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ABSTRACT

A CONSTRAINED OPTIMIZATION MODEL FOR PARTITIONING

STUDENTS INTO COOPERATIVE LEARNING GROUPS

The problem of the constrained partitioning of a set using quantitative relationships

amongst the elements is considered. An approach based on constrained integer programming

is proposed that permits a group objective function to be optimized subject to group quality

constraints. A motivation for this problem is the partitioning of students, e.g., in middle

school, into groups that target educational objectives. The method is compared to another

grouping algorithm in the literature on a data set collected in the Poudre School District.
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1 Introduction

Arranging students into groups for various purposes is commonly done throughout the realm

of education. There are many reasons to form such groups, but we will focus on those

where friendship formation is the primary concern. For example, some researchers wish to

address the problem of school disengagement by promoting healthy relationships for at-risk

students. Groups are formed to do team-building activities with the goal of maximizing

friendship formation, and thus raising the level of school bonding. In order to achieve this

goal, one would need to have way to measure the likelihood of friendship formation for a

set of students. In this paper, we use information gathered about the students’ values and

interests, and make the assumption that similarity in values and interests implies a higher

probability of friendship formation.

One may also wish to place additional constraints on how these groups are formed. For

example, in the group formation problem that spurred the development of the methods

described in this paper, it is required that groups contain no more than one student with

disciplinary history. There are many such constraints that are required for the project in

question. Several methods are currently employed for finding such groups but, in contrast

to the approaches proposed here, they have limited ability to handle constraints.

Given information about the social network and student values and interests profiles, one

can do a simple ’nearest neighbor’ approach as described by [2]. They developed a method

with the goal of raising the level of school bonding of students that are identified as at-risk

by forming groups with high probability of friendship formation. The algorithm described is

for forming groups of size four. The at-risk students are held back from joining groups until

the final step. First, students are selected to seed the groups. Then, pairs are formed one

at a time by identifying the best match between the seeds and the remaining students. A

third student is added to each group in the same way. Finally, the at-risk students are added

to the groups in the same way. They also tried a slight variation to this algorithm, where

instead of systematically picking the best matches, during each round they eliminated the
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worst ones one at a time until the next additions were determined. In this algorithm, the

only type of constraint that is implemented is the separation of certain subsets of students.

In fact, they can separate at most four types and it’s unclear what to do if a student counts

as more than one of these types.

A more sophisticated method was developed by [5] and has been implemented as an open

source web-based tool known as Teammaker. However, extensive changes were required to be

applicable to the problem studied in this paper. In fact, we were able to modify Teammaker

to fit the problem at hand and increase its speed significantly. For this algorithm, a score

function is developed to rank the quality of a particular group. The score function contains

all of the information about values and interests as well as punishments for the constraints.

The algorithm involves first grouping the students randomly and then performing pair swap

operations between groups. A swap is kept if it improves the minimum score of the two groups

in question. By placing the constraints in the objective function, there is no guarantee that

the solution will satisfy them, so each constraint must be checked. Also, the algorithm

doesn’t converge to the global maximum. It will instead converge to some local maximum

determined by the initial conditions. Thus different starting conditions must be explored to

ensure a high quality solution.

In this paper we present a new two-phase method for forming student groups subject to

a wide variety of constraints. In phase 1, we apply a technique called latent class analysis

(LCA) to identify abstract classes of students based on the values and interests data. Each

student is assigned a probability of membership to each class. In phase 2, we formulate

a binary integer program to form the groups. The objective function is crafted from the

probabilities that come from the LCA. We will see that a wide variety of constraints for

grouping problems, can be transformed into linear constraints on this binary integer program.

The advantages of the proposed method over prior algorithms include its ability to handle

a large number of constraints with ease, a guarantee that constraints will all be satisfied

on the first try, even if we have to exit the optimization early due to time restrictions, and

the objective function has a nice interpretation to intuitively understand the quality of a
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solution. We will also describe the modifications made to Teammaker in order to have an

alternative method to solve the same problem.

In Section 2, we investigate the principle assumption used in constructing optimal groups.

In Section 3, we describe the new integer programming approach to define and search for an

optimal grouping. In Section 4, we describe a variation of (teammaker citation) Teammaker

method to give a slightly different definition of an optimal grouping and to find a solution.

In Section 5, we compare the two methods and evaluate the pros and cons of each. Finally, in

Section 6, we summarize the contents of the paper and make suggestions for future research.
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2 Preliminary Analysis

2.1 Causality Assumption

Before we begin to develop a method that groups middle school students based on individual

values and interests, it would be prudent to first examine the assumption that students with

similar values and interests are more likely to become friends. We have a sample data set

of 267 students that contains an attribute matrix and a friendship matrix. The attribute

matrix contains the results of a survey where students ranked 27 values and interests on a

scale of 1 (not important) to 5 (very important). Element Aij in the friendship matrix is

a value between 0 and 5 indicating how strong of a bond student i feels with student j. A

value of 0 indicates that no bond is present and a value of 5 indicates a very strong bond.

To evaluate our assumption that friendships are formed between students with similar

attributes, we will check how many friendships are predicted by a latent class clustering and

compare this to an unrestricted k-means clustering and a random clustering. An R package

called ’mclust’ [1] allows us to obtain the probabilities of membership for each student to

any given number of latent classes. We can then assign each student to his most likely latent

class. R has a built-in function, ’kmeans’ and for the random clustering, we can use the

nested functions ’floor(runif()).’

Once we have a clustering, we can check to see how many pairs of friends were placed in

the same group. We define a friendship between students i and j to mean that each student

gave the other a score of at least 4 in the friendship matrix. Since the k-means algorithm

is not optimal and the outcome depends on the arbitrarily chosen starting point, we will

run it many times and average the results. Also, we need a baseline with which to compare

these clusterings. For this reason, we will also create a randomly generated clustering of the

students into k groups and compute the number of predicted friendships. If our assumption

is valid, then the latent class clustering and k-means clustering should consistently predict

more friendships than a random clustering.
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Figure 1: Friendships predicted by different clustering methods

Figure 1 shows the result of this analysis on our sample data set. For each k we took 50

each of k-means and random clusterings and averaged the proportions of predicted friend-

ships. It is clear in the plot that latent class clustering and k-means clustering are consistently

better at predicting friendships than random clustering. We conclude that similarity in val-

ues and interests is correlated with friendship. The question of causation remains unresolved

because we have not determined if similarity induces friendship or if friendship induces sim-
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ilarity. This analysis does not rule out the possibility that similarity induces friendship so

we will continue to make that assumption.

It is not clear from Figure1 that latent class clustering advantageous over k-means. How-

ever, we are comparing one latent class clustering to an average of many k-means clusterings.

The value of any individual k-means clustering can vary significantly. Also, k-means does

not have a nice way of enforcing constraints. The LC probability matrix allows us to design a

constrained optimization problem whose objective function has a nice interpretation. In ad-

dition, latent class analysis has been found to significantly outperform k-means at identifying

subgroups in a population [4].

2.2 Combinatorial Complexity

Before searching for solutions to the problem, it would be enlightening to know the approx-

imate size of the space we must search. Consider the simplified problem: How many ways

are there to partition N students into groups of size 4, assuming 4|N?

Working this problem out, we find that the number of partitions is given byN !/(24
N

4 (N
4
)!).

The numerator grows much faster than the denominator, therefore this number blows up

rapidly. In fact, even for the relatively small problem of N = 40, we find that there are

3.5× 1027 possible partitions.
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3 The Optimization Problem

Essentially, we are faced with the problem of grouping students in a way that maximizes

compatibility subject to constraints. A natural approach is try to phrase the problem in the

language of optimization. We define the decision variable, x, as follows:

xig =















1 if student i should join group g

0 otherwise

After transforming x into a column vector, we can write the optimization problem:

maximize
x

f(x)

subject to x ∈ Ω,

where Ω is the set of feasible solutions to the problem as determined by the set of constraints.

3.1 Objective Function

We need to find an objective function that allows us to maximize friendship formation based

on values and interests. Student values and interests have been characterized using latent

class analysis. The result of this analysis is a set of latent classes and probabilities of

membership for each student where we define pij to be the probability that student i belongs

to latent class j.

For each group to be formed, we assign a latent class. Let φ : {groups} 7→ {classes} be

such a map. Then we define the group membership weights as follows:

cig = pij where φ(g) = j.

The objective function will naturally be a linear combination of the elements of x with

these probabilities as coefficients, and the value of the objective function will be the expected

number of students that are in a group corresponding to their respective latent classes:
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f(x) =
∑

i

∑

g

cigxig.

We are now faced with the problem of how many groups to assign to each latent class.

We would like this to be proportional to the expected number of students belonging to each

class. The expected number of students that belong to class j is given by

Ej =
∑

i

pij

Using these expected values as proportions, we can apportion the groups to the latent

classes. A perfect apportionment method is mathematically impossible, so we have many

methods to choose from at this step. The Huntington-Hill method is simple and usually

avoids the major pitfalls of apportionment so it is what we will use.

Let N be the number of students and k be the number of groups to be formed. The first

step is to compute the divisor,

D =
N

k
.

Next, we need to find the population of each latent class. Students were not each mapped

into a single latent class. We instead have a probability distribution for each student’s

membership in each class. So for the population of a latent class, we will use the expected

number of students it contains, Ej. Now we compute the quota for each class,

Qj =
Ej

D
,

and the lower quota,

Lj = ⌊Qj⌋.
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Finally, we compare Qj to the geometric mean of Lj and Lj +1 to determine the number

of groups to assign. If Qj >
√

Lj(Lj + 1), then we assign (Lj + 1) groups to latent class j.

Otherwise, it receives Lj groups.

3.2 Basic Constraints

We now need to find the feasible set of solutions that satisfy the requirements set forth for

the groupings. There are two basic constraints that must always be included for the solution

to make sense. First, each student must join exactly one group. This is easily accomplished

with the linear constraints

∑

g

xig = 1, ∀i.

The other basic constraint is on the group sizes. Let α and β be the minimum and

maximum allowable group sizes. Then we have a set of linear constraints given by

α ≤
∑

i

xig ≤ β

3.3 Separation Constraints

In the project for which this method was developed, one of the requirements was that

no group may contain more than one student that was at risk for school disassociation.

These students were identified by low school bonding scores that were calculated from their

responses to survey questions. Let S be the set of indices corresponding to these students,

and we have another linear constraint

∑

i∈S

xig ≤ 1, ∀g.

This constraint can easily be generalized to separate other sets of students by choosing a

different index set. Also, one could change the relationship or the right-hand side accordingly.

For example, another constraint that was required for this project was to promote diversity
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among the groups. If we let S be the set of indices corresponding to a category of students

that we want to be represented in each group, then we have

∑

i∈S

xig ≥ 1, ∀g.

3.4 Balance Constraints

We were asked to balance quantities such as GPA, level of school bonding and popularity

across the groups. For each of these categories, each student has a score. In order to promote

balance, we have designed a constraint that allows us to restrict the average score for each

group to be within an interval centered on the average score of the whole population. In

order to do this, we introduce a parameter ǫ that controls how tightly we constrict the group

averages to the population mean. Let Si be the score for student i. We can easily compute µ

and σS, the mean and standard deviation of the population. We may then write constraints

of the form

µS − ǫσS ≤

∑

i Sixig
∑

i xig

≤ µS + ǫσS, ∀g.

A little manipulation and we can write this as two nice linear constraints:

0 ≤
∑

i

(Si − µS + ǫσS)xig, ∀g,

0 ≥
∑

i

(Si − µS − ǫσS)xig, ∀g.

3.5 Gender Constraint

It is considered developmentally inappropriate to have just one boy or just one girl in a

social grouping for middle school aged students. Students are more likely to befriend others

of the same gender. This leads to the requirement that no group to contain exactly 1 male

or exactly 1 female. Equivalently, each group must contain 0 males or at least two males,
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and 0 females or at least two females. If we let M be the index set of males and F be the

index set of females, then what we need are

∑

i∈M

xig = 0 or
∑

i∈M

xig ≥ 2, ∀g

and

∑

i∈F

xig = 0 or
∑

i∈F

xig ≥ 2, ∀g.

We would like to have all of our constraints in a linear form and the ’or’ is preventing

this. To circumvent the issue, we will introduce two binary variables for each group, Bm,g

and Bf,g. For the males, we introduce the following constraints:

∑

i∈M

xig + βBm,g ≥ 2, ∀g,

∑

i∈M

xig − β(1− Bm,g) ≤ 0, ∀g.

To see why this will work, plug in both possibilities for Bm,g and reduce. If Bm,g = 0,

then we have

∑

i∈M

xig ≥ 2, ∀g,

∑

i∈M

xig ≤ β, ∀g.

The first is the same as the expression right of the ’or.’ The second is already true from

the group size constraints. On the other hand, if Bm,g = 1, then the constraints reduce to

∑

i∈M

xig ≥ 2− β, ∀g,
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∑

i∈M

xig ≤ 0, ∀g.

The first is redundant from the constraint that x ≥ 0 and the fact that β ≥ 2 in practice.

Since the sum cannot be negative, the second is equivalent to the left side of the ’or.’

3.6 Computation

Since the objective function and all of the constraints can be written as linear combinations

of binary variables, we can easily write them in vector/matrix form. It is assumed that the

reader is somewhat familiar with linear programming. However, this problem has the addi-

tional constraint that the variables are binary. What we really have is an integer program,

or more specifically, a binary integer program. For this reason, the standard techniques

applied to solving linear programs are insufficient. Integer programming, on the other hand,

is generally a much slower procedure. The most common classes of algorithms are cutting

plane methods and branch and bound methods. Each of these requires solving a large num-

ber of linear programs that are formed from relaxing the integrality constraints. The size

of our problem is given by n = (Number of Students) × (Number of Groups). The worst

case scenario for solving an integer program with these methods, is that we solve a linear

program of size n for every possible solution. The complexity of these integer programming

algorithms is exponential in n, however they tend to behave much faster in practice.

Gurobi [3] is a well known commercially available solver that has a free license for academic

use. It utilizes state-of-the-art techniques for solving optimization problems such as this. It

is also available on many platforms including R. Since R also has nice packages for latent

cluster analysis, it is a natural choice for this project.

3.7 Results

This method was used to group 149 students from our sample data set into teams of size

4 or 5. A parameter ǫ was used for three different balance constraints. We first arbitrarily
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set ǫ = 1 and show the results. Each student has a unique ID number. The code creates a

text file where each line contains 4 or 5 ID numbers that represent a team (see Appendix for

example output). The code also stores useful information like the objective function value

and the runtime.

Gurobi [3] found the optimal solution to the integer program in 22.93 seconds. The value

of the optimal solution is about 132. Our interpretation is that out of the 149 students, we

expect to find that 132 of them were placed in groups corresponding to their actual latent

classes. We define the quality of a solution to be q = V
N
, where V is the value of the program,

and N is the number of students. For this example, we have q = 132

149
= 0.886.

If q ≤ 0.5, then less than half of the students are placed in groups corresponding to their

latent classes. So on average, less than half of the students in any given group actually

belong to that group’s latent class. Thus the identification of that group with a particular

latent class no longer holds meaning. This is clearly a problem and it likely means that there

are too many constraints on the solution. The more constraints present in the system, the

lower the quality of the resulting solution.

A great illustration of this relation can be shown by varying the parameter ǫ used in the

balance constraints of Section 3.4. If we make ǫ smaller, then we are reducing the size of the

solution space and therefore expect the quality of the solution to diminish. We have run the

code for a variety of ǫ’s and plotted the results in Figure 2. Notice the expected behavior,

that as ǫ decreases, so does q. We also notice that when ǫ reaches about 0.9, the quality

becomes constant. This reflects the fact that for large enough ǫ, the balance constraints will

not be binding, and therefore will not affect the size of the solution space.

We should also see how ǫ affects the computational time. In Figure 3, we have plotted

the run times for each ǫ. First we notice that for small ǫ, the run time is constant. This is

because the code has a time limit at which it terminates and returns the best solution it has

so far. In this case, the solution returned is not the optimal solution. The time limit in this

case was 10 minutes.

13



Figure 2: Value of solution found by Gurobi [3] for various ǫ’s. The parameter ǫ controls the tightness of the
balance constraints from Section 3.4.

The plot implies that as we make ǫ smaller, the time required to find the optimal solution

increases. This is quite counterintuitive because we would expect that a smaller solution

space would mean that it’s easier to find the best solution. This interesting phenomenon

merits further study. Notice however, that even cutting it off at 10 minutes, we are still able

to find a pretty good solution. Referring to Figure 2, when ǫ = 0.4, the value of the solution

is only about 10% lower than the optimal solution found for ǫ = 1. Since we expect the value

14



to be smaller anyway, this shows that the cost of terminating early due to time constraints

is not devastating.

Finally, we note that for large enough ǫ, the run time flattens out again. This is another

effect of the constraints no longer being binding. In other words, an increase in ǫ will not

change the solution space, and therefore the time spent searching it is the same.
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Figure 3: Time required for the Gurobi solver [3] to find the solution for various ǫ’s. The parameter ǫ controls
the tightness of the balance constraints from Section 3.4.
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4 Teammaker

The Teammaker method developed by [5] also models group formation as an optimization

problem. By reformulating their score function, we were able to adapt the procedure to solve

an optimization problem with the same constraints described in Section 3. This allows us

to compare the Integer-Programming method to the Teammaker method. In addition, we

propose a modification to the Teammaker algorithm that results in much faster convergence

without sacrificing the quality of the solution. In this Section, we will describe explicitly the

modified Teammaker method for solving the optimization problem from Section 3. While we

use a small, but important modification to the actual algorithm to boost speed, our objective

function is quite different from the one presented in [5].

For the Teammaker approach, the score function is defined to evaluate the quality of

a single group. Students are initially placed in groups randomly. Then an iterative pair

swapping procedure takes place. The goal in this optimization is to maximize the minimum

group score. Unfortunately, this algorithm results only in a locally optimal solution. To

achieve a better solution, one must explore many different initial conditions. Also, since

the constraints are placed in the objective function, we can use a parameter to increase the

likelihood that they are satisfied, but the only way to know for sure is to check the solution.

Mathematically, a grouping can be described as a partition, P , of the set of students with

the added requirement that each element, Pi satisfy the group size criteria. The optimal

solution is defined to be the partition with the largest possible score for its lowest scoring

member. This problem can be stated as

max
P

min
i

Score(Pi)

subject to α ≤ |Pi| ≤ β,

where α and β are the constraints on group size.

17



4.1 The Score Function

We will develop our score function that will be used to measure the quality of any given

group. The score function will have several terms. First, we must have a term that scales

with the similarity in values and interests of the group members. Next, we must try to

incorporate all of the constraints of the problem. The Basic Constraints of Section 3.2 are

satisfied by construction. The remaining constraints will be incorporated as penalty terms

that will be negative when a constraint is violated, and 0 otherwise. Our score function is

formulated similarly to the one in [5], but adapted to suit the problem at hand.

The survey data from this project consisted of 27 values and interests that students rated

on a scale of 1 to 5 (see Appendix C). For each question, we can compute the variance in

the responses provided by the students. Smaller variance implies that the students are more

similar. Since we wish to maximize similarity, we will add a term to the score function that is

the negative of the sum of the variances. Let s2i be the variance in the responses for question

i for the group. To be more general, let m be the number of survey questions. Then the

attribute term can be calculated as

SA = −
m
∑

i=1

s2i .

Terms for the separation constraints can easily be added. Let Φ be a set of students that

must all be placed in separate groups. Let n be the number of students from Φ that are

in the group. If n > 1, then a constraint is violated, which must be punished in the score

function. In fact, the larger n is, the more seriously the constraint has been violated. This

leads us to the following term:

SΦ =















−n if n > 1

0 otherwise

For the balance constraints, we want to bring the group average for a particular quantity

as close to the population average as possible. This leads us to write
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SB = −
|x̄− µ|

σ
,

where x̄ is the group mean, µ is the population mean and σ is the population standard

deviation. Groups whose average lies far from the population average will receive a large

penalty in the score function.

For the gender and ethnicity constraints, we need to penalize groups that have exactly

1 male, exactly 1 female or exactly 0 members of the category we want represented in each

group. Let a be the number of males in the group, then we naturally have

SGE =















−1 if a = 1

0 otherwise

.

Scores for the female and ethnicity requirements can be written in a similar fashion.

Finally, we wish to consolidate all of these pieces into a single Score function. To be

as general as possible, and for simplicity because our problem has several constraints of

each type, we label each of the constraints with an index: Si. For each constraint term,

we introduce a positive constant, γi. We want to choose the γi’s large enough that the

solution is likely to satisfy the constraints. For this problem, it was found that γi = 100 ∀i

was sufficient to satisfy all of the constraints most of the time. However, given the random

nature of the algorithm, one should always check the solution to ensure that no constraint

is violated. Putting all of the terms together, we have

Score = SA +
∑

i

γiSi.

4.2 Swapping Algorithm

Now that we have a metric, Score, to evaluate a group, we can begin the optimization

process. Our goal is to maximize the score of the lowest scoring team in the grouping.

Algorithm 1 outlines the iterative pair swapping procedure described in [5]. Two teams are
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selected as well as one student from each group. The Score function is evaluated for each

group before and after swapping. If the change increases the minimum score, then the swap

is kept, otherwise it is reverted. In one iteration, every possible swap is tried. We continue

until reaching an iteration where no swaps are kept.

Algorithm 1 Original algorithm [5]

1: while #swaps > 0 do

2: for i in 1 : M − 1 do

3: for j in i : M do

4: for a in Team(i) do
5: for b in Team(j) do
6: oldScore← min{Score(Team(i)), Score(Team(j))}
7: swap a←→ b

8: newScore← min{Score(Team(i)), Score(Team(j))}
9: if newScore < oldScore then

10: swap b←→ a

11: end if

12: end for

13: end for

14: end for

15: end for

16: end while

Clearly, the combinatorics of this algorithm are not favorable; however, the code runs in

a reasonable amount of time for typical N and M in the context of grouping middle school

students. In our sample data set, N = 149 and M = 37. An average run on Algorithm 1

takes around 12 minutes. We can improve the speed of the algorithm significantly if, rather

than trying every pair of teams on a given iteration, we instead focus on improving the worst

team. This leads us to Algorithm 2, where we identify the lowest scoring team and try all

possible pair swaps. This reduces the number of operations by about a factor of
(

M

2

)

/M , a

significant amount as M gets larger.

4.3 Results

Unfortunately, the value of the score function does not have any meaningful interpretation,

other than that it provides a metric with which to compare groups. We define the value

of a grouping to be the score of its lowest scoring group, since this is what we were trying

to maximize with the hill climbing algorithm. To see how this method performs and to
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Algorithm 2 Improved algorithm

1: while #swaps > 0 do

2: worstTeam← mini Score(Team(i))
3: for j in 1 : M, j 6= index(worstTeam) do
4: for a in worstTeam do

5: for b in Team(j) do
6: oldScore← Score(worstTeam)
7: swap a←→ b

8: newScore← min{Score(worstTeam), Score(Team(j))}
9: if newScore < oldScore then

10: swap b←→ a

11: end if

12: end for

13: end for

14: end for

15: end while

demonstrate the speed boost provided by using the improved algorithm, we have run the

each algorithm 20 times with random initial conditions. The results are shown in Figure 4.

First, we notice that Algorithm 2 is indeed much faster than Algorithm 1. The average

run-times were 736 seconds and 73.3 seconds, so it is about 10 times faster. Such a big

increase in speed begs the question of what are the trade-offs. There was concern that by

rushing the hill climbing algorithm, we may not explore the solution space as thoroughly,

and result in a lower value solution. We found that this does not seem to be the case. The

best solution found by each algorithm had value 468.25. We also see that the times for

Algorithm 1 vary significantly, whereas Algorithm 2 is much more consistent.

We see that most of the solution values lie close to the maximum. Both algorithms

had outliers that were far below the rest. These are examples of solutions that violated 1

or more constraints. Increasing the γi’s would reduce the probability that constraints are

violated. We have learned from this example, that although the solutions are not necessarily

optimal, we do not have to run the code very many times to obtain a close approximation

to optimality.
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Figure 4: Results from running the both the original and improved algorithms. Each point represents a
solution. On the x-axis, we have the amount of time required for the algorithm to terminate, and on the
y-axis, we have the score of the minimum scoring group from the solution.
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5 Comparison

Thus far, we have developed a new method for grouping students using integer-programming

techniques, and we have modified an existing method to handle the same types of constraints.

In this final section, we will compare the two methods and evaluate the pros and cons of

each.

We expect to find that each method performs best under its own metric. We will first take

a look at how the integer programming solution compares to the Teammaker solution when

evaluated by the score function from Section 4.1. As we have seen, the balance constraints

of Section 3.4 require us to choose a parameter ǫ that controls the strength of the blanance

constraints. This poses a problem when we look to compare with the Teammaker method

that has no such parameter. In the interest of having a fair comparison between the methods,

we will throw out the balance constraints for this analysis.

We ran the Algorithm 2 with 5 different initial conditions and chose the solution with

the highest minimum group score. We then found the integer program solution with balance

constraints removed. Next, we evaluated the score function for every group in each solution.

A histogram of this data is found in Figure 5.

First notice that by this metric, Teammaker clearly outperforms the Integer program. The

minimum group scores were -51.4 and -32.4. However, a slightly different way to examine

this is to compare the average group scores. Teammaker has an average group score of -26.5,

and the integer program’s is -29.4. Teammaker still comes out ahead, but these numbers are

much more comparable. Looking at the histogram in Figure 5, we see that the scores for

Teammaker are clustered tightly around the mean, whereas the scores for the integer program

are much more spread out. This is a result of the fact that the Teammaker algorithm seeks

to make the worst group as good as possible, while the integer program is maximizing its

metric over all the groups simultaneously.

Now we evaluate the Teammaker solutions using the objective function from the integer

program. Since the integer program finds the optimal solution (assuming that it didn’t run
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Figure 5: The Score function, defined in Section 4.1, was used to evaluate every group in each of the two
solutions.
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out of time), we know for a fact that the Teammaker solution cannot be better. In addition,

the objective function does not contain any information about the constraints. It uses only

the values and interests data, processed with LCA. An important part of the definition of

the objective function was that each group was assigned a latent class. In order to compare

the Teammaker solution, we will identify the best latent class for each group, and use it to

evaluate the objective function.

With balance constraints removed, we find that the quality of the integer programming

solution is q = 0.885. We ran Teammaker with 10 different initial conditions and computed

the quality for each solution. We found an average quality of q̄ = 0.623 and a maximum

quality qm = 0.653. These numbers are lower than the quality of the integer programming

solution as expected. They are greater than 0.5, so thinking of the groups in terms of

latent classes does seem to make sense; however, recall that even with a highly restrictive

balance constraint and a early timeout, the integer program found solutions above 0.8.

This is evidence that the approaches used to promote similar attributes in the groups are

fundamentally different.

In terms of computational time, the integer program clearly has the advantage. A single

run of Algorithm 2 took more than 3 times longer than the integer program to find a solution.

In addition, Algorithm 2 must be run several times in order to make sure that the solution

is of high quality. More data is needed to see how these methods scale with the size of the

problem. Another advantage of the integer program is that we have a nice interpretation

of the objective function that gives immediate insight into the quality of the solution. The

downside is that state-of-the art integer programming techniques are fairly complicated, and

one may prefer to use one of the available solvers, such as Gurobi [3]. For applications outside

the realm of acadamia, this could get expensive. On the other hand, Algorithm 2 and the

definition of the Score function from Section 4.1 are easy to understand and program from

scratch. Finally, it is difficult to compare the quality of the solutions generated from the two

methods because of how differently they treat the optimization. While the integer program
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tries to optimize the whole grouping at once, the teammaker method seeks to make the worst

group as good as possible.
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6 Conclusions and Summary

In this paper, we have described two methods for partitioning students into cooperative

learning groups. The first was a binary integer program designed from scratch to solve a

specific grouping problem, but kept as general as possible. The second was modified from

an existing method presented by [5] to solve the same grouping problem. The two methods

were then compared. It was found that the integer program was able to find a solution faster

than the Teammaker approach, but is a far more complicated algorithm, requiring an LCA

package, mclust [1], and a solver, Gurobi [3]. Finally, a solution to the integer program is

guaranteed to satisfy all of the constraints. The same is not true for a Teammaker solution,

so we must always check the solutions to verify the constraints.

We recommend further study to better understand how these methods scale with larger

problems. More student data should be collected or artificially generated and tested with

both methods. It is also worth exploring the possibility of using a more sophisticated algo-

rithm with the Teammaker method. A genetic algorithm or simulated annealing may prove

to be more efficient than the naive pair swapping approach of Algorithm 2, especially for a

larger scale grouping problem.

Finally, to fully validate and compare the grouping strategies described in this paper, a

real world trial is necessary. We suggest implementing the grouping strategies, as well as

a randomized grouping as a control, over several schools, or within a volunteer pool. One

could design activities for group interaction to take place over a trial period or semester.

Finally, data can be collected before and after the experiment and analyzed for changes in

the social network that indicate the performance of the different grouping methods.
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Appendix A Example Solver Output

Optimize a model with 10398 rows, 5587 columns and 70115 nonzeros

Found heuristic solution: objective 45.3603

Presolve removed 4958 rows and 0 columns

Presolve time: 0.61s

Presolved: 5440 rows, 5587 columns, 67784 nonzeros

Variable types: 0 continuous, 5587 integer (5587 binary)

Root relaxation: objective 1.320451e+02, 1541 iterations, 0.11 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 132.04510 0 21 45.36032 132.04510 191% - 0s

H 0 0 100.1365222 132.04510 31.9% - 0s

0 0 132.04510 0 55 100.13652 132.04510 31.9% - 1s

0 0 132.04510 0 19 100.13652 132.04510 31.9% - 1s

H 0 0 107.0325901 132.04510 23.4% - 1s

0 0 132.04510 0 39 107.03259 132.04510 23.4% - 1s

H 0 0 127.0477683 132.04510 3.93% - 1s

0 0 132.04510 0 47 127.04777 132.04510 3.93% - 1s

0 0 132.04510 0 32 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 26 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 23 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 27 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 25 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 19 127.04777 132.04510 3.93% - 2s

0 0 132.04510 0 20 127.04777 132.04510 3.93% - 3s

0 0 132.04510 0 16 127.04777 132.04510 3.93% - 3s

0 2 132.04510 0 16 127.04777 132.04510 3.93% - 4s

26 33 132.04510 10 37 127.04777 132.04510 3.93% 38.2 5s

H 27 33 127.0500734 132.04510 3.93% 36.8 5s

* 381 381 45 129.6603287 132.04510 1.84% 21.4 9s

437 427 131.95082 80 61 129.66033 132.04510 1.84% 22.6 10s

H 757 739 130.7942965 132.04510 0.96% 17.1 14s

H 758 740 130.8956559 132.04510 0.88% 17.1 14s

H 759 645 131.8181850 132.04510 0.17% 17.1 14s

896 742 132.04510 52 31 131.81818 132.04510 0.17% 16.8 15s

1120 914 132.04500 105 15 131.81818 132.04510 0.17% 17.5 20s

Cutting planes:

Gomory: 7

Cover: 6

Clique: 9

MIR: 4
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GUB cover: 10

Zero half: 2

Explored 1124 nodes (47881 simplex iterations) in 22.93 seconds

Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 1.318181849546e+02, best bound 1.318186593764e+02, gap 0.0004%
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Appendix B Example Solution

The following is an example of the final output of the grouping algorithms. Each student
has been assigned with a unique ID Number. Each row of the output represents a team of
four or five students.

94 97 105 109

44 57 58 162

27 72 117 143

11 78 112 130

119 126 137 158

34 38 60 101

28 36 107 136

46 69 123 149

12 64 133 151

10 87 139 153

39 83 160 161

4 50 70 82

32 47 90 135

6 53 104 113

14 23 92 102

17 134 144 171

128 129 140 172

68 110 111 118

56 65 89 142

3 29 37 41

2 13 22 170

43 132 147 169

7 8 54 59

30 35 76 106

40 71 74 99

80 88 163 168

73 79 100 103

45 61 108 127

81 96 145 148

33 84 138 146

48 67 77 125

9 49 62 98

20 24 63 86 116

25 91 124 157

1 51 52 95

16 21 120 131

19 93 115 159
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Appendix C Data Summary
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