TA7 C6 74/75-46 Cop.2

REPORT

on

International Workshop in Hydrologic Engineering

Sponsored by

Hydrologic Engineering Center Corps of Engineers Davis, California

by

Yao-Huang Wu

County OC THANKS 1915

CER74-75YHW46

REPORT

on

International Workshop in Hydrologic Engineering

Sponsored by

Hydrologic Engineering Center Corps of Engineers Davis, California

by

Yao-Huang Wu September 1974 TO: Mr. E.F. Schulz, Associate Professor

FROM: Yao-Huang Wu

SUBJECT: Report of Training on International Workshop in Hydrologic

Engineering Sponsored by Hydrologic Engineering Center,

Corps of Engineers at Davis, California.

Upon the recommendation made by you on the memo date July 17, 1974 the subject training course was attended by the writer from August 5 to August 30, 1974.

According to the above memo, the expections in attending the training are as follows:

- 1. Gain a working knowledge of HEC-1 and HEC-2 computer programs.
- Study carefully that part of the computer program containing the subroutine for deriving the unit hydrograph from an observed rainfall-runoff event.
- 3. Attempt to derive a unit hydrograph from the two rainfallrunoff events taken from the ARS Data Book. The two rainfallrunoff events are:
 - a. Safford Watershed, Arizona, catchment area 1.13 mile², flood event on July 22, 1955.
 - b. Oxford Watershed, Mississippi, catchment area 35.6 mile², flood event on May 31, 1967.

Course Content:

The purpose of the training was intended to provide participants with the knowledge of hydrologic engineering techniques and provide the participants with some experience in making hydrologic analyses with computer programs developed by the Hydrologic Engineering Center.

The major emphasis of the workshop are on 1) rainfall-runoff analysis of single events (rain storms), 2) river hydraulics,

3) statistical methods in hydrology, and 4) simulation of reservoir systems.

The four week classes (20 days) were arranged as shown in the following tabulation:

- 1. Unit hydrograph concepts and derivation including rainfall-runoff analysis, rainfall-loss analysis, estimating stream flow for ungaged watershed and Clark method and Snyder method for deriving unit hydrograph.
 - Application of HEC-1 program to determine unit hydrograph and loss rate parameters.

5th day 1. Hydrologic techniques for flood routing.

2. Basin modeling with HEC-1.

6th-8th day 1. Steady flow water surface profile.

Application of HEC-2 program for computation of back water curve.

9th day 1. Concepts and principles of fluvial hydraulics.

10th-12th day 1. Hydrologic statistics.

Frequency analysis including graphical and analytical methods. Linear regression analysis and regional correlation analysis.

13th day

- 1. Introduction and application of stochastic hydrology.
- Application of computer program HEC-4, "Monthly Streamflow Simulation."
- 14th-16th day 1. Systematic analysis of multipurpose water resource system.
 - Simulation of reservoir system with computer program HEC-3.

17th day

- 1. Simulation to estimate power potential.
- Application of HEC-3 for evaluation of hydro-electric generation in a reservoir system.

18th day

- 1. Flood regulation with reservoir systems.
- 2. Introduction to computer program HEC-5, "Reservoir System Analysis for Flood Control."
- 19th-20th day 1. Introduction to analysis of complex water resources systems.
 - Plan of study for hydrologic analysis of water resources system.

I. Content of HEC Program:

The programs currently in the program series are:

HEC-1 Flood hydrograph package

HEC-2 Water surface profile

HEC-3 Reservoir system analysis (for conservation)

HEC-4 Monthly streamflow simulation

HEC-5 Reservoir system operation for flood control

Each program is written in Fortran IV and is designed to be contained in 32,000 words of core, insofar as possible. Up-to-date information and copies of source statement cards for the programs are available from the Hydrologic Engineering Center.

HEC-1 Flood Hydrograph Package

This package represents a combination of several smaller programs which had previously been operated independently. These computer programs are still available at HEC as separate programs. The program numbers and names are:

L 2230 Unit Hydrograph and Loss Rate Optimization

L 2260 Basin Rainfall and Snowmelt Computation

L 2280 Unit Graph and Hydrograph Computation

L 2310 Streamflow Routing Optimization

L 2320 Hydrograph Combining and Routing

L 2370 Balanced Hydrograph

All ordinary flood hydrograph computations associated with a single recorded or hypothetical storm can be accomplished with this package. Routines include rainfall-snowfall-snowpack-snowmelt determinations, computation of basin precipitation, unit hydrographs, and of hydrographs, routing by reservoir, storage-lag, multiple-storage, straddle stagger, Tatum and Muskingum methods, and complete stream system hydrograph combining and routing. Best-fit unit hydrograph, loss-rate, snowmelt, base freezing temperatures and routing coefficients can be derived automatically. Automatic routines are also provided. Input may be in either English or Metric units.

HEC-2 Water Surface Profile

The program computes water surface profiles for steady, gradually varied flow in rivers of any cross section. Flow may be subcritical or supercritical. Various routines are available for modifying input cross section data, for example, for locating encroachments or inserting a trapezoidal excavation on cross sections. The water surface profile through structures such as bridges, culverts and weirs can be modeled. Variable channel roughness and variable reach length between adjacent cross sections can be accommodated. Printer plots can be made of the river cross sections and computed profiles. Input may be in either English or Metric units.

HEC-3 Reservoir System Analysis

Program will perform a multipurpose, multireservoir simulation of a reservoir system. All requirements are supplied from reservoirs so as to maintain a specified balance of storage in all reservoirs, insofar as possible.

HEC-4 Monthly Streamflow Simulation

This program will analyze monthly streamflows at a number of interrelated stations to determine their statistical characteristics and will generate a sequence of hypothetical streamflows of any desired length having those characteristics. It will reconstitute missing streamflows on the basis of concurrent flows observed at other locations. It will also use the generalized simulation model for generating monthly streamflows at ungaged locations based on regional studies.

HEC-5 Reservoir System Operation for Flood Control

The program is intended to simulate the sequential operation of a system of reservoirs of any configuration for controlling historical or synthetic floods. The program may be used to determine:

- 1. Flood control storage requirements of reservoirs.
- The influence of a system of flood control reservoirs on the spatial and temporal distribution of runoff in a basin.
- 3. Operation criteria for minimizing flooding.

Because of the tight arrangement of courses during the four-week training, the writer had no opportunity of going into detail in every part of HEC program. However, the backwater curve computation in HEC-2 and unit hydrograph derivation in HEC-1 have been more carefully studied. For the derivation of unit hydrograph, the writer studied in more detail, discussed with the staff of HEC several times and practised the program with the sample data from the ARS Data Book.

II. Deriving the Unit Hydrograph from an Observed Rainfall-Runoff Event Unit hydrograph is done by Clark method which uses the concept of the instantaneous unit hydrograph (IUH).

Clark Method: The Clark method translates incremental runoff from subareas within a basin to the basin outflow location according to travel times and then routes this runoff through a linear reservoir in order to account for the storage effects of the basin and channels. The time of concentration (tc) is defined as the travel time of water particles from the most upstream point in the basin to the outflow location. This lag time may be estimated by measuring the time between the end of effective rainfall and the inflection point on the recession limb of the observed hydrograph. When the time of concentration has

been determined, the basin is divided into incremental runoff-producing areas that have equal travel times to the outflow location. Isochromes representing equal travel time to the outflow location are laid out using the distance traveled per unit time to establish the location of the lines. The areas between the isochromes are then measured and tabulated with the corresponding travel time (from 0 to tc) for each incremental area. The time period selected as the computation interval should be approximately equal to the unit duration of excess (Fig. 1).

The runoff from the contributing areas (between the isochromes) which has been translated to the outflow location is in units of volumes (in-mi² or mm-km²) and these must be converted to the proper units of discharge (c.f.s. or m^3/s).

The routing of the translated runoff through storage at the outflow location is accomplished as follows:

$$0_{i} = CI_{i} + (1 - C)0_{i-1}$$

where 0_i = outflow from the basin at end of period

 $I_i = inflow or runoff from each area at end of period i$

C = dimensionless routing constant

The above routing results from setting the Muskingum "x" equal to zero in the coefficient method of routing.

$$C = \frac{2\Delta t}{2R + \Delta t}$$

 Δt = time period of computation interval

R = attenuation constant

The Clark Conceptual Model of the IUH

Fig 1

It can be shown that when inflow into the principal storage reach has ceased (Muskingum x = 0,

$$R = -\frac{Q}{dQ/dt}$$

The magnitude of R can be approximately evaluated at the point of inflection of the recession limb of the observed surface runoff hydrograph.

The hydrograph that results from routing these flows from the incremental areas is the instantaneous unit hydrograph. The instantaneous unit hydrograph can be converted to a unit hydrograph of a unit duration Δt by simply averaging two instantaneous unit hydrographs spaced at interval Δt apart as follows:

$$0_{i} = 0_{i}$$
 for $i - 1$
 $0_{i} = 0.5(0_{i} + 0_{i-1})$ for $i \ge 2$

Loss Rate:

Rainfall excess generating runoff is the rainfall minus loss.

HEC-1 loss model assumes the loss rate is the function of accumulated loss and rainfall intensity as: (Fig. 2)

$$L = (K + \Delta K)P^{E}$$

where L = loss rate for particular time interval in inches/hr.

K = loss rate coefficient at beginning of time interval

P = rainfall intensity in in/hr

 ΔK = incremental increase in loss rate coefficient

E = exponent of precipitation for rain loss function.

Again, $K = Ks/Ra^{-1} Lc$

 $\Delta K = 0.2 ls [1 - (Lc/ls)]^2$

where K_s = starting value of loss coefficient on exponential recession curve

R_a = ratio of rain loss coefficient on exponential loss curve to that corresponding to 10 inches more of accumulated loss

L_c = accumulated loss

 ΔK = incremental increase in loss coefficient. ΔK is assumed to be a parabolic function of the accumulated loss for &s amount of accumulated loss. ΔK is a maximum of .2 &s initially and reducing to zero when the accumulated loss equals &s

Ls = amount of initial accumulated rain losses during
which the loss rate coefficient is increased,

Unit Hydrograph and Loss Rate Optimization;

HEC-1 has the capability to automatically determine a set of unit hydrograph and loss rate parameters that "best" reconstitutes an observed runoff event for a basin given the average rainfall for the basin, the drainage area and a few runoff hydrograph parameter values for starting flow and base flow recession computations.

The best reconstitution is considered to be that which minimizes the weighted squared deviation between the observed hydrograph and a reconstituted hydrograph. The optimization procedure used to derive values for the variables is the univariate gradient search procedure. In order to improve the reproduction of peak flows, errors associated with high flows are weighted heavier than those associated with low

HEC-1 LOSS FUNCTION

ACCUMULATED LOSS (CUML) - inches (mm)

ALOSS=(AX+DLTK)PRCPERAIN L=(K+AK)PE

Fig. 2

flows. Each error square is multiplied by $(Q + \overline{Q})/2\overline{Q}$ where \overline{Q} is the average flow. A volume check is included in the hydrograph reconstruction that assures approximate correspondence in volume between the observed and computed hydrographs.

In order to optimize coefficients, a hydrograph of observed runoff must be supplied. The time interval used for observed flow data and that of unit hydrograph will be the same as the time interval used in rainfall record. If the reproduction of hydrograph is not satisfactory, considerable improvement can be made in a second run by a routine that temporarily changes up to five flow data in each flood to force a better reproduction without impairing the validity of the results. For example, if a portion of a reconstituted hydrograph is too low it can be fitted better by increasing a key flow by putting weight 2 to the key flow (double of observed flow) in the program. These temporary adjustments to the flow are removed before the hydrograph is printed.

The coefficients can be optimized in the HEC-1 are:

$$TC* = t_{C}$$
 $R* = R$
 $STRKR* = K_{S}$
 $ERAIN* = E$
 $DLTKR* = &S$
 $RTIOL* = R_{a}$

*Variable symbols in computer program

These variables can be in the manner that part of variables are fixed and the remaining are to be optimized. For example, $T_{\rm c}$ and R coefficient in Clark method can be given values obtained from the observed hydrograph.

Following data will also be given in the program:

NHR = number of whole hrs in tabulation interval

NMIN = number of minutes in tabulation interval in
 addition to NHR above

STRTQ = flow at start of storm. The base flow below

STRTQ will be receded in same manner as QRCSN

below.

QRCSN = flow below which base flow recession occurs in accordance with the recession constant RTIOR

RTIOR = ratio of recession flow, QRCSN to that flow occurring 10 tabulation intervals later

Minimizing the weighted squared deviation between the observed hydrograph and a reconstituted hydrograph will be conducted for the hydrograph between the time of STRTQ and QRCSN.

Symthetic Time-area Curve:

As stated above, in the application of Clark's unit hydrograph procedure, it is necessary to utilize a time-area curve for the basin under study. Those data will be given in computer program as follows:

TAREA = catchment area

NTA = number of Clark time-area ordinates to be read

QCLK(1) = area at time 0

ACLK(2) = area contributes runoff during first NTA equal interval

QCLK(3) = area contributes runoff during second NTA equal interval

It has been found that it is not necessary to use the actual distance-area curve in the analysis. Instead, a distance-area curve of general shape is used to represent the time-area curve of the basin. This generalized distance-area curve is referred to as a synthetic time-area curve. It is convenient to use a function of the form

Accumulated Area =
$$CT^n$$
 for $0 < T < \frac{Tc}{2}$
1 - Acc. Area = $C(1 - T)^n$ for $0 < \frac{Tc}{2} < Tc$

Such a function, with n = 1, represents a rectangular watershed and n = 2, represents a diamond shaped area. In HEC-1, the exponent "n" has been set to 1.5, which was found to yield a shape representative of a common watershed configuration (Fig. 3).

The symthetic time-area curve in HEC-1 may be used for most watersheds. However, for basins that deviate substantially from the generalized shape, a real time-area curve should be used.

III. Deriving Unit Hydrographs from the Two Rainfall-runoff Events Taken from the ARS Data Book by HEC-1

Attempt to drive unit hydrograph was made for the two watershed (1) Safford, Arizona, catchment area = 1.13 mi², and (2) Oxford, Mississippi, catchment area = 35.6, which represent one big watershed and one small watershed respectively. The rainfall and runoff records are shown in Attachment 1.

Since time interval for computation in hyetograph, observed hydrograph as well as unit hydrograph should be the same in HEC-1, the rainfall and runoff records have been rearranged to the equal interval records.

Besides, both of the watersheds are very small with very short time of concentration, the time interval should be small. For Safford watershed, the time interval was set at 10 minutes and for Oxford Watershed, 30 minutes. Consequently, the output unit hydrographs represent the hydrographs of 1 inch of direct runoff from a rainfall excess of 10 minute duration for Safford Watershed and 30 minute duration for Oxford Watershed.

The input data are as follows:

NMIN = number of minutes in tabulation interval (min)

TAREA = total catchment area (mi^2)

STRTQ = flow at start of storm (cfs)

QRCSN = flow below which base flow recession occurs in accordance with the recession constant RTIOR (cfs)

RTIOR = ratio of recession flow, QRCSN to that flow occurring 10 tabulation intervals later

TC = time of concentration (hr)

R = attenuation constant (hr)

STRKR = starting value of loss coefficient

ERAIN = exponent of precipitation for rain loss

RTIOL = ratio of rain loss coefficient on exponential
loss curve to that corresponding to 10 inches
more of accumulated loss

NWT = number of pairs of weighting factors for runoff data

IQ(n) = sequence number of flow value selected to be adjusted

RQ(n) = ratio by which selected flow is temporarily multiplied
to aid in reconstruction

For the time-area curve in the Clark method, HEC-1 representative watershed with the exponent "n" equal to 1.5 has been used

- A. Safford Watershed, Arizona: (1.13 mi²)
 - a. Input rainfall and runoff data: (July 22, 1955) rearranged to a constant time interval record

Time	No. of Time Interval	Rainfall (in)	Runoff (cfs)
1550	0	0	0
1600	1	.01	0
1610	2	.23	0
1620	3	.73	69.3
1630	4	.33	387.9
1640	5	.06	623.5
1650	6	.04	334.0
1700	7	.02	111.6
1710	8		54.7
1720	9		28.4
1730	10		14.6
1740	11		8.0
1750	12		3.6
1800	13		1.5
1810	14		.7
1820	15		0

b. Fixed variables in several runs

NMIN = 0

TAREA = 1.13

STRTQ = 0

c. Variables which have been changed in several runs in order to get best fit unit hydrograph

QRCSN

RTIOR

NWT

IQ(n)

RQ(n)

TC, R, STRKR, ERAIN, DLTKR, RTIOL to be optimized by Program HEC-1

* Output of the program:

Output of the program includes:

- 1. Optimization results of variables.
- 2. Coordinate of unit hydrograph.
- Coordinate of observed hydrograph and reconstituted hydrograph computed by using newly established unit hydrograph.
- Comparison graph of observed and reconstituted hydrograph with hyetograph showing rainfall excess and loss.
- Data showing the differences between observed and reconstituted hydrograph.

The comparison is made for the hydrograph of a time base which is equal to 3 times the lag (from the centroid of rainfall excess to the observed peak) or which is equal to a period from the centroid of the rainfall excess to a recession Q equal to one half the peak Q, whichever gives the largest time base.

d. Comparison of observed and reconstituted hydrograph:

			Inpu	t Variab	les		Comparison of Observed and Reconstituted Hydrograph						
Runs	QRCSN	RTIOR	NWT	IQ(n)	RQ(n)	Peak Difference %	Time Dif. of Peak %	Standard Error cfs	Standard Error as a % of Mean	Volume Dif. %			
1	50.00	1.90	0	-	-	-25.45	0	66.06	28.73	-11.99			
2	0	-	0	-	-	- 9.87	0	41.99	18.26	1.81			
3	0	-	1	5	1.10	- 8.75	0	43.13	18.76	1.76			
4	0	-	1	5	1.30	- 6.97	0 .	47.35	17.97	3.77			
5	0	-	1	5	1.80	- 6.53	0	52.29	22.74	1.80			
6	110	20.00	1	5	1.50	-23.72	0	65.37	28.43	-6.72			

- e. Discussion on the results
- 1. The watershed has the catchment area of only 1.13 mile².

 Because of the small watershed, the observed hydrograph has a very sharp peak. HEC-1 program uses Clark method and HEC-1 loss model for deriving the unit hydrograph. The results of reconstituted hydrograph is very difficult to agree with the peak of observed hydrograph.
- 2. Run 1 and 6 assumed a flow QRCSN below which the flow recession occurs in accordance with the recession constant RTIOR. RTIOR is the ratio of recession flow at the beginning of recession to that at the 10 intervals later. This means the hydrograph below QRCSN is fixed. Because of the steep drawn down of the observed hydrograph, the reconstituted hydrograph is always higher than the observed hydrograph on recession part. Through the optimization of variables basing on the smallest volume difference between the observed and reconstituted hydrograph, the reconstituted peak is always much lower than the observed peak.
 Perhaps, increase of RTIOR will help decrease of difference in peak.
- 3. Runs 2 through 5 assumed QRCSN as zero. That means that all hydrograph coordinates are flexible in the process of reconstitution during optimization. The difference of peak as well as that of total volume are much smaller than those in run 1 and 6.

- 4. Since the peak difference in run 2 was considered too big and the reconstituted peak is too low, the observed peak has been temporarily increased during optimization by putting weight on it. In run 5, the observed peak was temporarily increased to 1.8 times the original peak.

 As the result, the peak difference has been reduced to the least but the standard error as % of mean has been increased.
- 5. If the peak of event is considered more important than the coordinates of hydrograph in the study, the weight of observed peak can be increased some extent to meet the requirement. Besides, flow at the end of other intervals can also be temporarily adjusted by weight during optimization for the purpose of getting better fit reconstituted hydrograph.
- 6. Among the 6 runs which have been done, run 5 is considered as the best one. The comparison of observed and reconstituted hydrographs is shown in Fig. 4 and the unit hydrograph performed in run 5 is shown in Fig. 5. The outputs are shown in Attachment 2.

B. Oxford Watershed, Mississippi (35.6 mi²)

a. Input rainfall-and runoff data: (May 31, 1967) rearranged to a constant time interval record

				and the first of the second se
Date	Time	No. of Time Interval	Rainfall (in)	Runoff (cfs)
5-31	14:00	0	.00	0
	14:30	1	.04	.5
	15:00	2	.28	1.4
	15:30	3	.88	11.1
	16:00	4	.11	133.2
	16:30	5	.01	992.4
•	17:00	6		1702.0
	17;30	7		1403.3
	18;00	8		918.8
	18:30	9		564.7
	19:00	10		367.7
	19:30	11		264.9
	20;00	12		208.0
	20:30	13		186.9
	21;00	14		153.4
	21:30	15		130.0
	22;00	16		106.5
	22;30	17		87.6
	23;00	18		70.8
	23;30	19		58,3
	24;00	20		47.6
6-1	0;30	21		41.3
	1:00	22		35.1

1:30	23			28.8
2:00	24			25.4
2:30	25			21.9
3:00	26			18.4
3:30	27			16.7
4:00	28			15.2
4:30	29			14.0
5:00	30			12.4
5:30	31			10.9
6:00	32	-		9.5
6;30	33			9.1
7:00	34			8.7

b. Fixed variables in several runs

NMIN = 30

TAREA = 35,6

STRTQ = 0

c. Variables which have been changed in several runs in order to get best fit unit hydrograph

QRCSN

RTIOR

TWN

IQ(n)

RQ(n)

TC,R,STRKR,ERAIN,DLTKR,RTIOL to be optimized by Program HEC-1

d. Comparison of observed and reconstituted hydrograph:

	In	put Varial	oles				Comparison Reconstitu			
Runs	QRCSN	RTIOR	NWT	IQ(n) no. of time in- terval	RQ(N) weight	Peak Difference %	Time Difference %	Standard Error cfs	Standard Error as a % of Mean	Volume Difference %
1	100.00	1.20	0.	-	-	-33.51	0	255.77	38.95	-11.64
2	0	-	0	0	0	-18.55	, 0	197.25	33.04	8.91
3	0	-	1	. 6	1.20	- 6.10	. 0	222.26	37.23	14.36
4	300.00	8.00	1	6 .	1.30	-11.36	0	247.06	37.63	5.30
5	300.00	7.00	1	6	1.50	-11.48	0	256.44	39.05	4.40
6	400.00	6.00	1	6	1.80	-16.29	0	255.41	36.15	96
7	400.00	6.00	2	6	1.80	-21.98	0	227.76	34.69	90
				7	2.10					

- e. Discussion on the results
- 1. From the original flood event data, the total rainfall was 1.32 inches, but the total runoff was only .17 inches. This means that the rainfall excess occurred only in one time interval of peak rainfall, i.e. No. 3 interval, which has the interval time rainfall of .88 inches. Therefore, the shape of reconstituted hydrograph should be the same with the unit hydrograph optimized through the computation.
- 2. In runs 1, 4, 5, 6 & 7, the parameter of recession curve (QRCSN, RTIOR) has been fixed during the computation. RTIOR in run 1 is too small and the reconstituted recession curve is much higher than the original. However, through the adjustment the recession limbs of reconstituted hydrographs fit the observed hydrograph very well in runs 6 and 7.
- 3. Since the reconstituted peaks in runs 1 and 2 were much less than the observed peak, more weight on peak was put for the computation in runs 3 to 7. As the result, the run 3 had the least peak difference. Among the 7 runs which have been done, run 3 is considered as the best one.
- 4. In comparing runs 4, 5, 6 and 7 with run 3, more weight on peak was put in runs 4, 5, 6 and 7. But the reconstituted peaks in those runs were lower than that in run 3. The reason is that the parameters of recession curve were fixed for better fit with the original recession limb in

- runs 4, 5, 6 and 7. In comparison with run 3, the run-off volume on the tail part of hydrograph in runs 4, 5, 6 and 7 has been much increased. In order to fit the observed total run-off volume of hydrograph, the peaks were decreased.
- 5. From the result of 7 runs, the increasing parts of reconstituted hydrographs were always much higher than that of observed hydrograph. In order to have better fit hydrograph, it seems that the lower weight of less than 1 should be put on the coordinate of observed discharge occurred prior to the peak.
- 6. The comparison of observed and reconstituted hydrograph is shown in Fig. 6 and the unit hydrograph performed in run 3 is shown in Fig. 7. The outputs are shown in Attachment 2.

SAFFORD, ARIZONA WATERSHED 45.005

ATTACHMENT 1 Hydrologic Data for Experimental Agricultural Watershed in the United States 211

MONTHLY PRECIPITATION AND RUNOFF (mches! 1/

			11211011	2.10					AKEA-	723 ACRE	5 (1.13	3Q. HI	L=3)			45.04
VEAR	ATA .	44	FE.9	-		-	1	שיים .	1014	AUS	35PT	007	*25	. DE	c	ANNUAL
	•															
						1										
STA AVG	0	1		25												
69 YR	. 21 .	65	.66	.62	.29	.14	1	.27 1	.82	1.74	1.04	.63	.5	7 .77	7	9.20
	ANNUAL)	MUMIKAN	DISCHAR	GES (inch	es per hou	A DAL	HHUAL	MUMIXAM	YOLUMES	OF RUNC	FF (inch) FOR S	ELECTE	D TIME IN	TERYAL	.s
	NAX:						MA	CHUN VOLU	NE FOR SI	ELECTED	TIME INTE	RYAL				
PASTY	DISCH		1 43		3 40			-045	1	-00#\$		PAY		DAYS	-	DAYS
	DATE	MATE	DATE	VOLUME	DATE	vocuet	DATE	VOLUME	0476	40-04E	DATE	VOLU-E	DATE	ADTORE	DATE	VOLUE
1967	9-25	.007	9-25	.003	9-25	.003	9-25	.003	9-25	.003	9-25	.003	9-25	.003	9-25	.003
						FA1	INUMS	FOR PERIO	D OF REC	080 1/				i		1
13 70														1		T
HOTES:	1/ Not	calcula	ted. Da	ta are	being r	eeva lua	ted.	As soon	as ret	abulatio	n is c	ompleted	d, revi	sed data	will	be .
report	ed for	these t	yo secti	ons.	2/ Mean	P based	on 69	9-yr (189								
1	1955	SELE	CTED RU	NOFF E	VENT		1		SAFFO	RD, ARI	zona	WATERS	HFD 45.	.005		
			SHOITICH			-	RAINFA						RUNOFF			
	MO-OAT	RAIN F		noff notes)	DATE NO-DAY	OF D	4	(in/b-)	ACC.	DAT:	7 0	FDAY	RATE (IN/Ar)	(inc)	tes)	
		-										1				
					E	vent of	July	22, 195	5							
	٠.	RG R			7-22	RG		R-12		7-22						
	7-10	.05		00		1543		.00	.00			12	.000	.000		
	7-17	1 .15	5 .0	00		1610		4.20	.24 -		16	14	.022	.000	02	
	7-21	-05	, .	00		1615		5.16	.67		16	17	.025	.001	14	
	7-22	.02	2 .0	00		1620		3.60	.97	1		18	.066	.002		
		1				1630		1.98	1.30			19	.082	.002		
		-				1800		.02	1.42			21	.119	.006	56	
		1	1					1			16	22	-167	.009	90	
											16	23	.193	.012		
							1					25	.255	.015		
										1	16	26	.342	.025	57	
										-						
		1									16	28	.451	.038		
		1									16	30	.532	.055	53 .	
					•						16		.564	.064		
		1									16	33	.656	.084	48	
											16	34	.700	.098	51	
		1				1					16		.724	.108		
Waters	hed cond	itions	: About	807.							16		.841	.160		
			getation nort gra			-					16	41	.853	.188	3.5	
(black	grama,	sideoa	ts grada	, and							16	42	.926	.203	35	
tobosa; forbs.		some si	urnps sü	d		1				1.	16		.830	.218		
		1	1			1					16		.761	.244		
											16	46	.728	.257		
										1	16	47	.650			

NOTES: TO TOWERT RUNORS IN IN/HR TO CES, MULTIPLY BY 729.02. FOR TOPOGRAPHIC MAP OF MATERIES SEE HYDROLOGIC DATA FOR EXPERIMENTAL ACRICULTURAL MATERIESD IN THE UNITED STATES, 1936-59, USDA, MISC. PUB. 945, P. 45.4-4. SELECTED EVENT IS FREE RE-EVALUATED DATA.

.595 .540 .458

.378 .335

1651 1652

1653 1654

.2790 .2885

.3043

.3171 .3223 .3269

1955		RUNOFF E	VENT			SAFFOR	D, ARIZON	WATER	SHED 45.00	15 W-5
	MT C0 > 0111			,	FALL				PUNCFF	
DATA	RAINFALL (mcfes)	RUNOFF (INCOPE)	BATE MO-DAY	CF DAY	14TE451TY (14, 0+)	ACC.	DATE 40-DAY	OF DAY	mate (m/b-)	ACC. Inchest
					1000					
			Event	f July 22	1933.con	tinued				
							7-22	1656 1657	.232	.3311
								1659	.165	.3405
								1701 1703	.141	.3456 .3500
								1705	.1002	.3536Z
								1710	.075E	.3609E
								1715	.056E	.3664E
								1718	.044E	.3689E
								1721	.036E	.3710Z
								1724	.030E	.3726E
								1731 1734	.018E	.3753E
								1739 1744	-010E	.3772E
								1750 1756	.005Z	.3785E .3789E
								1804	.003E	.3792E
								1812	.001E	.3794E
								1822 1829	2000	.3795E .3796E
								2001	.0002	.37962
TFG: TO 60	William Blow	1 1		1						1
TES: TO CO	MASKI KON	DEE IN IN/	AR 10 CFS	, MOLITELI	BT 729.02	•				
		6.0	I TOTAL			1		1.2		
				+ RG R-1	2					
		5.0			1:			1.0		
			12,11	1111	17.11					
		4.0						0.8		
					##					
		(1n/hr)	1		11			= 2		
		u u	7					0.6 (3u/hr)		
		3.0								
		pit			1=1=			Runoff		
		Precipite	1		1			- Ku		
		2.0	1					0.4		
		2.0	-					- 0.4		
		1								
		1.0						0.2		
				===	1	- L				
						Estimat	ed flou			
		0.0		1/00	****		00	0.0		
			1500	1600	1700	15		1900		
					July 22,	1955	10.20	6 NJ3	. į	
			5	AFFOSD, AR	14084	WATERSMED	45.905			

HONTE	ILY PREC	PITATIO	AND RUM	OFF (meh	**)			MISSISSI 85A—22.			TERSHED W		62.04
	144	***	M4.0	400		3006	JULT	Auc	1414	oc r	#3V	966	ANNUAL
1957 -27	1.57	2.99	1.00	4.45	7.83	2.33	7.19	7.07	1.14	2.12	1.95	7.73	50.96 6.31
57-67) Q	3.57	4.97	4.81	4.50	4.16	3.10	4.28	3.74	4.28	2.07	4.07	5.05	48.60
43 YR	5.67	5.27	5.93	5.05	4.65	3.76	4.40	3.27	3.45	2.83	4.51	5.13	53.99

ANNUAL MAXIMUM DISCHARGES (inches per four) AND ANNUAL MAXIMUM VOLUMES OF RUNOFF (inches) FOR SELECTED TIME INTERVALS

	MAKE	w1100					MAKE	404 VOLU	45 FO# 3	ELECTED !	THE INT	PAVAL				
7E44	CISCH	ARCE	1 10	oun	2	31175	4 ==	0045	12+	100MS		DAY	2 (24.45		AVS
	0476	PATE	DATE	VOLUME	DATE	ADFAME	DATE	*0~U+E	0+74	VOLUME	0.446	POLUME!	9476	YOU UNE	DATE	435000
1957	7-9	.30	7-9	.29	7-9	.56	7-9	.99	7-9	1.06	7-9	1.09	8-2	1.29	8-2	1.37
				-		wax.	HUNS FO	R PERIOD	OF REC	050			-		-	
13 57 TO	2-23	.35	2-23	.35	2-23	.68	2-23	1.38	2-23	1.62	2-23	1.84	1-30	2.23	3-24	4.36

1	967 0	AILY PRECIS	MOITATION	inches)		OXFORD,	MISSISS	[PP]		WATERSHE	D W-12	62.0
DAY :	HAL	FER	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ост	Nov	DEC
1	.00	.00	.00	.00	1.54	.00	.15	-23	.00	.00	.23	.00
2	.00	.42	.00	.00	.03	.00	.68	3.53	-00	.00	.00	1.50
3	.00	.00	.00	.00	.00	.00 i	.00	.65	-00	.00	. 18	.00
4	.00	.00	.00	-00	.00	.00	.00	.56	.00	-00	+00	.00
5	•00	.00	.57	.00	.00	.00	1.35	.00	.00	.00	.00	.00
5	.00	-00	2.51	.00	2.68	.00	.00	.00	.00	.00	.00	-14
7	.04	.00	.00	.00	.00	.00	.00	.16	.21	-00	.00	-00
8	-00	.00	.00	.00	.00	.00	.00	.00	.50	.06	.00	.00
9 1	.00	.00	.00	.00	.00	.01	3.03	.01	.00	.00	.00	1.25
10	00	.00	-00	.08	.00	-00	.00	-00	- 00	.00	.00	-15
11	.00	.00	.00	.00	.00	.00	.09	.00	.05	.00	.34	.42
12	.00	.00	.00	.00	.00	-00	.07	.00	-00	.00	.00	.00
13 1	.54	.00	.00	.50	-00	.00	.44	.00	.00	.00	-00	.00
14 ,	.07	.00	.00	.76	.32	.00	.00	.00	.00	.00	.00	.46
15	.00	10.	.00	.00	.22	.00	.00	.00	.00	.00	.00	-22
16	.00	.13	.00	.00	.00	.00	.00	.00	.00	1.54	-00	-00
17	.00	.29	.00	.00	.00	00	.00	.08	.00	.11	-00	.80
10	.00	.01	00	.00	.00	.15	.00	.3B	.00	.00	.00	.00
10 .	.00	-36	- 05	.00	.00	-00	.00	.00	-00	.00	.00	.00
20	.00	•71	.19	.00	.35	.05	.08	.00	-00	.00	.05	1.39
21	.00	.00	.00	.07	.87	.56	.01	.00	-11	-00	-21	.80
22	.00	.00	-00	-10	.00	.35	.20	.00	.00	.00 .	-13	.00
23	.00	-00	.00	1.35	- 00	.35	.00	.00	-00	.00	-03	.00
24	.00	.00	.00	.00	.00	.00	.00	.27	-00	-08	.00	.00
25	.00	.00	.00	.70	• 00	.00	-13	.00	.00	.00	•00	.00
26	.92	+00	.97	52	.00	.02	.21	1.16	-00	-00	+00	.00
27	.00	1.06	.23	-00	.00	-00	.00	.06	.27	.00	.00	.05
21	.00	.00	•00	.00	.00	.00	.43	.00 ;	.00	.00	.00	.00
59	.00		.00	.00	.00	-07	.32	.00	.00	.00	-55	.00
15	•00		.00	.37	.35	.82	.00	-00 ;	.00	. 25	23	.11
11	.00	!	.00		1.47	1	.00	+00		.05		. 4.4
***	1.57	2.99	4.52	4.45	7.83		7.19	7.69	1.14	2.12	1.95	7.73
	3.57	4.97	4.81	4.50	4.10	3.10	4.28	3.74	4.28	2.07	4.07	5.05

THESSEN WEIGHTED FROM RAIN CAGES 4-9, 13, 15, 18-20, 25, 29-31, AND 33. STATION AVERAGE IS FOR 11-YR (1957-67) RECORD PERIOD

1	51-7 M	EAN DAILY	DISCHARO	E (cfs)		OXFOR.	H155155	1551		MATERSHE	D 11-12	
DAY	JAN	1 169 1		APR	m4.4	June	JULY !	AUG	SEPT	057	NOV	tee
1 1	.82	. 31;	2.68	.36	366.59	9.07	3.23	.24	2.29	1.00	1.33	1.
2 1	.82	10.75	2.28	. 71	20.56	1.75	12.44	830.50	2.29	* / 5	1.76	+7.1
3 1	.82	1.68	2.11	-71	4.54	1.99	1.99	29.84	2.21	.82	1.06	7.5
4	.87	1.00	2.02	.71	3.45	87	.39	444.49	1.78	.76	1.60	1.
5	.76	1.00	2.51	.71	3.09	-82	64.60	3.85	1.48	.76	1.00	1.
6	.71	.88	847.90	.65	599.20	.61	6.82	1.35	1.26	.82	1.00	1
7	.71	.82	35.06	.60	246.39	.51	3.83	.88	1.26	.82	1.60!	.:
8 !	.69	.93	12.53	.51	10.72	.43	3.09	.71	1.71	.88	1.00	?
9	.60	1.00	7.36	.56	1.35	.25	1028.43	.60	1.12	.93	1.00	31.4
+0	.65	1.60	4.80	.62	.93	•22	19.92	.51	1.00	.93	.93	27.4
.,	.56	.82	3.56	.82	.82	.18	3.68	.42	.87	.93	.27	4.
12	.47	.52	2.98	.65	.61	.23	4.19	.42	.87	.93	.93	1.
13	.56		2.66	.69	.39	.31	24.38	.47	.93	1.13	1.00	1.
14	.65	.35	2.29	2.04	.49	.28	1.84	.42	.93	1.26	1.00	1-
15	-65	.25	1.71	.56	1.37	.23	.56	.35	.87	1.26	1.06	2.
16	.60	.20	1.26	.51	.27	.25	.00	.31	-87	1.40	1.00	1.
17	.56	.18	.89	.42	-14	.25	.38	+25	.97	1.15	.93	51.
18	.51	.16	.71	.42	.14	.31	.82	.96	.87	.76	1.06	25.
19	.51	.22	.82	.47	.13	.31	.76	.35	.87	.76	1.06	3.
20	.56	17.36	76	.51	.18	.35	. 1.63	.35	-87	.82	1.00	277.
21	.56	4.43	.71	.60	1.84	.46	1.47	.32	87	82	1.06	159.
22	56	2.98	.66	.61	1.15	.73	.76	.28	.87	.82	1.05	20.4
23	.56	2.77	.84	80.50	23	*85	.71	-28	.97	.93	1.00	1.0
24	.56	2.77	1.19	3.22	-14	.35	.71	.36	.87	.93	1.00	- 6
25	.51	2.66	1.26	1.65	.13	.39	.71	1.03	87	.87	1.00	
26	18.49	2.66	1.85	50.35	•19	.33	.86	45.29	.87	1.00	.88	
27	3.52	56.18	9.62	3.93	.20	.25	-61	4.69	.97	1.06	.76	
28	.42	12.04	2.23	2.56	-13	.25	.59	3.09	.87	.93	.76	
29	.38		1.14	2.66	.15	-40	1.10	2.87	.93	1.00	.88	
30	.35		.87	2.25	.22	6.20	1.05	2.65	.93	1.19	1.00	
31	.31		.76		150.65	******	-36	2.56		1.26		1.3
AN	1.26	4.50	30.40	5.39	44.01	.94	34.46	44.53	1.13	.96	.59	22.
ings!	+04	.13	1.00	.17	1.42	.03	1.24	1.44	.04	.03	.03	

MOTEM TO CONVERT DISCHARGE IN CFS TO IN/DAY, MULTIPLY BY D.GUI0439. QUALITY OF RECORDS: GOOD, ESTIMATED TO BE WITHEN 10% OF ACTUAL.

1967	SELECTED	RUNOFF E	VENT		UXFUKD.	4·155155	[65]		WATERSHEI	E-12 62.
ANTECED	NT CONDITI	ONS .		HAIN	FALL				RUNOFF	
DATE WO-DAY	forches)	(seches)	SATE HO-DAY	OF GAY	(in/2e)	ACC. (makes)	GATE NO-GAY	OF DAY	RATE.	ACG. (mubra)
			Event of	May 31 -	June 3, 1	967 1/				
					1 1					
5-31	2/.14	3/.0002	5-31	16 RG	AVG4/		5-31	1420	.20	.0000
				1415	.00	.00		1438	.76	.0001
		1		1430	.16	.04		1454	-87	.0001
				1445	.35	.13		1512	2.56	.0001
				1500	.76	.32		1536	13.99	.0002
				1515	1.76	.76		1554	101.81	.0010
				1550	1.76	1.20		1612	196-10	.0029
				1545	.32	1.28		1620	321.89	.0044
				1600	.12	1.31		1624	659.52	.0059
tershed con es in culti	vation, c	hiefly		1615	-04	1.32		1632	1090.00	0111
otton, corn	and soybe	ens,						1646	1477.22	.0241
nerally poo	cover;	16% in						1704	1702.00	.0445
sture and 2								1726	1470.26	.0702
od cover; 3								1749	1102.00	.0907
over; 1% in l	bare gull:	les; 4%					-	1612	735.59	.1067
1								1824	580.00	.1143
								1050	412.19	.1222
								1920	275.73	.1297
					1			2010	209.76	-1356
								2058	155,-00	-1449
								2205	101.81	.1513
								2254	73.35	-1563
		1						2323	59.00	.1556
								2400	47.58	.1572
							0-1	0130	28.51	.1597

EDTES: TO CONVERT RUNOFF IN CFS TO IN/NS, MULTIFLY BY G.0000435. FOR MAP OF WATERSHED, SEE HYDROLOGIC DATA FOR EXPERIMENTAL AGRICULTURAL WATERSHEDS IN THE UNITED STATES, 1936-59, USDA MISC. PUB. 945, P. 62.4-6. 1/ ISOMYETAL MAP. N.P. 62.11-4. 2/ RAINFALL RELOR TO 1415 ON 5-31-67. 2/ RUNOFF FRIOR TO 1420 ON 5-31-67. FOR 30-DAY ANTICLDENT P. AND Q. SEE TABLES ON THIS AND PREVIOUS PAGE. 4/ THISSEN WELDOTED STORM RAINFALL, RAIN GAGES 4-9, 13, 15, 18-20, 25, 29-31 AND 33. DAILY TOTALS FOR INDIVIDUAL CAUFS LISTED ON P2. 62.11-2 AND 62.11-3.

ANTECEDENT CONDITIONS				PAI	NEALL		RUNDFF				
DATE VAC-CM	MAINTALL (Mibel)	(100001)	DATE WO-DM	71ME 07 047	INTENSITY (sarbs)	ACC. (inches)	DATE MO-DAY	OF DAY	MATE (c/s)	ACC.	
		- Ev	ent of Ma	y 31 - Ju	ne 3, 1967	Continu	<u>+d</u>				
							6-1	6302	10.15	•1612 •1630	
							6-2	1200 2400 2400	2.37 1.17	•1560 •1556 •1555	
							6-3	2400	1/7	•1695	

NOTES: TO CONVERT RUNOFF IN CFS TO IN/HR, MULTIPLY BY 0000435, 1/ RUNOFF DECREASED TO 0.3 CFS (NORMAL BASE FLOW) AT 2400 ON JUNE 8, 1967.

OXFORD, MISSISSIPPI WATERSHED W-12

CLARK METHOD FOR DERIVING UNIT HYDROGRAPH, BY HEC-1 SAFFORD WATERSHED, ARIZONA, DATA FROM HYDRO DATA FOR EXPER AGR WATERSHED. YADHUANG WU

JOB SPECIFICATION NHR NMIN IDAY IHR IMIN METRC IPLT IPRT NSTAN 10 0 022 15 50 JOPER NWT

TEMPORARY ADJUSTMENT TO OBSERVED FLOWS DO 5 1.80

				1				
	н	YDROGRA	PH AND LOSS	RATE OPTIMIT	ZATION CO	MPUTATIO	NS	
		ISNOA	TAREA	SNAP STRTQ	GRCSN	RTINR		
				INPUT DATA				
TC	R	COEF	STRKR ST		ERAIN	FRZTP	PLTKR	RTTOL
TC ≈.52	·.13	.00	-1.00	.00 .00	-1.00	.00	-1.00	-1.00
The second secon			INI	TIAL ESTIMATE	ES			
TC+R	R/(TC+R)	COEF	STRKR ST	RKS RTIDK	ERAIN	FRZTP	DLTKR	RTIOL .
3.90	20	.00	.20	.0000	.50	.00	.50	2.00
.01	.23	.73	NP ST	PRECIP DATA ORM DAJ .00 .00 RECIP PATTER		.02		
•01	• 6 3	. / 3	. 33	. 00	.04	• 02		
STANDARD ERROR FOR VAR VAR 1 ADJ FROM 3.90	TO 3.55	7.9594	345.9357	344.1542				
STANDARD ERROR FOR VAR VAR 2 ADJ FROM .20		0.5421	340.0093	339,4773				
STANDARD ERROR FOR VAR VAR 4 ADJ FROM .90		7.5316	323.2249	318,9548				
STANDARD ERROR FOR VAR	IABLE 7 22	1.3879	220.6419	219.9536				

217.6248

220.6181

STANDARD ERROR VAR 7 ADJ FROM .50 TO . 43 STANDARD ERROR FOR VARIABLE 9 216.0131 216.2376 216.1055 VAR 9 ADJ FROM 2.24 TO 2.28

STANDARD ERPOR FOR VARIABLE10 . 215.9469 215.9645 215.9823 YAR 10 ADJ FROM 2.00 TO 3.00

STANDARD FRROR FOR VARIABLE 1 215.2995

VAR 1 ADJ FROM 3.55 TO 3.66

STANDARD ERROR FOR VARIABLE 2 211.1257 211.2519 211.1844 VAR 2 ADJ FROM .15 TO .16

STANDARD ERROR FOR VARIABLE 7 210.8445 VAR 7 ADJ FRUM .43 TO .42	210.7485	210.6888
STANDARD ERROR FOR VARIABLE 9 210.6645 VAR 9 ADJ FROM 2.28 TO 2.35	210, 8035	210.9827
STANDARD ERROR FOR VARIABLE10 210.4893 VAR 10 ADJ FROM 3.00 TO 4.50	210.5022	210.5154
STANDARD ERROR FOR VARIABLE 1 210.0182 VAR 1 ADJ FROM 3.66 TO 3.74	211,1573	212.7371
STANDARD ERPOR FOR VARIABLE 2 208,8912 VAR 2 ADJ FROM .16 TO .16	208.9012	208.9194
STANDARD ERROR FOR VARIABLE 4 208.8890 VAR 4 ADJ FROM .59 TO .58	208.8679	208.9099
STANDARD FRROR FOR VARIABLE 7 208.8671 VAR 7 ADJ FROM .42 TO .40	208.7703	208.7063
STANDARD ERROR FOR VARIABLE 9. 208.6711 VAR 9 ADJ FROM 2.35 TO 2.42	208.8130	208.9961
STANDARD ERROR FOR VARIABLE10 208.4925 VAR 10 ADJ FROM 4.50 TO 6.75	208,5028	208.5132
STANDARD ERROR FOR VARIABLE 1 208.1241 VAR 1 ADJ FROM 3.74 TO 3.76	. 208.5574	209.3749
STANDARD ERROR FOR VARIABLE 2 208.0387 VAR 2 ADJ FROM .16 TO .16	208.0492	208,0673
STANDARD ERROR FOR VARIABLE 4 208.0358 VAR 4 ADJ FROM .58 TO .59	208.0960	208,2146
STANDARD ERROR FOR VARIABLE 7 208.0275 VAR 7 ADJ FROM .40 TO .39	207.9312	207.8648
STANDARD ERROR FOR VARIABLE 9 207.8197 VAR 9 ADJ FROM 2.42 TO 2.49	207.9636	208.1495
STANDARD ERROR FOR VARIABLE10 207.6404 VAR 10 ADJ FROM 6.75 TO 10.12	207.6497	207.6592
STANDARD ERROR FOR VARIABLE 1. 207.3071 VAR 1 ADJ FROM 3.76 TO 3.76	207.5105	208.0917
INF	TETRATION IND	DEX =2.100 IN/HR (53 MM/HR)
	STRKR FOR	RTIOL OF 3. = .79
	OPT	TIMIZATION RESULTS
TC R COEF .53 .10 .00	STRKR STRK	

STANDARD EPROP FOR VARIABLE 4 210.9600 210.8682 210.8456 VAR 4 ADJ FROM .60 TO .59

				END			
PERIOD		TI	"E	RAIN	EXCS	COMP 0	OBS O
1	55	15	60	.01	.00	.00	.00
S	. 55	16	10	.53	.00	.00	00
3	55	16	20	.73	.31	154.08	69.30
q	55	16	30	. 33	.07	467.20	387.90
5	2.5	16	0.0	.06	.00	582.79	623.50
6	55	15	50	.04	.00	344.16	334,00
7	55	16	60	.05	.00	83.23	111.60
8	55	17	10	.00	.00	6.84	54.70
9	55	17	20	.00	.00	.00	28.40
10	55	17	30	.00	.00	.00	14.60
11	55	17	40	.00	.00	.00	8.00
12	55	17	50	.00	.00	.00	3,60
13	55	17	40	.00	.00	.00	1.50
14	55	18	10	.00	.00	.00	.70
15	55	18	20	.00	.00	.00	.00
		S	Mili	1.42	.38	1638.00	1637.80

THE FOLLOWING INFOOMATION IS FOR A TIME BASE
WHICH IS EQUAL TO 3 TIMES THE LAG FROM THE CENTROID
OF RF EXCESS TO THE OBSERVED PEAK

—OP+
WHICH IS EQUAL TO 4 PERIOD FROM THE CENTROID OF THE
RF EXCESS TO A RECESSION O EQUAL TO ONE-HALF THE PEAK Q

WHICHEVER GIVES THE LARGEST TIME BASE

TIME BASE STARTS AT PERIOD 3, ENDS AT PERIOD

COMPUTED PEAK 5A2.70

OBSERVED PEAK 623.50

PEAK DIFF. (PERCENT) = -6.53

COMPUTED PEAK LAG: .30 HOURS TIME DIFFERENCE .0 HOURS

STANDARD ERROR= 52.249
MEAN FLOW= 229.9
STANDARD ERROR AS A PERCENT OF MEAN= 22.74

AVERAGE ERROR (PERCENT): 52.18

OBSERVED VOLUME: 1638. VOLUME DIFF. (PERCENT): 1.60

	STATION	-1		YATHUANG	WU										
Seminative and desire a series of		INFLOW	Ii. DU	TFLOW(O)	AND DESI	RVED F	LOWC*1								4
0.	100.		300.	400.	500).	600.	700	•	0.	0.	PRECIPO	Li AND	O. EXCESSIX	0.
22 15 60*	.0.	.0	.0.	.0		.0	.0	•	0.	.8	.6			· 5	LX
22 16 10 *	* 4	1 1	3	9		4	•		1		נונונונונו	LULLLLLL	LLLLXXX	YXYXXXXXX	XXXXX
22 16 30 a 22 16 40 a	1	1	1	*•	I	4	I	*	1	1			i trere		LLLX
22 16 50 a 22 16 60 a 22 17 10 I	I *		1	*I e			٠ و		•					•	LLX
22 17 201 * 22 17 301*			•			•	,		•	•					L
22 17 40I* 22 17 50*	•	•	9			•			1					:	L
22 17 60*	4	•	•			1	0		4				l	4	-
22 18 20*	•	•	•				•		•						
													******		40
						•									
Approximation of the section of the						و بيد									
9		•			*										in the second
														and the state of t	
Mile Albert (Malacon											• • • • • • • • • • • • • • • • • • • •		A		
						•									
	entered to the second of the						- /								
					1 .										
***** * * *** * * * * * * * * * * * *															

```
HEC-1 VERSION DATED JAN 1973
UPDATED AUG 74
```

CLARK METHOD FOR DERIVING UNIT HYDROGRAPH, BY HEC-1 OXFORD WATERSHED, MISSISSIP, DATA FROM HYDRO DATA FOR EXPER AGR WATERSHED YANHUANG WU

JOB SPECIFICATION NHR NMIN IDAY IHR IMIN METRC IPLT IPRT NSTAN 0 30 0 031 16 0 0 2 1 0

		JOPER 2	NWT 1		
TEMPORARY ADJUSTME	NT TO DESERVED F	Ows 00 6	1.20		
	HYDROGRA	H AND LOSS RAT	E OPTIMIZATION C	COMPUTATIONS	
		TAREA SNAP			
	1 0.	35.60 .00	.00 .00	1.00 0	
		INP	UT DATA		
· TC	-1.46 COEF	STRKR STRKS	RTIOK ERAIN		RTTOL
-2.17	-1.46 .00		.00 -1.00	.00 -1.00	-1.00
. TC+R R/	(TC+R) COEF		ESTIMATES RTICK ERAIN	FRZTP DLTKR	RTIOL
7.26	(TC+R) COEF	STRKR STRKS	.00 .50	.00 .50	2.00
		PREC	IP DATA		
		NP STORM	DA.T DAK		
		5 .00	P PATTERN .00		
.04	.28 .88		01		
STANDARD FORCE FOR WARTARI	F 4 277 A.44	272,7606	249 9979		
VAR 1 ADJ FROM 7.26 TO	6.49	872,1000	201.0070		
			'		
VAR 2 ADJ FROM .40 TO	.E 2 263.4466	260.4277	257.4161		
YAR 4 ADJ FROM .81 TO	E 4. 218.4573	215.7486	217.0561		
				The second second second second	
VAR 7 ADJ FROM .50 TO	E 7 215.6866	215.9786	216.8511		
STANDARD ERROR FOR VARIABL	E 9 215.6866	216.1852	217.6771		

STANDARD ERRO STANDARD FRROR FOR VARIABLE10 215.6866 VAR 10 ADJ FROM 2.00 TO 2.00 215.6888 215.6952

STANDARD ERROR FOR VARIABLE 1 215.6864 VAR 1 ADJ FROM 6.49 TO 6.55 218.9740 216.8968

STANDARD ERROR FOR VARIABLE 2 VAR 2 ADJ FROM .27 TO .29 215.3195 215,6391 215,9966

42

```
STANDARD FREDR FOR VARIABLE 4 213.8114
VAR 4 ADJ FROM .80 TO .79
                                                          213.2518
                                                                       216.5104
        STANDARD ERPOR FOR VARIABLE 7 213.0105
VAR 7 ADJ FROM .50 TO .50
                                                          213.2949
                                                                       214.1404
        STANDARD ERROR FOR VARIABLE 9 213.0105
                                                          213,4990
                                                                       214.9568
- YAR 9 ADJ FROM 2.02 TO 2.02
        STANDARD ERROR FOR VARIABLE10 213.0105
                                                          213.0125
                                                                       213.0186
        VAR 10 ADJ FROM 2.00 TO 2.00
        STANDARD ERROR FOR VARIABLE 1 213.0105
                                                          214.0394
                                                                       215.9268
        VAR 1 ADJ FROM 6.55 TO 6.60
        STANDARD ERROR FOR VARIABLE 2 212.7882
VAR 2 ADJ FROM .29 TO .30
                                                          212.9980
                                                                       213.2512
        STANDARD ERROR FOR VARIABLE 4 212.2116
VAR 4 ADJ FROM .79 TO .79
                                                          212.5042
                                                                       216.4771
        STANDARD ERPOR FOR VARIABLE 7 211.8809
VAR 7 ADJ FROM .50 TO .50
                                                        212.1560
                                                                       212.9786
        STANDARD ERPOR FOR VARIABLE 9
                                          211.8809
                                                         212.3583
                                                                       213.7872
        YAR 9 ADJ FROM 2.02 TO 2.02
        STANDARD ERROR FOR VARIABLE10 211,8809
                                                          211.8830
                                                                       211.8889
        VAR 10 ADJ FROM 2.00 TO 2.00
        STANDARD ERROR FOR VARIABLE 1 211.8809
VAR 1 ADJ FROM 6.60 TO 6.66
                                                          212.8845
                                                                       214.5722
        STANDARD ERROR FOR VARIABLE 2 211.8483
VAR 2 ADJ FROM .30 TO .30
                                                          212.0075
                                                                       212.3774
        STANDARD ERROR FOR VARIABLE 4
                                            211,8153
                                                          212.8768
                                                                       217.5215
        VAR 4 ADJ FROM .79 TO .79
        STANDARD ERPOR FOR VARIABLE 7 211.7356
VAR 7 ADJ FROM .50 TO .50
                                                          212.0009
                                                                       212.8061
        STANDARD ERROR FOR VARIABLE 9 211.7354
                                                          212.2065
                                                                       213.6184
       STANDARD ERROR FOR VARIABLE10 211.7356
                                                          211.7377
                                                                       211.7436
        VAR 10 ADJ FROM 2.00 TO 2.00
        STANDARD ERROR FOR VARIABLE 1 211.7356
                                                          211.9457 213.1621
        YAR 1 ADJ FROM 6.66 TO 6.64
```

INFILTRATION INDEX =1.420 IN/HR (36 MM/HR)

STRKE FOR ETIOL OF 3. = .82

OPTIMIZATION RESULTS COEF STRKR TC STRKS RTINK ERAIN FRZTP DLTKR RTIOL 2.32 .50 1.01 .00 .80 .00 000 .00 2.05 5.00

UNIT HYDROGRAPH 14 END=DF=PERIOD DRDINATES, LAG= 1.80 HDURS, CP= .76 VDL= 1.00 1297.32 4450.04 7820.71 9529.78 8439.00 5729.78 3447.86 2074.72 1248.45 751.25

			F-PERIC			
PERIOD	TIME	RAIN	EXCS	CUMP 0	ORS O	
1 3		.04	.00	.00	. 50	
2 3	1 16 60	85.	.00	.00	1.40	
3 3		,88	.17	217.56	11.10	
4 3	1 17 60	.11	.00	746.25	133.20	
5 3	1 18 30	.01	.00	1311.50	992.40	
6 3	1 18 60	.00	.00	1598,10	1702.00	
7 3		.00	.00 .	1415.18	1403.30	
8 3		.00	.00	960.86	918.80	
9 3		.00.	.00	578.19	564.70	
10 3		a 0 0	.00	347.92	367.70	-
. 11 3		.00	.00	209.36	264.90	•
12 3		.00	.00	125.98	208.00	
13: 3		,00	.00	75.81	186.90	
14 3		.00	.00	45.62	153.40	
15 3		.00	.00	27.45	130.00	
16 . 3		.00	.00	16.52	106.50	
17 3		00	.00	.00	87,60	
18 3		.00	.00	.00	70.80	
19 3		.00	.00	.00	5A.30	
20 3		.00	.00	.00	47.60	-
21 3		.00	.00	.00	41.30	•
55 3		.00	.00	.00.	35.10	,
53 3		.00	.00	.00	28.80	
24 3		.00	.00	.00	25.40	
25 3		.00 .	.00	.00	21.90	
26 3		.00	.00	.00	18.40	
27 3		.00	.00	.00	16.70	
28 3		.00	.00	.00	15.20	
29 3		.00	.00	.00	14.00	
30 3		.00	.00	.00	12.40	
31 3		.00	.00	.00	10.90	
32 3		.00	.00	.00	9.50	
33 3		,00	.00	.00	9,10	
34 3	2 8 40	.00	.00	.00	8.70	
	3114	1.32	.17	7676.00	7676.50	

THE FOLLOWING INFORMATION IS FOR A TIME BASE WHICH IS EQUAL TO 3 TIMES THE LAG FROM THE CENTROID OF RE EXCESS TO THE OBSERVED PEAK

m TR m WHICH IS EQUAL TO A PERIOD FROM THE CENTROID OF THE RF EXCESS TO A RECESSION O EQUAL TO ONE-HALF THE PEAK O -WHICHEVER GIVES THE LARGEST TIME BASE

TIME BASE STARTS AT PERIOD 2, ENDS AT PERIOD 12

COMPUTED PEAK= 1598.10 PEAK DIFF. (PERCENT) = -6.10 OBSERVED PEAKE 1702.00

OBSERVED PEAK LAG= 1.50 HOURS TIME DIFFERENCE STANDARD EPROP= 222.255 . MEAN FLOW= 597.0 STANDARD ERROR AS A PERCENT OF MEAN: 37.23 AVERAGE ERROR (PERCENT) = 230.19 COMPHIED VOLUME= 7511. VOLUME DIFF. (PERCENT) = 14.36 OBSERVED VOLUME= 6567.

AUDITION AND GREEVED FLOW(*) 1400. 140														
### PRECEPTIAL AND EXCESS(X) 31 16 30		0.	200.	INFLI	W(1) . DUTF	LOW (O) AND	ORSERVE	D FLOW(*)	1400.	1600.	1800.	0.	0. 0.	
31 16 50* 31 17 30,												PRECIPCLS	AND EXCESS(X)	
31 16 60° 31 17 30° 31 18 60° 31 18 60° 31 18 60° 31 19 60° 31 19 60° 31 10	,	11 16 30*	•0.	.0,	• 0 •	.0	.0.	.0.	.0.	.0.	1.2.	.8.		
31 17 30 4 1	1	11 16 60+		1	1				1	1	1	1		
31 18 50		11 17 30 . *	ą I		1		,	,		1		LLLLL	ILLLILLILLLLXXXX	X .
31 18 60. 31 10 30. 31 10 60. 31 10 60. 31 12 30. 31 21 30. 31 22 30. 32 2 60. 33 2 3 30. 34 30. 35 3 30. 36 3 30. 37 30. 38 4 30. 39 4 30. 30 4 30. 30 4 30. 30 5 30. 30 6 60. 31 6 60. 31 6 60. 32 6 60. 33 6 60. 34 6 60. 35 7 80. 36 8 30. 37 80.		51 19 30.	* 4	•	•	I, e		•	+ 4				e LLL	X
31 19 60		11 18 60.	,	4	1			•		i	*			1
31 20 500 31 20 600 31 21 300 31 21 300 31 22 300 1		11 19 30 4	•		•				* I	ı į				1.
31 20 60		11 20 30.			41	•	* 1 4	1	1					1
31 21 60	1	1 20 60		I# 4		9		•	;	•	1	1		1
31 22 30	1	1 21 30.	. ! '	1	1	ė,			,	,	•			L
31 23 60 1		1 22 30.	1 4.	4	9	•			. 1	1	1	1	1	-
31 23 60.1 * 32 0 301 * 32 0 601 * 32 1 301 * 32 1 301 * 32 2 301 * 32 2 301 * 32 3 601 * 32 3 301 * 32 3 601 * 32 5 601 * 32 5 601 * 32 5 601 * 32 6 301 * 32 7 60 * 32 7 60 * 32 8 30 *	1	1 .00 55 18	* *	,				*						-
32 0 301			* .	1	1									
32 0 601 * 32 1 601 * 32 2 301 * 32 2 301 * 32 3 601 * 32 3 301 * 32 4 601 * 32 5 601 * 32 5 601 * 32 6 601 * 32 7 60 * 32 7 60 * 32 8 30 *	7	2 0 301	* 4	1	1	0.	4	4	1	•	1		4	_
32 1 601 * 32 2 301 * 32 3 301 * 32 3 601 * 32 3 301 * 32 4 301 * 32 4 301 * 32 5 301 * 32 5 601 * 32 6 301 * 32 7 301 * 32 7 301 *	3	100 0 501	*		•				1	:				-
32 2 301 * 32 3 601 * 32 3 301 * 32 3 601 * 32 4 301 * 32 4 601 * 32 5 301 * 32 5 601 * 32 6 601 * 32 7 301 * 32 7 301 *			4		1									L
32 2 601 * 32 3 301 * 32 4 301 * 32 4 601 * 32 5 301 * 32 5 601 * 32 6 301 * 32 6 301 * 32 7 301 * 32 7 301 * 32 7 80 *			•	1	4	0,	1	4	•	•	•	•	•	L .
32 3 601* 32 4 301* 32 5 301* 32 5 601* 32 6 601* 32 6 601* 32 7 301* 32 7 80* 32 8 30*	3	* 109 8 8	•		4		•	9	:		1	•		L
32 4 601* 32 5 301* 32 5 601* 32 6 301* 32 6 601* 32 7 301* 32 7 60* 32 8 30*			4		4		,		,	,				1 4
32 4 601* 32 5 301* 32 5 601* 32 6 301* 32 6 601* 32 7 301* 32 7 60* 32 8 30*			1		1	•	1	4	•	1		1		L 0,
32 5 601* 32 6 301* 32 6 601* 32 7 301* 32 7 60* 32 8 30*	3	2 4 601*							•		*	*		
32 6 301* 32 6 601* 32 7 301* 32 7 60* 32 8 30*								•	1	•				ī.
32 6 601* 32 7 301* 32 7 60* 32 8 30*				1	. 4		4	4	1	. 4	•	4		L
32 7 60* 32 8 30*			:	•	•	•	1	4	•			•	1	-
32 B 30*									•	,				ī
				4	4		1		1	•			•	L .
				1	1			1	1		1	1		-
							•		•	•		•		-
											-			