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ABSTRACT

LIVING IN THE SLOW OR FAST LANE: COGNITIVE PHENOTYPES IN HONEYBEES

The evolution and maintenance of cognitive variation is a question of fundamental interest in
animal behavior because differences in cognition are predicted to underlie differences in behavior.
The correlation between behavioral and cognitive variation has largely been conceptualized in
terms of the speed-accuracy trade-off driving alternative cognitive strategies where ‘fast’
individuals are superficial learners that make inaccurate, risk-prone decisions relative to ‘slow’
individuals. My research has explored the factors that select for different cognitive abilities across
species and the mechanisms that maintain variation in cognitive ability within species. To address
these questions, I have identified how individuals of four honeybee species (Apis mellifera, A.
cerana, A. dorsata, A. florea) differ in performance on multiple cognitive tasks and explored how
such variation translates to behavioral outcomes and is shaped by ecology. In chapter one, I tested
for the presence of variation in two different learning abilities in honeybee foragers and whether
any component of learning influenced wing damage, an indicator of survival. My results
demonstrated considerable interindividual variation in different types of learning abilities such that
landmark and olfactory learning were negatively correlated. Additionally, I found that olfactory
learning was positively correlated with maneuverability performance during flight, a measure
which in turn positively influenced wing damage, a proxy for survival. This experiment
demonstrated that individuals differ considerably in how they perform on two cognitive tasks and
that cognitive ability has important implications for behaviors associated with survival. This work

was further explored in chapter 2, where I studied how differences in learning preference relate to



decision making during foraging. I measured individual latency to learn on a solitary foraging task
and latency to learn on a social foraging task and found that individuals that perform well in a
solitary learning task perform poorly in a social learning task. These findings suggest that
honeybees specialize in one type of learning strategy when making foraging decisions, and such
differences may have important implications for how individuals provision their colony. The first
two chapters focused on how differences in performance on cognitive tasks may represent a trade-
off that correlates to different behaviors. In the latter half of my dissertation, I first used multiple
cognitive traits to define a cognitive phenotype in an individual and then investigated how such
differences might impact performance on multiple behaviors and life history traits to determine
functional consequences of cognitive variation. I then expanded this research to determine how
differences in ecology shape cognitive phenotypes. In chapter three, I tested for the presence of
distinct cognitive phenotypes in A. mellifera foragers by measuring multiple cognitive traits and
determining whether these traits covary to produce distinct slow and fast cognitive phenotypes. I
then compared performance on multiple behavioral and life history tasks to see if there were
functional differences between these cognitive types. My results indicate the presence of two
cognitive phenotypes that meet the predictions of the speed-accuracy trade-off and that are
conserved across colonies. Compared to slow bees, fast bees were described by high associative
learning, high preference for novelty and high preference for variance, bees which also engage in
more nursing behavior and transition to becoming a forager at an earlier age. In chapter four, which
explored how ecological and life history differences shape cognitive phenotypes between closely
related honeybee species, I tested for differences in the cognitive phenotype in four honeybee
species, each of which occupied a unique ecological niche that was correlated to their position on

the slow-fast life history axis. My results indicate that a set of cognitive traits consistently covary



within each species, resulting in slow and fast cognitive phenotypes that meet the predictions of
the speed-accuracy tradeoff. I also found that the four species do not align on a slow-fast cognitive
axis due to known differences in their life history and nesting ecology. Rather, cognitive
differences among the species appear correlated to their brain size, which may be driven by
differences in foraging range. Taken together, this work indicates that cognitive variation at the
individual level has important behavioral and life history outcomes that may impact how the
individual interacts with their environment and how the colony performs. At the species level,
cognitive variation appears to be driven by a complex relationship with the species unique

environment as well as underlying trade-offs associated with costs of cognition.
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CHATPER 1

Interindividual variation in learning ability in honeybees

INTRODUCTION

Cognition is central to questions about functional explanations of behavior as it outlines
the various mechanisms by which individuals acquire, process, store and act on information from
the environment (Shettleworth, 2009). Nonetheless, the ecological forces that contribute to the
evolution of specific cognitive abilities remain poorly understood. In humans, performance on
different cognitive tasks tends to be strongly positively correlated, a phenomenon described as
“general intelligence” or “g” (Thornton and Lukas, 2012). However, demonstrations of this in
other animals are relatively rare and ecological theories of cognition instead posit selection for
specific cognitive domains and resulting tradeoffs among them in response to different
environmental challenges (Shettleworth, 2009). Any such trade-offs are however often difficult to
verify because studies traditionally focused on interspecific comparisons of cognitive capacity are
generally confounded by various other factors. This has led to a recent surge of interest in
intraspecific variation in cognitive ability with the expectation that it might offer better insights
into the evolution of cognitive ability and its impact on fitness (Thornton et al., 2014; Cauchoix et

al., 2018).

It has been proposed that interindividual cognitive differences within a species can
translate to alternative behavioral strategies with different fitness consequences (Sih and Giudice,
2012). This suggests that such interindividual differences in cognitive abilities are especially likely

to be fostered in group living species due to forces related to either competition or mutual benefit.



Social insect colonies are prime examples of cooperative group living in which interindividual
variation and the resulting adaptive diversity with respect to various traits is considered to be the
major underlying force for their ecological success (Oster and Wilson, 1978; Jeanson and
Weidenmiiller, 2014). However, the patterns of such variation with respect to cognitive traits are
less clear (Burns and Dyer, 2004; Raine et al., 2006; Muller and Chittka, 2012; Smith and Raine
2014; Klein et al., 2017). Learning, the ability to adjust behavior through experience, is often
considered to be fundamental to all cognitive mechanisms because it allows animals to adaptively
respond to environmental contingencies (Dickinson, 2012; Heyes, 2012). In honeybees, one of the
classic models of animal cognition, a large body of work has demonstrated how learning relates to
cognition and how a variety of learning abilities is crucial to their performance (Menzel, 2012;
Giurfa, 2015). However, there is little empirical data regarding if there is interindividual variation

in these abilities and if any, whether it has any influence on performance.

In spite of the intuitive and obvious relevance of learning on fitness, actual empirical
demonstrations of a positive relationship between the two have been relatively rare (Dukas, 1999;
Cole et al., 2012; Maille and Schradin, 2016). In honeybees and other social insects, the
performance of individuals is generally measured in terms of their work capacity, most commonly
in terms of foraging. The extent of foraging activity performed by an individual is known to be
reflected in the amount of wing damage, which results from collisions with foliage incurred during
foraging (Foster and Cartar, 2011) and has a strong negative impact on survival and lifespan
(Cartar, 1992). We therefore measured the amount of natural wing damage seen in an individual
to test a relationship between learning and forager performance. The study comprises of a set of

three experiments to examine interindividual differences in different learning abilities that are



critical to foraging in honeybees and the relationship between learning ability and wing damage,

which as a measure of individual forager survival acts as a proxy for fitness at the colony level.

METHODS

Bees from five colonies were trained to a setup for assaying the landmark learning ability
of individuals. The subjects evaluated for their landmark learning were collected at the end of this

assay and subjected to an olfactory learning assay.

a) Landmark Learning Assay: The assay consisted of a maze, configured from an array of
acrylic boxes with white, opaque walls and clear tops and placed on a platform 50 m from the
hives, which the bees had to negotiate in order to reach a reward of 30% sucrose solution (Zhang
et al., 1996). There were two types of boxes that constituted the maze, decision and non-decision
boxes (Fig. Al). Decision boxes had three holes (4 cm diameter), each at the center of a different
wall; a bee flew into such a box through one of these holes and it had to choose between the other
two holes, one of which led into the next box in the correct path to the reward and the other which
led to a dead end. Non-decision boxes had two holes and only required the bee to fly through one
and exit through the other into the next box. The holes leading through the correct path in both
decision and non-decision boxes were marked with a piece of blue tape to provide landmark cues.
We used two different maze configurations during the experiment, 22 bees negotiated a maze with

two decision boxes and 31 bees negotiated one with three.

Training consisted of placing a feeder filled with 30% sugar solution inside the first
decision box and leaving it for 45 minutes to allow the bees to learn the landmark cue to enter the
box. After 45 minutes, the feeder was moved into the second decision box in the path and so on

for each decision box until the bees had learned the correct path through the maze to reach the



reward placed in the final box. Bees were allowed to enter the maze freely, but were released from
the top after acquiring the reward. Only bees that learned the entire path through the maze to the
reward and were therefore foraging during the final 45 minutes of the training phase were
individually marked and participated in the following test. The number of training trials each

individual experienced during this time varied between 5 and 7, but was not controlled for.

Testing took place immediately after training. During the test, only one bee at a time was
allowed to enter the maze to ensure that decisions were independent to each individual. A landmark
learning score was assigned for each run through the maze to quantify its performance such that a
score of 1 meant that the bee did not complete the maze within a maximum assigned time of five
minutes, a score of 2 meant that the bee made one or more wrong turns, a score of 3 meant that the
bee retraced its path but did not make any wrong turns, and a score of 4 meant that the bee
negotiated the entire maze without making any mistakes. After a bee was tested on the maze thrice,

it was collected for the olfactory learning assay.

b) Olfactory Learning Assay: Each bee was fed to satiation with a 30% sucrose solution and
then starved for 18h at 27° C inside an incubator to increase their motivation for appetitive
learning. Each bee was then tested for its olfactory learning ability using the Proboscis Extension
Reflex (PER) assay (Bitterman et al., 1983). The assay consisted of presenting an individual bee
with an odor (Conditioned Stimulus or CS) followed by a sucrose reward (Unconditioned Stimulus
or US) in 6 consecutive trials with an inter trial interval of 11 minutes and recording the extension
of the proboscis by the bee for the reward. A bee was considered to have learned the association
between the odor and the sucrose reward and was given a score of 1 in a trial if it showed a
conditioned response (CR) by extending its proboscis to the odor prior to the sucrose reward being
provided. If the bee did not extend its proboscis at all or extended it only at the presentation of the
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sucrose reward, it was given a score of O in that trial. The total number of CRs for a bee was

defined as its olfactory learning score.

c¢) Maneuverability Assay: The assay consisted of placing an individual bee in a flight arena
(an acrylic box measuring 41.5 x 26.5 x 17 cm) containing an array of obstacles comprised of
wooden pegs stuck to the floor of the box (Mountcastle et al., 2016). The walls of the box were
covered with a floral pattern and the box was placed under an overhead white light to stimulate
flight. The box was placed on an orbital shaker rotating at 3 rpm to simulate the moving obstacles
in the foliage that a bee might naturally encounter while foraging. Each subject was allowed to fly
in the arena for five minutes and its behavior was recorded using a digital video camera (Sony
HDV 1080i). The flight behavior of a bee was analyzed in terms of two parameters: (a) number of
landings, defined as the events when a bee settled on a peg or the floor, its feet touching first, and
(b) number of collisions, defined as the events when the bee hit a peg, a wall, or the ceiling and
could not maintain flight elevation and crashed to the floor. Following successful completion of

the flight assay, individuals were subjected to the PER assay as described in the first experiment.

d) Wing wear: Newly emerged bees from two source colonies were marked and fostered in
the colony, following which they were collected from the entrance of the colony as described
above. These bees were subjected to the maneuverability assay as described above and following
it each subject was euthanized and its wings were collected and analyzed for existing damage in
the following manner. The two forewings were removed at the wing joint, their images were
scanned into the computer and the area and perimeter of each wing was measured using ImageJ

software (Foster and Cartar, 2011).



Statistical Analysis

As we were specifically interested in the relationship between different learning abilities
and their relationship with performance, we only included learners or bees with an olfactory
learning score > 1 in our data analysis for the first two experiments. There was no significant
difference in the landmark learning score between bees in the two maze types (F1,51 = 0.01, P =
0.91), so data from the two were pooled. The maneuverability performance of a bee was measured
by calculating the ratio of the number of landings to that of crashes (landings/crashes), where a
higher value represents a higher performance. The relationship between maneuverability
performance and olfactory learning was examined by using a linear mixed model with colony of
origin and age of the bee as random effects and the significance of random effects were tested
using likelihood ratio tests. Wing damage of a bee was determined by calculating the ratio of area
to perimeter and then averaging that measure across the two wings, where a smaller value
represents a higher damage (Foster and Cartar, 2011). Due to the relatively small number of bees
for each specific age, bees were divided into two discrete groups: young bees (age 12-17 days) and
old bees (20-24 days) and a linear mixed model was used to examine the influence of
maneuverability and age on wing damage with colony of origin as a random effect. While some
of the data showed a better fit with non-linear models, we chose linear models for biological
parsimony. All statistical analyses were performed in R version 3.4.1.

RESULTS

There was significant interindividual variation observed in the different learning abilities
assayed in each experiment. The distribution of the scores for each assay was significantly different

from a normal distribution (Shapiro-Wilk test, Landmark learning: W=0.48, P < 0.001; Olfactory



learning: W = 0.9, P < 0.001; Maneuverability: W = 0.94, P = 0.02, Fig. 1.1A-C). There was a
significant negative association between the landmark and olfactory learning performance of an
individual bee (Pearson’s Correlation; r=-0.17, N=31, P=0.01; Fig. 1.2). There was a significant
positive association between olfactory learning and maneuverability performance (F7,3 = 4.81, P
< 0.001, Fig. 1.3). There were no significant effects of either source colony or age (Colony: > <

0.001, P=0.9; Age: x> = 1.98, P = 0.15) on this relationship.

Maneuverability performance of an individual had a significant independent effect on the
observed damage on its wings (F73 = 5.10, P = 0.03; Fig. 1.3), such that bees with higher
maneuverability showed less wing damage (Fig 1.4). While age did not have a significant
independent effect on wing damage (F;3; = 2.18, P = 0.15), it showed a significant interactive
effect with maneuverability to influence wing damage such that older and less agile bees showed
more wing damage (F;,37=35.57, P =0.02). There was also a significant effect of colony of origin

on the observed wing damage (y* = 4.83, P = 0.02).

DISCUSSION

Our results show that there are significant differences among honeybee individuals in terms
of their performance across the three tasks such that most individuals have high landmark learning
ability while individuals seem more variable in terms of olfactory learning and maneuverabilithy.
This suggests landmark learning may be a more general cognitive skill that is common to all
foragers while relatively fewer foragers in the colony exhibit enhanced olfactory learning or
maneuverability skills that may be required for more specialized foraging tasks. There is evidence
to suggest that scouts, a relative minority in the colony, perform better on olfactory learning tasks

compared to recruits (Carr-Markell and Robinson, 2014; Cook et al., 2019). It is possible that the



diversity of performance on different learning tasks may reflect distributions of such different
behavioral phenotypes within the colony. The different aspects of learning that are crucial to
foraging performance show both positive and negative correlations among them in an individual
bee. Our first experiment demonstrated a negative association between landmark and olfactory
learning while our second experiment demonstrated a positive association between
maneuverability and olfactory learning. While it might be tempting to consider the positive
association as evidence for the “g” factor, one should note that our maneuverability assay,

requiring bees to avoid obstacles in flight and therefore also consisting of a motor component, is

not purely a learning task.

While the notion of cognitive specialization is generally based on poor and good
performers on a single learning task (Carr-Markell and Robinson, 2014; Cook et al., 2019), to the
best of our knowledge this is the first time a specialization based on a negative correlation between
the performance in two different types of learning tasks has been demonstrated in individual
honeybees. This observed negative association between two types of learning in individuals has
important implications for division of labor in social insect colonies, the models for which
generally require individuals showing negative correlations between their response to different
stimuli (Beshers and Fewell, 2001). Since previous findings documenting positive correlations
between learning performance across different sensory modalities and sucrose responsiveness
(Page et al., 2006) are somewhat at odds with such models, our results demonstrating a negative
correlation between certain types of learning provide support regarding how individuals might
show different proficiencies in performing different tasks. The observed negative correlation
between performance in these learning tasks therefore also suggests that it is not likely an outcome

of differences at the sensory level but rather due to a difference at a higher cognitive level.



Our findings support the idea that investment costs related to learning (Mery and Kawecki,
2004, 2005; Jaumann et al., 2013) may necessitate a tradeoff between performance in different
learning modalities, leading to individual specialization. The fact that such learning specialization
has not been observed in bumblebees (Muller and Chittka, 2012; Smith and Raine, 2014) may have
to do with their lower degree of sociality compared to honeybees. The relationship between
behavioral specialization and colony size or sociality has long been debated and there is evidence
supporting the idea that larger and more eusocial colonies tend to have more specialized workers
(Amador-Vargas et al., 2015; Kamhi et al., 2016). Studies also show that an increase in social
complexity is accompanied by an increase in the capacity for distributed cognition mediated by
more social communication and specialized brains (Lihoreau et al., 2012; O’Donnell et al., 2015).
In smaller or less social groups such as bumblebees, individuals may need to maintain capacity in
a broader range of learning modalities to allow them to be successful generalists while large
honeybee colonies through specialization can profit from maintaining a cognitively diverse

workforce.

Our results showing a positive relationship between olfactory learning and maneuverability
and the influence of the latter on wing wear also for the first time suggest a possible consequence
of interindividual variation in learning ability on performance in honeybees. It has been well
established that in flying insects such as honeybees, wing damage has several functional
consequences that include increased mortality resulting from factors such as increased
vulnerability to extrinsic elements and increased energy expenditure (Cartar, 1992; Burkhard et
al., 2002; Higginson and Barnard, 2004; Combes et al., 2010; Dukas and Dukas, 2011). A

significant contributor to wing damage is the number of collisions bees encounter with vegetation



while foraging (Foster and Cartar, 2011), which means that individuals with higher
maneuverability, by better avoiding collisions, should gain in terms of survival and their foraging
lifespan. While maneuverability is likely a product of both cognitive and motor skills and our
experimental design is unable to distinguish between the two, it nevertheless underlines the point
that variation in learning ability, by influencing individual foraging performance and lifespan, can
have a significant influence on colony performance. While wing damage must initially arise from
poor maneuverability, it is likely that maneuverability and wing damage exhibit a positive

feedback loop, whereby a decreased maneuverability leads to further wing damage.

It is interesting to ask if there is any selection at the colony level to maintain interindividual
variation and individual specialization in different learning modalities in large social groups such
as the honeybee colony. If differences in learning ability correlate to different social roles, a colony
may benefit from maintaining learning specialization and cognitive diversity (Burns and Dyer,
2004). For example, the two behavioral phenotypes among honeybee foragers, dancers that gather
information and followers that use that information, may require different types of cognitive skills.
Our earlier work has shown dancers and followers to be functionally equivalent to producers and
scroungers, respectively (Katz and Naug, 2016), behavioral phenotypes that are known to be
driven by differences in their learning ability (Katsnelson et al., 2011). Our future research
directions therefore include examining if different behavioral phenotypes in a honeybee colony
correlate to distinct cognitive phenotypes and if colonies with different distributions of these

phenotypes show colony level differences in performance.
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Figure 1.1A: Frequency distributions of landmark learning observed across all bees in the different
experiments.
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Figure 1.1B: Frequency distributions of olfactory learning observed across all bees in the different
experiments.
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Figure 1.1C: Frequency distributions of maneuverability scores observed across all bees in the
different experiments.
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Figure 1.2: Correlation between landmark and olfactory learning performance of individual bees
(N = 31) with data representing mean + standard error across bees.
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CHATPER 2

Cognitive phenotypes and their functional differences in honeybees

INTRODUCTION

The existence of interindividual variation in behavioral traits has long been widely
recognized, but the evolution and maintenance of such variation within a population has only
recently become a topic of great interest (Sih et al., 2004; Réale et al., 2010; Stamps & Goorthuis,
2010). While the majority of these studies has focused on behavioral traits, such as boldness,
exploration, aggression etc. (Réale et al., 2010), relatively less attention has been devoted to
understanding the individual differences in cognitive traits that are hypothesized to underlie these
observed behavioral differences (Carere & Locurto, 2011; Sih & Del Giudice, 2012). Although a
connection between behavioral and cognitive variation has been demonstrated in a few studies
(Guillette et al., 2011; Amy et al., 2012), separating these two levels of variation is challenging
because the two are inextricably connected and cognitive traits can only be indirectly inferred by
measuring some behavioral outputs. Using multiple cognitive traits to define individual differences
in cognition (Griffin et al., 2015) and then investigating how such differences might determine
performance on behaviors that have clear functional consequences can be a first step in this

direction.

The correlation between behavioral and cognitive variation has largely been
conceptualized in terms of the speed-accuracy tradeoff that can drive alternative cognitive
strategies (Chittka et al., 2009). Most behaviors are predicted to show a risk-reward tradeoff such

that the higher expression of a behavior can bring more rewards, but at the cost of a higher risk,
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and this tradeoff leads to a direct link between behavioral types on a fast-slow gradient and
cognitive styles based on the speed—accuracy tradeoff (Sih & Del Giudice, 2012). According to
this model, the fast-slow behavioral axis is an outcome of an underlying speed-accuracy tradeoff
that produces a cognitive axis in which fast individuals spend less time gathering information to
make rapid but somewhat more inaccurate decisions compared to those individuals who are slow.
This in turn leads to the prediction that fast individuals would show faster associative learning and
higher levels of impulsivity, neophilia and risk-proneness, but lower levels of sampling and
retention. There is some evidence that individuals within a species may indeed vary in terms of
their cognitive styles that meet the predictions of a speed accuracy tradeoff (Mazza et al., 2018;
Jones et al., 2020) and that such cognitive differences can lead to significant differences in
behavior with functional consequences (Keagy et al., 2009; Amy et al., 2012). However, most of
these studies that have examined the relationship between cognition and behavior have seldom

measured this covariance across multiple traits at these two different levels.

Social insect colonies are hotbeds of interindividual behavioral and cognitive variation, a
diversity which is considered functionally critical to their division of labor and ecological success
(Jeanne, 1988; Jeanson & Weidenmuller, 2014). The behavioral variation is reflected in not only
individual differences in task performance, but it also translates to differences at the level of the
whole colony (Wray et al., 2011; Bengston & Dornhaus, 2014). In honeybees and bumblebees, a
significant amount of interindividual variability has also been recorded in terms of cognitive
performance, measured mostly in terms of their associative learning abilities (Smith & Raine,
2014; Tait et al., 2019). The difference in learning abilities has also been shown to be correlated
to differences in foraging performance (Raine & Chittka, 2008) and important life history traits
such as age of first foraging (Pankiw & Page, 2001; Page et al., 2006). However, none of these
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previous studies simultaneously examined whether individuals covary in terms of a whole suite of
cognitive, behavioral and life history traits in the framework of a slow-fast phenotypic gradient. In
this study, we therefore set out to test the hypothesis that multiple cognitive traits covary among
individuls such that they meet the predictions of a slow-fast cognitive axis and that individuals at
different positions of such an axis also show differences among them in terms of behavior and life

history traits along a similar slow-fast axis (Sih & Del Giudice, 2012).

METHODS

Brood frames with pupae were collected from 3 source colonies of the honeybee, Apis
mellifera, one day prior to adult emergence and kept in an incubator set at 32° C. Upon emergence,
individual adult bees were tagged with a unique number tag and introduced into an observation
hive. The observation hive consisted of two brood frames, a full honey frame, a laying queen and
workers. The hive was located in a dark room and was connected to the outside through a tube.
The front glass pane of the observation hive was marked with a grid to assist in the behavioral

sampling of tagged bees.

a) Behavioral Assay: Behavioral observations were conducted on the tagged bees when they
were 7-14 day old using instantaneous scans. The hive was scanned every 15 minutes for two hours
in the morning (0800-1000), afternoon (1300-1500) and evening (1600-1800) for 2 days, resulting
in 48 scan samples spread over 12 hours of observations. The scans consisted of selecting each
square in the grid in a systematic fashion and recording the behavior of any tagged bee in that
square. Using these scan samples, the proportion of time spent by each tagged bee in brood care
(an individual with its head inside a cell located on a brood frame), and social behavior (an

individual engaged in trophallaxis or allogrooming), was calculated. As all tagged bees could not
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be located in each scan and the number of scan samples differed across bees, a bootstrapping
procedure, consisting of selecting 10 random scan samples (with replacement) from the total
number of scans available for a bee and repeating this procedure 100 times, was used to calculate
the average proportion of time spent by an individual bee in each behavior. The behavioral profile
was therefore not calculated for bees that had fewer than 10 scan samples. The age of first foraging
(AFF) of an individual was estimated by monitoring the entrance of the colony every other day for
two hours in the morning (0800-1000) and afternoon (1300-1500) and recording the first instance

of a tagged individual spending at least 10 minutes outside the hive.

b) Cognitive Assay: Forager bees were collected at the hive entrance at least 3 days following
a first foraging trip, immobilized on ice, and harnessed within a 4.5 cm long plastic drinking straw
with a small wire around her thorax. Each bee was fed to satiation with 30% sucrose solution and
then kept starved for 24 hours inside an incubator set at 27° C to increase her motivation for

appetitive learning before performing the following series of assays.

a. Associative Learning: The associative learning ability of an individual bee was
determined using the Proboscis Extension Reflex (PER) assay. It consists of presenting a bee with
an odor (Conditioned Stimulus, CS) followed by a sucrose reward (Unconditioned Stimulus, US)
in a series of trials (Bitterman et al., 1983). Our PER assay consisted of presenting each bee with
six such trials with a 5-minute inter trial interval (ITI), with hexanol, octanone, geraniol and
linalool as the CS odors used in different replicates. A bee is considered to have learned the
association between the CS and the US when it extends its proboscis (a Conditioned Response,
CR) to the CS prior to the US delivery, and the total number of CR is used as a measure of its

learning ability.
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b. Sampling and Preference for Novelty: Thirty minutes following the associative
learning assay, each bee was subjected to a forced-choice proboscis extension response assay
(Shafir et al., 1999, Mayack & Naug, 2011). This assay consists of presenting two different odors
in four alternating 0.2 s pulses to the bee on either side of its head. Based on the orientation of its
head and the extension of its proboscis at the end of the four odor pulses, a choice for one of the
two odors is scored for the bee. Using the odor that was paired with the reward during the
associative learning assay as one of the two odors and a novel odor as the other odor, preference
for novelty is recorded as a binary score (1 or 0) and the number of times an individual turned its
head toward each odor during the entire sequence of the four odor pulses provides a measure of
sampling (Katz & Naug, 2015). The pairing of each odor as the novel odor and the direction of
each odor was balanced across experimental replicates to account for any possible odor and side

biases.

c. Retention (Memory): Each bee was fed to satiation following the novelty preference
assay and then kept in the incubator for 24 hours. Each bee was then presented once with the CS
odor that was associated with the sucrose reward in the associative learning assay the previous
day and whether or not the bee extended its proboscis to the odor was recorded, which gave a

binary score (1 or 0) for retention.

d. Preference for Variance (Risk): Thirty minutes following the retention assay, a
PER assay was used to train the bees to associate two different odors with two different reward
distributions. This consisted of pairing one odor with a variable reward and another with a
constant reward and presenting these pairings to each bee in a predetermined pseudorandom

sequence (ABBABABBABABAABAABAB) in a series of 20 trials with an ITI of 5 min (Shafir,
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et al., 1999, Mayack & Naug, 2011). In a trial in which the bee was presented with the odor that
was paired with the variable reward, it received either a high reward of 0.4 ul or no reward (0 ul)
in a predetermined pseudorandom sequence such that the overall probability of obtaining each
reward type was 0.5. In a trial in which the bee was presented with the odor paired with the
constant reward, it always received a 0.2 pl reward. Therefore, both the constant and the variable
reward distribution had a mean of 0.2, but the variable one had a coefficient of variation (CV) of
100. The preference for variance for an individual was calculated as the number of times it
extended its proboscis to the variable reward, divided by the total number of times it responded

to the two rewards.

After the completion of the cognitive assays, the bees were returned to the observation hive
and the entrance of the colony was monitored as described above and the last day a bee was

recorded as entering or exiting the colony was used to calculate its lifespan.

Statistical Analysis

Generalized linear models were first used to test if the age of the individual, its colony of
origin, odor used during the assay, and direction of odor presentation when applicable, had any
effect on each cognitive measure, and the results largely ruled out any significant effect of these
factors on the cognitive measures (Table A2.1). Only bees which had a CR score > 1 in the
associative learning assay were included in the analysis since the assays of the other cognitive
measures were contingent upon the ability of a bee to learn a conditioned odor in the PER assay.
The associations among the different cognitive traits were first assessed using Pearson correlations.
A principal component analysis (PCA) was then performed (R package factoextra) to determine

how the covariance among the different cognitive traits could define a cognitive axis. This was
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followed by a cluster analysis (R package NbClust) with squared Euclidean distances (k-means
method) to group individuals based on their scores on the first two principal components. t-tests
were then used to test whether these groups differed in their behavioral (proportion of time spent

in nursing and social behavior) and life history (age of first foraging and survival) traits.

In order to compare the consistency of the cognitive axis, defined by the covariance among
different cognitive traits, in bees from different colonies, linear models (R package Imertest) were
constructed for those cognitive traits that showed high loadings on the first principal component
axis. For each of these models, one cognitive trait was used as a response variable and another was
used as a covariate, with colony as a fixed factor. In this approach (Michelangeli et al., 2019), a
significant colony x covariate interaction indicates that the direction and magnitude of the
correlation between a pair of cognitive traits differed among the colonies, while a non-significant
interaction but a significant covariate indicates that the magnitude and direction of the correlation
was similar among the colonies. For all analyses, data were mean centered due to the different

units and variances of the cognitive measures. All analyses were performed in R version 3.4.1.

RESULTS

A Pearson correlation analysis revealed that associative learning ability had a significant
positive association with both preference for novelty and preference for variance, which in turn

were positively correlated with each other (Table 2.1).

The PCA found two principal components with eigenvalues greater than 1 describing the
covariation among the different cognitive traits, with the first two principal components describing

40% and 21% of the total variance, respectively. Based on the loadings, the first principal
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component is described mainly by low associative learning, low preference for novelty and low
preference for variance while the the second principal component is largely described by high

sampling and high retention (Table 2.2).

The cluster analysis using the two PC scores for each bee revealed two distinct clusters of
individuals (Kruskal-Wallis rank sum test: ¥ (1.36)= 24.98, P < 0.001), largely separated along the
first principal component axis (Fig. 2.1). Cluster I, comprised of 22 (61%) individuals, therefore
describes individuals with high associative learning, high preference for novelty and high
preference for variance, while Cluster 2, comprised of 14 individuals (39%), describes those with
low values for each of these three cognitive traits. Individuals in Cluster 1 and 2 therefore
respectively conform to the descriptions of fast and slow cognitive phenotypes according to the

model of Sih & Del Guidice (2012).

The t-tests comparing the differences in behavioral and life history traits between the two
cognitive phenotypes showed that fast bees spent more time engaged in nursing behavior (#30.3) =
4.78, P < 0.001, Fig. 2.2A), but did not differ from slow bees in their display of social behavior
(t274)=0.67, P =0.50, Fig. 2.2B). Fast bees also had a lower age of first foraging (#s.1) = 2.08, P
= (0.04, Fig. 2.2C), but did not differ from slow bees in their lifespan (z29.8)= 0.15, P = 0.88, Fig.

2.2D).

There was no statistically significant colony-level differences in the covariation structure
among the different cognitive traits, and in all the linear models, only the cognitive traits were
significant covariates and no significant interaction effect was found between colony and any of
these covariates (Table 2.3). This indicates that the magnitude and direction of each significant

association between a pair of cognitive traits are similar across the colonies.
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DISCUSSION

Our results indicate the presence of a suite of covarying cognitive traits, a cognitive axis,
in honeybee foragers that is largely characterized by differences in associative learning, preference
for novelty and preference for variance (risk). To the best of our knowledge, this is the first time
that such a slow-fast cognitive axis has been demonstrated using multiple cognitive traits. Foragers
differed in their expression of this cognitive axis, resulting in two distinct cognitive phenotypes,
those that showed high associative learning and a high preference for novelty and risk (fast bees)
and those that showed low associative learning and a low preference for novelty and risk (slow
bees). These two different cognitive phenotypes also showed significant differences in their
behavioral and life history traits such that the fast bees spent more time nursing and transitioned
to becoming a forager at an earlier age. The consistency in the expression of the cognitive axis
across colonies, albeit limited to three, strengthens our assertion about the presence of such distinct

cognitive phenotypes in honeybee colonies.

The cognitive axis demonstrated here strongly meets the predictions of one based on a
speed-accuracy trade-off (Sih & Del Giudice, 2012). However, two of the cognitive traits we
measured - sampling and retention — were not found to be a part of this cognitive axis. Although
both these traits loaded strongly on the second principal component axis, individuals did not show
any substantial separation along this axis and therefore the contribution of these two traits to the
cognitive axis could not be determined in this study. Among honeybee foragers, there are two well-
known behavioral phenotypes, scouts that gather information and recruits that use that information
(Seeley, 1983). Scouts are known to perform better on both non-associative learning (Cook et al.,

2019) and reversal learning tasks (Carr-Markell & Robinson, 2014). While we did not measure it,
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reversal learning ability and differences in terms of it are likely to make a significant contribution
to the cognitive axis and the resulting cognitive diversity within the colony (Dyer et al., 2014). We
do not have information regarding the foraging behavior of our subject bees, but one could
hypothesize that our fast bees are more likely to be the scouts while the slow bees act as recruits.
It has been recently proposed that scouts and recruits are functionally equivalent to producers and
scroungers (Katz & Naug, 2016), behavioral phenotypes that are known to be characterized by
different learning abilities (Katsnelson et al., 2011). The results of this study are therefore
consistent with the known behavioral differences among scouts and recruits in honeybees and adds
to them by defining these two behavioral phenotypes in terms of two distinct cognitive phenotypes.
A diversity in cognitive phenotypes within the colony that reflects differences in terms of a speed
accuracy trade-off has been shown to make a positive contribution to colony performance (Chittka

et al., 2003: Burns & Dyer, 2008).

Our results also indicate that the fast bees spent more time nursing and became foragers at
an earlier age. These findings are consistent with the foraging syndrome described by Page et al.
(2006), in which bees showing higher sensori-motor activity, higher associative learning, higher
rates of behavioral development and earlier onset of foraging behavior are those which take up the
task of pollen foraging. Although we did not identify our bees in terms of whether they were pollen
or nectar foragers, it is possible that the cognitive phenotypes described here align with the
foraging syndrome such that the fast bees are the ones who engage in pollen foraging. We could
not find any existing data regarding whether pollen foragers also engage in more nursing at a young
age, but the fact that pollen foragers perform better on associative learning tasks and have a higher
sucrose sensitivity (Page et al., 2006), suggests that they may also have similarly high sensitivity

to other stimuli such as brood pheromone and therefore do more nursing.
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It was somewhat surprising that we did not detect a difference between the two cognitive
phenotypes in terms of time spent in social behavior since one might expect fast bees with higher
learning ability to act as scouts and be more likely to share information with other bees through
trophallaxis — one of our measures of sociality. Similarly, the lack of a difference in survival
between slow and fast bees was also unexpected, given that some recent work shows a positive
association between associative learning and performance measures related to survival (Tait et al.,
2019). However, since we did not measure foraging performance of our subject bees, we do not
know if the foraging behavior of the two cognitive phenotypes in terms of foraging rates, foraging
loads, etc. could elucidate the lack of difference in their survival. It is also possible that our
description of cognitive phenotypes here based on multiple cognitive traits might obscure the

earlier observed relationship between survival and associative learning alone.

It has been proposed (Sih & Del Guidice, 2012) that a cognitive axis defined by the speed-
accuracy trade-off is a missing piece in the Pace-Of-Life Syndrome (POLS) hypothesis, a
conceptual framework that predicts that individuals fall along a gradient of slow to fast life history
that is integrated with suites of other traits at the physiological and behavioral levels (Ricklefs &
Wikelski, 2002; Réale et al., 2010). Although our results provide mixed support for such a
relationship between cognitive traits and other traits, our study is one of the first attempts in this
direction. However, as the central premise of POLS hypothesis is based on slow individuals
prioritizing future over current reproductive opportunities (Biro & Stamps, 2008; Réale et al.,
2010), one probably needs to carefully consider how these different cognitive and behavioral traits
measured at the individual level are linked to the expression of the same traits and performance at

the colony level which is the unit of selection in social insects such as honeybees.
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In summary, our results demonstrate that cognitive traits covary in honeybees such that it
constitutes a cognitive axis that meets some of the predictions of the speed-accuracy tradeoff and
that aligns with the POLS hypothesis. These cognitive phenotypes may reflect differences in
forager social roles, and future research could directly compare scouts and recruits to determine
how they differ in expression of the cognitive axis and related behavioral and life history traits. In
addition, how these cognitive differences in individuals translate to group level decision making
processes would represent an important extension of this work as well as determining the possible

role of environment and ecology in shaping specific differences in this cognitive axis.
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TABLES

Table 2.1. Pearson correlation matrix for all measured cognitive traits, with significant

relationships shown in bold letters.

Sampling Novelty Retention Variance
Preference Preference

Associative r=-0.22, r =0.36, r=0.27, r=041,

Learning Score P=0.20 P =0.03 P=0.12 P=0.01
Sampling r=-0.04, r=0.06, r=-0.16,

P=0.383 P=0.73 P=034

Novelty Preference r=0.13, r = 0.56,
P=047 P <0.001

Retention r=0.07,
P=0.68
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Table 2.2. The two principal components with eigenvalues > 1 with their rotated component
loadings, eigenvalues, and the percentage of total variance explained.

Cognitive Trait PC1 PC2
Associative Learning Score -0.53 0.08
Sampling 0.22 0.66
Novelty Preference -0.54 0.04
Retention Score -0.22 0.72
Variance Preference -0.57 -0.14
Eigenvalue 2.01 1.09
% V ariance 0.40 0.21
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Table 2.3. Generalized linear models testing the covariance between pairs of cognitive traits across
colonies, with significant terms given in bold letters.

Model Term df Test P-value
Statistic

Novelty Associative Learning Score 1 =387 P=0.05

Preference ~ 2 _

Associative Colony 2 =208 P=035

Learning Score Associative Learning Score x Colony 2 ¥*=1.06 P =0.59

Variance Associative Learning Score 1 F=69 P=0.01

irefer?n?e - Colony 2 F=014 P=087
ssociative

Learning Score Associative Learning Score x Colony 2 F=1.17 P=0.32

Novelty Variance Preference 1 ¢=15.07 P<0.001

Preference ~ 2

Variance Colony 2 y=360 P=0.16

Preference Variance Preference x Colony 2 =062 P=0.73
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Figure 2.1. Cognitive phenotypes in honeybees defined by two clusters of individuals based on
their positions in the coordinate space defined by the first two principal components, in which

circles refer to Cluster 1 or Fast cognitive phenotypes and triangles refer to Cluster 2 or Slow
cognitive phenotypes.
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CHATPER 3

Nesting ecology does not explain cognitive differences among species

INTRODUCTION

The evolution of cognitive variation and how it determines differences in behavior is a
question of fundamental interest in animal behavior (Dukas, 2004). There is strong evidence that
cognitive traits evolve as a function of differences in ecology and life history and factors such as
the complexity of the physical environment, social structure, diet and mating behavior have been
identified as possible explanations for cognitive differences among species (Macphail & Bolhuis,
2001; Bolhuis, 2005; Healy et al., 2009; Chittka et al., 2012; Cauchoix & Chaine, 2016). Although
comparative studies have greatly enhanced our understanding of the ecological factors that drive
variation in cognition, these studies are generally limited to looking at variation in a single
cognitive trait — learning ability. This limits our understanding regarding how ecological
differences might drive variation in the overall cognitive phenotype which comprises of multiple
other cognitive traits such as risk sensitivity, neophilia, sampling tendency, impulsivity, etc. (Sih
& Del Giudice, 2012). It has been suggested that measuring how multiple cognitive traits covary
to influence behaviors may provide a more complete understanding of the link between cognitive
and behavioral variability (Griffin et al., 2015). While some recent studies have used this approach
at the intraspecific level (Keagy et al., 2009; Mazza et al., 2018; Tait & Naug, 2020), measuring
such covariation patterns across related species is key to understanding how differences in ecology

can shape cognitive differences.

Recently, both intra- and interspecific differences regarding a variety of phenotypic traits

have been described with a theoretical framework known as the Pace-Of-Life Syndrome, in which
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individuals are placed along a slow-fast axis, each end of which is associated with a suite of
physiological, behavioral and life history traits (Réale et al., 2010). It has been proposed that this
slow-fast pace-of-life axis is aligned with a slow-fast cognitive axis described by the speed-
accuracy tradeoff, which predicts fast individuals to show higher levels of learning, risk, sampling,
neophilia and impulsivity, leading them to make more rapid but somewhat more inaccurate
decisions, compared to slow individuals (Sih & Del Giudice, 2012). There is indeed some recent
evidence at the intraspecific level that links slow-fast differences in behavior and life history with
cognitive differences that correspond to slow and fast cognitive phenotypes (Tait & Naug, 2020;
Amy et al., 2012). However, it has never been tested whether a slow-fast cognitive axis comprised
of multiple cognitive traits is consistent across related species and if interspecific differences in
cognitive traits fall along a slow-fast gradient that match similar differences in behavior and life
history among them (Fig. 3.1). Interspecific comparisons of cognitive traits using such an approach
can begin to shed light on the role of ecological factors in driving the evolution of slow-fast

cognitive phenotypes.

Honeybees as a taxonomic group are an attractive prospect for such studies of comparative
cognition due to the well-established status of Apis mellifera as a model with a rich cognitive
repertoire that can be rigorously measured under both laboratory and field conditions (Menzel,
2012). The existence of interindividual cognitive variation is well-documented in A. mellifera
(Raine & Chittka, 2008; Mayack & Naug, 2012; Smith & Raine 2014; Katz & Naug, 2015; Tait et
al., 2019), variation that is known to have a significant influence on foraging performance and
other life history traits (Tait & Naug, 2020; Page et al., 2006). However, our extensive knowledge
regarding such cognitive variation is largely limited to Apis mellifera, with little known about the

cognitive traits of other honeybee species such as A. cerana, A. florea and A. dorsata (Kaspi &

42



Sharoni, 2013; Tan et al., 2015), each of which has a distinct ecology related to their nesting
behavior (Seeley, 1982). Of the tropical species, A. cerana nests in cavities similar to A. mellifera,
while A. dorsata and A. florea nest in the open, utilizing a layer of bees-commonly referred to as
the curtain-to protect the comb. Previous comparative research suggests that the need to maintain
a large worker population in the open nesting species results in longer lived workers with a slower
behavioral “tempo” than the closed nesting species. Workers of open nesting species are predicted
to be more cautious and perform behavioral tasks (e.g. foraging) at a slower rate, ultimately
reducing mortality (Dyer & Seeley, 1991; Bhagavan et al., 2016; Bhagavan & Brockmann, 2019).
It has also recently been shown that a large number of such behavioral and life history traits covary
to define slow—fast phenotypes in A. mellifera (Mugel & Naug, 2020). In this study, by measuring
multiple cognitive traits in the four species of honeybees, we therefore test whether cognitive traits
similarly covary to define a consistent slow-fast cognitive axis and distinct cognitive phenotypes
in all the species and whether any cognitive differences among them are correlated to the known

differences in their behavioral tempo, life history and nesting ecology.

METHODS

The cognitive assays with Apis mellifera were conducted with bees from colonies (N = 3)
maintained in Fort Collins, Colorado. Capped brood was extracted from a colony one day prior to
adult emergence and kept overnight in an incubator set at 32°C. Upon emergence, adults (N = 36)
were transferred to a queen-right observation hive. The assays with the three other honeybee
species were conducted with their colonies (2 colonies of A. cerana, 3 colonies of A. florea and 1
colony of A. dorsata) maintained in the campus of the National Center for Biological Sciences

(NCBS) in Bangalore, India. Due to the general propensity of A. dorsata for nesting in difficult,
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often remote, locations, it was possible to train and collect foragers from only one colony of this
species. Additionally, because the logistic difficulties of extracting and reintroducing brood to the
open nesting species, none of the foragers were not age marked. All bees used for the assays were
collected at a sucrose feeder away from the colonies, to ensure that they were foragers,
immobilized on ice, and harnessed within a plastic tube. All bees (N = 36, A. cerana: N = 17, A.
dorsata: N =41, A. florea: N = 37) was fed to satiation with 30% sucrose solution and then starved
for 24 hours in an incubator set at 27° C to increase their motivation for the following cognitive

assays.

a) Associative Learning: The associative learning ability of an individual bee was determined
using the Proboscis Extension Reflex (PER) assay. It consists of presenting a bee with an odor
(Conditioned Stimulus, CS) for ten seconds and a sucrose reward (Unconditioned Stimulus, US)
simultaneously after five seconds, resulting in an overlap of CS and US for five seconds, in a series
of trials (Bitterman et al., 1983). Our PER assay consisted of presenting each bee with six such
trials with a 5-minute inter trial interval (ITI), with hexanol, octanone, geraniol and linalool as the
CS odors used in different replicates. A bee is considered to have learned the association between
the CS and the US when it extends its proboscis (a Conditioned Response, CR) to the CS prior to

the US delivery, and the total number of CR is used as a measure of its associative learning ability.

b) Sampling and Preference for Novelty: 30 minutes following the associative learning assay,
each bee was subjected to a forced-choice proboscis extension response assay (Tait & Naug, 2020;
Shafir et al., 1999). This assay consists of presenting two different odors in four alternating 0.2 s
pulses to the subject on either side of its head, after which the individual is allowed an additional

30 seconds to sample the odors. Based on the orientation of its head and the extension of its
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proboscis at the end of the four odor pulses, a choice for one of the two odors is scored for the
subject. Using the odor that was paired with the reward during the associative learning assay as
one of the two odors and a novel odor as the other odor, preference for novelty is recorded as a
binary score (1 or 0) and the number of times an individual turned its head toward each odor during
the entire sequence of the four odor pulses provides a measure of sampling (Tait & Naug, 2020;
Katz & Naug, 2015). The pairing of each odor as the novel odor and the direction of each odor
was balanced across experimental replicates to account for any possible odor and side biases.
Following the sampling and novelty preference assay, bees were fed to satiation and maintained

in a dark incubator set at 27° C for 24 hours.

c) Preference for Variance (Risk): 24 hours after the novelty assay, a PER assay was used to
train the bees to associate two different odors with two different reward distributions. This
consisted of pairing one odor with a variable 30% sucrose reward and another with a constant 30%
sucrose reward and presenting these pairings to each bee using a micro syringe in a predetermined
pseudorandom sequence in a series of 20 trials with an I'TI of 5 min (Tait & Naug, 2020; Shafir et
al., 1999). In a trial in which the subject was presented with the odor that was paired with the
variable reward, it received either a high reward of 0.4 ul or no reward (0 pl) in a predetermined
pseudorandom sequence such that the overall probability of obtaining each reward type was 0.5.
In a trial in which the subject was presented with the odor paired with the constant reward, it
always received a 0.2 ul reward. Therefore, both the constant and the variable reward distribution
had a mean of 0.2, but the variable one had a coefficient of variation (CV) of 100. The preference
for variance for an individual was calculated as the number of times it extended its proboscis to

the variable reward, divided by the total number of times it responded to the two rewards.
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Statistical Analysis

Generalized linear models were first used to test for the effects of the different odors used
and the direction of odor presentation wherever applicable. Generalized linear models were used
to test for differences in each of the four cognitive traits across the four species. A principal
component analysis (PCA) was then performed separately for each species to determine the
covariance among the four different cognitive traits within each species and if such a covariance
pattern could be used to define a cognitive axis (R package stats). All data were mean-centered
and standardized for PCA analysis. A canonical variate analysis (CVA), which determines the
association between multiple variables and can maximize the separation between a priori defined
groups in a multivariate space, was then used to group the four species according to their
performance on the four different cognitive traits (R package Morpho). The first two canonical
variate components for all the individuals were then represented as a bivariate scatterplot and the
centroid for each species was calculated as a geometric mean of all the individuals of that species.
While both PCA and CVA are similar techniques that are used in multivariate analysis to reduce
the number of variables, CVA maximizes the variance explained between groups (in this case,

species) while PCA maximizes the variance explained among individuals (Carter & Feeney, 2012).

A multi-response permutation procedure (MRPP, R package vegan), a technique that
calculates whether there is a difference between defined groups (species here) was used to
determine the extent of cognitive dissimilarity among the four species. Groups that are clustered
in multidimensional space have lower average distances, §, to their group centroid than their inter-
group centroids, and therefore are dissimilar to the other groups. To assess the fit of each individual

to its a priori defined group, the group membership of each individual was randomized in each
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permutation and the resulting 6 values (8exp) were compared to the observed § (dobs) to calculate a
p-value. Within group agreement, A, was calculated as 1-(8obs)/ (dexp) to measure how well the
individuals fit within their respective groups. If A is 1, all individuals within a group are identical,

and it is O if all individuals behave randomly. All analyses were performed in R version 3.4.1.

RESULTS

An analysis of variance (ANOVA) revealed significant differences in associative learning
(F3,127 =10.6, P < 0.001) and sampling frequency (F3,127 = 7.53, P < 0.001), but not in preference
for novelty (y%3,127 = 5.54, P = 0.13) or preference for risk (F3,127 = 1.77, P = 0.15) among the four
species (Fig. 3.2). In general, the A. cerana and A. florea were more similar to each across all four

tasks than to A. dorsata or A. mellifera.

PCA Analysis

The variance explained by the first two principal components was similar in each of the
four species (Table 3.1). The covariance structure among the different cognitive traits, defined by
the positive or negative loadings that described the first principal component, was also largely
similar. On average, preference for novely had the highest loading (0.56), followed by associative
learning (0.48), sampling (0.43) and risk preference (0.38). The covariance among these three traits
were also consistent in three of the four species, showing a positive covariance between preference
for novelty and associative learning and their negative covariance with sampling. A. dorsata
showed a different covariance structure with preference for novelty negatively covarying with both
associative learning and sampling. The covariance structure among the traits in the second

principal component was much more inconsistent across the four species.
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CVA Analysis

The covariance structure revealed by the CVA analysis mirrored the one from the PCA
analysis to some extent with the first canonical variate showing a positive covariance between
preference for novelty and associative learning, but both showing a negative covariance with
preference for risk (Table 3.2). Based on the first canonical variate, the largest differences between
the species are defined by their preference for risk and their associative learning ability, resulting
in two distinct clusters of species, with one group composed of A. florea and A. cerana showing
higher risk preference and lower associative learning ability compared to the other group
comprised of A. dorsata and A. mellifera (Fig 3.3A). The MRPP supported the presence of these
two distinct groups of species (Fig. 3.3B) that differed significantly in term of their cognitive traits

(MRPP: A =0.08, observed 6 = 3.97, expected § = 4.24, P < 0.01).

DISCUSSION

Out results, albeit in only four species, indicate that there is evidence of a similar suite of
covarying cognitive traits in the four honeybee species. The slow-fast cognitive axis observed here
is based on a positive covariation between associative learning ability, preference for novelty and
risk, which meets the predictions of a speed-accuracy tradeoff (Sih & Del Giudice, 2012), and
results in ‘slow’ and ‘fast’ cognitive phenotypes that were also earlier seen independently in A.
mellifera (Tait & Naug, 2020). In this cognitive axis, high associative learning and high preference
for novelty and risk define a ‘fast’ cognitive phenotype, while low associative learning and low
preference for novelty and risk define a ‘slow’ cognitive phenotype (Sih & Del Giudice, 2012).

Although A. dorsata exhibited slight differences regarding this axis, the overall relationships
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between the cognitive traits remained surprisingly consistent across the different species. The
repeated presence of slow and fast cognitive phenotypes in the different species lends support to
the consistency of such a cognitive axis and indicates a likely adaptive basis to this phenotypic
diversity. Among honeybee foragers, two behavioral phenotypes have been described: scouts that
gather information and recruits that use that information (Seeley, 1983), which are thought to be
functionally equivalent to producers and scroungers (Katz & Naug, 2020). These two foraging
types are also characterized by differences in learning abilities such that scouts perform better on
learning tasks (Carr-Markell & Robinson, 2014; Cook et al., 2019). Although we did not measure
foraging behavior, it is possible that foragers with a fast cognitive phenotype more frequently adopt
scout behavior than slow bees. This could have important implications for fitness as a positive
effect of cognitive diversity have been reported in a foraging context in honeybees (Dyer et al.,

2014)

We also found evidence in support of a scenario in which each honeybee species occupies
a unique position on this cognitive axis such that some species are relatively slow and some are
fast. However, it is interesting that the covariance structure at the within-species level was not fully
consistent with the one at the between-species level where the strength of association between
associative learning and risk preference was weaker. The higher importance of risk in driving the
interspecific differences in cognition suggests that future research should closely examine the
relationship between risk-preference and the ecology of these species, especially since honeybees
have been found to modulate their foraging behavior in response to predation risk (Reader et al.,
2006; Tan et al., 2013). While the relationship between risk-prone decision-making with regard to
resource variability and risk-prone foraging has not been explored, it is interesting to consider that

a similar cognitive mechanism may underlie these traits and further research is needed to better
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understand how individuals interpret risk in different contexts. The four species also did not align
on the slow-fast cognitive axis as what would be predicted based on the known differences in

behavior and life history among them, which are in turn correlated to their nesting ecologies.

Based on their longer worker lifespan that in turn is associated with lower mortality, it has
been suggested that the open nesting A. dorsata and A. florea, are the two ‘slow’ species compared
to the cavity nesting A. mellifera and A. cerana, the two ‘fast’ species (Dyer & Seeley, 1991). Our
results however indicate that it is A. cerana and A. florea which cluster together as a group that is
significantly more risk-prone than A. mellifera and A. dorsata. If nesting ecology is not correlated
to the observed cognitive differences among the four species, it becomes important to consider
other differences among them such as body size and metabolic rate that are considered important
in driving slow-fast phenotypic differences (Réale et al., 2010; Biro & Stamps, 2008). However,
metabolic rate is an unlikely explanation for the observed cognitive differences because
differences in metabolic rate are also correlated to nesting ecology with the two cavity nesting
species showing higher mass specific metabolic rate than the two open nesting species (Dyer &

Seeley, 1991).

In terms of body size, A. dorsata and A. mellifera are significantly larger than A. cerana
and A. florea (Dyer & Seeley, 1991). Related to the possible influence of these size differences,
but one that is more pertinent to cognition, is an interesting difference among the four species in
terms of brain size that is correlated to the observed difference in their cognition. Using the data
of Gowda & Gronenberg (2019) collected at the Indian Institute of Science in Bangalore, India,
and comprised of absolute brain volumes collected via dissection and imaging a cluster analysis

of the absolute brain volume of each species (A. dorsata, N =8, A. florea N =8, A. cerana, N =
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8, A. mellifera, N = 8) results in two distinct clusters where the two larger species have significantly
larger brain size than the two smaller species (Kruskal Wallis rank sum test: y% 31 = 22.51, P <
0.001, Fig. 3.4). The two species with significantly larger brains, A. mellifera and A. dorsata, are
the species which are more risk-averse and show higher associative learning, compared to A.
cerana and A. florea, which have smaller brains. While differences in brain size among the four
species can be attributed to isometric scaling related to their differences in body size, some recent
evidence suggests that absolute brain size may be a better predictor of performance on cognitive
traits than brain size corrected for body mass, especially among closely related species (Deaner et
al., 2007; Herculano-Houzel, 2011; MacLean et al., 2014). While the relationship between brain
size and specific cognitive traits is not well-known, the positive relationship between brain size
and learning ability observed here has been widely reported (Reader & Laland, 2002; Buechel et

al., 2018; but see Chittka & Niven, 2009; Lihoreau et al., 2012).

In social insects, spatial learning and sensory ecology related to foraging is known to have
played a significant role in the evolution of brain size (Farris, 2016), and there is evidence that
increased experience processing visual information increases the size of mushroom bodies, the
neural regions responsible for higher order cognitive processing (Durst et al., 1994). In line with
this hypothesis, there are large differences in foraging habit among the four honeybee species
(Seeley, 1982; Dyer & Seeley, 1991). Of the two species with larger brains, A. mellifera inhabits
a more ephemeral foraging environment, known to be correlated with increases in brain size (Roth
& Pravosudov, 2009; Roth et al., 2010), while A. dorsata has a much larger foraging range relative
to A. cerana and A. florea. It is therefore possible that the complexity of foraging environment has

played a role in the observed differences in brain size and cognitive traits among the four honeybee
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species. Although we measured olfactory learning, not visual, it is intriguing to hypothesize that
the demands of synthesizing multi-faceted environmental cues (visual, olfactory, tactile) may have
impacted cognitive ability of these species. The role of ecological factors such as foraging in
complex spatiotemporal environments on the evolution of brain size is a major question in
cognitive ecology (Sherry et al., 1992; Rosati, 2017; Tello-Ramos et al., 2019), although we know
little about such relationships in these various honeybee species and it would be interesting to

investigate how foraging ecology shapes the specific traits comprising the slow-fast cognitive axis.

In summary, our results demonstrate that different cognitive traits covary consistently in
the four honeybee species and largely meet the predictions of the speed-accuracy tradeoff. The
covariance among these cognitive traits that result in slow-fast cognitive phenotypes within each
species may reflect selection for cognitive diversity in colonies, and future research should explore
how such differences relate to colony performance in these four species. We found partial support
for the hypothesis that there are slow-fast cognitive differences among the four species, but these
differences were not correlated to the known differences in behavior, life history and nesting
ecology among them. Instead, we propose that these differences in cognitive traits among the four
species may, in part, be explained by differences in their brain size and foraging ecology. Future
research could explore the specific ecological factors that influence cognitive differences among

the four species and how they translate to differences in their behavior and life history.
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TABLES

Table 3.1. Principal components with eigenvalues = 1 and their rotated component loadings, and
the percentage of total variance explained for each species.

A.mellifera A. cerana A. dorsata A. florea

Trait PCl1 pC2 | PC1 |[PC2 |PCl |[PC2 |PCl | PC2

Associative Learning 0.51 -0.17 1057 | -0.23 | -0.21 |-0.76 | -0.63 | 0.37

Sampling -0.27 1088 |-0.54  -0.37 |-0.65 |0.13 |0.28 |0.55

Preference for Novelty 0.55 038 (035 | -0.78 [0.65 |0.08 |-0.69 |0.06

Preference for Risk 0.59 020 | -048 |-042 1032 062 |-0.16 -0.74
Variance explained 0.48 024 046 (025 (049 [0.27 036 | 0.27
Eigenvalue 1.95 097 184 |1.01 |1.67 |1.08 |145 | 1.10
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Table 3.2. The two canonical variates and their representative behaviors.

Cognitive Trait CVv1l Cv2
Associative Learning -0.52 -0.31
Sampling 0.19 -0.21
Preference for Novelty -0.23 -1.26
Preference for Risk 1.39 -0.82
% Variance Explained 0.95 0.04
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Figure 3.1. Possible alternative models describing the position of individuals from three
hypothetical species along a slow-fast cognitive axis described in a two-dimensional cognitive
trait space, where small dots of different colors represent individuals of different species and
large dots represent the respective species means. Model A depicts a scenario where individuals
of each species are similarly distributed along the entire slow-fast cognitive axis while model B
depicts a scenario where individuals of each species occupy a unique position on the cognitive
axis such that some species are relatively slow and some are relatively fast in terms of their
cognitive phenotype.
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Figure 3.2 A-D. Cognitive differences among four honeybee species (A. mellifera: N = 36, A.
cerana: N = 17, A. dorsata: N = 41, A. florea: N = 37) in terms of a) associative learning, b)
sampling frequency, c) preference for novelty, and d) preference for risk. Bars represent mean +
SE with significant differences shown with different letters. (Pos-hoc comparisons in Table A3.1).
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Figure 3.3. The position of the four honeybee species in a multivariate cognitive trait space defined
by two canonical variates and represented as, (A) a bivariate plot where each smaller point
represents an individual honeybee and the four larger points indicate the respective centroids for
each species (A. mellifera: purple, A. dorsata: green, A. florea: blue, A. cerana: pink), and (B) a
dendrogram using mean distances between species in the cognitive trait space, where horizontal
lines indicate mean dissimilarity between species while length of termini indicate dissimilarity of
a species within the cluster, with termini pointing upward indicating species that are more
heterogenous than the combined cluster.
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Figure 3.4. Brain volume differences among four species of honeybees, with points representing
individuals. Brain volume for each species was derived from the dataset of Gowda & Gronenberg,
(2019).
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CHATPER 4

Interindividual variation in use of social information on a learning task regulates the speed-

accuracy trade-off in honeybee foragers

INTRODUCTION

Animals can acquire information about their environment through either personal
experience (individual learning) or by observing their social conspecifics (social learning). The
propensity of an individual to use these two types of information has largely been modeled based
on an economic analysis of both (Kendal et al. 2005). Personal information, while being more
reliable, is likely to be more costly to acquire than social information (Laland et al. 1993, Laland,
2004). However, social information may be scarce and conflict with personal information,
reducing its value (Giraldeau et al., 2002, Rieucau & Giraldeau, 2011). While the research on
social learning has mostly focused on whether animals possess the cognitive ability to learn from
tutors, what is more often overlooked is that there could be individual differences in the propensity

to use these two types of information.

The recent interest in interindividual variation in various levels of phenotypic traits in terms
of a slow-fast axis (Sih et al., 2004; Réale et al., 2010) has led to the proposal that such an axis is
largely derived from a speed-accuracy tradeoff in decision-making (Carere & Locurto, 2011;
Dougherty & Guillette, 2018; Sih & Del Guidice, 2012). This is based on the idea that more
immediate rewards can result from fast decisions even though they are subject to lower levels of
accuracy while slower, more accurate decisions can lead to gains in the longer term at the cost of

immediacy. In this framework, fast individuals are predicted to show higher performance on
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learning new tasks with lower levels of sampling, but which also leads to slower reversal learning
and poor retention, relative to slow individuals (Sih & Del Guidice, 2012). While there is some
recent empirical evidence that supports the existence of such fast and slow cognitive phenotypes
and how they correlate to differences in other phenotypic traits (Guillette et al., 2009; Bebus et al.,
2016; Mazza et al., 2018; Tait & Naug, 2020), whether these different cognitive phenotypes also
differ in their ability to utilize personal and social information remains largely unknown. The usage
of these two types of information, which have different costs associated with them, might also lead
to differences in the dynamics of the speed-accuracy trade-off between individual and social

learning, although, to the best of our knowledge, this has never been explicitly addressed.

The preferential use of social information is predicted to correlate to the propensity of an
individual to engage in prosocial behavior, and a few studies have documented individual
differences in the tendency to use either social or personal information (Rosa et al., 2012).
However, whether these tendencies are also part of the differences between slow-fast cognitive
phenotypes is poorly understood. Since behavioral traits that are associated with cognitive
differences have been shown to impact social information use (Boogert et al., 2006), it is
interesting to ask if there is interindividual variation in these two types of information use and if
the parameters of individual and social learning differ in a manner that leads to differences in the
speed-accuracy tradeoff between these two contexts. In social groups, the usage of these two types
of information, and thereby two different modes of learning, is likely to be correlated to the
phenotypic variation between producers and scroungers, leading individuals to occupy distinct

social roles (Katsnelson et al., 2011; Aplin & Morand-Ferron, 2017).
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In honeybees, the two well-known behavioral phenotypes, scouts and recruits, which are
analogous to producers and scroungers, differ in their use of personal and social information when
making foraging decisions (Katz & Naug 2016). More recently, it has been shown that these two
behavioral phenotypes might also be correlated to the two cognitive phenotypes on the slow-fast
axis that is associated with differences in learning abilities (Tait & Naug 2020). Honeybees are
known to be adept at individually learning complex combinations of various parameters such as
color, shape and patterns to discriminate rewarding and unrewarding flowers in a foraging context
(Menzel & Giurfa 2001; Giurfa, 2015). Surprisingly, whether they show social learning in a similar
context has not received as much attention. The use of social information during foraging in a
patch is, however, well documented in many other social insects (Leadbeater & Chittka 2007a),
even though there is little information regarding whether there is any individual-level variation in
these two types of information usage and thereby two types of learning. In this study, by measuring
the learning rate and accuracy of individual honeybee foragers on a discrimination task in both an
individual and a social context, we therefore tested a) if there is a difference in the speed-accuracy
trade-off between these two contexts, and b) if there is individual-level variation among honeybees

in terms of how they differ in their individual and social learning abilities.

METHODS

The bees used in the experiment came from 4 source colonies of the honeybee, Apis
mellifera. Brood frames with pupae were collected one day prior to adult emergence and kept in
an incubator set at 32° C. Upon emergence, individual adult bees were marked with paint on their

thorax and introduced into an experimental hive that consisted of two brood frames, a full honey
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frame, a laying queen and workers, and was located in a dark room, connected to the outside with

a tube.

Individually marked foragers were trained to a small foraging arena within an enclosure
constructed of PVC pipes and clear, plastic curtain on all sides with an entrance flap such that one
bee at a time could be introduced and made to forage in the arena so that the performance of each
bee could be tested without the influence of other bees. The foraging arena consisted of 20
randomly placed artificial flowers, each filled with 20uL of either 30% sucrose solution (rewarding
flower) or water (unrewarding flower). The rewarding and unrewarding flowers were each
assigned a different color (pink, blue, yellow, purple), which was randomized across different
replicates to control for any color bias. Between successive foraging bouts, the flowers were puffed
with pressurized air to clean them of any odor cues left by a foraging bee and were refilled using

an automated mechanism.

For each foraging bout by a bee in the arena, its visits to the two types of flowers were
recorded. A bee could visit as many flowers as it wanted in each bout and was allowed to end each
bout when it chose to exit the arena to return to the hive. The first 20 visits to the different flowers
by a bee were recorded, which usually required 3-5 foraging bouts, following which the bee was
excluded from the arena, so that the choice behavior of different bees could be compared on a
similar scale. Visits to the rewarding color flower were considered correct decisions while visits

to unrewarding flowers were incorrect decisions.

Using this choice assay, each bee was sequentially presented with two different learning
tasks, an individual learning task and a social learning task. In the individual learning task, the bee

made the choice between the two flowers on its own while in the social learning task the bee made
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the choice aided by an additional social cue - a single model (dead) bee attached to one of the
rewarding flowers, based on the experimental design of Leadbeater & Chittka (2007b). Once a bee
completed one learning task, the colors of the rewarding and unrewarding flowers were both
changed to two new colors and the bee was presented with the other learning task. A bee completed
the two learning tasks over two days, one task per day, and the order of the two learning tasks was

randomized across individuals.
Statistical Analysis

For every individual, the raw data consisted of 20 successive choices between rewarding
and unrewarding flowers in each of the two learning tasks. From these data, a learning curve was
created for each bee on each task by calculating an accuracy index for each of the 20 flower visits
as the proportion of correct choices for the rewarding flowers in the 5 visits up to and including
that visit (Leadbeater & Chittka, 2007b). A logistic function was then fit to this moving accuracy
index against flower visit number (Prism 9, Graphpad software) to calculate the learning

parameters for each bee on each task,

Y
f()C) = 14 e(—kx)

where and Y is the maximum accuracy, x is the flower visit number, k is the slope of the learning
curve, and 1/k is the inflection point, which we define here as a measure of latency to learn (see

Fig 4.1. as an example).

Linear mixed models were used to test for any differences in the learning rate, latency and
maximum accuracy between the individual and social learning tasks where one of the three

learning parameters was the response variable, task (individual or social) was the predictor and
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bee identity, age and colony of origin were random effects. To determine how learning rate and
latency affected maximum accuracy, two separate linear mixed models were used, one for
individual learning and one for social learning, where maximum accuracy was the response
variable with either learning rate or latency as the predictors and age and colony of origin as
random effects. Finally, Pearson’s correlations were used to determine whether performance on

each of the three learning parameters were correlated between the individual and social contexts.

RESULTS

Linear mixed models revealed significant differences in maximum accuracy (x> = 18.49, P
<0.001), but there were no differences in learning rate (x> = 0.92, P = 0.33) or latency (3> = 0.03,
P =0.84; Fig. 4.2) between the individual and social learning tasks. Maximum accuracy was higher

on the social learning task than the solitary learning task.

For the individual learning task, learning rate negatively affected maximum accuracy (> =
9.74, P = 0.001, Fig. 4.3A) and latency had a positive effect on maximum accuracy (x> = 4.04, P
= 0.04, Fig. 4.4A). However, for the social learning task, there was no significant relationship
between learning rate and maximum accuracy (x> = 1.02, P = 0.31, Fig. 4.3B) or latency and

maximum accuracy (x* = 1.15, P = 0.28, Fig. 4.4B).

There was a significant negative relationship in the maximum accuracy acquired in the two
learning contexts (r = -0.46, t143=3.42, P = 0.001, Fig. 4.5), and bees that had high accuracy on
the individual learning task had low accuracy on the social learning task and vice versa. None of

the two other learning parameters showed a significant relationship between the individual and
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social contexts (Learning Rate: r = 0.01, t143 = 0.06, P = 0.94; Latency: r =-0.03, t; 43 =0.18, P =

0.86).

DISCUSSION

Our results provide support for a context dependent speed-accuracy trade-off in individual
honeybees that may also reflect the existence of two distinct cognitive phenotypes composed of
individuals that prioritize different types of information during foraging. To the best of our
knowledge, this is the first demonstration of interindividual variation in the expression of a speed-
accuracy trade-off in two different learning contexts. Foragers differed in the rate of learning and
latency to learn, which likely reflects sampling, such that those with a slow learning rate and more
extended sampling had higher maximum accuracy than those with a fast learning rate and shorter
sampling. This trade-off between learning rate and accuracy was however only expressed during
the individual learning task and not during the social learning task. We also found that the
maximum accuracy on the individual and social learning tasks constituted a trade-off such that
foragers which acquired high accuracy on the individual learning task had low accuracy on the
social learning task, and vice versa, and that maximum accuracy on the social learning task was

greater than the individual learning task.

The relationship of learning rate and sampling with maximum accuracy demonstrated here
meets the predictions of the speed-accuracy trade-off (Chittka et al., 2003). However, since this
relationship was only observed for the individual learning task and not the social learning task,
and that maximum accuracy was greater on the social learning task than the individual task,
suggests that individual learning may be more difficult than social learning (Laland, 2004; Kendal

et al., 2005). This increased difficulty, requiring more effort both in terms of time and energy,
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during individual learning leads to the steep trade-off observed here, while an environment with
available social information seems to reduce the costs of learning, uncoupling the negative
relationship between speed and accuracy. Previous work has demonstrated that as the complexity
of foraging tasks increase, the costs associated with the use of personal information also increase,
and foragers rely more heavily on any available social information (Saleh et al., 2006; Kawaguchi
etal., 2007; Wray et al., 2012; Smolla et al., 2016; Baracchi et al., 2018). In scenarios of increasing
complexity where social information is not available, individuals will either spend more time
gathering information (Chittka et al., 2003) or suffer decreases in accuracy (Wang et al., 2018).
We believe that the difficulty level between our two learning tasks was significantly different, and
only during the more difficult challenge of the individual learning task did the behavior of the bees
reflect a speed-accuracy trade-off. Future research should explore how honeybee foragers flexibly
manage the speed-accuracy trade-off and in what circumstances they adjust their behavior to suit

the challenge of the learning task.

The trade-off we observed in maximum accuracy on the two learning tasks suggests that
individual honeybee foragers prioritize different types of information when making decisions.
Such differences may reflect unique cognitive strategies among foragers and previous work in
honeybees has identified two distinct cognitive phenotypes that are characterized by differences
in several correlated cognitive traits. Fast individuals exhibit enhanced performance on associative
learning tasks and are risk-prone and neophilic, relative to slow individuals (Tait & Naug, 2020).
Although it is still unclear as to how sociality and social information use correlate to these different
cognitive phenotypes (Sith & Del Guidice, 2012; Dougherty & Guillette, 2018), individuals that
sample less and pay more attention to conspecific behavior are more likely to use social

information while making decisions (Rosa et al., 2012). The prioritization of personal information

70



on the other hand is predicted to be a consequence of more frequent and thorough exploration of
the environment (Kurvers et al., 2010), which is likely to increase performance on individual
learning tasks. The results from this study therefore suggests that fast cognitive phenotypes are
more likely to prioritize personal information and engage in more individual learning while slow

cognitive phenotypes will rely more on social learning.

In a social group such as the honeybee colony, the preferential use of one type of
information may also relate more widely to distinct social roles. There are two well-documented
behavioral phenotypes among honeybee foragers, scouts that explore their environment, gathering
new information about resources, and recruits that use that information (Seeley, 1983; Biesmeijer
& Vries, 2001), which are therefore functionally equivalent to producers and scroungers (Katz &
Naug, 2016). A significant positive correlation between the performance of an individual on an
individual learning task and its tendency to act as a producer is well documented (Katsnelson et
al., 2011). Previous work in honeybees has demonstrated that scouts and recruits differ in
performance on a variety of learning tasks (Cook et al., 2019; Carr-Markell & Robinson, 2014)
though the performance of these two phenotypes on individual and social learning tasks has not
been explicitly tested. Although this study did not identify the tested subjects in terms of whether
they were scouts or recruits, one would predict that scouts would prioritize their own information
and do better in individual learning tasks while recruits would do better in exploiting social
information. It would also be interesting to ask how interindividual variation in using these two
types of information, and therefore performance in these two types of learning, would influence
performance at the group level. A more challenging or scarce environment may enhance the value
of producing new information that rely on individual learning while a more benign or rich

environment may lead to ample availability of social information and the opportunity to use it. In
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a social context such as that of a honeybee colony, the frequency of these two cognitive phenotypes

would therefore interact with the resource environment to determine colony fitness.

At the proximate level, variation in social role among honeybee workers is known to be
linked to differences in neurotransmitters. High concentrations of octopamine are reported to
correlate to a higher propensity to engage in scouting, increased frequency of dance behavior and
better performance on associative learning tasks (Scheiner et al., 2006; Barron et al., 2007; Liang
etal., 2012) and it would be a logical next step to ask if octopamine is also involved in determining
the prioritization of personal or social information and flexibly regulating it based on the social
and physical environment of an individual. Since individual and social learning also seem to incur
different amounts of energetic costs on the individual, it would be also interesting to determine if
these two cognitive phenotypes differ in their rates of energy use, or metabolic rate, which is the
other fundamental variable that has been found to underlie the differences between slow-fast

phenotypes (Reale et al. 2010), including those in honeybees (Mugel & Naug 2020).

In summary, our results demonstrate that individuals experience a speed-accuracy trade-
off while learning a discrimination task in a foraging context, but this relationship is context
dependent, only occurring during individual learning, and not social learning. Honeybee foragers
also significantly differed in whether they prioritized individual or social information, which may
reflect the existence of two distinct cognitive strategies that contribute to a larger slow-fast
cognitive axis. Insight into how individual differences in information usage translate to social roles
in the honeybee colony would help connect the known interindividual variation in cognitive traits

to important behavioral traits that determine colony performance and fitness.
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Figure 4.1. Example of individual learning curves for two different bees, where different shapes
represent empirical data points and the lines represent the fitted logistic functions. Note the
differences in slope (learning rate), inflection point (latency to learn), and maximum accuracy
(asymptote) between the two bees.
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Figure 4.2. Maximum accuracy and learning rate on the individual and social learning task for all
bees (N = 45). Bars represent means + SE.

74



1.0 ® A 1.0] e B

.

Z

E 0.8] o os|l

<

< 0.6]

= 0.6 ﬁo cop

2 04 - e S

= )

é 0.2] 0415 ¢ o °
S L

0.0 L 0.2] e
0.0 0.3 0.6 0.9 1.2 1.5 1.8 00 03 06 09 1,

Learning Rate Learning Rate

Figure 4.3. Relationship between learning rate and maximum accuracy for A) individual learning
(y = 0.50 — 0.19x) and B) social learning (y = 0.53 — 0.07x) tasks, with dots representing data
points for individual bees and the lines representing the regression equations.
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bees and the lines representing the regression equations.
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APPENDIX
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Figure Al: The two maze configurations used in Experiment 1, with the dark green boxes
representing decision boxes and light green and white boxes representing non-decision boxes. The
green line represents the path through the maze which led to the reward and the red line represents
the paths that lead to dead ends. Maze 1 had two decision boxes while Maze 2 had three decision

boxes.

Start

81

Start




Table A3.1. Post-hoc comparisons of all cognitive traits among the four honeybee species with
mean standard differences (MSD) and 95% confidence intervals in parentheses, significant
differences are given in bold letters.

Associative Sampling Preference for | Preference for Risk
Learning Frequency Novelty

A. dorsata X P <0.001 P=0.01 P=0.12 P=0.63

A. cerana MSD = 1.81 MSD =2.57 MSD =0.31 MSD =0.10
(0.81, 2.81) (-4.78, -0.37) (-0.05, 0.68) (-0.34,0.12)

A. florea X P=0.63 P=0.96 P=0.67 P=0.95

A. cerana MSD =0.46 MSD =141 MSD =0.16 MSD =0.04
(- 0.54,1.47) (-1.82, 2.66) (-0.21, 0.54) (-0.19, 0.28)

A. mellifera X A. | P =0.01 P=047 P=0.28 P=0.90

cerana MSD =1.16 MSD =1.25 MSD =0.26 MSD =0.06
(0.15, 2.18) (-3.50, 1.00) (-0.11, 0.64) (-0.30, 0.17)

A. dorsata X P <0.001 P <0.001 P=0.54 P=0.12

A. florea MSD =1.35 MSD =2.99 MSD =-0.15 MSD =0.15
(-2.13, -0.56) (1.25,4.73) (-0.44,0.14) (-0.02, 0.34)

A. mellifera X A. | P=0.14 P=0.20 P =0.96 P=091

dorsata MSD =0.64 MSD =1.32 MSD =-0.05 MSD =0.04
(-1.43,0.14) (-0.42, 3.07) (-0.34, 0.24) (-0.14, 0.23)

A. mellifera X A. | P=0.11 P=0.07 P=0.84 P=0.43

florea MSD =0.71 MSD =-1.66 MSD =0.09 MSD =-0.11
(-0.10, 1.51) (-3.46, 0.12) (-0.20, 0.39) (-0.30, 0.08)
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