attractor is depicted in Figure 7.4.
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Figure 7.4 validates previous predictions that the training prediction error approaches

zero as the number of partitions approaches the number of training examples. This would

make sense in that each data point would have its own model, making zero error possible.

Second, Figure 7.4(b) demonstrates mostly monotonically decreasing open-loop test predic-

tion error as the number of partitions increases. In these experiments performance increases

until overfitting occurs at which point performance decreases and does not return.

The third argument is based not in improving the performance of the existing method

but in facilitating higher-level abstraction into the agent—incorporation of Q-value informa-

tion into the partitions. During analysis of ESN modeling of the non-Markovian state-space

in Chapter 5 the factor determining sub-optimal performance was the ESN’s inability to

distinguish between trajectories with large differences in long term evolution. This weak-

ness may be attributable to absence of past Q-value information being incorporated into

the prediction. Incorporating past Q-value information into echo state tightly couples the

Q-value predictions through time, exposing the ESN to bifurcations. Removing this feed-

back, while weakening the ESN’s ability to predict, minimizes the architectures exposure

to bifurcations. However, it seems foolish to waste this information. The MoR approach

allows for the Q-value information to be incorporated into the prediction model without

direct coupling between past and future values. The MoR approach would incorporate

the Q-values as an additional dimension of discrimination between echo states. It seems

reasonable that this technique could improve ESN modeling performance in reinforcement

learning domains where high-level trajectory knowledge is useful.
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Chapter 8

Conclusions

The goal of this research was to explore non-Markovian reinforcement learning domains

as nonstationary dynamic systems. From this perspective, non-Markovian reinforcement

learning transforms into the problem of modeling a domain’s underlying attractor. What

makes reinforcement learning a unique class of dynamic system is that the attractor un-

derlying this system is intrinsically mobile. The learning process, itself, induces structural

changes to the attractor.

Exploration of non-Markovian reinforcement learning, using this intuition, must neces-

sarily include a study of attractor dynamics, which takes two forms. Mobility, mentioned

above, describes the change in relative locations of the attractor’s equilibria. Bifurcation

is the other form, defined as a change in the number or stability class of the attractor’s

equilibria. A second, more nebulous, entity is attractor complexity, which may include

the number of equilibria, but is better defined as the number and interaction of dynamic

components making up the attractor.

Understanding the attractor underlying a reinforcement learning domain requires un-

derstanding how the architecture of the critic influences mobility. The locality of the model

and the way in which the model observes the system influences the attractor’s development.

Models using local representations of the reinforcement learning domain’s feature space (i.e.,

lookup table) trend toward large numbers of insignificant bifurcations. Global representa-

tions of the feature space trend toward small numbers of highly significant bifurcations.

Adaptive features behave as a composite of both local and global representations.

Consideration of non-Markovian reinforcement learning domains, however, changes the
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concept of feature space representation. Without complete state, the underlying architec-

ture is forced to represent state-space dynamically. An important notion in this research

is the awareness that all feature spaces of the reinforcement learning domain rely on the

underlying dynamics. The difference between Markovian and non-Markovian domains is

that the Markovian domains extract system dynamics into the state-space. An example of

this is the incorporation of velocity, a time derivative of position, into the state-space of

Mountain Car. Takens Theorem, however, signals the ability, either explicitly or implicitly,

to construct projections between state-space representations. Temporal structure of trajec-

tories within state-space may be built into approximations of time-derivative information,

which facilitates the learning of non-Markovian domains. All of this discourse must always

be closed, however, with the knowledge that all state-space representations, Markovian or

non-Markovian, map onto the system’s dynamic feature space, the intrinsic feature space

making up the system’s attractor.

Application of ESN to modeling non-Markovian reinforcement learning domains val-

idated, experimentally, the architecture’s positive performance and dynamic attributes.

ESN exhibits low-mobility learning through trajectory-based features. ESN performance

on non-Markovian domains is similar to Markovian learning with traditional non-local

methods if ESN dynamics well match the dynamics of the problem domain. ESN per-

formance on the non-Markovian Acrobot problem is competitive with Markovian CMAC’s

results using only 2.3% the number of trainable parameters.

Limitations of the ESN approach to non-Markovian reinforcement learning were dis-

covered when applying it to model more complex domains—the Modified Mountain Car

Problem (MMCP) and Acrobat. ESN models of the MMCP domain exhibited either ex-

cellent modeling of the attractor or no learning at all. Through analysis of the attractor

underlying this domain, the cause of this performance discrepancy was determined to be

a lack of reservoir richness. The attractor underlying the learned MMCP domain exhibits

two dynamic components, an unstable spiral surrounding the start state and a limit cycle

encircling zero velocity states in the goal region. Moreover, modeling of these components

existed at two levels of granularity. The unstable spiral could be modeled with gross accu-
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racy where multiple policies were suitable to enter the goal region. Within the goal region,

however, fine-grain action selection was necessary to ensure that the agent remained within

the goal region long enough to achieve the goal. The ESN, while excellent for modeling the

unstable spiral structure in both the MCP and MMCP domains, did not exhibit sufficient

richness to consistently represent both scales of the MMCP.

The issue of scaling is better supported by examining the excellent results achieved

when modeling the Acrobot domain via ESN. While higher dimensional, four rather than

two dimensions, ESN performance was competitive with the CMACs approximation on this

domain [72], despite the ESN observing only partial state information. ESN performance

was consistent throughout all learning trials, indicating that the ESN exhibited reservoir

richness sufficient to the model the Acrobot. Combined with knowledge gained from the

MCP and MMCP experiments, it seems reasonable to acknowledge that complexity itself

does not negatively influence the ESN. Rather, the ESN architecture exhibits difficulty in

generating, through normal parameter selection, sufficient temporal diversity in the echo

states to model problems having multiple time-scales.

A secondary issue, evident in both MMCP and Acrobot, is the ESN’s inability to build

intermediate state representations without consistent differentiation in the reward signals.

Unless goal states are regularly achieved, the ESN is unable to achieve complex goal states

when learning under high probability of exploration. This suggests a different training

strategy is needed for the ESN in domains where the attractor is nonstationary and the

goal state requires recognition of long term temporal dependencies. One such strategy, the

use of reward shaping, sufficed in achieving sufficient intermediate goal states for the ESN

to learn complex policies.

From these results a number of conclusions concerning ESN performance and utility as

a non-Markovian reinforcement learning architecture may be drawn. Complex short term

tasks and uniformly structured intermediate length tasks are amenable to non-Markovian

representation using the ESN architecture. The technique is robust and easily trained once

a reservoir with suitable dynamics is found. Reservoir designers should take note that

construction of a reservoir must take into consideration both the dynamic structure of the
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target system as well as the structure of the reward signals. For example, in minimum

path problems such as those described in this work, the reward signals form monotonically

increasing Q-value trajectories, which are best modeled by asymmetric echoes. To resolve

this issue, the square of the echo state was concatenated to the original echo state to ensure

the existence of both symmetric and asymmetric temporal features in the echo space.

A drawback of the ESN architecture made evident by this work is the ESN’s lack of mem-

ory consolidation over long time periods. The dynamic memory of the ESN, while highly

capable of modeling short, complex tasks, cannot build longer term dynamics through adap-

tation. The memory length of the ESN has been linked to the size of the reservoir [31].

Yet even using large ESNs, noise within the reservoir, originating either from unrepresenta-

tive dynamic components or past random actions injected into the dynamic memory, make

recognition of long term dependencies difficult when modeling non-Markovian reinforcement

learning domains. A lesson drawn from this research is that successful use of ESN on difficult

control problems requires a mechanism for consolidating and abstracting past experiences

into a high-level, long term memory structure. This type of memory would require working

at multiple levels of both time and space. This extension is necessary to accurately control

the next level of complex, multiscale, high-dimensional systems, for example, solving the

Acrobot full inversion and balance problem in a partially observable state-space.

Advances in hierarchical ESN training already exist for stationary attractor modeling.

In Chapter 7 the Mixture of Readouts (MoR) approach was introduced. MoR supplies the

means for increasing ESN flexibility, allowing it to model complex attractor dynamics with

small reservoir size. Consequently, the MoR approach could be used to model attractor

granularities existing on multiple scales, similar to those exhibited by the swing-up and

balance class of control problems. Using high-level, unsupervised models to partition the

attractor into simple dynamic components is a step toward consolidating memory and ab-

stracting this memory into a high-level transition function. MoR shows suitability for use

in the reinforcement learning domain due to it’s excellent scale-up on open-loop predictions

of test data. This class of modeling problem is very similar to the assumptions made in

reinforcement learning where state update occurs at every time-step.
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Chapter 9

Future Work

This research has provided groundwork for applying the ESN architecture to non-Markovian

reinforcement learning domains. The control problems used as case studies here, Mountain

Car, Modified Mountain Car, and Acrobot are just a first step. The full potential of the ESN

has not yet been unlocked. Reservoirs are robust, stable temporal embeddings with well-

known mathematical properties. Yet the reservoir architecture is still in its infancy. Little

theory exists to motivate how to construct an appropriate reservoir for the problem at hand

and only recently has research touched on methods for adapting reservoir architectures to

specific domains, particularly methods that maintain the ESNs most beneficial properties—

guaranteed stability, robustness, and training via linear regression.

Based on the non-Markovian reinforcement learning case studies in this work, the most

pressing technical challenge to be overcome before ESNs scale to much harder domains

is that of memory consolidation and state abstraction in the echo states. The current

reservoir scheme, while excellent for simple, temporally short term problems is not well-

suited to scales and temporal dependency lengths of real-world problems. Unfortunately,

real-world domains are where non-Markovian representations would be most useful. To

solve these types of problems, the reservoir’s low-level advantages must be assisted by

high-level memory management that abstracts both echo states and experiences into a

static framework spanning long time dependencies. Mixture of Readouts, described in

Chapter 7, is one approach for extending ESNs in this way. The mixture model subsumes

the duties of abstracting and remembering important high-level dependencies over long

periods of time. No specific mechanism has been proposed for this model, but as was
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demonstrated in Chapter 7, simple, unsupervised clustering techniques show promise and

should be pursued. These models maintain all of the beneficial properties of the ESN while

potentially eliminating the most significant weakness.

The need for memory and abstraction in the ESN framework has been pursued by other

researchers, notably Jaeger’s hierarchical ESN framework [34] and Steil’s plasticity learning

rules for ESN [70]. Of these, Jaeger’s framework offers the most natural means of scaling the

ESN to hard problems because it focuses on abstracting echoes into more general features.

This framework also works well for step-wise update, which fits into the canonical TD-error

update scheme of reinforcement learning. Unclear is how these techniques will perform when

applied to nonstationary attractors. Finding ways to preserve old states and experiences,

which may contain important information toward solving the problem optimally, while

applying current abstraction to traverse the attractor efficiently is an important problem,

and is a prime area of interest for further research in non-Markovian reinforcement learning

domains.

Another potentially exciting direction that parallels current reinforcement learning re-

search is an extension of the reservoir construction technique preliminarily proposed by

Ozturk and Principe [56]. This technique allows knowledge of the state-space to be incor-

porated directly into the construction of the reservoir. The attractor structure could be

sampled and then used to construct a reservoir amenable to the problem at hand. How-

ever, dynamic considerations must be made when working in non-Markovian reinforcement

learning domains. The theory of this technique considers only stationary attractors where a

sampling of the state-space corresponds to the underlying attractor of interest. In reinforce-

ment learning the attractor is mobile. This technique would have to be modified such that

reservoir construction scheme occurs iteratively, which could account for attractor mobility.

Along these lines, there is some evidence from this work that reservoirs composed of pre-

fabricated control elements well-suited to common attractor structures would be beneficial

in adaptive control—reservoirs that form spirals and limit cycles would be very beneficial

for linearly mapping attractors underlying many reinforcement learning domains.

In parallel with technical advancement to be made in the architectures for modeling
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reinforcement learning domains, this work has highlighted a potential theoretical advance-

ment that may be of some consequence in future research. The attractor underlying the

reinforcement learning domain is a fundamental representation of the interaction of the

agent and system. The fixed point structure of this attractor provides information on the

long term behavior of trajectories starting from any point within the observed state space.

Therefore, it may be possible to use the attractor’s structure as a means of measuring how

well a problem is satisficed. That is, using the attractor’s structure as dynamic partitions

of the problem, it may be possible to determine the degree to which the problem has been

solved in terms of all possible initial states. For example, if a stable spiral or limit cycle is

known to exist within the attractor, and the goal state does not fall within these structures

then it should be possible to prove that the problem has not been satisfied for states falling

within the boundaries of these structures. This leads to the problem of finding attractors

that satisfice the learning domain—attractors which contain no dynamic components that

isolate portions of the initial state-space. Research into this type of reinforcement learning

could develop an entire new class of reinforcement learning algorithms, which first attempt

to learn a satisficed representation of the problem, and only then, attempt to manipulate

the attractor’s structure such that the problem is optimized.
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Appendix A

Reinforcement Learning

Algorithms

[state, oldstate, oldaction] ← initialize();
Q ← 0;
oldQ ← Q;
firsttime ← TRUE;
while !converge(Q, oldQ, threshold) do

action ← argmax[actionset](Q(state, action));
if firsttime then

firsttime ← FALSE;
else

if isgoal(state) then
Q ← update(Q(state, action), reward ← 0);
[state, oldstate, oldaction] ← initialize();

end
Q ← update(Q(oldstate, oldaction), reward ← -1);

end
oldstate ← state;
oldaction ← action;
oldQ ← Q;
state ← nextstate(state, action);

end
Algorithm 1: Pseudocode for SARSA training of the lookup table.
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NN ← 0;
S ← learningschedule();
M ← maxstepschedule();
firsttime ← FALSE;
for s ← 1 to < |S| do

for 1 to R do
[state, oldstate, oldaction] ← initialize();
firsttime ← TRUE;
for 1 to M[s] do

if rand() < S[s] then
randaction ← TRUE;
action ← selectrandaction[actionset]();

else
randact ← FALSE;
action ← argmax[actionset](predictQ(NN, state, action));

end
if firsttime then

firsttime ← FALSE;
else

if goal(state) then
if !randaction then

NN ← updateNN(NN, state, action, reward ← 0);
end
[state, oldstate, oldaction] ← initialize();

end
if !randaction then

NN ← updateNN(NN, oldstate, oldaction, reward ← -1);
end

end
oldstate ← state;
oldaction ← action;
state ← nextstate(state, action);

end

end

end
Algorithm 2: Pseudocode for SARSA training of the feedforward neural network.

updateNN(NN,state,action,reward): returns the NN after updating the hidden and out
weights via backpropagation of errors.
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Q ← 0;
S ← learningschedule();
M ← maxstepschedule();
ESN ← initializeESN();
firsttime ← FALSE;
for s ← 1 to < |S| do

for 1 to R do
[state, oldstate, oldaction] ← initialize();
ESN ← resetESN(ESN);
firsttime ← TRUE;
for t ← 1 to M[s] do

if rand() < S[s] then
randaction ← TRUE;
action ← selectrandaction[actionset]();

else
randact ← FALSE;
action ← argmax[actionset](predictQ(ESN, nonMarkov(state),
action));

end
ESN.reservoir ← iterateESN(ESN, nonMarkov(state), action);
if firsttime then

firsttime ← FALSE;
else

if goal(state) then
reward ← 0;
[state, oldstate, oldaction] ← initialize();
ESN ← resetESN(ESN);

else
reward ← -1;

end

end
echolist ← {echolist, ESN.z};
rewardlist ← {rewardlist, reward};
randactionlist ← {randactionlist, randaction};
oldstate ← state;
oldaction ← action;
state ← nextstate(state,action);
if mod(t,lrwindow)=0 then

Qtarget ← rowSums(embed(rewarlist, horizon));
solveindices ← which(randactionlist==FALSE);
ESN.readout ← solve(echolist[solveindices], Qtarget[solveindices]);

end

end

end

end
Algorithm 3: Pseudocode for SARSA training of the Echo State Network.
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nonMarkov(state): returns only the observable components of the complete, Markovian,
state.

resetESN(ESN): returns the ESN after assigning both the internal echo state, z and the
ESN.readout weights to 0.

iterateESN(ESN): returns the ESN after updating the internal echo state, z, according to
Equation 3.9.

solve(echolist[solveindices],Qtarget[solveindices]): returns the set of weights after solving
the system given in Equation 3.11.
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